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Abstract

Utilizing data from published tuberculosis (TB) genome-wide association studies (GWAS),

we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD)

with variants previously implicated in TB disease susceptibility. The probability that these

variants had a predicted regulatory function was estimated using RegulomeDB and

Ensembl’s Variant Effect Predictor. Subsequent genotyping of these 133 predicted regula-

tory polymorphisms was performed in 400 admixed South African TB cases and 366 healthy

controls in a population-based case-control association study to fine-map the causal variant.

We detected associations between tuberculosis susceptibility and six intronic polymor-

phisms located in MARCO, IFNGR2, ASHAS2, ACACA, NISCH and TLR10. Our post-

GWAS approach demonstrates the feasibility of combining multiple TB GWAS datasets with

linkage information to identify regulatory variants associated with this infectious disease.

Introduction

Genome-wide association studies (GWAS) have advanced the investigation of complex disease

genetics and identified thousands of disease-associated variants. This study design compares

allele frequencies of common genetic variants across the genome with phenotypic variation in

large cohorts of cases and controls. GWAS is based on the premise that causal variants will be

in linkage disequilibrium (LD) with the markers present on single nucleotide polymorphism

(SNP) arrays. Since 2005, when the first GWAS was published [1], associations have been

detected between numerous common genetic variants and several infectious diseases includ-

ing TB [2–5].

More than 10 GWAS investigating TB susceptibility have been published to date (Table 1).

These studies investigated the genetic factors associated with TB susceptibility in multiple pop-

ulations. Thye et al. (2010) performed the first GWAS on TB susceptibility in a case-control

cohort from Ghana and the Gambia and identified a region on chromosome 18q11.2 [6].

Within this region, there are numerous immune response genes such as cadherin 13 (CDH13),
zinc finger protein 229 (ZNF229) and exportin 1 (XPO1). A meta-analysis which included data
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from Ghana, the Gambia, Russia and Indonesia identified variants at 11p13 that were associ-

ated with TB susceptibility [7]. Chimusa et al. (2014) validated several of these loci and identi-

fied novel TB associations in a South African case-control cohort [8].

The majority of TB susceptibility variants previously identified are intronic (S1 Table)

and may therefore have some regulatory functions. It has recently become feasible to predict

regulatory effects of variants as computational tools, such as RegulomeDB [15] and Ensembl’s

Variant Effect Predictor, as well as information regarding the possible impact of regulatory

regions have become available [15, 16]. We therefore applied a post-GWAS approach to TB

susceptibility to identify possible variants contributing to disease development. A post-GWAS

approach entails the use of previous GWAS associations and linkage disequilibrium (LD) data

to identify further variants [and possibly the causative variant] that may be associated with the

phenotype. This methodology was developed as pinpointing the exact targets of these associa-

tions is a challenge [17]. The post-GWAS analysis has previously been used to identify novel

functional intronic variants associated with late-onset Alzheimer’s disease [18], cardiovascular

disease [19, 20] and human aging [21]. There has been no such analysis on susceptibility to

TB.

Here we combine TB GWAS and candidate gene association studies and incorporate

knowledge from RegulomeDB [15] and Ensembl’s Variant Effect Predictor to fine-map puta-

tive regulatory variants that may predispose an individual to progress to active TB.

Methods

Study population

Sample collection was approved by the Health Research Ethics Committee of the Faculty of

Health and Medical Sciences, Stellenbosch University (N95/072) and written informed con-

sent was obtained from all study participants. Recruitment was done in two suburbs in the

Western Cape, South Africa, where the incidence of TB is high (1340/100 000 population dur-

ing 1996), although the HIV incidence at the time of sampling was low (~2% of population)

[22]. Study participants self-identified as being from the South African Coloured (SAC) popu-

lation. The admixed SAC population has genetic contributions from five ancestral populations.

