The Lévy-LIBOR model
with default risk

by

Raabia Walljee

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Science in Mathematics at
Stellenbosch University

Department of Mathematical Sciences,
Mathematics Division,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Supervisor: Prof. R. Becker

March 2015



Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the owner of the copy-
right thereof (unless to the extent explicitly otherwise stated) and that I have
not previously in its entirety or in part submitted it for obtaining any qualifi-
cation.

Signature: ............. ...l
R Walljee

Copyright (©) 2015 Stellenbosch University
All rights reserved.



Stellenbosch University https://scholar.sun.ac.za

Abstract

In recent years, the use of Lévy processes as a modelling tool has come to be
viewed more favourably than the use of the classical Brownian motion setup.
The reason for this is that these processes provide more flexibility and also
capture more of the 'real world” dynamics of the model. Hence the use of Lévy
processes for financial modelling is a motivating factor behind this research
presentation.

As a starting point a framework for the LIBOR market model with dynam-
ics driven by a Lévy process instead of the classical Brownian motion setup is
presented. When modelling LIBOR rates the use of a more realistic driving
process is important since these rates are the most realistic interest rates used
in the market of financial trading on a daily basis.

Since the financial crisis there has been an increasing demand and need
for efficient modelling and management of risk within the market. This has
further led to the motivation of the use of Lévy based models for the mod-
elling of credit risky financial instruments. The motivation stems from the
basic properties of stationary and independent increments of Lévy processes.
With these properties, the model is able to better account for any unexpected
behaviour within the market, usually referred to as "jumps".

Taking both of these factors into account, there is much motivation for the
construction of a model driven by Lévy processes which is able to model credit
risk and credit risky instruments. The model for LIBOR rates driven by these
processes was first introduced by Eberlein and Ozkan (2005) and is known as
the Lévy-LIBOR model. In order to account for the credit risk in the market,
the Lévy-LIBOR model with default risk was constructed. This was initially
done by Kluge (2005) and then formally introduced in the paper by Eberlein
et al. (2006). This thesis aims to present the theoretical construction of the
model as done in the above mentioned references. The construction includes
the consideration of recovery rates associated to the default event as well as a
pricing formula for some popular credit derivatives.
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Opsomming

In onlangse jare, is die gebruik van Lévy-prosesse as 'n modellerings instru-
ment baie meer gunstig gevind as die gebruik van die klassieke Brownse beweg-
ingsproses opstel. Die rede hiervoor is dat hierdie prosesse meer buigsaamheid
verskaf en die dinamiek van die model wat die praktyk beskryf, beter hierin
vervat word. Dus is die gebruik van Lévy-prosesse vir finansiéle modellering
'n motiverende faktor vir hierdie navorsingsaanbieding.

As beginput word 'n raamwerk vir die LIBOR mark model met dinamika,
gedryf deur 'n Lévy-proses in plaas van die klassieke Brownse bewegings opstel,
aangebied. Wanneer LIBOR-koerse gemodelleer word is die gebruik van 'n
meer realistiese proses belangriker aangesien hierdie koerse die mees realistiese
koerse is wat in die finansiéle mark op 'n daaglikse basis gebruik word.

Sedert die finansiéle krisis was daar 'n toenemende aanvraag en behoefte
aan doeltreffende modellering en die bestaan van risiko binne die mark. Dit het
verder gelei tot die motivering van Lévy-gebaseerde modelle vir die modellering
van finansiéle instrumente wat in die besonder aan kridietrisiko onderhewig is.
Die motivering spruit uit die basiese eienskappe van stasionére en onafhanklike
inkremente van Lévy-prosesse. Met hierdie eienskappe is die model in staat
om enige onverwagte gedrag (bekend as spronge) vas te vang.

Deur hierdie faktore in ag te neem, is daar genoeg motivering vir die bou
van 'n model gedryf deur Lévy-prosesse wat in staat is om kredietrisiko en
instrumente onderhewig hieraan te modelleer. Die model vir LIBOR-koerse
gedryf deur hierdie prosesse was oorspronklik bekendgestel deur Eberlein and
Ozkan (2005) en staan beken as die Lévy-LIBOR model. Om die kredietrisiko
in die mark te akkommodeer word die Lévy-LIBOR model met "default risk"
gekonstrueer. Dit was aanvanklik deur Kluge (2005) gedoen en formeel in die
artikel bekendgestel deur Eberlein et al. (2006). Die doel van hierdie tesis is om
die teoretiese konstruksie van die model aan te bied soos gedoen in die boge-
noemde verwysings. Die konstruksie sluit ondermeer in die terugkrygingskoers
wat met die wanbetaling geassosieer word, sowel as 'n prysingsformule vir 'n
paar bekende krediet afgeleide instrumente.
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Chapter 1

Introduction

Financial modelling refers to the construction of a sophisticated mathematical
model that represents the behaviour or performance of a financial instrument,
usually an asset or investment. A hypothesis about the behaviour of the asset
being modelled is converted into a numerical prediction.

The aim of this thesis is to discuss the modelling of interest rates, specif-
ically the LIBOR (London Interbank Offered Rate) rates. More importantly,
the models considered are those driven by a time-inhomogeneous Lévy process
rather than the classical Brownian motion setup. In addition to this, a credit
risk factor is added to the model. So instead of only considering the default-
free model for these rates, the model is extended to the case of defaultable
rates and so the modelling of this default risk becomes a focal point of the
study. The motivation behind the study is twofold: firstly it is motivated by
the increasing use of Lévy processes as driving tools for financial modelling
and secondly by the need for robust models of default risk.

In recent years, the use of Lévy processes as a modelling tool has become
much more favourable than the use of the classical Brownian motion setup.
Applebaum (2004) states a few reasons as to why these processes are so im-
portant:

e They are generalizations of random walks to continuous time.

e The simplest class of processes having paths of continuous motion inter-
spersed with jump discontinuities of random size occurring at random
times.

e The structure contains many features that generalize to much wider
classes of processes such as semi-martingales and Feller-Markov pro-
cesses.

e They are a natural model of noise used to build stochastic integrals and
as driving force behind stochastic differential equations.
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e The structure is mathematically robust which allows for many general-
izations, from Euclidean space to Banach and Hilbert spaces, Lie groups
and symmetric spaces, and algebraically to quantum groups.

Lévy processes play a central role in several fields of science, such as physics, in
the study of turbulence, laser cooling and quantum field theory; in engineer-
ing, for the study of networks, queues and dams; in economics, for continuous
time-series models; in actuarial science, for the calculation of insurance and
re-insurance risk and of course in mathematical finance, for financial mod-
elling, derivatives pricing and risk management (Papapantoleon, 2008). In-
terest herein of course lies in the latter. The main motivation for the use of
Lévy processes for financial modelling is taken from the financial market itself.
This is evident since fluctuations or ‘jumps’ in asset prices such as stocks and
bonds can be observed within the actual market. These fluctuations in prices
are usually unexpected and hence not continuous in time. So essentially the
use of a discontinuous model such as those driven by Lévy processes allow
practitioners to better account for the unexpected jumps within the market.
In doing this, much less reality of the market will be lost as is the case when
using models driven by classical diffusion setup. The work of Tankov (2007)
and Applebaum (2004) give introductions to Lévy processes and their applica-
tion in mathematical finance. For detailed explanations on the basics of these
processes and their applications in finance, the interested reader is referred to
the more subjective texts of Cont and Tankov (2004), Oksendal and Sulem
(2004) and Schoutens (2003).

Interest rates, coupon bonds and their derivatives are the main financial
instruments of the debt market and essentially represent the interplay of time
with economic activity, money capital and real (tangible) assets.

Interest in its simplest form refers to the fee paid by the borrower of money
(or an asset) to the owner thereof. The fee is a form of compensation for the
use of the asset. The interest rate describes the rate at which interest is
paid to the lender by the borrower. The interest rate itself cannot be traded,
hence bonds and other fixed income instruments depending on the interest
rate are traded. Bonds are the primary financial instruments in the market
where the time value' of money is traded (Filipovic, 2009). The texts of Brigo
and Mercurio (2006), Baaquie (2010) and Filipovic (2009) provide all the basic
requirements for the understanding of interest rates and the modelling thereof.

In the financial market there are different classes of interest rates. Interest
herein lies in the class of interbank interest rates. Generally, interbank rates
refer to the interest rates at which fixed deposits are exchanged between banks

IThe idea that the value of money today is worth more than the same amount of money
tomorrow. The amount is still the same but the value has changed. In other words "A
dollar today is worth more than a dollar tomorrow".
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in the capital markets. The most important interbank rate usually used as a
reference for contracts is the LIBOR rate. The LIBOR refers to the average
interest rate that banks are charged for borrowing money from each other in
the interbank market. Libor was officially introduced into the financial market
in 1986 by the British Bankers’ Association (BBA) and is now considered as
one the most important interest rate instruments used in the debt market.
The rate is calculated for ten currencies with fifteen maturities ranging from
overnight to 12 months. Hence for each business day there are 150 rates quoted.
The three-month LIBOR is the benchmark rate that forms the basis of the
LIBOR derivatives market (Baaquie, 2010). The calculation of LIBOR is done
by Thomson Reuters for the BBA. Every morning each LIBOR contributor
bank is asked how much they would charge other banks for a short-term loan.
The LIBOR rate produced by Thomson Reuters is calculated using a trimmed
arithmetic mean. The rates received from the contributor banks are ranked
in descending order and the highest and lowest quartiles are removed. This
"trimming" ensures that all outliers are removed from the final calculation.
The remaining figures are used to calculate an arithmetic average that is then
published by the BBA as the daily LIBOR.

As implied, the rate is usually used by bankers, however changes in the
rate can have major impacts on ordinary borrowers. Libor has been used as
the basis for consumer loans in many countries around the world. These in-
clude small business and student loans as well as credit cards. The slightest
change in LIBOR will lead to the interest charged on credit cards, car loans
and adjustable rate mortgages either moving up or down. Hence movement
in the LIBOR rate is crucial in determining the ease of borrowing not only
amongst banks but also amongst companies and consumers.

The current literature boasts a wide range of work on the subject of in-
terest modelling. Of the most popular developments are those of Alan Brace,
Dariusz Gaterek, Marek Musiela, Marek Rutkowsi and Farshid Jamshidian to
name but a few, dating back to the early and late 1990’s. One of the ear-
liest developments on the modelling of the term structure of interest rates
is that of Heath et al. (1992) and Heath et al. (1990), in which the authors
present a new methodology for the pricing of interest rate derivatives based
on equivalent martingale measure techniques. The methodology also provides
arbitrage-free prices that are independent of the market price of risk. Miltersen
et al. (1997) present a unified model in line with the arbitrage-free structure of
the HJM framework, however it is done under the assumption of log-normally
distributed simple rates. Later in the 1990’s, Brace et al. (1997) introduced a
new model for the term structure of LIBOR rates. In their paper, Brace et al.
(1997) aim to show that the market practice of pricing can be made consistent
with an arbitrage-free term structure model. Musiela and Rutkowski (1997)
similarly present a model that focuses on bond prices and LIBOR rates rather
than the instantaneous rates considered in most traditional models. They
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present a construction of the log-normal model of forward LIBOR rates un-
der a discrete-tenor setup. Jamshidian (1997) further presents theory for the
pricing and hedging of LIBOR rates by arbitrage. His approach to modelling
LIBOR rates was motivated by the work of Musiela and Rutkowski (1997).
The work of the above mentioned authors form the basis of the development
of the LIBOR Market Model. Later Jamshidian extends the already devel-
oped LIBOR market model to the class of general martingales in his paper:
(Jamshidian, 1999). To this point credit risk, specifically default risk, and
jump processes had not been included in any of the models. Extensions of the
LIBOR market model to the inclusion of default risk can be found in Schon-
bucher (1999) and Grbac and Papapantoleon (2013). Term structure models
extended to the case of using Lévy processes as the driving force can be found
in Eberlein and Raible (1999) as well as Eberlein and Ozkan (2003) amongst
others. The extension of the LIBOR market model to the use of Lévy pro-
cesses instead of classical Brownian motion was introduced by Eberlein and
Ozkan (2005), known as the Lévy-LIBOR model. Their work can be seen as
a special case of Jamshidian’s approach, however the LIBOR rates are driven
by Lévy processes. They also show that in order to have non-negative rates,
the LIBOR rates can be represented as an ordinary exponential of a stochastic
integral drive by a Lévy process. With this, arbitrage free conditions as well
as pricing formula’s for interest rate derivatives are given.

Due to the unpredictability of the market there has been a steady increase
in the need for efficient modelling and management of the risks faced in the
market, particularly that of credit risk. The basic details of credit risk can be
found in Bielecki and Rutkowski (2004). The need for efficient and effective
models has lead to the use of Lévy processes as the driving force behind such
models. Jumps that occur in the market when a credit event, most likely the
default event, takes place can be much better accounted for with the use of
Lévy processes. Texts such as that of Schoutens and Cariboni (2009), Cariboni
(2007) and Kluge (2005) introduce this new approach to modelling credit risk.
The modelling of credit risk using Lévy processes was then further extended to
the modelling of LIBOR rates. This was in introduced by Eberlein et al. (2006)
in their paper The Lévy-LIBOR model with default risk. Here the already
established Lévy-LIBOR model is extended to include the case of default risk.
They show how the standard model can be extended to model defaultable
rates while maintaining arbitrage-free conditions. The model presented is a
generalization of Schonbucher’s LIBOR Market Model with Default Risk to a
Lévy driven setting. This forms the main focus of this thesis presentation.
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Thesis Structure

The main aim of this thesis is to present an overview of the theory of the
Lévy-LIBOR model with defualt risk as introduced by Eberlein et al. (2006).

The structure of the rest of this thesis is as follows. Following the discussion
of some basic mathematical concepts pertaining to stochastic analysis and the
modelling of the financial market in this chapter, a general introduction to
Lévy processes is given in chapter 2. The discussion includes some important
features of Lévy processes such as path structure among others. Concepts
regarding Ito-Calculus for Lévy processes are then mentioned. This is followed
by a brief introduction to the generalisation of Lévy processes referred to as
the class of time-inhomogeneous Lévy processes as well as an introduction to
various Lévy processes used for application to financial modelling. The chapter
will form the mathematical basis on Lévy processes used throughout the work
to follow.

Chapter 3 gives an overview of some theory of interest rate modelling, in
particular the LIBOR market model. The dynamics of the LIBOR market
model is given along with a construction of the model under the terminal
measure, the LIBOR Forward Rate Model. The chapter is concluded with the
presentation of the Lévy-LIBOR Model as constructed in (Eberlein and Ozkan,
2005). The model dynamics under the terminal measure are also specified
therein.

In chapter 4, the concept of default risk is introduced and defined. This is
then incorporated into the Lévy-LIBOR model, which leads to the construction
of the defaultable model. The construction is done as in (Eberlein et al., 2006)
and (Kluge, 2005) following the canonical construction of a default time as
in (Bielecki and Rutkowski, 2004). Following the construction of the default
time, the drift term has to be specified so that certain conditions are satisfied.
A brief mention of defaultable forward measures as well as some valuation
formula is given towards the end of the chapter. The chapter is concluded
with a discussion of some recovery rules and respective pricing formula for
bonds. This chapter is the main part of the thesis as these concepts and
constructions encapsulate the main theory behind the model.

Following the construction and presentation of the model in chapter 4, an
introduction to credit derivatives and the pricing thereof is given in chapter
5. This includes the classification of credit derivatives in general and then
the pricing of some of the more popular credit derivatives traded in the credit
market. The conclusion of the entire document is found at the end of this
chapter. This conclusion includes a brief mention of future work carried out
pertaining the topic discussed herein.
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1.1 Concepts and Terminologies

Throughout this thesis the filtered probability space denoted by (Q, F {Fi}eo, IP) ,
where F is a o-algebra on the non-empty set Q, {F;}+>o the filtration and P
the real-world probability measure on (€2, F), is used.

Given the probability space (€2, F,P), a stochastic process is defined as
a sequence of random variables {X,}; ¢ ¢ indexed by time. With the above
notation, a stochastic process is said to be an adapted process if for each t > 0,
X, is Fy-measurable. In other words, for each ¢ > 0, the value of X, is revealed
at time ¢.

The following definitions are crucial in understanding the financial theory,
see (Shreve, 2004) for in-depth descriptions.

Definition 1.1 (Martingale). Let (2, F, {F;},P) be a filtered probability space
and M, an adapted stochastic process such that

E[M|F] =M, V 0<s<t<T,
then M, is a martingale. (It has no tendency to rise or fall.)

This means that the expectation or best prediction of a future value of M
(at time t), given information available today, is the observed present value of
M today (at time s). Thus a martingale has no systemic drift (Bjork, 1998).

A martingale can be further generalized into two cases where the current
observation is either an upper or lower bound on the future conditional ex-
pectation. If E[Mt]}"s} >M, V 0<s<t<T, then M, is said to be a
submartingale. Conversely, if E[MJ};} <M, V 0<s<t<T, then M,
is said to be a supermartingale.

Definition 1.2 (Markov Process). Let (Q,]—", {}"t},IP’) be a filtered probability
space and {Xi}i>0 an adapted stochastic process. If for every non-negative
Borel-measurable function f, there is another Borel-measurable function g such
that

E[f(X)|F] =9(Xs) V 0<s<t<T,
then Xy s a Markov process.

A Markov process is a specific type of stochastic process where the present
value of the variable under consideration is the only relevant information
needed for predicting the future of the variable. All previous information
on the behaviour of the variable is irrelevant.

Definition 1.3 (Brownian Motion). Let (€2, F,P) be a probability space. Let
{B:}1>0 be a family of continuous real valued measurable functions By on (2, F,P)
such that By = 0. If the following conditions are satisfied



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

(i) Bsii— By is normally distributed with mean 0 and variance s, ¥ 0 < s <t

(ii) The increments By,,, — By, i=0,1,...,n—1 are independent V. 0 <
o<t <...<tip

then B, is a 1—dimensional Brownian motion.

Some properties of Brownian motion include that of being a martingale,
a Markov process, having infinite first variation a.s and the scaling property:
for any ¢ # 0, {Bt = cByje2,t > 0} is a Brownian motion. A sample path of a
Brownian Motion is shown in Figure 1.1.

0.5

03 b

02r

01y b

01F .

_DQ 1 1 1 1 1 1 1 1 1
a 0.1 0z 03 04 05 06 07 08 08 1

t

Figure 1.1: A sample path of a Brownian motion.

Geometric Brownian motion is defined as a function of the standard Brow-
nian motion. The stochastic differential equation (linear) describing geometric
Brownian motion is given by

dSt = ,LLStdt + O'StdBt, (111)
So =S

where is a B; a Brownian motion and p (the drift) and o (the diffusion or
volatility) are constants. The unique solution of (1.1.1) is given by

o2
S; = sexp u—? t+ 0B,

For detailed solution, the reader is referred to Oksendal (2003). It is important
to note that a process following geometric Brownian motion will never take
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on negative values given that the initial value is greater than or equal to 0, i.e
s > 0. This can be seen in Figure 1.2. For this reason geometric Brownian
motion is often used to model stock prices and is particularly popular as a result
of its use as a modelling tool for stock prices in the Black-Scholes model.

36

Figure 1.2: A sample path of a geometric Brownian motion with parameters
p=0.5and o = 0.5.

1.1.1 Girsanov Theory

In probability theory, Girsanov theory describes the change in the structure
of a stochastic process when the original probability measure is changed to an
equivalent probability measure.

In this section, a general introduction to the main concepts related to
Girsanov theory, before discussing details thereof relating to Lévy processes, is
given. In order to create a structured link between martingales and Girsanov
theory, the following concepts are discussed. The discussion is with reference
to Musiela and Rutkowski (2005), Qksendal (2003) and @ksendal and Sulem
(2004).

Definition 1.4 (Local Martingale). An F;-adapted stochastic process Z; € R™
1s called a local martingale with respect to the given filtration, F;, if there exists
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an increasing sequence of F,-stopping times® |7, such that
T, — 00 @.8 as k — 0o
and
Z(t AN 1y,) is an Fy martingale ¥ k.

