
The Evaluation of a SoC Processor as an On-Board

Computer for a Low Earth Orbit Satellite

by

Jacques Jordaan

Thesis presented at the University of Stellenbosch
in partial fulfilment of the requirements for the

degree of

Master of Science in Electrical & Electronic Engineering

Department of Electrical & Electronic Engineering
University of Stellenbosch

Private Bag Xl, 7602 Matieland, South Africa

Study leader: Mnr. H. Berner

Apri12005

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original
work and that I have not previously in its entirety or in part submitted it at any university
for a degree.

Il

Stellenbosch University http://scholar.sun.ac.za

Abstract

The use of commercial-off-the-shelf components in low earth orbit (LEO) satellite sys-

tems has become a very popular design trend. Not only are many of these components
sufficiently radiation tolerant, but are also less expensive than their space qualified coun-
terparts. Commercial processors are already used in the on-board computer (OBC) of
satellites like SUNSAT 2004, CanX and SNAP-I. With the increasing demand for smaller,
less expensive satellites and a shorter time-to-market window, the feasibility of implement-
ing a satellite's OBC as a system-on-a-chip (SoC) is now considered.

This thesis describes a single-chip implementation, excluding memory, of a LEO mi-
crosatellite's OBC on the commercial grade Altera Excalibur embedded processor. A
typical satellite OBC system was developed on the Excalibur device to test the function-

ality and performance of the device as a single-chip OBC.

III

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Die gebruik van kommersiële komponente in lae aardwentelbaan satelliet stelsels het 'n
baie gewilde ontwerps neiging geword. Meeste van hierdie komersiële komponente is nie
net voldoende bestand teen die radiasie in die ruimte nie, maar boonop goedkoper as
soortgelyke komponente wat spesifiek vir de ruimte vervaardig is. Kommersiële verwerkers

word alreeds gebruik in die aanboord rekenaar (AR) van satelliete soos SUNSAT 2004,
CanX and SNAP-I. Met die aahoudende aanvraag vir kleiner, goedkoper en 'n korter
ontwikkelings tydperk, word die implementering van 'n satelliet se AR as 'n stelsel-op-'n-
skyfie nou oorweeg.

Hierdie tesis beskryf 'n enkel-skyfie implementasie, geheue uitgesluit, van 'n lae aardwen-
telbaan mikrosatelliet se AR op die kommersiële Altera Excalibur geïntregreerde verw-
erker. 'n Tipiese AR stelsel was ontwikkelop die Excalibur verwerker om die funksion-
aliteit en werkverrigting van die toestel as 'n enkel-skyfie AR te toets.

iv

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I would like to thank the following people for their contributions:

• Heiko Berner, my supervisor, for his advice

• Francois Retief for all his advice expecially with eCos and the GNU C-Tools

• My family for their support and motivation

v

Stellenbosch University http://scholar.sun.ac.za

Contents

Declaration 11

Abstract 111

Opsomming IV

Acknowledgements V

Contents VI

List of Figures xii

List of Tables XIV

List of Abbreviations and Acronyms XV

1 Introduction

1.1 Satellite On-Board Computer Background

1.2 Modern Small Satellite Design

1.3 An OBC as a SoC.

1.4 Document Outline

1

1

2

3

4

2 Suitability of the Excalibur Processor

2.1 Processor Requirements

2.2 Excalibur Models

2.3 Feasibility of the EPXA1 Device as OBC

5

5

6

7

vi

Stellenbosch University http://scholar.sun.ac.za

Contents vii

2.4 Conclusion.................................... 8

3 The EPXA1 Embedded Processor PLD

3.1 The EPXA1 Device

3.1.1 The ARM922T Processor

3.1.2 Bus Architecture

3.1.3 On-Chip Memories

3.1.4 External Memory Interfaces

3.1.5 Embedded Peripherals ...

3.1.6 Programmable Logic Architecture

3.1.7 Embedded Peripherals Memory Map

3.2 The Excalibur EPXA1 Development Kit

3.2.1 The Development Board ..

3.2.2 The Development Software .

9

9

9

10

11

11

12

13

14

14

14

16

4 Software Environment

4.1 The ARM Architecture.

4.1.1 The ARM Instruction Set

4.2 Programming Languages

4.2.1 The C Programming Language

4.2.2 Compiler Tools .

4.2.3 VHDL Language

4.2.4 Altera's Quartus II

4.3 Operating System Selection

4.3.1 Nucleus RTOS

4.3.2 RTEMS

4.3.3 Linux

4.3.4 eCos .

17

17

18

21

21

22

22

23

23

23

23

24

24

Stellenbosch University http://scholar.sun.ac.za

Contents VUl

4.4 Conclusion.................................... 25

5 Development Environment

5.1 Introduction to eCos . . .

5.1.1 Hardware Abstraction Layer

5.1. 2 eCos Kernel . .

5.1.3 Device Drivers.

5.2 Cygwin Tools

5.3 eCos Configuration Tool

5.4 Booting the EPXA1 Device

5.4.1 Boot from Flash Mode

5.4.2 Boot Code. .

5.4.3 Linker Script

5.4.4 The RedBoot ROM Monitor.

5.4.5 RedBoot Startup Procedure

5.5 Configuring the PLD .

26

26

27

28

30

30

30

31

31

31

32

32

32

35

6 EPXAI OBC Design

6.1 EPXA1 OBC Design Overview

6.2 Processor Setup ..

6.3 Memory Interfaces

6.3.1 SDRAM Controller

6.3.2 Expansion Bus Interface (EBI)

6.4 AMBA AHB Bus System.

6.4.1 Overview

6.4.2 AMBA AHB Operation

6.4.3 The AHB Bridges. . . .

6.4.4 AHB Bridge Operation.

37

38

39

40

40

40

42

42

42

44

45

Stellenbosch University http://scholar.sun.ac.za

Contents ix

6.5 Interrupt Controller. 46

6.5.1 Interrupt Controller Interface 47

6.5.2 Operating Modes 47

6.5.3 Interrupt Mode Implementation 48

6.6 Watchdog Timer 50

6.7 Stripe UART 50

6.8 Reset Module 51

6.9 General Purpose Timers 52

6.10 Ethernet Controller 53

6.11 AHB Bus Interface 54

6.12 EDAC Unit 55

6.12.1 Choosing an EDAC Data Coding Scheme . 56

6.12.2 The Quasi-Cyclic (16,8) Code 56

6.12.3 Physical EDAC Implementation 57

6.13 PLD UART . 58

6.14 I2C Controller 59

6.14.1 I2C Overview 59

6.14.2 I2C Implementation. 59

7 Tests and Measurements 60

7.1 Power Consumption 60

7.1.1 PLD Power Consumption 60

7.1.2 Embedded Stripe Power Consumption 60

7.1.3 Total Power Consumption 63

7.1.4 Low-Power Mode 64

7.2 Floating Point Test . . . 64

7.2.1 Adjusting the PLLI Output Clock 65

Stellenbosch University http://scholar.sun.ac.za

Contents x

7.2.2 Controlling the Use of the Cache Memory

7.2.3 Floating Point Test Results

66

66

67

67

67

68

68

68

69

70

71

7.3 Interrupt Controller .

7.4 Watchdog Timer ..

7.5 General Purpose Timers

7.6 Ethernet ..

7.7 PLD UART

7.8 EDAC Performance.

7.8.1 EDAC Accuracy

7.8.2 EDAC Memory Cycle Times.

7.9 The I2C Bus .

8 Conclusions and Recommendations

8.1 Conclusions ...

8.1.1 Reliability

8.1.2 Power Consumption

8.1.3 Performance .

8.1.4 Architecture.

8.1.5 Development Tools

8.1.6 EPXA1 as Single-Chip OBC

8.2 Recommendations . . .

8.2.1 Radiation Tests

8.2.2 Peripheral Interfaces

8.2.3 EDAC Unit

8.2.4 Development Board .

73

73

73

73

74

74

75

75

75

75

76

76

76

A PLD Modules 77

A.1 Block Diagram .. 78

Stellenbosch University http://scholar.sun.ac.za

Contents Xl

A.2 PLDMaster Interface . 79

A.3 PLD Slave Interface . 80

A.4 PLD UART 81

B PLD Interrupt Controller 82

B.1 Block Diagram 83

B.2 Installed ISRs and DSRs 84

B.3 Installed VSR 87

C I2C Measurements 89

D CD-ROM Data 90

Bibliography 91

Stellenbosch University http://scholar.sun.ac.za

List of Figures

1.1 Satellite's Subsystems .

1.2 The use of COTS technologies to optimize spacecraft mass/cost

1

3

72.1 The Excalibur Architecture [IJ .

3.1 The Excalibur Device System Architecture [IJ 10

3.2 Functional Block Diagram of ARM922T [2J 11

3.3 The Altera Excalibur EPXA1 Development Board. 15

4.1 ARM Register Organization . . . 19

4.2 Program Status Register Format 20

5.1 eCos System Architecture 27

5.2 eCos Configuration Tool 31

5.3 EPXA1 Memory Map Layout 33

5.4 Flow Diagram for Configuring the FPG A Contents 36

6.1 General Satellite OBC Model 37

6.2 EPXA1 OBC Model 39

6.3 EPXA1 SDRAM Controller Connection to SDRAM 40

6.4 Expansion Bus Interface Block Diagram [IJ. 41

6.5 ARB transaction waveform [IJ 43

6.6 Functional Block Diagram of ARB Bridge [IJ 44

6.7 The EPXA1 Interrupt Controller in the Stripe [IJ 46

Xll

Stellenbosch University http://scholar.sun.ac.za

List of Figures xiii

6.8 EPXA1 eCos Interrupt Handling Flowchart 49

6.9 EPXA1 Reset Sequence 52

6.10 AHB Bridges

6.11 SEUs in the S80/T OBC program memory at 1330-km altitude [3] .

54

55

6.12 Encoder Schematic 56

6.13 Decoder Schematic 57

7.1 Current Consumed by the Embedded Stripe versus AHB1 Clock Frequency [4] 61

7.2 Current Consumed Versus Clock Frequency Due to the Embedded Stripe
Bridge Interface [4] .. 62

7.3 Current Consumed Versus Clock Frequency Due to the DPSRAM Interface [4] 62

7.4 Flowchart for Reprogramming PLL1

7.5 RedBoot with network package

7.6 Memory Write Cycle

7.7 I2C Write Transaction in Standard Mode.

7.8 I2C Read Transaction in Standard Mode

A.1 OBC Modules Implemented in the PLD

A.2 ASM Chart of Master Interface

A.3 ASM Chart of Slave Interface

A.4 ASM Chart of PLD UART. .

65

68

69

71

72

78

79

80

81

B.1 6-Bit Priority Interrupt Mode Block Diagram 83

C.1 re Write Transaction in Fast Mode 89

C.2 I2C Read Transaction in Fast Mode. 89

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Excalibur Characteristics . 8

3.1 Memory Map Peripherals and Elements. .. 14

4.1 ARM v4 Processor Modes ..

4.2 Exception Processing Modes.

18

21

. .. 355.1 SBI File Format .

6.1 DPSRAM Interface Modes and Widths ., 59

7.1 IGRF Test Results (100 loops) .

7.2 Memory Cycle Times

66

70

XIV

Stellenbosch University http://scholar.sun.ac.za

List of Abbreviations and Acronyms

ADCS
ADS
AHB
ALU
AMBA
APEX
ARM

BGA
CAM
CAN
COTS
CPU
CD-ROM
DAC
DDR
DHCP
DIP
DPSRAM
DSR
EBI
eCos
EDAC
ESA
ESB
FIFO
FIQ
FPGA

FPU

GCC
GDB

- Attitude Determination and Control System
- ARM Development Suite
- Advanced High-performance Bus
- Arithmetic and Logic Unit
- Advanced Microcontroller Bus Architecture
- Advanced Programmable Embedded Matrix
- Advanced RISC Machines
- Ball-Grid Array
- Content Addressable Memory
- Controller Area Network
- Commercial-Off- The-Shelf
- Central Processing Unit
- Compact Disc ROM
- Digital-to-Analog Converter
- Double Data Rate
- Dynamic Host Configuration Protocol
- Dual In-line Package
- Dual-Port SRAM
- Deferred Service Routine
- Expansion Bus Interface
- Embedded Configurable OS
- Error Detection and Correction
- European Space Agency
- Embedded System Block

- First- In- First-Out
- Fast Interrupt Request
- Field Programmable Gate Array

- Floating Point Unit
- GNU Compiler
- GNU Debugger

xv

Stellenbosch University http://scholar.sun.ac.za

List of Abbreviations and Acronyms

HAL
HDL
IC
IEEE
IGRF
lP
IRQ
ISR
12C

I/O
JTAG
Kbyte
LED
LEO
LUT
LVDS
MEMS
MIPS

MMU
MHz
Mbps
MLQ
OBC
OBDH
OS
PLD
PLL

- Hardware Abstraction Layer
- Hardware Description Language
- Integrated Circuit

- Institute of Electrical and Electronics Engineers
- International Geomagnetic Reference Field
- Intellectual Property
- Interrupt Request
- Interrupt Service Routine
- Interconnected Integrated Circuit
- Input/Output
- Joint Test Action Group
- Kilobytes (1024 bytes)
- Light Emitting Diode
- Low Earth Orbit
- Look-Up Table

- Low Voltage Differential Signalling
- Micro- Electro- Mechanical Systems
- Million Instructions Per Second
- Memory Management Unit
- Megahertz
- Megabits per second
- Multi-Level Queue
- On-Board Computer
- On-Board Data Handling
- Operating System
- Programmable Logic Device
- Phase Lock Loop

RAM - Random Access Memory
RedBoot - Red Hat Embedded Debug and Bootstrap
RISC - Reduced Instruction Set Computer
ROM - Read Only Memory

RTC
RTEMS
RTOS
SAA
SDR

SDRAM
SEU

SoC
SOPC

- Real-Time Clock
- Real-Time Executive for Multiprocessor Systems

- Real-Time Operating System
- South Atlantic Anomaly
- Single Data Rate

- Synchronous Dynamic Random Access Memory
- Single Event Upset

- System-on-Chip
- System on a Programmable Chip

XVI

Stellenbosch University http://scholar.sun.ac.za

List of Abbreviations and Acronyms

SRAM
SSTL

TCP/lP
TFTP
UART
VHDL
VSR

- Static Random Access Memory
- Surrey Satellite Technology Limited
- Transmission Control Protocol/Internet Protocol
- Trivial File Transfer Protocol
- Universal Asynchronous Receiver Transmitter
- Very high-speed integrated circuit HDL
- Vector Service Routine

xvii

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Satellite On-Board Computer Background

A satellite consists of various subsystems. Each of these subsystems performs different
tasks on-board the satellite. Figure 1.1 illustrates a typical satellite system with some of
its subsystems.

One of these subsystems is the on-board data handling (OBDH) system. The OBDH is

the key to the satellite's sophisticated capabilities. At the heart of the OBDH system

Figure 1.1: Satellite's Subsystems

1

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 2

is an on-board computer (OBC). Depending on the satellite's requirements, the OBC
will typically run a real-time multitasking operating system that performs various tasks.
These tasks can include payload operations, attitude control, orbit maintenance and basic

housekeeping functions. There is usually a secondary OBC to help out with computing-
intensive tasks and it can also acts as a complete backup if the primary OBC fails. All the
major subsystems and payloads can have their own built-in micro controllers that provide
the low-level data processing and interfaces for that particular subsystem with the OBC.

System startup software (boot code) usually resides permanently in nonvolatile mem-
ory and is executed by the OBC at startup. All the primary software is also stored in
nonvolatile memory and loaded into random-access memory (RAM) after booting, and
executed in RAM. This software can be modified or upgraded at any time via the con-
trol ground station. The control ground station normally formulates all the telecommand
instructions into a diary format for the satellite's OBC to execute at some point in the
future. Data from the subsystems and payloads are also gathered by the OBC to be
transmitted to the control ground station. The OBC can also issue its own commands
in response to a subsystem's inputs. In short, a satellite is operated via the primary

computer running a real-time operating system.

1.2 Modern Small Satellite Design

With the increasing development and miniaturization of advanced microprocessors and
commercially-off-the-shelf (COTS) technologies, satellites are able to be made smaller
and more cost-effective. This has enabled more countries to start with their own space
research programs. The "smaller, faster and cheaper" design trends have been more suc-
cessful in small companies and research groups than in the large aerospace companies [3].
Recent technological advances have led to integration of complex electronics systems onto
a single chip, the so-called System-on-a-Chip (SoC). SoC technology is where not only
the central processor is on the chip, but the memory and peripheral electronics as well.
SoC technology has the following advantages:

• Reduction of system size

• Flexibility of the system

• Reduction of development period by using existing intellectual property (lP) models

This technology and the advent of Micro-Electro-Mechanical Systems (MEMS) can lead

to even smaller, more intelligent satellites that can be mass-produced reasonable cheaply

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 3

Emerging
Technologies

Mature
Technologies

....
UIo
U
.t=
ra
l-
v
(i)
v
ra
0.
U)

COTS
Technologies

Spacecraft Mass (kg)

Figure 1.2: The use of COTS technologies to optimize spacecraft mass/cost

in the near future. The graph in Figure 1.2 illustrates how the use of COTS technologies
optimizes spacecraft mass/cost.

1.3 An OBC as a SoC

The idea of implementing a satellite's OBC on a single chip is the result of the enduring
trend to produce smaller satellites. Surrey Space Centre has already implemented this idea
by scaling down an existing OBC to a SoC [5]. Their entire OBC, excluding memory, was
implemented on a single high-density programmable logic array chip using soft lP cores.
The results showed that it is possible to implement the functionality of a small satellite's
OBC on a single programmable logic device. In 2001 the Altera Corporation introduced
their Excalibur embedded processor. The Excalibur device combines programmable logic,
memory and a processor core to allow the integration of an entire system on a single
programmable chip. This document evaluates the use of Altera's Excalibur embedded
processor for an OBC.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 4

1.4 Document Outline

• Chapter 1: Introduction
This chapter provides background information on the thesis subject.

