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Abstract

An autonomous mobile robot must be able to identify moving objects in its environment,
continually as it is operating, for accurate environment mapping and collision-free navi-
gation. This is not an easy task, since most of what might be observed will appear to be
moving due to the robot’s own motion. The task is further complicated by the inherent
uncertainty in the pose estimates and environment measurements captured by the robot.

In this work we focus on features in the environment whose 3D locations are measured
over time, such as triangulated stereo image features. Our aim is to separate dynamic
features from static ones and also to group the dynamic ones into separate objects. Ex-
isting approaches generally assume that the exact pose of the robot is known at every
time step or, in order to estimate the robot pose, they assume that the environment is
predominantly stationary. We avoid these assumptions through thoughtful consideration
for the uncertainties involved.

In order to model the uncertainties, as well as the statistical dependencies between ob-
servations and latent variables, we present a novel application of probabilisitic graphical
models (PGMs) for dynamic object detection. Our PGM can be divided into two in-
teracting components. The first relates to motion segmentation, in which all observed
features are classified as static or dynamic, and the second relates to object segmentation,
in which dynamic features on the same objects are clustered together. We also take care
to accommodate for semi-static objects, which are objects that can be both stationary
and dynamic during the observation period. Our design choices lead to a PGM contain-
ing both discrete and continuous variables. Tractable inference in such a hybrid model
can be challenging, and we pay particular attention to this issue. It turns out that mes-
sages sent from continuous to discrete variables can be pre-computed, before loopy belief
propagation is performed over the discrete variables.

Experiments on the KITTI benchmark datasets indicate that our PGM approach per-
forms well, and it often outperforms a state-of-the-art feature-based algorithm. We find
that motion segmentation accuracy tends to improve as more observations of the same
features become available, and that our method has the ability to handle semi-static ob-
jects successfully. The ability of our PGM to segment different objects is also seen to
perform superior.
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Opsomming

’n Outonome vry-bewegende robot moet oor die vermoë beskik om voortdurend bewe-
gende voorwerpe wat in sy omgewing voorkom te identifiseer, ten einde akkurate kartering
en botsing-vrye navigasie te bewerkstellig. Die taak word verder gekompliseer deur die
inherente onsekerheid in die postuurafskattings en omgewingsmetings wat die robot neem.

In hierdie proefskrif fokus ons op kenmerke in die omgewing waarvan die 3D posisies oor
tyd gemeet word, soos verdriehoekte stereo-beeldkenmerke. Ons poog om dinamiese en
statiese kenmerke van mekaar te skei asook om die dinamiese kenmerke in verskillende
voorwerpe te groepeer. Bestaande benaderings aanvaar tipies dat die eksakte posisie en
oriëntasie van die robot op elke tydstap bekend is of, in ’n poging om dit af te skat,
word aanvaar dat die omgewing grotendeels staties is. Ons vermy hierdie aannames deur
welbedagte oorwegings vir die betrokke onsekerhede.

Om hierdie onsekerhede asook die statistiese afhanklikhede tussen waarnemings en la-
tente veranderlikes te modelleer, stel ons ’n nuwe toepassing van grafiese waarskynlik-
heidsmodelle vir dinamiese voorwerpherkenning voor. Ons grafiese model kan in twee
wisselwerkende komponente verdeel word. Die eerste komponent is verwant aan bewe-
gingsegmentering, waarin alle waargenome kenmerke as staties of dinamies geklassifiseer
word, terwyl die tweede komponent verwant is aan voorwerpsegmentering, waarin di-
namiese kenmerke op dieselfde voorwerp saam gegroepeer word. Ons tref voorsorg om
semi-statiese voorwerpe, wat kan beweeg en stilstaan in die waargenome tydperk, te
akkommodeer. Ons ontwerpkeuses lei tot ’n grafiese model wat diskrete en kontinue ver-
anderlikes bevat. Uitvoerbare inferensie in so ’n hibriede model kan uitdagend wees en
ons skenk veral aandag aan hierdie kwessie. Dit blyk dat boodskappe wat van kontinue na
diskrete veranderlikes gestuur word, vooraf bereken kan word, voordat vertroue-sirkulasie
(“loopy belief propagation”) oor die diskrete veranderlikes uitgevoer kan word.