Every martingale is also a local martingale, however the converse is gener-
ally not true. As mentioned in Musiela and Rutkowski (2005), it is important
to note that the class of local martingales form a larger class than that of
general continuous martingales.

Definition 1.5 (Semimartingale). A real-valued, continuous, Fy-adapted pro-
cess X is called a (real-valued) continuous semimartingale if it admits the
decomposition

X; = Xo+ M, + A Vitelo,T],
where Xo, M and A satisfy
(i) Xo is an Fo-measurable random variable,
(ii) M is a continuous local martingale with My =0 and

(iii) A is a continuous process whose almost all sample paths are of finite
variation on the interval [0, T with Ay = 0.

So semimartingales can be considered as an extension of local martingales.
To strengthen the link between martingales and Girsanov theorem the concept
of an equivalent probability measure is introduced into the discussion.

Definition 1.6 (Equivalent Probability Measure). Given the filtered probabil-
ity space (Q, F A{Fi >0, IP’) and Q another probability measure on F;. The two
probability measures P and Q are said to be equivalent if

P(A)=0 <« Q(A) =0, vV Ae Fr.

So P and Q have the same zero sets in Fr and write P ~ Q.

2Given an increasing family of o-algebras {F;}, an {F;}-stopping time can be defined
as a function 7 : Q — [0, 00| such that

{w:T(w) <t} € F Vit>0.

This means that with the given knowledge of {F;}, one can decide whether 7 < ¢ has occured
or not.
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Q is said to be equivalent to P|Fr if
P|Fr <« Q and Q < P|F7.

By the Radon-Nikodym theorem, this is true if and only if

dQ(w) = Z(T)dP(w) and dP(w)=Z"YT)dQ(w) on Fr, (1.1.2)
for some Fr-measurable random variable Z(T) > 0 a.s P, (Oksendal and
Sulem, 2004). (1.1.2) can be rewritten as

fl% = Z(T) and % =7ZYT) on Fr.

This concept of equivalence between two measures can now be connected to
that of martingales. This is done with the following two useful observations.

Lemma 1.7. (Oksendal and Sulem, 2004) Let P and Q be two equivalent
probability measures such that Q < P and Z(T) = ‘é% on Fr. Then

Q|F, < P|F, Vtelo,T]

Particularly, Z(t) = Ep[Z(T)|F] is a unique, positive P-martingale such that
dQ
@’E]

MR g
apiz) "ETET

Z(t) = Ep

In this case, (lemma 1.7), Z(t) is referred to as the density of Q with respect
to the measure P.

Lemma 1.8. (Oksendal and Sulem, 2004) Let P and Q be two equivalent
probability measures such that Q < P and Z(T) = % is positive on Fp. Also,
let X (t) be an adapted process such that Z(t)X (t) is a martingale with respect
toP. Then X(t) is a martingale with respect to Q. Similarly, if Z(t) X (t) is a
local martingale with respect to P, then X (t) is a local martingale with respect

to Q.
Girsanov theorem can now be stated as:

Theorem 1.9 (Girsanov). Let B; be a Brownian motion with respect to P on
F: and q(t) an adapted stochastic process such that fot q(s)*ds < oo a.s. Let Q
be equivalent to P on F; such that

dQ = exp ( — %/th(s)zds + /th(s)d8(5)>dIP’

— Z(t)dP.
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Then under the measure Q, the process

t
B, =B, — / q(s)ds
0
18 a Brownian motion and satisfies the stochastic differential equation

dB = dB — q(t)dt
with dZ(t) = Z(t)q(t)dB

Further details and proof of Girsanov theorem can be found in texts such
as Oksendal (2003) and Shreve (2004).

1.2 Modelling the Financial Market

In this section the concept of a financial market as well as the modelling
thereof will be introduced. In general, the financial market refers to the market
(environment) where the trading of financial assets (instruments) take place
between buyers and sellers.

Consider a market M consisting of n financial assets. These assets are con-
tinuously tradable over the time period [0, 7"]. The future prices of these assets
add uncertainty to the market. This uncertainty in the market is captured and
modelled through a Brownian motion defined on the filtered probability space
(Q,f , {E},]P’) introduced in the previous section. Usually the assets con-
sidered in the market would be risk-less bonds (money-market accounts) and
risky stocks.

Now the main concepts (components) involved in the market which allow
for the modelling thereof are defined as follows.

Buyers and sellers trading in the market are referred to as investors. These
investors are responsible for the management and maintenance of portfolios of
traded assets.

Definition 1.10 (Portfolio). A portfolio, also referred to as a trading strategy,
is a predictable 3 stochastic process

o= (ol o), 0<t<T

where ¢!, i = 0,...,n represent the number of shares of asset i, held between
the trading period t — 1 and t.

3(Cont and Tankov, 2004) The predictable o-algebra is the o-algebra P generated on
[0,T] x Q by all adapted left-continuous processes. A mapping X : [0, 7] x  — R¢ which
is measurable w.r.t P is called a predictable process. Hence, all predictable processes are
"generated" from left-continuous processes.
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Definition 1.11 (Self-financing). A portfolio ¢ = (¢', $*) is referred to as
self-financing if it requires no external input of cash-flow. The value process
of such a portfolio is given by

Vi(g) = ¢S+ ¢iB;, 0<t<T,

which satisfies the following condition

V() = Vi(d) + / bLdS, + / $2dB,, 0<t<T,

where S and B respectively represent the stocks and bonds invested in.

So the net gain is caused by the price changes between time ¢ and initial
time to.

1.2.1 Arbitrage Theory

Definition 1.12 (Arbitrage Opportunity). An arbitrage opportunity is a self-
financing strategy ¢ satisfying the following value process properties:

1. Vo(e) =0
2. Vr(p) 20
3. P(Vip>0) >0 0<t<T.

The investor has no initial capital at time 0 and has a net non-negative
profit at time 7', with positive probability of the profit being strictly positive
at time 7.

From now on, the market considered in this work will be assumed to have
no such arbitrage opportunity. The market M is then said to be arbitrage-free.
The pricing (modelling) of financial instruments in the market has to be done
in a way that no arbitrage opportunities will come into existence within the
market. This arbitrage-free assumption ensures that no profits can be made
in the market without any initial capital invested. Without this assumption
(condition), there would be no equilibrium in the market and the correct (fair)
pricing and modelling of financial instruments within the market would not be
possible.
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Chapter 2

Lévy Processes

Lévy processes refer to a rich class of stochastic processes named after french
mathematician Paul Lévy. His contribution to both probability theory and
modern theory of stochastic processes, enables both the understanding and
characterization of processes with stationary and independent increments in-
cluding jump processes of this type.

Michel Loéve, French-American probabilist (mathematical statistician) gives
a colourful description of Paul Lévy’s contributions: "Paul Lévy was a painter
in the probabilistic world. Like the very great painting geniuses, his palette was
his own and his paintings transmuted forever our wvision of reality. His three
main, somewhat overlapping, periods were: the limit laws period, the great pe-
riod of additive processes and of martingales painted in pathtime colours, and
the Brownian pathfinder period.”

In this chapter, general definitions related to Lévy processes are given.
Along with the definitions and examples, connections to infinitely divisible
distributions (Lévy-Khintchine formula) as well as concepts relating Lévy pro-
cesses to topics in Ito-calculus will be discussed. These concepts are men-
tioned and discussed as they will provide the mathematical basis on the sub-
ject needed throughout this study. This is followed by an introduction to the
class of time-inhomogeneous Lévy processes. The chapter is concluded with
a section introducing some more interesting Lévy processes, along with their
construction, used for application to financial modelling. Most of this chapter
is with reference to Oksendal and Sulem (2004), Cont and Tankov (2004) and
Kyprianou (2006).

2.1 Basic Definitions

Basically, a Lévy process is described as a stochastic process having both sta-
tionary and independent increments. Mathematically, it is defined as follows:

13
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Definition 2.1 (Lévy process). Let (Q, F,Fi, ]P’) be a filtered probability space
and {n:}+>0 an Fi-adapted stochastic process with values in R? such thatny = 0.
If the following properties hold

(i) Independence of increments: For each increasing sequence of times,
to, t1, ..., tn, the random variables Ny, Ny — Mgy -y Mty — N,y OTE
independent.

(i) Stationarity of increments: The law of nyyp, — ne does not depend on t.
Hence, for s <t, n, —ns is equal in distribution to n,_s (since ny — ns ~
Ne—s — 10 ~ Mi—s)-

(#i) Stochastic continuity: For all € > 0, limy,_,o P(]th — | > 6) = 0.
then n; 1s a Lévy process.

Using the first two properties it can be shown that a Lévy process satisfies
the Markov property and is hence also a Markov process. The last property
implies that the probability of a jump occurring at any given time ¢ is 0. This
means that the jumps themselves are not predictable, therefore they occur at
random times.

Most texts do not include the cadlag! property in the definition of a Lévy
process, however it can be stated in the following theorem.

Theorem 2.2. (Protter, 2004) Let n; be a Lévy process. Then there exists a
unique modification of n; which is cadlag and also a Lévy process.

As stated in Cont and Tankov (2004), cadlag functions appear to be nat-
ural models for processes with jumps and hence without loss of generality the
cadlag property of Lévy processes can be assumed.

Define the jump of the Lévy process n; at time ¢ > 0 by
Ang ==mne — .

With this the Poisson random measure (or Jump measure) of a Lévy process
can be defined as follows:

Definition 2.3 (Poisson random measure). Let By be the family of Borel sets
U C R whose closure U does not contain 0. The jump measure of n(.), denoted
by N(t,U), is the number of jumps of size Ans € U which occur before or at
time t. Mathematically

N(t,U) = Z Xu(Ans) for U € By.

s:0<s<t

LA function f : [0,7] — R? is said to be cadlag if it is right-continuous with left limits.
Any continuous function is cadlag, but cadlag functions may have discontinuities. These
discontinuities are referred to as "jumps".
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From this the Lévy measure of 1, is defined as the set function
v(U) :==E[N(L1,U)],

where E = Ep is the expectation w.r.t the probability measure P. This gives
the expected number of jumps per unit time, whose jump size belongs to U.

Another interesting property of Lévy processes is that of having infinite di-
visibility®in distribution. If n is a Lévy process, then for any ¢ > 0, 7, is
infinitely divisible. Furthermore, a representation of characteristic functions
of all infinitely divisible distributions is given by the Lévy-Khintchine formula.

Theorem 2.4 (Lévy-Khintchine formula). (Oksendal and Sulem, 2004) Let
{n:} be a Lévy process. Then there exists a measure v and constants a and o,
with [, min(1, 2*)v(dz) < co, R € [0,00] and

E[e™"] = Wy € R (2.1.1)

W(u) = LY S / {e™ — 1 —iuz}v(dz) + / (" = 1)v(dz).
2<R 22R

2
(2.1.2)
Conversely, given constants a, o, and a measure v on By s.t

/Rmm(l,f)y(dz) < 00, (2.1.3)

there exists a Lévy process n(t) (unique in law) such that (2.1.1) and (2.1.2)
hold.

A detailed proof can be found in Sato (1999). From the theorem above the
Lévy triplet can be defined as follows:

Definition 2.5 (Lévy triplet). Given a Lévy process n; with characteristic
function E[e™™] as in equations (2.1.1) and (2.1.2), the Lévy triplet of n, is
given by the triplet (0%, a,v), where a € R, 0 > 0 and v is the Lévy measure
of ny satisfying (2.1.5).

The Lévy measure v controls the jumps of the Lévy process. In other
words, it describes the expected number of jumps of a certain height in a time
interval of length 1 (Papapantoleon, 2008).

It is important to note that a Lévy process could have infinitely many
jumps over a finite time interval ¢, but only a finite number of jumps of size

2A probability distribution F on R? is said to be infinitely divisible if for any integer
n > 2, there exists n i.i.d random variables Y7, ..., Y, such that Y;+...+Y,, has distribution
F.
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> ¢ for any € > 0. In this case the infinite jumps in the trajectories of the
Lévy process must be small in size. Such processes are known as infinite
activity Lévy processes which, due to their flexibility, are found to be very
interesting in financial modelling. Finite activity Lévy processes, on the other
hand, are processes characterized by a finite amount of jumps over any finite
(bounded) interval. Such Lévy processes are referred to as jump processes. A
more detailed discussion of these processes is given in subsection 2.5.1.
Essentially, the Lévy measure contains useful information about the struc-
ture of the Lévy process. This is summarised in the following proposition:

Proposition 2.6. (Papapantoleon, 2008) Let n, be a Lévy process with triplet
(0%, a,v).

1. Ifv(R) < oo, then almost all paths of n; have a finite number of jumps on
every compact interval. In that case, the Lévy process has finite activity.

2. If v(R) = oo, then almost all paths of n; have an infinite number of
Jumps on every compact interval. In that case, the Lévy process has
infinite activity.

The proof of the above proposition can be found in Sato (1999), Theorem
21.3. For further details on Lévy processes and infinite divisibility the reader
is referred to Sato (1999), Applebaum (2009) and Cont and Tankov (2004).

2.2 Examples of Lévy Processes

An obvious example of a Lévy process is Brownian motion. This is clear since
it satisfies definition 2.1. Here two more common and simple examples of Lévy
processes are briefly discussed. These processes are important since all other
Lévy processes can be built from these processes.

2.2.1 Poisson Process

One of the simplest examples of a Lévy process is the Poisson process. The
Poisson process is based on a random variable having Poisson distribution. A
random variable N follows the Poisson distribution with parameter A, if

The parameter A is referred to as the intensity of the process and describes the
expected number of events or arrivals occurring per unit time. Two important
properties of the Poisson distribution is that of stability under convolution®

3Stability under convolution is when given two independent Poisson distributed variables
Y1 and Y, with parameters A\; and Ay, the sum Y7 + Y5 is also Poisson distributed with
parameter A1 + As.
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and infinite divisibility. Given these two properties, the Poisson process can
be defined as follows:

Definition 2.7 (Poison Process). (Schoutens and Cariboni, 2009) A stochastic
process {Ni}i>o taking values in N U {0} with intensity parameter A > 0 is a
Poisson process if it satisfies the following conditions:

1. NQ =0
Independent increments

Stationary increments

For s < t, the random wvariable N; — N, has Poisson distribution with
parameter \(t — s), i.e

BN, — N, =n) = N9 X9 — il
n!

From this definition it is clear that the Poisson process is a Lévy process,
with jump size always equal to 1. This can be seen by looking at a sample
path of the process as shown in Figure 2.1. Although the jump sizes are
predictable (always equal to 1), the jumps times are unpredictable, hence the
Poisson process is stochastic. Another definition can be found in Cont and
Tankov (2004), wherein the authors describe the Poisson process as a counting
process: Based on an i.i.d sequence of exponential variables (T}, — Tp,—1)n>1,
the process N, = > -, 1;>7, counts the number of random times 7, occurring
between 0 and t. -

2.2.2 Compound Poisson Process

The compound Poisson process is considered a generalization of the Poisson
process in the sense that jumps can be taken from any arbitrary distribution.

Definition 2.8 (Compound Poisson Process). (Cont and Tankov, 2004) A
compound Poisson process with intensity X\ > 0 and jump size distribution f,
1$ a stochastic process X, defined as

N¢
Xi=> Y,
i=1
where jump sizes Y;, are i.i.d random variables with distribution f and Ny is

a Poisson process with intensity A independent of (Y;)i>1.

As shown in Figure 2.2, the jump sizes of a compound Poisson process are
random with Poisson distributed number of jump times occurring by time ¢.

The following three important properties of the compound Poisson process
are to be noted (Cont and Tankov, 2004):
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Figure 2.1: A sample path of a Poisson process with intensity A\ = 10.
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Figure 2.2: A sample path of a compound Poisson process with intensity A\ =
10.

1. Sample paths of X are piecewise constant functions.

2. Jump times (7;);>; follow the same law as jump times of the Poisson
process V;.
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3. Jump sizes (Y;);>1 are i.i.d with law f.

The usual Poisson process is a special case of the compound Poisson process
where Y; = 1, ¢ > 1. The compound Poisson process is unique in the sense
that it is the only Lévy process characterized by piecewise constant sample
paths (Cont and Tankov, 2004). This leads to the following proposition:

Proposition 2.9. (X;)i>0 is a compound Poisson process iff it is a Lévy pro-
cess and its sample paths are piecewise constant functions.

A detailed proof can be found in Cont and Tankov (2004).
For much more detail and examples of Lévy processes the reader is referred to
Schoutens (2003).

2.3 Lévy Processes and Ito-Calculus

Here the path structure of Lévy processes is briefly discussed. This is given
by the It6-Lévy decomposition.

Proposition 2.10 (It6-Lévy decomposition). (Oksendal and Sulem, 2004) Let
n: be a Lévy process. Then 1, has the decomposition

ne = ot + oB(t) + / ZN(t,dz) + / ZN(t,dz), (2.3.1)
|z|<R |z|>R

for constants a, 0 € R, and R € [0,00]. Here

N(dt,dz) = N(dt,dz) — v(dz)dt
is the compensated Poisson* random measure of 1)(.), B is a Brownian motion
independent of N(dt,dz) and N(dt,dz) the Poisson random measure of n(.).

The Ito-Lévy decomposition describes the structure of a general Lévy pro-
cess in terms of three independent Lévy processes (Kyprianou, 2006). The first
two terms form a continuous Gaussian Lévy process characterized by a linear
Brownian motion with drift. The other two terms are discontinuous processes
describing the jumps of 7;,. The first integral being a limit of compound Pois-
son processes (martingale) with jumps (could be infinitely many) of size < R
and the other is the sum of a finite number of bigger jumps of size > R.

From the decomposition (2.3.1), more general stochastic integrals can be
considered which lead to the following definition.

4The compensated Poisson process defined by
Ny =Ny — N\

is a centred version of the Poisson process Ny, where (A;);> is referred to as the compensator
of (N¢)¢>0. This quantity allows for Nt to be a martingale when subtracted from N;. The
martingale property is one of the important properties of the compensated Poisson process.
The other is that of having independent increments.
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Definition 2.11 (It6-Lévy Process). An Ito-Lévy process is a stochastic pro-
cess described by a stochastic integral of the form

X(t):X(O)+/Ot (swds+/ﬂswd8 // s,z,w)N(ds, dz),

- ) N(ds,dz) —v(dz)ds  if |z| <R
N(ds, dz) = { N(ds, d2) ifl2] > R

The shorthand differential notation for X (t) given by

dX (1) = a(t)dt + B(t)dB(t) + / (¢, 2)N(dt, dz).

Next the It6 formula for such It6-Lévy processes as mentioned in definition
2.11 is discussed. This is a fundamental result in the stochastic calculus of
Lévy processes.

Theorem 2.12 (The One-Dimensional It6 Formula). (Oksendal and Sulem,
2004) Suppose X (t) € R is an Ito-Lévy process of the form

dX(t) = a(t,w)dt + B(t,w)dB(t) + / v(t, z,w)N(dt, dz),

where

o ) N(ds,dz) —v(dz)ds  if |z| <R
N(ds, dz) = { N(ds, dz) if |zl > R

for some R € (0,00). Let f € C*(R?) and define Y (t) = f(t, X(t)). Then

Y (t) is again an It6-Lévy process and

av (1) =2 (1, X (@) e+ 9L (1, X(0) [t w)at + (0, w)aB(0)]
1 o*f _
= ) X(t))d X , 2
eyrenhexoas [ e )

—ft. X)) - gi(t X (t7)(t, z)}v(dz)dt

+ [ {reX @)+ a2) - 1000}V (@t d2),

Remark 2.13. If R =0 then N = N everywhere.
If R =00 then N = N everywhere.
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An example of the use of the one-dimensional 1t6 formula for solving Ito-
Lévy stochastic differential equations is given as follows.

Example 2.14 (Geometric Lévy Process). Geometric Lévy processes are often
used as a tool in the modelling of stock prices. The stochastic differential
equation (sde) describing geometric Lévy processes is given by

ds(t) :S(t‘)[adtJrBdB(t) + / 5

(t, 2)N(dt, dz)] , (2.3.2)

where o and [ are constants and y(t,z) > —1.

