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Abstract 

Energy and water consumption performance comparisons are used at a healthcare 

management and policy formulation level when formulating benchmarks and energy 

improvement targets. Normalising for the differences between hospitals is a key part 

of hospital consumption performance comparisons. It ensures that the measures used 

in these comparisons are commensurate, thereby increasing the reliability and 

robustness of the comparisons. Currently, the measures used in these comparisons 

are only normalised for the size of a hospital and are not adjusted to account for the 

inter-hospital differences in the level of medical service provision. 

This study investigated the feasibility of including normalisation factors that are 

representative of the level of medical service provision in the normalisation model 

used to compare the energy and water performance of hospitals. The complexity and 

level of specialisation of the composition of a hospital’s diagnostic caseload and the 

output of a hospital were used to quantify the level of medical service provision at a 

hospital. Measures were also formulated to quantify the size of a hospital. 

Statistically-based modelling methods were used to conduct an exhaustive analysis of 

the relationships between combinations of the normalising factors in the analysis and 

the energy and water consumption of the respective hospitals. Multiple linear 

regression (MLR) models were developed for all the possible combinations of 

normalising factors. These models were used to assess and rank the explanatory 

power provided by each combination of normalising factors in explaining the 

variations in the energy and water consumption of hospitals.  

Based on these MLR analyses and the rankings of the explanatory power provided by 

the respective models, it was concluded that the level of medical service provision of 

a hospital (as represented by its output, complexity and level of specialisation), does 

not significantly contribute to increasing the reliability or robustness of the current 

normalisation model. Furthermore, accounting for the level of medical service 
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provision in the normalisation model would complicate the model without providing 

any significant additional explanatory power or increasing the objectivity of hospital 

consumption performance comparisons.  
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Uittreksel 

Energie- en waterverbruik-prestasievergelykings word gebruik op 'n 

gesondheidsorgbestuurs- en beleidsformuleringsvlak wanneer maatstawwe en 

doelwitte vir energieverbetering geformuleer word. Normalisering vir die verskille 

tussen hospitale is 'n belangrike aspek wanneer hospitaalverbruikverrigting vergelyk 

word. Normalisering verseker dat die maatstawwe wat in hierdie vergelykings gebruik 

word regverdig is, en verhoog dus die betroubaarheid en robuustheid van die 

vergelykings. Tans word daar in die maatstawwe wat in hierdie vergelykings gebruik 

word slegs genormaliseer vir die grootte van 'n hospitaal, en word dit nie aangepas 

om byvoorbeeld die verskille tussen hospitale in die vlak van mediese 

diensverskaffing nie in berekening te bring nie. 

Hierdie studie het ondersoek ingestel na die uitvoerbaarheid van die insluiting van 

normaliseringfaktore wat verteenwoordigend is van die vlak van mediese 

diensverskaffing in die normalisasiemodel wat gebruik word om die energie- en 

waterprestasie van hospitale te vergelyk. Die kompleksiteit en vlak van spesialisering 

van die samestelling van 'n hospitaal se diagnostiese gevallelading en die uitset van 'n 

hospitaal is gebruik om die vlak van mediese diensverskaffing by 'n hospitaal te 

kwantifiseer. Maatstawwe is ook geformuleer om die grootte van 'n hospitaal te 

kwantifiseer. 

Statistiek-gebaseerde modelleringsmetodes is gebruik om 'n volledige ontleding van 

die verhoudings tussen kombinasies van die normaliseringfaktore in die analise en 

die energie- en waterverbruik van die onderskeie hospitale te doen. Meervoudige 

lineêre regressie (MLR) modelle is ontwikkel vir al die moontlike kombinasies van die 

normaliseringfaktore. Hierdie modelle is gebruik om die verklarende krag wat deur 

elke kombinasie van normaliseringfaktore verskaf word te assesseer en te rangskik 

om die variasies in die energie- en waterverbruik van hospitale te verduidelik. 
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Op grond van hierdie MLR-ontledings en die ranglys van die verklarende krag wat 

deur die onderskeie modelle uitgewys word, is daar tot die gevolgtrekking gekom dat 

die vlak van mediese dienslewering van 'n hospitaal (soos mee gebring deur die 

lewering, kompleksiteit en spesialiseringsvlak) nie beduidend bydra tot die 

verbetering van die betroubaarheid of robuustheid van die huidige 

normaliseringsmodel nie. Om die vlak van mediese diensverskaffing in die 

normaliseringsmodel in ag te neem sou die model onnodig kompliseer sonder om 

enige beduidende addisionele verklarende krag te gee, of om die objektiwiteit van die 

vergelykings van hospitaal-verbruikverrigting te verhoog. 
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1 

 Introduction 

This thesis investigated the feasibility of normalising for both the size and function1 

of a hospital when benchmarking the energy and water performance of hospitals. 

Furthermore, the thesis investigated whether this would increase the objectivity of 

hospital consumption performance comparisons. In this chapter, the study is 

introduced by describing the context that created the need for the research. 

Furthermore, the research objectives and methodology are stated, and a chapter 

outline for the thesis is provided. 

  Study background 

The drive for sustainability and efficiency when considering energy and water usage 

in the building sector has resulted in the increased importance of the effective 

management of energy and water resources. Hospitals are complex resource-

intensive facilities, resulting in increased complexities when managing their energy 

and water usage. In addition, differences in the characteristics of hospital buildings 

and variations in the medical services provided by different hospitals have resulted in 

significant differences in energy and water usage between hospitals (MWRA n.d.; 

Szklo et al. 2004). 

Buildings are one of the largest consumers of energy, especially in developing 

countries; for example, they account for 50 percent of the energy used in Brazil, and 

42 percent of the energy used in Botswana (Abu Bakar et al. 2015). In comparison to 

commercial offices, hospitals are twice as energy intensive, and six times as water 

intensive (Rajagopalan & Elkadi 2014). Furthermore, hospital buildings must adhere 

to strict hygiene and air quality requirements and ensure patient comfort. Meeting 

these requirements requires the continuous operation of hospital building services, 

                                                 
1The function of a hospital is represented by its level of medical service provision. 
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which, when coupled with the specialised services that are provided by hospitals, has 

led to high energy and water consumption. 

Energy and water-related expenses are major expenditures for hospitals; third after 

medicine and staff wages (Hu et al. 2004). The resource-intensive nature of hospitals; 

the rising global energy demand, which is projected to be 45 percent higher by 2025 

than it was in 2002 (Abu Bakar et al. 2015); and South Africa’s limited freshwater 

reserves (Thopil & Pouris 2016), have led to increasing economic pressure on the 

health sector to be more sustainable and efficient with its energy and water 

consumption. 

Energy is used in both medical operations and by support services to ensure the 

smooth and seamless operation of all medical activities in a hospital and to maintain 

the health and comfort of both patients and staff. Hospital buildings typically 

comprise of patient wards, operating theatres, an X-ray department, administration 

offices, and an array of support, or auxiliary services, such as a boiler house, 

workshops, laundry rooms, a kitchen, and a dining hall (Gupta et al. 2007). In the 

Western Cape province, heating, ventilation and air conditioning (HVAC) and water 

heating account for 50 percent of the energy consumption in hospitals (WCDEADP 

2008). Furthermore, lighting and medical equipment (general and specialised) are 

also significant consumers of energy, as shown in Figure 1.1. 

 

 

 

 

 

 

In hospitals, water is important for maintaining the health and hygiene of both the 

patients and hospital staff. Water use can be classified into five categories: ablution, 

Water heating
28%

Other
27%

Space 
heating

23%

Lighting 
16%

Office equipment
6%

Figure 1.1: Breakdown of the energy load of a typical hospital (adapted from 

WCDEADP 2008) 
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ingestion, irrigation, process, and sanitation. Figure 1.2 shows a breakdown of the 

water load of a typical hospital. Consumption by each category varies depending on 

the size and function of the hospitals. However, ablution (water use in basins, sinks 

and showers) and process (water used for sterilisation, cleaning, heating and cooling) 

are responsible for 60 to 80 percent of water usage (VDoH 2009). The water usage by 

rehabilitation swimming pools and other support services, such as laundries, is also 

significant; however, the presence of these services is generally limited to large 

hospitals. 

The first step in improving inefficient energy and water usage is to understand how 

and why the resource consumption patterns of hospital facilities vary. By studying the 

flows of energy and water in hospitals and performing system and subsystem-level 

comparisons, inefficiencies can be identified (Abu Bakar et al. 2015). These 

comparisons may be skewed by inter-hospital variations in confounding factors that 

affect the energy and water utilisation in hospitals, thus rendering these comparisons 

inaccurate and unreliable. 

 

 

 

 

 

 

 

The accuracy and reliability of the comparisons can be improved by normalising the 

energy and water consumption data used in these comparisons, for the effects exerted 

by the characteristics of the hospitals and the medical services they provide. Since 

these comparisons are used at a health system-level in a policy-making environment 

as part of decision-support tools, obtaining more objective and robust comparisons 
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Figure 1.2: Breakdown of the water load of a typical hospital (adapted from VDoH 

2009) 
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will aid decision-makers in developing policies that are based on data that reflects the 

actual performance of the respective hospitals.  

This highlights the need for the development of an approach for the normalisation of 

energy and water consumption data against the effects of these factors. In this study, 

this was achieved through identifying confounding factors that result in inter-

hospital variations in energy and water consumption; devising or obtaining a method 

of determining objective measures of these confounding factors in hospitals when 

analysing their performance; and then accounting for the effect of these confounding 

factors in the energy and water consumption comparisons of hospitals. 

  Problem statement 

Currently the benchmarks used for energy and water consumption performance 

analysis are predominantly standardised for hospital size. Consumption is quoted 

with respect to the number of beds (i.e. kilowatt hours per bed per day 

[kWh/bed/day]) or with respect to floor area (i.e. litres per square metres per day 

[L/m2/day]). These approaches do not account for the effect of a hospital’s function2 

on its energy and water consumption performance. Thus, there is a need to identify 

and define measures that are representative of the function of a hospital, and to 

investigate whether accounting for these measures in the formulation of benchmarks 

for energy and water utilisation in hospitals will result in more robust3 comparisons. 

 Research objectives 

The primary aim of this study was to test the feasibility of using a normalisation 

approach that accounts for both the size and function of a hospital when assessing 

energy and water consumption performance. The research objectives were: 

1. To establish a relationship between the inter-hospital variations in the 

characteristics and function of a hospital, and the inter-hospital variations in 

their energy and water consumption performance. 

                                                 
2The function of a hospital is represented by its level of medical service provision. 
3 In this study robustness is defined as the ability to account for a more statistically significant share 
of the variation in the energy and water consumption of hospitals. 
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2. To identify and formulate methods and measures for quantitatively capturing 

the inter-hospital variations in the function and characteristics of a hospital. 

3. To evaluate the feasibility of using combinations of these measures as 

normalising factors when evaluating energy and water consumption 

performance in hospitals at a health system-level. 

 Delineations  

The following delineations outline the scope of the problem investigated by this 

study: 

1. The study was limited to assessing the explanatory power of the normalisation 

factors with respect to the consumption of two types of resources, namely: 

electricity and water. No other forms of energy, such as liquid fuels, were 

considered. 

2. The normalisation factors investigated were limited to only representing the 

characteristics of a hospital and its function as defined by the factors identified 

in the study. 

3. The normalising factors representing the function of a hospital were limited 

to the activities that are directly involved in patient care and are outside the 

direct control of hospital management. 

4. The explanatory power provided by the respective normalisation factors was 

assessed with respect to the quantitative significance of each factor in a 

statistical model. 

5. The study was conducted in a Western Cape health system context. The 

conclusions formed in this study are based on a data analysis that was 

predominantly focused on district hospitals in the Western Cape. Thus, the 

generalisation of the study’s findings and conclusions to other regions is not 

claimed nor implied. 
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 Research approach 

This study applied a quantitative research approach. Quantitative research is 

deductive in nature and it focuses on the empirical testing of theory. Thus, the first 

phase of the six-phase research approach, as shown in Figure 1.3, defined and 

contextualised the real-world problem based on information obtained from the 

analyses of literature. This consisted of identifying and summarising the attributes 

and factors that affect energy and water consumption in hospitals; and understanding 

the formulation of normalised benchmarks. 

Contextualising 
the real-world 

problem

1

Select research 
design

2

Data collection 
and processing

3

Data analysis

4

Conclusions and 
recommendations

6

Evaluate findings

5

 

Figure 1.3: Overview of the research approach 

In phase 2, an appropriate research design was selected or devised for solving the 

research problem. This involved the definition of concepts around which the research 

was conducted, and the definition of the measurements and indicators used to 

quantify these concepts. In the third phase, data was collected and processed in 

accordance with the research instruments specified in the research design. In the 

fourth phase, data analysis techniques were applied to evaluate the relationships 

between the variables in the collected data. In phases 5 and 6, the findings from the 

analyses were evaluated with respect to the research question and conclusions were 

drawn on the implications of the findings on the real-world problem that was 

investigated. 
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 Document outline 

Figure 1.4 provides an outline of the thesis layout and a description of the key aspects 

of the respective chapters. The chapters are structured such that they chronologically 

address the objectives of the research study as discussed in Section 1.3. 

Chapter 3

Discusses the approach formulated to evaluate the 
feasibility of normalisation factors identified in 
Chapter 2.

Chapter 1

 Introduction

Chapter 2

Discusses the factors that affect energy and water 
usage in hospitals, how benchmarks are 
formulated, and the role normalisation plays in 
that process.

Chapter 6

  Conclusion and recommendations

Chapter 4

Discusses the analysis used to quantify inter-
hospital variations in the function of a hospital as 
defined by the diagnostic mix of its caseload. 

Chapter 5

Discusses the analysis used to assess the feasibility of 
using the measures formulated in the study as 

normalisation factors.

CHAPTER OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

3. The method

4. Quantifying the function of 
a hospital

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion

 

Figure 1.4: Thesis outline  
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  Inter-hospital variations in 

energy and water consumption  

This chapter studies the energy and water flow within hospitals. It discusses the 

results of a literature analysis that identified the factors affecting energy and water 

consumption in hospitals and studied the relationship between these factors and 

resource consumption. Figure 2.1 outlines where this chapter fits into the research 

process. This chapter presents and builds on work that was published in a conference 

paper titled ‘Developing normalised metrics for comparing the energy use of hospitals’ 

at the International Association for Management of Technology 2017 in Vienna 

Austria, see Amunjela et al. (2017). 

The first phase of the research approach builds the theoretical foundation on which 

the study is based. It warranted a review of literature for the identification of factors 

that affect energy and water consumption at hospitals and the characteristics that 

cause variations in the performance of different facilities. This literature review aided 

in outlining the theoretical foundation of the chosen indicators and the definitions of 

their metrics by providing an understanding of the different aspects of the 

phenomenon being studied. 

DOCUMENT OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

3. The method

Discusses the factors that affect energy and water 
usage in hospitals, how benchmarks are 
formulated, and the role normalisation plays in 
that process.

4. Quantifying the function of 
a hospital

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion

 

Figure 2.1: Thesis document outline: Chapter 2 contextualised  
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 Factors that affect the energy use of hospitals 

Hospitals have two main types of energy sources: electrical energy, used to power 

most hospital systems, and thermal energy which is used for heating (Szklo et al. 

2004). Electrical energy is supplied via the grid and thermal energy is provided by 

combusting fossil fuels such as oil, gas, and coal. Various research inquiries have 

studied the utilisation of energy by non-domestic buildings, such as office buildings, 

factories and hospitals, and how it relates to benchmarking and quantifying the 

energy performance of buildings. 

An analysis of both published and grey literature on the energy consumption in 

hospitals was conducted to gain an understanding of the factors that affect energy 

consumption in hospitals. This analysis and its results are summarised in Appendix 

A.1. 

The study by Ma et al. (2017) focused on public buildings and studied the energy 

consumption of 119 buildings in China (office buildings, schools, and hospitals). 

From their analysis, factors that affect the energy consumption of these buildings 

were classified into two categories: internal factors, and external factors. Internal 

factors refer to the building’s characteristics and condition such as its year of 

construction, its orientation and the structure of its envelope. External factors are 

defined as the events and activities that influence the indoor thermal environment of 

a building such as weather factors, heat gains from occupants, equipment and 

lighting.  

Rajagopalan & Elkadi (2014), in their study of the energy performance of medium-

sized healthcare facilities in Australia, defined three categories of factors affecting 

consumption at hospitals: physical characteristics, occupancy characteristics, and 

operational characteristics. Physical characteristics provide an understanding of how 

the architectural design and form of the hospital building, construction material, and 

certain building systems affect the hospital's energy consumption. The operational 

and occupancy categories account for the effect of the behaviour of the hospital's 

occupants on its energy load profile. 
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Deru et al. (2011) studied the most common types of commercial buildings in the 

USA and developed energy reference building models for use in the study of building 

energy efficiency. In their simulation, Deru et al. (2011) divided the factors that are 

influential to a building's energy behaviour into 4 groups: ‘building programme’, 

‘form’, ‘fabric’, and ‘equipment’. The parameters that fall into the building programme 

category model the effects of the building’s activities, end uses, schedule, location and 

occupancy on its energy load profile. The form parameters account for the building's 

geometry and its effect on consumption. The parameters in the fabric category 

account for the type of construction material used to build the building and the 

thermal characteristics of these materials. Finally, equipment accounts for the 

parameters that govern the consumption of some of the major equipment involved in 

the building systems. 

From a normalisation point of view, the interest lies in those factors that affect energy 

consumption in hospitals but are independent of the efficiency and administration of 

the hospital. Singer et al. (2009) stated that because of the nature of the service 

provided by hospitals the factors that affect its energy consumption can be grouped 

into two general categories. The first general category accounts for the effect of the 

hospital's characteristics, its contextual setting, and the configurations of its different 

building systems. The second general category accounts for the effect of the medical 

services provided at the hospital.  

Singer et al. (2009) also stated that the energy consumption of a hospital scales with 

the extent and capacity of its medical service provision; the presence and extent of 

certain clinical specialities and energy-intensive medical services, such as critical care 

units and large medical technical equipment, drive the overall energy consumption 

of hospitals. 

The authors differentiate between two categories of determinant factors: 

characteristics that are fixed and do not depend on the behaviour of the hospital's 

occupants but differ from hospital to hospital; and factors and activities in the 

building that scale with the type of building use and the level of medical service 

provision at hospitals. There is a need to understand the level of influence the factors 

in these categories have on the energy consumption of a hospital, determine how 
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these factors vary from hospital to hospital and account for this variation when 

normalising the energy performance of hospitals. 

Table A.2 in Appendix A.1 shows a summary of the results of the literature analysis. 

From the literature analysis, the factors that affect energy consumption were grouped 

into three major categories, namely, hospital characteristics and construction, 

weather and climate factors, and the effect of the hospital’s function. Figure 2.2 shows 

how each of these groupings is related to the respective subsections that discuss the 

effect of the factors found in the literature review. 

 

FACTORS AFFECTING 

ENERGY 

CONSUMPTION IN 

HOSPITALS

Hospital characteristics 
and construction 

2.1.1 Building 
characteristics

2.1.2 Building fabric

2.1.3 Building form

2.1.4 Weather and 
climate factors

Function of hospital

2.1.5 Clinical services

 2.1.6 Equipment and 
lighting 

2.1.7 End use

2.1.8 Building Use

 

Figure 2.2: Organisation of subsections discussing the results of the literature 

analysis for energy consumption 

 Building characteristics 

This group houses the factors that represent the effects of the size, layout, and age of 

a hospital building on its energy consumption. The size of a building is one of the 

most important determinants of its energy consumption (Singer et al. 2009). Size is 

the parameter that most of the studies normalised for when analysing the energy 

consumption of a building. Building size refers to the physical size of the building and 

is quantified using parameters such as total roofed area, total floor area, and total 

heated volume.  
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The general consensus within literature is that the energy consumption of a building 

or hospital scales with its size. The research done by de Fátima Castro et al. (2015) 

found that resource consumption and cost in buildings are directly proportional to 

changes in the net floor area of a building. Rajagopalan & Elkadi (2014) also found a 

good correlation between both the floor area and building volumes of hospitals, and 

the hospital's electricity consumption, whereas Murray et al. (2008) found no 

correlation between the electricity consumption of a building and its treated volume. 

However, this was attributed to the fact that the buildings in the study by Murray et 

al. (2008) were mainly heated using natural gas.  

The year of construction of a building determines the material used in its construction 

and the way it was constructed, namely: its wall thickness (Caldera et al. 2008). Thus, 

the building envelopes of hospitals from different eras may vary in terms of heat 

transmittance and thermal capacity due to the use of different design configurations 

and materials. Consequently, this can cause variations in the cooling and heating 

loads of hospitals from different eras. 

Ma et al. (2016) and Ma et al. (2017) both studied the energy consumption in Chinese 

public buildings (hospitals, schools and offices) and found that for buildings that 

performed the same function, energy consumption per unit area was higher in older 

buildings than in newer buildings. This was attributed to improvements in the 

thermal performance of the doors and windows, the improved thermal performance 

of modern building envelopes due to better insulation practices, and the improved 

energy efficiency of building HVAC equipment, lights and elevators. Murray et al. 

(2008) reported a weak correlation between heat energy consumption and the age of 

the facilities in the study. It was noted that five of the eight authors that mentioned 

the age or year of construction of a building as a factor did not elaborate on the 

relationship between age and consumption. 

Singer et al. (2009) state that it is important to normalise for the effect of the location 

of a hospital as it is one of the factors that impacts its energy consumption and is 

outside the control of hospital administrators. Singer et al. (2009) further argue that 

the local climate and weather, which affect the thermal environment and lighting 

requirements of a building, are dependent on the location of the building. 
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Interestingly, this contradicts the findings of Murray et al. (2008) who found a poor 

correlation between heat energy consumption and physical location.  

  Building fabric 

The building's envelope is the thermal barrier between the external environment and 

the thermal conditions inside the building. The thermo-physical properties of the 

walls, roof and windows determine the amount and rate of heat transfer through the 

building's envelope (Catalina et al. 2013; Pacheco et al. 2012). Heat transferred 

through the façade is one of the major contributors to the HVAC load of a hospital 

building (Rajagopalan & Elkadi 2014).  

The buildings HVAC loads are sensitive to changes in the overall heat transfer 

coefficient of the building. Ma et al. (2017) found that an increase in the overall heat 

transfer coefficient of a building results in an increase in the building’s total energy 

consumption. The heat transfer coefficient of a building depends significantly on the 

thermo-physical properties of its envelope i.e. the thermal transmissivity of its walls, 

roofs and windows.  The use of external wall insulation, green roofs and cool roofs, or 

energy-saving window glass and frames reduces the overall heat transfer coefficient 

(Ma et al. 2016). Taleb (2016) observed a 24.7 percent reduction in solar heat gains 

in simulations studying the envelope performance of a hospital in Abu Dhabi when 

the hospital model used a green roof instead of a normal roof. 

Window glazing is one of the features used to regulate the thermal environment of a 

building (Pacheco et al. 2012). The size, orientation, type and amount of window 

glazing influence the heating and cooling load of a building. The use of heat-

absorbing glass, heat-reflecting glass and low-radiation glass can reduce the amount 

of energy needed by a cooling system or a heating system, in the respective heating 

and cooling seasons, based on the spectral properties of the glass (Pacheco et al. 

2012). The extent of these gains is such that Catalina et al. (2013) argued that by 

optimising the use of energy-efficient windows the building envelope’s thermal 

performance would outperform a highly insulated wall. 
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  Building form 

The aspect ratio, orientation, window-to-wall ratio, shading, and the building’s 

relative compactness were identified as the factors used to account for the impact of 

the hospital’s form on its energy consumption (Fumo et al. 2010). The aspect ratio 

represents the ratio between the length of the building’s east-west facing façade 

divided by the overall length of its north-south facing façade (Deru et al. 2011). This 

factor is usually studied together with the orientation as they both influence the 

amount of solar radiation received by the building, which can increase the building’s 

cooling load by 25 percent (Pacheco et al. 2012). 

Alshayeb et al. (2015) analysed the impact of a hospital building’s orientation and use 

of shading on its energy consumption. The optimal orientation of a building reduces 

solar heat gains through the building’s façade, and thus the amount of active control 

required to ensure an optimal internal thermal environment (Alshayeb et al. 2015). 

However, the study found that the impact of the orientation of the building was not 

significant. A 0.38 percent difference in energy consumption was observed between 

the two buildings with the greatest difference in orientation. This difference was 

attributed to the square-shaped profile of the buildings, and thus a small difference 

in the area of the east-west facing façade and the area of the north-south facing 

façade. The east-west facing façade has a higher solar heat gain coefficient than the 

north-south facing façade. 

The shading performance of the building’s façade regulates the amount of solar heat 

gains through the façade and can reduce peak cooling loads and lighting loads 

(Pacheco et al. 2012). Taleb (2016) observed a 1.5 percent reduction in heat gains 

through the façade in building models using sunshade-designed façades. 

The window-to-wall ratio of a building also has a significant impact on heat gains 

through the façade. Windows are more permeable to solar radiation than walls and 

are thus more susceptible to direct solar heat gains. Both Korolija et al. (2011) and 

Radwan et al. (2016) found a strong correlation between total building energy use 

and a building’s window-to-wall ratio. Radwan et al. (2016) found that a 10 percent 
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change in this ratio results in a 4.3 percent change in the energy consumption of a 

hospital’s HVAC system. 

The compactness ratio, also known as the shape factor or building’s surface area to 

volume ratio, is related to a building’s ability to retain heat and avoid heat losses 

through the façade (Pacheco et al. 2012). These losses need to be compensated for by 

the buildings HVAC system. Buildings with large compactness ratios have higher heat 

losses through their façades than a similar building with the same type of façade and 

smaller compactness ratio (Rajagopalan & Elkadi 2014). Korolija et al. (2013) found 

a strong correlation between total annual energy use and the compactness ratio. 

  Weather and climate factors  

Climate factors, such as the outdoor temperature, solar radiation and the humidity of 

the area in which a hospital is located, affect the amount of solar heat gained and/or 

lost through the building's envelope. Thus, the local climate influences the cooling 

and heating load of the hospital, which directly affects the energy consumption of the 

HVAC system. 

Ma et al. (2016) studied energy consumption in public buildings in China’s cold 

Tianjin region and found that energy consumption for heating was responsible for a 

significant proportion of building energy use in winter. Chung & Park (2015) also 

attributed variations in the energy consumption for heating of Japanese and Korean 

buildings to differences in the climates of the two countries. Chung & Park (2015), 

Bagnasco et al. (2015) and Szklo et al. (2004) found that the electrical energy 

consumption of buildings also varied seasonally. Electrical energy consumption was 

significantly higher in summer than in winter. Bagnasco et al. (2015) found that 

electrical energy consumption of buildings in summer was 30 percent higher than in 

winter. This was attributed to the high and continuous demand placed on HVAC 

systems in large hospitals during the summer months. 
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  Clinical services 

The Subsections 2.1.1 to 2.1.4 discuss how the characteristics of physical building 

that constitutes the hospital and the local climate affect the energy consumption of a 

hospital. The energy consumption affected by these factors was mainly concentrated 

on the performance of the buildings HVAC system. This subsection and the ones to 

follow focus on how the medical services provided at a hospital affect the hospital's 

energy consumption. The effects of these factors are responsible for the energy use of 

the medical aspect of a hospital and are experienced by an array of building systems. 

Chung (2011) mentions the importance of building use as a determinant of energy 

consumption in hospitals. Due to the heterogeneous nature of hospitals, energy 

consumption varies significantly with the type of services provided at a hospital. 

Careful consideration is therefore required to account for the change in the energy 

consumption of hospitals due to changes in the types of medical services provided by 

a hospital. As mentioned earlier in Section 2.1, the energy consumption of hospitals 

scales with the extent and capacity of its medical service provision (Singer et al. 2009). 

The clinical specialities of a hospital are a major determinant of its energy use and the 

presence of different specialities has varying effects on the hospital's load profile. For 

example, the high power per unit consumption of large medical technical equipment 

is associated with medical imaging departments. Rohde & Martinez (2015) found 

large variations in the energy usage of the different hospital departments. 

The respective clinical specialities have different energy requirements. This variance 

in energy requirements affects their energy load profile to different degrees. Clinical 

specialities affect the internal load of a hospital in three ways: they govern the type of 

services provided by a hospital, the type of equipment in use at the hospital and the 

capacity of a hospital (Szklo et al. 2004). Thus, clinical specialities also have an effect 

on the internal loading and internal heat gain of a hospital due to occupancy, 

equipment, and lighting. Buonomano et al. (2014) found that the functionality of a 

hospital correlates to its electricity use and HVAC load. Furthermore, larger hospitals 

are more complex and also provide a more diverse set of services (Szklo et al. 2004). 
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  Equipment and lighting 

Equipment use, and lighting, are two of the major drivers of energy consumption in 

hospitals. The energy consumed by equipment and lighting has two components, 

namely: the direct equipment use induced electric load component from the 

operation of the equipment, and the thermal load component from the waste heat 

generated by the equipment (Rohde & Martinez 2015). 