• Chapter 2: Suitability of the Excalibur Processor
The aBC processor requirements are covered and a suitable Excalibur embedded pro-
cessor is chosen.

• Chapter 3: The EPXAI Embedded Processor PLD
Details of EPXAl embedded processor PLD are discussed.

• Chapter 4: Software Environment
A suitable software environment and operating system are chosen that will be used
to program the EPXA 1 device.

• Chapter 5: Development Environment
A brief overview of the selected operating system and development tools are given in
this chapter.

• Chapter 6: EPXAI aBC Design
This chapter covers the hardware and software design of the EPXAl aBC.

• Chapter 7: Tests and Measurements
In this chapter, the various aBC tests and results are discussed.

• Chapter 8: Conclusions and Recommendations
This concluding chapter summarizes the advantages and disadvantages of an EPXAl
aBc. Some suggestions are also given on how to improve the EPXAl aBC and
where further testing is required.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Suitability of the Excalibur Processor

The main concern when using COTS products is that they are not originally made for use
in the harsh space environment. To get an idea whether a certain COTS processor can be

used in space and as a satellite's OBC, it is necessary to draw a set of general requirements
for the processor. In the following section a list of requirements are given that helps with
the selection of a processor for a typical satellite's OBC. These requirements are then
applied to the Excalibur family of embedded processors to determine the feasibility of the
processor as a satellite's OBC.

2.1 Processor Requirements

The following list gives the requirements for a typical processor to be used as a satellite's
OBC followed by a brief explanation. It must be stated that these requirements are not
specific to any satellite and may differ according to each satellite's own requirements.

• Operate in space

First and probably most important is that the processor must be able to function
correctly in the space environment. It must be able to withstand the radiation
effects that the space environment inflicts. The three main effects of radiation is
single-event upsets (SEU), total dose damage and latch ups. To minimize the effects
of radiation, the processor should have a large manufacturing process and the use
of cache memory disabled. The processor must also be able to handle the thermal
extremes experienced in space. For a LEO satellite the temperature ranges are
typically between -15 DC and +45 DC. Another good indication is to determine if
the processor has a space history and what the results were. For a more in depth

look at aspects affecting processors in the space environment, consult [3] and [6].

5

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Suitability of the Excalibur Processor 6

• Low power consumption, low power mode is necessary
Power is a limited resource on a satellite and it must be used very sparingly. There-

fore, the processor must use as little power as possible and ideally contains a low
power mode.

• Processor speed
The processor must be fast enough to finish all its tasks on time.

• Support for several interfaces
The processor must be able to interface with different types of memory and I/O
devices.

• General I/O ports
A sufficient number of general I/O ports are needed to support the various interfaces
and other software implementations.

• Additional built in functions
Any built in functions like timers or interrupt controllers that IS useful for the
satellite, will be very beneficial.

• User friendly programming interface
The processor must be easy programmable or re-programmable.

2.2 Excalibur Models

The Excalibur device consists of the ARM922T processor core, embedded peripherals
and a programmable logic device (PLD). There are currently three Excalibur models
available from the Altera Corporation [7]. They are the EPXA1, EPXA4 and EPXA10.
Figure 2.1 shows the Excalibur architecture of the three models. The three models contain
the same ARM processor (ARM922T) core and peripheral devices. There are, however,
differences in the on-chip memory, external memory interfaces, user I/O pins and PLD
size. The EPXA1 device features proved more than enough for an implementation of a
satellite's OBC. On this basis and the fact that the EPXA1 is the lowest cost member of
the Excalibur family, it was chosen for this study. When this study was started, Altera
provided an EPXA1 development kit. The development kit consisted of a development
board with the EPXA1 device, development software and the necessary cables. It was
therefore not necessary to design a development board to evaluate the EPXA1 device. A
full description of the EPXA1 device and development kit is given in the next chapter.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Suitability of the Excalibur Processor 7

UART Elde<nal
Memory
Interfaces

Watchdog
Timer

Interrupt
Centroller ARM922T

Embedded
Processor
Stripe

Timer

PLD

Figure 2.1: The Excalibur Architecture [1]

2.3 Feasibility of the EPXAl Device as OBC

To evaluate the EPXAI device according to the requirements stated in section 2.1, it is
only necessary to look at certain aspects of the device. These aspects are summarized in
Table 2.1.

The most concerning aspect that arises from Table 2.1 is that the EPXAI device may not
be sufficiently tolerant against the radiation present in the space environment. This is due
to the very small process size of 0.18 11m. With such a small manufacturing process, the
silicon density is high and the device will be very susceptible to the radiation. A feasible
process size is at least 0.5 11m [8], but in previous studies [9], a process size of 0.35 11m

was also acceptable. The PLD architecture uses SRAM configuration elements. SRAM
type PLDs do not have strong tolerance against SEU caused by space radiation.

The commercial temperature range is very limited, but could be overcome with a good
thermal design. The processor's cache must be disabled to minimize the effects of space
radiation. Unfortunately this will cause a decrease in performance. The power consump-
tion of the EPXAI device is very hard to predict. The total power consumption is the sum
of the stripe's (processor core and hard peripherals of EPXAl) power and PLD's power.
Typical power requirements is a consumption of less than 1 W [8] for the processor. This

could be compared to the power consumption of 160 mW for the ARM922T core, which

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Suitability of the Excalibur Processor 8

Table 2.1
EXCALIBUR CHARACTERISTICS

Characteristic I Unit I Value
Process size /-tm 0.18
Supply voltage V 1.8
Operating temperature DC 0-85
Space history No
Power consumption W 0.6948 + PPLD

Low power mode Yes (only EPXA1)
Processor frequency (max) MHz 200
MIPSl 210
Available User I/O 186

is well below this typical value.

Some more attractive features are the large number of user I/O pins available, the low
power mode and maximum performance of 210 MIPS. The EPXA1 device also contains
a few built in peripheral modules like the interrupt controller, UART and memory con-
trollers, while the programmable logic allows the implementation of additional soft-core
peripherals.

2.4 Conclusion

The EPXA1 device complies with all the general requirements of a satellite's OBC listed,
except being radiation tolerant. This is mainly due to a too small manufacturing process

size and the use of SRAM configuration elements.

The next chapter will discuss the details of the EPXA1 device and development board

that was used in this study.

1Millions Of Instructions Per Second, measured with Dhrystone 2.1

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

The EPXAI Embedded Processor PLD

The EPXA1 device was chosen from the Excalibur family of embedded processors to
implement an OBC as a SoC. In the following section an overview of the EPXA1 device
will be given followed by details of the EPXA1 development board used to evaluate the
EPXA1 device.

3.1 The EPXA1 Device

Altera's Excalibur EPXA1 (EPXA1F484) device is the lowest cost member in the Ex-
calibur family. The device can be divided into two parts, the stripe and the PLD. The
stripe contains the ARM922T processor, dual-port and single-port SRAM memories, pe-
ripherals and debug modules. The PLD section is similar to Altera's APEX20KE FPGA.
Figure 3.1 shows the system architecture of the embedded stripe and the interfaces to the
PLD portion of the device. The following sections will give a brief overview of each of the
modules in the stripe.

3.1.1 The ARM922T Processor

The ARM922T processor is a member of the ARM9TDMI family of general-purpose RISC
(Reduced Instruction Set Computer) microprocessors that includes the ARM9TDMI core,
cache and a memory management unit (MMU). Figure 3.2 shows the functional block di-
agram of the processor. The ARM9TDMI processor core uses the ARM v4T instruction

set. It supports the 32-bit ARM or 16-bit Thumb modes. The 32-bit architecture opti-
mizes the data transfer efficiency and therefore improves the performance of the processor.

The processor also supports big and little Endian modes and has a task identifier register
specifically designed for real-time operating system support. It uses a five stage pipeline

9

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAI Embedded Processor PLD

External

Embedded Processor Stripe

AHB2

Stripe Interlace

PLO
User'e S!ffY€ Modules. in the PLO

10

_ PLO Clock Donaiuts] DAHB2 Clock Dom.li1DProcessor Clock Domain (AHBl) LJ SDRAM Qod Domain i"SIIS Connel
hl.

Figure 3.1: The Excalibur Device System Architecture [I]

(fetch, decode, execute, memory and write) and a Harvard architecture (separate instruc-
tion and data paths) to achieve a performance ratio of 1.05 MIPS per MHz. The processor
contains 8 Kbytes of instruction and 8 Kbytes of data caches along with their associated
MMUs. The processor also has a write buffer and AMBA bus interface. The cache can
be disabled.

3.1.2 Bus Architecture

The Excalibur device implements the AMBA based advanced high-performance bus (AHB)
architecture. AMBA is a high-performance bus standard designed by ARM. The device
uses two AHBs, AHBI and AHB2. Each bus has 32-bit address, read and write data
buses.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAl Embedded Processor PLD

AMBA ASB
t-----"""'I bUs

interlace

IPAI31:0J

Trace
interface

port

ARM9TDMI
Processor oore

(Integ ral Embedded IC E)

JTAG
Data
cache

Data
MMU

DINDEX[5:0]

Figure 3.2: Functional Block Diagram of ARM922T [21

3.1.3 On-Chip Memories

11

Two blocks of 16 Kbytes SRAM, operating at the ARB1 clock speed, are situated in the
stripe. The memory is accessible by both ARB1 and ARB2 and the dual block architecture

allows ARB1 and ARB2 to access one exclusive block at the same time.

Apart from the SRAM, there is also one block of 16 Kbytes dual-port SRAM (DPSRAM).
The DPSRAM is not only accessible from the stripe (ARB1 and ARB2), but also from
the PLD. This feature can serve as an application interface for sharing data between the
processor and PLD.

3.1.4 External Memory Interfaces

An SDRAM controller and Expansion Bus Interface (EBI) serve as interface to external
memory connected to the Excalibur device.

The SDRAM controller uses a 16-bit wide data bus and supports two blocks of up to 256

Mbytes SDRAM each. It supports single data rate (SDR) or double data rate (DDR)
SDRAMs at up to 133 MRz or 266 MRz respectively.

The Expansion Bus Interface (EBI) is a 16-bit, bi-directional external memory interface.
It provides an interface between ARB2 and external SRAM, flash or memory mapped

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAI Embedded Processor PLD 12

devices. The EBI can accommodate four blocks of up to 32 Mbytes of external memory
or memory-mapped peripherals.

3.1.5 Embedded Peripherals

The Excalibur contains various peripherals in the stripe. Each peripheral is briefly de-
scribed in this section.

3.1.5.1 Interrupt Controller

The Interrupt controller interfaces with the processor's two interrupt inputs: interrupt
request (IRQ) and fast interrupt request (FIQ). The interrupt controller allows up to
10 interrupts from peripherals within the stripe, one external interrupt from a pin and
6 interrupts from the PLD stripe interface. The six interrupt lines from the PLD can

either operate as 6 individual IRQs or as an interrupt bus (up to 64 IRQs with a separate
interrupt controller in PLD). The interrupt controller contains 24 configuration and status
registers that are only accessible via the embedded processor. Each of the 17 interrupt
sources has a corresponding priority register which contains its priority value and specifies
whether it is FIQ or IRQ.

3.1.5.2 UART

The universal asynchronous receiver transmitter (UART) provides a basic low-speed (up
to 230K Baud) interface between the device and other UART devices. It also has modem
communication support.

3.1.5.3 Watchdog Timer

The watchdog timer is a one-shot interval timer used to protect a system against software
bugs or other hardware failures.

3.1.5.4 Configuration Logic

The configuration logic module in the stripe is responsible for setting up the system for
the embedded processor to boot. It is also used for transferring configuration data to the

PLD array.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAI Embedded Processor PLD 13

3.1.5.5 Phase Lock Loops (PLLs)

A reference input clock feeds two PLLs, PLL1 and PLL2, that provide the required
internal clocks for the Excalibur device. PLL1 provides the embedded processor clock,

eLK_ARB1, and the peripheral bus clock, eLK_AHB2. The eLK_ARB1 and eLK_ARB2
frequencies are one half and one fourth, respectively, of the PLL1 frequency. eLK_ARB1
can operate at a maximum of 200 MHz. PLL2 provides the clocks for the SDRAM con-
troller.

3.1.5.6 Reset Module

When a reset occurs, it is the responsibility of the reset module to determine the cause
of the reset. With this knowledge, it will reset the appropriate logic blocks.

3.1.5.7 General Purpose Timer

The general-purpose timer is a dual-channel, 32-bit timer with 32-bit pre-scaler. It can
operate in three different modes: as a free-running (heartbeat) timer, a software controlled
interval timer with interrupt-an-limit, or a one-shot interrupt after programmable delay.

3.1.6 Programmable Logic Architecture

The PLD section of the EPXA1 device is similar to that of Altera's APEX20KE pro-

grammable logic device. It has the following features:

• 4 160 logic elements

• 53 246 memory bits

• Up to 2 PLLs

• True Low Voltage Differential Signaling (LVDS) circuitry

• Support for the use of Altera's megafunctions!

• Embedded system blocks (ESBs) for memory support (eAM2, FIFO, RAM, ROM
and Dual-port RAM)

1Megafunctions are ready-made, parameterized, pre-tested blocks of intellectual property that are
optimized to make efficient use of the architecture of the targeted programmable device.

2Content Addressable Memory (CAM) is a memory technology that accelerates search applications
like databases, lists or patterns.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAl Embedded Processor PLD 14

Table 3.1
MEMORY MAP PERIPHERALS AND ELEMENTS

I Memory Map Element Range
Registers 16 Kbytes
Internal SRAMO, SRAM1 (total) 32 Kbytes
Internal DPSRAMO (total) 16 Kbytes
EBIO, EBIl, EBI2, EBI3 (each) 16 Kbytes to 32 Mbytes
SDRAMO, SDRAM1 (each) 16 Kbytes to 256 Mbytes
PLDO, PLD1, PLD2, PLD3 (each) 16 Kbytes to 2 Gbytes

• Support for various I/O standards

For more information on these features, consult [10].

3.1.7 Embedded Peripherals Memory Map

The memory-mapped slave peripherals of the EPXA1 device along with their sizes are
listed in Table 3.1. The base address, size and the type of access permitted for each
peripheral can be configured by its Range Definition Register. Only the base address for
the Register's region is fixed at 7FFFCOOOH with a size of 16 Kbytes.

3.2 The Excalibur EPXAI Development Kit

The EPXA1 Development Kit consists of a development board that contains the EPXA1
device, programming software and cables for interfacing with the development board from
the outside world. The development board costs R4 414.83 and can be used over and over
for other future projects.

3.2.1 The Development Board

The Excalibur Development Board is ideal to test and evaluate all the features of the
EPXA1 device. A photograph of the development board is shown in Figure 3.3.

The EPXA1 development board has the following features:

• Powerful development board for embedded processor FPG A designs

- EPXA1F484 device

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAI Embedded Processor PLD 15

Figure 3.3: The Altera Excalibur EPXAI Development Board

• Industry-standard interconnections

- 10/100 Mbps Ethernet, two RS232 ports

• Memory subsystem

- 8 Mbytes of flash memory, 32 Mbytes of single data rate SDRAM

• Multiple clocks for communication system design

• Multiple ports for configuration and debugging

- IEEE Std. 1149.1 Joint Test Action Group (JTAG)

- Configuration of EPXAI device using flash memory with ByteBlaster II cable

- Multi-ICE header for debugging

• Expansion headers for greater flexibility and capacity

- 5-V standard expansion header, 5-V long expansion card header

• Additional user-interface features

- One user-definable 8-bit dual in-line package (DIP) switch block

- Four user-definable push-button switches, plus reset switch

- Ten user-definable LEDs, plus function specific LEDs

• Test points provided for to facilitate system development

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. The EPXAl Embedded Processor PLD 16

3.2.2 The Development Software

The development kit includes the Quartus II design software, the sope Builder system

development tool, and GNUPro Toolkit developer tools.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Software Environment

To evaluate and test each part of the EPXAI device, the necessary software had to be
developed. Embedded software is closely developed according to the specific processor's
architecture. In this case it is the ARM architecture. A short description of the ARM
architecture will be given for background. The next step will be to choose a suitable
programming environment. Finally, an operating system (OS) was chosen to execute the
development software.

4.1 The ARM Architecture

This section gives a short overview of the ARM v4T architecture.

The ARM architecture incorporates these typical RISC architecture features [2]:

• Large uniform register file

• A load/store architecture, where data-processing operates only on register contents,
never directly on the memory

• Simple addressing modes, load/store addresses determined from register contents
and instruction fields

• Uniform, fixed-length instruction fields to simplify instruction decode

In addition, the ARM architecture provides:

• Control over the Arithmetic Logic Unit (ALU) and shifter in all the data-processing
instructions

17

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 18

Table 4.1
ARM v4 PROCESSOR MODES

I Processor Modes I Description
User (usr) Normal ARM Program execution state
FIQ (fiq) Support data transfer or channel process
IRQ (irq) Used for general-purpose interrupt handling
Supervisor (svc) Protected mode for the operating system
Abort (abt) Implements virtual memory and memory protection
Undefined (und) Support software emulation of hardware coprocessors
System (sys) Privileged user mode for the operating system

• Optimized program loops by auto-increment and auto-decrement addressing modes

• Load and store multiple instructions to maximize data throughput

• Conditional execution on all instructions to maximize execution throughput

4.1.1 The ARM Instruction Set

The ARM v4T architecture incorporates both a full 32-bit ARM instruction set and the
16-bit Thumb instruction set. A full description of the two instruction sets is given in [2J.
The following sections are only applicable on the ARM instruction set.

