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ABSTRACT 

Total soil organic matter (SOM) and its different functional pools (fractions) are important 

attributes of the physical, chemical and biological quality of the soil and are seen as key 

factors in the evaluation of the sustainability of management practices. Until now, limited 

information was available regarding soil C accumulation and stabilization under conservation 

tillage managed soils in the Western Cape grain production regions of South Africa. Long-

term field experiments investigating different crop and crop/pasture rotation systems under 

no-tillage were initiated in 2002 at the Tygerhoek Research Farm of the Western Cape 

Department of Agriculture, near Riviersonderend, Overberg, Western Cape, South Africa. 

The study site enabled us to compare the following five dryland cropping systems; permanent 

Lucerne (100% pasture), Medic-Medic-Wheat (MMW) (67% pasture; 33% crop), Medic-

Medic-Wheat-Wheat (MMWW) (50% pasture, 50% crop) and two 100% cropping systems 

(continuous cropping) in different phase [Wheat-Barley-Canola-Wheat-Barley-Lupin 

(WBCWBL4 & WBCWBL1)]. The numbers “1” and “4” in rotation code refers to the first 

and fourth crop planted in the cropping system, respectively. The underlined crop in rotation 

code represents the crop that was on the field at time of sampling.  Natural vegetated soil 

(non-cultivated area) acted as a reference for this study. In 2012, soil samples were taken at 

four depth increments; 0-5, 5-10, 10-20, 20-30 cm. 

The objectives of the study were to investigate the effect of long-term crop/pasture rotation 

systems on: i) the total soil organic carbon (SOC) storage under different cropping systems, 

ii) the SOC and N content in different functional pools (fractions); free particulate organic 

matter (fPOM) fraction (labile fraction), occluded particulate organic matter (oPOM) fraction 

(moderately stabile intra-aggregate C) and mineral-associated fraction (stabile fraction), (iii) 

the main C stabilizing mechanisms operative in these soils and (iv) the relationship between 

the extent of C sequestration and crop yields. 

After 11 years, the medic-wheat rotations had the highest total SOC contents (15.2-18.6 g kg
-

1 
in 0-30 cm depth, P ≤ 0.05), compared to the continuous cropping (13.3-14.1 g kg

-1
 in 0-30 

cm depth), permanent lucerne pasture (15 g kg
-1

) or natural vegetated soil (13.2 g kg
-1

). 

Higher belowground C inputs through roots and the lower extent of disturbance in the 0-10 

cm depth are the main reasons for higher total C content in the wheat-medic systems 

compared to the other systems. 
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The contribution of the fPOM fraction (labile C) to total C content in the cultivated 

treatments (6-9%) was lower than the natural vegetated soil (13%) in the 5-10 cm depth. The 

fPOM fraction is the most sensitive soil organic C and N pool to detect changes due to 

management practices, which include quantity and quality of OM inputs, extent of physical 

disturbance, and fertilization. The medic-wheat rotations had the highest C (1.37-1.74 g kg
-1

 

in 5-10 cm depth) and N (0.107-0.110 g kg
-1

 in 5-10 cm depth) contents in the fPOM fraction 

of the cultivated treatments. Compared to the natural vegetated soil, the cultivated treatments 

had a lower C content in the oPOM fraction (moderately stabile fraction) and concomitantly a 

lower aggregate stability. On average, the oPOM fraction only contributed 0.4-2.4% to total 

C content at all sites. A significant positive correlation (R
2
= 0.77) was found between C 

occluded in aggregates (oPOM fraction) and aggregate stability with the highest aggregate 

stability found in the medic-wheat rotations of the cultivated treatments. The major part (85-

93%) of the SOC was associated with the mineral fraction (stabile fraction) in the natural 

vegetated and agricultural soils. The MMWW treatment contained the highest C content 

(18.7 g kg
-1

, 5-10 cm depth) in the mineral-associated fraction and the two continuous 

cropping systems the lowest (14.2-14.7 g kg
-1

, 5-10 cm depth) of the cultivated treatments. A 

significant positive correlation was found between mineral-associated SOC fraction and clay 

(R
2 

= 0.74) and Fe-oxide (R
2 

= 0.57) content. This helps explain the large mineral SOC 

fraction found in these soils and is the dominant SOM stabilization mechanism operative in 

these shale-derived soils. The mineral-associated organic matter is probably predominantly 

sorbed to the clay minerals (illite, kaolinite and sesquioxides) via ligand exchange resulting in 

very strong organo-mineral associations. Physical protection via occlusion in aggregates is 

not a dominant C stabilizing mechanism in these soils. The C:N ratios of the fractions 

decreased in the order fPOM > oPOM > mineral with a C:N ratio below 10 in the mineral 

fraction indicative of humified organic matter. 

The MMW and MMWW treatments produced higher wheat yields in 2012 with a significant 

positive correlation found between total soil C and N, and yields obtained. In a higher quality 

soil, higher agronomic production is expected. Findings in this study enabled us to conclude 

that due to effect of cropping system and soil properties, the MMWW treatment had the 

highest total SOC content, which included highest labile C and N content and highest.  
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OPSOMMING 

Totale grond organiese materiaal (GOM) en die verskillende poele (fraksies) is belangrike 

eienskappe van die fisiese, chemiese en biologiese kwaliteit van grond en word gesien as 

belangrike faktore in die evaluering van die volhoubaarheid van bestuurspraktyke. Tot nou 

was beperkte inligting egter beskikbaar rakende grond koolstof akkumulasie en stabilisering 

in gronde onderhewig aan bewaringslandbou in die graanproduserende streke van die Wes-

Kaap. In 2002 is langtermyn plaasskaal wisselbou proewe op die Tygerhoek Navorsingsplaas 

van die Wes-Kaapse Departement van Landbou, naby Riviersonderend in die Overberg 

(Suid-Afrika) geloots. Die studiegebied het dit moontlik gemaak om die volgende vyf 

droëland gewasverbouing stelsels (behandelings) te vergelyk: permanente Lusern (100% 

weiding), Medic-Medic-Koring (MMK) (67% weiding, 33% gewas); Medic-Medic-Koring-

Koring (MMKK) (50% weiding, 50% gewas) en Koring-Gars-Kanola-Koring-Gars-Lupien 

(KGKKGL4 & KGKKGL1) (100% gewas). Die nommers “1” en “4” in rotasiekode verwys 

na die eerste en vierde gewas geplant in die rotasie stelses, onderskeidelik. Die onderstreepte 

gewas in rotasiekode verteenwoordig die gewas in die veld toe monsterneming plaasgevind 

het. Grond onderhewig aan natuurlike plantegroei (onbewerkte gronde) het gedien as 

verwysing vir hierdie studie (sesde behandeling). In 2012 was grondmonsters geneem op vier 

verskillende dieptes; 0-5, 5-10, 10-20 en 20-30 cm.  

Die doelwitte van die studie was om ondersoek in te stel oor die effek van langtermyn 

gewas/weiding wisselboustelsels op: i) die storing van totale grond organiese koolstof (GOK) 

inhoud onder verskillende verbouingstelsels, (ii) die GOK en stikstof inhoud in die 

verskillende funksionele poele (fraksies); vrye fraksie (VF), ingeslote (intra-aggregate) 

fraksie (IF) en mineraalgebonde fraksie (MF), (iii) die hoof koolstof stabiliserings 

meganismes in werking in hierdie gronde (iv) die verhouding tussen die omvang van koolstof 

sekwestrasie en opbrengste. 

Na 11 jaar het die medic-koring rotasies die hoogste totale koolstof inhoud gehad (15.2-18.6 

g kg
-1

 in 0-30 cm diepte, P ≤ 0.05), in vergelyking met volgehoue verbouing met 

kontantgewasse (13.3-14.1 g kg
-1

 in 0-30 cm diepte), permanente weiding (15 g kg
-1

) en 

natuurlike plantegroei (13.2 g kg
-1

). Hoër ondergrondse koolstof insette deur wortels en die 

mindere mate van versteuring in die 0-10 cm diepte is die vernaamste redes vir die hoër totale 

koolstof inhoud in die gewas weiding stelsels. 
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Die bydrae van die vry fraksie (labiele koolstof) tot totale koolstof inhoud in die bewerkte 

behandelings (6-9%) was laer as die van natuurlike plantegroei (13%) in die 5-10 cm diepte. 

Hierdie fraksie is die sensitiefste poel van organiese koolstof en stikstof om veranderinge 

weens effek van bestuurspraktyke, wat die kwantiteit en kwaliteit van OM insette, mate van 

versteuring en bemesting insluit, op te spoor. Die medic-koring rotasies het die hoogste 

koolstof (1.37-1.74 g kg
-1

 in die 5-10 cm diepte) en stikstof (0.107-0.110 g kg
-1

 in die 5-10 

cm diepte) inhoud in die vrye fraksie gehad van die bewerkte behandelings. In vergelyking 

met die grond onder natuurlike plantegroei, het die bewerkte behandelings ‘n laer koolstof 

inhoud in die ingeslote fraksie (gematigde stabiele fraksie) gehad weens ‘n laer aggregaat 

stabiliteit. Die ingeslote fraksie het gemiddeld net 0.4-2.4% bygedra tot die totale koolstof 

inhoud in al die behandelings. ‘n Beduidende positiewe korrelasie (R
2
= 0.77) was gevind 

tussen intra-aggregate koolstof (ingeslote fraksie) en aggregaat stabiliteit met die hoogste 

aggregaat stabiliteit in die medic-koring rotasies van die bewerkte behandelings. Die grootste 

deel (85-93 %) van die totale GOK inhoud hou verband met die mineraal fraksie (stabiele 

fraksie) in beide die natuurlike plantegroei en landbougrond. Die MMKK behandeling (18.7 

g kg
-1

, 5-10 cm diep) het die hoogste koolstof inhoud in die minerale fraksie gehad met die 

twee 100 % gewas wisselboustelsels (14.2-14.7 g kg
-1

, 5-10 cm diepte) die laagste van die 

bewerkte behandelings. ‘n Beduidende korrelasie tussen minerale koolstof (mineraal fraksie) 

en klei (R
2
 = 0.74) en Fe-oksied (R

2 
= 0.57) inhoud is ook gevind wat die groot bydra van die 

mineraal fraksie tot totale koolstof inhoud help verduidelik. Dit is ook die dominante GOK 

stabiliserings meganisme in werking in hierdie skalie-afkomstige gronde. Dit blyk dat die 

mineraal geassosieerde OM oorheersend aan die klei minerale (kaoliniet, illiet and 

seskwioksiedes) adsorbeer d.m.v ligand-uitruiling wat baie sterk organiese-mineraal 

komplekse vorm. Fisiese beskerming d.m.v. insluiting binne aggregate is nie ‘n dominante 

koolstof stabiliserings meganisme in hierdie gronde nie. Die C:N verhouding van die fraksies 

het afgeneem in die volgorde VF> IF> MF met 'n C:N verhouding onder 10 in die mineraal 

fraksie wat ‘n aanduiding is van gehumufiseerde OM. 

Die MMK en MMKK sisteme het hoër koring opbrengste in 2012 tot gevolg gehad en 

beduidende positiewe korrelasies was gevind tussen totale koolstof en stikstof en opbrengste. 

In ‘n hoër kwaliteit grond word hoër opbrengste verwag. Bevindinge in hierdie studie het 

gelei tot die gevolgtrekking dat a.g.v. die rotasie sisteem en grond eienskappe, het die 

MMKK behandeling die hoogste totale koolstof inhoud gehad. Dit sluit die hoogste labiele 

koolstof en stikstof inhoud asook die hoogste stabiele koolstof inhoud in.  
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CHAPTER 1 

GENERAL INTRODUCTION AND RESEARCH AIMS 

Long-term field experiments investigating different crop/pasture rotation systems under 

conservation tillage were conducted by Elsenburg, Western Cape Department of Agriculture, 

at Tygerhoek Research Farm near Riviersonderend, situated in the Overberg region of the 

Western Cape, South Africa. In 2012 the trial was in its 11
th

 year of a planned 20 years. 

Dryland crop choice and productivity in this region is limited as the rainfall is highly variable 

and unpredictable and can therefore lead to unreliable crop yields. Together with climate, a 

decline in soil organic carbon (SOC) as a result of agricultural practices, especially under 

dryland cultivation, can have severe negative impacts on the quality and productivity of soils. 

Several factors (e.g. climate, quantity and quality of biomass input, soil properties) affect the 

SOC content in arable soils but only management practices can be controlled. Conversion to 

conservation agricultural practices (e.g. no-tillage and crop rotation) that can enhance the 

SOC pool are now increasingly being adopted, as it can improve soil quality, increase 

agronomic productivity and thereby advance global food security (Lal, 2011).  

The most common dryland crops produced in this region are barley, wheat and canola while 

lupin is commonly used as a legume in different rotation systems. Although the use of crop-

pasture rotation systems in general have almost disappeared due to the specialization of grain 

crop production (Salvo et al., 2010), medics and lucerne, both legume pastures, is still 

extensively applied by local farmers in their crop rotation sequence. The different crop 

rotation sequences that local grain farmers are currently applying is thus continuous crop, 

crop-legume (cover crop) and crop-pasture systems. They are also increasingly switching 

over to conservation tillage (no-till) practices in attempt to restore SOC. However, little 

information is currently available regarding the most suitable crop sequence for dryland 

wheat production under no-tillage. The soils used for crop production in this region are 

typically shallow (typically less than 50 cm deep) and contain considerable amounts of coarse 

fragments, which also make them challenging to cultivate and to study. 

Although several scientific studies on the effect of prolonged cropping on SOC content have 

been carried out in South Africa (du Toit et al., 1994; Dominy et al., 2002; Smit 2004; Lobe 

2005), studies in the Overberg region are non-existent. To our knowledge, no work has been 

conducted on the combined effects of conservation tillage (no-tillage) and crop rotation 

practices on soil organic matter (SOM) functional pools in the agricultural soils of the 
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Overberg. The effect of soil management practices on C storage is climate, crop and soil 

specific; therefore, it is imperative to investigate these effects in specific geographic areas, as 

results from other climatic regions will most likely not be relevant. Furthermore, the majority 

of the previous studies only focused on the effect of management practices on total SOC 

content, which does not provide any indication on the proportion of the SOC that is actually 

active or stabilized by association with the mineral fraction. Decomposition of organic C can 

be slowed down by different stabilization processes. They are complex and entail an 

understanding of chemical, physical and biological interactions between organic components 

and the mineral matrix (Kӧgel-Knabner & Kleber, 2012). The interaction of SOM with 

minerals and also its chemical properties allows it to be divided into different functional 

pools, with each pool containing unique functional characteristics and turnover rate and 

contributing differently to total SOC (von Lützow et al., 2007). Density fractionation 

(Golchin et al., 1994a; Sohi et al., 2001; Cerli et al., 2012;) is a very common and effective 

technique used for quantifying the amount of C stored in different functional pools, ranging 

from active (labile) to passive (stable). Soil organic matter and its different pools play an 

important role in optimizing crop production, minimizing negative environmental impacts 

and improving soil quality and soil sustainability (Freixo et al., 2002).  

The first objective of this study was to investigate the effect of long-term no-till crop rotation 

practices on total soil C sequestration. It involved understanding the underlying reason for 

differences in soil C sequestration by examining selected soil and plant properties.  A second 

objective was to examine the relationship between the extent of SOM sequestration and crop 

yields. These first two objectives were addressed in Chapter 3. The main objective of this 

study was to investigate the effect of long-term no-till crop rotation practices on the C and N 

content and distribution in the SOM functional pools. This objective was addressed in 

Chapter 4. This involved the fractionation of total SOM into different functional pools 

(fractions) in order to investigate the role of each fraction in soil quality, as well as, the 

mechanisms by which C is stabilized. Elucidating the mechanisms responsible for SOC 

stabilization was carried out by examining the relationships of stable C (intra-aggregate and 

mineral-bound) with selected soil properties known to play a role such as aggregate stability, 

clay content and metal-oxide content.   
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CHAPTER 2 

LITERATURE REVIEW – SIGNIFICANCE AND FACTORS 

CONTROLLING SOIL ORGANIC MATTER STABILIZATION 

2.1. Introduction 

This literature study covers the latest scientific literature on soil organic carbon (SOC) 

stabilization. The current gaps in knowledge will also be highlighted in this review.  

Understanding the contribution of stable SOC to total SOC is helpful in approximating the 

long term effect of different land use types and climate on C cycling and SOC dynamics 

(Falloon & Smith, 2002). 

The SOC pool is one of the largest on the global scale (Jobbagy & Jackson, 2000) and can be 

enhanced either through increased C inputs or decreased C losses (Figure 2.1). According to 

Fischlin et al. (2007) soils store almost three times more C in soil organic matter (SOM) than 

found in both the atmosphere or in living plants. However, due to the climate, low crop yield, 

removal of crop residues due to grazing, and fallowing to advance water storage and control 

weeds, most agricultural soils in semi-arid regions are known for its low soil C content 

(Rasmussen et al., 1998). Hence, it is important to identify and quantify the effect of different 

management systems (e.g. crop rotation, tillage) on soil C stabilization to help prevent C 

losses, and therefore degradation in soil quality (Rasmussen & Albrecht, 1997). 

Conversion to more recommended management practices (e.g. conservation practices) can 

enhance the SOC pool, improve soil quality and productivity and thereby progress food 

security (Lal, 2011). Many researchers, including Lal (2011) agree that SOM, which is a 

complex mixture and affects various soil properties, is one of the primary indicators of 

agricultural sustainability and soil quality. Not only does it affects the soil quality but CO2 

(end product of SOM) is also one of the major greenhouse gases responsible for global 

warming. Soils however, have the potential to act as either a source or a sink for carbon 

dioxide (CO2) depending on the land use and management as they have a direct influence on 

the rate of SOM mineralization (Lal, 2011).  

Sequestering atmospheric CO2 in agricultural land has received a lot of interest due to 

concerns about global warming. The soil C stabilizing mechanisms have therefore received 

much interest (Torn et al., 1997; von Lützow et al., 2006) as a good understanding of these 
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mechanisms is necessary to develop management practices that increase C sequestration in 

soils (Marschner et al., 2008). 

The components of SOM range from undecomposed plant and animal tissues (living 

component) to partially degraded compounds to stable brown and black material, known as 

humus (non-living component). Dissolved organic matter forms also part of the non-living 

component. Humus is usually the largest proportion and contains no evidence of the 

anatomical structure of the material from which it was derived (Johnstone et al., 2009). Soil 

organic matter chemical properties and interactions with the mineral matrix allow them to be 

placed in different SOM functional pools with different turnover rates (Kӧgel-Knabner & 

Kleber, 2012). The three major SOM functional pools, each with their own chemical and 

physical properties that can be isolated are: (i) the free particulate organic matter (fPOM) 

fraction which resembles recent litter inputs and usually have younger C than other fractions 

(active pool); (ii) an occluded or intra-aggregate POM (oPOM) fraction, generally older than 

fPOM fraction released by disruption of soil aggregates (intermediate/passive), and (iii) a 

heavy or mineral-bound fraction (mineral), comprising of organic C tightly bounded or 

sorbed to minerals containing the oldest C (passive pool) (Golchin et al., 1994a; Marin-

Spiotta et al., 2008; Cerli et al., 2012). Studies using isotope tracers have shown longer 

residence times for C associated with minerals (mineral and oPOM fractions) than the fPOM 

fraction (Marin-Spiotta et al., 2008). An effective seperation of SOM fractions of different 

stability is necessary to understand the SOC stabilization mechanisms operating under 

specific soil and climate conditions. 

Soil water and temperature control turnover of C in soils, but other factors like size and 

physicochemical properties of C inputs through litter and roots, its distribution within soil 

matrix and its interaction with clay surfaces are all factors that can modify turnover rates 

(Oades, 1988). The total amount of organic matter (OM) in soil depends thus on soil 

properties, climate, C input and on the rate at which existing SOM decomposes (Johnstone et 

al., 2009). Outputs (oxidation and erosion) are increased by destabilization processes and 

decreased by stabilization processes (Figure 2.1) (Sollins et al., 1996). All these factors 

contribute to the dynamic equilibrium C value, specific to the soil type and farming system 

(Johnstone et al., 2009).  

The effect of management practices on SOM functional pools and the possible stabilizing 

mechanisms involved, as well as the importance of C sequestration for sustainable agriculture 

was reviewed in this study in order to obtain a better understanding of the effect of 
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management practices (e.g. crop rotation and no-tillage) on SOC stabilization to ensure food 

security via a sustainable soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. The importance of C sequestration in soils 

Carbon sequestration according to Paustian et al. (2000) is a reduction in CO2 emissions in 

agricultural soils via an increase in soil C storage through different SOM pools. The rate of 

soil C sequestration in soils however, depends on soil morphology (Baldock & Skjemstad 

(2000), climate (White et al., 2009), farming system and soil management (Lal, 2004). There 

are concerns about the low levels of OM in many of the cropland soils (Johnstone et al., 

2009). Consequences of severe depletion of SOC pool are low agronomic yield, soil structure 

degradation and low use efficiency of added input and therefore it is essential to increase the 

SOC pool in soils to improve the soil quality and to increase agronomic production (Lal, 

2011). Soil quality is defined as “the capacity of the soil to function within ecosystem 

boundaries to sustain biological productivity, maintain environmental quality and promote 

plant and animal health” (Doran & Parkin 1996 cited in Lal & Bruce 1999). Food production 

in developing countries is estimated at 1223 million Mg and it must increase by 2.5% y
−1

 

between 2000 and 2025 to fulfill the needs of an increased population and expected change in 

diet (Lal, 2006).  There are several options to try and fulfill these needs but the one based on 

Figure 2.1 The dynamic equilibrium soil C value due to difference between long-term organic C 

additions and losses: From Sollins et al. (1996). Reprinted with permission from Elsevier. 
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increasing soil quality and thereby productivity by enhancing the SOC pool has many 

benefits (Lal, 2006).  

Figure 2.2 displays the possible effect of depletion in SOM and therefore, this brutal cycle 

has to be broken by improving soil quality through C sequestration. According to Thomson et 

al. (2008) the Intergovernmental Panel on Climate Change (IPCC) has estimated that 

approximately 40 Gton of C could be sequestered in agriculture soils over 50-100 years by 

just improving agriculture practices. 

 

Figure 2.2 The brutal cycle of depletion in soil organic matter: From (Lal, 2004). Reprinted with 

permission from AAAS. 

Soil C dynamics is thus important for soil fertility, sustainable agriculture systems, crop 

productivity and protecting the environment. The SOC pool contributes to soil fertility both 

directly and indirectly. Directly it releases important inorganic nutrients and trace elements 

while it decomposes and indirectly it increases the soil cation exchange capacity (CEC) and 

water holding capacity while it also improves the structure of the soil. High organic C levels 

are also important to ensure active microorganism populations which are necessary for 

sustainable crop production systems (Lal, 2011).  Figure 2.3 is a good summary of how the 

quality and quantity of SOC pool can enhance the quality of the soil chemically, physically 

and biologically.  It is thus obvious that agricultural practices must aim to enhance C 
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sequestration as this is a strategy to achieve food security through improvement in soil quality 

as well as lowering CO2 emissions from soil (Lal, 2006). 

 

Figure 2.3 Soil quality enhancement by increase in soil organic carbon pool in agricultural soils: 

From Lal (2011). Reprinted with permission from Elsevier. 

2.3. Carbon stabilization mechanisms in soils 

When plant litter enters the soil mineral horizon it undergoes microbial decomposition and 

possible stabilization through interactions with soil mineral particles and aggregates, but the 

mechanisms of SOC stabilization and destabilization as well as the factors controlling it, is 

not fully understood (Wagai et al., 2009). The terms “labile” and “stable” are used to indicate 

important functional differences between turnover times of SOC pools. “Labile” represent the 

active pool and has a turnover time of a few years (easily mineralizable fraction) whereas 

“stable” represents the intermediate and passive pool with turnover times of decades and 

centuries, respectively  (Krull et al., 2003; Marín-Spiotta et al., 2008). 

The active pool is composed of fresh plant residues (roots and shoots), faeces, and faunal and 

microbial residues (von Lützow et al., 2006). According to Marschner et al. (2008) selective 

preservation of recalcitrant compounds doesn’t explain longer term stabilization of SOC. Fast 

turnover rates of lipids and lignin (recalcitrant compounds) and slow turnover time rates for 

polysaccharides and proteins (labile organic compounds) indicate the importance of other 
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protective mechanisms (Marschner et al., 2008). Mechanisms which can contribute to the 

passive pool are the protection of organic C within aggregates (Christensen, 1996) and the 

interaction with mineral surfaces (e.g. ligand exchange, cation bridging, weak interactions) 

(Torn et al., 1997). Organic C that is not physically protected is very susceptible to 

breakdown when land is disturbed and it turns over much more quickly than C bound to soil 

minerals. Marchner et al. (2008) found that SOC with turnover time’s equivalent to the 

passive pool was only found in mineral associations.  

Various authors have thus proposed and reviewed the different mechanisms for how organic 

C is stabilized in soil (Christensen, 1996; Sollins et al., 1996; Krull et al., 2003; von Lützow 

et al., 2006) and each of them had their own theories relating to the protection and 

stabilization of SOC against microbial decomposition and other losses. Decomposition of 

organic C can be slowed down by different stabilization processes, which are complex and 

entail an understanding of chemical, physical and biological interactions between organic 

components and the mineral matrix. These mechanisms can be broadly categorized into three 

groups; (i) chemical recalcitrance, i.e. selective preservation of OM due to its molecular 

composition, (ii) physical protection e.g. by occlusion in aggregates and (iii) interaction with 

soil minerals (von Lützow et al., 2007). Much effort has gone into elucidating the relative 

importance of these mechanisms for soil C content, or easier stated, how much C a given soil 

can protect against decomposition. Stabilization of SOC via these mechanisms is very 

important for C sequestration in soils (Krull et al., 2003). More than one of these mechanisms 

may operate together to various degrees in soil or even within an individual soil horizon (von 

Lützow et al., 2007).  

2.3.1 Chemical recalcitrance 

The chemical characteristics of the organic matter (OM) substrate, e.g. their elemental 

composition, presence of functional groups, and molecular conformation, can stabilize 

organic matter against microbial decomposition or degradation (Sollins et al., 1996). In later 

stages of decomposition, selective preservation is less important. This was shown by the 

longer turnover times for potentially labile organic compounds (polysaccharides and proteins) 

than for potentially recalcitrant compounds (lignin, lipids) (Marschner et al., 2008). The 

recalcitrance of plant litter and rhizodeposits is known as primary recalcitrance whereas the 

transformed humified nature of the organic matter as well as the recalcitrance of microbial 

and faunal products relates to secondary recalcitrance (von Lützow et al., 2006).  
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1.3.1.1. Primary recalcitrance 

The non-humic constituents of SOM contributes to primary recalcitrance as it has identifiable 

physical and chemical properties, and consists mainly of known classes of biochemistry, such 

as carbohydrates, proteins, peptides, amino acids, fats, waxes and low molecular weight acids 

(Derenne & Largeau 2001; von Lützow et al., 2006). 

There are four major groups of biomolecules in which organic matter can be allocated to e.g. 

polysaccharides (e.g. cellulose, hemicellulose, chitin), proteins, lipids (e.g. waxes, cutin, 

suberin), and lignin. Biomolecules, such as lipids and lignin are recalcitrant fractions as they 

contain alkyl structures and aromatic rings respectively, and are therefore less easily 

degraded in the early stages of decomposition than the other two groups of biomolecules 

(Derenne & Largeau, 2001; Krull et al., 2003). Lignin is considered as an important precursor 

of humic substances (Derenne & Largeau 2001). From this, one can assume that the litter 

quality and therefore vegetation (different proportions of biomolecules) can play a significant 

role in the rate of leaf litter decomposition and nature of substances and thus also the amount 

of CO2 released to the atmosphere.  However, studies with CPMAS 
13

C NMR and pyrolysis 

techniques have verified that lignin is not so stable in the soil in the long term as soil 

microbial communities can and will degrade any type of organic residues entering the soil 

(Kiem & Kӧgel-Knabner, 2003).  

1.3.1.2.  Secondary recalcitrance 

Secondary recalcitrance refers to selective degradation of microbial products, humic 

polymers and charred material (von Lützow et al., 2006). The humic components of SOM are 

regarded as the most resistant compounds and although accumulation of C is not indefinite, 

humic substances have been accumulating on the surface of the soil for a very long time. 

Stable organic C consists mainly of humic substances, which are complex high-molecular-

weight organic molecules made up of phenolic polymers produced from the products of 

biological degradation of plant and animal residues (Baldock & Nelson, 2000). The polymers 

formed (process of humification) have a unique chemical structure compared to plant 

polymers and are therefore not easily degradable by microbes and their enzymes, making 

them recalcitrant which leads to a long residence time in the soil. 

Black C (charred material) which originates from incomplete combustion of organic 

materials has a high stability in the environment compared to other types of organic C 

substances as it has an estimated mean residence time of about 10 000 years in soil (Swift 
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2001). Kuzyakov et al. (2009) reported that the mean residence time of black C produced 

from perennial rygrass is in the range of millennia, which supports the findings of Swift 

(2001). Due to this long residence time in soils, formation of black C is regarded as a 

stabilization process. However, according to Bird et al. (1999) black C has a mean residence 

time of only a few decades in a well-aerated tropical soil environment and these inconsistent 

findings related to the degradation of charred material leads to the conclusion that the 

stability of black C in soils depend on several factors (e.g. pyrolysis process, biomass 

residues, environment and soil conditions).  

2.3.2.  Physical protection 

Physical protection plays a major role in C sequestration (Christensen, 1996). Spatial 

inaccessibility of C in soil micro-pores are one of the most important physical protection 

mechanisms in controlling the long-term stabilization of C (von Lützow et al., 2006). 

Physical protection is particularly effective in soil environments with high contents of clay 

and fine silt-sized particles (more physical protection) as C stabilization increases with 

decreasing aggregate size. Soil temperature and moisture also plays a role in the extent of 

physical protection (Krull et al., 2003). Organic C accessibility is reduced by the following 

processes: (i) occlusion of organic C by aggregation, (ii) intercalation within phylosilicates, 

(iii) hydrophobicity and (iv) encapsulation in organic macromolecules (von Lützow et al., 

2006). 

2.3.2.1. Occlusion of OM by aggregation 

One of the most important processes in C sequestration is the formation of aggregates. This 

allows C to be included and thereby making it inaccessible to decomposing microorganisms 

(Christensen, 1996). Observations of increased SOM mineralization following the disruption 

of aggregates served as evidence for this statement (Six et al., 2000). Protection will thus be 

greatest where aggregate stability is high and aggregate turnover is low. Aggregation is the 

stabilizing mechanism that is potentially most vulnerable to disturbance. Organic matter 

spatially protected by occlusion within aggregates is shielded against decomposition and 

stabilized due to restricted accessibility for microorganisms and their enzymes, and restricted 

aerobic decomposition due to limited oxygen and extracellular enzymes (von Lützow et al. 

2006). Accessibility is the stabilizing mechanism controlling the size of the slow or 

intermediate pool of C turnover models, but not the dominant control of the passive pool 

according to Baldock & Skjemstad (2000). There is an inverse relationship between 
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aggregate size and C turnover time, with the highest reported turnover times occurring in the 

smallest aggregates (<20 μm) (John et al., 2005). 

