
Autonomous Docking for a Satellite Pair Using

Monocular Vision

by

Dewald Mienie

Thesis presented at the University of Stellenbosch in
partial fulfilment of the requirements for the degree of

Masters of Engineering

Department of Electrical Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leader: Prof W.H. Steyn

November 2008

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work and that I have not previously in its entirety or in part submitted it at any university for

a degree.

Signature: .

D. Mienie

Date: .

Copyright © 2008 University of Stellenbosch

All rights reserved.

Abstract

Autonomous rendezvouz and docking is seen as an enabling technology. It allows, among

others, the construction of larger space platforms in-orbit and also provides a means for the

in-orbit servicing of space vehicles.

In this thesis a docking sequence is proposed and tested in both simulation and practice.

This therefore also requires the design and construction of a test platform. A model hovercraft

is used to emulate the chaser satellite in a 2-dimensional plane as it moves relatively friction-

lessly. The hovercraft is also equipped with a single camera (monocular vision) that is used as

the main sensor to estimate the target’s pose (relative position and orientation). An imitation

of a target satellite was made and equipped with light markers that are used by the chaser’s

camera sensor.

The position of the target’s lights in the image is used to determine the target’s pose using a

modified version of Malan’s Extended Kalman Filter [20]. This information is then used during

the docking sequence.

This thesis successfully demonstrated the autonomous and reliable identification of the tar-

get’s lights in the image, and the autonomous docking of a satellite pair using monocular cam-

era vision in both simulation and emulation.

ii

Opsomming

Die tegnologie om twee satelliete outonoom aan mekaar te kan koppel in die ruimte word as

’n bemagtigende tegnologie gesien. Dit maak dit moontlik om, onder andere, groter ruimte

platforms te konstrueer in die ruimte en verskaf ook ’n manier om ruimtevoertuie te onderhou

in die ruimte.

In hierdie tesis word ’n koppelingsekwensie voorgestel en getoets in beide simulasie en in

die praktyk. Dus word die ontwerp en konstruksie van ’n toetsplatform genoodsaak. ’n Model

skeertuig (”hovercraft“) word gebruik om die volger satelliet te emuleer in ’n 2-dimensionele

vlak, aangesien dit redelik wrywingloos beweeg. Die skeertuig is ook toegerus met ’n kam-

era (monokulêre visie) wat dien as die hoofsensor vir die afskatting van die teiken satelliet se

relatiewe posisie en oriëntasie. ’n Nabootsing van die teikensatelliet was gemaak en toegerus

met ligte wat gebruik word deur die volger se kamera.

Die posisie van die teiken se ligte in die kamerabeeld word gebruik om die teiken se re-

latiewe posisie en oriëntasie af te skat deur gebruik te maak van aangepasde weergawe van

Malan [20] se Uitgebreide Kalman Filter. Hierdie inligting word dan gebruik om die koppel-

ingsekwensie mee uit te voer.

Hierdie tesis het die betroubare en outonome herkenning van die teiken se ligte in die kam-

erabeeld en die outonome koppeling van ’n satelliet paar, deur gebruik te maak van monokulêre

kameravise, suksesvol gedemonstreer in beide simulasie en emulasie toestande.

iii

Acknowledgements

The author would like to thank the following people for their contribution towards this project:

• I would above all like to thank my parents for the opportunity to further my studies at

the University of Stellenbosch and for their continuous support throughout the years.

• I would also like to thank my study leader, Prof Steyn, for all his support.

• For his help with debugging the camera, I would like to thank Xandri Farr from Sun-

Space.

• Thank you to the Wilhelm Frank Bursary for providing me with the means to do my

MScEng.

• Also, many thanks to Mr. Wessel Croukamp at SMD for all his patience and help with the

mechanical modifications that were done on the hovercraft and the design of the camera

clamp.

• Thank you to the students in the ESL, especially Bernard Visser and Ruan de Hart, for

their contributions to this thesis. Also thanks to Gerrit de Villiers for proofreading this

thesis.

• Lastly, but definitely not the least, thank you to all my friends for their friendship, support

and laughter.

iv

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents v

Abbreviations ix

List of Figures xi

List of Tables xvi

Nomenclature xvii

1 Introduction 1

1.1 Background . 1

1.2 Thesis Goals . 3

1.3 Approach . 3

1.4 Thesis Layout . 3

1.5 Achievements . 4

2 The Docking Sequence 5

2.1 A Few Definitions . 5

2.2 Overview of the Docking Sequence . 7

2.3 Detailed Description . 7

2.4 Guidance System . 8

3 Using a Monocular Camera 10

3.1 Basic Principle . 10

3.2 Monocular Vision versus Stereo Vision . 11

3.3 Methods Considered . 11

3.4 Requirements . 12

v

CONTENTS vi

4 Light Model 13

4.1 Definitions . 13

4.2 Light Radiation Pattern . 14

4.3 Pinhole Camera Model . 14

4.4 The Light Model . 15

4.5 Conclusion . 18

5 Identification and Tracking of Light Centroids 19

5.1 Overview . 19

5.2 Movement of the Target Satellite’s Centroids and the Star’s Centroids in the Image 20

5.3 The Matching Algorithm . 25

5.4 The Identification and Tracking Unit . 26

5.5 Searching for Centroids in the Image . 30

5.6 Rapid Centroid Determination Algorithm . 31

6 System Overview 34

6.1 Chaser Overview . 34

6.2 Choice of Operating System for the Chaser’s OBC 35

6.3 Target Overview . 36

6.4 Selection of the Sample Frequencies for the Inner and Outer Loop Controllers . . 36

6.5 Conclusion . 37

7 Hardware Implementation 38

7.1 The Onboard Computer (OBC) . 38

7.2 Navigation and Attitude Sensors . 38

7.3 The Accelerometers and Gyros . 40

7.4 Actuators . 52

7.5 Motor Driver Board . 57

7.6 Testing of the RGPS and Results . 58

8 The Camera Sensor 61

8.1 Description of the Camera Module and Camera Axis 61

8.2 Camera Clamp . 63

8.3 Lens Distortion . 63

8.4 Camera Calibration . 65

8.5 The Calibration Procedure in Detail . 66

8.6 Results from the Calibration Procedure . 72

9 Tailoring DF Malan’s EKF 75

9.1 Preface . 75

9.2 Using Euler Angles . 76

9.3 The Projective Camera Model in Matrix Form . 78

9.4 The Customised Filter . 80

9.5 The Noise Variances . 82

CONTENTS vii

9.6 Conclusion . 83

10 Inner Loop Controller 84

10.1 Simulation and Controller Design Methodology 84

10.2 The Model Used to Design the Controller . 85

10.3 Controller and Estimator Design . 90

10.4 Simulation Results . 92

10.5 Practical Results . 95

10.6 Velocity Sensor and Controllers . 98

10.7 Conclusion . 103

11 The System EKF 104

11.1 The State Vector . 104

11.2 Propagation . 104

11.3 Measurement Update . 105

11.4 Compensating for the Measurement Delay . 106

11.5 Noise Variances . 107

11.6 Conclusion . 108

12 Outer Loop Controller And Guidance System 109

12.1 Overview of the Outer Loop Controllers . 109

12.2 The Guidance System . 109

12.3 Models Used to Design the Outer Loop Controllers 111

12.4 The Outer Loop Controllers . 114

12.5 Conclusion . 119

13 Simulation of the Docking Sequence 120

13.1 Overview . 120

13.2 Simulation Parameters . 121

13.3 Simulation Results . 122

13.4 Conclusion . 130

14 Practical Results 131

14.1 The Test Setup . 131

14.2 Conclusion . 140

15 Conclusion and Recommendations 141

15.1 Conclusions . 141

15.2 Recommendations . 143

Bibliography 145

Appendices 148

A System Block Diagrams 149

CONTENTS viii

B Derivation of Formulas in Chapter 5 157

B.1 Movement of stars’ centroids due to the rotation and translation of the satellites

around one another and the earth . 157

B.2 Movement of stars’ centroids due to the rotation of the chaser satellite around its

own axis . 159

B.3 Movement of the target’s lights’ centroids due to the relative translation between

the satellites . 160

C Rapid Centroid Determination Algorithm 161

C.1 Some Background . 161

C.2 The Code . 162

D Photos of the Hardware 167

D.1 The Chaser and Target . 167

D.2 The Docking Mechanisms . 169

D.3 The Camera Unit . 170

D.4 The Velocity Sensor . 170

E Homogeneous Vectors and the Projective Camera Matrix 171

E.1 Basic Knowledge Required . 171

E.2 Using the Projective Camera Matrix . 172

E.3 Inserting a DCM and Translation . 173

F Hovercraft Model 174

F.1 The Simulink Hovercraft Block . 174

F.2 Using the Hovercraft Block . 175

F.3 The Inside of the Hovercraft Block . 176

F.4 Conclusion . 177

G Modeling Of Mechanical Vibration 179

G.1 The Model . 179

G.2 Conclusion . 180

Abbreviations

• ADC - Analog to Digital Converter

• CDPGPS - Carrier-Differential Phase GPS

• CG - Centre Of Gravity

• COD - Centre Of Distortion

• CPU - Central Processing Unit

• DCM - Direction Cosine Matrix

• ECEF - Earth Centred, Earth Fixed

• EKF - Extended Kalman Filter

• ESC - Electronic Speed Control

• ESL - Electronic Systems Laboratory

• ETS - Engineering Test Satellite

• GLONASS - Global Orbiting Navigation Satellite System

• GPS - Global Positioning System

• ISS - International Space Station

• LQR - Linear Quadratic Regulator

• MSDOS - Microsoft Disk Operating System

• NASDA - National Space Development Agency of Japan

• OBC - Onboard Computer

• PWM - Pulse Width Modulation

• RAM - Random Access Memory

• RF - Radio Frequency

• RGPS - Relative GPS

ix

ABBREVIATIONS x

• RVD - Rendezvous and Docking

• SIFT - Scale Invariant Feature Transform

• US - United States

• WOI - Window Of Interest

List of Figures

1.1 The emulation setup. Note that in this photo the black cloth is not fully tensioned. . 4

2.1 Parameter and axis definitions. 5

2.2 Phase definitions. The left satellite is the (T)arget and the right satellite is the (C)haser. 6

2.3 Target’s approach corridor and keep out zone. 9

2.4 Conceptual representation of the guidance system (Adapted from [6]). 9

3.1 Stereo vision. 10

3.2 Monocular vision. 11

4.1 Light model. 14

4.2 A light radiation pattern. 14

4.3 Pinhole camera model. 15

5.1 Breakdown of the identification and tracking process. 20

5.2 Movement of the chaser and target around each other and the earth. 20

5.3 The star’s centroid move from its old position (circle) to its new position (triangle),

while the target satellite (square) remains stationary in the image. 21

5.4 Movement of star’s centroid due to the rotation of the chaser satellite (C) around its

own axis. 22

5.5 Movement of the target’s lights’ centroids due to the relative rotation of the satellites. 22

5.6 Movement of the target’s light’s centroid due to the rotation of the chaser around its

own axis. 23

5.7 As the chaser moves closer to the target (a), the target’s lights’ centroids move away

from each other in the image (b). 24

5.8 Relative translation of the chaser along another axis. 24

5.9 Matching old and new centroids. 25

5.10 The gradual appearance and disappearance of centroids. 30

5.11 The light radiation pattern used in this thesis. 30

5.12 A n × n square (shaded) with bordering pixels (clear). 31

5.13 The ratio, η, between the region growing algorithm’s and the new algorithm’s exe-

cution speed. 32

5.14 For the light spot shown in (a), the faster algorithm will only use the shaded region

shown in (b) to determine the centroid. 33

xi

LIST OF FIGURES xii

6.1 Overview of the chaser. 34

6.2 Overview of the target. 36

7.1 The result of the integration process. 44

7.2 The Allan deviation for the x-axis accelerometer. 45

7.3 The Allan deviation for the y-axis accelerometer. 45

7.4 The Allan deviation for the z-axis rate gyro. 47

7.5 Full accelerometer model. (X-axis accelerometer shown.) 48

7.6 Full gyro model. (Note: The input angular rate is in rad.s−1) 49

7.7 The sensor board. 49

7.8 Motor model. 53

7.9 Actuator calibration setup. 53

7.10 Direction of positive force value. 54

7.11 Fan type 1 transfer curve. 54

7.12 Fan type 2 transfer curve. 55

7.13 The fan currents. (a) Fan 1’s current. (b) Fan 2’s current. 55

7.14 Linearising the actuator. (a) The non-linear fan with the inverse transfer curve. (b)

The linearised fan model. 57

7.15 Drift of the relative distance between the GPS receivers along the North- and East-axis. 59

7.16 Drift of the relative distance between the GPS receivers. 59

7.17 The integral of the velocity along the North-axis. 60

7.18 The integral of the velocity along the East-axis. 60

8.1 The camera unit. 61

8.2 Simplified view of the sensor and lens unit’s construction. 62

8.3 (a) The sensor. (b) Sensor axis. 62

8.4 (a) The camera sensor unit. (b) The camera axis. 62

8.5 The camera clamp. 63

8.6 Radial Distortion. The dashed line represents the rectangular object as it would

appear in the absence of radial distortion and solid line shows the object shape in

the presence of (a) barrel and (b) pincushion distortion. Figure taken from [24]. . . . 64

8.7 The test grid used. 66

8.8 Mounting the camera in the clamp. 66

8.9 Mount the camera axis orthogonally with respect to the test pattern’s axis. 67

8.10 The test object’s axis orientation in the camera axis. 68

8.11 The photo used for calibration. 69

8.12 (a) Isolating the centroids locations. (b) The result of local thresholding. 69

8.13 The final processed image containing the centroids. 70

8.14 The basic concept used to determine the camera’s parameters. 70

8.15 The mathematical photo (white points) superimposed on the actual photo (black

spots). 73

8.16 The pixels used during the correction process. (The black area in the centre of the

image.) . 73

LIST OF FIGURES xiii

8.17 The original photo. 74

8.18 The corrected picture. 74

9.1 All the relevant axes. 76

9.2 The Euler axis, ê, and Euler angle, θe. (Picture adapted from Wikipedia) 77

10.1 Chaser’s Body Fixed Reference Axis. 85

10.2 Basic Hovercraft Model. 86

10.3 The inner loop simulation. 93

10.4 Acceleration of the CG along the x-axis. 93

10.5 Acceleration of the CG along the y-axis. 94

10.6 Angular rate around z-axis. 94

10.7 The estimated X-acceleration (black line) and the measured X-acceleration (gray line). 95

10.8 The tilting as result of the actuator forces. 96

10.9 The estimated Y-acceleration (black line) and the measured Y-acceleration (gray line). 97

10.10The estimated angular rate (black line) closely follows the measured angular rate

(gray line). 98

10.11The velocity sensor. 99

10.12Velocity of the CG along the x-axis. 101

10.13Velocity of the CG along the y-axis. 101

10.14The estimated X-velocity (black line) and the measured X-velocity (gray line). 102

10.15The estimated Y-velocity (black line) and the measured Y-velocity (gray line). 103

11.1 Processing the camera measurement. 105

11.2 The measurement delay as seen by the system EKF. 107

12.1 The regions where each controller set is used. 110

12.2 The 2nd order systems used to approximate the closed loop system consisting out

of the inner loop controllers and plant. 111

12.3 Diagram used to determine the conversion equations. 112

12.4 The 2nd order models encapsulated by the non-linear conversion blocks. 112

12.5 Under the assumption that α ≈ 0, the models are decoupled. 113

12.6 The decoupled models used to design the outer loop controllers. 113

12.7 Model used to design the far controller for α. 114

12.8 Simplified model used to design the far controller for α. 114

12.9 The far controller for the angle α. 115

12.10Model used to design the close controller for β. 116

12.11Simplified model used to design the close controller for β. 116

12.12Simplified model used to design the close controller for α. 118

13.1 Graphical representation of the software layers. 120

13.2 The chaser’s trajectory (gray line) in the simulation. The direction of the chaser’s

positive x-axis is given by the black arrows. 122

13.3 Target’s estimated (black) and actual (gray) position along the camera’s z-axis. . . . 124

LIST OF FIGURES xiv

13.4 Target’s estimated (black) and actual (gray) velocity along the camera’s z-axis. 124

13.5 Target’s estimated (black) and actual (gray) position along the camera’s y-axis. . . . 125

13.6 Target’s estimated (black) and actual (gray) velocity along the camera’s y-axis. . . . 125

13.7 Target’s estimated (black) and actual (gray) orientation with respect to the chaser. . . 126

13.8 Target’s estimated (black) and actual (gray) angular velocity with respect to the

chaser’s angular velocity. 126

13.9 The estimated (black) and actual (gray) distance r. 128

13.10The estimated (black) and actual (gray) angle α. 128

13.11The estimated (black) and actual (gray) angle β. 129

13.12Target’s estimated (black) and actual (gray) angular rate around its own z-axis. . . . 129

14.1 The test setup. 131

14.2 The target’s estimated position along the camera’s z-axis. 134

14.3 The target’s estimated velocity along the camera’s z-axis. 134

14.4 The target’s estimated position along the camera’s y-axis. 135

14.5 The target’s estimated velocity along the camera’s y-axis. 135

14.6 The target’s estimated orientation with respect to the chaser. 136

14.7 Target’s estimated angular velocity with respect to the chaser’s angular velocity. . . 136

14.8 The estimated distance r. 138

14.9 The estimated angle α. 138

14.10The estimated angle β. 139

14.11Target’s estimated angular rate around its own z-axis. 139

15.1 Autonomous docking test bed used by Romano. (Picture taken from [27].) 143

A.1 Overview 1. 150

A.2 Overview 2. 151

A.3 Process Inner Loop data. 152

A.4 Camera Operation. 153

A.5 Initialise Camera. 154

A.6 Track Centroids. 155

A.7 Use Model. 156

B.1 Movement of a star’s centroid due to chaser’s and target’s rotation around each

other and the earth. 157

B.2 Movement of star’s centroid due to the rotation of the chaser satellite around its

own axis. 159

B.3 Movement of the target’s lights’ centroids due to the relative translation between

the satellites. 160

D.1 The chaser. 167

D.2 Another view of the chaser. 168

D.3 The target. 168

D.4 The pin is the chaser’s docking mechanism. 169

LIST OF FIGURES xv

D.5 The hole is the target’s docking mechanism. 169

D.6 The camera unit. 170

D.7 The velocity sensor. 170

F.1 Hovercraft block. 174

F.2 Using the hovercraft block. 175

F.3 The inside of the hovercraft block. 178

G.1 The vibration model. 179

List of Tables

7.1 The results from the calibration experiments. 42

7.2 Results of the 3rd gyro calibration test. 44

7.3 Noise parameters of the accelerometers. 46

7.4 The standard deviations of the accelerometers’ noise components. 46

7.5 Noise parameters of the gyros. 47

7.6 The standard deviations of the gyro’s noise components. 47

7.7 Comparing the results from the two different methods. 49

8.1 Calibration Results. 72

10.1 The hovercraft’s parameters. 89

13.1 The RMS errors of Malan’s EKF. 123

13.2 The RMS errors of system EKF. 127

xvi

Nomenclature

Scalars:

f The camera lens’ focal length.

fc Cut-off frequency.

fsi
Inner loop sample frequency.

fso Outer loop sample frequency.

i Current.

g Gravitational acceleration (9.81 m.s2)

k1, k2 Distortion model parameters.

m Hovercraft’s mass.

nduty1, nduty2 Duty cycle value for actuator (fan) type 1 and 2, respectively.

nY Disturbance acceleration along the camera’s y-axis.

nZ Disturbance acceleration along the camera’s z-axis.

nω Disturbance angular acceleration around the camera’s x-axis.

p Size of a pixel.

pX The size of a pixel along the CMOS sensor’s x-axis.

pY The size of a pixel along the CMOS sensor’s y-axis.

r Distance between chaser’s body axis origin, OC, and the target’s body axis

origin, OT.

r̄ The distance between the chaser’s and target’s axes’ origins as estimated by

the system EKF.

rd Distorted radius.

ru Undistorted radius.

rFAR The distance between the chaser’s and target’s body axis origin so that the

target becomes visible to the chaser.

rRETREAT The distance to which the chaser satellite retreats if any of the safety condi-

tions are not met.

rSAFE The radius of the sphere (the target’s safety sphere) that encapsulates the

whole target satellite with all its external components.

t Time.

xvii

NOMENCLATURE xviii

u0 X-coordinate of the principle point in the CMOS sensor axis, in pixel units.

ur Chaser’s commanded velocity along the target’s radial axis.

uCZ
Angular rate commanded around the chaser’s z-axis.

uCT
Chaser’s commanded angular rate around the target.

uX Velocity commanded along the chaser’s x-axis.

uY Velocity commanded along the chaser’s y-axis.

v0 Y-coordinate of the principle point in the CMOS sensor axis, in pixel units.

vr Chaser’s measured velocity along the target’s radial axis.

v̄y Velocity of the target along the camera’s y-axis as estimated by Malan’s EKF.

v̄z Velocity of the target along the camera’s z-axis as estimated by Malan’s EKF.

vX Velocity measurement along the chaser’s x-axis.

vY Velocity measurement along the chaser’s y-axis.

xCAM
P X-coordinate of a point P in the camera axis.

yCAM
P Y-coordinate of a point P in the camera axis.

zCAM
P Z-coordinate of a point P in the camera axis.

xd, yd Distorted pixel’s x- and y-coordinate.

xsensor, ysensor X- and Y-coordinate of a point in the CMOS sensor axis.

x̄sensor, ȳsensor Estimated x- and y-coordinate of a light in the image.

xu, yu Undistorted pixel’s x- and y-coordinate.

xCOD, yCOD X- and Y-coordinate of the centre of distortion.

ẍm, ÿm Measured acceleration along the sensor board’s x- and y-axis.

ẍAD, ÿAD The acceleration along the sensor board’s x- and y-axis in ADC units.

ẍ+
AD, ÿ+

AD The acceleration along the sensor board’s x- and y-axis in ADC units when

the gravitational acceleration vector coincides with the positive x- and y-axis,

respectively.

ẍ−AD, ÿ−AD The acceleration along the sensor board’s x- and y-axis in ADC units when

the gravitational acceleration vector coincides with the negative x- and y-

axis, respectively.

ẍCG, ÿCG Acceleration of the chaser’s CG along its x- and y-axis, respectively.

ȳ Position of the target along the camera’s y-axis as estimated by Malan’s EKF.

z̄ Position of the target along the camera’s z-axis as estimated by Malan’s EKF.

D1, D2 Accelerometers’ offsets along the sensor board’s x- and y-axis.

D3 Rate gyro’s offset.

F1, F2 Output force of actuator (fan) type 1 and 2, respectively.

FIL Magnitude of the input force vector of the fan on the left hand side (-y) of

the hovercraft.

NOMENCLATURE xix

FIR Magnitude of the input force vector of the fan on the right hand side (+y) of

the hovercraft.

FIS Magnitude of the input force vector of the side fan on the hovercraft.

F̂IX Magnitude of the input virtual force vector along the chaser’s x-axis.

F̂IY Magnitude of the input virtual force vector along the chaser’s y-axis.

FOL Magnitude of the output force vector of the fan on the left hand side (-y) of

the hovercraft.

FOR Magnitude of the output force vector of the fan on the right hand side (+y)

of the hovercraft.

FOS Magnitude of the output force vector of the side fan on the hovercraft.

F̂OX Magnitude of the output virtual force vector along the chaser’s x-axis.

F̂OY Magnitude of the output virtual force vector along the chaser’s y-axis.

F̂X Magnitude of the virtual force vector along the chaser’s x-axis.

F̂Y Magnitude of the virtual force vector along the chaser’s y-axis

Gacc Theoretical gain from the measured acceleration to the ADC’s output.

Ggyro Theoretical gain from the measured angular to the ADC’s output.

ILightn
Intensity of light n.

IZZ Hovercraft’s moment of inertia around its z-axis.

K The rate random walk spectral density coefficient.

Kx, Ky Calibration constants for the sensor board’s x- and y-axis.

Kθ Calibration constants for the sensor board’s z-axis.

Q The velocity/angle random walk spectral density coefficient.

T̂ Magnitude of the virtual torque around the chaser’s z-axis.

Tsi
Inner loop sample period.

Tso Outer loop sample period.

T̂I Magnitude of the input virtual torque around the chaser’s z-axis.

T̂O Magnitude of the output virtual torque around the chaser’s z-axis.

X Position of the target along the camera’s x-axis. (A constant.)

α Angle between the chaser’s x-axis and the line OCOT.

ᾱ The angle α as estimated by the system EKF.

β Angle between the target’s x-axis and the line OCOT.

β̄ The angle β as estimated by the system EKF.

γn Viewing angle of light n.

εα Maximum allowable error in α during the final approach.

εβ Maximum allowable error in β during the final approach.

θAD Angle in ADC units.

NOMENCLATURE xx

θCZ
Angle through which the chaser satellite turned between 2 successive photos.

θmax, θmin Maximum and minimum angle, respectively.

θ̇ Angular velocity of the chaser around its z-axis.

θ̇AD The angular rate around the sensor board’s z-axis in ADC units.

θ̇m The measured angular rate around the sensor board’s z-axis.

θ̈ Angular acceleration of the chaser around its z-axis.

σY Standard deviation of the disturbance acceleration along the camera’s y-axis.

σZ Standard deviation of the disturbance acceleration along the camera’s z-axis.

σω Standard deviation of the disturbance angular acceleration around the cam-

era’s x-axis.

σ2
ARW Angular rate random walk covariance.

σ2
RRW Rate random walk covariance.

σ2
VRW Velocity random walk covariance.

τf an1, τf an2 Mechanical time constant of actuator (fan) type 1 and 2, respectively.

τL, τR, τS Time constants of the left, right and sidewards fans, respectively.

τX, τY, τZ Time constants of the virtual forces along the x- and y-axis and the virtual

torque around the z-axis, respectively.

φ, θ, ψ Angle of rotation around the x-, y- and z-axis, respectively.

ψ̄ Rotation of the target’s body axis with respect to the chaser’s body axis as

estimated by Malan’s EKF.

ωCT
Angular rate of the chaser around the target.

ωCZ
Angular rate of the chaser around its own z-axis.

ω̄CZ
The angular rate of the chaser around its z-axis as estimated by the system

EKF.

ωCZ
The average angular rate of the chaser around its own z-axis between the

current and previous photo.

ωTZ
Angular rate of the target around its own z-axis.

ω̄TZ/CZ
The angular rate of the target’s body axis with respect to the chaser’s body

axis as estimated by Malan’s EKF.

∆ẍAD, ∆ÿAD Difference between ẍ+
AD and ẍ−AD, and ÿ+

AD and ÿ−AD, respectively.

∆N, ∆E Distance between 2 GPS receivers along the North- and East-axis.

∆θ Average angular difference.

Vectors:

eTGT
Ln

Unit vector giving the direction of the light radiation pattern’s symmetry axis

of the light n in the target satellite’s axis.

i, j, k Unit vectors along the camera axis’ x- , y- and z-axis, respectively.

î, ĵ, k̂ Unit vectors along the rotated camera axis’ x- , y- and z-axis, respectively.

NOMENCLATURE xxi

m̃j Positions of the projection of a test pattern’s point j in the image as a homo-

geneous vector.

rCAM
Ln

Position of the light n in the camera axis.

rCAM
TGT Position of the target satellite axis’ origin in the camera axis.

rTGT
Ln

Position of the light n in the target satellite’s axis.

r̂Ln Rotated position vector of a light n in the camera axis.

rOL Position of FOL in the chaser’s reference axis.

rOR Position of FOR in the chaser’s reference axis.

rOS Position of FOS in the chaser’s reference axis.

rCG Position of the chaser’s CG in the chaser’s reference axis.

v1, v2 Measurement noise vectors.

w1, w2 Process noise vectors.

x̄sys System EKF’s state vector.

x̄DF Malan’s EKF’s state vector.

ẍre f Reference acceleration in the chaser’s body axis. It is used instead of ẍ CHR
re f to

simplify notation.

ẍ CHR
re f Reference acceleration in the chaser’s body axis. To simplify notation it is

also referred to as ẍre f .

ẍAD Measured acceleration in the sensor board’s axis in ADC units.

FOL Output force vector of the fan on the left hand side (-y) of the hovercraft.

FOR Output force vector of the fan on the right hand side (+y) of the hovercraft.

FOS Output force vector of the side fan on the hovercraft.

M̃j Position of a test point j in the test object’s axis as a homogeneous vector.

∆ẍre f Difference in reference accelerations in the chaser’s body axis.

∆ẍAD Difference in measured accelerations (in the sensor board’s axis) in ADC

units.

Matrices:

C Cross coupling matrix for the accelerometers.

Qsys Continuous process noise covariance matrix for system EKF.

Qsysk
Discrete equivalent of the continuous process noise covariance matrix for

system EKF.

QDF Continuous process noise covariance matrix for Malan’s EKF.

QDFk
Discrete equivalent of the continuous process noise covariance matrix for

Malan’s EKF.

Rsysk
Measurement noise covariance matrix for system EKF.

NOMENCLATURE xxii

RDFk
Measurement noise covariance matrix for Malan’s EKF.

Tp Partial DCM.

TCAM→TGT DCM that gives the target’s body axis orientation with respect to the camera

axis.

TCHR→TGT DCM that gives the target’s body axis orientation with respect to the chaser’s

body axis.

TCHR→CAM DCM that gives the camera axis orientation with respect to the chaser’s body

axis.

TCHR→SB DCM that gives the sensor board axis orientation with respect to the chaser’

body axis.

∆Ẍre f Matrix where each column is the difference in reference accelerations in the

chaser’s body axis.

∆ẌAD Matrix where each column is the difference in measured accelerations (in the

sensor board’s axis) in ADC units.

Notation:

OC Origin of the chaser’s body axis.

OT Origin of the target’s body axis.

OCOT Line between points OC and OT.

|s| The absolute value of a scalar s.

‖v‖ The Euclidean norm of vector v.

a · b The dot product of vectors a and b.

proj ab The projection of vector b on vector a.

|A| The determinant of matrix A.

AT The transpose of matrix A.

Chapter 1

Introduction

1.1 Background

Spacecraft rendezvous and docking dates back as far as the late 1960s. Examples of this in-

cludes the US Gemini and Apollo missions and the unmanned Russian Cosmos missions. [27]

Since the early 1980s large amounts of time and money has been invested in researching

and developing the technology required for the autonomous rendezvous and docking (RVD)

of spacecraft. [6] Since then there have been several successful RVD missions.

In 1998, the National Space Development Agency of Japan (NASDA) successfully demon-

strated the fully autonomous rendezvous and docking of two unmanned spacecraft. These two

satellites were collectively known as Engineering Test Satellite-VII (ETS-VII). [14][27]

Soon thereafter, also in 1998, construction on the International Space Station (ISS) started.

There are many reasons why RVD technology is so sought after and considered as a necessary

stepping stone for future space missions. Some of these reasons are: [4][6][14][18][21][25][27][29]

• It allows the assembly of larger space platforms, such as the ISS, in orbit. This in turn

provides the means for deeper space exploration.

• Logistic support for these space platforms. (Crew exchanges and re-supply.)

• In orbit servicing. The ability to repair and maintain space vehicles in orbit is of great

advantage for many parties. The main advantage is the reduction of expenses for satel-

lite operators and manufacturers. It is not uncommon that a satellite becomes unusable

simply because it has exhausted its fuel or batteries or did not deploy correctly. Typi-

cally, these repairs have to be done by an astronaut and are very expensive due to the

risks involved. Therefore the life of a satellite (and other space vehicles) can be increased

drastically if in orbit servicing is possible.