(2.3.2) can be rewritten as

Note that the notation S¢(t) refers to the continuous part of the sde (2.5.3), i.e
S¢(t) = adt + BdB(t). Now the one-dimensional Ité formula (Theorem 2.12)
is applied to Z(t) = In S(t) so that

dZ(t) = ahgf ®) gset) + 2<81§—§(t)) d[S<),° + / <R{ln (S(t‘)

F(1.2)50)) ~n (5(07)) - %S(t—)y(t, z)}z/(dz)dt

n /R { In (S(7) +5(t,2)8()) = In (S(t)) }N(dt, dz).

Substituting dS°(t) it follows that

S?(t)?dt

dZ(t) _%S(t) [adt + BdB(t )]

)
+/ {m(S(t 1+’ytz ) } (@)t
+/{1n<s(t)1+”z )} (dt, dz)

_ (a _ %52 i /Z<R { In (1 + (¢, z)) —~(t, z)}y(dz)> dt + pdB(t)
—|—/R{ln (1+(t, z))}N(dt,dz).

®The quadratic variation of an It6 process X, given by the sde dX (t) = udt+odB(t) is de-
noted by d[X], = (dX(t)?) and is computed according to the rules (dt)(dt) = (dt)(dB(t)) =
(dB(t))(dt) = 0 and (dB(t)) (dB(t)) = dt.

(
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Recalling that Z(t) = In S(t), integrating from 0 to t yields
InS(t) —InS(0) = /t (a - —52 / {ln (1+7(s,2)) — (s, z)}l/(dz)> ds
z<R
/ BdB(s / / ln (1+~(s z))}N(ds,dz)

lnS(t)zlnS(0)+(a——ﬁ2 t+ BB(t) //R ln (1+~(s,2))
— (s, 2) ydzds+// 1+’ysz))}N(d5,dz)

— S(t) =5(0) exp [(a—%ﬁ t+ pB(t) //KR n (1+(s,2))

v(s, z)}u(dz)ds + /0 /R { In (1 + (s, z)) }]\_f(ds, dz)] ,

which is the solution to the stochastic differential equation given by (2.5.2).

2.3.1 Girsanov Theory

This section serves as a continuation to subsection 1.1.1 in which general con-
cepts of equivalent measures and Girsanov theory was introduced. Here a
brief mention of Girsanov theorem for semimartingales and more specifically
[to-Lévy processes is made.

Theorem 2.15 (Girsanov Theorem for Semimartingales). (Oksendal and Sulem,
2004) Let Q be a probability measure on Fr and assume that Q is equivalent
to P on Fr, with

dQ(w) = Z(T)dP(w) on F, t € [0,T].

Let M(t) be a local P-martingale. Then the process J/\4\(t) defined by
— Pd{M, Z)(s)
M(t) := M(t —/ —_
()=o) - [ D
15 a local Q-martingale.

In the theorem above, (M, Z)(s) refers to the quadratic covariation® of

M(s) and Z(s).

5The quadratic covariation of two semimartingales X (t) and Y (¢) is defined as the unique
semimartingale such that

XY (t) = /X )dY (s /Y(s*)dX(s)+<X,Y>(t)

and is usually denoted by (X,Y)(?)
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Theorem 2.16 (Girsanov Theorem for Ito-Lévy processes). (Oksendal and
Sulem, 2004) Let X (t) be an n-dimensional Ito-Lévy process of the form

dX(t) = a(t,w)dt + o(t,w)dB(t) + / v(t, z,w)N(dt,dz), 0<t<T.

Assume there exists predictable processes u(t) = u(t,w) € R™ and ¢(t,w) =
o(t,z,w) € R such that

o(t)u(t) +/ v(t, 2)P(t, 2)v(dz) = a(t)  for a.a (t,w) € [0,T] x Q,

R?

and such that the process

Z(t) :=exp [— /tu(s)dB(s) — %/Ot u?(s)ds

+i/0t/Rln (1—¢j(s,z))Nj(ds,dz)
fi / JREIEEE) +¢j<s,z>}uj<dz>ds], 0<t<T

1s well defined and satisfies
E[Z(T)] = 1.

Define the probability measure Q on Fr by dQ(w) = Z(T)dP(w). Then X (t)
1$ a local martingale with respect to Q.

The measure Q as described in Theorem 2.16 is referred to as an Fquivalent
Local Martingale Measure (ELMM) for the process X (¢). If X(¢) is a martin-
gale with respect to Q, then Q is called an Fquivalent Martingale Measure
(EMM) for X (t) (Oksendal and Sulem, 2004).

2.4 Time-inhomogeneous Lévy Processes

Time-inhomogeneous or non-homogeneous Lévy processes are generalizations
of standard Lévy processes in that they do not have the property of sta-
tionary increments. By relaxing the property of stationary increments, more
flexibility is added to the model under consideration. For this reason, time-
inhomogeneous Lévy processes are preferred as the driving process behind most
models used for application in mathematical finance. Further details of such
Lévy processes can be found in (Cont and Tankov, 2004) and (Kluge, 2005).
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Definition 2.17 (Time-inhomogeneous Lévy process). Let (Q, F,{F;},P) be
a filtered probability space and L = { L }4>0>1+ an Fi-adapted stochastic process
with values in R such that Ly = 0. If the following properties hold

(i) Independence of increments: L, — Ly is independent of Fs for 0 < s <
t<T*.

(i1) For eacht € [0,T*], the law of L; has characteristic function
. ¢ 1
E[e”“m] = exp/ i(u, bs) — §(u, csu)
0

+ / <ei<u’x> -1- i(u,x)]l{x|§1})Fs(d$)> ds,
R4

where by € R, ¢ is a symmetric non-negative definite d x d matriz, and
Fy a measure on R? integrating (|z|* A1) satisfying Fy({0}) = 0. (.,.)
denotes the Euclidian scalar product on R and |.| the respective norm.
It is further assumed that

T*
/ (|bs|+||cs||+ / (|x|2A1)Fs<dx>>ds<oo,
0 R4

where ||.|| denotes any norm on the set of d x d matrices.

then L, is a time-inhomogeneous Lévy process with characteristics given by
(b, ¢, F) == (bs, cs, Fs)o<s<rs -

Properties of time-inhomogeneous Lévy processes include that of being
infinitely divisible in distribution, additive in law and a semi-martingale with
respect to the stochastic basis (Q, F . {F}, IP’). Formal statements and proofs
of these properties can be found in (Kluge, 2005).

The following assumption will be required for financial application since
both asset prices and interest rate processes are usually modelled as exponen-
tial processes and need to be martingales with respect to the relative risk-
neutral measure. For this reason the finiteness of exponential moments of the
driving process is required:

Assumption 2.18 (EM). (Kluge, 2005) There exist constants M, ¢ > 0 such
that

T*
/ / exp(u, z) Fi(dx)dt < oo,
0 lz|>1

for everyu € [—(1+€)M, (1+¢€)M]?. In particular, without loss of generality,
assume that f‘x exp(u, x) Fy(dx) < oo, for allt € [0,T*].

[>1
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There is another assumption that will be needed for application in financial
modelling. The assumption is mathematically stronger than the previous one,
although practically equivalent.

Assumption 2.19 (SUP). (Kluge, 2005) The following hold:

sup <|bs|+||cs|!+/ (\a:|2/\|x\>Fs(dx)> < o0,
0<s<T™ R4

and there are constants M, € > 0 such that for everyu € [—(1+ €)M, (1+
€)M

sup (/ exp(u, x)Ft(dx)) < 0.
0<s<T™ |z|>1

2.5 Lévy Processes for Financial Modelling

As previously mentioned, the class of Lévy processes has gained popularity
as a tool for financial modelling, due to their flexibility and versatility when
compared to classical Brownian motion (diffusion) processes. This flexibility
and versatility stems from the fact that there are many (different) types of
Lévy processes that can be used for modelling purposes. This section aims to
introduce some of these specific Lévy processes along with their construction
and application to financial modelling. It should be noted that the more
commonly used and less complicated processes are mentioned in this study.
For further details on more complicated processes the reader is referred to
texts such as Cont and Tankov (2004), Schoutens (2003) and Schoutens and
Cariboni (2009).

As a starting point, the two main classes of Lévy processes are briefly
discussed followed by a brief introduction on the subclass of Lévy processes
called subordinators. This leads to and is necessary for the discussion on
methods of constructing Lévy processes used for financial modelling. More
detail on the approach of Brownian subordination is given as this method is
used to build the more popular processes used for financial modelling purposes.
These models include the Gamma, Inverse-Gaussian, Variance-Gamma and
Normal Inverse Gaussian processes.

2.5.1 Jump-Diffusions and Infinite Activity Processes

Lévy processes for financial modelling can be categorised into two classes:
Jump-diffusion and infinite activity processes. A brief introduction to these
processes was given in section 2.1, however here more detail regarding the use
of these processes for financial modelling is given.
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In jump-diffusion models the evolution of prices is given by the diffusion
component while the jump components represents rare or extreme events such
as a market crash affecting the price movement. When using jump-diffusion
processes the prices are modelled as a Lévy process with a non-zero Gaussian
component and a jump part, usually a compound Poisson process with a finite
number of jumps in every time interval Cont and Tankov (2004). Generally,
jump-diffusion type Lévy processes take the form

Ny
Xy=qt+oB+> Y,

=1

where Ny is the Poisson process counting the jumps of X and Y; are the jump
sizes . Popular examples of these models are the Merton jump-diffusion model
with Gaussian jumps and the Kou model with double exponential jumps. As
explained in Cont and Tankov (2004), in the Merton model jumps in the log-
price X; are assumed to have a Gaussian distribution Y; ~ N(u, %), whereas
in the Kou model, the distribution of jump sizes is an asymmetric exponen-
tial. Details of both models can be found in the respective papers of Merton
(Merton, 1976) and Kou (Kou, 2002). Key properties of both models are
summarized by Cont and Tankov (2004) (see table 4.3).

The second class of Lévy processes, infinite activity models, is characterised
by an infinite number of jumps in every time interval which represent the high
activity of the price process. As a requirement, the frequency of bigger jumps
is always less than that of the smaller jumps (Riemer, 2008). As explained in
Cont and Tankov (2004), a Brownian component does not need to be included
since the dynamics of the jumps is rich enough to generate non-trivial small
time behaviour and so it can be argued that these models give a more realistic
description of the price process at various time scales. Furthermore, most of
these infinite activity Lévy processes are constructed through Brownian sub-
ordination, which gives them additional analytical tractability when compared
to jump-diffusion models. A summary of these two types of Lévy processes is
given in Table 2.1 taken from Cont and Tankov (2004).

2.5.2 Subordinators

Subordinators refer to a subclass of increasing Lévy processes used for the
construction of other Lévy processes. These processes are characterised by
non-negative increments, hence they are very useful for financial modelling.
The following definition follows from Cont and Tankov (2004) (Prop. 3.10).

Definition 2.20 (Subordinator). Let {S;};>0 be a Lévy process on R. S; is
said to be a subordinator iff it satisfies one of the following properties:

(i) S¢ >0 a.s for some t >0
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Jump-diffusion Models

Infinite activity Models

Must contain a Brownian
component.

Do not necessarily contain a
Brownian component.

Jumps are rare events.

The process moves essen-
tially by jumps.

Distribution of jump sizes is
known.

"Distribution of jump sizes"
does not exist: jumps arrive
infinitely often.

Perform well for implied
volatility smile interpola-
tion.

Give a realistic description
of the historical price pro-
cess.

Densities not known in
closed form.

Closed from densities avail-
able in some cases.

Easy to simulate.

In some cases can be repre-
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sented via Brownian subor-
dination, which gives addi-
tional tractability.

Table 2.1: A comparison of two approaches to modelling Lévy processes.

(i) Sy >0 a.s for every t >0
(iii) Sample paths of S; are a.s non-decreasing, i.e, t > s = S; > S

(iv) The characteristic triplet of Sy satisfies A =0, V((—oo, O]) =0, fooo(m A
Dv(dx) < oo and b > 0. That is, S; has no diffusion component, only
positive jumps of finite variation and positive drift.

Basically, subordinating Lévy processes can be thought of as random mod-
els of time evolution (Applebaum, 2009). As explained in Sato (1999), subor-
dination is a transformation of a stochastic process through random time by
an increasing Lévy process (subordinator) independent of the original process.
The following theorem illustrates the importance of such processes as tools
used for the "time changing" of other Lévy processes.

Theorem 2.21 (Subordination of Lévy processes). (Cont and Tankov, 2004)
Fiz a probability space (Q, F,P). Let {X;}i>0 be a Lévy process on R? with
characteristic exponent V(u) and triplet (A,v,v) and let {St}i>0 be a subordi-
nator with Laplace exponent I(u) and triplet (0, p,b). Then the process {Y;}i>o
defined for each w € Q by Y(t,w) = X(S(t,w),w) is a Lévy process. Its
characteristic function is

Ele™¥] = o(vw), (2.5.1)

1.€, the characteristic exponent of Y is obtained by composition of the Laplace
exponent of S with the characteristic exponent of X. the triplet (AY,v¥ ,4Y)
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of Y is given by
AY = A,
VY (B) = bu(b) +/ pX(B)p(ds), V B € B(RY), (2.5.2)
0

v =by+ /000 p(ds) /| . xp (dr), (2.5.3)

where p;X is the probability distribution of X;.
{Y:}i>0 is said to be subordinate to the process {X;}i>o.

A detailed proof of the theorem can be found in Sato (1999) (see Theorem
30.1).

2.5.3 Construction of Lévy Processes

In order to use Lévy processes for financial modelling purposes they have to
be constructed in a certain manner. Furthermore the construction should
be done in such a way that the new Lévy process remains invariant. There
are quite a few approaches to constructing these process so that they remain
invariant, however in this section three popular methods will be discussed.
These methods are Brownian subordination, specification of the Lévy measure
and specification of the probability density of increments. The method of
Brownian subordination is discussed in more detail as this will be used for the
construction of some processes in the subsequent subsection to follow.

2.5.3.1 Brownian Subordination

In this approach a Brownian motion is subordinated by an independent increas-
ing Lévy process in order to obtain a new Lévy process. The time variable in
the Brownian motion {B;};>o is replaced by the stochastic process {S;}i>0 so
that Xg, = uS; + oB(S;) is a new Lévy process. If observed on a new time
scale, the stochastic time scale given by S;, the new process is a Brownian
motion. the subordinator in this case is interpreted as "business time”, i.e, the
integrated rate of information arrival Cont and Tankov (2004). Although this
interpretation makes models constructed from Brownian subordination eas-
ier to understand, an explicit form of the Lévy measure might not always be
available. However, characterization of such processes is given by the following
theorem.

Theorem 2.22. (Cont and Tankov, 2004) Let v be a Lévy measure on R and
w € R. There exists a Lévy process {X:}i>o with Lévy measure v such that
Xy = B(Zy) + pZy for some subordinator {Z;}1>o and some Brownian motion
{B:}i>0 independent from Z if and only if the following conditions are satisfied:

1. v is absolutely continuous with density v(x).
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2. v(x)e " = y(—x)e!* for all x.
3. v(y/w)e ™ is a completely monotonic function on (0,00).

This theorem allows for the description of the jump structure of a pro-
cess represented as a time-changed Brownian motion. If the simulation of
a valid subordinating Lévy process is known, simulation of processes using
this technique becomes tractable and easy. Popular models constructed via
Brownian subordination include that of the Variance-Gamma and Normal
Inverse-Gaussian processes, where the Brownian motion is time-changed by
the Gamma and Inverse-Gaussian processes respectively.

2.5.3.2 Specification of the Lévy Measure

This method entails direct specification of the Lévy measure. An advantage of
which is the fact that the jump structure can be modelled directly so that one
has a clear description of the path-wise structure of the process. The distri-
bution of the process at any time is also known through the Lévy-Khintchine
formula. Simulation however, is more involved and complicated, although this
method does provide the modeller with a wide variety of models. A popular
example of models generated using this method is that of tempered stable
processes.

2.5.3.3 Specification of the Probability Density

For this approach an infinitely divisible density is specified as the density of
increments at a given time scale, say A. If date is sampled with the same period
A, estimation of the parameters of distribution is easy. Similarly, increments
at the same time scale are easy to simulate. However, in general the Lévy
measure is not known (Cont and Tankov, 2004). Most common processes
constructed using this method is the Generalized Hyperbolic process.

For further details on these methods for constructing Lévy processes the
reader is referred to Cont and Tankov (2004).

2.5.4 Lévy based Models

In this subsection certain processes used to build Lévy based models are briefly
introduced. This includes basic definitions and some important properties.
The figures shown here can be simulated based on algorithms found in Cont
and Tankov (2004). The Matlab code used for the actual simulations was
taken from Deville (2007).

2.5.4.1 The Gamma Process

The Gamma process refers to the Lévy process associated to the exponen-
tial distribution. The density function of a Gamma(a,b) distributed random
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variable X is given by
I'(a)
and characteristic function given by

Soummalu ) = (1= 5

where a is the shape parameter and b the scale. The Gamma process can
formally be defined as follows:

a

2% exp(—ab), for z,a and b > 0,

fGamma(xv a, b) =

Definition 2.23 (Gamma Process). A stochastic process X “omma = { X fomma}

with parameters a and b is a Gamma process if it fulfils the following condi-
tions:

(Z) XOG'amma =0
(i) Independent increments
(iii) Stationary increments

(iv) For s <t, the random variable X Fomme — X Gamma pgg g
Gamma(a(t — s),b) distribution.

The Gamma process is an increasing Lévy process with Lévy measure
-1
VGamma = @ €Xp(—bx)x ™" Lz>03-

Two important properties of the Gamma process include that of being in-
finitely divisible in distribution and the scaling property: given a Gamma(a, b)
random variable X, for any ¢ > 0, ¢X is a Gamma(a, b/c) distributed random
variable. A sample path of a Gamma process is shown in Figure 2.3.

X?amma

Figure 2.3: A sample path of a Gamma process with parameters a = 30 and
b=18.
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2.5.4.2 The Inverse-Gaussian Process

The Inverse-Gaussian (IG) process is based on an Inverse-Gaussian distributed
random variable with density function

fic(z,a,b) = exp(ab)z /% exp (= (a*z7" +b%2)/2) forz >0

a
V2T
and characteristic function

¢1c(u; a,b) = exp (a(\/Wer2 - b)).

The distribution describes the distribution of time taken by a Brownian motion
with positive drift to reach a fixed positive level (Riemer, 2008). The Inverse-
Gaussian process can be defined as a process X'¢ = {X[%},5( with parameters
a,b > 0, initial value 0, independent and stationary increments and Lévy
measure given by

vig(z) = (27?)_1/2ax_3/2 exp ( — be/Z) Liz>0}-

A sample path of an Inverse-Gaussian process is shown in Figure 2.4.

Similarly, the Inverse-Gaussian process is infinitely divisible in distribution
with scaling property: for a given 1G(a,b) random variable X, there exists
¢ > 0 such that the random variable ¢X is IG(y/ca, b/+/c) distributed.

2581+ b

05k A

D 1 1 1 1 1 1 1 1 1
a 0.1 0z 03 04 05 06 07 08 08 1

t

Figure 2.4: A sample path of an Inverse-Gaussian process with parameters
a =10 and b = 2.
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2.5.4.3 The Variance-Gamma Process

In order to overcome the shortcomings of the Black-Scholes model the Variance-
Gamma (VG) process was introduced as an extension of geometric Brownian
motion. Motivated by the fact that Gamma distributed increments are derived
from the memoryless exponential distribution, Maden and Seneta introduced
the VG process as a Brownian motion time-changed by a drift-less Gamma
process. Just as the Black-Scholes model is used to model the dynamics of the
log return of stock prices, VG based models are used for the same purpose,
although they provide more modelling flexibility. VG based models are charac-
terised by three parameters explicitly controlling kurtosis (symmetric increase
in both left and right tail probabilities), skewness (asymmetry in both left and
right tails) in return distribution and volatility of the subordinated Brownian
motion (Riemer, 2008).

