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Summary 

 

Oesophageal cancer is a disease characterised by a disproportionate presentation in certain 

ethnic groups, with squamous cell carcinoma (SCC) occuring more often in Blacks and 

adenocarcinoma (ADC) being more prevalent in Caucasians.  Several factors have been 

attributed to the development of OC, including an excess of iron (leading to enhanced tumour 

growth), oesophageal injury and chronic inflammation. 

 

The main aim of this study was to establish the mutation spectrum of six genes (including 

HFE, HMOX1, SLC40A1, HAMP, CYBRD1 and HJV) involved in iron metabolism, in the 

Black South African OC population.  The patient cohort comprised of 50 (25 male and 25 

female) unrelated patients presenting with SCC of the oesophagus, with the control group 

consisting of 50 unrelated, healthy population-matched individuals. The mutation detection 

techniques employed included polymerase chain reaction (PCR) amplification, heteroduplex 

single-stranded conformational polymorphism (HEX-SSCP) analysis, restriction fragment 

length polymorphism (RFLP) analysis and bi-directional semi-automated DNA sequencing 

analysis of variants identified.   

 

Twenty-one previously described and thirteen novel variants (HFE: Y342; HMOX1: G255R, 

R262H, R262C; SLC40A1: IVS5-27A→C, L378, 3’UTR+284C→T, 3’UTR+289G→A, 

3’UTR+289G→T; CYBRD1: L17, P195; HJV: 5’UTR-1401T→C, 3’UTR+47A→G) were 

identified in this study.  No statistically significant associations were observed for the variants 

identified.   

 



Oesophageal cancer is insidious in onset, because symptoms present late in the development 

process.  After diagnosis of these symptoms, treatment is highly ineffective.  The only hope 

for effective intervention is early detection and subsequent treatment.  This can only be 

achieved by the establishment of an effective screening programme in high incidence areas.  

This is the first study signifying the potential contribution of iron dysregulation to OC 

susceptibility in the Black South African population, thus possibly setting the foundation for 

the aforementioned screening programme. 

 



Opsomming 

 

Oesofageale kanker (OK) is ‘n siekte wat gekenmerk word deur ‘n disproporsionele 

verteenwoordiging in sekere etniese groepe, met plaveisel-selkarsinoom (SSC) wat meer 

gereeld voorkom in Swart populasies en adenokarsinoom (ADC) wat oorwegend in 

Kaukasiërs voorkom.  ‘n Aantal faktore is al toegeskryf aan die ontwikkeling van OK, 

insluitend ‘n oormaat yster (wat lei tot verhoogde gewasgroei), oesofageale besering en 

kroniese ontsteking. 

 

Die hoofdoel van hierdie studie was die bepaling van die mutasie spektrum van ses gene 

(insluitend HFE, HMOX1, SLC40A1, HAMP, CYBRD1 en HJV) betrokke by 

ystermetabolisme, in die Swart Suid-Afrikaanse OK populasie.  Die pasiënt groep het bestaan 

uit 50 (25 manlike en 25 vroulike) onverwante pasiënte by wie SCC van die oesofagus 

voorgekom het, terwyl die kontrole groep bestaan het uit 50 onverwante, gesonde bevolkings-

gelyke individue.  Die mutasie opsporingstegnieke wat gebruik is, het polimerase 

kettingreaksie (PKR) amplifisering, heterodupleks enkelstring konformasie polimorfisme 

(HEX-SSCP) analise, restriksie fragment lengte polimorfisme (RFLP) analise en tweerigting 

semi-geoutomatiseerde DNS volgorde-bepalingsanalise van die geïdentifiseerde variante 

ingesluit.   

 

Een-en-twintig reeds beskryfde en dertien nuwe variante (HFE: Y342; HMOX1: G255R, 

R262H, R262C; SLC40A1: IVS5-27A→C, L378, 3’UTR+284C→T, 3’UTR+289G→A, 

3’UTR+289G→T; CYBRD1: L17, P195; HJV: 5’UTR-1401T→C, 3’UTR+47A→G) is in 

hierdie studie geïdentifiseer.  Geen statisties betekenisvolle assosiasie met die geïdentifiseerde 

variante is waargeneem nie.   



Oesofageale kanker is gevaarlik in aanvangs, omdat die simptome laat in die 

ontwikkelingsproses uitgebeeld word.  Na diagnose van hierdie simptome, is behandeling 

hoogs oneffektief.  Die enigste hoop vir effektiewe ingryping is vroegtydige opsporing en die 

gevolglike behandeling, wat slegs bereik word deur die opstelling van ‘n doeltreffende 

siftingsprogram in hoë risiko areas.  Hierdie is die eerste studie wat die moontlike bydrae van 

yster disregulasie tot OK vatbaarheid in die Swart Suid-Afrikaanse populasie aandui, en 

sodoende, bied dit moontlik die grondslag vir die voorafgenoemde siftingsprogram. 
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Chapter 1: Literature Review 

1. Literature Review 

 

1.1. Oesophageal Cancer (OC) 

 

1.1.1 Disease definition and classification 

 

OC is a malignancy that develops in tissue lining the hollow, muscular canal along which 

food and liquids travel from the throat to the stomach.  It originates in the inner layers of the 

lining of the oesophagus, growing outward.  This disease can be classified into two major 

histological subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC).  SCC and 

ADC have dissimilar biological and epidemiological profiles and subsequently, should be 

regarded as separate disease entities.  SCC primarily occurs in the middle third of the 

oesophagus and ADC predominantly occurs in the lower third of the oesophagus (Yang and 

Davis 1988). 

 

The less common histological types include adenoid cystic cancer, adenosquamous cancer, as 

well as primary malignant melanoma, mucoepidermoid and undifferentiated cancer (Koshy et 

al. 2004).  OC is known for its aggressive clinical behaviour and poor prognosis.  It develops 

in mid to late adulthood and is rarely seen in individuals younger than 25.  The mortality rates 

show a steady increase with age (Blot 1994).  
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1.1.2 Presentation and progression 

 

The majority of OC patients present with symptoms such as dysphagia and extreme weight 

loss.  Weight loss can be considered an independent indicator of poor prognosis, if a loss of 

more than 10% is detected in a patient’s body mass (Fein et al. 1985).  The less common 

symptoms of OC are odynophagia (pain in swallowing foods and liquids), hoarseness, 

melena, cachexia and retrosternal pain (Ojala et al. 1982).  Constant heartburn, nausea and 

vomiting should also be considered indicators of oesophageal cancer. 

 

OC tends to present at an advanced stage.  The majority of individuals that have developed 

OC do not exhibit the symptoms until the tumour is large enough to cause mechanical 

obstruction.  It has been found that more than 50% of patients present with either unresectable 

tumours or radiographically visible metastases when diagnosed with oesophageal cancer 

(Enzinger and Mayer 2003).  Generally, with the development of cancer, approximately 21% 

of submucosal cancers and up to 60% of cancers that invade the muscles may be associated 

with the spreading to the lymph nodes (Siewert et al. 2001, Collard 2001).  

 

 SCC spreads in a linear submucosal manner, while ADC spreads by transversely penetrating 

the oesophageal wall.  Autopsy specimens have indicated the erratic manner in which OC 

spreads through the extensive lymphatic channels (Hosch et al. 2001).  ADC develops from 

gastro-oesophageal reflux disease (GORD) through a sequence of events.  This includes the 

development of inflammation-stimulated hyperplasia and metaplasia, followed by multifocal 

dysplasia, carcinoma in situ and invasive adenocarcinoma. 
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1.1.3 Demographics and epidemiology of oesophageal cancer 

 

Oesophageal cancer displays a striking geographic variation in incidence, occurring at high 

frequencies in certain defined global regions.  The highest risk areas of the world are the so-

called “Asian oesophageal cancer belt” (Eastern Turkey, Iran, Iraq, China, Hong Kong, 

Japan), France, South and East Africa and eastern South America (Blot 1994, Parkin et al. 

2005).  In South Africa, the highest OC incidence has been found in the Transkei region. 

 

 The incidence of SCC, the most common subtype of oesophageal cancer (Vizcaino et al. 

2002), has remained relatively stable over the last few decades, while the incidence of ADC 

has displayed an increase.  A three- to fourfold greater risk exists for males to develop SCC 

and males have a seven- to tenfold higher risk than females for developing ADC (Pickens and 

Orringer 2003). 

 

SCC, occurring more frequently in Blacks than Caucasians, is considered the leading cause of 

cancer death among males of the Black South African population (age standardised incidence 

rate [ASIR] 13.6/100,000) and the fourth most common cancer among Coloured males of 

South Africa (Coloured referring to individuals of mixed ancestry; ASIR 7.7/100,000).  

Among Black females, SCC is the third most common cancer (ASIR 5.8/100,000) (Sitas et al. 

1998).  ADC is more prevalent in Caucasians (Blot 1994).  These two subtypes display 

distinct aetiological and pathological characteristics (Kuwano et al. 2005).  These 

epidemiological differences could potentially play a vital role in understanding the aetiology 

and pathogenesis of oesophageal cancer (Pickens and Orringer 2003). 
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1.1.4 Factors involved in OC pathogenesis 

 

The geographic and ethnic variation in incidence observed in the epidemiology of OC could 

be due to the degree of exposure to certain environmental factors, the type of exogenous 

factors and the genetic susceptibility of populations in these regions. 

 

1.1.4.1 Environmental factors 

 

Various environmental factors have been implicated as risk factors of OC.  These elements 

render the oesophageal mucosa more susceptible to carcinogenic injury, subsequently leading 

to oesophageal cancer. 

 

1.1.4.1.1 Alcohol consumption and tobacco use 

 

In Western countries, alcohol consumption and cigarette smoking are regarded as the main 

causes of SCC (IARC 1986, IARC 1988).  Due to the various carcinogens present in tobacco 

tar and cigarette smoke, tobacco use has been implicated as a major risk factor for OC 

(Auerbach et al. 1965).  Studies conducted in South Africa found the majority of SCC patients 

were smokers and consumed alcoholic beverages, specifically home-brewed beer produced 

from maize (Segal et al. 1988, Sumeruk et al. 1992).  The homegrown tobacco used was 

either hand-rolled into cigarettes or chewed by the patients.   

 

Segal et al. (1988) have shown that in the South African population, 75% of OC patients were 

smokers and 80% of patients consumed traditional home-brewed and commercial African 

beer.  Cigarette smokers have a fivefold higher risk of developing OC than non-smokers and 
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the increased consumption of alcohol among smokers further increases the risk of OC, in a 

synergistic manner (Blot 1994).  However, although considered as significant risk factors in 

countries such as South Africa, tobacco and alcohol consumption are not implicated in the 

aetiology of OC in other high-risk areas such as China and Iran.  This phenomenon suggests 

the involvement of other major risk factors in OC development.   

 

1.1.4.1.2 Nutrition 

 

Deficiency of various micronutrients such as riboflavin, zinc and iron occur in diets mainly 

based on cereal.  Groenewald et al. (1981) observed that the diets of children and nursing 

mothers, from areas of moderate to high OC incidence in Transkei, were deficient in these 

micronutrients.   

 

A common risk factor of OC is the mycotoxin fumonisins, from the fungus Fusarium 

verticillioides, formerly known as Fusarium moniliforme (Marasas et al. 1988).  These 

mycotoxins occur on corn that is intended for human consumption.  A correlation has been 

observed between the incidence of fumonisins in home-grown corn with the incidence of OC 

in the Transkei region (Marasas et al. 1988).  It is proposed that the mycotoxins indirectly 

influence DNA synthesis due to its influence on the normal sphingolipid metabolism in the 

cell (Seegers et al. 2000).  N-nitrosamines (also found in food infected with fungi) have also 

been found to be carcinogenic for the oesophagus (Preussmann 1984).  Pickled vegetables and 

foods that may become mouldy or fermented have also been associated with an increased risk 

of OC in a study conducted in Hong Kong (Cheng et al. 1992).   
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Plummer-Vinson syndrome is a disease related to iron and/or riboflavin deficiencies 

(Anthony et al. 1999).  Patients with Plummer-Vinson syndrome display symptoms that 

include upper oesophageal strictures, glossitis and dysphagia.  A high prevalence of OC has 

been observed in patients suffering from Plummer-Vinson syndrome.   

 

1.1.4.1.3 Viral pathogenesis 

 

Since 1982, when the human papilloma virus (HPV) was first implicated in the pathogenesis 

of oesophageal cancer (Syrjanen 1982), the presence of HPV in patients has been tested and 

confirmed by various methods including immunohistochemistry and polymerase chain 

reaction (PCR) amplification.  In areas of low risk for OC and HPV infection (such as the 

USA and various European countries) not many cases of HPV were detected, but the virus 

was frequently identified in OC patients from high-risk countries such as South Africa, Japan 

and China (Lam 2000, Matsha et al. 2002).  

 

Although HPV is not associated with the occurrence of OC in low risk areas such as the 

United Kingdom and Italy (Morgan et al. 1997, Rugge et al. 1997), a notably high prevalence 

(46%) of HPV infections was found in SCC patients from the Transkei region of South Africa 

(Matsha et al. 2002).  The HPV virus is clearly an important factor in the pathogenesis of 

SCC, but due to the low overall incidence it is suggested that HPV may have a synergistic 

effect with other risk factors in the pathogenesis of OC (Lam 2000). 
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1.1.4.1.4 Gastro-oesophageal reflux and Barrett’s oesophagus 

 

Gastro-oesophageal reflux is the largest risk factor of adenocarcinoma and is characterised by 

the movement of the stomach contents into the oesophagus (Largergren et al. 1999).  The 

factors contributing to reflux include oesophageal ulceration, achalasia and hiatus hernia.  The 

development of Barrett’s oesophagus accounts for the occurrence of ADC in the lower third 

of the oesophagus and the gastro-oesophageal junction.  Barrett’s oesophagus is one of the 

complications of gastro-oesophageal reflux.  The majority of cases are thought to occur 

sporadically, although a few cases of familial clustering have been observed.  

 

1.1.4.1.5 Other environmental risk factors 

 

Various other risk factors include the consumption of hot beverages (Yang and Wang 1993), a 

history of oesophageal injury and chronic inflammation, and tannins (Klimstra 1994).  

Individuals with recurring symptoms of reflux, have an eightfold increased risk of developing 

ADC (Largergren et al. 1999).   

 

Obesity [body mass index (BMI) > 30] has been identified as a risk factor of ADC, as it has 

been postulated that obesity can increase the intra-abdominal pressure as well as the 

occurrence of gastro-oesophageal reflux (Largergren et al. 1999).  The prevalence of obesity 

is increasing in Western populations, which also have the highest incidence of OC (Vaughan 

et al. 1995). 

 

Another risk factor contributing to OC pathogenesis to a lesser extent is occupational 

exposure to carcinogens (Selikoff et al. 1979, Norell et al. 1983, Gustavsson et al. 1993, 
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Parent et al. 2000).  Warehouse workers, miners and workers exposed to combustion products 

are also at an increased risk of developing SCC.  Parent et al. (2000) have shown an increased 

risk of SCC development, if exposed to numerous substances in the workplace, including dust 

(eg. carbon black), liquids (eg. mineral spirits with benzene and xylene) and vapours (eg. 

sulphuric acid), metals (iron compounds), aromatic hydrocarbons (eg. polycyclic aromatic 

hydrocarbons from any source) as well as other substances (eg. formaldehyde).   

 

1.1.4.2 Genetic (genomic and molecular) factors 

 

Various chromosomal abnormalities and gene alterations have been identified in OC.  These 

gene alterations include overexpression and gene inactivation of various genes such as C-

MYC, epidermal growth factor receptor (EGFR, Lu et al. 1988) and cyclin D1 (CCND1, 

Adelaide et al. 1995).  The production levels of cyclooxygenase 1 (COX1) and inducible 

nitric oxide synthase (iNOS) in both mucosal and invasive OC have been found to be elevated 

in chronically inflamed tissues, including precancerous lesions (Tanaka et al. 1999, 

Zimmerman et al. 1999). 

 

Only a few comparative genomic hybridisation (CGH) studies on OC have been reported.  

Several chromosomal regions identified by CGH analysis, have been implicated in OC 

pathogenesis (Moskaluk et al. 1998, Sarlomo-Rikala et al. 1998, du Plessis et al. 1999).  

Using CGH, du Plessis et al. (1999) performed a genome-wide screen for the detection of 

DNA loss and gain in SCC.  Frequent loss was identified on chromosomes 1p, 4p, 18q, 19q, 

and 22q, while DNA gain occurred on chromosomes 1q, 2q, 3q, 5p, 7p, 7q, 8q and Xq.  This 

was the first study providing a record of chromosomal imbalances in OC tumours in the South 

African Coloured and Black populations. 
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Loss of heterozygosity (LOH) studies have implicated several chromosomal regions in 

oesophageal cancer. With the aid of microsatellite markers, LOH had been identified at 

certain loci on chromosomes 1, 3, 5, 9, 11, 13, 17 and 18 (Huang et al. 1992, Tarmin et al. 

1994, Wang et al. 1995, Barrett et al. 1996, Shimada et al. 1996).  Frequent chromosomal 

abnormalities found in OC affecting chromosomes 1, 2, 3, 6, 7, 9 and 11 have also been 

identified in other studies (Whang-Peng et al. 1990, Rosenblum-Vos et al. 1993, Rao et al. 

1995).   

 

Numerous genes involved in cell growth and regulatory pathways have been found altered in 

OC (reviewed by Klimstra 1994, Rosen 1994, Lam 2000, Mandard et al. 2000, McCabe and 

Dlamini 2005).  Alterations such as allelic loss, frequent mutations and deletions have been 

identified in the p53 tumour suppressor gene (TP53), retinoblastoma (RB1), mutated in 

colorectal cancer (MCC), deleted in colorectal carcinoma (DCC) and adenomatous polyposis 

of the colon (APC) genes (reviewed by Lu 2000).  In approximately 20% of SCC patients, 

amplification of MDM2, which diminishes the function of normal TP53, has been detected 

(Shibagaki et al. 1995).  Tumour suppressor genes that have recently been implicated in SCC 

pathogenesis include the fragile histidine triad (FHIT) and F37/Oesophageal cancer-related 

gene-coding leucine-zipper motif (FEZ1) (Ishii et al. 1999, Menin et al. 2000, Nishiwaki et al. 

2000). 

 

Individual susceptibility to cancer may also be influenced by genetic polymorphisms in 

certain enzymes that are involved in the metabolism of environmental carcinogenesis.  These 

enzymes include the cytochromes P450 (CYPs), glutathione S-transferases (GSTs) T1, P1 and 

M1 (GSTT1, GSTP1, GSTM1), N-acetyltransferase 2 (NAT-2), alcohol dehydrogenases 

(ADHs) and aldehyde dehydrogenases (ALDs).  CYPs are responsible for the bioactivation of 
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various low molecular weight carcinogens, GSTs are involved in the detoxification of many 

carcinogenic electrophiles and carcinogens in tobacco smoke, while ADHs and ALDs are 

alcohol-metabolising enzymes (Hori et al. 1997, Morita et al. 1997, 1998, Nimura et al. 1997, 

Lin et al. 1998, Van Lieshout et al. 1999, Dandara et al. 2005).   