• Retrieval. This includes the capture and return of space vehicles as well as the return of

samples from other bodies in the Solar System.

1

CHAPTER 1. INTRODUCTION 2

The Electronic Systems Laboratory (ESL) at the University of Stellenbosch is interested in RVD

technology as it might be used in potential future projects such as:

• Formation flight. The idea is to have a 2 satellite formation where the smaller satellite,

typically a nanosatellite, will not have solar panels to reduce cost. It will draw all its

power from onboard batteries and must therefore periodically dock at the larger satellite

(with solar panels) to recharge its batteries.

• For an inspection satellite. An inspection satellite, equipped with a camera, will be at-

tached to the main satellite. When a visual inspection of the main satellite has to be

performed, the inspection satellite will be deployed. After the inspection is completed,

the inspection satellite will re-attach (dock) to the main satellite.

Rendezvous and docking is categorised as follows: [14]

• Autonomous RVD (where the onboard computer is in full control), and

• Remotely piloted RVD (where the docking is done by a human operator from a remote

location)

Autonomous RVD is preferred because:

• It does not rely on human capability. [14]

• It can be used for a wide variety of scenarios with various sized spacecraft. [14][29]

• Due to communication link constraints. A communication link to the ground is not al-

ways available and even if it is, it may not be practical due to limited bandwidth (if video

must be used) or transmission delays that are always present. [4][6][14][25]

• It reduces the strain on limited human resources. (Ground crew and astronauts.) [29]

• RVD manoeuvres may result in the misalignment of antennas with the ground station or

the target satellite may block the ground station resulting in a loss of communications

during the docking process. [2]

Even though autonomous RVD has long been researched, it still posses many challenges. Mul-

tiple conditions and constraints have to be satisfied simultaneously. The onboard system must

ensure that correct velocities and angular rates are maintained to ensure that the docking mech-

anisms remain precisely aligned. At the same time the safety of the spaceships must be ensured

while also adhering to a time constraint. [6][21]

A prerequisite for autonomous docking is the ability to estimate the relative position, velocity

and orientation between the chaser and target satellite. In this thesis, the satellite that will be

docked at is referred to as the target satellite, while the satellite that will be docking is referred

to as the chaser satellite.

A single camera (in other words monocular vision) is used to estimate the before mentioned

quantities. It is considered to be the best overall sensor in terms of performance, mass and

power consumption. [6] See chapter 7 for a more elaborate comparison of sensors.

CHAPTER 1. INTRODUCTION 3

1.2 Thesis Goals

The aim of this thesis is to demonstrate the concept of docking two satellites autonomously

using monocular camera vision. This inherently implies:

• The research and design of a docking algorithm.

• Designing and implementing the camera sensor system.

• Demonstrating docking by creating a test platform.

A modified model hovercraft is used as a test platform as it moves relatively frictionless. This

closely emulates the movement of a satellite in 2 dimensions.

1.3 Approach

Here follows the approach used in this thesis:

1. Literature search.

2. Design a docking algorithm based on the research.

3. Create the necessary sensor system based on the research. (Camera system, centroid

detection, and light identification algorithm)

4. Design and build a test platform (hovercraft and base station) for emulation.

5. Create a simulation to test the docking concepts.

6. Implement the idea on the test platform.

7. Comment on the results.

1.4 Thesis Layout

Chapter 2 gives an overview of the whole docking sequence and introduces some necessary

concepts. After this, the concept behind monocular camera vision is introduced and a literature

overview of methods used to extract the target’s pose (relative position and orientation of the

target) from the images is given in chapter 3.

A light model is introduced in chapter 4 and is used to aid the identification and tracking

of the target’s centroids. Chapter 5 starts by first examining the movement of centroids in the

image due to specific movements and continues by describing how the target’s lights’ centroids

are uniquely identified in the image.

Then an overview of the target and chaser to be used in the emulation is given, from which

the required hardware can be determined. This is then followed by a description of the hard-

ware used and the calibration thereof in chapter 7. The camera and its calibration is discussed

in detail in chapter 8.

Chapter 9 describes how Malan’s EKF [20] is customised for this thesis’ purposes. Next, the

design and results of the inner loop controllers is given in chapter 10. In chapter 11 the system

CHAPTER 1. INTRODUCTION 4

Extended Kalman Filter (EKF) that is used to estimate the parameters required for docking is

described. Chapter 12 describes the design of the outer loop controllers. The results of the

simulation and emulation of the docking sequence is given in chapters 13 and 14, respectively.

This thesis’ conclusion and recommendations are given in chapter 15.

1.5 Achievements

The following was achieved in this thesis:

1. The autonomous and reliable identification of markers was successfully demonstrated in

both simulation and emulation.

2. The autonomous docking of a satellite pair using monocular vision was successfully

demonstrated in both simulation and emulation.

Figure 1.1: The emulation setup. Note that in this photo the black cloth is not fully tensioned.

Chapter 2

The Docking Sequence

The proposed docking sequence is presented in this chapter . Although most of the concepts

will be presented in 2 dimensions, they apply directly to 3 dimensions. Typically, one should

then only use a spherical coordinate system instead of a radial coordinate system. (In other

words, only an extra angle must be considered.)

2.1 A Few Definitions

In this section the parameters and coordinate systems, that are required to explain the docking

sequence, are introduced. Again it is stressed that for explanatory purposes the movement will

be restricted to a 2 dimensional plane. Referring to figure 2.1, here are some definitions:

Figure 2.1: Parameter and axis definitions.

The chaser’s body axis (xC, yC, zC) is defined as follows: The z-axis normally points straight

down (nadir) and goes through the chaser’s centre of gravity. The x-axis coincides with the

docking mechanism and the y-axis completes the right handed coordinate system. Name this

coordinate system’s origin OC.

Similarly, the target’s body axis (xT, yT, zT) is defined as follows: The z-axis normally points

straight down (nadir) and coincides with the target’s axis of rotation. Again, the x-axis coin-

5

CHAPTER 2. THE DOCKING SEQUENCE 6

cides with the docking mechanism and the y-axis completes the right handed coordinate sys-

tem. Name this coordinate system’s origin OT.

Let r be the length of the line, OCOT, between the chaser’s and target’s body axes’ origins.

Define α as the angle between this line and the chaser’s x-axis. Also, define β as the angle

between this line and the target’s x-axis.

Note that r and β forms a radial axis system whose origin is at OT. There will be referred to

this radial axis as the target’s radial axis.

In this thesis, the camera is mounted in such a way that it points in the direction of the

chaser’s positive x-axis and its optical axis runs parallel to the chaser’s x-axis. Therefore α is

also the angle between the camera’s optical axis and the line OCOT.

The chaser’s angular velocity around its z-axis is ωCZ
and the target’s angular velocity

around its z-axis is ωTZ
. Lastly, the angular velocity of the chaser around the target is ωCT

.

As will be discussed later, the docking sequence consists out of three phases. For convenience

sake, the three phases will be named:

1. Far Approach (r > rFAR)

2. Close Approach (rSAFE < r < rFAR)

3. Final Approach (r < rSAFE)

Define rFAR as the distance between the satellites such that the target satellite is just visible to

the chaser satellite’s camera. Also, define rSAFE as the radius of a sphere (from now on referred

to as the "safety sphere") that encapsulates the whole target satellite along with its external

components such as antennas and solar panels. (This safety sphere may not be entered by the

chaser unless it is safe to do so.) Figure 2.2 illustrates this graphically.

Figure 2.2: Phase definitions. The left satellite is the (T)arget and the right satellite is the (C)haser.

CHAPTER 2. THE DOCKING SEQUENCE 7

2.2 Overview of the Docking Sequence

A low impact docking sequence similar to the one proposed by Kawano et al. [14] will be

used. The main advantage of a low impact docking sequence is that smaller, light weight

docking mechanisms can be used instead of the more robust, heavier and larger mechanisms

required by conventional impact docking. As this thesis is done with smaller satellites (such as

nanosatellites) in mind, the smaller docking mechanisms are an attractive option. The price for

this, on the other side, is a more complex control system that can control the relative velocities

and angular rates more precisely.

A three stage approach is used as it provides a logical way to divide the docking sequence

into subproblems. The current stage is a function of the relative distance between the target

and chaser. Each stage can then have its own controller and estimator as necessary. [14][29]

Qureshi et al. [25] defines autonomous RVD as follow: "Autonomy entails that the onboard

controller be capable of estimating and tracking the pose (position and orientation) of the target

satellite and guiding the servicing spacecraft as it 1) approaches the satellite, 2) maneuver itself

to get into docking position, and 3) docks with the satellite."

This fully describes the whole docking sequence, as well as the purpose of each phase, in a

nutshell.

2.3 Detailed Description

Now a detailed description of the docking procedure can be given using figures 2.1 and 2.2, as

well as the definitions of section 2.1.

2.3.1 Far approach

Initially, when the satellites are far apart, r > rFAR, they will approach each other using relative

GPS (RGPS). During this phase the primary goal of the controller should be to decrease the

relative distance, r, between the satellites. The secondary goal would be to keep the chaser’s

camera pointing at the target by keeping α relatively small using the RGPS data. During the

whole docking sequence, the target satellite is not allowed to make any sudden movement

changes such as, for example, firing a thruster. However, during this first phase, this constraint

can be relaxed as it is negligible due to the large distance between the satellites.

2.3.2 Close approach

During this phase, rSAFE < r < rFAR, the chaser satellite’s camera sensor will be enabled and

initialised. Therefore, from this phase onwards, the target satellite may not make any sudden

movement changes.

For the cameras initialisation it is important to keep α relatively constant. As α̇ = ωCZ
−

ωCT
, this implies that |ωCZ

−ωCT
| must be minimised. This is because small changes in α causes

significant displacements of the target satellite in the image. Note that it is not necessary to keep

the target satellite centred in the image, but to keep the target satellite stationary in the image.

(As long as the target satellite is in the camera’s field of view.)

CHAPTER 2. THE DOCKING SEQUENCE 8

It is also important that the difference between the angular velocity of the chaser around

the target and the target’s angular velocity, |ωTZ
− ωCT

|, should be small during the camera

sensor’s initialisation phase. Otherwise the target’s lights will move too fast in the image.

The current controller’s goal should be to keep α relatively constant during the camera’s

initialisation process. While the camera is busy initialising, the distance between the satellites

can slowly be decreased. After the camera was initialised, more aggressive manoeuvres are

possible. This allows for angular velocity synchronisation. The chaser’s current controller can

now start to regulate α and β to zero so that eventually all the angular velocities are equal

(ωCZ
= ωTZ

= ωCT
).

As the distance between the satellites decrease, the RGPS measurement’s weight will be

decreased while the camera measurement’s weight will be increased until the much more ac-

curate camera measurement has completely replaced the less accurate RGPS measurement.

2.3.3 Final approach

This last phase, r < rSAFE, is the most critical phase of the whole docking sequence as it requires

close proximity manoeuvres within the target’s safety sphere. Therefore, the docking sequence

will be aborted if anything appears suspect.

Before the chaser satellite may enter the target satellite’s safety sphere, the following condi-

tions must be met:

1. The docking mechanisms must be aligned, i.e. α = β = 0.

2. The chaser and target satellites rotations must be synchronised, i.e. ωCT
= ωCZ

= ωTZ
.

If all goes well, the docking sequence ends with a low velocity impact (Typically 1 cm.s−1).

To ensure the safety of the the satellites, the docking sequence will be aborted if either |α|

or |β| exceeds predetermined values εα and εβ, respectively. Stated differently, the docking

sequence will be aborted if |α| > εα or |β| > εβ. Note that both εα and εβ are positive con-

stants. Aborting causes the chaser satellite to retreat to a predefined distance, rRETREAT, where

rRETREAT > rSAFE.

The target’s safety sphere and the constraint on |β| can be represented graphically in terms

of an "approach corridor" and a "keep out zone" as shown in figure 2.3.

2.4 Guidance System

Different actions have to executed during each phase of the docking sequence. It is the guid-

ance system’s task to determine in what phase the docking sequence is in at any given time.

From this it can decide what action has to be taken and can schedule the necessary controller,

references and estimators accordingly.

In this thesis, a single Extended Kalman Filter (EKF) will be used to store the system’s states.

One of these states is the distance between the chaser and the target. This information is then

used by the guidance system to perform the necessary actions. Figure 2.4 shows the guidance

system, conceptually. The system’s EKF is discussed in chapter 11.

CHAPTER 2. THE DOCKING SEQUENCE 9

Figure 2.3: Target’s approach corridor and keep out zone.

Figure 2.4: Conceptual representation of the guidance system (Adapted from [6]).

Chapter 3

Using a Monocular Camera

This chapter gives a description of what monocular camera vision entails, the methods used

and the requirements.

3.1 Basic Principle

This section describes the basic principle of monocular camera vision. To do this, first consider

stereo vision. Given two arbitrary points in space, a single camera can be used to determine

the heading to each of these points. So far, the points’ locations are not fixed as they can lie

anywhere along these two vectors as illustrated in figure 3.1 (a). By using a second camera,

the heading to each of these points can be acquired from a different reference point as seen in

figure 3.1 (b). Now, using triangulation, the exact location of these points can be determined.

This is the principal of stereo vision.

Figure 3.1: Stereo vision.

The basic principle of monocular vision is to utilise all the information at ones disposal. As

docking will typically happen to a known satellite, with known dimensions, the distance be-

tween these points are known. Using this additional information, the locations of these two

points can be determined. (Note that although this is the basic principle, several points are

required for an unique solution.) Refer to figure 3.2. Then by observing a sequence of images,

the relative velocities and angular rates can be estimated.

10

CHAPTER 3. USING A MONOCULAR CAMERA 11

Figure 3.2: Monocular vision.

3.2 Monocular Vision versus Stereo Vision

Normally, stereo vision is associated with camera sensor systems. Monocular camera vision

is preferred for satellite applications, i.e. using one camera instead of two implies half the

cost, weight, power and volume. The smaller the satellite, the more significant these savings

become.

3.3 Methods Considered

When monocular vision is used, several strategies are implemented to extract the required

information from the successive photos. Some of them are:

• By using multi-coloured markers. Miller et al. [21] proposed the use of markers that

are bright colours not normally found in an orbital setting. Using a colour camera these

features are easily identifiable. This approach requires 3 markers that are not coplanar.

As a gray scale camera is used in this thesis, this approach is not possible.

• Line models. Cropp et al. [2] extracts all the lines from a picture using the Hough trans-

form. The identified lines are then compared to a line-based model of the target satellite

using a heuristic approach. This method proved to be fairly reliable, but takes roughly

1 minute to process a single image on a Pentuim 75 MHz. The method is therefore very

processor intensive as one would expect from an algorithm that uses the Hough trans-

form. The camera used in this thesis only has an 8051 microcontroller and therefore this

approach is not feasible.

• Using the Scale Invariant Feature Transforms (SIFT) was explored. The basic principle of

SIFT is that distinctive invariant features are extracted from an image. These features are

scale and rotation invariant and can therefore be used to reliably match different views

of an object. The process is described by D. Lowe. [17]

For this application the idea was to take a photo of each of the target satellite’s 6 facets.

These images would form the reference images whose features would be extracted and

stored in a database. To determine the target satellite’s pose, the following process will

be followed:

CHAPTER 3. USING A MONOCULAR CAMERA 12

1. Extract features from the current image.

2. Match these features to those in the database.

3. Use the results to determine the target’s pose.

From Lowe’s [17] description it can be seen that SIFT is extremely processor intensive

and therefore not possible to be implemented on the 8051 microcontroller used.

• Another approach considered was to place unique patterns on each of the satellite’s

facets. These patterns would either be passive (such as markings) or active (such as light

clusters). This will however not work as they can be unidentifiable or, even worse, be

mistakenly identified when viewed from different angles.

• Lastly, light point soures can be placed on the target satellite. These appear in the image

as roundish blobs of which the centroids can be determined. These centroids can then be

processed to determine the target satellite’s pose.

The determination of light centroids can fairly easily be accomplished on the 8051. This ap-

proach will therefore be used as it is the most compatible with the current hardware setup. For

the more computationally expensive approaches, the hardware setup has to allow the images

to be speedily delivered to a location where it can be accessed and processed by a capable pro-

cessor.

When light point sources are used, there are two possible approaches:

• Relative angles only approach. As the name suggests, a camera is used to take angular

measurements to markers on the target satellite. These measurements are then processed

to determine the target’s pose. This process is described in detail by Woffinden et al. [29]

• Using Malan’s Extended Kalman Filter (EKF). In his thesis, Malan designed an EKF to

estimate the pose of a target satellite directly from the centroids. [20]

Both of the above methods requires the ability to uniquely identify each centroid. The term

"unique" implies two things: 1) One must know that the centroid belongs to the satellite and

not to, for example, a star. 2) One must know exactly what light is represented by a specific cen-

troid. This thesis will implement Malan’s filter to test it and to use another, different approach

to the methods already found in the literature.

3.4 Requirements

Malan’s filter has to be provided with measurements in the form of 2D-3D point pairs. Markers

(lights) will be placed on the target satellite. The position of these markers in the target’s body

axis are known exactly. These are the 3D points.

Then each marker has to be uniquely identified in the image. These centroids are the 2D

points. Each centroid along with its corresponding position in the target’s body axis forms a

2D-3D point pair. The unique identification and tracking of centroids is discussed in chapter 5.

Malan’s filter is tailored for the 2D emulation as discussed in chapter 9.

Chapter 4

Light Model

This chapter introduces a simple light model used to aid the tracking and identification of new

centroids. The light model determines the position of the light centroids that would be seen by

an ideal camera (with no distortion) observing the target satellite. Each light’s radiation pattern

is also taken into account.

4.1 Definitions

Figure 4.1 introduces the necessary variables used in this model. The following variables are

used:

• rCAM
Ln

is the position of the light n in the camera axis.

• rCAM
TGT is the position of the target satellite axis’ origin in the camera axis.

• i, j and k are the unit vectors along the camera’s x-, y- and z-axis, respectively.

• rTGT
Ln

is the position of the light n in the target satellite’s axis.

• eTGT
Ln

is an unit vector giving the direction of the light radiation pattern’s symmetry axis

of the light n in the target satellite’s axis.

• γn is the viewing angle of light n.

• TCAM→TGT is the Direction Cosine Matrix (DCM) that gives the target satellite axis orien-

tation with respect to the camera axis.

For now, the camera axis (xCAM, yCAM, zCAM) is defined as follows: The z-axis coincides with

the camera’s optical (principle) axis. The x- and y-axis completes the right handed coordinate

system.

13

CHAPTER 4. LIGHT MODEL 14

Figure 4.1: Light model.

4.2 Light Radiation Pattern

Each light has its own light radiation pattern. This light model assumes a symmetric light

radiation pattern.

Figure 4.2: A light radiation pattern.

The light intensity for a specific viewing angle, γn, is given by:

ILightn
= fn(γn)

4.3 Pinhole Camera Model

Figure 4.3 shows the pinhole camera model for a projective camera with a focal length, f me-

ters. The camera’s z-axis, zCAM, coincides with the camera’s optical axis. (Also called the

principle axis.) Where the optical axis intersects with the image plane (zCAM = f) is known as

the principle point [u0, v0]T where both u0 and v0 are in pixel units.

CHAPTER 4. LIGHT MODEL 15

Figure 4.3: Pinhole camera model.

Given that the size of each pixel is pX and pY meters along the camera’s x- and y-axis, re-

spectively, the projection [xsensor, ysensor]
T, in pixels, of an arbitrary point [xCAM

P , yCAM
P , zCAM

P]T

in the camera axis on the image plane is:

xsensor =

(

xCAM
P

zCAM
P

)

(

f

pX

)

+ u0 (4.3.1)

ysensor =

(

yCAM
P

zCAM
P

)

(

f

pY

)

+ v0 (4.3.2)

4.4 The Light Model

4.4.1 Intuitive model

The position of a light n in the camera axis is given by:

rCAM
Ln

= rCAM
TGT + (TCAM→TGT)−1rTGT

Ln

Note that all the DCM matrices are orthonormal matrices so that their inverse is equal to their

transpose, e.g. (TCAM→TGT)−1 = (TCAM→TGT)T. From equations 4.3.1 and 4.3.2, the position of

the centroid of light n in the image [xsensorn , ysensorn]T, in pixels, is given by:

xsensorn =

(

proj ir
CAM
Ln

proj krCAM
Ln

)

(

f

px

)

+ u0

=

(

(rCAM
TGT + (TCAM→TGT)−1rTGT

Ln
) · i

(rCAM
TGT + (TCAM→TGT)−1rTGT

Ln
) · k

)

(

f

px

)

+ u0 (4.4.1)

CHAPTER 4. LIGHT MODEL 16

ysensorn =

(

proj jr
CAM
Ln

proj krCAM
Ln

)

(

f

py

)

+ v0

=

(

(rCAM
TGT + (TCAM→TGT)−1rTGT

Ln
) · j

(rCAM
TGT + (TCAM→TGT)−1rTGT

Ln
) · k

)

(

f

py

)

+ v0 (4.4.2)

From the definition of the dot product, the viewing angle of light n is:

γn = arccos





(−rCAM
Ln

) · (TCAM→TGT)−1eTGT
Ln

∥

∥

∥
(−rCAM

Ln
)
∥

∥

∥

∥

∥

∥
(TCAM→TGT)−1eTGT

Ln

∥

∥

∥



 (4.4.3)

= arccos





(−rCAM
Ln

) · (TCAM→TGT)−1eTGT
Ln

∥

∥

∥rCAM
Ln

∥

∥

∥



 (4.4.4)

The simplification from 4.4.3 to 4.4.4 can be made as a DCM is a rotation matrix and therefore

does not alter a vectors magnitude, and eTGT
Ln

is an unity vector.

One problem with the basic mathematical camera models is that it does not take into account

if an object is in front or behind the camera. For example: According to equation 4.3.1, the only

difference between an object located at +Z and -Z is the location of its projection in the image

plane. This is of course not accurate as the object located at -Z is behind the camera and should

not cause a projection onto the image plane. To circumvent this problem, one must manually

test if an object (light) is in front of the camera or not. This is done by testing the z-component

of rCAM
Ln

. If it is larger than zero, the object is in front of the camera. Mathematically, for the

light to be in front of the camera:

rCAM
Ln

· k > 0

4.4.2 An improved model

Although the model presented in section 4.4.1 is very intuitive, it is undesirable. If there are

N lights, then N light position vectors have to be rotated and translated, and N light intensity

vectors have to rotated. A much better approach would be to rather rotate the camera axis and

use the light position vectors and intensity vectors as is.

Starting with:

rCAM
Ln

= rCAM
TGT + (TCAM→TGT)−1rTGT

Ln

Multiply, from the left, with TCAM→TGT and call the result r̂Ln :

(TCAM→TGT)rCAM
Ln

= (TCAM→TGT)rCAM
TGT + rTGT

Ln

= r̂Ln (4.4.5)

CHAPTER 4. LIGHT MODEL 17

The rotated camera axis becomes:

(TCAM→TGT)i = î

(TCAM→TGT)j = ĵ

(TCAM→TGT)k = k̂

Notice that as i = [1, 0, 0]T, j = [0, 1, 0]T and k = [0, 0, 1]T, the vectors î, ĵ and k̂ are just the first,

second and third column of TCAM→TGT, respectively.

Then, the position of the centroid [xsensorn , ysensorn]T of light n is given by:

xsensorn =

(

proj îr̂Ln

proj k̂r̂Ln

) (

f

px

)

+ u0

=

(

r̂Ln · î

r̂Ln · k̂

)

(

f

px

)

+ u0 (4.4.6)

ysensorn =

(

proj ĵr̂Ln

proj k̂r̂Ln

)

(

f

py

)

+ v0

=

(

r̂Ln · ĵ

r̂Ln · k̂

)

(

f

py

)

+ v0 (4.4.7)

In order to derive the equation for γn use the identity that Ta · Tb = a · b if a and b are vectors

and T is a rotation matrix. This is true as a rotation matrix does not alter a vector’s magnitude.

Also, if both vectors are rotated the same way, the angle between them remains the same. The

viewing angle of light n is now given by:

γn = arccos





−(TCAM→TGT)rCAM
Ln

· eTGT
Ln

∥

∥

∥
−(TCAM→TGT)rCAM

Ln

∥

∥

∥

∥

∥

∥
eTGT

Ln

∥

∥

∥



 (4.4.8)

= arccos

(

−r̂Ln · eTGT
Ln

‖r̂Ln‖

)

(4.4.9)

The simplification from 4.4.8 to 4.4.9 is made using equation 4.4.5.

Lastly, to test if the object is in front of the camera: The light is in front of the camera if

r̂Ln · k̂ > 0 (4.4.10)

CHAPTER 4. LIGHT MODEL 18

4.4.3 Using the improved model

The procedure to use the improved model is as follows:

1. Calculate (TCAM→TGT)rCAM
TGT .

2. Calculate î, ĵ and k̂.

3. For each light n:

a) Calculate r̂Ln using equation 4.4.5.

b) If r̂Ln · k̂ > 0:

i. Calculate [xsensorn , ysensorn]T using equations 4.4.6 and 4.4.7.

ii. Determine γn using equation 4.4.9, and from this and the light’s radiation pat-

tern the centroid’s intensity.

iii. Use/Store this light’s centroid data.

From the preceding procedure, one can see why the improved model is better than the intuitive

one. Here, only 4 rotations have to be calculated of which 3 are only the columns of a rotation

matrix. Therefore this model is much less processor intensive, especially when a large number

of lights are used.

4.5 Conclusion

The light model introduced in this chapter is used to track and identify new centroids as will

be explained in chapter 5. It also acts as a virtual camera in the simulation discussed in chapter

13.

Chapter 5

Identification and Tracking of Light

Centroids

In this chapter the centroid identification and tracking unit is introduced. The algorithm used

to determine the centroids is also discussed.

5.1 Overview

The purpose of the centroid identification and tracking unit is to uniquely identify and track

the light features (markers) on the target satellite in the presence of noise sources such as stars,

especially the sun, and reflections off the target satellite’s surface. It therefore forms the con-

nection between the raw centroids received from the camera unit and Malan’s filter (Refer to

figure 6.1). In this regard, this unit must be accurate and reliable enough to handle centroids

that appear and disappear. The light model described in chapter 4 is used to aid this process.

This centroid identification and tracking process can be divided into three subprocesses as

illustrated in figure 5.1:

• Initial search. As soon as the target satellite is close enough, the centroids must be sys-

tematically identified. This process can be slow as it is typically only performed once.

• Tracking. After a centroid was identified, its position has to be tracked in successive

images. This process should be as fast as possible as it is frequently executed.

• Detect changes. Due to the target’s and chaser’s relative movement (rotation and transla-

tion) some features will appear and disappear from the camera’s field of view. Therefore

it is necessary to determine which centroids fell away and to be able to identify the new

centroids that became visible. This process is also executed frequently and should also be

as fast as possible.

In this thesis, a communications link is also available for utilisation. (i.e. the target is cooper-

ative.) Of course, if the docking sequence can be executed without using the communications

link (i.e. a uncooperative target), the algorithm will be much more robust as it is not dependent

on an intersatellite communications link. But this approach is inherently more complex.

19

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 20

Figure 5.1: Breakdown of the identification and tracking process.

5.2 Movement of the Target Satellite’s Centroids and the Star’s

Centroids in the Image

Before one can design an algorithm to track centroids in successive images, one must first

investigate the movement of centroids in successive images.

In sections 5.2.1 to 5.2.5 the movement of the noise source’s (e.g. stars) centroids and the

movement of the target satellite’s lights’ centroids in the image, as the result of specific actions,

are examined.

5.2.1 Movement of stars’ centroids due to the rotation and translation of the

satellites around one another and the earth

The movement of stars’ centroids in successive images, due to the rotation and translation of

the satellites around one another and the earth, is negligible.

Figure 5.2: Movement of the chaser and target around each other and the earth.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 21

Figure 5.2 illustrates how the target satellite orbits around the earth from T to T’ while the

chaser simultaneously rotates around the target from C to C’. If the chaser keeps the target

centred in the image, then only the star’s centroid will move in the image. As result of the

movement depicted in figure 5.2, the star’s centroid will move from its old position (circle) to

its new position (triangle) in the image as shown in figure 5.3.

Figure 5.3: The star’s centroid move from its old position (circle) to its new position (triangle), while the
target satellite (square) remains stationary in the image.

Given that the time between two successive images is ∆T, it is shown in section B.1 that the

displacement of the star’s centroid in the image is given by:

dstar =

(

f

p

)

tan (2ωCT
∆T) pixels

In order to estimate dstar, consider the following: The rate at which the chaser and target satel-

lites orbit around each other is equal to the rate at which the satellites orbit around the earth.

As a typical orbital period for low earth orbital satellites is about 90 minutes, the rate at which

the satellites orbit around each other, ωCT
, is given by

ωCT
=

2π

(90)(60)

= 1.164 × 10−3 rad.s−1

The lens’ datasheets gives f = 4×10−3 m and p = 6×10−6 m. Lastly, the time between two

successive photos, ∆T, will be less than 1 second. Therefore, the resulting distance moved by a

star in the image would be less than 1.552 pixels.

5.2.2 Movement of stars’ centroids due to the rotation of the chaser satellite

around its own axis

The stars’ centroids will move around significantly due to the rotation of the chaser satellite, or

more specifically the camera, around the chasers’ own axis. (For a rigid body these rotations

are the same.)

When the chaser rotates through an angle of θCZ
around its own z-axis (figures 5.4a and

5.4b), the star’s centroid moves from its old position (circle) to its new position (triangle) as

shown in figure 5.4c.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 22

Figure 5.4: Movement of star’s centroid due to the rotation of the chaser satellite (C) around its own
axis.

It can be shown (refer to section B.2) that the displacement of a star’s centroid in the image after

the chaser rotated through θCZ
around its z-axis is given by:

dstar =

(

f

p

)

tan (θCZ
) pixels

From this equation it can be seen that the displacement of the stars’ centroids in the image is

very sensitive to θCZ
.

5.2.3 Movement of the target’s lights’ centroids due to the relative rotation of the

satellites

If there is little difference in the angular rate of the target around its own axis, the chaser’s

angular rate around its own axis, and the angular rate of the chaser around the target (ωTZ
≈

ωCZ
≈ ωCT

), then the target’s lights’ centroids will keep their relative position and orientation

in successive images as illustrated in figure 5.5.

Figure 5.5: Movement of the target’s lights’ centroids due to the relative rotation of the satellites.

In figure 5.5 the light centroids have moved from their old positions (circles) to their new po-

sitions (triangles) during two successive photos. Note that the new positions are very close to

the old positions if ωTZ
≈ ωCZ

≈ ωCT
.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 23

5.2.4 Movement of the target’s lights’ centroids due to the rotation of the chaser

around its own axis

Figure 5.6: Movement of the target’s light’s centroid due to the rotation of the chaser around its own
axis.

If the chaser satellite rotates about its own axis, then the target’s lights’ centroids will be dis-

placed significantly in the image as illustrated in figure 5.6. The displacement of a light centroid

in the image is given by:

dlight =

(

f

p

)

tan (θCZ
) pixels

Where θCZ
is the angle through which the chaser satellite turned between the two successive

photos. From this equation it can be seen that the displacement of the target’s centroids in the

image is very sensitive to θCZ
.