On average, Bantu-speaking populations contribute ~30%, the KhoeSan ~30%, Europeans 12–

18% South Asian ~15%, and East Asian<10% [23–25]. Genotyping of ancestry informative

markers (AIMS) was previously performed by Daya et al. (2013). These AIMS were used to

infer admixture proportions using ADMIXTURE [25,26].

All study participants were HIV negative and unrelated. TB cases were bacteriologically

confirmed (n = 400). The controls had no previous history of TB (n = 366) and were older

than 18 years. Tuberculin skin tests (TST) were not performed, as the majority of adults in

the communities are TST positive (> 80% of children older than 15 years) [27]. DNA was

extracted from blood using the Nucleon BACC3 Kit (Amersham Biosciences, Buckingham-

shire, UK).

Bioinformatics analysis

Data mining was done using the National Health Genome Research Institute’s–European Bio-

informatics Institute (NHGRI-EMBI) GWAS catalogue (http://www.ebi.ac.uk/gwas) and

PubMed (www.ncbi.nlm.nih.gov/pubmed). Only single nucleotide polymorphisms (SNPs)

that were reported to have p< 0.05 (after multiple testing correction during association tests)

were recorded.

LD was calculated using SNAP [28]. These comparisons were made against Hapmap3

(release 2) data from 4 populations that best represented the ancestral populations of the SAC;
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Table 1. Previous TB GWAS- results.

Population Variant/Gene Number of

Cases

Number of

Controls

Reference

Ghana rs4331426 (gene desert) 921 1740 [6]

The Gambia 1316 1382

Black, White, Asian from

USA

rs4893980 (PDE11A) 48 57 [9]

rs10488286 (KCND2)

rs2026414 (PCDH15)

rs10487416 (unknown gene)

Thai and Japanese Intergenic region between HSPEP1-MAFB 620 1524 [10]

Indonesia rs1418267 (TXNDC4) 108 115 [11]

rs2273061 (JAG1)

rs4461087 (DYNLRB2)

rs1051787 (EBF1)

rs10497744, rs1020941 (TMEFF2)

rs188872 (CCL17)

rs10245298 (HAUS6)

rs6985962 (PENK)

Ghana rs2057178 (WT1, intergenic ) 2127 5636 [7]

The Gambia 1207 1349

Russia 1025 983

Indonesia 4441 5874

South African Coloured rs2057178, rs11031728 (WT1, intergenic) 642 91 [8]

rs10916338,rs1925714 (RNF187)

rs6676375 (PLD5)

rs1075309 (SOX11)

rs958617 (CNOT6L)

rs1727757 (ZFPM2)

rs2505675 (LOC100508120)

rs1934954 (CYP2C8)

rs12283022,12294076 (DYNC2H1)

rs7105967,rs7947821 (DCUN1D5)

rs6538140 (E2F7)

rs1900442 (VWA8)

rs17175227 (SMOC1)

rs40363 (NAA60)

rs2837857 (DSCAM)

rs451390 (C2CD2)

rs3218255 (IL2RB)

Russia rs4733781,rs10956514,rs1017281,rs1469288, rs17285138,rs2033059,

rs12680942 (ASAP1)

5530 5607 [3]

Morocco rs358793 (Intergenic) 556 650 [12]

rs17590261 (Intergenic)

rs6786408 (FOXP1)

rs916943 (AGMO)

Uganda and Tanzania rs4921437 (IL-12) 267 314 [13]

Iceland rs557011, rs9271378 (located between HLADQA1 and HLA-DRB1) 8162 277643 [14]

rs9272785 (HLA-DQA1)

https://doi.org/10.1371/journal.pone.0174738.t001
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Europeans (CEU), Han Chinese (CHB), Luhya (LWK) and Gujarati Indians (GIH). The Khoe-

San ancestral component was represented by 2 6¼Khomani genomes. LD between the previ-

ously published SNPs and the ancestral genomes was calculated. An r2 threshold of 0.8 and a

window size of 500 kilobases were used as filters. A per population analysis was performed and

SNPs were pooled across populations.