4.1.1.1 Data Types

The ARM v4 architecture supports byte (8-bit), halfword (16-bit) and word (32-bit) data
types.

4.1.1.2 Processor Modes

The ARM architecture supports the seven processor modes shown in Table 4.1. Application
programs are usually executed in User mode. The only way a program running in User
mode can access system protected resources or change the mode, is by causing an excep-
tion to occur. All the modes except User mode are known as privileged modes. They

have full access to system resources and can change between modes freely. The modes
FIQ, IRQ, Supervisor, Abort and Undefined are also known as exception modes because

they are entered when specific exceptions occur. Each one has some additional registers
to avoid corrupting the User mode state when the exception occurs.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 19

Modes

rivilegedm

Exception mode

User System Supervisor Abort Undefined Interrupt Fast lnte.rt'upt

Rl Ra AO RQ Rl AO RO

AI RI RI RI RI RI Rl

R2 R2 R2 R2 R2 R2 R2

A3 R3 A3 R3 A3 A3 R3

A4 R4 R~ R4 A4 A4 A4

A5 R~ A~ AS A5 A5 R5

RG R6 R6 A6 RG RG A6

R1 A7 R7 A7 R7 R1 A7

RB A8 R8 A8 RB RB 0,_ RB~iq

RIl R9 A9 A9 R9 Rl ~ R9_k!
AIO AIO RIO AIO RIO RIO 0,_ AIO_iq

RlI Rtl Atl All All Ril 0. AII_fiq

A12 AI2 A12 A12 AI2 Al2).,_ A12_iq

AI3 Al3 [_ AI3_wC)" AI3_ab! :~ AI3_,m i\, A13_irq 0" AI3.,!i<1

A14 AI4 ~ R14_svc \. Rt4_ab! ~ A14_1nl ~ AI~_irq .~At4_iq

PC PC PC PC PC PC PC

Cl'SR

I'" indical9$lh., tho normal regisl.rfJSlld by User or Syst6m mode has
~ beoo "'plaro1.byan afematiYe I'Ilgstl¥spscific ro Il. aKcqooon mod!J

Figure 4.1: ARM Register Organization

The remaining mode, System mode, is a privileged mode and has the same registers

available as User mode, but is not subject to the same User mode restrictions. It is
intended to be used by operating system tasks.

4.1.1.3 Registers

The ARM has a total of 37 registers of which 31 are general-purpose registers and 6 are
status registers. These registers are all 32 bits wide.

Each processing mode uses a different register bank as shown in Figure 4.1. At any
point, 15 general-purpose registers, one or two status registers and the program counter
are visible. The general-purpose registers (RO - R15) can be divided into three groups,
namely the unbanked registers (RO- R7), the banked registers (R8 - R14) and the program
counter, Register 15.

The unbanked registers refer to the same physical registers for all the processing modes.

The use of these registers is solely for general purpose.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 20

condition code flags r-__,(r..::;es::.::c;.;_;rv..::;ed::..<.l , r- -"c""on"-"tro:..:::.:..::1b:.;.:its::...._ __ ---,
I I I

31 30 29 28 27 26 25 24 23 876543210

Loverflow
Carry I Borrow
I Extend

Zero
'------ Negative I Less Than

I I L Mode bits

State bit
FIQ disable

'-------- IRQ disable

Figure 4.2: Program Status Register Format

The banked registers differ from the unbanked registers in the fact that the physical
registers referred to by each of the banked registers depend on the current processor

mode. Registers R8 - R12 are general-purpose registers which have two banked registers
each. One is used in all processing modes other than FIQ mode, and the other is used
in FIQ mode. Registers R13 and R14 have six banked physical registers each. Register
R13 is normally known as the Stack Pointer (SP). Each exception mode has its own SP
and Link Register (Register R14). The Link Register (LR) is used to hold a subroutine
or exception return address. The subroutine or exception return is performed by copying
the contents of the LR back to the program counter.

Register R15, as mentioned, holds the program counter.

The current program status register (CPSR) is accessible in all of the processor modes. It
contains the status flags of the most recently performed ALU operation, interrupt disable
bits, current processor mode, and other status and control information. Each exception
mode has a saved program status register (SPSR) that is used to preserve the value of
the CPSR when the exception occurs. The format of the CPSR and SPSR is shown in
Figure 4.2. The N, Z, C, and V bits are the condition code flags. These may be changed as
a result of arithmetic and logical operations, and may be tested to determine whether an
instruction should be executed. The bottom eight bits (I, F, Tand M[4:0]) are known as
the control bits. These will change when an exception arises. If the processor is operating
in privileged mode, they can also be manipulated by software. The T bit reflects the
operating state, ARM or THUMB. The I and F bits are the interrupt disable bits. When

set, these disable the IRQ an FIQ interrupts respectively. The five mode bits (M[4:0])
determine the processor's operating mode.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 21

Table 4.2
EXCEPTION PROCESSING MODES

I Exception Type Mode Address
Reset Supervisor OxOOOO0000
Undefined Instructions Undefined OxOOOO0004
Software Interrupt (SWI) Supervisor OxOOOO0008
Prefetch Abort Abort OxOOOOoooe
Data Abort Abort OxOOOO0010
IRQ (normal interrupt) IRQ OxOOOO0018
FIQ (fast interrupt) FIQ OxOOOOOOIe

4.1.1.4 Exceptions

Exceptions occur whenever the normal flow of a program has to be halted temporarily, for
example to service an interrupt from a peripheral. The current processor state must be
preserved, so that the original program can resume when the handler routine has finished,
before the exception is handled. The ARM supports seven different exceptions that are
shown in Table 4.2 along with the processor mode in which the exception is processed.

4.2 Programming Languages

This section and the next (section 4.3) are very dependent on each other. Firstly, in order
to write application software a suitable programming language and compiler tools must

be selected. This programming language must however be supported by the selected OS.
Most of the OS's, that are discussed in the next section, are written in the e programming
language and makes this the obvious choice.

4.2.1 The C Programming Language

The e programming language was developed in the early 1970s by researchers at the
AT&T Bell Laboratories in New Jersey. It was originally developed with system program-
ming in mind (UNIX), but is now used for the development of numerical and engineering
software as well. It contains features of both high- and low-level languages.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 22

4.2.2 Compiler Tools

4.2.2.1 ARM Developer's Suite

As part of the EPXAI Development Kit, Altera supplied an ARM Development Suite
(ADS) Lite especially for the Excalibur devices. This suite includes an assembler, a C
compiler, a debugger and a graphical integrated development environment. Unfortunately,
it has a 45-Day Evaluation period and is very expensive. For this reasons it was not used
in this study.

4.2.2.2 GNUPro Toolkit

The GNUPro Toolkit from Red Hat is open source development software that includes
a compiler, a debugger, binary utilities, and other tools compatible with a wide range of
processors including the ARM. It was supplied with the EPXAI Development Kit and is
just as easy to get from the Internet.

The GNU compiler collection (GCC) is a complete set of tools for compiling programs

written in C, C++ or Objective C. Compilation usually involves up to four stages (pre-
processing, compiling, assembly and linking).

The GNU Debugger (GDB) is a debugging program that allows one to simulate a program
or execute it directly on the target processor. GDB is able to upload and run a program,
set breakpoints and view variables or memory on the processor.

The GNU Binary Utilities (binutils) have many functions. Two of the more important
functions are the "objcopy" and "objdump" functions. The "objcopy" function can con-
vert the executable output to a S-record file to be downloaded and executed by a ROM
Monitor. The "objdump" function lets one display information about one or more object
files.

The GNUPro Toolkit can run on both Windows (under Cygwin) and Linux operating
systems. The GNUPro Toolkit was selected as the compiler tools for this study because
the chosen OS (see section 4.3) needs the GCC compiler. For more information on the
GNUPro Toolkit, consult [11].

4.2.3 VHDL Language

All the logic implemented in the PLD of the Excalibur device has to be written in a
hardware description language (HDL). Two HDLs are in common usage today: the very

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 23

high-speed integrated circuit hardware description language (VHDL) and Verilog. VHDL
was chosen as the HDL because of prior knowledge of the language.

4.2.4 Altera's Quartus II

Altera supplied the Quartus II development suite along with the EPXAI Development
Kit. This suite was used to develop, compile and upload most of the PLD code.

4.3 Operating System Selection

As mentioned earlier (section 1.1), a satellite's OBC typically runs a multi-tasking real-
time operating system. It has a very important job that includes scheduling events,
keeping track of collected data and communicating to all the other subsystems to name

but a few. It is therefore necessary to know that an 08 can adequately run on the EPXAI
device. Again, the 08 of a satellite is highly depended on its requirements. The next
section describes some of the operating systems considered for this study.

4.3.1 Nucleus RTOS

The Nucleus real-time kernel is manufactured by a company called Mentor Graphics. It
supports various embedded processors including the ARM922T. The kernel provides an
extensive set of services to manage tasks, inter-task communication and synchronization,
events, memory, timers, hardware interrupts and software signals. It is also portable
across many C/C++ compilers. The software is sold in source code format and without
royalty fees. Unfortunately the licenses for the Nucleus software are very expensive and
was not considered for this study. For more information on the Nucleus RTOS, consult
[12].

4.3.2 RTEMS

Real- Time Executive for Multiprocessor Systems (RTEMS) is an open source real-time
operating system. Included with RTEMS is the GNU development environment suitable
for cross development from Linux or Windows hosts to the target platform. Information

about this RTOS for an ARM processor proved to be very sparse and was therefore
avoided [13].

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 24

4.3.3 Linux

Linux is a free UNIX-type operating system originally created by Linus Torvalds with
the assistance of developers around the world. Developed under the GNU General Public
License, the source code for Linux is freely available to everyone. Off-the-shelf Linux
presents three critical challenges for use in applications with real-time performance re-
quirements [14]:

• lengthy blocking times

• non-preemptive Linux kernel events

• exhaustive, fairness-based scheduling

However, nowadays there are many ways to add real-time capabilities to Linux based
systems. One of the real-time Linux distributions that Altera uses in its reference designs
is from Monta Vista Software [15]. Monta Vista Linux Professional Edition fully supports
the Excalibur EPXA1 board, but it is commercial software. A less expensive solution was

needed. The author did try to port a Linux kernel to the EPXA1 board, but without
any success. A lot of time was spent building a cross tool chain for an ARM-Linux
target. Success came after weeks of work. Another, bigger problem arised. There was no
solution to get the Linux-based ARM boot loader (ARMBoot) running on the EPXA1
board without the Quartus software mentioned earlier. During this period, development
was done in the Linux environment and there was no access to a licensed version of
the Quartus software for Linux Workstations. Quartus could be run in the Windows
environment, but then ARMBoot didn't find the required Quartus files it needed.

After reaching a dead end, an alternate solution was needed.

4.3.4 eeos

The Embedded Configurable Operating System (eCos, [16]) proved to be that solution.
eCos is an open-source, royalty-free RTOS free of charge. It consists of a highly modular
real-time kernel that was developed by Red Hat especially for embedded systems. eCos
is used as the OS for Canada's Smallest Satellite, the CanX-1, as well as Denmark's
DTUSat. Both were launched on 1 July 2003.

eCos has a configuration tool that allows the user to add or remove certain components
to customize it for a specific application. This ensures that the minimum amount of
memory is used. A boot loader, RedBoot, is also supplied as an eCos-based application.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Software Environment 25

eCos supports a wide variety of embedded processors including the ARM. There is also
an existing eCos port to the EPXAI board available which means that there is no need to
write any additional code for the hardware. eCos uses the GNU cross-development tools
as described in the previous section and can run in a Linux or Windows environment. For
support there is a very active mailing list and online documentation [17].

4.4 Conclusion

Software designs were written in the C programming language and hardware designs
in VHDL. The eCos RTOS was selected due to its existing port to the EPXAI board
and excellent support. It was run in a Windows-based environment. The GNU cross-
development tools (running in the CYGWIN environment) were used for software com-
piling and the Quartus II v4 development suite for the hardware designs.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Development Environment

The eCos RTOS was chosen as the most suitable operating system for the EPXA1 device
for this study. This chapter gives a brief overview of the eCos RTOS along with the other

development tools that were used to configure and test the EPXA1 device.

5.1 Introduction to eCos

ECos is an open-source real-time operating system specifically designed for embedded
systems. The highly configurable nature of eCos allows it to be used on various platforms
and applications with real-time requirements. Some of the eCos features are as follows:

• Royalty-free

• Open Source

• Source-configurable kernel

• ISO C and math library

• Open source TCP lIP stack

• GNU Debugger (GDB) support

eCos has a configurable component architecture consisting of a variety of software com-

ponents. These different software components are added or removed from the system in
order to create an embedded system that matches the requirements of the design appli-
cation. Figure 5.1 shows a typical embedded software system built with eCos. The end
product of such a component configuration is a library that can be linked with the appli-
cation code. The Hardware Abstraction Layer, kernel and device drivers are some of the
key eCos components and a short description of each are given in the following sections.

26

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 27

Application

libraries

11'1°1,'" Kernel ""'b'

Hardware Platform

Figure 5.1: eCos System Architecture

5.1.1 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) provides a software interface that gives general
access to the system hardware. The HAL consists of three levels: architecture, variant
and platform.

• Architecture
The architectural layer defines the processor family. It contains the code required for
CPU startup, interrupt delivery, context switching, and other functions specific to
the instruction set architecture of the processor family. The EPXAI board contains
an ARM processor which indicates that the HAL architecture will be that of the
ARM family.

• Variant
This level describes the specific processor within the processor family. This will be
the ARM9 variant of the ARM family.

• Platform
The platform will point to the specific piece of hardware that contains the processor
described by the previous two levels. It typically includes code for the platform to
startup, chip configurations and interrupt controllers. In this case the platform will

be the EPXAI device.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 28

The HAL provides many ways for interfacing with the kernel, other eCos devices or user
applications. The main HAL interfaces are as follow:

• Base Type Definitions
These are definitions that characterize the properties of the base architecture that
are used to compile the portable parts of the kernel, i.e. type definitions, endianness,
and labeling.

• Interrupt Handling
These interfaces include definitions of exception and interrupt numbers, interrupt
enabling and masking, and real time clock operations.

• Input / Output Support
It provides access to device control registers by means of register read and write
macros.

• Diagnostic Support
Provides low-level diagnostic 10 support via the UART or other serial 10 devices.

5.1.2 eeos Kernel

The kernel provides the core functionality needed for developing multi-threaded applica-
tions. Standard functional components like interrupt and exception handling, scheduling,
threads and synchronization are all configurable under the eCos system to meet design
specifications.

5.1.2.1 Interrupt and Exception Handling

The kernel provides support for installing interrupt handlers and for controlling interrupts
when they occur. The support is mainly used by the eCos device drivers and by application
code that requires direct interaction with the hardware. The functionality provided by
the kernel is mostly separated from the details of the underlying hardware which simplifies

the application development. eCos provides several supporting functions for installing,
masking, uninstalling, enabling and disabling interrupt handling.

5.1.2.2 The Scheduler

The purpose of the scheduler in a multi-threaded system is to determine which thread

should currently be running. The eCos kernel can be configured with one of two schedulers,

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 29

a bitmap or a multi-level queue (MLQ) scheduler. The bitmap scheduler allows only one
thread per priority level as well as pre-emption between the different priority levels. The
MLQ scheduler, on the other hand, allows multiple threads to run at the same priority
level and also supports time slicing and pre-emption between different priority levels.
Both these schedulers use priority levels to determine which thread should be running.
There is typically 32 priority levels with 0 being the highest and 31 the lowest priority.

5.1.2.3 Synchronization Mechanisms

The kernel provides different mechanisms for threads to communicate with each other
and to share the system's resources. The synchronization primitives provided by the eCos
kernel are mutexes, semaphores, condition variables, event flags and mail boxes.

• Mutexes
A mutex (mutual exclusive object) allows the sharing of system resources between
threads in a safe manner. A thread locks a mutex, manipulates the shared resource
and then unlocks the mutex again. One problem arises when a high priority thread
is waiting on a mutex that is currently locked by a low priority thread. This is
better known as the priority inversion problem and eCos provides two solutions to
this problem: the priority ceiling protocol and the priority inheritance protocol. The
priority ceiling protocol raises the priority of all the threads that needs the mutex to
a preconfigured value. However, this solution has many disadvantages in a real time
environment. A better solution is the priority inheritance protocol. This protocol
raises the priority of the thread that currently owns the mutex to the same level as

the highest level thread waiting for the mutex.

• Semaphores
A semaphore is used to indicate whether a resource is locked or available. eCos
uses a counting semaphore. Counting semaphore objects contain a value that is
incremented when a thread posts to a semaphore and decremented when a thread
completes a wait for the semaphore.

• Condition Variables
Condition variables are used in conjunction with mutexes to implement long-term
waits for some condition to become true. A thread can typically wait for data that
is not yet available.

• Event Flags
Flags can be used to signal that a certain event has occurred. This is achieved by

associating bits in a 32-bit word with different events.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 30

• Mail Boxes

Mail boxes are also used to indicate that a particular event has occurred and allows
for one item of data to be exchanged per event. This item of data is usually a pointer
to some other section of data that can be exchanged between the two threads.

5.1.3 Device Drivers

Device drivers control the various hardware components in a system. A device driver must
be written in such a way that allows the I/O Sub-System package to present a standard
interface to the higher-level software modules. The I/O Sub-System package provides an
intermediate layer between the hardware device and eCos application.

5.2 Cygwin Tools

Many useful software tools for embedded systems are developed to run in a UNIX or Linux
environment. Cygwin acts as an intermediate layer for these software tools to a Windows
environment. The Cygwin tools are ports of the popular GNU development tools and
utilities for Windows systems. They function through the use of the Cygwin library
which provides the UNIX system calls and environment that these programs require. The
Cygwin tools were mainly used to build the eCos cross compiler.