5.2.5 Movement of the target’s lights’ centroids due to the relative translation

between the satellites

If the chaser moves closer to the target while keeping the target centred in the image (as il-

lustrated in figure 5.7(a)), then the target’s lights’ centroids in the image will move away from

each other. This is illustrated in figure 5.7(b) where the centroids move from their old positions

(circles) to their new positions (triangles).

From figure 5.7(b) one can see that this movement gives the same effect as when one would

have zoomed in. Define the zoom factor, ZF, as the ratio between the distances (in pixels) be-

tween the new centroids and the distances (in pixels) between the old centroids. It is shown in

section B.3 that:

ZF =
Z

Z − ∆Z

=
1

1 − ∆Z
Z

(5.2.1)

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 24

Figure 5.7: As the chaser moves closer to the target (a), the target’s lights’ centroids move away from
each other in the image (b).

Where ∆Z is the distance travelled between two successive images and Z is the original dis-

tance between the satellites as shown in figure 5.7(a). From equation 5.2.1 it can be seen that

if the distance travelled between two successive images is small in comparison to the distance

between the satellites, then the zoom factor, ZF, will be close to 1. This implies that for slow

movements the the centroids will move very slowly in the image as they remain in almost the

same position between successive images.

Now consider the relative translation along another axis as shown in figure 5.8(a). Trans-

lation along the other axes causes the target’s lights’ centroids to translate in the image. Note

that because the chaser orbits around the target satellite, the translation shown in figure 5.8(a)

will be the norm. Closer investigation shows that the translation of the centroids in the image

is due to a pointing error that occurs when ωCZ
differs to much from ωCT

. This can be seen by

comparing figure 5.8(b) with figure 5.6.

Figure 5.8: Relative translation of the chaser along another axis.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 25

5.2.6 Conclusion

In this section the movement of stars’ and the target’s lights’ centroids in the image due to

certain movements were investigated to get a better understanding of what is required by the

centroid identification and tracking unit. From this section it can be seen that most of the

centroids move very slowly in the image due to the slow movements of the satellites. It was

also seen that the movement of the centroids in the image is very sensitive to rotations of the

chaser around its own axis.

In this application, the slow movement of the satellites is the characteristic that is exploited

in the design of a matching algorithm. By ensuring that the rate of rotation of the chaser around

its own axes is also slow, the centroids will move very slowly in the image so that the position

of the centroids in the new image will be close to their positions in the older image.

5.3 The Matching Algorithm

A matching algorithm was designed to match centroids in successive images, i.e. determine the

new position of each centroid from the old image in the new image. This is done by evaluating

the distances between all of the old centroids and all the new centroids. Matching is then done

by pairing up the old and new centroids that are closest to each other as it is known from

section 5.2.6 that the centroids move very slowly in the image.

As an example consider the simplified problem shown in figure 5.9. In this example there

are 4 centroids: 2 old centroids (circles) and 2 new centroids (triangles), where the old centroids

1 and 2 corresponds to the new centroids 1’ and 2’, respectively. Starting at centroid 1, the

distances (d11 and d12) to each new centroid (1’ and 2’) are determined. Next, the distances

(d21 and d22) from the old centroid 2 to each new centroid (1’ and 2’) are determined. Then

all the distances are evaluated to determine the centroid pairs. As d11 is the shortest distance

between the old centroid 1 and any other new centroid, the old centroid 1 is paired with the

new centroid 1’. Similarly, as the distance d22 is the shortest distance between old centroid 2

and any other new centroid, old centroid 2 is paired with the new centroid 2’. Notice that the

matching algorithm therefore tracks centroids in successive images.

Figure 5.9: Matching old and new centroids.

This matching algorithm was implemented as a function in the C programming language.

Apart from matching the old and new centroids, the function also reports which centroids dis-

appeared (old centroids that had no match) and appeared (new centroids with no match). The

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 26

function also returns the number of centroids that changed in a variable called change_amount.

This variable has a value +N if there were N centroids that appeared, 0 if there was no change

and -N if there were N centroids that disappeared. All this information is used by the light

identification and tracking unit as will be explained later.

It is stressed that this matching algorithm relies on the fact that the relative movement

between the satellites is slow. If the relative movement becomes too aggressive, this matching

algorithm will fail.

5.4 The Identification and Tracking Unit

In this section the identification and tracking process is described. Note that the chaser uses

the wireless communications link to specify to the target which lights must be switched on or

off. Refer to appendix A for the block diagrams.

5.4.1 Initial search

When the target satellite first becomes visible to the chaser, the target’s lights’ centroids has to

be uniquely identified. But as the satellites are still quite far apart, the mass1 of a centroid of a

star and that of the target’s light is similar. Under these circumstances it is extremely difficult to

distinguish between the noise centroids, e.g. from the stars, and the target satellite’s centroids.

One approach to distinguish between a light and a star would be to switch a light on and

off multiple times to verify that the centroid is truly a light from the target satellite as the

probability of a star repeatedly appearing and disappearing is zero. Taking into account that

the pictures are taken and processed at a rate of less than 2 Hz, using multiple pictures for the

detection of a single light increases the initialisation time drastically.

A much better approach is to first get the satellites as close together as possible by means

of the other available sensors. As the distance between the satellites decreases, the mass of

the target’s lights’ centroids increases. All the stars remain fixed at infinity so that their mass

remains unchanged. Using the before mentioned method, the chaser satellite moves closer to

the target satellite until the mass of the target satellite’s lights’ centroids are much larger than

those of the stars. (Note that although the sun also remains at a relatively fixed distance, its

centroid is fairly large. Fortunately, there is only one sun and its centroid can be tracked and

compensated for.) Now the centroids can also be filtered by mass, so that the resulting centroids

were filtered on three different ways:

1. Optically using, for example, an infra red filter.

2. By intensity. The camera unit thresholds the image before searching for centroids so that

only centroids brighter than a certain threshold value are used.

3. By mass. Only centroids with a mass larger than a certain threshold value are accepted.

Now the initial light identification process can commence. This initialisation process is de-

scribed here and the corresponding block diagram is shown in figure A.5 on page 154.

1A centroid’s mass is defined as the number of pixels that the star or target satellite’s light consists of in the
image.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 27

The initialisation is done as follows:

1. All the target’s lights are switched off before the first photo is taken. The resulting, fil-

tered centroids are therefore from noise sources and will automatically be tracked by the

matching algorithm introduced in section 5.3.

2. Next, the target’s primary lights are systematically added. For each primary light the

following procedure is followed:

a) Switch on the light.

b) Take a photo and search the whole image for centroids.

c) Filter the centroids by mass.

d) Match the centroids using the matching algorithm.

e) Evaluate the value that the variable change_amount returned by the matching algo-

rithm:

• If the number of changed centroids are zero, then the light is not visible to the

camera. The light is then switched off to prevent a future, false trigger.

• If the number of changed centroids is exactly one, then the centroid is identified

as being the current light.

• For any other number of changed centroids, the initialisation sequence is restarted

as it is not possible to uniquely identify the centroid belonging to the current

light under test.

3. After all the primary lights were tested, the number of identified centroids are counted.

If enough centroids were obtained, then the initialisation sequence is complete. It is now

said that the identification and tracking unit has obtained lock. Based on which centroids

were identified, Malan’s EKF and the system EKF are initialised using heuristics. The

identified centroids can now be sent to Malan’s filter.

If the number of identified centroid are not enough, the initialisation process is restarted.

Malan [20] states in his thesis that his filter requires at least 4 centroids to work accu-

rately. Therefore the minimum number of centroids that has to be identified was chosen

as 4.

Note that the target satellite contains primary and secondary lights. The primary lights are

used for long and medium distances. The secondary lights are enabled at close range and are

used when, because of the close proximity, the primary lights can move out of the cameras field

of view.

5.4.2 Tracking and detecting changes

After the initial light identification process is completed, the identified centroids have to be

tracked in successive images. Due to the relative movement between the satellites there also

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 28

has to be tested regularly if any new lights have become visible and if any of the currently

identified lights has disappeared. To track the centroids and to determine which centroids has

disappeared is trivial as it is automatically done by the tracking algorithm from section 5.3.

As there is made use of the light model of chapter 4 to aid the identification of new light

centroids, one has to wait for the system EKF to first converge as the light model uses the

system EKF’s state vector.

While the system EKF has not converged, the identified centroids are only tracked using the

matching algorithm as described here (Refer to figure A.6 on page 155 for the block diagram):

1. Take a photo and search the whole image for centroids.

2. Filter the centroids by mass.

3. Match the centroids using the matching algorithm.

4. Evaluate the value that the variable change_amount returned by the matching algorithm:

• If there is no change, the updated centroids are sent to Malan’s filter.

• If there are any new centroids, then they belong to noise sources. (Remember that all

the unidentified lights are switched off.) Note that these centroids will now also be

tracked by the matching algorithm. The updated light centroids are sent to Malan’s

filter.

• In the case where centroids disappeared, it first has to be checked if the disappeared

centroids belong to the target satellite’s lights.

a) If the disappeared centroids do not belong to the target satellite’s lights, the

updated light centroids are sent to Malan’s filter.

b) Else, the target’s lights that correspond to the centroids that disappeared are

switched off. The number of remaining light centroids are counted and if there

are not enough light centroids remaining, lock is lost so that the initialisation

process has to be redone. If there remain enough light centroids, they are sent

to Malan’s filter.

After the system EKF has converged, the light model from chapter 4 can be used to aid the

tracking and identification of new centroids as described next (Refer to figure A.7 on page 156

for the block diagram):

1. Determine the model’s centroids by using the light model and the system EKF’s state

vector. These centroids gives the position were centroids can be expected.

2. Set the location of the Windows Of Interest (WOI) to the model’s centroid locations so

that only these subsections of the image are searched for centroids. By only searching

these small areas, the image is not only searched faster but the searching process also

becomes more robust to noise sources.

3. Compare the model’s centroids with the currently identified centroids. If the model re-

turned centroids of lights that are not currently identified, then there is a possibility that

these lights might be visible.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 29

4. If there is a possibility that some of the unidentified lights may be visible, then they are

systematically tested and added if found. This process is very similar to the initial search

as will be shown:

a) Select one of the possible lights and switch it on.

b) Take a photo and search the WOIs for centroids.

c) Filter the centroids by mass.

d) Match the centroids using the matching algorithm.

e) Evaluate the value that the variable change_amount returned by the matching algo-

rithm:

• If the number of changed centroids is exactly one, then the light is identified.

• If there are no new centroids or more than one new centroid, then the light under

test is switched off as it cannot be uniquely identified.

• If some centroids disappeared, the light under test is switched off. Then it is

tested if the centroids that disappeared belongs to the target satellite’s lights and

if so, the corresponding lights are switched off. Again, the number of identified

lights are counted and if there are not enough, lock is lost. The initialisation

process then has to be redone. Else, if there is enough centroids left, the updated

light centroids are sent to Malan’s filter.

If there are no new possible lights, then the same tracking procedure is followed as when

system EKF was not converged.

There are two advantages of using the light model to complement the centroid identification

and tracking unit. The first is that it allows one to predict which lights will become visible. Sec-

ondly, it predicts where all the centroids will be, so that only the small areas in these locations

(WOIs) have to be searched increasing the search speed and robustness of the search process.

Therefore, the centroids resulting from this search process were filtered in 4 ways:

• Optically

• By intensity.

• By mass.

• By position using the WOIs.

For the purposes of detecting changes it is assumed that the target satellite’s light centroids

appear and disappear gradually as shown in figure 5.10. If it would happen that centroids

appear and disappear in the same image, the matching algorithm will not detect it and would

wrongly pair up the centroids from the previous and current image. Therefore, the design of

the lights (their position and radiation pattern) must enforce this assumption.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 30

Figure 5.10: The gradual appearance and disappearance of centroids.

Figure 5.11: The light radiation pattern used in this thesis.

5.4.3 More on using the light model

From section 5.4.2 it can be seen that the light model is only used to predict if a light might be

visible. Therefore, the simplified light radiation pattern shown in figure 5.11 is used.

It should be noted that the mathematical model must be used with caution as it is only a sim-

plified model of the lights.

The main problem that can arise, is when the modelled light radiation pattern is smaller

than the actual light’s radiation pattern. (i.e. The actual light is visible from a wider angle than

the model’s light.) In this case the model’s centroids will disappear before the actual light’s

centroids disappear. When this happens, no WOIs will be created for those lights and those

centroids will be missed. This in turn will decrease the measurement’s quality.

To circumvent this problem, one must ensure that the modelled light radiation pattern is

always wider than the actual light radiation pattern. This will not cause any problems as the

model’s centroids are only used to specify the locations of the WOIs to be searched for cen-

troids.

5.5 Searching for Centroids in the Image

When the image is search for centroids, the image is sub sampled to increase the search process’

speed. It was determined empirically that the mass of the smallest centroid is 22 pixels. This

corresponds to a circular light spot with a diameter of 5 pixels. Therefore, only the pixels in

every 5th column of every 5th row is tested if its intensity is above the intensity threshold.

In doing so, the search process is 25 times faster than searching each pixel. Then a centroid

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 31

determination algorithm is executed at the location of each pixel who’s intensity has exceeded

the threshold.

5.6 Rapid Centroid Determination Algorithm

One approach to determine the centroid of a light spot in the image is to use the region growing

method as described by Jacobs [13]. One drawback of this method is that it results in a large

amount of pixels being read 4 times. If the cost of this algorithm, Crg, is defined as the number

of pixels read, then it can be shown that:

Crg = 4N + 1

where N is the number of pixels in the light spot.

Taking into account the limited processing capabilities of the camera’s microcontroller and the

fact that the mass2 of the target satellite’s marker can exceed 300 pixels at close proximity, it

was decided to design a faster centroid determination algorithm. Apart from taking the image

memory structure into account, the main feature of this new algorithm is that it only reads each

pixel once. Refer to appendix C for more detail regarding this algorithm.

5.6.1 Comparing the faster centroid determination algorithm

Figure 5.12: A n × n square (shaded) with bordering pixels (clear).

It is slightly more difficult to write down a general equation that describes the cost of the new

algorithm, Cnew. In words the cost is equal to the light spot’s mass plus the number of pixels

at the light spot’s border. To simplify the comparison a square shaped light spot will be con-

sidered. Referring to figure 5.12, it can be shown that for a square having sides of length n

pixels:

Cnew = n2 + 4n

2The number of pixels in the marker or light spot.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 32

While:

Crg = 4n2 + 1

To show how much faster the new algorithm is, divide Crg by Cnew:

η =
Crg

Cnew

=
4n2 + 1

n2 + 4n

=
4 + 1

n2

1 + 4
n

(5.6.1)

From equation 5.6.1 and figure 5.13 it can be seen that for light spots with a small mass, there

is little difference in performance. As the mass of a light spot increases, the faster algorithm

becomes superior in terms of speed and is up to 4 times faster (if n→ ∞) than the region

growing algorithm.

Figure 5.13: The ratio, η, between the region growing algorithm’s and the new algorithm’s execution
speed.

On the other hand, the region growing algorithm is more robust than the faster algorithm as

it can handle light spots of any shape. The faster algorithm can handle any convex light spots

(circles, ellipses, triangles, rectangles etc), but it returns an inaccurate centroid for any concave

light spot, as shown in figure 5.14(a). For a light spot of this shape, the faster algorithm would

only use the shaded region shown in figure 5.14(b) to determine the centroid, resulting in an

inaccurate answer.

CHAPTER 5. IDENTIFICATION AND TRACKING OF LIGHT CENTROIDS 33

Figure 5.14: For the light spot shown in (a), the faster algorithm will only use the shaded region shown
in (b) to determine the centroid.

5.6.2 Conclusion

For the original application of determining the centroids of stars, the region growing algorithm

may be preferred due to its robustness. In this thesis the faster algorithm is used to ensure a

higher sensor bandwidth, especially at close range. The smallest centroid mass in this project

is about 22 pixels (at maximum range) and the largest mass is in the excess of 300 pixels at

close proximity. Therefore the faster algorithm’s bandwidth is more than 2 times faster than

the region growing algorithm, as shown in figure 5.13. It is expected that all light spots will be

convex (either circular or elliptical) so that the faster algorithm will work reliably.

Chapter 6

System Overview

An overview of the system is given in this chapter. From this the necessary hardware for the

emulation can be determined.

6.1 Chaser Overview

Figure 6.1 shows a diagrammatic illustration of the chaser. All the lighter blocks represents

software components, while the darker blocks represents hardware components.

Figure 6.1: Overview of the chaser.

The chaser is emulated using a hovercraft. (From now on the term "chaser" and "hovercraft"

will be used interchangeably.) Three fans (the minimum required) are used to produce ac-

celerations along the chaser’s x- and y-axis and an angular acceleration around the z-axis. It

should be noted that the hovercraft’s movement can be fully described using purely kinematic

equations and all the dynamics in the system are caused by the actuator forces.

A motor driver board is required to control and drive the actuators. As illustrated in figure

6.1, the inner loop acceleration controllers are implemented on this board. The inner loop

controller runs at 50 Hz and sends its accelerometer and gyro data to the Onboard Computer

34

CHAPTER 6. SYSTEM OVERVIEW 35

(OBC) every 100 ms. In so doing, the inner loop controller provides the timebase for the outer

loop controller.

The chaser is also equipped with a single camera unit. After an image is taken, the camera

unit’s microcontroller sends the detected centroids to the OBC for further processing.

The OBC receives the centroids from the camera unit and first removes the radial distortion,

before passing the corrected centroids to the centroid identification and tracking unit. When

the centroids are uniquely identified/matched, as described in chapter 5, the 2D-3D point pairs

are sent to Malan’s EKF. This EKF determines the target’s relative position, orientation, velocity

and angular rates. The system EKF takes the updated state vector of Malan’s EKF (referred to as

the camera measurement) and uses it to update its own states. Between camera measurements,

accelerometer and gyro data is used by the system EKF for propagation. Based on the system

EKF’s states, the guidance system schedules the correct outer loop controller and also provides

the necessary reference signals. Commands from the outer loop controller are then sent to the

inner loop controller. The system EKF’s state vector is also used by the light model to aid the

centroid identification and tracking unit as described in chapter 5.

For reasons given in section 7.6, the GPS part of this thesis was discarded. Therefore it is

shown in dashed lines.

Lastly, a wireless communications link is used to exchange data between the chaser and

target.

6.2 Choice of Operating System for the Chaser’s OBC

A total of 4 operating systems were considered for the chaser’s OBC. Here is a short summary

of them:

• Windows / Linux

Both these operating systems have layered architecture whereby the hardware is encap-

sulated by the operating system. Therefore the user process can only gain indirect access

to the hardware using the interface provided by the operating system. (Windows API

or Linux equivalent) This indirect access is not only tedious but also more complex to

implement.

These operating systems also require much more system resources increasing the overall

system overheads. Then, as these are multitasking operating systems, the user process

shares the CPU with system processes.

Taking the above mentioned into account, it should be clear that real time execution is

not guaranteed. (Supporters of these two operating systems normally assumes that the

hardware is fast enough to ensure real time execution.)

Another point that should be considered is that these operating systems make use of pag-

ing. This is undesired as the Compact Flash used can only be written to a finite amount of

time, so that paging drastically reduces the Compact Flash’s lifespan. One must therefore

ensure that this feature can be disabled.

CHAPTER 6. SYSTEM OVERVIEW 36

• DOS

DOS is a very simple operating system and allows direct access to all hardware. This

operating system has very little overheads as it has been designed to work efficiently

on the original computers with very limited capabilities. Apart from this, the CPU is

dedicated to the user process so that real time execution is easily achieved. Due to its

simplistic nature, this operating system does not make use of paging.

• AMX

AMX is a real time operating system that supports multiple processes. It uses DOS for

bootstrapping and then takes full control of the system. The user is provided with the

operating system’s source code (written in C) and then compiles it along with the user

process’ code. This results in a single executable that contains both the operating system

and user application.

After considering the above, it was decided to use DOS due to its easy hardware access and

efficiency. There was decided against AMX as its advance capabilities are not required.

6.3 Target Overview

Figure 6.2: Overview of the target.

The target is a very simple system as seen from its diagram in figure 6.2. An imitation of a

satellite is placed on a rotating platform. The lights and stepper motor speed (target’s angular

rate) is controlled by a microcontroller. Again the GPS unit is shown in dashed lines as it was

discarded later.

6.4 Selection of the Sample Frequencies for the Inner and Outer

Loop Controllers

It is advised by Franklin [7] that a minimum of 5 sample periods should fit into the rise time

of a step response in order to ensure a relatively smooth response. To make provision for a

minimum closed loop rise time of 100 ms, one requires a maximum sample period of 20 ms.

Therefore the sample frequency for the inner loop, fsi
, is selected as 50 Hz.

For anti-aliasing purposes, the inner loop sensors’ bandwidth should not exceed the Nyquist

frequency of 25 Hz. This implies that the anti-aliasing filters maximum cutoff frequency must

CHAPTER 6. SYSTEM OVERVIEW 37

be less than 25 Hz. As shown in section 7.4, the actuators are modeled as first order low pass

filters. If the closed loop system is also seen as a low pass filter and if provision is made that

it can reach its final value in a minimum of 100 ms, then the maximum frequency in its output

would be less than

fc =
1

2π(20 × 10−3)

= 7.958 Hz

as it is generally assumed that a first order low pass filter reaches its final value in 5 time

constants.

The anti-aliasing filter’s cut off frequency was chosen at 15 Hz to minimise the additional

phase lag to the plant model, while ensuring that the attenuation is about -8.87 dB at 25 Hz to

minimise aliasing.

To choose the outer loop controller’s sample frequency one should consider:

• The camera measurement will be available at an expected rate of about 2 Hz.

• The GPS measurements will be available at 4 Hz.

• To ensure that the inner loop and outer loop controllers does not influence each other, the

outer loop controller should be at least 5 times slower than the inner loop controller.

• A faster sample frequency ensures more accurate propagation.

Taking the above into consideration, the outer loop sample frequency, fso , was chosen as 10 Hz.

6.5 Conclusion

This chapter gave an overview of the system. From this it can be determined what hardware is

required. The hardware is discussed in chapters 7 and 8. Refer to appendix D for photos of the

chaser and the target.

Chapter 7

Hardware Implementation

This chapter discusses the most important hardware as well as the calibration and the modeling

thereof. The camera will be discussed in detail in chapter 8. Refer to appendix D for photos of

the hardware.

7.1 The Onboard Computer (OBC)

The CoreModule 420 of Ampro was selected as it provides the most compatible and cost ef-

fective solution for this application. Running at 133 MHz, this OBC consumes 7.5 Watts at full

load and comes standard with 64 MB of RAM and 4 serial ports. It supports both Compact

Flash and Disk-On-Chip. Compact flash was used in this project as it is much cheaper and

more readily available than Disk-On-Chip. It is also compatible with MSDOS, the operating

system to be used in this application.

Other OBCs that were considered were the PM-GX-466-R10, PM-1041 from Eagle, Diamond

System’s Prometheus, Tri-M’s TMZ104 and Netcom’s ASBC11. The TMZ104 emulates an x86

processor. Apart from the fact that one does not know how efficient this emulation process

is, the TMZ104, like the PM-1041, only uses the expensive Disk-On-Chip. Netcom’s ARM11

based ASBC11 is more aimed at the video processing market while the Prometheus processor

is obsolete. The PM-GX-466-R10 requires Windows or Linux based drivers and will therefore

not be fully compatible with a DOS environment.

7.2 Navigation and Attitude Sensors

The sensors are divided into two groups. Those that are used to update the extended Kalman

filters and those used to propagate the extended Kalman filters.

7.2.1 Sensors used for updating

A brief comparison of the sensors that were considered is given here. Refer to Feshe [6] for an

excellent comparison.

• Radio Frequency (RF) sensors measures the relative position of the target satellite by

measuring the time of flight of a transmitted signal between the chaser and target satellite.

38

CHAPTER 7. HARDWARE IMPLEMENTATION 39

The relative velocity is measured by observing the Doppler shift. The main disadvantage

of RF sensors is that they require large amounts of power as the transmission power is

directly proportional to the forth power of the distance between the chaser and target.

(Given that the target does not have an active transponder.) These sensors are only suited

for medium to long ranges as disturbances due to multipath effects and shadowing (were

the RF signals are obstructed) prevents the use during close proximity manoeuvres.

• Satellite Navigation Systems.Two common satellite navigation systems are America’s

Global Positioning System (GPS) and Russia’s Global Orbiting Navigation Satellite Sys-

tem (GLONASS). In the rest of this discussion there will only be referred to GPS, but the

same holds for GLONASS.

A single GPS receiver can determine its absolute position in an Earth Centred, Earth Fixed

(ECEF) reference frame. This is referred to as absolute satellite navigation.

For satellite docking and formation flying, one is more interested in the relative position

and velocities of the satellites. With 2 GPS receivers, the more accurate relative satellite

navigation is possible. Relative GPS (RGPS) requires that the one GPS receiver’s data be

sent to the other receiver via a communications link. The two GPS receivers’ positions

are then subtracted from one another resulting in a more accurate measurement of the

relative distance between the satellites as common mode noise, such as atmospheric in-

terference, common to both signals are canceled out. (This last statement is true given that

the 2 receivers are within a few tens of kilometres from each other and that the receivers

use the same navigation satellites.) The power consumption of the GPS receivers are very

low, but as RGPS requires a communications link, the maximum distance is limited by

the wireless communication link’s range. (Note that this power requirement is still much

lower than in the case of RF sensors, as the signal only has to be sent from one satellite

to the other, instead of bouncing a signal off the other satellite.) Sadly, RGPS suffers from

the same problems as RF sensors at close proximity. Therefore RGPS is also only suited

for the medium to long range.

Feshe [6] states in his book, that at the time of writing, the accuracies of RGPS were 10 m

for relative position and 0.05 m.s−1 for relative velocities.

Carrier-Differential Phase GPS (CDPGPS) is an improvement on RGPS in terms of accu-

racy. It uses phase information to achieve accuracies of 0.02-0.05 m for relative position

and 0.01 m.s−1 for relative velocities. Apart from that, it has the same requirements and

limitations of RGPS. [8]

• The Scanning Laser Range Finder is an optical sensor and has the same working prin-

ciple as RF sensors, but only uses infra-red light. (In other words, it just uses a different

frequency in the electromagnetic spectrum.) Another difference is that the relative veloc-

ity is determined by differentiating the filtered relative position. Its main advantages is

that it is suitable for the long to short range (1 meter to a few kilometers) and is less sensi-

tive to the sun due to its very narrow beam width. Its biggest disadvantage is that it uses

rotating mirrors. This results in a lower scanning rate (bandwidth) and a less reliable sys-

tem as the bearings can be damaged by launch vibrations. Although it is less susceptible

CHAPTER 7. HARDWARE IMPLEMENTATION 40

to the sun, it is not immune against it. Lastly, this sensor also has an minimum range of

about 1 m.

• Camera. As stated in chapter 1, the camera is considered to be the best overall sensor

in terms of performance, mass and power consumption. It is mostly suited for the short

range and has several advantages, such as:

– The measurement accuracy improves as the relative distance decreases.

– It can be used until capture.

– There are no moving parts and therefore the camera is much more robust against

launch vibrations.

– It has a potentially high bandwidth. This is determined not only by the cameras

frame rate, but also by the processing power and efficiency of the algorithms used.

Being an optical sensor with a large field of view, it has the disadvantage of being suscep-

tible to several noise sources:

– The sun.

– Reflections of the targets surface. These reflections can be caused by either the sun

or by the target satellite’s own lights.

– Other stray light sources.

Of all the noise sources, the sun is the biggest threat. It practically radiates all light fre-

quencies so that sharp filtering does not solve this problem.

GPS has mostly replaced RF sensors in the long and medium range, while camera sensors are

predominately used in the short range. Therefore it was decided to use these two sensors in this

thesis. By using an optical filter the influence of the stray light sources can be eliminated. To

compensate for the sun, the docking manoeuvre must be executed in such a way to minimise

the sun’s influence. If this proves to be insufficient, the docking sequence must be restricted to

the eclipse part of the orbit.

7.2.2 Sensors used for propagating

A dual axis accelerometer and a single axis rate gyro are used as the hovercraft only has 3 de-

grees of freedom. (Translation and rotation within a 2 dimensional plane.) Analog Devices’

ADXL203 accelerometer and ADXRS401 rate gyro were chosen due to their low cost, availabil-

ity and acceptable noise characteristics. Apart from this, these sensors also have a history of

use in the ESL. [1]

7.3 The Accelerometers and Gyros

7.3.1 Calibration of the accelerometers and rate gyro

Calibration is done to ensure that the corrected measurement is used as an accurate represen-

tation of the measured quantity. This correction is required due to the use of non-ideal compo-

CHAPTER 7. HARDWARE IMPLEMENTATION 41

nents. For example: The accelerometer’s gain differs from the value specified in the datasheet,

the low pass filter’s passband gain is not exactly unity and the reference voltage may not be

exactly 5 V.

7.3.1.1 Accelerometers

The accelerometers are calibrated using the model of Bijker [1]:

[

ẍAD

ÿAD

]

= Gacc

([

c11 c12

c21 c22

] [

ẍm

ÿm

]

+

[

D1

D2

])

(7.3.1)

where Gacc is the theoretical gain from the accelerometer to ADC output, C the cross coupling

matrix and D the bias vector. The accelerations measured are ẍm and ÿm, and the output of the

ADCs are ẍAD and ÿAD. As the two accelerometers are manufactured in the same package with

an alignment error of less than 0.1°, it is assumed that there is no cross coupling between them.

(c12 = c21 = 0) Also, define:

c11 =
1

Kx

c22 =
1

Ky

so that Kx and Ky are the calibration constants with which a measurement must be multiplied

in order to correct it.

Now calibration is done using the method from Groenewald [9], where the gravitational ac-

celeration is assumed to be g = 9.81 m.s−2. The following is done for each accelerometer axis:

1. The accelerometer is turned so that the measured acceleration is a maximum. (In other

words +1g) This measurement is averaged over 1 minute and then recorded.

2. Then the accelerometer is turned so that the measured acceleration is a minimum. (In

other words -1g) This measurement is also averaged over 1 minute and then recorded.

It is assumed that the bias remains constant over the time interval of the experiment for each

axis. Next, the difference between the maximum and minimum values of each axis is calculated

in order to remove the bias. For the x-axis, for example:

∆ẍAD = ẍ+
AD − ẍ−AD

= Gacc

(

g

Kx
+ D1

)

− Gacc

(

−g

Kx
+ D1

)

= Gacc

(

2g

Kx

)

CHAPTER 7. HARDWARE IMPLEMENTATION 42

From this can be seen that:

Kx = Gacc

(

2g

∆ẍAD

)

(7.3.2)

Ky = Gacc

(

2g

∆ÿAD

)

(7.3.3)

The constant, Gacc, can be calculated from the data sheets to be:

Gacc =
212

5g

Three tests were done and the results were average in order to obtain ∆ẍAD and ∆ÿAD. The

results are summarised in table 7.1.

Test ẍ+
AD ẍ−AD ∆ẍAD

1 2888.9 1259.3 1629.6

2 2889.0 1256.1 1632.9

3 2888.6 1259.2 1629.4

Average 1630.63

Test ÿ+
AD ÿ−AD ∆ÿAD

1 2873.6 1232.5 1641.1

2 2872.9 1232.9 1640.0

3 2872.4 1232.8 1639.6

Average 1640.23

Table 7.1: The results from the calibration experiments.

From the table, the average for ∆ẍAD is 1630.63 and the average for ∆ÿAD is 1640.23. Using

equations 7.3.2 and 7.3.3 gives Kx and Ky to be 1.0048 and 0.9989, respectively.