The potential functional impact of these variants was ascertained by RegulomeDB [15] and

Ensembl’s Variant Effect Predictor [16]. Only variants that had a RegulomeDB score of 1

(highest likelihood of a potential functional impact due to the variant) were used in further

analysis due to the large number of variants. A summary of the filtering steps used are illus-

trated in Fig 1.

Genotyping

Genotyping was performed using the Agena MassARRAY1 system (Institute of Clinical

Molecular Biology, Christian-Albrechts-University, Kiel, Germany). A total number of 133

SNPs were genotyped in 400 cases and 366 controls. Only SNPs that passed quality control (as

determined by the confidence in allele call from the Typer Analyzer software package (version

4.0.20, Sequenom proprietary software)) were recorded.

Statistical analysis

The CaTS power calculator was used to perform power calculations [29]. The power to find a

true deviation from the null hypothesis was calculated using a disease allele frequency of 0.06

and an alpha level of 0.05 to determine an odds ratio of 2. A TB disease prevalence of 1% was

used in this analysis [30]. With the sample size available, the power to detect a deviation from

null was calculated to be 98%.

All statistical analyses were done in R (www.r-project.org) using functions from the base R

packages. The Fisher’s exact test was used to calculate Hardy-Weinberg Equilibrium (HWE)

p-values using functions from the genetics R package [31]. Logistic regression models were

used to analyse the genotypic and allelic models. All models were adjusted for the confounding

factors age, ancestry and sex by including these as covariates. The allelic models (recessive,

Fig 1. Bioinformatics pipeline for the prioritization of variants.

https://doi.org/10.1371/journal.pone.0174738.g001
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dominant and additive) were assessed and the model with the highest likelihood to correctly

model the data was chosen [32]. Our SNP selection strategy was based on a priori evidence

that the genes were associated with TB and Bonferroni corrections for multiple testing would

be too stringent, risking the rejection of important findings [33–35]. For this reason, the Šidák

step-up method was utilized [36]. Nominal p-values were corrected for multiple testing using

the multtest package in R [37] and the cut-off for significance was p = 0.05.

Results

Descriptive statistics were generated for the cases and controls (Table 2). Age, sex and Khoe-

San ancestry differed significantly between the cases and controls and were therefore all

adjusted for in the logistic regression models. Prioritization of SNPs for genotyping is shown

in Fig 1. Data mining identified 1800 SNPs that were found to be in LD (r2 > 0.8) with the 230

SNPs previously associated with TB. After filtering for RegulomeDB scores of 1 (S2 Table), 133

SNPs remained and were genotyped in 400 TB cases and 366 healthy controls. All SNPs were

in Hardy-Weinberg Equilibrium (p> 0.01). Of the 133 SNPs, 6 variants were found to be sta-

tistically significantly associated with TB susceptibility (p< 0.05) after adjusting for age, sex

and ancestry (Table 3), but not after correcting for multiple testing. In this study, we view the

methods of correction for multiple testing (including Bonferonni) to be too conservative for

this analysis; there is a priori evidence that variants in LD with those reported here were associ-

ated with TB susceptibility (Table 1) [33–35]. For completeness however, nominal p values

adjusted for multiple testing using the Šidák method are reported in Table 3 [36].

The SNPs rs7599352, rs2600665, rs829161 and rs12233670 showed statistically significant

associations with resistance to TB (nominal p = 0.021, 0.006, 0.037 and 0.022, respectively).

The minor homozygote (T/T) of rs7599352 was found in fewer cases than controls and the

genotype has an odds ratio of 0.416 (95% CI = 0.197–0.842). In contrast, rs2600665 followed

an additive model of penetrance and thus for every copy of the G allele, an individual is ~30%

less likely to progress to active disease. The ancestral homozygote (C/C) of rs829161 was found

in double the amount of cases than controls and was associated with susceptibility to TB (nom-

inal p = 0.037). This genotype has an odds ratio of 2.274 (95% CI = 1.13–4.73). The heterozy-

gote genotype of rs12233670 was associated with TB susceptibility and with an odds ratio of

0.699 (95% CI = 0.491–0.994). Two SNPs, namely rs4687614 and rs2284555, were associated

with increased susceptibility to TB. For every copy of the minor G allele of rs4687614, there

was an increase of ~50% in the likelihood of progressing to active TB (p = 0.040, 95% CI =

1.09–1.98). In addition, rs2284555 was associated with TB susceptibility (p = 0.043); both the

Table 2. Case-control sample characteristics and TB susceptibility modelling results.