The following discussion follows from Schoutens and Cariboni (2009). As
a starting point there are two ways of generating VG random variables. The
first approach is as the difference of two Gamma distributed random variables.
Suppose X is a Gamma(a = C,b = M) random variable and Y is an inde-
pendent Gamma(a = ¢,b = ) random variable. Then the random variable
Z =X -Y is VG(C, G, M) distributed.

The second approach involves the combination of a Normal distribution
with a Gamma random variable. A random variable X is selected from a
Gamma(a = 1/v,b = 1/v) distribution and another random variable Z is
sampled from a N (0X,02X) distribution, then Z follows a VG(o, v, 0) distri-
bution, where v,0 > 0 and 6 € (co0,00). The characteristic function of the
VG(o, v, 0) distribution is given by

—-1/v

dve(u;o,v,0) = (1 — iuby + ovu’/2) (2.5.4)

The parameters 6 and v respectively control the skewness and kurtosis of the
distribution. The VG process is infinitely divisible in distribution and can be
defined as follows:

Definition 2.24 (Variance-Gamma process). A stochastic process X "¢ =
{X,VC} >0 is a Variance-Gamma process if it satisfies the following properties:

(i) X/¢=0

(i) Independent increments
111 tationary increments
() Stati y i

(i) The increments X5 — XYC over the time interval [s,t + s| follows a
VG(ov/'t,v/t,t0) distribution given by equation (2.5.4).

Similar to the construction of VG random variables there are also two
approaches to the construction of VG processes. In line with the (C,G, M)
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parametrization, a VG process can be expressed as the difference of two inde-
pendent Gamma processes Ggl) and G,EZ). So the Lévy process generated by the
VG process is given by XY¢ = G,El) = G,SQ), where Ggl) and G§2) respectively
represent up and down movements of the Lévy process.

The second approach is the construction via Brownian subordination. Here
the VG process is defined as a Gamma time-changed Brownian motion with
drift. The process is given by

VG G
Xt — QXt amma + O‘BXtGamma,

where X&amma js 3 Gamma process with parameters @ = 1/v and b = 1/v and
B; a standard Brownian motion. A sample path of a Variance-Gamma process
generated via Brownian subordination is shown in Figure 2.5.

0.06

0.04 -

0.02F

-0.02 -

-0.04 -

-0.06 -

-0.08
1]

Figure 2.5: A sample path of a Variance-Gamma process with parameters
oc=0.1, »=10.05 and 6 = 0.15.

Further details on the Lévy measure and parametrization of the Variance-
Gamma process can be found in Schoutens and Cariboni (2009), Schoutens
(2003) and Riemer (2008).

2.5.4.4 The Normal Inverse-Gaussian Process

The Normal Inverse-Gaussian (NIG) process refers to the Lévy process ob-
tained through Inverse-Gaussian subordination of a Brownian motion. The
process is also known as a normal variance-mean mixture where the mixing
density is the IG distribution. As explained in Riemer (2008), this means
that the process has normally distributed increments, conditional on an IG
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time-change. The process is typically characterised by three parameters; the
drift and volatility of the Brownian motion and variance of the IG subordina-
tor. The NIG process is infinitely divisible in distribution with characteristic
function

dric(us @, 5,6) = exp ( —6yJa? — (5 +iu)’ — VaP — 7).

Hence, the NIG process can be defined as a process X™M¢ = {XMG},., with
initial value 0, stationary and independent increments and Lévy measure
S expl(fz) K (o)

UNig = — )
™ 2]

where K () is the modified Bessel function of the third kind with index \”.

As mentioned before, the NIG process can be defined as a IG time-changed
Brownian motion. Given a standard Brownian motion B; = {B;};>0 and IG
process I; = {I;}+>0 with parmeters a = 1, b = §y/a? — 32 for a > 0, 00 <
B < oo and 6 > 0, the stochastic process given by

X, = B6%I, + 0By,

is a NIG process with parameters «, § and 9.
A sample path of a Normal Inverse-Gaussian process generated via Brow-
nian subordination is shown in Figure 2.6.
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Figure 2.6: A sample path of a Normal Inverse-Gaussian process with param-
eters « =85, f =2 and § = 1.

"See (Schoutens, 2003) Appendix A
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LIBOR Market Modelling

The LIBOR market model (LMM) can be considered as the industry standard
financial model for interest rates. The model is also referred to as the Brace-
Gatarek-Musiela (BGM) model after some of its inventors. The model provides
practitioners with an alternative approach to the traditional modelling of the
term structure of interest rates. Applying the LMM, the term structure of
the interest rate is modelled using the simple rate instead of the instantaneous
short rate. Rather than modelling the short or instantaneous forward rates as
in the HJM framework, a set of discrete forward rates are modelled directly
in the LMM. The advantage of modelling such variables lies in the fact that
they are directly observable in the market as well as having volatilities that are
naturally linked to traded contracts. As implied by its name, the LMM only
uses forward LIBOR rates as its modelling instrument, and hence may also
be considered as a collection of forward LIBOR dynamics for various forward
rates with varying maturities.

In this chapter a brief discussion of the LIBOR market model is given. In
order to do this in a systematic manner, some important information on inter-
est rate theory has to be mentioned first. For further details on interest rate
and term-structure modelling the reader is referred to texts such as Brigo and
Mercurio (2006) and Baaquie (2010). Thereafter the LIBOR market model
and the dynamics thereof is introduced along with a construction of the model
under the terminal (forward) measure. The chapter is then concluded by pre-
senting the dynamics of the LIBOR market model driven by Lévy processes:
the Lévy-LIBOR model. The dynamics of the model under the terminal mea-
sure is also given. This presentation of the Lévy-LIBOR model will be used in
the next chapter for the construction of the defaultable model.

35
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3.1 Interest Rates

This section gives a description of how closely bonds and interest rates are con-
nected to each other and hence form the main components of the debt market.
In essence, modelling the interest rate is equivalent to the modelling of bond
prices. Specifically, it can be shown that all interest rates can be defined with
respect to zero-coupon bond! prices.

The following definitions are with reference to Brigo and Mercurio (2006),
Filipovic (2009) and Baaquie (2010). First the workings of the short rate is
explained by defining the bank account as follows:

Definition 3.1 (Bank Account). Define B(t) to be the value of a bank account
at time t > 0. Assume B(0) = 1 and that the bank account evolves according
to the following differential equation:

dB(t) = r(t)B(t)dt, B(0) = 1,

where r(t) is a positive function of time. As a consequence,

B(t) = exp (/0 r(s)ds). (3.1.1)

So an investment of one unit at time 0 will yield the value in equation
(3.1.1) at time t. Here r(t) is the rate at which the investment grows and is
referred to as the short rate.

Definition 3.2 (Continuously-compounded Spot Rate). The spot rate, de-
noted R(t,T), is the constant rate at which an investment (usually a bond) of
B(t,T) units of currency at time t accrues (accumulates) continuously to yield
one unit of currency at time of maturity, T'. Mathematically it is given by the
formula

I B(t,T)

R(t,T) = T

(3.1.2)

Equation (3.1.2) indicates that the spot rate is consistent with the zero-
coupon bond price such that

B(t,T)eR(t’T)(T_t) =1,
and hence the bond price can be expressed in terms of the spot rate as

B(t,T) = e DT,

L(Bjork, 1998) A zero-coupon bond with maturity date 7', also called a T-bond, is a
contract which guarantees the holder 1 unit of currency (usually 1 dollar) to be paid on the
date T. The price at time ¢ of a bond with maturity date T is denoted by B(t,T').
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So an investment of M units at time ¢ will yield an amount of Mef®&TI(T—t)

at time T'. Conversely, if a pre-fixed amount M is expected to be received
at future time 7T, the current value at time ¢ of that same amount would be
M /eRWTHT=1),

In contrast to the continuously-compounded spot rate the simple spot rate
is defined as follows.

Definition 3.3 (Simple Spot Rate). The simple spot rate at time t, denoted
F(t,T), is the constant rate at which an investment (bond) of B(t,T) units of
currency at time t, has to be made to produce one unit of currency at maturity
when accrued proportionally to the investment period. Mathematically the rate
18 described by the formula

ren = (g 1) 819

From this rate the bond price can be expresses as

1
Bt.T) =17 (T —O)F(t,T)’

so that an investment of an amount M at time ¢ will yield the amount M (1 +
(T —¢)F(t,T)) at maturity time 7'. If one is to receive a pre-fixed amount M
at a future time 7', the value of that same amount at current time ¢ would be
M/(1+ (T —t)F(t,T)).

3.1.1 Forward Rates

Forward interest rates form a pivotal role in the study of interest rate and
coupon bond markets. They are characterized by three time instants; the time
at which the rate is considered ¢, the expiration time 7" and the maturity time
S. The forward interest rate is locked in today for an investment in a future
time period and is set in consistency with the current term structure of the
discounting factors. In terms of the short rate, the forward rate is considered
as an unbiased estimator thereof. In terms of bond prices, both the compound
and simple forward rates are defined as follows:

Definition 3.4 (Continuously-compounded Forward Rate). The forward rate
denoted f(t,T,S), can be described as the continuous rate available in the debt
market such that one can lock-in, at time t, the interest rate for a deposit from
future time T to S, where S > T. Mathematically it can be formulated such
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that
B(t,T) = e~ DL B¢ §)
1 B(t,T)
t,T,5) = — 1
W B(t,T) —InB(t,5)
S—T ‘

As stated in Baaquie (2010), the yields at future times 7" and S, of an
investment made at time ¢ are given by e®&1)(T=t) gpd efENE-Y regpectively.
The value of these investments are connected since one can take the payoff
obtained at time 7' and lock-in the interest at time ¢, for the period T to S
using f(¢,T,S). The principle of no arbitrage yields

R(t,S)(S—t) R(t,T)(T—t) ,f(t,T,8)(S-T)

€ =€ (& .

In relation to the forward rate the forward bond price as are defined follows:

Definition 3.5 (Forward Bond Price). Suppose a zero-coupon bond will be
issued at a future time T > t with expiry date S > T. The forward price of
the bond is the price paid at time t to ensure delivery of the bond when it is
1ssued at time T and 1s given by

B(t,T)
B(t,S)

In terms of the forward rate, f(t,7,S) it follows that

F(t,T,8) = e /BTNET),

fb(t>T7 S) =

(3.1.4)

Equation (3.1.4) is also referred to as the forward continuous discount. This
yields the time S value of an investment made at time 7'. Considering all three
time instants ¢, T and S, an investment of 1 unit made at time 7" is worth

B(t,T) at time t and ggg at time S.

Definition 3.6 (Simple Forward Rate). The simple forward rate denoted
F(t,T,8), is the value of the fized rate in a prototypical FRA? with expiry
T and maturity S that renders the FRA a fair contract at time t and is de-

fined as
1 (BT
F@.T.5) = S—T(B(t,S) 1)'

2(Brigo and Mercurio, 2006) A prototypical Forward-Rate Agreement or FRA is a con-
tract that gives its holder an interest rate payment for the time period between T and S.
The contract involves three time instants; the current time ¢, the expiry time T' > t and
the maturity time S > T. At maturity time S, a fixed payment based on on a fixed rate K
is exchanged against a floating payment based on the spot rate F (T, S) resetting in 7" and
with maturity S. In essence, the contract allows one to lock in the interest rate between
time 7" and S at a desired value K.
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So an investment of M units made between times 7" and S will yield an
amount of M (1+ (S —T)F(t,T,S)).
The following section indicates how forward interest rates form a very funda-
mental part of the dynamics of the LIBOR market model.

3.2 Dynamics of the LIBOR Market Model

The LIBOR Market model is driven by forward LIBOR interest rates char-
acterised by a non-linear evolution equation having both stochastic drift and
volatility functions.

Consider a market with a sequence of expiry dates

0<Toy<Ti<...<T, < T,

referred to as the tenor structure of the market with each individual time period
(date) being termed as a standard tenor. The notation §; = T; 1 — T}, refers to
a constant trading (investment) period within the market and define Ty = 0
as the present time. As in the previous section, the bond price B(t, T;) is used
to define the relative interest rate. This leads to the following definitions.

Definition 3.7 (Spot LIBOR rate). The spot LIBOR rate, denoted L(T;),
can be defined as the fized rate set between time T; and T;,1 such that the bond
yields a value of 1 at time T;11. Mathematically

B(T, Town) (1+ 6iL(T)) = 1.

and so the spot LIBOR rate is given by

1 1
T)==|—-— 1), i=1,....n
) &(BGLEH> ) Z !

So if one is to receive 1 unit amount at future time 7;,,, the value of the
investment at time 7; is 1/(1 + (51-L(TZ-)).

In order to define the LIBOR forward rate, consider the LIBOR Forward
rate agreement (FRA). With this there are two maturity dates 7; and T;,;
such that T; < T;,;, and the bond price at time ¢ with maturity 7; is denoted
by B(t,T;). The LIBOR FRA refers to the agreement to invest an amount of
B(t,T;+1) discounted by B(t,T;) at time T;, with a yield of 1 unit amount at
time T4 .

Definition 3.8 (LIBOR Forward Rate). The rate agreed upon as part of the
LIBOR FRA is known as the LIBOR forward rate, denoted L(t,T;, T;11). The
rate is agreed upon at time t and is fized throughout the investment (accrual)
period, 0; = Ty 1 — T;. Mathematically this formulated as

B<t7 7ﬂiJrl)

"B(t,T;) (1 + 6 L(t, T, Tz‘+1)> =1,
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so that the LIBOR forward rate is defined as

L(t>TiaTi+1) = l (M - 1)

6i \ B(t, Tit1)
= %(fb(tyTiaT;—&—l) - 1) (32.1)

From definition 3.8, the bond price in terms of the LIBOR forward rate is
given by
B(t,T;)
B(t,Tiy,) = . 3.2.2
( ’ +1) 57,L(t7 Tziaﬂ—i-l) +1 ( )
Given a set of LIBOR forward rates Ly(7;), k = i+ 1,...,n, the bond
price B(T;,T,) can be determined using the forward rates between times 7;

and 7T},. This bond price is then given by

1
Il (U + 0k Li(T3)

B(T,,T,) (3.2.3)

where Lk(ﬂ) = L(T;, Tk,TkJrl).

3.2.1 The Model

Consider a market, M, consisting of n+1 assets, usually bonds, with maturities
Ty < ... < T,y1. The bond price processes, defined as B;(t) := B(t,T;), i =

1,...,n+ 1 are Itd processes modelled by the stochastic differential equation
dB;(t)
B (o) = 0+ oi)as()

with

Bi(0)=byi, i=1,...,n+1,

where by} is the market bond price at time 0 and 4;(t) and o(t) represent the
drift and diffusion respectively.

Also, for each maturity there are n forward LIBOR rates L;(t) := L(t, T;, Ti11)
with tenor ¢;. Each forward LIBOR rate process is also a stochastic It6 process
and is modelled by the stochastic differential equation

dL;(t) = L(t) (ui(t)dt + ai(t)de-(t)>,

where B;(t) is the Brownian motion and p;(t) the drift term for L;(¢). The
drift term p;(t) depends on the probability measure that L;(¢) is measured
under.
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Theorem 3.9. (Doux, 2004) If the market is arbitrage-free, then for each
1t =1,...,n, there exists an equivalent martingale measure, denoted by P; 1,
under which the LIBOR rate process L;(t) is a martingale.

So under the equivalent martingale measure P;, 1, the LIBOR rate process
is a martingale and has no drift term and is hence given by

dL;(t) = L;(t)o;(t)dBis (1), (3.2.4)

where 0;(t) is a deterministic function and B, 1 (t) the Brownian motion under
the equivalent probability measure P; ;.

The expression in (3.2.4) can be solved by applying It6’s Lemma to the
substitution Z; = In L(t). From this it follows that the solution to equation
(3.2.4) is given by

Li(t) = L;(0) exp ( - %/0 o(s)’ds + /0 U(S)dBiJrl(S)), i=1,...,n.

This concludes the discussion on the general workings of the LIBOR Market
Model.

3.3 The LIBOR Forward Rate Model

In this section, a set-up of the LIBOR market model under the terminal mea-
sure is presented.

The terminal measure, denoted PM | is defined as the last equivalent mar-
tingale measure under which the last forward LIBOR rate process Lp;_1(t)
is a martingale. Respectively, Ly;_1(t) is referred to as the terminal forward
LIBOR rate process.

So for each i = 1,..., M — 1, all LIBOR rate processes L;(t) are also mar-
tingales with respect to each corresponding P‘™!. The aim is to be able to
express all the LIBOR rate processes, L;(t), i = 1,..., M — 1, with respect to
one measure®: the terminal measure, PM. This is the main motivation behind
the construction of the LIBOR forward rate model.

The model will be based on the construction of the bond market introduced
in the following theorem:

Theorem 3.10. (Becker, 2009) Given the value of the bond at time Ty,
B (t), the initial bond prices obtained in the market, BM(0), and volatili-
ties, oy, fori = 1,...,M — 1. Then there exists LIBOR rates, L;(t), whose

3Any measure, P*, i =1,..., M — 1 could be chosen as the single measure under which
the LIBOR rates are modelled. Given this single measure, say PM, other measures P?, i =
1,...,M — 1 can be determined.
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logs have volatilities, o;, and bonds, B;(t), i = 1,..., M — 1, with initial con-
ditions B;(0) = BM(0), which form an arbitrage-free bond market in which
the LIBOR rates are consistent with the bond prices. The numéraire* which
makes all bonds numéraire-based martingales is By (t).

Recall the LIBOR forward rate introduced in the previous section as:

1 { BT,
L(t,T;, Tiv1) = g(ﬁ - 1)-

The following notation:
Li(t) = 6;Li(t) with, Li(t) = L(t, T;, Ti11)
will be used.

Suppose there is a market consisting of bonds, By, ..., B;y1 with respec-
tive forward measures, P, ... P! and corresponding Brownian motions,
Bur, ..., Biy1. Also that the LIBOR rates Lyi—1, ..., L; have been defined.

Define the LIBOR rate, L;(t) as the solution of

dLi(t)
- = 0;(t)dBi11, 3.3.1
.0 (t)dBit (3.3.1)
with initial condition
- BM()
L;(0) = =% -1,
=270

where

BiJrl(t)

The measure P! is equivalent to the measure P*™! which corresponds to B;(t).
In changing between these measures, Girsanov’s theorem is applied and the
Brownian motion B;(t) is obtained there from . So (by Girsanov) it follows
that

dP' = Z,(t)dP,

4The term numéraire refers to the basic unit of account by which value or price is
computed. Hence, it can be a traded asset always taking on positive values usually modelled
by a log-normal SDE.
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where
Zi(t) = B;(t)/B0)
' Biy1(t)/Bit1(0)
Biy1(0) =
= 1+ L;(t)). 3.3.2
B0y LT Lih) (3.3.2)

To this point, the bonds and LIBOR rates with indices 1, ..., M —2 have been
defined conditionally upon Ly;_1(t), Ba—1(t) and By, having been defined. So
Bys has to be defined as the Brownian motion relative to the forward measure
at time Ty, with corresponding bond By,(t). This further requires the exis-
tence of a bank account and risk-neutral measure under which the discounted
bond price By (t)/B(t) is a martingale.

By definition By;(0) = B4/(0) and if B;1(0) = B, (0) then (by definition)

Bi(0) = (1 + L;(0)) Bi11(0)
M
= Bi+1(0)§j\f—1((%))

= B"(0),
which is true for all ¢ (by induction). Hence, the bonds defined have initial

conditions which are consistent with the market. Also, for the LIBOR rates it
follows that

Bi(t) — Bija(t)
Big(t) 7

so that both the LIBOR rates and bond prices are consistent.