2.3.2.2. Intercalation within phyllosilicates 

This is a difficult concept to understand because it is sometimes unclear whether the 

phyllosilicates function as adsorbents for C or if they represent physical barriers between 

enzymes and SOM. This is illustrated by the fact that clay content often correlates with SOM 

content, but not with turnover time (Kleber et al., 2005). The chemical characterization and 

quantification is also very unreliable because no specific methods exist to determine the 

organic C intercalated in the interlayers of expandable phylosilicates (von Lützow et al., 

2006). However, it is possible for organic ligands to intercalate into the interlayer spaces of 

expandable phyllosilicates at low pH where a small degree of dissociation is found (Violante 

& Gianfreda, 2000). 

2.3.2.3. Hydrophobicity 

Decomposition rates are very dependent on soil moisture as the living conditions of 

microorganisms is restricted by the absence of water (Goebel et al., 2005). A lack of surface 

wettability (hydrophobic) would therefore limit the accessibility and interaction of OM with 

microorganisms. In addition it enhances aggregate stability (Bachmann et al., 2008) and 

further contributes as stabilizing mechanism of C via occlusion within aggregates (Goebel et 

al., 2005). Goebel et al. (2005) also found evidence for great stability of hydrophobic OM 

itself. 

2.3.2.4. Encapsulation in organic macromolecules 

Encapsulation involves the protection of labile OM from degradation (von Lützow et al., 

2006) as the labile OM is encapsulated in the network of recalcitrant polymers or humic 

pseudo-macromolecules (Zang et al., 2000). Humified organic C represents the most 

persistent pool of organic C in soil and therefore, any OM encapsulated in the hydrophobic 

interior domains of such molecules will be well protected and stabilized with mean residence 

time of several centuries (Piccolo, 1999). 

2.3.3.  Interaction with soil minerals and metal ions 

In natural environments a large amount of the organic C is represented as mineral-associated 

organic matter. The protection of OM against decomposition due to sorption to minerals is 

assumed to be because of strong chemical bonds that limit desorption (Mikutta et al., 2007). 
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Sorption of organic matter to minerals is among the most important mechanisms by which 

organic C is stabilized against decomposition (Kalbitz et al., 2005) as longer turnover times 

for OM associated with silt and clay than other soil fractions has been found (Eusterhues et 

al., 2003; Kalbitz et al., 2005). Kalbitz et al. (2005) revealed that mineralization of OM was 

reduced by 20% due to sorption of soluble OM to subsoil material. Degradation can also be 

slower due to the sorption of the enzyme on the clay mineral rather than the OM itself 

(Demaneche et al., 2001). Mikutta et al., (2007) came to the conclusion that the more 

mechanisms simultaneously involved, the more resistant the sorbed OM is to decomposition. 

2.3.3.1. Ligand exchange 

An important mechanism for the formation of strong organo-mineral associations in ligand 

exchange is the displacement of OH/water groups on mineral surfaces by organic functional 

groups (carboxyl and phenolic OH groups) of the OM (Gu et al., 1994; Mikutta et al., 2007). 

Carboxylic acids are most abundant in soil at a pH between 4.3 and 4.7 and therefore 

complexation of OM to mineral surfaces via ligand exchange is highest at low pH (Kӧgel-

Knabner & Kleber 2012). In acid soils where hydroxyl groups of minerals is protonated, 

ligand exchange can take place between hydroxyl groups of Fe, Al, and Mn-oxides and edge 

sites of phyllosilicates and organic carboxyl and phenolic OH groups (Gu et al., 1994). 

2.3.3.2. Polyvalent cation bridges 

Binding of organic anions to negatively charge surfaces in soils can occur when polyvalent 

cations are present on the exchange complex. Polyvalent cations play thus a major role in the 

retention of OM on both organic (e.g. OM itself) and inorganic (e.g. clay minerals) colloids. 

Polyvalent cations can act as a bridge between these two charged sites by neutralizing the 

negatively charged mineral surface and acidic functional group of the OM (e.g. COO
-
) (von 

Lützow et al., 2006). The most predominant polyvalent cations are Ca
2+

 and Mg
2+

 in neutral 

and alkaline soils and Fe
3+

 and Al
3+

 in acid soils (von Lützow et al., 2006). If an organic 

molecule has multiple functional groups, more than one point of attachment to the clay 

particle is possible. Cation bridges forms a weaker type of bond than ligand exchange. These 

cations also play an important role in the structure of both organic and inorganic colloids as 

the swelling of clays is restricted by these polyvalent cations (Oades, 1988). 

In a study done by Mikutta et al. (2007) he proved through his sorption experiments, using 

CaCl2 and NaCl as electrolyte solutions, that the presence of CaCl2 enhances sorption of OM 
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via Ca-bridging as his results displayed larger sorption in CaCl2 than in NaCl. However, the 

effect of Ca
2+

 on OM sorption was more prominent in a neutral pH than in a low pH. 

2.3.3.3. Weak interactions 

Hydrophobic interactions occur via Van der Waals forces where hydrogen bonds are formed 

partially via interaction of hydrogen atoms with positive partial charge, with other partially 

negatively charged (O or N) atoms (von Lützow et al., 2006). 

Non-expandable layer silicates (kaolinite) or quartz particles without layer charge have only 

weak-bonding affinities. Due to the presence of hydroxyl and polar groups in organic matter, 

a linkage between the molecule and minerals with very low layer charge can be formed via 

hydrogen bonding or van der Waals forces (Quiquampoix et al., 1995). At low pH, 

hydrophobic interaction is more favourable because then the hydroxyl and carboxyl groups of 

OM are protonated and the ionisation of carboxyl groups is inhibited (von Lützow et al. 

2006). 

2.3.3.4. Interaction with metal ions 

Metal ions that can potentially stabilize OM are Ca
2+

, Al
3+,

 and Fe
3+

 and heavy metals (von 

Lützow et al., 2006). According to Oades (1988), the high OM content that is sometimes 

found in calcareous soils can be attributed to the effect of Ca
2+

 ions. In podzols, the 

interaction of OM with Fe and Al plays a major role in the stability of OM (Nierop et al., 

2002).  

The effect that metals have on the stabilization of organic matter is still unclear. It can be 

either attributed to changes in the quality of the substrate by forming a complex with metals, 

or direct toxic effects of metals on soil microorganisms or enzymes (von Lützow et al., 2006). 

Possible changes of soil OM caused by metal complexation will decrease their availability to 

soil enzymes (McKeague et al., 1986). Metals can also affect the stability of dissolved 

organic matter (DOM) by precipitation, making it more stable than the remaining DOM 

(Nierop et al., 2002). 

2.4. Effect of management practices on SOM stabilization and distribution 

The mineralization rate of SOM is mainly affected by (i) the chemical and physical 

environment of the soil, which includes soil climate and availability of nutrients, (ii) the 

molecular composition of the SOM and (iii) the physical accessibility of the organic matter to 

the microbes and enzymes (Paustian et al., 2000). Soil preparation, specific crop rotation 
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system, SOM quality, soil texture and climate are thus some of the factors that contribute to 

SOC losses and gains (Salvo et al., 2010). The effect of most of these factors can however be 

controlled by the type of agricultural management practices applied e.g. no-tillage and 

rotation systems.  

Conservation tillage (minimum-, no- and zero-tillage) can potentially contribute to reducing 

greenhouse gas emissions within the agricultural sector and various studies have made the 

conclusion that by reducing tillage, soil C increases (Arshad et al., 1990; Machado & Silva, 

2001; Bhattacharyya et al., 2012). A Brazilian study by Sisti et al. (2004) suggested that OM 

accumulation also increased by using a legume in the rotation system. From these findings it 

is possible to conclude that different crop rotation and tillage practices can play a vital role in 

the stabilization of soil C and thereby increase soil quality and partially mitigating the current 

increase in atmospheric CO2. However, the relative contribution of these two factors is 

dependent on both soil and climate conditions as Sombrero & Benito (2010) found that after 

10 years of management in semi-arid region, the tillage system (conventional vs. no-till) had 

a greater effect on SOC than crop rotation. 

According to Lal & Bruce (1999), the SOC content is increased by adopting crop rotation and 

no-till procedures that retain crop residues close to the surface of the soil and attributed it to 

increasing biomass production and crop residue retention. A review of different studies on the 

effect of crop rotation and tillage practices on SOC distribution and stabilization as well as 

the mechanisms involved is discussed in detail in the next few sections. 

2.4.1. Tillage practices 

2.4.1.1. General 

Conservation tillage, which includes both minimum and no-tillage, has been found to 

increase soil C sequestration and soil productivity and thereby also contributing to the role of 

soil as a C sink (Sombrero & Benito, 2010). By minimizing soil disturbance and increasing 

aggregate stability, conservation tillage decreases the mineralization of OM which results in 

higher C stocks and C stabilization than with conventional tillage (Bhattacharyya et al., 

2012). Conservation tillage can be defined according to the Conservation Information Center 

(CTIC, 2004) as any tillage and planting system that leaves 30% or more crop residues on the 

surface after planting and thereby reduces soil and/or water loss compared to conventional 

tillage.  
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Fine intra-aggregate particulate organic matter from micro- and macroaggregates in the 

surface soil can act as a potential physical indicator of C-sequestration (Six et al., 2000). 

Terra et al. (2006) (cited by Salvo et al., 2010) found that SOC (0-15 cm depth) was 17% 

lower under continuous cropping under no-till than SOC in pasture rotations for the same 

period of time (8 years). This can be attributed to less disturbance of the soil with pasture in 

the rotation which can result in higher aggregate stability.  No-till practices can also 

contribute to an increase in SOC by increasing C inputs (higher crop biomass) due to better 

soil water conservation (Cantero-Martίnez et al., 2007). The higher input of crop residues 

plays an important role in aggregation as it acts as an energy source for microorganisms 

which are capable of producing polysaccharides which is very effective for soil aggregation.  

Sombrero & de Benito (2010) found that the organic C in the 0-30 cm layer was only 7% 

higher in no-till than conventionally tilled soils after 6 years but at the end of a 10-year period 

it was 25% higher for no-till and this indicates that time is also an important factor that plays 

a role in the effect of conservation tillage on C sequestration and that the positive effect of 

conservation practices will only show after a number of years. From this study done in a 

semi-arid region in Spain, it is clear that conservation tillage raised the SOC content (Figure 

2.4).  Under dryland Mediterranean conditions, no-tillage increased SOC with a maximum 

annual SOC sequestration rate estimated to occur 5 years after adoption of no-till (Figure 

2.5a). More than 75% of the total SOC sequestered however, was gained during the first 11 

years after no-till adoption on a loamy texture soil (Figure 2.5b)(Álvaro-Fuentes et al., 2012). 

West & Post (2002) also estimated a maximum annual SOC sequestration after 7 years since 

adoption of no-tillage and pointed out that the duration of C sequestration depends on the 

climate, ecosystem, land-use history and management. The rate of increase in SOC content 

through adoption of conservation management practices follows a sigmoid curve as it 

achieves maximum,  5-20 years after adoption and continuous until SOC achieves another 

equilibrium (Lal, 2004). The reasons for this phenomenon is that crop residues are 

incorporated into the soil much slower through soil fauna under no-till systems compared to 

conventional tillage systems which may contribute to the lack of C sequestration over the first 

few years in a water-limited region (Six et al., 2004). Another possible reason according to 

Álvaro-Fuentes et al. (2012) is the decline in crop yields after the first few years of no-tillage 

which results in lower C inputs. Different SOC sequestration durations in Mediterranean 

conditions can be due to low C inputs, soil water- limiting conditions and elevated soil 

temperatures.  
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Figure 2.4 Soil organic C (SOC) levels in the 0-30 cm layer from 1994-2004 with CT, conventional 

tillage; MT, minimum tillage; NT, no tillage: From Sombrero & de Benito (2010). Reprinted with 

permission from Elsevier.  
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Figure 2.5 (a) Percentage change in the yearly rate of soil organic C (SOC) sequestration in the 0–30 

cm soil layer over the 20-yr period after the adoption of no-tillage (NT); (b) Total SOC sequestered in 

the 0–30 cm soil layer after NT adoption: From  Álvaro-Fuentes et al. (2012). Reprinted with 

permission from Springer. 

2.4.1.2. Mechanisms 

In order to understand the mechanisms involved in the responses of SOC to tillage practices, 

fractionation techniques have to be used to evaluate the effect of long-term no-tillage on soil 

aggregation and SOC fractions (Huang et al., 2010). The stabilization of SOM in soil 

aggregates is an important mechanism for long-term sequestration of C in SOM (Christensen, 

1996; Verchot et al., 2011) and good correlation between aggregate stability and SOC 

dynamics have been found (Sohi et al., 2005). Results obtained by Sohi et al. (2005) also 

confirmed that SOM within aggregates contains more microbial products and more resistant 

C as compared with SOM in the light fraction (inter-aggregate).   

(a) 

(b) 
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Usually by increasing the proportion of C-rich macroaggregates in soils, C sequestration can 

be enhanced, but long-term sequestration depends on stabilization of C in microaggregates 

(Six et al., 2000). The genesis and dynamics of these microaggregates however is still 

uncertain and different models have been proposed (Verchot et al., 2011). Several authors, 

including Christensen (1996) and Six et al. (2000) suggested that no-till practices that 

minimize macro-aggregate turnover enhances the formation of stable microaggregates within 

the macroaggregates, and therefore ensure long-term C sequestration via physical occlusion 

of the microaggregates protecting it from microbial breakdown. Microaggregates form within 

macroaggregates as the fine organic matter becomes encrusted with clay particles and 

microbial products. This model (1) (Figure 2.6) also suggests that the increase in 

macroaggregate turnover caused by tillage lead to the formation of less new free 

microaggregates, compared to no-tillage, when the binding agents in macroaggregates 

degrade and results in the loss of macroaggregate stability and the release of microaggregates. 

Macroaggregates are initially formed by the encapsulation of organic matter (Model 1) (Six 

et al., 2000).  
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Figure 2.6 The model (1) that shows the “life cycle” of a macroaggregate and the formation of 

microaggregates: From Six et al. (2000). Reprinted with permission from Elsevier. 

Another model for aggregate formation is a process where the microaggregates are formed 

through interaction between mineral surfaces and organic matter with no real protection in 

the early stages of microaggregate formation (Lehmann et al., 2007). The microaggregates 

are then later incorporated into macroaggregates as they form through the occlusion of plant 

derived organic matter (Model 2). Results obtained by Verchot et al. (2011) (Figure 2.7) and 

Huang et al. (2010) showed that the second model supports C stabilization and aggregate 

formation much better. Similar results were obtained by Mupambwa & Wakindiki (2012) 

which stated that microaggregates formed first followed by macroaggregates. The 
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microaggregates showed equal or greater decrease in 
13

C compared to the macroaggregates, 

suggesting that microaggregates are not protected by macroaggregates as suggested in the 

first model (Figure 2.6). Verchot et al. (2011) thus concluded that the stable microaggregates 

form through the interaction between mineral surfaces and organic ligands. 

 

 

Figure 2.7 The effect of tillage on 13C values in the bulk soil and in each fraction by depth: From 

Verchot et al. (2011). Reprinted with permission from Elsevier. 

2.4.1.3.  No - Tillage vs. Conventional tillage 

A lot of research has been conducted (Huang et al., 2010; Sombrero et al., 2010) to evaluate 

the effect of conservation tillage vs. conventional tillage on C sequestration and significant 

differences, favouring conservation tillage, have been found. Tillage frequency, depth and 

intensity all have an influence on how much the soil is disturbed. 

According to West & Post (2002) no-tillage minimize soil disturbance which leads to a 

higher aggregate stability and thereby decreases the mineralization of organic matter. 

Retaining crop residues with no-till systems also contribute to aggregation. An increase in 

aggregate stability due to no-till practices encourages the formation of recalcitrant SOM 

fractions within micro- and macroaggregates with experiments showing a much slower 

turnover time of SOM in no-till vs. intensive tillage (Paustian et al., 2000). 

However, results of a study (11 year experiment) done by Chen et al. (2009) showed that the 

particulate organic matter (POM) and other labile fractions of OM were much higher in the 
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no-till systems than in conventional tillage, only in the surface soil and not in the subsurface 

soil. The same trend was observed for the total SOC content, as the different tillage 

treatments only had an effect in the 0-15 cm layer, with SOC being much higher in this layer 

when no-till was applied. In the 15-30 cm layer no differences were observed. Àlvaro-

Fuentes et al. (2008) also found that no-tillage increased the SOC content only at the soil 

surface (0-10 cm) as in deeper soil layers, more SOC accumulated under conventional till 

than under no-till. Sombrero & de Benito (2010) found a similar trend in the vertical 

distribution of the soil organic C content after 10 years (Figure 2.8). These trends can be 

attributed to the fact that crop residues penetrates to deeper depths with conventional 

ploughing while crop residues in no-tillage remains on the surface (Sombrero & Benito 

2010). 

 

Figure 2.8 Vertical distribution of the soil organic C content after 10 years for each tillage system. 

CT, conventional tillage; MT, minimum tillage; NT, no tillage: From Sombrero & de Benito (2010). 

Reprinted with permission from Elsevier. 

The overall differences obtained between the two tillage systems can be explained by the 

breakdown of aggregates under conventional tillage and thereby exposing the protected 

organic matter to microbes and their enzymes and increases the loss of labile C (Chen et al., 

2009). Plant residues retained in the no-till system could also enter the labile pools and act as 

a substrate for microorganisms. Huang et al. (2010) found an 18.1% increase in the 
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concentration of total SOC compared with conventional tillage under a long-term maize 

monoculture with no-till causing larger C concentrations in macroaggregates (>2000 and 

250-2000 μm) and microaggregates (53-250 μm) relative to conventional tillage. According 

to Arshad et al. (1990) no-till don’t only increase the quantity of OM but also improves the 

quality of OM as OM under no-till contained more carbohydrates, amino acids, and amino 

sugars. 

In general, no-till systems have higher SOC than tillage systems but a meta- analysis done by 

Luo et al. (2010) in different climates found that adopting no-till did not enhance total C 

stock down to 40 cm but only in the first 10 cm. The rates of accumulation are thus variable, 

since the amount of SOC stabilized is not only dependant on how the soil is managed, but 

also on its mineralogy, climatic conditions, quantity of residues, and N inputs (Salvo et al., 

2010). 

2.4.2. Crop rotation systems (C input)  

2.4.2.1. General 

According to Jordan et al. (1997) crop rotation is a key component in reduced and integrated 

systems of production. The type of crop, crop rotation, and the quality and quantity of crop 

residues play an important role in the soil C content (Wright & Hons, 2005) and different 

arable crop rotations can thus have different effects on SOM (Johnstone et al., 2009). 

Mechanisms that have been suggested resulting in the positive effect of crop rotation 

diversity on SOC content are reduced pest abundance, greater microbial biomass, increased 

diversity of water and nutrient demands, and increased diversity of rooting depths and residue 

decomposition rates (Grant et al., 2002).  

The quality of organic matter is assessed on its C:N ratio where high-quality organic matter 

has a low C:N ratio and low-quality organic matter a high C:N ratio. High-quality organic 

matter will thus have a higher mineralization rate and essential nutrients (N, P, & K) will be 

more rapidly available and it will enhance biological activity. The C:N ratio of material 

added to soil determines whether N will be released or fixed in SOM as the material 

decomposes (Johnstone et al., 2009). The N contents of crop residues play thus an important 

role in C and N sequestration as crops with low-quality residues have a greater potential for C 

and N sequestration (Wright & Hons, 2005). However, according to Abberton (2010), 

legumes (lucerne, medics and lupines) have a potentially significant role to play in increasing 

soil C sequestration and for a number of years the potential importance of legumes in many 
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agro-ecosystems has been recognized. By enhancing C sequestration in the soil, soil fertility 

and biomass are increased and thereby increasing the soil C sink capacity which leads to a 

reduction in greenhouse gas emissions (GHG). The role of legumes in supplying N through 

fixation is increasingly being seen as important and beneficial in terms of overall GHG 

balance (Abberton, 2010).  

Soil organic matter is not a homogeneous substance as it is composed of different 

biomolecules with different chemical composition and structure which will affect the 

recycling rates. Schmidt et al. (2011) proposed that C stability rather depends on its biotic 

and abiotic environment and that the molecular structure of plant inputs plays a secondary 

role in determining C residence times over decades to millennia. However, there is scientific 

evidence which indicates that planting alternative crops/pastures in a crop rotation system is 

potentially more economically and biologically sustainable than using a fallow system 

(McEwen et al. 1989).  

Crops such as canola and lupines are ideally suited to rotation with wheat as it has the 

potential to improve soil structure and, in the case of lupines, provide N to the following 

wheat crop. Pastures can play a significant role in decreasing soil degradation processes 

which increases its productive capacity (Salvo et al., 2010) and are therefore linked with 

environmental sustainability and productivity. In a study done by Garcia Préchac et al. (2004) 

they found that on the Abruptic Argiudoll (silt loam), the SOC was reduced by 7.5 % after 5 

years of continuous cropping (CC) with no-tillage (NT) while the NT-based crop-pasture 

rotation had 6 % greater SOC than the original content (Figure 2.9). The crops were directly 

grazed. Salvo et al. (2010) speculated that more SOC was humified in the systems including 

pastures in rotation due the contribution of N from legumes and supports their hypothesis that 

mixed crop-pasture systems has a beneficial effect on the stabilization of C in the soil. 

According to work done by Agenbag & Maree (1989) in the Swartland, South Africa the 

advantages due to higher SOC will be reached sooner if wheat is rotated with legumes than in 

all wheat years.  
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Figure 2.9 SOC content of two experiments after 6 years of crop–pasture rotation (CPR) and 

continuous cropping (CC) under no-till (NT) and conventional tillage (CT), as well as before 

experiments started: From Garcia Préchac et al. (2004). Reprinted with permission from Elsevier. 

Salvo et al. (2010) also found that under conventional tillage, the continuous cropping had 

17% less mineral-bound SOM (0-3 cm depth) than under crop-pasture rotation and related 

this finding to the fact that the soil was undisturbed during the pasture cycle which reduced 

oxidation. Under no-till, crop-pasture rotations had 12.5 % more mineral-bounded SOM (0-3 

cm) than the continuous cropping systems but no differences in total SOC (0-3 cm) between 

the continuous cropping systems and the crop-pasture systems rotations were found. An 

experiment done in Typic Argiudoll (Colonia-Uruguay) for 26 years, crop-pasture rotations 

with conventional tillage retained soil productivity and produced between 18 and 26% higher 

yield than continuous cropping systems. The topsoil under continuous cropping had an 

average loss of SOC of 540 kg ha
-1

year
-1

 and the SOC loss under crop-pasture rotation was 

80 kg ha
-1

year
-1

 (Figure 2.10) (Garcia Préchac et al., 2004). 
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Figure 2.10 Change in SOC concentration (0–20 cm depth) from 1964 to 1990 in two different 

cropping systems with conventional tillage in a Typic Argiudoll (adapted from D´ıaz-Rosell´o (1992, 

1994)): From Garcia Préchac et al. (2004). Reprinted with permission from Elsevier. 

Litter dynamics (chemistry and quality) vary with crop type, and are likely to control the rates 

of litter decomposition and SOC accumulation (White et al. 2009; Salvo et al., 2010). In 

South Africa less than 10% of grain crops planted annually are legumes and this is despite the 

fact that Bloem et al. (2009) found that maize yields intercropped with legumes were 

comparable with those from crops that gained from additional fertilizer (54 kg ha
-1

 at planting 

and 54 kg ha
-1

 N as top dressing). The beneficial effects of legumes are reduced N inputs in 

the subsequent grain crop and possible increase in C stabilization. Soil organic carbon and its 

size fractions which act as C indicators suggest that crop-pasture rotations, especially in 

conventional tillage systems, would be preferred rather than continuous cropping systems 

(Salvo et al., 2010). The use of legumes as a pasture in a rotation system is thus worthy of 

consideration to enhance C sequestration and thereby soil quality and sustainability 

(Abberton, 2010).  

2.4.2.2. Effect of roots 

The contribution of roots to soil C pools has been mostly ignored, although it is a vital factor 

that plays a role in whether the plant-tissue C will be mineralized to CO2 or accumulates as 

stabilized SOM. Plant roots represent a significant, but poorly understood source of C inputs 

(van Vleck & King, 2011). In the topsoil, OM is mainly derived from plant residues that are 
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mixed into surface soils by tillage or by soil fungi whereas in the subsoils, plant roots and 

leached dissolved organic matter is the main sources of C input (von Lützow et al., 2006). 

The input of OM from roots is thus a very important factor and different root systems of 

different crops can have an effect on the stabilized C content, especially in the subsoil 

(Schmidt et al, 2011). It is specifically important in this study as different crop rotation 

systems and their effects on C stabilization will be compared. Most of the C found in soils is 

derived from belowground inputs (plant roots and rhizosphere) as it is retained in soils much 

more efficiently and is transformed into the substances found in the soil (Schmidt et al., 

2011). In annual cropping systems, due to slower decomposition, root-derived C (detrital root 

biomass and more labile root exudates) contributes nearly twice as much C to stable SOC 

pools as does aboveground residue (Rasse et al., 2005). Root inputs have more opportunity 

for physicochemical interactions with soil particles and therefore greater chemical and 

physical protection than many aboveground inputs being mineralized in the litter layer. Fine 

root (less than 2 mm diameter) decomposition of legumes leads to enhanced root N release 

and net soil N mineralization. This can have a significant influence on N and C cycling 

(Fornara, Tilman & Hobbie, 2009). There are three main mechanisms that are involved in 

protecting root C in soils (Rasse et al., 2005). 

2.4.2.2.1. Mechanisms (Rasse et al., 2005) 

Chemical recalcitrance (Figure 2.11) 

The aromatic compound lignin found in plant litter is usually responsible for its selective 

preservation (Palm et al., 2001) with tannins, suberins and cutins all constituents included in 

lignin (Rasse et al., 2005). In certain species it was found that the lignin content of roots is on 

average more than double than that of shoots. Root and shoot lignin has the same molecular 

structure which indicates that the quantity of lignin is the main potential driver for different 

degradation between roots and shoots (Rasse et al., 2005). According to Waid (1974) tannins 

are very resistant to biodegradation and the high content tannin substances that are found in 

roots of cereals contribute to their slow rate of decomposition. The other two constituents of 

lignin, cutins and suberins are also very recalcitrant plant molecular structures in soils. 

According to Bernards (2002) cutins is only found in aboveground material and is therefore a 

shoot specific compound while suberin is a good tracer of root activities. Although quite 

different in chemical composition, these two molecules can thus be used as biomarkers in 

studies to determine how above- and belowground material contributes to soil organic matter. 
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Analysis that was done on this root and shoot biomarkers confirmed the dominance of root C 

in soil (Mendez-Millan et al., 2010).  

Physical protection through the interaction with soil minerals (Figure 2.11) 

Oades (1995) proposed that the close interaction of root material with the soil minerals is the 

main mechanism through which root C is protected, but then, ploughing would increase the 

stability of aboveground C when it is incorporated into the soil. Several other studies shown 

(Salvo et al., 2010; Bhattacharyya et al., 2012) that ploughing, if anything, leads to a decrease 

in stabilized C. Roots enjoy thus certain activities that stimulate the interaction between root 

compounds and soil minerals. Due to the negative charge of the organic acids (usually labile 

compounds) produced by plant roots, cation bonding can play an important role be enhancing 

sorption to the mineral phase which inhibits degradation (Jones, 1998). In the subsoil the 

mineral surfaces are not yet saturated with organic matter and therefore root C sorption and 

stabilization is much more effective at deeper soil depths (Rasse et al., 2005). 

Physical protection through occlusion within aggregates (Figure 2.11) 

Soil aggregation can be improved by roots as they enhance microbial biomass which 

produces a type of glue that acts as a binding agent and the roots itself can also hold soil 

particles together (Jastrow et al., 1998). Organic C inside soil aggregates is limited for 

microbial decomposition. Organic matter input from root hairs, mycorrhiza, and fine roots 

contribute at a scale equivalent to that of C that is physically protected (Rasse et al., 2005). 

This scale is thus very related to physical protection of soil organic matter and according to 

Six et al. (2002a) the two main mechanisms are (i) the inaccessibility of fine pores to 

microbial decomposers and, (ii) the anoxic conditions found in these fine pores. 
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Figure 2.11 Illustration of the main mechanisms resulting in the protection of root C in soils: From 

Rasse et al. (2005). Reprinted with permission from Springer. 

2.5. Effect of Mineralogy and Texture on soil C dynamics 

According to Baldock & Skjemstad (2000), the extent of protection of potentially labile SOM 

is mostly influenced by soil texture and mineralogy. However, the effect of soil texture and 

mineralogy on SOM is still not completely understood. Multiple studies suggested that the 

amount of C in the soil is not only dependant on soil silt and clay content but also on surface 

area and reactivity of mineral soil particles (Kiem & Kӧgel-Knabner, 2002; Six et al., 2002a). 

Soil clay minerals and pedogenic oxides have been recognized as important parameters 

influencing the storage of SOC by mineral associations as mineral associated SOM is 

characterized by slower turnover rates in soil C models compared to the free particulate 

organic matter fraction (Kleber 2005; von Lützow et al., 2006).  

Soil texture (clay content) can affect the storage of C through direct and indirect mechanisms 

as studies have shown that increased clay contents is associated with increased aggregate 

stability. By increasing the aggregation, clay content affects soil C stabilization indirectly by 

occlusion within aggregates and thereby making them inaccessible to microbial degradation. 
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Kӧlbl & Kӧgel-Knabner (2004) found that more C was occluded within aggregates with 

increasing clay content as they found a 72% correlation between occluded particulate organic 

matter (POM) and soil clay content. The effect of clay content on occluded POM is most 

prominent between 5 and 30% and declines with increasing clay content. The relationship 

between clay concentration and total SOC content (R
2 

= 0.78) has also been found 

sufficiently strong by Nciizah &Wakindiki (2012) which was attributed to the formation of 

strong chemical bonds between the clay and organic particles (chemical protection). Clay 

affects thus chemical protection of soil C stocks directly and physical protection (occluded 

within aggregates) of soil C stocks indirectly, whereas unprotected C and biochemically 

protected C are independent of soil texture. Schjonning et al. (1999) suggested that the effect 

of texture on soil water-holding capacity and soil structure should be considered when 

interpreting results of differently textured soils.  

Although there is evidence that clay concentration may explain the amount of SOC stabilized 

(Kӧlbl & Kӧgel-Knabner, 2004; Nciizah & Wakindiki, 2012), sometimes SOC is better 

related to factors such as extractable aluminium, allophane content, or specific surface area 

(Krull et al., 2003). Mineralogy plays an important role in the accumulation of SOC as it 

defines the capacity of soil minerals to adsorb and protect organic C. Clay-sized particles, 

like layer silicates, sesquioxides, short-range ordered Fe-oxides and amorphous Al-oxides 

provide the largest surface onto which OM can adsorb (Mikutta et al., 2007). Quartz which is 

known for having a very low specific surface area was found to have a negative relationship 

(R
2
= -0.74) with SOM while hematite, known for a high specific surface area had a strong 

positive relationship (R
2
= 0.83) with SOM (Nciizah & Wakindiki, 2012). According to Torn 

et al. (1997) mineral activity, rather than mineral texture, is a better predictor of the residence 

time and turnover time of stable SOC. The effect of minerals on C stabilization also depends 

on the pedogenic environment as this will result in variations in pH, wetness, OM chemistry, 

cation availability and many other environmental controls.  