TB Cases (n = 398) Controls (n = 360) p value*

Age (mean ± SD) 36.55 ± 11.26 30.69 ± 12.80 0.0001

Number of males (proportion) 211 (0.53) 111 (0.28) < 0.0001

KhoeSan [IQR] 0.30 [0.20–0.39] 0.27 [0.18–0.36] 0.0224

West African [IQR] 0.27 [0.16–0.39] 0.25 [0.15–0.37] 0.3187

European [IQR] 0.18 [0.08–0.28] 0.19 [0.12–0.28] 0.7804

South Asian [IQR] 0.12 [0.03–0.19] 0.14 [0.06–0.22] 0.2767

East Asian [IQR] 0.09 [0.03–0.16] 0.10 [0.05–0.17] NAa

a The East Asian component was not added to the model to avoid linear dependency.

SD standard deviation, IQR, interquartile range

*Statistic is an indication of the significance of the association between each factors with TB after adjusting for the other factors.

https://doi.org/10.1371/journal.pone.0174738.t002
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Table 3. Association results of statistically significant regulatory SNPs.

rsID Controls HWEc p-

val

TB Cases HWE p-

val

Association p-val

Adjustedd
Model of

penetrance

OR 2.5%

CI

97.5%

CI

Šidák p-

valCounta Propb Count Prop

rs2284555

(IFNGR2)

352 0.457 390 0.208

G/G 37 0.11 25 0.06 0.043 0.997

A/G 145 0.41 168 0.43 Genotypic 2.146 1.174 3.988

A/A 170 0.48 197 0.51 Genotypic 2.012 1.108 3.716

G 219 0.31 218 0.28

A 485 0.69 562 0.72 0.179

rs829161

(ACACA)

348 0.539 387 0.015

T/T 208 0.6 236 0.61 0.037 0.990

T/C 125 0.36 121 0.31

C/C 15 0.04 30 0.08 Genotypic 2.274 1.133 4.727

T 541 0.78 593 0.77 0.292

C 155 0.22 181 0.23

rs7599352

(MARCO)

327 0.034 353 0.438

C/C 183 0.56 213 0.6 0.021 0.941

C/T 113 0.35 126 0.36

T/T 31 0.09 14 0.04 Genotypic 0.416 0.197 0.842

C 479 0.73 552 0.78 0.244

T 175 0.27 154 0.22

rs4687614

(NISCH)

355 1 391 0.733

G/G 7 0.02 14 0.04 0.040

A/G 87 0.25 114 0.29

A/A 261 0.74 263 0.67

G 101 0.14 142 0.18

A 609 0.86 640 0.82 0.012 Additive 1.464 1.089 1.980 0.799

rs2600665

(AHSA2)

350 0.811 383 0.691

T/T 156 0.45 207 0.54 0.019

T/G 154 0.44 152 0.4

G/G 40 0.11 24 0.06

T 466 0.67 566 0.74 0.006 Additive 0.714 0.559 0.910 0.551

G 234 0.33 200 0.26

rs12233670

(TLR10/1)

352 0.194 390 0.023

T/T 105 0.3 136 0.022

T/C 186 0.53 169 Genotypic 0.699 0.491 0.994 0.948

C/C 61 0.17 85

T 396 0.56 441 0.815

(Continued )
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minor homozygote and heterozygote were associated with the phenotype. The minor homozy-

gote has an odds ratio of 2.012 (95% CI = 1.108–3.716) whereas the heterozygote yielded an

odds ratio of 2.146 (95% CI = 1.174–3.988).