5.3 eCos Configuration Tool

The eCos Configuration Tool is used to construct eCos at source level, prior to compi-
lation or assembly, and provides a configuration file and a set of files used to build user
applications. The sources and other files used for building a specific configuration are
provided in a component repository, which is loaded when the eCos Configuration Tool is
invoked. The eCos Configuration Tool can be used in a command line interface or graph-
ical interface under the Windows operating system. The graphical interface, as shown in
Figure 5.2, was used in this study. The eCos Configuration Tool (version l.3.net) also pro-
vides a runtime memory layout tool for configuring the memory layout of the application
together with eCos. The eCos Configuration Tool provides templates for various devel-
opment boards. When targeting eCos for the EPXAl development board, the EPXAl
template is chosen from the list of templates. The Configuration Tool also has a package

management tool for adding or removing packages from the template to customize eCos

according to the design requirements.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 31

~~:!..~b~{_~!CtU\r·~~..~ ..);.'!!:(" ,:

rH 8J Global build optiom
!t} 2l F;~.~!::;:{.~;",\1 ·::;:....iw·
!ij ~ HTTPDaemon
!i1 ~ eCosHAL
&J ~ I/O stb-rydem
&}~Serialdeviceaiven
ffi 't;" h-Jrasuudll'l!l

ffi ~ eCosk.eu1l!ll
ffi!rD~rnemor}'aIoc«ion
!il ~ 150 C and POSIX infr"struct\.ll!l

!iJ ï.: ISOCIi:x5}'
!tJ t-:M~Ih"JI
[il lij lNalcioek device
ffi ~ Convnon ella code nwort
&1 !;. FlASH device liivers
·Efï·~···c:orr.p.:teCRCt ,..
ffi'-~ 2j) COfT'4:lIetS "and~eu ~age
[~';-~'JFFS2fie5)'stem-~+t~:.~flleSYstem:·······

fam (llllIX:OJ.Ol FFFFFF)

Figure 5.2: eCos Configuration Tool

5.4 Booting the EPXAI Device

There are two methods of configuring the EPXAI device and making code available at
the boot address. These methods are to boot from the flash memory or to boot from
an external source. The external pins BOOT_FLASH, MSELI and MSEL2 are used to
specify the boot method. However, on the EPXAI development board, these pins are
hardwired, so the device boots from a 16-bit flash memory. This means that the device
will always boot from the flash memory.

5.4.1 Boot from Flash Mode

In this mode the processor accesses the boot code from the 16-bit flash memory connected
to EBIO. The bottom 32 Kbytes of EBIO are mapped at address OH. The registers are
mapped to their default addresses with the base being 7FFFCOOOH. It is then up to the
boot code to do the rest of the startup procedures (see section 5.4.5).

5.4.2 Boot Code

The EPXAI device starts its "life" (out of reset) by fetching its first instruction at address
OH. At this address should be the first instruction of the boot code. The boot code is
responsible for initializing the EPXAI device. There was an option of choosing suitable

boot code from two available sources. Altera provided boot code for the EPXAIO device

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 32

that can be easily modified for the EPXAI device. The other source, eCos or RedBoot,
also contains boot code specifically for the EPXAI device. The latter was chosen due to
the fact that the code was specific for the EPXAI device and the chosen RTOS is eCos.
With this option the RedBoot ROM Monitor can be used for debugging purposes.

5.4.3 Linker Script

A linker script is used to link an eCos application. This script typically defines the memory
areas, addresses and sizes, into which the code and data are to be put, and allocates the
various sections generated by the compiler to these areas. The linker script file (target.ld)
is created by the eCos Configuration Tool out of a base linker script file and .ldi file that
was generated by the memory layout tool.

5.4.4 The RedBoot ROM Monitor

The RedBoot (Red Hat Embedded Debug and Bootstrap) ROM Monitor provides a debug
and bootstrap environment for an embedded system. RedBoot is a standalone program
that can be used with any RTOS, but was exclusively used with eCos applications in this
study. RedBoot is configured the same way as an eCos application and therefore can
support all the features of the EPXAI development board.

5.4.5 RedBoot Startup Procedure

The "RedBoot" startup mode is selected when configuring RedBoot to run on the EPXAI
device. In this startup mode RedBoot is stored in the flash memory while a small amount
of SDRAM is used for runtime usage. RedBoot uses the eCos HAL for its foundation.
This means that at startup the HAL initialization sequence is followed. An extract from
the initialization routines for the EPXAI HAL, performed by the boot code of the EPXAI

device, are explained in the following steps:

• Hardware Powerup or Reset

At hardware powerup or reset, the CPU jumps to the reset vector at address OH.
The assembler boot code resides here .

• Sets up Exception Vectors

The exception vector table (see Table 4.2), with their respective branch instruc-

tions to their exception handlers, are defined. When the booting is complete this

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 33

Oh8000 0000

Oh7FFF COOO

Oh4040 0000

Oh4000 0000

Oh0800 8000

Oh0800 4000

Oh0800 0000

OhOODD 0000

Figure 5.3: EPXAI Memory Map Layout

table will reside at address OH, the fixed interrupt vectors taken by the ARM922T
microprocessor.

• Configure and Enable Embedded Stripe PLLs
The two PLLs, PLL1 and PLL2, are configured and enabled to the desired frequency.
PLL1 is used to synthesize the embedded processor clock and the AHB system
clocks. PLL2 is used to synthesize the SDRAM controller clock. Until the PLLs are
configured and enabled, the system is clocked directly by the input reference clock
(eLK_REF = 25 MHz).

• Setup Memory Map
Before the peripherals and memory can be used, it must be mapped to a base
location in the memory space, assigned a size and enabled. This is accomplished by
writing the appropriate values to the memory mapped registers. Figure 5.3 shows

the memory map layout for the EPXA1 development board as setup by the boot
code.

• Enable Instruction Cache
The ARM922T's memory management unit (MMU) controls instruction- and data
cache operations. The MMU is implemented as a coprocessor (coprocessor #15).

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 34

The instruction cache is enabled after memory mapping to prevent invalid addresses
in the cache. As mentioned (section 2.3), the use of cache memory is not advisable
in a space environment. However, in the boot process the instruction cache was
needed to initialize the SDRAM Controller (see Configure SDRAM Controller and
Initialize SDRAM).

• Configure SDRAM Controller and Initialize SDRAM
The SDRAM controller is configured for single data rate (SDR) SDRAM. Specifi-
cally, the controller is setup to interface with the Micron MT48LC16M16A2 SDRAM

on the development board. First, a wait state assures that PLL2 has been locked
for lOOj.1s. At this point the registers SDRAM_ TIMINGl, SDRAM_ TIMING2,
SDRAM_ CONFIG, SDRAM_REFRESH, SDRAM_ADDR, and SDRAM_MODEO
are loaded. These registers configure how the SDRAM controller will interface with
the SDRAM device.

After the SDRAM controller has been configured, the SDRAM device attached ex-
ternally to the controller must be initialized. This initialization process must com-
plete within one SDRAM refresh cycle (±7.81j.1s). For this reason the initialization
code must run as fast as possible. To accomplish this, the SDRAM initialization

code is locked into the instruction cache and then executed.

• Copy Boot Code from Flash to SDRAM
Copy the .rom_ vectors, .text, .fini, .rodata, .rodatal, .fixup, .gcc_ except _ table, and
.data sections from the flash to the SDRAM memory. Continue executing the boot
code from the SDRAM.

• Initialize Memory Management Unit
Initialize the MMU, which handles the translation of logical addresses to physical
addresses.

• Initialize Stack
The stack is set up so that C function calls can be made from within the boot code
(vectors.s) .

• Clear BBS
Clear the BSS section which contains noninitialized local and global variables.

• Invoke Constructors
All global C++ constructors are called from the routine cyg_ hal_ invoke_ constructors.
The linker handles the generation of the list of global constructors.

• Start Kernel
The routine cyg_ start is called to start the kernel initialization.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment 35

Table 5.1
SBI FILE FORMAT

I Offset I Size (bytes) I Data
OH 4 Signature "SBI\ 0"
4H 4 IDCODE for target system.
8H 4 Offset to configuration data (co ffset).
CH 4 Size of configuration data in bytes (csize).

coffset csize FPGA configuration data.

5.5 Configuring the PLD

The PLD can be configured or reconfigured at any time. The PLD was configured via

the JTAG interface using the Quartus II software or under processor control. In both
methods the Quartus II software is used to generate the PLD configuration data. The
data is stored in the slave-port binary file (. sbi) format showed in table 5.1. Configuring
the PLD via the JTAG interface requires the Byteblaster II cable. The PLD is then easily

configured by using the built-in programmer of the Quartus II software.

Configuring the PLD under processor control can be done with an eCos procedure. To
make the PLD configuration data file, which is in the .sbi file format, more compatible
with an eCos procedure, it was necessary to convert the .sbi file to a C-type array of
characters. The configuration logic module in the stripe is responsible for transferring the
configuration data to the PLD array. It has a simple interface to application code. The

flowchart in Figure 5.4 shows the steps used to configure or reconfigure the PLD logic by
an eCos procedure. For more information on configuring the PLD, consult [18]. The eCos
procedure for configuring the PLD is included on the attached CD-ROM.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Development Environment

C__ s-:-tart__)

Unlock Configuration
Logic

Check Lock Status

Yes

No

Setup Config.
Logic Clock Speed

Initialize Config.

36

Check Busy Status

No

Write
Configuration Data

No

Yes

Check Config.
Status

Yes

<:~ D_o_n_e ~~.

Figure 5.4: Flow Diagram for Configuring the FPGA Contents

Yes

No

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

EPXAI OBC Design

This chapter describes the implementation of an OBC on the EPXAI device. In most
cases the functional specifications for a satellite's OBC are determined by its system
requirements. The EPXAI OBC, however, was not intended for a specific satellite project,
so the implementation was based on a general OBC model shown in Figure 6.1.

Figure 6.1: General Satellite OBC Model

37

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 38

6.1 EPXA1 OBC Design Overview

The main objective is to implement a similar type of OBC as in Figure 6.1 on the EPXA1
device. The OBC must preferably have a wide variety of interfaces to support different
memory types and to communicate with the other satellite subsystems. To protect RAM
devices against SEU induced errors, an error detection and correction (EDAC) unit must
be considered. The entire OBC system consists of the following:

• Processor

- ARM922T

• Memory Interfaces

- SDRAM Controller

- Expansion Bus Interface for flash, ROM or SRAM devices

• Bus System

- AMBA ARB Busses

• On-chip Peripherals

- Interrupt Controller

- Watchdog Timer

- UART

- Reset Module

- Timers

• PLD Implemented Modules

- ARB Bus Interface

- EDAC Unit

- UART

- I2C Controller

- PLD Interrupt Controller

Figure 6.2 illustrates the EPXA1 OBC model. The various OBC interfaces, peripherals
and additional implementations will be discussed in the following sections. The complete
Quartus block diagram of the implemented PLD modules is shown in Appendix A. All of

the designs are included on the CD-ROM attached to the thesis.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAl GBC Design 39

SDRAM

EPXAl
ARM922T SDRAM Controller

Stripe SRAM
Watchdog Timer EBI

o
re
0-
c
\0

Timer Reset

PLD

DPSRAM Interrupt Controller

AHB Master and Slave Interface

EDAC LogicPeripheral Interface
lP Cores

Figure 6.2: EPXAI OBC Model

6.2 Processor Setup

One of the requirements for the OBC is that the cache of the processor must be disabled
because it is prone to the radiation effects of the space environment. By default, the data
and instruction caches are disabled at startup. During the startup process the data and

instruction caches are enabled (see section 5.4.5). However, it can be disabled at any time
by using the eCos macros defined to control the cache. Disabling the cache will decrease
the power consumption of the processor, but at the same time decrease its performance.
Unfortunately, no information on the performance of the ARM processor with the cache
disabled could be found and therefore had to be tested (see section 7.2).

The ARM922T processor's two clock inputs, BCLK and FCLK, are directly connected
to the AHB1 clock. This means that the processor's clock frequency is the same as the
AHB1 clock. This clock frequency can be adjusted by setting the PLL1 to twice the
desired processor speed. At startup the processor's clock frequency is set to 150 MHz by
the boot loader.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 40

Figure 6.3: EPXAI SDRAM Controller Connection to SDRAM

6.3 Memory Interfaces

6.3.1 SDRAM Controller

The SDRAM controller provides an interface between the external SDRAM memory and
the internal busses of the EPXAI device. This means that both ARBI and ARB2 busses
can access the SDRAM via the SDRAM controller. The SDRAM controller supports
both 16-bit Single Data Rate (SDR) SDRAM and 16-bit Double Data Rate (DDR)
SDRAM. The EPXAI development board contains one l6-bit SDR SDRAM device (Mi-
cron MT48LC16M16A2) connected to the EPXAI SDRAM controller. Figure 6.3 shows
the connection between the SDRAM controller and the single l6-bit SDR SDRAM de-
vice. The SDRAM controller interfaces with the external SDRAM memory through data,
address and control lines. SDRAM memory is organized into banks, rows and columns.
The EPXAI SDRAM controller requires that any SDRAM device that connects to it, has
two bank-select lines. The bank-select lines are connected to the most significant address
bits (SD _A[14 .. l3]). Commands are sent to the SDRAM from the SDRAM controller
through the control lines WE, RAS and CAS. For further information about the data,
address and control lines, consult [1].

6.3.2 Expansion Bus Interface (EBI)

The EBI is a very flexible memory interface. It acts as an interface between external
devices, such as flash memories or memory-mapped devices, and the ARB2 bus. It runs
synchronously to ARB2 and supports all transaction types associated by the AMBA bus
architecture. Figure 6.4 shows the EBI block diagram.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 41

Inlerr\4lt

Data (HWDATA) 32/

"Aájr (HAOOR) 32/

... Control (HS!ZE ../)

Dal. (HRDATA) 32"
/

Control

72/ ..
/ p

TIW>O.ction T2/
FIFO I---->/"-~I

AHBS1_
Inb3rt .. ce

R• .ad
Ri!!JJtn
FIFO

Corirol
.andSlat"",
Reglstor~

AH B2 Interlace

Tlm.oo(ffi.~ ~i
StarU
Slop

Timer

EBI CLK

EBI DO 16/

"EBI A 25/.

EBI Tr......action EBI CS 4
Sequencer H--=":::::::"___;~/~

EBII'1IE" ..

EBIOE_n ..
EBI BE

EBI_AC!<

Figure 6.4: Expansion Bus Interface Block Diagram [IJ

EBllnl.erface

The EBI consists of two interfaces, the ARB2 interface and the EBI interface. These two
interfaces communicate through the use of a transaction FIFO buffer and read return
FIFO buffer. The ARB slave interface receives transactions from ARB2 bus masters and
posts it to the transaction FIFO buffer. The EBI interface then receives the transactions
from the buffer and decodes them. The EBI interface then drives the data, address and
control signals to the specific EBI block device. If the transaction requires read data, the
EBI interface sends the read data back through the read return FIFO buffer.

• AHB2 Interface
The ARB2 interface consists of the ARB slave interface and the control and status
registers. The ARB slave interface decodes the received transactions and returns
the response from the targeted slave connected to an EBI block. The control and
status registers are used to monitor and set up the interface according to the device

attached to the corresponding EBI block.

• EBI Interface
The EBI interface consists of a timer and EBI transaction sequencer. The timer
operates as a binary counter that is used to time asynchronous memory access. The
EBI transaction sequencer controls all the external signals to the device attached to
a specific EBI block.

Each EBI block is configured at startup by the boot code according to the device connected

to it. On the EPXAI development board two Intel 28F320C3 flash memory devices are

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 42

connected to block 0 (CSO) and block 1 (CSl) respectively and an Ethernet MAC/PHY
device to block 3 (CS3). Block 2 is not used. For more information on the EBI consult
[1].

6.4 AMBA ARB Bus System

6.4.1 Overview

The Excalibur device contains two AHB busses and three AHB bridges. These busses and
bridges are used as communication medium throughout the device. Each bus has one or

more bus masters that initiate a data transfer on the bus.

The processor is the sole bus master on the AHBI bus. Slaves such as the interrupt
controller and on-chip SRAM are local to AHBl, which allows the processor fast access
to these devices. AHBI can operate at up to a speed of 200 MHz. Any transaction that
is destined for a peripheral outside the AHBI domain is routed to the AHBl-2 Bridge.
The AHBl-2 Bridge is a slave on AHBI and is the interface that provides the processor
access to AHB2.

On AHB2 there are three bus masters: the AHBl-2 Bridge, Configuration Logic module
and PLD-to-stripe Bridge. The AHBl-2 Bridge receives transactions from AHBI that are
destined for a peripheral on AHB2 or the PLD. The Configuration Logic module provides
configuration information to the PLD and stripe memory elements. The PLD-to-stripe
Bridge allows masters implemented in the PLD access to slaves in the stripe.

6.4.2 AMBA ARB Operation

All transfers on the AHB bus are started when a bus master asserts a request signal to the
arbiter. The arbiter determines if the bus master is granted the use of the bus. If the bus
is granted, the bus master starts the transfer by driving the address and control signals.
These signals provide information about the transfer. The address signal corresponds to

the address of the slave. The control signals give information on the type of transfer that
is going to take place. A basic transfer consists of two sections:

• an address and control phase, which lasts one clock cycle

• a data phase, which may last several clock cycles

Figure 6.5 shows a typical AHB transaction waveform. The master drives the address

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 43

T1 T2 T3 T4 T5 TG Tl T8

HCLK

HTRANS[LO]

HADOR[31O]

H8URST[2 ..0]

HWDATA[31 ..0]

HREOy

HRDATA[3LO]

Figure 6.5: AHB transaction waveform [1]

and control signals onto the bus after the rising edge of HCLK. The slave samples the
address and control information on the next rising edge of the clock.