The contribution of these components is governed largely by three factors: the energy 

intensity of each device type, the variations in the usage level and activity patterns of 

the respective devices, and the prevalence of each device type in the hospital (Rohde 

& Martinez 2015). Equipment and lighting density is a measure of device prevalence. 

Ma et al. (2017) found that the energy consumption of buildings increases with an 

increase in its equipment density and lighting density. This is because of the direct 

energy consumption associated with medical and building equipment and the 

increase in cooling energy consumption due to the extraction of the waste heat 

attributed to equipment use. 

Three types of equipment are used in a hospital: large and small medical technical 

equipment (MTE); building equipment (BE), and information communication 

technology (ICT) equipment.  Rohde & Martinez (2015) studied the energy usage of 

medical equipment in large teaching hospitals in Norway. The study found that 

medical equipment contributes significantly to both the electrical and heating loads 

of a hospital. 

Furthermore, the medical equipment associated with each clinical speciality have 

different power ratings. For example, medical imaging equipment has higher power 

ratings than small medical technical equipment (SMTE) such as point-of-care devices 

(Rohde & Martinez 2015). However, although SMTE has a low per unit energy 

consumption rating, these devices are present in large enough numbers in hospitals 

and/or are often operated continuously for extended periods of time, thus making 

their collective energy consumption significant. This further emphasises the 

important role of the size and capacity of the hospital on its energy consumption. 
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  End use 

The energy consumption of a building is captured by the energy demand of six 

sublevel building systems (see Figure 2.3): the cooling system, space heating system, 

water heating system, lighting system, mechanical ventilation system, and plug and 

process loads (Leipziger 2013). It is important to account for the effect that the 

characteristics of these building systems have on the energy performance of a hospital 

building when determining the actual performance potential of a hospital. The 

system type and system characteristics parameters encompass both the micro and 

macro inter-building system differences. 

Macro differences refer to the large-scale differences between system configurations 

i.e. using a centralised variable air volume HVAC system vs. using a constant air 

volume HVAC system. The collective energy consumption varies depending on the 

system, the energy consumption of fans, pumps, motors and other significant 

electricity-consuming devices depending on the type of system used (Korolija et al. 

2011). Micro differences refer to the differences between components that make up 

the system, their electric loading, and efficiency characteristics. 

The varying configurations and combinations that are used to aggregate the 

respective system components to perform the function of the building service have 

different efficiencies. These efficiencies can be divided into two categories: macro-

level efficiency; the overall efficiency of the system, and micro-level efficiency; the 

efficiency of the components that make up the system. Macro-level efficiency is the 

most important measure of efficient energy consumption because efficient 

components can be combined in an inefficient manner resulting in wasteful energy 

Figure 2.3: Energy end uses in hospitals (Leipziger 2013) 
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consumption (Singer et al. 2009). The building is mostly operated in one of two 

modes, at design-load conditions or at part-load conditions, thus both the macro- 

and micro- level efficiencies of these modes are of interest (Zhu 2006). 

 Building use 

The space within a hospital building is divided into different zones with similar 

thermal comfort requirements. These climatic zones are referred to as thermal zones. 

The respective functional spaces within the hospital such as the waiting rooms in the 

emergency department, administrative offices, critical and intensive care, and 

operating rooms have different thermal comfort and outside air requirements. The 

heating and cooling demand profiles of these thermal zones and their fresh air 

requirements have a significant impact on the energy efficiency and performance of 

the buildings HVAC system (Korolija et al. 2011). The sizing of the HVAC system’s 

respective components are also largely dependent on the size and amount of thermal 

zones within the building (Zhu 2006). 

Rajagopalan & Elkadi (2014) studied the energy performance of medium-sized 

Australian hospitals. They divided the hospital buildings into six functional areas, 

according to the different functions performed in each space type. Each functional 

area was allocated a percentage that represents its energy consumption as a fraction 

of the total energy consumption of the hospitals. The differences in the functions of 

the respective functional areas resulted in different percentages allocated to each 

functional unit. These differences are reflected in an array of parameters such as the 

occupancy rates of the different zones in terms of occupant density and operational 

patterns, different ventilation requirements (flow rates and outside air requirements), 

different equipment and lighting specifications. 

 Factors that affect the water use of hospitals 

In this section, the factors affecting the water consumption of hospitals were grouped 

into two general categories according to commonality. The first set of categories 

houses the factors identified from literature that account for the effect of the 

hospital’s characteristics and context on its water consumption. The second set of 
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categories houses the factors that account for the effect of the hospital's function on 

its water consumption. The literature analysis process is discussed in Appendix A.2 

and a summary of the results of the literature analysis is presented in Table A.4. Figure 

2.4 outlines the relationship between the two general categories and the following 

subsections discussing the results of the literature analysis.  

FACTORS AFFECTING 

WATER 

CONSUMPTION IN 

HOSPITALS

Hospital s function

2.2.2 Management policies + 
practices

2.2.3 Clinical service 

2.2.3 Building Use

2.2.1 Building characteristics 
and context

Building characteristics 
and construction 

Weather and 
climate factors

 

Figure 2.4: Organisation of subsections discussing the results of the literature 

analysis for water consumption 

 Building characteristics and context 

Building characteristics are the factors most authors accounted for when assessing 

the water consumption of hospitals. Emphasis was placed on accounting for the size 

of the facility by stating water consumption performance with respect to the hospital's 

floor area (𝑚3 per 𝑚2 floor area). 

Four publications discussed the impact of a hospital’s size on its water consumption. 

Garcia-Sanz-Calcedo et al. (2017) found a strong and statistically significant 

correlation between the built floor area of a hospital and its cold water for human 

consumption (CWHC) (R2 = 0.9645) and domestic hot water (DHW) consumption 

(R2 = 0.9447). González et al. (2016) also found a statistically significant correlation 

between the built floor area of a hospital and its CWHC (R2 = 0.8417). Wong & Mui 
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(2008) state that the size of a hospital is one of the factors the Hong Kong Building 

Environmental Assessment Method normalises for in their model. Taken together, 

these highlight the significant impact of a hospital size on its water consumption. 

The effect of a hospital’s year of construction on its water consumption was also 

mentioned by both González et al. (2016) and MWRA (n.d.). These publications 

agreed that water consumption varies between hospitals constructed in different 

years. Furthermore, geographically dependent climate factors such as the 

temperature and humidity also affect water consumption in hospitals. For example, 

warmer climates result in higher water consumption. In addition, Verlicchi et al. 

(2010) found that water consumption also varies seasonally and observed higher 

monthly water consumption in the warmer months. 

BIS & Cranfield University (2009) attributed this increase in consumption to an 

increase in the amount of water consumed for ingestion, hygiene and cooling. 

Furthermore, outdoor water consumption was also observed to be higher in warmer 

climates. The heating degree days’ metric can be used to track the effect of climate 

on water consumption of hospitals. González et al. (2016) established a relationship 

between the CWHC and annual heating degree days in the region where the hospital 

is situated. 

  Management policies and practices 

The hospital's water management policies and the level of awareness within the 

institution of the hospital's water footprint play a significant role in the attitude 

people have towards water usage within hospitals (D’Alessandro et al. 2016). The 

policies adopted by hospital management and their relation to the aim of reducing 

the amount of water consumed by hospitals or increasing the hospital’s consumption 

efficiency impact its water consumption. This refers to the use of innovative water-

saving systems such as flow control on taps, water-saving shower heads and the reuse 

of grey water and/or rainwater for irrigation and fire services (D’Alessandro et al. 

2016a). Furthermore, increased water consumption awareness and minor 

investments can reduce water consumption. The study by MWRA (n.d.) observed a 
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19 percent reduction in annual water consumption following increased water 

consumption awareness. 

Incentives for implementing water sustainability methods provide encouragement in 

terms of funds and recognition to hospital administrators (Faezipour et al. 2013). The 

implementation of policies in favour of the recycling and reuse of non-potable waste 

water can lead to significant reductions in the use of water from municipal mains 

(VDoH 2009). However caution needs to be exercised in deciding how this water is 

reused as it may have health implications for building occupants and fouling 

implications on the mechanical components of the building’s systems (González et 

al. 2016). 

  Clinical service 

Water use in hospitals can be split into three main categories: water for human 

consumption, water used for medical purposes and water for support services. The 

nature and extent of these services varies from hospital to hospital. The effects of a 

service on the water consumption of a hospital can be captured by accounting for 

three aspects of the service: its presence, the nature of the service and the extent of 

the service provided. This is done by determining how water use at the respective 

facilities scales with the presence, nature and extent of these services.  

Water for human consumption represents the water that is consumed by both 

patients and staff for ingestion, hygiene and sanitation. The effect of human 

consumption on the hospital’s total water demand was discussed in Subsection 2.2.1. 

The portion of a hospital’s water needs that is due to its medical service provision 

consists of water needed to satisfy water-intensive medical procedures such as 

haemodialysis, hemofiltration and hydrotherapy (Collett et al. 2016). Other aspects 

of the water needed for medical services include the sterilisation and 

decontamination of surgical and medical instruments in the central sterile 

department, the pre-surgery surgical scrubbing, and water used in medical 

laboratories. The nature of these services differs from hospital to hospital and scales 

with the extent and capacity of these services at hospitals. 
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Process water consumption is mainly due to kitchen water use, laundry, 

housekeeping activities, HVAC and cooling tower consumption, and irrigation 

(Collett et al. 2016). Kitchen water use is mainly for food preparation and cleaning 

purposes. The water used in the laundry is for the care of the medical staff and patient 

gowns, and the bedding and clothes used in both the operating theatre and the 

patient wards. HVAC systems are consumers of large amounts of water in commercial 

buildings. The water-cooled chillers used in the HVAC systems of most commercial 

buildings are significantly more energy-efficient than the air-cooled chiller 

alternatives (Weimar & Browning 2010). However, these systems consume large 

quantities of water due to the evaporation in the cooling towers that is responsible 

for heat rejection to the atmosphere. 

González et al. (2016) acknowledge that the services provided by a hospital are 

directly related to its water consumption. However, in their analysis, they did not 

include them in the quantitative aspect of their study. A part of their study focused 

on determining whether a relationship exists between the microeconomic climate of 

the region in which a hospital is situated, and its water consumption. The author 

argues that the microeconomic climate determines the level of services that the 

hospital can provide and thus by extension its water consumption. The study used 

the gross domestic product (GDP) of a region as a measure of its microeconomic 

climate and found that there is no link between GDP and the water consumption of 

hospitals. 

Another method that can be used to account for the effect of the type of services 

provided by a hospital on its water consumption is to use its mix of area ratios (Wong 

& Mui 2008). The logic behind the mix of area ratios is that by using ratios of the floor 

areas of significant departments in hospitals relative to the total floor area of a 

hospital, one can capture the demand of the specific areas on the total demand of the 

hospital's water consumption. Thus, as these ratios change at the respective hospitals 

the water consumption changes in a similar manner. 

Verlicchi et al. (2010) also identified the importance of a hospital’s mix of areas. The 

study identifies the need to account for the number and types of wards and units in a 

hospital. The number and type of wards are factors that affect how much waste water 
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is produced by the hospital and are proportional to the quantities of water needed to 

satisfy the different needs of the hospital. In the study by Verlicchi et al. (2010) they 

also highlight the importance of the general types of services provided in a hospital: 

kitchen, laundry and air conditioning. 

The capacity of a hospital’s medical service provision is another important factor 

affecting its water consumption. Verlicchi et al. (2010) analysed and aggregated the 

water consumption figures stated in various publications dated 1994 to 2009 from 

different countries and in different contextual settings. The analysis found no clear 

correlation between the average daily water consumption of a hospital and its 

capacity in terms of the number of beds in the hospital. This is inconsistent with the 

findings of D’Alessandro et al. (2016a), González et al. (2016), and BIS & Cranfield 

University (2009). D’Alessandro et al. (2016a) found a strong correlation between 

water consumption and the number of beds. Unlike the study of Verlicchi et al. 

(2010), the hospitals in this study are all situated in one region in Spain and not from 

different countries. This standardises the effect of contextual factors such as climate 

and microeconomic climate. 

Both González et al. (2016) and BIS & Cranfield University (2009) also found a strong 

and statistically significant correlation between water consumption and the number 

of beds in a hospital. González et al. (2016) analysed the cold water use for human 

consumption (CWHC) in Spanish hospitals and found that CWHC was strongly 

correlated (R2=0.9046) to the number of beds in a hospital. Garcia-Sanz-Calcedo et 

al. (2017) found a correlation between the number of beds in a hospital and both 

CWCH (R2 = 0.8245) and DHW consumption (R2 = 0.8484) respectively. This 

supports the findings of D’Alessandro et al. (2016a) and shows that water 

consumption does scale with respect to the number of beds in a hospital. 

  Building use 

The number of occupants is a key driver of water use in hospitals (BIS & Cranfield 

University 2009). It is a measure of the level of demand that the need for services and 

resources places on hospital water resources (Faezipour et al. 2013). The level of 

demand for water resources is proportional to the number of hospital occupants. 
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Larger hospitals require more water for both human consumption (ingestion and 

hygiene) and process activities such as cooling and sanitation.  

The second aspect of occupancy is the occupancy attributes. Occupancy attributes 

refers to the needs of the respective building occupants and is related to the hospital's 

inpatient to outpatient ratio (MWRA n.d.). Inpatients consume more water for 

human consumption than outpatients because the length of their stay in hospital 

warrants the provision of certain services that outpatients do not need. Furthermore, 

the water needed for medical purposes is dependent on the treatments and services 

provided to the different types of patients. 

The third significant aspect of occupancy is the occupancy patterns. Garcia-Sanz-

Calcedo et al. (2017) found that the peak time for water consumption in hospitals is 

between 12:00 and 18:00. This coincides with the periods of peak occupancy. 

Verlicchi et al. (2010) have similar findings, the water consumption in hospitals 

between 08:00 and 16:00 was 20 percent higher than the hospital’s average water 

consumption and 30 percent lower than the average water consumption between 

01:00 and 08:00. 

Water is essential in the management of energy within hospital buildings 

(D’Alessandro et al. 2016a). The type of HVAC system used by the hospital is the 

second significant aspect of a hospital building use that has a significant impact on 

the hospital's water consumption. HVAC systems that use water-cooled chillers are 

more energy efficient than air-cooled HVAC systems, but are significantly more water 

intensive (Weimar & Browning 2010). 

In water-cooled HVAC systems, the waste heat is exhausted into the atmosphere in 

the cooling tower via evaporative cooling. On average, for every degree Fahrenheit of 

temperature cooled, approximately 0.1 percent of the water that circulates through 

the cooling tower is lost to the atmosphere (Weimar & Browning 2010). 

Consequently, large amounts of make-up water are required to replace the water lost 

due to evaporation. 

Furthermore, as part of the preventative maintenance practices, cooling towers must 

be bled regularly. As the water evaporates it leaves behind dissolved minerals. The 
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bleeding process prevents the build-up of dissolved minerals in the building’s 

hydrological network (MWRA n.d.). This process is water-intensive as large amounts 

of water are discharged from the cooling tower and replaced with new water 

(González et al. 2016). By replacing the water-cooled units with modern energy-

efficient air-cooled units, hospitals can achieve a balance between energy and water 

sustainability. 58 percent of the 21 hospitals in the study by D’Alessandro et al. 

(2016a) planned to implement such interventions. 

 Quantifying consumption performance 

 Benchmarks 

Benchmarking is a performance evaluation technique in which predefined 

performance-related metrics measured or estimated at a facility are compared to 

measurements at other facilities or to performance targets (Singer et al. 2009). This 

approach allows for the identification of performance gaps4 and facilitates the 

development of management policies and practices that improve the performance of 

the facility. 

In the resource consumption context, benchmarks are the reference performance 

levels against which resource consumption parameters that correspond to different 

facilities are compared and assessed (de Fátima Castro et al. 2015). Benchmarks act 

as a predefined quantitative baseline against which the performance of different 

facilities can be compared. The performance of each facility is quantified by metrics 

measured or estimated at that facility. These metrics are compared to those of the 

benchmark. The benchmark corresponds to a reference facility or specific 

performance target (Singer et al. 2009). 

The appropriate application of robust benchmarks provides an accurate evaluation of 

a facility’s operational performance (Hong, Burman, et al. 2014). In a healthcare 

context benchmarks have been used for: 

                                                 
4Defined as the difference between the actual performance of a facility and the performance of the 
reference against which it is benchmarked (Morgenstern et al. 2016). 
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1. Planning healthcare service provision, determining which type of services are 

appropriate for a certain context and the extent to which those services must 

be provided (see Böhme et al. (2013)). 

2. Assessing the efficiency of facilities with respect to healthcare outcomes or 

performance targets in an operational context (see Araújo et al. (2013) and 

Nayar & Ozcan (2008)). 

3. Sizing infrastructure requirements for healthcare facilities (see Fumo et al. 

(2010)). 

Although benchmarks are not formulated in this study, it is important to understand 

what benchmarks are, how they are formulated and how normalisation is applied in 

the formulation process; because they are the main method used to evaluate the 

energy and water performance of hospitals in the Western Cape. 

 Benchmarking approaches 

Benchmarking approaches are divided into two macro-level categories: top-down 

methods and bottom-up methods. Hong et al. (2014) and (Burman et al. 2014) 

conducted comparative studies of the benchmarking approaches for non-domestic 

buildings. The methodologies are classified into these categories based on the level of 

detail represented by the information used to derive the benchmarks in each 

category. 

Top-down performance benchmarking methods derive their benchmarks by studying 

the consumption at a building-level and refining the level of analysis to a subsystem-

level if more detailed consumption information is available (Hong et al. 2014). Top-

down methods are dependent on the statistical analysis of a sample of buildings with 

similar but not identical characteristics to the building. This reduces the risk of 

outliers distorting the derived benchmark. 

In top-down methods the benchmarks are based on building-level energy 

performance figures, the benchmarks are usually expressed as a single metric 

indicating how buildings with similar demand use energy. These benchmarking 

methodologies are better suited for policy formulation applications as they allow for 

the comparative analysis of energy use by a building against other existing buildings. 
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The bottom-up methods provide a means of quantifying a buildings consumption 

efficiency based on a theoretical analysis of the building which accounts for the effect 

of the building’s unique architectural and system characteristics (Burman et al. 2014). 

The building is studied as a system: the lower levels of the system are clearly specified, 

and their performance is analysed generating metrics that represent the consumption 

of that system (see Figure 2.5). Subsystem-level information is then aggregated to 

generate system-level performance figures. This system-level information is used to 

generate system/building-level benchmarks. 

 

Figure 2.5: An example of the application of a bottom-up benchmarking approach 

(from Burman et al. (2014)) 

These methods are suitable for generating contextualised benchmarks that can be 

used to identify efficiency improvement opportunities within a hospital by studying 

the performance of individual systems such as HVAC and DHW. The system-level 

consumption figures would then be aggregated together into a single figure that 

represents the hypothetical whole building energy and water performance level. 

Bottom-up methods are more suited to identifying areas for performance 

improvements and how performance improvements can be realised (Burman et al. 

2014). 

 Formulating benchmarks 

A diverse array of statistical methods have been used in literature to compare the 

resource consumption performance of buildings. These methods provide a structured 
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and systematic approach for objectively evaluating the performance of a building. 

Benchmarks are formulated using one of four different approaches: 

1. Estimated by sector-specific experts from historic performance data of a 

facility. These serve as good practice averages based on the retrospective 

performance of the facility (see Cunninghame (2015)). 

2. Estimated using computerised simulations such as EnergyPlus to develop a 

reference building model against which the performance of other facilities is 

compared. This requires a strong understanding of the interactions between 

the attributes of a facility and its consumption (see Fumo et al. (2010)). This 

approach is expensive, complex, and time- and data-intensive (Caldera et al. 

2008). 

3. Estimated from regression analysis5 (see Chung, Hui & Y. Miu Lam (2006)). 

Regression is applied to a set of data made up of the consumption 

performance of an array of hospitals. The regression analysis is used to 

estimate a benchmark for the dataset by fitting an estimate to the data such 

that the estimate minimises the difference between the estimated value and 

the actual observed performance of each hospital.  

4. Estimated using data envelopment analysis6 (DEA) (see Nayar & Ozcan 

(2008)). Data envelopment analysis (DEA) is used to formulate an efficiency 

frontier. This frontier is used as the reference level against which the 

performance of facilities are benchmarked (OECD & JRC 2008).  

The choice of  benchmarking methods depends on (Hong, Paterson, et al. 2014): 

- the objective of the analysis, 

- the availability of data needed to develop and normalise benchmarks, 

- the granularity of the data involved in developing benchmarking, and 

- the accuracy and robustness of the desired model. 

                                                 
5 See Appendix B.1 for a more detailed explanation. 

6 See Appendix B.2 for a more detailed explanation. 
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 Selected approach to benchmarking  

The confounding factors identified in Sections 2.1 and 2.2 that affect the degree of 

energy and water consumption in a hospital were summarised into two high-level 

categories: the hospital’s building structural composition (characteristics, 

construction and context); and its function (utilisation of capacity and case mix 

composition).  

Most of the factors in the hospital building’s structural composition category were 

identified in literature that used a bottom-up approach. In these publications, 

physical computer models were used in simulations to assess the consumption 

behaviour of hospital buildings. Parameters that represent the characteristics and 

structure of a hospital building were used to develop a model of the hospital or an 

area of interest in the hospital. These models were used to perform simulations that 

studied the consumption behaviour of the modelled hospital building or to develop 

a reference model to benchmark against.  

In the context of South African hospitals using a bottom-up approach is infeasible, 

because of the high granularity of the data required. A bottom-up benchmarking 

approach is both data- and resource-intensive, as well as computationally expensive 

as it requires the collection of information pertaining to a wide range of 

characteristics for all the hospitals being comparatively evaluated. 

The data on most of these factors is not available for most facilities or able to be 

quantified in such a way as to provide a consistent picture over time. For example, 

many of these hospitals were built in different eras, and have been continuously 

extended and refurbished over their service life, therefore the fabric of the hospital is 

not homogenous. Thus, the level of confidence that can be placed in metrics 

developed using these factors will be limited since the data used to construct them is 

of a poor quality. 

Furthermore, when one starts accounting for too many factors, the metric developed 

becomes difficult for the intended end user to conceptualise. This reduces the 

usefulness of the benchmarks developed by this normalisation process. Another 

problem is that it has too many factors that potentially do not significantly affect the 
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energy and water consumption at hospitals. Thus, there was a need to find a balance 

between the level of significance of the factors accounted for in the normalisation 

process and the relative usefulness of the benchmarks developed with respect to the 

trends they can be used to study. 

The following criteria were used to identify and select the factors and characteristics 

for inclusion (adapted from OECD (2009)): 

- The factor must be of a general or total building-level in nature; 

- The factor must be quantifiable and practically definable; 

- The factor must have some statistical utility; 

- The availability of data on the factor; and 

- The factor is outside the direct control of hospital administrators. 

 Levels of the hospital at which consumption is compared 

A more suitable approach would be to use a top-down approach to study the hospitals 

in the province collectively and try to explain the variance in the data structure of 

their energy and water consumption. This is done by identifying factors that vary 

between hospitals and result in significant differences in their consumption patterns. 

This is a more feasible approach to take as the granularity of data required to account 

for the individual factors identified in the preceding sections is high. 

The guideline proposed by Singer et al. (2009) for benchmarking hospitals identifies 

three distinct levels at which consumption performance can be evaluated, namely: 

total building-level, building system-level and departmental-level. The total building-

level defines macro metrics which facilitate the capturing or comparison of overall 

building consumption performance. The trade-off for this approach is that some 

accuracy is sacrificed due to the simplifying assumptions made to the macro-level 

model, but a more holistic picture of performance is gained especially in situations 

where the available data is limited. 

The building system-level targets building system-level improvements. Metrics are 

defined to capture the consumption by significant building systems and their 

components. This analysis allows for the identification of poor-performing systems, 

inefficient equipment, inefficient operational parameters, and prioritising the 
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improvement to localised building systems such as: HVAC systems, DHW systems, 

steam systems, and lighting systems (Singer et al. 2009). 

The departmental-level facilitates department vs department comparisons, 

benchmarking and improvements. This approach is subject to limitations, though, as 

the demand and consumption of some resources by various departments is 

interdependent and cannot always be isolated to specific departments. For example, 

the HVAC load is generally distributed at a building-level and not isolated to a specific 

department. Like the building system-level approach, the departmental-level 

approach also requires the measurement of specific characteristics and consumption 

measurements. 

The chosen scope determines the metrics that can be used in the analysis. This choice 

is reflected in the variables used to represent the identified factors. In this study the 

total building-level approach was used. The focus will be primarily split between the 

two first-order categories of factors: medical service capacity and building 

characteristics. These represent the most significant drivers of resource consumption 

at a total building-level (Singer et al. 2009). 

The level at which consumption is evaluated plays a vital role in the selection of the 

factors that are used to describe and characterise the hospitals in the normalisation 

model. The chosen factors are characteristic of the level at which consumption is 

evaluated. In this study consumption is evaluated at a total building-level. Thus, the 

level of abstraction of the normalisation factors is much higher than for a 

departmental level or a building system-level approach. Thus, only macro-level 

variables will be suitable for use in the approach selected for this study. 

 Concepts and indicators evaluated 

In quantitative research, concepts are quantifiable theoretical points around which 

research is conducted. They are used to describe or evaluate causal relationships, and 

either serve as the real-world phenomenon being studied (dependent variables) or 

provide a causal explanation of aspects of the real-world phenomenon (independent 

variables) (Bryman et al. 2014). In this study the interest was in evaluating the 
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relationships between the concepts of resource consumption performance in 

hospitals, and the concepts discussed in Sections 2.1 and 2.2.  

In literature, studies that focus on capturing the effect of the hospital’s function on 

its energy and water consumption are less common. However, the effect of a hospital’s 

function on its resource consumption with respect to hospital cost analysis is a widely 

researched field in health economics. Thus, by studying the techniques used to model 

the hospital’s function for cost analysis, it is possible to identify suitable metrics and 

techniques that can be adapted for use in the analysis of energy and water 

consumption in hospitals. 

From the current applications of normalisation in benchmarking and from the 

literature analysis, it follows that the size of a hospital and its function are significant 

drivers of energy and water consumption. Two factors are of interest when studying 

the function of a hospital: the diagnostic mix of its patient population, and the 

hospital’s output. These two parameters capture the types of services provided by 

each hospital and the capacity of that hospital to provide those services, where, 

capacity refers to the extent and complexity of the services offered. 

Furthermore, there is a need to test the feasibility of changing the way benchmarks 

are normalised, and to determine whether a combination of these factors is a better 

normalising factor than the size of the hospital alone. It is proposed that comparisons 

can be made more comprehensive by using benchmarks that are normalised for the 

size of the hospital, the output of the hospital and the hospital’s case mix. These 

concepts are measurable, and the data is readily available. This makes it both feasible 

and cost-effective for implementation in the South African context, as it excludes 

concepts that are difficult or unrealistic to measure which may not significantly affect 

consumption. Each concept is expanded on in the following subsections. 

 The size of a hospital 

This concept represents and captures the inter-hospital variation in the size of 

healthcare facilities. As discussed in Section 2.1.1, the two most commonly used 

measures to quantify the size of a hospital are its building footprint in terms of total 

floor area, and its capacity as represented by its number of available beds. The 
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benchmarks currently being used to evaluate and compare energy and water 

consumption in the public healthcare sector in the Western Cape are predominantly 

normalised for the scale of the healthcare facility (Cunninghame 2015).  

The capacity focuses on the scaling effect due to the demand placed on resources by 

patient needs. The potential to treat a patient is used as the unit of analysis. This 

measure is often specified in the forms 𝐾𝑊ℎ/𝑏𝑒𝑑/𝑑𝑎𝑦 for electricity consumption 

and 𝐾𝐿/𝑏𝑒𝑑/𝑑𝑎𝑦 for water consumption. The building footprint focuses on the 

scaling effect associated with the operation of the hospital’s systems. A unit of floor 

area is defined as the unit of analysis and the changes in the performance of these 

systems are evaluated with respect to this unit. This measure is often specified in the 

forms 𝐾𝑊ℎ/𝑚2/𝑦𝑒𝑎𝑟 for electricity consumption and 𝐾𝐿/𝑚2/𝑦𝑒𝑎𝑟 for water 

consumption. 

 The output of a hospital 

A patient-day is a healthcare time unit used to represent the demand placed on a 

healthcare facility’s resources by hospitalising a patient for one day (Gray et al. 2011). 

Each patient-day represents a unit of time during which the services of a hospital are 

being used by a patient. For example, ‘20 patient-days’ is equivalent to 20 patients 

being hospitalised for one day each. This concept was used as a measure of hospital 

output to gauge how many patients were treated or admitted and their average length 

of stay. 