7.3.1.2 Gyros

The angular rate gyro is mounted on the same board as the accelerometers. It is assumed that

this gyro’s axis is perpendicular to the accelerometers’ axes and the gyro is then calibrated as

such. Therefore, the gyro’s calibration constant will include the effect of a non perpendicular

axis (if it is the case) and automatically compensate for it.

There are 2 common methods to calibrate a rate gyro. The first is to use a rate table to apply

a known angular rate and compare this known angular rate with the measured value.

The second method is to integrate the gyro’s output while the gyro is turned through a

known angle. Calibration is then done by comparing the measured (calculated) angle with the

know angle.

As, at the time of calibration, access to a rate table was not possible, the second method was

used using the same principle as used to calibrate the accelerometers.

Similar to the model used for the accelerometers, the model for the gyro calibration is:

θ̇AD = Ggyro

(

θ̇m

Kθ
+ D3

)

CHAPTER 7. HARDWARE IMPLEMENTATION 43

Where θ̇AD is the output of the ADC, θ̇m is the angular rate being measured, Kθ is the gyro’s

calibration constant and D3 is the gyro’s bias. Note that θ̇m is in degrees per second. Again

from the datasheets:

Ggyro =

(

212

5

) (

15

1000

)

A jig was made on which the gyro and accelerometer board was mounted. This jig allows the

gyro to be turned through a known angle of 90°. The calibration process1 is done as follows:

1. First measure the gyro’s output while the gyro is stationary. This measurement is aver-

aged over 1 minute to give the bias as θ̇m = 0. It is assumed that the bias remains constant

over the time interval of this experiment.

2. Now, measure and record the gyro’s output while the gyro is repeatedly turned from 0°

to 90° and back over a 30 second interval.

Then the result, of subtracting the measured bias from the measured angular rate, is integrated:

θAD =
∫

(

θ̇AD − GgyroD3

)

dt

=
∫

(

Ggyro

(

θ̇m

Kθ
+ D3

)

− GgyroD3

)

dt

=

(

Ggyro

Kθ

)

∫

(

θ̇m

)

dt

Dividing this equation by Ggyro gives the angle in degrees:

θ =

(

1

Kθ

)

∫

(

θ̇m

)

dt

= 90◦ (7.3.4)

Figure 7.1 shows a typical result of this integration process. Next, the average range of θ is

determined by:

∆θ =
1

N

N

∑
n=1

(θmaxn − θminn)

Where N is the number of maxima-minima pairs. (Figure 7.1 has three pairs shown as stars.)

The average range of θ is given by ∆θ, and the maximum and minimum values are given by

θmaxn and θminn
, respectively. Using the average range, ∆θ, and equation 7.3.4, the value of Kθ

can be calculated by:

Kθ =
90

∆θ
(7.3.5)

This test was done 3 times and the average of these test results was used to calculate Kθ . For

brevity, only the results of the 3rd test, that corresponds with figure 7.1, is displayed in table

7.2.
1A sampling frequency of 50 Hz was used.

CHAPTER 7. HARDWARE IMPLEMENTATION 44

Figure 7.1: The result of the integration process.

Pair (n) θmaxn [°] θminn
[°] θmaxn − θminn

[°]

1 0.0996 -95.2500 95.3496

2 0.3766 -94.9800 95.2666

3 0.3086 -94.8000 95.1086

Average 95.24

Table 7.2: Results of the 3rd gyro calibration test.

The average range of θ over the 3 test is 95.10°. Therefore from eqation 7.3.5:

Kθ =
90

∆θ

= 0.9464

7.3.2 Modeling of the accelerometers’ and rate gyro’s noise

Any practical sensor’s output is the superposition of the actual value and a random noise

component. The purpose of this section is to model the random component of the sensor’s

output.

In his thesis, Hou [12] relates the Allan variance method of data analysis (originally used

for the study of oscillator stability) to 7 noise sources, where the random component is the

superposition of these noise sources. The advantage of this approach is that it allows finer,

simpler characterisation of the error sources and their contribution to the overall noise. Of

these 7 noise sources, this thesis only uses 2, as their influence is dominant. [1] These noise

sources are:

• Angle (velocity) random walk. Angle (velocity) random walk is the measurement noise

CHAPTER 7. HARDWARE IMPLEMENTATION 45

on the output of the sensor that causes a random walk in the angle (velocity) after the

output of the sensor is integrated over time.

• Rate random walk. Rate random walk is the instability of the output of the sensor. The

integral of this noise source causes the bias of the sensor to drift.

To visualise this refer to figures 7.5 and 7.6. The output of the sensors was recorded for about

30 minutes and then processed using the Allan variance method. This method has been thor-

oughly described by Bijker [1], Herselman [11] and Hou [12].

7.3.2.1 Accelerometers

Figures 7.2 and 7.3 shows the Allan deviation plotted against the interval time for each ac-

celerometer. The value of the velocity random walk spectral density coefficient, Q, and the

Figure 7.2: The Allan deviation for the x-axis accelerometer.

Figure 7.3: The Allan deviation for the y-axis accelerometer.

CHAPTER 7. HARDWARE IMPLEMENTATION 46

rate random walk spectral density coefficient, K, can be obtained directly from the graph. The

value of Q can be obtained where the line with the negative slope crosses T = 1 and the value

of K can be obtained where the line with the positive slope crosses T = 3. These values are

presented in table 7.3. From these values, the noise’s power spectral densities or, equivalently,

the covariances can be determined. Equation 7.3.6 gives the relationship between Q and the

covariance of the velocity random walk noise component. [1]

σ2
VRW = 2

∫ f2

f1

Q2(f) df (7.3.6)

The covariance for the rate random walk, σ2
RRW , is also given by equation 7.3.6, except that Q is

substituted by K. Table 7.4 shows the resulting standard deviations.

Accelerometer Q [m.s−2.Hz−1/2] K [m.s−3.Hz−1/2]

X-axis 9.3325 ×10−4 8.6808×10−5

Y-axis 9.3325 ×10−4 1.2262×10−4

Table 7.3: Noise parameters of the accelerometers.

Accelerometer σVRW [m.s−2] σRRW [m.s−3]

X-axis 5.11 ×10−3 125.311×10−6

Y-axis 5.11 ×10−3 173.411×10−6

Table 7.4: The standard deviations of the accelerometers’ noise components.

From table 7.4 it can be seen that the accelerometers have very good noise characteristics. But

these are the noise covariances when the accelerometers are stationary. Unfortunately, the

hovercraft fans, especially the lift fan, creates fairly intense mechanical vibrations and the ac-

celerometers are very susceptible to these mechanical vibrations. Even after the accelerometers

have been soft mounted and their outputs filtered by analog and digital filters, the noise in the

accelerometers outputs has a standard deviation of about 0.06 m.s−2.

7.3.2.2 Gyros

Exactly the same procedure is followed for the rate gyro. The only difference is that Q is now

called the angle random walk spectral density coefficient and the corresponding covariance is

σ2
ARW . (The relationship between Q and σ2

ARW , and K and σ2
RRW is also given by equation 7.3.6.)

Figure 7.4 shows the Allan deviation plotted against the interval time for the gyro and tables

7.5 and 7.6 summarises the results.

The gyro has very good noise characteristics, as can be seen from table 7.6. Fortunately

these noise characteristics remain mostly unaffected by the mechanical vibrations.

CHAPTER 7. HARDWARE IMPLEMENTATION 47

Figure 7.4: The Allan deviation for the z-axis rate gyro.

Gyro Q [rad.s−2.Hz−1/2] K [rad.s−3.Hz−1/2]

Z-axis 6.4565 ×10−4 1.0929×10−4

Table 7.5: Noise parameters of the gyros.

Gyro σARW [rad.s−2] σRRW [rad.s−3]

Z-axis 3.536 ×10−3 154.559×10−6

Table 7.6: The standard deviations of the gyro’s noise components.

7.3.2.3 Conclusion

The noise variances obtained in this section can now be used to design the inner loop estimators

in chapter 10.

7.3.3 Full accelerometer and gyro models

By combining the results from sections 7.3.1 and 7.3.2, the full models of the accelerometers

and gyro is obtained. Figures 7.5 and 7.6 shows an implementation of these models.

7.3.4 Comparing the Allan variance results with the values from the data sheets

The variances σARW and σVRW , obtained using the Allan variance method, can also be calcu-

lated from the data sheets. This section gives a quick comparison of the values obtained using

this approach.

From the gyro’s data sheets, it is estimated that its noise density is 0.94868 ×10−6 V.Hz−1/2

rms, so the the noise standard deviation is:

σARW =
√

(0.94868 × 10−6)2(15)

= 3.674 × 10−3 V

CHAPTER 7. HARDWARE IMPLEMENTATION 48

Figure 7.5: Full accelerometer model. (X-axis accelerometer shown.)

This standard deviation’s unit must be converted to rad.s−1 in order to compare it:

σARW =
(

3.674 × 10−3
)

(

1000

15

)

(π

180

)

= 4.275 × 10−3 rad.s−1

The accelerometer’s noise density is given as 110 µg.Hz−1/2, so that:

σVRW =
√

(110 × 10−6)2(15)

= 426.0 × 10−6 V

Again, in order to compare this standard deviation to the Allan variance method’s result, its

unit has to be changed to m.s−2:

σVRW =
(

426.0 × 10−6
)

(9.81)

= 4.179 × 10−3 m.s−2

Table 7.7 lists the results obtained using the Allan variance method and the results from the

data sheets. It can be seen that the two methods gives similar results.

CHAPTER 7. HARDWARE IMPLEMENTATION 49

Figure 7.6: Full gyro model. (Note: The input angular rate is in rad.s−1)

Gyro Accelerometer

Method σARW [rad.s−1] σVRW [m.s−2]

Allan Variance 3.536 × 10−3 5.11 × 10−3

Data sheets 4.275 × 10−3 4.179 × 10−3

Table 7.7: Comparing the results from the two different methods.

7.3.5 Aligning the accelerometer and gyro board’s axis with the chaser’s axis

After the accelerometer and gyro board was mounted on the hovercraft, the orientation of these

sensors’ axis in the chaser’s body axis had to be determined. The sensor board’s axis system

is show in figure 7.7. Considering figure 7.7, one expects the sensor board’s orientation in the

Figure 7.7: The sensor board.

CHAPTER 7. HARDWARE IMPLEMENTATION 50

chaser’s body axis to be described by a rotation of 180°around the x-axis. (Note that for the axis

system to be a right handed system as shown, the gyro output’s sign has to be inverted. This is

done in software.) This orientation was determined by using the accelerometers.

Again, consider equation 7.3.1:

[

ẍAD

ÿAD

]

= Gacc

([

c11 c12

c21 c22

] [

ẍm

ÿm

]

+

[

D1

D2

])

(7.3.7)

But now the reference acceleration will be specified in the chaser’s body axis and has to be

transformed to the sensor board’s axis using a DCM, TCHR→SB. Due to the absence of a z-axis

accelerometer, the last row of the DCM matrix can not be used. So if

TCHR→SB =







t1

t2

t3







let the partial DCM, Tp be defined as

Tp =

[

t1

t2

]

so that

[

ẍm

ÿm

]

= Tp ẍ CHR
re f (7.3.8)

Where ẍ CHR
re f is the reference acceleration in the chaser’s body axis. To simplify notation, ẍ CHR

re f

will be referred to as ẍre f in the rest of this section. The gravity vector was used as reference.

Each of the chaser’s body axis (+X,-X,+Y,-Y,+Z,-Z) was aligned with the gravity vector. This

was done using a weight on a string. When the string hangs still, it gives the direction of the

gravity vector. The hovercraft was then rotated to align each of the six axis with the gravity

vector. For each axis, both accelerometers’ measurements were averaged over 1 minute and

recorded.

Each positive and negative axis pair were done consecutively so that it can be assumed that

the biases remain constant over the time interval of the experiment of a positive-negative axis

pair.

Here follows the measurements obtained. (Note that the superscript ’+’ and ’-’ indicates

that the gravity vector was aligned with a positive and negative chaser body axis, respectively.)

CHAPTER 7. HARDWARE IMPLEMENTATION 51

For the X-axis:

ẍ+
re f1

=
[

9.81, 0, 0
]T

ẍ−re f1
=

[

−9.81, 0, 0
]T

ẍ+
AD1

=
[

2887.19, 2047.76
]T

ẍ−AD1
=

[

1255.33, 2059.38
]T

For the Y-axis:

ẍ+
re f2

=
[

0, 9.81, 0
]T

ẍ−re f2
=

[

0, −9.81, 0
]T

ẍ+
AD2

=
[

2047.92, 1232.77
]T

ẍ−AD2
=

[

2062.29, 2873.13
]T

For the Z-axis:

ẍ+
re f3

=
[

0, 0, 9.81
]T

ẍ−re f3
=

[

0, 0, −9.81
]T

ẍ+
AD3

=
[

2080.22, 2077.24
]T

ẍ−AD3
=

[

2060.6, 2034.89
]T

Now the positive and negative axis’ measurements are subtracted from each other to remove

the biases. Define:

∆ẍre fi
= ẍ+

re fi
− ẍ−re fi

∆ẍADi
= ẍ+

ADi
− ẍ−ADi

Where i = 1, 2 and 3. Then all the measurements are packed in matrices:

∆Ẍre f =
[

∆ẍre f1
∆ẍre f2

∆ẍre f3

]

(7.3.9)

∆ẌAD =
[

∆ẍAD2
∆ẍAD2

∆ẍAD3

]

(7.3.10)

Combining equations 7.3.7, 7.3.8, 7.3.9 and 7.3.10:

∆ẌAD = GaccCTp∆Ẍre f

CHAPTER 7. HARDWARE IMPLEMENTATION 52

Everything is known except for Tp so that Tp can be solved in a least squares sense:

Tp =

[

1.0007 −0.0088 0.0120

−0.0071 −1.0001 0.0258

]

From this the Euler angles (using the Euler 3-2-1 convention) can be determined:

ψ = arctan

(

T12

T11

)

= −0.50453◦

θ = arcsin (−T13)

= −0.68936◦

φ = arcsin

(

T23

cos(θ)

)

= −178.0825◦

Where Tij is the element in the i th row and j th column of matrix Tp. The above mentioned

results means that the sensor boards axis orientation in the chasers body axis is described by a

rotation around the x-axis of -178.0825°, follow by a rotation around the y-axis of -0.68936°and

lastly a rotation of -0.50453°around the z-axis. This compares well to what was expected at the

beginning of this section.

These angles can be used to reconstruct the whole DCM. After the matrix was made or-

thonormal, the result is:

TCHR→SB =







0.9991 −0.0088 0.0120

−0.0071 −0.9987 0.0258

0.0123 0.0333 −0.9998







7.4 Actuators

Three fans are used as actuators in order to produce simultaneous translation along both the

hovercraft’s x- and y-axis as well as a rotation around the z-axis. These fans are controlled by

the motor driver board. (Refer to section 7.5)

There is also a fourth fan that is used to pressurise the hovercraft’s air cushion. The origi-

nal DC motor could not take the strain caused by the additional weight of all the hardware. It

was therefore replaced by a brushless DC motor, a Park 180 Outrunner, used in remote con-

trolled models. This motor requires a special Electronic Speed Control (ESC) unit that receives

its reference from a RF receiver. A small, 8-pin PIC12F675 is used to mimic this receiver. In an

attempt to mitigate the mechanical vibrations cause by the imperfect prop, an additional ball

bearing was inserted to support the lift fan’s prop. The rest of the discussion on the actuators

does not refer to this lift fan.

CHAPTER 7. HARDWARE IMPLEMENTATION 53

7.4.1 Modeling of the actuators

Each actuator is described by the fairly simplistic model shown in figure 7.8. The non-linear

transfer function block is the curve that relates the PWM modulation module’s reference value,

nduty, to the output force, F, produced by the fan. Note that the PWM module is configured in

such a way that a duty cycle of 0-100% is represented by a value of 0-1000. A fist order low pass

filter is used to model the fan’s dynamics. Due to the systems low bandwidth, only the slow

mechanical time constant is taken into consideration. (The much faster electrical time constant

is ignored.) Although the non-linear transfer function should include saturation, it is enforced

by the saturation block.

Figure 7.8: Motor model.

7.4.2 Calibration of the actuators

In this section, calibration implies the determination of the non-linear transfer curve that relates

the duty cycle value, nduty, to the fan’s output force, F, as well as the motor’s mechanical time

constant, τ. During the calibration process the same motor driver board, that is used in the

hovercraft, is used. Therefore, the transfer curve also includes all the effects of the motor driver.

The two fans whose output force vectors are parallel to the hovercraft’s x-axis, are identical

(same motor and prop) and will be collectively referred to as "Fan Type 1". The third fan whose

output force vector runs parallel to the hovercraft’s y-axis is referred to as "Fan Type 2".

Figure 7.9: Actuator calibration setup.

CHAPTER 7. HARDWARE IMPLEMENTATION 54

Figure 7.9 shows the setup used to calibrate the fans. The following procedure is then followed

to calibrate each fan type. Each fan is attached to one side of a rod. The other side of the rod is

fitted in a base plate. This whole setup is then place on a sensitive scale and weights are placed

on the base plate to steady the setup. A very long rod of 1 m was used to ensure that airflow

created by the fan does not influence the scale measurements.

The initial scale measurement is then recorded with the fan switched off (nduty = 0). There-

after, the duty cycle is systematically increased, in both the forward and reverse direction, while

at each step the new scale reading is recorded.

For convenience, define that a positive duty cycle value causes a downward force vector

(increasing the scale measurement) and that a negative duty cycle value causes an upward force

vector (decreasing the scale measurement). Also let the downward force vector be represented

by a positive force value as shown in figure 7.10.

Figure 7.10: Direction of positive force value.

After this process, the changes in the scale measurements are calculated and converted to New-

tons. Then a Least Squares approach is used to fit a piecewise defined function through the em-

pirical data. The resulting transfer graphs (solid line) for each fan type along with the empirical

values (circles) are shown in figures 7.11 and 7.12.

Figure 7.11: Fan type 1 transfer curve.

Equation 7.4.1 describes the transfer curve of the type 1 fan and equation 7.4.2 gives the transfer

curve of the type 2 fan.

CHAPTER 7. HARDWARE IMPLEMENTATION 55

Figure 7.12: Fan type 2 transfer curve.

F1(nduty1
) =

{

(−5.051 × 10−7)(nduty1
)2 − 0.0003711(nduty1

) − 0.06705 ,−1000 < nduty1
< −414

0 ,−414 < nduty1
< 504

(1.425 × 10−6)(nduty1
)2 − 0.0003496(nduty1

) − 0.1858 , 504 < nduty1
< 1000

(7.4.1)

F2(nduty2
) =

{

(−1.28 × 10−6)(nduty2
)2 − 0.001236(nduty2

) − 0.33 ,−1000 < nduty2
< −500

0 ,−500 < nduty2
< 460

(1.286 × 10−6)(nduty2
)2 − 0.0006468(nduty2

) − 0.0262 , 460 < nduty2
< 1000

(7.4.2)

All that remains now is to estimate each motor’s mechanical time constant. This is done by

applying a 6 V step to the fan while measuring the motor’s current by means of a low resis-

tance series resistor. The current decays exponentially from a maximum value to a lower final

value as the fan reaches its final speed and output force. From this graph the mechanical time

constant can be estimated.

The measured fan currents for each fan type is shown by the light gray line in figure 7.13

(a) and (b) for fan type 1 and fan type 2, respectively.

Figure 7.13: The fan currents. (a) Fan 1’s current. (b) Fan 2’s current.

CHAPTER 7. HARDWARE IMPLEMENTATION 56

To determine the time constant, the measured current was first filtered and then the following

equation was fitted through the filtered data:

i = ce−t/τ + k (7.4.3)

where i is the measured current, k is the fan current’s final value, τ is the mechanical time con-

stant and c is a scaling factor.

Equation 7.4.3 can be rewritten as:

ln(i − k) = ln(c) −
t

τ

Letting ĉ = ln(c) and τ̂ = 1/τ, then

[ln(i − k)] = [1 − t]

[

ĉ

τ̂

]

(7.4.4)

Now, two points from the filtered data are substituted into equation 7.4.4. If the two points are

given by (t1, i1) and (t2, i2), then:

[

ln(i1 − k)

ln(i2 − k)

]

=

[

1 −t1

1 −t2

] [

ĉ

τ̂

]

(7.4.5)

Using least squares ĉ and τ̂ can be estimated, and from this c and τ can be determined.

From fan 1’s graph, the final value, k, can be estimated as 1.24 A. Using the two points (0.114,

2.593) and (0.328, 1.338) in equation 7.4.5 results in:

[

0.3023

−2.3228

]

=

[

1 −0.1140

1 −0.3280

] [

ĉ

τ̂

]

(7.4.6)

Solving equation 7.4.6, gives ĉ = 1.7007 and τ̂ = 12.2669 and from this that c f an1 = 5.478 A and

τf an1 = 0.0815 s. This estimated curve is plotted as the thick black line in figure 7.13 (a).

Similarly, from fan 2’s graph, the final value, k, can be estimated as 1.34 A. Using the two

points (0.2, 2.808) and (0.478, 1.444) in equation 7.4.5 results in:

[

0.3839

−2.2634

]

=

[

1 −0.2000

1 −0.4780

] [

ĉ

τ̂

]

(7.4.7)

Solving equation 7.4.7, gives ĉ = 2.2884 and τ̂ = 9.5225 and from this that c f an2 = 9.8592 A and

τf an2 = 0.1050 s. This estimated curve is plotted as the thick black line in figure 7.13 (b).

By using the model in figure 7.8 and the results from this subsection, the fans can be mod-

eled and simulated. This in turn is used to design the inner loop controller as discussed in

chapter 10.

CHAPTER 7. HARDWARE IMPLEMENTATION 57

7.4.3 Linearising the actuators

From figures 7.11 and 7.12 can be seen that the actuators are non-linear. This nonlinearity can

be compensated for by using the inverse of these transfer curves. To determine these inverse

curves, nduty is plotted against F and a Least Squares approach is used again to fit a piecewise

defined function through this graph. The inverse functions for fan type 1 and fan type 2 is

given by equation 7.4.8 and equation 7.4.9, respectively.

nduty1(F1) =

{

−276(F1)2 + 771.4(F1) + 512.3 , F1 > 0

0 , F1 = 0

−10300(F1)2 − 4664(F1) + 459.6 , F1 < 0

(7.4.8)

nduty2(F2) =

{

−560.2(F2)2 + 1118(F2) + 491.8 , F2 > 0

0 , F2 = 0

−3271(F2)2 − 2579(F2) + 470.2 , F2 < 0

(7.4.9)

Now, the control force commanded by the inner loop controller can be converted to the correct

duty cycle value using the inverse curve and in doing so the non-linear fan is linearised, as

illustrated in figure 7.14, given that the control force does not exceed the actuators limits.

Figure 7.14: Linearising the actuator. (a) The non-linear fan with the inverse transfer curve. (b) The
linearised fan model.

7.5 Motor Driver Board

Apart from the motor driver circuitry, the motor driver board also houses the inner loop con-

troller and sends angular rate and acceleration data from the sensors back to the OBC.

The boards main features include:

• Two LT298 double H-bridge modules allowing a total of 4 fans to be controlled.

• A dsPIC30F5011 microcontroller that scans the sensor outputs, implements the inner loop

controller and outputs the PWM control signals to the H-bridge modules.

CHAPTER 7. HARDWARE IMPLEMENTATION 58

• A RS232 communications interface.

• A sensor board equiped with a single axis gyro and dual axis accelerometer.

To prevent aliasing, second order butterworth low pass filters with a cut-off frequency of 15 Hz

are used. All the filters have unity gain as no additional sensitivity is achieved by a higher gain.

(From section 7.3.2, the accelerometers’ and gyro’s noise standard deviations are 520.897×10−6

V and 3.038×10−3 V, respectively, which amounts to 0.427 and 2.489 ADC units2. Due to vibra-

tions the accelerometer’s standard deviation increases to 0.06 m.s−2 or 5.01 ADC units.) The

sensor board is mounted on an aluminium plate to increase the overall mass and moment of

inertia and, by so doing, increases the vibration damping. Refer to appendix G for a more

elaborate explanation.

7.6 Testing of the RGPS and Results

7.6.1 Experiment

An experiment was done to determine the accuracy of RGPS using two of uBlox’s RCB-4H

GPS receivers. The two receivers were placed 2 m apart and each receiver’s Dynamic Platform

Model was chosen that best describes the behaviour of the platform the GPS receiver will be

placed on. As the target will only rotate and not translate, its GPS receiver uses the Stationary

Dynamic Platform module. (This model forces the velocities to zero and low pass filters the

receiver’s position.) It was decided that the Pedestrian Dynamic Platform Model best describes

the chaser’s behaviour as the hovercraft will have slower accelerations, but in any direction.

Both GPS receivers’ data was then recorded over a period of about 45 minutes.

7.6.2 Results

Figure 7.15 shows the relative distance between the receivers along the North- and East-axis.

From this figure it is clear that this measurement drifts considerably. The relative distance

between the 2 GPS receivers are shown in figure 7.16. The mean distance between the 2 GPS

receivers is 1.5102 m and the standard deviation is 1.8678 m.

Another, indirect approach would be to integrate the velocities of the chaser to obtain the

change in the relative position. For this experiment the integral of the velocities along the

North- and East-axis should be zero. The result of integrating the velocities is shown in figures

7.17 and 7.18.

7.6.3 Conclusion

From the results in section 7.6.2 it is clear that the relative distance obtained directly from the

GPS receivers is very inaccurate. It was hoped that an accuracy of about 1 meter or less would

be obtained. The main reason that this simplistic RGPS configuration does not work is that

it is not possible to force the receivers to use the same navigation satellites so that the same

disturbances influence both receivers.

2The 30F5011 has 12-bit ADCs and uses a 5 V analog reference.

CHAPTER 7. HARDWARE IMPLEMENTATION 59

Figure 7.15: Drift of the relative distance between the GPS receivers along the North- and East-axis.

Figure 7.16: Drift of the relative distance between the GPS receivers.

Considering that the test area for the docking sequence would be in the order of 5 by 5 me-

ters (the starting distance between the target and chaser being 2.5 meters) and that the docking

sequence is expected to last 2 to 10 minutes, this direct approach will not work for emulation

purposes. (If these accuracies were to be obtained in space, it would be more than acceptable

for a space application.)

The indirect approach, integrating the velocities, is much more accurate with the error in

the relative position remaining within a circle with a radius of 0.55 meters. Apart from the fact

CHAPTER 7. HARDWARE IMPLEMENTATION 60

Figure 7.17: The integral of the velocity along the North-axis.

Figure 7.18: The integral of the velocity along the East-axis.

that one does not know how reliable this approach is, the approach does not illustrate RGPS at

all. One could just as well only use a single GPS receiver.

Taking all of the above mentioned into account, it was decided to discard the RGPS portion

of this thesis.

Chapter 8

The Camera Sensor

As the camera is the most important sensor in this thesis, this whole chapter is dedicated to it.

The camera will be relied on for accuracy and therefore much effort has been done to ensure

that the camera sensor performs well.

8.1 Description of the Camera Module and Camera Axis

Figure 8.1: The camera unit.

A gray scale camera unit developed originally in the ESL is used in this thesis. The camera

unit has an 8051-based micro controller onboard and uses Kodac’s KAC-9638 CMOS image

sensor. Although the sensor has a maximum resolution of 1288 × 1032 pixels, only a 1024 ×

1024 window is used. A 4 mm CCTV lens is used resulting in a horizontal and vertical field

of view (FOV) of 75°. This wide angle lens is used so that a large part of the target satellite

remains in view even when the satellite is in very close proximity of the camera.

Figure 8.2 shows a simplified view of the camera lens and sensor unit’s construction. Notice

that the lens’ theoretical focal point is 8.66 mm behind the lens seat’s outer facet. There will be

referred to this distance during the camera calibration in section 8.4.

A photo of the sensor is show in figure 8.3 (a) along with a picture of the sensor coordinate

system in figure 8.3 (b). The sensor coordinate system’s origin coincides with pixel (0,0) and

the x-axis runs parallel to the pixel rows of the sensor, while the y-axis runs parallel to the pixel

columns of the sensor. Then, the camera coordinate system (xCAM, yCAM, zCAM) is defined as

61

CHAPTER 8. THE CAMERA SENSOR 62

Figure 8.2: Simplified view of the sensor and lens unit’s construction.

Figure 8.3: (a) The sensor. (b) Sensor axis.

shown in figure 8.4: The z-axis coincides with the optical axis and the x-axis runs parallel to the

sensor’s x-axis. The y-axis runs parallel to the sensor’s y-axis and completes the right handed

camera coordinate system. (The sensor is mounted inside the sensor unit in such a way that

the sensor’s axes, and therefore also the camera’s axes, runs parallel to the sides of the unit.)

Lastly, the camera axis’ origin coincides with the theoretical focal point, as shown in figure 8.2.

Figure 8.4: (a) The camera sensor unit. (b) The camera axis.

CHAPTER 8. THE CAMERA SENSOR 63

8.2 Camera Clamp

The camera clamp, shown in figure 8.5, was designed to accommodate lenses with an outer

diameter of 25-40 mm so that it could be used with a variety of lenses.

Figure 8.5: The camera clamp.

Two thin pipes are mounted on the clamp to aid the alignment process. Pipe AA’ is directly

below the centre of the clamp and runs parallel to the inserted lens’ ideal optical axis, and pipe

BB’ runs through the middle of the clamp. The clamp can then be mounted directly on a normal

camera tripod.

8.3 Lens Distortion

Most inexpensive camera lenses suffer from clearly visible distortion. Although the total dis-

tortion is the result of several distortion sources, the total distortion is dominated by radial

distortion [22] [24] [28]. The effect radial distortion has on the geometry of images is cate-

gorised as being either "barrel distortion" or "pincushion distortion" as illustrated in figure 8.6.

Wide-angle lenses are more prone to suffer from barrel distortion, while telephoto lenses are

more susceptible to pincushion distortion [24].

8.3.1 Modeling radial distortion

Radial distortion is an inherent property of lenses and has to be compensated for either op-

tically or mathematically [24]. Optical compensation methods results in a more complex lens

system that in turn implies a more expensive lens. Different approaches are used to remove

the distortion mathematically. Farid et al. [5] is able to remove radial distortion, without any

knowledge of the camera’s parameters, by exploiting frequency domain characteristics of ra-

dial distortion. The disadvantage of their method is that it requires the Fourier transform of

CHAPTER 8. THE CAMERA SENSOR 64

Figure 8.6: Radial Distortion. The dashed line represents the rectangular object as it would appear in
the absence of radial distortion and solid line shows the object shape in the presence of (a) barrel and
(b) pincushion distortion. Figure taken from [24].

each image, which is computationally expensive. The most common method to compensate

for the radial distortion, using the mathematical approach, is to model the distortion. There are

several models of which the Polynomial Model is the most popular. This model is defined as

follows:

[

xu

yu

]

=

[

xCOD

yCOD

]

+

[

xd − xCOD

yd − yCOD

]

L(rd, k)

Where the distorted radius

rd =
√

(xd − xCOD)2 + (yd − yCOD)2

and the lens mapping function

L(rd, k) = 1 + k1r2
d + k2r4

d + · · · + kpr2n
d

This model transforms the distorted point (xd, yd) to the undistorted point (xu, yu). The dis-

torted radius is defined as the distance from the centre of distortion (xCOD, yCOD) to the dis-

torted point (xd, yd). Although the lens mapping function L(rd, k) is defined as an infinite

power series, Pers [24] states that he and most other authors concluded that for practical pur-

poses a second (n=1) or forth (n=2) order polynomial is sufficient. It is also common practice to

assume that the centre of distortion coincides with the principle point (u0, v0), resulting in the

distortion model used in this thesis:

[

xu

yu

]

=

[

u0

v0

]

+

[

xd − u0

yd − v0

]

(1 + k1r2
d + k2r4

d) (8.3.1)

With the distorted radius:

rd =
√

(xd − u0)2 + (yd − v0)2 (8.3.2)

CHAPTER 8. THE CAMERA SENSOR 65

8.4 Camera Calibration

Camera calibration is the process through which the camera’s intrinsic parameters (f , u0, v0)

and distortion model parameters (k1, k2) are determined. Remondino et al. [26] gives a good

comparison of the different methods used to calibrate a camera. The most common methods

are those of Tsai [28] and Zhang [30]. Other interesting methods includes the one of Cucchiara

et al. [3] where the Hough transform is used to estimate the distortion parameters.