Inconsistencies still exist about the effect of mineralogy and texture on SOM but soil texture, 

which is closely linked to soil mineralogy, is according to Baldock & Skjemstad (2000) one 

of the most important factors influencing SOM concentrations in soils. 
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2.6. Effect of climate on SOC content 

Climate is generally considered the most important soil-forming factor governing the SOM 

content as it controls the type of plants and productivity which in turn affect the quantity and 

quality of inputs to the SOC pool as well as its susceptibility to microbial decomposition. The 

SOC pool to a 1 m depth ranges from 30 tons ha
-1

 in arid climates to 800 tons ha
-1

 in organic 

soils in cold regions and this acts as proof that climate plays an important role in the amount 

of C stored in soils (Lal, 2004). Semi-arid regions are known to have high evaporation and 

low annual precipitation and these soils therefore usually have a low C content (White et al., 

2009). Soil organic C stocks generally increase as the temperature decrease with variation in 

temperature and precipitation being the most important controlling factors for SOC cycling 

over regional to global scale (Post et al., 1982). White et al. (2009) proposed the timing and 

frequency of precipitation to be the dominant factors of climatic control for SOC cycling in 

arid and semi-arid ecosystems. 

2.7. Soil Respiration 

Soil respiration is the production of CO2 and includes respiration of plant roots, the 

rhizosphere, soil microbes and fauna. It is the primary way that C moves from the soil back to 

the atmosphere as CO2 flux from soils to atmosphere is one of the largest fluxes in the global 

C cycle (Schimel, 1995). Soil respiration makes up more than 50% of total ecosystem 

respiration with soil respiration varying with latitude, from 80 g C m
-2

 y
-1

 in deserts to 800-

2000 g C m
-2

y
-1

 in tropical forests (Raich & Potter, 1995).This indicates that total ecosystem 

respiration roughly equals gross primary productivity. Management practices, especially 

tillage, also play an important role in regulating the functional capacity of soil as a net sink or 

source of CO2 (West & Post, 2002) as soil CO2 efflux is not only sensitive to temperature and 

moisture but also to disturbance (Keith & Wong, 2006). It was found that soil and crop type 

also play an important role in respiration rates in agricultural fields (Lohila et al., 2002). 

One hypothesis, often use to explain reductions in decomposition and heterotrophic 

respiration (decomposition of SOM to CO2 by microbes), is abiotic stabilization of SOM as 

soil respiration is inhibited in a soil that has a high clay content (Telles et al., 2003). In a 

study where the mineralization of 
14

C-labelled was monitored for 8 years by Ladd et al. 

(1985) on soils having similar mineralogies but different clay contents, the soil organic C 

remaining at the end of the study were proportional to soil clay content as clay minerals had a 

stabilizing effect on SOM. Similar results were found by Lohila et al. (2002) as soil 
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respiration in a sandy soil was slightly higher than that in the clay soil confirming what was 

found by Ladd et al. (1985). Lohila et al. (2002) also found differences in respiration rates 

between soil types with peat soils producing 2-3 times more CO2 than mineral soils 

attributing this finding to the organic C content of the soil which was 4 times higher in the 

peat soils. Crop type also plays an important role in CO2 efflux as Lohila et al. (2002) found 

respiration was higher in grass than in the potato plots. A higher root biomass and annual C 

input together with more microorganisms utilizing the root exudates was a possible reason for 

perennial grasslands producing more CO2 than potatoes although not studied by Lohila et al. 

(2002). Tufekcioglu et al. (2001) also observed higher soil respiration rates in grasslands than 

crop fields and attributed it to a higher SOC content, greater fine root biomass and higher soil 

moisture content. The effect of different crop rotation practices on soil respiration rates have 

been studied by Omonode et al. (2007) as they found a shift from continuous corn to a corn-

soybean rotation resulted in lower soil respiration rates. However, the relative importance of 

more diverse rotation shifts on soil respiration in a semi-arid region is still unknown and 

needs attention. 

A good correlation between the SOC stored in the labile fraction and CO2 efflux was found 

by Janzen et al. (1992) as C in the light fraction (fPOM) has a turnover time of less than 10 

years. However, there are some limitations for soil respiration being an indicator for SOM 

decomposition: (i) difficult to divide soil respiration into its two sources, heterotrophic 

respiration (decomposition of SOM to CO2 by microbes) and autotrophic respiration 

(respiration from live plant roots), and (ii) mostly only a small fraction of total SOM 

contributes to respiration due to microbial decomposition (Kuzyakov, 2006). Not all of the 

CO2 coming from the soil is thus soil derived and as a result of these limitations, an increase 

in soil respiration do not necessarily indicate an increase in SOM decomposition, but also an 

increase in root respiration and therefore, respiration measurements do not always provide 

information about the large, stable C pools. Studies have shown that autotrophic respiration is 

more dependent on plant biomass and gross primary productivity, whereas heterotrophic 

respiration is more dependent on the quantity and quality (C:N ratio) of soil organic matter 

(Bond-Lamberty et al., 2004). Heterotrophic respiration is thus very dependent on soil 

management practices applied (tillage and crop rotation) as this can affect the amount of C 

stabilized in the soil as well as the quality of the organic matter. 
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2.8. Research Methodologies for studying C stabilization mechanisms in 

soils 

Soil organic matter consists of various functional pools, defined by their characteristic 

turnover times and pool sizes (von Lützow et al. 2007; Sequeira & Alley, 2011). It is 

important to be able to predict C turnover as a function of management and environmental 

changes and therefore knowledge of the size and fluxes of these pools are necessary. 

The different SOM functional pools, each with their specific chemical and physical properties 

are stabilized by different mechanisms which results in different stability and turnover rates 

(von Lützow et al., 2006). Since the persistence of specific compounds may also be due to 

other stabilization mechanisms, such as physical protection or chemical interactions with 

mineral surfaces, recalcitrance is difficult to assess methodologically (Marchner et al., 2008). 

Turnover time can be defined as the time interval between entering and leaving a reservoir 

and in the case of C chemistry it is the time between assimilation of C-atom and the release of 

the same C-atom as respired CO2 (Kӧgel-Knabner & Kleber, 2012). 

2.8.1. Isolation of specific SOM fractions 

There are several fractionation methods that can be used to isolate the different SOM 

functional pools. To understand the SOC stabilization mechanisms it is necessary to attain an 

effective separation of SOC fractions of different stability as factors like climate, soil type 

and properties, mineralogy, land use and management practices play a major role in the 

dominance of one mechanism over the other (Basile-Doelsch et al., 2009). 

There are three major SOM functional pools that are of great importance in soil C 

stabilization studies and in particular this study; (i) the free particulate organic matter (fPOM) 

fraction which resembles recent litter inputs and usually have younger C than other fractions 

(active pool); (ii) an occluded or intra-aggregate POM fraction (oPOM), which is generally 

older than fPOM fraction released by disruption of soil aggregates (intermediate/passive), and 

(iii) a heavy or mineral-bound fraction (mineral), comprising organic matter tightly bounded 

or sorbed to minerals containing the oldest OM (passive pool) (Marin-Spiotta et al. 2008). 

The oPOM and mineral fraction consist largely of microbial processed materials as well as 

partially degraded plant detritus (less recognizable structure) and therefore varies widely in 

C:N ratio among soils (Wagai et al., 2009). Significant changes in the amounts of fPOM 

caused by cultivation and climate may imply that this fraction is largely composed of labile C 

and nutrients (John et al., 2005).  Isolation of these three pools from whole soils would 
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facilitate their relative contribution to the total organic C and quantification of organic C 

contained in these pools. Therefore, separating fractions of OM with different biochemical 

properties and functional significance has received a lot of interest in the last 20 years (Cerli 

et al., 2012). To elucidate the possible chemical and physical mechanisms responsible for the 

stabilization of SOC it is necessary to examine the relationships of the stable mineral fraction 

and oPOM fraction with selected soil properties such as clay content, sesquioxides, 

exchangeable cations and aggregate stability. 

A critical review of all the possible methods recommended by various authors e.g. Golchin et 

al. (1994a); Sohi et al. (2001); von Lutzow et al. (2007); Jagadamma & Lal (2010); Cerli et 

al. (2012) regarding isolation of different SOC fractional pools have been done. It must be 

able to identify SOC pools that behaves more or less the same regarding deterioration, 

formed by specific stabilization mechanisms (Bruun et al. 2004). The objective of 

fractionation according to von Lützow et al. (2007) is: “To reduce the chemical, physical, and 

C cycling time variation in the fractions compared to the bulk soil”. Various combinations of 

fractionation methods can be used for this purpose. A common approach is physical 

fractionation in combination with ultrasonic dispersion (Sohi et al., 2001; Cerli et al., 2012). 

2.8.1.1. Physical fractionation 

Physical fractionation techniques have been used to isolate stabilized SOM functional pools 

from labile SOM functional pools (John et al., 2005) as these techniques helps detect the C 

fraction sensitive to soil management practices (Six et al., 2002a). Soil organic carbon is 

subdivided into different pools according to physical properties as this emphasizes the 

implication that spatial location is an important factor in determining OM turnover. Physical 

fractionation techniques involves a combination of either density fractionation or particle size 

fractionation and ultrasonic soil dispersion (Christensen, 1992; Golchin et al.,1994a; Sohi et 

al., 2001; Cerli et al., 2012). The effectiveness of soil dispersion procedures is crucial for 

both particle and density fractionation methods. It is unpractical to separate precisely all and 

only SOM of the same reactivity or specific age so Christensen (1996) suggested that it is 

rather more suitable to model the measurable than to measure the modelable pools. 

2.8.1.1.1. Density fractionation 

This method is used to isolate SOM that is not strongly associated with soil minerals from 

organo- mineral complexes as the aim of the method is to achieve active pools (SOM not 

associated with organo-mineral) and intermediate and passive pools (organo-mineral 
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complexes) (von Lützow et al., 2007). The light fraction (fPOM) isolated by this method 

contains mostly easily decomposable plant debris while the dense fraction represents the 

mineral-associated and thus protected parts of OM. Organic materials in the dense fraction (> 

2 kg L
-1

) consist mostly of carbohydrates and aliphatic structures and a narrow C:N ratio 

leading to the conclusion that minerals are able to protect OM rich in N, suggesting a 

microbial origin for this fraction while the light fraction predominantly contains easily 

decomposable plant debris (Golchin et al.,1994b).  

When used as a pre-treatment, density fractionation is very useful in isolating different SOM 

functional pools (von Lützow et al., 2006). In combination with sonication it is a useful 

approach because it is an easy method to obtain important insights into the chemical 

characteristics of isolated fractions in a variety of soils (Wagai et al., 2009). 

Several high density solutions have been proposed for this purpose, including sodium 

polytungstate (Na6 (H2W12O40).H2O) (von Lützow et al., 2006) and sodium iodide (NaI) (Sohi 

et al. 2001) solutions. The fPOM fraction is isolated by simply suspending a sample of soil in 

a high density solution and decanting the light (floating) material. Plant material that is 

relatively free of mineral particles (fPOM) can be isolated by flotation in a liquid adjusted to 

1.6 - 1.8 g cm
-3

 (Wagai et al., 2009). The remaining soil residue is disaggregated by 

sonication to release the occluded OM and is called the occluded particulate organic matter 

fraction (oPOM) (Sohi et al., 2001). This fraction contains much finer organic particles of 

similar composition than the first fraction (Golchin et al., 1994b) and it is held within 

aggregates and therefore doesn’t float in density solution unless the aggregates are disrupted 

(Cerli et al., 2012). The organic matter tightly bound or sorbed to minerals (heavy fraction) 

with a density above 2 g cm
-3

, can be collected as the residual, dense soil pellet (Marin-

Spiotta et al., 2008). Organo-mineral complexes have a lower density than those of pure 

minerals but higher than pure organic particles (Christensen, 1992). Separating soil samples 

into different density fractions has often been used as a technique to investigate the 

mechanisms responsible for OM stabilization. 

2.8.1.1.2. Particle-size fractionation 

According to Christensen (1992) particle size fractionation is based on SOM fractions that 

are associated with different particle sizes (sand, silt, clay) and therefore also different 

mineralogical which effects SOM turnover rates. Clay-sized particles provide a large surface 

area and reactive sites where SOM can be sorbed. Sorption is an important stabilizing 
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mechanism and the SOM associated with the clay and silt fraction will be assigned to the 

intermediate and passive pool whereas the SOM within the sand fraction is allocated to the 

active pool. The slower C turnover rates associated with the clay fraction compared to the 

sand fraction can be contributed to a chemical change in OM quality, an increase in spatial 

inaccessibility and the adsorption of OM on mineral surfaces (von Lützow et al., 2007). 

According to Sohi et al. (2001) it is necessary to do density isolation of the light (particulate) 

SOM fraction(s) prior to particle-size fractionation to avoid confusion of the particulate SOM 

with that associated with mineral particles. 

2.8.1.1.3. Ultrasonic dispersion (sonification) 

Organic matter substrate that is occluded in soil aggregates are inaccessible to microbial 

attack and provides thus a large amount of physical protection (von Lützow et al. 2006). 

Physical disruption of soil aggregates exposes OM that was formerly inaccessible to 

microbial attack. It is thus necessary for the purpose of liberating the occluded OM prior to 

isolation with heavy solutions and can be practically simulated by ultrasonic dispersion, 

sometimes referred to as sonication or ultrasonication. After fPOM fraction is separated by 

flotation in NaI, the oPOM fraction can be floated from the remaining dense material via 

sonication procedures. The energy applied is designed to break stable soil-aggregates 

releasing the oPOM (Sequeira & Alley, 2011). Optimal level of sonication energy is very 

important and the effect of sonication level on oPOM depend on the soil properties and 

density of liquid (Sohi et al., 2001). 

 

2.8.1.2. Chemical fractionation 

Stable organic matter can be defined as the material that survived destruction by chemical 

treatment. According to von Lutzow et al. (2007): “Chemical fractionation procedures are 

based on the extraction of SOM in aqueous solutions with and without electrolytes, in organic 

solvents, on the hydrolysability of SOM with water or acids, and the resistance of SOM to 

oxidation.” Hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl) and disodium 

peroxodisulfate (Na2S2O8) are the most acknowledged chemical reagents for this purpose 

(Mikutta et al., 2005) and results obtained by Helfrich et al. (2007) indicated that treatments 

with H2O2 and Na2S2O8 were the most effective ones in isolating stable SOM on different 

land uses. In contrast, treatments with Na2S2O8 and NaOCl were considered more effective 

than with H2O2 in isolating SOC (Mikutta et al., 2005). Humic substances are very stable in 
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soils due to its very complex structures (von Lützow et al., 2007). Oxidation with hydrogen 

peroxide (H2O2) is an appropriate tool for isolating a functionally passive OM pool if POM or 

light fraction (LF) is separated prior to the treatment because fresh aliphatic plant material is 

also resistant to H2O2 oxidation. Correlations between total Fe oxides in subsoil horizons and 

SOC that is resistant to H2O2 oxidation, suggests that the old fraction is protected through 

interactions with soil minerals (von Lützow et al., 2007). According to Mikutta et al. (2005) 

oxidative treatments selectively remove a younger C fraction (less protected) and allow the 

isolation of an older, non-oxidisable, refractory C pool.  

2.8.2. Characterization of SOM fractions 

Solid-state CPMAS
 13

C NMR spectroscopy techniques can be efficiently used to study and 

investigate the variation in chemical composition of the isolated fractions as well as the fresh 

litter input of the different crops used in the crop-rotation systems.
 13

C NMR spectroscopy 

permits direct chemical characterization of organic materials in soil (Baldock et al., 1992). 

Application of NMR spectroscopy in this study will be useful in identifying 
13

C atoms of the 

isolated SOM fractions from the density separation. To collect the 
13

C NMR spectra for the 

mineral fraction may not be possible because of paramagnetic ions, such as iron that can be 

present in the soil which can interfere with spectral readings. There are several chemical shift 

regions that represent C-types: 0-45 (alkyl); 45-65 (methoxyl); 65-95 (O-alkyl); 95-110 (di-

O-alkyl and some aromatic C); 110-145 (aromatic); 145-165 (phenolic) and 165-220 ppm 

(carboxylic and Cyl C) (Baldock et al., 2004). 

2.8.3. Loss of C by soil respiration 

The NFTSS (non-flow-through steady-state) chamber technique using chemical absorption of 

CO2 by soda lime (Soda-Lime Method) is a practical method for field measurements as an 82 

% correlation has been found between this method and the infrared gas analyzer (IRGA) 

(flow-through non-steady-state). With the soda-lime method it is possible to determine 

cumulative respiration over a long period of time across a large, heterogeneous site and it is 

relatively cheap and the equipment is easy to use (Keith & Wong, 2006). The application of 

this method doesn’t yield exact measurements, but it allows one to compare the soil 

respiration rates among the different crop rotation systems (Keith & Wong, 2006).  
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2.9. Conclusion and Gaps in Knowledge 

A lot of research has been done on the effect of tillage and crop rotation practices on SOC 

stabilization. However, there is still some uncertainty as various studies shows different 

results. In general, conservation practices (crop rotation and no-tillage) have been observed to 

contribute to the role of soil as a C sink rather than a source, especially in the first few 

centimetres of the soil.  

Due to the fact that climate, soil conditions and C input a major role play in the C content of 

soils, there is a gap in knowledge on how these practices affect soil C stabilization and 

distribution in the grain production regions of the Overberg. Understanding the mechanisms 

involved in the stabilization of C in these soils is of utmost importance as it can help identify 

management practices that contribute to a higher quality soil.  A lot of research has been done 

in tropical regions trying to figure out how C is stabilized in these soils but little research has 

been done in semi-arid regions across the world. As it is known, semi-arid soils differ 

significantly from tropical soils in mineralogical and chemical composition as well as climate 

dependent chemical processes such as weathering and biodegradation and therefore it is 

necessary to elucidate C stabilization in these soils as no research has been done in this 

region. 

Through effective isolation of the different SOM functional pools, the vacant gaps in 

knowledge relating to different SOM pools and C stabilizing mechanisms operating in the 

soils of the Overberg can be addressed.  We will know what the contribution is of stable C 

(mineral-bound C) to total C (stable & labile C fractions) which will allow us to estimate the 

effect of the different crop/pasture rotations under no-tillage on SOC dynamics. By isolating 

total C into its different fractions it will also allow us to elucidate the stabilizing mechanism 

operating in these soils. This will enable us to determine whether C sequestration in these 

soils is controlled by management practices (e.g. no-tillage, crop rotation) or whether soil 

properties (texture, mineralogy) and climate is the dominant factors controlling C 

stabilization. 

Current knowledge suggests that if the right management practices are implemented, 

agricultural soils can reach higher SOC equilibrium within several decades. Soils are now in 

the ‘front line’ of global environmental change and we need to be able to predict how they 

will respond to agricultural systems (cropping practices and tillage) so that we can better 

understand their role in the earth system and ensure that they continue to provide for 
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humanity and the natural world (Schmidt et al., 2011). A soil parameter that can be used for 

prediction is SOC as it is directly related to the sustainability and quality of the soil. 
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CHAPTER 3 

THE EFFECT OF CROP ROTATION AND SELECTED SOIL 

CHARACTERISTICS ON TOTAL SOIL CARBON CONTENT IN 

CONSERVATION-TILLAGE MANAGED SOILS 

3.1. Introduction 

With a yearly precipitation of 400-450 mm, limited moisture is the main constraint for 

dryland agriculture in the grain production area of the Overberg. Dryland agriculture in this 

region is mainly focused on cereal and canola production. With increasing production costs 

(e.g., fuel), and highly variable climatic conditions, it is of utmost importance to identify 

sustainable agricultural production systems to try and counter these negative impacts. Low 

rainfall can also cause a low soil organic matter (SOM) content due to low crop biomass 

production which limits residue input into the soil.  Soil organic matter content is an 

important factor in dryland agriculture as it directly and indirectly affects the quality and 

productivity of soils through its influence on several physical (e.g. soil water holding 

capacity, aggregate stability), chemical (e.g. cation exchange capacity, nutrient supply) and 

biological (e.g. microbial activity and biomass) properties (Lal 2004; 2006; 2011). Severe 

depletion in SOM will lead to: (i) soil degradation and nutrient depletion, (ii) decline in 

agronomic and biomass productivity, (iii) food insecurity and, (iv) decline in environmental 

quality by the emission of CO2 while a degraded soil and a low biomass input will lead to a 

low SOM content (vice versa effect) (Lal 2004). Application of management practices that 

can contribute to C sequestration in soils is thus necessary. According to Àlvaro-Fuentes et 

al. (2008) the SOM content in semi-arid climates can be enhanced by the application of 

recommended agronomic management practices (e.g. no-tillage). This can mainly be 

attributed to reducing SOM decomposition and/or increasing residue inputs (Paustian et al., 

2000). However, no-tillage has to be combined with the establishment of diverse and high C 

input cropping systems. No-tillage as an isolated system may probably not produce the 

positive results as expected from the accumulation of soil C (Sisti et al., 2004; Conceicão et 

al., 2013). According to Lal & Bruce (1999) crop rotation and no-till management that retain 

crop residues near the surface of the soil, can increase the SOC by raising biomass production 

and crop residue retention. Manipulating the cropping systems can thus improve soil quality 

and sustainability through enhancement of SOM. 
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Conservation tillage can contribute to the soil functioning as a C sink (Sombrero & Benito 

2010; West & Post 2002) by minimizing soil disturbance and thereby increasing the 

aggregate stability (decrease in decomposition of SOM) (West & Post, 2002). An increase in 

aggregate stability due to no-till practices also enhances SOM concentration within 

aggregates.  This causes an increase in residence time of SOM and is therefore an effective 

agricultural practice to increase C sequestration in soils and thereby productivity (Paustian et 

al., 2000). The effect of conservation tillage on C sequestration however is time dependant 

and will only show after ± 10 years (West & Post, 2002; Sombrero & Benito, 2010; Álvaro-

Fuentes et al., 2012). Possible reasons for this phenomenon are the slow incorporation of crop 

residues under no-till systems through soil fauna. This may contribute to the lack of C 

sequestration over the first few years in a water-limited region (Six et al., 2004). Another 

possible reason is a decline in crop yields (lower C inputs) after the first few years of no-

tillage. 

The effect of cropping systems on SOM can also be very slow, especially in semi-arid 

regions (Masri & Ryan 2006). Wright & Hons (2005) stated that the type of crop, the rotation 

sequence and the quality and quantity of crop residues are important for soil C content. 

Knowledge of the primary input of each crop (shoots and roots) in a rotation system, together 

with C:N ratio of each crop allows the estimation of the C inputs to the soil and therefore the 

amount of C that can potentially be sequestered. Plant roots represent a significant, but poorly 

understood source of C inputs (van Vleck & King, 2011). Most of the C found in soils is 

derived from belowground inputs (plant roots and rhizosphere) as it is retained in soils much 

more efficiently and is then transformed into the substances found in the soil (Schmidt et al., 

2011). In annual cropping systems, due to slower rate of decomposition, root-derived C 

contributes twice as much C to stable soil organic C pools as does aboveground residue. This 

was attributed to root inputs that have more opportunity for physico-chemical interactions 

with soil particles (clay) than many aboveground inputs being mineralized in the litter layer 

(Rasse et al., 2005). Soil texture therefore also plays an important role in soil C stabilization 

as Nciizah & Wakindiki (2012) found a strong relationship between clay concentration and 

total soil organic C (SOC) content (R
2
 = 0.78). This can be attributed to the formation of 

strong chemical bonds between the clay and organic particles (chemical protection). 

The use of a fallow period in the grain production areas of the Overberg is not economical 

and water-conserving fallowing is thus replaced by continuous cropping and crop-pasture 

rotations. Legumes therefore have a potentially significant role to play in increasing soil C 
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sequestration in rotation systems as the potential importance of legumes has been recognized 

for a number of years (Sisti et al., 2004; Masri & Ryan, 2006; Abberton, 2010). According to 

Agenbag & Maree, (1989), the advantages due to higher SOC will be reached sooner if wheat 

is rotated with legumes than in all wheat years. Pastures also present a significant potential to 

decrease soil degradation processes and recovering of its productive capacity which is linked 

with environmental sustainability and productivity (Salvo et al., 2010). Garcia Préchac et al. 

(2004) found that SOC was reduced by 7.5% after 5 years of continuous cropping (CC) with 

no-tillage (NT) while the NT-based crop-pasture rotation had 6% greater SOC than the 

original content. It is therefore expected that the use of legume pastures in a rotation system 

can possibly contribute to a more sustainable system in dryland production. 

When more C is adsorbed into the ground than is released as CO2, C accumulates in the soil 

and this refers to the term soil C sequestration. The role of soil and plant properties in C 

sequestration in these soils remains to be elucidated as well as their relative importance. 

Therefore, a study was initiated in the dryland grain production area of the Overberg. Farmers 

are currently applying different crop rotation systems, ranging from continuous crop to 

crop/legume to crop/pasture and they are also increasingly switching over to conservation 

tillage practices in attempt to restore SOC, but the effect of these practices on the 

maintenance and improvement of the SOC content is still unknown. Detailed studies on the 

effect of common cultivated crops and pastures (e.g. canola, medics, lucerne, lupine, barley 

and wheat) under no-tillage on total SOC content are limited as no data is currently available. 

There is also a lack of knowledge on the biological and economic sustainability of crop and 

crop-pasture rotation systems in this region. Research on soil C sequestration for a specific 

soil/climate/cropping system is thus necessary. 

The main objective of this component of the study was to investigate the effect of long-term 

(11 years) no-till crop rotation practices, ranging from 100% pasture to 100% crop, on total 

soil C sequestration. It involved understanding the underlying reason for differences in soil C 

sequestration by examining selected soil and plant properties.  A further aim was to examine 

the relationship between the extent of C sequestration and crop yields. Long-term 

experiments provide valuable information regarding the effect of management practices on 

soil productivity. 
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3.2. Material and Methods 

3.2.1. Study area 

A long-term field experiment at the Tygerhoek Research farm, situated just outside 

Riviersonderend, Overberg, Western Cape, South Africa (34° 09’ 32” S, 19° 54’ 30” E) was 

used in this study. This region is a well-known dryland grain production area. The Kӧppen-

Geiger climate classification for Riviersonderend is BSk (cool semi-arid climate). This type 

of climate tends to be located in temperate zones and at lower latitudes it tends to have 

precipitation patterns more similar to Mediterranean climates. Riviersonderend has a low 

annual rainfall of 450 mm rain per year with most of the rain falling during winter (60% of 

annual rainfall), but summer rainfall is not unusual (40% of annual rainfall). The long-term 

average annual temperature is 17.5°C (ARC-ISCW, 2013). 

Table 3.1 Long-term monthly climate data for Tygerhoek Research Farm. 

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Maximum 

Temperature (°C) 

29.1 29.6 28.7 24.8 21.6 18.6 17.9 18.4 21.4 24.4 26.4 27.9 

Minimum 

Temperature (°C) 

15.9 16.4 15.1 12.3 9.4 6.1 5.2 5.7 7.6 10.2 12.4 14.4 

Rainfall (mm) 25.6 29 32.7 50.4 41.9 42.9 45.2 52.4 33.9 38.6 31.6 28.3 

 

This long-term field experiment was already in its 11
th

 year when soil samples and data were 

collected in 2012. Rolf Derpsch, a specialist in conservation agriculture stated at a recent 

conference held in Strand, South Africa, that the consolidation phase of no-tillage is 10-20 

years after it has been initiated. It is in this phase where higher C content, cation exchange 

capacity and soil water can be expected due to application of conservation agriculture (no-till 

and crop rotation practices) (Derpsch R. 2013.Personal communication).  

Most of the cereal crops are planted from May and harvested from mid-October to November 

as the climatic conditions are suitable for grain production in winter. The soils are very 

shallow, highly weathered shale-derived soils (30-40 cm depth) with a loamy texture and 

high content coarse fragments (> 2mm) with soil parent material in this region comprised of 

Bokkeveld shales (Ellis F. 2012.Personal communication). Due to these properties, the soils 
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were very challenging to work on. Sampling as well as the analysis of some of the soil 

properties were very demanding and needed extra attention. The experimental site of the crop 

rotation systems lies on a middle to lower foot slope with a slope of ± 5%. The natural 

vegetated soil, used as reference in this study, lies about 500 m further down the slope 

(Figure 3.1). 

 

Figure 3.1 The location of the study site at the Tygerhoek Research Farm, Riviersonderend. 

3.2.2. Experimental design 

Five crop/pasture rotation systems ranging from 100% pasture to 100% crop (Figure 3.2) 

were included in this study. Each of these rotation systems acted as a treatment with three 

replicates (A, B & C) within each treatment. Natural vegetation acted as a reference 

(treatment 6) in this study to compare the effect of conservation agriculture managed soils 

with natural vegetated soils in terms of soil C sequestration (Table 3.2). The crop rotation 

treatments were all similarly managed with no-till applied to the management of all 

treatments. Crop residues were retained following harvesting. No-tillage means that the soil is 

left undisturbed until planting and then planted with a tine, no-till planter (a no-till Ausplow 

fitted with knife-openers and presswheels). Pastures were grazed by sheep throughout the 

year on a rotation basis while the stubble of cereal crops was grazed in the off season. 

Treatment 1 consisted of a lucerne (Medicago sativa) pasture (100% pastures) that has been 

undisturbed since the start of the trial in 2002. The medic-medic-wheat (MMW) treatment 
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(2) is a 67% pasture, 33% crop rotation system and is disturbed once in every four years 

when wheat (Triticum aestivum) is planted. After medics (Medicago spp) have been 

established (planted) for the first time it is able to re-establish itself within a rotation system, 

if managed correctly. When medics are rotated with wheat, the medics are suppressed in the 

year when wheat is planted, and then in the following year, the medics spontaneously regrow 

again without any disturbance of the soil. The medic-medic-wheat-wheat (MMWW) 

treatment (3) is a 50% pasture, 50% crop rotation system and is disturbed twice every four 

years when wheat is planted. Two 100% cropping systems (continuous cropping) in different 

phase were also included in this study; a wheat-barley-canola-wheat-barley-lupin 

(WBCWBL4) (treatment 4) and a WBCWBL1 system (treatment 5). The number “4” in the 

rotation code refers to the fourth crop planted in the cropping system, wheat planted after 

canola (Brassica napus) (non-legume) while the number “1” in the rotation code refers to the 

first crop planted in the cropping system, wheat planted after lupin (Lupinus luteus) (legume). 

The soil in both these treatments is disturbed annually during planting. The underlined crop 

(letter) in the rotation code represents the crop that was on the field at the time of sampling or 

data recording. 

Table 3.2 The different treatments used in this study at the Tygerhoek Research Farm. 

Treatment 
Camp size 

(ha) 
Rotation System (Treatment) Crop planted in 2012 

1 0.32 Lucerne 100% pasture Lucerne 

2 0.25 MMW 67% pasture; 33% crop Wheat 

3 0.25 MMWW 50% pasture; 50% crop Wheat 

4 0.25 WBCWBL4 100% crop Wheat 

5 0.25 WBCWBL1 100% crop Wheat 

6 ± 0.12 Reference Natural Natural vegetation 
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Figure 3.2 Experimental design specifying the different crop rotation systems included in the study. 

 

(a) (b) 

Figure 3.3 Digital images of the (a) WBCWBL4 rotation system and (b) Natural vegetated soil at the 

Tygehoek Research Farm.  

3.2.3. Classification and morphological description of soil 

A total of 18 soil profile pits were excavated in six different treatments and classified 

according to the Taxonomic system for South Africa (Soil Classification Working Group, 

1991) with soil morphological characteristics recorded in the field.  