From equation (3.3.2)

- '—;)Z,.(t)dsm. (3.3.3)

By Girsanov theorem, a change of measure function
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with
dBZ(t) - H—l( - %( )

)
is used. Comparing equations (3.3.3) and (3.3.4) it can be deduced that

q(t) = % (3.3.5)
Hence
dB;(t) = dBiy i (t) — q;(t)dt
= dBi 4 (t) — %dt,
so that

dBiJrl (t) = dBi+2 (t) — {gi+1 (t)dt
d8i+2 (t) == dBH_3(t) — qH_Q(t)dt

which implies that

dBH_l(t) = dBH_g(t) - qH_Q(t)dt - qH_l(t)dt
= dBiy3(t) — (g1 (t) + qira(t))dt

= dBis,(t) — (f qk(t)>dt.

k=i+1

So under the terminal measure, PM | the Brownian motion is given by

B (t) = dBy(t) — ( Mz_l qk(t)> dt. (3.3.6)

k=i+1

Now substituting equations (3.3.6) and (3.3.5) into equation (3.3.1) it follows

that
dBM(t) - ( Z_ qk.(t)> dt]

k=i+1

= —0y(t) ( Z_l M)) dt + o;(t)dBa ().

k=i+1 1+ Ly(t)

= oy(t)
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So under the terminal (forward) measure the LIBOR rate dynamics are given
by

M-1

dLi(t) = — (k_zl %)) oi(t) Li(t)dt + o3(t) Ly (t)dBas (1), (3.3.7)

for0<i< M -—1.

It should be noted that when ¢ = M — 1 the sum is taken to be 0. Also
as mentioned before, the LIBOR rate process driven by the terminal measure,
L rm—1(t) is the only LIBOR rate process that is a martingale. This is true since
all other LIBOR rate processes will be characterised by a non-zero drift term

palt) = —( 3 M))ma)zi(w. (3:3.8)

The market so defined can be shown to be arbitrage-free. In general, the drift
term given in equation (3.3.8) is a non-linear function of L;(t) and is also
stochastic in behaviour. Because of its non-linearity, the drift term cannot
be evaluated analytically, and so numerical techniques such as Monte Carlo
methods are used instead. This however falls out of the scope of this thesis
as these methods are too time-consuming. Details pertaining to Monte Carlo
methods can be found in Zhang (2009), Lesniewski (2008) and Doux (2004).
The fact that Monte Carlo methods are so time-consuming leads to another
motivation for the use of Lévy based models.

3.4 The Lévy-LIBOR Model

In this section, a presentation of a model for LIBOR rates driven by Lévy
processes rather than classical Brownian motion is given. Along with this
conditions necessary to maintain an arbitrage-free market is discussed. This
section is with reference to Eberlein and Ozkan (2005), in which the authors
discuss various methods for the modelling of the LIBOR rates. They begin by
modelling the instantaneous forward rates, which is very advantageous since
the LIBOR rates can be embedded in an existing HJM set-up. They further
show that the modelling of the instantaneous forward rates can be done in both
the semi-martingale and Lévy settings. They also briefly discus "a forward
price model" in which the forward processes (or LIBOR rates) are modelled
directly. So it is known that LIBOR rates can be derived from either bond
prices or forward prices. For the purpose of this study the framework in
which the LIBOR rates are directly used for the construction of the model
is considered. The discrete-tenor set-up as discussed in Eberlein and Ozkan
(2005) is used as the main reference.
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3.4.1 The Discrete-Tenor Lévy-LIBOR Model

Consider a discrete-tenor structure similar to the one introduced in section 3.2
O:T0<T1<...<Tn<Tn+1:T*,

where 0 =T, —T;, i =1,...,n.

The model is driven by a time-inhomogeneous Lévy process £ on a com-
plete stochastic basis (2, F,F,Pp.), where F = {F}o<s<r= and Pp« is the
terminal forward measure associated to the settlement date 7™. Hence the
construction is done via backward induction.

The law of £, described by the Lévy-Khintchine formula is given by

) t
Ep,. [¢™] = exp (/ Iis<iu)d8),
0

where kg is the cumulant generating function associated to the infinitely divis-
ible distribution of £7", with Lévy triplet (0, ¢, FL") so that

. C i . *
Ks(iu) = —Esuz + / <e“‘x —1- wx) F1" (dx).
R
Since LT satisfies assumption (2.18) it can be written in its canonical
decomposition

t t
cr :/ VesdBL +/ / z(p—v"")(ds,dx),
0 0 Jre

where BI" denotes the standard Brownian motion, p the random measure
associated to the jumps of LT and v*" (dt, dz) = FI"(dz)dt is the compensator
of y. The characteristics of LT is given by (0, c, I/T*) and £7" is assumed to
be driftless. The following assumptions are further made (Kluge, 2005):

(LLL.1): For any maturity 7;, there exists a deterministic function (-, T;) :
[0, 7%] — R¢, which represents the volatility of the forward LIBOR rates
L(-,T;) such that,
n—1
Y NS T) <M, Vs € (0,17, (3.4.1)
i=1
where M is the constant from assumption (2.18) and A(s,T;) =0, V s >
T.

(LL.2): The initial term structure, B(0,7;), i« € {1,...,n}, is strictly posi-
tive and decreasing (in 7), such that the initial condition of the LIBOR
forward rates is given by
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Under the forward measure Pr,, the dynamics of the forward LIBOR rates
are given by

L(t, T) = L(0, T}) exp ( / (s, T )ds + / t )\(s,Tk)d,CZ“l). (3.4.2)

The sum of £7" and some drift term gives £7+1. This drift term however, has
to be specified in such a way that £7++! is driftless and becomes a martingale
under the forward measure Pr,_ ;.

The specification of the drift term is given by

1
bL(s, Ty) = —§>\2<S, Tk)cs

— / (exp)‘(S’T"‘) —1- A(s,Tk)x)Ffw(dx).
R4

The relationship between the terminal forward measure Py« and the for-
ward measure Pr,, is given by

dPr,, Tf1+@ (Tis1. Th)

dPp- v 14 6,L(0,T7)

B0, T*) T~

== 14+ 6 L(Tk+1,T7)).
B0, 7 L (17 2T D)
The restriction to the o-field F; for ¢t € [0, Tj 1] yields

dPr, , B0, T '+
— = 1+0,L(t,T7)). 3.4.3
d]P)T* Fi B(O, Tk+1) lzlgrl ( : ( l)) ( )

Furthermore, £7++1 now has the canonical decomposition

ml/ﬁm%-// — 1) (ds, de),

B/ = Bl _/ ( Z I(s (s Tl)>ds (3.4.4)

I=k+1
is the standard Brownian motion with respect to Pr, ., and

where

et — ( H B(s,z,T)) ) (dt,dz) =: Ff’““(dx)dt, (3.4.5)

I=k+1

is the Py, , - compensator of p (the random measure of jumps of L") with

B(s,x,Ty) :==1+1(s",T)) (e’\(S’TZ)x - 1> (3.4.6)

and

oL(s~,T)

oI = T s Ty

(3.4.7)




Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LIBOR MARKET MODELLING 48

3.4.1.1 Terminal Measure Dynamics

Using the above connections between the forward measure Pz, and the ter-
minal measure Pr«, the dynamics of the forward LIBOR rates L(-,T}) under
the terminal measure Pr- is given by

L(t,Ty) = L(0, T},) exp </Ot bL(s,Tk)der/Ot)\(s,Tk)dﬁsT*>, (3.4.8)

where £7" is the Pp. time-inhomogeneous Lévy process and the drift is speci-
fied as

n—1
b (5, Ty) — —%)\Q(S,Tk)cs — e T Y s TG, T) (3.4.9)
I=k+1
n—1
—/ <(e’\(S’T’“)‘” - 1) H B(s,z,T;) — /\(S,Tk):L') FI*(dz),
R I=k+1
(3.4.10)

where (s, z,T;) and I(s, 1)) is given in equations (3.4.6) and (3.4.7).
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Chapter 4

Credit Risk in Lévy-LIBOR
Modelling

The term credit risk refers to the risk associated to any kind of credit-linked
event, such as the default event, changes in credit quality and variations of
credit spreads. Credit risk can further be characterised more generally in
terms of the following components:

1. The obliger - also referred to as the reference entity, the party who agrees
to fulfil certain contractual obligations.

2. The set of criteria defining the default - the criteria which define how
the obligations agreed upon have to be fulfilled.

3. The time horizon or maturity - this defines the time period over which
the risk is spread.

More specifically, default risk refers to the possibility of an obliger not fulfilling
their contractual agreement to meet their obligations as stated in the contract.
If this happens the obliger is said to have defaulted or a default event has
occurred. In general, companies and bonds are dealt with instead of people
and loans. In view of this, default can be defined in a variety of ways such as
the complete financial bankruptcy of the obliger (reference entity) or a rating
downgrade, restructuring or merger of a company with another. Regarding the
default event there are three unknowns: the probability of the event occurring,
the time when the even will occur and the severity of the loss once it has
occurred. Associated with the default event are the two probabilities:

1. Survival Probability:
Pgur(t) = Probability that the default event will not occur in [0, ¢].

2. Default Probability:
Ppes(t) = Probability that the default event will occur in [0, ¢].

49
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From basic probability theory Ppes(t) =1 — Pgyp(t), VO <t < T

This chapter starts with a discussion of concepts related to credit risk
and the modelling thereof. The purpose of this is to provide a setting and
motivation for the defaultable Lévy-LIBOR model to be introduced later in
the chapter. The defaultable model discussed here is simply an extension of the
default-free model discussed in the previous chapter. In the current literature
there is a range of texts relating to the subject of credit risk. The reader is
referred to Bielecki and Rutkowski (2004), Schénbucher (2000), Schoutens and
Cariboni (2009), Cariboni (2007), Ozkan (2002) and Kluge (2005) for further
detail.

Following this discussion, a presentation of the Lévy-LIBOR model with de-
fault risk as introduced by Eberlein et al. (2006) is given. This will be the main
reference, however use of other literature on the subject such as Eberlein and
Ozkan (2003), Huehne (2007), Kluge (2005) and Ozkan (2002) is also made.
Important components of the model are introduced as well as discussion of
arbitrage-free conditions that need to be maintained throughout the construc-
tion of the model. Instead of modelling the forward LIBOR rates as in the
default-free model, the forward default intensities are modelled instead. One
important component, the default time and the construction thereof is focused
on as this is the focal point behind the construction of the model. This is due
to the fact that the dynamics of these intensities can only be specified once a
specification of the default time is given. This leads to the canonical construc-
tion of the default time as done in Eberlein et al. (2006). As an introduction
to this construction method, a discussion of hazard processes is given. This
is significant in the construction of the default time since the construction is
only possible once the hazard process is given.

Once the default time is constructed and the dynamics of the modelled
intensities coincide with those derived from the real world default probabil-
ities, the drift coefficient of the model has to be specified so that certain
arbitrage-free conditions are maintained. The specification is of course done
under corresponding forward measures. This specification of the drift however
is mathematically intense, hence most of the section presents statements of
theorems for which proofs can be found in Kluge (2005).

As with any mathematical model some form of analysis of the model is
required. For this a discussion on the defaultable forward measures is given
following the two versions introduced by Schénbucher (1999) and Bielecki and
Rutkowski (2004). These defaultable forward measures are then used to price
contingent claims.

The last section of the chapter deals with the recovery rules regarding pric-
ing of default-contingent payoffs. As stated in Eberlein et al. (2006) these
payoffs are important for the modelling of recovery payoffs of real-world de-
faultable securities such as coupon-bearing bonds or credit default swaps. To
model this recovery, the recovery of par approach is used as Eberlein et al.
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(2006) view it as the most realistic parameterization of recovery payoffs.

4.1 Credit Risk Modelling

As mentioned in Cariboni (2007), modelling credit risk requires the definition
of a default event and an estimation of its associated probability of default.
To this there are two main approaches: structural models and intensity-based
models.

Structural models focus on the modelling and pricing of credit risk associ-
ated specifically to the obliger’s economic capital (the value of the firm). The
credit event is triggered by the movement of the firm’s value relative to some
credit barrier. Hence, the approach is also referred to as the firm’s value model.
The model is concerned only with the default credit event and so the credit
event mentioned above will be referred to as default and the credit barrier
the default barrier. With structural models the value process of the firm is
modelled directly and the default event directly linked to this. In this case,
the default event is defined as the first stopping-time at which the firm’s value
process falls below the specified default barrier within the agreed contractual
time frame.

On the other hand, in intensity-based models, the probability of a default
event occurring is modelled directly. The approach is based on the idea that
there is a probability of the obliger defaulting at any time within the contract
period. Here the default event is defined and modelled as the first jump of a
counting process, usually a Poisson process with random intensity is used. In
contrast to the structural approach, the intensity-based model does not nec-
essarily depend on the firm’s value, but rather the specification of the hazard
rate. The hazard rate defines the intensity that models the rate of default of
the reference entity. Hence this approach is also referred to as the hazard-rate
model. Most credit risk models follow the intensity-based approach, since an
increase in the default intensity (hazard rate) would imply an increase in the
probability of default. For the construction of the Lévy-LIBOR model with
default risk the intensity-based approach to modelling the default risk is ap-
plied. For further details on both modelling approaches the reader is referred
to Bielecki and Rutkowski (2004) and to Schoutens and Cariboni (2009) and
Cariboni (2007) for details of the Lévy based models thereof.

4.2 Presentation of the Model

The credit risk model presented in this section is an extension of the model
presented in chapter 3. The model is extended in such a way that the dynam-
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ics of defaultable market rates can be captured. In contrast to the default-free
model, the dynamics of defaultable LIBOR rates cannot be modelled freely.
As stated in Kluge (2005), they follow by arbitrage-free arguments from the
specification of the default time and the default-free forward LIBOR rates.
This is discussed in further detail later in this section.

Consider a fixed time horizon T* and a discrete tenor structure given by
O=Ty<Ti<..<T,=T~,

with 51@ IZTk+1—Tk for kZZO,...,TL—l.

Assume that both default-free and defaultable zero-coupon bonds with ma-
turities 11, ..., T, are traded in the market. Denote the price of the default-free
bond at time ¢, with maturity 7y by B(t,T;) and the price of the defaultable
bond by B°(t,Ty). The pre-default value of the defaultable bond is given by

B(t,Ty) and 7 the time of default. The bond prices are related to each other
by

B(t,T;) = 1=y B(t,T;) and B(T;,T;) = 1 fori € {1,...,n}. (4.2.1)

In constructing the model, rather than modelling the bond prices directly,
the dynamics of the forward LIBOR rates will be specified instead. As in
Schénbucher (1999) and Eberlein et al. (2006), the following notation will be
used:

The default-free LIBOR forward rates are defined as

1 ( B(t,T})
L(t’Tk)_(Sk (B(t,TkH) —1) for ke{l,....,n—1}.

The defaultable LIBOR forward rates are defined by

_ 1 ( B(t,T})
Lit,T,) =—| =————1 f k 1,...,n—1}L
( ) k) 51: (B(t,Tk+1) ) or € { ) y }

The forward LIBOR spreads are defined by

S(t,Tk) :L(t,Tk) —L(t,Tk) for ke {1,...,%— 1}

The default risk factors ! are defined by

B(t, Ty)

DT = S

for ke{l,...,n—1}

!The default risk factors D(t,Ty) allow to separate the influence of default risk on
the defaultable bond prices from the standard discounting with default-free interest rates
(Schoénbucher, 1999).
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The forward default intensities are defined by

H(t,Ty) = ;(%—1) for ke{l,...,n—1}.

The default-free part of the model is discussed in subsection 3.4.1. For fur-
ther details on this construction the reader is referred to Eberlein and Ozkan
(2005). The model is once again driven by a time-inhomogeneous Lévy pro-
cess, LT on a complete stochastic basis (Q, F,F, Py.), where F = {F, }o<s<r
and ]P’T is the terminal forward measure associated to the settlement date T*.
A slightly stronger condition is put on £7" as Assumption (2.19) is assumed
to be satisfied and the notation is changed from (Q, F,F,Py.), as in subsec-
tion 3.4.1, to (Q,]},IF‘,IPT*). However, all basic properties of the default-free
model as mentioned in section 3.4 still hold. The aim is now to include the
defaultable LIBOR rates into the Lévy-LIBOR model.

A seemingly obvious way to do this would be to specify the dynamics of
the defaultable forward LIBOR rates in a similar way as done in equation
(3.4.2). As stated in Kluge (2005), L(Ty,Ty) < L(Ty,T)) would imply that
B(Ty, Tiy1) > B(Tk, Tiy1) which would create an arbitrage opportunity within
the market, provided that B°(-, Ty+1) has not defaulted until time T}. To en-
sure no arbitrage within the market, defaultable bonds should always be worth
less than default-free bonds. So in order to maintain an arbitrage-free market
the model has to be specified so that the defaultable forward LIBOR rates are
always higher than the default-free rates. Instead of specifying the defaultable
forward LIBOR rates directly, the forward LIBOR spreads or forward default
intensities are modelled as positive processes. The defaultable forward LIBOR
rates are then derived by

L(t,T) = S(t,T}.) + L(t, Ty,

BT) |\ _L1(B&T)
B(t, Tor) 5x \ B(t, Tiyr)

1 (t, Ty) B(t,T}) )
t

where by definition

S(taTk) - <

| El wel]

0k \ B(t, Tyr1)  B(t, Tita)
_ 1 (B(t.T) B, TkH)_l) B(t.T,)

Ok (t Tk) (t Tk+1) B(taTk-i-l)
_1( DT _1> B(t,T})

5x \ D(t, Tisr) B(t, Tisr)
-GG

= H(t,T3,) (1 + 6, L(t, Tyy)) + L(t, T),
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so that
L(t,T},) = H(t,T,) (1 + 6k L(t, Tx)) + L(t, Ty). (4.2.2)

Unfortunately H and S cannot be specified directly since their dynamics de-
pend on the specification of the default time 7.

Suppose that 7 has already been constructed and is a stopping time with
respect to the filtration F. Then the terminal value of a defaultable bond is
given by

BTy, Ty) = Lrory B(Th, Ty) = Lizsmyy-

In the default-free model the price of a contingent claim? X at time ¢ with a
payout of 1.~ at time T}, is given by

Xy == B(t,Ty)Ep,, [I]-{T>Tk}|]:—t} = 1> B(t, Ti)Epy, [I]-{T>Tk}|~i—t]-

For the deafaultable model to be consistent, the value of the defaultable bond
at time t is given by

Bo(ta Tk) = IL{7’>1€}B(tv Tk)EPTk |:]1{T>Tk}’f{| )

which by (4.2.1) implies the pre-default value of the bond to be

B(t, Ti) = B(t, T )Bs, | Loy |72,
and so the default risk factors becomes
D(t,Ti) = Es,, []1{7>Tk}‘~7:-t:| .

So given this specification of D(t,T}) the formulas for both H and S can be
specified. Hence, the dynamics of H and S depend on the specification of
the default time 7. Since the specification of 7 is not given, H can only be
"specified" by giving a prespecification. The prespecification is made so that
the default time 7 can be constructed in such a way that the actual dynamics
of H implied by this 7 will match the prespecification, denoted by H. Hence H
would be specified based on the construction of 7. In addition to assumptions
(LLL.1) and (LIL.2) made in subsection (3.4.1), the following slightly stronger
assumptions are made (Kluge, 2005):

(DR.1): For any maturity 7; there is a deterministic function (-, 7;) : [0, T*] —
R, which represents the volatility of the forward default intensity H (-, T;).
Suppose that y(s, Ty) = 0 for T, < s < T*. Moreover, it is required that

2A contingent claim X represents the terminal pay-off of a contract depending on the
occurrence of a specific event.
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the function A(-,T;) from (LL.1) map to R% and condition (3.4.1) is
tightened by assuming that

n—1

D TIMS T+ (s, T < M, Vs € [0,T7. (4.2.3)

i=1

(DR.2): The initial term structure B(O,Tiz, i € {1,...,n} of defaultable zero
coupon bond prices satisfies 0 < B(0,7;) < B(0,T;) for all T; as well as
L(0,T;) > L(0,T;). The later implies that

B(0,T;) . _BO.T)
B(O;ﬂ+1) - B(O,T;_H).