Both Tsai and Zhang’s methods were investigated. Tsai’s method is aimed at calibrating

cameras used for extremely accurate measurements. His method is used for analog cameras

and is very complex as he even compensates for uncertainties in the pixel dimensions that arise

due to timing errors in the image acquisition hardware. The method proposed by Zhang also

has some elaborate equations as he assumes no prior knowledge of the camera. (It is designed

to be used by an average person with no knowledge of computer vision.)

Although both these methods are well suited for their individual applications, both are

somewhat excessive for the purpose of this thesis. It was therefore decided to use a customised

method based on the one of Zhang. The main differences are:

1. The custom method utilises prior knowledge of the camera in the initial estimate of the

camera parameters. For example, the lens data sheets specify that the focal length is 4

mm with a tolerance of 5%.

2. In the custom method, the translation and rotation of the calibration object with respect

to the camera axis will be measured.

3. Zhang’s method requires at least three photos of the test object, each at a different ori-

entation, as his method also estimates the translation and rotation of the test object with

respect to the camera axis. As the translation and rotations are measured in the custom

method, one photo of the test object is sufficient.

8.4.1 Summary of the calibration procedure

The customised calibration procedure consists of the following steps:

1. Create the planar test pattern. (Note that the terms "test pattern" , "test grid" and "test

object" are used interchangeably.)

2. Mount the camera orthogonally in the camera clamp.

3. Place the camera in front of the test pattern so that the test pattern fills the whole image.

4. Rotate the camera clamp so that the camera’s optical axis is perpendicular to the test

image.

5. Measure the translation and rotation of the test pattern in the camera axis.

6. Take a full resolution picture.

7. Extract the centroids in the image.

8. Use a non-linear minimisation procedure to determine the camera’s parameters.

CHAPTER 8. THE CAMERA SENSOR 66

8.5 The Calibration Procedure in Detail

A more elaborate explanation of the camera calibration procedure will be given in this section

by showing how the camera used in this thesis was calibrated.

Step 1: A test grid of 11 by 11 points, spaced 100 mm apart, was drawn on a wooden board.

The test pattern’s 2D axis (xOBJ , yOBJ) origin is placed on the left upper point and is defined as

shown in figure 8.7.

Figure 8.7: The test grid used.

Step 2: Mount the camera orthogonally in the camera clamp. This is achieved by ensuring

that the distance between the clamp’s base and the camera unit is identical on both sides of the

clamp as illustrated in figure 8.8.

Figure 8.8: Mounting the camera in the clamp.

Step 3: Next, the camera clamp is mounted on a sturdy tripod and this camera setup is placed

in front of the test pattern. At this stage one has to take two things into consideration. Firstly,

the camera must be placed close enough to the test pattern so that it fills the whole image.

CHAPTER 8. THE CAMERA SENSOR 67

This is done so that the radial distortion parameters can be estimated more accurately as the

distortion is more prominent closer to the edges of the image. Secondly, one wants to place the

camera as far away from the test pattern as possible so that the distance measurement errors are

smaller, percentage wise. For example: If the distance between the camera and the test pattern

along the camera’s z-axis is ZCAM
OBJ and the measurement error is εZ, then the percentage error

is given by:

e = 100

(

εZ

ZCAM
OBJ

)

% (8.5.1)

From equation 8.5.1, taking into account that the measurement error should remain fairly con-

stant, it is clear why one would want to maximise the distance between the test object and

the camera. Also, the camera’s theoretical focal point was used in determining the location of

camera axis’ origin. The error in this assumption is lumped together with the measurement

error εZ. Another advantage of maximising the distance is that it allows the angles between

the camera and test pattern to be measured more accurately. Finally, a compromise has to be

made where the distance between the test pattern and camera is determined by the size of the

test pattern.

Step 4: Rotate the camera clamp so that the camera’s axis is orthogonal to the test pattern’s

axis as illustrated in figure 8.9.

Figure 8.9: Mount the camera axis orthogonally with respect to the test pattern’s axis.

Step 5: Measure the translation and rotation of the test pattern’s axis in the camera axis. From

figure 8.10 it can be seen that the orientation of the test object in the camera axis is:

[

φ, θ, ψ
]

CAM→OBJ
=

[

0◦, 0◦, 90◦
]

using the Euler 3-2-1 convention.

The translation along the camera’s z-axis is measured fairly directly. The distance between

the test pattern and the centre of the the pipe running through the middle of the camera clamp

CHAPTER 8. THE CAMERA SENSOR 68

Figure 8.10: The test object’s axis orientation in the camera axis.

(AE in figure 8.9) was measured to be 588 mm. To this was added half of the clamps width

(6 mm) and distance of the theoretical focal point behind the lens seat’s outer facet (8.66 mm).

This gives ZCAM
OBJ = 602.66 mm.

An indirect approach was followed to calculate the other two distances by aiming a laser

pointer through the pipe running parallel to the camera’s optical axis and marking its position

in the test object’s axis. The position of this mark was found to be 427 mm and 588 mm along

xOBJ and yOBJ , respectively. Then by taking into account the orientation of the test object’s axis

with respect tot the camera axis, and the fact that the centre of the pipe is 104 mm below the

cameras ideal optical axis (centre of the lens barrel), it was determined that XCAM
OBJ = 484 mm

and YCAM
OBJ = -427 mm. Note that it is assumed that the camera’s optical axis runs through the

middle of the lens barrel. The error in this assumption only translates to an offset in the princi-

ple point.

Step 6: Take a full resolution picture. This picture is shown in figure 8.11. Note the camera

setup’s shadow in the middle, left of the picture. Also, it can clearly be seen that this wide

angle lens causes barrel distortion.

Step 7: Extract the centroids in the image. Due to the nonuniform lighting conditions it is

not possible to simply use one global threshold value to extract the centroids. Therefore a

slightly longer process has to be followed. First the centroid locations are isolated using an

image manipulation program, such as GIMP, resulting in the image shown in figure 8.12 (a).

Then a MATLAB program was used to semi-automatically threshold each centroids location

(Local thresholding). The program is semi-automatic in the sense that one has to indicate the

location of the centroids by clicking in the vicinity of the centroid. The output of this process

is shown in figure 8.12 (b). Next the background is removed resulting in the image shown in

figure 8.13. The last step is to uniquely identify each centroids. (The reason for this will become

clear in the next step.) This was also done using a MATLAB program. All of the centroids are

stored in an array in the same order as one clicked on them. Therefore one only has to click on

the centroids in the correct order.

CHAPTER 8. THE CAMERA SENSOR 69

Figure 8.11: The photo used for calibration.

Figure 8.12: (a) Isolating the centroids locations. (b) The result of local thresholding.

Step 8: Now the camera’s parameters are determined using a non-linear minimisation pro-

cedure. The basic idea is to minimise the error between the ideal centroids obtained by pro-

jecting the test grid’s points onto the camera’s image plane, and the ideal centroids obtained

by correcting the distorted centroids from the picture using equations 8.3.1 and 8.3.2. This is

illustrated in figure 8.14. If Mj = [xtpj
, ytpj

, 0]T is the position of a point j in the test pattern’s

CHAPTER 8. THE CAMERA SENSOR 70

Figure 8.13: The final processed image containing the centroids.

Figure 8.14: The basic concept used to determine the camera’s parameters.

axis, then its projection, mj, onto the camera’s image plane, using the projective camera model,

is described by the matrix equation1:

m̃j =









f
pX

0 u0

0
f

pY
v0

0 0 1









[

TOBJ→CAM rCAM
OBJ

]

M̃j (8.5.2)

Where:

• The homogeneous vector, m̃j = [x̃j, ỹj, z̃j]
T, gives the position of the projected test pattern’s

point j in the image plane.

• f is the focal length in meters.

1For an elaborate explanation on how to use this camera matrix and homogeneous vectors, refer to appendix E.

CHAPTER 8. THE CAMERA SENSOR 71

• Each pixel’s size is pX by pY meters. For the camera used in this thesis pX = pY = 6×10−6

m.

• (u0, v0) is the principle point. (Where the optical axis intersect with the image plane.)

• TOBJ→CAM is the DCM that transforms a vector from the test object axis to the camera

axis. It is determined using the information from step 5.

• rCAM
OBJ is the position of the test object axis origin in the camera axis. From step 5 it is given

as rCAM
OBJ = [0.484, -0.427, 0.602]T.

• M̃j =

[

Mj

1

]

= [xtpj
, ytpj

, 0, 1]T is the homogeneous vector that gives the position of the

point j in the test object axis.

This equation yields:

xu1j
=

x̃j

z̃j

yu1j
=

ỹj

z̃j

Where (xu1j
, yu1j

) is the ideal centroid obtained by projecting a point j from the test grid onto

the image plane. Also note that (xu1j
, yu1j

) is a function of the unknown parameters f , u0 and

v0.

Each distorted centroid (xdj
, ydj

) from the picture is transformed to the corrected, ideal

centroid (xu2j
, yu2j

) using equations 8.3.1 and 8.3.2. Note that (xu2j
, yu2j

) is a function of k1

and k2. Also, it is important to use the point (xdj
, ydj

) in the picture that corresponds to the

point (xu1j
, yu1j

) in the test pattern.

Now the Levenberg-Marquardt Method (Levmar for short) of non-linear minimisation is

used to determine the camera’s parameters f , u0, v0, k1 and k2 using the cost function:

F =
N−1

∑
j=0

[

(xu1j
− xu2j

)2 + (yu1j
− yu2j

)2
]

(8.5.3)

Where N is the amount of centroids. The initial values for the parameters are f = 0.004 m (from

the lens’ data sheet), u0 = v0 = 512 (expected values) and k1 = k2 = 0 (standard initial values).

For a detailed description of the Levmar algorithm, and other non-linear minimisation pro-

cedures, refer to the document from Madsen et al.[19]. Lourakis [16] also provides a good

description of the Levmar algorithm.

CHAPTER 8. THE CAMERA SENSOR 72

8.6 Results from the Calibration Procedure

8.6.1 Results

Table 8.1 summarises the results that were obtained from the calibration procedure:

Parameter Value

f 4.0971 mm

u0 541.0234 pixels

v0 456.0833 pixels

k1 6.0227 ×10−7

k2 1.3581 ×10−12

RMS Error 1.3288 pixels

Table 8.1: Calibration Results.

8.6.2 Evaluation of the results

All the results are acceptable. The lens’ data sheet states that the lens’ focal length is 4 mm with

a tolerance of ±5 % so that the estimated value of 4.0971 mm is well within this range.

Under ideal circumstances the principle point should be (u0, v0) = (512, 512). The estimated

principle point implies that the sensor’s position is out by 0.174 mm along the one axis and by

0.336 mm along the other axis, which is possible.

Lastly, the estimated values of k1 and k2 is also acceptable as they are such that the undis-

torted radius ru = rd(1 + k1r2
d + k2r4

d) ≥ rd as is true for barrel distortion.

8.6.3 Visual test

Another way to test the results is visually. By inverting the radial distortion model, numerically,

it is possible to create a mathematical photo of the test pattern. This mathematical photo is then

superimposed on the original photo as show in figure 8.15. From this figure it can be seen that

the model is very accurate as the white points of the mathematical photo basically lies on top

of the darker points of the test pattern (Actual photo).

Next, the original photo (repeated in figure 8.17 for convenience) is show together with the

corrected image in figure 8.18. It should be clear that there is an immense improvement.

Lastly, figure 8.16 shows the source pixels from the original image used during the correc-

tion process. From this picture it can be seen that barrel distortion compresses the image, so

that the lens, suffering from barrel distortion, effectively see more than an ideal lens with no

distortion.

CHAPTER 8. THE CAMERA SENSOR 73

Figure 8.15: The mathematical photo (white points) superimposed on the actual photo (black spots).

Figure 8.16: The pixels used during the correction process. (The black area in the centre of the image.)

CHAPTER 8. THE CAMERA SENSOR 74

Figure 8.17: The original photo.

Figure 8.18: The corrected picture.

Chapter 9

Tailoring DF Malan’s EKF

In this chapter DF Malan’s filter is tailored for the 2D emulation.

9.1 Preface

The filter designed by Malan [20] is used to estimate the orientation and translation of a target

satellite in a stationary camera axis by using the target’s lights’ centroids. His filter has 13

states:

x̄ = [x̄ ȳ z̄ v̄X v̄Y v̄Z q̄1 q̄2 q̄3 q̄4 ω̄TX
ω̄TY

ω̄TZ
]T

Where:

• r̄CAM
TGT = [x̄ ȳ z̄]T is the estimated position of the target satellite’s body axis in the camera

axis.

• v̄CAM
TGT = [v̄X v̄Y v̄Z]Tis the estimated velocity of the target satellite’s body axis in the camera

axis.

• The quaternions [q̄1 q̄2 q̄3 q̄4]T give the estimated rotation of the target satellite’s body axis

with respect to the camera axis, and

• The estimated angular velocities of the target satellite in its own body axis is given by

[ω̄TX
ω̄TY

ω̄TZ
]T.

As the emulation will only be in 2 dimensions, many of these states are unnecessary. From

figure 9.1 can be seen that the target’s position along the camera’s x-axis, x̄, is a constant that

does not need to be estimated (It must, however, still be measured manually as some equations

still require it.) Due to the movement in a 2D plane, the velocity, v̄X, and angular velocities,

ω̄TX
, and, ω̄TY

, are also zero. Then the quaternions can be replaced by an single angle, ψ̄, as will

be shown in section 9.2.

As stated before, Malan’s filter assumes a stationary camera. In this thesis, the camera axis

rotates with the chaser axis and therefore the orientation of the target’s body axis with respect

to the camera axis is influenced by both the chaser’s and target’s angular velocities. Because of

this, the remaining angular rate, ω̄TZ
, becomes ω̄TZ/CZ

.

75

CHAPTER 9. TAILORING DF MALAN’S EKF 76

Figure 9.1: All the relevant axes.

Therefore, this thesis only requires the following 6 states:

x̄DF = [z̄ ȳ v̄Z v̄Y ψ̄ ω̄TZ/CZ
]T

This, in turn, implies a simpler, faster Extended Kalman Filter that is less processor intensive.

The objective of the rest of this chapter is to describe these simplifications.

9.2 Using Euler Angles

9.2.1 Using Euler 1-2-3 instead of Euler 3-2-1

Referring to figure 9.1, note that the rotation from the chaser’s body axis to the target’s body

axis can be fully described by a single rotation, ψ, around the chaser’s z-axis. The goal is to

directly estimate this yaw angle, ψ, and the first step is to use Euler angles instead of quater-

nions. As there is no unique definition for Euler angles, the ESL has standardised on Euler

3-2-1. (First yaw, then pitch and then roll. Stated differently: First rotate about the z-axis, then

the y-axis and lastly about the x-axis.) The problem with this convention is that the rotation, ψ,

cannot be determined directly as explained in the next paragraph.

A general problem with Euler angles is that it is typically difficult to combine two rotations.

Given that one has the Euler angles [φ, θ, ψ]CHR→CAM (Chaser Body Axis to Camera Axis) and

[φ, θ, ψ]CAM→TGT (Camera Axis to Target Body Axis), then [φ, θ, ψ]CHR→TGT (Chaser Body Axis

to Target Body Axis) cannot be calculated in a straightforward way.

Typically one first have to determine the DCMs TCHR→CAM, which is a constant matrix,

and TCAM→TGT, determined by Malan’s EKF. Then TCHR→TGT = TCAM→TGTTCHR→CAM must

be calculated. From TCHR→TGT one then determines [φ, θ, ψ]CHR→TGT. But this is a very tedious

approach. Further investigations proved that a simpler solution is to just use a different order

of rotations.

First some background on Euler angles. The first two rotations gives the orientation of

the Euler axis, ê, and the last rotation then gives the rotation, θe, about the Euler axis. This

is illustrated in figure 9.2. For example: In Euler 3-2-1, after the target’s body axis has been

CHAPTER 9. TAILORING DF MALAN’S EKF 77

Figure 9.2: The Euler axis, ê, and Euler angle, θe. (Picture adapted from Wikipedia)

firstly rotated about the z-axis and then the y-axis, the rotated x-axis forms the Euler axis. The

rotation about this rotated x-axis is then the Euler angle.

Taking the above mentioned into account, it was decided to use Euler 1-2-3 (First rotate

around the x-axis, then the y-axis and lastly about the z-axis) Then, in the DCM that gives

the orientation of the target’s body axis with respect to the camera axis, the first two rotations

aligns the Euler axis with the target’s z-axis. (Note that these two rotations will be constants1)

The last rotation, the Euler angle, is the rotation around target’s z-axis which is the angle of

interest. Therefore, if Euler 1-2-3 is used to represent the DCM from the camera axis to the

target’s body axis, one can directly determine the rotation, ψ, from the chaser’s body axis to the

target’s body axis.

In order to fully describe the target’s orientation with respect to the chaser using only one

angle, ψ, and to simplify the maths, the camera axis is mounted at right angles with respect to

the chaser’s body axis, so that:

[φ, θ, ψ]CAM→TGT = [0°, -90°, ψ]

9.2.2 The Euler 1-2-3 DCM

The Euler 1-2-3 DCM is determined by multiplying out the following rotation matrices in the

correct order.

The rotation around the z-axis:

TZ =











cos (ψ) sin (ψ) 0

− sin (ψ) cos (ψ) 0

0 0 1











1When the air cushion is deflated. Any tilting of the air cushion is neglected.

CHAPTER 9. TAILORING DF MALAN’S EKF 78

The rotation around the y-axis:

SY =











cos (θ) 0 − sin (θ)

0 1 0

sin (θ) 0 cos (θ)











The rotation around the x-axis:

RX =











1 0 0

0 cos (φ) sin (φ)

0 − sin (φ) cos (φ)











The forward DCM, using Euler 1-2-3, is then:

T = TZSYRX

=





cos (ψ) cos (θ) sin (ψ) cos (φ) + cos (ψ) sin (θ) sin (φ) sin (ψ) sin (φ) − cos (ψ) sin (θ) cos (φ)

− sin (ψ) cos (θ) cos (ψ) cos (φ) − sin (ψ) sin (θ) sin (φ) cos (ψ) sin (φ) + sin (ψ) sin (θ) cos (φ)

sin (θ) − cos (θ) sin (φ) cos (θ) cos (φ)





The inverse DCM is then:

T−1 = TT

=





cos (ψ) cos (θ) −sin (ψ) cos (θ) sin (θ)

sin (ψ) cos (φ) + cos (ψ) sin (θ) sin (φ) cos (ψ) cos (φ) − sin (ψ) sin (θ) sin (φ) −cos (θ) sin (φ)

sin (ψ) sin (φ)− cos (ψ) sin (θ) cos (φ) cos (ψ) sin (φ) + sin (ψ) sin (θ) cos (φ) cos (θ) cos (φ)





With this background, one is now in the position to do the simplifications.

9.3 The Projective Camera Model in Matrix Form

In this section the equations are derived that are required to determine the estimated positions

of the target’s lights’ centroids in the image. Start with the projective camera model in matrix2

form, as it would be given in a textbook [10]:







x̃

ỹ

z̃






=











f
pX

0 u0

0
f

pY
v0

0 0 1











[

R t
]













a

b

c

1













Where the homogeneous vector [x̃, ỹ, z̃]T is the output of the camera, R is the inverse DCM that

coverts vectors from the observed object’s body axis to the camera axis. The translation t is the

position of the object’s body axis in the camera axis. [a, b, c]T is the location of a point in the ob-

ject’s body axis. (u0, v0) is the optical centre, f is the focal length, pX and pY is the size of a pixel.

2For an elaborate explanation on how to use this camera matrix and homogeneous vectors, refer to appendix E.

CHAPTER 9. TAILORING DF MALAN’S EKF 79

In this application, the observed object is the target satellite and the point in the observed

object’s axis is the target’s lights. Using the notation introduced in section 4.1, but using the

estimated states, this equation can be rewritten as:







x̃

ỹ

z̃






=











f
pX

0 u0

0
f

pY
v0

0 0 1











[

T̄TGT→CAM r̄CAM
TGT

]

[

rTGT
Ln

1

]

(9.3.1)

Remembering that [φ, θ, ψ]CAM→TGT = [0°, -90°, ψ], but using the estimated angle, the inverse

DCM becomes:

T̄TGT→CAM =











0 0 −1

sin (ψ̄) cos (ψ̄) 0

cos (ψ̄) − sin (ψ̄) 0











The pixels of the camera are square so that:

p = px = py

Define:

• r̄CAM
TGT = [X, ȳ, z̄]T

• rTGT
Ln

= [a, b, c]T

• κ = f
p

Note that X is a constant as it does not need to be estimated in this 2D application as was

motivated in section 9.1. Then the estimated position of a light in the image3 is determined by

solving equation 9.3.1:

x̄sensor =
x̃

z̃

=
κ(X − c)

cos (ψ̄) a − sin (ψ̄) b + z̄
+ u0 (9.3.2)

ȳsensor =
ỹ

z̃

=
κ(a sin (ψ̄) + b cos (ψ̄) + ȳ)

cos (ψ̄) a − sin (ψ̄) b + z̄
+ v0 (9.3.3)

3Note that these equations can also be determined solving equations 4.4.1 and 4.4.2.

CHAPTER 9. TAILORING DF MALAN’S EKF 80

9.4 The Customised Filter

9.4.1 The state vector

The state vector is defined as shown in section 9.1:

x̄DF = [z̄ ȳ v̄Z v̄Y ψ̄ ω̄TZ/CZ
]T

Where:

• z̄ and ȳ is the estimated position of the target’s body axis along the camera’s z- and y-axis,

respectively.

• v̄Z and v̄Y is the estimated velocity of the target’s body axis along the camera’s z- and

y-axis, respectively.

• The estimated rotation of the target’s body axis with respect to the chaser’s body axis is

given by ψ̄.

• The estimated rate at which the rotation of the target’s body axis with respect to the

chaser’s body axis, ψ̄, changes is given by ω̄TZ/CZ
= ω̄TZ

- ω̄CZ
.

9.4.2 Propagation

The propagation model is given by the continuous differential equation:

˙̄xDF = f(x̄DF) + G1w1

Where:

f(x̄DF) =























v̄Z

v̄Y

0

0

ω̄z

0























The above equation is fully linear and can therefore be written as:

f(x̄DF) = Fkx̄DF

With:

Fk =























0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0























CHAPTER 9. TAILORING DF MALAN’S EKF 81

But, Fk is still continuous and has to be transformed to its discrete equivalent:

Fdk = eFkTso

= I6×6 + FkTso +
F2

kT2
so

2!
+

F3
kT3

so

3!
+ . . . TaylorExpansion

Where Tso is the outer loop sample period of 100 ms. Due to the form of Fk, Fn
k with n ≥ 2 is

06×6 so that it is not necessary to approximate Fdk:

Fdk = I6×6 + FkTso + 06×6

=























1 0 Tso 0 0 0

0 1 0 Tso 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 Tso

0 0 0 0 0 1























It is assumed that the process noise, w1, takes the form of disturbance accelerations and angular

accelerations. From this:

G1 =























0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1























And:

w1 =







nZ

nY

nω







Where nZ and nY is the disturbance accelerations along the camera’s z- and y-axis, respectively.

The disturbance angular acceleration is given by nω.

9.4.3 Measurement

The measurement is given equations 9.3.2 and 9.3.3:

[

x̄sensor

ȳsensor

]

= h(x̄DF) + v1

=









κ(X−c)
cos(ψ̄)a−sin(ψ̄)b+z̄

+ u0

κ(a sin(ψ̄)+b cos(ψ̄)+ ȳ)
cos(ψ̄)a−sin(ψ̄)b+z̄

+ v0









+ v1

CHAPTER 9. TAILORING DF MALAN’S EKF 82

Where v1 is the measurement noise. The Jacobian, Hk, was determined using MATLAB and is

shown here:

Hk(1,:)T =
































(c−X)κ

(cos(ψ̄)a−sin(ψ̄)b+z̄)2

0

0

0

(b cos(ψ̄)+a sin(ψ̄))κ (−c+X)

(cos(ψ̄)a−sin(ψ̄)b+z̄)2

0

































Hk(2,:)T =



































(−a sin(ψ̄)−b cos(ψ̄)−ȳ)κ

(cos(ψ̄)a−sin(ψ̄)b+z̄)2

κ
cos(ψ̄)a−sin(ψ̄)b+z̄

0

0

κ ((cos(ψ̄))2a2+cos(ψ̄)az̄+(sin(ψ̄))2b2−sin(ψ̄)bz̄+a2(sin(ψ̄))2+b2(cos(ψ̄))2+ȳb cos(ψ̄)+ȳa sin(ψ̄))
(cos(ψ̄)a−sin(ψ̄)b+z̄)2

0



































9.5 The Noise Variances

9.5.1 Process noise

Due to the isolated implementation of Malan’s filter, the disturbance accelerations and dis-

turbance angular acceleration experienced by Malan’s filter is the relative accelerations and

angular acceleration between the chaser and target. (It is seen by Malan’s filter as disturbances

as this filter is unaware of any accelerations and angular accelerations commanded.) As the

revolving target’s position is stationary, the relative acceleration is only the acceleration of the

chaser.

The standard deviations of the disturbance acceleration were chosen as follow: Remember

that the camera’s z-axis is parallel to the chaser’s x-axis and that the chaser’s and camera’s y-

axis are parallel to each other. Also remember that there is 2 actuators along the chaser’s x-axis.

Given that the chaser’s mass is 1.75 kg and that the magnitude of the actuator forces along

the chaser’s x-axis and y-axis is software limited to 0.2 N and 0.3 N, respectively, the standard

deviations are chosen as:

σZ = 2(0.2)/1.75 = 0.229

σY = 0.3/1.75 = 0.171

CHAPTER 9. TAILORING DF MALAN’S EKF 83

The relative angular acceleration between the chaser and target is given by:

ω̇TZ/CZ
= ω̇TZ

− ω̇CZ

Remembering that the target is not allowed to make any sudden movement changes during

the docking sequence, ω̇TZ
= 0. Therefore the disturbance angular acceleration is the angular

acceleration of the chaser. The maximum torque around the chaser’s z-axis is software limited

to 0.086 Nm and the chaser’s moment of inertia around its z-axis is estimated as 0.089 kg.m2.

So the standard deviation of the disturbance angular acceleration is chosen as:

σω = (0.086)/0.089 = 0.966

Therefore the process noise covariance matrix is:

QDF = E{(G1w1)(G1w1)
T}

Resulting in a diagonal matrix whose diagonal is given by:

diag(QDF) =
[

0 0 σ2
Z σ2

Y 0 σ2
ω

]

The above matrix is the continuous covariance matrix and has to be converted to its discrete

equivalent, QDFk
. If it is assumed that the process noise is white compared to the outer loop’s

sample period, Tso , then the approximation given by Franklin et al. [7] can be used. According

to this, the diagonal of QDFk
is given by:

diag(QDFk
) =

[

0 0 σ2
Z σ2

Y 0 σ2
ω

]

(

2τc

Tso

)

Where τc is the time correlation of the noise and can be either measured or estimated. From

section 6.4, Tso = 0.1 s and τc is estimated as 0.01 s.

9.5.2 Measurement noise

From the camera calibration results in section 8.6.1, the measurement noise covariance matrix

is given by (in pixels squared):

RDFk
=

[

(1.3288)2 0

0 (1.3288)2

]

9.6 Conclusion

In this chapter Malan’s filter was customised for the purposes of this thesis. The simulated and

practical results will be shown and discussed in chapters 13 and 14, respectively. Note that in

the rest of this thesis there will be referred to this modified version of Malan’s EKF as “Malan’s

EKF”.

Chapter 10

Inner Loop Controller

The purpose of the inner loop controllers is to maintain the accelerations and angular rate com-

manded by the outer loop controllers in the presence of external disturbances such as friction.

Stated differently, the inner loop controllers must ensure that the platform looks like an ideal

platform to the outer loop controllers. This chapter presents the design and results of the inner

loop controllers.

10.1 Simulation and Controller Design Methodology

The principle used is to make the hovercraft’s model as complex (or rather, realistic) as pos-

sible for simulation purposes, but to use a simplified model to design the controllers. Then,

the controllers’ performance is evaluated using the complex model of the hovercraft to see if

the performance is satisfactory. If this is not the case, the assumptions of the simplified model

must be re-evaluated for correctness and, if necessary, the complexity of the simplified model

must be increased and the design process repeated.

Therefore, the simulation model includes:

• The effects of the sensor board’s misalignment.

• The non-ideal sensor gains.

• The influence of the anti-aliasing filters.

• The effect of rotations on the accelerometers that are not mounted on the hovercraft’s

Centre of Gravity (CG).

For the controller the model is simplified:

• It ignores the effect of the sensor boards misalignment as the alignment is close to orthog-

onal.

• The non-ideal accelerometer gains are ignored as the calibration constants, Kx and Ky,

are close to unity while the accelerometer outputs are very noisy due to the mechanical

vibrations. On the other hand, the gyro’s measurement will be corrected as its calibration

constant, Kθ , is 0.9464 (5.36% error) while the sensor has very good noise characteristics.

84

CHAPTER 10. INNER LOOP CONTROLLER 85

• If the estimator’s and controller’s closed loop poles are placed at frequencies at least 5

times slower than the anti-aliasing filters’ poles, then the influence of the anti-aliasing

filters can be ignored.

• Due to the system’s low bandwidth, the effect of angular accelerations and angular veloc-

ities on the accelerometers’ measurements is negligible. (Especially if one considers how

noisy the accelerometers’ outputs are.)

The simulation’s model consists of an ideal core from which ideal measurements can be ob-

tained. These measurements are then contaminated with noise and the before mentioned ef-

fects to accurately simulate the practical measurements, before they are fed back to the con-

trollers. Refer to appendix F for the complete hovercraft model used in the simulation.

10.2 The Model Used to Design the Controller

10.2.1 Another coordinate system

As defined in section 2.1, the chaser’s body axis is fixed to the chaser’s CG. Therefore, as the

chaser’s configuration changes, its CG and thus the chaser’s body axis moves around. To make

provision for this, a Body Fixed Reference Axis (xB, yB) is defined as shown in figure 10.1. (The

reference axes run parallel to the chaser’s body axes and the reference x-axis runs down the

centre of the hovercraft.) By doing this, only the position of the CG in the reference axis has

to be updated instead of redetermining the positions of all the actuators and all the sensors in

the chaser’s body axis every time the CG moves. Note that the reference has no z-axis as it is

irrelevant in this 2D application and therefore any z-component will be assumed to be 0.