N 
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Glenrosa soil form (Orthic A – Lithocutanic B) (Figure 3.4a) was the dominant soil form at 

the experimental site while an Oakleaf soil form (Orthic A – Neocutanic B – unconsolidated 

material without signs of wetness) (Figure 3.4b) was found in Treatment 2 and 6. The profiles 

were very shallow and were seldom deeper than 600 mm with the A-horizon depth of about 

200 mm. The A-horizon is bleached with a clay content ranging between 15 and 25%. The B-

horizon (Neocutanic and Lithocutanic) has a yellowish brown colour (10YR 5/6) in the dry 

state, and a clay content ranging between 20 and 30%. In summer these soils are very hard as 

the excavator struggled to dig deeper than 600 mm. In the appendix, a detailed description of 

each soil form is given. According to the FAO classification (IUSS Working group WRB, 

2006), the glenrosa soil form is a Leptic Cambisol Skeletic while the oakleaf (natural 

treatment) is classified as a cutanic Leptic Luvisol and the oakleaf (MMW treatment) as 

cutanic Leptic Luvisol Skeletic. 

Table 3.3 The soil form that dominated in the various treatments. 

Treatment Rotation System Soil Form 

1 Lucerne 100% pasture Glenrosa 

2 MMW 67% pasture; 33% crop Oakleaf 

3 MMWW 50% pasture; 50% crop Glenrosa 

4 WBCWBL4 100 % crop Glenrosa 

5 WBCWBL1 100 % crop Glenrosa 

6 Reference Natural Oakleaf 
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 (a) 

 

 (b) 

Figure 3.4 Digital images of the soil profiles that dominated the experimental site at Tygerhoek 

Research Farm (a) Glenrosa soil form and (b) Oakleaf soil form. 
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3.2.4. Soil sampling and preparation 

Soil samples for this study were collected in June/July 2012 from three different replicate 

sites (A, B & C) located within each of the six treatment blocks (camps) at 0-30 cm depth. 

Samples were divided into four depth increments: 0-5, 5-10, 10-20, 20-30 cm.  At each 

replicate site approximately 30 cores per depth were taken within a 20 m radius using a steel 

pipe (4 cm in diameter) and hammer. The pipe was marked at the particular depth increments. 

When the pipe had been inserted into the desired depth, the pipe was pulled out of the ground 

and the soil collected in a plastic bag. After being transferred to the laboratory, the samples 

were air dried and sieved through a 2 mm sieve. All soil cores were bulked (3.5 kg of soil), 

and thoroughly mixed with a soil splitter. Unsieved soil was also preserved for aggregate 

stability determination while the rest of the samples were stored in marked bags. All 

laboratory soil analysis was performed on air-dried, sieved soil unless otherwise specified. 

To avoid determination of litter material and because the most significant differences 

between cropping systems are expected to appear in the top 10 cm of the soil,  the 5-10 cm 

soil depth in each treatment were mainly used for carrying out different analysis. However, 

for the lucerne and WBCWBL4 treatments all four depths (0-5, 5-10, 10-20 & 20-30 cm) 

were analysed. 

3.2.5. Quantification of coarse fragments 

The quantification of the coarse fragments in these shallow, shale-derived soils was much 

more complicated to determine compared to soils in other regions. Normally, the amount of 

coarse fragments in an air-dried soil is quantified by separating the fine fraction (< 2 mm) 

from the coarse fraction (> 2 mm) using pre-crushing in a large mortar and pestle to break up 

large aggregates and then sieving the soil through a 2 mm mesh sieve. However, because 

these soils are shale-derived it is important not to crush the soil samples before sieving as the 

crushed shale fragments (soft) could have an influence on certain soil chemical and physical 

analyses.  As the soil samples were not crushed prior to sieving, a substantial amount of fine 

soil (< 2 mm) was not separated as it had adhered to smaller shale fragments to form clods 

bigger than 2 mm during the drying process. The soil sampling process had to take place 

when the soil was relatively moist as it was too difficult to sample during the dry season 

which lead to the formation of clods during drying. This resulted in the coarse fragment 

percentage to be estimated as high as 80% using only sieving in some of the treatments, 

which is not realistic for these soils although a high coarse fragment percentage is present. To 
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correct for this and to make sure that the fine soil (< 2 mm) sample is representative, it was 

necessary to take a representative subsample of the course fragments and use an ultrasonic 

bath (UR 1, Retsch Gmbh & CO.KG.,Germany) for ± 3 min to loosen the soil from the 

coarse fragments in each sample. The soil was then wet sieved through a 2 mm mesh sieve 

and left to dry in a drying room (35°C). The soil that was recovered from the course 

fragments was weighed and the coarse fragment percentage was corrected for each soil 

sample. 

3.2.6. General soil characterization 

3.2.6.1 Mineralogical composition 

The mineralogical composition of the soils was examined using clay separation and X-ray 

diffraction (XRD) analysis of Ca-saturated samples (Whittig and Allardice, 1986) at 45 kV 

and 30 mA, using the Cu Kα radiation. The x-ray diffraction (XRD) method is the most 

widely used technique in the identification of clays but this method is not applicable to 

analysis of amorphous or non-crystalline materials. Each mineral is characterized by a 

specific atomic arrangement, creating characteristic atomic planes that can diffract (reflect) x-

rays. This diffraction pattern is used as a fingerprint in the identification of mineral species. 

The clay mineral composition was only determined in two different depth increments (5-10 

cm and 20-30 cm) in the lucerne treatment as similar clay mineralogy is expected in the other 

treatments as the parent material is the same as well as the climatic conditions.  

The total free Fe-oxide content of the soils was determined using the citrate-bicarbonate-

dithionite (CBD) extraction method according to Jackson et al. (1986). 

3.2.6.2. pH 

Soil pH was measured in distilled water and in 1M KCl at a 1:2.5 soil to solution ratio (White 

1997). The suspensions were shook on a horizontal shaker for 30 minutes and were allowed 

30 minutes standing time before the reading was recorded. A calibrated Metrohm, 

Swissmade, 827 pH lab electronic pH meter was used. 

3.2.6.3. Exchangeable cations 

Exchangeable basic cations (Ca, Mg, Na, and K) were determined according to Thomas, 

(1982), using 100 ml 1M NH4OAc and 10 g of soil (10:1 ratio). About 40 ml of NH4OAc 

solution was added to 10 g of soil allowing standing for an hour after which it was transferred 

to a 5.5 cm Buchner funnel. The funnel was connected to a suction flask and the soil solution 

was passed through a Whatman 40 filter paper. Ten ml portions of NH4OAc were added to 
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final volume of 90 ml to transfer remaining traces of soil. The extract was then made up to 

100 ml by adding fresh NH4OAc. 

Exchangeable acidity was also determined according to Thomas (1982) using 10 grams of 

soil and 25 ml of 1M KCl. It was left for 30 minutes and then transferred through a funnel 

fitted with Whatmann 42 filter paper. The filtrate was collected in a 250 ml Erlenmeyer flask 

as an additional volume of 125 ml KCl followed in 25 ml increments. It was then titrated by 

0.01M NaOH until pink endpoint was reached (phenolphthalein used as indicator). 

Exchangeable Al was estimated by recording the titer for NaOH, adding 10 ml of 1M KF to 

the filtrate, and titrated with 0.1 M HCl until pink colour disappeared. 

3.2.6.4. Total C and N analysis 

Dry combustion was used to determine total C & N using a Eurovector Elemental Analyzer 

(Eurovector Instruments & software, Italy). This method ensures the oxidation of all organic 

C. It is considered the most accurate method. The Eurovector instrument is capable of 

simultaneous determination of C, N, H and S in soils (Nelson and Sommers, 1996). Since all 

the samples tested free of carbonates, the measured total C content was equivalent to the 

organic C content. 

3.2.6.5. Particle size distribution 

Particle size distribution was performed on a 40 g soil sample (< 2 mm) from each of the 

sampled depths for the lucerne (100% pastures) and 100% crop rotation systems 

(WBCWBL4). For the other treatments, particle size distribution was only done in the 5-10 

cm soil depth. The method that was used was adapted from Gee & Bauder (1986).  

The samples were chemically pre-treated by removing the organic matter (OM) using 35% by 

volume H2O2 solution. The mass loss after OM was removed was recorded (base mass). The 

soils tested negatively for carbonates using 10% HCl. Secondly, the soil samples were 

dispersed by adding 10 ml Calgon solution and mechanically stirring the mixture for 5 

minutes. The clay and silt fractions were then washed through a 0.053 mm mesh sieve into a 

1 dm
3
 sedimentation cylinder. The various fractions were weighed and reported as a 

percentage of the base soil mass. The silt and clay fractions were determined using the 

sedimentation technique and a Lowey pipette. 

3.2.6.6. Aggregate stability 

The wet sieve technique was used to examine the relative stability of soil aggregates of the 

six different treatments according to Kemper and Rosenau (1986). The stability of aggregates 
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were determined in each of the four depths for the lucerne and WBCWBL4 treatments while 

the aggregate stability was only determined in the 5-10 cm depth increment for the other 

treatments. The principle of this technique relies on the fact that unstable aggregates will 

break down more easily than stable aggregates when submerged in water. The analysis was 

carried out under laboratory conditions using the Eijkelkamp E-365-08.13 wet sieving 

apparatus (Eijkelkamp Agrisearch Equipment, Netherlands). Four grams of macroaggregates 

(2 mm < aggregates < 2.8 mm) of duplicated samples of each replicate in each treatment were 

hand-picked to avoid determination of small coarse fragments (Figure 2.5). The aggregates in 

the sieve were raised and lowered in distilled water for 3 min ± 5 s with these cans containing 

water unstable aggregates. The remaining aggregates were then raised and lowered in NaOH 

or Na(PO3)6, depending on pH of soil sample, for ± 10 min using a rubber until all aggregates 

disintegrated. These cans contain the water stable aggregates. Both the weighed cans 

(containing stable and unstable aggregates) were allowed to dry in oven until the water has 

evaporated. The weight of the material in each can was determined. 

 

Figure 3.5 Sub-sample of soil (2-2.8 mm) showing visual difference between course fragments and 

actual soil aggregates. The soil aggregates were hand-picked and used for aggregate stability 

determination by wet-sieving. 
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3.2.6.7. Bulk density 

Field bulk density was determined using a combination of the clod (Grossman & Reinsch 

2002) and core method (Grossman & Reinsch 2002) depending on the suitability of the two 

methods in the specific treatments and depths. In these soils the clod method was the 

preferred method due to the extremely high amount of coarse fragments. 

The bulk density of the 0-5, 5-10 and 10-20 cm layers in all treatments as well as the 20-30 

cm layer of treatment 1 (MMW) and treatment 6 (Natural), both containing  a Neocutanic B 

horizon, were determined using the clod method as it was possible to sample clods in these 

treatments and depths. Undisturbed clods were thus sampled in each of these depths in the 

different treatments. To make sure that the bulk density obtained via this method was 

representative of the whole area, a duplicate sample (clod) in each replicate (A, B & C) in 

each depth was sampled. The clods were oven dried for 24 h at 105°C and the weight was 

recorded. The clod was dipped in paraffin wax (70°C) for a few seconds after the clod has 

been secured with thread. The clod was then let dry before the weight of the clod + wax (air-

dried) was recorded after which the sample was weighed again when it was completely 

suspended in water. The density of the water and paraffin wax was known and used in 

calculating the density of the clod.  

The bulk density of the 20-30 cm layer of the lucerne, MMWW, WBCWBL4, WBCWBL1 

treatments were all determined based on the core method describe by Grossman & Reinsch 

(2002) as it was impossible to sample clods in the Lithocutanic B horizon. The same steel 

pipe (4 cm diameter) that was used for soil sampling and root quantification was used for this 

method. The volume of the pipe as well as the dry mass of the soil in the pipe was recorded to 

determine the bulk density of the soil (g cm
-3

). The sand cone method (Blake & Hartge, 1986) 

was initially used to try and determine the bulk density of the Lithocutanic B horizon but this 

method proved to be inaccurate, possibly due to the soil containing high amount of coarse 

fragments. It was not always possible to fill the hole perfectly with the sand due to the gaps 

caused by the coarse fragments (stones) and therefore an alternative method (core method) 

had to be used to determine the bulk density as accurately as possible. 

3.2.7. Above- and belowground C inputs (quantity and quality)  

3.2.7.1. Quantity 

The root distribution and density (root biomass) in the four depth increments were 

determined for wheat, medics, barley, canola, lucerne and lupine using the sequential soil 
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core method (Samson & Sinclair, 1994). Samples were taken just after harvest in November 

2012. For this study it was important to know the amount of organic matter restored after a 

season via the roots of each crop. As the rooting system of each crop differs, it can have 

different effects on the distribution and stabilization of soil C.   

In each replicate (A, B & C) the mass of aboveground material (kg) per square meter of each 

of these crops was cut off at ground level after harvest and dried for 2 days at 60°C and 

weighed. Three soil cores were also extracted from each replicate (A, B & C) for each crop 

using a steel pipe (4 cm in diameter). One core was taken within a row while the other two 

were taken in-between the rows (Figure 3.6). The pipe was marked at the particular depth 

increments (0-5; 5-10; 10-20; 20-30 cm). When the chosen depth had been achieved, the pipe 

was pulled out of the ground and the soil collected in a bag. The volume and the mass of the 

soil in each core were thus known. The soil was allowed to air dry before weighed. Five 

representative subsamples (5 g) were extracted from the weighed sample and the roots and 

coarse sand particles were separated from the fine sand particles, clay and silt using a gentle 

water stream through a 0.250 mm mesh sieve. The coarse sand particles and roots remaining 

on the sieve were separated using density fractionation (roots floating in water). The method 

used was based on root sampling methods used by Crawford et al. (1997), Qin et al. (2004) 

and Samson & Sinclair (1994). 

The average root density (kg m
-3

) and distribution as well as above-ground inputs (kg ha
-1

) of 

each crop in the different treatments were compared. 
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Figure 3.6 Sequential core method used to determine root density and distribution. 

2.2.7.2. Quality 

The quality (C and N) of each crop residue above- and belowground were determined with 

the dry combustion method using the Vector elemental analyser (Nelson & Sommers, 1996). 

After harvest, each crop was sampled (Figure 3.7). The aboveground (shoots) and 

belowground (roots) residue were separated and the C and N content of the shoots and roots 

of all the crops were determined.  

 

Stellenbosch University  http://scholar.sun.ac.za



55 

 

 

Figure 3.7 A wheat sample that was used for carbon and nitrogen analysis. 

3.2.8. Soil Respiration Rate (CO2 efflux)  

To characterize the loss of C from the different treatments, the reliable and cost-effective 

soda-lime method was used to quantify soil respiration (Keith & Wong, 2006). This method 

is an easy and practical method to use and also allows the determination of cumulative soil 

respiration over a long period of time. Soda lime granules consist of NaOH and Ca(OH)2 and 

about 20 % absorbed water as water is necessary for chemical absorption of CO2 to form 

Na2CO3 and CaCO3 Keith & Wong, 2006). Carbonate formation is reflected in weight gain of 

granules. 

2NaOH + CO2 > Na2CO3 + H20 

Ca(OH)2 + CO2 > CaCO3 + H20 

A correction factor (1.69) (Grogan, 1998) was also required to account for the water that is 

formed when soda-lime reacts with CO2 and was used when estimating the CO2 efflux. 

Soil respiration was estimated using polyvinylchloride (PVC) chambers (drainage tubes) of 

approximately 12 cm in diameter. Three chambers (A, B & C) in each treatment were placed 

in the soil (± 4 cm depth) for 3 to 4 weeks during two different climate periods allowing 

enough time to capture CO2 loss from the soil (Figure 3.8). The first trial was carried out in 
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September 2012 (Spring) while the soil was still very moist due to the winter rainfall period 

(May – August) and the second trial was carried out in March 2013 (Autumn) while the soil 

was very dry due to a dry, hot summer period (November-February). The soil and root 

derived respiration rates between different crop rotation systems and natural vegetated soil in 

the two different climate periods (spring and autumn) were determined and compared.  

Briefly, ± 10 g of soda lime was weighed into a perforated tube (for a ground area within 

chamber of 0.00841 m
2
), fixed with glass wool and then oven dried for 11 h at 100 °C. The 

dry weight of the soda and perforated tube was recorded and sealed within a zip plastic bag. 

An aeration tube (outer) filled with an unknown amount soda lime and fixed with glass wool 

was connected to the sealed lid of the chamber via an inlet tube (Figure 3.8a). This tube helps 

to prevent CO2 from the atmosphere entering the chamber. At the field site the perforated 

tube (inner) (Figure 3.8b) was positioned (hooked) in the chamber for 3-4 weeks. After 

collection, the perforated tubes were again retained in sealed bags, transported back to the 

laboratory, oven dried and re-weighed. The difference in weight before and after the period in 

the field is the amount of CO2 absorbed. Soil CO2 efflux is measured in units of g C m
-2

 day
-

1
. During the sample preparation as well as chamber leakage, atmospheric CO2 can also be 

absorbed by soda lime which is not part of the soil CO2 efflux. To assess this, blank chambers 

with a sealed base, were treated in the same way as the sample chambers in the soil.  The 

application of this method however, will not yield exact measurements, but it will allow one 

to compare the soil respiration rates among the different treatments (Keith & Wong, 2006). 
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3.2.9. Statistical analysis 

Statistical analysis was done using SAS Interprize guide 5.1. Statistical differences between 

treatments were distinguished at the P < 0.05 level using Tukey’s Studentized Range test. A 

one-way ANOVA was used for this completely randomized design. 

3.3. Results and Discussion 

3.3.1. Background soil information 

The highest pH (KCl) values for the cropping systems were observed in the 0-5 cm layer with 

pH values ranging between 6.4 and 7 in contrary with the natural vegetated soil in the same 

depth which had a pH of less than 5.5. The pH, exchangeable cation and Fe-oxide values of 

all the treatments are shown in the appendix (Table A1 & A2). The higher pH in the 0-5 cm 

depth in the cropping systems is most likely due to lime addition and little soil disturbance. In 

the 5-10, 10-20 and 20-30 cm layers, the pH for both the cropping systems and natural 

vegetated soil ranged between 5.5 and 6.6. The soils tested free of carbonates and confirmed 

Figure 3.8 (a) Soda lime trap used in the field with an outer to prevent CO2 from the atmosphere 

entering the chamber; (b) Perforated tube (inner) hooked inside chamber containing ± 10 g soda 

lime. 
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the neutral pH values observed. Due to the neutral pH of these soils, the base saturation 

percentage ranged between 96 and 99%. It can therefore be concluded that very little Al and 

H ions occupied the exchange sites of the minerals and organic material. The effective cation 

exchange capacity (ECEC) ranged between 7 and 12 cmolckg
-1

 soil. Taking the clay content 

into account (cmolckg
-1

 clay) the ECEC ranged between 37 and 47. This points to the 

dominance of low activity minerals e.g., kaolinite (CEC 3-15 cmolckg
-1

) or illite (CEC 10-40 

cmolckg
-1

) as it is difficult to determine the contribution of SOM to the ECEC of the soil. 

This was confirm by X-Ray diffraction (XRD) analysis as it showed that the clay mineral 

composition between two depth increments was largely similar comprising of a mixture of 

mainly kaolinite, illite/mica and quartz (Figure 3.9 & Table 3.4). The Fe-oxide content in the 

different treatments and depths ranged between 1.6 and 3.2% with the Fe-oxide content 

significantly related (P = 0.0010; R
2
 = 0.50) to the clay content of the soil.  

 

Figure 3.9 Glycol-solvated, Ca-saturated X-Ray diffractograms of selected depth increments, 5-10 

and 20-30 cm. M/I = Mica or Illite, K = Kaolinite, Q = Quartz. 
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Table 3.4 Descriptive legend for the XRD-identified mineral peaks according to Tan (2011) and 

Whittig & Allardice (1986).       

Diffraction angle (2θ) d-spacing (Å) Mineral 

8.8 10.04 Mica and Illite 

12.3 7.19 Kaolinite 

17.6 5.01 Mica 

19.7 4.5 Illite, Mica 

21.1 4.21 Kaolinite/Quartz 

24.8 3.59 Kaolinite 

26.6 3.35 Quartz 

 

3.3.2. Total (organic) Carbon 

The total organic C contents of the bulk soil show typical values for agricultural soils with the 

lowest C content of 8.6 g C kg
-1

 found in the 20-30 cm depth of the WBCWBL4 cropping 

system and highest of 28.3 g C kg
-1

 in the 0-5 cm layer of the MMWW cropping system 

(Figure 3.10a). In a semi-arid climate, only small differences in SOC are expected between 

different rotation systems as annual C inputs are small and variable (Shrestha et al., 2013). 
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Figure 3.10 (a) Vertical distribution of total soil C between treatments; (b) average C content between 

treatments in the 0-30 cm depth. 

Note: Error bars represent standard error, and alphabetic letters denote statistical differences between treatments 

according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of significant differences. 

The pasture-crop and permanent pasture treatments resulted in higher soil C contents than the 

crop only or natural vegetated soils (Figure 3.10a & b). The soil C content of the MMWW 

treatment was found to be significantly higher (P = 0.0008) than all the other cultivated 

systems and the natural vegetated soil in the 0-30 cm depth, although not statistical different 

in each depth increment, but clear trends were observed (Figure 3.10a & b). The weighted 

average C content of the MMWW rotation system in the 0-30 cm depth was 18.6 g C kg
-1

 

while the MMW rotation system and lucerne treatments contained an average C content of 

15.2 g C kg
-1

 and 15 g C kg
-1

, respectively, in the 0-30 cm depth. The two 100% crop rotation 

systems had the lowest C content of the cultivated soils with the WBCWBL1 and 

WBCWBL4 treatments containing an average of 14.1 g C kg
-1

 and 13.3 g C kg
-1

, 

respectively, in the 0-30 cm depth. Compared to the natural vegetated soil (13.2 g C kg
-1

), a 

higher C content was observed in all of the crop treatments.  

In the 0-5 cm depth, the MMWW treatment had a significantly higher (P = 0.0061) C content 

than the lucerne, WBCWBL4 and WBCWBL1 treatments with values of 28.3 ± 2.4 vs. 22.0 

± 1.4, 19.7 ± 0.7 and 20.9 ± 0.1 g C kg
-1

, respectively. The MMW treatment (22.3 ± 1 g C kg
-

1
) and natural vegetated soil (24.4 ± 0.7 g C kg

-1
) did not differ significantly from the 

MMWW treatment. For the WBCWBL4 treatment, 30% less C was found than in the 
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MMWW treatment in the 0-5 cm depth. The C content of the MMWW treatment (22.8 ± 0.8 

g C kg
-1

) in the 5-10 cm depth differed significantly (P = 0.0003) from all the other 

treatments in the same depth (Figure 3.10a). A significant decrease in C content for the 

natural vegetated soil was observed in this depth with 13.7 ± 1.3 vs. the 24.4 ± 0.7 g C kg
-1

 

found in the 0-5 cm depth. The lucerne, MMW and WBCWBL1 treatments had similar C 

values in the 5-10 cm depth with 17.7 ± 1.1, 17.8 ± 1, 18 ± 0.8 g C kg
-1

 respectively. The 

WBCWBL4 treatment had the lowest C content of 15.9 ± 2.9 g C kg
-1

. The 5-10 cm depth 

was the most important in terms of C accumulation in the soil, within the 0-30 cm depth 

evaluated in the study. In the 10-20 cm layers no significant differences were found between 

the treatments although the MMWW treatment still contained more C in this depth than the 

other treatments. The average C content between the treatments in the 10-20 cm depth was 

13.5 g C kg
-1

. The C content of the MMWW treatment (13.8 g C kg
-1

) was significantly (P = 

0.0368) higher than the WBCWBL4 treatment (8.6 g C kg
-1

) and also higher than the other 

treatments in the 20-30 cm layer.  

In all the treatments a general decline in total soil C with depth was observed with the most 

significant differences in C content between the cropping systems restricted to the 0-10 cm 

depth (Figure 3.10a). An average decline of 53% in C content in the different treatments was 

observed between depths 0-5 and 20-30 cm. The general decrease in SOC observed with 

depth can be explained by the fact that aboveground crop residues remain on the surface (0-

10 cm) in no-till systems while the root systems of the different crops are also mostly 

concentrated at the 0-10 cm depth. In the 20-30 cm depth smaller differences in SOC between 

treatments were observed. The top 10 cm of the cultivated treatments is thus most greatly 

influenced by tillage, plant roots and aboveground crop residues. The severe decrease in SOC 

from the 0-5 to 5-10 cm depth in the natural vegetated soil can most likely be attributed to the 

shallow rooting system of the grasses that dominates the natural vegetated soil and also to the 

absence of cultivation that causes aboveground residues to concentrate in the litter layer (0-5 

cm). 

In light of other studies carried out in similar climate conditions, the C content in these soils 

is relatively high. In a wheat monoculture (no-tillage) Chen et al. (2009) found an average C 

content of 9.1 g C kg
-1

 after 11 years in the 0-30 cm depth; on the Canadian prairies in a 

wheat-oilseed-pulse (WOP) rotation system under no-tillage, Shrestha et al. (2013) found an 

average C content of 9.4 g C kg
-1

 (0-15 cm depth); Plaza-Bonilla et al. (2013) estimated an 

average C content of 14.7 kg C Mg
-1

 in the 0-30 cm depth after 11 years of no-till in a winter 
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cereal rotation and after 12 years Masri & Ryan (2006) also found that wheat/medic rotation 

increased soil organic matter in the 0-20 cm depth (13.8 g C kg
-1

 vs. 10.9-11 g C kg
-1 

for 

continuous wheat and wheat/fallow). 

The total soil C values were also determined in 2003 for each of the treatments by the 

Western Cape Department of Agriculture which allowed us to determine the rate at which C 

increased (0-20 cm depth) in each rotation system (Figure 3.11). These are only approximate 

rates as the Walkley-Black method was used to determine C content in 2003 which probably 

underestimated the C value while the dry combustion method was used in 2012. These rates 

however will still provide a good indication of the effect of different rotation systems on C 

storage. After 8 years (2003-2011) the two crop-pasture rotation systems showed a much 

higher rate of soil C increase as the C content in the MMW rotation system increased by 0.79 

g C kg
-1

year
-1 

and the MMWW by 0.70 g C kg
-1

year
-1

. The C content in the WBCWBL4 and 

WBCWBL1 treatments only increased by 0.25 g C kg
-1

year
-1

 and 0.4 g C kg
-1

year
-1

 

respectively while the C content in the lucerne treatment increased by 0.38 g C kg
-1

year
-1

. 

The rate at which C increases per year is important to consider when interpreting the long-

term effect of different crop rotation systems. These data show the effect of crop type as well 

as the effect of disturbance on soil C content as all the treatments have been subjected to the 

same climate conditions and similar soil conditions, yet the C increase was different in the 

different treatments. To effectively increase the SOC content, the rate of input has to exceed 

the rate of loss from decomposition and leaching and in this study is best achieved by rotating 

crops with pasture. A dynamic equilibrium C value will however be achieved after a while, 

specific to the farming system, soil type and climate (Johnstone et al., 2009). 
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Figure 3.11 Change in C content observed in the different treatments from 2003-2012. 

The differences in C content as well as the rate at which C increased per year in the different 

crop rotation systems, could be attributed to differences in C input (above- and 

belowground), the quality of C input (C:N ratio) as well as to differences in soil texture and 

aggregate stability, the latter influenced by soil disturbance of the no-till planter. At this stage 

however it was only speculation and it was therefore necessary to perform certain plant and 

soil analysis to try and define the differences obtained in soil C content between the different 

treatments. 

3.3.3. Bulk density and carbon stocks  

In order to be able to accurately measure soil C stocks, soil bulk density (g cm
-3

) needed to be 

determined. Soil C stocks (Mg ha
-1

) are a measure of the C content of soil mass per given 

area.  The methods that were used to determine the soil bulk density included both the coarse 

(> 2mm) and the fine fraction (< 2mm). Due to the fact that C is mainly stored in the fine 

fraction, the density of the fine fraction had to be used for this calculation and therefore the 

density obtained for the bulk soil had to be corrected for the coarse fragment percentage 

(Table 3.5). Significant differences in C stock obtained using the density of the bulk soil and 

fine fraction is shown in Figure 3.13. The density of the fine fraction was much lower in each 

depth and treatment indicating the effect of coarse fragments (section 3.3.5.3) on soil density 

as coarse fragments consists of a different volume and mass than fine soil. The lucerne, 

MMW and natural vegetated treatments displayed a higher fine fraction density in the top 10 
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cm, relative to the MMWW, WBCWBL4 and WBCWBL1 treatments. This could be 

attributed to less disturbances of the soil with no-till planter and also due to extensive 

grazing, leading to a higher density of the fine fraction through compaction. In the continuous 

cropping systems, the diverse rooting systems of the different crops can also cause lower soil 

compaction. 

Table 3.5 The density of both the bulk soil and fine fraction (< 2mm) obtained for each depth in the 

different treatments. 

Soil density (g cm
-3

) 
      

 
Depth (cm) 

Treatment 

0-5 5-10 10-20 20-30 

Bulk 

soil 

Fine 

fraction  

Bulk 

soil 

Fine 

fractio

n 

Bulk 

soil 

Fine 

fraction 

Bulk 

soil 

Fine 

fraction 

Lucerne 1.56 bc 1.41 a 1.69 a 1.47 a 1.65 a 1.48 ab 1.70 a 1.36 a 

MMW 1.63 ab 1.45 ab 1.70 a 1.52 a 1.83 a 1.62 a 1.80 a 1.59 a 

MMWW 1.63 ab 1.33 b 1.64 a 1.35 a 1.71 a 1.39 b 1.70 a 1.32 a 

WBCWBL

4 1.60 ab 1.30 b 1.63 a 1.32 a 1.68 a 1.46 ab 1.73 a 1.35 a 

WBCWBL

1 1.65 a 1.38 ab 1.64 a 1.38 a 1.67 a 1.44 ab 1.73 a 1.35 a 

Natural 1.48 c 1.39 ab 1.63 a 1.52 a 1.71 a 1.63 a 1.78 a 1.64 a 

 

Note1:  The term bulk soil refers to the density obtained including both the fine fraction (< 2mm) and the 

coarse fraction (> 2mm) while the term fine fraction refers to the density obtained of only the fine 

fraction (< 2mm), therefore excluding coarse fragments (> 2mm). 

Note2: The alphabetic letters denote statistical differences between treatments at specific depth according to 

Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of significant differences. 

The C stock (Mg ha
-1

) values were obtained for the different treatments in each depth using 

the C content (g kg
-1

) and both the bulk soil and fine fraction density (g cm
-3

) for the 

calculation (Figure 3.12a & b).  Although coarse fragments are part of the soil, they have a 

major effect on C stock values as the presence of coarse fragments dilutes the amount of C 

stored in a hectare of soil significantly (Figure 3.13). In each depth and treatment the C stocks 

were lower when density of bulk soil was used rather than density of fine fraction only; 

indicating the effect coarse fragments on soil C stocks. Therefore, to be able to accurately 

compare the effect of different rotation systems and natural vegetated soil on soil C 

sequestration (which is limited to the fine soil fraction), the effect of coarse fragment 

percentages in the different treatments had to be excluded (Figure 3.12b). 
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Figure 3.12b shows that the same trend that was observed for total C content (Figure 3.10a) 

was also observed for C stock in the different treatments. The most significant differences in 

C stock was found in the 0-5 and 5-10 cm depth increments between the MMWW crop-

pasture system and the WBCWBL4 & WBCWBL1 cropping systems (P = 0.0074 and 0.0002 

respectively). In the 0-5 cm depth the MMWW contained 18.7 ± 1.4 Mg C ha
-1

 vs. the 12.8 ± 

0.5 and 14.5 ± 0.6 Mg C ha
-1

 of the WBCWBL4 and WBCWBL1 systems, respectively. In 

the 5-10 cm depth the MMWW contained 15.4 ± 0.4 Mg C ha
-1

 vs. the 10.5 ± 0.2 and 12.4 ± 

0.3 Mg C ha
-1

 of the WBCWBL4 and WBCWBL1 systems, respectively. The C stock of the 

natural vegetated soil (16.8 ± 0.7 Mg C ha
-1

) was similar than the MMWW system in the 0-5 

cm layer but was significantly (P = 0.0002) lower (10.3 ± 0.8 Mg C ha
-1

) in the 5-10 cm 

layer. The C stock values for the lucerne and MMW treatments was similar in the 0-5 (16.1 ± 

0.7 vs. 15.4 ± 0.7 Mg C ha
-1

) and 5-10 cm depth (13.6 ± 0.7 vs. 12.7 ± 0.4 Mg C ha
-1

). 
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Figure 3.12 Distribution of C stocks obtained in the four depth increments (0-5, 5-10, 10-20, 20-30 

cm) of each treatment for (a) bulk soil and (b) fine fraction (< 2mm). 