If the slave is not ready to receive data, it can pull the HREADY signal to a low state.
This causes wait states to be inserted into the transfer and thus allows extra time for the
slave. During a transfer the slave replies with a response. The response signal, HRESP,
can be OKAY, ERROR, RETRY or SPLIT. This response signal is sampled by the bus
master on the third rising edge of the clock.

There are four different transfer types indicated by the HTRANS signal: IDLE, BUSY,

NONSEQ (nonsequential) and SEQ (sequential).

Burst information is provided using the HBURST[2 ..0] signal. The possibilities are:

• incremental bursts of 4, 8, 16 and unspecified length

• wrapping bursts of length 4, 8 and 16

• single transfer

Each transfer will also contain a number of control signals that provide additional in-
formation about the transfer. The control signals are sampled at the same time as the

address bus and have to remain constant during a burst of transfers. The control signals
include the transfer direction, transfer size and a protection control.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 44

Embedded Stripé Bridge

Ori<Jnating Bus Clock Domain Destination Bus Clock Domain

~ Eight· =AHB AHB
Addr~ss/ Slave I- Word - Master Address!
Control& Interface ~I- Write - Interface Control&

\:Vrite I- Data - Write
Delta ,_ Butter - Data,_ -

Address&
Control

Initi ..lting Butt.r I R~sponding,

~
AHB Roqllest

I AHB
',.Iaster .. Slave,, IC

,
Rood ,

~ Eight· = Rood
Datal

,
Datal

Slave
, I- Word - Slave

Response , I- Read - Response, I- Data -, I- Butter -,
I I- -,,

Slave~ , Response ~, Buffer

~

,
: Acknowledgement.... ,

""- IRQnc ,,,,,

Figure 6.6: Functional Block Diagram of ARB Bridge [I]

The data busses RWDATA[31..0] and RRDATA[31..0] are the write and read data to and
from the slave respectively.

For more detail about the AMBA ARB bus architecture consult [19].

6.4.3 The AHB Bridges

There are three ARB bridges in the embedded stripe: ARBl-2, PLD-to-stripe and stripe-
to-PLD. Two of the bridges, PLD-to-stripe and stripe-to-PLD, provide the interface be-
tween the PLD and stripe. PLD masters can only access peripherals in the stripe via
the stripe slave port on the PLD-to-stripe bridge while the stripe-to-PLD bridge allows
bus masters in the stripe access to slaves implemented in the PLD. Figure 6.6 illustrates
the functional block diagram of an ARB bridge. There are four main operating modules
in each bridge: ARB slave interface, ARB master interface, write buffer and read buffer.
The ARB slave interface receives transactions from a master and sends it to the write
buffer. It also receives response information from slaves and sends it back to the initiating
master. The ARB master interface synchronizes transactions from the write buffer and

regenerates the address and control information for the transaction. It also passes the
slave responses to the read buffer. The read and write buffers hold information about the
transaction as well as eight words of buffered data.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 45

6.4.4 AHB Bridge Operation

There are two types of write and read transactions for a bridge: posted and non-posted.
The type of transaction can be selected by setting the appropriate bit (NP or NW) in the
bridge's control register.

• Non-posted write transaction
A master initiates a transaction by transferring the transaction to the bridge's slave
interface. The slave interface now tells the initiating master to wait by inserting
wait states. While the initiating master waits, the slave interface sends the transac-
tion to the write buffer and informs the master interface that there is a transaction
waiting. When the master interface receives the transaction, it requests the ap-

propriate destination bus and synchronizes the transaction to the destination bus's
clock domain. Once the master interface is granted the bus, it sends the transac-
tion to the destination slave. The destination slave sends a response back to the
master interface which in turn sends it to the read buffer with an acknowledgement
that it is ready to process another transaction. The slave interface now reads the
response from the read buffer and synchronizes it. It removes the wait stages and
sends the response back to the initiating master. The initiating master now knows
that the data has reached the destination slave and can issue another transaction.
Non-posted writes are relatively slow because of all the delays .

• Posted-write transactions
To minimize the delays of non-posted write transactions, the bridge also supports
posted-write transactions. Posted-write transactions allow the initiating master to
burst write data to the bridge and then continue to process other transactions before

the transaction posted to the bridge reaches its destination.

The initiating master sends address and control information for the burst to the
bridge's slave interface. The slave interface passes it on to the write buffer and
informs the master interface. The slave interface accepts data for the burst until
the write buffer is full, and then inserts wait states. The slave interface sends a
response to the initiating master once the last data for the burst has been received.
The initiating master can now start the next transaction. The master interface reads
the address and control information, synchronizes the destination bus clock domain
and then waits for the bus access. When the bus is granted, the master interface
regenerates the address and control information for the transaction and reads the
response from the destination slave. If the response is that of an error, the bridge
generates an interrupt while the bridge status register preserves information about
the transaction that caused the interrupt.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 46

INT_EXTPIN_N
...__ .__ ._--___ ..

...
r PLL Status :- INT_F1O_n

:. - ARM922T
EBI Error :- ... + Cache

Stnpe-to-Pl.D Error INT_IRO_,';'" +MMU

AHB1·2 Bridge Error :::
Interrupl FAST comms :- Inlerrupt Ilo
Sources

. Controller

within the U.ART ..
Stripe TimerO :...

Timer 1 .. AHB1 ..._:,
.ARM922T COMMTX -...
ARM922T COMMRX ...

~
Stripe ~
PLO

INT COMMRX r INT_PLO

I~T_COMMTX "

INT_TIMER1 J

INT _TIMERO "
Interrupt Signals on Stripe Interface

INT_UART"

Figure 6.7: The EPXA1 Interrupt Controller in the Stripe [1]

• Read transactions
For both types of read (posted and non-posted), the initiating master requesting
the data, must wait for a response from the slave. This makes it similar to the
non-posted write transaction waiting for a response from the slave. Non pre-fetched
reads can have a significant delay because of arbitration and synchronization. For
this reason the bridge also supports pre-fetched read transactions. A pre-fetched
read transaction fills the read data buffer in an unspecified length burst. Read
pre-fetching therefore increases the performance.

6.5 Interrupt Controller

The interrupt controller is situated in the stripe of the EPXA1 device and can be accessed
and modified by a set of registers. Figure 6.7 shows the layout of the interrupt controller.
The interrupt controller generates two interrupt signals, INT _FIQ_n and INT _IRQ_n,
to the embedded processor from the 17 interrupt sources. There are 10 fixed interrupt
sources from the stripe modules, one external source and six sources from the PLD.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 47

6.5.1 Interrupt Controller Interface

The interrupt controller has 24 configuration and status registers that are only accessible
from AHBI by the embedded processor. For each interrupt source there is a priority
register which contains the source's priority and whether it generates a normal interrupt
(IRQ) or fast interrupt (FIQ). The priority value is used by the interrupt controller to
determine which source should be serviced first when several interrupts are active.

6.5.2 Operating Modes

The interrupt controller interprets the 6 interrupt sources from the PLD in one of three
modes. The mode is controlled by the INT _MODE register. The three modes are briefly
explained.

6.5.2.1 Six Individual Interrupts

The six interrupt sources (INT _PLD[5 ..0]) are interpreted as six individual interrupts
from the PLD. Each of them has its own priority register as well as mask and status bits
in the mask and status registers. This is the default mode at system reset.

6.5.2.2 Six-Bit Priority Value

In six-bit priority mode, INT _PLD[5 ..0] represents a 6-bit priority value. The priority
value OHmeans that there is no interrupt from the PLD while a non-zero priority (lH to
3FH), contains the priority of the requesting interrupt. The priority registers along with
the mask and status bits of the individual PLD interrupt sources have no effect in this
mode. Instead, the PLD interrupt priority register, INT _PLD _PRIORITY, holds the

requesting PLD interrupt priority value. This mode requires the implementation of an
additional interrupt controller in the PLD to facilitate the up to 63 individual interrupts.

6.5.2.3 Five-Bit Priority Value Plus Individual Interrupt

In this mode PLD[5 ..1] represents the five most significant bits of a 6-bit priority value
with the least significant bit always zero. This means that the priority value ranges from
2H to 3EH. The priority value is handled in the same manner as in the six-bit priority
mode. However, PLD[O] behaves as an individual interrupt and is treated in the same

way as in the six-individual interrupt mode.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 48

6.5.3 Interrupt Mode Implementation

To implement the three operating modes of the interrupt controller, a clear understanding
of the eCos interrupt handling methods are necessary.

6.5.3.1 eCos Interrupt Handling

As mentioned in section 4.1.1.4, the ARM processor delivers all exceptions to a set of
hardware defined vectors. These vector locations are four bytes apart and start at zero (see
Table 4.2). There is only room for one instruction at these vector locations. This means
that it must immediately branch to an alternate handling code higher up in memory.
These higher locations, from Ox20 up, form the Vector Service Routine (VSR) table. From
this table the correct handler, simply known as the VSR, is called. In other words, the
actual handling code is reached from the single instruction at the exception entry point via
a location 32 bytes higher in memory. Since each VSR is entered in a different processing
mode, there has to be a different VSR for each exception that knows how to save the
processor's state correctly. For external IRQ sources, the IRQ VSR calls on the default
IRQ handler. The IRQ handler determines the vector number of the interrupt from the
INT _REQUEST _STATUS register. The vector number corresponds to the bit number
of the interrupt in the INT _REQUEST _STATUS register (only when in six individual
interrupt mode). From this vector number the attached ISR is called. When installed,
the ISR calls the DSR where most of the interrupt handling takes place. This reduces the
amount of time and processing spent in the ISR (known as interrupt latency) where the
interrupts are disabled, Most of the processing is done in the DSR where the interrupts
are enabled. This allows higher priority interrupts to occur while a lower priority interrupt
is being served, The flowchart in Figure 6.8 illustrates the eCos interrupt handling of a

single hardware interrupt.

After examining the eCos Interrupt Handling method, it was discovered that the three
interrupt operating modes were not fully supported by the default IRQ handler. It only
supported the six individual interrupt mode. The existing interrupt vector table only
contained the vector numbers of 17 interrupts, including the 6 from the PLD. Both the
VSR and vector table had to be changed to support all the interrupt modes. None of the
PLD interrupts had existing ISRs or DSRs, so this also had to be installed.

6.5.3.2 Six Individual Interrupts Mode

This is the default interrupt handling mode, but can also be selected by writing the value

3H to the INT _MODE register. The six interrupts from the PLD are interpreted as six

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 49

Figure 6.8: EPXAl eCos Interrupt Handling Flowchart

individual interrupts. Their vector numbers were already present in the vector table. All
that had to be added were the ISRs and DSRs for the PLD interrupts. The Quartus block
diagram in Figure A.I includes the implementation of this interrupt mode.

6.5.3.3 Six-Bit Priority Interrupt Mode

The mode is selected by writing OH to the INT _MODE register and requires the im-
plementation of an additional interrupt controller in the PLD. The six bit priority value
(INT _PLD[5 ..0]) means that there can be up to 63 interrupts from the PLD. A priority

encoder was implemented to generate the six-bit priority value from the external interrupt
inputs. The priority value from the encoder (INT _PLD[5 ..0]) is compared with other re-

questing interrupt priorities by the stripe interrupt controller to produce an IRQ or FIQ
request. After this comparison, the interrupt identity register, INT _ID, contains the pri-
ority of the highest interrupt priority that is currently pending. The default IRQ handler
is called to respond to the IRQ request. The handler then compares the values of the
INT _ID and INT _PLD _PRIORITY registers. If the values are the same, it means that
the pending interrupt is from the PLD. A function then determines the vector number of

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 50

the PLD interrupt from its priority value. With the vector number known, the appropri-
ate ISR and DSR can be invoked. If the INT ID and INT PLD PRIORITY values are
different, the interrupt was caused by a stripe module and can be handled the same as
in the six individual interrupt mode. The Quartus block diagram of the PLD interrupt
controller and the eCos source code of the VSR, ISR and DSR are given in Appendix B.

6.5.3.4 Five-bit Priority Plus Individual Interrupt

Writing the value IH to the INT _MODE register, selects this interrupt mode. The mode
is basically a combination of the two modes described above and its implementation is
not explained in this text.

6.6 Watchdog Timer

A watchdog timer plays an important role in a satellite's OBC. Due to the radiation in the
space environment, program variables in the SRAM can be corrupted (SEU) and cause
the software to enter an abnormal state and subsequently crash. When this happens, the
watchdog timer resets the system to a known state.

The watchdog timer of the EPXAI device resides in the stripe and is connected to the
AHBI bus. The watchdog timer can be triggered by the following events:

• counter overflow in hardware trigger mode

• counter overflow in software trigger mode

• an unexpected value written to the reload register

When the watchdog triggers, it asserts the trigger to the reset module. The reset module

then resets all the modules in the EPXAI device (except the trace logic) and provides the
reset signal to boot the system from the flash memory connected to the EBI. The three
triggers described above operate independently and are described in detail in [1].

6.7 Stripe DART

The stripe contains a UART module that includes modem communications support. This
feature typically allows the UART to be used with the modems on a satellite. The UART

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 51

can be used to communicate with the other subsystems on a satellite as well as debugging
the OBC software.

The stripe UART can be used by the embedded processor or masters in the PLD. An
additional UART can also be implemented in the PLD logic to be used by other PLD

modules or the embedded processor. The EPXAI development board supports both these
UARTs by connecting each to its own transceiver (MAXIM MAX3241E) and DB9 male
RS- 232 connecter.

The stripe UART was extensively used throughout this study for debugging purposes.

6.8 Reset Module

The EPXAI device can be reset from various sources. The Reset module in the stripe
determines what caused the reset and resets the appropriate modules in the EPXAI
device. If a reset occurs, the PLLs are put in bypass mode, which means that all the
clock outputs are generated directly from the input reference clock (CLK _ REF). The
following are all the different types of reset that can occur and what they comprise of:

• Power-on Reset

- Resets embedded processor trace port, reset status register (RESET _SR) and
embedded JTAG controller

• Warm Reset

- Resets embedded circuitry, stripe registers and clears PLD contents

- Asserts EBI external reset signal and nCONFIG to request reconfiguration of
PLD

- Processor is held in reset

• JTAG Reset

- Resets JTAG controller in PLD

- Resets JTAG controller in processor core if configured

The reset sequence along with the different reset sources are shown in Figure 6.9. When
the reset source is the PLD power-on reset signal or external power-on reset pin (nPOR),
the external reset pin (nRESET), internal power-on and warm reset signals are asserted.
The reset counter starts counting when the power-on signal is negated. The reset counter

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 52

Sources:
- PLO POR
- External POR

Si§lnals Asserted:
- Warm Reset
- Power-On Reset

Power-On Reset
De-asserted

Sources:
- nCONFIG
- Watchdog
-lTAG Reset Command
- Configuration Error

Timer counts
32768 cycles

Timer Expired

Wait until Sources
are de-asserted:
- nRESET
- nCONFIG
- Watchdog
...lTAG Reset Command
- Conflguri1tlon Error

Warm Reset De-asserted

Figure 6.9: EPXAI Reset Sequence

controls the duration of the reset event and asserts a warm reset. When the counter
reaches 32768 clock cycles at the external clock frequency, nRESET is negated, but the
warm reset remains asserted until all the reset sources are negated. For more information
on the reset module, consult [1].

6.9 General Purpose Timers

The EPXAI device has a dual-channel timer in the stripe. It can operate in three modes:
free-running heartbeat mode, one-shot delay mode and in software interval timer mode.
Each timer is configured by its own configuration registers. In all three modes the timer
is reset to 0 when the start bit (S-bit in the timer control register) changes from 0 to 1.

The period of the timer is a function of the limit value, set in the limit register, and the
pre-scaler ratio, set in the pre-scaler ratio register. A short description of each mode is
given.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 53

• Free-Running Heartbeat Mode
The timer increments, after reset, until it reaches the limit value in timer limit
register. It then resets to 0 and begins incrementing again. An interrupt, if enabled,
is requested at the end of each cycle. The timer keeps running while the start bit is
set.

• One-Shot Delay Mode
After the timer has been reset, it increments until it reaches the limit value in the
limit register. When the limit is reached, the timer stops, the start bit is cleared,
and an interrupt is requested (if enabled).

• Software Interval Timer Mode
In this mode the timer keeps incrementing after reset. When it reaches the limit
value, an interrupt (if enabled), is requested. However, the timer keeps incrementing
until it reaches the value FFFFFFFFH at which point it wraps around to 0 and
continues incrementing. The timer is frozen when the start bit S is cleared.

The default eCos kernel uses the first timer (Timer 0) for a software implementation of a
Real- Time Clock (RTC) and the second timer (Timer 1) for a delay function. The RTC
is very useful in a satellite's OBC for scheduling events.

The configuration values for the RTC can be easily adjusted by the eCos configuration
tool. The default configuration for the RTC sets Timer 0 to run in free-running heartbeat
mode with a period of 10 ms. The delay function uses Timer 1 in one-shot delay mode. The
user can simply invoke the function with the desired delay in microseconds as parameter,
from which the limit value is calculated.

These eCos implementation of Timer 0 and Timer 1 can however be disabled in the source
code. For more information on the timers consult [1].

6.10 Ethernet Controller

The EPXAI development board contains an Ethernet controller, the SMSC LAN9IClll,
connected to the EPXAI's EBI interface (CS3). The SMSC LAN9ICll1 is a single chip
Ethernet controller that provides a dual speed IOjIOOMbps connection. The eCos EPXAI
port also provides the device driver for the Ethernet controller.