Figure 10.1: Chaser’s Body Fixed Reference Axis.

CHAPTER 10. INNER LOOP CONTROLLER 86

10.2.2 The basic model

The hovercraft model used to design the controller is shown in figure 10.2. (Compare it to

figure 10.1.)

Figure 10.2: Basic Hovercraft Model.

Where:

• FOL = [FOL, 0, 0]Tis the output force of the fan on the left hand side of the hovercraft.

• FOR = [FOR, 0, 0]T is the output force of the fan on the right hand side of the hovercraft.

• FOS = [0, FOS, 0]T is the output force of the sidewards fan on the hovercraft.

• rL = [0, rL, 0]T is the position of FOL in the chaser’s reference axis.

• rR = [0, rR, 0]T is the position of FOR in the chaser’s reference axis.

• rS = [rS, 0, 0]T is the position of FOS in the chaser’s reference axis.

• rCG = [rCGx, rCGy, 0]T is the position of the CG in the chaser’s reference axis.

Note that it is assumed that the actuator output forces are parallel to the chaser’s axes. For now,

as the hovercraft moves relatively frictionless, the effect of friction is not modeled. According

to Newton’s 3rd law, the lift fan’s prop will exert a torque on the chaser’s body equal to the

torque exerted on it, but in the opposite direction. It is assumed that this torque is small so that

the resulting angular acceleration of the hovercraft is negligible. Although it is also assumed

that the controllers’ integrators will compensate for these effects, both effects could be modeled

if it is found necessary.

CHAPTER 10. INNER LOOP CONTROLLER 87

The hovercraft model is described by the following continuous time differential equations:

ḞOL = −

(

1

τL

)

FOL +

(

1

τL

)

FIL

ḞOR = −

(

1

τR

)

FOR +

(

1

τR

)

FIR

ḞOS = −

(

1

τS

)

FOS +

(

1

τS

)

FIS

ẍCG =

(

FOL + FOR

m

)

ÿCG =

(

FOS

m

)

θ̈ = −

(

rL − rCGy

IZZ

)

FOL −

(

rR − rCGy

IZZ

)

FOR +

(

rS − rCGx

IZZ

)

FOS

Where:

• FIL, FIR and FIS are the input (commanded) forces to the system.

• FOL, FOR and FOS are the output forces of the fans.

• τL, τR and τS are the time constants of the left, right and sidewards fans, respectively. The

left and right fans are of fan type 1, so that τL = τR = 81.5 ms. The sidewards fan is of fan

type 2 so that τS = 105 ms.

• IZZ is the hovercraft’s moment of inertia around the z-axis, and

• m is the hovercraft’s mass.

• The acceleration of the hovercraft’s CG along its x- and y-axis are ẍCG and ÿCG, respec-

tively.

• θ̈ is the angular acceleration of the hovercraft around its z-axis.

This model’s continuous state space representation is given by:













ḞOL

ḞOR

ḞOS

θ̈













=















−
(

1
τL

)

0 0 0

0 −
(

1
τR

)

0 0

0 0 −
(

1
τS

)

0
rCGy−rL

IZZ

rCGy−rR

IZZ

rCGx−rS
IZZ

0



























FOL

FOR

FOS

θ̇













+















(

1
τL

)

0 0

0
(

1
τR

)

0

0 0
(

1
τS

)

0 0 0





















FIL

FIR

FIS







With the outputs:







ẍCG

ÿCG

θ̇






=







(

1
m

) (

1
m

)

0 0

0 0
(

1
m

)

0

0 0 0 1



















FOL

FOR

FOS

θ̇













Due to the form of the matrices, the 3 axes cannot be decoupled.

CHAPTER 10. INNER LOOP CONTROLLER 88

10.2.3 Using virtual forces and torques

The idea behind virtual forces and virtual torques is to think in terms of the resulting forces and

torques produced by all the actuators, rather than in terms of the individual forces produced

by each actuator.

After the control signals have been determined in terms of virtual forces and torques, the

control signals are converted back to the individual actuator forces required.

In order to decouple the model from the previous section, define and use the following

virtual forces and virtual torques:







F̂X

F̂Y

T̂






=







1 1 0

0 0 1

−(rL − rCGy) −(rR − rCGy) (rS − rCGx)













FL

FR

FS







Where F̂X and F̂Y is the virtual forces along the chaser’s x- and y-axis, respectively. T̂ is the

virtual torque around the chaser’s z-axis. Define the matrix, V, that converts the actual forces

to virtual forces :

V =







1 1 0

0 0 1

−(rL − rCGy) −(rR − rCGy) (rS − rCGx)







Therefore, the matrix that converts the virtual forces into actual forces is given by:

V−1 =









−(rR−rCGy)

(rL−2rCGy−rR)
(rS−rCGx)

(rL−2rCGy−rR)
−1

(rL−2rGy−rR)
(rL−rCGy)

(rL−2rCGy−rR)
−(rS−rCGx)

(rL−2rCGy−rR)
1

(rL−2rCGy−rR)

0 1 0









Using virtual forces and torques, the state space representation now becomes:













˙̂FOX
˙̂FOY
˙̂TO

θ̈













=

















−
(

1
τX

)

0 0 0

0 −
(

1
τY

)

0 0

0 0 −
(

1
τT

)

0

0 0
(

1
IZZ

)

0





























F̂OX

F̂OY

T̂O

θ̇













+















(

1
τX

)

0 0

0
(

1
τY

)

0

0 0
(

1
τT

)

0 0 0





















F̂IX

F̂IY

T̂I







With the outputs:







ẍCG

ÿCG

θ̇






=







(

1
m

)

0 0 0

0
(

1
m

)

0 0

0 0 0 1



















F̂OX

F̂OY

T̂O

θ̇













Where:

• F̂IX and F̂IY are the input (commanded) forces along the chaser’s x- and y-axis , respec-

tively.

CHAPTER 10. INNER LOOP CONTROLLER 89

• T̂I is the input (commanded) virtual torque along the chaser’s z-axis.

• F̂OX, F̂OY and T̂O are the virtual forces and torque produced by the actuator output forces.

• τX, τY and τT are the time constant of the virtual force along the x-axis, y-axis and the

virtual torque around the z-axis, respectively. As the virtual force along the chasers x-axis

is the sum of the left and right fans’ output forces, it is assumed that the time constant τX

= τR = τL = 81.5 ms. Similarly, τY = τS = 105 ms. The actuator configuration is as such that

the torque is only produced by the left and right fans so that it is assumed that τT = τR =

τL = 81.5 ms.

This can now be decoupled into 3 linear systems:

x-axis:

˙̂FOX = −

(

1

τX

)

F̂OX +

(

1

τX

)

F̂IX

ẍCG =

(

1

m

)

F̂OX

y-axis:

˙̂FOY = −

(

1

τY

)

F̂OY +

(

1

τY

)

F̂IY

ÿCG =

(

1

m

)

F̂OY

z-axis:

[

˙̂TO

θ̈

]

=





−
(

1
τT

)

0
(

1
IZZ

)

0





[

T̂O

θ̇

]

+

[

(

1
τT

)

0

]

T̂I

θ̇ =
[

0 1
]

[

T̂O

θ̇

]

The hovercraft’s parameters were measured and are given in table 10.1.

Parameter Value Unit

IZZ 0.089 kg.m2

m 1.75 kg

rL -0.23 m

rR 0.23 m

rS 0.14 m

rCGx
0.14 m

rCGY
0 m

Table 10.1: The hovercraft’s parameters.

CHAPTER 10. INNER LOOP CONTROLLER 90

These values are substituted into the continuous differential equations and are then discretized

using the inner loop sample period, Tsi
, of 20 ms. This results in:

x-axis:

F̂OX[k + 1] = (0.7824) F̂OX[k] + (0.2176) F̂IX[k]

ẍCG[k] = (0.5714) F̂OX[k]

y-axis:

F̂OY[k + 1] = (0.8266) F̂OY[k] + (0.1734) F̂IY[k]

ÿCG[k] = (0.5714) F̂OY[k]

z-axis:

[

T̂O[k + 1]

θ̇[k + 1]

]

=

[

0.7824 0

0.1993 1

] [

T̂O[k]

θ̇[k]

]

+

[

0.2176

0.0254

]

T̂I [k]

θ̇[k] =
[

0 1
]

[

T̂O[k]

θ̇[k]

]

10.3 Controller and Estimator Design

10.3.1 Acceleration controllers

Initially, it was decided to design the estimators and controllers by following the guidelines

that the estimators’ closed loop poles must be at least 5 times slower than the anti-aliasing

filter’s poles, and that the controllers’ closed loop poles must be at least 5 times slower than

the estimators’ slowest poles. As the anti-aliasing filter’s cut off frequency is at 94.248 rad.s−1

(15 Hz), the fastest possible closed loop controller poles are 3.77 rad.s−1. Considering that for

stability reasons the outer loop controllers’ poles must be about 5 times lower than this, the

resulting system will be very sluggish. The solution to this problem is to place faster inner loop

poles by following a different approach.

As stated in the previous paragraph, when designing an estimator and controller, the de-

sign guideline is to place the estimator’s close loop poles at a frequency about 5 times faster

than the controller’s closed loop poles so that the system’s output would be dominated by the

slower controller poles. However, when the measurement noise is very large, as is the case

with the accelerometers, the position of the estimator and controller poles can be reversed so

that the system’s output is dominated by the slower estimator poles. [7]

As a starting point, a linear quadratic estimator was designed. From section 7.3.2, the standard

deviation of measurement noise is 0.06 m.s−2 due to mechanical vibrations. The continuous

process noise’s standard deviation is overestimated as 0.2 N. Again, the continuous process

noise variance is must be converted to its discrete equivalent. (See section 9.5.1) The resulting

linear quadratic estimator closed loop poles are:

• z = 0.7249 for the x-axis estimator. (ωn = 16.0861 rad.s−1)

CHAPTER 10. INNER LOOP CONTROLLER 91

• z = 0.7788 for the y-axis estimator. (ωn = 12.4971 rad.s−1)

Even after the process noise was overestimated, the resulting estimator poles are relatively

slow. This makes sense as the estimator will now rely more on the model than the very noisy

measurement, resulting in the measurement being heavily filtered. Also, note that y-axis esti-

mator is slower than the x-axis estimator. This is because the y-axis time constant of 105 ms

is larger than the x-axis time constant of 81.5 ms so that the y-axis measurement will therefore

contain less high frequencies and can therefore be filtered more than the x-axis measurement.

Both the x- and y-axis controllers have an integrator to ensure a zero tracking error1 by

compensating for the small disturbances due to friction. (For this to be entirely true, the sensor

biases must be known.) It was decided, for each axis, to place the controller’s 2 close loop poles

at the same frequency as the estimator’s pole in a sort of a butterworth configuration. It was

found that a true butterworth configuration results in an output that is a bit under damped,

so that the controllers poles were changed to have a damping ratio of 0.707 to compensate for

this. The resulting closed loop controller poles are:

• z = 0.7760 ± 0.1797i for the x-axis controller.

• z = 0.8249 ± 0.1473i for the y-axis controller.

For these pole’s the expected rise time is in the order of:

tr =
1.8

16.0891

= 0.112 s

for the x-axis controller, and:

tr =
1.8

12.4971

= 0.144 s

for the y-axis controller. Note that this equation only holds for dominant closed loop poles and

is therefore only used to give an indication of what rise time to expect.

10.3.2 Angular rate controller

A linear quadratic estimator and controller was designed to control the angular rate around

the hovercraft’s z-axis. Using the gyro’s noise standard deviation of 3.536×10−3 rad.s−1 (from

section 7.3.2) and estimating the continuous process noise standard deviation to be 0.1 Nm, the

resulting estimator poles are:

• z = 0.2695 ± 0.3313i (ωn = 61.4836 rad.s−1)

1This is a type one control law that is suitable for tracking constant (step-like) setpoints with zero asymptotic
error.

CHAPTER 10. INNER LOOP CONTROLLER 92

Although it would have been advised to place these poles at a frequency about 5 times slower

than the anti-aliasing filter’s poles at 94.248 rad.s−1, these poles were tested in both simulation

and practice, and works extremely well as the system is very responsive and the average an-

gular rate follows the reference with an error of less than 10%. These estimator poles are much

faster than the estimator poles for the x- and y-axis accelerations as the rate gyros output has

very good noise characteristics.

The angular rate controller also has an integrator to ensure a zero tracking error by compen-

sating for any small disturbance torques due to friction. (Again, this is only true if the sensor

bias is known.) When the linear quadratic regulator (LQR) was designed, it was ensured that

the closed loop system has an acceptable rise time while also ensuring a limited overshoot. For

the cost function:

J =
N

∑
k=0

(

xTQx + uTRu
)

The final weights:

Q = I3×3

R = 10

resulted in a rise time of about 0.165 s.

10.4 Simulation Results

A simulation of the system, controllers and estimators was done using MATLAB’s Simulink.

The model is shown in figure 10.3. All the controllers and estimators are implemented in a s-

function block on the left hand side so that the code can easily be ported to the dsPIC30F5011.

The 3 function blocks in the middle implements the actuator models from section 7.4. Lastly, the

large block on the right hand side contains the hovercraft’s kinematics, anti-aliasing filters and

ADCs. This block also includes the effect of non-ideal sensor gains and the effect of rotations

on the accelerometers that are not mounted on the hovercraft’s CG. Here follow a summary of

the simulation results:

• Figure 10.4 shows the response to a step input of 0.1 m.s−2 along the chaser’s x-axis. The

10-90% rise time is about 0.13 s.

• Figure 10.5 shows the response to a step input of 0.1 m.s−2 along the chaser’s y-axis. The

10-90% rise time is about 0.17 s.

• Figure 10.6 shows the response to a step input of 0.1 rad.s−1. The 10-90% rise time is

about 0.165 s.

All the simulation results are satisfactory with the rise times very close to their expected values.

Even the acceleration controllers’ outputs looks good if one take into account the amount of

noise in the accelerometers outputs.

CHAPTER 10. INNER LOOP CONTROLLER 93

Figure 10.3: The inner loop simulation.

Figure 10.4: Acceleration of the CG along the x-axis.

CHAPTER 10. INNER LOOP CONTROLLER 94

Figure 10.5: Acceleration of the CG along the y-axis.

Figure 10.6: Angular rate around z-axis.

CHAPTER 10. INNER LOOP CONTROLLER 95

10.5 Practical Results

10.5.1 Acceleration controllers

A few practical experiments were done to test the acceleration controllers. Originally, the

controllers’ integrators were fed with the error between the measured accelerations and the

reference accelerations. After this approach failed, the controllers were changed in that the

integrators are now fed with the error between the estimated accelerations and the reference

accelerations. Although this worked much better, it was still not satisfactory.

For brevity, only the response of the x- and y-acceleration controllers on a 0.1 m.s−2 step along

the chaser’s x-axis is shown in figures 10.7 and 10.9.

From figure 10.7 it can be seen that there is absolutely no correlation between the measured

and estimated accelerations along the chaser’s x-axis. Because of the large amount of noise

in the accelerometer’s measurement, the estimator only relies on the model. Therefore the

estimated acceleration’s behaviour is as expected.

Figure 10.7: The estimated X-acceleration (black line) and the measured X-acceleration (gray line).

CHAPTER 10. INNER LOOP CONTROLLER 96

The deviations in the measured acceleration can be explained as follows:

1. The high frequency noise component is the result of the mechanical vibrations due to the

fans’ unbalanced props.

Figure 10.8: The tilting as result of the actuator forces.

2. As illustrated in figure 10.8, the force produced by the actuators causes a moment around

the hovercraft’s CG. This causes the hovercraft to tilt backwards. When this happens the

gravitational acceleration couples into the accelerometer’s measurement. From there the

negative measurement seen in figure 10.7. (The slow oscillation is due to the air cushion’s

elasticity.)

Recall that at the beginning of this section it was said that feeding the controller’s inte-

grator with the error between the measured and reference acceleration did not work. It

is this negative measurement obtained, when a positive acceleration is commanded, that

causes the system to become unstable as it is results in positive feedback.

By mounting the fans higher, the problem is reversed as the hovercraft now tilts forward.

This causes the gravitational acceleration to couple into the accelerometers, in the oppo-

site direction as before, resulting in a much larger measurement. The result of this is an

oscillation: The fans switches on, the hovercraft tilts, an acceleration is measured that is

much larger than the reference, the fans switches off and the cycle repeats.

Therefore it was decided to feed the controller’s integrator with the error between the

estimated acceleration and the reference acceleration.

Figure 10.9 shows the measured and estimated accelerations along the chaser’s y-axis. From

this figure the noise induced by the mechanical vibrations can clearly be seen as the measured

acceleration should be zero. (Note that this is the measured acceleration after it as been filtered

by both digital and analog filters.)

During each experiment, the hovercraft was accelerated from rest and the distance travelled

and the time elapsed were recorded so that the average acceleration can be calculated.

For the 0.1 m.s−2 step along the chaser’s x-axis, the hovercraft travelled 6.75 meters in 11.2

seconds. This implies an average acceleration of 0.108 m.s−2 that compares very well with the

reference acceleration.

But for the 0.1 m.s−2 step along the chaser’s y-axis the hovercraft only tilted while remain-

ing stationary. (As the estimated acceleration is fed back instead off the measured acceleration,

the controller is unaware of this.)

CHAPTER 10. INNER LOOP CONTROLLER 97

Figure 10.9: The estimated Y-acceleration (black line) and the measured Y-acceleration (gray line).

Attempts to improve the system includes limiting the actuator forces in software to reduce the

tilting and trying to align the actuators that their thruster force do not produce any moments

around the hovercraft’s CG. Both attempts failed as very little tilting has an immense impact

due to the gravitational acceleration’s large magnitude. For example, the negative acceleration

of -0.25 m.s−2 in figure 10.7 only requires a 1.46° tilt.

From this section it is clear that the accelerometers are not suitable for this application and

should be replaced. This is addressed in section 10.6.

10.5.2 Angular rate controller

The angular rate estimator and controller works exceptionally well as can be seen in figure

10.10. As result of the fast estimator poles, the estimated angular rate closely follows the mea-

sured angular rate during the response on a 0.1 rad.s−1 step. During the experiment the hover-

craft took 63.79 seconds to complete one full rotation. Therefore average angular rate was 0.098

rad.s−1. This good result was obtained repeatedly as the angular rate sensor has good noise

characteristics, is unaffected by the tilting and is less susceptible to the mechanical vibrations.

CHAPTER 10. INNER LOOP CONTROLLER 98

Figure 10.10: The estimated angular rate (black line) closely follows the measured angular rate (gray
line).

10.6 Velocity Sensor and Controllers

In response to the problem stated in section 10.5.1, the accelerometers were replaced by a ve-

locity sensor. The velocity sensor consists out of 2 potentiometers. Both potentiometers have

no end stops so that their wipers can rotate freely. A wheel was mounted on the one poten-

tiometer’s axis and this wheel is dragged behind the hovercraft. The resulting sawtooth signal

from this potentiometer’s wiper is processed to determine the wheel’s speed, ‖v‖. (See figure

10.11.) By using the second potentiometer to measure the wheel’s angle behind the hovercraft,

θV , the velocity, v, can be divided into its components along the chaser’s x- and y-axis.

CHAPTER 10. INNER LOOP CONTROLLER 99

Figure 10.11: The velocity sensor.

10.6.1 New models for controller design

Still using the virtual forces introduced in section 10.2.3 the new continuous models used to

design the controllers are:

x-axis:

[

˙̂FOX

v̇X

]

=

[

−
(

1
τX

)

0
(

1
m

)

0

] [

F̂OX

vX

]

+

[

(

1
τX

)

0

]

F̂IX

vX =
[

0 1
]

[

F̂OX

vX

]

y-axis:

[

˙̂FOY

v̇Y

]

=

[

−
(

1
τY

)

0
(

1
m

)

0

] [

F̂OY

vY

]

+

[

(

1
τY

)

0

]

F̂IY

vY =
[

0 1
]

[

F̂OY

vY

]

CHAPTER 10. INNER LOOP CONTROLLER 100

Using the values specified in section 10.2.3, these continuous models can be discretised using

the inner loop sample period, Tsi
, of 20 ms:

x-axis:

[

F̂OX[k + 1]

vX[k + 1]

]

=

[

0.7824 0

0.0101 1

] [

F̂OX[k]

vX[k]

]

+

[

0.2176

0.0013

]

F̂IX[k]

vX[k] =
[

0 1
]

[

F̂OX[k]

vX[k]

]

y-axis:

[

F̂OY[k + 1]

vY[k + 1]

]

=

[

0.8266 0

0.0104 1

] [

F̂OY[k]

vY[k]

]

+

[

0.1734

0.0010

]

F̂IY[k]

vY[k] =
[

0 1
]

[

F̂OY[k]

vY[k]

]

10.6.2 Controller and estimator design

In section 9.5.1 it was seen that the maximum acceleration along the chaser’s x-axis is slightly

more than 0.2 m.s−2 and 0.15 m.s−2 along the chaser’s y-axis.

By taking the above into account, a rise time can be calculated so that the actuators do not

saturate during the maximum expected velocity step of 0.05 m.s−1 and 0.02 m.s−1 along the

chaser’s x- and y-axis, respectively. These rise times are:

trX
=

0.05

0.2
= 0.250 s

trY
=

0.02

0.15
= 0.133 s

For simplicity and the safety of the actuators, it was decided to use a rise time equal to twice the

longest calculated rise time for both axes’ controller design. This implies that that the closed

loop system’s dominant second order poles’ natural frequency, ωn, must be:

ωn =
1.8

2trX

=
1.8

2(0.25)
= 3.6 rad.s−1

The estimator’s closed loop poles were placed at a frequency of 18 rad.s−1 (5 times lower than

the anti-aliasing filter’s frequency) with a damping ratio of 0.707. Each axis’ controller has an

integrator to ensure a zero tracking error. The 3 closed loop poles of the plant and controller is

placed as follow:

• 2 Poles at the calculated frequency of 3.6 rad.s−1 with a damping ratio of 0.707.

• 1 Pole is placed on the real axis at -7.2 rad.s−1 so that it has a negligible influence on the

closed loop system’s output.

CHAPTER 10. INNER LOOP CONTROLLER 101

10.6.3 Simulation results

The MATLAB Simulink simulation shown in figure 10.3 was adapted to accommodate the ve-

locity controllers. Figures 10.12 and 10.13 shows the simulation’s results for a 0.05 m.s−1 step

along the chaser’s x- and y-axis, respectively. From these figures it can be seen that the rise

time of the velocities along both axes is approximately 0.68 seconds. Although this is 36%

longer than what was designed for, it is still adequate.

Figure 10.12: Velocity of the CG along the x-axis.

Figure 10.13: Velocity of the CG along the y-axis.

CHAPTER 10. INNER LOOP CONTROLLER 102

10.6.4 Practical results

Here follows the practical experiments results. Again, for brevity, only the response of a 0.05

m.s−1 step along the chaser’s x-axis is shown.

Figure 10.14: The estimated X-velocity (black line) and the measured X-velocity (gray line).

Figures 10.14 and 10.15 show the system’s output. The clearly visible oscillation superimposed

on the velocity measurement along the x-axis is due to the hovercraft’s tilting. As the hovercraft

tilts, the wheel is pushed to and fro, resulting in the oscillation seen. This confirms the expla-

nation in section 10.5.1. Fortunately this sensor is not influenced by the mechanical vibration

or gravitational acceleration.

During the experiments, the hovercraft traveled 2.1 meters in 46.08 seconds giving an aver-

age velocity of 0.04557 m.s−1. This good result was obtained consistently for step commands

along both the chaser’s x- and y-axis.

From the figures it is estimated that the rise time is approximately 800 ms. This practical

data will be used to model the inner loop controller and plant in the simulation discussed in

chapter 13.

Note that the very course quantisation seen in figures 10.14 and 10.15 is only the result of

the way data was sent from the inner loop controller to the computer during the tests. The inner

loop controller makes use of doubles to store its values. To simplify the serial transmission of

this data to the computer, each variable was multiplied by a 100, added to an offset and casted

to an integer. On reception, this process was undone to extract the data. As the velocities are

stored in m.s−1, this process results in a resolution of 0.01 m.s−1.

CHAPTER 10. INNER LOOP CONTROLLER 103

Figure 10.15: The estimated Y-velocity (black line) and the measured Y-velocity (gray line).

10.7 Conclusion

In this section the design of the different controllers were discussed. It was shown that the

angular rate controller works very well, while it was necessary to replace the accelerometers

and to rather make use of a velocity sensor. From the practical results it was seen that the

velocity controllers works satisfactory.

The estimated velocities and angular rate are averaged over a 100 ms period and are then

sent to the system EKF every 100 ms. This in turn provides the time base for the outer loop

controllers and the EKFs.

Chapter 11

The System EKF

Several quantities need to be estimated in order to be able to execute the docking sequence.

The System EKF is used for this purpose.

11.1 The State Vector

From section 2.1 it can be determined that the following state vector is required:

x̄sys =
[

r̄ ᾱ β̄ ω̄TZ

]T

Where all the states are as defined in section 2.1 and ω̄TZ
is the estimated angular velocity of the

target around its own z-axis. Note that ω̄TZ
is an unknown constant that has to be estimated.

11.2 Propagation

The system EKF is implemented as follows: The velocity sensor and rate gyro measurements1

[vX vY ωCZ
]T, received every 100 ms, are fed directly into the system EKF. As the velocity

measurements, vX and vY, and the rate gyro measurement, ωCZ
, are in the chaser’s body axis,

they have to be converted to the target’s radial axis. This conversion is incorporated into the

EKF. The non-linear continuous differential equations describing the propagation of the system

states are given by:

˙̄xsys =













−vX cos ᾱ + vY sin ᾱ

ωCZ
+

(

1
r̄

)

(vX sin ᾱ + vY cos ᾱ)

−
(

1
r̄

)

(vX sin ᾱ + vY cos ᾱ) − ω̄TZ

0













+ G2w2 (11.2.1)

1Note that the estimated velocities and angular rate sent from the inner loop is seen as measurements by the
system EKF.

104

CHAPTER 11. THE SYSTEM EKF 105

Where:

G2 =













1 0 0

0 1 0

0 0 1

0 0 0













And the process noise:

w2 =
[

nṙ nα̇ nβ̇

]T

Note that as the propagation is non-linear, it is integrated numerically.

11.3 Measurement Update

Directly after Malan’s EKF has been updated, its state vector is processed to give the camera

measurement, ycm.

Figure 11.1: Processing the camera measurement.

Given that the position of the of the camera axis in the chaser’s axis is given by:

rCHR
CAM =

[

xCHR
CAM yCHR

CAM zCHR
CAM

]T

And referring to figure 11.1, Malan’s state vector is processed as follows:

αcm = arctan

(

−(ȳ + yCHR
CAM)

z̄ + xCHR
CAM

)

CHAPTER 11. THE SYSTEM EKF 106

βcm = π − α − ψ̄

rcm =
√

(ȳ + yCHR
CAM)2 + (z̄ + xCHR

CAM)2

ωTZ(cm) = ω̄TZ/CZ
+ ωCZ

Where ωCZ
is the average angular rate of the chaser around its own z-axis between the current

and previous photo. The camera measurement is then given by:

ycm =
[

αcm βcm rcm ωTZ(cm)

]T

All the system EKF’s states can be updated from this camera measurement so that the mea-

surement matrix is a 4 by 4 identity matrix, I4×4. If v2 is the measurement noise vector, the

estimated camera measurement is given by:

ȳcm = I4×4x̄sys + v2

This measurement update is done at a rate of about 2 Hz. As soon as a camera measurement

becomes available, the next photo is taken. Due to the required processing, the delay between

when a photo was taken and when the camera measurement becomes available is about 500

ms, but varies depending on how many centroids there are in the image. From this, the camera

update rate is about 2 Hz.

11.4 Compensating for the Measurement Delay

Due to all the processing, there is a significant delay between when the photo is taken and

when the camera measurement becomes available. This section describes how this delay is

compensated for.

First some background on the implementation of Malan’s EKF. Malan’s EKF is fully isolated in

the sense that it has no control inputs and is therefore oblivious to any control commands (ac-

celerations and angular acceleration) that would otherwise have to be synchronised. Malan’s

EKF’s implementation also assumes no measurement delay. This means that directly after

Malan’s EKF’s state vector was updated, it reflects the state of the system at the time the photo

was taken. As this updated state vector is used to give the camera measurement, the system

EKF has to compensate for the total measurement delay, from when the photo was taken to

when the camera measurement is received by the system EKF as is illustrated in figure 11.2.

There are 2 typical approaches to compensate for delays. The fist is to insert delay states into

the EKF system model and the second is to store (record) all the necessary information to com-

pensate for the delay.

CHAPTER 11. THE SYSTEM EKF 107

Figure 11.2: The measurement delay as seen by the system EKF.

For this application, the first method is unpractical as there will be too many states as:

Number Of Delay States =
(4 States)(Total Delay)

(Sample Period)

The total delay is in the order of 500 ms and the sample period is 100 ms. Therefore one would

require 20 delay states so that the system EKF’s size is increased to 24 states. This EKF will be

extremely computationally expensive especially as the inverse of a 24×24 matrix would have

to be determined.

The other approach is to store the necessary data. When the photo is taken the system EKF’s

state vector is saved along with the state covariance matrix. Then the system EKF continues

as normal while the inputs (velocity and gyro measurements) are recorded. When the camera

measurement arrives, the system EKF first jumps back to the saved state, does the update

and then quickly propagates the states using the recorded inputs. This method is much more

practical and has the added advantage that it can compensate for variable measurement delays.

11.5 Noise Variances

11.5.1 Process noise

As the velocity and rate gyro measurements (or more accurately their estimated values) are the

input to the system EKF, the process noise is related to their measurement noise. If one assumes

that the angle, α, is accurately regulated to zero, then from equation 11.2.1:

˙̄r = −vX

˙̄α = ωCZ
+

(vY

r̄

)

˙̄β = −ωTZ
−

(vY

r̄

)

The standard deviation of the noise on the velocities and angular rates from the inner loop

were calculated from practical data as 0.0199 m.s−1 and 0.0128 rad.s−1, respectively. Taking the

CHAPTER 11. THE SYSTEM EKF 108

before mentioned equations into account, the noise standard deviations were chosen as:

σnṙ = 0.0199

σnα̇ = 0.0328 using r = 1 m

σnβ̇
= 0.0199 using r = 1 m

Then the process noise is given by:

Qsys = E{(G2w2)(G2w2)
T}

Resulting in a diagonal matrix whose diagonal is given by:

diag(Qsys) =
[

σ2
nṙ

σ2
nα̇

σ2
nβ̇

0
]

These are the sensors’ continuous measurement noise and because it is integrated over one

sample period, it has to be converted to its discrete equivalent. Using the same assumption as

in section 9.5.1, the discrete noise covariance matrix is given by:

diag(Qsysk
) =

[

σ2
nṙ

σ2
nα̇

σ2
nβ̇

0
]

(

2τc

Tso

)

11.5.2 Measurement noise

The measurement noise had to be determined using a simulation. From the simulation it was

found that a good measurement covariance matrix is:

diag(Rsysk
) =

[

0.05 0.05 0.05 0.05
]

Note that these measurement noise variances do not reflect Malan’s filter’s state’s noise vari-

ances. On average, the noise in Malan’s filter is much less, but because of the current systems

low bandwidth, the noise has been increased artificially so that the camera measurement is low

pass filtered more to decrease the noise in the system.