As in Kluge (2005) the prespecification of the forward default intensities H is
postulated to be given by

t
H(t,Ti) = H(0,T;) exp (/ b (s, Ty, Tis ds+/ Vesy(s (s, T;)dBL+

/ / s, Ty), vT1)(ds, d:c)) (4.2.4)
with initial condition

~ 8\ B(0 E)Bm,ml)

B! is the Brownian motion defined in equation (3.4.4), v7+! the compensator
defined in equation (3.4.5) and b (s, T;, Tj; 1) the drift term which will be
specified in section 4.4. For the time being it can assumed that b (s, T;, T;, 1) =
0for T} < s <T* ie. H(t,T;) = H(T};,T,) is required for t € [T}, T*] (Eberlein
et al., 2006).

4.3 Construction of the Time of Default

As in Eberlein et al. (2006), the default time is constructed in a canonical
way, i.e. for a given F-hazard process (I') a stopping time (7) has to be
constructed on an enlarged probability space. The important step is selecting
a specific hazard process such that the actual default intensities, H, match the
pre-specified default intensities, H, as given by equation (4.2.4).

Before presenting details of the canonical construction, basic definitions of
the hazard process are briefly mentioned. This section is with reference to
Bielecki and Rutkowski (2004) to whom the reader is referred to for further
details.
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4.3.1 Hazard Processes

Let 7 denote a non-negative random variable on a probability space (o, G, P)
with filtration G = {G;}:>¢ such that P(7 = 0) = 0 and P(7 > t) > 0 for any
t € Ry. H denotes a right-continuous process such that H; = 1{;<;; with the
filtration H : H; = o(H, : u <t). The process H; defines the jump process
associated to the random time 7. The following assumptions regarding the
filtrations have to be made (Bielecki and Rutkowski, 2004):

(HP.1) Assume that an auxiliary filtration F such that G = HVF is given. Then
G =M,V F forany t € R,.

(HP.1a) For every t € R,, the event {7 <t} belongs to the o-field F;. So 7 is
an [F-stopping time.

Under condition (HP.1a), G = F so that 7 is also a G-stopping time. Some
models however, only postulate a partial observation of the random time 7.
This leads to the next condition.

(HP.1b) For some datest € R, the event {7 <t} does not belong to the o-field
Fi.

Let H C H denote the filtration associated to the partial observations of 7.
Then the enlarged filtration is given by G = HVF. Under condition (HP.1) the
process H is G-adapted, i.e 7 is a G-stopping time. However, under condition
(HP.1b) H is not G-adapted, i.e 7 is not a G-stopping time. In both cases the
following condition is satisfied:

(HP.2) For everyt € Ry, F; C G CH,V F.
For any t € R,, G denotes the F-survival process of 7 given by

where F; = P(7 < t|F;). The F-hazard process of a random time is defined as
follows:

Definition 4.1 (F-hazard process). The F-hazard process of random time T
under P is denoted by I' and defined as

]_ — Ft = G_Ft
S Ft = —lnGt = —ln(l _Ft)y

Vt € Rt (mdFt<1.

From this point, ' is referred to as the F-hazard process of 7 and F; < 1
is always assumed to be true in order for I'" to be well-defined. The following
lemma gives some useful results regarding the conditional expectations of 7
given the filtrations G; and F;:
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Lemma 4.2. (Bielecki and Rutkowski, 2004)

(i) Assume that (HP.2) holds. Then for any G-measurable random variable
Y and any t € Ry

Ee[1i-0Y(G| = P(r > 1]G Bz [V ¥ 17 1.3.2
. — > 3.
S e i L e

(i) If, in addition, Hy C G, (so that (HP.1) holds) then
Ep 1 Y1)
Ep[ﬂ{m}ylgt} = 1>y Ep [Y\Qt] = 1oy B(r > | 7) (4.3.3)
In particular, for any t < s
P(t <71 < s|.F,
P(t <7 <sG) = Loy (L<7<sl7) (4.3.4)

]P(’T > t|ft)
Using definition 4.1 and equations (4.3.1) and (4.3.4), it follows that

EP e‘rf — e_FT‘JT'.ti|
Pt<7<TIG)= Tirsty

1-—F;
Ep [e*n — e*FT|]-"t}
= lr>g) =

= ]l{T>t}erEp [e‘rt — e_FT|.7:t]
= 1oy B [1 - eFt—FTm] (4.3.5)

The hazard process, I', of 7 is also assumed to have the following integral
representation

t
Ft:/ Yudu, Vi € Ry,
0

where 7 is the F-hazard rate or F-intensity of 7, also referred to as the stochastic
intensity of 7. In terms of 7, equation (4.3.5) becomes

P(t <7 <TI|G)=TgronEp [1 _ oJi vudu—f ’Yudu“/—_-t:|
= 115y Ep [1 _ e Ir vudu’]_—t]. (4.3.6)

The intensity of the time of default is referred to as the intensity function of
7 when 7 is non-random. When the trivial filtration F (such that G = H) is
chosen as the reference filtration, the intensity function, (), is used instead
of 74 and so equation (4.3.6) becomes

P(t <7 <T|G) = LyanEe [1 — e~ Jrrwdu ]



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. CREDIT RISK IN LEVY-LIBOR MODELLING 58

4.3.2 Canonical Construction of 7

Here the construction of the default time associated to a given hazard process
I' is described. The method used is known as the canonical construction, for
which details can be found in Bielecki and Rutkowski (2004). The discussion
in this section is with reference to Bielecki and Rutkowski (2004), Kluge (2005)
and Eberlein et al. (2006).

Let T be an F-adapted, right-continuous, increasing process on (Q, F, Prs)
such that I'y = 0 and lim;_, I’y = co. The aim now is to construct the default
time 7 such that I is the F-hazard process of 7. For this the probability space
Q) has to be enlarged. By doing this, I’ will no longer be the F-hazard process
of 7 under the measure P+, but rather the F-hazard process under Qp«, the
extension of Prp-.

Let n is a random variable on some probability space (Q, F , IP’AT) uniformly
distributed over the interval [0,1]. Consider the product space (Q2,G,Qr«)
defined by

Q:=0xQ, G=FQF, Qp :=PpraP,

and F the extension of F to the enlarged probability space (Q,G,Qp). All
stochastic processes from the default-free part of the model are extended to
the enlarged probability space by setting LT (&, @) := LT (@) (Eberlein et al.,
2006).

Define the random time 7 : 0 — R, by

Ti=inf{t e R, e 1 <}

Recall H; := 0(1,<,|0 < u <t) and G, :== H; V F; for t € [0,T*] as discussed
in section 4.3.1. So 7 is a stopping-time with respect to the filtration G =
{Gs}o<s<r+, since {1 <t} € H; C G; (Eberlein et al., 2006). Also, {r >t} =
{n < e Tt} and I'; is F-measurable so that

Qr-(T>tF) =Qpr(n<e™F)=P(n<e ™) =e' (4.3.7)

Also,
1— F, = Qg (7 > t|F) = Eg,. [@T* (r > t|f)|ft} ~ Eq,. [e—“m] e
(4.3.8)

So I' is the F-hazard process of 7 under Q.
From (4.3.7) and (4.3.8) the following interesting property of the canonical
construction of 7 is obtained:

Qr (1 < t|F) = Qp- (1 < t|F) YVt € R, (4.3.9)
Moreover, for 0 < s <t < T* (Eberlein et al., 2006)
Qr- (1 > s|Fre) = Qp+ (7 > s|F) = Qp- (17 > s|F,) = e . (4.3.10)
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The question now is whether or not £7" is a time-inhomogeneous Lévy process
with respect to Q7+ and the enlarged filtration G. As a result of the canonical
construction of the default time 7 and equation (4.3.9), the following conditions
are satisfied:

(C.1) For any t € [0, T*], Fr~ and H; are conditionally independent given F;
under the measure Qr«, i.e. for any bounded Fr«-measurable variable
X and any H;-measurable variable Y

Eq,. [XY|F] = Eg,. [X|F]Eq,. [Y]7].
(C.2) For any bounded, Fr«-measurable random variable X
Eq,. [X|G:] = Eq,. [X|F], te€[0,T7].

Conditions (C.1) and (C.2) are equivalent. For further discussion on these
conditions the reader is referred to section 6.1 (pg 166-167) in Bielecki and
Rutkowski (2004) and Kluge (2005) for a detailed proof thereof.

Proposition 4.3. (Kluge, 2005) LT is a non-homogeneous Lévy process on
the stochastic basis (Q, Gr-, G, Q<) with characteristics (0,c, FT").

Proof. LT is an adapted, cadlag process satisfying £~ = 0. Using the defini-
tion of both the extended probability measure Q-+ and the process L7 (@, ),
the characteristic function of £T" under Q- is given by

Eg,. [exp (@uEtT*)} = / exp (qutT*)dQT*

= /fzx() exp (iul{ (@,0))d(Pr ® IED) (@,w)
= /ﬁexp (ZuﬁtT* (@))d(PT*) (@)
= Ep,.. [exp (zuﬁf)] .

So the characteristic function of £I™ is preserved under Qp-. It remains to
show that the increment £~ — £T” is independent of G, for s < t. Let B € B¢
and A € G, then using condition (C.2) for X := 15(LI" — £I") and the fact
that £I" — £T" is independent of F; it follows that

O (An (el ~£r) € BY) = [ 1s(e]" — £7")ag-
- [ By [1alel” — £T')17 ] dr-
= [ B, [1alel — 1)) 0

= Qr-(A)Qr ({ (£ - £I") € BY).
O
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The following lemma further shows that I' is not only the F-hazard process
of the default time 7 with respect to the measure Qr«, but also the F-hazard
process of 7 under all other forward measures.

Lemma 4.4. (Kluge, 2005) T is the F-hazard process of T under Qr,, V k €
{1,...,n}.

Proof. Fix a k and let ¢ denote the Radon-Nikodym derivative of Qg with
respect to Qp«. Using abstract Bayes rule and the conditional expectation
given in condition (C.1) it follows that

Eq,. [¢1{T>s}|]:5}
Eq,. [¥|7.]
_ Eor. [¢|fs] Eo,. [ﬂ{T>s}|fs}
) Eo,. [017]
= Eq,. [ﬂ{ws}\fs]

= QT* (7— > S|fs)
=1—-F;
*Fs.

QTk (T > S|fs) =

=e
U

A specific hazard process I' has to be chosen so that the forward default
intensities H can coincide its prespecification H. As in section 4.2, for the
defaultable model to be consistent, the value of the defaultable bond has to be

B°(t,T}.) = B(t, T,)Qp {7 > T}|G:} (4.3.11)
Applying equation (4.3.3) from lemma 4.2, equation (4.3.11) becomes
1 IEQT]C |:]]-{T>Tk} |~F{|
{r>Ti} QTk (T > Tk‘JT"t)
EQTk |:]]-{T>Tk} |~E]

Eqy, [ﬂ{m}\ﬂ}

From equation (4.3.12) the pre-default value of the bond can be given by

B°(t,Ty) = B(t,T})

= B(t, Ti)Lrsy (4.3.12)

_ Eqr, | Lir>m|F
B(t, Tk) = B(t, Tk) = =
Eqr, [1{T>t}\]: t]

(4.3.13)

EQTk _]]-{T>Tk} |E_

e Tt
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and so the default risk factors become

EQTk |:]]-{T>Tk} |ft:|

e~ Tt

D(t,Ty) =

= EQTk |:€Ft7FTk |,Fti| .

Hence the forward default intensities can now be given by

HOT) =5\ D T 1)

1 Eop [ mE]
O \ Eqy, [e" 7T | F] ‘

_ l EQTk |:€_FTI¢|Ej| _1 (4314)
Ok EQTk [e_er+l ].Ft} o

From equation (4.3.14), it is clear that the matching of H to the prespeci-
fication H only depends on the dynamics of the hazard process I'yy, for k£ €
{1,...,n}. Using equation (4.3.3) in lemma 4.2 and equation (4.3.13), it fol-
lows that

]EQTk |:6_FTk |~FT)¢71:| = EQTk _1{T>Tk}|‘FTk—1]

= ]EQTk ]EQTk |:]1{T>Tk}‘ng71:| kal]
[ EQTk []I{T>Tk}‘kaf1i|
= ]EQTk Lirsm, 1y Fr,
]EQT |:]1{T>Tk71}|‘FTk—1:|
i B(Ty-1,Ty)
:]EQTk ]1{T>Tk I}B(Tk ) Tk) ‘Fqu
(Tk_laTk)
BTy e ]
BTy, To) o [Home Py
_ BT, 1) o
B(Tk 17Tk)
= T’“‘ID(TkA?Tk)
= e Tk ! (4.3.15)

14051 H(Tp1,Tm1)

where equation (4.3.15) follows from the definition of D(¢,T;). The hazard
process I' can now be defined recursively with the initial condition I'y := 0 so
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that
FTk L= Fkal -+ IOg (1 + 5k71[:[(Tk717 kal)) s for k € {1, c. ,n}

= log (14 01 H(T—1, Ti1)). (4.3.16)

It now remains to check if the implied dynamics of H match that of the pre-
specification H. Using equation (4.3.14) it follows that

1 EQT [e_FTl |JT_;5}

_ 6 1 _
01\ Egy, [e T | F] ’

where from equation (4.3.16)
—FT2 + FTl = log (1 + 51[:1(T1, T1>)
1
L+ 6, H(Ty, Ty)

— e_FTQ +FT1 =

so that H(t,T)) now becomes

] 1
H(t,T)) = )
51 (EQB[TQEHEGB*F} )

which can be written as

1
1+ 0, H(T, T))

1
1+ 6H(TLTY)

t

(4.3.17)

This means that if ( 1 is a martingale with respect to Qrp,,

1+51H(T17T1)>0§t§T1
then H(71y,T7) coincides with its prespecification H(71,77). The following
general result can be stated.

Lemma 4.5. (Kluge, 2005) H(-,T},) meets its prespecification H if
I . :
(Hi:l m)ogtgﬂ is a Qr,,,-martingale for all 1 € {1,... k}.

Proof. The case of k = 1 has been proven (equation (4.3.17)). Using equations
(4.3.14), (4.3.16) and the requirement of H(¢,T;) = H(T;,T;) for t € [I;,T*
as mentioned in section 4.2, it follows that

k-1
1 (E@Tk[nz 0 1+6H(TT ] _1>
5 k
g EQTk+1|:H1 01+5HTT ‘E:|

:%«Hwkanﬁ—ng@ny

H(t,T,) =
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4.4 Specification of the Drift

Recall that the drift coefficients b (-, Ty, Ty41) from equation (4.2.4) still have
to be specified so that the requirement of lemma 4.5 is satisfied. This spec-
ification of the drift is done recursively as in Kluge (2005). First a process

Hy. : 1
b" (-, T1,T5) has to be specified so that <1+51fl(t,T1)>0<t<T1

martingale. Then b (-, Ty, T3) must be specified so that

becomes a Qg,-

. L . becomes a Qp,-martingale and so on. The
(140181 (14620 (1,12)) v
U L2

following two lemmata will be required:

Lemma 4.6. (Kluge, 2005) Let X be a real-valued semimartingale with Xo = 0
and AX > —1. Then

(E(X))_l :5<—x—|—<XC’Xc>+ <1+%—1—|—c> >x<,u>.

Here £ denotes the stochastic exponential ® of X and (X°¢, X¢) its quadratic
covariation *

Lemma 4.7. (Kluge, 2005) For k € {2,...,n} and B € {1,...,k —1}

H(t,T,) =H<o,Ti>&( / a(s,T;, Ti)ds + / Veay(s, Th)dBL:
0 0

+ / / <e<v(s,Ti),x> — 1) (M _ VTk)(dS’ dx)),
0 JRd

where
1
CL(S, 7—;;7 Tk) ::bH<87 7—;7 Tk) + §<’V(37 E)? 687(87 CT’Z)>
n / <e<v<SvTi>vx> 1 <7(s,7}),x>>FsTk(dx), (4.4.1)
R4
and
k—1
bH<377—‘7;7Tk’) ::bH(S77—‘iairi+1) - <’Y(377—‘i>a Cs( Z Q(S,E,ﬂ+1)>>
l=i+1
k—1
- /d <7(877—‘1)7$>< H B(Saxaﬂairl-i-l) - 1) sz(dl')
R I=i+1

(4.4.2)

3Definition and details of the stochastic exponential can be found in Jacob and Shiryaev
(2003), chapter 8.
4Definition of the quadratic covariation can be found on page 22.
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Proofs of lemma 4.6 and 4.7 can be found in Kluge (2005). The reader is
also referred to Kallsen and Shiryaev (2002), Lemma 2.6 which is used in these
proofs.

The first specification of v (-, T;, Tj;1) is given in the following proposition:

Proposition 4.8. (Kluge, 2005) (
S € [O,Tl]

b (s, Ty, Ty) = (Yl - —)<7 5, 1), cy(s, Th))

€<’Y(S’Tl)’$)> — ]_ T
+ /]Rd <’7(8,T1),l’)> - 1+ Y;l_ (e<’7(5,T1)7$)> _ 1) Fs (dl‘),
(4.4.3)

_— 18 a -martingale if for
1+61H(t Tl))0<t<Tl Qr, gale if f

1._ _8&iH(sT1)
where Y, = i BTy

Proof. From Lemma 4.7 it follows that

H(t,T)) =H(0,T))& (/ a(s, Ty, Ty ds+/ Ve (s, Ty)dB
/ /]Rd V(s 1), 1) (1 — VTQ)(ds,dx)),

1
a(s, Ty, Ty) =b" (5,11, Ty) + §<'y(s, Ty), csﬂy(s,Tl)>
+ / (eW(S’TM ~1- <7(S,T1),x>>FsTQ(dx). (4.4.4)
Rd

Let X! := 140, H(t, T1) and apply Ito-Lévy formula to H(¢, T1) from equation
(4.2.4) then

dX} = 6,dH(t,T))

with

= 01 H(t,Ty) (a(t, Ty, Ty)dt + /ey (¢, Ty)dB*

+/ (eh(t’Tl)’x) - 1> (1 —v™)(dt, da:))
Rd

= X;_ (Yf_a(t, Ty, Ty)dt + Y2 /ey (t, Th)dB/?

+/ vl (ew(t,nm _ 1) (1 — yTQ)(dt,da:))
Rd
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Lemma 4.6 along with the fact that dX; = X} dZ; = X; = X,E(Z;) implies
that

(X”A:{Xﬂﬁ&</2MsBM&—/)ﬂVFVGYDﬂV

//d 1+Y1 (STl)>_1))_1_1>(M_VT2)(dS7dx)>’

where

A(SaTQ) = _Y;l—a(&TlaTQ) + (}/:91—)2<7(37 T1)7 CSPY(S>T1)

v [ et eV — 1 F%(d
S,11),T _ _
+/[Rd s— € 1 1_'_}/817(6<'Y(37T1)7z> _ 1) S ( x).

(4.4.5)

If A(s,T5) = 0, then (1+ S H(t, Tl))_1 is a Qr,-local martingale. Since it is
bounded by 0 and 1 it is also a martingale.
Setting A(s,T3) in equation (4.4.5) to 0 implies that

Yia(s, 11, Ty) =(Y)) <7 s, T1), csy(s,Th)

<7(57T1)7I> — ]_

(&

+ [ YL [eheTe) F%(dx).
Qéds( 1+ YL (ehGma) — 1) o (de)

Substituting a(s, T}, T3) from equation (4.4.4) it follows that

bH(SﬂTlﬂTQ) :}/:91—<7(57T1)7057<37T1)> - %<7(57T1)7037(57T1)>

- / (0T — 1 = (9(s, ), 2) ) B2 (da)
Rd

(T _ 1
<’Y(S,T1),LB> _ _ € T
+/]Rd (6 1 1+Y1_( (v(s,T1), )—1)>FS (dx)

(Y1 — —><’y s, Th), csy(s, Th))

T e(’Y(Sle)?x) — 1 FT
i /Rd <7(S’ ; :13)> 14 Y (e<7(5»Tl)7$> — 1) (de),

which completes the proof. O

More generally, the following proposition is stated:
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Proposition 4.9. (Kluge, 2005) (H].C_l 1 is a martingale

=1 1+5iH(t,TZ‘)>OStSTk_1
with respect to Qp, for ke {2,....n} if Vie{l,...,k—1} and s € [0,T}]

v (s, T;, Ty) = ZYJ ) esv(s, Tj)) — %<7(5,ﬂ),csy(s,ﬂ)>

DY (
€<’7(87T1)v1‘)> —_ 1

s, T;),x)) — — . FST”1 dx
+ /]Rd <<’Y( ) >> H;:1 (1 Tyl (€<7(3,Tj),x)) _ 1)>> (dx)
+ (Y'Si_)*l /Rd (5(37x,ﬂ,ﬂ+1) - 1)

i—1 B
x (1 T (14 Y2 (ebema — 1)) 1) F7e1 (dz),

J=1

—((s5,T}), csa(s, Tz,TH1)>>

S

(4.4.6)

where Y} := %

The proof of the above proposition is calculationally intense. The reader is
therefore referred to Appendix A in Kluge (2005) for explicit details thereof.