 

Nonepidermolytic palmoplantar keratoderma, also known as tylosis, is the only recognised 

familial syndrome that predisposes patients to SCC.  Tylosis is a rare autosomal dominant 

disorder that is defined by a genetic abnormality at chromosomal region 17q25 (Kellsell et al. 

1996, Risk et al. 1996, 1999).  Various studies have also reported an association of Barrett’s 

oesophagus with ADC displaying a dominant mode of inheritance in several different families 

(Crabb et al. 1985, Jochem et al. 1992, Eng et al. 1993, Poynton et al. 1996).   

 

Genetic polymorphisms found in the DNA repair genes, may influence the deviation in DNA 

repair capacity that might be related to an increased risk of cancer development.  DNA repair 

genes that have been implicated in OC susceptibility include the polymorphic X-Ray Repair 

Cross Complementing 1 (XRCC1) genes (Lee et al. 2001).  

 

 Due to its roles in iron transport and inflammation, the natural resistance-associated 

macrophage protein-1 (NRAMP1) gene was investigated in the development of OC in the 

South African population.  Significant association have been observed between variation in 

NRAMP1 and OC in the Black (du Plessis 2000, Zaahl 2003) and Coloured (Zaahl 2003, 

Zaahl et al. 2005) South African populations.  Collectively all these studies provide evidence 

that multiple factors at the molecular level are involved in the initiation and development of 

oesophageal cancer. 
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1.2. Iron and OC 

 

1.2.1. Proposed mechanisms of iron carcinogenesis  

 

Various in vitro and in vivo studies have revealed that both conditions of iron-deficiency and 

iron-overload can be pathogenic.  Three mechanisms exist whereby iron can initiate and 

promote the process of carcinogenesis: 1) the production of hydroxyl radicals and oxidative 

stress, 2) favouring or promoting the growth of tumour cells and 3) modifying the immune 

system by suppressing the activity of the defence cells (Toyokuni 1999). 

 

The production of hydroxyl radicals and oxidative stress 

 

The toxicity of iron is based primarily on the Fenton and the Haber-Weiss chemistry.  In these 

reactions, catalytic amounts of iron can yield hydroxyl radicals (OH) from superoxide (O2
-) 

and hydrogen peroxide (H2O2), collectively termed reactive oxygen species (ROS) 

(Papanikolaou and Pantopoulos 2005).  These free radicals are highly reactive and may 

participate in the oxidation of proteins, membrane lipid peroxidation as well as the 

modification of nucleic acids.  A surplus of redox-reactive iron may intensify the oxidative 

stress of the cell, leading to accelerated tissue degeneration.  The cell’s protective mechanisms 

against this oxidative stress are mostly reducing agents and enzymes that are associated with 

reductants.  Transferrin is the plasma iron carrier that maintains extracellular iron in a soluble 

and non-toxic form, under normal physiological conditions.  The “free” or unbound iron 

becomes harmful, as it may produce reducing agents that can initiate the Fenton reaction and 

subsequently contribute to cancer development (Tokoyuni 1996, Ponka et al. 1998). 
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Favouring or promoting the growth of tumour cells  

 

An elevated iron supply is required for the sustained proliferation of tumour cells.  Tumour 

cells grow and survive better in vitro in the presence of high levels of extracellular iron.  Iron 

supplementation has enhanced the growth of human hepatoma cells (Hann et al. 1990).  In 

hepatocellular carcinoma related to hepatitis B virus infections, iron may have a promoting 

effect through two possible mechanisms: 1) by facilitating the growth of cancer cells and 2) 

facilitating the replication of the hepatitis B virus (Zhou et al. 1987). 

 

Modifying the immune system by suppressing the activity of the defence cells  

 

The impairment of macrophage cytotoxic activity against tumour growth is another 

mechanism of carcinogenesis.  In normal anti-tumour processes, iron loss occurs from target 

cells.  Therefore, in conditions of iron overload, the cytotoxic activity of the macrophages is 

impaired and tumour growth is favoured (Green et al. 1988, Huot et al. 1990).  The 

tumouricidal activity of mice macrophages was markedly decreased by the presence of iron 

salts, iron-containing ferritin and iron-dextran (Green et al. 1988).  Iron also reduces the 

gamma-interferon activity of macrophages, as iron (or and excess thereof) reduces the activity 

of interferon-gamma (IFN-γ) and thereby interferes with the growth of the tumouricidal-

activated macrophages.  This subsequently leads to enhanced tumour growth (Weiss et al. 

1992).  Iron is also responsible for preventing macrophages from producing the cytotoxic free 

radical, nitric oxide, subsequently down-regulating the anti-tumour activity of macrophages 

(Harhaji et al. 2004) 
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1.2.2. Iron as a risk factor for OC 

 

Previously it had been believed that iron overload associated with OC in the Black South 

African population resulted from the excessive consumption of home-brewed alcoholic 

beverages from maize and sorghum beer that were contaminated with iron (MacPhail et al. 

1979, Isaacson et al. 1985).  In Saudi Arabia, water with high iron content was also associated 

with an increased risk of developing OC (Amer et al. 1990).  An excessive dietary iron intake 

had been linked to the pathogenesis of hepatocellular carcinoma in the Black population of 

South Africa, the first study highlighting the role of iron in cancer in this population 

(Mandishona et al. 1998).  Iron overload has also been reported as a risk factor for OC in 

other populations, including a Danish population with primary haemochromatosis, where an 

increased risk of OC was illustrated (Hsing et al. 1995).   

 

The pathogenesis of Barrett’s oesophagus and its progression to oesophageal adenocarcinoma 

was studied using a rat model.  The iron-supplemented rats of this study had significantly high 

levels of inflammation, cell proliferation, inducible nitric oxide synthase (iNOS) and 

nitrotyrosine.  These rats also had more tumours in their distal oesophagus than rats receiving 

no iron supplement (Goldstein et al. 1998).  It can thus be concluded that iron 

supplementation enhanced inflammation, as well as the production of reactive oxygen and 

nitrogen species in the oesophagus.  A progression in epithelial cell proliferation and 

inflammation was observed, from a mild to severe state in the distal oesophagus of the rats.  

These processes may contribute to the development of Barrett’s oesophagus and subsequently 

its progression to ADC (Goldstein et al. 1998, Chen et al. 1999, 2000). 
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The NRAMP1 gene was examined as a possible OC susceptibility gene in two distinct South 

African populations.  Significant association has been observed between variation in 

NRAMP1 and OC in the Black and Coloured South African populations (du Plessis 2000, 

Zaahl 2003, Zaahl et al. 2005).   

 

1.3. Iron homeostasis 

 

1.3.1. Iron distribution and circulation 

 

Approximately 70% of the body iron is used within haemoglobin that is found in circulating 

erythrocytes.  Iron is transported through the plasma as a complex formed with transferrin, an 

80 kDa protein with two iron binding sites (Emerit et al. 2001).  Another 20 to 30% of the 

body iron is stored inside ferritin.  It is found within the hepatocytes and the reticoendothelial 

macrophages, while the remainder of the body iron may be found within the myoglobin, 

cytochromes and the iron-containing enzymes.  The plasma delivers approximately 30 mg of 

iron to the cells each day (Emerit et al. 2001).  The 30 mg of iron required daily for 

erythropoiesis is provided from macrophage iron recycling.  The non-haem iron in the 

circulation is found bound to transferrin (Andrews 1999).   

 

1.3.2. Intestinal iron absorption 

 

Various proteins that are involved in intestinal iron absorption, as well as the chromosomal 

locations, are indicated in Table 1.1.  The absorption of dietary iron is a multi-step process 

that requires the uptake of iron from the intestinal lumen, its transfer across the apical cell 

surface of the villus enterocytes and its subsequent transfer across the basolateral membrane  
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Protein Chromosomal 
location

Transferrin (Tf) 3q21

Transferrin receptor 1 (TFR1) 3q29

Transferrin receptor 2 7q22

Ferritin 11q12; 19q13

Iron-regulatory protein 1 (IRP-1)
Iron-regulatory protein 2 (IRP-2)

9 
15

High iron protein (HFE) 6p21

Divalent metal transporter 1
(DMT1)

12q13

Haem oxygenase 1 
(HMOX1)

22q12

Fe-ATPase iron transporter unknown

Solute carrier family 40 (iron-regulated 
transporter) member 1 (SLC40A1)

2

Ceruloplasmin (CP) 3q21-24

Hephaestin (HEPH) Xq11-12

Stimulator of iron transport
(SFT)

10q21

Frataxin 9q13

ATP-binding cassette 7 (ABC7) Xq13

Cytochrome b reductase 1 (CYBRD1) 2 Ferrireductase facilitating enzymatic reduction of inorganic iron 

The precise function is unknown, but is thought  to play a role 
in maintaining iron homeostasis

Involved in iron storage. The H-subunit displays ferroxidase 
activity, while the L-subunit is responsible for catalysing iron 
core formation

Involved in translational regulation in the synthesis of  the 
transferrin receptor, ferritin, and other iron-related proteins

HFE protein-β2-microglobulin heterodimer binds TFR, 
reducing its affinity for transferrin,thus reducing iron uptake

Table 1.1.  Proteins involved in iron metabolism
Function

Acts as an iron-binding transport protein in both the plasma and 
extracellular fluid

Principal molecule responsible for the uptake of transferrin 
bound iron into cells

Catalytic oxidation of haem to Fe2+, carbon monoxide and 
biliverdin

The transport of iron: 1) from gastrointestinal lumen into 
duodenal enterocyte, 2) from erythroblast endosome to the 
cytoplasm

Possibly involved in mitochondrial iron export

Mitochondrial iron homeostasis and respiratory function

Increases cellular uptake of both transferrin-bound and 
nontransferrin-bound iron

Possible intracellular ferroxidase

Serum ferroxidase

The transport of iron: at basolateral membrane of the duodenal 
enterocyte, in the macrophage cytoplasm and in the  hepatocyte 
sinusoidal membrane

Intracellular transmembrane iron transport in the macrophages; 
coupled with HMOX1

 

 

Adapted from Brittenham et al. (2000) and Sheth and Brittenham (2000).  
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to the plasma (Trinder et al. 2002b).  The ingested inorganic iron exists in the oxidised ferric 

(Fe3+) form and before the absorption of iron can occur, it should first be reduced to its 

ferrous (Fe2+) form.  The low pH of the gastric efflux aids in the absorption of dietary iron by 

providing a proton rich environment facilitating the enzymatic reduction of the ingested 

inorganic iron by the brushborder ferrireductase, cytochrome b reductase 1 [(CYBRD1), also 

known as duodenal cytochrome b (DCYTB), McKie et al. 2001].  The divalent metal 

transporter 1 [DMT1, also known as divalent cation transporter-1 (DCT1) or natural 

resistance-associated macrophage protein 2 (NRAMP2)] is responsible for the transport of the 

ferrous iron across the apical membrane of the enterocytes, as indicated in Figure 1.1 

(Fleming et al. 1997, Gunshin et al. 1997).  It has been observed that the amount of DMT1 

and CYBRD1 found within the enterocytes increase significantly in conditions of iron 

deficiency (Gunshin et al. 1997, McKie et al. 2001) 

 

Inside the enterocytes, iron is enzymatically liberated from haem by haem oxygenase.  The 

inorganic iron may then follow one of two paths: (1) it may either be stored inside ferritin or 

(2) it may be transferred across the basolateral membrane surface to the plasma ferritin.  The 

solute carrier family 40 (iron-regulated transporter) member 1 protein [SLC40A1, also known 

as the solute carrier family 11 (proton-coupled divalent metal ion transporter) member 3 

protein (SLC11A3), ferroportin 1 (FPN1), iron-regulated transporter 1 (IREG1) or metal 

transporter 1 (MTP1)] is the major molecule mediating the transport of iron across the 

basolateral membrane (Abboud and Haile 2000, Donovan et al. 2000, McKie et al. 2000).  

SLC40A1 is induced by iron deficiency and localises to the basolateral membrane of 

polarised cells.  Hephaestin (HEPH), a multicopper membrane ferroxidase, aids SLC40A1 in 

basolateral iron transport (Vulpe et al. 1999).  The precise role HEPH portrays in the transfer 

of iron is unknown, but it is possible that during the transmembrane transfer process it 
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oxidises iron and/or is involved in the process of iron loading onto the plasma transferrin 

(Donovan and Andrews 2004).  HEPH is similar to ceruloplasmin (CP), a plasma ferroxidase 

that possibly facilitates both the export of iron from the enterocyte, as well as its binding to 

transferrin (Hellman and Gitlin 2002). 

 

Figure 1.1.  A schematic representation of the pathways of iron absorption by the enterocyte.   

 

 

 

Legend to Figure 1.1. 

Dietary iron in the gut lumen is reduced from the ferric (Fe3+) to the ferrous (Fe2+) state by 
CYBRD1.  Fe2+ is transported into the enterocyte and is degraded by HMOX1 to release 
inorganic iron.  The intracellular iron has two possible fates: 1) it may be stored as ferritin or 
2) it may be transported across the basolateral membrane and into the blood plasma by 
SLC40A1.  HEPH facilitates the export of iron by SLC40A1.  Abbreviations: CYBRD1, 
cytochrome b reductase; DMT1, divalent metal transporter; Fe3+, ferric iron; Fe2+, ferrous 
iron; HEPH, hephaestin; HMOX1, haem oxygenase; SLC40A1, solute carrier family 40 (iron-
regulated transporter) member 1; TBI, transferrin-bound iron; TFR1, transferrin receptor 1; 
TFR2, transferrin receptor 2.  Adapted from Trinder et al. 2002a. 
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1.3.3. Macrophage iron recycling 

 

Recovering iron from senescent red cells is a vital process as most of the body’s iron is 

contained within the red blood cells.  Damaged and old erythrocytes are phagocyted by 

macrophages, removing them from circulation.  Erythrocyte lysis, as well as haemoglobin 

degradation occurs within the macrophages.  Iron is then enzymatically released from haem 

by haem oxygenase.  It is believed that SLC40A1 is responsible for the release of iron from 

the macrophages after erythrophagocytosis (Knutson et al. 2003, 2005).  Ceruloplasmin is 

responsible for the oxidation of the released iron to the ferric state.  Ferric iron can then be 

found bound to the circulating transferrin.  It has been observed in patients suffering from 

anaemia of chronic disease (ACD) that the recycling of iron by the reticuloendothelial 

macrophages is defective, and intestinal iron absorption is also impaired.  

 

1.3.4. Liver iron transport 

 

Two transferrin receptors TFR1 and TFR2, mediate the uptake of transferrin-bound iron 

(TBI) by the liver (shown in Figure 1.2).  HFE is expressed by hepatocytes and possibly 

regulates the uptake of TBI by TFR1.  In iron-overloaded conditions, TFR1 expression is 

downregulated in hepatocytes and TFR2 expression, which is regulated by the transferrin 

saturation, is upregulated.  Under these conditions, TFR2 may contribute to an increased 

uptake of TBI by the liver (Robb and Wessling-Resnick 2004).  TFR2 has a higher capacity 

than TFR1 for transporting TBI into the liver.  Iron transport from the hepatocytes is mediated 

by SLC40A1 (Abboud and Haile 2000). 
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Figure 1.2.  A schematic representation of the pathways of iron uptake and the uptake of non-

transferrin bound iron by the hepatocytes. 

 

 

 

Legend to Figure 1.2. 

Two transferrin receptors, TFR1 and TFR2, mediate the uptake of transferrin-bound iron 
(TBI) by the enterocyte.  Iron transport from the hepatocytes, is mediated by SLC40A1.  
Abbreviations: CP, Ceruloplasmin; DMT1, divalent metal transporter 1; Fe3+, ferric iron; Fe2+, 
ferrous iron; SLC40A1, solute carrier family 40 (iron-regulated transporter) member 1; TBI, 
transferrin-bound iron; TFR1, transferrin receptor 1; TFR2, transferrin receptor 2.  Adapted 
from Trinder et al. 2002a. 
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1.3.5. Iron storage 

 

1.3.5.1. Hepatic iron storage 

 

The liver is the major site of iron storage.  The majority of stored iron is deposited in 

hepatocytes as either ferritin or haemosiderin (Trinder et al. 2002a).  The transferrin-bound 

iron circulates through the liver portal system and is transferred to the hepatocytes via the 

transferrin receptor (Kawabata et al. 1999).   

 

1.3.5.2. Reticoendothelial (RE) iron storage 

 

Two mechanisms exist whereby the RE macrophages acquire iron.  Firstly, iron is acquired 

via the surface transferrin receptors (Testa et al. 1991) and secondly, the macrophages acquire 

iron through the process of erythrophagocytosis (Deiss 1983).  As mentioned previously, iron 

is enzymatically liberated from the enterocyte haem by haem oxygenase within the cells and 

at this point it is either released into the plasma with the aid of SLC40A1 or the iron is 

retained and stored as ferritin.   

 

Ferritin, a nanobox protein, exists in two subunits known as the heavy and light chains.  These 

chains form a protein shell with the ability of binding approximately 4000-4500 iron atoms 

(Aisen et al. 2001, Arosio and Levi 2002).  Ferritin proteins contain catalytic sites for the 

oxidation of iron and hydrophilic pores enabling the exchange with the solvent.  Iron is kept 

separated from the nucleus and other organelles.  A fraction of ferritin can be found in serum 

and secretory fluids in vertebrates (Arosio and Levi 2002).   
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1.3.6. Regulation of iron homeostasis 

 

Iron absorption is dependent on three factors: the level of body iron stores, the rate of 

erythropoiesis and hypoxia (Trinder et al. 2002a).  Two models exist that explain the 

regulation of iron absorption: 1) the crypt-programming model and 2) the hepcidin model 

(Pietrangelo 2004).  

 

The crypt-programming model 

 

This model proposes that the body iron levels can be sensed by the crypt cells, thus regulating 

the absorption of dietary iron by mature villus enterocytes (illustrated in Figure 1.3).  The 

enterocytes found in the crypts of the duodenum are responsible for iron uptake from the 

plasma.  The level of body iron stores matches the intracellular iron levels of the crypt cells 

and this subsequently determines the amounts of iron that is absorbed from the gut lumen as 

these crypt cells migrate toward the brush border (Oates et al. 2000).  Both TFR1 and TFR2 

proteins, which mediate the cellular uptake of TBI from the plasma, are expressed in the crypt 

cells.   