Discussion

The genetic factors influencing TB susceptibility have been under investigation for many

years, using various study designs, with limited success (S1 Table). This is due to a number of

factors, including lack of power, the inability to identify causative variants and the complexity

of admixed populations. We conducted a post-GWAS analysis of predicted functional variants

and investigated their associations with TB susceptibility in the admixed SAC population. This

resulted in the identification of 3 variants associated with an increased risk of progressing to

active TB and another 3 variants associated with resistance to active TB.

MARCO (Macrophage Receptor With Collagenous Structure) is a member of the class A

scavenger receptor family and has been implicated in innate antimicrobial activity, more spe-

cifically TB susceptibility, in the Gambian and Chinese Han populations [38, 39]. Statistically

significant variants from Songane et al. (2012) and Bowdish et al. (2013) were used as query

SNPs in the study presented here [39, 40]. The rs7599352 variant has not directly been impli-

cated in TB susceptibility previously, but other intronic variants have been shown to have an

effect on MARCO gene expression [38, 39]. This implies that intronic variants within this gene

could have a greater functional effect than exonic variants.

Toll-like receptors (TLRs) are responsible for pathogen recognition and the resulting acti-

vation of an innate immune response. TLR genes, including TLR2, TLR4 and TLR8, are known

to contribute to TB susceptibility [41] and numerous variants within TLR1 and TLR10 have

also been associated with TB susceptibility in previous studies [42, 43]. We provide evidence

for a novel SNP (rs12233670) associated with a decrease in risk of TB susceptibility. This SNP

was in LD with statistically significant SNPs reported in Ma et al. (2007) and Uciechowski

et al. (2011) [42, 44].

Due to the long-range effects of LD with variants in Dual Specificity Phosphatase 14

(DUSP14) and XPO1 (S1 Table), two novel genes were associated with increased TB suscepti-

bility and increased resistance, namely, Acetyl-CoA Carboxylase Alpha (ACACA) and Activa-

tor Of Heat Shock 90kDa Protein ATPase Homolog 2 (ASHA2) respectively. An intronic

variant (rs829161) in the ACACA gene was highly associated with the susceptibility phenotype

with an odds ratio suggesting more than a 2.2 times increased chance of the disease progress-

ing to an active state than remaining latent. The ACACA gene is involved in fatty acid carbox-

ylation and in turn mediates the removal of cholesterol. Cholesterol is used as an energy

source for Mycobacterium tuberculosis (M.tb) therefore any disruption of the level of the fatty

acid may influence the dormancy of the bacteria [45]. A possible novel resistance pathway was

Table 3. (Continued)

rsID Controls HWEc p-

val

TB Cases HWE p-

val

Association p-val

Adjustedd
Model of

penetrance

OR 2.5%

CI

97.5%

CI

Šidák p-

valCounta Propb Count Prop

C 308 0.44 339

a Allelic and genotype counts
b Allelic and genotype proportions
c Statistic for the HWE exact test. This was stratified by TB susceptibility status.
d Statistic to indicate the association between genotype and TB susceptibility after adjusting for age, gender and ancestry. The allelic effect was modelled

using the additive model.

https://doi.org/10.1371/journal.pone.0174738.t003
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identified in this study, involving heat shock protein (HSP) activation and resulting ATPase

activity by ASHA2. In this case the variant (rs260065) is located in the 5’-untranslated region

and we therefore hypothesize that it has a profound regulatory function, potentially affecting

gene expression. HSPs play a pivotal role in protein folding, stabilization and degradation,

and are targets of chemotherapy in cancer patients as HSP modulates tumour cell apoptosis

through protein kinase B, tumour necrosis factor receptor and NF-kB functioning. Due to the

interaction with these known immune response genes, we hypothesize that ASHA2 could be

involved in TB immune responses.