The drift b (s, T}, T;11) however cannot be specified by equation (4.4.6)
since it involves the Y term which depends on H (s,T;) which in turn depends
on b (s, T;, Ti,1). For this reason a stochastic differential equation has to be
introduced. Suppose that there exists a stochastic differential equation, say
h(t,T;), having a unique solution for each i € {1,...,k — 1} such that

h(t,T;) = h(0,T;) /f’ s, h(s A))ds—I—/Ot Ve (s, Tp)dBh+
—i—/o /RdW(S,Tj)a@ﬂ,u —v 1+1)(ds dx), (4.4.7)

with
B0, T;) = log H(0,T))

and

fi(s,2) == fi(s) + fi(s, @) + fi(s,2) + fa(s, @),
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where
; i1 5j€h(sf,Tj) 1
fi(s) = Zl WW(S’T;‘)’%V(S,TJ‘» - §<V(S,Ti)7057(8,Ti)>
=

_ /R d (€<v(s,Ti)7y)> 1 (s Ti)7y)>)F§i+1(dy)

i (51-65"’
fi(s,0) = 5 (s T, e, 1))
1+ 0;e% §iehs=T5)
i d;e® Z; (1 +J(5jeh(s*:Tj) (15, T3, cacx(s, Ty Tiga))
‘7:
f3(s,x) == 5ot (ﬁ(s,y,Ti,THl) — 1) (4.4.8)
i R4

T 05" ey N pr
_ SyLj), _ i+1
“\! H <1 7 + ;e T5) (e 1)) F.dy),

1

fi(s’x) = \/Rd (€<’Y(8,Ti)vy)> _ 1) (1 _ (1 + o;e” (€<7(5,Ti)7y)> _ 1))_

1+ 51‘63”

T T SRS W R
11+ 5 1)) |F(dy).
J

Then H(s,T;) := exp h(s, T}) satisfies equation (4.2.4) with drift b (s, T}, Ti41)
given by equation (4.4.6) and so proposition 4.9 holds. In order to show that
the stochastic differential equation (4.4.7) has a unique solution the following

theorem which is a direct consequence of Theorems V.6 and V.7 of Protter
(2004) is stated:

Theorem 4.10. (Kluge, 2005) Assume a (1 -dimensional) semimartingale Z
with Zog = 0 on a complete stochastic basis (Q, F,F,P) to be given and let
f iRy x QxR — R be such that

1. for fivzed x € R, (t,w) — f(t,w,x) is an adapted cadlag process,
2. there exists a finite random variable K such that for all t € Ry

]f(t,w,x) - f(taway)‘ < K<w)’$ - y’

Then the stochastic differential equation
t
Xt + XO + Zt + / f(87 ) XS—)dS7
0

where Xo is a constant, has a unique (strong) solution. This solution is a
semimartingale.
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Unfortunately, fi and fi in equation (4.4.7) do not satisfy condition 2 of
theorem 4.10, i.e they are not globally Lipschitz. However, this condition can
be weakened by assuming that f is locally Lipschitz and satisfies a growth
condition, as shown in the following proposition:

Proposition 4.11. (Kluge, 2005) Assume a d-dimensional special semimartin-
gale S == [ \/csdBs + [ [pax(p — v)(ds,dz) on a complete stochastic basis
(Q, F,F,P), where B is a standard Brownian motion, c is deterministic, and
W is the random measure associated with the jumps of S with compensator
v(ds,dr) = F,(dx)ds, is given. Suppose that o : Ry — R is a bounded
function and let f : R, x Q. x R — R be such that

1. for fired x € R, (t,w) — f(t,w,z) is an adapted cadlag process,
2. for all r > 0 there is a real number K, such that for all (t,w) and all
z,y € R with |z|, |ly| <r
[f(t,w,2) = [t w,y)] < Kilw =yl and [f (8w, 2)] < K.

3. there is a constant By such that for all (t,w) and all x € R
vf(t,w,x) < By(1+ 2?).

Suppose further that there is a constant By such that for all (t,w)

(a(t), o (t)) + /}R <0(t),y>2F5(dy) < Bs. (4.4.9)

Then the stochastic differential equation

t t
Xt+X0+/ f(3,~,XS)ds+/ o(s)dSs, (4.4.10)
0 0

where X is a constant, has a unique (non-exploding) solution which is a semi-
martingale.

Proposition 4.11 can now be used to check that for a one-dimensional driv-
ing process L, the stochastic differential equation (4.4.7) has a unique non-
exploding solution. The following proposition is stated:

Proposition 4.12. (Kluge, 2005) Assume d = 1. Suppose that (-, T;) is a
cadlag function for each i € {1,...,n — 1} and that the characteristics of LT
are chosen in such a way that fi(-,-,x),..., fi(-,-,x) have cadlag paths for
each x € R. Then the stochastic differential equation (4.4.7) admits a unique
(non-exploding) solution for each i € {1,...,n —1}.

In order to prove the existence of a solution to equation (4.4.7) for d > 1
further restrictions would have to be put on the characteristics of £ to meet
the growth condition (condition 3) of proposition 4.11.

From here on, the drift terms b (-, T;, Tj;1) are chosen as described in
proposition 4.9, hence no further distinction between H and H needs to be
made.
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4.5 Defaultable Forward Measures

Just as using forward measures for the pricing of derivatives in default-free
interest rate models, defaultable forward measures are similarly used to price
derivatives in the defaultable model. The defaultable claims dealt with usually
have zero recovery with settlement date 7;. The concepts discussed in this
section are taken from Bielecki and Rutkowski (2004), Schonbucher (1999)
and Kluge (2005). The defaultable forward measure is defined as follows:

Definition 4.13. The defaultable forward (martingale) measure Qr,, for the
settlement date T; defined on (2, Gr,) is given by

d@Ti o B(Ov TZ)

= BYT,, T)).
0~ o’ BT

The above can also be referred to as the Radon-Nikodym density of Qr,
with respect to Qr,. Since B°(0,T;) = B(0,T;) and B(T;,T;) = Lgroryy it

follows that B

dQr, ~ B(0,T;) T
B(T;,T;) = B(T;,T;) = 1 further implies that

dQr, B(0,T;) B(T;,T;)
= lomy 5
D(T;,T;)
D(0,T;)
_ leemy
QTi(T > Tl)

= 1 {T>Ti}

The deafultable forward measure Qr, is absolutely continuous with respect to
the forward measure Qr,, since for any A € Gr. such that Qp,(A) = 0 it
is also true that Qr,(A) = 0. More specifically, for any t € (0, T;] the event
A = {7 >t} has probability of 0 under Qr, and a strictly positive probability
under Q7.

Furthermore, the probability measure Qr, corresponds to the choice of
the process B°(-,T;) as a discounting factor or numéraire. It should however
be noted that under Qr, the value of BY(-,T;) is not strictly positive with
probability 1. Because of this the two probability measures are Q7 and @Ti
are not mutually equivalent.

Schonbucher (1999) refers to Qr, as the Tj-survival measure since it only
assigns probabilities to survival events. Again for any A € Gr, the density
yields

Qr.(4) = Qr(AnT>T))
QTi (T > TZ)

= Qr(Alr > T)),
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So the probability of A conditional on survival up to time 7}, under the measure
Qr,, is equivalent to the probability of A under the Tj-survival measure Qr, i.e
the defaultable forward measure Qr, can be regarded as the forward measure
Qr, conditioned on survival up to time 7;.
The Radon-Nikodym can now be restricted to the o-field G,. Since the
discounted process
B(t, T3)
B(t,T)

is a G-martingale under Qr, it follows that

= QTi<T > Ti‘gt)

Q| _ ., B(0,T)B(tT)

Qr |, 7B(0,T) Bt T)
_q, . BOT)Qn(r > T)|F)
B0, T) Qr(r > 1| F)

_ Igsy Qu(r > TR
D(0,T;) Qp(r > t|F)

Similarly, a restriction to the o-field F; yields

_ B(0,T)) :
. = m@Ti(T > Ti|F).

dQr,
dQr,

The restricted defualtable forward measure is defined as follows:

Definition 4.14. The restricted defaultable forward (martingale) measure Py, ,
for the settlement date T; defined on (2, Fr,) is given by

- == ; > 7_; Fr, )

where Pr, denotes the restriction of Qr, to the o-field Fr,.

More explicitly, this density can be expressed as

)
)
0,7) 1 1
0.T) 11 . (4.5.1)

B
- B(O,T; oo LA 0 H (T, Th)
Since HZ;% m is a Pp-martingale, the restriction to Fr, yiels
dPr,|  B(0,T) ﬁ 1 (45.2)
dPr.| — B(0,T;) 111+ 6,H(t T) o

Fi k=0
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The standard Brownian motion and compensator of y with respect to Py, are
respectively given by (Kluge, 2005)

t t—1

Bl .= Bl +/ > Yl Ve (s, Tods (4.5.3)
0

=1
and

i1 -
p"i(ds, dz) = [ (1 YL (el 1>> vT(ds, dz) := F{ (dz)ds.
=1

(4.5.4)

Just as in the default-free model a connection between restricted defaultable
forward measures for different settlement dates can be made. This is given in
the following lemma:

Lemma 4.15. (Kluge, 2005) The defaultable LIBOR rate (f/(t,Ti))(KKT_ is
a Pr,,,-martingale and

P,
dPr,,, |,

_ B(0,T;41)
" B(0,T))

(1+6,L(t,T;)) for 0<t<T,

Proof. From equation (4.2.2) it follows that

(1+ 6L T)) = (1+6H®,T)) (1 + 6L T))

- H (1+ 6 H (¢, 7)) (1+ (7)) [T (U + 0eH (1, T)

k=0 k=0
Applying equations (3.4.3) and (4.5.2) yields:

B(O, TiJrl) dPTi+1 B(07 TZ) dPTi B(O, Tl) dPTz

(1+6L(tT)) =

B(O, E+1) d]pTi-o—l ]-'t. B(O, j_zi+1) d]P)TZ,Jrl .7-',5. B(O, T;) dIEDTZ Fi
_ B(0,T;) dPy
B(0,T;41) dPr,, , 7
so that I _( )
IIEDT- Oa 7ﬁ'i—i—l H
= = ———— (14 0;L(t,T;
d]P)TiJrl Fi B(O,T;) ( ( ))
as required. O

As mentioned at the start of this section, defaultable forward measures
can be used for pricing of defaultable contingent claims. For ¢ € [0, T;], the
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time-t value of a defaultable claim with payoff X at settlement date T; and
zero recovery at default is given by

7'(';5X = ﬂ{T>t}B(t, E)E@Ti [X1{7->T¢}

G

In the following proposition, the general case when the payoff X is Gr.-measurable
as well as the more common case of X being Fr,-measurable is taken into con-
sideration.

Proposition 4.16. (Kluge, 2005) Assume that the promised payoff X is Gr,-
measurable and integrable with respect to Qr,. Then

T = Liany B(t, T))Eqy, [X1G,] = B°(t, T)Eq,, [X]G1].
If X is Fr,-measurable, then
w0 = Ly B(t, Th)Ep,, [X|F] = B(t, T)Es,, [X|F].

Additional details of proof can be found in Bielecki and Rutkowski (2004).

4.6 Recovery Rules and Bond Prices

Thus far the evolution of defaultable zero-coupon bonds with zero recovery
has been specified. However, in reality all defaultable bonds have positive
recovery. To maintain consistency with real markets, recovery rules must be
included in the model framework. Detailed explanations of these rules can
be found in Bielecki and Rutkowski (2004), Schénbucher (1999) and Duffie
and Singleton (1999) to whom this section is in reference to. Typically there
are three approaches (assumptions) regarding the inclusion of recovery in the
modelling of default:

1. Fractional Recovery of Par Value. The owner (creditor) receives a frac-
tion of the promised par (face) value immediately upon default. The
advantage of this approach is that real-world recovery procedures are
closely adhered to.

2. Fractional Recovery of Treasury Value. The creditor receives a fixed
fraction of par of an equivalent default-free bond with the same maturity.
The recovery is paid at the maturity date of the original defaultable
bond. If the bond is coupon paying, the recovery upon default includes
a fraction of the promised post-default coupon payment.

3. Fractional Recovery of Market Value. The creditor receives a fraction
of the pre-default vaue of the defaulted bond. The expected recovery at
time s, in the event of default at time s+1, is a fraction of the risk-neutral
expected survival-contingent market value at time s + 1.
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When modelling default risk via the intensity-based approach the recovery
upon default is specified in terms of recovery of defaultable zero-coupon bonds.
For defaultable zero-coupon bonds the fractional recovery of treasury value
approach is adopted, i.e the creditor receives a specific amount 7 at maturity
T. The value of this bond is then given by

BF(T, T) L= ]1{T>T} + Wﬂ{ng}
=714+ (1 = m) 1>y

Hence the bond value at time ¢ < 7T is
B™(t,T) =wB(t,T)+ (1 — m) L=y B(t, T).

The recovery of these defaultable zero-coupon bonds are specified and then
used for the pricing of defaultable claims such as coupon bearing bonds. This is
done by decomposing the coupon bond into a series of defaulatble zero-coupon
bonds. The recovery of these defaultable coupon bonds can then be calculated
as the sum of all the recoveries of the individual zero-coupon bonds. Note
that the assumption that all the individual zero-coupon bonds have the same
recovery cannot be made. As stated in Schénbucher (1999), these modelling
approaches seem to ignore some fundamental differences between principal
and coupon claims in real-world proceedings: "The claim of a creditor on the
defaulted debtor’s assets is only determined by the outstanding principal and
accrued interest payments of the defaulted loan or bond, any future coupon
payments do not enter the consideration. The recovery rate gives the fraction
of this claim that is paid off after a default, and this payoff is measured in cash
and not in terms of default-free bonds or pre-default market value."

In a realistic recovery model, the decomposition of defaultable coupon
bonds should be into two classes of elementary claims: zero recovery claims
BO(t,T) and positive recovery claims BP(t,T) having recovery of 7 times the
face value at default. As in Schénbucher (1999) for coupon bearing bonds the
recovery of par value approach is applied.

Assumption 4.17 (Recovery of par). The recovery of a defaultable coupon
bearing bond that defaults in the time interval (Ty, Tyi1] is composed of the
recovery rate w times the sum of the notional of the bond and the accrued
interest over (Ty, Ty+1]. The accrued interest can be one of two types:

1. A constant (c) in the case of a fized-coupon bond with coupon c. The
recovery is then given by m(1 + ¢).

2. Ly in the case of a floating rate bond. The recovery is then given by

The recovery is paid in cash at time Ty, i.e at the next tenor date Tjyy if
default occurred in the period (T, Tjy1].
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Let ei () denote the time-t value of receiving an amount of X at time Ty
if and only if default has occurred in the preceding time interval (T}, T1]
(Kluge, 2005). It can further be assumed that claims of the same seniority
have the same recovery rate m at time of default. The following useful lemma
can now be stated:

Lemma 4.18. (Kluge, 2005) Let X be Fr, -measurable. Then, fort < T}
ex (t) = 1= B(t, Tior1)01Bp,, | [XH(Ti, Ti)| 7).
Using lemma 4.18, the price (at time 0) of a defaultable bond with positive

recovery and maturity date T} is

B*(0,T}) = B(0,T},) + 7 Y el (0).

i=1

The time-0 price of a defaultable fixed® coupon bond paying out m coupons

of value ¢ at times Tj, i, ..., m is defined by
m—1 m—1
Bfq(0;c,m) : = B(0,T,,)) + Y ¢B(0,Tes1) + Y 7(1+c)es(0)
k=0 k=0
m—1
= B0, T,) + S B(0, Thsy) (c + (1 + ¢)0Be, [H(Ty, Ty)] )
k=0

At the time of default there is a positive recovery m on the notional amount
(taken as 1) as well as on the next outstanding coupon payment c.

On the other hand for floating® coupon bonds the coupons themselves have
zero recovery. Instead recovery only depends on the notional amount and the
outstanding coupons at default. Once again using lemma 4.18 the price of a
defaultable floating coupon bond can be determined. In this case the bond is
assumed to pay an interest rate composed of the default-free LIBOR rate and
a constant spread x. Further assume that the bond has m coupon payments

®The interest payment remains the same (fixed) throughout the investment period. Pro-
vided that default does not take place, the bondholder knows with certainty how much in-
terest will be earned over the investment period. However there is some risk involved with
this type of bond. The investor faces the risk of the interest rate in market increasing at
any time. If this happens the value of the bond will decrease.

5These are bonds having variable interest rate payments. The interest rate is usually
composed of some benchmark rate, such as the LIBOR or federal funds rates, and some
constant spread. The choice of the bondholder determines how frequently the interest rate
will change during the investment period. This change can range from once a day, once
a month or even once a year. Unlike fixed coupon bonds, these bonds face very little risk
where changes in interest rates are concerned, but are rather subject to credit or default
risk.
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so that the holder is promised an amount of dy (L(T e Ti) + :r;) at the dates
Tyi1, k=0,...,m — 1. The time-0 price of this bond is then given by
m—1

Bgoating<0; xz, m) - = B<Oa Tm) + Z 5kB(O7 Tk-l—l) (l‘ + EPTkJrl [L(Tku Tk)})
k=0

—_

+ 3 71+ 042)ek (0) + el T (0))

3

B
Il
o

= B kz_: B 0 Tk+1 (J: + EPTkJrl [L<T/€7Tk)}

+7(1+ 6u2)Ee,  [H(Ti, Ti)]

+ Wék]EH}Tk_‘_l [H(Tk, TR)L(TR, Tk>]) .

To explicitly price such defaultable coupon bonds expressions for the expecta-
tions,

Ep,,  [H(T:,Ti)], Ee,  [L(Ty, Ti)] and Ep,  [H(Ty, To) L(Ty, Tr)]

Tr41

have to be derived. The reader is referred to Kluge (2005) for the mathematical
derivation thereof. The abbreviations
6 L(t,T) 6 H(t,T;)
1+ 6,L(t,T) 1+ 6H(t,T;)
are used. By approximating the stochastic terms V and Y, by their deter-

ministic initial values V; and Yy, Kluge (2005) derive expressions for
Es, [H(T}, T})] and EkaH |L(T}, Ty)] given by

Vf = and Yt’ =

Trt1

t k-1 kalc

Ep,  [H(Ti, Ti)] ~ H(0, Ti) exp </o v(s,T7), csA(s, Tk))ds
=1

Vk T .

+/0 /Rd Y_zk(€<)\( k)@ _ 1) <1 + )/Ok(e(v( Te),z) 1)>
k—1

X <H<1+Yl( ~(s,T1),x >_1)) —1> Tk+1<d8 d$)>

=1

EPTI@-}—I [L(Ty, T},)] ~ L(0,T},) exp < / (s, T1), csA(s, Ty))ds

_ (A (s,Tx),z)
/O /R (e 1)

k
X <H (1 + Y()l(e<7(5’m"”> — 1)) — 1> T+ (ds, dx))

=1
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where 77k+1 is an approximation for 77++1 given by

k
-1
ﬂTkJrl(ds, d&?) _ H(l + YOZ(€<'Y(S’Tl)’I> _ 1))

=1

n—1
X H (1 + Vg (ePTr) 1)>I/T*(d8, dx).