Eksperimente op die KITTI maatstaf-datastelle dui aan dat ons grafiese model benadering
goed presteer en dat dit gereeld ’n vooraanstaande kenmerk-gebaseerde algoritme uitstof.
Ons bevind dat die akkuraatheid van bewegingsegmentering neig om toe te neem namate
meer waarnemings van dieselfde kenmerke beskikbaar word en dat ons metode die vermoë
het om semi-statiese voorwerpe suksesvol te hanteer. Die vermoë van ons grafiese model
om verskillende voorwerpe te segmenteer blyk ook beter te vaar.
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Chapter 1

Introduction

For successful operation an autonomous mobile robot must be able to navigate its environ-
ment safely. In particular, the robot must be able to identify obstacles in its environment
and plan a path that avoids collisions. This by itself is not an easy task, because the on-
board sensors used to detect obstacles may return measurements tainted by noise. Also,
since the robot is moving through the environment, the locations of obstacles relative
to the robot change over time. The robot’s pose estimators may also be noisy, result-
ing in the robot becoming uncertain of both its own position and the geometry of the
environment.

To complicate matters even further, many obstacles in the environment may be moving
independently from the robot. In order to deal with this added problem the robot must
be able to do three things. First it must detect dynamic objects and separate them from
static objects. Next the robot has to track those dynamic objects over time and, finally,
the robot must attempt to predict the trajectories of the dynamic objects before deciding
on its own plan of action. In this work we focus on the first step towards navigating
dynamic environments, namely dynamic object detection.

1.1 Challenges in dynamic object detection
Separating dynamic objects from static ones in a robot’s environment presents a number
of challenges. Firstly, in order to perceive obstacles in its environment, the robot is
usually equipped with sensors that return measurements of the environment relative to
the robot. These sensors can include stereo cameras, laser range scanners, radar or sonar.
Measurements returned by environment sensors may be noisy due to sensor imperfections,
random interference or the assumptions required to process raw data into a useful format.
Consequently, environment measurements carry uncertainty, which leads to uncertainty
regarding obstacle locations relative to the robot.

If the robot is moving while measurements are captured, it may appear from the sensor’s
point of view as if everything in the environment is moving. In order to distinguish be-
tween apparent movement of stationary objects and truly independent motion of dynamic
objects, knowledge of the robot’s own motion (ego-motion) is vital. For this reason the
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CHAPTER 1. INTRODUCTION 2

robot is typically equipped with an inertial measurement unit (IMU), a global positioning
system (GPS) or the more accurate differential GPS (DGPS). These sensors provide an
estimate of the robot’s pose (position and orientation) at different times.

Since these sensors can also return noisy measurements, it makes sense to combine pose
estimates obtained from them with pose estimates determined from the locations of iden-
tified and tracked landmarks in the environment. For the robot to localize itself relative to
the landmarks, the locations of the landmarks are required. However, in order to place the
landmark locations in a global map, knowledge of the robot pose when the measurements
are captured is required. This leads to a chicken-and-egg type problem, aptly named
the simultaneous localization and mapping (SLAM) problem [21, 22]. Much research has
been done on the SLAM problem and it is now considered solved on a theoretical level.
However, existing solutions typically assume that the environment is stationary, which
means that dynamic objects have to be identified and discarded before SLAM can be
performed. A solution to this problem has been proposed in the form of SLAM with
detection and tracking of moving objects (DATMO). There the estimation problem is
factored into two separate estimates, thus reducing computational complexity [81].

Regardless of the manner in which localization estimates are obtained, they will always
carry uncertainty. Therefore, ideally, localization estimates should be modelled as prob-
ability distributions over the pose variables. A small error in the estimate of robot
orientation, for example, can have a drastic effect on the obstacle location estimates in
the global map, especially for objects far away from the sensor. Since more accurate pose
sensors are generally more expensive, it is desirable for a dynamic object detection system
to incorporate and reason under significant pose uncertainty, rather than to neglect it.

The dynamic objects themselves also present some difficulties. We identify three types of
objects that the robot may encounter in its environment. The first is a stationary object
which remains stationary for the entire period that it is observed. The second type is a
dynamic object that moves for the entire period. The third type, however, includes semi-
static objects that are moving for only part of the period that it is observed. Examples
include vehicles stopping at a stop sign, or parked cars that start to move while being
observed. In our view a dynamic object detection system must be able to identify all
three types of objects, track both dynamic and semi-static objects, and be able to handle
measurement uncertainty as well as pose uncertainty.