 

It has been demonstrated that HFE is highly expressed in the crypt cells (Parkkila et al. 1997) 

and that the HFE protein is physically associated with TFR inside crypt enterocytes (Waheed 

et al. 1999).  Waheed et al. (1999) hypothesized that by modulating the transferrin-mediated 

uptake of plasma iron, the wild-type HFE protein subsequently influences the ability of the 

crypt cells to sense the iron status of the body.  The HFE protein is thus involved in the 

regulation of the mechanism that determines the amount of dietary iron the crypt enterocytes 

will absorb when they mature into villus enterocytes.  The Hfe knockout mouse model of 
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Trinder et al. 2002 demonstrated that the mutant HFE is unable to facilitate the TFR1-

mediated uptake of plasma iron.  This observation adds support to the hypothesized crypt cell 

model, in which HFE regulates the uptake of TBI from the plasma by the duodenum.  

 

Figure 1.3.  A schematic representation of the duodenal crypt-programming model.   

 

Legend to Figure 1.3 

Duodenal villus cells are the major sites of iron absorption from the diet.  Ferric iron is 
reduced to ferrous iron by theCYBRD1 protein on the luminal surface of villus cells.  Villus 
enterocytes differentiate from crypt cells during migration from the crypts to the apex of the 
villus.  The crypt cells may sense plasma iron via the HFE- TFR1 complex on the basolateral 
surface and program the level of expression of the iron transport genes expressed on 
differentiation of these cells to villus absorptive enterocytes.  Abbreviations: CYBRD1, 
cytochrome b reductase; DMT1, divalent metal transporter; Fe, iron; HEPH, hephaestin; HFE, 
high iron protein;  SLC40A1, solute carrier family 40 (iron-regulated transporter) member 1; 
TFR1, transferrin receptor 1.  Adapted from Fleming and Sly 2002.  
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The Hepcidin model 

 

Hepcidin is an antimicrobial peptide almost exclusively synthesised by the hepatocytes, thus 

being predominantly expressed in the liver.  Not only does hepcidin perform the functions of 

a stores regulator, but it can also act as an erythroid regulator (Ganz 2003).  When hepcidin 

levels are low, increased absorption of iron is triggered from the duodenum, as well as the 

release of iron from the macrophages (illustrated in Figure 1.4).  When an excess of hepcidin 

is detected, iron absorption is decreased and iron is retained within the macrophages.  The 

hepcidin levels are thus a reflection of the body iron stores (Papanikolaou and Pantopoulos 

2005).  The loss of the HFE protein causes a decrease in hepcidin levels, leading to a 

subsequent increase of ferroportin-mediated iron efflux from RE cells and duodenal 

enterocytes.  

 

 Non-transferrin-bound iron (NTBI) enters into the circulation when transferrin becomes 

saturated due to increasing iron levels in the circulation.  The NTBI is transported to tissues 

with a high affinity for NTBI.  Increased hepcidin expression has been shown to contribute to 

the development of anaemia of chronic disease (Weiss 2002), a condition characterised by 

hypoferremia, which is caused by the retention of iron within the macrophages.  The 

expression levels of hepcidin were increased in mice and humans with inflammation (Nicolas 

et al. 2002, Nemeth et al. 2004) and suppressed in HH (Bridle et al. 2003).  
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Figure 1.4.  A schematic representation of the hepcidin model. 

 
 
 

 
 
 
 
Legend to Figure 1.4.  
 
The interaction between transferrin (Tf) and the hepatocyte transferrin receptor, transduces a 
signal that leads to an increase in the expression of hepcidin in the hepatocyte.  Hepcidin acts 
on target cells when secreted into the blood.  With the decrease in iron export, there is an 
increase in iron stores and there is a subsequent decrease in dietary iron absorption in the 
duodenal enterocytes.  Iron homeostasis is maintained when the circulating levels of Tf are 
normalised.  Low hepcidin levels leads to increased iron absorption and also leads to iron 
release from the macrophages.  Excessive hepcidin levels leads to decreased iron absorption.  
Abbreviations: CYBRD1, cytochrome b reductase; DMT1, divalent metal transporter; Fe, 
iron; HEPH, hephaestin;  HFE, high iron protein; HJV, hemojuvelin protein; RBC, red blood 
cell; SLC40A1, solute carrier family 40 (iron-regulated transporter) member 1; Tf, transferrin; 
TFR2, transferrin receptor 2.  Adapted from Fleming and Britton 2006.   
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1.4. Genes involved in iron homeostasis 

 

Various genes have been implicated in iron transport and storage.  These genes include the 

solute carrier family 11 (proton-coupled divalent metal ion transporter) member 2 gene 

[SLC11A2, also known as the natural resistance-associated macrophage protein 2 (NRAMP2) 

gene or divalent metal transporter 1 (DMT1) gene] (Gruenheid et al. 1997, Gunshin et al. 

1997); the high iron (HFE) gene (Simon et al. 1976, Feder et al. 1996); haem oxygenase 1 

(HMOX1) gene (Tenhunen et al. 1969), the hephaestin (HEPH) gene (Vulpe et al. 1999, 

Kaplan and Kushner 2000, Anderson et al. 2002, Petrak and Vyoral 2005); the solute carrier 

family 40 (iron-regulated transporter) member 1 gene [SLC40A1, also known as the solute 

carrier family 11 (proton-coupled divalent metal ion transporter) member 3 (SLC11A3) gene, 

ferroportin 1 (FPN1) gene, iron-regulated transporter 1 (IREG1) gene or metal transporter 1 

(MTP1) gene (Abboud and Haile 2000, Donovan et al. 2000, McKie et al. 2000); the hepcidin 

antimicrobial peptide gene [HAMP, also known as the liver-expressed antimicrobial peptide 1 

(LEAP1) gene or the hepcidin (HEPC) gene] (Krause et al. 2000, Nicolas et al. 2001, Park et 

al. 2001, Pigeon et al. 2001); the transferrin receptor 2 (TFR2) gene (Camaschella et al. 2000, 

Roetto et al. 2001); the cytochrome b reductase 1 gene [CYBRD1, also known as the duodenal 

cytochrome b (DCYTB) gene] (McKie et al. 2001); the ceruloplasmin (CP) gene (Cairo et al. 

2001) and the hemojuvelin (HJV) gene (Papanikolaou et al. 2004). 

 

Genes investigated in this study include HFE, HMOX1, SLC40A1, HAMP, CYBRD1 and HJV 

and only these genes will be discussed further. 
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1.4.1. High iron (HFE) gene 

 

The gene associated with haemochromatosis was first mapped to chromosome 6 (Simon et al. 

1976), but it was not until 1996 that the HFE gene was localised to chromosome 6 (6p21.3) 

and isolated using positional cloning (Feder et al. 1996).  The gene consists of seven exons 

and encodes a 343 amino acid protein that comprises three extracellular domains (the α1, α2 

and α3 loops), a transmembrane domain and a cytoplasmic tail.  HFE forms a heterodimer 

with β2-microglobulin for cell surface expression.  The primary structure of HFE is 

homologous to HLA-A2, a MHC class I protein, and the non-classical class I protein HLA-G1 

(Feder et al. 1996).  However, it has been suggested that HFE does not have a functional 

peptide-binding groove (Lebron et al. 1998). 

 

 HFE and the transferrin receptor 1 (TFR1), form a high-affinity protein-protein complex.  

This complex reduces the affinity of TFR1 for transferrin approximately ten-fold, thereby 

reducing ferritin concentrations accordingly in mammalian cells (Parkkila et al. 1997, Feder et 

al. 1998, Gross et al. 1998, Bennett et al. 2000).  

 

Targeted disruption of the mouse Hfe gene was studied in order to determine the involvement 

of this gene in the regulation of iron homeostasis.  Profound differences in the parameters of 

iron homeostasis in Hfe-deficient mice were detected, leading to the conclusion that the Hfe 

protein is indeed involved in the regulation of iron homeostasis and that mutations in HFE 

cause hereditary haemochromatosis (HH) (Zhou et al. 1998).   

 

HH is predominantly caused by the C282Y and H63D mutations, which represent two 

inherited base pair changes within the HFE gene (Feder et al. 1996).  The C282Y missense 
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mutation produces a guanidine-to-adenine (G→A) transition at nucleotide position 845 of the 

HFE gene, causing a cysteine to tyrosine substitution at amino acid 282.  This mutation is 

located in the α3-domain.  Association of the HFE protein with β2-microglobulin is disrupted, 

causing the subsequent misfolding of the protein (Feder et al. 1996, 1997).  Homozygosity for 

this mutation is the most common cause of HH and in individuals of European descent it is 

responsible for 90% of cases (The UK Haemochromatosis Consortium 1997).  

 

 The H63D missense mutation results in a cytosine-to-guanine (C→G) transversion at 

nucleotide 187, causing a histidine to aspartic acid substitution at amino acid position 63 

(Feder et al. 1996, 1997).  HH patients heterozygous for C282Y are frequently heterozygous 

for H63D (Feder et al. 1996, 1997).  This mutation accounts for 4.5% of HH cases 

(Merryweather-Clarke et al. 2000).  Three other mutations found in HFE (S65C, I105T, 

G93R) are also associated with the development of iron overload (Barton et al. 1999). 

 

1.4.2. Haem oxygenase 1 (HMOX1) gene 

 

A human haem oxygenase (HMOX1) cDNA was isolated by screening a cDNA library with a 

rat cDNA.  The cDNA library had been constructed using poly (A)-rich RNA from 

macrophages treated with hemin to increase haem oxygenase activity and mRNA levels 

(Yoshida et al. 1988).  HMOX1 was assigned to chromosome region 22q12 using fluorescent 

in situ hybridisation (FISH) analysis (Kutty et al. 1994).  Seroussi et al. (1999) later 

characterised a contig containing five genes, including HMOX1, in human 22q13.1 and also 

mapped the mouse Hmox1 gene to chromosome 8, using FISH analysis.  Haem oxygenase, an 

essential enzyme in haem catabolism, cleaves haem to form biliverdin (Tenhunen et al. 1969), 

which is subsequently converted to bilirubin by biliverdin reductase (Tenhunen et al. 1970). 
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HMOX1, consisting of five exons, encodes a 288 amino acid protein.  Similar to rat Hmox1, a 

putative membrane segment mainly composed of hydrophobic amino acids is found at the 

carboxyl terminus of human HMOX1.  The human haem oxygenase, one amino acid shorter 

than rat Hmox, is 80% homologous to the rat amino acid sequence (Yoshida et al. 1988).  

HMOX1 contains no cysteine residues and contains six histidine residues of which five are 

conserved in rat Hmox1 (Shibahara et al. 1985, Yoshida et al. 1988). 

 

In their studies of Wistar rats, Wagener et al. (2003) investigated haem and haem oxygenase 

involvement in the inflammatory process during wound healing.  Haem accumulation was 

observed directly at the wound edges in the rat palate.  This coincided with the recruitment of 

leukocytes, increased adhesion molecule expression and increased Hmox1 expression upon 

inflammation.  These results indicated that the release of haem possibly acts as a 

physiological trigger of inflammatory processes, while Hmox1 antagonises inflammation by 

reducing adhesive interactions and cellular infiltration (Wagener et al. 2003).   

 

An analysis of the parameters of iron metabolism was done on mice with targeted Hmox1 null 

mutations.  The adult Hmox1 deficient mice developed both serum iron deficiency and 

pathological iron loading, signifying Hmox1 is crucial for the expulsion of iron from tissue 

stores (Poss and Tonegwa 1997).  

 

Various mutations and a promoter repeat of HMOX1 have been implicated in various 

diseases, including neurodegenerative (Kimpara et al. 1997) and pulmonary diseases (Yamada 

et al. 2000).  In addition to its role in haem degradation, HMOX1 also plays a crucial role in 

the maintenance of cellular homeostasis (Maines 2000).  There is also accumulating evidence 
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indicating that an excess of free haem could lead to cell damage and tissue injuries, since 

haem can catalyse the formation of ROS (Jeney et al. 2002).   

 

1.4.3. Solute carrier family 40 (iron-regulated transporter), member 1    

     (SLC40A1) gene 

 

Three independent groups are responsible for the discovery of SLC40A1.  Using a positional 

cloning strategy, Donovan et al. (2000) identified the gene responsible for the severe anaemic 

phenotype, weissherbst, in zebrafish.  The resulting ferroportin-1 cDNA of mice and humans 

were isolated by RT-PCR analysis of the liver and placenta, respectively (Donovan et al. 

2000).  McKie et al. (2000) used a subtractive cloning strategy, as well as PCR analysis, for 

the isolation of ferroportin cDNA from hypotransferrinaemic mice that absorb iron at very 

high rates.  Abboud and Haile (2000) employed an iron-responsive protein (IRP) affinity 

column to fish out mRNAs containing iron-responsive elements (IREs).  This method led to 

the identification of the metal transporter protein-1 (MTP1).   

 

Fluorescent in situ hybridisation (FISH) was used to map the human SLC40A1 gene to 

chromosome 2 (2q32) and the mouse homologue to chromosome 1B (Haile 2000).  SLC40A1 

consists of eight exons and encodes a 571 amino acid protein containing ten transmembrane 

domains.  The SLC40A1 protein is localised to the basolateral membrane of polarised 

epithelial cells (McKie et al. 2000).  The 5’ untranslated region of the mRNA contains a 

functional iron responsive element (IRE) predicted to form a hairpin-loop (McKie et al. 

2000).   
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McKie et al. (2000) observed that the expression of SLC40A1 stimulated the iron efflux in 

Xenopus oocytes; leading to the conclusion that SLC40A1 is the duodenal iron export protein 

upregulated in HH.  SLC40A1 is expressed in various cell types, including the placental 

syncytiotrophoblasts, duodenal enterocytes, hepatocytes and the reticuloendothelial 

macrophages, all of which play critical roles in iron metabolism (Donovan et al. 2000). 

 

Patients with mutations in SLC40A1 have larger reticoendothelial iron stores than patients 

with other forms of haemochromatosis.  It was proposed that the partial loss of SLC40A1 

function leads to abnormal iron homeostasis and consequently iron overload (Montosi et al. 

2001).  Reticuloendothelial iron overload in patients with ferroportin disease suggested that 

loss of function mutations in SLC40A1 gene impair reticuloendothelial iron release (Cazzola 

et al. 2002). 

 

Donovan et al. (2005) observed embryonic lethality in Slc40a1 knockout mice.  A mild 

disruption of iron homeostasis was detected in heterozygous mice.  Although these mutant 

mice appeared normal at birth, they later developed anaemia and abnormal iron accumulation 

in duodenal enterocytes, Kupffer cells, hepatocytes and splenic macrophages.  Slc40a1 was 

deleted in all tissues of the mutant mice, except from the extraembryonic visceral endoderm 

and the placenta.  Severe iron deficiency anaemia developed in mice in which the Slc40a1 

deletion was restricted to the intestines.  These findings indicate the importance of Slc40a1 in 

prenatal and post-natal iron homeostasis (Donovan et al. 2005). 

 

Various mutations in SLC40A1 were reported and considerable clinical differences were 

observed between the reported families (Cazzola et al. 2002, Devalia et al. 2002, Roetto et al. 

2002, Wallace et al. 2002, 2004, 2005, Arden et al. 2003, Jouanolle et al. 2003, Pietrangelo 
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2004, Cemonesi et al. 2005, Kohgo 2005, Morris et al. 2005, Sham et al. 2005).  Both 

parenchymal and reticuloendothelial iron overload were detected in certain families suffering 

from ferroportin disease, while others only displayed a typical genetic reticuloendothelial iron 

overload (Cazzola 2003, Pietrangelo 2004).  It appears that the different mutations detected in 

SLC40A1 may be responsible for phenotypic variability among patients.  

 

1.4.4. Hepcidin antimicrobial peptide (HAMP) gene   

 

HAMP is a liver-expressed antimicrobial peptide (also termed LEAP-1) exhibiting 

antimicrobial activity.  The cDNA encoding HAMP was isolated via biochemical purification 

of blood ultrafiltrate using a cysteine alkylation assay and mass spectometry, micropeptide 

sequencing, RT-PCR analysis and 5’ and 3’ rapid amplification of cDNA ends (RACE) 

(Krause et al. 2000).  

 

The cDNA encoding HAMP was isolated by means of biochemical purification of hepcidin 

from urine, amino acid sequence analysis, EST database searching and 5’ RACE (Park et al. 

2001).  The human HAMP gene was mapped to chromosome 19 (19q13) (Krause et al. 2000, 

Park et al. 2001, Pigeon et al. 2001), while the mouse gene was mapped to chromosome 7 

(Pigeon et al. 2001).   

 

HAMP consists of three exons (Krause et al. 2000, Park et al. 2001, Pigeon et al. 2001).  This 

gene encodes an 84 amino acid propeptide with a 24-residue N-terminal signal sequence, as 

well as a penta-arginyl proteolysis site that is followed by the active C-terminal 25-amino acid 

peptide (Krause et al. 2000).  The 84 amino acid protein can undergo enzymatic cleavage into 

mature 20, 22 and 25 amino acids.  Exon 3 of the gene encodes the active peptide, which 
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contains a unique 17-residue stretch with eight cysteines forming the intramolecular disulfide 

bridges lending stability to the beta-sheet structure (Krause et al. 2000, Pigeon et al. 2001). 

 

Experiments were performed on a mouse model exhibiting iron overload caused by targeted 

disruption of the upstream stimulatory factor 2 (Usf2) gene.  These experiments detected the 

inhibition of Hamp expression in these mice (Nicolas et al. 2001).  Furthermore, the 

development of iron overload in these mice exhibited a striking resemblance to that observed 

in human HH patients and in HFE knockout mice (Zhou et al. 1998, Bahram et al. 1999, Levy 

et al. 1999).   

 

HAMP has the ability to regulate the SLC40A1 protein levels, by inducing its internalisation 

and lysosomal degradation (Nemeth et al. 2004).  Mutations identified in HAMP have also 

been associated with juvenile haemochromatosis (Roetto et al. 2003). 

 

1.4.5. Cytochrome b reductase 1 (CYBRD1) gene 

 

A gene encoding a cytochrome b-like molecule was isolated from hypotransferrinaemic mice 

by subtractive cloning.  CYBRD1 is comprised of four exons and encodes a 286 amino acid 

protein with six transmembrane domains and four conserved histidine residues (McKie et al. 

2001).    The CYBRD1 gene was mapped to chromosome 2 by the International Radiation 

Hybrid Mapping Consortium. 

 

CYBRD1 shares 40-50% homology with cytochrome b561, a b-type haem plasma ferric 

reductase that is involved with the regeneration of ascorbic acid from dehydroascorbate.  The 

gene catalyses the reduction of ferric (Fe3+) to ferrous iron (Fe2+) in the gut lumen during 
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intestinal iron absorption and is highly expressed at the intestinal brush border.  Although 

CYBRD1 contains no iron responsive elements, its expression is very strongly regulated by 

iron (McKie et al. 2001). 

 

CYBRD1 mRNA and protein levels are elevated in conditions such as hypoxia and iron 

deficiency, which stimulate intestinal iron absorption, and reduced in conditions of iron 

loading (McKie et al. 2001, 2002).  Gunshin et al. (2005) suggested that CYBRD1 is not 

required for intestinal iron absorption in mice that received a normal iron diet. 