I=k+1

Kluge (2005) derive the expression for Esr, ., [H(Ty, T};) L(Ty, T},)] by using the

Py, ,-martingale property of the defaultable LIBOR rates L(-,T}) as well as
equation (4.2.2).
From equation (4.2.2)

Ee,, [1+0L(Tx, Th)] =g, {(1 + 0k L(Th, Ti)) (1 + 6, H (T3, Tk))} .

Using the martingale property

Es, [1+ 8 L(T}, Tk)] = 1+ 6L(0,T}),

e |

it follows that

1+ 0k L(0, Ty) = 1 + 0xBs,,  [L(Th, Tv)] + Eg,, , [H(Tk, Ti)]
+ (5k)2EPTk+1 [H (T}, T) L(T, T)

which yields

Bz, . [H (T TOL(TL T) = — (L0.T2) ~ Bs,, | [L(Ti, T0)
~ B, [H(T:, Tk)D.
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Chapter 5

Credit Derivatives Pricing

Credit derivatives refer to financial securities whose price is derived from the
value of an underlying (reference) asset which is subject to credit risk. Hence,
the payoff of the credit derivative depends on and is affected by the default of
the underlying asset. These underlying assets are usually loans or bonds and
could be either privately or governmentally owned.

The most prominent feature of credit derivatives is its use for the transfer,
management and hedging of credit risk. By transferring credit risk between
counter-parties involved, credit derivatives have proven to be useful as tools for
the control of credit exposure as well. Generally investors are concerned with
two components of risk; the market risk and the credit risk associated to the
specific asset. With credit derivatives investors can isolate the specific credit
risk from the total market risk. As stated in Duncan (2004), "The feature of
credit derivatives which distinguishes them from that of the more traditional
credit instruments, is the precision with which credit derivatives are able to
isolate and transfer the component parts of credit risk (i.e. default, spread,
credit migration, restructuring) from an underlying asset, as opposed to credit
risk in it’s entirety.”

There is wide selection of literature on the subject of credit derivatives,
the market and modelling thereof. These include texts such as Bielecki and
Rutkowski (2004), Schénbucher (2003), Das (1998) and O’Kane (2008) to
whom sections of this chapter is in reference to as well as Duncan (2004).
More specifically, Schoutens and Cariboni (2009) give an introduction to mod-
elling credit risk and pricing credit derivatives using Lévy processes.

In the following section the three categories of credit derivatives are more
formally introduced and described. This will enable the pricing of specific
credit derivatives under the Lévy-LIBOR setting which follows in the sub-
sequent sections of this chapter. The pricing of credit derivatives is done in
order to demonstrate the flexibility and applicability of the modelling approach
(Eberlein et al., 2006). The relative instruments will be defined in later sections
of the chapter wherein the pricing thereof is considered.

7
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5.1 Classification of Credit Derivatives

There is a large degree of flexibility in the specification of credit derivatives
which enable such agreements to be customized to specific needs of the in-
vestor. Financial derivatives are typically classified into three main types of
agreements: forwards, swaps and options. Similarly, credit derivatives can be
classified into the following three general categories:

1. Credit event instruments
2. Credit spread instruments
3. Total rate of return instruments

The payoffs of these instruments depend on the reference asset which could
be associated to either a single name or to multiple names. Furthermore, the
reference asset can be either a cash instrument (such as a bond or loan) or a
synthetic instrument (such as another credit derivative) (Duncan, 2004).

Credit event instruments refer to the class of derivatives directly linked to
a credit event. The payoff of these instruments depend on the occurrence of a
specific credit event, usually the default event. Hence they allow the transfer
and assumption of pure credit risk, in relation to the default event of the
nominated issuer (Das, 1998). This class of credit derivatives is also referred
to as credit default instruments since their primary purpose is the isolation of
the risk associated to the default of the credit obligation. Instruments within
this class of credit derivatives include credit default swaps (CDS’), credit linked
notes and credit debt obligations (CDO’s) amongst others.

Credit spread instruments refer to the class of derivatives linked to changes
in the credit quality of the underlying asset. The payoffs of such instruments
depend on the movement in credit spreads, regardless of the reason for the
movement (Duncan, 2004). As explained in Das (1998), here credit spreads?
represent the margin relative to the risk-free rate designed to compensate the
investor for the risk of default on the underlying security. These derivatives are
constructed from credit spread levels directly observed from the market. The
construction is done so that the credit spread risk can be easily transferred
between the parties involved. Credit derivatives within this class can further
be divided into two formats: credit spreads relative to the risk-free benchmark
(absolute spread) and credit spreads between two credit-sensitive assets (rel-
ative spread). Credit spread instruments enable the use of credit spreads to
trade, hedge or monetize expectations on future credit spreads (Das, 1998). In-
struments within this class of credit derivatives include credit spread forwards
(swaps) and credit spread options.

IThe credit spread is calculated as the difference between the yield of the security or
loan and the yield of the corresponding risk-free security.
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Total rate of return instruments refer to the class of instruments whose
payoft depend on both the behaviour of credit spreads and credit events such
as default. These derivatives enable the complete transfer of the risk associated
to an asset between two parties. As stated in Das (1998), the central concept
of these credit derivative structure is the replication of the total performance
of the credit asset (loan or bond). Instruments within this class of credit
derivatives include total rate of return swaps and asset swaps.

5.2 Pricing under the LLM

In this section valuation formula is derived for the some of the most popular
credit derivatives traded in the credit market. The valuation or pricing of
these derivatives is done under the modelling framework introduced in the
previous chapter(s). In order to do this the parties generally involved will be
referred to as parties A and B for convenience. Party A refers to the insured
counterparty, i.e the party who will receive a payment in the event of default.
Correspondingly, party B refers to the insurer, i.e the party who will have to
make the payment if default occurs. There is a third party involved, party C;
referred to as the reference entity. Party C is usually the issuer of the reference
credit or asset. The section is divided into two subsections; the one dealing
with credit sensitive swaps and the other with credit options. This section is
with reference to Kluge (2005) and Schonbucher (1999).

5.2.1 Credit Sensitive Swaps

Here specific swap contracts that are sensitive to credit events such as default
are considered for valuation under the defaultable Lévy-LIBOR framework.

Credit default swaps

Credit default swaps (CDS’) are the simplest and most popular credit deriva-
tives traded in the credit derivatives market. They are also the most liquid
single-name derivatives traded in the over-the-counter market and form one of
the main building blocks for other credit derivatives instruments. Hence they
take up a relatively large share of the market. A CDS can simply be defined
as a bilateral contract enabling the isolation and transfer of the credit risk of
a reference entity between the counterparties involved. These counterparties
are referred to as the protection buyer (payer) and protection seller (receiver).

As agreed to in the contract the protection buyer (A) makes predetermined
periodic payments to the protection seller (B) until either the maturity of the
contract period is reached or the credit event occurs (e.g the default of the ref-
erence asset). In exchange for these payments B promises a specified payment
to A if the default event occurs. As explained in O’Kane (2008) the protection
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buyer is insuring themselves against the credit risk assumed by the protection
seller. Hence CDS’ can be considered as some sort of debt insurance contract.

Generally CDS agreements differ in the specification of the credit event and
consequent default payment. For simplicity a standard default swap agreement
is considered. The contract matures at time 7,,. As in Schonbucher (1999),
two specific payments are involved:

1. The fee stream (payment): A pays an amount s at times T}, i = 0,...,m
or until the credit event (default) occurs.

2. The default payment: At the time of default B pays the difference be-
tween the post-default price of the reference asset (usually a bond issued
by C) and its par (face) value.

If default occurs in the period (Ty, Tj41] for k € {0,...m — 1}, A receives (at
time Tj1) the amount
l1—m(l+¢)

for a fixed coupon bond and
1 n<1 + 0k (L(Th, T) + a:))

in the case of a floating coupon bond.
The initial value of the fee stream is given by

Zm:BOTk 1)
k=1

The initial value of the default payment on a fixed coupon bond and a floating
coupon bond is given by

Xm: (1 —m(l+¢) )e,lg,l(O)

k=1
and
Z ((1 —7(1+ 5k_1x))e,16_1(0) — 7T5k—1€£gk_l7Tk_1)(0)>
k=1
respectively.

In order to price the CDS the default swap rate has to be determined. This
is the level s of the fee stream that would ensure a fair price of the swap. By
equating the fee payment and the default payment, s is determined for both
cases of fixed and floating bonds respectively as follows:

Ms

Sfixed Z B(0,Ty_1)
=1 =1

(1 —m(l+c )ei_l(O)
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which implies that

D he 1€k; 1(0)
Zk 1 (0 T 1)

Sfixed = <1 —m(l+ C))ei—l( )
where from lemma 4.18
er-1(0) = B(0, Ti)0c-1Ep,, [H(Tj—1, Ti1)]
so that
Sty (BO.T)0Es,, [H(Ti1, Ti)] )

Stixed = 1 — (1 + ¢)

Zk 1 (O T 1)
Similarly
SﬂoatingZB(O;Tk 1 Z ((1 7T 1+5k 11‘))6]1€ 1( )—W(Sk 16£(T’“ 1,1 1)(O)>
k=1 k=1

which implies that

Sfloating = (Z B(O,Tk—1)> Z ((1 —m(l+ 5k—19€)>€11c—1(0)

— 70, 1€£(Tk 1T 1)(0)>,

where again from lemma 4.18
er T 0y = B(0, T3)0k—1Esp,, [H(Ti—1, To—1) L(Ti—r, Ti—)]
so that

ting — 3 - B ) —
Sfloati g (ZB O Tk 1 ) Z ((1 7T 1 —|—(5k 133))3(0 Tk)ék 1
k=1

k=1
X Ep,, [H(T-1, Th-1)]

- 7T5k71B(O,Tk)5kf1

x Ep,, [H(Tio—1, Tim1) L(Ti1, Tkl)])

— (i B(0, Tk—l)) _ i (B(Q T5)0k—1 ((1 — (1 + 0p17))

X ]En‘»Tk [H(kala kal)] — Mp—1
x Bp,, [H(T—1, Ti1) L(Tj—1, Tk—l)])) :

The expectations, Eka [H(Tk,l, Tk,l)} and ]EH-J,Tk [H(Tk,l, Ty—1)L(Tk—1, Tk,l)}
can be obtained as in section 4.6 of the previous chapter.
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Total rate of return swaps

Total rate of return swaps are agreements in which the total return on some
reference asset is exchanged for other cash flows (periodic fixed or floating
payments). These contracts enable investors to obtain the cash flow benefits
of owning an asset without having to actually hold the physical asset on their
balance sheet (Duncan, 2004). Here the payer (A) owns the reference asset
and agrees to pay the total return of the asset on a notional amount to the
receiver (B) who in turn agrees to make periodic payments throughout the
contract period based on an agreed interest rate. As explained in Bielecki and
Rutkowski (2004), if default on the reference asset occurs during the contract
period, the contract terminates immediately. The receiver is however obli-
gated to cover the change in value of the underlying asset by paying the payer
the difference in price since inception of the contract. The receiver therefore
accepts the price risk, including credit risk, of the underlying reference asset.
In other words, a total rate of return swap has an embedded default swap in
which the payer is the protection buyer (Bielecki and Rutkowski, 2004).

Consider a total rate of return swap with maturity date 7,, and a fixed
coupon bond (issued by C) maturing at date T, (m < M < n) as the reference
asset. As in Kluge (2005) the payment streams involved are as follows:

1. If no default occurs in (Ty, Tyy1] for 0 < k < m — 1, then B receives an
amount of (¢ — s) at time Ty, where s is the fixed periodic payment of
B and c is the coupon of the underlying bond.

2. If default occurs in (T, Ti11] for 0 < k < m — 1, then B receives an
amount of w(1+ ¢) — BE_4(0,¢, M) at time Ty, ; and the swap contract
terminates.

3. If no default occurs until maturity 7},, B receives an amount of
BE oqa(Trr, e, M) — BE_4(0, ¢, M) at time Tyy.

Let v (m, M, c) denote the time-0 value of receiving an amount of
B a(Th, ¢, M) at time T, if no default has occurred until then. From the
point of view of the receiver (B), the initial value of the contract is given by

Ms

(c—s) Y B(0,Ty) + <7r(1+c) BﬁXGdOcM>Ze 4

k=1 k=1

The fixed periodic payment s, that renders a fair contract, i.e a contract with
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initial value of zero, can be determined as follows:

(c—s Z (0,Tx) = B(0, Tpn)BE,oq(0, ¢, M) — vf (m, M, c)
k=1

~ (140 - Bus(0,c.20) ek, (0)

k=1

so that
- -1
c— 5= (Z (0,T}) ) (B(O,Tm)nged(O,c, M) — vf(m, M,c)

~(r(14 ) - Bis(0.e00) Y ei-1<0>>’

k=1

which implies that

m -1
s=c— (Z (0, T} > (B(O,Tm)nged(O,c, M) —vf(m, M,c)

611:—1(0)) :

For the detailed calculation of vf(m, M, c) the reader is referred to Kluge
(2005).

+ <nged(0, e, M) —m(1+ c))

I17:

5.2.2 Credit Options

Credit options refer to the class of options on specific reference credit with
specified maturity. As in the case of classical option derivatives, there are
options to either buy (call options) or sell (put options) protection on the un-
derlying reference credit. The reference credit is usually a defaultable fixed or
floating rate bond, although the option could be on other credit derivatives
such as asset swaps and credit default swaps amongst others.

The mathematical derivation of pricing formula for these instruments are
rather complicated hence only the approximated prices will be noted in the
sections below. The reader is referred to Kluge (2005) for the detailed mathe-
matical derivation thereof.
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Credit spread options

Credit spread options are similar to credit spread forwards? except that they
have the additional feature of classical options contracts, i.e the holder has the
right but not the obligation to buy or sell the credit spread. Hence, as in Bi-
elecki and Rutkowski (2004), these credit spread instruments can be described
as option-like agreements having payoffs associated to the yield difference of
two credit-sensitive assets. Furthermore, credit spread options enable the iso-
lation of the firm-specific credit risk from that of the market. Regarding the
parties involved, the option seller faces unlimited loss and limited profit po-
tential whereas the opposite holds for the option buyer, i.e unlimited profit
potential and limited loss. Just as in the case of classical options contracts,
credit spread put and call options are dealt with. A credit spread put option
gives the holder the right to sell the credit spread and hence benefit from an
increase (widening) therein. Similarly, a credit spread call option gives the
holder the right to buy the credit spread and hence benefit from a decrease
(tightening) therein. As in Kluge (2005), the following definition is taken from
Schmid (2004):

Definition 5.1. A credit spread call (put) option with maturity T and strike
spread K on a defaultable bond B™(-,U) with maturity U > T gives the holder
the right to buy (sell) the defaultable bond at time T at a price that corresponds
to a yield spread of K above the yield of an otherwise identical non-defaultable
bond B(-,U).

Consider a call option with maturity date T; and strike spread K. Once the
underlying defaultable bond B™(-,T},,), i < m < n, defaults, the call option is
knocked out. The time-T; value of the option is given by

Jr
mGSO(K, T3y T) & = Loy (B (T, T) — € T WK B(T,, T,,) )
= Lory (7B(T, T) + (1 = ) B(T;, Ty)
+
— e TR BT, )

= ooy (L= mB(T, T) — (70K - 2) B(T, T,,))
The initial value of the credit spread option is then found to be
760 (K, Ty, Tow) = B(0, Tn) (g * #)(0),
with g(x) == ('U(x))+ and

m—1

v(x) == (1—m) — (e”Tm= MK 1) H (1 +8,H(0,T}) exp (— ! $+BZH)>.

Usum

l=i

2Credit spread forwards or swaps are credit-risk sensitive agreements in which one party
makes payments based on the yield to maturity of a specific issuer’s debt and the other
party makes payments based on comparable treasury yields (Bielecki and Rutkowski, 2004).
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The above pricing formula was obtained using similar arguments to that
of the derivation of the price of options on defaultable bonds, details of which
can be found in Kluge (2005) along with that of the pricing of credit default
swaptions.

5.3 Conclusion

Following the work of Eberlein and Ozkan (2005), a model for LIBOR rates
driven by a time-inhomogeneous Lévy process was presented. Motivation for
this lies in the fact that Lévy processes provide much more modelling flexibility
than the standard Brownian motion. As shown in Eberlein and Ozkan (2005),
the model can be constructed in various ways, however the focus herein lies
in the framework under which the LIBOR rates are modelled directly. This
setup constitutes the discrete-tenor Lévy-LIBOR model. As in the case of the
LIBOR forward rate model, the Lévy-LIBOR model can be constructed via
backward induction and is driven by a process that is generally only a Lévy
process under one forward measure. Positive rates are guaranteed since the LI-
BOR rates are represented as the ordinary exponential of a stochastic integral
driven by a Lévy process. Under certain specification of the drift term, the for-
ward LIBOR rate process is a martingale and so the arbitrage-free conditions
of the model are satisfied. Dynamics of the model with respect to the terminal
measure is also specified using the connections between the one forward mea-
sure and the terminal measure. Eberlein and Ozkan (2005) and Kluge (2005)
further present valuation formula for caps and floors under the Lévy-LIBOR
model setting. This was not included in the current presentation as the main
focus lies in the use of the model for the discussion of the defaulatble model.

The standard LIBOR market model was first extended to model default-
able rates by Schonbucher (1999). The main part of this thesis presentation
is the same extension of the LIBOR market model but of course once again
under a Lévy setting. This follows from the work of Eberlein et al. (2006) and
Kluge (2005). The approach of Schonbucher (1999) was followed where instead
of modelling the defaultabe rates directly, the forward default intensities are
modelled. However, the specification of the dynamics of the defaultable rates
as well as the forward default intensities depend directly on the specification of
the time of default. For this reason the dynamics of the defaultable rates were
specified by first giving a pre-specification for these dynamics and then con-
structing the time of default that imply the actual dynamics. It is then shown
that the canonical construction of the default time ensures that the modelled
dynamics of the default intensities do in fact correspond to those derived from
real-world probability measures. Once again, arbitrage-free conditions within
the model need to be satisfied. For this a specification of the drift term had
to be given just as in the case of the default free model. Both the defaultable



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CREDIT DERIVATIVES PRICING 86

and restricted defaultable measures were then introduced, again following the
work of Schénbucher (1999), in order to present pricing formula for contingent
claims. Recovery rules are included in the modelling framework to maintain
consistency with real markets. The recovery of par approach was used since
Eberlein et al. (2006) consider it as the most realistic to pricing recovery. The
price of a recovery unit payoff can then be given in terms of an expectation of
the default intensities under the forward survival measure.

As with any model, the flexibility and applicability of the model has to be
demonstrated. For this the pricing of credit derivatives was presented. Since
the main purpose of the model was to account for the credit risk in the market
it is only natural that the model be applied to the pricing of such financial
instruments. Using the valuation formula obtained from the defaultable mea-
sures, pricing formula for some of the more commonly used credit derivatives
such as credit sensitive swaps and options can be deduced. The pricing for-
mula presented are approximate pricing solutions since closed form solutions
do not exist.

In summary, the Lévy-LIBOR model with default risk has been constructed
and introduced by Kluge (2005) as a combination of Schénbucher (1999)’s ex-
tension: the LIBOR market model with default risk and Eberlein and Ozkan
(2005)’s generalization: the Lévy-LIBOR model. Due to the flexibility and ro-
bustness of the model’s driving Lévy process practitioners are better equipped
to account for the risk found in the market, particularly that of credit risk.

Further research relating to the topic at hand include extensions of the
model to rating classes. This has been introduced by Grbac (2009) and Eber-
lein and Grbac (2013). As stated in their paper, Eberlein and Grbac (2013)
develop an arbitrage-free model for defaultable forward Libor rates related
to defaultable bonds with credit ratings and call this the Rating Based Lévy-
LIBOR model. With this they also present a modelling framework for credit
migration of these bonds via a conditional Markov chain approach. Naturally,
valuation formula for commonly traded credit credit derivatives is presented.
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