A patient-day-equivalent (PDE) is a form of the patient-day adjusted to the inpatient-

to-outpatient ratios of hospitals. The PDE is defined as: 

 

PDE =  inpatient day +
1

2
# of day patients +

1

3
# of outpatients

+
1

3
emergency headcount  

(2.1) 

By its definition, the PDE measure assumes that the demand on a hospital’s services 

due to 1 inpatient visit is equivalent to that of 2 inpatients or 3 outpatient visits or 3 

emergency visits (EHMI 2017). Thus, it facilitates the evaluation of resource 
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utilisation efficiency at hospitals with respect to service-related data (Massyn et al. 

2017).  

 The composition of a hospital’s case mix 

The compositions of the caseloads of hospitals differ significantly in terms of the 

number, type and extend of the diagnosis of the patients treated at the hospital. The 

different diseases that make up the caseload of a hospital, and their corresponding 

procedures have different levels of resource consumption (Gray et al. 2011). This 

results in inter-hospital variations in the demand placed on the resources of hospitals 

due to the diagnostic makeup of their patient populations. This concept evaluates the 

complexity of a hospital’s caseload and the level of specialisation of that caseload, 

with respect to the range of diagnoses treated at a hospital and the number of cases 

corresponding to each treated diagnosis. 

 Conclusion 

This chapter identified and provided an insight into the characteristics and factors 

that vary between hospitals and have a significant impact on their energy and water 

performance. The literature analysis identified multiple interconnected 

characteristics and factors that should be accounted for when normalising the energy 

and water consumption of hospitals. These characteristics and factors provided a 

theoretical foundation for the selection of inputs and indicators for the normalisation 

model.  

It was found that resource consumption scales with the size, capacity, and level of 

medical service provision at a hospital. Three concepts that represent these factors 

were selected as potential normalisation factors in the formulation of benchmarks, 

namely: size, hospital output and case mix composition. These concepts were selected 

because they are quantifiable, practically definable, outside the direct control of 

hospital administrators, and the data needed to quantify them was available. The 

feasibility of using these concepts as normalising factors will be evaluated in 

subsequent chapters. 
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 The method 

Chapter 2 discussed the factors and characteristics affecting energy and water 

consumption in hospitals, and the role of normalised benchmarks in the evaluation 

and comparison of the resource consumption performance of hospitals. It proposed 

that these comparisons can be made more comprehensive by using benchmarks that 

are normalised for: the size, output and case mix composition of a hospital. This 

chapter outlines the research methodology used to test the feasibility of changing the 

way benchmarks are normalised to determine whether a combination of these factors 

is a better normalising factor than the scale of the facility or output alone. 

3. The method

DOCUMENT OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

Discusses the approach formulated to evaluate the 
feasibility of normalisation factors identified in 
Chapter 2.

4. Quantifying the function of 
a hospital

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion

 

Figure 3.1: Thesis document outline: Chapter 3 contextualised  

 Research design 

The research problem addressed in this study is descriptive in nature. The aim of the 

research was to describe how the normalising factors are related to the energy and 

water consumption of a hospital and to quantify these relationships. These 

relationships were then used to propose a normalisation model. 

Using the research design type classification framework of Mouton (2005), a 

statistical modelling research design was selected for this study. This research design 
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is empirical in nature and focuses on the analysis of primary, existing or hybrid 

(combination of primary and existing) data. The research design consists of studying 

a process or system, identifying important variables, and then capturing, describing 

and validating a representation of that process or system (Hofstee 2006). 

Statistical analysis uses a sample that is representative of a population to make 

inferences about the behaviour or characteristics of the population using the results 

obtained from the analysis. The analysis process consists of:  

- collecting sample data from a population,  

- organising the data, 

- analysing the data,  

- representing the results, and  

- interpreting the results to make inferences about the population. 

In this study, statistical analysis was used to develop a model that estimates a function 

that relates inter-hospital variations in total annual energy and water consumptions 

to patterns in different combinations of normalising factors. Multiple analyses were 

conducted with different combinations of normalising factors as independent 

variables to determine which combination statistically accounts for the largest 

amount of variance in the energy and water consumption dataset.  

One of the benefits associated with this research design is its ability to capture large-

scale processes and systems accurately and to facilitate the simplification of the 

relationships in the process or system into a model (Mouton 2005). This leads to a 

greater understanding of that process or system as the model can be used to describe, 

explain or predict the process or system’s behaviour under varying conditions. 

However, this research design has some limitations that need to be considered. For 

example, data collection issues, such as obtaining a large enough and complete 

enough dataset to construct and test the model. Other limitations are associated with 

accounting for unexpected variables, the potential impacts of simplifying 

assumptions used to allow the model to practically capture reality, and the potential 

impact of errors in the modelling process (Hofstee 2006). 

Stellenbosch University  https://scholar.sun.ac.za



THE METHOD 

38 

 Research methodology 

This section details the research methodology used to develop normalisation models 

that allow for the commensurable comparison of the energy and water consumption 

of a set of hospitals with respect to combinations of normalising factors. This 

methodology was used to assess the significance of the explanatory power associated 

with each combination of normalising factors and to identify the factors with the 

most statistically significant explanatory power. The research methodology used in 

this study and the chapters that correspond to each of the steps in the methodology 

are shown in Figure 3.2.  

Identify 
normalisation 

factors

(Chapter 2)

A literature analysis identified the following 

factors:

- Hospital size

- Hospital output

Factors currently being used:

- Composition of a hospital s case mix

Potential normalisation factors:

Quantify case 
mix 

composition

(Chapter 4) 

Identify a method that develops 

measures for quantifying case mix

- Complexity of hospital case mix
- Level of specialisation of hospital case 

mix

- Evans & Walker (1972) information 
theory approach

Formulate the measures and 
quantify the case mix composition 

Assessing the 
feasibility of the 

normalisation 
factors 

(Chapter 5)

Multiple regression analysis

- Assess the predictive power of the 
respective models
- Select the  best  model according to 

those criteria

- Develop and compare statistical 
models consisting of all the 
possible combinations of the 
respective factors.

adjusted R2 and AIC criterions

Conclusions 
and 

recommendations

(Chapter 6)

Recommend a model based on the 
findings of the feasibility analysis 
for normalising the energy and 

water consumption of hospitals

 

Figure 3.2: Research methodology 

The first part of the methodology was discussed in Chapter 2. It consisted of the 

literature analysis that contextualised the real-world problem and identified the 

normalisation factors. From this analysis two sets of normalisation factors were 

identified: the factors currently being used to conduct normalisation (hospital size 

and output), and the potential factors for inclusion into the normalisation model 

(case mix composition). 
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The aim of the second part of the research methodology is to develop quantifiable 

measures to capture the case mix composition of a hospital. An information theory-

based approach developed by Evans & Walker (1972) was used to model the 

complexity and level of specialisation of a hospital’s caseload. This will be discussed 

in Chapter 4. Measures already exist for quantifying the factors currently being used 

to normalise the energy and water consumption of hospitals. The number of beds and 

the total floor area are used for the size of a hospital. The patient-day-equivalent is 

used for the output of a hospital. 

In the third part of the research methodology, as discussed in Chapter 5, a statistical 

analysis was conducted using different combinations of the measures of the 

normalising factors. Multiple linear regression analyses were conducted to determine 

the amount of variation in the energy and water consumption data of hospitals that 

is explained by variations in combinations of the normalising factors.  

The aim of the multiple regression analyses was to identify the combination of 

normalising factors with the most statistically significant explanatory power. This is 

achieved by determining how much of the variation in the hospital’s consumption 

data is explained by variations in the various combinations of the normalising factors. 

The amount of inter-hospital variation in resource consumption accounted for by the 

models were compared to evaluate the explanatory power of the respective models. 

The best model was selected according to the 𝑅𝑎
2 and 𝐴𝐼𝐶 criterions. These criteria 

facilitate the selection of the model with the best trade-off between simplicity and fit 

in the models evaluated.  

In part 4 of the research methodology, the results of the regression analyses are used 

to draw conclusions on the feasibility of adding complexity and level of specialisation 

to the normalisation model to account for the case mix composition of a hospital. 

Furthermore, a normalisation model for the commensurable comparison of the 

energy and water consumption of a set of hospitals is recommended.  
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 The information theory approach 

This section discusses the information theory approach that was used to formulate 

measures for quantifying the case mix composition of a hospital. This information 

theory approach was proposed by Evans & Walker (1972) as a framework for 

standardising hospital output when conducting comparative analyses of hospital 

costs. Barer (1982) empirically tested the framework and refined the case mix 

standardisation method developed by Evans & Walker (1972). 

Both Evans & Walker (1972) and Barer (1982) focused on formulating functions for 

estimating and comparing the costs associated with hospital services. This was a 

popular field of study during the 1970s to 1990s, which focused on identifying and 

developing equations for the relationships between the inter-hospital variations in 

hospital costs and sets of predefined factors. 

The approach proposed in the framework of Evans & Walker (1972) used the 

diagnostic proportions of a hospital’s caseload to formulate measures for its 

complexity and level of specialisation. The framework proposed that the treatment of 

complex cases requires extensive facilities and specialised staff. Thus, complex cases 

are responsible for a larger demand on the resources of a hospital and thus result in 

an increase in hospital expenditure. By studying the distribution of medical cases 

across a healthcare network it is possible to develop a measure of the complexity and 

level of specialisation of each hospital in the network. 

The Evans & Walker (1972) framework proposed that the degree of concentration of 

medical cases across hospitals can be used as a measure of the complexity of a medical 

case type. It argued that complex medical case types tend to be concentrated in a few 

hospitals that have the specialised facilities, equipment and staff needed to treat 

them, whereas comparatively straightforward medical case types can be treated by 

most hospitals and are thus distributed across the healthcare network. Thus, the 

complexity of a hospital’s caseload is calculated using the complexity of each medical 

case type in the hospital’s caseload and the number of cases of that medical case type 

treated by the hospital.  
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The level of specialisation is also calculated using the diagnostic proportions of a 

hospital’s caseload. It is a measure of the breadth of medical case types treated by a 

hospital. Specialised hospitals treat a small portfolio of diagnostic cases while more 

generalist hospitals cater to a larger set of medical case types. Subsection 3.3.1 

discusses the expected information gain measure which was used to calculate 

complexity and level of specialisation as outlined in Subsections 3.3.2 and 3.3.3 

respectively. 

 Expected information gain 

The information theory approach developed by Evans & Walker (1972) uses two sets 

of probabilities (the prior probabilities and posterior probabilities) to define expected 

information measures. The treatment associated with each medical case is defined as 

an event, and each event has an associated prior probability and an associated 

posterior probability. The prior probabilities are based on the information available 

about the hospitals in the healthcare network before data collection or analysis. The 

posterior probabilities are based on each hospital’s share of the overall provincial 

caseload treated for the diagnostic case type of interest.  

After data collection and analysis, the actual distribution of medical cases across the 

hospitals in the healthcare network is known. Thus, the posterior probabilities can be 

calculated. The difference between the prior probabilities and posterior probabilities 

associated with each diagnostic case type at each hospital is called the information 

gain. It represents the knowledge gained from learning the actual distribution of 

medical cases at each of the hospitals in the healthcare network. 

The information gain associated with the prior probabilities (𝑃𝑝𝑟𝑖𝑜𝑟,𝑖) of an event i is 

calculated using: 

 𝐼𝐺𝑝𝑟𝑖𝑜𝑟,𝑖 = 𝑙𝑛 (
1

𝑃𝑝𝑟𝑖𝑜𝑟,𝑖
) (3.1) 

Similarly, the information gain associated with the posterior probabilities (𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖) 

of an event i is given by: 
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 𝐼𝐺𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 = 𝑙𝑛 (
1

𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖
)  (3.2) 

The size of the information gain (𝐼𝐺𝑖) associated with the occurrence of each i-th 

event is given by the difference between the information gains associated with the 

prior and posterior probabilities of its occurrence. This relationship is defined by 

equation (3.3). The difference between 𝑃𝑝𝑟𝑖𝑜𝑟,𝑖 and 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 for events with a high 

likelihood of occurrence is small, and thus the information gain associated with the 

occurrence of this event is also small. However, if an unlikely event occurs, the 

difference between 𝑃𝑝𝑟𝑖𝑜𝑟,𝑖 and 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 will be large, resulting in a large information 

gain.  

 

𝐼𝐺𝑖 = 𝐼𝐺𝑝𝑟𝑖𝑜𝑟,𝑖 − 𝐼𝐺𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 = 𝑙𝑛 (
1

𝑃𝑝𝑟𝑖𝑜𝑟,𝑖
) −  𝑙𝑛 (

1

𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖
)

= 𝑙𝑛 (
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖

𝑃𝑝𝑟𝑖𝑜𝑟,𝑖
) 

(3.3) 

The framework defines an expected information gain measure (𝐸𝐼𝐺𝑖) as the weighted 

sum of the information gains of all the possible events that are classified into a 

category of interest. Each information gain is weighted by its posterior probability of 

occurrence. The expected information gain from the occurrence of the i-th event is 

given by:  

 𝐸𝐼𝐺𝑖 = ∑ 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 ∙ 

𝑛

𝑖=1

𝐼𝐺𝑖 = ∑ 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖 ∙ 

𝑛

𝑖=1

𝑙𝑛 (
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑖

𝑃𝑝𝑟𝑖𝑜𝑟,𝑖
)  (3.4) 

This process was used to formulate the 𝐸𝐼𝐺𝑖 measures that were used to define 

measures for the complexity and level of specialisation of a hospital’s caseload. The 

formulation of measures for complexity is discussed in Section 3.3.2 and the 

formulation of measures for level of specialisation is discussed in Section 3.3.3. 

 Complexity of caseload 

The Evans & Walker (1972)  framework is used to formulate measures for quantifying 

the complexity of the case mix composition of a hospital. The medical cases treated 

in the healthcare network are grouped according to their diagnostic case type. Each 

diagnostic case type grouping is studied and the distribution of its medical cases 
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amongst the hospitals in the healthcare network is evaluated. In these evaluations 

each medical case treated by a hospital in the healthcare network is defined as an 

event.  

Before data collection and analysis, only the number of hospitals in the network (N) 

is known. Based on the available information, it is assumed that the cases 

corresponding to the respective diagnostic case types have an equal likelihood of 

being treated at any of the hospitals in the network. Thus, there are N possible events 

for every medical case in need of treatment at a hospital in the healthcare network. 

This is shown in Figure 3.3, where P1, P2, P3, …, Pn are the probabilities associated with 

the n possible events for each diagnostic case type. 

Hospital 1 Hospital 2 Hospital 3 Hospital n

 
  

Patient of diagnostic 
case type j in need of 
medical  treatment

P1
P3 PnP2

 

Figure 3.3: Focus of probabilities used to develop the complexity of caseload metric 

Thus, when determining the complexity of a hospital’s caseload, the prior 

probabilities correspond to the case where the treatment of medical cases of 

diagnostic type j is distributed evenly across the hospitals in the analysis. An even 

distribution is defined as the case where: the proportion of the overall number of 

cases of diagnostic type j treated in the network that is treated at hospital i (
𝑐𝑖𝑗

𝐶𝑗
) is 

equal to the likelihood of the medical case being treated at hospital i (
1

𝑁
). Therefore, 

the prior probability is given by: 

 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑁
 (3.5) 

Where 𝑁 is the number of hospitals in the healthcare network.  

After data collection the actual distribution of cases of diagnostic type j treated at 

each hospital in the healthcare network is known. Thus, the posterior probability is 
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based on each hospital’s share of the overall healthcare network’s patient load treated 

for the diagnostic case type of interest. This probability is denoted as: 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑞𝑖𝑗 =
𝑐𝑖𝑗

𝐶𝑗
⁄    (3.6) 

Where  

- 𝑐𝑖𝑗 is the number of diagnostic case type j cases treated at hospital i in a given 

year, and 

- 𝐶𝑗 is the overall number of diagnostic case type j cases treated at all the 

hospitals in the network in a given year. 

The expected information gain associated with learning the actual distribution of the 

total cases of diagnostic type j treated at each hospital is given by: 

 𝐺𝑗 =  ∑ 𝑞𝑖𝑗 ∙ 𝑙𝑛(𝑁𝑞𝑖𝑗) 

𝑛

𝑖=1

 (3.7) 

The expected information gain measure has an upward bias and tends to overestimate 

complexity. A standardisation is applied to correct for that bias. The 𝐺̅𝑗 metric is the 

standardised version of the expected information gain measure. Where 𝐺̅𝑗 is 

standardised to an average value of one. This metric is given by: 

 𝐺̅𝑗 =  
𝐺𝑗

∑ 𝐺𝑗𝑄𝑗
𝑚
𝑗=1

  (3.8) 

Where 𝑄𝑗 = 𝐶𝑗/𝐶.  

The complexity of the diagnostic case mix metric for hospital i is a weighted sum of 

the individual complexity values of all the diagnostic case types treated at the 

hospital. The weights represent the proportion of the overall provincial patient load 

for each diagnostic case type treated at hospital i. The complexity of the diagnostic 

case mix of hospital i is given by:  

 𝐶𝑀𝑃𝑋𝑖 = ∑ 𝐺̅𝑗𝑝𝑖𝑗

𝑚

j=1

  (3.9) 

Where the weights (𝑝𝑖𝑗) are given by: 

 𝑝𝑖𝑗 =
𝑐𝑖𝑗

𝐶𝑖
⁄  (3.10) 
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For diagnostic case type j, the expected information gain from learning the actual 

distribution of patients at each hospital was used as a measure of the complexity of 

that case type. A high information gain is indicative of a concentration of the 

treatment of diagnostic case type j at a hospital. The degree of concentration is used 

as a measure of the complexity of the caseload of a hospital. If a large proportion of 

the overall treatment of diagnostic case type j in the province is concentrated in a few 

hospitals., these hospitals are assumed to specialise in this diagnosis.  

 Level of specialisation 

The level of specialisation measures formulated using the Evans & Walker (1972) 

framework evaluate the diversity of the diagnostic case types in the caseload of a 

hospital relative to other hospitals in the healthcare network. It measures whether 

diagnostic effort at a hospital is concentrated on a limited range of diagnostic case 

types or widely distributed across a large set of diagnostic case types. The focus is on 

the diagnostic case type classification of each medical case treated at hospital i. This 

is shown in Figure 3.4, where P1, P2, P3, …, Pq are the probabilities associated with each 

case type.  

Diagnostic 
case type 1

Diagnostic 
case type 2

Diagnostic 
case type 3

Diagnostic 
case type q

 
  

Medical case treated 

at hospital i 

P1 P3 PqP2

 

Figure 3.4: Focus of probabilities used to develop the level of specialisation metric 

It is assumed that before data collection and analysis only the overall proportions of 

each diagnostic case type treated in the healthcare network is known. Thus, the prior 

probability of a medical case treated at hospital i being of diagnostic case type j is 

equal to the overall proportion of cases treated in the healthcare network that belong 

to diagnostic case type j (𝑄𝑗). This is given by: 

 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑄𝑗
=

1

𝐶𝑗
𝐶

⁄
=

𝐶

𝐶𝑗
 (3.11) 
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Where,  

- 𝐶𝑗 is the total number of diagnostic case type j cases treated at all the 

hospitals in the network in a given year, and 

- 𝐶 is the total number of cases treated at all the hospitals in the healthcare 

network in a given year. 

The posterior probability is determined after data collection and analysis and is based 

on knowing the actual distribution of medical cases at each of the hospitals in the 

healthcare network. Thus, the posterior probability is given by: 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝𝑖𝑗 =
𝑐𝑖𝑗

𝐶𝑖
⁄  (3.12) 

Where,  

- 𝑐𝑖𝑗 is the number of diagnostic case type j cases treated at hospital i in a given 

year, and 

- 𝐶𝑖 is the total number of cases treated at hospital i in a given year. 

Thus, the information gain is given by:  

 𝐻𝑖 =  ∑ 𝑝𝑖𝑗

𝑚

j=1

𝑙𝑛(𝑝𝑖𝑗/𝑄𝑗) (3.13) 

The expected information gain of hospital i, and by extension its 𝑆𝑃𝐶𝐿𝑖 measure, are 

proportional to the size of the difference between the distribution of patients across 

the diagnostic case types within hospital i, and the overall distribution of patients 

across the diagnostic case types treated at all the hospitals in the province.  

As with the 𝐺̅𝑗 metric, 𝐻̅𝑖 is the standardised version of the expected information gain 

measure for the level of specialisation of a hospital (𝐻𝑖). It is also standardised to an 

average value of one. Furthermore, 𝐻̅𝑖 is also equal to the 𝑆𝑃𝐶𝐿𝑖 measure for the level 

of specialisation of the diagnostic caseload of a hospital. This measure is given by: 

 𝑆𝑃𝐶𝐿𝑖 = 𝐻̅𝑖 =
𝐻𝑖

∑ 𝐻𝑖𝑃𝑖
𝑛
𝑖=1

 (3.14) 

Where 𝑃𝑖 = 𝐶𝑖/𝐶. 
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 Linear regression analysis 

According to Chatterjee & Simonoff (2013) the three most common uses of regression 

analysis are: 

1. to model the relationship between dependent variable(s) and independent 

variable(s); 

2. to forecast the behaviour of independent variable(s); and 

3. for hypothesis testing. 

In this study, regression analysis was used to characterise the relationship between 

the dependent variables (𝒚) and independent variables (𝐱) by quantifying the 

dependence relationship (𝑦 = 𝑓(𝐱)) between the variables. The dependent variables 

are the energy consumption (𝑦1) and water consumption (𝑦2) of hospitals. The 

independent variables are the size of the facilities (𝑥1), their output (𝑥2) the 

complexity of their case mix (𝑥3), and the level of specialisation of their case mix (𝑥4). 

 Multivariate situation 

In statistics, a multivariate situation is one where each observation is characterised 

by multiple variables. An example of a multivariate situation is shown in Table 3.1, 

where there are n observations that are characterised by p variables. The term ‘variate’ 

refers to the fact that the situation can be represented as a weighted linear 

combination of variables with empirically determined weights (see equation (3.15)).  

These weights (β-coefficients) are determined empirically from the observations. A 

univariate situation involves only one variable (𝑝 = 1). A multivariate situation 

involves more than one variable (𝑝 ≥ 2). Thus, a multivariate situation can be defined 

as a linear combination of p variables where the weights are determined empirically 

from n observations that are collected from the population being studied. 

Table 3.1: An example of a multivariate situation 

Observations X1 X2 X3 … Xp 

1 x11 x12 x13 … x1p 

2 x21 x22 x23 … x2p 

⁞ ⁞ ⁞ ⁞  ⁞ 

n xn1 xn2 xn3 … xnp 
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 𝑌 =  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 (3.15) 

The behaviour of a system or process that is characterised by multiple variables 

should be studied by taking into consideration all the variables characterising it that 

are important to the design, development or improvement of the system or process 

being analysed. This is done to capture and account for the covariance structure that 

exists between variables that characterise the system or process. Using univariate 

statistics for a multivariate problem would result in a significant loss of information 

due to not accounting for this covariance structure.  

 Multiple linear regression 

The primary interest of the regression analysis in this study is to evaluate the 

feasibility of including metrics that account for the complexity and level of 

specialisation of a hospital’s case mix in the normalisation process. This is achieved 

through evaluating the variability in the dependent variables (the energy and water 

consumption of hospitals) that is associated with different combinations of 

independent variables (the normalisation factors). 

It is assumed that the problem at hand’s variability structure is characterised by linear 

relationships between n sets of observations of a dependent (𝑦) and p independent 

(𝐱) variables. Although, the energy and water consumption are assessed relative to 

the same set of independent variables, it is assumed that there is no causal 

relationship between the energy consumption and the water consumption. It is also 

assumed that the independent variables do not covary. Thus, the multiple regression 

dependence model was deemed most suitable for characterising the relationship (𝑦 =

𝑓(𝐱)) between the dependent and independent variables.  

In multiple regression, the linear relationship between one dependent variable (𝑦) 

and multiple independent variables (𝐱) is represented in a single model as illustrated 

in Figure 3.5. The arrowheads indicate the causal relationship in the model,  𝑦 =

𝑓(𝑥) + 𝜀. The β-coefficients are unknown parameters that represent the degree of 

influence of the independent variable on the dependent variable. For example, for 
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every unit change in 𝑥1 there is a corresponding 𝛽1 change in 𝑦 assuming that all other 

independent variables are fixed (Chatterjee & Simonoff 2013). 

 

 

 

 

 

Figure 3.5: Pictorial representation of a multiple regression model 

The mathematical representation of the general multiple regression model shown in 

Figure 3.5 is given by: 

 𝑦 =  𝛽0𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀  (3.16) 

Since this is a multivariate situation each of the individual 𝑥𝑖 and 𝑦 consists of sets of 

individual data points. Assuming that a dataset of n observations that are 

characterised by p variables was collected, then the independent variable and the 

dependent variables are represented by the following data vector and matrix: 
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(3.17) 

The general regression equation is applied to each observation in the dataset, as 

shown in equation (3.18) below for the i-th observation.  

 𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖  (3.18) 

As shown in equation (3.19), 𝑦𝑖 is variate and consists of two main parts the predicted 

value (𝑦𝑖̂) and the residual (𝜀𝑖).  

 𝑦𝑖 = 𝑦𝑖̂ + 𝜀𝑖  (3.19) 

The predicted value (𝑦𝑖̂) represents the expected value of 𝑦𝑖 of the regression model 

given data collected in the i-th observation 𝐱𝑖.  
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 𝑦𝑖̂ = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 = 𝐸(𝑦𝑖| 𝐱𝑖)  (3.20) 

Thus, the multiple linear regression model for all observation in the collected dataset 

in matrix form is given by: 
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(3.21) 

This can be summarised in matrix form as: 

 𝒀 = 𝑿 ∙ 𝜷 + 𝜺  (3.22) 

This equation represents the estimated underlying relationship between the 

dependent variable and independent variables in the data analysed. The regression 

coefficients (𝜷) are the estimation parameters that approximate this relationship. The 

residual components (𝜺) represent the variability of the dependent variable that is 

due to factors (controllable or uncontrollable) that are not accounted for in the 

analysis. 𝑿 and 𝒀 represent the dataset used to develop the regression model. 

 Model selection strategies 

The multiple linear regression analysis method discussed in Section 3.4.2 was used to 

propose a set of candidate normalisation models. This section introduces the model 

comparison and selection approach that was used to objectively determine and select 

the ‘best’ normalisation model from this set of candidate models.  This approach was 

proposed by Chatterjee & Simonoff (2013) and is based on the principle of parsimony. 

This principle emphasises the importance of maintaining a balance between the 

simplicity of a model and the strength of the model with respect to its ability to 

represent important relationships in the data. 

Identifying and selecting the ‘best’ model involves comparing several regression 

models consisting of varying combinations of independent variables. These models 

are non-nested in nature, that is the models being compared consist of different 

combinations of a set of factors. For example, when comparing regression models 
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with independent variables {𝑥2, 𝑥3} and {𝑥1, 𝑥4} respectively. The first model is not a 

subset of the second or vice versa. The following criterions were used to identify and 

select the ‘best’ model:  

- the Adjusted coefficient of determination (𝑅𝑎
2), and 

- the Akaike information criterion (𝐴𝐼𝐶). 

These criteria assess the trade-off between the simplicity and strength of fit of a model 

(Chatterjee & Simonoff 2013).  

 The adjusted coefficient of determination (𝑹𝒂
𝟐) 

The coefficient of determination (𝑅2) is an overall measure of the statistical 

significance of the regression. It is a measure of how much of the total variance in the 

dependent variable is associated with the set of independent variables in the 

regression analysis (Chatterjee & Simonoff 2013). The values of 𝑅2 range from 0 to 1, 

where values close to 0 indicate a low similarity between the fitted target value (𝑦̂𝑖) 

and the observed value (𝑦) and low predictive power, whereas values close to 1 

indicate high similarity and predictive power. Thus, higher values for 𝑅2 are desirable. 

The 𝑅2 measure has an upward bias and tends to overestimate the statistical 

significance of the predictive power of a regression model (Chatterjee & Simonoff 

2013). This is corrected for by using the adjusted coefficient of determination (𝑅𝑎
2) 

measure. As given by: 

 𝑅𝑎
2 = 𝑅2 −

𝑝

𝑛 − 𝑝 − 1
(1 − 𝑅2)  (3.23) 

It adjusts the 𝑅2 using the 
𝑝

𝑛−𝑝−1
 multiplier to incorporate the complexity of the 

regression model into the measure as shown below (Chatterjee & Simonoff 2013). 

Thus, if predictors that are not statistically significant are added to the regression 

model, the number of predictor variables (𝑝) will increase and thus the complexity of 

the model increases. However, the predictive power of the model stays the same and 

thus the 𝑅𝑎
2 value for the model decreases. Thus, when comparing a set of models, the 

model with the highest 𝑅𝑎
2 value is desirable. 
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 The Akaike information criterion (𝐀𝐈𝐂) 

The Akaike information criterion (𝐴𝐼𝐶) estimates the quality of a regression model 

by using the loss of information due to the difference between the regression model 

and the true nature of the relationship between the predictor and target variables 

(Chatterjee & Simonoff 2013). This criterion is given by: 

 𝐴𝐼𝐶 = 𝑛 log(𝜎̂2) + 𝑛 log[(𝑛 − 𝑝 − 1) 𝑛⁄ ] + 2𝑝 + 4 (3.24) 

When comparing a set of models, the model with the lowest 𝐴𝐼𝐶 statistic is desirable. 