1.2 Related work
We proceed with a review of existing work on the subject of dynamic object detection in
mobile robotics. We split the review into two parts: motion segmentation and clustering.

1.2.1 Motion segmentation

The first step towards dynamic object detection is to separate measurements of the
environment into measurements of static objects (including the background) and mea-
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CHAPTER 1. INTRODUCTION 3

surements of dynamic objects. This process is called motion segmentation or motion
detection. The literature on the subject is vast, and we limit this discussion to work
representative of the main techniques.

1.2.1.1 Background subtraction

One of the earliest approaches to motion detection is frame differencing [31]. The tech-
nique subtracts consecutive images from a video sequence pixel-wise. The camera is
assumed to be stationary, and the only differences should occur in regions of indepen-
dent motion. This approach is sensitive to noise and illumination changes, and having a
stationary camera is not suitable for our application.

Attempts have been made to use frame differencing for moving cameras [6, 61]. An ac-
curate ego-motion at each time step is assumed to be known from an IMU or another
means of motion estimation, but the methods do not account for uncertainty in this pro-
cess. By compensating for the ego-motion a predicted image is computed and background
subtraction can be performed.

In an attempt to deal with noise, it has been proposed to build a probabilistic model
for the background over time [58, 64]. A popular approach is the one of kernel density
estimation over the pixel intensities [76, 77]. The density for each pixel of an incoming
image is computed and if it deviates from the background model according to some
similarity measure, that pixel is classified as dynamic. However, these methods are again
only applicable to stationary cameras and are more popular in surveillance applications.

If the majority of the environment is static, and the camera is moving, the induced
image motion satisfies certain geometric constraints [26] and a basis for the trajectories
of the static features can be found using RANSAC [1]. All features with trajectories
that deviate from such a computed trajectory model are then classified as dynamic [12,
29]. Otherwise, if the ego-motion can be accurately estimated, the image plane can be
transformed accordingly and independent motion can be detected. To date, ego-motion
compensation appears to be the most common strategy for independent motion detection
[16]. These techniques are limited by the assumption that the majority of the scene is
static and may fail in highly dynamic environments.

1.2.1.2 Optical flow

Optical flow presents another vision-based solution to detect moving objects in an image
sequence [28]. It can be seen as the apparent movement or flow of intensity values over
time, and is computed for every pixel. Features with similar optical flow are then grouped
together by a similarity criterion. In the past, optical flow methods have been criticized
for their high computational cost, but advances in computational technology lead to a
rise in popularity. It has now been used successfully for driver assistance purposes [35],
indoor navigation [49] and obstacle avoidance for unmanned aerial vehicles [42].

Optical flow methods assume brightness constancy, which states that the image brightness
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CHAPTER 1. INTRODUCTION 4

at a specific pixel I(x, y, t) at a given frame t can be expressed as

I(x, y, t) = I(x− u(x, y), y − v(x, y), t+ 1), (1.1)

where u(x, y) and v(x, y) represent the horizontal and vertical displacements of the pixel
after one frame. By expanding (1.1) into a Taylor series and assuming a small displace-
ment, a linear system of equations can be obtained. This is usually solved by means of
the Lucas-Kanade method [46], where the image gradients are computed for a window
around the pixel and substituted into the system of equations. The Lucas-Kanade optical
flow method, however, fails when the instantaneous velocity of a pixel is too large with
respect to the window where motion is being considered [17]. Also, when a point has
a strong rotational component, the assumption of similarity in displacement vectors can
fail.

In order to compute the optical flow, certain constraints are required which lead to as-
sumptions regarding the structure of the viewed scene [28]. In practice, where motion
discontinuities exist, these assumptions are often violated and result in inaccurate esti-
mates [2]. Most optical flow methods also compute the displacement vectors using pairs of
images [75], which is generally not enough information for motion segmentation and can
lead to inaccurate results. Other drawbacks include sensitivity to noise, the inability to
deal with occlusions, and semi-static objects that remain stationary for a short period of
time. Furthermore, optical flow methods were originally designed for stationary cameras
and therefore require a known robot pose at each time step.