An Ethernet connection can be very useful during the development phase for uploading
big data or application files to memory. The RedBoot monitor can also be configured to

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 54

PLO

Ol;;
"tio.;::;: Master Modules In PLO:

'---_-1 .

Figure 6.10: ARB Bridges

use either the Serial Port (UART) or Ethernet Channel for communication with the GDB
debugger.

6.11 ARB Bus Interface

Two ARB bridges are used to interface the embedded processor stripe with the PLD
inside the EPXA1 device. The PLD-to-stripe bridge is used by masters inside the PLD to
access slaves inside the stripe. The PLD master accesses the stripe slaves via the slave port
of the bridge. The stripe-to-PLD bridge is used by masters in the stripe to access slave
modules in the PLD. The PLD slaves are accessed via the master port of the stripe-to-PLD
Bridge. The PLD-to-stripe and stripe-to-PLD bridge signals, according to the AMBA
ARB specification [19], is shown in Figure 6.10 along with the PLD implementation.

A slave interface module was designed in the PLD that interprets the AMBA ARB master
signals from the stripe. Each slave module in the PLD has its own address by which a
master can access it. The slave interface module receives the transaction from the master
and then sends it to the addressed slave in the PLD. Any read data is collected from the
slave and sent back to the master via the bridge.

Similarly, for the masters in the PLD, a master interface module was designed that gen-
erates the required AMBA ARB master signals to access slaves in the stripe.

Both the master and slave interface modules are included in the Quartus block diagram
in Figure A.I. The master and slave interface ASM charts are given in Figure A.2 and
Figure A.3 respectively. The VRDL source code of the two modules is included on the
attached CD-ROM.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 55

45

-45

-90+·-----------~--------~----------~----------_4
-180 ·-90 o

Longitude
90 180

Figure 6.11: 8EUs in the 880fT OBC program memory at 1330-km altitude [3]

6.12 EDAC Unit

The program memory is critical in any satellite system. It contains the program code that
controls the satellite and therefore needs to be highly reliable, stable and error tolerant.
In the case where the program code resides in RAM memory devices, special precautions
have to be made to protect this memory against SEU induced errors. For LEO satellites,
passing through the South Atlantic Anomaly (SAA) proton belt can cause SEU errors in
RAM devices. Figure 6.11 proves this occurrence of SEUs as the satellite passes through
the SAA proton belt.

These SEUs can however be detected and corrected by an EDAC unit. The EDAC unit
can typically be implemented in three different ways:

• software based

• hardware based (Commercial EDAC Integrated Circuit)

• hardware based (PLD Logic)

To implement a software-based EDAC requires a lot of extra processing which is a very
limited resource on a satellite. The system software also has to be designed to support
an EDAC of this nature. The use of a commercially EDAC circuit was ruled out due to
the existing EPXAI development board architecture. It will be hard to incorporate an
EDAC Integrated Circuit (IC) with the existing components on the board. It will also
contradict the idea of an OBC on a single chip.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI GBC Design 56

~ p
Parity Memory;7

m
Processor Data Memory

Figure 6.12: Encoder Schematic

An PLD based EDAC unit proved to be the best solution. It could be implemented in
the PLD section of the EPXA1 device.

6.12.1 Choosing an EDAC Data Coding Scheme

A wide variety of data coding schemes are currently available to base an EDAC unit
on, with the Hamming code being the most well known. The Hamming code allows the
correction of one error bit per stored data word. Although Hamming code based designs
are simple and generally considered to be acceptable for the use in an OBC [6], recent
studies done by Surrey Satellite Technology Limited (SSTL) showed that, although rare,
double bit errors can occur in modern high-density memory (4 Mbit die) [5J. This means
that there is a definite risk of two error bits occurring within one byte of stored data,
either from the impact of a particularly energetic SEU, or from a second SEU creating
a second error before the computer had time to correct the first error [20J. With this in
mind, a 2-bit correcting code was needed to base the EDAC system on.

For a coding scheme to correct up to two bit errors, the minimum distance between two
pairs of code words must be five (dmin = 5). A coding scheme that meets this requirement
was developed at the University of Surrey and is based on quasi-cyclic codes.

6.12.2 The Quasi-Cyclic (16,8) Code

The theory behind the quasi-cyclic code is explained in detail in [20J. The basic encoding
and decoding is explained in the following sections .

• Encoding

To encode an 8-bit data vector m, the encoder generates an 8-bit parity vector p

from the data vector using a parity matrix P. The 16-bit code word, [p mJ, is
stored in RAM. Figure 6.12 shows the Encoder Schematic.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 57

p'r---"':"_--; Parity Memory

Processor m" Data Memory

Figure 6.13: Decoder Schematic

• Decoding

For decoding, the entire 16-bit code word [p'm'] is read. A syndrome vector s is
then derived by re-encoding m' and exclusive-OR'ing it with v'. Comparing this
syndrome vector s with the entries in a look-up table (LUT) will yield an error
vector e. If there are no errors, both vectors sand e will be zero. If an error did
occur and it is correctable, the corrected data vector mil is derived by exclusive-OR

the error vector e with the original data vector m'. Figure 6.13 shows the complete
decoder schematic.

6.12.3 Physical EDAC Implementation

Implementing an EDAC unit in the PLD of the EPXA1 device is possible due to the fact
that the PLD can access all of the external memory connected to the EBI and SDRAM
controller through the AHB bus. However, this is not an ideal setup. No flow-through
EDAC, that resides between the processor and memory, can be implemented with the
EPXA1 architecture. The advantage of such a flow-through EDAC structure is the simple
control logic.

6.12.3.1 EDAC VHDL Design

The (16,8) Quasi-Cyclic coding scheme can be easily implemented in VHDL. The im-
plementation logic is based on an open source VHDL module provided by the European
Space Agency (ESA) .

• Write Cycle

During a write cycle the processor sends the memory address and data along with a
write flag to the PLD instead of writing the data directly to memory. The logic in

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAl GBC Design 58

the PLD then generates the parity bits from the received data and stores the coded
word at the received memory address .

• Read Cycle

During the read cycle the processor sends the memory address of the requested data
to the PLD along with the read flag set. The PLD then request the data from the
memory mapped at the received address. The coded word is read and the parity is
generated from the stored data received. The generated parity is compared against
the stored parity. If the resultant syndrome is not equal to zero, then the LUT is
used to match the syndrome to an error location pattern identifying the error bit(s).
The data is then corrected and stored again before passing it to the processor.

The EDAC implemented can be used on any memory attached to the EBI or SDRAM
controller. Ideally, the EDAC should be tested with external SRAM connected to the

EBI. Unfortunately, there is no external SRAM connected to the EPXA1's EBI on the
development board. However, testing the EDAC itself is not dependant on the type of
memory it is used on. Therefore, the external SDRAM connected to the EPXA1 device
could be used to test the EDAC unit. The complete EDAC VHDL source code is included
on the attached CD-ROM.

6.13 PLD UART

A basic UART was implemented in the PLD logic. The UART has no modem control
signals and can only transmit data. The UART can be used by the processor or by other
PLD implemented modules. The 16 Kbytes of on-chip DPSRAM was used as a transmit
buffer for the UART. Both the processor and PLD can directly access the DPSRAM
without the use of the AHB bridges.

The PLD interface to the DPSRAM is very flexible in the sense that it can be configured

to operate in different interfacing modes. Table 6.1 shows the different PLD interfacing
modes to the single block of DPSRAM. The embedded processor bus (AHBl) always
accesses the DPSRAM as 32-bit data because it is a 32-bit wide bus. For this reason the

32-bit PLD interfacing mode was used in the design. The PLD UART module can be seen
on the Quartus block diagram in Figure A.1 while its ASM chart is shown in Figure A.4.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. EPXAI OBC Design 59

Table 6.1
DPSRAM INTERFACE MODES ANDWIDTHS

Interface Interface Mode
Width One AHB-PLD Two AHB-PLD One PLD-PLD
32-bit 1 x 4 K x 32 - -
16-bit 1 x 8 K x 16 2 x 4 K x 16 8 K x 16
8-bit 1 x 16 K x 8 2x8Kx8 -

6.14 I2C Controller

The Interconnected Integrated Circuit (I2C) serial bus developed by Philips has the fea-
tures of low current consumption, high noise immunity and a wide operating temperature
range. These features make it ideal for the use in a satellite system. This protocol is easy
to implement and is supported by many devices today. 12C was used as the internal bus
system on the AAU (CubeSat concept) satellite developed by the University of Aalborg.
It is also used on board the University of Stellenbosch's SUNSAT 2004 satellite.

6.14.1 I2C Overview

The 12C protocol specifies a simple bi-directional 2-wire, serial data (SDA) and serial clock
(SCL) bus for IC communication. Each device connected to the bus is recognized by its
unique address and can operate in either master or slave mode. Currently, there are three
modes of operation: standard mode (up to 100 kbits/s}, fast mode (up to 400 kbits/s) and
high-speed mode (up to 3.4 Mbits/s). Originally the address space consisted of 7-bits, but
was increased to lO-bits to allow more devices on the bus (up to 1024 devices). However,

both these address formats can be used on the same bus. For more information on the
current 12C serial bus specification (version 2.1), consult [21].

6.14.2 I2C Implementation

An 12C driver was implemented in the PLD logic of the EPXAI device. Two I/O pins
(AB9 and TlO) were used to connect to the 12C bus. The driver supported the standard
and fast 12C speed modes, but only in master mode. This means that the EPXAI cannot
be addressed by the other peripherals on the bus. The processor can also access the 12C
bus through a PLD based register. The 12C driver is shown on the Quartus block diagram

in Figure A.l and its VHDL source code is included on the attached CD-ROM.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Tests and Measurements

Many test programs were written to test the implementations and performance of the
EPXAI device. The results of these tests are discussed in the following sections.

7.1 Power Consumption

It is very difficult to measure the total power consumption of the EPXAI device due to
its FineLine ball-grid array (BGA) package and the fact that there is no provision made
for this kind of measurement on the development board. There are, however, theoretical
methods of calculating the power consumption. The total power consumption of the
EPXAI device can be divided between the power consumed by the PLD and embedded
stripe.

7.1.1 PLD Power Consumption

The power consumption of the PLD is very dependant on the amount of implementation
logic that is used. Without being able to measure the power consumption of the PLD,
the only other known way was to use a power calculator that Altera recommends [4J.
Unfortunately, the power calculator did not support the PLD of the EPXAI device.

7.1.2 Embedded Stripe Power Consumption

The power consumption of the embedded stripe can be roughly calculated by using the
power consumption graphs given in [4J. These graphs were drawn under the following test
environment:

60

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 61

teevs. AHBl Frequency

AHB1 ClOCk Frequency(MHz}

Figure 7.1: Current Consumed by the Embedded Stripe versus ARBl Clock Frequency [4]

• low temperature, high Vee and varying clock frequency

• embedded processor makes continual memory accesses

• timer, UART and EBI are enabled

• PLLs are locked

• PLD DPSRAM interface makes a memory access on every clock edge

• PLD master writes to PLD slave via AHB2 bus continually

Figure 7.1 shows the current consumed by the embedded stripe when the PLD interfaces
are disabled. Figure 7.2 and Figure 7.3 shows the current consumed by the embedded

stripe when the PLD interfaces are enabled.

From the three graphs the total current consumption of the embedded stripe can be
calculated:

Iee(total) = Iee(jigure.7.1) + Iee(jigure.7.2) + Iee(jigure.7.3) (7.1.1)

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 62

180

160

140

120
<'
É-.100
Q
52 80

60

40

20

0
0

lee vs. PLO Bridge Frequency

20 40 60 80 100 120

PLD Bridge Clock Frequency(Mhz)

Figure 7.2: Current Consumed Versus Clock Frequency Due to the Embedded Stripe Bridge
Interface [4]

250

200

<' 150E,,__

~
- 100

50

0
0

Icc vs. DPRAM Frequency

20 40 60 80 100 120

DPRAM CIoek Frequency(MHZ)

Figure 7.3: Current Consumed Versus Clock Frequency Due to the DPSRAM Interface [4]

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 63

Therefore, from (7.1.1), the maximum current consumption of the embedded stripe is:

Icc(max) = 275mA + 70mA + 43mA

= 388mA

(7.1.2)

(7.1.3)

With a supply voltage of 1.8V, the maximum power consumption of the embedded stripe
can be calculated from Ohm's law:

p= VI

= 1.8V x 388mA

= 0.6948W

(7.1.4)

(7.1.5)

(7.1.6)

7.1.3 Total Power Consumption

The total power consumption of the EPXA1 device is the sum of the PLD power con-

sumption and embedded stripe power consumption.

With the PLD power consumption not known, the total power consumption could not be
calculated. According to [22], the maximum current consumption of the EPXA1 device
core is 1.1 A. Using equation 7.1.4, gives a maximum power consumption of 1.98 W for a

1.8 V supply voltage. This maximum power estimation is roughly the same as the 2 W
estimated by [23].

The total power consumption of the development board was measured under the following
circumstances:

• processor running at 150 MHz and PLLs enabled

• continual memory read and write cycle with EDAC enabled

• continual memory read and write cycle with EDAC diasabled

• continual PLD UART write transaction using the DPSRAM as interface between
the processor and PLD

• continual re write and read transaction

• continual stripe UART write transaction

• user LEDs used continually

• Ethernet controller disabled

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 64

The development board drew 250 mA in this operating state which gave a power con-
sumption of 3 W. In an idle state, the board drew 220 mA (2.64 W).

7.1.4 Low-Power Mode

The EPXA1 device supports a low-power mode. In low-power mode the PLLs can be
turned off. This results in a current consumption of 5 mA by the disabled PLL. Low-
power mode can be used to place the embedded processor in a suspended mode. To place
the EPXA1 in suspended mode, the LP-bit in the PLL control register is set. A PLD pin
must then be used to signal to external logic to slow down or stop the clock generator.
The suspended mode was not tested because the reference clock of the EPXA1 is fixed
and therefore could not be slowed down or stopped.

7.2 Floating Point Test

The ARM922T processor core provides a coprocessor interface that allows the attachment
of a floating point unit on the same chip, but unfortunately the EPXA1 device does not
have such a floating point unit. The presence of a floating point unit in the OBC is
crucial when the OBC has to do floating point calculations, i.e. handling tasks for the
Attitude Determination and Control System (ADCS). Two methods of implementing a
floating point unit (FPU) on the EPXA1 device were identified:

• PLD based FPU

• Software based FPU

A PLD based FPU is typically in the form of various look-up tables, while a software
based FPU is a combination of a math library and built-in compiler functions. eCos
already contains a math library that supports various standard mathematical functions
that made this the obvious choice.

To test the FPU, an eCos application was written that evaluates a 10th order international

geomagnetic reference field (IGRF) model designed by Professor W.R. Steyn (4/5/98).
The IGRF model is used in satellite attitude determination. The model was evaluated at
different processor frequencies, and with the cache enabled and disabled. The processor
frequency can be changed by adjusting the PLL1 output clock frequency (see section 6.2).
The source code of this test is included on the attached CD-ROM.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 65

Bypass Pll1: set BP1 bit in ClK_DERIVE

Set N, Mand K parameters

Set lock window using ClK_Pll1_CTRl

Take PlL1 out of Bypass

False

True

Clear lock change status of Pll 1

Figure 7.4: Flowchart for Reprogramming PLLl

7.2.1 Adjusting the PLL1 Output Clock

Each PLL is controlled by a set of registers. By adjusting the CLK_PLLl_NCNT,
CLK_PLLl_MCNT, CLK_PLLl_KCNT registers of PLLl, the desired output clock
frequency can be obtained. This three registers represent the N, Mand K values that sets
the multiplication and division factors for PLLl. The values of N, Mand K are obtained
by using an encoding scheme [24]. The flowchart in Figure 7.4 describes the sequence
that was used to reprogram PLLl. The desired processor frequency can be obtained by
setting the PLLI output clock frequency to twice the processor frequency.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 66

Table 7.1
IGRF TEST RESULTS (100 LOOPS)

Processor Cache Enabled Cache Disabled
Frequency (MHz) EPXAI S3C4510 EPXAI S3C4510

25 5.636s 6.655s 97.169s 17.294s
50 2.830s 3.328s 61.943 8.647s
100 1.426s - 44.530s -

150 0.958s - 37.987s -
200 0.724s - 35.147s -

7.2.2 Controlling the Use of the Cache Memory

eCos provides macros for enabling and disabling the data and instruction cache of the

ARM922T processor. The following macros were used to control the data and instruction
cache:

• HAL_DCACHE_IS_ENABLE(dcache) , HAL_ICACHE_IS_ENABLED(icache)

- returns the status of the data/instruction cache in dcache /icache

• HAL_DCACHE_ENABLE(), HAL_ICACHE_ENABLE()

- enables the data and instruction cache respectively

• HAL_DCACHE_DISABLE(), HAL_ICACHE_DISABLE()

- disable the data and instruction cache respectively

7.2.3 Floating Point Test Results

The time it takes to calculate the 10th order model at various frequencies was recorded

with the EPXA1 timer. The same test, also using the eCos math library, was conducted
by Mnr. F. Retief on the Samsung S3C4510 (ARM7TDMI core) processor. The results
of the two tests are given in Table 7.1.

From the results it is clear that disabling the cache of the EPXA1 and S3C4510 processors
decreases the performance. Comparing the two processors it also shows that the EPXA1's
performance decreases substantially more than that of the S3C4510 processor when the
cache is disabled.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 67

7.3 Interrupt Controller

The three interrupt modes as described in section 6.5 were implemented and successfully
tested. In all three modes the interrupts from the PLD were generated by the user switches
SW2 to SW5 on the EPXAI development board. A PLD interrupt controller had to be
implemented for the priority interrupt modes. DSRs were used for all the interrupts that
outputs a text message to the terminal window describing the interrupt. The Quartus
block diagram of the PLD interrupt controller and the eCos source code of the VSR, ISR
and DSR are given in Appendix B.