In accordance with the principle of parsimony, the 𝐴𝐼𝐶 statistic rewards models that 

have a good strength of fit (as represented by 𝜎̂2) and penalises models with a high 

amount of predictor variables. A large amount of predictor variables is associated with 

high model complexity. This may lead to overfitting as increasing the number of 

predictors improves the model’s strength of fit.  

 Model selection approach 

Chatterjee & Simonoff (2013) suggested the following approach for selecting the ‘best’ 

model from a set of non-nested regression models: 

1. Run a multiple regression analysis for all the models being compared (all 

possible combinations of predictor variables) and collect all the relevant 

statistics for each analysis. 

2. When comparing the models, arrange the models chronologically; first, the 

models with the single predictor variables, then the two predictor variable 

models, and so on.  

3. Keep increasing the predictor variables in the model until the value of 𝑅2 

stabilises (the 𝑅2 statistic for successive consecutive models tends to a 

constant value). This implies that further increasing the number of predictor 

variables in the model only increases the complexity of the model and does 

not provide additional predictive power.  

4. From this set of models choose the model that maximises 𝑅𝑎
2 and minimises 

𝐴𝐼𝐶. 

Stellenbosch University  https://scholar.sun.ac.za



THE METHOD 

53 

 Conclusion 

This chapter discussed the research methods that were used in this study. It provided 

an overview of the techniques and methods used to develop metrics from real-world 

data, and the models used to assess the normalisation potential of these metrics were 

also provided. In Chapter 4 and Chapter 5, this methodology is applied to real-world 

data to develop and assess several normalisation models.  
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 Quantifying the function of 

a hospital  

This chapter is part of the second phase of the research methodology illustrated in 

Figure 3.2. It describes the application of the information theory approach outlined 

in Section 3.3 to real-world data. It also discusses the data analysis used to formulate 

measures for the complexity and level of specialisation of a hospital’s caseload. The 

figure below, Figure 4.1: Thesis document outline: Chapter 4 contextualised , 

contextualises the current chapter in the thesis document. 

A detailed overview of the variables used to formulate these measures is presented in 

Section 4.1. The data collection process and the dataset collected for analysis are 

discussed in Section 4.3. Section 4.4 discusses the data analysis process and the 

application of the information theory approach. In Section 4.5, the results of the data 

analysis are presented, and the formulated measures are discussed.  

4. Quantifying the function of 
a hospital

DOCUMENT OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

3. The method

Discusses the analysis used to quantify inter-
hospital variations in the function of a hospital as 
defined by the diagnostic mix of its caseload. 

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion

 

Figure 4.1: Thesis document outline: Chapter 4 contextualised  
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 Classifying the caseload of a hospital 

This section discusses and defines the variables used to formulate metrics for the 

complexity and level of specialisation of a hospital’s medical caseload. The 

information theory approach proposed by Evans & Walker (1972) was used to 

develop the set of measures for quantifying and capturing the inter-hospital 

variations in case mix composition.  

As outlined in Section 3.3, this approach uses the distribution of the number of cases 

treated per diagnostic case type across a set of hospitals to develop measures that are 

representative of the complexity and level of specialisation of the medical caseload of 

each of the hospitals in the analysis. The caseloads are classified in terms of the range 

and types of diagnosis treated by the medical services provided by a hospital (Barer 

1982). A treated case, so to say a patient that leaves the hospital (through discharge, 

death or referral) was used as a measure of a hospital’s output.  

This classification required a comprehensive specification of the caseload of all the 

hospitals being analysed. Emphasis was placed on two sets of considerations when 

formulating and selecting indicators for this specification:  

- Generalisability, comprehensiveness and objectivity: This ensured that the 

indicators are applicable at any district hospital, and that the results achieved 

using them is accurate and will facilitate a more robust comparison of resource 

consumption in hospitals. 

- Data availability and accessibility: Data on the indicators selected must be 

available and accessible to allow for the quantitative testing of the said sub-

indicator. 

The individual treated cases that make up the caseload of a hospital vary significantly 

across hospitals with respect to the type of diagnosis treated and the severity of these 

diagnoses. Thus, a classification scheme was needed that was capable of accurately 

capturing this variability in the diagnostic proportions of hospitals. The South African 

version of the 10th Revision of the International Classification of Diseases Master 

Industry Table (ICD-10 MIT) was used to define the categories used to identify and 

group the different cases treated by the hospital.  
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The ICD-10 MIT medical coding system is the health industry standard for recording 

and reporting patient diagnoses and medical records at all public and private medical 

facilities in South Africa (SANDoH 2012b). The ICD-10 MIT is a tabular list that 

assigns an alphanumeric code to each treated case. This code describes the patient’s 

primary diagnoses7 to its maximum level of specificity in accordance with the rules 

and conventions of the World Health Organisation  (SANDoH 2014).  

The guidelines for the use of this medical coding system in the South African context 

are specified in SANDoH (2014). The ICD-10 MIT is divided into 23 chapters based 

on the potential diagnostic condition of a patient. The chapters describe a large 

grouping of medical conditions based on clinical diagnosis and cause of morbidity. 

The level of specificity of the classification scheme increases as one moves across the 

scheme from chapters to subdivision until the patient’s primary diagnosis is defined 

to the highest level of specificity. Each chapter is subdivided into sections and these 

sections are further subdivided into subsections as shown in the example in Figure 

4.2. The sections and subsections are representative of groupings of the nature of the 

causative organisms and location of illness within each chapter.  

This classification scheme was used to classify patients according to their diagnosis. 

This provided a comprehensive specification of the diagnostic compositions of the 

caseloads of each of the hospitals in the analysis. The ICD-10 MIT codes assigned to 

each case in a hospital’s caseload were used as the input variables in the information 

theory analysis. For each ICD-10 MIT code, data was collected pertaining to the total 

number of cases treated annually for that diagnosis under each respective clinical 

speciality, at each hospital in the analysis. 

The ICD-10 MIT caseload data recorded at hospitals is in primary diagnosis form (see 

Figure 4.2). This level of specificity was too high for the applications of this study. At 

this level there are 40,546 potential ICD-10 MIT classifications for each diagnostic 

case treated by each clinical speciality provided at a hospital. The result obtained from 

                                                 
7 The condition diagnosed by a physician as the main reason the patient needed treatment 
(SANDoH 2012b). 
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applying the information theory approach to data at this level of specificity has a low 

practical utility.  

Thus, instead of applying the information theory approach at the primary diagnosis 

level, the cases in the caseloads of each hospital in the analysis were classified 

according to their clinical diagnosis and cause of morbidity as described at the ICD-

10 MIT chapter level. At this level there are 23 potential ICD-10 MIT classifications 

associated with each case treated by a clinical speciality. Since these subsections 

house conditions with very similar treatment requirements the trade-off between 

information loss and practical utility gained was acceptable. 

CHAPTER 4

Endocrine, nutritional 
and metabolic diseases 

(E00-E90)

 

Diabetes mellitus
(E10-E14)

Type 1 diabetes mellitus (E10)

Type 2 diabetes mellitus (E11)

Unspecified diabetes mellitus 

(E14)

E10

E10.0

E10.9

E11

E11.0

E11.9

E14

E14.0

E14.9

 

 

 

 

Congenital iodine-deficiency 

syndrome (E00)

Iodine-deficiency-related thyroid 
disorders and allied conditions 

(E01)

Other disorders of thyroid (E07)

Disorders of 
thyroid gland

(E00-E07)

E00

E00.0

E00.9

E01

E01.0

E01.8

E07

E07.0

E07.9

 

 

 

 

Metabolic 
disorders
(E70-E90)

Disorders of aromatic amino-
acid metabolism (E70)

Iodine-deficiency-related 
thyroid disorders and allied 

conditions (E71)

E70

E70.0

E70.9

E71

E71.0

E71.3

 

 

 

Other disorders of thyroid 
(E90)

E90

Chapter Section Sub-section
Primary 

diagnosis

Level of specificity  

Figure 4.2: Example different levels of specification in the ICD-10 MIT 
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 Healthcare in the Western Cape 

A prerequisite for facility performance benchmarking is that the buildings being 

compared should have similar characteristics. Minimising the differences between 

the facilities being compared ensures more meaningful comparisons. This is done by 

categorising the hospitals into a set of groups that have similar characteristics to 

reduce the effects of the non-homogeneity in the characteristics of the hospitals at 

each level of the health system. This ensures that comparisons within categories and 

across adjacent categories are similar enough to produce meaningful comparisons. 

To ensure comparability, the hospitals analysed and compared to each other need to 

be of similar size and have similar capacities. Thus, it is important to segment the 

hospitals into a set of appropriate categories that reflect the size and capacity of each 

hospital in this grouping. Since this approach is designed in the South African context 

and the data to be used to extend and develop the normalisation approach is based 

on the energy consumption of public hospitals in the Western Cape Province in South 

Africa, an understanding of the Western Cape healthcare context was needed. 

Public healthcare in the province is delivered via a four-tier hierarchical structure as 

shown in Figure 4.3. The level of complexity and specialisation of the health service 

increases towards the top of the structure. The first tier houses the province’s largest 

healthcare facilities. These hospitals offer tertiary and central referral health services 

in specialised units by highly and uniquely skilled medical personnel that perform 

advanced diagnostic procedures and treatments (SANDoH 2012a). These hospitals 

are also attached to a medical school and serve as training institutions for healthcare 

providers. 

The second tier houses the province’s acute regional and specialised hospitals. These 

healthcare facilities offer general surgery, internal medicine, paediatrics, obstetrics 

and gynaecological care (SANDoH 2012a). The regional hospitals are responsible for 

the treatment of referral patients from the district hospitals in their catchment area. 

Specialised hospitals attend to referral patients from primary healthcare clinics and 

district hospitals who need more sophisticated treatments. Unlike central hospitals, 
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the catchment area of regional and specialised hospitals is limited to the population 

of the province in which the hospital is situated. 

Number of facilities and number of patients treated 
collectively
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In the third tier of the health systems hierarchy are the province’s acute district 

hospitals. These facilities provide inpatient, outpatient and emergency care on a 24-

hour basis to the population of their respective health districts (SANDoH 2012a). 

District hospitals also attend to patients who were referred by primary healthcare 

clinics and need more sophisticated treatment. Primary healthcare clinics make up 

the fourth tier of the hierarchy. These facilities provide basic medical services and 

serve as the first point of contact between the patients and the health system. They 

have a low energy and water footprint because of their small size and capacity. 

However, the large number of clinics in the province means that their aggregated 

energy and water footprint is significant. 

  

Figure 4.3: Healthcare facilities hierarchy and referral structure  

in the Western Cape 
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 The dataset 

The proposed research methodology uses data recorded by the Western Cape 

Department of Health (WCDoH) as a basis for investigating the feasibility of 

accounting for the case mix of a hospital when comparing the energy and water 

consumption of hospitals. This section discusses the collection of the dataset used in 

the analysis and the process by which this dataset was cleaned and transformed into 

a dataset suitable for use in conjunction with the Evans & Walker (1972) information 

theory approach. 

 The data collection  

The data used in the study was provided by the Western Cape Department of Health 

(WCDoH) and is secondary in nature (existing hospital data). The WCDoH collects a 

diverse array of data at the various healthcare facilities in the province for planning, 

management, research, statistics, and policy formulation. Data used for statistical, 

management and planning purposes is collected and recorded on a centralised 

database. More specific data is collected by the directorates within the WCDoH that 

are interested in the content of this data.  

For research purposes the WCDoH provides data from the centralised database and 

other sources upon request from researchers. Researchers are required to apply for 

access to the data by submitting a written request for data. This is done via the 

‘Annexure A: application for health data’ form (see Appendix D.1). The application 

form must be accompanied by a comprehensive research proposal outlining the aim 

of the study and the intended purpose of the requested data. Ethical clearance from 

the research institution associated with the study must also be provided (see 

Appendix D.2). 

Upon approval of their request the researcher was put into contact with the various 

directorates within the WCDoH that are relevant to the study. In the case of the 

analysis discussed in this chapter, the required data was provided by the Directorate 

of Information Management. The patient statistics data is based on the medical 

records of the patients that are treated by a hospital, as recorded by the attending 

Stellenbosch University  https://scholar.sun.ac.za



QUANTIFYING THE FUNCTION OF A HOSPITAL  

61 

physician. These records are captured at each of the individual hospitals and collected 

in a centralised database by the WCDoH’s Directorate for Information Management. 

 The initial dataset 

The Directorate of Information Management at the WCDoH provided data pertaining 

to the inpatient caseloads of 32 public district hospitals in the Western Cape. A list 

of the district hospitals is provided in Table E.1 in Appendix E.1.  

The inpatient population was selected for analysis because it is the largest and most 

resource-intensive medical service category in a hospital (Barer 1982). There is a 

direct linkage between the care provided to inpatients during their stay at a hospital 

and the resource consumption of a hospital due to its inpatient load as inpatients are 

housed, fed, treated, and cared for using the resources of the hospital.  

District hospitals were selected for the analysis because they are the largest set of 

hospital type in the Western Cape (see Figure 4.3). Furthermore, the structure of the 

patient referral system in the province is such that a type of treatment is provided at 

a level that is appropriate for it. Patients report to the lowest level of care in the system 

for treatment first and are only referred up the referral structure if care cannot be 

provided at that level (SANDoH 2002). Thus, the patient population of these 

hospitals was treated as a subset of the province’s overall patient population that 

could be studied in isolation. 

The South African National Department of Health’s norms and standards for a district 

hospital’s service package (SANDoH 2002) and the WCDoH’s definitions for acute 

hospital packages of care WCDoH (2009) were used as the basis for defining the types 

of inpatient clinical specialities available at district hospitals.8 These inpatient clinical 

specialities were categorised into the macro-functional groups found in district 

hospitals, as shown in Figure 4.4. 

 

                                                 
8 These documents outline the clinical treatments and procedures provided, the competency and 
skills requirement of the staff at the hospital, and the type of equipment needed to provide 
treatment at district hospitals. 
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Surgery

- Dental Surgery
- Ear, Nose and Throat
- General Surgery
- Ophthalmology

- Plastic Reconstructive Surgery
- Trauma

- Urology
- Non-specialist as per DoH

Paediatrics

- General paediatrics

- Non-specialist as per DoH

- Paediatrics emergency medicine

Obstetrics & 
gynaecology

- Obstetrics

- Gynaecology

- Non-specialist as per DoH

Internal medicine 

- Family practice

- General medicine

- Non-specialist as per DoH

Psychiatry
- General psychiatry

- Non-specialist as per DoH

Orthopaedics
- Orthopaedics

- Non-specialist as per DoH

Emergency
medicine 

- Emergency medicine
- Non-specialist as per DoH

 

Figure 4.4: Categories of clinical inpatient activities at district hospitals 

The initial dataset was in the form of a Microsoft Excel workbook containing: 

- the ICD-10 MIT description of each diagnosis that was treated at each district 

hospital; 

- the ICD-10 MIT code corresponding to said description; and 

- the total number of patients treated with that diagnosis for the year 2016. 

The ICD-10 MIT descriptions of this initial dataset were organised according to the 

macro-category and clinical disciplines presented in Figure 4.4. An excerpt from the 

initial dataset is shown in Figure 4.5. 
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Figure 4.5: Excerpt from initial dataset for the formulation of measures for the 

complexity and level of specialisation 

 Data cleaning 

The data cleaning process was undertaken to prepare the collected data for analysis. 

This data pertains to the diagnostic proportions of the patient populations of the 

hospitals in the analyses and is dependent on the ICD-10 coding done at each of the 

individual hospitals. The first step of the cleaning process was to identify any errors 

in the collected dataset. This was done in conjunction with the diagnostic coding 

guidelines specified in (SANDoH 2014). Two types of errors were identified and 

corrected. In some cases, for example, patients were seen under a speciality but not 

coded on the system, whereas in other cases patients were coded incorrectly. An 

example of these errors can be seen in the highlighted area in Figure 4.5.  

Table 4.1 details the specific types of errors that were identified. The incorrect entries 

under each clinical speciality sub-grouping for each hospital were aggregated into one 

entry named ‘Error’ for that clinical speciality at each hospital. An example of this 
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transformation can be seen in Figure 4.6. For the year analysed (2016), the Electronic 

Discharge Summary system was not implemented at all the hospitals, thus the quality 

of the ICD-10 coding varied between the respective district hospitals.  

Table 4.1: Medical coding errors identified in initial dataset 

Error Example 

No ICD-10 Code provided. (Blank) 

The ICD-10 code is not alphanumeric. 51 

Three-character ICD-10 code ends on a full stop. J22. 

Three-character ICD-10 code does not contain a full stop. O02 1 

 

 

Figure 4.6: Transformation of the error entries 

The second phase of the data cleaning process involved identifying hospitals in the 

dataset whose caseloads contain a high proportion of ‘Error’ entries. The ‘Error’ entry 

percentage with respect to the total cases treated at a hospital was calculated for all 

the hospitals in the analysis. Figure 4.7 shows the proportion of a hospital’s ‘Error’ 

ICD-10 entries vs its total patients treated. The average for the entire dataset is also 

shown.  

The average of these percentages was calculated and used as an exclusion criterion. 

Hospitals whose ‘Error’ entry percentage was higher than the sample average were 

excluded from the analysis as their caseload composition may potentially skew the 

results of the information theory analysis. For this reason, only 18 of the initial 32 

hospitals were included in the analysis. These hospitals are listed in Table E.2 in 

Appendix E.2. 

Thirdly, as discussed in Section 4.1, the caseload data in the initial dataset was 

provided to the maximum level of specificity in accordance with the ICD-10 code 

Stellenbosch University  https://scholar.sun.ac.za



QUANTIFYING THE FUNCTION OF A HOSPITAL  

65 

description of the conditions of the patients in each hospital’s patient population. 

This inpatient data collected was too specific for use in the analysis. At this level of 

specificity, the total provincial patient population consisted of 40,547 potentially 

different types of medical diagnosis treated under each clinical speciality at each of 

the district hospitals in the province as specified by the respective ICD-10 MIT codes.  

 

Figure 4.7: Proportion of a hospital’s caseload that was an ‘Error’ ICD-10 entry in 

the initial dataset 

Thus, the caseload of each macro inpatient clinical speciality of the hospitals in the 

analysis, as described in the initial dataset, was categorised and condensed into the 

macro groups of medical classifications defined in the ICD-10 MIT as introduced in 

Section 4.1 (see Table C.1 in Appendix C for a full list of the groups). This generated 

finer groupings for each clinical speciality. The number of patients for each of the 

consolidated category groupings is the sum of the conditions that are housed in that 

grouping at that hospital (see Figure 4.8). This reduced the overall possible 

classifications and thus reduced the number of potential input variables in the 

analysis from 40,547 to 23 for each of the clinical specialities. 
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Figure 4.8: Consolidating ICD-10 codes into ICD-10 groupings 

 The final dataset 

The final dataset consisted of 4,122 data entries distributed in an 18 by 229 matrix 

that represented the caseloads of 18 hospitals classified into to 229 diagnostic 

groupings across 23 clinical specialities. A total of 278,577 inpatient cases were 

treated at the district hospital level in the Western Cape in 2016. Of these cases, 

91,939 were treated at the 18 hospitals analysed in this study. Figure 4.9 displays an 

excerpt from the final dataset. The matrix entry in cell ij represents the total number 

of cases treated at hospital i in 2016, that belong to diagnostic case category j.  

 

Figure 4.9: Excerpt from the final dataset 
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 The data analysis  

The objective of this analysis was to apply the information theory approach proposed 

by Evans & Walker (1972) to the final dataset, thereby computing measures for the 

complexity and level of specialisation of the caseloads of each of the hospitals in the 

analysis. 

 The data analysis strategy 

As introduced in Section 3.3, this approach studies the proportions of the case mix 

compositions of the respective hospitals and uses them to develop measures of the 

complexity and level of specialisation associated with the caseloads of the hospitals. 

These measures are potential normalisation factors that will be used when comparing 

the energy and water consumption performance of hospitals. Figure 4.10 provides an 

outline of the data analysis process and the application of the Evans & Walker (1972) 

approach to the final dataset. 

Data analysis procedures

Post-analysis procedures

Interpret results.

Pre-analysis procedures

Clean dataset.

Convert dataset into 
matrix format. 

Import final dataset into 
MATLAB.

Specialisation

a) Calculate the expected information gain of 
knowing actual distribution of treated cases 

across the diagnostic groupings in the study.

b) Standardise the expected information gain.

c) Test the effectiveness of the standardisation.

d) Compute level of specialisations.

Complexity

a) Calculate the expected information gain of 
knowing actual distribution of treated cases 

across the hospitals in the study.

b) Standardise the expected information gain.

c) Test the effectiveness of the standardisation.

d) Compute complexity.

Front Matter

a) the proportion of each hospital s caseload 

that is of diagnostic type j.

b) the proportion of overall cases of 

diagnostic type j treated at each hospital.

c) the proportion of total cases in the analysis 

that belong to diagnostic type j. 

d) the proportion of total cases in the analysis  

treated by each hospital.

Determine: 

 

Figure 4.10: Data analysis process for the application of the Evans & Walker (1972) 

approach 
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 Expected information gain 

The data analysis process was centred around calculating the expected information 

gain associated with each hospital’s caseload composition. The approach compared 

what was known about the entire system (the set of hospitals being analysed and their 

diagnostic proportions) before data collection, to what was known after data 

collection and analysis. It then measured the ‘information gain’ associated with the 

new knowledge generated about the system through data collection and analysis. 

The prior probability represents the state of information before data collection. It is 

assumed that prior to data collection, only the number of hospitals in the analysis was 

known. Thus, patients are assumed to be equally distributed across the hospitals in 

the analysis. That is, the proportion of the provincial patient population for each 

diagnostic category treated at the district hospital level in the Western Cape 

Province9 is distributed equally across each of the hospitals in the analysis. Thus, the 

reciprocal of the number of hospitals (
1

𝑁
) was used as the prior probability when 

calculating the expected information gain. 

After data on the case mix compositions of the hospitals was collected and analysed, 

the actual distribution of the diagnosis at each of the hospitals is known. The effects 

of each hospital’s capabilities and characteristics is reflected in the information that 

is known about each hospital’s patient population. Thus, the proportions of the 

diagnostic distribution are used to calculate the posterior probabilities associated 

with each diagnostic grouping.  

There are differences between the prior probabilities and the posterior probabilities 

of each diagnostic grouping at the respective hospitals. These differences are a result 

of variations in the actual distribution of patients across the different diagnostic 

groupings at the hospitals in the analysis. The expected information gain metrics 

measure the differences between the prior probability (calculated using the assumed 

                                                 
9 The study initially considered all the district hospitals in the province. However, due to data 
quality challenges some of the hospitals had to be omitted from the analysis. Going forward, the 
assumptions related to studying the entire patient population of the district hospitals in the 
province are maintained. 
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distribution of patients) and the posterior probability (calculated using the actual 

distribution of patients) at each hospital in the analysis.  

In this analysis the idea was to measure the degree of concentration of each case type 

at each hospital. Concentration was used as a measure of complexity and 

specialisation. The more concentrated a case type, the more its posterior probability 

differs from its prior probability, and thus the higher its expected information gain. 

The expected information gain associated with the case distribution of each diagnosis 

in the analysis was used to quantify complexity and level of specialisation.  

The standardised version of the expected information gain measure, corrected for any 

potential upward bias, was used when computing complexity and level of 

specialisation. The approach used the standardised expected information gain 

measures for each of the respective diagnostic categories to compute complexity 

measures for the caseload of each hospital in the analysis. The complexity metric 

(CMPX) for a hospital’s case mix is calculated as the weighted sum of the number of 

patients treated at the hospital that fall into each diagnostic category. For each 

diagnostic category, the weights are the standardised expected information gain 

measure associated with that diagnostic category. 

For the level of specialisation metric, the focus was on the distribution of each 

hospital’s patient population amongst the range of possible diagnoses that the 

hospital could treat. To study the distribution of patients amongst the respective 

diagnostic categories at each hospital, the prior probability changed to the proportion 

of the overall provincial patient population that is treated under diagnostic group j, 

while the posterior probability is the actual number of patients treated under 

diagnostic group j at each of the respective hospitals.  

The expected information gain was calculated and standardised in the same way as 

for the complexity metric. However, the level of specialisation (SPEC) metric for each 

hospital’s caseload was the weighted sum of the number of patients treated under 

each diagnostic category at each hospital i. For each diagnostic category, the weights 

were the standardised expected information gain measure associated with that 

diagnostic category. 
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 MATLAB analysis 

The data analysis was conducted in MATLAB R2018a. This is a programming 

language for solving complex equations and analysing data structures. MATLAB was 

selected because it is suitable for doing an array of complex analysis on large datasets, 

especially when that data is in matrix form. Furthermore, Stellenbosch University has 

a Total Academic Headcount MATLAB license and thus the program was readily 

available to the author.  

The final dataset was imported into MATLAB and a script file was written to conduct 

the matrix calculations required for the data analysis (see Appendix F). The MATLAB 

script file was divided into 5 sections, in accordance with the data analysis procedure 

outlined in Figure 4.10. The first phase of the analysis imported the content of the 

final dataset’s 18 x 229 matrix into MATLAB from a Microsoft Excel workbook. It then 

computed the parameters pertaining to the dataset that were used in the subsequent 

phases of the analysis to assess the distribution of the diagnostic cases across the 

respective diagnostic groupings at each hospital. These parameters are listed in Table 

4.2. 

Table 4.2: Parameters associated with the dataset matrix 

Parameter Definition 

N Number of hospitals in the analysis 

𝑪𝒊 
18 x 1 vector detailing the total number of cases treated by each 
hospital in the analysis 

𝑪𝒋 
1 x 229 vector detailing the total number of cases in the analysis that 
belong to each diagnostic category 

C Total number of cases in the analysis 

In the second phase, the parameters calculated in phase 1 and the dataset matrix were 

used to define the diagnostic proportions associated with the respective aspects of 

the caseloads of the hospitals in the analysis. Table 4.3 presents the ratios associated 

with each of the respective caseload proportions used when calculating the expected 

information gains. These proportions are contained in the: 18 x 229 P matrix, 18 x 

229 Q matrix, the 18 x 1 𝑷𝒊 vector, and the 1 x 229 𝑸𝒋 vector. The entries of these 
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matrices and vectors detail the ratios described in Table 4.3 that are associated with 

each parameter for each hospital or diagnostic category. 

Table 4.3: Caseload proportion ratios 

Q 

Caseload proportion: 

The proportion of each hospital’s caseload that is of diagnostic type j. 

Associated ratio: 
Diagnostic proportions of hospital i′s caseload

Total number diagnosis  j cases treated at all hospitals
 

P 

Caseload proportion: 

The proportion of overall cases of diagnostic type j treated at each 
hospital. 

Associated ratio: 
Diagnostic proportions of hospital i′s caseload

Total number cases treated at hospital i
 

𝑸𝒋 

Caseload proportion: 

The proportion of total cases in the analysis that belong to diagnostic 
type j. 

Associated ratio: 
Total number diagnosis  j cases treated at all hospitals

Total number cases treated by hospitals in the analysis
 

𝑷𝒊 

Caseload proportion: 

The proportion of total cases in the analysis treated by each hospital. 

Associated ratio: 
Total number cases treated at hospital i

Total number cases treated by hospitals in the analysis
 

As discussed in Section 3.3.2, the complexity metric (CMPX) of a hospital’s caseload 

was calculated using the standardised expected information gain measure associated 

with each diagnostic case type and the proportions of the hospital’s caseload falling 

into that diagnostic category. In phase 3, this was achieved by substituting the Q 

matrix and 𝑸𝒋 vector into equation (4.1) to determine the expected information gain 

and then standardising the expected information gain by applying equation (4.2).  

 EIG𝐶𝑀𝑃𝑋 =  ∑ 𝑸

18

𝑛=1

𝑙𝑛(𝑁𝐐)  (4.1) 

 𝐸𝐼𝐺̅̅ ̅̅ ̅
𝐶𝑀𝑃𝑋 =  

EIG𝐶𝑀𝑃𝑋

∑ EIG𝐶𝑀𝑃𝑋 ∙ 𝑄𝑗
229
𝑚=1

  (4.2) 
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These equations are applied in their current form as MATLAB allows for element by 

element operations when doing matrix calculations. This feature of the software 

conducts independent scalar calculations between the respective entries of matrices 

and vectors. This allows one to conduct calculations with vectors and matrices whose 

dimensions would be problematic under conventional linear algebraic 

manipulations. Thus, the expected information gains associated with each of the 229 

diagnostic groupings are calculated both simultaneously and independently by 

applying equation (4.1). 

In phase 4, the P matrix, 𝑷𝒊 vector, and 𝑸𝒋 vector were substituted into equations 

(4.3) to (4.4) to calculate and standardise the expected information gains which were 

used in the calculation of the specialisation metric (SPEC) for the caseloads of the 

respective hospitals.  