Note1: Error bars represent standard error, and alphabetic letters denote statistical differences   between 

treatments at specific depth according to Tukey’s Studentized Range test at α = 0.05. Similar letters 

indicate lack of significant differences. 

Note2:  The term bulk soil (coarse + fine fraction) refers to the carbon stocks obtained including the coarse 

fragments while the term fine fraction (< 2mm) refers to carbon stocks obtained excluding the effect of 

coarse fragments 

The influence of cropping system was not restricted to a certain layer, but was extended in 

the 0-30 cm depth as is shown in Figure 3.13. This figure also shows the effect of coarse 

fragments on C stock values obtained between the different treatments in the 0-30 cm depth. 

The C stocks obtained for the bulk soil was significantly (P ≤ 0.0001) lower than the C stocks 

obtained for the fine fraction in each treatment in the top 30 cm. To compare the effect of the 

crop/pasture treatments on soil C sequestration, the C stocks of fine fraction was used. The C 

stocks (0-30 cm depth) of the MMWW treatment (74.7 ± 2.5 Mg ha
-1

) was significantly (P = 

0.0003) higher than the WBCWBL4, WBCWBL1, lucerne and natural vegetated soil with C 

stock values of 54.7 ± 1.5, 58.9 ± 2.4, 63.4 ± 1.4 and 60.5 ± 2.4 Mg ha
-1

 respectively. The C 

stocks of the MMW treatment (70.2 ± 2.7 Mg ha
-1

) was after the MMWW treatment the 

second highest of all the treatments. Contrasting the two extreme cropping systems under no-

tillage, MMWW and WBCWBL4, the difference in C stock was 20 Mg ha
-1. 

This is higher 

than some of the extreme differences found in several studies (Conceicão et al., 2013; Freixo 

et al., 2002) between conventional and no-tillage. This demonstrates the importance of 
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cropping systems on C sequestration, especially in a semi-arid region. Both the crop-pasture 

systems contained more C than the natural vegetated soil, although only the MMWW 

treatment was significantly higher. These results suggests that the current crop-pasture 

rotation systems (MMWW and MMW) do enhance C sequestration compared to the natural 

vegetated soil while the 100% crop rotation systems compared well with the natural 

vegetated soil. The MMWW and MMW systems are thus more effective for C sequestration 

than the 100% crop rotation system and are therefore an important strategy to increase the 

quality and sustainability of the soil through a higher C content.  

 

Figure 3.13 Total C stocks obtained for both the bulk soil and fine fraction of the different treatments 

in the 0-30 cm depth. 

Note1:  The bulk soil (coarse + fine fraction) refers to the C stocks obtained including the effect of coarse 

fragments while the fine fraction (< 2mm) refers to C stocks obtained excluding the effect of coarse 

fragments. 

Note2: Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments in the bulk soil (Capital letters) and fine fraction (lower case letters) according to Tukey’s 

Studentized Range test at α = 0.05. Similar letters indicate lack of significant differences. 

In light of other studies; Sombrero & Benito (2010) estimated 52.19 Mg ha
-1

 SOC for a 

cereal-legume rotation under no-tillage to a depth of 30 cm in a semi-arid area of Castile-

Leon, Spain; also in semi-arid region (Mediterranean climate) Alvaro-Fuentos et al. (2012) 

estimated a C stock of 37.7 (0-30 cm depth) after 11 years of no-till application with barley 

and wheat in rotation; Jobbagy & Jackson (2000) estimated 62 Mg ha
-1
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ecosystem to a depth of 1 meter; Conceicão et al. (2013) estimated 37.3 Mg ha
-1

 SOC in the 

0-20 cm depth for legume based crop rotation system under no-tillage in the southern region 

of Brazil; Freixo et al. (2002) estimated 68.5 Mg ha
-1

 SOC in no-till wheat /soybean rotation 

in 0-30 cm depth vs. 76.2 Mg ha
-1

 SOC in forest, both situated in Brazil with a yearly 

precipitation of 1746 mm. The C stock values (bulk soil) obtained in this study compared 

well with other studies carried out in similar climate conditions. 

3.3.4. Plant Properties 

3.3.4.1. Quantity of Crop Residues  

In agricultural soils, the SOM content is derived from C inputs in the form of crop residues 

on soil surface, root turnover during crop growth and from root material left in the soil after 

harvest (Wood et al., 1990; Haynes, 2005). A major input of C comes at the end of the 

growing season as the plants mature  and therefore above- and belowground quantities of 

each crop was determined after harvest (Crawford et al., 1997). This will give an idea of the 

amount of C input of each crop and how each crop contributes in a specific cropping 

sequence. However, because the turnover (death and decomposition) of roots was not 

accounted for during the season in this study, the values obtained are only giving some 

indication of the belowground biomass of each crop. 

Aboveground 

No significant aboveground biomass differences were found between the different crops but 

clear trends were observed (Figure 3.14). Wheat added the most aboveground biomass to the 

soil (4400 kg ha
-1

) with barley and lupin adding similar amounts (± 4000 kg ha
-1

) to the soil. 

The two pasture crops, medics and lucerne, added the least aboveground biomass (± 2600 kg 

ha
-1

). The low aboveground biomass input of these pastures is due to constant grazing during 

the year and also because the samples were taken mid-November (summer), which means it 

is after the growing season of medics as the medics are dying-off at this time of year. The 

reason for taking the samples at this late stage is because harvesting of the other crops only 

occurs in November and to make it possible to compare the different biomass inputs of the 

different crops, samples had to be taken at this time. The main interest was the amount of 

biomass input of each crop after harvest and the amount it adds to the soil before the next 

season which starts in May the following year. Sampling the medics earlier in the year 

(September) when these crops are growing vigorously and has the highest aboveground 

biomass, estimation of the total aboveground biomass will be incorrect.  Medics are 
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constantly grazed thereafter and will affect the total biomass input to the soil. The 

aboveground biomass values (kg ha
-1

) of canola, lupine, barley and wheat obtained after 

harvest in this study in 2012 correlates well with values obtained in the previous years (2002-

2011) which was determined by Mr. Willie Langenhoven (Farm Technician of the Crop 

Rotation trials at Tygerhoek Research Farm). No correlation could be made between the 

pasture crops as lucerne biomass were not determined whereas medics biomass were 

determined but at a different time of the year. To compare aboveground biomass values to 

other studies is difficult as yields are dependent on both the climate and soil. In return it 

directly affects the amount of aboveground biomass added to the soil after harvest. The main 

focus was thus to compare the C input through aboveground residues between the different 

crops. 

 

Figure 3.14 Aboveground biomass production for the different crops. 

Note: Error bars represent standard error, and alphabetic letters denote statistical differences between crops 

according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of significant 

differences. 

Both the MMWW and MMW treatments had higher soil C contents than the 100% crop 

rotation systems (WBCWBL1 & WBCWBL4) although the aboveground biomass of medics 

was very low compared to the crops in the 100% crop rotation system. This shows that the 

quantity of aboveground biomass may not be as important as the belowground input (Rasse et 
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al. (2005). However, the low aboveground biomass of lucerne corresponds well with the low 

rate of C increase per year for the lucerne treatment. 

Belowground 

The pattern of root development varied with soil depth and crop type (Figure 3.15 & 3.16). 

Lucerne had a significantly higher root biomass in each of the four sampling depths 

compared to the other crops, especially at 5-10 and 10-20 cm (Figure 3.15). The medic roots 

were concentrated in the 0-10 cm depth (65% of total medic root biomass). This corresponds 

well with Crawford et al. (1997) who also found in their study that 50-60% of the medic roots 

were concentrated in the top 10 cm. From these results it is concluded that medics consists of 

a shallow rooting system. In the 5-10 cm depth, except for lucerne, medics consisted of a 

much higher root density compared to the other crops which can therefore affect the SOM 

content of the MMWW and MMW treatments in this depth significantly.  Rasmussen et al. 

(1989) also stated that medic has an extensive root system. It therefore contributes to soil 

organic matter in the root zone rather than through aboveground inputs. 

The root development pattern for barley and wheat were similar in the 0-10 cm depth with 

lupine and canola having the same root distribution pattern in the 0-10 cm depth as both these 

crops consists of taproot systems (Figure 3.16). In the 10-30 cm depth, wheat had a higher 

root density than the barley with the root density of canola and lupin still very similar in this 

depth. On average, lucerne and medics had the highest root biomass density in the 0-30 cm 

depth. This means that these two crops added the most belowground biomass to the soil while 

barley added the least. Wheat, canola and lupin had a similar root biomass density in the 0-30 

cm depth. 
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Figure 3.15 Root density and the pattern of root distribution within the four sampling depths of each 

crop. 

Note: Error bars represent standard error, and alphabetic letters denote statistical differences  between crops at 

specific depth according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

Crop roots are not only important for productivity by providing water and nutrients to the 

plant; it is also an important source of C input. However, to measure the actual crop root 

density is quite difficult, especially in these shallow soils with high coarse fragment 

percentage. Belowground inputs through roots represent a major input into the SOC pool. 

Rasse et al. (2005) stated that root-derived C contributes nearly twice as much C to stable 

SOM pools as aboveground residues. Despite the importance of belowground input of C 

through roots, it is quantitatively the least understood (Van Vleck & King, 2011). Because 

conservation of SOM is considered to be essential for sustainable agricultural activities, it 

was important to get a good idea of the amount of C input possible from each crop 

belowground (Crawford et al., 1997). This information can help farmers design appropriate 

crop rotation systems where crop species with different rooting systems can be arranged in 

the correct sequence (Gan et al., 2009). At the end of a growing season, roots are likely to 

represent the single largest pool of legume N for mineralization. 

The greater belowground input of organic matter through fine roots can somewhat explain 

why the SOC content is higher in the crop-pasture rotations (MMW & MMWW) compared to 

continuous cropping (WBCWBL1 & WBCWBL4). Both the MMWW and MMW treatments 
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showed the highest rate of C increase in 8 years which can partly be attributed to the higher 

fine root biomass of medics. Saying this, one would expect that the lucerne would have a 

much higher rate of C increase per year due to its high root biomass (higher than medics) but 

this is not the case as the C content of the lucerne only increased by 0.38 g C kg
-1

year
-1

. A 

possible reason for this is that medic (annual pasture) is able to re-establish itself (re-

germinate) and therefore leads to the formation of new roots again (i.e. higher C inputs) in the 

following season. Lucerne on the other hand is perennial pasture specie which doesn’t grow 

actively in winter and usually only becomes dormant. The roots therefore don’t grow actively 

but only sustains the plant leading to lower belowground biomass input to the soil compared 

to the medics. There are also other factors playing a role in soil C dynamics e.g. rotation 

effects leading to different belowground inputs compared to continuous lucerne residue 

inputs. It has been stated by Wright & Hons (2005) that the amount of C stored in the soil 

doesn’t only depend on the quantity of inputs but also on the quality (C:N ratio).  

 

Figure 3.16 Digital images of the root systems of different crops; (a) canola; (b) lupin; (c) wheat; (d) 

barley. 
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3.3.4.2. Quality of Crop Residues  

No significant differences in C content (39-44%) between the different crop residues both 

above- and belowground were found (Figure 3.17a). The lucerne and medics which are both 

legumes supply the most N through fixation as both of these crops had significantly higher (P 

≤ 0.0001) N content compared to the other crops (Figure 3.17b). Lucerne shoots and roots 

had N contents of 3.96% and 2.08% respectively while the medic shoots and roots had a N 

content of 2.48% and 1.83% respectively. Lupin is also a legume but had a much lower N 

content both above- and belowground (0.61 & 1%). Canola and wheat (non-legumes) had the 

lowest N content both above- and belowground with values of 0.26 and 0.39% and 0.3 and 

0.6% respectively. Interestingly, compared to wheat, barley had a high N content, especially 

aboveground with a N value of 0.57% vs. the 0.3% of wheat. 

Due to the very high N content of the lucerne and medic aboveground residues, these crops 

had a significantly (P < 0.0001) lower C:N ratio (11 & 19 respectively) compared to the other 

crops. The C:N ratios of barley (73) and lupin aboveground residues were also significantly 

lower than wheat (165) and canola (162). Crawford et al. (1997) reported C:N ratio of 15-18 

for medic roots which is similar to the C:N ratio of the medics obtained in this study. The 

C:N ratios of lucerne and medic roots (20 & 26 respectively) were significantly (P < 0.0001) 

lower than wheat (70) and canola (113) and much lower than barley (58) and lupin (Figure 

3.17c). Lupin (also legume but intermediate N) shoots and roots had a C:N ratio of 71 and 49 

respectively.  
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Figure 3.17 (a) The Carbon content  of the different crop residues; (b) The Nitrogen content  of the 

different crop residues; (c) The C:N ratio of the different crop residues. 

Note: Error bars represent standard error, and alphabetic letters denote statistical differences between crops 

aboveground (Capital letters) and belowground (lower case letters) according to Tukey’s Studentized 

Range test at α = 0.05. Similar letters indicate lack of significant differences. 

The C:N ratios of the roots and shoots gave an indication of the quality of the input of organic 

material as it partly determines the rate of decomposition (Table 3.6) (Praveen-Kumar et al., 

2003). Plants with high C:N ratio decomposes and release nutrients slowly whereas residues 
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with low C:N ratio will decompose rapidly and thereby enhance microbial activity and the 

release of nutrients. It was therefore necessary to determine the C:N ratio of the different 

crops to be able to predict the rate at which it is expected to decompose. According to 

Praveen-Kumar et al. (2003), both lucerne and medic residues are moderately to highly 

decomposable while lupin is only slowly decomposable. Wheat and canola will have a very 

slow decomposition rate as it is the least decomposable of all the crops. Constant input of 

material with high C:N ratio can lead to N deficiencies in soil due to microbes competing 

with plants for N. Lucerne and medics adds a lot of N to the soil through fixation which is 

important for the subsequent crop (Burle et al., 1997). However, the low C content increase 

in the lucerne treatment since 2003, can partly be explained by the high susceptibility (very 

low C:N ratio) of the residues to be decomposed to CO2. 

Table 3.6 Residue quality based on C:N ratio (modified from Praveen-Kumar et al., 2003). 

Residue quality C/N 

Highly decomposable < 18 

Moderately decomposable 18-27 

Slowly decomposable 28-60 

Least decomposable >60 

 

3.3.5. Soil Properties 

3.3.5.1. Particle size distribution 

Table 3.7 shows the particle size distribution obtained for the different treatments as well as 

the texture class at the specific sampling depths. Comparing the 5-10 cm soil depth, 

significant differences (P = 0.0014) in each of the size fractions were found between the 

natural vegetated treatment (14% clay) and the different cultivated treatments (21-26% clay). 

Within these cultivated treatments in the same depth the MMWW treatment contained 

highest clay content but no significant differences were found as the different size fractions 

were very similar. There were also no significant differences found between the lucerne and 

WBCWBL4 treatments in each of the size fractions at 0-5, 10-20 and 20-30 cm soil depths. 

General increases in clay content in the 20-30 cm soil depth (Lithocutanic B horizon) for both 

treatments were observed. The texture class in each soil depth of all the cultivated treatments 

was classified as loam except for the 20-30 cm soil depth in the lucerne and WBCWBL4 

treatments which is clay loam while the natural vegetated soil in the 5-10 cm depth was 

classified as sandy loam. As expected, no significant differences in particle size distribution 

was found between the different crop rotation systems as the soil is very homogeneous 
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(Glenrosa soil form) in this experimental area, except for the MMW treatment and natural 

vegetated soil where an Oakleaf soil form is dominant. 

Table 3.7 Particle Size Distribution of the fine fraction (< 2 mm) for the different treatments. 

Treatment Depth Clay (%) Silt (%) Sand (%) Texture class 

Lucerne 

0-5 22 38 40 loam 

5-10 23 39 37 loam 

10-20 23 39 38 loam 

20-30 27 37 36 clay loam 

MMW 5-10 21 32 46 loam 

MMWW 5-10 26 41 33 loam 

WBCWBL4 

0-5 22 42 36 loam 

5-10 24 43 33 loam 

10-20 23 41 32 loam 

20-30 27 39 35 clay loam 

WBCWBL1 5-10 22 43 35 loam 

Natural 5-10 14 27 59 Sandy loam 

Clay content can be a possible stabilizing mechanism as it can protect organic C against 

decomposition via strong chemical bonds (Kalbitz et al., 2005; Mikutta et al., 2007). This 

formed the reason why especially clay content was important to determine in this study as a 

significant relationship (P = 0.0002; R
2
 = 0.60) was found between the clay content and total 

SOC in the 5-10 cm depth (Figure 3.18). An increase in total SOC was thus observed with an 

increase in clay content but a rather weak correlation (R
2
= 0.39) was found between clay plus 

silt and SOC. This is in line with what Nciizah & Wakindiki (2012) found in their study with 

a 78% correlation between clay concentration and total SOM and a 38% correlation between 

clay plus silt and SOM. This was attributed to the formation of strong chemical bonds 

between clay types and organic particles (chemical protection) and not necessarily silt 

particles.  The strong correlation between clay content and SOC suggests a possible reason 

for the high C content found in the MMWW treatment. Clay can also play an indirect role in 

soil C stabilization as clay content is usually associated with increased aggregate stability. An 

increase in aggregation due to higher clay content can lead to more C stabilized within 

aggregates as it is inaccessible to microbial degradation (Kӧlbl & Kӧgel-Knabner, 2004).  
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Figure 3.18 Relationship between clay content and total carbon content in the 5-10 cm depth 

increment. 

3.3.5.2. Aggregate stability 

A significant difference (P = 0.0036) in aggregate stability in the 5-10 cm depth was found 

between the natural vegetated soil and the different crop rotation treatments as the natural 

vegetated soil contained 65% water stable aggregates while the water stable aggregate 

percentage for the crop rotation treatments ranged between 39 and 50% (Figure 3.19a). 

Within the different crop rotation systems clear trends were observed but no significant 

differences were found. On average, the crop-pasture rotations (MMW & MMWW) had a 

higher aggregate stability than the two 100% crop rotations with the WBCWBL4 treatment 

containing lowest aggregate stability.  

Figure 3.19b shows the water stable aggregates (%) obtained for the lucerne and WBCWBL4 

treatments in all sampling depths. The aggregate stability in the 0-5 cm depth for the lucerne 

and WBCWBL4 treatments were significantly higher (P <0.0001) than the 5-10 cm depth but 

no significant differences were found between the two treatments in both the 0-5 and 5-10 cm 

depths. There were also no significant differences found between the two treatments in the 

10-20 cm depth but in the 20-30 cm depth the lucerne treatment had a significant higher (P = 

0.0278) aggregate stability than the WBCWBL4 treatment. A general decrease in aggregate 

stability was thus observed with depth for the WBCWBL4 and lucerne treatments up till 20 
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cm whereas a severe increase in aggregate stability was found in the 20-30 cm depth 

increment for the lucerne treatment but not for the WBCWBL4 treatment. 

 

 

 

Figure 3.19 Water stable aggregate percentage for the (a) different treatments at the 5-10 cm depth 

and (b) lucerne and WBCWBL4 treatments in all four sampling depths. 

Note1: In Figure 2.19a error bars represent standard error, and alphabetic letters denote statistical differences 

between treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate 

lack of significant differences. 
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Note2: In Figure 2.19b Error bars represent standard error, and alphabetic letters denote statistical differences 

between depths in the WBCWBL4 treatment (Capital letters) and lucerne treatment (lower case letters) 

according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of significant 

differences. 

In a study done by Gale et al. (2000) they found that in no-till systems, root C was much 

more important in stabilizing small macroaggregates than C from aboveground residues. 

Aggregation is promoted by root growth by binding soil particles together and by stimulating 

soil microorganism’s activity (Jastrow et al., 1998; Haynes & Beare, 1997; Six et al., 2002b). 

Root C input from root hairs and fine roots contributes at a scale equivalent to that of 

physically protected C (Rasse et al., 2005) and at this stage it is assumed that in the crop-

pasture treatments more C is occluded and stabilized within the aggregates and thereby also 

promoting aggregate stability. These findings can thus help explain the differences in 

aggregate stability found between the different crop rotation systems under no-till in this 

study. A significantly higher root biomass obtained for medics and the fact that medics 

produce new roots in the following season can thus promote aggregate stability in the crop-

pasture rotations compared to the 100% crop rotations. Although not determined, it is 

expected that the natural vegetated soil which is covered by grasses, has a high root biomass 

which contributes to the significant higher aggregate stability compared to the arable rotation 

systems. The significant higher aggregate stability in the 0-5 cm depth compared to the 5-10 

cm depth can be partially attributed to higher C content (direct effect) as good correlation (R
2
 

= 0.50) was found between total C content and aggregate stability in these two depth 

increments for the lucerne and WBCWBL4 treatments.  Higher C content can cause a higher 

soil microorganism’s activity (Jastrow et al., 1998) resulting in the production of microbial 

bonding materials for aggregates (indirect effect). Legumes (lupine, medics and lucerne) have 

also been found by Haynes & Beare (1997) to enhance aggregate stability and contributed 

this to a different rhizosphere microbial population of legumes than that of non-legumes.  

However, Golchin et al. (1995) found no correlation between total organic matter and 

aggregate stability but found a significant correlation (R
2
 = 0.86) between organic matter 

occluded within aggregates and aggregate stability. No correlation was also found between 

aggregate stability and total soil C in the different treatments at the 5-10 cm layer indicating 

that only a small fraction of total soil C is possibly occluded in aggregates (Golchin et al., 

1995). It is therefore important to fractionate total SOC into its different fractions to be able 

to predict how C influences aggregate stability directly and in return affects C stabilization 
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via spatial inaccessibility to microbial degradation (Christensen, 1996; von Lützow et al. 

2006). The lack in correlation between total C and aggregate stability in the different 

treatments also shows that there has to be other factors that also play a role in aggregation. 

The natural vegetated soil had the lowest total C content in the 5-10 cm depth, yet the 

aggregate stability was highest in this treatment. 

Aggregate stability is potentially very vulnerable to physical soil disturbance and this can 

also play a major role, even under no-tillage, as the pasture and crop-pasture rotations are 

disturbed to a much lesser extent than the 100% crop rotations which is disturbed every year 

when crops are planted. The natural vegetated soil has never been cultivated before which 

contributes to the high aggregate stability of these soils. However, because the lucerne 

treatment hasn’t been disturbed the last 12 years one would expect this treatment to have the 

highest aggregate stability of all the cultivated treatments but this was not the case. The 

lucerne is frequently grazed (more often than any other treatment) during the year and has 

therefore low aboveground residue inputs. This together with the fact that lucerne doesn’t re-

germinate each year unlike medics, it produces lower C inputs through roots compared to the 

medics.  The lower particulate organic matter input (easily accessible for microbes) in the 

lucerne treatment can cause lower microbial activity which leads to less production of 

microbial bonding materials for aggregates (Six et al., 2002b). According to Garcίa-Préchac 

et al. (2004) crop-pasture systems will promote aggregate stability due to no disturbance in 

pasture cycle and also due to the dense and fibrous grass root systems of pastures that include 

grass components. 

As discussed in the previous section, higher clay content is usually associated with increased 

aggregate stability (Kӧlbl & Kӧgel-Knabner, 2004) and is therefore an important factor to 

consider when interpreting aggregate stability. Good correlation has been found between clay 

content and aggregate stability (R
2
 = 0.52) in the 10-30 cm depth for the lucerne treatment 

and this helps explain the higher aggregate stability in the 20-30 cm depth than the 10-20 cm 

depth, although a decrease in C content with depth was observed. The clay content in the 20-

30 cm depth (27%) is relative higher than the clay content in the 10-20 cm depth (23%) with 

the clay particles promoting aggregation. Although the clay contents in the lucerne and 

WBCWBL4 treatments in the 20-30 cm depth were similar, the lucerne treatment had a 

higher root biomass in this depth (section 3.3.4.1) compared to the WBCWBL4 treatment 

with the roots possibly promoting aggregation further in the lucerne treatment. For the 10-30 
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cm depth in the WBCWBL4 treatment no correlation was found between clay content and 

aggregate stability which excludes clay effect on aggregate stability in this treatment. 

There are thus several factors that can affect aggregate stability in soils and it is important to 

consider all these contributing factors when interpreting differences in aggregate stability. 

The dominant effect on aggregate stability seems to be the extent of disturbance the 

treatments are subjected to as well as belowground inputs through roots. It is however, as 

observed in this study, not always possible to define differences in aggregate stability to a 

specific factor, but rather to a combination of various factors.  

3.3.5.3. Coarse fragments 

The coarse fragment percentages were obtained on a mass basis in the different treatments 

and four sampling depths (Figure 3.20). Because the soils are very shallow and shale derived 

a high coarse fragment percentage of mainly shale fragments was expected. This is a 

common feature for the soils in this region. The natural vegetated soil had a much lower 

coarse fragment percentage in each depth, compared to the arable soils, although not 

statistical different from all the arable treatments in all depths but clear trends were observed. 

Of the arable soils, the lucerne treatment had the lowest coarse fragment percentage in the 0-

20 cm depth.  In the 0-5 cm depth the natural vegetated soil (16%) differed significantly (P < 

0.0001) from the MMWW, MMW, WBCWBL4 and WBCWBL1 treatments with coarse 

fragment percentages of 43, 32, 40 and 40% respectively while it didn’t differ significantly 

from the lucerne treatment (24%). The same trends were observed in the 5-10 and 10-20 cm 

depth increments as in the 0-5 cm depth increment. In the 20-30 cm depth, the MMWW, 

lucerne, WBCWBL4 and WBCWBL1 treatments consist of a lithocutanic B horizon and 

therefore a general increase in coarse fragment percentage was found in this depth while for 

the MMW treatment which consists of a neocutanic B horizon no increase was observed. 

However, for the natural treatment which also consists of a neocutanic B horizon an increase 

in coarse fragments (34%) were found, although it was still significantly (P = 0.0037) lower 

than the MMWW, lucerne, WBCWBL4 and WBCWBL1 treatments with coarse fragment 

percentages of 52, 49, 55 and 54% respectively and much lower than the MMW treatment 

(47%). Overall, except for the MMW treatment, the coarse fragment percentage in the 0-20 

cm depth for each treatment were more or less the same (Orthic A horizon) with a general 

increase observed in the 20-30 cm depth, especially in the treatments that consists of a 

lithocutanic B horizon.  
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Figure 3.20 Coarse fragment percentage for the different treatments in the four sampling depths. 

Note: Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments at specific depth according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate 

lack of significant differences. 

It is clear that there are significant differences in the amount of coarse fragments found in 

some of the treatments. The natural treatment which is about 500 m further down the slope, 

do possess of more colluvial material than the cultivated treatments (field observation). 

Colluvial material consists dominantly of finer material (< 2 mm) and therefore the 

significant lower coarse fragment percentage found in this treatment, especially in the 0-10 

cm depth. Another important contributing factor to the lower coarse fragment percentage is 

that the natural vegetated has never been cultivated before and therefore no coarse fragments 

have been brought up to the surface of the soil. In contrast, it is assumed that before 2002, 

deep tillage (conventional tillage) was applied in the agricultural soil which resulted in coarse 

fragments being brought up to soil surface from the Lithocutanic B horizon causing a higher 

coarse fragment percentage in the top 20 cm. The much lower coarse fragment percentage of 

the lucerne treatment (0-20 cm depth) compared to the other cultivated treatments can be due 

to the possibility of this land being under pasture before 2002 and therefore less disturbed. 

No-tillage which has been applied since 2002 would have no major effect on the distribution 

of coarse fragments with depth in the different treatments. 

As most of the soil analysis is only performed on the fine fraction (< 2 mm) of the soil, 

variable coarse fragment percentages cannot be ignored as it can lead to misinterpretations 
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and incorrect conclusions on especially soil C dynamics. Coarse fragments (> 2 mm) reduce 

the amount of fine fraction (< 2mm) per soil volume severely (Bornemann et al., 2011). 

Differences in the amount of coarse fragments in the different treatments affect therefore the 

volume of the fine fraction (< 2mm) of each treatment.  A treatment with less coarse 

fragments will have more of the fine fraction per soil volume while a treatment with a high 

coarse fragment percentage will have a much lower fine fraction volume. The coarse 

fragments in this study therefore also had a direct influence on C stocks as C is mainly stored 

in the fine fraction of the soil (Figure 3.13). The higher the coarse fragment percentage, the 

more significant the effect of coarse fragments on C stocks was with the coarse fragments 

decreasing the amount of C stored. These results is in line with what Bornemann et al. (2011) 

observed in their study as they found a significant negative relationship (R
2
 = 0.73) between 

SOC stocks and coarse fragments.  

Another important reason for quantifying all the coarse fragments (> 2 mm) is to make sure 

that the fine fraction (< 2 mm) that is used for analysis is representative as more silt and clay 

particles tend to stick to the coarse fragments than the sand particles, influencing the particle 

size distribution of the soil. By sonication and wet sieving another 15-35% soil was regained 

which can have a major influence on results of several soil analysis. 

3.3.6. Soil Respiration (CO2 Efflux)  

In the September measuring period the natural vegetated soil had a soil respiration rate of 

1.68 g C m
-2 

day
-1

, significantly higher (P = 0.0015) than the MMWW, WBCWBL4 and 

WBCWBL1 treatments with respiration rates of 1.25, 1.04, 0.96 g C m
-2 

day
-1

 respectively. 

The respiration rate of the MMW treatment was the highest of the crop rotation systems with 

a rate of 1.29 g C m
-2 

day
-1 

(Figure 3.21). The respiration traps were destroyed by grazing 

sheep in the lucerne treatment in September and therefore no data was collected. During the 

March sampling period, the exact same trends were found between the different treatments 

as was found in the September trial, except significantly (P = 0.0002) lower respiration rates 

were observed in each of the treatments. The natural vegetated soil still produced the most 

CO2 during the trial with 1.13 g C m
-2 

day
-1

 leaving the soil. The lucerne treatment with a 

respiration rate of 1.09 g C m
-2 

day
-1

 produced significantly (P = 0.012) more CO2 than the 

WBCWBL1 treatment with a respiration rate of 0.70 g C m
-2 

day
-1

. The lucerne also produced 

more CO2 than the other crop rotation systems with soil respiration rates of 0.78, 0.85 and 

0.84 g C m
-2 

day
-1

 for the WBCWBL4, MMWW and MMW treatments, respectively.  
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Figure 3.21 Respiratory CO2 produced per day by the different treatments during two different 

climate periods. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments in March 2013 (Capital letters) and September (lower case letters) according to Tukey’s 

Studentized Range test at α = 0.05. Similar letters indicate lack of significant differences. 