A variant (rs4687614) in the Nischarin (NISCH) gene was found to be associated with an

increase in TB susceptibility. NISCH encodes the Nischarin protein. Nischarin has recently

been identified as a dual effector that interacts with members of the Rac and Rab GTPase fami-

lies [46]. The regulation of GTPases by Nischarin may regulate the maturation and acidifica-

tion of vacuoles that are associated with phagocytosis of bacterial pathogens [46]. The odds

ratio associated with the variant indicated an increased risk of progressing to active TB. An

association was also found for a polymorphism in the Interferon-gamma Receptor 2 (IFNGR2)
gene. An intronic variant (rs2284555) yielded a high odds ratio of 2.01 for the A/A genotype

and 2.15 for the A/G genotype. IFNGR2 has been previously implicated in various immunode-

ficiencies [47–50]. This study reiterates the role of IFNGR2 in antibacterial immune response

and provides a novel causative SNP for TB.

Only 6 out of a total of 133 SNPs genotyped produced statistically significant associations

with TB susceptibility. The predicted regulatory SNPs genotyped in our study were in strong

LD with variants previously associated with TB in other populations. A comparison between

the p-values of the original GWAS SNPs and the six variants identified here, shows that the p-

values are lower in the original GWAS data. This could be an artefact due to the low sample

size in our study, an increase in error variation or the moderate to low effect sizes associated

with the six variants [51]. Susceptibility to TB is a complex disease and it is possible that

numerous small/moderate effect variants at a frequency less than 0.05 will play a role in this

phenotype [52]. It is also possible that some of the variants identified by previous studies are

population-specific susceptibility variants and are therefore unlikely to be involved in disease

predisposition in the SAC population. One might have expected many more associations due

to the strong LD between SNPs genotyped in our study and variants previously identified as

being associated with TB. The lack of associations suggest that these SNPs are not the causative

SNPs that led to significant results in previous studies and that other SNPs in LD with the

marker variants may play a role. Alternatively, the variants have smaller effect sizes than we

could detect with our sample size. However, the power to detect a common variant with an

odds ratio of 2 was 98%. Validation of these results in other case-control cohorts as well as the

inclusion of recent GWAS results [5,12,14] is desirable, but complicated by the lack of available

TB case-control cohorts with a similar genetic structure to that of the SAC population. In addi-

tion, since there was a priori evidence for an association, replication is arguably not necessary

as this study attempted to fine-map the potential causal variants in loci identified by previous

TB GWAS.

Age, KhoeSan ancestry and sex differed significantly between the TB cases and controls in

this study, but were adjusted for in all analyses. We have previously shown that KhoeSan

ancestry increases the risk of active TB [32] and old age is also a known TB risk factor [53].

Based on our experience in these communities, healthy males are less likely to attend clinics,

while healthy females will accompany sick children and are therefore more likely to participate

as controls. However, in most countries the TB notification rate is twice as high in males as in

females [54] and evidence suggests that the X chromosome does play a role in TB susceptibility

[55]. An investigation of sib-pair families from The Gambia indicated that chromosome Xq
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might be involved in TB susceptibility [55]. Additionally, sex-specific TB associations for

TLR8, an X-linked gene, has been identified in several populations [56–58], including the SAC

population [59]. These loci could contribute to the observed male sex-bias in this population,

but will require further investigation.

Subsequent to the analysis presented here, Chimusa et al. (2016) published a post-GWAS

methodology utilizing LD information and the human protein–protein interaction network,

which identified novel pathways associated with breast cancer [52]. The study by Chimusa

et al. (2016) reiterates the need for alternative methodologies in the identification of regulatory

variants associated with a phenotype.

In summary, the six predicted functional variants associated with TB susceptibility in the

SAC population show that fine mapping of GWAS results can reveal candidate causal variants.

Functional analyses are now required to elucidate the molecular mechanisms by which these

polymorphisms may act, while well-powered TB GWAS and meta-analyses may continue to

identify additional causal variants for TB susceptibility.
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