11.6 Conclusion

This chapter described the system EKF that is used to estimate the necessary quantities required

during the docking process. The simulated and practical results will be given in chapters 13

and 14, respectively.

Chapter 12

Outer Loop Controller And Guidance

System

This chapter discusses the outer loop controllers and the guidance system.

12.1 Overview of the Outer Loop Controllers

There are 3 sets of controllers referred to as the “Far”, “Close” and “Final” controllers. Each set

of controllers is scheduled by the guidance system according to the chaser’s position relative

to the target satellite. Here is a brief description of each controller set:

• Far Controllers : These controllers slowly regulates the angle α to zero while following

the given reference velocity. Note that the angle β is not regulated.

• Close Controllers : These controllers regulates the angle α more aggressively to zero

while following the given reference velocity. The angle β is now also slowly regulated to

zero.

• Final Controllers : The angles α and β are both aggressively regulated to zero while

following the given reference velocity.

12.2 The Guidance System

This section gives a description of the guidance system used in the emulation. Note that rFAR

= rRETREAT = 1.5 m and rSAFE = 1.0 m. Referring to figure 12.1, here follows a brief description

of the guidance system:

• Far Approach : When the chaser and target are far apart, r > 1.5 m, then the angle α will

be slowly regulated to zero by the far controllers. At the same time a radial reference

velocity of -0.02 m.s−1 is given so that the chaser moves closer to the target. As the RGPS

portion of this thesis was discarded, the camera is also initialised during this phase.

• Close Approach : When 1.0 < r < 1.5, both angles α and β are regulated to zero using the

close controllers. The chaser still approaches the target at the specified radial reference

velocity of -0.02 m.s−1.

109

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 110

Figure 12.1: The regions where each controller set is used.

When r = 1 m, it has to be tested if it is safe to commence with the final approach. Theo-

retically, both angles α and β must be zero, but in practice one must specify an acceptable

range for each angle. So while |α| > 15° or |β| > 15°, both angles will be regulated to zero

by the close controllers. During this period the radial reference velocity is zero, so that the

chaser remains on the border of the safety sphere.

• Final Approach : Once it is safe to dock, α and β will be very aggressively regulated to

zero by the final controllers while following the radial reference velocity of -0.02 m.s−1.

When the distance between the chaser and target reaches 0.4 m, the docking sequence is

complete. (This final distance was calculated.)

If any of the two angles’ magnitude, |α| or |β|, exceeds 40° during the final approach, the

docking sequence is aborted (i.e. εα = εβ = 40°). The chaser will retreat to a distance of 1.5

m at a velocity of 0.03 m. This retreat is done using the far controllers as it was decided

that the chaser should only increase the distance between itself and the target, while keep

the camera pointing at the target. Once the retreat is completed, the docking sequence

can be retried.

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 111

12.3 Models Used to Design the Outer Loop Controllers

The closed loop system, consisting of the inner loop controllers and the plant, is modeled as 3

decoupled 2nd order systems.

From practical data, such as in figure 10.14, it was determined that the rise time for a veloc-

ity step response along the chaser’s x- and y-axis is approximately 0.8 s. Although one would

be tempted to say that the system is under damped, the oscillations as seen in figure 10.14 are

the result of the hovercraft’s tilting. The oscillations are therefore noise and so the damping

ratio has to be estimated. A damping ratio of 0.707 was chosen.

Similarly, for the angular rate, the rise time was obtained from practical data, such as in

figure 10.10, as approximately 0.2 s. Due to the little overshoot, it is reasonable to assume that

the damping ratio is also 0.707. The resulting models are shown in figure 12.2.

Figure 12.2: The 2nd order systems used to approximate the closed loop system consisting out of the
inner loop controllers and plant.

Note that vX, vY and ωCZ
are the estimated velocities and angular rate that are sent from the

inner loop’s estimators to the system EKF. For clarity, the reference velocities and angular rate

are uX, uY and uCZ
.

But the velocity models are in the chaser’s Cartesian coordinate system, while the outer

loop controllers are to be designed in terms of the target’s radial coordinate system (r, β) and

α. To solve this, a non-linear conversion block is used. The equations for these conversions can

be determined from figure 12.3 and are given by equations 12.3.1 and 12.3.2.

[

vX

vY

]

=

[

− cos α −r sin α

sin α −r cos α

] [

vr

ωCT

]

(12.3.1)

[

vr

ωCT

]

=

[

− cos α sin α

−
(

1
r

)

sin α −
(

1
r

)

cos α

] [

vX

vY

]

(12.3.2)

These conversion blocks are then placed on either side of the 2nd order models from figure

12.2, so that the resulting encapsulated system are in terms of the target’s radial coordinate

system as shown in figure 12.4. Here ur, uCT
and uCZ

are the reference radial velocity, reference

angular rate of the chaser around the target and the reference angular rate of the chaser around

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 112

Figure 12.3: Diagram used to determine the conversion equations.

its own z-axis, respectively. Note that the relationship between the reference velocities ur, uCT
,

uX and uY is also given by equations 12.3.1 and 12.3.2.

Figure 12.4: The 2nd order models encapsulated by the non-linear conversion blocks.

The “Non-linear conversion block” on the left of figure 12.4 implements equation 12.3.1. Simi-

larly, the “Inverse of the non-linear conversion block” on the right implements equation 12.3.2.

Now vr, ωCT
and ωCZ

are the measured radial velocity, measured angular rate of the chaser

around the target and the measured angular rate of the chaser around its own z-axis, respec-

tively. Note that this “Inverse of the non-linear conversion block” is already integrated into the

system EKF. (See section 11.2.) Also note that both the reference, uCZ
, and the measurement,

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 113

ωCZ
, remains unaltered.

Now the system is described in terms of the target’s radial axis, as was desired. However,

due to the non-linear conversion blocks, the 3 previously decoupled models are now coupled

again. Therefore in order to decouple them, for the controller design purposes, certain assump-

tions must be made.

If it is assumed that the controller that regulates α to zero works very well (i.e. α ≈ 0), then

equations 12.3.1 and 12.3.2 reduces to:

[

vX

vY

]

=

[

−1 0

0 −r

] [

vr

ωCT

]

(12.3.3)

[

vr

ωCT

]

=

[

−1 0

0 −
(

1
r

)

] [

vX

vY

]

(12.3.4)

The block diagram from figure 12.4 then becomes:

Figure 12.5: Under the assumption that α ≈ 0, the models are decoupled.

The gains on either side cancel out, resulting in the decoupled models used to design the outer

loop controllers:

Figure 12.6: The decoupled models used to design the outer loop controllers.

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 114

Note that the poles of the first two systems in figure 12.6, i.e. the systems that correspond to

vr and ωCT
, have a natural frequency, ωn, of 2.25 rad.s−1 and that the poles of the system that

corresponds to ωCZ
have a natural frequency of 9 rad.s−1.

12.4 The Outer Loop Controllers

12.4.1 Far controllers

12.4.1.1 The radial velocity vr

For the radial velocity, the inner loop system is used as is:

ur[k] = vr(re f)

=

{

−0.02 During far approach.

0.03 During retreat.

12.4.1.2 The angle β

During the far approach, the angle β is not regulated so that:

uCT
[k] = 0.0 (12.4.1)

12.4.1.3 The angle α

The differential equation that describes the rate of change of the angle α is:

α̇ = ωCZ
− ωCT

(12.4.2)

From figure 12.6 and equation 12.4.2 the model used to design the controller for the angle α is:

Figure 12.7: Model used to design the far controller for α.

If the dominant closed loop pole is placed at a frequency much lower than the rest, then the

higher frequency poles can be ignored. Also during far approach ωCT
= 0 (from equation 12.4.1),

so this controller can be designed using the model in figure 12.8.

Figure 12.8: Simplified model used to design the far controller for α.

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 115

During the far approach, only a proportional controller will be used:

uCZ
[k] = −kαᾱ[k]

Where ᾱ[k] is the angle α as estimated by the system EKF and kα is the proportional gain.

Figure 12.9: The far controller for the angle α.

It can be shown that the closed loop system in figure 12.9 is a first order low pass filter with a

time constant of:

τα =
−Tso

ln (1 − kαTso)

Where τα is the low pass filter’s time constant and Tso is the outer loop’s sample period (100

ms). For such a first order low pass filter, it is generally assumed that the filter’s output reaches

its final value in 5 time constants. If it is chosen that the angle α must be regulated to zero in 20

seconds, then:

20 = 5τα

=
−5Tso

ln (1 − kαTso)

From this:

kα = 0.2469

Note that the resulting closed loop pole’s frequency is 0.25 rad.s−1. This frequency is 36 times

lower than the frequency of the open loop poles of the 2nd order system in figure 12.7, so that

these much faster poles can be ignored.

12.4.2 Close controllers

12.4.2.1 The radial velocity vr

Again, for the radial velocity, the inner loop system is used as is:

ur[k] = vr(re f)

= −0.02

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 116

12.4.2.2 The angle β

To design the controller, first consider the differential equation that describes the rate of change

of the angle β:

β̇ = ωCT
− ωTZ

(12.4.3)

From figure 12.6 and equation 12.4.3 the model to design the controller for the angle β is:

Figure 12.10: Model used to design the close controller for β.

The controller that will regulate the angle β to zero also contains an integrator to ensure a zero

tracking error. In order to ignore the faster poles of the 2nd order system in figure 12.10, the

dominant closed loop poles are placed at a frequency that is 10 times lower than the 2nd order

system’s poles. The simplified model used to design the controller for β is shown in figure

12.11.

Figure 12.11: Simplified model used to design the close controller for β.

The simplified model is therefore described by:

β̇ = uCT
− ωTZ

(12.4.4)

From equation 12.4.4 it can be seen that there has to be compensated for ωTZ
. This can easily

be done as ωTZ
is estimated by the system EKF.

Define:

u∗
CT

= uCT
− ω̄TZ

(12.4.5)

The continuous state space model is then:

β̇ = u∗
CT

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 117

So that the discrete state space model is:

β[k + 1] = β[k] + Tso u∗
CT

[k]

As stated before, the dominant closed loop poles are placed at a frequency 10 times lower than

the 2nd order system’s poles. (From figure 12.10.) The dominant closed loop poles’ frequency

is therefore ωn = 0.225 rad.s−1. This implies a 10-90% rise time of 8 seconds. Chosen a damping

ratio of 0.707 results in the following closed loop poles:

sCLβ
= −ζωn ± j ωn

√

1 − ζ2

= −0.1591 ± j 0.1591

So that the discrete closed loop poles are:

zCLβ
= e

sCLβ
Tso

= 0.9841 ± j 0.0157

For the control law:

u∗
CT

[k] = −kβ β̄[k] − kiβ
βi[k] (12.4.6)

Where kβ is the proportional gain, β̄[k] is the angle β as estimated by the system EKF, kiβ
is the

controller’s integrator’s gain and βi[k] is the controller’s integrator state. Using MATLAB’s

place function, the gains are calculated as:

kβ = 0.3181

kiβ
= 0.0050

From equations 12.4.5 and 12.4.6 the control law is:

uCT
[k] = −kβ β̄[k] − kiβ

βi[k] + ω̄TZ
[k]

Where ω̄TZ
[k] is ωTZ

as estimated by the system EKF.

Now there is only one more aspect of this controller that has to be addressed. As was shown

before, the closed loop system’s 10-90% rise time is 8 seconds. This is undesired as the angle

β can be anything from -180° to 180° and it is impossible for the hovercraft to move halfway

around the target in 8 seconds.

To solve this, the magnitude of the error (i.e. β̄[k]) is clipped at 0.5°, so that the rate at which

the hovercraft moves around the target is limited. This angle of 0.5° was determined using the

simulation discussed in chapter 13. Using this simulation, the limit on the error was adjusted

until the commanded actuator forces were within acceptable limits.

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 118

12.4.2.3 The angle α

The angle α is now regulated more aggressively to zero. To ensure a zero tracking error, the

controller now also has a slow integrator. In order to ignore the faster 2nd order poles in

figure 12.7, the dominant closed loop poles must be slower than 0.9 rad.s−1. By doing this, the

simplified model shown in figure 12.12 can be used to design the controller.

Figure 12.12: Simplified model used to design the close controller for α.

From figure 12.12 it can be seen that there has be compensated for ωCT
. At first it seems that this

necessitates the estimation of ωCT
. This in turn requires that the system EKF has to be adapted.

But closer inspection reveals that this is not necessary. The value of ωCT
will slowly increase

from zero to a final value of ωTZ
as β is regulated to zero. Therefore ωCT

can be seen as a rel-

atively constant offset and will automatically be compensated for by the controller’s integrator.

The selected closed loop poles have a damping ratio of 0.707 to ensure a limited overshoot,

and have a natural frequency of 0.36 rad.s−1 so that the 10-90% rise time is 5 seconds. There-

fore the continuous closed loop poles are:

sCLα
= −ζωn ± j ωn

√

1 − ζ2

= −0.2545 ± j 0.2545

So that the discrete closed loop poles are:

zCLα
= esCLα Tso

= 0.9746 ± j 0.0248

The resulting control law is given as:

uCZ
[k] = −kαᾱ[k] − kiα

αi[k]

Where kiα
is the controller’s integrator’s gain and αi[k] is the controller’s integrator state. Using

MATLAB’s place function, the controller gains are:

kα = 0.5089

kiα
= 0.0126

CHAPTER 12. OUTER LOOP CONTROLLER AND GUIDANCE SYSTEM 119

12.4.3 Final controllers

The final controllers are identical to the close controllers except that the limit on the error in the

angle β is increased to 5°. This is to regulate the angle β more aggressively to zero. Although

this might result in the use of large actuator forces, these large forces (if used) will only be used

in short bursts.

12.5 Conclusion

In this chapter the design of the outer loop controllers were discussed. The controllers’ simu-

lated and practical results are shown in chapters 13 and 14, respectively.

Chapter 13

Simulation of the Docking Sequence

This chapter gives an overview of the docking sequence simulation that was written in C.

13.1 Overview

The purpose of this simulation was to implement, test and debug the code that will eventually

run on the hovercraft’s OBC. Because of this it was decided to use a layered software topology.

Figure 13.1: Graphical representation of the software layers.

From figure 13.1 it can be seen that the simulation software is divided into 3 layers:

• The bottom layer forms the base of the simulation and simulates the hardware.

To simulate the camera, the light model from chapter 4 is used to generate the ideal cen-

troids before applying radial distortion to these centroids.

The closed loop system consisting of the plant and inner loop controllers are also simu-

lated using the models from figure 12.2.

Different noise sources are also modeled. This includes the noise from the velocity sensor

and gyros. (Noise with a Gaussian distribution is generated using the central limit theo-

rem stating that the resulting distribution of the sum of several statistically independent

120

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 121

random variables approaches a Gaussian distribution. [23]) Pixel noise is implicitly sim-

ulated due to round off errors that occur when the floating point coordinates are cast to

integer coordinates.

• The top layer consists of the outer loop controllers, the centroid identification and track-

ing unit, EKFs, light model and guidance system. (Everything inside the OBC block in

figure 6.1.)

• The middle layer contains the interface functions. All the data and commands between

the top and bottom layer are send via these interface functions.

Using this layered approach, the process of porting the software from the simulation to the

hardware is simplified. Initially, for simulation purposes, the interface functions only update

the necessary simulation variables. After the code has been debugged, the simulation (bottom)

layer is replaced with the actual hovercraft. To accommodate this, only the interface functions

has to be modified.

13.2 Simulation Parameters

This section gives the initial values of the simulation parameters.

• r = 1.868 m.

• α = -0.271 rad = -15.52°.

• β = 1.842 rad = 105.52°.

• rCHR
CAM = [0.13, 0.0, 0.0]T.

• The target’s angular velocity, ωTZ
, was set to -0.007 rad.s−1.

• Malan’s EKF’s initial state vector = [3.0, 1.0, 0.0, 0.0, 0.0, 0.0]T.

• diag(QDFk
) =

[

0 0 1
5 (0.229)2 1

5(0.171)2 0 1
5(0.966)2

]

• diag(RDFk
) =

[

1.32882 1.32882
]

• The system EKF’s initial state vector = [3.0, 0.0, 0.0, 0.0]T.

• diag(Qsysk
) =

[

1
5 (0.0199)2 1

5 (0.0328)2 1
5 (0.0199)2 0

]

• diag(Rsysk
) =

[

0.05 0.05 0.05 0.05
]

Note that although the safety sphere’s radius is 1 m, hysteresis of 0.1 meters was inserted. If

this is not done, then if r slightly overshoots (entering the safety sphere while it is not safe to

dock) the guidance system will abort the docking sequence. As result the effective rSAFE is 1.1

m as can be seen in figure 13.9.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 122

13.3 Simulation Results

Figure 13.2 gives the chaser’s trajectory in the simulation. The direction of the chaser’s positive

x-axis is given by the black arrows and the target’s position is represented by the circle at (0, 0).

Figure 13.2: The chaser’s trajectory (gray line) in the simulation. The direction of the chaser’s positive
x-axis is given by the black arrows.

Referring to figure 13.2:

• During line segment A, the far controllers points the docking mechanism and camera at

the target by regulating α to zero. This is done while slowly decreasing the distance, r,

between the chaser’s and target’s body axes’ origins.

• As soon as the r reaches 1.5 m, the close controllers take over. These controllers keep α to

zero while decreasing r. They also start to regulate β to zero. This gives rise to the line

segment B.

• Then the distance r reaches 1.1 m (the effective radius of the safety sphere) before it is safe

to dock. Line segment C shows how r remains constant while β > εβ or α > εα.

• Lastly, when it is safe to execute the final approach, the chaser enters the safety sphere

under the control of the final controllers as shown by line segment D.

The simulation stops when the docking sequence is complete (r = 0.4 m as was explained

in section 12.2).

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 123

13.3.1 Malan’s EKF

As soon as enough lights have been identified, Malan’s EKF will be updated. This happens for

the first time at t = 3.2 seconds, resulting in the large corrections seen at that time.

For convenience, the figures in this section have been divided into 3 regions: The far, close

and final controllers are active in the gray region on the left, the white region in the middle and

the gray region on the right, respectively.

Figures 13.3 and 13.5 gives the target’s position along the camera’s z- and y-axis, respectively.

From these figures it can be seen that the target’s estimated position corresponds well with its

actual position.

The target’s velocity along the camera’s z- and y-axis is given by figures 13.4 and 13.6,

respectively. Although noisy, the estimated velocity tracks the actual velocity very well. In

figure 13.4 it can be seen that vz clearly steps from -0.02 to 0.0 to -0.02 m.s−1. This is because for

t > 40 seconds α ≈ 0 (see figure 13.10), so that vz ≈ vr.

Figure 13.7 shows that the target’s estimated and actual orientation relative to the chaser

correlates well. The relative orientation converges to π rad as when the docking mechanisms

are facing each other, the relative orientation must be π rad.

The target’s estimated and actual angular rate about its z-axis relative the the chaser’s angu-

lar rate around its z-axis compares well. Figure 13.8 shows that although noisy, the estimated

angular rate clearly follows the actual angular rate.

Table 13.1 lists the RMS errors between the actual and estimated values.

Parameter RMS Error Unit

z 0.0046 m

y 0.0073 m

vz 0.0063 m.s−1

vy 0.0123 m.s−1

ψ 0.0129 rad

ωTZ/CZ
0.0236 rad.s−1

Table 13.1: The RMS errors of Malan’s EKF.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 124

Figure 13.3: Target’s estimated (black) and actual (gray) position along the camera’s z-axis.

Figure 13.4: Target’s estimated (black) and actual (gray) velocity along the camera’s z-axis.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 125

Figure 13.5: Target’s estimated (black) and actual (gray) position along the camera’s y-axis.

Figure 13.6: Target’s estimated (black) and actual (gray) velocity along the camera’s y-axis.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 126

Figure 13.7: Target’s estimated (black) and actual (gray) orientation with respect to the chaser.

Figure 13.8: Target’s estimated (black) and actual (gray) angular velocity with respect to the chaser’s
angular velocity.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 127

13.3.2 System EKF

Once Malan’s EKF has converged, the system EKF can also be updated. This happens for the

first time at t = 7.3 seconds, resulting in the large corrections seen at that time.

Again, note that the figures in this section are divided into 3 regions: The far, close and final

controllers are active in the gray region on the left, the white region in the middle and the gray

region on the right, respectively.

The figures in this section shows that the estimated and actual parameters correlates very well.

In figure 13.9 it be seen how the distance r is first decreased at a constant velocity, after

which r is kept constant while β > εβ or α > εα. When it is safe to dock, the distance r is again

decreased at a constant velocity until it reaches its minimum value of 0.4 m.

As can be seen in figure 13.10, the angle α is first slowly regulated to zero under the con-

trol of the far controllers. Then, when the close and final controllers take over, the angle α is

regulated more aggressively to zero.

Figure 13.11 shows that the angle β increases at a constant rate while the far controllers are

active. This is because the far controllers does not regulate β to zero so that β increases at a rate

ωTZ
. Then, under the control of the close controllers, the angle β is slowly regulated to zero.

Thereafter, β is aggressively regulated to zero by the final controllers.

Lastly, figure 13.12 shows how the target’s estimated angular velocity, ωTZ
converges to the

actual value of -0.007 rad.s−1.

Parameter RMS Error Unit

r 0.0062 m

α 0.0061 rad

β 0.0086 rad

ωTZ
8.0446×10−4 rad.s−1

Table 13.2: The RMS errors of system EKF.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 128

Figure 13.9: The estimated (black) and actual (gray) distance r.

Figure 13.10: The estimated (black) and actual (gray) angle α.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 129

Figure 13.11: The estimated (black) and actual (gray) angle β.

Figure 13.12: Target’s estimated (black) and actual (gray) angular rate around its own z-axis.

CHAPTER 13. SIMULATION OF THE DOCKING SEQUENCE 130

13.4 Conclusion

This chapter showed the results of a simulation for a specific test case. Several tests were run

and all of them was successful.

The simulation was very successful in the sense that the system was modeled accurately

enough so that it worked in practice without any major changes apart from the interface func-

tions.

Chapter 14

Practical Results

This chapter presents the results from a practical test.

14.1 The Test Setup

Figure 14.1: The test setup.

Figure 14.1 shows the test setup. The test had to be executed on a thin black cloth as the target’s

lights reflect from the floor. In this test the chaser and target were placed so that the initial

values of r, α and β should be approximately 1.8 m, 0 rad and 0.175 rad (10°), respectively. The

target was stationary so that ωTZ
is 0 rad.s−1.

The estimated values of Malan’s EKF and the system EKF for this practical test is given in

sections 14.1.1 and 14.1.2, respectively. As in chapter 13, the figures are divided into 3 regions:

The far, close and final controllers are active in the gray region on the left, the white region in

the middle and the gray region on the right, respectively.

131

CHAPTER 14. PRACTICAL RESULTS 132

14.1.1 Malan’s EKF

Once all the lights are identified, Malan’s EKF can be updated. This happens for the first time

at t = 10 seconds resulting in the large corrections seen at that time.

Figure 14.2 shows the target’s estimated position along the camera’s z-axis. Initially it is cor-

rected to the expected value of 1.67 m (1.8 - xCHR
CAM, where xCHR

CAM = 0.13 m). The relationship

between z̄ and r̄ is given by (refer to figure 11.1):

z̄ = r̄ cos(ᾱ) − xCHR
CAM

= r̄ cos(ᾱ) − 0.13

As the estimated angle ᾱ is regulated to zero (refer to figure 14.9):

|ᾱ| < 0.06rad = 3.44◦

So that:

cos(ᾱ) > 0.9982

Therefore:

z̄ ≈ r̄ − 0.13

This can be seen by comparing figures 14.2 and 14.8.

The target’s average estimated velocity along the camera’s z-axis is -0.0162 m.s−1. As the esti-

mated angle ᾱ is closely regulated to zero as shown before:

v̄Z ≈ vr(re f)

It is therefore expected that v̄Z should be -0.02 m.s−1, the radial velocity reference. The devia-

tion can be attributed to the black cloth used as this cloth impedes the hovercraft’s movement.

Refer to figure 14.3.

Because the estimated angle ᾱ is regulated to zero, the target remains centred in the image

so that the target’s estimated position along the camera’s y-axis, ȳ, should be small. This can

also be seen from the relationship (refer to figure 11.1):

ȳ = r̄ sin(ᾱ)

CHAPTER 14. PRACTICAL RESULTS 133

As |ᾱ| < 3.44°:

ȳ ≤ r̄(0.06)

≤ (1.8)(0.06)

≤ 0.108

This can be seen in figure 14.4.

Figure 14.5 shows the target’s estimated velocity along the camera’s y-axis. As the estimated

angle ᾱ is slowly regulated to zero, v̄Y remains close to zero.

From figure 14.1 it can be seen that the orientation of the target’s body axis relative to the

chaser’s body axis should be roughly π rad (180°). This is reflected in figure 14.6.

Lastly, figure 14.7 shows the target’s estimated angular velocity with respect to the chaser’s

angular velocity, ω̄TZ/CZ
. The small variations seen, |ω̄TZ/CZ

| ≤ 0.436 rad.s−1 = 2.49 °.s−1, are

the result of the angles α and β being slowly regulated to zero. This can be seen by combining

the following equations:

α̇ = ωCZ
− ωCT

β̇ = ωCT
− ωTZ

ωTZ/CZ
= ωTZ

− ωCZ

Remembering that ωTZ
is zero, as the target is stationary in this test, results in:

ωTZ/CZ
= −(α̇ + β̇)

CHAPTER 14. PRACTICAL RESULTS 134

Figure 14.2: The target’s estimated position along the camera’s z-axis.

Figure 14.3: The target’s estimated velocity along the camera’s z-axis.

CHAPTER 14. PRACTICAL RESULTS 135

Figure 14.4: The target’s estimated position along the camera’s y-axis.

Figure 14.5: The target’s estimated velocity along the camera’s y-axis.

CHAPTER 14. PRACTICAL RESULTS 136

Figure 14.6: The target’s estimated orientation with respect to the chaser.

Figure 14.7: Target’s estimated angular velocity with respect to the chaser’s angular velocity.

CHAPTER 14. PRACTICAL RESULTS 137

14.1.2 System EKF

Once Malan’s EKF converged, the system EKF can be updated. This happens for the first time

at t = 17 seconds resulting in the big corrections seen at that time. Note that as soon as the

system EKF has converged, the controllers are activated.

Figure 14.8 shows the estimated distance r̄. The distance decreases linearly, from the expected

initial value of 1.8 m to the final distance of 0.4 m, implying a constant velocity. From this

graph, the average velocity is calculated as -0.0166 m.s−1. This is 17% less than the reference

velocity of -0.02 m.s−1 and this deviation is attributed to the black cloth used to prevent the

lights from reflecting of the ground. (Although the cloth was tensioned, it still wrinkles as the

hovercraft moves accross it, impeding the hovercraft’s movement.)

The far controllers initially struggles to regulate the estimated angle ᾱ to zero as seen in fig-

ure 14.9. It is expected that there should be a tracking error when the far controller for ᾱ is

active as it is only a proportional controller. Thereafter, the estimated angle ᾱ is aggressively

regulated to zero by the close and final controllers so that the magnitude of the estimated angle

|ᾱ| remains within 0.04 rad (2.29°).

Initially, the estimated angle β̄ remains fairly unchanged as it is not regulated by the far con-

trollers. It is then regulated to zero under the control of the close and final controllers as shown

in figure 14.10. The final oscillation seen in the estimated angle β̄ is also the result of the black

cloth used. As stated earlier, the black cloth wrinkles as the hovercraft moves over it. Therefore

the slow integrator in the controller for the angle β integrates up to compensate. Once the angle

β overshoots, the integrator has to integrate up in the opposite direction to compensate in the

opposite direction. This causes the oscillation seen.

From figure 14.11 it can be seen that the estimated ω̄TZ
converges to 0.00038 rad.s−1 and is

very close to the correct value of 0.0 rad.s−1.

CHAPTER 14. PRACTICAL RESULTS 138

Figure 14.8: The estimated distance r.

Figure 14.9: The estimated angle α.

CHAPTER 14. PRACTICAL RESULTS 139

Figure 14.10: The estimated angle β.

Figure 14.11: Target’s estimated angular rate around its own z-axis.

CHAPTER 14. PRACTICAL RESULTS 140

14.2 Conclusion

This test was very successful. All the lights were uniquely identified, the EKFs converged and

the docking sequence executed successfully.

Initially, the idea was that the practical test should imitate the scenario from the simulation.

Sadly this was not possible. Apart from that the fact that the hovercraft is not such an ideal

platform as seen in chapter 10, the use of a black cloth to prevent reflections of the target’s

lights in the floor impeded the hovercraft’s movement. Although the cloth is very thin and

was tensioned, it still wrinkled as the hovercraft moved over it. This wrinkling impeded the

hovercraft’s movement especially along the hovercraft’s y-axis as there is only one side fan

compared to the 2 fans along the hovercraft’s x-axis. As result the force along the hovercraft’s

x-axis is enough to move over this wrinkles (typically causing the hovercraft to “jump” for-

ward), but this is not true for the y-axis. Therefore the manoeuvre from the simulation could

not be executed.

Due to time limitations it was not possible to create an setup to take external measurements

to determine the EKFs’ accuracies. But, if one takes into account the size of the hole in the

target (see figure D.5) and consider the distance to the tip of the pin (see figure D.4) from the

hovercraft’s body axis origin, an estimate of the accuracies of the estimated angles ᾱ and β̄ can

be made. The estimated accuracies are:

• |α| < 0.0322 rad (1.8476°)

• |β| < 0.0713 rad (4.0856°)

The accuracy of ¯ωTZ
can be seen in figure 14.11 as it must be zero.

Chapter 15

Conclusion and Recommendations

Autonomous rendezvous and docking are seen as enabling technologies. It allows, among

others, the in-orbit construction of larger space platforms and the in-orbit servicing of space

vehicles.

Although the docking can be done by a remote human operator, autonomous docking is

preferred as it does not rely on human capabilities and a communications link to the ground.

A prerequisite for autonomous docking is the ability to estimate the relative position, veloc-

ity, angular rate and orientation of the target satellite with respect to the chaser satellite. This

is done using a single camera (i.e. monocular vision) as it is considered to be the best overall

sensor in terms of performance, mass and power consumption.

The goal of this thesis is therefore to demonstrate (in simulation and emulation) the con-

cept of docking two satellites autonomously using monocular camera vision. This entails the

research, design and implementation of a docking algorithm, camera sensor system and the

creation of a test platform for emulation.

15.1 Conclusions

A low impact docking sequence was designed as it has the advantage of requiring smaller and

lighter docking mechanisms. The docking sequence is divided into 3 phases (according to the

distance between the satellites) as it provides a logical way to divide the problem into subprob-

lems. According to the current phase, a guidance system schedules the necessary controllers

to execute the manoeuvres required to complete the docking sequence. Although the docking

sequence is described in 2 dimensions, it is designed as such that the principles apply directly

in 3 dimensions. This docking sequence was successfully demonstrated in both simulation and

emulation environments.

As all the other sensors, the camera sensor has to be calibrated and the lens’ radial distortion

must be compensated for. A calibration procedure was designed and used to successfully

calibrate 3 cameras in the ESL. During the calibration process, the camera has to be mounted in

front of a test pattern. To do this, a camera clamp was designed. This clamp was also designed

in such a way that it can accommodate lenses of varying diameters.