The release of C as CO2 by oxidation of soil organic matter has raised concerns about global 

warming and led to increasing interest in sequestering atmospheric carbon dioxide (CO2) in 

agricultural ecosystems as soils have the potential to serve as either a source or a sink for 

CO2, depending mainly on soil management practices applied (IPCC, 1996). However, the 

contribution of roots to soil respiration (autotrophic respiration) cannot be ignored 

(Kuzyakov, 2006) as Holt et al. (1990) found in a tropical semi-arid woodland that roots 

contributed up to 40% of the total soil respiration.  There are thus several factors that affect 

soil respiration rates which include factors like soil moisture and temperature and also soil 

organic C quantity and quality (C:N), most of which can be influenced by soil management 

practices (Lohila et al., 2002). 

Seasonal differences in soil respiration in arid regions are great where soil moisture may be a 

factor limiting microbial activity as Holt et al. (1990) found much lower respiration rates in 

the dry season compared to the wet season with soil moisture accounted for 82% of the 

difference and soil temperature only 7%. This finding compares well with what was found in 

this study as the respiration rate in the dry season (March) was significant lower than the 

respiration rate in September when the soils were still moist. Davidson et al. (1998) also 
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found that soil respiration decreased from wet to dry seasons in different land uses. Soil 

temperature and water content are the factors that are most commonly related to temporal 

variation in CO2 efflux from soils. Soil respiration is low in extreme (wet and dry) conditions 

while maximum respiration occurs at intermediate soil moisture conditions (Davidson et al., 

1998). Absence of water restricts the living conditions of micro-organisms and would 

therefore lower decomposition rates which will lead to less CO2 produced while high soil 

moisture content causes anaerobic conditions and also restricts microbial activity (Linn & 

Doran 1984). It is thus possible that the soil moisture content was closer to optimum in 

September as it is just after the rainy season.  

Another possible reason for the difference in soil respiration rates between the different 

climate periods can be attributed to the contribution of roots (autotrophic respiration) as root 

activity in the March trial will be less prominent than in September as the roots have died off 

this time of year. In both these measuring periods the crop-pasture rotations (MMWW & 

MMW) had a higher CO2 efflux than the 100% crop rotation systems (WBCWBL4 & 

WBCWBL1) which can be attributed to a combination of higher C content, higher 

belowground biomass input and lower C:N ratio (quality) of medics and lucerne roots. A 

greater amount of CO2 is produced by the roots and the amount of microorganisms 

consuming the root exudates increases which enhance soil respiration activity (Lohila et al., 

2002). Tufekcioglu et al. (2001) also attributed higher soil respiration rates to higher soil C 

content, higher soil moisture content and greater fine root biomass. A possible higher root 

biomass for the natural vegetated soil can also explain the high soil respiration rates observed 

in this treatment. Plant residues with a low C: N ratio are more easily mineralized 

(decomposed) than plants with a high C:N ratio (Crawford et al., 1997) and therefore produce 

more CO2 as it is the end product of mineralization. Medics and lucerne roots have a C:N 

ratio of 26 and 20 respectively causing faster organic matter decay than the other crops with 

higher C:N ratios. The lucerne treatment produced the most CO2 of the crop systems partly 

due to a high belowground biomass (autotrophic respiration) and an optimum C:N ratio for 

maximum decomposition (heterotrophic respiration). This is however only a hypothesis as no 

significant correlations have been found between soil respiration rates and root quantity and 

quality (R
2
 = 0.22 & R

2
 = 0.21). These weak correlations are mainly attributed to the 

combined effects of these two factors together with C content and soil climate conditions on 

soil respiration rates. A higher soil respiration rate found in the crop-pasture rotations 

Stellenbosch University  http://scholar.sun.ac.za



86 

 

compared to the 100% crop rotation systems can also partly be attributed to higher microbial 

activity which means a possible enhancement of nutrient turnover and release. 

In Chapter 4 a possible correlation between the labile C fraction (C not stabilized via 

occlusion in aggregates and by minerals) and soil respiration rate will be investigated as this 

will provide more information regarding the effect of current management practices applied 

on soil respiration. It will however, still be difficult to distinguish between autotrophic 

respiration and heterotrophic respiration and whether a higher respiration rate is due to a 

higher root biomass or due to more labile C that is more easily decomposed by microbes. 

3.3.7. Relationship between SOM and wheat yield and quality 

One of the objectives of this study was to see if there is any relationship between total soil C 

and winter wheat yields produced in 2012 in the grain production area of the Overberg as Lal 

(2006; 2011) and Àlvaro-Fuentes et al. (2008) and several other authors made the statement 

that soil quality and productivity can be improved by an increase in SOC content. 

Figure 3.22a & b shows the significant relationship found between wheat yield and total soil 

C (R
2 

= 0.99) and N (R
2 

= 0.94) respectively in this study. The two crop-pasture rotations 

(MMWW & MMW), containing the highest soil C and N,  produced the highest wheat yields 

in 2012 compared to the two 100% crop rotation systems (WBCWBL4 & WBCWBL1) 

which contained a lower C and N content. The MMWW rotation system had an average soil 

C and N content of 18.6 g C kg
-1

 and 2.1 g N kg
-1

 in the 0-30 cm depth and produced a wheat 

yield of 5900 kg ha
-1

 in 2012, the highest of all the rotation systems. The yield of the 

MMWW (50% pasture, 50% crop) rotation system was on average 37% higher than the 

yields obtained of 4300 and 4400 kg ha
-1

 in the WBCWBL4 and WBCWBL1 rotation 

systems, respectively. The MMW rotation produced the second highest yield of 4900 kg ha
-1

 

with an average C and N values of 15.2 g C kg
-1

 and 1.7 g N kg
-1

 in the 0-30 cm depth. No 

differences were found in wheat yield produced after lupine (legume) and wheat yield 

produced after canola (non-legume) with soil C and N values of 14.1 g C kg
-1

 and 1.6 g N kg
-

1
 and 13.3 g C kg

-1
 and 1.4 g N kg

-1
, respectively. Table 3.8 is a summary of Figure 3.22a & b 

as it shows the average C and N measured in the three replications and four depths as well as 

the yield and quality of wheat in the different treatments. From this table it is clear that both 

total soil C and N had a positive effect on the quality (protein content) of the wheat. The 

wheat quality in the crop-pasture rotations was higher compared to the 100% crop rotation 
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systems and therefore, the wheat in rotation with pastures was graded higher than the wheat 

in rotation with only crops. 

 

 

Figure 3.22 Relationship between 2012 wheat yields and (a) Total soil C in 0-30 cm depth; (b) Total 

soil N in 0-30 cm depth. 
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Table 3.8 Summary of the effect of soil carbon and nitrogen on wheat yield and quality in different 

rotation systems. 

Treatment  

Average C (g kg
-1

) 

measured in 3 

replicates and 4 

depths 

Average N (g kg
-1

) 

measured in 3 

replicates and 4 

depths 

Protein 

content of 

wheat 

Wheat yield 

(kg ha
-1

) 
Grade 

MMW 15.2 1.7 13.2 4878 B1 

MMWW 18.6 2.1 12.6 5955 B1 

WBCWBL4 13.3 1.4 10.3 4335 B3 

WBCWBL1 14.1 1.6 10.6 4394 B3 

 

Medics (legume) supply N (N) through fixation (narrow C:N ratio) and are important for 

producing good wheat yields of high quality in the following year. Positive legume rotation 

effects on subsequent cereal yields have also been reported by several other scientists (Burle 

et al., 1997; Yusuf et al., 2009). Lupine, although a legume, has a rather high C:N ratio (low 

N content) compared to lucerne and medics (section 3.3.4.2) and this could explain the lack 

in difference in wheat yield and quality between the two 100 % crop rotation systems. The 

use of legume pastures (medics) in rotation with wheat possibly increased the quality of the 

soil directly (release of trace elements and N, P) and indirectly (increase cation exchange 

capacity, water holding capacity and microbial activity) by means of higher soil C content 

(Lal 2006; 2011; Àlvaro-Fuentes et al., 2008). According to Garcίa-Préchac et al. (2004), 

better soil quality is one of the main reasons for higher crop yields in crop-pasture rotations 

compared to 100% crop rotation systems. According to Lal (2011) an increase in agronomic 

production can be attributed to an increase in SOC content as it increases the use efficiency of 

energy-based inputs (e.g. fertilizers, pesticides) and the plant available water capacity. A 

higher water holding capacity is very important in a semi-arid region as water is the main 

limiting factor for dryland agriculture. Unfortunately, the plant available water was not 

determined in the different treatments as it was outside the scope of this study, but a higher 

aggregate stability found in the crop-pasture systems is expected to enhance the porosity of 

the soil and thereby its water holding capacity. Masri & Ryan (2006) also showed that 

legume-based rotations can improve the soil physical structure which affects soil water 

relations (hydraulic conductivity and infiltration). However, the effect of SOC on soil water 

retention tend to be greater in coarse textured compared to fine textured soils (Krull et al., 

2004). Regression analysis showed a significant (P = 0.0005) linear relationship between 

total soil C and effective cation exchange capacity (ECEC) in the soil (R
2
 = 0.72) in these 
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four treatments. This indicates that 72% of the variation in exchangeable cations retained in 

the soil is explained by variation in total soil C. Although the soils have high clay content 

(20-30 %), kaolinite seems like the dominant clay mineral and therefore provides very little 

binding sites for cations. The importance of SOC in increasing the ECEC of the soil is 

emphasized by the fact that the MMW treatment contained the lowest clay content of the 

cultivated treatments, yet it had higher ECEC than the lucerne and WBCWBL4 treatments. 

Organic matter plays thus an important role in retaining these cations in the soil and increases 

therefore the input efficiency of fertilizers. As discussed in the literature review, SOC affect 

several soil properties directly and indirectly but it is impossible to look at every property as 

it falls outside the scope of this study. A more comprehensive overview on the effect of SOC 

on soil quality and productivity can be reviewed in Lal (2004; 2006; 2011); Àlvaro-Fuentes et 

al. (2008). 

3.4. Conclusion 

After 11 years, significant differences in total SOC between cropping systems have been 

found, most notably in the 0-10 cm depth. The highest SOC content in the sampling depth (0-

30 cm) was found in the MMWW treatment with a value of 18.6 g C kg
-1

. This was 

significantly higher than all the other treatments. The WBCWBL4 and WBCWBL1 

treatments had the lowest C content of the cultivated treatments in the 0-30 cm depth, 13.3 

and 14.1 g C kg
-1

 respectively, and compared well with the natural vegetated soil (13.2 g C 

kg
-1

). The C stock (Mg ha
-1

) values of the bulk soil in the different treatments showed 

significant differences, but were less pronounced than the differences found in C stock values 

of fine fraction. This is indicative of the effect of coarse fragments diluting the C content per 

soil volume significantly and therefore, to exclude effect of coarse fragments, the effect of the 

treatments on soil C sequestration were determined using the C stocks obtained of the fine 

fraction. Medic in rotation with wheat (crop-pasture) was a better alternative to continuous 

cropping, even in no-till systems, since it stored more C (70.2-74.9 Mg ha
-1

 vs. 54.7-58.9 Mg 

ha
-1

 in 0-30 cm). The amount of SOC stored in the MMWW treatment was 20 Mg ha
-1 

higher 

than the amount of SOC stored in the WBCWBL4 treatment. Compared to the natural 

vegetated soil, the crop-pasture systems stored much more C in the soil whereas the C stored 

in the two 100 % cropping systems were similar than the natural vegetated soil. It was 

however important to consider C values obtained in 2003 (experimental trial started in 2002) 

to be able to directly determine the effect of disturbance and cropping systems on C content. 

Stellenbosch University  http://scholar.sun.ac.za



90 

 

The MMW (0.78 g C kg
-1 

year
-1

) and MMWW (0.70 g C kg
-1 

year
-1

) treatments produced the 

highest rate at which C increased per year. 

The high SOC content found in the present study, compared to other studies in agricultural 

soils of similar climate, especially in the MMWW treatment, shows the positive effect of 

current crops used in the specific crop sequences on C sequestration as the climate and soil 

aren’t ideal for high soil organic C contents. The higher average C content found in the crop-

pasture systems compared to the lucerne, 100% crop rotation systems and natural vegetated 

soil could be attributed to different soil characteristics, plant inputs and cultivation practices, 

which in turn is responsible for the accumulation of soil C in these conservation managed 

soils.  

The soil in the MMWW treatment contained higher amounts of clay which offered protection 

to SOM against decomposition. A fairly strong linear relationship between clay content and 

total SOC was found (R
2
 = 0.60) indicating that clay content could play an important role in 

SOC accumulation in these soils. However, to be able to determine the role of clay minerals 

in stabilizing C it is necessary to fractionate total soil C into a mineral-bound C fraction as 

free particulate organic C (carbon not associated with minerals) also contributes to total C 

content but is unaffected by the clay content (Kӧlbl & Kӧgel-Knabner, 2004).  

Soil aggregate stability in the different land-uses was found to be decreasing in the following 

order: Natural vegetation > crop-pasture > pasture > continuous cropping. No correlation was 

found between aggregate stability and total SOC as several factors, other than total C, also 

influence the stability of aggregates, such as extent of soil disturbance. This statement was 

confirmed as the natural soil contained the lowest C in the 5-10 cm depth, yet it had the 

highest aggregate stability of all the treatments as well as the least amount of soil disturbance. 

The higher aggregate stability in the two crop-pasture systems could have enhanced the SOC 

content in these treatments but this statement is inconclusive at this stage as fractionation of 

C into different pools is necessary. From total SOC results obtained in this chapter, it seems 

that clay content is much more important for C accumulation than aggregate stability. This 

can probably be attributed to high clay content and low aggregate stability of these stony 

soils. 

Plant properties also had a strong influence on the amount of SOC stored in each rotation 

system. This statement was confirmed as the MMW treatment showed the highest C increase 

since 2003, while its clay content was the lowest of all the cultivated treatments. This means 
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that although clay content seems to play an important role in C accumulation, the quantity 

and quality of C input is also important. The significant lower rate at which C increased since 

2003 in the lucerne treatment compared to the crop-pasture systems, can partly be explained 

by the lower belowground inputs of C through roots. Although lucerne has a higher root 

density than medics, medics re-germinate from seed annually and leads to the formation of 

completely new roots (i.e. higher C inputs) each season. Lucerne becomes dormant in winter 

(roots are alive but not actively growing). Lucerne also has a very low C:N ratio and is 

therefore more easily decomposed by microbes leading to faster mineralization of organic C 

to CO2. A higher soil respiration rate found for the lucerne, MMW and MMWW compared to 

the 100% crop rotation treatments confirmed this as medics also consists of a low C:N ratio. 

Medics in rotation with wheat (MMW & MMWW) produced the highest SOC content. This 

can be attributed to a combination of low C:N crops (medics) with high C:N ratio crops 

(wheat) with both crops consisting of well-developed rooting systems, especially medics in 

the 0-10 cm depth. The high aboveground input of high C:N residues from wheat would also 

contribute to the SOC content while the ability of medics to re-establish itself in the 

following season which leads to the formation of new roots (i.e. higher C inputs) is also an 

important contributing factor. Together with the effect that soil and plant properties have on 

SOC, the fact that the MMW and MMWW soils have been disturbed less than the 

WBCWBL4 and WBCWBL1 treatments is also a possible reason why the crop-pasture 

systems had more SOC. Although no-tillage is applied in all of the treatments, the tine planter 

still disturbs the soil in the 0-10 cm depth. Less disturbance of the soil could lead to more soil 

cover and this is known as a very important aspect of conservation agriculture. 

SOM content is a primary indicator of soil quality due to its influence on chemical, physical 

and biological properties (Lal, 2011). In a higher quality soil, higher agronomic production is 

expected and this was the case in this study as the MMWW treatment, containing significant 

higher C also produced significantly higher wheat yields of higher quality than the other 

treatments. A 99 and 94% correlation was found respectively between soil C and soil N and 

wheat yields produced in 2012. The ability of medics to fix N seems to be a major reason for 

producing good yields in the following year. The higher aggregate stability in the crop-

pasture systems could possibly enhanced the ability of the soil to absorb water (higher total 

porosity) which could lead to higher soil moisture content in the soils. A higher SOC content 

enhance the water holding capacity of the soil. This is very important, especially in the 

Overberg as the rainfall is low (± 450 mm) and the pattern very unreliable (summer rainfall 
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not unusual). The higher the SOC content the more soil water can be possibly stored during 

summer months. This together with the higher ECEC enhancing the efficiency of added 

fertilizers can also be a reason for the higher wheat yields obtained in these treatments. We 

conclude thus from these findings that crop-pasture rotations, in addition to being 

biologically and economically attractive (less fuel and less fertilizers), also enhance soil 

quality and promote soil sustainability in these stony soils. An increase in agronomic 

production is vital to enhance food security especially in developing countries like South 

Africa. 

I think it is worthwhile for grain farmers in the Overberg to consider the use of legumes 

(medics) as a pasture in rotation systems. It can enhance C sequestration and thereby soil 

quality which can lead to higher crop yields. Pasture and crop-pasture rotation systems were 

more beneficial than 100% crop rotations due to; (i) a higher aggregate stability in topsoil due 

to less disturbance, (ii) larger quantity of belowground C input of pastures, (iii) the high % N 

of pasture residues both above- and belowground and therefore provides high quality organic 

matter (low C:N). A low C:N ratio enhances microbial activity and causes nutrients to 

become more rapidly available. 

Investigation of the effect of the crop/pasture systems on SOM functional pools will form the 

basis of the study in the next chapter. This will enable elucidation of the extent and 

mechanisms of SOC stabilization in the different crop rotation systems. The relative 

contribution of the different SOM functional fractions to soil quality properties will also be 

investigated. 
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CHAPTER 4 

THE EFFECT OF NO-TILL CROP ROTATION PRACTICES ON SOIL 

ORGANIC MATTER FUNCTIONAL POOLS AND STABILIZATION 

MECHANISMS 

4.1. Introduction 

Soil organic carbon (SOC) is sensitive to changes in climate and management, but how and 

on what timescale will it respond to such changes? Because the SOC pool is one of the 

largest on the global scale (Jobbagy & Jackson, 2000) it is important to understand C 

stabilization mechanisms as this information can be useful in attempt to minimize negative 

environmental impacts (e.g. CO2 emission and soil erosion) and optimizing crop production. 

However, to be able to answer the question stated above, isolation of the total soil organic 

matter (SOM) pool into different fractions or pools, with each fraction (pool) containing 

distinct functional properties and turnover times, is necessary and has been a major research 

topic in the last few years.  

The quantity and quality of C input and the rate of decomposition are the two vital factors 

controlling the amount of C stored in the soil (von Lützow et al., 2007). The quantity and 

quality of C input depends on the type of crop cultivated and/or crop rotation practices 

applied while the rate of SOM decomposition can be controlled by several stabilizing 

mechanisms operating in the soil. This can be directly affected by management practices (e.g. 

crop rotation & no-tillage). In general, no-tillage practices have been observed to contribute 

to the accumulation of C in soils by decreasing the mineralization rate of organic matter, 

especially in the surface soil. Several authors (West & Post 2002; Chen et al., 2009; Huang et 

al., 2010) contributed this to higher stabilization of organic matter within aggregates due to 

fewer disturbances. Retaining crop residues with no-till systems can also contribute to 

aggregation.  According to Arshad et al. (1990) no-till doesn’t only increase the quantity of 

organic matter (OM) but also improves the quality of OM, as OM under no-till contained 

more carbohydrates, amino acids, and amino sugars. No-tillage as an isolated system may 

however not always produce the positive results as expected in terms of accumulation of soil 

C as it has to be combined with the right crop rotation practices (Sisti et al., 2004; Conceicão 

et al., 2013). Therefore, the use of diversified and high input cropping systems (includes 

legumes) have to be considered as a management strategy together with no-tillage to enhance 
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C sequestration. Decomposition rates of SOM also depends on the mineralogy (Kalbitz et al., 

2005; Mikutta et al., 2006; 2007) and texture (Kӧlbl & Kӧgel-Knabner 2004) of the soil as 

sorptive organic-mineral interactions are considered one of the most important mechanisms 

by which C is stabilized (Baldock & Skjemstad, 2000). A lot of studies have been carried out 

in temperate regions (von Lützow et al., 2006) with soils dominated by high activity clays 

while soils dominated by mainly kaolinite and illite still has to be investigated, especially 

those subjected to conservation management practices. 

The chemical properties of SOM and its interactions with the abiotic mineral matrix allow 

them to be placed in different SOM functional pools with varying turnover rates (Kӧgel-

Knabner & Kleber, 2012). The three major SOM functional pools that are of great importance 

in soil C stabilization studies (Golchin et al., 1994a; Sohi et al., 2001; Marin-Spiotta et al., 

2008; Cerli et al., 2012) and in particular this study are; (i) the free particulate organic matter 

(fPOM) fraction which resembles recent undecomposed litter inputs and tends to have 

younger C than other fractions, (ii) an occluded particulate organic matter (oPOM) fraction 

which is generally older than fPOM  fraction released by disruption of soil aggregates, and 

(iii) a heavy mineral-bound fraction (mineral), comprising organic matter tightly bounded or 

sorbed to minerals containing the oldest OM. The fPOM fraction that represents the labile C 

pool contains physically non-complexed OM and is seen as an early and sensitive indicator of 

SOC as this fraction usually responds the quickest to soil management changes (Haynes, 

2005; Gregorich et al., 2006). 

Decomposition of soil C can be slowed down by different stabilization processes. These 

processes are complex and entail an understanding of chemical, physical and biological 

interactions between organic components and the mineral matrix (Kӧgel-Knabner & Kleber, 

2012). Two main possible soil C stabilization mechanisms that can contribute to SOM 

stabilization have been considered; (i) physical protection via occlusion in aggregates and (ii) 

chemical interaction with soil minerals (phyllosilicates and metal-oxides) (Sollins et al., 

1996; von Lützow et al., 2006). More than one of these mechanisms may operate together to 

various degrees in soil (von Lützow et al., 2007). Both these C stabilizing mechanisms can 

contribute to the passive pool (oPOM & mineral fractions) through the protection of OM 

within aggregates (Christensen, 1996) and also its interaction with mineral surfaces (e.g. 

ligand exchange, cation bridging, weak interactions) (Torn et al., 1997; Mikutta et al., 2007).  

In order to understand the SOC stabilization mechanisms operating under specific soil and 

climate conditions as well as management practices it is necessary to achieve an effective 
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separation of SOM functional pools of different stability and functional relevance. Density 

fractionation (Golchin et al., 1994a; Sohi et al., 2001; Cerli et al., 2012)  is an effective 

technique in quantifying the amount of OM between (fPOM) and within soil aggregates 

(oPOM) as well as the amount of SOM associated with the minerals. This method is thus 

based on the extent and degree to which SOM is bound to minerals that regulates its 

dynamics. The fPOM fraction or labile fraction contains physically non-complexed OM 

which is not occluded within aggregates or bound to minerals. It can be separated by density 

using a certain liquid density as free OM is less dense than the mineral fractions (oPOM & 

mineral) (Gregorich et al., 2006). The fPOM fraction still contains much of the characteristics 

of the litter or root residues (wide C:N ratio) and it is in this fraction where chemical 

recalcitrance may have some stabilizing effect in the early stages of decomposition (von 

Lützow et al., 2006). This stabilization mechanism however was not investigated in this 

study. The C:N ratio of the mineral fraction is usually below 10 indicating an increasing 

degree of degradation as well as the ability of minerals to adsorbed and protect humified 

organic matter (Baisden et al., 2002). Separating soil samples into these three SOM 

functional pools allow investigation of the mechanisms responsible for C stabilization.  

Soil organic matter (SOM) and its different pools play an important role in optimizing crop 

production, minimizing negative environmental impacts and improving soil quality and soil 

sustainability (Freixo et al., 2002). Therefore, total SOC needs to be fractionated into 

biologically meaningful C pools to account for the value of each pool to overall soil quality 

as total SOC content is only a coarse indicator of soil quality (Krull et al., 2004; Haynes, 

2005). This formed the basis of the study as soil quality and sustainability are important to 

ensure food security. This can be achieved by applying management practices that enhance 

both the labile and stable C fractions. The stable C fractions contribute a major proportion to 

soil C sequestration while the labile C (fPOM), more easily decomposed, have an important 

role to play in enhancing nutrient availability and microbial activity.  Several studies (Freixo 

et al., 2002; Chen et al., 2009; Salvo et al., 2010; Conceicão et al., 2013 ext.) have reported 

the effect of different management practices on SOM functional pools. However, there is still 

a gap in knowledge on how different crop rotation practises under no-tillage affect C 

stabilization and distribution in the grain production region of the Overberg. 

Therefore, the main objectives of this component study were to evaluate the extent and 

mechanisms of soil C stabilization in the different crop/pasture rotation systems under no-

tillage practices. This involved the fractionation of total SOM into different functional pools 
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(fractions) in order to investigate the role of each fraction in soil quality as well as the 

mechanisms by which C is stabilized. Elucidating the mechanisms responsible for SOC 

stabilization was carried out by examining the relationships of stable C (intra-aggregate and 

mineral-bound) with selected soil properties known to play role such as aggregate stability, 

clay content and metal-oxide content.  Information on the binding mechanisms is mostly 

obtained from statistical correlations (Kӧgel-Knabner et al., 2008). The fPOM fraction (labile 

C) was also correlated with the soil CO2 efflux in order to evaluate the contribution of 

heterotrophic respiration (decomposition of SOM to CO2 by microbes) to total CO2 efflux. 

4.2. Material and Methods 

Soils for this study were collected in June/July 2012 from three different replicates in each of 

the six treatments as described in detail on page 42-48. To avoid determination of the litter 

material (overestimation of fPOM pool size) and to ensure the carbon associated with 

minerals reflect the sorption capacities of minerals and metal oxides, subsoil samples were 

used for this study. The 5-10 cm soil depth in each treatment were thus used for the 

fractionation of total carbon in different pools and various other analysis (clay content, 

aggregate stability, metal oxides) in the same depth increment were carried out for correlation 

studies. However, for the lucerne and WBCWBL4 treatments all four depths (0-5, 5-10, 10-

20 and 20-30 cm) were analysed for carbon fractions and relative soil properties in order to 

see how the different carbon pools varies between depth and treatment. 

4.2.1. Density fractionation of SOM functional pools  

The aim of the physical fractionation was to separate total SOM into three organic fractions 

using physical fractionation techniques with density separation and sonication, respectively. 

The SOM fractionation method used was modified from the procedure proposed by Golchin 

et al. (1994a); Sohi et al. (2001) and Cerli et al. (2012). The three fractions isolated were; (i) 

the free particulate organic matter (fPOM) (undecomposed material), (ii) the occluded 

particulate organic matter (oPOM) (intra-aggregate organic matter) and (iii) the heavy 

mineral-bound (mineral) (OM sorbed /bound to minerals) fraction.  

The samples were fractionated using 5 g of soil and 25 ml Sodium Iodide (NaI) (1:5 soil to 

solution ratio) solution at a density of 1.6 g cm
-3

. The rationale for using 1.6 g cm
-3 

is that 

OM density is generally less or equal to 1.5 g cm
-3

 (Golchin et al., 1994a). Cerli et al. (2012) 

also found the best results at this density for various types of soils. It was gently shaken by 

hand in a 50 ml centrifuge tube to ensure soil wetting and to avoid disruption of aggregates. 
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The suspension was then allowed to stand for 1 hour before centrifuging at 5600g for 20 min. 

The floating fPOM was transferred into a Millipore filtration funnel fitted with a 0.8 μm 

membrane and filtered under vacuum pressure. To ensure that all the fPOM has been 

quantitatively transferred, the centrifuging-filtering procedure was repeated three times for 

each sample.  The retained fPOM fraction was then thoroughly rinsed with deionized water 

using a separate collector until the conductivity of the fresh water was less than 50 μS cm
-1

. 

This fraction (fPOM) was allowed to air dry at below 40°C before weighed. The weighed 

samples were then ground using a mortar and pestle to ensure a homogeneous sample for 

analysis. The oPOM fraction within stable aggregates were released by resuspending soil 

residue with 25 ml of fresh NaI and the solution was then dispersed by ultrasound at an 

energy level of 200 J ml
-1

. The suspensions were sonified with a sonicator (ultrasonic 

processor) (Qsonica Sonicators, Newton, USA) fitted with a probe tip (dimensions 13.8 cm x 

1.3 cm)  to a depth of 15 mm in suspension to disrupt the aggregates and attain the intra-

aggregate organic matter occluded within.  

The intra-aggregate fraction (oPOM) was recovered after centrifugation, using the same 

procedure described for the fPOM fraction. The sample residue (mineral-bound fraction) that 

remained after the fPOM and oPOM fractions were removed, was dialyzed in a Pierce 

(Perbio) SnakeSkin pleated dialysis tubing in a container of distilled water until the water 

tested free of salts with 0.1 M AgNO3
-
. It was then oven-dried at 40 °C for 72 hours.  

A five decimal digital micro-scale was used to weigh the isolated pools and each pool was 

then analysed for C and N by dry combustion using the Euro Vector elemental analyser 

(Nelson & Sommers, 1996). 

4.3. Results and Discussion 

In Chapter 2 significant differences in total C accumulation between treatments were found. 

However, it was still unclear how much of the total C was labile or active and how much of 

the total C was actually stabilized within aggregates or associated with minerals. These 

fractions are seen as fine indicators of soil quality (Haynes, 2005). For example the fPOM 

pool releases nutrients and acts as a source of energy for the microorganisms but contribute 

little to soil CEC (Krull et al., 2004). To evaluate the soil quality and sustainability of a 

specific crop rotation system, it was therefore necessary to further divide total SOM into 

functional fractions. The mechanisms responsible for C stabilization in the different pools can 

also be investigated. 
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4.3.1. Distribution of Total Carbon in SOM functional pools 

Despite working as carefully as possible during the fractionation process, the C recovered in 

the fractions ranged between 85 and 101% of total C of bulk soil. The average recovery of C 

was 93%. The residual C that was not accounted for in the particulate and mineral fractions 

can be considered as dissolved organic carbon (DOC) that was lost during the filtration 

process while collecting the particulate fractions. It can however also be attributed to 

materials stuck to filters as well as mistakes made when weighing these extreme small 

quantities of fraction and determining their C and N contents (inaccuracy of CN analyser). 

Due to uncertainty on how much of the lost C actually was DOC, the percentage of C in each 

fraction relative to total C was calculated using the total amount of C recovered and not the 

total amount of C in the bulk soil (Freixo et al., 2002; John et al., 2005). The percentage C 

recovered in each treatment and depth is shown in Table 4.1. 
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Table 4.1 Summary of SOC accumulation and percentage of this accumulation in the free particulate 

organic matter (fPOM), occluded particulate organic matter (oPOM) and mineral-bound organic 

matter (mineral) fractions, in the 0-5, 5-10, 10-20 and 20-30 cm layers in different no-till crop rotation 

practices. 