 

1.4.6. Hemojuvelin (HJV) gene 

 

Using a positional cloning approach, the hemojuvelin (HJV) gene, associated with juvenile 

haemochromatosis (JH), was identified within chromosome 1 (1q21).  HJV consists of four 

exons, has a length of 4 265 bp and encodes a 426 amino acid protein.  The gene is 

transcribed into a full-length transcript with five alternatively spliced transcripts.  The HJV 

protein displays homology to a repulsive guidance molecule (RGM) and also contains several 

functional sequence motifs that share homology with other proteins.  These include a signal 

peptide, a RGD (arginine-glycine-aspartic acid) motif, a von Willebrand factor type D domain 

and a putative glycosyl-phosphatidylinositol (GPI) anchor site (Papanikolaou et al. 2004).   

 

Northern Blot analysis of human tissue revealed that similar to HAMP, expression of the HJV 

transcript was restricted to the liver, skeletal muscle and the heart (Papanikolaou et al. 2004).  

A recent study detected HJV expression in parts of the colon, the pancreas and the oesophagus 

(Rodriguez Martinez et al. 2004).  The reduced urinary hepcidin levels in patients with 1q-

linked JH is an indication that hemojuvelin probably acts as a modulator of hepcidin 
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expression rather than a hepcidin receptor (Lanzara et al. 2004, Papanikolaou and 

Pantopoulos 2004).  The functional relationship of HJV with HAMP, as well as the role of 

HJV in iron regulation remains uncertain. 

 

Niederkofler et al. (2005) detected Hjv expression by the periportal hepatocytes in the mouse 

liver.  The Hjv mutant mice displayed conditions of iron overload and no expression of 

hepcidin, in response to dietary iron or the injected iron, was detected.  The ability to 

upregulate hepcidin in response to acute inflammation was conserved, when induced by the 

lipopolysaccharide or its downstream products.  Hjv expression was downregulated in the 

liver, but not in skeletal muscle after inflammation was induced in wild-type mice 

(Niederkofler et al. 2005).   

Huang et al. (2005) observed that there was a rapid accumulation of iron in the liver, pancreas 

and heart of Hjv mutant mice, but the iron levels were decreased in the spleen.  Unlike human 

patients, no abnormalities in fertility were detected and there were also no apparent cardiac or 

endocrine abnormalities.  This could suggest that these mice display more resistance to end-

organ damage.  In the intestinal epithelial cells as well as the macrophages, there was a 

marked decrease in the hepatic hepcidin expression and an increase in the SLC40A1 protein 

levels (Huang et al. 2005). 
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1.5. Objectives of this study 

 

Identification of genetic risk factors that contribute to OC susceptibility could lead to a better 

understanding of the disease pathogenesis.  Early diagnosis and calculation of risk can lead to 

improved counselling and treatment and thus be of great importance to OC individuals. 

 

The aims of this study were as follows: 

• The mutation analysis of six genes (including HFE, HMOX1, SLC40A1, HAMP, 

CYBRD1 and HJV) involved in iron metabolism by: 

o PCR amplification of the coding and flanking intronic regions of these genes 

o Heteroduplex-single strand conformation polymorphism (HEX-SSCP) 

analysis, restriction fragment length polymorphism (RFLP) analysis and semi-

automated DNA sequencing analysis of the amplified products for the 

identification of any novel and/or previously described variants in these genes. 

• The variants detected were subjected to statistical analysis 

o to identify the possible existence of significant associations that could link the 

variants to OC susceptibility and 

o to establish possible gene-gene interaction. 
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The study protocol was approved by the Ethics Review Committee of the University of 

Stellenbosch (Project number 2002/C071). 

 

2.1 Subjects 

 

The study population included only individuals from the Black Xhosa-speaking population of 

South Africa, referring to South Africans of central African descent with cultural habits 

originating from Xhosa tribes. 

 

Blood samples were obtained with written informed consent from 50 (25 male and 25 female) 

unrelated patients with squamous cell carcinoma of the oesophagus.  Patients with OC display 

symptoms such as excessive weight loss and difficulty to swallow.  These patients were 

referred to the Provincial Hospital, Port Elizabeth, where they were subjected to a barium 

swallow followed by biopsies in the theatre to confirm the presence of an ADC or SCC on the 

basis of the histology (Hermanek and Sobin 1987).  

 

Blood samples were obtained with written informed consent from 50 healthy, unrelated 

population-matched individuals as controls.  Control individuals were recruited at the 

Mbekweni and Mpeko Clinics, Transkei.  The control individuals were subjected to early 

screening for OC by brush biopsy, using a Nabeya capsule. 
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2.2 Body iron status 

 

Iron overload was defined as the percentage transferrin saturation (% TS) > 45 and/or serum 

ferritin > 200 μg/l for females and > 300 μg/l for males (Looker and Johnson 1988, Adams 

and Chakrabarti 1998).  Four categories of iron status were established: iron deficiency 

(serum ferritin < 20 μg/l), normal ferritin levels (females: 20–200 μg/l and males: 20-300 

μg/l), raised serum ferritin (females: > 200 μg/l and males: > 300 μg/l) with %TS < 45 and 

raised serum ferritin with %TS > 45. 

 

2.3 Total genomic isolation from whole blood 

 

Total genomic DNA was extracted from whole blood samples using a modified protocol of 

Miller et al. (1988). 

 

Whole blood was collected in ethylenediamine tetra-acetic acid (EDTA) tubes for 

preservation, and stored at -20ºC prior to DNA extraction.  The thawed blood was decanted 

into a 50 ml polypropylene Falcon tube to which 40 ml cold lysis buffer [155 mM ammonium 

chloride (NH Cl), 10 mM potassium hydrogen carbonate (KHCO4 3), 0.1 mM EDTA, pH 7.4] 

was added.  The solution was incubated on ice for 30 minutes until the red blood cells had 

undergone lysis, followed by centrifugation at 250 x g for 30 minutes.  Subsequent to 

centrifugation, the supernatant was discarded and the pellet washed in 20 ml phosphate 

buffered saline solution (PBS).  The solution was centrifuged at 250 x g for 20 minutes.  The 

supernatant was discarded and the pellet resuspended in 3 ml nuclear lysis buffer [10 mM Tris 

hydrochloride (Tris-HCl), 400 mM sodium chloride (NaCl), 2 mM EDTA, pH 8.2], 1.5 
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mg/ml proteinase K (Roche Diagnostics), and 1% (w/v) sodium dodecyl sulphate (SDS) and 

incubated overnight in a 55ºC water bath.   

 

Following overnight incubation, 6 M NaCl was added to the solution.  The solution was 

shaken vigorously for one minute, followed by centrifugation at 950 x g for 15 minutes.  The 

supernatant was transferred to a fresh 50 ml Falcon tube and the remaining pellet and foam 

were discarded.  Centrifugation was performed at 950 x g for 15 minutes and the supernatant 

subsequently transferred to a clean Falcon tube.  Two volumes of ice-cold ± 99.9% (v/v) 

ethanol (EtOH) were added to the supernatant.  The spool of DNA formed was transferred to 

a fresh 1.5 ml Eppendorf tube and centrifuged at 950 x g in 1 ml 70% (v/v) EtOH for 15 

minutes for the removal of excess salt.  After the EtOH was discarded, the pellet was allowed 

to air dry and resuspended in 500 μl sterile SABAX water (Adcock Ingram, South Africa).  

The suspension was shaken overnight at room temperature to allow the DNA to dissolve 

completely.  The DNA concentrations were determined using the NanoDrop® ND-1000 

Spectrophotometer (NanoDrop Technologies), according to the manufacturer’s protocol.  The 

DNA was subsequently diluted to a concentration of 50 ng/μl and stored at 4ºC. 

 

2.4 Polymerase chain reaction (PCR) amplification 

 

2.4.1 Oligonucleotide primers 

 

The PCR primers used in this study are listed in Tables 2.1 - 2.6.  Primers were designed 

using the Primer3 program (Rozen and Skaletsky 2000, available http://www-

genome.wi.mit.edu/cgi-bin/primer/primer3/www.cgi,2002) and manufactured by Inqaba 

Biotech (Pretoria, South Africa).  The melting temperature (TM) for each of the primers was 
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calculated according to the equation described by Thein and Wallace (1986).  The equation is 

as follows: TM = 2(nA + nT) + 4(nG + nC).  PCR conditions were optimised for each primer 

set and conditions are indicated in Tables 2.1 - 2.6. 

 

Table 2.1.  Oligonucleotide primers used for PCR amplification of the HFE  gene

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1 HFE-1Fa TTACTGGGCATCTCCTGAGC 62

HFE-1Ra CTAGTTTCGATTTTTCCACCCC 61

2 HFE-2FAb ACATGGTTAAGGCCTGTTGC 60

HFE-2RAa TACCCTTGCTGTGGTTGTGA 60

HFE-2FBa TGACCAGCTGTTCGTGTTCT 60

HFE-2RBb CAGCTGTTTCCTTCAAGATGCA 61

3 HFE-3FAa CTTGGGGATGGTGGAAATAG 60

HFE-3RAa CTCCAGGTAGGCCCTGTTCT 65

HFE-3FBa CGAGGGCTACTGGAAGTACG 65

HFE-3RBa CTGCAACCTCCTCCACTCTG 65

4 HFE-4Fb TGGCAAGGGTAAACAGATCC 60

HFE-4Rb CTCAGGCACTCCTCTCAACC 65

5 HFE-5Fa GAGAGCCAGGAGCTGAGAAA 62

HFE-5Rb CAGAGGTACTAAGAGACTTC 58

6 HFE-6Fb TAGTGCCCAGGTCTAAATTG 58
HFE-6Rb TGAGTCTCTAGTTTTGTCTCC 59

Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; F, forward primer; HFE , high iron gene; mM,

millimoles per liter; MgCl2, magnesium chloride; PCR, polymerase chain reaction; R, reverse primer; TA, annealing 

temperature; TM, melting temperature.  TM = 2(nA+nT)+4(nG+nC).   References: a This study, b Prof C Camaschella.

Exon

55

256 55

279

202 57

1.5

1.5

1.5C

C

298 55 C

257

1.5C57

1.5

390 57 1.5

280

C

57 C

1.5C55297

C 1.5
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Table 2.2.  Oligonucleotide primers used for PCR amplification of the HMOX1  gene

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1 HMOX1-1Fa CCGCCGAGCATAAATGTG 60

HMOX1-1Ra GCACAGGCAGGATCAGAAC 62

2 HMOX1-2Fb CAGCCAGCTTTGTGTTCACC 72

HMOX1-2Rb AACCACTGGTCTGAGCCTTG 70

3A HMOX1-3FAb TAGTGGACGGGACGGACAGA 74

HMOX1-3RAb CCTTGCGGTGCAGCTCTTCT 76

3B HMOX1-3FBb TGAGCGCAACAAGGAGAGCC 76

HMOX1-3RBb GGAAGGTGAAGAAGGCCAGG 74

3C HMOX1-3FCb GCCTGGCCTTCTTCACCTTC 74

HMOX1-3RCb TGGCAGTGCTGGAACTCTGG 75

4 HMOX1-4Fb GGACCTGGTAGCATCTCTCA 67

HMOX1-4Rb GCGAGAACCTGTCCTTACAG 68

5A HMOX1-5FAb CCACCTGTTAATGACCTTGC 68

HMOX1-5RAb GAAGATGCCATAGGCTCCTT 69

5B HMOX1-5FBb GGAAGGAGCCTATGGCATCT 71

HMOX1-5RBb GCTGAGCCAGGAACAGAGTG 74

5C HMOX1-5FCb CACTCTGTTCCTGGCTCAGC 71
HMOX1-5RCb CTCCTACCGAGCACGCAAGA 74

bH Waso (unpublished data).

annealing temperature; TM, melting temperature. TM = 2(nA+nT)+4(nG+nC). References:a F Booley (unpublished data);

gene; MgCl2, magnesium chloride; mM, millimoles per liter; PCR, polymerase chain reaction; R, reverse primer; TA,  
Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; F, forward primer; HMOX1 , haem oxygenase 

Exon

300 60 A 1.5

1.5A60236

187 60 A 1.5

314 60 A 1.5

276 60 A 1.5

314 60 A 1.5

343 60 A

303 60 A

1.5

1.5

254 60 A 1.5
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Table 2.3.  Oligonucleotide primers used for PCR amplification of the SLC40A1  gene 

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1A SLC40A1-1FAa CCAGTCGGAGGTCGCAGG 67

SLC40A1-1RAa CAGGAGTGCAAGGAACTGG 62

1B SLC40A1-1FBa CCAAAGTCGTCGTTGTAGTC 60

SLC40A1-1RBa TTCCTCCAGAACTCGTGTAG 60

2 SLC40A1-2Fb TGGATAAGCATTCTGCCCTC 60

SLC40A1-2Rb AAAGCATGTGTACTTGGATG 56

3 SLC40A1-3Fa GATAAGGAAGCAACTTCCTG 58

SLC40A1-3Ra CCTGGTTGTTTCTCTCCTAG 60

4 SLC40A1-4Fb GGATAAGAACAGTCTCACTG 58

SLC40A1-4Rb TTCATCCTTTACCACTACCAG 60

5 SLC40A1-5Fb TTAAACTGCCTTGTTTAGTG 54

SLC40A1-5Rb GCCTCATTTATCACCACCG 58

6 SLC40A1-6Fa TTGTGTAAATGGGCAGTCTC 58

SLC40A1-6Ra CATTTAAGGTCTGAACATGAG 57

7A SLC40A1-7FAa GCTTTTATTTCTACATGTCC 54

SLC40A1-7RAa CCAGTTATAGCTGATGCTC 58

7B SLC40A1-7FBa GGGTACGCCTACACTCAG 62

SLC40A1-7RBa CAGTTGTAATTTCAGGTATC 54

7C SLC40A1-7FCa GAAGATATCCGATCAAGGTTC 59

SLC40A1-7RCa TTAATGGATTCTCTGAACCTAC 57

8A SLC40A1-8FAa TTGAAATGTATGCCTGTAAAC 55

SLC40A1-8RAa TTCCTTCCTAACTTCTTTTGC 57

8B SLC40A1-8FBa CCGATTTGCCCAAAATACTC 58

SLC40A1-8RBa TTTCCATGCCTCAACATAAGG 59

8C SLC40A1-8FCa GTTTTTACCACAGCTGTGCC 60
SLC40A1-8RCa GTCTTCATACTTGAAGAATTTG 55

aL Bloem (unpublished data), bNjajou et al. (2001).

Exon

C 1.5

359 55 C 1.5

318 60 A 1.5

276 55 C 1.5

275 55 C 1.5

339 55 C 1.5

243 55 1.5

278 55 C 1.5

C

1.5C55259

298 55 C 1.5

1.5A60352

368 55 C 1.5

297 55

regulated) member 1 gene; TA, annealing temperature; TM, melting temperature. TM = 2(nA+nT)+4(nG+nC). References: 
mM; millimoles per liter; PCR, polymerase chain reaction; R, reverse primer; SLC40A1 , solute carrier family 40 (iron- 

Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; F, forward primer; MgCl2, magnesium chloride; 

343 55 C 1.5
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Table 2.4.  Oligonucleotide primers used for PCR amplification of the HAMP  gene 

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1 HAMP-1Fa AGCAAAGGGGAGGGGGCTCAGACC 71

HAMP-1Ra TCCCATCCCTGCTGCCCTGCTAAG 70

2 HAMP-2Fb AAACCACTTGGAGAGGAGCA 60

HAMP-2Rb GAAGGAAGGGAATGTGAGCA 60

3 HAMP-3Fb GCAACAGTGATGCCTTTCCT 60
HAMP-3Rb CCAGCCATTTTATTCCAAGACC 61

A 1.5

272 55 A 1.5

aDr A Merryweather-Clarke, bThis study

262 60

235 55

R, reverse primer; TA, annealing temperature; TM, melting temperature.  TM = 2(nA+nT)+4(nG+nC).  References: 

antimicrobial  peptide gene; MgCl2, magnesium chloride; mM, millimoles per liter; PCR, polymerase chain reaction; 
Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; F, forward primer; HAMP , hepcidin 

A 1.5

Exon

 

 

Table 2.5.  Oligonucleotide primers used for PCR amplification of the CYBRD1  gene

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1 CYBRD1-1Fa GAGACAGCCCCAAGAAGTCG 65

CYBRD1-1Ra TTCACGGAGGACCCTCTGCC 67

2 CYBRD1-2Fa CCAGTGTGTCAAACTGTTC 58

CYBRD1-2Ra CATTTACAGTCTGAATTG 54

3 CYBRD1-3Fa TTGTCATACACATATTGC 53

CYBRD1-3Ra CATTTTCCCAGTGAACAAGTA 57

4A CYBRD1-4FAa GCATGTTGCTGTATCATCCTGT 61

CYBRD1-4RAa AGAGTAGGCTGGCATGGAAC 62

4B CYBRD1-4FBa AAATGGAGGCACTGAACAGG 60
CYBRD1-4RBa AGGAGAAGCAAAACTGTAGAGC 61

(unpublished data)

254 57 B

217 56 B

B51346

318 50 B

2

2

2

2

Exon

378 61 B 2

primer; TA, annealing temperature;  TM ,melting temperature. TM = 2(nA+nT)+4(nG+nC).  References:a F Booley

F, forward primer; MgCl2, magnesium chloride; mM, millimoles per liter; PCR, polymerase chain reaction; R, reverse 
Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; CYBRD1 , cytochrome b reductase 1 gene;
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Table 2.6.  Oligonucleotide primers used for PCR amplification of the HJV  gene

Primer Primer sequences TM  Amplicon TA    PCR MgCl2 

name 5' - 3' (ºC) size (bp) (ºC) cycle (mM)

1 HJV-1F TCTGGCCAGCCATATACTCC 62

HJV-1R CAGCATTTGGACGAGACA 58

2 HJV-2F CACTCCACATTATCCTTACC 58

HJV-2R ATGCCCACCCCTACATAGC 62

3A HJV-3FA ACACTCCGATAGAGCAGAGG 62

HJV-3RA TCTTCGATGCCATGTACCG 60

3B HJV-3FB TAGAGGTGGGGGTTCATCAG 60

HJV-3RB CGGCCTTCATAGTCACAAGG 62

3C HJV-3FC GACCTGATGATCCAGCACAA 62

HJV-3RC TGGCTTGGACAAAGAGGAAG 60

3D HJV-3FD CCGGACCCTTGTGACTATGA 60

HJV-3RD GTGCCGTGGAAGAATCCTC 62

4A HJV-4FA TCAAGGATTGAGGGCCATAG 61

HJV-4RA TGGATCTCCACATGGTTCC 60

4B HJV-4FB GGTGGATAATCTTCCTGTAGC 62

HJV-4RB CGACGATTGCGCTCTGAT 60

4C HJV-4FC GCTCTCCTTCTCCATCAAGG 65

HJV-4RC CTGAGCTGCCACGGTAAAGT 62

4D HJV-4FD GGGCTTCCAGTGGAAGATGC 62

HJV-4RD CCCCTTACTGAATGCAAAGC 60

4E HJV-4FE CATCTCTTCCCCTCAGATGC 65

HJV-4RE GATCCGGAATGCAGTAACCT 60

4F HJV-4FF AAGCAGGGCCTAGGAGACAC 62

HJV-4RF TGCTTTCAGCTCTTGCCTCT 60

4G HJV-4FG CTGCATTCCGGATCTCTGTG 62

HJV-4RG TTTTGAATCAAGAAAGCAGAACA 56

4H HJV-4FH TGTGTGTGTAAGGTATGTTCTGC 61

HJV-4RH CTGATACTTCCGAGCCCTCTTTC 65

Exon

261 58 B 2

2B56291

283 58 B 2

2B56300

58 B 2

58 B 2

56 B 2

56 B 2

2

56 B 2

56 B

238

56 B 2

2B56

58 B 2

279

300

288

256

284

298

300

287

293 58 B 2

(unpublished data).