It was decided to use a model hovercraft to emulate the chaser satellite in 2 dimensions as

it moves relatively frictionless. The hovercraft is equipped with the necessary hardware for

141

CHAPTER 15. CONCLUSION AND RECOMMENDATIONS 142

the emulation. This includes a camera, onboard computer, angular rate gyro, velocity sensor

and wireless link. A motor driver board was also made to control the hovercraft’s fans. The

hovercraft’s original lift fan was also replaced as it could not take the strain of the extra load.

The hovercraft’s velocity and angular rate is controlled by a set of inner loop controllers.

These controllers were designed using a model of the hovercraft, the actuators and the sensors.

(All the sensors and actuators also had to be calibrated.)

An imitation of a target satellite was made and equipped with light markers. After a lit-

erature study on the different methods used to extract the necessary data from a sequence of

images was completed, it was decided to make use of light markers. By observing the posi-

tion of the target’s lights in the image the necessary relative parameters can be estimated. The

approach followed was the most compatible with the current hardware setup.

One requirement of this approach is the ability to uniquely identify each light marker in

the image. An algorithm was designed to uniquely and reliably identify and track the target’s

lights’ centroids in the presence of noise, e.g. stars. The identification and tracking of the lights

in the image are aided by a light model. This light model was designed in such a way that it

takes the lights’ radiation patterns into account. The light model also acts as a virtual camera in

the simulation of the docking sequence. Based on the outcome of the simulation and emulation,

this identification and tracking algorithm look promising.

A region growing approach is normally used to determine the centroids. The main dis-

advantage of this approach is that it reads each pixel up to 4 times. In order to improve the

camera sensor’s bandwidth a different centroid determination algorithm was designed. Apart

from taking the camera’s memory structure into account, the main advantage of this algorithm

is that it only reads each pixel once. It was shown that this algorithm is up to 4 times faster

than the region growing algorithm (depending on the mass of a centroid).

By using a modified version of the EKF designed by Malan [20] the target’s position, veloc-

ity, angular rate and orientation in the camera axis can be estimated from the positions of the

target’s lights in the image. The EKF designed by Malan has 13 states as it estimates all these

quantities in 3 dimensions. As the emulation is only done in 2 dimensions, most of these states

are not required. His filter was therefore customised for this application and the modified EKF

only has 6 states, reducing the computational complexity.

The output of the modified version of Malan’s EKF is combined with measurements from a

velocity sensor and a rate gyro in another EKF, the system EKF. (Due to mechanical vibrations

and the tilting of the hovercraft the accelerometers, that were originally used, did not work

satisfactory and had to be replaced with a velocity sensor.) The system EKF’s information is

then used by the guidance system and outer loop controllers to execute the docking sequence.

Three sets of outer loop controllers were designed and each set is scheduled by the guidance

system depending on the current docking stage.

A simulation was written in C to test the concepts in this thesis. A layered software topol-

ogy was used to allow the simulation software to be easily ported to the hardware. This sim-

ulation was very successful in the sense that the system (hovercraft, inner loop controllers,

actuators, camera, barrel distortion, sensors, sensor noise, light radiation patterns etc.) was

modeled accurately enough so that the simulation software was ported to the hardware with-

out any major changes.

CHAPTER 15. CONCLUSION AND RECOMMENDATIONS 143

An emulation of the docking sequence was also done using the modified model hovercraft

and the imitation of the target satellite. The hovercraft successfully identified all the lights and

also successfully completed the docking sequence.

In conclusion, this thesis successfully demonstrated the autonomous docking of a satellite

pair using monocular vision in both simulation and emulation conditions. This shows that the

ideas used in this thesis are promising for satellite implementation.

15.2 Recommendations

Here is a short list of recommendations:

• It was found that the hovercraft is not such an ideal platform as was anticipated. Even

though it does move relatively frictionless, it has little resistance against moments that

causes the body to tilt. (Discussed in chapter 10.) For future research it would be advised

to use a more suitable platform such as the one in figure 15.1 used by Romano [27].

Figure 15.1: Autonomous docking test bed used by Romano. (Picture taken from [27].)

• Due to time restrictions, the accuracies of Malan’s EKF and the system EKF could not be

verified by external measurements. This can still be done.

CHAPTER 15. CONCLUSION AND RECOMMENDATIONS 144

• The ideas in this thesis provides a stepping stone for optimal path planning (in terms of

fuel usage). An optimal path can, for example, be defined as a set of parametric equations:

α = fα(r)

β = fβ(r)

vr = fvr(r)

It must also be possible to adjust this path in real time to accommodate for unplanned

deviations.

Bibliography

[1] Bijker, J., Developement of an Attitude Reference System for an Airship, Masters The-

sis, Stellenbosch University, 2006.

[2] Cropp, A., Palmer, P., and Underwood, C.I., Pose Estimation Of Target Satellite

For Proximity Operations, 14th AIAA/USU Small Satellite Conference, Utah, Pro-

ceedings Session SSC00-III-7, 2000.

[3] Cucchiara, R., C. Grana, A. Prati and R. Vezzani, A Hough Transform-based method

for Radial Lens Distortion Correction, 12th International Conference on Image

Analysis and Processing, Mantova, Italy, pp. 182-187, 17-19 September 2003.

[4] Di Sotto, E., Penin, L.F., Camara, F., and Caramagno, A., Design and Perfor-

mance Assessment of Guidance Algorithms for Vision Based Rendezvous, AIAA Guid-

ance Navigation and Control Conference and Exhibit, Keystone, Colorado, No.

AIAA 2006-6586, 21-24 August 2006.

[5] Farid, H., and Popescu, A.C., Blind removal of lens distortion, Optical Society of

America, Vol. 18, No. 9, 2001.

[6] Fehse, W, Automated Rendezvous and Docking of Spacecraft, Cambridge Aerospace

Series, Cambridge University Press, ISBN: 0521824923, 2003.

[7] Franklin, G. F., Powell, J.D., and Workman, M., Digital control of dynamic systems,

Third Edition, Addison Wesley Longman Inc., ISBN: 0201331535, 1997.

[8] Furguson, P., Busse, F., Engberg, B., How, J., Tillerson, M., Pohlman, N.,

Richards, A., and Twiggs, R., Formation Flying Experiments on the Orion-Emerald

Mission, AIAA Space 2001 - Conference and Exposition, Albuquerque, 28-30 Au-

gust 2001.

[9] Groenewald, S., Development of a Rotary-Wing Test Bed for Autonomous Flight,

Masters Thesis, Stellenbosch University, 2006.

[10] Hartley, R., and Zisserman, A., Multiple View Geometry in computer vision, Second

Edition, Cambridge University Press, ISBN: 0521540518, 2003.

[11] Herselman, L., An Investigation into Underwater Navigation Accuracy with regards

to Sensor Combinations and Quality, Masters Thesis, Stellenbosch University, 2008.

145

BIBLIOGRAPHY 146

[12] Hou, H., Modeling Inertial Sensors Errors Using Allan Variance, Masters Thesis,

University of Calgary, 2004.

[13] Jacobs, M.J., A low cost, high precision star sensor, Masters Thesis, Stellenbosch

University, 1995.

[14] Kawano, I., Mokuno, M., Kasai, T., and Suzuki, T., Result and Evaluation of Au-

tonomous Rendezvous Docking Experiment of ETS-VII, AIAA Guidance Navigation

and Control Conference and Exhibit, Portland, Oregon, No. AIAA-1999-4073,

August 1999.

[15] Li, H., and Hartley, R., A Non-iterative Method for Correcting Lens Distortion from

Nine Point Correspondences, 6th Workshop on Omnidirectional Vision, Beijing,

China, 2005.

[16] Lourakis, M.I.A, A Brief Description of the Levenberg-Marquardt Algorithm Im-

plemeted by levmar, http://www.ics.forth.gr/lourakis/levmar/, 11 February

2005.

[17] Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints, Interna-

tional Journal of Computer Vision, Vol. 2, No. 60, pp. 91-110, 2004.

[18] Ma, O., Crabtree, D., Carr, R., Gonthier, Y., Martin, E., and Piedboeuf, J.C., Devel-

opment and Applications of a Simulink-Based Satellite Docking Simulator with Generic

Contact Dynamics Capabilities, IAF abstracts, 34th COSPAR Scientific Assembly,

The Second World Space Congress, Houston, USA, pp.U-3-02IAF, 10-19 October

2002.

[19] Madsen, K., Nielsen, H.B., and Tingleff, O., Methods for non-linear least squares

problems (2nd Edition), Technical Report No. IMM-REP-2004-01, Denmark Tech-

nical University, 2004.

[20] Malan, D.F., 3D Tracking between Satellites using Monocular Computer Vision, Mas-

ters Thesis, Stellenbosch University, 2004.

[21] Miller, D.P., and Wright, A., Autonomous Spacecraft Docking Using Multi-Color

Targets, Proceedings of the Sixth Topical Meeting on Robotics, Monterey, Cali-

fornia, February 1995.

[22] Ojanen, H., Automatic Correction of Lens Distortion by Using Digital Image Process-

ing, Rutgers University, Dept. of Mathematics technical report, July 1999.

[23] Peebles, P.Z., Probability, Random Variables and Random Signal Principles, 4 th Edi-

tion, McGraw-Hill, ISBN: 0073660078, 2001.

[24] Pers, J., and Kovacic, S., Nonparametric, Model-Based Radial Lens Distortion Correc-

tion Using Tilted Camera Assumption, Proceedings of the Computer Vision Winter

Workshop, Bad Aussee, Austria, pp. 286-295, February 2002.

BIBLIOGRAPHY 147

[25] Qureshi, F.Z., and Terzopoulos, D., Cognitive Vision for Autonomous Satellite Ren-

dezvous and Docking, Proceedings of the IAPR Conference on Machine Vision

Applications, Tsukuba Science City, Japan, pp. 314-319, 2005.

[26] Remondino, F., and Fraser, C., Digital Camera Calibration Methods: Considerations

and Comparisons, International Archives of Photogrammetry Remote Sensing

and Spatial Information Sciences, Dresden, Germany, Vol. XXXVI, No. part 5,

2006.

[27] Romano, M., Friedman, D.A., and Shay, T.J., Laboratory Experimentation of Au-

tonomous Spacecraft Approach and Docking to a Collaborative Target, Proceedings of

the AIAA Guidance Navigation and Control Conference, Keystone, CO, August

2006.

[28] Tsai, R.Y., A Versatile Camera Calibration Technique for High-Accuracy 3D Machine

Metrology Using Of-the-Shelf TV Cameras and Lenses, IEEE International Journal

Robotics and Automation, Vol. 3(4), pp. 323-344, 1987.

[29] Woffinden, D.C. and Geller, D.K., Relative Angles-Only Navigation and Pose Esti-

mation For Autonomous Orbital Rendezvous, AIAA/AAS Astrodynamics Special-

ist Conference and Exhibit, Keystone, Colorado, 21 - 24 August 2006.

[30] Zhang, Z., A Flexible New Technique for Camera Calibration, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(11), pp. 1330-1334, 2000.

Appendices

148

Appendix A

System Block Diagrams

This appendix gives an overview of the docking software. The purpose of the following block

diagrams is to give a functional description of the software rather than describing the exact

implementation of the software.

149

APPENDIX A. SYSTEM BLOCK DIAGRAMS 150

Figure A.1: Overview 1.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 151

Figure A.2: Overview 2.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 152

Figure A.3: Process Inner Loop data.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 153

Figure A.4: Camera Operation.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 154

Figure A.5: Initialise Camera.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 155

Figure A.6: Track Centroids.

APPENDIX A. SYSTEM BLOCK DIAGRAMS 156

Figure A.7: Use Model.

Appendix B

Derivation of Formulas in Chapter 5

B.1 Movement of stars’ centroids due to the rotation and translation

of the satellites around one another and the earth

In order to determine the star’s displacement in the image, figure B.1 is used.

Figure B.1: Movement of a star’s centroid due to chaser’s and target’s rotation around each other and
the earth.

Where:

• ∆T is the time elapsed between two successive images.

• The target satellite moves from point T to T’ in ∆T, moving through a distance S.

• The chaser satellite moves from point C to C’ in ∆T.

• Point O is the earth’s centre.

157

APPENDIX B. DERIVATION OF FORMULAS IN CHAPTER 5 158

• RT is the radius of the target satellite’s circular orbit.

• ωTE
is the target’s angular velocity around the earth.

• Dstar is the distance, in meters, the the star appears to have moved.

• dstar is the displacement of the star in the image.

• The star is located a point N.

Starting with:

Dstar = NP sin(λ) m

The stars displacement in the image can now be determined as follows:

dstar =

(

f

p

) (

Dstar

MC′

)

=

(

f

p

) (

(NP) sin(λ)

MC′

)

pixels (B.1.1)

Relative to the star at infinity:

PC′ ¿ MP

So that:

MC′ ≈ MP (B.1.2)

From B.1.1 and B.1.2:

dstar =

(

f

p

) (

(NP) sin(λ)

MP

)

And

MP = (NP) cos(λ)

Resulting in:

dstar =

(

f

p

) (

(NP) sin(λ)

(NP) cos(λ)

)

=

(

f

p

)

tan(λ) (B.1.3)

Now:

ρ = ωTE
∆T

σ = ωCT
∆T

APPENDIX B. DERIVATION OF FORMULAS IN CHAPTER 5 159

And:

λ = ρ + σ

= ωTE
∆T + ωCT

∆T

It is expected that:

ωTE
= ωCT

Therefore:

λ = 2ωCT
∆T (B.1.4)

Substituting B.1.4 into B.1.3 gives

dstar =

(

f

p

)

tan(2ωCT
∆T) pixels

B.2 Movement of stars’ centroids due to the rotation of the chaser

satellite around its own axis

Figure B.2: Movement of star’s centroid due to the rotation of the chaser satellite around its own axis.

The movement of a star’s centroid in the image due to the rotation of the chaser satellite is

determined using figure B.2. To determine the projection of Dstar onto the the image sensor,

start with the basic camera equation:

dstar =

(

f

p

) (

Dstar

Z

)

(B.2.1)

From figure B.2 it can be seen that:

Dstar = Z tan (θCZ
) (B.2.2)

APPENDIX B. DERIVATION OF FORMULAS IN CHAPTER 5 160

Substituting equation B.2.2 into equation B.2.1 results in:

dstar =

(

f

p

)

tan (θCZ
) pixels

B.3 Movement of the target’s lights’ centroids due to the relative

translation between the satellites

Figure B.3 is used to determine the zoom factor. The zoom factor, ZF, is defined as the ratio

between the distance, dT, between the new centroids (triangles) and the distance, dS, between

the old centroids (circles), where both dT and ds is in pixels:

ZF =
dT

dS
(B.3.1)

If the sides of the target is D meters, then from the basic camera equation:

dT =

(

f

p

) (

D

Z − ∆Z

)

dS =

(

f

p

) (

D

Z

)

So that:

ZF =
Z

Z − ∆Z

Figure B.3: Movement of the target’s lights’ centroids due to the relative translation between the satel-
lites.

Appendix C

Rapid Centroid Determination

Algorithm

This appendix presents the rapid centroid determination algorithm.

C.1 Some Background

The code given in section C.2 contains the essence of the rapid centroid determination algo-

rithm. Details such as range checking and memory addressing has been omitted for the pur-

pose of clarity. There is also made use of the following 2 functions to encapsulate unnecessary

detail:

1. Function pixel_value(x, y) returns the intensity value of the pixel in column x and row y.

2. Function add_and_delete_pixel(x, y) uses the information of the pixel in column x and row y

(such as the pixels position and intensity) to determine the centroid. The centre of intensity

is determined by weighing each pixel’s position with its intensity. The pixel is then cleared

to prevent it from being detected again.

Lastly, the position of the first pixel that passed the threshold is (startX, startY).

161

APPENDIX C. RAPID CENTROID DETERMINATION ALGORITHM 162

C.2 The Code

searchX = startX;

searchY = startY;

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

// Add pixels to the left & Delete

searchX = startX-1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX - 1;

}

// Store the left extreme, lu

lu = searchX + 1;

// Add pixels to the right & Delete

searchX = startX+1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX + 1;

}

// Store the right extreme,ru

ru = searchX - 1;

//First Search Downwards

ld = lu;

rd = ru;

searchMore = TRUE;

// Goto the next row (Downwards)

searchY = startY + 1;

APPENDIX C. RAPID CENTROID DETERMINATION ALGORITHM 163

while (searchMore == TRUE) {

startX = ld;

searchX = ld;

if (pixel_value(searchX,searchY) >= THRESHOLD) {

//Must search to left & right

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

// Add pixels to the left & Delete

searchX = searchX-1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX - 1;

}

// Store the left extreme, ld

ld = searchX + 1;

// Add pixels to the right & Delete

searchX = startX+1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX + 1;

}

// Store the right extreme, rd

rd = searchX - 1;

}

else {

// Only search to the right <= rd

while ((pixel_value(searchX,searchY) < THRESHOLD) && (searchX <= rd)) {

// Look to the right

searchX = searchX + 1;

}

APPENDIX C. RAPID CENTROID DETERMINATION ALGORITHM 164

if (pixel_value(searchX,searchY) >= THRESHOLD) {

// Store left extreme, ld

ld = searchX;

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

// Add pixels to the right & Delete

searchX = searchX+1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX + 1;

}

// Store the right extreme, rd

rd = searchX - 1;

}

else {

searchMore = FALSE;

}

}

// Goto the next row (Downwards)

searchY = searchY + 1;

}

//Now Search Upwards

searchMore = TRUE;

// Goto the previous row (Upwards)

searchY = startY - 1;

while (searchMore == TRUE) {

if (searchY < 1) {

break; // break while loop...

}

startX = lu;

searchX = lu;

APPENDIX C. RAPID CENTROID DETERMINATION ALGORITHM 165

if (pixel_value(searchX,searchY) >= THRESHOLD) {

//Must search to left & right

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

// Add pixels to the left & Delete

searchX = searchX-1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX - 1;

}

// Store the left extreme, lu

lu = searchX + 1;

// Add pixels to the right & Delete

searchX = startX+1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX + 1;

}

// Store the right extreme, ru

ru = searchX - 1;

}

else {

// Only search to the right <= ru

while ((pixel_value(searchX,searchY) < THRESHOLD) && (searchX <= ru)) {

// Look to the right

searchX = searchX + 1;

}

if (pixel_value(searchX,searchY) >= THRESHOLD) {

// Store left extreme, lu

lu = searchX;

APPENDIX C. RAPID CENTROID DETERMINATION ALGORITHM 166

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

// Add pixels to the right & Delete

searchX = searchX+1;

while (pixel_value(searchX,searchY) >= THRESHOLD) {

// Add Pixel & Delete

add_and_delete_pixel(searchX,searchY);

searchX = searchX + 1;

}

// Store the right extreme, ru

ru = searchX - 1;

}

else {

searchMore = FALSE;

}

}

// Goto the previous row (Upwards)

searchY = searchY - 1;

}

Appendix D

Photos of the Hardware

D.1 The Chaser and Target

Figure D.1: The chaser.

167

APPENDIX D. PHOTOS OF THE HARDWARE 168

Figure D.2: Another view of the chaser.

Figure D.3: The target.

APPENDIX D. PHOTOS OF THE HARDWARE 169

D.2 The Docking Mechanisms

Figure D.4: The pin is the chaser’s docking mechanism.

Figure D.5: The hole is the target’s docking mechanism.

APPENDIX D. PHOTOS OF THE HARDWARE 170

D.3 The Camera Unit

Figure D.6: The camera unit.

D.4 The Velocity Sensor

Figure D.7: The velocity sensor.

Appendix E

Homogeneous Vectors and the

Projective Camera Matrix

This appendix explains how homogeneous vectors are used and how to use the projective

camera matrix, without elaborating on the details of computer vision theory. For more detail

refer to [10].

E.1 Basic Knowledge Required

• A 2D point is normally represented by a pair of coordinates e.g. [x, y]T. This is said to be

a point in Euclidean 2-space, R
2

But the same point can be represented by a homogeneous vector in Projective 2-space, P
2.

The relationship between the two representations is:

R
2

P
2







(

x1
x3

)

(

x2
x3

)






⇐⇒







x1

x2

x3






(E.1.1)

In other words, to convert a point in P
2 to a point in R

2, one must divide the first 2

elements in the homogeneous vector (x1 and x2) by the third (x3) after which the third

element is discarded.

• Similarly, a 3D point in Euclidean 3-space, R
3, can also be represented by a homogeneous

vector in Projective 3-space, P
3:

R
3

P
3













(

x1
x4

)

(

x2
x4

)

(

x3
x4

)













⇐⇒













x1

x2

x3

x4













(E.1.2)

171

APPENDIX E. HOMOGENEOUS VECTORS AND THE PROJECTIVE CAMERA MATRIX 172

To convert a point in P
3 to a point in R

3, one must divide the first 3 elements in the

homogeneous vector (x1, x2 and x3) by the forth (x4) after which the forth element is

discarded.

E.2 Using the Projective Camera Matrix

Here the use of the projective camera matrix will be shown by means of an example. In this

example the projection of a point [xCAM
P , yCAM

P , zCAM
P]T, in the camera axis, on the image sensor

will be determined. Starting with:







x̃

ỹ

z̃






=











f
pX

0 u0

0
f

pY
v0

0 0 1

















xCAM
P

yCAM
P

zCAM
P






(E.2.1)

Where:

• [x̃, ỹ, z̃]T ∈ P
2 is the homogeneous vector representing the projection of the point

[xCAM
P , yCAM

P , zCAM
P]T ∈ R

3 onto the image sensor.

• The camera’s focal length is f meters.

• The principle point is given by [u0, v0]T where both u0 and v0 are in pixel units.

• The size of each pixel, in meters, is pX and pY along the camera’s x- and y-axis, respec-

tively.

Multiplication of the matrix with the vector yields:







x̃

ỹ

z̃






=













(

f
pX

)

xCAM
P + u0zCAM

P
(

f
pY

)

yCAM
P + v0zCAM

P

zCAM
P













From the relationship given by E.1.1, the position of point’s projection in the image sensor

[xsensor, ysensor]T ∈ R
2 is:

xsensor =
x̃

z̃

=

(

f
pX

)

xCAM
P + u0zCAM

P

zCAM
P

=

(

f

pX

)

(

xCAM
P

zCAM
P

)

+ u0 pixels

APPENDIX E. HOMOGENEOUS VECTORS AND THE PROJECTIVE CAMERA MATRIX 173

Similarly:

ysensor =
ỹ

z̃

=

(

f

pY

)

(

yCAM
P

zCAM
P

)

+ v0 pixels

These are the same results as what was obtained in section 4.3.

E.3 Inserting a DCM and Translation

If the point P is in the observed object’s axis, then it first has to be converted to a vector in the

camera axis:







xCAM
P

yCAM
P

zCAM
P






=

[

R t
]













xOBJ
P

yOBJ
P

zOBJ
P

1













(E.3.1)

Where:

• [xOBJ
P , yOBJ

P , zOBJ
P , 1]T ∈ P

3 is the point [xOBJ
P , yOBJ

P , zOBJ
P]T ∈ R

3 written as a homogeneous

vector. [xOBJ
P , yOBJ

P , zOBJ
P]T is the point P in the object’s axis.

• R is the DCM that converts a vector from the observed object’s axis to the camera’s axis.

• The translation of the object’s axis’ origin in the camera axis is t.

Combining equations E.2.1 and E.3.1 gives:







x̃

ỹ

z̃






=











f
pX

0 u0

0
f

pY
v0

0 0 1











[

R t
]













xOBJ
P

yOBJ
P

zOBJ
P

1













=











f
pX

0 u0

0
f

pY
v0

0 0 1
















R







xOBJ
P

yOBJ
P

zOBJ
P






+ t







This is then solved in the same way as shown in section E.2.

Appendix F

Hovercraft Model

In this appendix the hovercraft model is presented that was used to test the inner loop con-

trollers.

F.1 The Simulink Hovercraft Block

A model of the hovercraft was implemented using MATLAB’s Simulink. The hovercraft block

shown in figure F.1 models the hovercraft’s kinematics, the anti-aliasing filters, non-ideal sen-

sor gains, the misalignment between the sensor board’s and the hovercraft’s axes, the ADCs

and the effects of rotations on the accelerometers that are not on the hovercraft’s CG.

Figure F.1: Hovercraft block.

174

APPENDIX F. HOVERCRAFT MODEL 175

Referring to figure F.1, here follows a short description of the hovercraft block’s inputs and

outputs:

• FL, FR and FS are the output force of the left, right and side fan, respectively.

• a_cg_x and a_cg_y are the acceleration of the hovercraft’s CG along its own x- and y-axis,

respectively.

• a_acc_x and a_acc_y are the acceleration experience by the accelerometers, i.e. these ac-

celerations include the effects of angular accelerations and angular velocities around the

hovercraft’s z-axis.

• a_acc_x and a_acc_y are the acceleration outputs of the ADCs. (See section F.3 for more

detail.)

• omega_z [rad/sec] and omega_z [deg/sec] are the hovercraft’s angular velocity around

its z-axis in rad.s−1 and °.s−1, respectively.

• omega_ad_z is the angular rate output of the ADC. (See section F.3 for more detail.)

F.2 Using the Hovercraft Block

As was stated in section F.1, the hovercraft block does not include measurement noise or the

actuator dynamics. The actuators are modeled using the model from figure 7.8 and measure-

ment noise can be added using MATLAB’s White Noise block. This is demonstrated in figure

F.2.

Figure F.2: Using the hovercraft block.

APPENDIX F. HOVERCRAFT MODEL 176

F.3 The Inside of the Hovercraft Block

Figure F.3 shows the inside of the hovercraft block. The following subsections describe the

different subsystems.

F.3.1 “Hovercraft Kinematics” block

This block calculates the acceleration of the hovercraft’s CG and the angular acceleration of the

hovercraft around its z-axis as result of the 3 forces (FL, FR, FS) acting on the hovercraft:







aCGx

aCGy

αz






=







1
m

1
m 0

0 0 1
m

rCGy−rL

IZZ

rCGy−rR

IZZ

rCGx−rS
IZZ













FL

FR

FS







Where:

• FL is the output force of the fan on the left hand side of the hovercraft.

• FR is the output force of the fan on the right hand side of the hovercraft.

• FS is the output force of the sidewards fan on the hovercraft.

• [0, rL, 0]T is the position of FL in the hovercraft’s reference axis.

• [0, rR, 0]T is the position of FR in the hovercraft’s reference axis.

• [rS, 0, 0]T is the position of FS in the hovercraft’s reference axis.

• [rCGx, rCGy, 0]T is the position of the CG in the hovercraft’s reference axis.

• IZZ is the hovercraft’s moment of inertia around its z-axis.

• m is the hovercraft’s mass.

• The hovercraft’s CG’s acceleration along its x- and y-axis is aCGx and aCGy, respectively.

• αz is the angular acceleration of the hovercraft around its z-axis.

F.3.2 “Influence of rotation on accelerometer measurements” block

This block adds the influence of rotations on accelerometer measurements:

aACCx = aCGx − (rACCy − rCGy)αz − (rACCx − rCGx)ω2
z

aACCy = aCGy + (rACCx − rCGx)αz − (rACCy − rCGy)ω2
z (F.3.1)

Where:

• [rACCx, rACCy, 0]T is the position of the accelerometers in the hovercraft’s reference axis.

• The acceleration at the accelerometer’s position is aACCx and aACCy along the hovercraft’s

x- and y-axis, respectively.

• ωz is the hovercraft’s angular velocity around its z-axis.

APPENDIX F. HOVERCRAFT MODEL 177

F.3.3 “ADC 1” block

This block simulates the accelerometers’ non-ideal gains, the misalignment between the sensor

board’s and hovercraft’s axes, and the ADCs:

[

aADx

aADy

]

= Gacc







[

1
Kx

0

0 1
Ky

]

Tp







aACCx

aACCy

0






+

[

D1

D2

]







Where:

• aADx and aADy are the output of the ADCs.

• Kx and Ky are the accelerometers’ calibration constants.

• Tp is a partial DCM. Tp is only the first two rows of TCHR→SB, the DCM that gives the

sensor board’s orientation with respect to the hovercraft’s axis.

• D1 and D2 are the biases of the x- and y-axis accelerometers, respectively.

• Gacc is the theoretical gain from the acceleration to ADC’s output.

F.3.4 “ADC 2” block

This block simulates the gyro’s non-ideal gain, the misalignment between the sensor board’s

and hovercraft’s axes, and the ADC:

ωADz = Ggyro

(

t33

Kθ
(ωz(deg)) + D3

)

Where:

• ωADz is the ADC’s output.

• Kθ is the gyro’s calibration constant.

• t33 is the element in the 3rd column of the third row of TCHR→SB, the DCM that gives the

sensor board’s orientation with respect to the hovercraft’s axis.

• ωz(deg) is the hovercraft’s angular velocity in °.s−1.

• D3 is the gyro’s bias.

• Ggyro is the theoretical gain from the angular velocity to ADC’s output.

F.4 Conclusion

This appendix described the hovercraft model used to test the inner loop controllers. The

values of all the parameters were determined in chapter 7.

APPENDIX F. HOVERCRAFT MODEL 178

Figure F.3: The inside of the hovercraft block.

Appendix G

Modeling Of Mechanical Vibration

G.1 The Model

The model used to model the mechanical vibrations is shown in figure G.1.

Figure G.1: The vibration model.

Where:

• x is the displacement of the sensor board.

• y is the displacement of the hovercraft body.

• m is the mass of the sensor board.

• M is the mass of the hovercraft body.

• k is the spring constant.

• f is the vibrational force.

This system is described by 2 differential equations:

Mÿ = f

mẍ = k(y − x)

The Laplace transform of the differential equations are given by:

Y =
F

Ms2
(G.1.1)

s2X =
k

m
(Y − X) (G.1.2)

179

APPENDIX G. MODELING OF MECHANICAL VIBRATION 180

Substituting equation G.1.1 into equation G.1.2 results in:

X =

(

k

Mm

)





F

s2
(

s2 + k
m

)



 (G.1.3)

The next step is to determine the influence of f on ẍ. Define

a = ẍ

whose Laplace transform is:

A = s2X (G.1.4)

From equations G.1.3 and G.1.4, the transfer function from the mechanical vibration, f , to the

acceleration, a, measured by the accelerometer can be determined as:

H(s) =
A

F

=

(

k

Mm

)

(

1

s2 + k
m

)

(G.1.5)

As the vibrations are due to the unbalanced fans, it is expected that the vibrations will have

a sinusoidal nature. Using this assumption the measured acceleration due to the vibrations is

described by:

A =
V

(

k
Mm

)

ωF
(

s2 + k
m

)

(

s2 + ω2
F

)

Where V is the amplitude of the vibration and ωF is the vibration’s frequency.

G.2 Conclusion

From equation G.1.5 it can be seen that the transfer functions gain is directly proportional to

the spring constant, k, and indirectly proportional to the mass of the sensor board, m, and the

hovercraft, M. Therefore the influence of the vibrations can be reduced by increasing the mass

of either the sensor board or the hovercraft or both. Note that it is much more practical to

increase the sensor board’s mass than the hovercraft’s mass as the sensor board only weights a

few grams. (It’s mass can be increased several fold without influencing the overall mass.)

Because of this, the sensor board has been mounted on a large, thin aluminium plate. This

was done so that not only is the sensor board setup’s mass increased, but also its moment of

inertia around the angular gyros axis.

Also, by increasing the sensor board’s mas, m, and decreasing the spring constant, k, the

transfer function’s cut off frequency is reduced.