Crop 

rotation 

Carbon content (g kg
-1

) 

% C 

Recovered 

C in fraction, % of total 

C  

fPOM oPOM mineral 
Total C of 

fractions 

Total C of 

bulk soil 
fPOM oPOM mineral 

0 - 5 cm 

Lucerne 1.7 0.24 19.3 21.2 22 96.5 8.0 1.1 90.9 

WBCWBL4 2.3 0.17 17.5 20.0 19.7 101.4 11.5 0.9 87.6 

          5 - 10 cm 

Lucerne 1.2 0.1 16 17.3 17.9 96.6 6.9 0.6 92.5 

MMW 1.4 0.16 14.1 15.7 17.8 88.0 8.9 1.0 90.0 

MMWW 1.7 0.2 18.7 20.6 22.8 90.4 8.3 1.0 90.8 

WBCWBL4 1 0.07 14.7 15.8 15.9 99.2 6.3 0.4 93.2 

WBCWBL1 0.9 0.11 14.2 15.2 18.0 84.5 5.9 0.7 93.4 

Natural 1.7 0.31 11 13.0 13.7 95.0 13.1 2.4 84.6 

          10 - 20 cm 

Lucerne 0.62 0.06 11 11.7 13.4 87.2 5.3 0.50 94.2 

WBCWBL4 0.72 0.06 12 12.8 13.5 94.7 5.6 0.47 93.9 

          20 - 30 cm 

Lucerne 0.4 0.1 9.7 10.2 11.6 87.9 3.9 1.0 95.1 

WBCWBL4 0.3 0.09 7.6 7.99 8.6 92.9 3.8 1.1 95.1 

 

In all the treatments, the major part of the total SOC was associated with the mineral fraction 

at all depths. The organic C contained in the mineral fraction of the natural vegetated soil 

accounted for 85% of total organic C recovered at the 5-10 cm depth. The crop rotation 

treatments led to a higher percentage of organic C contained in the mineral fraction ranging 

from ca. 90- 93% in the 5-10 cm layer, ca. 88- 91% in the 0-5 cm layer, 94% in the 10-20 cm 

layer and 95% in the 20-30 cm layer of total recovered C (Figure 4.1 & 4.2). This indicates a 

general increase in the contribution of mineral-associated C to total C with depth. An increase 

in the proportion of the mineral fraction with depth is indicative of increased mineral 

association and protection with depth (Torn et al., 1997). The higher contribution of mineral 

C to total carbon in the cultivated treatments (90-93%) compared to the natural treatment 

(85%) can be mainly attributed to the higher clay content (Table 3.6).  However, according to 
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John et al. (2005), the lower input of organic matter and increased disruption of aggregates in 

agricultural soils leads to a loss of C in the fPOM and oPOM fraction and therefore, the 

proportion of C bound to minerals in forest or natural vegetated soil is lower due to higher 

free and occluded particulate organic matter. This corresponds well with what was found in 

this study.  

 

Figure 4.1 Relative contribution of organic carbon  in the mineral fraction  to total organic carbon of 

the different crop rotation treatments and natural vegetated soil at 5-10 cm. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences 
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Figure 4.2 Relative contribution of organic carbon  in the mineral fractions to total organic carbon of 

the lucerne and WBCWBL4 treatments in the 0-5, 5-10, 10-20 and 20-30 cm layers. 

Note:  Error bars represent standard error. 

The percentage of C contained in the fPOM fraction of the crop rotation treatments at the 5-

10 cm layer accounted for ca. 5.9 - 8.9% of total C recovered while the fPOM fraction of the 

natural vegetated soil in the same depth accounted for 13% (Figure 4.4). The percentage of 

total C recovered contained in the fPOM fraction decreased with depth from 11.5% for the 

WBCWBL4 treatment in the 0-5 cm layer to 3.8% in the 20-30 cm layer with the lucerne 

treatment decreasing from 8% to 3.9% in the same depth increments (Figure 4.5a). A severe 

decrease was observe in the WBCWBL4 treatment from the 0-5 cm to 5-10 cm depth 

indicating the effect of aboveground material in the first 5 cm of the soil whereas the decrease 

in the same depth increments for the lucerne treatment was not as severe due to lower 

aboveground residues.  Janzen et al. (1992) also reported that the light fraction of surface soil 

(0-7.5 cm) under wheat based rotations accounted for 2-17% of total SOC and stated that it 

depends largely on cropping systems (residue input and substrate decomposition). Typical 

photographs representing the free particulate organic matter (fPOM) in lucerne treatment and 

WBCWBL4 treatment appears in Figure 4.3. Clear visual differences (size) between the two 

treatments were observed. 
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Figure 4.3 Digital images showing the difference in size of the free particulate organic matter (fPOM) 

in (a) WBCWBL4 treatment and (b) lucerne treatment. 

The C stored in the occluded-POM fraction contributed the least to total C in the 5-10 cm 

depth and corresponds with the soil’s weak aggregation (Figure 3.19). The oPOM fraction of 

the natural vegetated soil accounted for 2.4% of total C recovered which was the highest of 

all the treatments. The C that accumulated in the oPOM fraction of the crop rotation 

treatments accounted for ca. 0.4 - 1% of total C recovered (Figure 4.4).  A general decrease in 

the contribution of C accumulated in the oPOM to total C with depth was observed up to the 

20 cm layer whereas an increase was observed in the 20-30 cm layer for both treatments 

(Figure 4.5b). This trend is in agreement with the higher aggregate stability observed in the 

20-30 cm depth. Due to the small contribution of the oPOM fraction to total C it is not 

considered as an important fraction in these soils.  
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Figure 4.4 Relative contribution of organic carbon in the free-POM and occluded-POM fractions to 

total organic carbon of the different crop rotation treatments and natural vegetated soil at 5-10 cm. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

 

Figure 4.5 Relative contribution of organic carbon  in the (a) free-POM and (b) occluded-POM to 

total organic carbon of the lucerne and WBCWBL4 treatments in the 0-5, 5-10, 10-20 and 20-30 cm 

layers. 

Note:  Error bars represent standard error. 
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Similar proportions were found by Freixo et al. (2002) in no-till crop rotation (wheat/soybean 

& wheat/soybean/vetch/maize) practices in Southern Brazil as the average mineral fraction 

accounted for 84 to 98% of total recovered organic C with the average fPOM accounted for 

1.3 to 15% and the average oPOM for 0.3 to 1.4% of total recovered C in 0-5, 5-10 and 10-20 

cm depths. The relative contribution of the fPOM and mineral fraction to total SOC found in 

this study was also in the same order of magnitude as was found by John et al. (2005) for 

continuous wheat and maize plots under conservation tillage. According to Gregorich & 

Janzen (1996), agricultural soils typically contain 20-30% C in the fPOM fraction and make 

up 2-18% of total C which correlated well with findings in this study. 

4.3.2. Carbon and Nitrogen content of SOM functional pools 

The fPOM and oPOM fractions composed of only ca. 0.13-0.75% and ca. 0.013-0.05% 

respectively of the soil mass in the different treatments and depths. The organic C content 

determined in each fraction was multiplied with the mass to obtain the C contents of the 

fractions on a whole soil basis (g C kg
-1

). Significant treatment effects were observed on C 

contents in all three fractions while significant differences in N content were found in the 

fPOM fraction.  

a) fPOM and oPOM fractions 

The content of organic C in the fPOM fraction ranged between 0.9 and 1.7 g C kg
-1

 in the 5 - 

10 cm layer for the arable treatments with the two crop pasture rotation systems  (MMWW & 

MMW) containing the highest amount of C of the cultivated treatments. The MMWW and 

natural vegetated treatment (1.74 & 1.69 g C kg
-1

 respectively) contained significantly higher 

(P = 0.003) C contents than the WBCWBL4 and WBCWBL1 treatments (1 and 0.9 g C kg
-1

 

respectively) with the MMW treatment containing 1.37 g C kg
-1

 in the fPOM fraction. The 

100% pasture (lucerne) had a C content of 1.16 g C kg
-1

 in the fPOM fraction (Figure 4.6 & 

Table 4.1). As total and, especially, labile organic C content are climate and soil specific and 

also very sensitive to management, it is important that a comparison is made to a reference 

soil (natural vegetated soil) that is unaffected by agricultural management in order to 

determine the effect of management practices on C content. Compared to the natural 

vegetated soil, the amount of C in the fPOM fraction of the agricultural soil decreased on 

average by 27% with only the MMWW crop rotation system containing the same amount of 

C than the natural vegetated soil. The natural vegetated soil is covered mostly by grasses and 
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therefore it can be expected that the free particulate organic matter will be depleted when it is 

converted from “grassland” to arable rotation (Christensen, 1996).  

The C content of the oPOM fraction ranged between 0.07 and 0.31 g C kg
-1

 for the different 

treatments in the 5-10 cm layer. The natural vegetated soil contained significantly (P < 

0.0001) higher C than all the crop rotation treatments indicating the effect of cultivation on 

soil C occluded within aggregates. The MMWW treatment contained the highest C content 

(0.20 g C kg
-1

) in the oPOM fraction of the arable treatments, significantly higher than the 

lucerne (0.07 g C kg
-1

) and WBCWBL4 (0.065 g C kg
-1

) treatments (Figure 4.6). 

 

Figure 4.6 The carbon content recorded in the fPOM and oPOM fraction of the different treatments at 

5 - 10 cm depth. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

On average across the WBCWBL4 and lucerne treatments the C content in the fPOM fraction 

decreased from 2.0 in the 0-5 cm to 0.67 g C kg
-1

 in the 20-30 cm depth. The C content of the 

oPOM fraction followed a different trend with depth than the other fractions as a general 

decrease in C was observed up till 20 cm (0.2-0.06 g C kg
-1

) whereas an increase in C content 

was observed in the 20-30 cm depth (0.1 g C kg
-1

).  No significant differences in C content 

were found between the two treatments in the different fractions and depths but clear trends 

were observed (Figure 4.7). 
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Figure 4.7 The carbon content obtained in the (a) fPOM fraction and (b) oPOM fraction of the 

lucerne and WBCWBL4 treatments at the four depth increments (0-5, 5-10, 10-20, 20-30 cm). 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments at specific depths according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate 

lack of significant differences. 

The N content in the fPOM fraction (5-10 cm depth) was found to be significantly higher (P 

<0.0001) in the lucerne, MMW and MMWW treatments compared to the 100% crop rotation 

systems and also higher, but not significantly, than the natural vegetated soil (Figure 4.8). 

The MMWW and MMW rotation systems contained N values of 0.111 g kg
-1

 and 0.107 g kg
-

1
 respectively compared to the 0.045 and 0.042 g kg

-1
 in the WBCWBL4 and WBCWBL1 

rotation systems respectively. 
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Figure 4.8 Nitrogen content in the fPOM fraction of the different treatments at 5-10 cm depth. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

In the 0-5 cm depth, the 100% crop rotation system (WBCWBL4) contained more C than the 

100% pasture (lucerne) in the fPOM fraction. This can be attributed to higher aboveground 

inputs of various crops versus the low aboveground inputs of lucerne contributing to lower 

particulate organic matter content, especially in the litter layer (0 - 5 cm). As was observed 

with the total  C content, the C content in the fPOM fraction decreased with depth in both the 

WBCWBL4 and lucerne treatments, especially from the 0-5 to 5-10 cm layer as the 5-10 cm 

depth excludes the litter layer (Figure 4.7a). The amount of C occluded within aggregates 

(oPOM fraction) followed the same trend with depth as was observed with aggregate stability 

(Figure 4.7b). The higher the aggregate stability, the more carbon was occluded within the 

aggregates and/or vice versa as aggregate stability is largely affected by the amount of C in 

the soil. Carbon occluded within aggregates is physically protected against microbial 

degradation and this spatial inaccessibility is an important C stabilizing mechanism (section 

4.3.5.1).  

The fPOM fraction is a very sensitive indicator of the effects of cropping on SOM content 

and composition and reflects mainly short-term effects (Janzen et al., 1992; Freixo et al., 

2002). The fPOM fraction represents an intermediate pool between undecomposed residues 

and humified SOM and consists mainly of fresh plant residues and therefore its amount 
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depend directly on the crop rotation adopted (quantity and quality of C input) (Gregorich et 

al., 2006). According to Haynes (2005) increases in particulate organic matter usually reflects 

greater above- and belowground inputs which is then expected to be translated into higher 

SOM contents in the longer term. However, according to Biederbeck et al. (1994) factors 

other than the amount of residues returned to the soil regulate the amount of POM. Factors, 

like temperature and moisture, especially in a relative dry region, can constrain 

decomposition of physically non-complexed OM. The extent of disturbance in the different 

treatments can also play an important role. 

Bolinder et al. (1999) like Janzen et al. (1992) and Freixo et al. (2002) stated that both C and 

N content of the fPOM fraction is very sensitive indicators of the effect of agricultural 

management on SOM.  This was confirmed in this study and is shown in Figure 4.9. 

Comparing total C and N content to the C and N content in the fPOM fraction in the 5-10 cm 

depth, greater differences were observed between cropping systems in the fPOM fraction. 

The two crop-pasture rotation systems contained significantly more C and N in the fPOM 

fraction than the two 100% crop rotation systems. The higher N content can be attributed to 

the quality of the lucerne and medic residues (high N) while the higher C content is attributed 

to higher belowground inputs of especially medic roots in the crop-pasture systems. The two 

crop-pasture systems were also disturbed to a much lesser extent since the start of this 

experiment 11 years ago compared to the 100% crop rotation systems. With the tine no-till 

planter that was used, the first 10 cm of the soil is still disturbed and therefore during planting 

time, it is well exposed (less soil cover) to oxidising conditions causing more C being 

mineralized to CO2.  

It is also evident (Figure 4.9) that the natural treatment contained the lowest total C content, 

but together with the MMWW treatment, contained the highest C content in the fPOM 

fraction. This is another indication that the fPOM fraction is more sensitive to management 

practices (tillage and crop rotations) than total C as the natural vegetated soil has never been 

subjected to any management. The lower input of OM in agricultural soils compared to the 

natural vegetated soil can also lead to a preferential loss of organic C from fPOM fraction.  

According to Neff et al. (2002) N additions to the soil (cultivated treatments) significantly 

increase decomposition rates of light soil C fractions (fPOM). 
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Figure 4.9 Comparison between total C and N contents and C and N content in the FPOM fraction in 

the different treatments at 5-10 cm depth. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

This pool (fPOM fraction) is enrich with nutrients and C and is an important fraction that 

contribute to soil quality, although it represents only a small portion of the soil mass (Haynes, 

2005). As discussed in Chapter 3, the yield and quality of the wheat was higher in the crop-

pasture systems and were attributed to a higher total SOM content. However, according to 

Lal (2006), an increase in crop yields due to an increase in SOM pool is mainly related to an 

increase in the labile fraction (fPOM). The C in the labile or fPOM fraction serves as the 

primary energy source for heterotrophic organisms and therefore from a biological standpoint 

a very important pool (Gregorich et al., 2006). The active microbes also derive nutrients from 

the molecules in SOM and if the nutrients are not taken up by the microbes, they are available 

for plants, which means the higher the N content, as was found in the crop pasture and 

lucerne treatments, the more N will be available for the subsequent crop. The labile organic 

matter (fPOM) fraction can therefore be used as a monitor in changes in soil quality as it 
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reflect the diverse, but central, roles that organic matter have concerning soil properties and 

the ability of the soil to function (Haynes, 2005). According to Biederbeck et al. (1994), the C 

and N in the fPOM fraction may provide an early indication of future trends in OM response 

to cropping systems. 

b) Mineral fraction 

The content of organic C in the mineral fraction ranged between 11 and 18.7 g C kg
-1

 

between the different treatments in the 5 - 10 cm layer. The MMWW treatment (18.7 g C kg
-

1
) contained significantly  (P = 0.0022) higher C content than the MMW, WBCWBL1 and 

natural treatments with C values of 14.1, 14.2 and 11 g C kg
-1

 respectively. The lucerne and 

WBCWBL4 treatments contained values of 16 and 14.7 g C kg
-1

 (Figure 4.10 & Table 4.1). 

On average, across the WBCWBL4 and lucerne treatments the C content in the mineral 

fraction decreased from 18.4 in the 0-5 cm to 8.7 g C kg
-1

 in the 20-30 cm depth (Figure 4.11) 

following the same trend as total organic C (Figure 3.10a). No significant differences in C 

content between the lucerne and WBCWBL4 treatments were found except in the 20-30 cm 

depth where lucerne contained a significantly (P = 0.0072) higher C content. 

 

Figure 4.10 The carbon content obtained in the mineral fraction of the different treatments in the 5-10 

cm depth. 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 
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Figure 4.11 The carbon content obtained in the mineral fraction of the Lucerne and WBCWBL4 

treatments at the four depth increments (0-5, 5-10, 10-20, 20-30 cm). 

Note:  Error bars represent standard error, and alphabetic letters denote statistical differences between 

treatments according to Tukey’s Studentized Range test at α = 0.05. Similar letters indicate lack of 

significant differences. 

These results obtained support the fact that the C in the mineral fraction determines the total 

C content of these soils. The significantly higher C content in the mineral fraction found for 

the MMWW treatment in the 5-10 cm depth can possibly be attributed to a higher clay 

content in this treatment since the same trend was observed as was found for the clay content 

in the different treatments (Table 3.6). Sequestered C is stored mainly in the mineral 

associated fraction and is therefore a very important long-term stabilized fraction for C 

sequestration.  Kӧgel-Knabner (2008) also stated in her review that the interaction of organic 

C with mineral surfaces, especially with Fe-oxide surfaces, is the major control of long-term 

organic C preservation.  The mineral fraction contains more humified SOM and can be a 

major sink for C storage in soil as the C stabilized via the minerals is not easily decomposed. 

This was partially verified by poor correlation (R
2
 = 0.04) between mineral C content and soil 

respiration rate (CO2 efflux) (Figure A5). 

A significant (P = 0.0025; R
2
 = 0.55) linear correlation was found between mineral C and 

effective cation exchange capacity (ECEC). This indicates that an increase in C in the mineral 

fraction enhances the ECEC of the soil (Figure 4.12). Weak correlations were found between 

ECEC and the C content of the fPOM (R
2
 = 0.22) and oPOM (R

2
 = 0.22) fraction (Figure A3 
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& A4). This confirms Krull et al. (2004) statement that the fPOM fraction is important for 

certain soil functions but contributes little to the ECEC of the soil. 

 

Figure 4.12 Relationship between mineral-bound carbon and ECEC. 

4.3.3. C:N ratio of SOM functional pools 

The C:N ratios of the isolated fractions in the different treatments were similar to what was 

reported by Tan et al. (2007), Gregorich et al. (2006) and Grϋnewald et al. (2006) in their 

studies, relating to organic matter characteristics and decomposition. The C:N ratio of the 

mineral fraction was consistently smaller than that of the POM fractions in all treatments and 

depths. The composition of the residues found in the fPOM fraction was characterized with a 

relative high C:N ratio (intermediate between bulk soil and plant tissue) ranging between 13 

and 22 for the lucerne and WBCWBL4 treatments respectively in the 5-10 cm depth (Figure 

4.13). This signifies the dominance of less decomposed plant components in this fraction 

(Gregorich et al., 2006) as it contains a mixture of the residues of plants, animals, and 

microorganisms at different stages of decomposition (Baisden et al., 2002). The fPOM 

fraction of lucerne and the two crop pasture treatments (MMW & MMWW) had a significant 

(P < 0.0001) lower C:N ratio compared to the 100% crop rotation systems (WBCWBL4 & 

WBCWBL1).  This can mainly be attributed to the high N content of above- and 

belowground residues of lucerne and medics (both legumes). The lower C:N ratio observed in 

the fPOM fraction of the pasture and crop-pasture systems (legume pastures) compared to the 

100% crop rotation systems will enhance the mineralization of organic N into inorganic N 
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(plant available N). This means that more N is available for the subsequent crop, in this case 

wheat, in the crop pasture systems. On average, the C:N ratio (18:1) of the fPOM fraction in 

the different treatments at a 5-10 cm soil depth was found to be much wider than the bulk 

(total) C:N ratio (10:1) in the same depth. The fPOM pool is seen as an intermediate pool 

between fresh plant residues and stabilized SOM (Gregorich et al., 2006).  

 

Figure 4.13 The C:N ratio of the three fractions; fPOM, oPOM, mineral and the bulk soil determined 

at the 5-10 cm layer of the different treatments. 

Note: Error bars represent standard error. 

A general decline in the C:N ratio from the fPOM fraction to the oPOM was detected except 

for the lucerne and natural vegetated soil where the C:N remained more or less the same than 

the fPOM fraction.  A significant decline in the C:N ratio  from the fPOM to oPOM was 

observed in the two 100% crop rotation systems. This general decline in C:N ratio from the 

fPOM to oPOM corresponds well with findings in other studies (Grunewald et al., 2006; 

Gregorich et al., 2006; Baisden et al., 2002) and suggest a stronger contribution of microbial 

biomass to the oPOM fraction as microbial products is rich in N. The decreasing C:N ratio in 

this order fPOM > oPOM > mineral also indicates an increasing degree of degradation and 

humification of the organic matter (Baisden et al., 2002; John et al., 2005). In all the 

treatments the C:N ratio of the mineral fraction was 9 and below indicating the ability of 

minerals to adsorb and protect well decomposed organic matter and microbial products 
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(Golchin et al., 1994b). The low C:N ratio of the mineral fraction also indicates efficient 

isolation of the carbon fractions  

The C:N ratio in the different depths of the lucerne and WBCWBL4 treatments is shown in 

Table 4.2. The C:N ratio varied between 11 and 25 for the fPOM and oPOM fractions while 

the ratio of the mineral fraction was generally smaller than the bulk soil in all depths. No real 

trend with depth was observed in all three fractions. 

Table 4.2 C:N ratio of the three fractions; fPOM, oPOM and mineral and the bulk soil determined at 

the 0-5, 5-10, 10-20 and 20-30 cm layers of the lucerne and WBCWBL4 treatments. 

Depth (cm) 
fPOM oPOM Mineral Bulk Soil 

Lucerne WBCWBL4 Lucerne WBCWBL4 Lucerne WBCWBL4 Lucerne WBCWBL4 

0-5 12.6 21.5 13.6 11.3 8.9 9 8.4 10.8 

5-10 12.6 21.8 13.4 14.9 8.7 8.2 9.1 10.9 

10-20 11.4 21.1 18.2 16.2 7.7 7.2 8.1 10.7 

20-30 12.2 24.5 10.6 14.6 6.6 5.4 6.8 7.6 
 

4.3.4. Relationship between characteristics of the fPOM fraction and total soil 

respiration (CO2 efflux) 

Soil organic matter in the fPOM fraction is physically non-complexed and is therefore easily 

accessible for microbes to decompose. A significant (P < 0.0001; R
2 

= 0.74) linear 

relationship between the C content of fPOM fraction and total soil respiration was found 

(Figure 4.14). This is in line with Janzen et al. (1992) signifying that the fPOM fraction is a 

useful indicator of labile organic matter.  A positive relationship was expected as the fPOM 

acts as substrates for mineralization of C and N (Haynes, 2005). Another important 

characteristic that contributes to the decomposability of organic material is the C:N ratio 

(Praveen-Kumar et al., 2003).  A significant (P = 0.0011; R
2 

= 0.67) linear relationship was 

also found between the C:N ratio of the crop rotation systems (MMWW, MMW, WBCWBL4 

& WBCWBL1) and soil respiration rates obtained in September (Figure 4.15). The C:N ratio 

of the two crop-pasture systems was significantly lower than the continuous cropping systems 

and resulted in a higher CO2 efflux. The lower the C:N ratio the more decomposable the 

material is (Praveen-Kumar et al., 2003) and this enhances microbial activity and the release 

of nutrients 
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Figure 4.14 Relationship between carbon content (fPOM fraction) and CO2 efflux (September) 

determined in the different treatments.  
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Figure 4.15 Relationship between C:N ratio of the different crop rotation systems and the CO2 efflux 

(September). 

However, contribution of autotrophic root respiration to total amount of CO2 produced from 

soils cannot be ignored (Holt et al., 1990). In order to determine the rate of turnover of 

organic matter (heterotrophic respiration) the contribution of roots to total CO2 release should 

actually be determined. This limits soil respiration rates being an indicator of SOM 

decomposition but Janzen et al. (1992) still found, like in this study, a correlation between the 

light fraction (labile carbon) and soil respiration rates. In four of the treatments (MMWW, 

MMW, WBCWBL4 & WBCWBL1) in this study, wheat was on the field at the time of 

sampling and therefore the effect of root respiration can be neglected. 

4.3.5. Carbon stabilizing mechanisms 

As already shown in this chapter, a large amount (± 90%) of the total SOM is stored in the 

stable mineral fraction due to stabilizing mechanisms operating in the soils. In order to 

elucidate the possible C stabilizing mechanisms responsible for SOC stability it was 

necessary to examine the relationship of the C content of the oPOM and mineral fractions 

with selected soil properties such as aggregate stability, clay content and metal-oxide content. 

Two main possible soil carbon stabilization mechanisms that can contribute to SOM 

stabilization have been considered; (i) physical protection via occlusion in aggregates and (ii) 

chemical interaction with soil minerals (phyllosilicates and metal-oxides). 
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4.3.5.1. Physical protection via occlusion in aggregates 

Spatial inaccessibility of OM in soil aggregates is an important mechanism in controlling 

long-term stabilization of C (von Lützow et al., 2006). Organic matter spatially protected by 

occlusion within aggregates is shielded against decomposition and stabilized due to restricted 

accessibility for microorganisms and their enzymes, and restricted aerobic decomposition due 

to limited oxygen and extracellular enzymes (von Lützow et al. 2006). Aggregation is the C 

stabilizing mechanism most vulnerable to disturbance. 

No relationship was found between total C and aggregate stability in the different treatments 

at the 5-10 cm depth. This indicates that only part of the total soil C is involved in stabilizing 

aggregates. A significant (P < 0.0001; R
2
 = 0.77) linear relationship was thus found between 

the amount of C occluded within aggregates (intra-aggregate carbon) and aggregate stability 

(Figure 4.16). Golchin et al. (1995) found similar trends in their study with a 86% correlation.  

This means that the higher aggregate stability found in the crop-pasture systems compared to 

the 100% crop rotation systems leads to more C being stabilized within soil aggregates. The 

natural vegetated soil had the highest C content in the oPOM fraction of all the treatments 

due to the significant higher aggregate stability compared to the agricultural soils.  Due to the 

weak aggregation of these soils, only a small part of total C (0.4-2.4%) was occluded within 

aggregates and therefore only contributes a very small proportion to total C content. Physical 

protection via occlusion in aggregates is therefore not a dominant C stabilizing mechanism in 

these soils.  

 

Figure 4.16 Relationship between carbon occluded within aggregates and aggregate stability (%). 
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4.3.5.2. Chemical interaction with mineral particles 

The clay mineral composition of the soil was dominated mainly by kaolinite, illite and quartz 

(Figure 3.9). Mineralogy plays an important role in the accumulation of SOC as it defines the 

capacity of soil minerals to adsorb and protect organic C through different stabilizing 

mechanisms (Krull et al., 2003; Kaiser & Guggenberger 2003; Mikutta et al., 2007). Each 

mineral matrix has a unique and limited capacity to stabilize organic matter (Baldock & 

Skjemstad, 2000) as it largely depends on the specific surface area (SSA) available for 

sorption (Kaiser & Guggenberger, 2003) as well as on the surface charge characteristics of 

the mineral. 

Kaolinite is a 1:1 clay mineral with no permanent charge and a low specific surface area 

(SSA) (6-39 m
2
g

-1
) (Dixon 1977) and therefore this mineral has a low capacity to adsorb 

SOM. Quartz which is also known for having a very low SSA was reported by Nciizah & 

Wakindiki (2012) to have a strong negative relationship (R
2
 = 0.74) with SOM while they 

found a significant relationship (R
2
 = 0.83) between hematite and SOM. Hematite has a high 

SSA (45 to 110 m
2
 g

-1
) (Fontes & Weed 1996) that results in higher adsorption of SOM 

(Baldock & Skjemstad, 2000). According to Robert & Chenu (1992) the specific surface area 

of illite ranges between 50-100 m
2
g

-1
. Surface charge also varies among clay type. For 

kaolinite and sesquioxides the net surface charge is pH-dependent and becomes more 

negative with increasing pH while illite (2:1 clay mineral) has a permanent negative charge 

(isomorphic substitution) and is largely unaffected by pH. The cation exchange capacity of 

kaolinite range between 3-15 cmolckg
-1

 while illite has a cation exchange capacity of 10-40 

cmolckg
-1

 at pH (H2O) 7. Due to the low exchange capacity, sorption of SOM on kaolinite 

and illite will mainly take place at the broken edges of these minerals while Fe-oxides will 

also contribute considerably to the sorption of SOM in these soils. 

The relative proportion of C associated with the mineral fraction increased with soil depth 

(section 3.3.1). Carbon sorbed to mineral surfaces (sesquioxides and clay minerals) is 

effectively stabilized (turnover times up to millennia) due to strong organo-mineral bonds. 

This reduces their susceptibility towards oxidative attack and also lowers their bioavailability 

(Kӧgel-Knabner et al., 2008). Long-term stabilization or preservation is thus determined by 

the interaction with mineral surfaces (Kӧgel - Knabner et al., 2008). 

In this study a significant correlation has been found between mineral C and clay content (P < 

0.0001; R
2 

= 0.74) as well as mineral C and Fe-oxide content (P = 0.0005; R
2
 = 0.57) in the 5-
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10 cm depth (Figure 4.17 & 4.18 respectively). According to Eusterhues et al. (2003); Kalbitz 

et al. (2005); Mikutta et al. (2006) and Wagai & Mayer (2007) iron oxides play an important 

role in stabilizing SOM through sorption while illite and kaolinite, the two dominant clay 

minerals, also seems to contribute significantly to the stabilization of C in the soils 

investigated here. With increasing clay content, the amount of organic C associated with the 

mineral fraction increased whereas the amounts of C stored in the oPOM and fPOM fractions 

were not related to soil clay content. The mineral fraction represent a significant fraction of 

the total SOM, depending on the soil particle size distribution due to strong bonds formed 

with clay minerals while weak bonds are formed with sand particles (von Lützow et al., 

2007). 

 

Figure 4.17 Relationship between mineral carbon and clay content (%). 
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Figure 4.18 Relationship between mineral carbon and Fe-oxide content (%). 

Organic matter can be bound to mineral surfaces through various mechanisms that can be 

considered for chemical interaction of OM with mineral particles (vӧn Lutzow et al., 2006). 

The major mechanisms by which organic matter adsorb onto minerals are: (i) displacement of 

surficial hydroxyl/water groups of minerals by organic functional groups (i.e., ligand 

exchange), (ii) cation-mediated bridging of OM to permanently negative-charged siloxane 

surfaces or to hydroxyls of phyllosilicates and oxides (cation bridging), and (iii) van der 

Waals interactions (vӧn Lutzow et al., 2006; Mikutta et al., 2007). According to Mikutta et al. 

(2007) organic matter is more resistant to mineralization if it is bound to minerals by ligand 

exchange compared to van der Waals forces and cation-bridges. In this study, the possible 

stabilizing mechanisms involved between minerals and organic matter will only be discussed 

built on theoretical assumptions which is based on the mineralogy of the soil and therefore 

the research of other authors. 

Ligand exchange, Cation-bridging and Weak interactions  

Anion chemisorption occurs on soil minerals that possess surface hydroxyl groups. Oxides 

and hydroxides of Fe, Mn and Al and edge sites of silicate clays are the most important 

minerals in this regard. Silicate clays such as kaolinite as well as oxides possess little or no 

permanent charge and for these minerals “edge” sites is very important (McBride, 1994). 

These soils are dominated by low activity clays (illite and kaolinite) and sesquioxides 
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resulting in a low cation exchange capacity. This causes ligand exchange being the dominant 

mechanism by which OM bind on the edges of kaolinite and illite and also on sesquioxides. 

Chorover & Amistadi (2001) observed that high molecular weight aromatic constituents were 

preferentially sorbed to Fe-oxides (goethite) through ligand exchange. Gu et al. (1994) also 

found that organic matter was strongly sorbed to Fe-oxides via ligand exchange reactions and 

was the dominant interaction mechanism in acidic or slightly acidic conditions. Mikutta et al. 