 EIG𝑆𝑃𝐸𝐶 =  ∑ 𝐏

229

𝑚=1

𝑙𝑛(𝐏/𝑸𝒋)  (4.3) 

 𝐸𝐼𝐺̅̅ ̅̅ ̅
𝑆𝑃𝐸𝐶 =  

EIG𝑆𝑃𝐸𝐶

∑ EIG𝑆𝑃𝐸𝐶 ∙ 𝑷𝒊
18
𝑛=1

  (4.4) 

The fifth phase of the data analysis as described in the MATLAB script file exports the 

results of the analysis to a Microsoft Excel workbook. The exported CMPX and SPEC 

metrics associated with the caseload of each hospital in the analysis are recorded into 

a workbook for use in the next phase of the research process.  

 Results 

This section discusses the results of the MATLAB analysis that was used to formulate 

the complexity and specialisation measures for the caseloads of the respective 

hospitals in the analysis. The MATLAB analysis outputted two 1 x 18 vectors detailing 

the complexity and level of specialisation measures attributed to the caseload of each 

of the hospitals in the analysis. These results are presented in Table 4.4. These 

measures are relative measures and represent the complexity and specialisation of the 

caseload of each hospital relative to the caseloads of the other 18 hospitals in the 

analysis.  

Stellenbosch University  https://scholar.sun.ac.za



QUANTIFYING THE FUNCTION OF A HOSPITAL  

73 

 

Table 4.4: The complexity and level of specialisation metric associated with the 

caseload of each hospital  

Hospital Hospital Code CMPX SPEC 

Ladismith (Alan Blyth) Hospital ABH 21.78 1.03 

Beaufort West Hospital BWH 48.01 1.62 

Caledon Hospital CLD 39.94 0.91 

Clanwilliam Hospital CLH 31.31 0.77 

Ceres Hospital CRS 114.70 0.97 

Hermanus Hospital HER 56.56 0.59 

Knysna Hospital KNY 73.18 0.62 

LAPA Munnik Hospital LAP 9.01 1.30 

Laingsburg Hospital LBH 10.80 0.94 

Montagu Hospital MON 23.73 0.83 

Prince Albert Hospital PRH 16.60 1.40 

Riversdale Hospital RIV 38.93 0.77 

Radie Kotze Hospital RKH 23.60 0.99 

Robertson Hospital ROB 36.37 0.82 

Stellenbosch Hospital STB 59.30 1.28 

Swellendam Hospital SWE 29.55 0.86 

Uniondale Hospital UDH 8.35 3.73 

Vredendal Hospital VRE 73.29 1.15 

 Complexity of caseloads 

This section discusses the complexity measures calculated in the MATLAB analysis 

using the distributions of the respective diagnostic case type groupings defined in 

Table C.1 in Appendix C across the hospitals studied. The MATLAB analysis studied 

the expected information gain (EIG) associated with each of the cases treated at each 

hospital to assign complexity measures to the caseloads of the hospitals in the 

analysis. The analysis calculates a standardised EIG measure for each of the potential 

23 diagnostic groupings that can be treated under each clinical speciality. These 
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standardised EIG measures represent the complexity of their respective diagnostic 

case types. 

An EIG measure was calculated and assigned to each diagnostic case type in the study 

based on the degree of concentration of each case type across the range of hospitals 

studied. The degree of concentration was calculated using the difference between the 

prior and posterior probabilities attributed to each diagnostic case type. These 

probabilities represent the likelihood that a patient of diagnostic case type j has of 

being treated at hospital i according to what is known before data collection and 

analysis (prior probability), and after data collection and analysis (posterior 

probability). 

The lowest possible information gain measure for each diagnostic case type j at each 

hospital is zero (0). It represents the case where the prior probability and posterior 

probabilities of diagnostic case type j at hospital i are equal. If the difference between 

the prior and posterior probability of diagnostic case type j at hospital i is small, then 

consequently the information gain measure associated with case type j at hospital i 

will also be small. In contrast, if the difference between the two probabilities is large, 

then the information gain measure will be large. 

The expected information gain (EIG) for diagnostic case type j is the weighted sum of 

all the information gain measures of that case type at all the hospitals in the analysis, 

where the weights are the proportion of overall cases of diagnostic type j treated at 

each hospital. Straightforward diagnostic case types are associated with a low EIG 

measure as they can be treated at any of the hospitals in the analysis. Complex 

diagnostic case types are concentrated at a few hospitals that specialise in their 

treatment. This concentration results in a high EIG measure due to a large difference 

between the prior and posterior probabilities of the case type at these hospitals. 

The box and whiskers plot provided in Figure 4.11 presents a visual representation of 

the distribution of the standardised EIG associated with each of the ICD-10 diagnostic 

groupings for each of the clinical specialities present at the hospitals in the analysis. 

The whiskers represent the minimum and maximum standardised EIG attributed to 

an ICD-10 diagnostic category in that clinical speciality. The boxes represent the 25th 

percentile, median and 75th percentile of the standardised EIG of the ICD-10 
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diagnostic category in that clinical speciality. The boxes are grouped, and colour-

coded by clinical speciality grouping. The colour coordination scheme is explained in 

Table 4.5. 

Distribution of the standardised EIG for the respective clinical specialities
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Figure 4.11: Box and whiskers plot of the standardised EIG measure of the clinical 

specialities found at the hospitals in the study 

A comparison of Figure 4.11 and Figure 4.12 shows that the clinical specialities that 

are provided at a large number of hospitals as shown (see Figure 4.12) correspond to 

having low standardised EIG values (see Figure 4.11). In the analysis, only 4 clinical 

specialties are offered at an average of more than 10 hospitals, namely: General 

Medicine, Obstetrics, General Paediatrics, and General Surgery. These four clinical 

specialities also have the lowest standardised EIG measures of the clinical specialities 

in the analysis as represented by their interquartile range, as illustrated in the box 

and whiskers plot shown in Figure 4.11. 

Table 4.5: Legend for colour scheme used Figure 4.11 and Figure 4.12. 

Clinical speciality grouping Colour 

Medicine Grey 

Obstetrics & gynaecology Green 

Paediatrics Yellow 

Psychiatry Red 

Surgery Blue 
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The three clinical specialities that are offered by the least number of hospitals in the 

analysis (an average of only one hospital) are: Paediatric Emergency Medicine, Ear 

Nose and Throat Surgery, and Plastic Reconstructive Surgery. These clinical 

specialities have the highest standardised EIG measures in the analysis. In accordance 

with the assumptions of the Evans & Walker (1972) approach, these diagnostic case 

type groupings are deemed to contain complex medical diagnosis because of their low 

distribution amongst the hospitals in the analysis. The treatment of the diagnoses 

that fall into these groupings is concentrated at a single hospital. 

 

Figure 4.12: Average number of hospitals that provided treatment in each clinical 

speciality 

A correlation analysis of the standardised EIG measure attributed to each ICD-10 

diagnostic category under each clinical speciality vs the average number of hospitals 

that treated cases in that diagnostic category was also conducted.  The results of the 

correlation analysis are shown in Figure 4.13. The results of the analysis confirm that 

as observed in the comparison of Figure 4.11 and Figure 4.12, there exists a negative 

and significant relationship  between the standardised EIG measures and the average 

number of hospitals treating the respective diagnostic case type (𝑅2= 0.8511, and P 

value <0.0001).  
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The complexity measure for the caseloads of each of the hospitals in the analysis is 

the weighted sum of the cases in the caseload of each hospital, where the weights are 

the complexity metric associated with each ICD-10 diagnostic group for each clinical 

speciality in the caseload of the hospitals as defined by their standardised EIG 

measures. The complexity score of the caseload of each hospital is characterised by 

the proportion of the hospital’s caseload that is distributed into the respective 

‘complex’ diagnostic category’s vs the proportion in the ‘straightforward’ diagnostic 

categories.  

Correlation Analysis: Standardised EIG vs number of hospitals
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Figure 4.13: Correlation analysis: standardised EIG vs number of hospitals treating 

diagnostic case type j 

A comparison of the complexity measures of each hospital to the number of 

diagnostic case types treated by each hospital was also conducted. The comparison 

found that the hospital with the highest complexity measure (Ceres Hospital: CMPX 

= 114.70) treated the second most-diagnostically diverse array of cases. Ceres 

Hospital (CRS) treated 11 less diagnostically different types of cases than Knysna 

Hospital (KNY). However, overall CRS treated 36.19 percent more cases than KNY. 

Also, it treated a larger proportion of the rarer diagnostic case types than KNY. Hence, 

its CMPX score is higher than that of KNY. 
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Furthermore, the hospital that had the lowest complexity measure (Uniondale 

Hospital: CMPX = 8.35) treated the least-diagnostically diverse set of cases, and as 

expected diagnostic cases that were common amongst the other hospitals in the 

study. Appendix G.2.2 details the result of a correlation analysis between the 

complexity measures assigned to the caseload of the respective hospitals and the 

number of diagnostically different cases treated by each of the hospital in the analysis. 

The correlation analysis found a positive and significant relationship (𝑅2= 0.7091, 

and P value <0.0001) between them. This confirmed that the complexity of a 

hospital’s caseload increases as the number of diagnostically different cases treated 

by a hospital increase. 

Furthermore, As shown in Table G.1 in Appendix G.1, the complexity measures of the 

hospitals in the analysis have a mean of 39.72 and a standard deviation of 27.57. The 

scatter amongst the CMPX measures is low, with 17 of the 18 hospitals CMPX values 

clustered around the mean (see Figure 4.14). The CMPX value for the caseload of 

Ceres Hospital differs significantly from those of the other hospitals in the analysis. 

This is due to the size (number of cases treated) and diagnostic diversity of its 

caseloads.  
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Figure 4.14: Scatter diagram showing the distribution of the complexity and 

specialisation measures calculated for the hospitals in the analysis 
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 Level of Specialisation 

This subsection discusses the results of the MATLAB analysis that formulated the 

level of specialisation measures (SPEC) associated with the caseloads of the respective 

hospitals in the analysis. The SPEC measure captures the degree of concentration of 

diagnostic effort at a hospital (Barer 1982). The measure gauges whether a hospital 

specialises in treating a select range of diagnoses from a limited set of clinical 

specialities, or whether the hospital is more generalist and thus caters for a diverse 

portfolio of diagnosis across an array of clinical specialities.  

As in the case of the complexity measures discussed in Section 4.5.1, the level of 

specialisation measure assigned to a hospital’s caseload is a relative metric. It gauges 

the level of specialisation observed in the caseload of hospital i relative to the 

caseloads of the other hospitals in the analysis. Furthermore, this measure is also 

defined using prior and posterior probabilities. For the level of specialisation 

measure, the focus was on whether the proportion of cases of diagnostic type j treated 

at hospital i (posterior probability) varies from the overall proportion of cases of 

diagnostic type j treated by all the hospitals in the analysis (prior probability). 

An expected information gain (EIG) measure was calculated and standardised for the 

inpatient caseload of each hospital in the MATLAB analysis from the final dataset 

matrix. The level of specialisation measure calculated for each hospital is equal to the 

standardised EIG associated with the hospital’s level of specialisation. The 

specialisation measures calculated for each hospital are presented in Table 4.1 above.  

The minimum possible value for the level of specialisation measure is zero (0). It 

represents the case where the posterior and prior probabilities are equal. In this case, 

no new information is gained from the formulation of the posterior probabilities. As 

in the case of the complexity measure, the deviations of the proportion of the caseload 

composition of hospital i from the proportion of the overall caseload composition of 

all the hospitals in the analysis results in changes in the standardised EIG for 

specialisation, and consequently the SPEC measure associated with hospital i’s 

caseload. 
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The scatter diagram shown in Figure 4.14 presents a visual representation of the 

distribution of the level of specialisation measures associated with the inpatient case 

load of each hospital in the analysis. This distribution of SPEC measures has a mean 

of 1.143 and a median of 0.9505. The specialisation measures for the caseloads of 17 

of the 18 hospitals are clustered around SPEC = 1. The standard deviation is 0.6.99 

for the SPEC measures of the 18 hospitals in the analysis.  

This increased variability is because of the level of specialisation of Uniondale 

Hospital (SPEC = 3.73). This SPEC measure is 2.3 times higher than the second-

highest specialisation measure in the analysis, Beaufort West Hospital (SPEC = 1.62). 

Uniondale Hospital has the smallest and least diagnostically diverse caseload of the 

hospitals in the analysis. The hospital’s caseload consists of 1,074 cases classified into 

44 different diagnostic case types. However, these two factors are not individually 

responsible for the high specialisation measure.  

Appendix G.2.3 and Appendix G.2.4 show the results of the correlation analyses 

which studied the relationships between the SPEC measure vs the number of different 

diagnosis treated by a hospital , and the SPEC measure vs the number of cases treated 

by a hospital. Both analyses found that the relationship between the variables was not 

statistically significant, (𝑅2= 0.1938, and p = 0.0675) and (𝑅2= 0.09701, and p = 

0.2084) for the respective analysis. 

There are two potential reasons why  the caseload of a hospital would have a large 

level of specialisation measure (Evans & Walker 1972):  

- The hospital is small and does not have the capacity to service a diagnostically 

diverse portfolio of cases. 

- The hospital is large but designed to specialise in the treatment of a limited 

range of specialised diagnoses. 

In the case of Uniondale Hospital, the former reason is applicable. An examination of 

the caseload composition of Uniondale Hospital found that 89.66 percent of the 1 

074 cases treated by the hospital belong to only 20 diagnostic case types from 4 

clinical specialities. These case types are also common amongst the caseload 

composition of the other hospitals in the analysis. 
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 Conclusion 

The complexity and specialisation measures developed in this chapter represent the 

case mix composition concept discussed in Section 2.4.3. These two measures 

represent the demand placed on a hospital’s energy and water resources by the type 

and severity of the diagnoses in its patient population. They served as independent 

variables in the multiple regression analyses that develop normalisation models for 

the energy and water consumption of hospitals. These analyses are discussed in 

Chapter 5. They were used to assess the feasibility of using CMPX and SPEC as 

normalisation factors. 
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 Assessing the feasibility of 

the normalisation measures 

This chapter discusses the analysis that evaluated the relationship between the 

prospective normalisation factors, and the energy and water consumption of 

hospitals. Statistical models were developed to capture the effect of the normalising 

factors on the consumption performance of hospitals. These models were used to 

evaluate the feasibility of using the complexity and specialisation measures developed 

for a hospital’s caseload as potential normalising factors when comparing the energy 

and water consumption of hospitals. 

Discusses the analysis used to assess the feasibility of 
using the measures formulated in the study as 

normalisation factors.

4. Quantifying the function of 
a hospital

DOCUMENT OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

3. The method

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion

 

Figure 5.1: Thesis document outline: Chapter 5 contextualised  

Section 5.1 provides an overview of each of the potential normalising factors and 

translates them into the statistical domain. This was achieved through the definition 

of the variables used to represent the respective normalising factors and the energy 

and water consumption of hospitals. Section 5.2 provides an overview of the dataset 

evaluated in the data analysis. The data analysis used to evaluate the relationships 

between the respective variables is discussed in Section 5.3. The findings of the data 

analysis were used to make recommendations on the feasibility of using complexity 

and specialisation as normalising factors. These findings and the recommendations 
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made are discussed in Sections 5.4 and 5.5 for electricity consumption and water 

consumption respectively. 

 The variables investigated in the analysis 

This section discusses the variables used to evaluate the feasibility of using the 

complexity and level of specialisation of a hospital’s case mix as normalisation factors 

when comparing the energy and water consumption performance of hospitals. The 

set of potential normalisation factors being investigated consists of variables that 

represent the scale of the hospital facility, the hospital’s output, and the diversity of 

the diagnostic mix of the hospital’s patient population. The origin of these factors and 

the process that facilitated their selection was discussed in Chapter 2. 

Five potential normalisation factors were evaluated for inclusion in the normalisation 

model. These normalisation factors were used as the independent variables in the 

data analysis. Subsection 5.1.1 introduces the respective normalising factors and 

discusses the variables that were used to represent these factors in the data analysis. 

Subsection 5.1.2 discusses the variables that were used to represent the concepts of 

energy and water consumption in the data analysis. These variables were the 

dependent variables in the data analysis.  

 The normalising factors 

The normalising factors were classified into two categories: fixed factors and transient 

factors. The fixed factors represent characteristics of hospitals that are constant over 

extended periods of time (3 to 5 years). In this analysis these factors are represented 

by the scale of the hospital’s facilities.  

Two variables were used to capture the size of a hospital’s facilities: its bed capacity 

and its building footprint. Bed capacity was specified in terms of the number of 

available inpatient beds at a hospital. The footprint of a hospital building was 

specified in terms of the total floor area occupied by the hospital building or campus. 

These variables are described in Table 5.1. They were used to test the extent to which 

the scale of a hospital’s facilities is reflective of resource consumption at that facility.  
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Table 5.1: Description of the variables used to represent the size of a hospital in the 

data analysis 

Variable ID: Variable units: Concept represented: 

BED [bed] The scale of the hospital facility 

Aspect measured: 

This variable is a measure of the number of beds in a hospital that are staffed and regularly 

maintained by healthcare practitioners within the hospital. These beds are immediately 

available for use by a patient admitted for treatment at a hospital. 

Scope and structure: 

The BED variable represents the annual average number of beds available at a hospital. The 

scope of this variable includes all occupied and unoccupied beds in a hospital that are used 

for the acute care, rehabilitative care and long-term care of patients. However, the scope 

excludes temporarily available beds, beds associated with the long-term residential care of 

patients, and the beds in closed patient wards. 

Variable ID: Variable units: Concept represented: 

TFA [𝒎𝟐] The scale of the hospital facility 

Aspect measured: 

This variable is a measure of the size of the total space located within the hospital building 

or campus. It tests the extent to which the total floor area of a hospital is reflective of 

resource consumption at that hospital. 

Scope and structure: 

This is an aggregated measure of the floor area occupied by all the medical buildings on 

the hospital campus as well as all support services. This includes all diagnostic and 

emergency care spaces in a hospital, examination rooms, medical offices, laboratories, 

corridors and storage areas within the hospital. 

The transient normalising factors represent the characteristics of hospitals that vary 

over extended periods of time and are dependent on the level of medical service 

provision at each hospital. In this study these factors are represented by the output 

of a hospital and the composition of the diagnostic mix of cases treated by the 

hospital. As introduced in Section 2.4.1, hospital output is specified using the patient 

day equivalent metric. The PDE variable described in Table 5.2 was used to represent 

this metric in the analysis.  
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Table 5.2: Description of the variables used to represent hospital output in the data 

analysis 

Variable ID: Variable units: Concept represented: 

PDE [patient day] Hospital output 

Aspect measured: 

Tests the extent to which the demand placed on the resources of a hospital by the 

treatment of a hospitalised patient is reflected in the recorded energy and water 

consumption data of hospitals.  

Scope and structure: 

Each PDE represents the hospitalisation of an inpatient for one day, or the corresponding 
outpatient, day patient, or emergency department equivalent as described by the ratios in 
equation (5.1). 

PDE =  inpatient day +
1

2
# of day patients +

1

3
# of outpatients

+
1

3
emergency headcount  

(5.1) 

 

The formulation of the second and third transient normalising factors was discussed 

in Chapter 4. These factors represent the relative complexity (CMPX) and level of 

specialisation (SPEC) associated with the case mix composition of a hospital’s 

inpatient diagnostic caseload. Two sets of unitless measures were formulated in 

Chapter 4 to represent CMPX and SPEC respectively. These measures are described 

in Table 5.3 and Table 5.4 respectively. 

These normalising factors were used as independent variables in the data analysis. 

From these variables a set of normalising factors whose combination best captures 

the variance in the energy and water consumption of the hospitals was selected. The 

selection of the normalising factors was done via a quantitative approach that 

compares the explanatory power provided by the different combinations of potential 

normalising factors and selects the set with the most statistically significant 

explanatory power.  
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Table 5.3: Description of the variable used to represent the complexity of a 

hospital’s inpatient caseload in the data analysis 

Variable ID: Variable units: Concept represented: 

CMPX N/A Case mix composition 

Aspect measured: 

Tests the usefulness of the complexity of the structure of a hospital’s inpatient diagnostic 

caseload in explaining the inter-hospital variations in energy and water consumption 

performance. 

Scope and structure: 

Complexity was defined in terms of the proportion of total provincial cases for each 

diagnostic grouping that were treated at a hospital. It evaluated whether the treatment of 

each diagnostic case type was concentrated in a select set of hospitals or distributed 

relatively evenly across the hospitals in the analysis. 

The scope of this variable is limited to the inpatient caseload of a hospital. The diagnostic 

structure of day patient, outpatient and emergency care activities that do not require 

hospitalisation are outside the scope of this variable. 

 

Table 5.4: Description of the variable used to represent the level of specialisation of 

a hospital’s inpatient caseload in the data analysis 

Variable ID: Variable units: Concept represented: 

SPEC N/A Case mix composition 

Aspect measured: 

Tests the extent to which the breadth of the portfolio of diagnoses treated by a hospital is 

reflective of resource consumption at that hospital. 

Scope and structure: 

Specialisation was defined in terms of the distribution of a hospital’s caseload across the 

range of diagnostic case types treated at a hospital. It evaluated whether treatment within 

the hospital was concentrated in a select set of diagnosis or distributed relatively evenly 

across an array of diagnosis. 

The scope of this variable is limited to the inpatient caseload of a hospital. The diagnostic 

structure of day patient, outpatient and emergency care activities that do not require 

hospitalisation are outside the scope of this variable. 
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 Resource consumption 

The data analysis evaluated the energy and water consumption of hospitals as 

dependent variables. Energy and water consumption are specified on an input-

oriented basis. Thus, consumption is specified in terms of the total quantity supplied 

to a hospital building or complex, and not the quantities used by the respective 

components of a hospital’s systems. Therefore, all electric consumption or 

transmission losses, or water losses due to leaks, that occur within the hospital system 

are also included within the consumption figure specified by the respective AEC and 

AWC variables described in Table 5.5. 

Table 5.5: Description of the variables used to represent the energy and water 

consumption of hospitals in the data analysis 

Variable ID: Variable units: Concept represented: 

AEC [kWh/year] Energy consumption of a hospital 

Aspect measured: 

Represents the total annual electricity consumption of a hospital within a given calendar 

year.  

Scope and structure: 

The scope of the AEC variable was limited to the grid-supplied electricity used by a hospital 

as stated on its electricity consumption bills. Electricity generated onsite or other forms of 

energy used such a diesel were excluded from the scope of the variable.  

Variable ID: Variable units: Concept represented: 

AWC [kL/year] Water consumption of a hospital 

Aspect measured: 

Represents the total annual water consumption of a hospital within a given calendar year. 

Scope and structure: 

The scope of the AWC variable was limited to the total amount of municipally supplied 

water consumed at the hospital. Water supplied by onsite boreholes or greywater systems 

was excluded from the scope of the variable. 
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 The dataset 

This section discusses the formulation of the dataset that was used in the data analysis 

to model the relationship between the normalising factors and resource 

consumption, and the techniques applied during the data cleaning process.  

 The initial dataset 

The sample studied in the data analysis consisted of 18 district hospitals in the 

Western Cape province in South Africa. These hospitals were selected because of data 

availability and quality constraints. Secondary data pertaining to the resource 

consumption, building characteristics and patient ratios of the hospitals in the 2016 

calendar year was provided by the WCDoH. The Directorate of Engineering and 

Technical Support Services at the WCDoH provided the data on the energy and water 

consumption measurements and the size of the 18 hospitals. This data was used to 

formulate the AEC, AWC, TFA and BED variables for the hospitals in the analysis.  

The variables for the transient normalisation factors (CMPX, SPEC, and PDE) were 

formulated from the patient statistics data provided by the WCDoH’s Directorate of 

Information Management. The formulation of CMPX and SPEC variables was 

discussed in Chapter 4. The PDE variable associated with each hospital in the analysis 

was calculated using the inpatient days, day patient annual headcount, outpatient 

annual headcount, and emergency patient annual headcount data for each hospital.  

Table 5.6 shows the initial dataset consisting of data on the variables collected at the 

18 hospitals studied in the analysis. Data cleaning was applied to this dataset to 

ensure that it was suitable for analysis. This process focused on two issues: 

standardising the dataset to account for the effect of the different units of the 

variables, and the different orders of magnitude of the respective variables, and 

testing for outliers within the dataset. The steps taken to detect and address these 

issues are discussed in Subsections 5.2.2 and 5.2.3 respectively.  
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Table 5.6: The initial dataset for statistical analysis 

Hospital 
code 

AEC 
[kWh/year] 

AWC 
[kL/year] 

CMPX SPEC 
BED 

[beds] 
TFA 
[m2] 

PDE 
[patient-

days/year] 

ABH 385491 829.499 21.78 1.03 30 1822 12908 

BWH 1071816 9399 48.01 1.62 57 6450 26000 

CLD 1064937 17451 39.94 0.91 50 7358 21261 

CLH 251552 1786.667 31.31 0.77 50 2627 16510 

CRS 501175.2 11972.4 114.70 0.97 86 6779 43067 

HER 848482 10108.996 56.56 0.59 71 8449 28597 

KNY 1183417 21733.091 73.18 0.62 90 10634 39354 

LAP 170781.333 5986.667 9.01 1.30 10 1979 5589 

LBH 124021.2 4802.4 10.80 0.94 20 1591 6442 

MON 408693.818 15598.909 23.73 0.83 40 3163 14150 

PRH 285714.545 9118.8 16.60 1.40 29 2620 7269 

RIV 1030725.333 10029.333 38.93 0.77 50 6251 14770 

RKH 342327.273 4442.182 23.60 0.99 31 1979 20035 

ROB 267824.64 10981.2 36.37 0.82 46 3057 24196 

STB 859746.667 14908.364 59.30 1.28 85 6251 39373 

SWE 598065 5426 29.55 0.86 51 3812 17211 

UDH 359205.926 2202 8.35 3.73 13 1137 4695 

VRE 710390 2861.455 73.29 1.15 75 4151 32844 

 Unit normal scaling 

The variables in the dataset are specified in terms of different units and with respect 

to different scales. Thus, before applying any of the regression analysis methodologies 

onto the dataset, unit normal scaling was used to standardise the dataset. The aim of 

the standardisation was to transform the variables and normalise for the effects of 

their units of measurement and scales. This ensured that the variables were stated 

with respect to a common and comparable scale. 

The unit normal scaling standardisation technique (see equation (5.2)) imposes a 

standard normal distribution on the data (Freudenberg 2003). It converts the 

variables to a common standardised scale with a mean of zero and a standard 

deviation of one (OECD & JRC 2008). The result of applying this normalisation 
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scheme is that all the normalised variables for each alternative will have a common 

mean and a similar dispersion:  

 𝑋𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥̅𝑗

𝑠𝑗
  (5.2) 

Where,  

𝑋𝑖𝑗 is the normalised variable for the j-th variable associated with the i-th 

hospital, 

𝑥𝑖𝑗 is the raw value of the j-th variable associated with the i-th hospital, 

𝑥̅𝑗 is the mean of the set of 𝑥𝑗  variables associated with the hospitals in the 

analysis,  

𝑠𝑗  is the standard deviation of the set of 𝑥𝑗  variables associated with the 

hospitals in the analysis. 

Table 5.7 shows the standardised version of each of the variables in the dataset used 

in the data analysis. The standardised versions of the variables were used to assess the 

feasibility of using CMPX and SPEC as normalisation factors when comparing the 

energy and water consumption of hospitals. The range of the standardised versions 

of the variables in the dataset have similar magnitudes and are unitless.  