1.2.1.3 Wavelets

Wavelet transforms are commonly used in signal processing applications [47]. They ex-
press a function in terms of a set of mutually orthogonal basis functions localized in both
time and frequency. This enables the wavelet transform to isolate components of a certain
frequency for a specific time duration.

Wavelet motion segmentation has been a popular research topic [38] as it facilitates analy-
sis of the frequency components of images. From these components motion parameter
estimates are made and object edges are detected, allowing for clustering into individual
objects. Wiskott [83] integrated Gabor- and Mallat-wavelet transforms in an attempt
to overcome the aperture problem [70] as well as the correspondence problem [59]. The
wavelet transform as a solution to motion segmentation is limited to simple cases, such
as translational object motion, and research interest seem to have waned [86].

1.2.1.4 Statistical approaches

Contrary to the methods mentioned thus far, many approaches to motion segmentation
formulate the problem probabilistically or employ traditional statistical methods.

Probabilistic graphical models (PGMs), in general, specify a factorization over the joint
distribution of a set of variables in the form of a graph, where the variables are depicted
as nodes and the dependencies between the variables are specified by the presence (or

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

absence) of edges between the nodes. This allows for the exploitation of conditional
indepencencies between the variables, either for modelling purposes or for inference. We
note that graphical models have been employed in the context of motion segmentation
for stationary observers, and graphical models form part of our proposed solution.

Markov random fields (MRFs), which are a type of PGM, have been employed to detect
motion in image sequences [58]. First, a model of the background is built and ego-motion
compensation is applied. Next, regions that do not conform to the estimated model are
detected by means of a statistical regularization approach and are classified as moving
objects. A maximum a posteriori MRF (MAP-MRF) framework has also been employed
to detect objects by using a foreground and background model [67]. These models are
built through non-parametric density estimation over image intensity as well as pixel
proximity, similar to the background kernel density estimation technique mentioned in
Section 1.2.1.1. Both MRF methods operate on the image plane, which has the drawback
that information is lost during the projection from 3D to 2D.

The conditional random field (CRF), which is a variant of the MRF, has been used
to segment dynamic objects from static objects [20]. CRFs are generally employed to
train discriminative classifiers and are able to represent spatial and temporal similarities
between measurements. Douillard et al. [20] present a semi-supervised learning algorithm
to train the classifiers but require the number of possible classes to be known. Even
though the method utilizes semi-supervised learning, manual data annotation must still
be performed and a representative set of training examples is required.

A classic Bayesian approach (not related to graphical models) to detect dynamic objects
in range measurements has been proposed by Kaestner et al. [33]. They estimate the
probability that a point is dynamic, given the range measurement at a particular time.
They assume that every observation is caused by one of K objects, which can be either
static or dynamic. Furthermore, they model the true range distance for each cell in the
range image using a Gaussian distribution. Their goal is to estimate the posterior over
all states, the parameters describing all the Gaussian distributions, as well as the number
of objects K.

Some have viewed the motion segmentation as a soft clustering problem, in which a prob-
abilistic mixture model is employed to explain change in appearance for a specific pixel
[8]. These changes are assumed to be explained by object or camera motion, illumination
changes, specular reflections and object-specific changes, or a combination of these fac-
tors. By following this approach, pixels that change as a result of object-specific changes
can be extracted as moving obstacles.

Another popular statistical motion segmentation trend is to formulate the motion detec-
tion problem as one of determining whether a change occurred at a specific pixel after
ego-motion compensation. Hypothesis testing, where the null hypothesis is formulated
as “no change occurred”, can then be employed to detect moving objects [63].
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1.2.1.5 Layering

The problem of motion detection in an image sequence can be seen as one of fitting a set
of motion models to the data and extracting all the pixels that correspond to a specific
motion model [12, 18].

The EM algorithm has been employed to build a mixture model for layered segmentation
iteratively [82], although these methods are sensitive to initialization and are computa-
tionally complex [12]. A more recent approach detects features, tracks them over time,
clusters them according to their motion and separates them into different objects once
enough evidence is obtained [62]. Sun et al. [75] attempt to estimate the number of layers
in a scene and simultaneously solve the depth ordering of the layers for occlusion han-
dling using graph-cut optimization methods [11]. Learning layers of an image sequence
for motion segmentation has also been proposed [40]. First, moving objects are identified
by computing rigid transformations between two consecutive frames. Second, a clustering
algorithm is employed to learn appearance models for the individual objects.