(2007) found that 92% of forest floor organic matter interacted with goethite via ligand 

exchange at pH 4. Thus, ligand exchange occurs mostly in acid soils, rich in oxides according 

to several authors. However, the isoelectric points (i.e.p) for goethite is pH 8.4. This means 

that at the current soil pH (± 7), goethite is still net positively charged (Chorover & Amistadi, 

2001). Appel et al. (2003) also determined using three different techniques that the point of 

zero charge (p.z.c) for synthetic goethite ranged between 7.4 and 8.2. Anion sorption varies 

with pH, generally increasing with pH and reaching a maximum close to pKa for anions 

(Sparks, 2003). At pH of about 6-7, which is found in these soils, the carboxyl group will be 

deprotonated (COO
-
). The dissociated functional group (carboxylate, R-COO

-
) will thus be 

strongly attracted to the positive charged iron oxides (Chorover & Amistadi, 2001). Sorption 

of organic matter to Fe-oxides is very strong as only poor desorbability of OM bound to 

goethite was found, even under strong alkaline conditions (Kaiser & Guggenberger, 2007). 

 

For kaolinite the point of zero charge (p.z.c.) was determined to average below pH 5 using 

different techniques (Appel et al., 2003) while Hussain et al. (1996) found that illite has p.z.c. 

at pH 2.5. According to Hussain et al. (1996) illite and kaolinite are negatively charged over 

the range from pH 2.5-11. This means that at the broken edges of the kaolinite and illite the 

functional groups such as O and OH will be deprotonated at soil pH causing the minerals to 

be negatively charged. However, maximum anion sorption still takes place close to the pKa 

values of the anions as was shown by Sparks (2003), irrespective of the negative charge on 

the broken edges of the minerals. 

Cation bridging is the complexation of carboxyl groups of organic matter with surface bound 

polyvalent cations (Mikutta et al., 2007).  Mikutta et al. (2007) found that sorption of OM on 

vermiculite (high cation exchange capacity) was mainly (78%) due to formation of Ca
2+

 

bridges while OM on goethite (low cation exchange capacity), as mentioned previously, was 
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mainly sorbed through ligand exchange. Due to the low exchange capacity of the dominant 

minerals in these soils, it is expected that cation bridging is not the prevailing mechanism 

operating in these soils. The clay minerals do not possess the capacity to adsorb large 

amounts of cations (Ca
2+

, Mg
2+

, Al
3+

, Fe
3+

) on their surfaces, and these cations can thus not 

sufficiently act as a bridge between the OM and clay minerals. Cation bridging will most 

likely play a minor role in the sorption of OM on minerals.  

Van der Waals interactions of OM with mineral surfaces are more favourable at low pH when 

the functional groups of OM are protonated and the ionisation of carboxyl groups is inhibited 

(von Lützow et al., 2006). Organic matter bound via non-columbic interactions to minerals is 

easier to desorb and has a larger bioavailability. Kaolinite which is a non-expandable layer 

silicate doesn’t have layer charge on its surface and therefore only weak-bonding affinities. A 

linkage between molecule and minerals with very low layer charge can be formed via 

hydrogen bonding (van der Waals forces) (Quiquampoix et al., 1995). Weak interactions can 

thus contribute to the sorption of OM on especially kaolinite surfaces but as mentioned, van 

der Waals interactions are more relevant in acidic and high-ionic strength soils. 

Therefore, ligand exchange on the edge sites of kaolinite and goethite will most likely be the 

dominant carbon stabilizing mechanism operating in these soils. This corresponds with the 

significant correlation found between mineral carbon and the clay and Fe-oxide content. 

4.4. Conclusion 

Soil organic matter (SOM) and its different functional pools play an important role in 

contributing to a sustainable soil and optimizing crop production through an improvement in 

soil quality. The proportion of each pool to total SOM as well as the primary role that each 

pool plays in contributing to specific soil properties have been investigated in this chapter. 

The C stabilization mechanisms operating in these soils have also received a lot of attention 

in order to understand the relative importance of management practices and soil properties on 

soil C stabilization and therefore soil sustainability. A sustainable soil of high quality is vital 

to ensure food security due to an increasing population expected in the next few decades, 

especially in a developing country like South Africa. 

After isolation of total SOM into its different pools it was found that the mineral fraction 

contributes on average ± 90% to total SOM in the different treatments. The content of organic 

C in the mineral fraction ranged between 11 and 18.7 g C kg
-1

 between the different 

treatments in the 5-10 cm layer with the MMWW treatment containing the highest C content 
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in this fraction. The results obtained also support the fact that the C in the mineral fraction 

determines the total C content of these soils. The large contribution of mineral C to total C 

content in all of the cultivated treatments is promising as it shows that conservation 

agriculture is most likely contributing to a sustainable system. Carbon in this fraction is 

stabilized by clay minerals and this leads to long-term preservation in the soil. The cultivated 

treatments also compared well with the natural vegetated soil in terms of C accumulation in 

this fraction. However, lower input of OM in agricultural soils compared to the natural 

vegetated soil can also lead to a preferential loss of organic C from fPOM fraction. This 

increases the proportion of C bound to minerals in the cultivated treatments. The low C:N 

ratio (below 10) of the material in the mineral fraction in all of the treatments shows that it is 

dominated by humified organic matter. This is an indication of an active microbe population 

present in these soils as the microbes have the ability to break down the plant residues added 

to the soil into humus. The breaking down of plant material into humus leads to the release of 

important nutrients through mineralization. The humus contributes to soil quality by adding 

to the cation exchange capacity of the soil. Humus contains a lot of exchange sites and can 

therefore hold onto more nutrients. By enhancing the CEC, the efficiency of added fertilizers 

is increased.  

The fPOM fraction contributed on average between 4-13% to total C content with a C:N ratio 

ranging between 13 and 22, an indication that this fraction is an intermediate pool between 

plant residues and humified organic matter.  Although only a small fraction, it plays an 

important role in promoting certain soil functions. The C and N content in the fPOM fraction 

differed significantly between the different treatments. This fraction is known to be a 

sensitive indicator of total SOM that responds quickly to changes in management practices. 

The lucerne, MMW, MMWW and natural treatment contained higher C contents than the two 

100% crop rotation systems (WBCWBL4 & WBCWBL1). This is mainly attributed to fewer 

disturbances in these treatments as well as to higher belowground biomass, especially of 

medic roots which was found to have a high fine root density in the 0-10 cm depth. Although 

no-tillage is applied, the first 10 cm of the soil is still disturbed and exposed to oxidative 

conditions during planting leading to higher mineralization rates in the two 100% crop 

rotation systems. The lucerne and two crop-pasture systems (MMW & MMWW) contained 

significantly higher N content in the fPOM fraction compared to the other treatments and 

shows the ability of legumes to fix N. The lucerne and medics residues are high in N and 

therefore add a lot of N to the soil. The fPOM fraction affects soil quality by enhancing 
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microbial activity since the SOM in this fraction is easy accessible for microbes and the C an 

important source of energy. This was confirmed as a significant correlation (R
2
 = 0.74) was 

found between C content and soil respiration rates as it is assumed that a higher soil 

respiration rate is partly due to a higher microbial activity (heterotrophic respiration).  The 

lower C:N ratio in the lucerne, MMW and MMWW treatments also enhance microbial 

activity and nutrient availability. The fPOM fraction is enriched with nutrients (active source 

of N) and therefore contributes to the nutrient reserve capacity of the soil. The active 

microbes use the C for body maintenance and as energy to get hold of N for their own use 

and also to mineralize the extent N to plant available N (inorganic form). In the lucerne, 

MMW and MMWW treatments more N will be plant available (mineralized) due to higher N 

content and this can lead to better yields and yield quality. Higher yields observed in the 

MMW & MMWW treatments compared to the 100% crop rotation systems, with significant 

correlation found between yields and N content, confirmed this statement. 

As reflected by the soil’s weak extent of aggregation, the oPOM fraction only contributed 

between 0.4 and 2.4% of total C content. Due to no disturbance and grazing, the natural 

vegetated soil had the highest aggregate stability and also contained the highest proportion of 

C in the oPOM. A higher aggregate stability can lead to better structure, better soil porosity 

and therefore better soil water holding capacity. This is an important aspect in dryland 

production in semi-arid regions. Of all the cultivated treatments, the MMWW treatment 

contained the highest C in the oPOM fraction due to a higher aggregate stability.  

The dominant C stabilization mechanisms operative in these soils was also established. The 

two main mechanisms that were investigated was physical protection via occlusion in 

aggregates and chemical interaction with minerals. A significant correlation was found 

between C occluded in aggregates (oPOM fraction) and aggregate stability with intra-

aggregate C increasing with increasing aggregate stability. This confirms that more C is 

protected against decomposition in soils with higher aggregate stability and it also shows the 

effect of C on aggregation. A significant correlation between mineral C (mineral fraction) and 

clay and Fe-oxide content was also found in these soils which are partly responsible for the 

large contribution of the mineral-associated C fraction to total C. Thus the dominant 

stabilization mechanism operative in these soils is mineral stabilization. Due to presence of 

mainly low activity clays in these soils, it was concluded, that organic matter is dominantly 

sorbed to minerals via ligand exchange resulting in very strong organo-mineral associations. 
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From results obtained in this study, it can be concluded that amount of C stored in these soils 

is partly due to conservation agriculture practices applied and partly due the mineralogy and 

texture of the soil. Conservation agriculture causes favourable conditions for microbial 

activity which is responsible for the decomposition of plant residues into humus. The humus 

is then stabilized by the clay minerals (clay content and mineralogy) in the soil, properties 

that can’t be affected by management practices. Therefore, both management practices and 

soil properties contribute to soil C sequestration, consequently soil sustainability. The 

MMWW treatment had the highest C and N content in the fPOM fraction, highest C content 

in the oPOM fraction and the highest C content in the mineral fraction of all the crop/pasture 

systems investigated in this study. This can be attributed to both the higher clay content in 

this treatment as well as the effect of the higher wide C:N above-ground inputs (wheat) and 

higher annual below ground inputs (wheat and medics). The lower frequency of physical 

disturbance due to planting in this cropping system also plays an important role (50 % 

medics, 50 % wheat). 

I agree with Garcίa-Préchac et al. (2004) that better soil quality is the main reason for higher 

crop yields obtained in the crop-pasture systems compared to the 100% crop rotation systems. 

From results obtained in this study via fractionation of total SOM into different functional 

pools a better soil quality is mainly attributed to higher C and N contents in the fPOM 

fraction. This fraction plays an important role in specific soil functions. Due to the sensitivity 

of the fPOM fraction, valuable information was obtained regarding the effect of different 

crop rotation systems on SOM.  It is clear that belowground inputs through roots (quantity 

and quality), the extent of disturbance of the soil and the constant use of legumes (medics or 

lucerne) in rotation systems are all vital factors controlling C and N content in the fPOM 

fraction. Biederbeck et al. (1994) stated that C and N content in the POM fraction may 

provide an early indication of future trends in OM response to cropping systems.  
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CHAPTER 5  

GENERAL CONCLUSION AND FUTURE RESEARCH 

Substantial increases for global food demand pose a huge challenge for producing enough 

food over the long-term. Application of conservation agriculture becomes vital as it has great 

potential to sequester C that can result in positive effects on soil quality, sustainability and 

productivity. To enhance soil quality and sustainability it is not only important that the soil 

contains enough total soil organic carbon (SOC), but the SOC content in the different 

functional pools (fractions) also plays an important role. Previous studies carried out in South 

Africa focused mainly on the effect of management practices on total SOC. It didn’t provide 

any indication on the proportion of the SOC that is actually active or stabilized by association 

with the mineral fraction.  

The first objective of this research project was to examine the long-term effect (11 years) of 

different crop/pasture rotations under no-tillage on total SOC storage. A further aim was to 

examine the relationship between the extent of SOM sequestration and crop yields. The main 

objective of this study was to investigate the effect of long-term no-till crop rotation practices 

on the C and N content and distribution in the SOM functional pools. This involved the 

fractionation of total SOM, using density fractionation, in order to investigate the role of each 

fraction in soil quality as well as the mechanisms by which C is stabilized. 

The most significant effects of no-till crop/pasture systems on total SOM and its functional 

pools were found in the top 10 cm of the profile. After 11 years the inclusion of medic 

pastures in rotation with wheat (MMW and MMWW) had the highest total SOC content 

(15.2 - 18.6 g kg
-1 

in 0-30 cm depth, P < 0.05), compared to the continuous cropping (13.3 - 

14.1 g kg
-1

 in 0-30 cm depth), permanent lucerne pasture (15 g kg
-1

) or natural vegetated soil 

(13.2 g kg
-1

). An average decrease of 52 % in total C content was observed from the 0 - 5 cm 

depth to the 20 - 30 cm depth emphasizing the importance of the first few centimetres in 

these soils for SOC sequestration. Coarse fragments were found to have a significant diluting 

effect on the amount of SOC stocks stored.  

Higher belowground C inputs through roots (quantity and quality) and the lower extent of 

disturbance in the 0-10 cm depth are the main reasons for higher total C content in the crop-

pasture systems compared to the other systems. The lower rate at which C increased in the 

lucerne treatment (0.38 g kg
-1

 year
-1

) compared to the crop-pasture systems (0.7 - 0.78 g kg
-1

 

year
-1

) since 2003, is most likely due to lower belowground inputs of C through roots. 
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Although lucerne has a higher root density than medics, medics is able to re-establish from 

seed annually and leads to the formation of new roots again (i.e. higher C inputs). Lucerne on 

the other hand becomes dormant in winter and roots grow less actively. The continuous input 

of only lucerne residues with a low C:N ratio also means it is more easily decomposable, 

leading to a lower soil C content. A fairly strong linear relationship was also found between 

clay content and total SOC (R
2
 = 0.60) indicating that the higher clay content in the MMWW 

treatment could play an important role in SOC accumulation in these soils. Aggregate 

stability had no significant effect on the total SOC content. 

The contribution of the fPOM fraction to total C content in the cultivated treatments (6-9%) 

was lower than the natural vegetated soil (13%) in the 5-10 cm depth. Although only a 

relatively small fraction, it plays an important role in promoting certain soil functions 

(microbial activity and reserve nutrient capacity) and thereby contributing to soil quality. 

This fraction is the most sensitive pool of organic C and N to detect changes in total SOM 

due to effect of management practices (quantity and quality of OM inputs, extent of 

disturbance, fertilization). The medic-wheat rotations had the highest C (1.37 - 1.74 g kg
-1

 in 

5-10 cm depth) and N (0.107 - 0.110 g kg
-1

 in 5-10 cm depth) contents in the fPOM fraction 

of the cultivated treatments. The C content in the fPOM fraction correlated positively with 

soil respiration rates (R
2
 = 0.74). This C is easy accessible for microbes and therefore, 

together with high N content (low C:N ratio) enhance microbial activity. The fPOM fraction 

is also enriched with nutrients and contributes to the nutrient reserve capacity of the soil.  

Compared to the natural vegetated soil, the cultivated treatments had a lower C content in the 

oPOM fraction due to a lower aggregate stability. On average, the oPOM fraction only 

contributed 0.4-2.4 % to total C content at all sites. A significant positive correlation (R
2
 = 

0.77) was found between C occluded in aggregates (oPOM fraction) and aggregate stability, 

with the highest aggregate stability found in the medic-wheat rotations of the cultivated 

treatments. Aggregate stability is an important soil physical property as it contributes to a 

higher soil water holding capacity.  

The major part (85-93%) of the total SOC was associated with the mineral fraction (stable 

fraction) in the natural vegetated and agricultural soils. The total C content was thus mainly 

determined by the C content in the mineral fraction. The MMWW treatment contained the 

highest C content (18.7 g kg
-1

, 5-10 cm depth) in the mineral fraction and the two continuous 

cropping systems the lowest (14.2-14.7 g kg
-1

, 5-10 cm depth) of the cultivated treatments. A 

significant positive correlation was found between mineral-associated SOC fraction and clay 
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and Fe-oxide content which contributes to the large proportion of total SOC accumulated in 

the mineral fraction. The C:N ratios of the fractions decreased in the order fPOM > oPOM > 

mineral with a C:N ratio below 10 in the mineral fraction indicative of humified organic 

matter. The humus contributes to soil quality by adding to the cation exchange capacity of the 

soil as humus contains a lot of exchange sites that can hold onto nutrients and thereby 

increases the efficiency of added fertilizers. 

The organic matter is most likely predominantly sorbed to the minerals through ligand 

exchange on the edge sites of kaolinite, illite and on iron oxides resulting in very strong 

organo-mineral associations. Long-term stabilization or preservation of C in these soils is 

dominantly determined by the interaction with mineral surfaces. Physical protection via 

occlusion in aggregates is not a dominant C stabilizing mechanism in these soils.  

The MMW and MMWW treatments produced higher wheat yields in 2012 compared to the 

continuous cropping systems with significant correlations found between total C and N and 

yields obtained. However, according to Lal (2006), an increase in crop yields due to an 

increase in the SOM pool is mainly related to an increase in the labile fraction (fPOM). This 

is consistent with findings in this study. In a higher quality soil, higher agronomic production 

is expected. 

Results of this study can thus now be used to predict how different dryland crop/pasture 

rotations under conservation tillage (no-tillage) affect the SOC content of the arable land in 

the grain production area of the Overberg. Through fractionation of total SOM into different 

functional pools, it is now known that the MMWW treatment contributed the most to soil 

quality. This can be attributed to both the cropping system (C input and extent of disturbance) 

as well as the soil properties. The MMWW treatment had the highest total SOC content, 

which included highest labile C and N content and highest stable C content. 

 

 

Future Research  

Research on the application of conservation agriculture (no-tillage and crop rotation) in South 

Africa is relatively new and therefore further research is necessary to build a strong scientific 

database. This would greatly contribute in facilitating the effect of different crop rotations 

under no-tillage on SOC in different climate and soil types. Research on the effect of 

conservation agriculture on C storage in the shallow shale derived soils of the Overberg has 
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now been widely covered in this study. However, similar studies is still needed in other 

dryland grain production areas of the Western Cape e.g. Swartland where farmers are also 

extensively switching over to conservation agriculture, but the effect of these practices on the 

maintenance and improvement of the soil organic C (SOC) content is still unknown. A lot of 

grain farmers in the Overberg are also extensively starting to apply a rotation system of 5/6 

years lucerne followed by 5/6 years of different cash crops under no-tillage. There is thus still 

a gap in knowledge on how this rotation system would compare with MMW, MMWW and 

100% continuous cropping systems in terms of SOC accumulation and stabilization. This will 

only be known when the different SOC functional pools are investigated. 

Crop rotation and the integration of livestock production from pastures into crop rotation 

systems have been widely adopted by several grain farmers. This result in lower economic 

risk to grain farmers due to the unpredictable rainfall pattern that can lead to low crop yields. 

However, some concerns rose about the effect of livestock on the amount of C input of 

pasture residues and therefore the effect of grazing on the SOC content. In this study, the 

medic was subjected to grazing yet the MMWW and MMW crop-pasture systems still 

showed the highest total soil C content increase since the start of the experiment in 2002 and 

produced the highest wheat yields. It will be interesting to compare the effect of allowing and 

not allowing sheep to graze the pastures in crop-pasture rotation systems on SOC dynamics 

and yields. According to findings in this study, medics mainly contributed to soil C content 

through its roots. 

Lastly, many grain farmers are still critical about the application of conservation practices, 

especially in the shallow, stony soils which is found in great parts of the Swartland and 

Overberg regions. It is therefore recommended that a study is carried out comparing the SOM 

functional pools under conventional and conservation practices which will provide valuable 

information regarding the effect of only management practices on SOM functional pools. 

This would exclude the effect of soil mineralogy and texture on the mineral fraction and a 

stronger conclusion about the effect of conservation practices on the mineral fraction can be 

drawn than was possible from this study. 
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APPENDIX 

 

Soil description, additional data and correlations 

1. Soil descriptions 

 

GLENROSA (Gs) SOIL FORM 

Orthic A-horizon 

Lithocutanic B-horizon 

 

Soil Family 

2000 A-horizon bleached 

2100 B1-horizon not hard  

 2110 No signs of wetness in B1 

 2111 Non-calcareous B1 

Parent material: shale 

Slope: 3 - 5 %  

Slope form: convex 

Aspect: East 

Terrain unit: middle to lower footslope 

Altitude: 184 m

 

Soil form and family: Gs 2111 (Overberg) 

Glenrosa soil form consists of an Orthic A horizon overlying a Lithocutanic B horizon. The 

depth of the A-horizon is ± 200 mm and is bleached as it meets the criteria of an E-horizon 

(Dry state: 10 YR 6/4). The A-horizon has a clay content of 20 - 25 % (loam). The 

lithocutanic B horizon consists of weathered rock (saprolite) but was not hard and had no 

signs of wetness (no pedogenic mottles) with a clay content of 25 - 30 % (loam/clay loam). 

The B-horizon was also non-calcareous with the colour of this horizon in the dry state; dry 

colour: 10 YR 5/6 (yellowish brown) and moist state; moist colour: 10 YR 4/6 (dark 

yellowish brown). A lithocutanic B horizon is recognized with respect to its structure, colour 

or consistence which still has distinct affinities with the parent rock. Furthermore, it grades 

into relatively unaffected and, eventually fresh rock, sometimes at very shallow depths. A 

0 

200 mm 
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lithocutanic B horizon differs from the neocutanic B by containing saprolitic material (Soil 

Classification Working Group, 1991). 

 

OAKLEAF (Oa) SOIL FORM 

Orthic A 

Neocutanic B 

 

Soil Family 

2000 A-horizon bleached 

 2100 Non-Red B-horizon 

 2120 Luvic B1-horizon 

Parent material: shale 

Slope:  5 - 7 %  

Slope form: convex 

Aspect: east 

Terrain unit: lower footslope 

Altitude: 163 

 

Soil form and family: Oa 2120 (Patrysdal) 

Oakleaf soil form consists of an Orthic A horizon overlying a Neocutanic B horizon on 

unconsolidated material without signs of wetness. The depth of the A-horizon is ± 200 mm 

and is bleached as it meets the criteria of an E-horizon (Dry state: 10 YR 5/3) and has a clay 

content of 15 - 20 %. The Neocutanic B horizon is a luvic non-red B-horizon (clay content 

20-25 %) and the material is subjected to hard setting. The colour of this horizon in the dry 

state; 10 YR 5/8 dry colour (yellowish brown): and moist state; moist colour: 10 YR 4/6 

(dark yellowish brown). Materials in which Neocutanic B horizons are formed is usually of 

alluvial or colluvial origin and is found on certain landscape positions e.g. a footslope.  

 

0 

200 mm 
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2. Additional data 

 

Figure A1 The soil pH (KCl) for the different crop rotation systems and natural vegetated soil in the 

four sampling depths. 
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Table A1 General Soil Characteristics 

Treatment Depth pH(H20) pH(KCl) 
Exchangeable Cations (cmolc/kg) 

 
 

Ca Mg Na K H Al ECEC value (cmolc/kg) BS (%) 

Lucerne 

0-5 7.17 6.36 8.151 1.380 0.177 1.657 0.077 0.167 11.61 97.9 

5-10 6.87 6.05 5.676 1.374 0.220 1.219 0.073 0.167 8.73 97.3 

10-20 7.14 6.22 5.839 2.145 0.303 0.817 0.062 0.17 9.33 97.6 

20-30 7.15 6.16 4.525 2.888 0.738 0.597 0.062 0.167 8.98 97.5 

Natural 

0-5 6.33 5.49 nd nd nd nd nd nd nd nd 

5-10 6.83 5.93 2.645 2.910 1.021 0.567 0.098 0.2 7.44 96 

10-20 7.43 6.43 nd nd nd nd nd nd nd nd 

20-30 7.71 6.67 nd nd nd nd nd nd nd nd 

MMW 

0-5 7.39 6.75 nd nd nd nd nd nd nd nd 

5-10 6.90 6.22 6.354 1.015 0.232 1.287 0.077 0.125 9.09 97.8 

10-20 6.44 5.68 nd nd nd nd nd nd nd nd 

20-30 6.46 5.52 nd nd nd nd nd nd nd nd 

WBCWBL4 

0-5 7.43 6.7 7.569 1.407 0.151 1.111 0.080 0.1 10.42 98.3 

5-10 6.94 6.14 6.238 1.234 0.188 0.946 0.060 0.067 8.77 98.2 

10-20 6.37 5.50 4.641 1.638 0.252 0.453 0.057 0.183 7.22 96.7 

20-30 6.79 5.56 4.608 1.692 0.271 0.460 0.063 0.133 7.23 97.3 

WBCWBL1 

0-5 7.66 7.0 nd nd nd nd nd nd nd nd 

5-10 7.25 6.54 7.319 1.429 0.238 0.979 0.065 0.133 10.1 98.7 

10-20 6.57 5.77 nd nd nd nd nd nd nd nd 

20-30 6.64 5.62 nd nd nd nd nd nd nd nd 

MMWW 

0-5 7.35 6.84 nd nd nd nd nd nd nd nd 

5-10 7.13 6.51 8.700 1.843 0.180 1.185 0.067 0.1 12.07 98.6 

10-20 6.86 6.13 nd nd nd nd nd nd nd nd 

20-30 6.97 6.16 nd nd nd nd nd nd nd nd 
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Table A2 Fe-oxide content (%) obtained per depth in the different treatments. 

Treatment Depth Fe-oxide (%) 

Lucerne 

0-5 1.7 

5-10 2.0 

10-20 2.1 

20-30 2.5 

MMW 5-10 2.2 

MMWW 5-10 2.5 

WBCWBL4 

0-5 1.9 

5-10 2.1 

10-20 2.1 

20-30 3.2 

WBCWBL1 5-10 2.3 

Natural 5-10 1.6 

 

Table A3 Average Total Soil C and N distribution and C:N ratio with depth between treatments. 

Treatment Depth 
Total C 

(%) 

Total N 

(%) 
C:N 

Lucerne 

0-5 2.20 0.27 8.14 

5-10 1.77 0.20 9.00 

10-20 1.34 0.17 8.04 

20-30 1.16 0.14 8.45 

Natural 

0-5 2.44 0.21 11.82 

5-10 1.37 0.14 10.15 

10-20 1.06 0.11 9.97 

20-30 1.00 0.13 7.89 

MMW 

0-5 2.23 0.23 9.63 

5-10 1.78 0.19 9.47 

10-20 1.39 0.17 8.25 

20-30 1.15 0.13 8.73 

WBCWBL4 

0-5 1.97 0.18 10.69 

5-10 1.59 0.16 9.98 

10-20 1.35 0.13 10.33 

20-30 0.86 0.12 7.02 

WBCWBL1 

0-5 2.09 0.22 9.43 

5-10 1.80 0.18 9.91 

10-20 1.32 0.16 8.18 

20-30 0.96 0.12 8.18 

MMWW 

0-5 2.83 0.30 9.37 

5-10 2.28 0.25 8.96 

10-20 1.65 0.17 9.48 

20-30 1.38 0.16 8.40 
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Figure A2 Significant differences (indicated by different alphabetic letters) found in C content 

between the different treatments 

Table A4 C stocks obtained in both the bulk soil and fine fraction of the different treatments in each 

depth. 

C stocks (Mg ha
-1

) 
    

  

   

Treatment 
 

Depth (cm) 

0-5 5-10 10-20 20-30 Total (0-30) 

Bulk 

soil 

Fine 

fraction 

Bulk 

soil 

Fine 

fraction 

Bulk 

soil 

Fine 

fraction 

Bulk 

soil 

Fine 

fraction 

Bulk 

soil 

Fine 

fraction 

Lucerne 13.52 16.56 9.49 12.70 15.53 20.20 9.69 15.28 47.02 63.44 

MMW 12.06 16.14 9.76 13.55 13.36 22.42 10.57 18.14 45.73 70.22 

MMWW 12.50 18.74 10.52 15.42 14.43 22.86 10.56 17.72 48.08 74.89 

WBCWBL4 9.04 12.82 7.19 10.53 13.26 19.72 6.42 11.59 35.92 54.66 

WBCWBL1 10.02 14.53 8.45 12.36 13.03 19.00 7.17 12.99 38.66 58.87 

Natural 14.99 16.85 8.41 10.33 13.94 17.06 11.38 10.33 48.72 60.46 

 

Note: The term bulk soil (coarse + fine fraction) refers to the C stocks obtained including the coarse fragments 

while the term fine fraction (< 2mm) refers to C stocks obtained excluding the effect of coarse 

fragments 

 

 

 

 

Table A5 Root density (kg m
-3

) of the different crops in the specific depths. 

Treatment Canola wheat lupin barley medics lucerne 
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0-5 7.165 4.918 6.421 5.012 6.220 8.300 

5-10 4.895 4.579 4.774 4.173 6.179 7.275 

10-20 2.974 3.250 2.455 2.129 2.800 5.384 

20-30 2.257 3.348 2.752 1.817 2.069 4.046 

 

Table A6 Carbon and Nitrogen composition of roots and shoots of the different crops. 

Crop 
Aboveground (Shoots) Belowground (Roots) 

Combine (Roots + 

Shoots) 

C (%) N (%) C: N C (%) N (%) C: N C:N 

Lucerne 43.72 3.96 11 41.91 2.08 20 16 

Medics 42.94 2.48 19 40.58 1.83 26 23 

Barley 40.98 0.6 73 38.5 0.80 58 66 

Wheat 42.9 0.3 165 39 0.75 70 114 

Canola 44.19 0.26 162 42.75 0.39 113 138 

Lupin 42.9 0.63 71 42 1 49 60 
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Table A7 Soil respiration or CO2 efflux determined in September 2012 and March 2013. 

Treatment 
September 2012 March 2013 

g C m
-2

 day
-1

 g C m
-2

 day
-1

 

A (MMW) 1.463 0.705 

B (MMW) 1.089 0.986 

C (MMW) 1.345 0.835 

Ave 1.299 0.842 

A (WBCWBL4) 1.061 0.749 

B (WBCWBL4) 0.998 0.744 

C (WBCWBL4) 1.063 0.833 

Ave 1.041 0.775 

A (WBCWBL1) 0.801 0.639 

B (WBCWBL1) 0.996 0.736 

C (WBCWBL1) 1.075 0.726 

Ave 0.958 0.700 

A (MMWW) 1.307 0.908 

B (MMWW) 1.219 0.874 

C (MMWW) 1.229 0.767 

Ave 1.252 0.850 

A (LUCERNE) nd 1.313 

B (LUCERNE) nd 0.973 

C (LUCERNE) nd 0.979 

Ave nd 1.088 

A (Natural) 1.491 1.177 

B (Natural) 1.607 1.268 

C (Natural) 1.952 0.895 

Ave 1.683 1.113 

 

Table A8 C: N ratio of the different pools (fractions) and bulk soil in the different treatments at 5-10 

cm depth. 

  Lucerne MMW MMWW WBCWBL4 WBCWBL1 Natural 

fPOM 12.6 a 12.9 a 15.4 a 21.8 b 21.1 b 22.1 b 

oPOM 13.4 a 11.2 a 12.9 a 14.9 a 15.2 a 22.4 b 

Mineral 8.7 b 7.7 a 8.7 ab 8.2 ab 8.6 ab 9.0 b 

Bulk (Total) 9.1 c 9.5 bc 9 c 10.9 a 9.9 abc 10.5 ab 

 

Note: Alphabetic letters denote statistical differences between treatments according to Tukey’s Studentized 

Range test at α = 0.05. Similar letters indicate lack of significant differences. 
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3. Additional correlations  

 

 

Figure A3 Relationship effective cation exchange capacity and C content in the fPOM fraction in 5-

10 cm depth. 

 

Figure A4 Relationship between effective cation exchange capacity and carbon content in the oPOM 

fraction in 5-10 cm depth. 
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Figure A5 Relationship between CO2 efflux determined in September and carbon content in the 

mineral fraction in 5-10 cm depth. 
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