MgCl2, magnesium chloride; mM, millimoles per liter; PCR, polymerase chain reaction; R, reverse primer; TA, annealing 
Abbreviations: 5', 5-prime; 3', 3-prime; ºC, degrees Celsius; bp, base pair; F, forward primer; HJV , hemojuvelin gene;  

temperature; TM, melting temperature. TM = 2(nA+nT)+4(nG+nC).  References: All HJV  primers designed F Booley

 

 

 

 45



Chapter 2: Detailed Experimental Procedures 

2.4.2 PCR amplification reactions and conditions 

PCR amplification of the various exons of HFE, HMOX1, SLC40A1, HAMP, CYBRD1 and 

HJV were performed in a GeneAmp® 2700 PCR system  (Applied Biosystems) using intronic 

primers (Tables 2.1 – 2.6).  The PCR reaction was performed in a volume of 25 μl, consisting 

of 50 ng DNA template, 0.2 mM of each dNTP (dATP, dCTP, dGTP, dTTP) (Fermentas), 10 

pmol of each primer, 1 x Taq buffer (Fermentas), MgCl2 (Fermentas) as indicated in Tables 

2.1 – 2.6 and 0.5 U Taq polymerase (Fermentas).  Three different PCR cycle programs, 

referred to as cycles A to C, were employed for the amplification of the various exons (see 

Tables 2.1 – 2.6) and are as follows:  

 

Cycle A 

 
An initial denaturation step at 95ºC for five minutes, followed by 35 cycles of denaturation at 

95ºC for two minutes and annealing as specified (indicated as the TA of each exon in Tables 

2.2, 2.3 and 2.5) for two minutes.  This was followed by a final extension step at 72ºC for ten 

minutes.  

 

Cycle B 

 
An initial denaturation step at 94ºC for five minutes, followed by 35 cycles of denaturation at 

94ºC for 30 seconds, annealing as specified (indicated as the TA of each exon in Tables 2.4 

and 2.6) for 30 seconds and elongation at 72ºC for 30 seconds.  This was followed by a final 

extension step at 72ºC for ten minutes.   
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Cycle C 

 
An initial denaturation step at 95ºC for two minutes, followed by 35 cycles of denaturation at 

A

2.5 Agarose gel electrophoresis 

 

Successful amplification of PCR products was tested on a 2% (w/v) horizontal agarose gel 

[consisting of 4 g agarose in 200 ml 1 x TBE (90 mM Tris-HCl, 90 mM boric acid (H3BO3) 

and 0.1 mM EDTA, pH 8.0) and 0.01% (v/v) ethidium bromide (EtBr)].  The PCR product   

(5 μl) was mixed with an equal volume of cresol red loading buffer (2 mg/ml cresol red and 

 was visualised by ultraviolet light transillumination assisted by a GeneSnap 

ultiGenius Bio Imaging System (Syngene). 

 

 

 

 

 

95ºC for 30 seconds, annealing as specified (indicated as the T  of each exon in Tables 2.1 

and 2.3) for 45 seconds and elongation at 72ºC for 30 seconds.  This was followed by a final 

extension step at 72ºC for ten minutes. 

 

35% (w/v) sucrose) and loaded onto the gel.  To establish whether the correct fragments were 

amplified a 100 bp ladder (Fermentas), used as a molecular size marker, was also loaded onto 

the gel.  The PCR products were resolved at 120 V for one hour in 1 x TBE buffer solution.  

The DNA

M
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2.6 Heteroduplex-Single Strand Conformation Polymorphism (HEX-

s were resolved on a 12% polyacrylamide (PAA) gel 

upplemented with urea ((NH2)2CO) [gel consisting of 7.5% (w/v) urea, 1.5 x TBE (135 mM 

A, pH 8.0), 12% (w/v) PAA (1% C of a 40% stock 

ide (AA): 1 bisacrylamide (BAA)), 0.1% (w/v) ammonium persulphate (APS) and 

denatured for ten minutes at 95ºC and 

ately 15 μl of the denatured PCR product was loaded onto the gel.  

med at 350 V (4ºC) for 16 hours.   

ls were silver stained according to Beidler et al. (1992).  

oved from the plates and placed in a plastic container filled with 

 0.5% (v/v) acetic acid (CH3COOH)].  The gels were shaken 

e) for ten minutes.  The fixing solution was 

subsequently discarded and the gels rinsed twice for one minute with distilled water.  After 

SSCP) analysis 

 

HEX-SSCP analysis (Kotze et al. 1995) was performed on a 30 cm vertical gel apparatus.  

The PCR products of the various exon

s

Tris-HCl, 135 mM H BO  and 2 mM EDT3 3

(99 acrylam

0.01% (v/v) N, N, N’, N’- tetramethylethylenediamine (TEMED)]. 

 

A 0.75 mm gel was cast and once polymerised, prepared for loading of the PCR products.  

Gels were placed in a Hoefer SE 660 electrophoresis tank filled with fresh 1 x TBE buffer (90 

mM Tris-HCl, 90 mM H BO3 3 and 0.1 mM EDTA, pH 8.0).  The upper buffer chamber was 

filled with 1.5 x TBE buffer.  An equal volume of bromophenol blue loading buffer 

[consisting of 95% (v/v) formamide (H2NCHO, de-ionised), 20 mM EDTA (disodiumsalt), 

0.05% (w/v) xylene cyanol (C31H28N Na O2 4 13S) and 0.05% (w/v) bromophenol blue 

(C19H10Br O S)] was added to the PCR products; heat 4 5

then kept on ice.  Approxim

Electrophoresis was perfor

 

Following electrophoresis, the PAA ge

The gels were carefully rem

fixing solution [10% (v/v) EtOH,

using a Belly Dancer (Stovall Life Scienc
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this process, the gels were stained using a staining solution [0.1% (w/v) silver nitrate 

(AgNO , once again, shaken for ten minutes using the Belly Dancer, 

nd the gels rinsed for five seconds with 

d to RFLP analysis, using the 

striction endonuclease Pvu II (recognition site: CAG↓CTG; Fermentas Life Sciences).  As 

)].  The gels were3

whereafter the staining solution was discarded a

distilled water.  The gels were subsequently covered with developing solution [1.5% (w/v) 

sodium hydroxide (NaOH), 0.4% (v/v) formaldehyde (HCHO)] and shaken on the Belly 

Dancer until the DNA bands were visible.  The developing solution was discarded, the gels 

rinsed twice with distilled water and stored between transparencies for preservation. 

 

2.7 Restriction Fragment Length Polymorphism (RFLP) analysis 

 

Exon 2 of the HFE gene containing the variant IVS2+4T→C was subjected to RFLP analysis 

using the Rsa I enzyme (recognition site: GT↓AC ; Fermentas Life Sciences).  As this variant 

creates an Rsa I restriction site, the wild-type DNA generates a 257 bp PCR product.  

Digestion of the mutated DNA produces three fragments of 257 bp, 181 bp and 76 bp in the 

heterozygous state, while it produces two fragments of 181 bp and 76 bp in the homozygous 

state.   

 

 To allow a more accurate discrimination between the different genotypes of the Q248H 

polymorphism, exon 6 of the SLC40A1 gene was subjecte

re

the Q248H polymorphism abolishes a Pvu II restriction site, the digested 368 bp PCR product 

produces two fragments of 299 bp and 69 bp in wild-type DNA.  In mutated DNA, digestion 

produces three fragments of 368 bp, 299 bp and 69 bp in the heterozygous state and one 

fragment of 368 bp is generated in the homozygous state. 
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PCR amplification of SLC40A1 exon 6 for the individual fragments were performed as 

indicated in section 2.3.2.  The PCR products subjected to RFLP analysis with the respective 

enzymes were digested overnight in 20 μl reactions consisting of 10 μl PCR product, 2 U of 

the relevant enzyme and 1 X buffer, in a 37ºC water bath.   

 

Electrophoresis of the digested PCR products of HFE and SLC40A1 was performed on a 2% 

(w/v) horizontal agarose gel [consisting of 4 g agarose in 200 ml 1 X TBE (90 mM Tris-HCl, 

0 mM boric acid and 1 mM EDTA, pH 8.0)].  Loading of the digested PCR product, 

 and PCR Clean-Up System (Promega).  Briefly, one SV Column was placed into a 

ollection tube for purification of the PCR product.  An equal volume of membrane binding 

ith 95% (v/v) EtOH.  To wash the 

olumn, 700 μl of membrane wash solution (10 mM potassium acetate, 80% (v/v) ethanol, 

9

electrophoresis and visualisation are as described in section 2.4. 

 

2.8 Semi-automated DNA sequencing 

 

DNA purification 

 

Prior to semi-automated DNA sequencing, PCR products were purified using the Wizard® 

SV Gel

c

solution (4500 mM guanidine isothiocyanate, 500 mM potassium acetate, pH 5.0) was added 

to the PCR product and the mixture was incubated at room temperature for one minute.  This 

was followed by centrifugation at 16000 x g for one minute.  The flowthrough in the 

collection tube was subsequently discarded and the minicolumn was re-inserted into the 

collection tube.    

 

Prior to its use, the membrane wash solution was diluted w

c
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16.7 mM EDTA, pH 8.0) was added to the assembly.  The assembly was once again 

centrifuged at 16000 x g for one minute, where after the flowthrough was discarded.  The 

column was rewashed with 500 μl membrane wash solution and centrifuged at 16000 x g for 

five minutes.  The collection tube was emptied and the assembly re-centrifuged for one 

inute with the microcentrifuge lid open (or off), to allow the evaporation of any residual 

he minicolumn.  Following a 

ne minute incubation step at room temperature, the column was centrifuged at 16000 x g for 

i e DNA subsequently stored at 4ºC. 

quencing 

ºC for ten seconds, annealing at 55ºC for ten seconds and an extension step 

t 60ºC for four minutes.  Semi-automated DNA sequencing was performed on an ABI Prism 

m

ethanol.  

 

 The minicolumn was carefully transferred to a 1.5 ml microcentrifuge tube and 50 μl of 

nuclease-free water was then added directly onto the center of t

o

one m nute.  The minicolumn was discarded and th

 

Semi-automated se

 

Semi-automated DNA sequencing was performed on PCR products demonstrating variation 

with HEX-SSCP analysis.  The primers used for sequencing are the same as those used for 

PCR amplification (Tables 2.1 – 2.6).  Cycle sequencing reactions consisted of 9.9 ng purified 

PCR product, 1 μl ready reaction mix [BigDye® Terminator v3.1 cycle sequencing kit 

(Applied Biosystems)] and 3.3 pmol primer.  The reaction was performed in a GeneAmp® 

PCR System 2700 (Applied Biosystems).  The cycle sequencing program used was as 

follows: an initial denaturation step at 96ºC for ten seconds, followed by 25 cycles of 

denaturation at 96

a

3130XL Genetic Analyser (Applied Biosystems).   
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DNA sequences and chromatograms were compared and analysed using the BioEdit 

Sequence Alignment Editor V6.07 (Hall 1999) and Chromas 2.13 

(http://technelysium.com.au/chromas.html).   

 

2.9 Statistical analysis 

 

Allele and genotype frequencies were estimated by allele counting.  Statistical differences 

and all 

sults were verified with both STATISTICA [StatSoft, Inc. (2003) STAT (data analysis 

nd Epi Info [Epi Info™ (utilities StatCalc) v3.3.2, release date: 

 February 2005; Division of Public Health Surveillance] computer software.  The 

between patient and control groups were tested by the Fisher's Exact Test and/or chi-squared 

(χ2) analysis.  Probability values smaller than 0.05 were regarded as statistically significant.  

The Hardy-Weinberg equilibrium (HWE) was performed to test equilibrium for the genetic 

traits investigated.  Analyses were performed using the Microsoft Excel 2000 software 

re

software system), version 6] a

9

frequencies of combined mutation carriers in patient and control subjects were compared to 

elucidate possible gene-gene interaction, according to Butt et al. (2003). 
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Table 2.7.  List of generally used chemicals/reagents and their suppliers

Chemical/Reagent Supplier

Acetic acid Associated Chemical Enterprises
Acrylamide Fluka
Agarose BIO BASIC
Ammonium chloride Merck

Associated Chemical Enterprises
Bisacrylamide Sigma

EDTA Merck

Formaldehyde Associated Chemical Enterprises

Sodium chloride Sigma
l sulphate Merck

Sodium hydroxide Merck
Sucrose Associated Chemical Enterprises
TEMED Fluka
Tris-HCl Fluka
Urea Sigma
Xylene cyanol Fluka

Ammonium persulphate

Boric acid Kimix
Bromophenol blue Merck
Cresol red Merck

Ethanol Kimix
Ethidium bromide Fluka

Formamide (de-ionised) Merck
Phosphate buffered saline Roche Diagnostics
Potassium chloride Merck
Potassium hydrogen carbonate Merck
Proteinase K Roche Diagnostics
Silver nitrate Merck

Sodium dodecy
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Presented in the form of a full-length manuscript in preparation for future publication in a 

scientific journal 
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Mutation analysis of genes involved in iron homeostasis in Black South 

African patients with squamous cell carcinoma of the oesophagus   

 

 Abstract 

 

OC is a disease characterised by a disproportionate presentation in certain ethnic groups, with 

squamous cell carcinoma (SCC) occurring more often in Blacks and adenocarcinoma (ADC) 

being more prevalent in Caucasians.  Several factors have been attributed to the development 

of OC, including an excess of iron (leading to enhanced tumour growth), oesophageal injury 

and chronic inflammation.  The purpose of this study was to assess the likelihood that 

variations identified in genes implicated in iron homeostasis (including HFE, HMOX1, 

SLC40A1, HAMP, CYBRD1 and HJV), contribute to OC susceptibility.  The study population 

included 50 unrelated OC patients with SCC and 50 population-matched control individuals 

of the Black Xhosa-speaking South African population.  PCR amplification was performed on 

these genes, followed by heteroduplex single strand conformational polymorphism (HEX-

SSCP) analysis.  Twenty-one previously described and thirteen novel variants (HFE: Y342; 

HMOX1: G255R, R262H, R262C; SLC40A1: IVS5-27A→C, L378, 3’UTR+284C→T, 

3’UTR+289G→A, 3’UTR+289G→T; CYBRD1: L17, P195; HJV: 5’UTR-1401T→C, 

3’UTR+47A→G) were identified using semi-automated DNA sequencing analysis.  Several 

of the variants identified in this study have previously been associated with iron overload and 

disease development in the Coloured and Caucasian populations of South Africa.  This study 

identified several variants that could potentially contribute to disease susceptibility and is the 

first study demonstrating the potential involvement of iron dysregulation in OC susceptibility 

in the Black South African population.   
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Introduction 

 

Oesophageal cancer (OC) is the eighth most common cancer worldwide (Parkin et al. 2005).  

The disease exhibits a distinct geographic variation in incidence as it occurs at high 

frequencies in certain defined global regions (Blot 1994, Parkin et al. 2005).  The highest 

incidence of OC in South Africa has been identified in the Transkei region.  SCC is the most 

common cancer among Black males [age standardised incidence rate (ASIR) 13.6/100 000] 

and the third most common cancer among Black females [ASIR 5.8/100 000] (Sitas et al. 

1998) in this country.   

 

Numerous risk factors for SCC have been identified, with the aetiological importance of the 

synergistic use of tobacco and alcohol being consistently displayed in SCC studies in Western 

countries (Blot 1994, Parkin 2001).  Risk factors contributing to a lesser extent to the 

development of SCC include nutrition, nitrosamines, mycotoxins, infectious agents, 

consumption of hot beverages, repeated oesophageal injury, chronic inflammation and 

occupational exposures (Van Rensburg 1981, Syrjanen 1982, Norell et al. 1983, Hille et al. 

1986, IARC 1986, 1988, Cheng et al. 1992, Gustavsson et al. 1993, Yang and Wang 1993, 

Blot 1994, Klimstra 1994, Parent et al. 2000).  OC is known for its aggressive clinical 

behaviour and poor prognosis and develops in mid to late adulthood, rarely in individuals 

younger than 25 years.  

 

Evidence for the involvement of iron in cancer was illustrated where OC developed as a 

consequence of iron supplementation in a rat model (Goldstein et al. 1998, Chen et al. 1999, 

2000).  Previously, it had been believed that iron overload in the Black South African 

population resulted from the excessive consumption of home-brewed alcoholic beverages that 
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had been contaminated with iron (MacPhail et al. 1979).  Iron overload, however, does not 

develop in all beer drinkers and not all patients suffering from iron overload consume 

excessive amounts of beer.  An excessive dietary intake of iron has also been linked to the 

pathogenesis of hepatocellular carcinoma in the Black South African population (Mandishona 

et al. 1998).  Iron overload has been reported as a risk factor in the development of OC in 

several other populations, including a Danish population with primary haemochromatosis, 

where an increased risk for OC development was illustrated (Hsing et al. 1995).  It has also 

been demonstrated that in conditions of iron overload, the cytotoxic activity of the 

macrophages is impaired, subsequently favouring tumour growth (Green et al. 1988, Huot et 

al. 1990).   

 

To investigate iron as a possible risk factor in the development of oesophageal cancer, this 

study focused on the analysis of genes involved in iron homeostasis (including HFE, 

HMOX1, SLC40A1, HAMP, CYBRD1 and HJV) in patients diagnosed with SCC.  The HFE 

protein binds to the transferrin receptor (TFR), thereby reducing its affinity for transferrin 

(Feder et al. 1998).  HMOX1 is vital in haem catabolism, degrading haem to biliverdin 

(Tenhunen et al. 1969).  SLC40A1 is a highly conserved multiple transmembrane-domain 

protein involved in the export of iron from duodenal enterocytes and macrophages, mediating 

the efflux of iron in the presence of a ferroxidase (Abboud and Haile 2000, Donovan et al. 