7.4 Watchdog Timer

The watchdog timer can be triggered by the hardware or software.

Asserting a low value on the DEBUG_EN pin enables the hardware watchdog. The hard-
ware watchdog then triggers when COUNT in the WDOG _ COUNT register overflows.
Unfortunately, the DEBUG_EN pin on the EPXAI development board is connected to

3.3V through a 4,7kD register. The hardware watchdog could therefore not be tested.

The software trigger is enabled by writing a non-zero TRIGGER value in the WDOG _ CR
register. When COUNT equals the TRIGGER value, the watchdog is triggered. The
watchdog is also triggered if an invalid value is written to the WDOG _ RELOAD register.
There are only two valid values: A5A5A5A5H or 5A5A5A5AH. These last two methods

of triggering the watchdog was successfully tested with eCos applications. The source
code of these tests is provided on the attached CD-ROM.

7.5 General Purpose Timers

The three timer modes as described in section 6.9 (free-running heartbeat, one-shot delay
and software interval timer) were successfully configured and tested with an eCos ap-
plication. The source code is available on the attached CD-ROM. Timer 1 was used in
all three tests which means that the eCos delay function had to be disabled in the eCos
source code.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 68

+Ethernet eth0: MRC address 00:30:f1:31:69:db
lP: 146.232.221.72. Default server: 146.232.128.10
RedBoot(t.l bootstrap and debug environment IREDBOOTI
Non-certified release. version UNKNOWN - built 11:21:44. May 4 2004
PlatforM: EPHR1 systeM (RRM9l
Copyright (Cl 2000. 2001. 2002. Red Hat. Inc.
RRM: 0x00000000-0x02000000. 0x00002000-0x01f21000 available
FLRSH: 0x40000000 - 0x40800000. 128 blocks of 0x00010000 bytes each.== Executing boot script in 10.000 seconds - enter -C to abort" RedBoot>

Figure 7.5: RedBoot with network package

7.6 Ethernet

The LAN91C111 Ethernet driver is used by the eCos Networking package for the EPXA1
development board. To test this driver, RedBoot was compiled with the eCos Network
package included. The network package was configured to use the FreeBSD networking
stack. The FreeBSD implementation supports various networking protocols like IPv6,

ARP, UDP, TCP, DHCP and TFTP. When the DHCP protocol is enabled, only the valid
MAC address of the system is required to get the appropriate lP address from the DHCP
server. Figure 7.5 shows the RedBoot startup with the network package included.

RedBoot provides some commands to use in a network environment, like sending ping
packets and lP address queries. The network connection was mostly used with RedBoot
to upload bigger .srec files to the board via TFTP. The RedBoot configuration, which
includes the network package, is provided on the attached CD-ROM.

7.7 PLD UART

The PLD UART, described in section 6.13, was implemented successfully. An eCos appli-
cation writes the data it wants to send to the DPSRAM. The PLD UART reads this data
and sends it to the MAX3241E transceiver at a buadrate of 57 600. The eCos application
source code is included on the CD-ROM while the ASM chart of the PLD UART is shown
in Figure A.4.

7.8 EDAC Performance

The PLD implemented EDAC unit, as described in section 6.12, was tested on the external
SDRAM connected to the EPXA1 device. Figure 7.6 illustrates the difference between

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements

EPXAl

il)~
~...
ID...
"tie
lO

:E
~
Q
III I
I

""

.
... SDRAM write...............

69

...
ID...

....
I
I

...

.... EBI write................ . ..
I- - --.,

- - - - EDAC enabled

•••••••• I EDAC disabled

Figure 7.6: Memory Write Cycle

a memory write cycle when the EDAC is enabled and when it is disabled. From this

illustration it is clear that the EDAC will add some delays in memory accesses.

7.8.1 EDAC Accuracy

First of all, the EDAC unit was tested for general accuracy. The test will indicate that
the EDAC can detect and correct up to two bit errors in an 8-bit data word. The test was

implemented with an eCos application (source code available on CD-ROM) that executed
the following sequence of instructions:

1. The application writes data to a specific SDRAM address with the EDAC enabled.
The data is stored in memory along with the parity bits.

2. The stored data is read back from the same SDRAM address with the EDAC dis-
abled. Two data or parity bits are changed to simulate bit-flip errors.

3. This incorrect data and parity are written back to memory at the same address,

still with the EDAC disabled.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 70

Table 7.2
MEMORY CYCLE TIMES

Memory Cycle I Processor (f.-Ls) I EDAC (f.-Ls) I
Write Cycle rv598 rv619.23
Read Cycle rv6.41 rv22.40

Extended Read Cycle - rv43.00

4. The EDAC is enabled and the same, incorrect data is requested from memory. If
the correct data is received, it means that the EDAC detected and corrected the
bit-flip errors.

5. Another memory read to the same address, with the EDAC disabled, should also
yield the correct data and parity. This indicates that the EDAC, upon reading the
incorrect data or parity, corrected it and wrote the data back to memory (extended
read cycle).

The test proved that the EDAC can detect up to two bit errors in an 8-bit word and
correct them. There was however some complications. When the processor accesses the
memory data with the EDAC disabled just after an EDAC transaction, it often reads back
the "old" data. The reason for this is that when the EDAC has finished encoding the data,
the data still needs to be sent to the SDRAM controller and eventually to SDRAM. This
process is relatively slow in comparison with the processor's access time to the SDRAM
without the EDAC. The processor accesses the SDRAM controller at the speed of the
AHB1 bus while the EDAC in the PLD must access the SDRAM controller via the PLD-
to-stripe bridge and AHB2 bus that runs at half the speed of AHBl. This again shows the
time delays the EDAC unit imposes on the memory access. This problem will, however,

not occur when the memory is exclusively accessed with the EDAC enabled.

7.8.2 EDAC Memory Cycle Times

The memory access of a system has a very significant effect on its overall performance.
For this reason it was necessary to measure the time added by the EDAC unit to a
memory cycle. The time added by the EDAC unit for a write, read and extended read
cycle were measured with the EPXA1 timer. The results are shown in Table 7.2. These
measurements are only rough because the times will vary depending on the amount of
transactions that the AHB busses have to handle at the same time.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 71

Analyzer Run

SOA

+

Figure 7.7: I2C Write Transaction in Standard Mode

7.9 The I2C Bus

A slave device had to be connected to the I2C bus to test the I2C driver (see section 6.14).
A digital-to-analog (DAC) converter with an I2C interface was chosen as slave device
because the DAC's output voltage could be set via the I2C bus and then measured and
compared with the programmed value.

A Texas Instruments DAC8571 was chosen to operate as a slave device on the I2C bus for
testing purposes because of previous experience with the device. The DAC8571 is a small
low-power, 16-bit voltage output DAC. The device requires very little support circuitry
which makes it easy to implement.

The slave device was configured and tested successfully in both standard and fast modes,

via an eCos application, using the I2C driver in the PLD. The results of a write and
read transaction, as measured by a logic analyzer, are shown in Figure 7.7 and Figure 7.8
for the standard mode. The logic analyzer measurements for the fast mode are given in
Appendix C.

For the write transaction in Figure 7.7 there are four bytes sent by the master to the
slave. They are descibed as follows:

• Address Byte

- The unique address of the slave, (10011000)2, where the least significant bit
indicating that it is a write transaction.

• Control Byte

Stellenbosch University http://scholar.sun.ac.za

Chapter 7. Tests and Measurements 72

+

Figure 7.8: 12C Read Transaction in Standard Mode

- The byte tells the slave what to do with the data once it receives it. In this
case the value (00010000)2 tells the DAe to write the data to its temporary

register and load the DAe with the data .

• Data Bytes

- Following the address and control bytes are the most significant and least
significant data bytes.

For the read transaction the master sends the slave address with the least significant
bit indicating a read transaction. The slave then sends the most significant byte, least
significant byte and control byte, in that order.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8

Conclusions and Recommendations

8.1 Conclusions

Altera's Excalibur EPXAI embedded processor was evaluated for the implementation of
a satellite's OBC. The EPXAI device contains an ARM922T processor core, embedded
peripherals and programmable logic which, in theory, allows the implementation of an en-
tire OBC on a single chip. This possibility was investigated and the following conclusions
were made.

8.1.1 Reliability

Two major reliability concerns were identified for using the EPXAI device in a space

environment. These are the small process size (0.18 11m) of the device and the SRAM
configuration elements of the PLD. Both these elements make the EPXAI device very
susceptible to SEUs.

Unfortunately, no radiation test results are available for the EPXAI device to give a more
accurate result. There is also no known history where the EPXAI device was used in a
space application.

8.1.2 Power Consumption

The total power consumption of the EPXAI could not be measured because the de-
velopment board does not make provision for such a measurement. Instead, the power
consumption was calculated. The total power consumption is dependant on the stripe and

the PLD logic. The stripe's maximum power consumption was calculated as 694.8 mW.

73

Stellenbosch University http://scholar.sun.ac.za

Chapter 8. Conclusions and Recommendations 74

The PLD's maximum power consumption could not be calculated. However, comparing
[22] and [23], the maximum power consumption of the EPXA1 device was estimated as
2 W. The maximum power consumption of the EPXA1's ARM922T core, with the cache
enabled, is 160 mW. The power consumption of the development board was measured as
3 W under a certain operating mode.

Although a power consumption of 2 W is more than double the power consumption of
previous processors evaluated ([8],[9]), it should be noted that this value represents the

entire OBC's power consumption (excluding external memory) and not just the processor.

8.1.3 Performance

The ARM922T processor core of the EPXA1 device has a processing performance of 210
MIPS at 200MHz. This is less than the 360 MIPS of the Hitachi SH7750 processor used
on the SUNSAT 2004 satellite.

An IGRF test was conducted on the EPXA1 device to test its performance decrease
when the data and instruction cache memories are disabled. The results were compared
to that of a Samsung S3C4510 processor with an ARM7TDMI core. Both processors
showed a decrease in performance when the cache memories are disabled. The EPXA1 's
performance was better than that of the S3C4510, but only when the cache memories
were enabled. With the cache memories disabled, the EPXA1 's performance decreased
substantially more than that of the S3C4510 processor and was up to 7 times slower.

8.1.4 Architecture

The ARM922T is a 32-bit RISC processor core with MMU and data- and instruction
caches. It contains a 32-bit internal AMBA AHB bus system. The memory interfaces,
SDRAM controller and EBI, supports external memory devices with a data width of up to
16-bits. This data width will limit the data transfer rates and performance of the device
comparing to wider data widths like 32-bits and 64-bits.

The EPXA1 device contains very useful on-chip peripherals like the memory and interrupt
controllers, timers and debug support. The PLD allows the implementation of additional
soft-core peripherals which might be needed in a specific OBC. The 186 general purpose
I/O pins and up to 63 interrupt lines from the PLD, provides support for a wide variety of
external devices attached to the EPXA1 device. However, there are no dedicated general
purpose I/O pins for the processor. This means that if a software driver is used for an
external device, it will have to communicate via the PLD. This will add some time delays

Stellenbosch University http://scholar.sun.ac.za

Chapter 8. Conclusions and Recommendations 75

to the interface and complexity to the design.

8.1.5 Development Tools

The Altera Quartus II development tools provide complete support for configuring and
programming the EPXAI device. The eCos RTOS was chosen as most suitable operating
system to be used on the EPXAI device. eCos already has a complete port to the EPXAI
device and with its real-time characteristics and high level of configurability makes it an
ideal operating system for a satellite's OBC.

8.1.6 EPXA1 as Single-Chip OBC

It is unlikely that the EPXAI will ever be used as a single-chip OBC. The radiation
concerns discussed along with the poor performance when the cache memories are disabled

are the main downfalls of the device. The EPXAI device is also very expensive compared
to similar processors. The total cost of the EPXAI device is more than double than the
processor used on the SUNSAT 2004 satellite.

8.2 Recommendations

From the experiences gathered during this study, a few aspects were identified that still
need some research or could be improved. These aspects are highlighted in the following
sections.

8.2.1 Radiation Tests

The reliability of the EPXAI device is suspect due to its small processing size and SRAM
configuration elements. These factors make it susceptible to SEUs induced by space
radiation. However, these are only predictions based on previous findings ([6], [9]).

Radiation tests should be conducted that simulate the space environment that the OBC
will experience. This will give a far more accurate result of the EPXAl's reliability.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8. Conclusions and Recommendations 76

8.2.2 Peripheral Interfaces

The implementation of an LVDS (Low Voltage Differential Signaling) communication
channel and CAN (Controller Area Network) bus should be considered.

LVDS provides a means of sending data along a twisted pair cable at high speed, with
low power and with excellent EMC performance [9J. These features make LVDS ideal for
satellite on-board data handling applications. The Quartus II software provides LVDS
transmitting and receiving soft-cores for the EPXAl device which eliminate the use of
an external serializer and deserializer. The external LVDS circuitry should, however, be
designed according to the LVDS design guidelines given in [25J.

The CAN bus provides very strong error management, fault isolation and fault toler-
ance. The network is fully deterministic, supports priority and can operate at bit speeds
of 1.25 Mbps. These features make it feasible to use in a satellite system [5J. There
are various commercial CAN lP cores available and the EPXAl eCos port supports the
implementation of a CAN controller in the PLD logic.

8.2.3 EDAC Unit

The EDAC unit implemented in the PLD is far from ideal and there is a lot of room
for improvement. The EDAC can be implemented with a flow through architecture by
not using the existing memory interfaces, but rather a soft-core memory controller in the
PLD logic.

Optimizing the EDAC unit should also be considered. This will increase the memory
access times and therefore the OBC's overall performance.

8.2.4 Development Board

A development board specific for the evaluation of the EPXAl device as an OBC, should
be designed. The development board used in this study has a lot of limitations.

Provision should be made for the accurate measurement of the EPXAl power consumption
because power is one of the critical elements in a satellite's design. Provision should also
be made for communication interfaces that require specific circuit designs, like LVDS.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

PLD Modules

The OBC modules implemented in the PLD are as follows:

• AHB Bus Interface

• EDAC Unit

• UART

• 12C Controller

• PLD Interrupt Controller

The Quartus Block Diagram file is shown in Figure A.I, followed by some of the module's
algorithmic state machine (ASM) chart. The 6 individual interrupt mode is used in this
design and therefore requires no state machine.

77

Stellenbosch University http://scholar.sun.ac.za

;:t:..:g
§
c,
~.
;:t:..

>-UARTClocks

4E:jF'''.I ,
I

L~~, ,..,., . .J

1-'
I I·~-.•. ~PLO Registers

Address Register
aooo 0000 EOAC: Memory Address
aooo 0004 EDACMemory O.I.
lOOI) 0008 IIC Addr •••• Control end o.t.
8000 OOOC Muk Interrupt Register
8000 0010 Clear Interrupt Aeat.t.r

&",-.'1';_'1"")
T "."' __ *13'01

i
l~~

""'_-*"_1'101
t.",- ...a.o~al3' Ol~

to-o
(":)
~
tj

~
t::J

~
c,
c
[

EDAC UnitStri£e Interface
I'~~

Master Interface ~- -~--~-1__>d.o\al3l0lII --,...". ~
~Ik ~ otdK._

~~r-=::::=
~
"""'"r--'-

I~ l·~:ll."I_.
HCLQCI(HAlXlRESSl3' 0)

1-lAESP'J10l H11'OAtlSllOJ
"_"'4>;>1' ~t-:rj

&ti.
.::
'"1
('D

>
I-'

r=-
~

I/O Pins
!cu-~

_
nr~ elaYehreadyi

___ 13'01

~1It ..

HAQ,toTAlJl.OI~~ I'"' I "_""=I'.,G) e".Mc_ ... ~l<oIJl cl "__"l~'
""" HSlZ£I',OI "",",,,,_13'01

memJdoo1.o1J1"Oj

mem__ .)3101

""",,_ .. dIIl·I"OI
i-' •

~aq
"'1
~a

.""" se H8UAST)Z Ol.~~ -."-'" ~'",...,'''''
I1loUSTL.ClCK I "~,-eo""

-_...... t,,*,~_'da'·iJl._QI,
~00131.01 l",*",_Gal._,t<:.

'~"-'- 1_. I

i',..",_,ia' ..-,,,,,. i

~
-- roog__IJ1.0I

~_ ... <ilrlaf31_0j

sI8veIlmltSllod

IllaYehaddrj31 ..0)

stwwehlrans(1.01

lIIé!\'ehsize(1..OI

aIaoooettburst(2 .. 0)

~<Iah(31.01.....,_
sIIM'tlullerrinl

slavehresptl ..01

lIaYet!rdal1I(JI..01

..'.lc---"t._....M 5,U51r .- -_

:f<~"'-·~,;:': §~;SJ
1-"' 12CDriver

,:0. ~-'-:J lo2l:_odaI.o4J'!··Ol"_""PI'OJo
td
Q

~o
0..~
CD
rIJ,......
S
'0
CD
S
CD
~
('D
0..

S'
ct-
P'"
CD

'lJ
r<u

12<: __ 13'01

rE~---g ::~lIsw, " •• ,
Slave Interface

~;:;.;re:;;:;;;;.;.~-:..;;-"'_---" __ ""_"- ---'(...._,...........a(s, Ol

I ~~al 011 :~ ~;:,~
...._,... 4 HAOOReSSlJ'..I.lI

~P-.OI·FVTE

'" ~ISI'.OI ~~'OI

~'- In'l HSlZEI\ Ol_ .. GaIa{31 Ol

m~_!.!31 Ol r--=~a.OI =-~'I
'.o' t. ~I..(~ :r:~:'~ I
'c··, ,,-'~·I"·" JJ

"VOO

I.~b-,----'----_._---

'~Ft*,1.01 I
.::::.:'.__ . . J

mastefhclk

nWlStemready

rnasIt!rtogranl

masterilrdala(Jl ..01

nWlStMlresp(I ..0]

m., ..""""
""""""'"--..
mNllet!1addrlJl .. 0]

rnasIertltust[2..01

mastemsize(1 ..01

mastemlrans(1 ..01

mastemwdatB(JI ..OI

I ,_w".
ri~.[3,
~~

Ir~'"~ r!J ,00 "

~

.