Min and Medioni [52] note that an image sequence can be seen as a 3D volume with
variables (x, y, t) describing the position of a pixel in the image at time t. They convert
this representation to 5D by adding a velocity at the pixel with components (vx, vy). By
assuming spatio-temporal smoothness, which implies that neighbouring pixels belonging
to one object moves similarly and also that a pixel moves smoothly over time, they can
extract objects with similar velocities and thus identify individual layers in the image by
employing a tensor voting framework [50]. They make another assumption that a layer or
segment can only contain pixels from a single object which, if violated, leads to algorithm
failure.

Layering is arguably the most natural solution to the occlusion problem [86]. However,
the main drawbacks of layering approaches include high computational cost and a large
number of parameters that must be tuned manually.

1.2.1.6 Learning

Some algorithms detect specific objects that are known to be dynamic. Luber et al. [45]
train a classifier to detect people in RGBD data, while Wojek et al. [84] use support vector
machines (SVM) to detect pedestrians, cars and trucks. Specific objects in images can be
detected through use of template matching [15]. However, methods that learn foreground
activity generally do not account well for measurement uncertainty [33]. These methods
also typically require vast amounts of labelled representative data, which can be hard to
come by and time-consuming to process.

Another approach is to learn the background on-line and then classify each pixel as static
or dynamic [3]. In such methods an ensemble of weak classifiers is combined into a strong
classifier using AdaBoost. However, learning the background on-line can be risky for a
moving camera since the background is always changing.
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1.2.1.7 Feature-based approaches

Most of the methods mentioned thus far are dense, in the sense that they consider all the
pixels in an image. Such methods suffer from high dimensionality and high computational
cost. An alternative is to consider only interest points or features detected in the images.
These feature-based approaches can enable fast tracking and, if the image features are
also to be used for SLAM or visual odometry, the identified dynamic features can be
excluded from the feature set employed by those modules.

Despite their advantages, feature-based methods have attracted surprisingly little atten-
tion. Müller et al. [56] track features using a Kalman filter [34] and use edge scoring in a
graph structure to segment features into different objects. A similar approach calculates
scene flow for each feature and clusters the flow vectors into objects [72]. Sparse optical
flow methods have the advantage that they are less sensitive to noise than their dense
counterparts [74], but also require a known pose. Lenz et al. [43] combine ideas from
these two into a method called triTrack, that also removes edges based on uncertainty
in the measured 3D position of each feature. An additional advantage of feature-based
approaches, especially for long sequences, is the possibility of compactly representing mo-
tion information as a feature interval graph [51] which is similar to the Kalman filter. A
sparse motion segmentation that learns the robot’s ego-motion has also been proposed
and applied to humanoid robots [39].

It seems as if most existing motion detection methods rely heavily on accurate ego-
motion estimation and do not accommodate for the uncertainties inherent in the robot
localization process. Statistical methods in general can be well suited to handle such
uncertainties. Existing statistical approaches, however, operate on the image plane and
how robot pose uncertainty can be dealt with in that paradigm is unclear.

This concludes our review on segmenting measurements into static and dynamic classes.
Next we consider the problem of grouping dynamic points into separate objects.

1.2.2 Clustering

Once measurements of the environment have been received and separated into static and
dynamic measurements, it may be necessary to group the dynamic measurements into
objects. Some of the motion segmentation algorithms mentioned in Section 1.2.1 have an
inherent clustering module as part of the algorithm, but many do not. Grouping mea-
surements or points into individual objects is important because, in the next component
of a typical path planning and navigation system, these objects have to be tracked.

Clustering algorithms can generally be divided into two classes: hard and soft. A hard
clustering method makes a hard decision by assigning one specific label to each data
point. On the other hand, soft clustering methods provide a probability distribution over
all labels for each data point, from which the most likely label can then be inferred.

One of the most popular hard clustering methods is the k-means algorithm [25]. It requires
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knowledge of the number of clusters, and the algorithm starts by randomly selecting k
data points, one for each cluster, that form the initial set of means. All data points
are clustered by choosing the closest mean according to some metric. New means are
computed for each of the clusters and the process is repeated until convergence.