2000, McKie et al. 2000).  HAMP has been identified as a key molecule in the regulation of 

iron homeostasis.  CYBRD1 catalyses the reduction of ferric (Fe3+) to ferrous iron (Fe2+) in 

the gut lumen during intestinal iron absorption (McKie et al. 2001), with HJV a possible 

modulator of HAMP expression (Pantopoulos and Papanikolaou 2005).  

 

. 
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Materials and Methods 

 

The study protocol was approved by the Ethics Review Committee of the University of 

Stellenbosch (Project number 2002/C071).  Information regarding the study participants, the 

experimental procedures employed and the statistical analysis performed are as described in 

Chapter 2.  

 

Results 

 

The study population included 25 (50%) males and 25 (50%) females with a mean age of 59 

years and 62 years, respectively (Table 3.1).  The majority of patients (80% males and 76% 

females) were older than 50 years.  Additional information was available for only 23 (92%) 

males and 19 (76%) females.  Seven patients (males: 8.7%; females: 10.5%) never smoked 

and of these patients only one consumed alcoholic beverages.  Of the 38 cigarette smokers, 

three (males: 2.6%; females: 5.3%) were only smokers, 19 (males: 31.6%; females: 18.48%) 

additionally consumed alcoholic beverages (beer and spirits), 15 (males: 21.1%; females: 

18.4%) consumed only beer, and one (females: 2.6%) additionally consumed only spirits.  

Information regarding the occupations of the study participants was available for only 23 

males and 19 females, with the majority of patients being unemployed, domestic workers, 

farm workers or gardeners.  All of the OC patients were from the Eastern Cape region in 

South Africa.    

 

Patient iron levels were also denoted, according to Section 2.2, Chapter 2.  Three of 25 

females were iron deficient (ferritin < 20µg/l), while nine females and six males had raised 

ferritin (with transferrin saturation < 45%).  In addition, one female had raised ferritin (with 
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transferrin saturation > 45%), while only 12 females and 19 males had normal iron levels 

(transferrin saturation for all < 45%).   

 

 

 

Males (n = 25) Females (n = 25)

Average age (years) 59 62

Cigarette smoking 20  (80 %) 15  (60 %)
Never 3    (12 %) 4    (16 %)
Unknown 2    (8 %) 6    (24 %)

Alcoholic consumption (Beer)
Weekly 12  (48 %) 8   (32 %)
Daily 1    (4 %) 3   (12 %)
Seldom 4    (16 %) 4   (16 %)
Never 4    (16 %) 4   (16 %)
Stopped 2    (8 %) 0
Unknown 2    (8 %) 6   (24 %)

Alcoholic consumption (Wine/Spirits)
Weekly 8    (32 %) 2    (8 %)
Daily 0 1    (4 %)
Seldom 5    (20 %) 4    (16 %)
Never 10  (40 %) 12  (48 %)
Unknown 2    (8 %) 6    (24 %)

Table 3.1.  Characteristics of the OC patients

Patients with OC
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Mutation analysis 

he variants identified in both patient and control groups, their allele frequencies as well as 

even previously described (V53M,  H63D, H63, IVS2+4T→C, IVS4-44T→C, C282Y and 

EX-SSCP analysis of exon 2 revealed a G to A transition at nucleotide position 175, 

 

T

statistically significant associations between the patient and population-matched control 

groups, are shown in Table 3.2.  All of the variants detected by HEX-SSCP analysis were 

verified by bi-directional sequencing.   

  

HFE 

 

S

IVS5-47G→A) and one novel variant (Y342) were identified in the HFE gene (indicated in 

Table 3.2). 

 

H

resulting in the replacement of valine with methionine at amino acid 53 (V53M).  This variant 

presented only in the heterozygous state in a single (2%) OC patient and was also only 

observed in one (2%) of the population-matched control individuals.  Another missense 

mutation identified in exon 2 was the C to G transversion at nucleotide position 187, causing 

the substitution of histidine with aspartic acid at amino acid 63 (H63D).  This mutation was 

only detected in two of 50 (4%) of the OC patients, one being heterozygous and the other 

homozygous, and was absent from the population-matched control individuals.   
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Table 3.2.  Variants identified in the Black South African population

Gene Exon/ Variant P Reference
Intron Patients Controls

HFE 2 V53Mb,d 0.01 0.01 0.74 de Villiers et al. 1999
2 H63Dc,d 0.03 0.00 - Feder et al. 1996
2 H63b,e 0.00 0.02 - de Villiers et al. 1998
2 IVS2+4T→Cc 0.39 0.42 0.72 Beutler and West 1997
4 IVS4-44T→Cb 0.05 0.06 0.76 Beutler and West 1997
4 C282Yb,d 0.02 0.00 - Feder et al. 1996
5 IVS5-47G→A b 0.63 0.63 0.97 Beutler and West 1997
6 Y342b,e 0.00 0.01 - This study

HMOX1 2 IVS2-19C→Tc 0.03 0.01 0.31 SeattleSNPs
4 IVS4+51delTGGCTGTCTGACTb 0.06 0.07 0.77 Zaahl et al. 2005
4 IVS4+59C→Gb,d 0.02 0.00 - SeattleSNPs
5 G255Rb,d 0.01 0.00 - This study
5 R262Cb,d 0.01 0.00 - This study
5 R262Hb,d 0.01 0.00 - This study

SLC40A1 5'UTR 5'UTR-98G→Cb 0.06 0.04 0.41 Douabin-Gicquel et al. 2001
5'UTR 5'UTR-23A→Gb 0.02 0.01 0.52 Zaahl et al. 2004
5'UTR 5'UTR-8C→Gb,d 0.01 0.00 - Douabin-Gicquel et al. 2001
2 IVS1-24G→Cc 0.35 0.28 0.27 Devalia et al. 2002
4 I109c 0.07 0.05 0.55 Beutler and West 2003
4 L129c 0.07 0.10 0.45 Zaahl et al. 2004
5 IVS5-27A→Cb,d 0.03 0.00 - This study
6 V221c 0.18 0.14 0.48 Devalia et al. 2002
6 Q248Hb 0.08 0.09 0.87 Gordeuk et al. 2003
7 L378b,d 0.01 0.00 - This study
3'UTR 3'UTR+284C→Tb 0.03 0.01 0.31 This study
3'UTR 3'UTR+289G→Ab 0.02 0.03 0.50 This study
3'UTR 3'UTR+289G→Tb 0.05 0.04 0.50 This study

CYBRD1 1 L17b 0.02 0.01 0.53 This study
1 IVS1-4C→Gb 0.05 0.04 0.54 Zaahl et al. 2004
2 IVS2+8T→Cc 0.83 0.84 0.85 Zaahl et al. 2004
4 P195b,d 0.03 0.00 - This study

HJV 5'UTR 5'UTR-1401T→Cb 0.03 0.01 0.30 This study
4 A310Gb 0.04 0.05 0.46 Lee et al. 2004
3'UTR 3'UTR+47A→Gb

0.05 0.04 0.50 This study

transporter) member 1 gene; UTR, untranslated region.

control group.  Abbreviations: CYBRD1 , cytochrome b reductase 1 gene; HFE , high iron gene; HJV , hemojuvelin; HMOX1 , 

Allele frequenciesa

a Allele frequencies of only the polymorphic allele denoted; b variants identified only in the heterozygous state; c variants identified

haem oxygenase 1 gene; IVS, intervening sequence; P , probability;  SLC40A1 , solute carrier family 40 (iron regulated 

in both the heterozygous and homozygous states; d variants identified only in the patient group; e variants identified only in the 
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A previously described T to C transition was observed at nucleotide position 189, resulting in 

ne of the non-coding variants identified in this study, was a T to C transition (IVS2+4T→C) 

no substitution of amino acid 63 (H63); two nucleotides downstream of the H63D variant 

position.  This synonymous variant was only identified in the heterozygous state in two of 46 

(4.4%) population-matched control individuals and was absent from the OC patient group.  

HEX-SSCP analysis of exon 4 revealed a G to A transition at nucleotide position 845, 

resulting in a cysteine to tyrosine substitution at amino acid 282 (C282Y).  This variant 

presented only in the heterozygous state in two of the 50 (4%) OC patients and did not occur 

in any of the population-matched control individuals. 

 

O

found in intron 2 of the HFE gene.  This variant occurred at high frequencies in both the OC 

and control populations and was observed in both the heterozygous [25 of 50 (50%) OC 

patients and 21 of 47 (44.7%) population-matched control individuals] and homozygous states 

[seven of 50 (14%) OC patients and nine of 47 (19.2%) population-matched control 

individuals].  Another intronic variant involving a T to C transition in the HFE gene was 

IVS4-44T→C.  This variant was restricted to the heterozygous state in the OC patient group, 

with five of the 50 (10%) OC patients being heterozygous.  Screening of the population-

matched control individuals revealed six of 48 (12.5%) heterozygous and a single (2.1%) 

homozygous individual.  The G to A transition in intron 5 (IVS5-47G→A) was observed in 

both the heterozygous [26 of 49 (53.1%) OC patients and 19 of 50 (38%) population-matched 

control individuals] and the homozygous states [18 of 49 (36.7%) OC patients and 23 of 50 

(46%) population-matched control individuals].   
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HMOX1 

utation analysis of the HMOX1 gene using a combined HEX-SSCP method revealed three 

he three novel variants identified in this gene, were all discovered in exon 5 and are shown 

he first intronic variant detected in the HMOX1 gene, was a C to T transition located 19 

 

M

previously described (IVS2-19C→T, IVS4+51delTGGCTGTCTGACT and IVS4+59C→G) 

and three novel (G255R, R262C and R262H) variants (indicated in Table 3.2). 

 

T

in Fig. 3.1.  All three variants were limited to the heterozygous state and each of these was 

observed in a single OC individual.  The first variant is a G to C transversion at nucleotide 

position 763, resulting in a glycine to tyrosine substitution at amino acid 255 (G255R).  Two 

OC patients were heterozygous for variants involving amino acid 262, a C to T transition at 

nucleotide position 784, causing the substitution of arginine with cysteine (R262C) and the G 

to A transition at nucleotide position 785, causing the substitution of arginine with histidine 

(R262H).   

 

T

nucleotides upstream of exon 3 (IVS2-19C→T).  The heterozygous state of the variant was 

detected in one of 50 (2%) OC patients and in one of 50 (2%) of the population-matched 

control individuals.  The homozygous state of IVS2-19C→T was limited to one individual in 

the OC patient group.  IVS4+51delTGGCTGTCTGACT was restricted to the heterozygous 

state and was identified in six of 50 (12%) of the OC patients and seven of 50 (14%) of the 

population-matched control individuals.  The previously described C to G transversion, 

IVS4+59C→G, was detected only in the heterozygous state in two of 50 (4%) of the OC 

patients.  This variant did not occur in any of the population-matched control individuals.   
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Figure 3.1.  Schematic representation of the novel variants identified in exon 5 of the  

HMOX1 gene.   
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Legend to Figure 3.1 

A. Sequencing electropherograms indicating: (i) and (iii) the wild-type sequence, (iі) the 
variant G255R (G→C), (iv) the variant R262C (C→T) and (v) the variant R262H (G→A).  
Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); green, adenine 
(A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the wild-type banding 
patterns in lanes 2-5, 7 and 9-12.  Lanes 1, 6 and 8 contain DNA of individuals heterozygous 
for the respective variants (A) G255R, (B) R262C and (C) R262H.   
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SLC40A1 

 

Eight previously described (5’UTR-98G→C, 5’UTR-23A→G, 5’UTR-8C→G, IVS1-

24G→C, I109, L129, V221 and Q248H) and four novel variants (IVS5-27A→C, 

3’UTR+284C→T, 3’UTR+289G→A and 3’UTR+289G→T) were identified in SLC40A1 

(indicated in Table 3.2).   

 

Three variants were observed in the 5’ UTR flanking the iron-responsive element (IRE): a G 

to C transversion at nucleotide position –98 (5’UTR-98G→C), an A to G transition at 

nucleotide position –23 (5’UTR-23A→G) and a C to G transversion at nucleotide position –8 

(5’UTR-8C→G), relative to the initiating ATG.  All three of these variants were limited to the 

heterozygous state.  The 5’UTR-8C→G variant was found in a single (2%) OC patient and in 

none of the population-matched control individuals, while 5’UTR-23A→G occurred in two of 

50 (4%) of the OC patients and in one of 47 (2.1%) population-matched control individuals.  

The last variant, 5’UTR-98G→C, was identified in six of 50 (12%) OC patients and in four of 

47 (8.5%) population-matched control individuals.  

 

Five exonic variants were identified in the SLC40A1 gene.  A previously described C to T 

transition was observed at nucleotide position 327, resulting in no substitution of amino acid 

109 (I109) in exon 4.  This synonymous variant was identified in the heterozygous state [five 

of 48 (10.4%) OC patients and five of 50 (10%) population-matched control individuals], 

with only one (2.1%) of the OC individuals being homozygous.  Another C to T transition 

was observed at nucleotide position 387, resulting in no substitution of amino acid 129 (L129) 

in exon 4.  This variant was identified in both the heterozygous [five of 48 (10.4%) OC 

patients and eight of 50 (16%) population-matched control individuals] and homozygous 
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states [one of 48 (2.1%) OC patients and one of 50 (2%) population-matched control 

individuals].   

 

The only previously described synonymous variant detected in exon 6 of SLC40A1, is a T to 

C transition at nucleotide position 662, resulting in no substitution of amino acid 221 (V221).  

Both the heterozygous [11 of 48 OC (22.9%) patients and 12 of 50 (24%) controls] and the 

homozygous states [three of 48 (6.3%) OC patients and none of the controls] of this variant 

were revealed.  The G to T transversion at nucleotide position 744 of the SLC40A1 gene 

resulted in the replacement of glutamine with histidine at amino acid 248 (Q248H).  This 

polymorphism was detected in exon 6 of both the OC and control individuals, but was found 

only in the heterozygous state in eight of 48 (16.7%) OC patients and six of 50 (12%) control 

individuals.  The only novel exonic variant detected in SLC40A1, was a T to C transition at 

nucleotide position 1132, resulting in no substitution of amino acid 378 (L378) in exon 7.  

This novel synonymous variant, indicated in Fig. 3.3, was detected in a single OC patient and 

was restricted to the heterozygous state.  The variant did not occur in any of the population-

matched control individuals. 

 

The first intronic variant observed in the SLC40A1 gene, was a G to C transversion in intron 

one (IVS1-24G→C).  The heterozygous variant presented in 25 of 47 (53.2%) OC patients 

and in 18 of 47 (38.3%) of the population-matched control individuals.  Four (8.5%) of the 

OC patients, as well as four (8.5%) of the control individuals were homozygous for IVS1-

24G→C.  HEX-SSCP analysis revealed a novel A to C transversion in intron five (IVS5-

27A→C) of the gene, indicated in Fig 3.2.  This variant occurred only in the heterozygous 

state in a single (2.1%) OC patient and in two (4%) of the population-matched controls.  
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Figure 3.2.  Schematic representation of the novel variant identified in intron 5 of the  

SLC40A1 gene.   
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Legend to Figure 3.2 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
IVS5-27A→C.  Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); 
green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding pattern in lanes 2 and a previously described variant (V221) in lanes 1, 4 
and 5.  Lane 3 contains DNA of an individual heterozygous for the variant IVS5-27A→C. 
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Figure 3.3.  Schematic representation of the novel variant identified in exon 7 of the 

SLC40A1 gene.   
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(ii) 

 
 

 

 

Legend to Figure 3.3 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
L378 (T→C).  Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); 
green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding patterns in lanes 2, 3, 4 and 5.  Lane 1 contains DNA of an individual 
heterozygous for the variant L378.    
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Three novel variants were identified in the 3’UTR of the SLC40A1 gene, shown in Fig. 3.4.  

The first variant involved a C to T transition (3’UTR+284C→T) that was only found in the 

heterozygous state in three of 50 (6%) patients and in one of 50 (2%) control individuals.  The 

other two variants both involved the same nucleotide.  The first one involved a G to A 

transition (3’UTR+289G→A), observed only in the heterozygous state in two of 50 (4%) of 

the OC patients and three of 50 (6%) population-matched control individuals.  The second 

variant involved a G to T transversion (3’UTR+289G→T) also limited to the heterozygous 

state, in five of 50 (10%) of the OC patients and four of 50 (8%) control individuals.  

 

HAMP 

 

No variants were detected in the HAMP gene using HEX-SSCP analysis. 
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Figure 3.4.  Schematic representation of the novel variants identified in the 3’UTR of the 

SLC40A1 gene.   
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Legend to Figure 3.4 

A. Sequencing electropherograms indicating: (і) the wild-type sequence, (ii) the variant 
3’UTR+284C→T, (iii) the variant 3’UTR+289G→T and (iv) the variant 3’UTR+289G→A.  
Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); green, adenine 
(A); black, guanine (G).  B. HEX-SSCP gels stained with AgNO3, with the wild-type banding 
patterns in lanes 2-5 and 7-9.  Lanes 1, 6 and 10 contain DNA of individuals heterozygous for 
the respective variants (A) 3’UTR+284C→T, (B) 3’UTR+289G→T and (C) 
3’UTR+289G→A.   
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CYBRD1 

 

Two previously described (IVS1-4C→G and IVS2+4T→C) and two novel synonymous 

variants (L17 and P195) were detected in the CYBRD1 gene (indicated in Table 3.2).     

 

The only variant observed in exon 1 of the CYBRD1 gene, was a G to A transition at 

nucleotide position 51, resulting in no substitution of amino acid 17 (L17).  This variant was 

restricted to the heterozygous state, with two of 48 (4.2%) of the OC patients and only a 

single (2.3%) control individual being identified.  The G to A transition at nucleotide position 

584, resulting in no substitution of amino acid 195 (P195) in exon 4, was identified in the 

heterozygous state in three of 48 (6.3%) of the OC patients.  This variant was not identified in 

any of the population-matched control individuals.   

 

Two intronic variants were identified in the CYBRD1 gene.  The first was a C to G 

transversion in intron one (IVS1-4C→G), detected only in the heterozygous state in five of 50 

(10%) OC patients and in four of 47 (8.5%) of the population-matched control individuals.  

The second non-coding variant was a T to C transition detected in intron two (IVS2+8T→C).  