The standardisation reduced any potential numerical instabilities that may be caused 

by the large differences in the scales of magnitude of the variables in the analysis. In 

Table 5.7, the scaling within each variable set is due to the standard deviation (𝑠𝑗) of 

the set of values for each variable and not the range of the distribution of the variable 

(𝑥𝑗𝑚𝑎𝑥
− 𝑥𝑗𝑚𝑖𝑛

) (Freudenberg 2003). This prevents the presence of extreme values 

from having an overly significant influence on the results of the analysis. However, 

outliers still have an influence on the results because the range (𝑥𝑖𝑗 − 𝑥̅𝑗) of the 

outliers rewards or punishes extreme values (Jacobs et al. 2004) but with this 

approach the effect of outliers is somewhat dampened because the scaling factor is 

the standard deviation.  
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Table 5.7: The standardised dataset used in the statistical analysis 

Hospital 
code 

AEC AWC CMPX SPEC BED TFA PDE  

ABH -0.563 -1.365 -0.651 -0.159 -0.772 -0.959 -0.652 

BWH 1.410 0.090 0.300 0.678 0.319 0.730 0.431 

CLD 1.390 1.457 0.008 -0.338 0.036 1.061 0.039 

CLH -0.948 -1.202 -0.305 -0.539 0.036 -0.666 -0.354 

CRS -0.230 0.527 2.719 -0.254 1.491 0.850 1.843 

HER 0.768 0.211 0.611 -0.788 0.885 1.459 0.646 

KNY 1.730 2.184 1.213 -0.741 1.652 2.257 1.535 

LAP -1.180 -0.489 -1.114 0.231 -1.581 -0.902 -1.258 

LBH -1.314 -0.690 -1.049 -0.296 -1.176 -1.044 -1.187 

MON -0.496 1.143 -0.580 -0.445 -0.368 -0.470 -0.549 

PRH -0.850 0.042 -0.839 0.368 -0.813 -0.668 -1.119 

RIV 1.292 0.197 -0.029 -0.533 0.036 0.657 -0.498 

RKH -0.687 -0.751 -0.585 -0.222 -0.732 -0.902 -0.063 

ROB -0.901 0.359 -0.121 -0.464 -0.126 -0.509 0.282 

STB 0.800 1.025 0.710 0.197 1.450 0.657 1.537 

SWE 0.048 -0.584 -0.369 -0.404 0.076 -0.233 -0.296 

UDH -0.638 -1.132 -1.138 3.695 -1.459 -1.209 -1.332 

VRE 0.371 -1.020 1.217 0.014 1.046 -0.109 0.997 

 Testing for outlier 

The Multiples of IQR test was applied to identify potential outliers in the dataset. This 

method uses quartiles to define upper and lower limits for each variable in the 

dataset. These limits were then used to identify outliers. The upper and lower limits 

are based on the 25th quartile, 75th quartile and the interquartile range (IQR) of a 

dataset. The equations used to calculate the respective limits are shown in equation 

(5.3) (Chatterjee & Simonoff 2013).  

 
𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 75% 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 + 1.5 ∗ 𝐼𝑄𝑅 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 25% 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 − 1.5 ∗ 𝐼𝑄𝑅 
(5.3) 

To calculate the limits, a constant multiple of the IQR of each variable was added or 

subtracted from the respective 75 percent and 25 percent quartile of each variable’s 

dataset. The IQR represents the difference between the 75th quartile and the 25th 

quartile. It is a useful and robust method of quantifying the scatter in a dataset as it 

is insensitive to the effects of extreme datapoints (Chatterjee & Simonoff 2013). 
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Extreme datapoints are found in the first and fourth quartile and tend to distort the 

size of these quartiles making them disproportionally large. 

Thus, by defining limits based on a multiple of the IQR, the Multiples of IQR tests 

defines limits based on the scatter of the datapoints. Data points that lay outside of 

the range defined by these limits are classified as outliers. Table 5.8 outlines the upper 

limits, lower limits, and the corresponding minimum and maximum values calculated 

for each variable in the analysis. The distribution of datapoints within these variables 

is visually represented by the box and whiskers plots shown in Table 5.9. 

Table 5.8: Multiple of IQR test statistics 

  AEC AWC CMPX SPEC BED TFA PDE  

Upper limit 3.6014 0.062 1.6165 1.27 1.3243 1.0413 1.3485 

Maximum 1.73 -0.006 1.674 3.773 0.519 0.657 0.756 

Lower limit -3.541 -0.5361 -2.0035 -1.4833 -1.677 -1.5208 -1.7635 

Minimum -1.314 -0.367 -0.945 -0.905 -0.902 -0.679 -0.888 

Since the sample size used in the study is small it is susceptible to the effects of 

outliers. The presence of outliers in the data may reduce the correctness of the results 

obtained from the data analysis. Using the Multiples of IQR test, the dataset 

associated with two of the variables in the analysis was identified as containing 

outliers. These outliers correspond to the maximum values for CMPX and SPEC 

respectively. The outlier for the CMPX variable is associated with Ceres District 

Hospital (CRS), while, the outlier for the SPEC variable is associated with Uniondale 

District Hospital (UDH).  

The data used in this analysis is secondary in nature. This limited the potential 

mitigation strategies for addressing the outliers as the author had no control over the 

process that produced the data. Thus, two options for addressing the outliers were 

identified: rejecting the outliers and removing them from the dataset or proceeding 

with the outliers and noting their effect on the observed results. As discussed in 

Section 4.5 these outliers are caused by the distribution of diagnostic cases at the 

respective hospital and are part of the internal mechanism that the analysis modelled. 

Thus, it was decided to keep these datapoints in the dataset.  
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Table 5.9: Box and whisker plots showing the distribution of the datapoints for each 

variable in the dataset 

   

   

 

  

 The quantitative analysis 

 The data analysis strategy 

The aim of the data analysis discussed in this chapter was to develop regression 

models that characterise the relationship between the normalisation factors, and the 

energy and water consumption within district hospitals. These regression models 

were used to assess the significance of the explanatory power provided by the 

respective normalising factors in explaining the variance in the energy and water 

consumption behaviour of hospitals.  

Figure 5.2 illustrates the process flow diagram of the data analysis strategy applied in 

this study. This analysis was conducted in RStudio version 3.4.2. An exhaustive set of 

multiple linear regression (MLR) models were generated for all the possible 

combinations of normalising factors using the standardised dataset. Energy and water 
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consumption were analysed independently and MLR models were generated for each 

resource. The normalising factors were used as independent variables in these MLR 

analyses.  

Exhaustive MLR analysis

Case 1: Multi-
collinearity is 

absent

a) Conduct regression analysis.

b) Record model statistics and coefficients.

Test for multi-

collinearity

a) Analyse the pairwise correlations between 
all the variables in the analysis.

b) Calculate and evaluated the mean variance 

inflation factor for the model.

Case 2: Multi-
collinearity is 

present

a)  Calculate principal components associated 
with IVs using principal component analysis 

(PCA).

b) Conduct regression analysis on principle 

components.

c) Translate principal component regression 

model back into standardised variable form.

d) Record model statistics and coefficients.

Comparison of MLR models

Evaluating the 
parsimonious nature 

of the models

a) Rank models according to the adjusted R
2
 and 

AIC criteria.

b) Select the 5 best models according to the criteria.

Evaluating model parameters

Assessing the 
significance of the 

normalising factors 

a) Assess the significance of the explanatory power 
provided by each normalising factor in the 5 best 

model.

b) Make a judgement on the explanatory power of 

the CMPX and SPEC variables.

Using:

 

Figure 5.2: The data analysis strategy for the statistical analysis 

The first step in the data analysis strategy was to test for multi-collinearity within the 

dataset used to develop each model. This occurs when the independent variables used 

in the regression analysis are correlated and may lead to the development of incorrect 

and misleading MLR models if not detected and addressed. The process used to detect 

and address multi-collinearity where it is present is discussed in Subsection 5.3.2. 

After multi-collinearity was addressed, the MLR models were developed. The model 

coefficients and model statistics data associated with each of the MLR models for the 
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respective combinations of independent variables were recorded and compared. 

These were used to identify and select the most parsimonious model, the model with 

the best balance between goodness of fit and model complexity. The selected model 

must also be consistent with what is known about the problem, thus making it 

intuitively practical.  

As introduced in Chapter 3, parsimony aims to maintain a balance between the 

simplicity of a model (as described by the number of terms in the model) and the 

goodness of fit of the model (as described by the variance explained by the model). 

The AIC and 𝑅𝑎
2 criteria were used to assess and rank the goodness of fit of the 

respective MLR models and identify the most parsimonious models. This process is 

discussed in Sections 5.4 and 5.5. 

The individual parameters associated with the terms in the best models were studied 

using the sample t-test to assess the significance of the explanatory power provided 

by each term in these models. This was used to make inferences on the significance 

of the explanatory power provided by each of the potential normalising factors 

identified in Section 2.4. This allowed us to evaluate the significance of the 

contribution of the CMPX and SPEC variables as normalisation measures and to make 

recommendations on the inclusion of SPEC and CMPX into the normalisation model. 

 Detecting multi-collinearity 

This subsection discusses the detection of multi-collinearity within the dataset. 

Multi-collinearity occurs when two or more independent variables in an analysis are 

highly correlated. This occurs when two or more independent variables statistically 

control for the same underlying factor within an acceptable margin of error; or when 

there is a significant amount of statistical overlap between the underlying factors 

represented by the respective independent variables. Thus when studying the data, 

the predictive power of the analysis is not significantly increased by including the 

additional variables, because little additional variance is explained by the inclusion of 

additional variables (Monts & Blissett 1982).  

Furthermore, from a normalisation point of view, multi-collinearity is associated with 

double counting. Since the qualitative significance of all the independent variables in 
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the model has been determined, if two or more of the independent variables are 

collinear, then they potentially represent the same underlying attribute. Therefore, 

including both variables in the normalisation model accounts for the effect of the 

same underlying attribute two or more times (Jacobs et al. 2004). 

Pairwise correlation analyses were conducted using RStudio version 3.4.2 to 

determine the degree of correlation between the variables in the analysis. These 

analyses evaluated the relationships between pairs of each of the variables in the 

dataset. A visual representation of the pairwise correlations between the variables in 

the respective AEC and AWC analyses is presented in Figure 5.3 and Figure 5.4 

respectively.  

In these figures, the top row shows the pairwise correlations of the normalising 

factors with the respective electricity and water consumption variables. The first 

column states the correlation coefficients associated with each pair of factors. These 

figures show that there is a significant correlation between the normalising factors 

and the respective AEC and AWC variables.  
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Figure 5.3: A visual representation of the pairwise correlations and the correlation 
coefficients for AEC analysis 
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AWC
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Figure 5.4: A visual representation of the pairwise correlations and the correlation 
coefficients for AWC analysis 

A strong and positive correlation was found between four of the five normalising 

factors and both AEC (ranging from r= 0.5252 to r= 0.8773) and AWC (ranging from 

r= 0.4385 to r= 0.7598). This is intuitively consistent with the relationship expected 

between these normalising factors and electricity and water consumption: as CMPX, 

BED, TFA and PDE increase, so do AEC and AWC. 

The fifth normalising factor (SPEC) is not significantly correlated to AEC, AWC or 

any of the other independent variables at a significance level of α = 0.05. The critical 

value for the correlation coefficient at a significance level of α=0.05 and 16 degrees of 

freedom is r= 0.468. Thus, the results of the correlation analysis of SPEC in relation 

to all the other variables in the study, show that it is not significantly correlated to 

any of the other variables as the correlation coefficients for each of these analyses are 

less than the critical value. This non-significant correlation has two implications. 

Firstly, SPEC does not covary with any of the other independent variables. However, 

it might covary with combinations of the other variables. Secondly, individually SPEC 

does not significantly contribute to explaining the variance in AEC or AWC.  

The significant correlation found between the normalising factors, and AEC and AWC 

respectively, motivates the applicability of using linear regression analysis to study 
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the relationships between the prospective normalisation factors and resource 

consumption. From the pairwise correlation analysis it can be seen that the 

normalising factors are also significantly correlated with each other, for example, for 

BED-PDE (r= 0.9506), and for CMPX-BED (r= 0.9090). This is indicative of the 

presence of multi-collinearity in the variable set. These high correlations may result 

in numerical instabilities within the model, or interpretive difficulties as the 

regression coefficients may intuitively differ from what is expected.  

Some of these high correlations were expected. For example, BED and TFA are both 

representative of the size of a hospital, thus it is expected that they would be strongly 

correlated. This is due to the design of the data analysis strategy. The strategy 

exhaustively tests all the possible combinations of normalising factors to identify the 

most parsimonious combination. This model was used to assess the feasibility of 

including CMPX and SPEC in the normalisation model. Thus, combinations with 

multi-collinear variables are also tested. 

These pairwise correlation comparisons are not conclusive for determining multi-

collinearity as more complex correlations may exist within the dataset. For example, 

CMPX may be correlated to the sum of BED and PDE. Thus, the mean variance 

inflation factor (VIF) was calculated for the respective combinations of independent 

variables in the exhaustive MLR analysis. It was used to conclusively identify models 

with collinear independent variables.  

The presence of two or more correlated independent variables in an MLR model 

inflates the regression coefficients of the correlated terms. The VIF as given by 

equation (5.4), measures the level of inflation in each regression coefficient associated 

with an independent variable in an MLR model (Chatterjee & Simonoff 2013).  

 𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 (5.4) 

The VIF for the coefficient of the i-th independent variable (𝑥𝑖) in an MLR model is 

calculated by regressing 𝑥𝑖 against all the other independent variables in the model. 

In equation (5.4), 𝑅𝑖
2 is the coefficient of determination associated with this MLR 

model. It measures how well the variance in 𝑥𝑖 is explained by the other independent 

variables in the original MLR model.  
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𝑉𝐼𝐹𝑖 is measured relative to the case where there is no correlation between 𝑥𝑖 and the 

other independent variables in the model. This corresponds to the case where 𝑅𝑖
2 = 0 

and 𝑉𝐼𝐹𝑖 = 1. The other extreme value occurs when there is a perfect correlation 

between 𝑥𝑖 and the other independent variables in the model, thus 𝑅𝑖
2 = 1 and 𝑉𝐼𝐹𝑖 →

∞. In this case, all the explanatory power provided by 𝑥𝑖 can be obtained from the 

combination of the other regression variables. Thus, the larger the 𝑉𝐼𝐹𝑖 the more 

severe the multi-collinearity. 

In the data analysis 𝑉𝐼𝐹𝑖 was calculated for all the independent variables in the 

respective MLR model. After this, a mean variance inflation factor was calculated and 

used to assess the level of multi-collinearity in each MLR model. Models with a mean 

variance inflation factor greater than 4 were categorised as having a significant 

amount of multi-collinearity (Chatterjee & Simonoff 2013). The sets of independent 

variables in 16 of the 31 MLR models for both AEC and AWC were found to have a 

significant amount of multi-collinearity. The mean VIF for the set of independent 

variables in the models are presented in Table 5.12 and Table 5.13 respectively. 

Since these models were used to interpret and evaluate the relationships between the 

normalising factors, the high VIFs could not be ignored and mitigating measures were 

taken to address the multi-collinearity. These measures are discussed in Section 5.3.3.  

 Addressing multi-collinearity 

Principal Component Analysis (PCA) was used to address multi-collinearity in the 

models that were identified as having collinear independent variables. The main 

premise behind this method is that for a dataset of n independent variables 

(𝑥1, 𝑥2, ⋯,𝑥𝑛) that are highly correlated, most of the variance in this dataset is due to 

a smaller set of m uncorrelated independent variables (𝑃𝐶1, 𝑃𝐶2, ⋯, 𝑃𝐶𝑚).  

Principal component analysis evaluates and then transforms the set of n highly 

correlated independent variables into m uncorrelated variable groupings known as 

principle components (PC), where m ≤ n (Jacobs et al. 2004). The m principle 

components, as shown in equation (5.5), are linear combinations of the original set 

of independent variables that still contain the essence of the original dataset but are 

orthogonal, and thus uncorrelated. 
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𝑃𝐶1 = 𝑤11𝑥1 + 𝑤21𝑥1 + ⋯ + 𝑤𝑛1𝑥1 

𝑃𝐶2 = 𝑤12𝑥1 + 𝑤22𝑥2 + ⋯ + 𝑤𝑛2𝑥2 

⋮ 

𝑃𝐶𝑚 = 𝑤1𝑚𝑥𝑚 + 𝑤2𝑚𝑥𝑚 + ⋯ + 𝑤𝑛𝑚𝑥𝑚  

(5.5) 

Thus, each of the principal components explains a different statistical dimension of 

the original dataset (OECD & JRC 2008). The principal components are arranged 

chronologically in order of decreasing explained variance. The weights (𝑤𝑖𝑗) are a 

measure of the statistical overlap between correlated variables and are used to correct 

the principle components for this overlap (OECD & JRC 2008). 

These weights are the components of a rotation matrix which contains the parameters 

of the equation used to convert the standardised components of the independent 

variables into principal component form. An example of a rotation matrix is shown 

in Table 5.10 for the MLR model consisting of five independent variables. The 

rotation matrix changes with changes in the composition of independent variables in 

the model. Thus, different sets of PCs were calculated for each of the multi-collinear 

combinations of independent variables. 

Table 5.10: Rotation matrix for a five-independent-variable model 

  PC1 PC2 PC3 PC4 PC5  

CMPX 0.4824 0.2183 -0.3621 0.7626 -0.0837 

SPEC -0.2573 0.9561 0.1231 -0.0566 -0.0371 

BED 0.5050 0.0897 -0.0700 -0.4577 -0.7229 

TFA 0.4494 0.0227 0.8703 0.1383 0.1448 

PDE 0.4941 0.1723 -0.3024 -0.4320 0.6694 
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Table 5.11: The rotated model design matrix for AWC 

  PC1 PC2 PC3 PC4 PC5  

ABH -0.6506 -0.1587 -0.7723 -0.9593 -0.6523 

BWH 0.3005 0.6781 0.3188 0.7297 0.4308 

CLD 0.0080 -0.3380 0.0359 1.0611 0.0388 

CLH -0.3051 -0.5385 0.0359 -0.6655 -0.3543 

CRS 2.7190 -0.2535 1.4907 0.8498 1.8426 

HER 0.6107 -0.7884 0.8846 1.4593 0.6456 

KNY 1.2134 -0.7415 1.6524 2.2567 1.5354 

LAP -1.1140 0.2307 -1.5805 -0.9020 -1.2577 

LBH -1.0489 -0.2964 -1.1764 -1.0436 -1.1871 

MON -0.5801 -0.4448 -0.3682 -0.4699 -0.5495 

PRH -0.8387 0.3682 -0.8127 -0.6681 -1.1187 

RIV -0.0290 -0.5327 0.0359 0.6571 -0.4982 

RKH -0.5846 -0.2222 -0.7319 -0.9020 -0.0627 

ROB -0.1215 -0.4638 -0.1257 -0.5086 0.2815 

STB 0.7100 0.1970 1.4503 0.6571 1.5369 

SWE -0.3688 -0.4039 0.0763 -0.2330 -0.2963 

UDH -1.1377 3.6946 -1.4593 -1.2093 -1.3316 

VRE 1.2174 0.0139 1.0462 -0.1093 0.9969 

Table 5.11 shows the rotated design matrix for the five-predictor-variable model. It 

details the contribution of the original independent variables associated with each 

hospital to the composition of the respective principal components. The benefit of 

this transformation is that the principal components are orthogonal and there is no 

multi-collinearity in this new dataset. Thus, it can be used to conduct a multiple linear 

regression analysis without potentially resulting in numerical instabilities or 

misleading results. 

 Exhaustive MLR analysis 

An exhaustive set of 31 multiple linear regression analyses were conducted for each 

of the dependent variables: energy consumption and water consumption. These 

analyses generated regression models consisting of all the possible combinations of 
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the normalising factors. The respective independent variable sets were classified into 

two categories: multi-collinear independent variable sets and non-multi-collinear 

independent variable sets. A different approach was applied to formulate multiple 

linear regression models for each type of variable set.  

In the case where there is no multi-collinearity between the independent variables, 

the dataset used in the regression analysis consisted of the standardised versions of 

the original variables. This dataset was used to perform the regression analysis and to 

determine the model coefficients and model statistics of each model. In the case 

where multi-collinearity was present in the set of independent variables, the 

independent variables were converted into principal component form and the rotated 

design matrix for that variable set was regressed against the standardised version of 

the dependent variable.  

Converting to principal component form corrected for the multi-collinearity in the 

independent variable set. The regression analysis was performed on the variable set 

in principal component form and the overall model statistics corresponding to the 

principal component regression were recorded. After this, the regression coefficients 

calculated using principal component regression (PCR) were transformed into their 

standardised original variable form and recorded. 

These two types of model analysis procedures were used to perform the regression 

analysis. The data transformations and multiple linear regression analyses 

corresponding to these two cases were performed in RStudio version 3.4.2. Copies of 

the script files used for the analyses corresponding to the respective cases are 

presented in Appendix H. The model coefficients and statistics of the respective 

analyses are shown in Table 5.12 and Table 5.13 for AEC and AWC respectively. In 

these tables the models that were developed using principal component regression 

are denoted with “Y” in the PCR column. 
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Table 5.12: Model coefficients and statistics for electricity consumption MLR models 

Model Constant CMPX SPEC BED TFA PDE mean VIF PCR F-stat. p-value R.2_adj AIC SEE 

1 0 0.5252             6.094 0.0252 0.2305 50.2444 0.8772 

2 0   -0.1795           0.5328 0.4760 -0.0283 55.4633 1.0140 

3 0     0.6780         13.61 0.0020 0.4259 44.9717 0.7577 

4 0       0.8773       53.45 0.0000 0.7552 29.6283 0.4947 

5 0         0.5848     8.315 0.0108 0.3008 48.5198 0.8362 

6 0 0.5197 -0.0177       1.1074   2.86 0.0886 0.1796 52.2374 0.9058 

7 0 -0.5249   1.1552     5.7583 Y 7.73 0.0049 0.4419 45.3025 0.7471 

8 0 -0.2288     1.0430   2.0958   29.02 0.0000 0.7672 29.5620 0.4825 

9 0 -0.1270       0.7027 7.2187 Y 3.937 0.0422 0.2568 50.4585 0.8621 

10 0   0.1236 0.7294     1.2088   6.714 0.0083 0.4020 46.5456 0.7733 

11 0   0.1817   0.9466   1.1705   29.6 0.0000 0.7709 29.2760 0.4787 

12 0   0.0300     0.5953 1.1413   3.911 0.0430 0.2551 50.4983 0.8631 

13 0     -0.1335 0.9870   3.0860   25.89 0.0000 0.7455 31.1713 0.5045 

14 0     1.2734   -0.6261 10.4442 Y 7.417 0.0058 0.4302 45.6756 0.7549 

15 0       1.0010 -0.1650 2.2788   26.84 0.0000 0.7524 30.6700 0.4976 

16 0 -0.5902 0.1709 1.2855     4.5570 Y 5.283 0.0120 0.4305 46.4251 0.7547 

17 0 -0.2160 0.1728   1.0990   1.8328   21.26 0.0000 0.7815 29.1835 0.4675 

18 0 -0.1306 0.0322     0.7173 5.2765 Y 2.459 0.1057 0.2048 52.4336 0.8917 

19 0 -0.3910   0.2460 0.9577   5.8355 Y 18.86 0.0000 0.7592 30.9321 0.4907 

Continued on next page   
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Model Constant CMPX SPEC BED TFA PDE mean VIF PCR F-stat. p-value R.2_adj AIC SEE 

20 0 -0.3905   1.3812   -0.3662 10.8219 Y 5 0.0146 0.4138 46.9444 0.7656 

21 0 -0.3321    1.0219 0.1275 5.8566 Y 18.28 0.0000 0.7531 31.3819 0.4969 

22 0   0.1723 -0.0794 1.0080   2.5088   18.64 0.0000 0.7569 5.8566 0.4930 

23 0   0.1602 1.4089   -0.6986 7.7552 Y 5.014 0.0144 0.4147 46.9179 0.7651 

24 0   0.1710   1.0470 -0.1393 1.9514   19.42 0.0000 0.7647 30.5111 0.4850 

25 0     0.1759 0.9568 -0.2993 9.5540 Y 16.91 0.0001 0.7373 32.4950 0.5125 

26 0 -0.4678 0.2083 0.3860 0.9777   4.8761 Y 16.61 0.0001 0.7860 29.4732 0.4626 

27 0 -0.4422 0.1807 1.5483  -0.4135 8.7454 Y 3.866 0.0278 0.4027 47.9469 0.7728 

28 0 -0.3620 0.1807   1.0724 0.1810 4.7472 Y 15.23 0.0001 0.7700 30.7720 0.4796 

29 0 -0.3723  0.2821 0.9538 -0.0525 10.0633 Y 13.15 0.0002 0.7409 32.9144 0.5090 

30 0   0.1905 0.3195 0.9721 -0.3802 7.7101 Y 14.12 0.0001 0.7553 31.8826 0.4946 

31 0 -0.4321 0.2105 0.4578 0.9703 -0.1023 8.5134 Y 12.33 0.0002 0.7692 31.3922 0.4804 
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Table 5.13: Model coefficients and statistics for water consumption MLR models 

Model Constant CMPX SPEC BED TFA PDE 
mean 

VIF 
PCR F-statistic p-value R.2_adj AIC SEE 

1 0 0.4385             3.81 0.0687 0.1418 52.2084 0.9264 

2 0   -0.3382           2.066 0.1699 0.0590 53.8667 0.9700 

3 0     0.5495         6.921 0.0182 0.2583 49.5823 0.8612 

4 0       0.7598       21.85 0.0003 0.5508 40.5554 0.6702 

5 0         0.5247     6.079 0.0254 0.2300 50.2560 0.8775 

6 0 0.3690 -0.2233       1.1074   2.334 0.1311 0.1356 53.1763 0.9297 

7 0 -0.3512   0.8687     5.7583 Y 5.496 0.0323 0.2092 50.7376 0.8893 

8 0 -0.2323     0.9278   2.0958   11.39 0.0010 0.5501 41.4242 0.6708 

9 0 -0.3500       0.8496 7.2187 Y 3.098 0.0748 0.1980 51.8294 0.8956 

10 0   -0.1327 0.4943     1.2088   3.474 0.0576 0.2254 51.2024 0.8801 

11 0   -0.0565   0.7382   1.1705   10.36 0.0015 0.5240 42.4390 0.6899 

12 0   -0.1752     0.4631 1.1413   3.249 0.0673 0.2092 51.5749 0.8893 

13 0     -0.2319 0.9504   3.0860   11 0.0011 0.5406 41.7977 0.6778 

14 0     0.5278   0.0228 10.4442 Y 3.245 0.0674 0.2089 51.5810 0.8894 

15 0       0.8356 -0.1012 2.2788   10.43 0.0014 0.5260 42.3629 0.6885 

16 0 -0.3100 -0.1079 0.7864     4.5570 Y 2.327 0.1190 0.1897 52.7713 0.9002 

17 0 -0.2372 -0.0663   0.9060   1.8328   7.2 0.0037 0.5225 43.2535 0.6910 

18 0 -0.3315 -0.1695     0.7728 5.2765 Y 2.17 0.1371 0.1712 53.1786 0.9104 

19 0 -0.2206   -0.0178 0.9339   5.8355 Y 7.089 0.0039 0.5180 43.4225 0.6943 

Continued on next page   
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Model Constant CMPX SPEC BED TFA PDE 
mean 

VIF 
PCR 

F-
statistic 

p-value R.2_adj AIC SEE 

20 0 -0.4758   0.6591   0.3395 10.8219 Y 2.316 0.1201 0.1885 52.7981 0.9008 

21 0 -0.5244     0.8688 0.3606 5.8566 Y 7.593 0.0030 0.5378 42.6668 0.6799 

22 0   -0.0874 -0.2594 0.9397   2.5088   7.028 0.0041 0.5154 43.5167 0.6961 

23 0   -0.1372 0.4118   0.0849 7.7552 Y 2.168 0.1374 0.1709 53.1847 0.9105 

24 0   -0.0650   0.8181 -0.1110 1.9514   6.587 0.0053 0.4965 44.2085 0.7096 

25 0     -0.6040 0.9867 0.3599 9.5540 Y 7.197 0.0037 0.5224 43.2580 0.6911 

26 0 -0.1939 -0.0724 -0.0665 0.9270   4.8761 Y 5.025 0.0114 0.4864 45.2313 0.7167 

27 0 -0.4425 -0.1167 0.5513   0.3701 8.7454 Y 1.693 0.2113 0.1403 54.5036 0.9272 

28 0 -0.5159 -0.0512   0.8545 0.3454 4.7472 Y 5.338 0.0091 0.5051 44.5622 0.7035 

29 0 -0.4570   -0.4736 0.9831 0.6628 10.0633 Y 5.631 0.0074 0.5214 43.9583 0.6918 

30 0   -0.1067 -0.6844 0.9782 0.4052 7.7101 Y 5.21 0.0100 0.4976 44.8330 0.7088 

31 0 -0.4323 -0.0867 -0.5460 0.9763 0.6833 8.5134 Y 4.267 0.0184 0.4900 45.6618 0.7141 
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 Overall significance of the MLR models 

The overall significance of each of the regression models described in Table 5.12 and 

Table 5.13 respectively were evaluated using the F-test. The F-test evaluates the 

overall statistical significance of the regression model. It was used to assess whether 

as a group, the independent variables significantly contributed to explaining the 

variance observed in the dependent variable (Chatterjee & Simonoff 2013). 

The null hypothesis (𝐻0) corresponds to the case where none of the independent 

variables in the model accounted for a statistically significant amount of the variance 

in the dependent variable. Thus, all the regression coefficients for the independent 

variables in the model are zero. The alternative hypothesis (𝐻1) corresponds to the 

case where at least one of the independent variables accounted for a statistically 

significant amount of the variance in the dependent variable. Thus, at least one of the 

regression coefficients is not zero. This is given by: 

 
𝐻0: 𝛽1 = ⋯ = 𝛽𝑛 = 0,  

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝛽𝑖 ≠ 0, 𝑖 = 1, 2, … , 𝑝. 
(5.6) 

Each of the regression models was evaluated at the significance level 𝛼 = 0.05. The F-

statistic and associated p-value of each model are presented in Table 5.12 and Table 

5.13 for electricity and water consumption respectively. The p-values for 3 of the 31 

AEC regression models in Table 5.12, and 11 of the 31 AWC regression models in 

Table 5.13 were larger than 𝛼 = 0.05.  