Another approach, especially popular in computer vision applications, is to perform kernel
density estimation over all the data points. A mean-shift algorithm [14] is employed to
obtain a hard clustering and the number of clusters simultaneously. The mean-shift
algorithm computes, for each data point, the direction of the largest gradient, after which
each data point is translated in that direction. These steps are repeated until convergence
is obtained.

In some approaches it is assumed that the underlying density representing the data is
a Gaussian mixture model (GMM) and the EM algorithm is employed to estimate the
parameters of this GMM. This is also an iterative procedure, which starts with an initial
estimate for the parameters, performs clustering and adjusts the parameters to maximize
the likelihood of the clustering until it converges [30]. The result is also a hard clustering.

In fuzzy clustering each cluster consists of a fuzzy set of all the data points [30]. The
algorithm starts with an initial fuzzy clustering and a matrix containing the grade of
membership of the data points to a cluster. A fuzzy criterion function of this matrix
is then iteratively minimized and the matrix is recomputed until convergence. These
algorithms lead to soft clustering. PGMs have also been used in the context of soft
clustering image regions into objects based on colour, texture and shape [65].

Soft clustering methods are preferred, since they can provide more information to sub-
sequent modules (such as an object tracker or a path planner). We also note that while
most methods assume knowledge of the number of clusters beforehand, this information
is rarely available in practice.

1.3 Problem description
From a review of the literature it is our conclusion that almost none of the currently avail-
able methods incorporate pose uncertainty into their motion segmentation approaches.
Since pose uncertainty is often significant, and subsequent components in a navigation
system are dependent on the accuracy of the motion segmentation, we regard the incor-
poration of pose uncertainty as a necessity.

Furthermore, most approaches operate on the image plane, where information is lost dur-
ing the projection from 3D to 2D. Illumination change is also a problem for appearance-
only motion segmentation. We instead focus on methods that can be applied to any of
the sensors commonly used for environment perception by performing the motion seg-
mentation on 3D features rather than on image level. In doing so we can also incorporate
measurement uncertainty.
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A common assumption made in motion segmentation algorithms is that the predomi-
nant motion in the measurement is a result of the motion of the robot. We want to
avoid this assumption since situations can arise where the environment is dominated by
independently moving objects.

If we can also avoid the requirement of prior information regarding the shape or appear-
ance of the objects in the scene, our approach may become suitable for AUVs, UAVs as
well as robots moving in unstructured environments. Therefore, even though we may
know for example that traffic scenarios typically contain pedestrians, cyclists and vehi-
cles, we refrain from training a representative object classifier which, in any case, requires
large amounts of labelled data.

At every time step we assume access to a belief distribution over the robot’s pose, obtained
from some type of localization estimator. We assume that features can be identified
and measured as 3D locations relative to the robot (by, for example, LIDAR or the
triangulation of stereo features). We also assume a set of known feature correspondences
between the current time step and the previous one, in order to compute feature velocities,
as well as a measurement model over the individual features in order to characterize
measurement uncertainties.

Our first goal is to classify all observed features as static or dynamic, while also making
provision for features that can switch states over time (semi-static features). The second
goal is to cluster dynamic features together that belong to the same object. Note that,
unlike most existing methods that assume the pose of the robot to be known exactly,
we want to incorporate the inherent uncertainty in the pose estimation process into our
model. In order to suit a variety of robots and environments, we also want to refrain
from training an environment-specific object classifier. To further the generality of the
algorithm to sensor type, we choose to operate in 3D space, rather than image space, so
that the system will not be restricted to vision sensors.

As a concrete example, consider Figure 1.1. The sensor is a stereo pair of cameras, and
the Libviso [24] image features detected in the video feed from one of the cameras over
three consecutive time steps are shown in (a). The goal of this work is firstly to label
every feature as static or dynamic, as indicated in (b), and secondly to group features on
the same dynamic objects together, as indicated in (c).