This variant presented in both the heterozygous [13 of 50 (26%) patients and 11 of 47 

(23.4%) population-matched control individuals] and the homozygous states [35 of 50 (70%) 

patients and 34 of 47 (68%) population-matched control individuals].   
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Figure 3.5.  Schematic representation of the novel variant identified in exon 1 of the CYBRD1 

gene.   
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Legend to Figure 3.5 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
L17 (G→A).  Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); 
green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding patterns in lanes 1, 2, 4 and 5.  Lane 3 contains DNA of an individual 
heterozygous for the variant L17.      
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Figure 3.6.  Schematic representation of the novel variants identified in exon 4 of the 

CYBRD1 gene.   
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Legend to Figure 3.6 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
P195 (G→A).  Arrows indicate the point of variation, red, thymine (T); blue, cytosine (C); 
green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding patterns in lanes 1, 2 and 4.  Lane 3 contains DNA of an individual 
heterozygous for the variant P195.    
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HJV 

 

One previously described (A310G) and two novel variants (5’UTR-1401T→C and 

3’UTR+47A→G) were detected in HJV (indicated in Table 3.2).   

 

A novel T to C transition was observed in the 5’UTR at nucleotide position –1401 (5’UTR-

1401T→C) relative to the initiating ATG (shown in Fig. 3.7).  This variant was identified 

only in the heterozygous state in three of 50 (6%) of the OC patients and a single population-

matched control individual.  

 

The only exonic variant detected in HJV, was a previously described alanine to glycine 

change in exon 4 at amino acid position 310 (A310G).  This C to G transversion at nucleotide 

position 929 was limited to the heterozygous state in four of 49 (8.2%) of the OC individuals 

and in five of 46 (10.9%) of the population-matched control individuals.   

 

HEX-SSCP analysis revealed a novel A to G transition in the 3’UTR (3’UTR+47A→G) of 

the HJV gene (shown in Fig. 3.8).  Five of 49 (10.2%) OC patients and four of 50 (8%) 

population-matched control individuals were heterozygous for this variant, while no 

homozygous individuals were observed in either of the groups.  No variants were detected in 

exons 2 and 3 of the HJV gene using HEX-SSCP analysis. 
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Figure 3.7.  Schematic representation of the novel variant identified in the 5’UTR of the HJV 

gene.   
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Legend to Figure 3.7 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
5’UTR-1401 T→C.  Arrows indicate the point of variation, red, thymine (T); blue, cytosine 
(C); green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding patterns in lanes 1, 3, 4 and 5.  Lane 2 contains DNA of an individual 
heterozygous for the variant 5’UTR-1401 T→C.    
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Figure 3.8.  Schematic representation of the novel variant identified in the 3’UTR of the HJV 

gene.   
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Legend to Figure 3.8 

A. Sequencing electropherograms indicating: (і) the wild-type sequence and (ii) the variant 
3’UTR+47 A→G.  Arrows indicate the point of variation, red, thymine (T); blue, cytosine 
(C); green, adenine (A); black, guanine (G).  B. HEX-SSCP gel stained with AgNO3, with the 
wild-type banding patterns in lanes 1, 2, 4 and 5.  Lane 3 contains DNA of an individual 
heterozygous for the variant 3’UTR+47 A→G.   

 76



Chapter 3: Results and Discussion 

Discussion 

 

Single-nucleotide polymorphisms (SNPs) can be employed as markers in the search to 

identify genes conferring susceptibility to common diseases (Kruglyak 1999).  Approximately 

90% of sequence variations can be attributed to SNPs.  These SNPs occur at an estimated 

frequency of one per 1000 bases (Taillon-Miller et al. 1998).  

 

A small number of studies investigating iron dysregulation in the Black South African 

population have been described in the literature.  For this reason, where possible, the 

allele/genotype frequencies of variants detected in this study were compared to data available 

in the HapMap project, as well as other studies investigating these genes in the African and/or 

African-American populations.  A few of the variants previously identified only in African 

and African-American individuals have also been observed in the Yoruba population of 

Nigeria that is included in the HapMap project (www.hapmap.org) as a representation of the 

African population. 

 

5’ UTR variants 

 

Three previously described (SLC40A1: 5’UTR-98G→C, 5’UTR-23A→G and 5’UTR-

8C→G) and one novel (HJV: 5’UTR-1401T→C) variant, have been identified in the 5’ 

untranslated regions (UTRs) of the SLC40A1 and HJV genes.  The 5’ UTRs of eukaryotic 

mRNAs are involved in numerous post-transcriptional regulatory pathways that control 

mRNA localisation, stability and translation efficiency (Sonenberg 1994).  Iron-response 

elements have more recently been identified in the 5’UTRs of mRNAs with implications for 
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disease.  Since many mRNAs that contain highly structured 5’UTRs are linked to growth 

control, it is not surprising that over-expression of components of the translation initiation 

mechanism is reportedly associated with tumorigenesis.  Mutations in this region have been 

found to influence the translational efficiency of the mRNA (Pickering and Willis 2005).  

SLC40A1 is the only gene investigated in this study with a known IRE in the 5’UTR and no 

IRE has been identified in the 5’UTR of the HJV gene.  No literature has been identified 

indicating any possible functional effects of 5’UTR-98G→C, 5’UTR-23A→G and 5’UTR-

8C→G on the IRE in the 5’UTR of SLC40A1.   

 

All three previously described 5’UTR variants were identified in the study of Zaahl et al. 

(2004).  Two of these variants, 5’UTR-98G→C and 5’UTR-8C→G, were only identified in 

the Black control population and in none of the iron overload patients.  Both these variants 

were identified in the OC population of this study at a higher allele frequency than previously 

observed.  This is possibly due to the small sample size (2n = 22) of the previous study and is 

not necessarily an indication that these variants contribute to OC susceptibility.  5’UTR-

98G→C was identified in one male and five female OC patients.  Three of these females 

demonstrated iron deficiency (serum ferritin < 20 μg/l), while the three remaining individuals 

had normal serum ferritin levels.  It is possible that 5’UTR-98G→C, in combination with 

another variant, is responsible for the iron deficiency observed in three of the OC patients.  

Zaahl et al. (2004) identified 5’UTR-23A→G in eight of 11 Black HH patients and observed 

significant associations for this variant with iron overload.  The study also observed this 

variant in cis with the (CGG)7 allele found in the promoter region of SLC40A1.  This variant 

was identified in one female with iron overload (serum ferritin = 424 μg/l) and one male with 

normal serum ferritin (213.1 μg/l).  The 5’UTR-8C→G variant was identified in combination 

with 5’UTR-98G→C in one of the females with iron deficiency.  The combined presence of 
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these two variants may have been responsible for the low ferritin levels observed.  Although 

we did not detect any statistically significant associations in this study, it is possible that these 

variants may be in linkage disequilibrium with other disease-causing loci.   

 

The novel variant 5’UTR-1401T→C was identified in the 5’UTR of the HJV gene of three 

OC patients, one female and two males with serum ferritin levels of 148 μg/l, 203.6 μg/l and 

402.2 μg/l, respectively.  This variant may be responsible for the high serum ferritin levels 

observed in these patients.  However, functional studies have to be performed to determine 

the effect 5’UTR-1401T→C and the three known variants (SLC40A1: 5’UTR-98G→C, 

5’UTR-23A→G, 5’UTR-8C→G) may have on gene expression. 

 

Exonic variants 

 

Nine previously described (HFE: V53M, H63D, H63, C282Y; SLC40A1: I109, L129, V221, 

Q248H and HJV: A310G) and seven novel (HFE: Y342; HMOX1: G255R, R262C, R262H; 

SLC40A1: L378 and CYBRD1: L17, P195) exonic variants have been identified in this study.   

 

The V53M variant identified in the HFE gene, involves an amino acid that has remained 

evolutionary conserved in human, mice and rat DNA.  Valine and methionine are both non-

polar amino acids that are highly hydrophobic.  Methionine, however, contains sulphur that 

could create a disulfide bond with another peptide.  The functional significance of this variant 

has not yet been determined.  De Villiers et al. (1999) detected V53M in the Khoisan 

population as well as in three other black South African populations (Sotho/Pedi, Venda and 

Zulu) with iron overload.  This variant has not been detected in any Caucasian individuals to 
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date.  Functional studies need to be performed and larger population sizes should be screened 

to determine if this variant could possibly contribute to iron overload in Black populations.  

Two major missense mutations of the HFE gene implicated in the development of primary 

iron overload, H63D and C282Y (Feder et al. 1996), were detected in this study.  H63D has 

virtually no effect on the HFE protein structure (Dupradeau et al. 2000) and the homozygous 

H63D genotype is very rarely associated with iron loading (Hanson et al. 2001).  C282Y 

modifies the folding of the HFE protein, subsequently impairing protein processing, transport, 

and cell surface expression.  H63D requires the presence of the C282Y mutation to have a 

causative effect and it has been shown that individuals with excessive alcohol consumption in 

the presence of H63D are also susceptible to iron overload (Moirand et al. 1999).  McNamara 

et al. (1998) have shown that the H63D and C282Y mutations in HFE are not responsible for 

African iron overload.  Similar to H63D, C282Y is not as common amongst Black 

populations as in Caucasians and its presence in this study may be due to Caucasian 

admixture.  It may be possible that the presence of these mutations together with other 

disease-causing variants in the Black population could contribute to the iron overload possibly 

associated with the development of OC. 

 

Exonic splicing enhancers (ESEs) are cis-acting elements that function as binding sites for 

serine/arginine-rich (SR) proteins, a family of essential splicing factors that is also involved in 

alternative splicing regulation (Blencowe 2000).  ESE-bound SR proteins promote splicing of 

adjacent introns.  Each of the novel non-synonymous variants in this study was analysed 

using the ESE-prediction program ESEfinder (http://exon.cshl.edu/ESE) to determine if these 

variants may have an effect on splicing (Cartegni et al. 2003). 
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The G255R variant in HMOX1 causes a change from glycine, a hydrophobic amino acid, to 

arginine, a polar amino acid.  A homology search was conducted for exon 5 of the HMOX1 

gene using the BLAST program (http://www.ncbi.nlm.nih.gov/blast) to determine the degree 

of conservation between different species.  Sequencing alignment analysis of exon 5 revealed 

a high level of conservation between the human HMOX1 gene and that of Pan troglodytes 

(100%), Pongo pygmaeus (98%), Macaca mulatta (94%) and Canis familiaris (82%).  The 

glycine substituted by this variant is conserved across species, which could be an indication 

that this amino acid could have functional significance at this position.  ESEfinder results, 

however, predicted that this variant has no effect on the binding of SR-proteins and 

subsequently, it is not believed to have an effect on splicing (Cartegni et al. 2003).  The 

change in polarity caused by the amino acid substitution, may have an effect on protein 

folding.  This variant was identified in a single male OC patient with serum ferritin levels of 

213.1 μg/l and it is possible that this variant is responsible for the high ferritin levels observed.  

 

Another novel exonic variant identified in exon 5 of the HMOX1 gene, is R262C.  This 

variant causes a change from arginine, a polar amino acid, to cysteine, a hydrophobic amino 

acid.  The homology search indicated that the arginine replaced by this variant, is not 

conserved across species.  P. pygmaeus contains a histidine and C. familiaris a proline at this 

amino acid position, with M. mulatta being the only species retaining the arginine.  ESEfinder 

results predicted that the presence of the R262C variant abolishes a SF2/ASF motif as well as 

an SRp40 binding motif, an indication that this variant may have an effect on the structure 

and/or function of the protein.  The variant was identified in a female OC patient who 

demonstrated raised serum ferritin levels [278.4 μg/l (reference range 20–200 μg/l)].  It may 

be possible that this variant is responsible for the high serum ferritin levels observed. 
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R262H identified in exon 5 of the HMOX1 gene, causes a change from the polar amino acid 

arginine, to another polar amino acid, histidine.  Results obtained using the ESEfinder 

program indicates that this variant abolishes a SF2/ASF motif, a SC35 motif, as well as a 

SRp40 motif, while creating a new SRp40 motif.  This variant was identified in a single 

female OC patient with raised serum ferritin levels [1494.4 μg/l (reference range 20–200 

μg/l)], and was also heterozygous for the variants IVS2+4T→C, IVS1-24G→C, I109, 

3’UTR+284C→T and L17.  It may be possible that the combined presence of these variants 

contributed to the excessive iron overload of this patient. 

 

The Q248H polymorphism in exon 6 of the SLC40A1 gene was discovered in African-

Americans and Africans with iron overload and subsequent studies have revealed that this 

polymorphism lies in the predicted cytoplasmic domain and is conserved across mammals 

(Gordeuk et al. 2003).  This variant substitutes an uncharged glycine with a positively charged 

histidine.  Beutler et al. (2003) found that the Q248H showed a higher frequency in patients 

with high ferritin levels and homozygous Q248H individuals had significantly higher serum 

ferritin levels than heterozygous and wild-type homozygous individuals.  This was not the 

case in the present study, where only one individual demonstrated iron overload [serum 

ferritin 247.2 μg/l (reference range: females 20-200 μg/l), one had iron deficiency (serum 

ferritin < 20 μg/l) and the other six OC patients had normal serum ferritin levels.  There is 

also a tendency of the heterozygous variant to be overrepresented among subjects with 

elevated serum ferritin levels.  Gordeuk et al. (2003) suggested that this variant might be 

associated with a tendency to anaemia.  Q248H is expressed on the cell surface as efficiently 

as the wild-type ferroportin and allows the full export function of the protein (Schimanski et 

al. 2005).  The Q248H variant is thus considered a polymorphism of SLC40A1, and is 

infrequently associated with clinical disease.  This variant was not detected in any of the 
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Black South African iron overload patients in the study of Zaahl et al. (2004), but was 

observed in the Yoruba population of the HapMap project (allele frequency 0.042; 2n = 120).  

A higher allele frequency of this variant was observed in the OC population screened in this 

study, although a smaller population size was studied.  It may also be possible that Q248H is 

in linkage disequilibrium with other disease-causing loci, therefore contributing to iron 

overload. 

 

A310G was identified in exon 4 of the HJV gene in both the patient and control groups.  This 

variant substitutes an alanine with glycine (Lee et al. 2004).  As both are non-polar 

hydrophobic amino acids, this variant is not expected to have a structural effect on the protein.  

Recent studies have detected this variant in African-Americans presenting with iron overload 

as well as in the population-matched control individuals (allele frequencies 0.0196 and 0.0720, 

respectively).  These studies have observed that mutations in the coding regions of the HJV 

gene are uncommon in African-Americans (Barton et al. 2004, Lee et al. 2004), similar to the 

low frequency of HJV mutations observed in the Black South African OC population in this 

study.  The allele frequency in our population is similar to that observed for African-

Americans (0.04; 2n = 46) using HapMap, but differed from the Sub-Saharan population 

(0.09; 2n = 120).  It appears that this variant has thus far only been detected in individuals of 

African descent.  A310G was identified in two female and two male OC patients in the 

present study, with only one of these individuals demonstrating iron overload [serum ferritin 

= 589.5 (reference range 20–300 μg/l)].  The combined presence of this variant with other 

variants identified in this study, may be responsible for the iron overload observed in this 

patient.  The other three patients had normal serum ferritin levels of 109.6 μg/l, 171.8 μg/l and 

174.6 μg/l (reference range: females 20–200 μg/l; males 20–300 μg/l), for the two females 

and one male, respectively.   

 83



Chapter 3: Results and Discussion 

Six of the variants detected in this study, do not cause an amino acid change and in general, 

are therefore not expected to affect the functions of the relevant genes.  These variants include 

the novel L378 in SLC40A1, as well as L17 and P195 in CYBRD1.  The three previously 

described synonymous variants identified include I109 (Beutler and West 2003), L129 (Zaahl 

et al. 2004) and V221 (Devalia et al. 2002) in SLC40A1.  Synonymous single-nucleotide 

polymorphisms located in coding regions are generally regarded as translationally silent as the 

relevant amino acids remain the same, but these variants have the ability to affect alternative 

splicing or could be involved in a number of processes affecting translation.  This includes the 

possible creation of new splice sites, the disruption of exonic splicing enhancers and silencers 

(Caceres and Kornblihtt 2002), and mRNA levels, thereby affecting the translated product 

(Cartegni et al. 2002).  A silent mutation was shown to induce post-transcriptional exon-

skipping in the case of phenylketonuria (PKU) where the c.1197A→T substitution resulted in 

the skipping of exon 11, leading to a PKU phenotype (Chao et al. 2001).   

 

Each of the novel synonymous variants in this study was analysed using ESEfinder, to 

determine whether it may have an effect on splicing.  The results generated, indicated that the 

L378 variant in exon 7 of SLC40A1, causes the creation of an extra P40 binding motif.  This 

variant was detected in a single OC patient who was also heterozygous for three other variants 

(5’UTR-98G→C, IVS1-24G→C and Q248H) identified in the SLC40A1 gene.  This patient 

did not have irregular iron parameters, indicating that this variant possibly has no effect on 

iron overload or deficiency.   

 

The synonymous variant L17 was identified in exon 1 of the CYBRD1 gene.  Results obtained 

using the ESEfinder program, indicate that this variant is predicted to create a new binding 

motif for each of the SR-proteins SF2/ASF and SRp40, while it also abolishes a binding motif 
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for SRp40.  This variant was identified in the heterozygous state in two OC patients, one male 

and one female, with intermediate (160.7 μg/l) and extremely raised [1494.4 μg/l (reference 

range 20–200 μg/l)] serum ferritin levels, respectively.  This variant also appears to have no 

significant effect on iron regulation, but it is possible that the combined presence of L17 with 

other variants identified may be responsible for the difference in the iron parameters of the 

OC patients. 

 

ESEfinder results indicated that the synonymous variant P195 in exon 4 of the CYBRD1 gene 

is predicted to create a new SF2/ASF motif and two new SRp40 motifs, while also being 

responsible for the abolishment of an SC35 motif.  This variant was identified in three OC 

patients with varying serum ferritin levels [two females: 95.7 μg/l and 247.2 μg/l; one male: 

260.1 μg/l (reference range: females 20–200 μg/l; males 20–300 μg/l)].  The combined 

presence of P195 with other variants identified in this study may be responsible for the 

difference in the iron parameters of the OC patients. 

 

None of the previously described synonymous variants have been implicated in having an 

effect on the function of the SLC40A1 protein.  A previous study involving iron overload in 

the Black South African population, identified I109 (allele frequencies: patients 0.0; controls 

0.003), L129 (allele frequencies: patients 0.23, controls 0.05) and V221 (allele frequencies: 

patients 0.14, controls 0.0) and revealed significant associations for L129 and V221 (Zaahl et 

al. 2004).  Higher allele frequencies were observed for these three variants in the Black South 

African OC population in the present study, although no significant associations were 

observed.  The higher allele frequencies may be due to the larger population size of this study 

(2n = 100) in comparison to the previous study (2n = 22).   
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Intronic variants 

 

Eight previously described (HFE: IVS4-44T→C, IVS5-47A→G; HMOX1: IVS2-19T→C, 

IVS4+51delTGGCTGTCTGACT, IVS4+59C→G; SLC40A1: IVS1-24G→C and CYBRD1: 

IVS1-4C→G, IVS2+8T→C) and one novel (SLC40A1: IVS5-27A→C) intronic variant were 

detected in this study.   