Thus, as a group these models do not significantly contribute to explaining the 

variance in the respective electricity (AEC) and water (AWC) consumption data of 

the hospitals in the analysis. These models are marked in red in the corresponding 

results tables. The null hypothesis was accepted for each of these models, and they 

were excluded from the model comparison process. 
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 Quantitative findings: AEC models 

The AIC and 𝑅𝑎
2 statistics corresponding to each of the energy consumption 

regression models in the analysis are provided in Table 5.12. These two criteria were 

used to evaluate the goodness of fit of each of the models. The most parsimonious 

model minimises the AIC statistic, while maximising the 𝑅𝑎
2 statistic. These statistics 

are visually represented by the plots in Table 5.14, where each model selection 

criterion statistic is plotted against the number of variables in that model. 

Table 5.14: Plots of the model selection criterion statistics vs the number of 

independent variables in the model 
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The model-selection criteria statistics of the ten best regression models for the 

electricity consumption of the hospitals in the analysis are presented in Table 5.15. 

These models are sorted according to their AIC statistic values. According to the AIC 

criterion, the regression model with CMPX, SPEC and TFA as independent variables 

(C-S-T) is the best model for accounting for the variance in AEC. Taken as a set, the 

combination of these independent variables accounts for 78.15 percent of the 

variance in electricity consumption.  

However, according to the 𝑅𝑎
2 statistic, the C-S-T model only explains 1.06 percent 

more of the variance in the electricity consumption variable than the best two-

predictor-model (the S-T model). Furthermore, when compared to the best single-

predictor-model (the T model), the C-S-T model only explains 2.63 percent more 

variance.  
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A comparison of the AIC and 𝑅𝑎
2 plots presented in Table 5.14 shows that there is not 

a significant difference between the AIC values of the best single-predictor-, two-

predictor-, three-predictor-, and four-predictor-variable-models. This suggests that 

the additional variables in the two-predictor-, three-predictor-, and four-predictor-

variable-models do not provide a significant amount of additional explanatory power. 

Thus, the most parsimonious model is the single-predictor-model, with TFA as the 

independent variable which explains 75.52 percent of the variance in the annual 

energy consumption dataset according to the 𝑅𝑎
2 measure. 

Table 5.15: Ten best regression models for electricity consumption 

Model 
Number of 
Variables 

𝑹𝒂
𝟐 AIC 

C-S-T 3 0.7815 29.1835 

S-T 2 0.7709 29.2760 

C-S-B-T 4 0.7860 29.4732 

C-T 2 0.7672 29.5620 

T 1 0.7552 29.6283 

S-T-P 3 0.7647 30.5111 

T-P 2 0.7524 30.6700 

C-S-T-P 4 0.7700 30.7720 

C-B-T 3 0.7592 30.9321 

S-B-T 3 0.7569 31.1003 
 

Where: C=CMPX, S=SPEC, B=BED, T=TFA, and P=PDE. 

All of the ten best electricity consumption regression models presented in Table 5.15 

contain the TFA predictor variable. Due to the high amount of explanatory power 

attributed to the single-predictor TFA model, it was suspected that TFA alone 

accounts for most of the statistically significant variance in the other models listed in 

Table 5.15.  

Since the presence of multi-collinearity between the predictor variables in each model 

was addressed before the regression analysis, a sample t-test was used to determine 

whether each independent variable in a regression model is a statistically significant 

predictor of the electricity consumption of the set of hospitals in the analysis. The t-
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test was used to evaluate whether the model coefficient associated with each 

predictor variable was significant. It tested the following hypothesis: 

 
𝐻0: 𝛽𝑖 = 0,          𝑖 = 1, 2, … , 𝑝  

𝐻1: 𝛽𝑖 ≠ 0, 𝑖 = 1, 2, … , 𝑝. 
(5.7) 

The p-value associated with every model coefficient for a sample t-test was used to 

determine the significance of the model coefficients.  The p-value of each model 

coefficient was evaluated at the significance level 𝛼 = 0.05. If the p-value is greater 

than 𝛼 = 0.05, then from the sample t-test we cannot reject the hypothesis that the 

model coefficient associated with that value is equal to zero. If the model coefficient 

is zero, then it does not account for a statistically significant amount of unique 

variance in the electricity consumption of the hospitals in the analysis. 

An evaluation of the significance of the individual parameters of the models showed 

that in all three of the two-predictor-variable models listed in Table 5.15, TFA was 

the only predictor variable that significantly contributed to explaining the variance in 

the electricity consumption of hospitals. Similar results were obtained for the four 

three-predictor-variable models listed in Table 5.15. Thus, it was concluded that TFA 

is the factor that most significantly explains the variance in the electricity 

consumption of hospitals. The results of these analyses are presented in Appendix I. 

In the regression models that do not have TFA as an independent variable, BED is the 

factor that most significantly accounts for a unique amount of variance in AEC. 

However, there is a significant drop in the explained variance due to the exclusion of 

TFA from the normalisation model (see Table 5.12). The 𝑅𝑎
2 of the CMPX-BED model 

is 31.33 percent less than that of the TFA model alone. Also, an analysis of the 

individual parameters and confidence intervals of the 5 best models that do not 

include TFA, shows that in these models BED is the only factor that significantly 

contributes to explaining the variance in AEC.  

The contribution of both CMPX and SPEC in the top ten models listed in Table 5.15 

was found to be non-significant in all the models. Furthermore, the overall explained 

variance of these models was smaller or just marginally greater than that of the single-

predictor TFA model. Thus, it was concluded that CMPX and SPEC do not provide 
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any significant additional explanatory power when evaluating the variance in the 

energy consumption of the hospitals in the data sample.  

 Quantitative findings: AWC models 

Table 5.16 illustrates the model selection criterion statistics for each of the significant 

water-consumption models plotted against the number of variables in that model. 

These plots are based on the results of the water-consumption regression analyses 

described in Table 5.13. As in the case of electricity consumption, the aim of the 

analysis is to identify the most parsimonious model for explaining the variance in the 

water-consumption of hospitals. Thus, the AIC and 𝑅𝑎
2 statistics corresponding to 

each regression model were used to analyse the goodness of fit of the respective 

models. 

Table 5.16: Plots of the model selection criterion statistics vs the number of 

independent variables in the model 
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Table 5.17 lists the ten best models for describing the variance in the water-

consumption data. The models are ranked with respect to their AIC statistics. An 

analysis of Table 5.16 in conjunction with the corresponding figures presented in 

Table 5.17 showed that a single-predictor model best explained the overall variance 

in the water-consumption dataset analysed. It was found that total floor area (TFA) 

has the lowest AIC statistic and the highest 𝑅𝑎
2 statistic of the models in the analysis. 

Thus, TFA accounted for the most significant amount of variance in the water 

consumption dataset (𝑅𝑎
2 = 0.5508).  
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Furthermore, an analysis of Table 5.16 and Table 5.17 showed that increasing the 

amount of normalisation factors in the model decreases the amount of variance 

explained by the model. Thus, because of this decrease in explanatory power due to 

the inclusion of additional predictor variables in the regression model, the 

significance of these individual parameters in the corresponding regression models 

was not evaluated as they provided no additional explanatory power.  

It was concluded that the total floor area (TFA) of hospitals is the most significant 

predictor of the water consumption of hospitals. Its contribution is so significant that 

the model with the most significant explanatory power that does not contain TFA as 

a predictor variable is the eighteenth most powerful explanatory model. This model 

consists of only the BED variable and has an 𝑅𝑎
2 = 0.2583.  

As in the case of electricity, it was concluded that CMPX and SPEC do not significantly 

contribute to explaining the variance in the water-consumption of hospitals. Thus, 

changing the normalisation model used to compare the water consumption of 

hospitals to include terms that account for CMPX and/or SPEC would reduce the 

explanatory power of that normalisation model. 

Table 5.17 Ten best AWC regression models 

Model 
Number of 
variables 

𝑹𝒂
𝟐 AIC 

T 1 0.5508 40.5554 

C-T 2 0.5501 41.4242 

B-T 2 0.5406 41.7977 

T-P 2 0.5260 42.3629 

S-T 2 0.5240 42.4390 

C-T-P 3 0.5378 42.6668 

C-S-T 3 0.5225 43.2535 

B-T-P 3 0.5224 43.2580 

C-B-T 3 0.5180 43.4225 

S-B-T 3 0.5154 43.5167 
 

Where: C=CMPX, S=SPEC, B=BED, T=TFA, and P=PDE. 
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 Conclusion 

The data analysis discussed in this chapter evaluated the explanatory power provided 

by the prospective normalising factors in accounting for the inter-hospital variations 

in the energy- and water-consumption of hospitals. This was used to rank the 

explanatory power provided by each normalising factor, and thus evaluate the 

feasibility of using complexity and specialisation as normalising factors. The analysis 

found that the size of the hospital as represented by its total floor area (TFA) explains 

the most statistically significant amount of variance in the energy and water 

consumption of the hospitals in the sample studied.  

Furthermore, it was found that the explanatory power provided by the complexity 

(CMPX) and level of specialisation (SPEC) of a hospital’s diagnostic caseload does not 

significantly contribute to explaining the variance in the energy and water 

consumption data. Thus, it was concluded that these parameters should not be 

included in the normalisation model, as this would increase the complexity of the 

normalisation model without contributing any additional statistically significant 

explanatory power. 
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 Conclusion  

This chapter contextualises the findings of the research study and discusses the 

studies main conclusions. The implications of the statistical findings on the research 

problem that was investigated are discussed and the feasibility of the addition of the 

proposed normalisation factors to the current normalisation model are also outlined. 

CHAPTER OUTLINE

2. Inter-hospital variation in 
energy and water consumption

1. Introduction

3. The method

4. Quantifying the function of 
a hospital

5. Assessing the feasibility of 
the normalisation measures

6. Conclusion   Conclusion and recommendations

 

Figure 6.1: Thesis document outline: Chapter 6 contextualised  

 Project summary 

This research study assessed the feasibility of including factors that are representative 

of a hospitals function10 into the normalisation model. Normalisation models were 

developed for different combinations of a set of normalising factors representing 

hospital size and hospital function. The explanatory power provided by these models 

in explaining the variance observed in the energy and water consumption data of 

hospitals was compared and used to evaluate the feasibility of accounting for the 

function of a hospital in the normalisation model.  

 

 

                                                 
10The function of a hospital is represented by its level of medical service provision. 
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This was achieved through the following research objectives: 

- Identifying factors to quantitatively represent the characteristics and function 

of a hospital as normalisation factors when evaluating the inter-hospital 

variations in resource consumption. 

- Identifying and formulating methods for quantifying and comparing the 

explanatory power provided by each normalisation factor. 

- Quantitatively assessing whether the normalisation factors that are 

representative of hospital function provided any significant and additional 

explanatory power to the normalisation model. 

In Chapter 2, a literature analysis was conducted to identify the factors that affect the 

energy and water consumption of hospitals and establish a relationship between 

these factors and resource consumption. From this analysis five prospective 

normalisation factors that are representative of the size and function of a hospital 

were identified. Methods for quantifying these normalisation factors were also 

identified. Chapter 3 discussed these methods as well as the research design and 

methodology used to evaluate the feasibility of accounting for hospital function in 

the normalisation model. 

The function of a hospital was quantified using its output (as represented by its PDE) 

and the complexity (CMPX) and level of specialisation (SPEC) of the hospital’s 

caseload. In Chapter 4, the patient statistics data of a set of district hospitals in the 

Western Cape was collected and used to develop CMPX and SPEC measures for the 

caseloads of each hospital relative to the other hospitals in the analysis. 

The patient statistics data was also used to quantify the output of a hospital using the 

PDE measure. Hospital size was quantified using the number of available inpatient 

beds (BED) and the total floor area (TFA) of a hospital. Data pertaining to the size of 

a hospital and its energy and water consumption was also collected and used to 

formulate the measures for hospital size (TFA and BED) and resource consumption 

respectively (AEC and AWC).  

In Chapter 5, these measures were used in a set of MLR analyses to formulate MLR 

models that evaluated the explanatory power provided by all the possible 

combinations of normalising factors when assessing the inter-hospital variance in 
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electricity and water consumption. These models were used to assess the significance 

of the explanatory power provided by the normalisation factors that were used to 

represent the function of a hospital. From these analyses’ conclusions were drawn on 

the feasibility of accounting for hospital function in the normalisation model. 

 Limitations of study 

The ICD 10 diagnostic coding system was recently rolled out to all the hospitals in 

the Western Cape, implementation started in 2014. Thus, the use of the system to 

record patient diagnosis is not implemented to the same degree at all the hospitals in 

the analysis. The resulting variations in data quality are reflected in the number of 

errors observed in the initial patient statistics dataset from the data recorded at the 

respective hospitals. This significantly limited the number of hospitals in the sample 

studied and resulted in a reduction in the size of the sample studied from 32 hospitals 

to 18.  

However, the quality of patient statistics data recorded at the hospitals is likely to 

improve in the coming years as healthcare practitioners at the respective hospitals 

become more familiar with the ICD-10 MIT coding standard. This will potentially 

address this limitation as it will lead to the collection of more accurate patient 

statistics data that will result in a more accurate and larger data sample for future 

analyses. 

Furthermore, the consumption data was based on the electricity and water metering 

measurements recorded by municipal officials at the facilities. The consumption 

measurement records for all the hospitals were not available for some of the calendar 

years initially considered. Consequently, this limited the years from which eligible 

annual data could be analysed. Hence, the dataset used in the study only consisted of 

data from the 2016 calendar year.  

In addition, the analysis of data in this study could not be replicated using 

consumption data from earlier years, and its findings could not be validated by 

analysing this data. In the coming years, the quality of the data used in studies similar 

to this study is expected to improve in terms of accuracy and availability. This is likely 

to result from the installation of smart metering systems for both electricity and water 
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consumption at the hospitals in the province. Hence, the replication of data analysis 

and the validation of the research findings by comparing consumption data from 

different years is likely to be feasible in the near future. 

Another implication of the installation of smart metering systems is that data on the 

total electricity and total water consumption of hospitals will become available. The 

smart metering systems will record the total electricity consumption of hospitals 

(including the electricity that is generated onsite) and their total water consumption 

(including water from onsite boreholes and greywater systems). This data will provide 

a more representative characterisation of the consumption performance behaviour of 

the hospitals being evaluated. 

 Main conclusions 

As discussed in Section 5.3, 62 MLR models were developed for the respective 

combinations of normalising factors. An analysis of these MLR models and their 

respective statistics, led to the conclusion that when comparing the inter-hospital 

variations in energy consumption (AEC) and water consumption (AWC), the size of 

a hospital is the normalising factor that provided the most statistically significant 

explanatory power. 

In these analyses, two variables were used to represent the size of a hospital, total 

floor area (TFA) and number of beds (BED). Of these two variables, the TFA had the 

most statistically significant explanatory power. The single-predictor-TFA-model 

accounted for 75.52 percent of the variance in the electricity consumption 

(𝑅𝑎
2=0.7552), and 55.08 percent of the variance in the water consumption (𝑅𝑎

2 = 

0.5508) of hospitals. This suggests that the single-predictor-TFA-model of hospital 

size accounts for the most statistically significant amount of variance in both the 

electricity and water consumption of a hospital. 

Furthermore, for the multiple-predictor variable models, the models with TFA as one 

of the predictor variables accounted for approximately 30 percent more variance in 

AEC, and 25 percent more variance in AWC than the models without TFA. In 

addition, analyses of the significance of the individual parameters in the multiple-

predictor models that contain TFA as a predictor variable were also conducted. From 
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these analyses, it was concluded that for these models, TFA was the only variable in 

these models that significantly contributed to explaining the variance in AEC and 

AWC. The other normalising variables in the models did not account for a statistically 

significant amount of unique variance in AEC or AWC. Taken together, these results 

show that the inclusion of TFA in a normalisation model increases the robustness of 

that model. 

The second variable used to represent the size of a hospital was BED. It accounted for 

the most statistically significant amount of variance in the multiple-predictor models 

that did not contain TFA as a predictor variable. BED and TFA both represent the size 

of a hospital in the normalisation models. It was thus concluded from the MLR 

analysis, that the size of a hospital was the most significant factor in explaining the 

variance in the energy and water consumption of hospitals. Of these two factors, the 

TFA of a hospital is the most significant normalising factor and it is more powerful 

than any combination of the other normalising factors. 

Tests of the overall significance of the single-predictor-CMPX- and single-predictor-

PDE-models, showed that both CMPX and PDE are statistically significant in 

accounting for the variance in the energy and water consumption performance of 

hospitals. However, the amount of individual variance accounted for by these factors 

is substantially less than that explained by models containing BED or TFA as 

normalising variables. Furthermore, another single-predictor model, SPEC, did not 

account for a statistically significant amount of variance in both AEC and AWC. This 

suggests that the variance that is explained by the single-predictor SPEC model could 

potentially be due to random chance. 

Interestingly, the multiple-predictor-variable models with combinations of CMPX, 

SPEC and PDE all explained less variance than the models containing BED or TFA. 

From these models, it was concluded that the PDE, CMPX and SPEC variables as 

representative of the level of medical service provision at a hospital do not 

significantly contribute to explaining the variance in the energy and water 

consumption data of hospitals. In addition, the high correlation observed between 

the potential normalising variables (PDE, CMPX and SPEC) and the respective 
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resource consumption variables (AEC and AWC) did not translate into a significant 

level of explained variance according to the results of the regression analyses.  

This suggests that individually and in combination with each other, PDE, CMPX and 

SPEC, do not significantly represent any underlying unique drivers of energy and 

water consumption that are not captured in the TFA and BED variables. Thus, the 

variance captured by the PDE, CMPX and SPEC metrics used to represent the level of 

medical service provision at a hospital overlaps with that of the metrics used to 

represent the size and capacity of a hospital.  

It was thus concluded that using the PDE, CMPX and SPEC measures to account for 

the function and output of a hospital in the normalisation model does not improve 

the comprehensiveness of the normalisation model. The addition of these measures 

to the model would complicate the normalisation model without providing any 

significant explanatory power or increasing the objectivity of hospital consumption 

performance comparisons. 

Furthermore, individually, TFA is a much better predictor of energy and water 

consumption in hospitals than any combination of the normalising variables 

considered. Combining TFA with those variables only marginally increases the 

amount of explained variance in the consumption data. The trade-off between added 

complexity by increasing the number of terms in the model and the amount of 

explained variance does not justify the addition of those variables to the 

normalisation model. Thus, normalising for the TFA of a hospital alone will produce 

the most comprehensive comparisons of hospital consumption performance.  

The study also found that of the two factors currently being used to normalise the 

electricity and water consumption of hospitals. The total floor area of a hospital is a 

significantly better predictor of inter-hospital variations in energy and water 

consumption performance. Thus, the robustness of the resource consumption 

performance comparisons that are normalised for the number of beds in a hospital 

could be improved by normalising them using the total floor area of the hospitals. 

The incorporation of this change would improve the current normalisation process. 
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 Summary of contributions 

The contributions of this study to academic literature and the body of knowledge are 

centred around the field of energy and water management in hospitals in a South 

African context. These are: 

1. This study has conducted an extensive literature review of the factors affecting 

energy and water consumption. This review can be used as a point of departure 

for future studies into the energy or water consumption of hospitals. 

2. The study evaluated the comprehensiveness of the measures currently used to 

normalise the energy and water consumption performance of hospitals in the 

Western Cape Province. The study has thus contributed to the body of 

knowledge by analysing and quantifying the effectiveness of the measures 

currently being used to normalise the energy and water consumption in 

hospitals in the Western Cape health system context. 

3. The study identified and tested potential changes to the measures currently 

used to normalise energy and water consumption performance comparisons 

in hospitals in the Western Cape. It assessed whether the incorporation of 

these changes improved the performance evaluation process. It found that the 

current comparison measures are robust, and their comprehensiveness was 

not significantly improved by the addition of the proposed normalisation 

factors. The study has thus contributed to the body of knowledge by 

identifying factors that do not improve the robustness of the current 

normalisation model. 

4. The study quantified the robustness of the current normalisation models. It 

identified that models that normalise for the total floor area of a hospital yield 

significantly more robust comparisons than those that normalise for the 

number of available beds in a hospital. Thus, the robustness of the 

comparisons that are currently used at a policy formulation or management 

level that normalised for the number of available beds in a hospital can be 

improved by normalising for the total floor area of a hospital instead. 
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5. The data availability and quality constraints encountered in the research 

process of this study may aid in highlighting the need to improve data 

recording procedures at hospitals. 

6. The application of the information theory approach to electricity and water 

consumption used in this study, may inform future studies to a new technique 

of performance comparison that may be applicable and significant in another 

context. 

 Suggestions for further research 

From the data analysis conducted and the results of this study, it is recommended 

that investigating the following topics may contribute to the understanding of 

normalisation in a resource consumption performance comparison context: 

1. The inclusion of the average length-of-stay associated with each treated 

diagnostic case into the formulation of the CMPX and SPEC measures. This 

will introduce an element that captures the severity of the patient’s diagnosis 

and the extent of the curative measures that were required to treat the 

diagnosis. Emphasis can be placed on length of stay as some wide spread cases 

may be associated with a longer stay in hospital and thus a higher demand on 

the resource consumption of the hospitals. 

2. Develop complexity measures for all the cases treated by a hospital, not just 

the inpatient cases. This can be achieved by applying the ratios used in the 

development of the PDE metric to develop composite complexity and 

specialisation measures. These measures will have a more rounded outlook 

and be more representative of the caseloads of the respective hospitals in the 

analysis. 

3. Apply replication test to check that the results are not just specific to this 

patient population but can be replicated on another population. It is 

recommended to study the variation in the case mix of hospitals over time and 

see if they were constant. This can be used to test the stability of the CMPX 

and SPEC measures and the formulated normalisation models over time. 

Stellenbosch University  https://scholar.sun.ac.za



CONCLUSION 

122 

Replication test can be used to test whether the findings of the MLR analysis 

are retained over time or whether they were unique to the 2016 calendar year. 

4. Assess whether offsetting the BED metric of each hospital in the analysis by its 

corresponding bed occupancy rate improves the explanatory power of the BED 

metric. The bed occupancy rate is a measure of the average percentage of 

occupied beds during a given reporting period. Thus, offsetting the BED metric 

by its corresponding bed occupancy rate would account for both the capacity 

of hospitals and the utilisation of that capacity. 

5. Future improvements in the quantity and quality of the available data will 

make it possible to address some of the constraints and limitations of this 

study. For example, the exclusive use of municipally recorded electricity and 

water consumption data thus excluding electricity that was generated onsite, 

thermal energy consumption, and water from onsite boreholes and greywater 

systems. This can be address by using the total energy consumption data 

provided by smart metering systems.  
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 Literature review 

procedure and results 

A.1 Factors that affect the energy use of hospitals 

The reviewed publications were obtained by tailoring the search parameters of the 

online database for academic journals; Scopus. The list of reviewed publications was 

expanded to include the relevant publications obtained in the references of the 

publications found in the Scopus search. Table 3.1 shows the parameters used to 

define the search and the number of publications each search found. 

Table A.1: Search parameters used in the energy use literature analysis 

Category Limited to Publications 

First search Reviewed 

Article title, 

Abstract, Keywords 

("energy use") OR ("energy consumption") 

AND ("hospital" OR "healthcare facilit*") 

296 25 Year of publication 2000 – 2017 

Subject area ("engineering" OR "energy" 

OR "environmental science") 

In all, 296 Publications were found during the first Scopus search. The focus of these 

publications and their relevance to the objective of the review (finding the factors 

that affect energy use in hospitals) were used as the inclusion-exclusion criteria. The 

keywords, abstracts and the body of the publications were analysed in relation to the 

inclusion-exclusion criteria. This yielded 25 publications for inclusion in the 

literature analysis.  

The 25 publications were grouped into 5 categories according to their focus, namely: 

building design, end use and internal load, energy consumption, energy efficiency 

retrofits and reference building models. These categories speak to the focus of the 

publications and how they relate to the energy consumption within the hospital. Most 

of the publications reviewed (16 of the 25) fall into the energy consumption category 
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(see Figure A.1). Due to the size of this category, the publications within it were 

subdivided according to their secondary area of focus into five smaller subcategories: 

benchmarking models, energy-demand models, energy-use analysis, forecasting and 

overview of hospital energy consumption. 

 

 

 

 

 

 

 

 

Figure A.1: Reviewed publications 

Figure A.2 presents the distribution of the publications in the ‘energy-consumption’ 

category with respect to their secondary area of focus. The energy-consumption 

category dominated the publications and the general state of consumption within 

hospitals will thus significantly influence the types of factors found in the analysis. 

This is advantageous as it does not allow one set of factors to significantly influence 

the factors that are identified.  

 

 

 

 

 

 

 

Figure A.2: Focus of the publications in the energy- consumption category  
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Table A.2: Factors affecting energy consumption as identified in literature 
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Seasonal factors  E    E            E  E      

Temperature    E     E     E E   E        

Climate      E     E         E  E    

Humidity               E   E        

Solar irradiance         E      E       E    

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A 

134 

 

  Factors  M
ar

ti
n

i 
et

 a
l.

 (
2

0
0

5
) 

S
zk

lo
 e

t 
al

. 
(2

0
0

4
) 

Z
h

u
 (

2
0

0
5

) 

C
al

d
er

a 
et

 a
l.

 (
2

0
0

8
) 

M
u

rr
ay

 e
t 

al
. 

(2
0

0
8

) 

F
u

m
o

 e
t 

al
. 

(2
0

0
9

) 

S
in

g
er

 e
t 

al
. 

(2
0

0
9

) 

D
er

u
 e

t 
al

. 
(2

0
1

1
) 

C
at

al
in

a 
et

 a
l.

 (
2

0
1

2
) 

K
o

lo
k

o
ts

a 
et

 a
l.

 (
2

0
1

2
) 

K
o

ro
li

ja
 e

t 
al

. 
(2

0
1

1
) 

K
o

ro
li

ja
 e

t 
al

. 
(2

0
1

3
) 

 P
ac

h
ec

o
 e

t 
al

. 
(2

0
1

2
) 

Z
h

ao
 e

t 
al

. 
(2

0
1

2
) 

R
aj

ag
o

p
al

an
 &

 E
lk

ad
i 

(2
0

1
4

) 

B
u

o
n

o
m

an
o

 e
t 

al
. 

(2
0

1
4

) 

A
ls

h
ay

eb
 e

t 
al

. 
(2

0
1

5
) 

B
ag

n
as

co
 e

t 
al

. 
(2

0
1

5
) 

d
e 

F
át

im
a 

C
as

tr
o

 e
t 

al
. 

(2
0

1
5

) 

C
h

u
n

g
 &

 P
ar

k
 (

2
0

1
5

) 

R
o

d
h

e 
&

 M
ar

ti
n

ez
 (

2
0

1
5

) 

M
a 

et
 a

l.
 (

2
0

1
6

) 

R
ad

w
an

 e
t 

al
. 

(2
0

1
6

) 

T
al

eb
 (

2
0

1
6

) 

M
a 

et
 a

l.
 (

2
0

1
7

) 

F
u

n
ct

io
n

 o
f 

h
o

sp
it

al
 

C
li

n
ic

al
 

se
rv

ic
es

 Complexity of service offered  E     E   E E     E      E    

Capacity (number of beds)  E     E E           E       

Clinical specialties  E   E  E  E E E     E   E  E E    

Catchment area                   E       

E
q

u
ip

m
en

t 

an
d

 l
ig

h
ti

n
g

 

Equipment type         E             E     

Prevalence  E                    E    E 

Use patterns E  E   E        E E      E    E 

Level of maintenance on equip.          E                

E
n

d
 u

se
s System type & configuration   E  E E E E   E    E        E  E 

Equipment power rating                     E     

Operational parameters        E   E    E           

Efficiency of equipment  E    E  E   E   
 

          E 

B
u

il
d

in
g

 U
se

 Type of spaces   E     E       E E       E   

Occupancy rates & density E       E E      E        E   

Heat gains: equip. & lighting         E   E         E  E   

Heat gains from occupants            E           E   

Operating schedule   E   E  E   E    E     E      

Occupant behaviour   E           E            
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A.2 Factors that affect the water use of hospitals 

The second part of the literature analysis focused on the identification of the factors 

affecting the water consumption of hospitals. As in Section 2.1, the online database 

for academic journals; Scopus, was used to select the reviewed publications. Water 

consumption in hospitals is an under-researched field. García-Sanz-Calcedo et al. 

(2017) encountered a similar problem in their study of water consumption in Spanish 

hospitals. Table A.3 shows the parameter used to tailor the literature search and the 

publications found during the search. 

The initial Scopus search generated a limited amount of relevant published literature. 

Of the nine publications included in the study, two came from the Scopus search. The 

rest of the publications were excluded on the grounds of their relevance to the focus 

of the literature analysis. Two publications were excluded because they were written 

in Japanese and Mandarin respectively. The literature analysis was expanded by 

studying the reference lists of the publications found in the Scopus search and 

including relevant publications. Figure A.3 shows the type of literature used in this 

review: because of the limited amount of publications both academic and grey 

literature was reviewed. 