"~
,

"'f'1cII01

I W'It;>klJf.··OJ~~--l
ifltpklf5 ..0]

§!..-dpO_2_portacIIc...._..,._.
dpO_pcrtaaddr(lLO]

dpO_portaciatamI31 .. 01

dpO_porfadalaauIl:J1..0]

1..."IcIJII

>LttiSl~

l!O$jif 301
gpi[J ..OI
g~J ..Ol

1 fod~1 r~-~_!___~.~.~=·.:.J
illi~1 '--- J ;m-.._~

_c_fdoIaI3IOj- I
12c_fdat.(3'01

~""""IE0Sl1j--=:l
,"""_,,~3'CI

~
1~_w(ld'''''~'..0j

~_ ...d.la(3'01

12e_",doItaJ3'0I

rgoijOj"
m~.'Uf't,3 ..Cli -a

00
ma.~_1!·13 ..01

. I ~-,.". I I
1 ,. __ .. .__;

Stellenbosch University http://scholar.sun.ac.za

Appendix A. PLD Modules

A.2 PLD Master Interface

HWRITE •....AHB_READ
HTRANS •..- IDLE
HADDRESS ~ 0.0
HSIZE ~ AHB BYTE
HBURST •.. AHB ..SINGLE
res_rdala ~.-OIO
HWDATA ~ reg_wdala
bus._orror-T

Figure A.2: ASM Chart of Master Interface

79

Stellenbosch University http://scholar.sun.ac.za

Appendix A. PLD Modules

A.3 PLD Slave Interface

80

h",.dy_' ~ 'I'
HRESP ~ ERROR
latch_bllS ~ '0'

I

hldm$S._r ~ HAODRESS
hw';!._, __ HWRITE
hbursU HBURST
h.Ize_, HSIZE
htransj' HTRANS
HRESP~ OKAY
latch_bus ~ 'I'
hr•• dy_r ._ 'I'

Figure A.3: ASM Chart of Slave Interface

Stellenbosch University http://scholar.sun.ac.za

Appendix A. PLD Modules

A.4 PLD UART

address - 0.0
ram_write -- '0'

TX·· '0'
count _0
bO.ta - r.lm.nlato(l downt 0)

Figure A.4: ASM Chart of PLD UART

81

Stellenbosch University http://scholar.sun.ac.za

Appendix B

PLD Interrupt Controller

Extracts from the 6-bit priority interrupt mode's VSR, ISR and DSR source code are
given in the following sections. Figure B.l shows the Quartus block diagram for the 6-
bit priority mode. All three interrupt modes were implemented and the design files are
include on the attached CD-ROM.

82

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 83

B.I Block Diagram

-

r
Q

!~I
i I
i I
I~

Figure B.l: 6-Bit Priority Interrupt Mode Block Diagram

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 84

B.2 Installed ISRs and DSRs

1* J.Jordaan 2004 *1
1* this program test the 6 bit priority interrupt controller *1

#include <cygjinfrajdiag.h>

#include <cygj hal j pld _ con fig . h>

#include <cygjhaljhal_io .h>

#include <cygjhaljepxal.h>

#include <cygj kernel j kapi. h>

static cyg_interrupt pld_int6;

static cyg_handle_t pld_int6_handle;

static cyg Interrupt pld in t ? ;

static cyg handle t pld in t ? handle,

static cyg_interrupt pld_int8;

static cyg handle t pld in t S handle;

static cyg Interrupt pld in t S ;

static cyg_handle_t pld_int9_handle;

I I define the new pld interrupt vector lwmbers

#cl e fi n e CYGNUM HAL INTERRUPT Pill PRIO 10

#cl e fi ne CYGNUM_HAL_ INTERRUPT _ Pill _PRIO _ 00

#cl e fi n e CYGNUM HAL INTERRUPT Pill PRIO CE

#cl e fi n e CYGNUM HAL INTERRUPT Pill PRIO fJ7

27 IIInt9

26 IIInt8

25 IIInt'l

24 IIInt6

static cyg_sem_t data_ready;

1* ISR for PLD interrupt
IIInterrupt from pld with int_pldf5 .. o] = 000111

cyg_uint32 pld_int6_isr(cyg_vector_t vector, cyg_addrword_t data)

~----------------------*I

liDisabie the pld interrupt through PLD mask register

liNo need to unmask it in processor's int mask register => not supported

HAL_ WRITE_UINT32(Ox80000004, Ox03BF);

I I Acknowledge the interrupt by clearing the int clear register in PLD

HAL_ WRITE_ UlNT32(Ox80000000, Ox0040);

liTurn over to DSR
return CYG !SR HANDLED CYG ISR CALL DSR);

I---------------,DSR for PLD interrupt ~-----------------------*I
void pld int6 dsr (cyg_vector_t vector, cyg ucount32 count,

cyg addrword t data)

{
cyg_ semaphore _post (&data _ ready) ;

I I Enable the interrupt again

HAL_WRITE_UlNT32(Ox80000004, Ox03FF); liEnable int6 again

IIOutput to terminal which switch caused the interrupt

diag_printf (" In t.e r r u p t c Sw it c h c z lVn ") ;

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 85

1* ISR for PLD interrupt
Ilint_pld(S .. Oj = 000010
cyg_uint32 pld_int7_isr(cyg_vector_t vector, cyg addrword t data)

{
HAL_WRITE_UINT32(Ox80000004, Ox037F); Iidisable Int 7
HAL_WRITE_UINT32(Ox80000000, Ox0080); Ilelear Int7 in PLD

~----------------------*I

return (CYG ISR HANDLED CYG ISR CALL DSR);

I DSR for PLD interrupt *1
void pld Int 7 dsr (cyg_ vector _ t vector, cyg_ ucount32 count,

cyg_ addrword t data)

cyg_ semaphore _ post (&data _ ready) ;

HAL_ WRITE_UINT32(Ox80000004, Ox03FF); I I Enable int7 again

diag _ pri n tf (" In terrupt ~ Sw it c h , 3! \ nil) ;

1* ISR for PLD interrupt
cyg_ uint32 pld_int8_isr (cyg_ vector _t vector, cyg_addrword_t data)

{

~----------------------*I

HAL_ WRITE_UINT32(Ox80000004, Ox2FF); I I disable Int 8
HAL_WRITE_UINT32(Ox80000000, OxOOIOO); Ilelear Int8 in PLD

return (CYG ISR HANDLED CYG_ISR_CALL_DSR) ;

}

I DSR for PLD interrupt *1
void pld int8 _ dsr (cyg_ vector _ t vector, cyg_ ucount32 count,

cyg addrword t data)

cyg_ semaphore _ post (&data _ ready) ;

HAL_WRITE_UINT32(Ox80000004, Ox03FF); liEnable int8 again

diag_printf(II Interrupt~Switch~4!\n");

}

I ISR for PLD interrupt
cyg uint32 pld_int9_isr(cyg_vector_t vector, cyg_addrword_t data)

{

~----------------------*I

HAL_WRITE_UINT32(Ox80000004, OxOIFF); lidisabie Int 9
HAL_ WRITE_UINT32(Ox80000000, Ox0200); I I clear Int9 in PLD

return (CYG ISR HANDLED CYG_ISR CALL_DSR);

}

1* DSR for PLD interrupt *1
void pld int9 dsr (cyg_ vector _ t vector, cyg_ ucount32 count,

cyg_addrword_t data)

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 86

cyg_ semaphore _post (&data _ ready) ;

HAL_WRITE_UINT32(Ox80000004, Ox03FF); liEnable int9 again

diag_printf("Interrupt_Switch_5!\n") ;

I~--------------------------Jnstall ISRs and DSR~---------------------*I

void cyg_user_start(void)

Iidefine the interrupt vectors and their priorities

linote: these vector numbers had to be added to the existing ones

111,n hal intr.h

cyg_ vector _ t pld_ int6 _ vector = CYGNUM_HAL_INTERRUPT_PLD_PRlO_07;

cyg_priority_t pld_int6_priority = 7;

cyg_ vector _t pld_int7 _ vector = CYGNUM_HAL_INTERRUPT_PLD_PRlO_CB;

cyg_priority_t pld_int7_priority = 8;

cyg vector t pld int8 vector = CYGNUM_HAL INTERRUPT PLD PRlO 00,

cyg_priority_t pld_int8_priority = 9;

cyg_ vector _ t pld_int9 _ vector = CYGNUM_HAL_INTERRUPT_PLD_PRlO_lO;

cyg_priority_t pld int9 priority = 10;

cyg_semaphore_init (&data_ready, 0);

Ilcreate interrupt 6 of PLD

cyg_interrupt_create (pld_int6_ vector, pld_int6_priority ,0,&pld_int6_isr ,

&pld_int6_dsr,&pld_int6_handle, &pld_int6);

cyg_interrupt_attach(pld_int6_handle) ;

Ilcreate interrupt 7

cyg_interrupt_create (pld_int7 _ vector, pld_int7 _priority ,0,&pld_int7 _isr ,

&pld_int7 _dsr ,&pld_int7 _handle, &pld_int7);

cyg _ i n terru pt _ at tac h (pld _ int7 _ handle) ;

Ilcreate interrupt 8
cyg_interrupt_create (pld_int8_ vector, pld_int8_priority ,0,&pld_int8_isr ,

&pld_int8_dsr,&pld_int8_handle, &pld_int8);

cyg_interrupt_attach(pld_int8_handle) ;

Ilcreate interrupt 9
cyg_interrupt_create (pld_int9_ vector, pld_int9_priority ,0,&pld_int9_isr ,

&pld int9 dsr ,&pld Illt9 handle, &pld_int9);

cyg_interrupt_attach (pld_int9 _handle) ;

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 87

B.3 Installed VSR

1* J. Jordaan 2004
Installed IRQ handler with the 3 interrupt mode support.

Modified in epxal_ misc. c *1

II This procedure returns the interrupt vector number

int hal_IRQ_handler(void)

int vee;

eyg uint32 is r j id j mode i p ld pr i ;

Ilread interrupt mode

HAL _ READ _ UINT32(EPXAl_ INT _ INT _ MODE, mode) ;

if (mode = OxO) { 116- bit mode

HAL_READ_UINT32(EPXAl_INT_ID, id);

HAL_READ_UINT32(EPXAl_INT_PLD_PRIORITY, pld_pri);

if (id = pld_pri) { lipid interrupt
II for test use priorities = vector => priorities between 1 and 5

vee = (int)pld_pri;

1110west pld priority> vector 16 to prevent using an existing vector

vee = vee + 17; II pld vectors start at 18 for priority 1

return vee; I I return vector number

} else { Iinormal interrupts _ don't check priority,

Ilcheck int request status register

HAL_READ_UINT32(EPXAl_INT_REQUEST_STATUS, isr);

for (vee = CYGNUM_HAL_INTERRUPT_PLD_O;

vee <= CYGNUM_HAL_INTERRUPT_FAST_OOMMS; vee++) {

if (isr & (l«vee)) {

return vee;

}
else if (mode = OxOl) { Ilfive _ bit priority

HAL _ READ _ UINT32(EPXAl_ INT _ ID, id) ;

if (id = OxlO) { IIValue corresponds to the id attached to the ISR

vee = 33;

return vee;

}
if (id = Ox12) {

vee = 35;

return vee;

}
if (id = Ox14) {

vee = 37;

return vee;

}
II normal interrupts
HAL_READ_UINT32(EPXAl_INT_REQUEST_STATUS, is r I ;

for (vee = CYGNUM_HAL_INTERRUPT_PLD_O;

vee <= CYGNUM_HAL_INTERRUPT_FAST_OOMMS; vee++) {

if (isr & (l«vee)) {

return vee;

Stellenbosch University http://scholar.sun.ac.za

Appendix B. PLD Interrupt Controller 88

}
else { II 6 individual interrupt mode

HAL_READ_UINT32(EPXAl_INT_REQUEST_STATUS, iST);

for (vee = CYGNUM _HAL_INIERRUPT _Pill_ 0;

vee <= CYGNUM_HAL_INIERRUPT_FASI'_CDMMS; vee++) {

if (isT & (l«vee)) {

return vee;

}

ret u rn CYGNUM _HAL _ INIERRUPT _NONE; I INa corresponding interrupt source

Stellenbosch University http://scholar.sun.ac.za

Appendix C

I2C Measurements

Figure C.l and Figure C.2 show the 12Cwrite and read transactions in fast mode measured
by the logic analyzer.

Run

SOA ULJl~ __~n~__~n~ ~ ~

+

Figure C.l: 12C Write Transaction in Fast Mode

+

Figure C.2: 12C Read Transaction in Fast Mode

89

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] MNL-EPXA10HRM-3.l: Excalibur Devices: Hardware Reference Manual Version 3.1. AI-
tera, November 2002.

[2] ARM DDI GlOOE: ARM Architecture Reference Manual. ARM Limited, 2000.

[3] Peter Fortescue, J.S. and Swinerd, G.: Spacecraft Systems Engineering. 3rd edn. Morgan

Kaufmann Publishers, San Fransico, 2000.

[4] Altera: Excalibur embedded processor pld stripe power consumption. [Online]

Available: http://www.altera.com/li terature/wp/wp_epxan_power _consumption. pdf,

[2004, November 17], June 2002.

[5] Hans Tiggeler, Tanya Vladimirova, D.Z. and Gaisler, J.: Experiences designing a

system-on-a-chip for small satellite data processing and control. [Online] Available at:

http://www.ee.surrey.ac.uk/Personal/T.Vladimirova/Publications/MAPLDOO%_P20.pdf,

[2004,November 1], 2000.

[6] Grobler, H.: Aspects Affecting the Design of a Low Earth Orbit Satellite OBC. Master's

thesis, University of Stellenbosch, 1996.

[7] Altera: [Online] Available at: http://www.altera.com. [2004, November 1], 2004.

[8] Barnard, A.: Feasibility of using an ARM processor in a micro satellite on-board computer.

Master's thesis, University of Stellenbosch, December 2001.

[9] Dreijer, G.: The evaluation of an ARM-based on-board computer for a low earth orbit satel-

lite. Master's thesis, University of Stellenbosch, September 2002.

[lO] DS-APEX20K-4.3: APEX 20K Programmable Logic Device Family. Altera, February 2002.

[11] GNUPro Toolkit User's Guide for Altera for ARM and ARM/Thumb Development. Red

Hat,2002.

[12] Nucleus Embedded Software Product Overview: [Online] Available at:

http://www.AcceleratedTechnology.com. [2004, November 1], 2004.

[13] RTEMS ARM Application Supplement: [Online] Available at: http://www.oarcorp.com.

[2004, November 1], January 2003.

91

Stellenbosch University http://scholar.sun.ac.za

http://www.altera.com/li
http://www.altera.com.
http://www.AcceleratedTechnology.com.
http://www.oarcorp.com.

Bibliography 92

[14] Linux: Real-Time and Performance: [Online]

http://www.linuxdevices.com/products/PD8842791300.html, [2004,

2003.

Available at:

November 1],

[15] Monta Vista Linux Professional Edition: [Online] Available at: http://www.mvista.com/.

[2004, November 1], 2003.

[16] Massa, A.J.: Embedded Software Development With eCos. Prentice Hall, 2003.

[17] eCos Mailing List and Documentation: [Online] Available at:

http://sources . redhat . com/ecos/, [2004, November 1], 2004.

[18] Altera: An 298: Reconfiguring excalibur devices under processor control. [Online] Available:

http://www.altera.com/li terature/an/an298. pdf, [2004, November 17], October 2002.

[19] AMBA Specification, Rev 2.0. ARM, 1999.

[20] Hodgart, M. and Tiggeler , H.: A (16,8) error correcting code

(t=2) for critical memory applications.

http://www.estec.esa.nl/wsmwww/core/ipdoc/EDAC8Cyclic.pdf,

17], 2000.

[Online]

[2004,

Available:

November

[21] The PC-Bus Specification, Version 2.1. Philips Semiconductors, January 2000.

[22] MNL-EPXA1DEVBD-1.0: EPXAl Development Board Version 1.0. Altera, August 2002.

[23] Cravotta, R.: Edn magazine 32-bit processor's comparison. [Online] Available:

http://www.edn.com/contents/images/24564 7t32bi t. pdf, [2004, November 17], Octo-

ber 2002.

[24] Altera: Excalibur solutions - using the excalibur stripe plls. [Online] Available:

http://www.altera.com/li terature/an/an177. pdf, [2004, November 17], July 2002.

[25] Altera: An 120: Using lvds in apex20ke devices. [Online] Available:

http://www.altera.com/li terature/an/an120. pdf, [2004, November 17], May 2002.

Stellenbosch University http://scholar.sun.ac.za

http://www.linuxdevices.com/products/PD8842791300.html,
http://www.mvista.com/.
http://www.altera.com/li
http://www.estec.esa.nl/wsmwww/core/ipdoc/EDAC8Cyclic.pdf,
http://www.edn.com/contents/images/24564
http://www.altera.com/li
http://www.altera.com/li

Appendix D

CD-ROM Data

The attached CD-ROM contains the following data:

• VHDL source code of the PLD designs

• eCos program source code in C along with the eCos configuration

• Reference papers and datasheets

Stellenbosch University http://scholar.sun.ac.za