 

Accurate splicing in eukaryotes is dependent on the 5’ splice site, the 3’ splice site, and the 

branch site (Cartegni et al. 2002).  Motifs in the intron acting as a branch site have been 

identified with a conserved A residue in the branch site serving as a branch point.  The IVS2-

19T→C (HMOX1) and IVS1-24G→C (SLC40A1) polymorphisms lie within this region, 

while IVS1-4C→G (CYBRD1) lies within the pyrimidine tract and therefore, these variants 

could all possibly affect splicing within the respective genes.  Functional studies are needed to 

elucidate the roles of these variants.   

 

The intronic variants identified in this study were all subjected to the Alternative Splice Site 

Predictor (ASSP) analysis program (http://es.embnet.org/mwang/assp.html) to determine 

whether or not they could affect the splicing mechanism (Wang and Marín 2006).  The 

variants not predicted to affect splicing include: HFE: IVS4-44T→C (Beutler and West 

1997), IVS5-47A→G (Beutler and West 1997); HMOX1: IVS2-19T→C (SeattleSNPs), 

IVS4+59C→G (SeattleSNPs); SLC40A1: IVS1-24G→C (Devalia et al. 2002), IVS5-27A→C 

and CYBRD1: IVS1-4C→G (Zaahl et al. 2004), IVS2+8T→C (Zaahl et al. 2004).  A 13 base 

pair deletion from position 51 (IVS4+51delTGGCTGTCTGACT) was identified in intron 

four of the HMOX1 gene.  This deletion was found at the splice acceptor site of the intron.  

The functional significance of this variant is not yet known and no statistically significant 
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associations were obtained in this study.  Variants exerting an effect on the splicing process 

are not only those located at splice sites, but also include those that may affect regulatory 

elements within exons or introns, such as ‘enhancers’ and ‘silencers’ (Pagani and Baralle 

2004).   

  

The following variants were all identified in the Black South African population in the study 

of Zaahl et al. (2004): HFE: IVS2+4T→C, IVS4-44T→C, IVS5-47G→A; SLC40A1: IVS1-

24G→C and CYBRD1: IVS1-4C→G, IVS2+4T→C.  The allele frequencies of the present 

study are higher than those observed for the iron overload study: IVS2+4T→C (0.18), IVS5-

47G→A (0.15), IVS1-4C→G (0.0), IVS2+8T→C (0.77).  It is possible that following further 

studies, these variants may be implicated in OC susceptibility as indicated by the increased 

frequency of these variants in the OC population or this variation may be attributed to the 

difference in population sizes of the two studies.  The frequencies of the IVS4-44T→C (0.18) 

and IVS1-24G→C (0.82) variants of the iron overload study, were higher than those observed 

in this study.  This may be an indication of the involvement of these variants in iron overload.  

 

3’ UTR variants 

  

Four novel (SLC40A1: 3’UTR+284C→T, 3’UTR+289G→A, 3’UTR+289G→T and HJV: 

3’UTR+47 A→G) variants were identified in the 3’UTR in this study.  Variations in the 

3’UTR of genes can alter the stem-loop structure of mRNA and can affect mRNA processing 

and stability (Dean et al. 2001).  The 3’UTR contains a diversity of regulatory mechanisms, 

including the polyadenylation signal, responsible for the regulation of mRNA stability 

(Mazumder et al. 2003).  Other regulatory signals that have also been detected in the 3’UTR 

are involved in the subcellular localisation of the transcripts.  Functional studies need to be 
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performed to investigate if 3’UTR+284C→T, 3’UTR+289G→A, 3’UTR+289G→T and 

3’UTR+47 A→G have an effect on any of these regulatory elements and to determine the 

mechanisms by which altered mRNA may influence risk of developing cancer.  

3’UTR+284C→T was identified in two female and one male OC patient with serum ferritin 

levels of 124.3 μg/l, 1494.4 μg/l and 278.4 μg/l, respectively.  3’UTR+289G→A was 

identified in two male OC patients with serum ferritin levels of 260.1 μg/l and 589.5 μg/l and 

3’UTR+289G→T was identified in three male OC patients with serum ferritin levels of 151.3 

μg/l, 212.6 μg/l and 402.2 μg/l.  The variants identified in the 3’UTR may be responsible for 

these ferritin levels.  The 3’UTR+47A→G variant was identified in five OC patients, one 

female and four males.  These patients had varying serum ferritin levels, with the female 

patient demonstrating iron deficiency (serum ferritin < 20 μg/l), three males had normal 

serum ferritin levels and one male had iron overload [serum ferritin = 342.6 μg/l (reference 

range: males 20–300 μg/l)].  It is possible that these variants may be in linkage disequilibrium 

with other disease-causing variants, subsequently contributing to OC susceptibility. 

 

Three techniques (HEX-SSCP analysis, restriction enzyme digestion and semi-automated 

DNA sequencing) were employed for mutation analysis in this study.  The advantages of 

employing the HEX-SSCP technique, is that it is inexpensive and easy to use.  However, it 

provides only 70% sensitivity (Hayashi and Yandell 1993).  This was illustrated when 

screening exon 2 of HFE and exon 6 of SLC40A1, where restriction enzyme digestion had to 

be employed to distinguish between homo- and heterozygous individuals for IVS2+4T→C 

and Q248H.  All the variants were verified using bi-directional sequencing analysis. No 

variants were identified in the HAMP gene, following HEX-SSCP analysis.  It is possible that 

this technique was not sensitive enough to detect variants in this gene or the variant may not 

have been present in the individuals screened in this study.  

 88



Chapter 3: Results and Discussion 

There was an equal distribution of males and females in the patient cohort, however in the 

population-matched control group the distribution was unequal.  The results obtained in this 

study thus cannot give an accurate assessment of the prevalence of the variants in males 

compared to females.  Iron parameters between the individuals of the patient group, as well as 

between individuals of the control group, also varied greatly.  Some of the individuals had 

iron overload, some had intermediate ferritin levels, while others were anaemic.  An unequal 

representation of each of these groups complicated the determination of statistical association 

of the variants with the iron parameters.    

 

The population sizes were sufficient for the purpose of this pilot study.  It allowed the 

detection of previously described as well as novel variants.  Although no statistically 

significant associations have been observed for any of the variants identified in this study, the 

allele frequencies obtained for the variants in the Black South African population, could be 

employed to compare to other studies investigating this population.  The detection methods 

employed could have an effect on the results obtained in this study.  Larger sample sizes, 

however, can aid in obtaining more informative statistical data.  

 

Although no statistically significant associations were obtained for the novel variants in this 

study, the possible effects of these variants should not be disregarded.  Statistically significant 

associations have also been observed between the IVS5-47G→A variant in HFE and (a) V221 

(allele frequencies: P = 0.046) and (b) Q248H (allele frequencies: P = 0.031) in SLC40A1.  It 

is possible that the combined presence of these variants is involved in disease susceptibility.  

Results obtained with ESEfinder also indicated that R262C, R262H, L378, L17 and P195 

might have an effect on splicing and thus the possible role these variants may play in OC 

susceptibility should not be disregarded. 
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Oesophageal cancer is a complex disease, developing through a combination of genetic and 

environmental factors.  The symptoms of OC appear at an advanced developmental stage of 

the disease, subsequently making treatment highly ineffective.  Early detection is the only 

effective method of intervention, making the establishment of an early diagnostic screening 

programme imperative.  Previous studies have investigated the role of various disease risk 

factors in the development of OC, including smoking and drinking, oesophageal injury and 

excess iron.  This study attempted to investigate the role of iron dysregulation in six genes 

involved in iron metabolism, in the Black South African OC population, hopefully setting the 

foundation for a future diagnostic programme. 

 

The first objective of this study was to investigate the entire coding regions of the HFE, 

HMOX1, SLC40A1, HAMP, CYBRD1 and HJV genes to identify any previously described and 

novel mutations and/or polymorphisms that could be involved in OC susceptibility.  This was 

achieved by PCR amplification of the coding and flanking intronic regions of the six genes 

and subsequently, HEX-SSCP analysis, RFLP analysis and semi-automated DNA sequencing.  

 

The results obtained are a clear indication that the first objective of this study was achieved, 

as a total of 34 variants were identified.  This included 21 previously described variants 

(HFE: V53M, H63D, H63, IVS2+4T→C, IVS4-44T→C, C282Y, IVS5-47G→A; HMOX1: 

IVS2-19C→T, IVS4+51delTGGCTGTCTGACT, IVS4+59C→G; SLC40A1: 5’UTR-

98G→C, 5’UTR-23A→G, 5’UTR-8C→G, IVS1-24G→C, I109, L129, V221, Q248H; 

CYBRD1: IVS1-4C→G, IVS2+4T→C and HJV: A310G) and 13 novel variants (HFE: 

Y342; HMOX1: G255R, R262C, R262H; SLC40A1: IVS5-27A→C, L378, 

3’UTR+284C→T, 3’UTR+289G→A, 3’UTR+289G→T; CYBRD1: L17, P195 and HJV: 

5’UTR-1401T→C, 3’UTR+47A→G).  The variants occurring in DNA sequences can have an 
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impact on an individual’s response to disease, viral agents, drugs and therapy.  Each 

population represented in South Africa is unique and this makes it important that individuals 

from different South African populations should be screened for the variants identified in 

these genes.  This data could be of immense value to clinicians and pharmacists, as it could be 

used in the elucidation of differential response to drugs and therapy among different 

individuals. 

 

Although a large number of variants were identified in this study it is however, not the full 

spectrum of mutations in the Black South African population.  Various polymorphisms or 

disease-causing mutations previously described in this population have not been identified in 

this study.  This occurrence may be attributed to a number of reasons including the following: 

1) these variants were not present in any of the individuals screened in this study, 2) these 

variants possibly do not contribute to OC susceptibility and subsequently are not generally 

present in OC patients or 3) these variants could not be detected with the mutation detection 

methods employed in this study.   

 

The study cohort included 50 OC patients and 50 population-matched control individuals.  

Although this population size is indicative of a pilot study, it sufficiently allowed the 

identification of the 34 aforementioned variants.  It also allowed the calculation of the allele 

frequencies of these variants in the Black South African population.  A larger patient cohort 

may be integrated into this study to determine if the variants identified, especially the novel 

variants, occur at increased frequencies in the Black South African OC population.  This may 

indicate the significance of these variants or indicate the individual or combined contribution 

to OC susceptibility.  Many of these variants have been detected in Africans and/or African-

Americans regardless of the disease.  Although many polymorphic markers are common in 

 92



Chapter 4: Conclusions and Future Prospects 

both OC patients and in the control population, the calculated allele frequencies give an 

indication of the incidence of these variants in the Black South African population.  This data 

can be compared to results obtained from other studies including South African populations 

and various diseases, giving an indication of the potential significance of these variants.  A 

larger study population may also allow the detection of other previously described 

polymorphisms and disease-causing mutations that were not identified in this study.  

 

HEX-SSCP analysis, RFLP analysis and semi-automated DNA sequencing were the detection 

methods of choice for this study.  The first objective of this study was sufficiently achieved as 

these techniques allowed the identification of various novel and known variants.  Previous 

studies have shown that the SSCP technique is only 70% sensitive and that the sensitivity of 

SSCP analysis decreases with the increase of fragment sizes over 300 bp (Hayashi and 

Yandell 1993).  This may be an indication that the fragments screened in this study could 

possibly have been too large in some instances where sizes ranged between 250 and 350 bp, 

influencing the accuracy of the results obtained.  The majority of fragments screened were 

larger than 250 bp, with only the amplified products of HFE exon 6, HMOX1 exons 2 and 3A, 

SLC40A1 exon 4, HAMP exon 2, CYBRD1 exon 4B and HJV exon 4D being smaller than 250 

bp.  The PCR fragment obtained for exon 6 of the SLC40A1 gene was 368 bp long.  This may 

be the reason why RFLP analysis had to be employed to distinguish between the homozygous 

and heterozygous states of the Q248H variant.  The position of a variant within a fragment 

can also influence the sensitivity of the method.  As the objective of this pilot study was 

mainly to identify novel and/or described variants, it was not deemed essential to optimise the 

HEX-SSCP technique specifically for each variant.  This could be done in future studies, to 

allow large-scale population screening.   
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Research could be conducted into other screening techniques that are possibly more efficient 

at detecting variants, yet are still cost effective.  Semi-automated DNA sequencing has the 

ability to identify both novel and known changes in the DNA sequence and is considered the 

most accurate mutation detection technique developed (Kristensen et al. 2001).  The 

advantages include the ability to detect all variants present in a specified sequence.  The 

disadvantages are that it is quite expensive and not as applicable in routine diagnostic 

laboratories.  Denaturing high performance liquid chromatography (dHPLC) is also 

considered the superior technique for the detection of SNPs with regard to its high sensitivity, 

efficiency and cost-effectiveness (Underhill et al. 1997).  The advantages of dHPLC include a 

sensitivity level of 92-100% and fragment sizes ranging from 198-732 bp can be screened.  

This is an indication of the superiority of dHPLC over the SSCP technique, which has a 

sensitivity level ranging between 70-100 % for fragment sizes of 130-250 bp (Xiao and 

Oefner 1992, Bonner and Ballard 1999).  With the enlargement of the OC patient group, 

RFLP analysis can be employed to screen for all the previously described variants already 

identified in this population group as this technique is much less time consuming than SSCP 

analysis.  DNA chip technology may also be considered for future studies.  A DNA chip may 

be designed for the most common mutations, allowing the simultaneous detection of different 

alleles from various genes that have been implicated in OC susceptibility.  This technology is 

still not as freely available and is still quite expensive.  Kotze et al. (2004) have developed a 

rapid reverse hybridisation method enabling the simultaneous analysis of multiple mutations 

(a total of 18) related to hereditary iron overload.  Ready-to-use membrane-test strips are 

employed to obtain a result from a blood samples within six hours.  Mutations identified in 

the HFE, TFR2, and SLC40A1 genes are all included in this commercially available test kit, 

which can employ inexpensive equipment such as a waterbath and shaker for the 

hybridisation steps.   
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The second objective of this study was to identify significant associations between the 

variants identified and OC susceptibility.  This was achieved by determining if all variants 

were in Hardy-Weinberg equilibrium in the respective populations and subsequently, 

comparing the allele frequencies of the OC patient group with the population-matched control 

individuals.  Additionally, this study attempted to identify the existence of gene-gene 

interaction according to Butt et al. (2003).  Although no statistically significant associations 

were obtained for the individual variants, statistically significant associations were observed 

between the IVS5-47G→A variant in the HFE gene and (a) V221 (allele frequencies: P = 

0.046) and (b) Q248H (allele frequencies: P = 0.031) in the SLC40A1 gene.  This data gives 

an indication that the combined presence of these variants may be involved in disease 

susceptibility.  Further gene-gene analysis in a larger study cohort, may reveal the interaction 

of these genes in this disease.  Future studies may possibly indicate the role of certain variant 

combinations in conferring OC susceptibility or the effect of these combinations on iron 

regulatory pathways. 

  

The results obtained with the ESEfinder program indicated that the majority of novel variants 

identified in this study (HMOX1: R262C, R262H; SLC40A1: L378 and CYBRD1: L17, 

P195) might have an effect on splicing and thus the possible role these variants may play in 

OC susceptibility should not be disregarded.  Functional studies should be performed to 

elucidate the possible effects of the novel variants detected in the OC population of this study, 

which include: one variant in the 5’UTR (HJV: 5’UTR-1401T→C), six exonic variants 

(HMOX1: G255R, R262C, R262H; SLC40A1: L378 and CYBRD1: L17, P195), one intronic 

variant (SLC40A1: IVS5-27A→C) and four variants in the 3’UTR (SLC40A1: 

3’UTR+284C→T, 3’UTR+289G→A, 3’UTR+289G→T and HJV: 3’UTR+47A→G).   
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Numerous studies have highlighted the effects of silent mutations on the protein function.  

The study of Chao et al. (2001) illustrated how a silent mutation induced post-transcriptional 

exon-skipping leading to a phenylketonuria (PKU).  Another example is the silent mutation 

C6354, in the Fibrillin-1 (FBN-1) gene, in patients with Marfan syndrome (MFS).  Although 

it was not considered to affect known binding sites, the results of different types of expression 

constructs, confirmed that the skipping of exon 51 is solely due to the silent mutation (Liu et 

al. 1997).  The three novel synonymous variants (SLC40A1: L378 and CYBRD1: L17, P195) 

identified in this study, are all predicted to have an effect on splicing.  Future studies can 

employ the minigene system to discern the disease-causing potential of the variants predicted 

to cause abnormal splicing.  The minigene system is considered an indispensable tool for in 

vivo analysis of regulatory elements that allow efficient splicing and are involved in the 

regulation of alternative splicing (Cooper 2005). 

 

To further investigate the role of iron dysregulation in the development of OC in the 

genetically distinct South African populations, our study population can be extended to 

include the White and Coloured populations.  Two previous studies including the Coloured 

(Zaahl et al 2003) and the Black (du Plessis 2000) populations have already confirmed the 

association of NRAMP1 variants with OC susceptibility.  Studying the occurrence of these 

variants in other OC populations could provide us with valuable statistical information and 

could hopefully ultimately lead to improving the diagnostic and counseling service that is 

offered to the populations of this country. 

 

Future research will also include screening the existing population for novel and/or previously 

described variants in other genes involved in iron metabolism, including the hephaestin 

(HEPH), ceruloplasmin (CP) and transferrin receptor 2 (TFR2) genes.  Larger sample sizes of 
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the Black South African population will be included, which will also be screened for all of the 

variants identified in the present study.  The promoter regions of the three new genes (HEPH, 

CP and TRF2) as well as the six genes already studied (HFE, HMOX1, SLC40A1, HAMP, 

CYBRD1 and HJV) will also be investigated.  Previous studies of the HMOX1 gene promoter 

region have already implicated mutations and a promoter repeat (GT)n in various diseases 

including neurodegenerative (Kimpara et al. 1997) and pulmonary diseases (Yamada et al. 

2000). 

 

This study successfully identified novel and previously described variants in the Black South 

African OC population.  Significant associations were observed that might possibly implicate 

the combined presence of certain variants in OC susceptibility.  Future research may indicate 

the significance of the individual variants identified in this study and may also illustrate their 

role in conferring OC susceptibility.  Following further research, this study may prove to be 

an important contribution to the current knowledge of iron dysregulation in the development 

of OC. 
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Epi Info (Epi Info™ (utilities StatCalc) v3.3.2, release date: 9 February 2005; Division of 
Public Health Surveillance, http://www.cdc.gov/epiinfo/
 
ESEfinder, http://exon.cshl.edu/ESE
 
HapMap, http://www.hapmap.org
 
Primer3 [Online], http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi,2002
 
SeattleSNPs. NHLBI Program for Genomic Applications, SeattleSNPs, Seattle, WA (URL: 
http://pga.gs.washington.edu) 
 
STATISTICA (StatSoft, Inc. (2003) STAT (data analysis software system), version 6  
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