Table A.3: Search parameters used in the water use literature analysis 

Category Limited to Publications 

First search Reviewed 

Article title, 

Abstract, Keywords 

("water use") OR ("water consumption") 

AND ("hospital" OR "healthcare facilit*") 

58 9 Year of publication 2000 - 2017 

Subject area ("engineering" OR "energy" 

OR "environmental science") 

Figure A.3 and Figure A.4 show the area of focus of each publication in the review. 

More than half of the publications focused on water-consumption analysis and 

provided a good overview of water consumption within hospitals. Two studies 

modelled water use within hospital buildings, focusing on benchmarking 

consumption and forecasting consumption respectively. 
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BIS & Cranfield University (2009) studied the water consumption of residential and 

non-residential, public and commercial buildings. In their publication, building water 

consumption is divided into two categories which represent the type of water use in 

all types of buildings: human water needs, and productive water uses. Human water 

needs are defined as the water used for sanitary and leisure activities. Productive 

water use is defined as the water that is applied to fulfilling the building’s intended 

purpose. In the case of hospitals, this purpose is providing an environment that 

facilitates the improvement of the health of patients.  

 

 

 

 

 

 

 

 

Figure A.3: Type of literature used in review 

 

 

 

 

 

 

 

 

 
Figure A.4: Area of focus of the publications 
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Table A.4: Factors affecting water consumption as identified in literature 
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Hospital 
characteristics 
and Context  

Year of construction W   W    W W 

Location    W    W  

Size  W W    W W W 

Culture  W  W      

Economy  W      W  

Climate  W W W      

Seasons    W      

Temperature        W  

Management 
policies & 
practices 

Management policies and awareness W   W  W W W W 

Maintenance practices W         

Incentives for implementing water sustainability measures       W   

Clinical service 

Capacity (number of beds) W  W W  W W W W 

Type and complexity of service offered W   W W   W W 

Complementary services provided by the hospital         W 

Mix of areas (space area ratios)  W        

Building Use 

Occupancy W W      W W 

Amount of green areas in the hospital        W W 

Average flow rates of water taps   W W       

Type of HVAC cooling system W    W W  W  
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 Statistical performance 

analysis approaches 

The approaches discussed in this Appendix are quantitative in nature and focus on 

determining a baseline or reference to which the alternatives are compared, and their 

performance is evaluated, thus benchmarking the performance of hospitals against 

said reference.  

B.1 Multivariate Linear Regression (MVLR) 

Multivariate linear regression (MVLR) determines a reference consumption 

performance index for a set of buildings and then assesses the performance of each 

building in that set relative to the reference index. A multivariate linear regression 

equation is used to generate the reference index, where the resource consumption is 

the dependent variable, and the building attributes that need to be accounted for are 

the independent variables. The approach generates a benchmark by analysing a 

dataset that consists of the resource consumption measurements of a set of hospitals 

and their corresponding attributes.  

Regression is performed to fit a line or plane that best represents the relationship 

between the dependent variable and the independent variables for all the data points 

in the dataset. The difference between each data point and the regression line or plane 

represents the error associated with the performance of each dependent variable for 

that independent variable (Chung 2011). The regression model yields an equation 

that can be used to predict the energy consumption of the building as a function of 

its key parameters. The estimated multiple regression equation is of the following 

form: 

 𝑦̂(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) =  𝛽0 ± ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝜀 (0.1) 
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Where,  

𝑦̂𝑗(𝑥𝑖) represents the estimated energy or water consumption for the j-th 

hospital; 

𝑥𝑖 represents the attributes of the respective hospital; 

𝛽0 represents the intercept; and 

𝛽𝑖 represents the estimates of the coefficients of the regression equation. 

Each coefficient (𝛽𝑖) represents the estimated change in y that corresponds to a unit 

change in 𝑥𝑖 when all other 𝑥𝑖′𝑠 are held constant. Thus the coefficients of the 

regression equation (βi) are proportional to the estimated dependent variable’s 

(𝑦̂𝑗(𝑥𝑖)) sensitivity to changes in an independent variable (𝑥𝑖) (Hygh et al. 2012). 

The regression model generates a MVLR equation for a dataset consisting of the 

resource consumption level and the attributes of each alternative. This equation can 

be used to predict the energy consumption of the building as a function of its key 

parameters. The equation is used to estimate a reference performance index for each 

alternative by substituting its parameters into the regression equation. Thus, in order 

to attribute a score to the performance of a hospital (𝑦𝑗), the actual resource 

consumption is normalised by its estimated performance (𝑦̂𝑗(𝑥𝑖)).  

 𝐻𝑗 =
𝑦𝑗

𝑦̂𝑗(𝑥𝑖)
 (0.2) 

MVLR is a sophisticated, yet straightforward and inexpensive approach that can be 

carried out using most spreadsheet software packages (Chung 2011). However, it 

requires a large set of data to generate an accurate and robust predictive model 

(Catalina et al. 2008). Furthermore, the residuals that capture the inefficiency in the 

consumption performance of the hospitals are calculated relative to the fitted average 

function. This fitted average does not correspond to an efficiency frontier and does 

not quantitatively say anything about the consumption efficiency of the hospital with 

respect to the most efficient hospital within the sample being studied (Chung 2011). 

The fitted average captures inefficiencies in the performance of the hospitals as well 

as statistical noise due to unexplained factors and data errors. MVLR groups the 

effects of these errors and unexplained factors within the metric that measures the 

relative efficiency levels for each alternative in the analysis. Monts & Blissett's (1982) 

energy utilisation index (EUI) approach is based on multivariate linear regression. 
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The regression-based approach described by Monts & Blissett (1982) has the same 

theoretical basis as various benchmarking approaches for non-domestic buildings 

found in literature. Furthermore, the US Environmental Protection Agency’s Energy 

Star scheme is based on this method  (Hong, Burman, et al. 2014), and benchmarks 

for commercial buildings in Hong Kong were developed based on this method 

(Chung, Hui & Y. M. Lam 2006).  

B.2  Data Envelopment Analysis (DEA) 

This approach uses data envelopment analysis (DEA) to formulate an efficiency 

frontier. This frontier is used to benchmark the performance of each alternative in 

the study (OECD & JRC 2008). DEA can be used to compare and benchmark the 

‘performance’ of different alternatives with respect to a set of attributes and identify 

the best performing alternative(s) or develop an artificial best performing alternative 

against which the other alternatives are benchmarked (Sherman & Zhu 2006). This 

best performing alternative(s) forms the efficiency frontier. The distance between the 

frontier and each alternative represents the inefficiency of that alternative. 

 𝐴𝑗 =
𝐷𝑗

𝐷𝑗
∗ =

∑ 𝑤𝑖𝑗𝑎𝑖𝑗
𝑛
𝑖=1

∑ 𝑤𝑖𝑗𝑎𝑖𝑗
∗𝑛

𝑖=1

 (0.3) 

Where,  

Aj the normalised and weighted resource (energy or water) consumption 

performance score awarded to the j-th hospital; 

aij The performance of the j-th hospital on the i-th attribute; 

aij
* The optimal performance of the j-th hospital on the i-th attribute, 

represented by its projection from the origin onto the frontier; and 

wij The weighting factor associated with aij; and 𝑤𝑖𝑗  ∈ [0,1]. 

The efficiency of an alternative can be defined as the ratio of its current level of 

performance (𝐷𝑗) over its optimal operating level (𝐷𝑗
∗) (Chung 2011). The DEA 

approach assumes that the variance in the performance of alternatives is because of 

differences in the degree to which the respective attributes affect the resource 

consumption at the respective alternative. Thus, there exists an optimal version (𝐷𝑗
∗) 
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of each alternative (𝐷𝑗) that operates at the optimal operating level for that alternative 

given its attributes.  

The set of these optimal alternatives forms the efficiency frontier. Figure B.1 

illustrates this for a simple six alternative, two attribute example, where Dj represents 

the alternatives and Dj
* represents the projection of that alternative on the efficiency 

frontier. The analysis outputs a single composite score on the interval [0,1] that 

represents the performance of the alternative. The alternatives on the efficiency 

frontier (D2, D4, and D5) are awarded the maximum score (𝐴𝑗 = 1). All non-efficiency-

frontier alternatives (D1, D3, and D6) are awarded a score 𝐴𝑗 < 1. Since the approach 

computes and analyses the efficiency of an alternative relative to the frontier, the 

frontier provides a means of identifying and determining potential areas of 

improvement and quantifying the improvements needed to increase the efficiency of 

an inefficient alternative (Chung 2011). 

A
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D4
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D2

D6 D5

D3

D1*

 

Figure B.1: Illustrative example of an efficiency frontier 

One of the limitations of DEA is that the choice of the frontier is sensitive to outliers. 

Outliers (i.e. due to data errors) can cause large inefficiency values. There are two 

types of outliers; outliers that overestimate consumption, thus significantly 

increasing the inefficiency of one alternative, and outliers that underestimate 

consumption, thus significantly increasing the inefficiency of all the alternatives.  
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Another limitation is that adding attributes never decreases the individual efficiency 

score of the alternatives in the analysis. This may be misleading, especially if the 

analysis consists of a large number of attributes and a small alternative sample size; 

every alternative can be located on the frontier (Chung 2011). Thus there can be 

multiple optimal solutions, no unique solution and thus no frontier against which to 

benchmark the alternatives (Pizzol et al. 2017).  

Other limitations of the DEA approach include its requirement for precise data which 

is not always possible in a real-world context (Velasquez & Hester 2013). 

Furthermore, low inefficiency scores may be caused by factors that are not included 

in the model. Thus the method may not account for the effect of some of the 

attributes on the resource consumption because the underlying attributes could not 

be modelled and were not testable (Chung 2011). 
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 ICD-10 MIT chapter 

descriptions 

Table C.1 details the macro-level clinical diagnosis and cause of morbidity groupings 

defined in the ICD-10 MIT table. The caseloads of each clinical speciality provided at 

the hospitals in the analysis were defined by classifying the cases treated under each 

speciality into these groupings 

Table C.1: ICD-10 MIT chapter descriptions used to classify hospitals case load 

Chapter  Description 

CHAPTER I Certain infectious and parasitic diseases (A00-B99) 

CHAPTER II Neoplasms (C00-D48) 

CHAPTER III Diseases of the blood and blood-forming organs and certain disorders 
involving the immune mechanism (D50-D89) 

CHAPTER IV Endocrine, nutritional and metabolic diseases (E00-E90) 

CHAPTER V Mental and behavioural disorders (F00-F99) 

CHAPTER VI Diseases of the nervous system (G00-G99) 

CHAPTER VII Diseases of the eye and adnexa (H00-H59) 

CHAPTER VIII Diseases of the ear and mastoid process (H60-H95) 

CHAPTER IX Diseases of the circulatory system (I00-I99) 

CHAPTER X Diseases of the respiratory system (J00-J99) 

CHAPTER XI Diseases of the digestive system (K00-K93) 

CHAPTER XII Diseases of the skin and subcutaneous tissue (L00-L99) 

CHAPTER XIII Diseases of the musculoskeletal system and connective tissue (M00-M99) 

CHAPTER XIV Diseases of the genitourinary system (N00-N99) 

CHAPTER XV Pregnancy, childbirth and the puerperium (O00-O99) 

CHAPTER XVI Certain conditions originating in the perinatal period (P00-P96) 

CHAPTER XVII Congenital malformations, deformations and chromosomal abnormalities 
(Q00-Q99) 

CHAPTER XVIII Symptoms, signs and abnormal clinical and laboratory findings not 
elsewhere classified (R00-R99) 

CHAPTER XIX Injury, poisoning and certain other consequences of external causes (S00-
T98) 

CHAPTER XX External causes of morbidity and mortality (V01-Y98) 

CHAPTER XXI Factors influencing health status and contact with health services (Z00-
Z99) 

CHAPTER XXII Codes for special purposes (U00-U99) 

CHAPTER M Morphology of neoplasms (M000-M999) 
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 Data collection 

D.1 Annexure A: application for health data 
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D.2 Ethical clearance 

 

 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX E 

149 

 Data collection 

E.1 Hospitals in the initial dataset 

Table E.1: List of district hospitals in the study’s initial dataset 

Hospital Name Hospital Code 

Ladismith (Alan Blyth) Hospital ABH 

Otto Du Plessis Hospital BRE 

Beaufort West Hospital BWH 

Caledon Hospital CLD 

Clanwilliam Hospital CLH 

Ceres Hospital CRS 

Eerste River Hospital ERH 

False Bay Hospital FBH 

GF Jooste Hospital GFJ 

Hermanus Hospital HER 

Helderberg Hospital HHH 

Karl Bremer Hospital KBH 

Khayelitsha Hospital KHA 

Knysna Hospital KNY 

LAPA Munnik Hospital LAP 

Laingsburg Hospital LBH 

Murraysburg Hospital MBH 

Mossel Bay Hospital MBY 

Montagu Hospital MON 

Mitchells Plain Hospital MPH 

Oudtshoorn Hospital OUD 

Prince Albert Hospital PRH 

Riversdale Hospital RIV 

Radie Kotze Hospital RKH 

Robertson Hospital ROB 

Stellenbosch Hospital STB 

Swartland Hospital SWA 

Swellendam Hospital SWE 

Uniondale Hospital UDH 

Victoria Hospital VHW 

Vredendal Hospital VRE 

Wesfleur Hospital WFH 
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E.2 Hospitals in the final dataset 

Table E.2: List of district hospitals in the study’s final dataset 

Hospital Name Hospital Code 

Ladismith (Alan Blyth) Hospital ABH 

Beaufort West Hospital BWH 

Caledon Hospital CLD 

Clanwilliam Hospital CLH 

Ceres Hospital CRS 

Hermanus Hospital HER 

Knysna Hospital KNY 

LAPA Munnik Hospital LAP 

Laingsburg Hospital LBH 

Montagu Hospital MON 

Prince Albert Hospital PRH 

Riversdale Hospital RIV 

Radie Kotze Hospital RKH 

Robertson Hospital ROB 

Stellenbosch Hospital STB 

Swellendam Hospital SWE 

Uniondale Hospital UDH 

Vredendal Hospital VRE 
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 MATLAB script file for 

information theory analysis 

The following MATLAB script was used to calculate the complexity and specialisation 

measures for each of the hospitals in the analysis. The script is divided into five 

sections in accordance with the data analysis procedure outlined in Figure 4.10. The 

script file imports the final dataset into MATLAB from an MS Excel file, applies the 

information theory approach on the dataset and then outputs complexity and 

specialisation measures to an MS Excel file. 

clear all;  
close all;  
clc; 

 
%% Phase 1: Importing the dataset matrix 
D = xlsread(‘C:\Documents\MATLAB\Thesis\Calc’, 'Sheet1', 'B2:JP20'); 

col1= D(:,1); 
N = length(col1);                                                
C_i = sum(D,2);                                                  
C_j = sum(D,1);                                                  
C = sum(C_i,1);                                                  

  
%% Phase 2: Front matter 
Q = D ./ C_j;                                                    
test2 = sum(Q,1); 
P = D ./ C_i;                                                    
test1 = sum(P,2);                                                
Q_j = C_j ./ C;                                                  
P_i = C_i ./ C;                                                  

  
%% Phase 3: COMPLEXITY 
% Expected information gain 
A1 = Q .* log(N*Q); 
A1(isnan(A1))=0;                                                 
EIG = sum(A1,1);                                                 
% Standardisation to average of 1 
EIG_a = EIG ./ (sum((EIG .* Q_j), 2));                           
test3 = sum((EIG_a .* Q_j), 2);                                 
%Complexity index 
COMP = sum((EIG_a .* P_i), 2);                                  

  
%% Phase 4: SPECIALISATION 
% Expected information gain 
A2 = P .* log(P ./ Q_j); 
A2(isnan(A2))=0;                                                 
IG = sum(A2,2);                                                  
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% Standardisation to average of 1 
IG_a = IG ./ (sum((IG .* P_i), 1));                              
test4 = sum((IG_a .* P_i), 1);                                   
%Specialisation index 
SPEC = sum((IG_a .* Q_j), 2);                                     

  
%% Phase 5: Back matter 
[~, txt, ~] = xlsread('C:\Documents\MATLAB\Thesis\Calc', Sheet1', 

'A2:A19'); 
col_header= {'Hospital', 'Complexity','Specialisation'}; 
xlswrite('XS.xlsx', col_header, 'Metric','A1'); 
xlswrite('XS.xlsx', txt, 'Metric','A2'); 
xlswrite('XS.xlsx', COMP, 'Metric','B2'); 
xlswrite('XS.xlsx', SPEC, 'Metric','C2'); 
xlswrite('XS.xlsx', EIG, 'EIG-CMPX','A1:HU1'); 
xlswrite('XS.xlsx', EIG_a, 'EIG_a-CMPX','A1:HU1'); 
xlswrite('XS.xlsx', IG, 'EIG-SPEC','A1:A18'); 
xlswrite('XS.xlsx', IG_a, 'EIG_a-SPEC','A1:A18'); 
xlswrite('XS.xlsx', C_i, 'C_i','A1:A18'); 

xlswrite('XS.xlsx', C_j, 'C_j','A1:HU1'); 
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 Correlation analysis 

G.1 Statistics associated with CMPX and SPEC 

measures 

Table G.1 details the statistics associated with the set of complexity and specialisation 

measures for the 19 hospitals in the analysis. These statistics describe the distribution 

of the measures associated with the caseloads of the respective hospitals. This 

distribution is illustrated in the scatter diagram presented in Figure 4.14 and was 

discussed in Section 4.5. 

Table G.1: Statistics describing the distribution of CMPX and SPEC measures 

Statistic CMPX SPEC 

Minimum 8.353 0.5916 

25% Percentile 20.49 0.8065 

Median 33.84 0.9505 

75% Percentile 57.25 1.286 

Maximum 114.7 3.725 

Mean 39.72 1.143 

Std. Deviation 27.57 0.699 

Std. Error 6.499 0.1648 

G.2 Correlation analysis results for Chapter 4 

G.2.1 Standardised EIG vs number of cases treated  

A correlation analysis was conducted to evaluate the relationship between: the 

standardised EIG for complexity associated with each diagnostic case type grouping 

vs the number of hospitals that treated that diagnostic case type grouping. This 

analysis was discussed in Section 4.5. 

Table G.2: Results of the correlation analysis: standardised EIG  

vs number of cases treated 

Statistic Value 

Pearson r -0.9226 

95% confidence interval  -0.9398 to -0.9006 

P value (two-tailed) < 0.0001 

R square 0.8511 
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G.2.2 Diagnostically different cases treated vs complexity 

Table G.3 and Figure G.1 detail the results of a correlation analysis comparing the 

complexity measure associated with the caseload of each hospital to the number of 

diagnostically different cases treated at each hospital. This analysis was discussed in 

Section 4.5. 

Table G.3: Results of the correlation analysis:  

diagnostically different cases treated vs complexity 

Statistic Value 

Pearson r 0.8904 

95% confidence interval 0.7324 to 0.9574 

P value (two-tailed) < 0.0001 

Is the correlation significant? (α=0.05) Yes 

R square 0.7928 

 

 

Figure G.1: Scatter diagram: diagnostically  

different cases treated vs complexity 
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G.2.3 Diagnostically different cases treated vs specialisation 

Table G.4Error! Reference source not found. and Figure G.2Error! Reference 

source not found. detail the results of a correlation analysis comparing the 

specialisation measure associated with the caseload of each hospital to the number of 

diagnostically different cases treated at each hospital. This analysis was discussed in 

Section 4.5.2. 

Table G.4:  Results of the correlation analysis: diagnostically  

different cases treated vs specialisation 

Statistic Value 

Pearson r -0.4402 

95% confidence interval -0.7525 to 0.03371 

P value (two-tailed) 0.0675 

Is the correlation significant? (α=0.05) No. 

R square 0.1938 

 

Correlation Analysis: number of different daignostic cases
treated at hospital i vs SPEC of hospital i

Number of different diagnosis treated by hospital i

S
P

E
C

 m
e

a
su

re
 f

o
r 

h
o

sp
it

a
l

i

0 50 100 150 200
0

1

2

3

4

 

Figure G.2: Scatter diagram: diagnostically  

different cases treated vs specialisation 
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G.2.4 Number of cases treated vs specialisation 

Table G.5Error! Reference source not found. and Figure G.3Error! Reference 

source not found. detail the results of a correlation analysis comparing the 

specialisation measure associated with the caseload of each hospital to the number of 

cases treated at each hospital. This analysis was discussed in Section 4.5.2. 

Table G.5: Results of the correlation analysis: number of cases treated vs 

specialisation 

Statistic Value 

Pearson r -0.3115 

95% confidence interval -0.6796 to 0.1820 

P value (two-tailed) 0.2084 

Is the correlation significant? (alpha=0.05) No. 

R square 0.09701 
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Figure G.3: Scatter diagram: number of cases  

treated vs specialisation 
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 RStudio script 

H.1 MLR without principle component analysis 

# Phase 1: Importing variables and installing libraries 

#--------------------------------------------------------------------# 

# Importing data for water consumption analysis 

library(readxl) 

elec <- read_excel("elec4.xlsx") 

library(e1071) 

library(outliers) 

#--------------------------------------------------------------------# 

# Phase 2: Standardise the variables: unit normal scaling 

#--------------------------------------------------------------------# 

#standardise each variable (z-score: subtract mean, divide by sd) 

elec2= data.frame(scale(elec)) 

#--------------------------------------------------------------------# 

# Phase 3: Detecting Outliers 

#--------------------------------------------------------------------# 

# Creates QQ-Plots 

qqout = qqnorm(elec2$AEC, main = 'QQ-Plot of AEC', ylab = 'Sample 

Quantiles',  

               col= "blue3") 

qqline(elec2$AEC)       

 

qqout = qqnorm(elec2$TFA, main = 'QQ-Plot of TFA', ylab = 'Sample 

Quantiles',  

               col= "blue3") 

qqline(elec2$TFA)          

#-------------------------------------------------------------------# 

# Phase 3: Correlation analysis 

#-------------------------------------------------------------------# 

#calculates the correlation matrix for standardised dataset 

mycorr2 =cor(elec2) 

mycorr2 

 

#Scatter plot of the respective combinations of variables in the dataset 

plot(elec2, main ="Pairwise correlation analysis of stardardised 

variables",  

     col= "blue3") 

#-------------------------------------------------------------------# 

# Phase 4: Multiple Regression analysis 

#-------------------------------------------------------------------# 

#Regression via a linear model 

MLR = lm(AEC~.,data=elec2) 

summary(MLR) 

 

# AIC - Akaike's Information Criterion using the built-in AIC function 

AIC.pcr_a = AIC(MLR, k=2) 

AIC.pcr_a 

#------------------------------------------------------------------# 
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H.2 MLR with principle component analysis 

# Phase 1: Importing variables and installing libraries 

#-------------------------------------------------------------------# 

# Importing data for water consumption analysis 

library(readxl) 

library(car) 

library(carData) 

elec <- read_excel("elec31.xlsx") 

#------------------------------------------------------------------# 

# Phase 2: Standardise the variables: unit normal scaling 

#------------------------------------------------------------------# 

#standardise each variable (z-score: subtract mean, divide by sd) 

elec2= data.frame(scale(elec)) 

#------------------------------------------------------------------# 

# Phase 3: Correlation analysis 

#------------------------------------------------------------------# 

#calculates the correlation matrix for standardised dataset 

mycorr2 =cor(elec2) 

# Scatter plot of the respective combinations of variables in the dataset 

plot(elec2, main ="Pairwise correlation analysis of standardised 

variables", 

     col= "blue3") 

#-------------------------------------------------------------------# 

# Phase 4: Multiple Regression analysis 

#-------------------------------------------------------------------# 

#Regression via a linear model 

MLR = lm(AEC~.,data=elec2) 

summary(MLR) 

#-------------------------------------------------------------------# 

# Phase 5: Multicollinearity 

#-------------------------------------------------------------------# 

#Variance inflation factors 

vf<- vif(MLR) 

#mean Variance inflation factor 

mean.vf<- mean(vif(MLR))      

mean.vf 

#-------------------------------------------------------------------# 

# Phase 6: Principal component analysis 

#-------------------------------------------------------------------# 

#Remove the first column (elec2) from the data matrix 

elec2x= elec2[,-1] 

 

#Peform Principal Component Analysis 

elec2x.pca <- prcomp(elec2x, center = TRUE, scale = TRUE) 

 

#Rotation matrix: 

print(elec2x.pca$rotation) 

 

#shows all the data that assoicated with each hospital used to generate 

PC 

elec2x.pca$x[,] 

 

#Variance explianed by each principal component 

eigen(cor(elec2x))$values 

#-------------------------------------------------------------------# 
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# Phase 7: Principal component Regression 

#-------------------------------------------------------------------# 

#Creates a dataframe with AEC in col1 and PC in other col's 

elec2.pca=cbind(elec2[,1], data.frame(elec2x.pca$x)) 

colnames(elec2.pca)[1] <- "AEC" 

 

#Correlation analysis of AEC another principal component 

mycorr2.pca= cor(elec2.pca)[,1] 

 

# Computes PCR model 

elec2.pcr <- lm(AEC~., data= elec2.pca) 

summary(elec2.pcr) 

#--------------------------------------------------------------------# 

# Phase 9: PCR Model statistics 

#--------------------------------------------------------------------# 

# Calculating AIC using the built-in AIC function 

AIC.pcr = AIC(elec2.pcr, k=2) 

AIC.pcr 

#--------------------------------------------------------------------# 

# Phase 10: PCR model coefficients 

#---------------------------------------------------------------------# 

# Converts PC into the original variables 

model.coef = elec2.pcr$coefficients[-1] 

betas2 = elec2x.pca$rotation %*% model.coef 

betas2 

#---------------------------------------------------------------------# 
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 Test of individual 

parameters 

I.1 Two-predictor AEC models 

I.1.1 CMPX-TFA model 

Table I.1: Results of the t-test and confidence intervals for CMPX-TFA regression 

model 

  Estimate t-stat p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.24E-16 0 1 -0.2424 0.2424 

CMPX -0.2288 -1.351 0.197 -0.5899 0.1323 

TFA 1.0427 6.155 1.84E-05 0.6817 1.4038 

I.1.2 SPEC-TFA model 

Table I.2: Results of the t-test and confidence intervals for SPEC-TFA regression 

model 

  Estimate t-stat p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.57E-16 0 1 -0.2405 0.2405 

SPEC 0.1817 1.447 0.168 -0.0860 0.4494 

TFA 0.9466 7.537 1.78E-06 0.6789 1.2143 

I.1.3 TFA-PDE model 

Table I.3: Results of the t-test and confidence intervals for TFA-PDE regression 

model 

  Estimate t-value p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.44E-16 0 1 -0.2500 0.2500 

TFA 1.0010 5.494 0.0001 0.6126 1.3891 

PDE -0.1650 -0.906 0.379 -0.5532 0.2233 
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I.2 Three-predictor AEC models 

I.2.1 CMPX-SPEC-TFA model 

Table I.4: Results of the t-test and confidence intervals for CMPX-SPEC-TFA 

regression model 

 Estimate t-value p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.64E-16 0 1 -0.2363 0.2363 

CMPX -0.2160 -1.314 0.21 -0.5686 0.1366 

SPEC 0.1728 1.406 0.181 -0.0907 0.4363 

TFA 1.0994 6.505 1.39E-05 0.7369 1.4619 

I.2.2 SPEC-TFA-PDE model 

Table I.5: Results of the t-test and confidence intervals for SPEC-TFA-PDE 

regression model 

 Estimate t-value p-value 
Lower CI 

(2.5%) 
Upper CI 
(97.5%) 

Constant 1.79E-16 0 1 -0.2452 0.2452 

SPEC 0.1710 1.336 0.203 -0.1036 0.4456 

TFA 1.0470 5.787 4.71E-05 0.6589 1.4348 

PDE -0.1393 -0.78 0.449 -0.5224 0.2438 

I.2.3 CMPX-BED-TFA model 

Table I.6: Results of the t-test and confidence intervals for CMPX-BED-TFA 

regression model 

 Estimate t-value p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.64E-16 0 1 -0.2363 0.2363 

CMPX -0.2160 -1.314 0.21 -0.5686 0.1366 

BED 0.1728 1.406 0.181 -0.0907 0.4363 

TFA 1.0990 6.505 1.39E-05 0.7369 1.4619 
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I.2.4 SPEC-BED-TFA model 

Table I.7: Results of the t-test and confidence intervals for SPEC-BED-TFA 

regression model 

  Estimate t-value p-value Lower CI (2.5%) Upper CI (97.5%) 

Constant 1.47E-16 0 1 -0.2492 0.2492 

SPEC 0.1723 1.3070 0.2124 -0.1105 0.4551 

BED -0.0794 -0.3710 0.7165 -0.5386 0.3799 

TFA 1.0080 4.7860 0.0003 0.5564 1.4602 
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