1.4 Our approach
Probabilistic graphical models are specifically designed for situations where we have im-
perfect knowledge about a situation, partial and uncertain observations, and have to
draw conclusions based on such observations. PGMs are well suited for classification and
clustering problems [36, 65], and should therefore be able to handle both our motion
detection problem and object detection problem. Surprisingly, however, PGMs have not
been a popular approach in this regard. This may be partly due to the fact that the entire
problem must be carefully modelled and that inference in large networks can be compu-
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(a) detected features (b) motion segmentation (c) object segmentation

Figure 1.1: An example of (a) features detected in three consecutive frames, (b) desired
motion segmentation output where dynamic features are indicated in red, and (c) desired object
segmentation output where dynamic objects are demarcated with bounding boxes.

tationally complex. This creates a trade-off between having a realistic representation of
the problem and enabling tractable inference. In our work we address this issue, in an
effort to unlock the true potential of employing PGMs for dynamic object detection.

Our approach requires feature correspondences over time from which 3D feature positions
can be retrieved during triangulation [26]. For reduced complexity in feature matching,
lost features reappearing in later time steps are considered to be new features. We
assign a time-dependent binary state variable to every feature that indicates whether or
not it is dynamic, and another indicating whether or not it is capable of movement (to
accommodate semi-static features that switch states over time). Pairs of features are
connected via binary variables to indicate whether or not they belong to the same object.
Inference is enabled by incorporating feature velocities and relative distances between
features. Modelling the problem in this way results in a hybrid PGM that consists
of both continuous and discrete variables, for which tractable inference is challenging.
However, a few simplifying assumptions allow closed-form expressions for messages sent
from the continuous variables to the discrete ones, and inference can be performed on a
set of binary discrete variables.

1.5 Original contributions
We present a novel application of probabilistic graphical models especially designed to
solve the dynamic object detection problem for mobile robots. Our PGM can be divided
into two interacting components. The first is the motion detection component, which
is developed from first principles and offers a new way of describing the problem. The
second component builds on an idea from Shental et al. [68], where pairs of features are
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connected via a binary random variable that indicates whether or not they belong to the
same object. The idea is adapted to interact with the first component as well as to fit into
the PGM framework. We further adapt the model to accommodate semi-static objects.
We also propose an incremental inference scheme that avoids increased complexity over
time and facilitates tractable inference.

Existing approaches generally assume that the exact pose of the robot is known at every
time step or, in order to estimate the robot pose, they assume that the scene is pre-
dominantly stationary. In this work we avoid both assumptions. As a consequence, our
proposed method enables a robot to detect dynamic objects in highly dynamic scenes.
Also, having an expensive localization sensor is no longer a requirement since we accom-
modate for uncertainty in the robot pose estimates.

The rest of this dissertation is organized as follows. We proceed with some background
on probabilistic graphical models in Chapter 2. In Chapter 3 we present the design of
our PGM, and address the hybrid PGM inference issue in Chapter 4. Our model requires
a set of measurements that may need pre-processing, and this is discussed in Chapter 5.
Results are presented and discussed in Chapter 6, followed by conclusions and future
work in Chapter 7.
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Chapter 2

Probabilistic graphical models

Probabilistic graphical models (PGMs) model the relationship between what we want to
know (in our case whether objects in the environment are static or dynamic), and the
observations (robot pose and feature measurements) which have their own uncertainties.
Given observations, the PGM allows us to infer what the most likely situation is. Put
differently, PGMs provide a platform to model what we do know about a certain situation
in the form of interactions between components (such as the observations and what we
want to know) and, given uncertainties, draw conclusions about the true state of the
situation.

If a mobile robot is equipped with stereo cameras, for example, comparing images from
consecutive time steps can give the impression that all observed features are moving.
However, some of the observed motion is explained by the robot’s ego-motion and some
by independently moving objects, and we do not know which is which. We do know
that stationary features will have a velocity of zero in the world coordinate system, and
dynamic features will not. However, we cannot observe these velocities directly and the
feature velocities we do observe, carry uncertainty. In a dynamic object detection system
we have imperfect knowledge of the environment and uncertain observations, and we want
to infer which objects are dynamic and which are static. PGMs therefore seem to provide
a natural framework in which to solve the independent motion segmentation problem.

In this chapter we highlight certain aspects of PGMs required for our proposed solution
and implementation. The reader is referred to the books by Koller and Friedman [36]
and Barber [4] for further reading.

2.1 Modelling
When a probabilistic model is defined to describe or model a problem, it has to specify
the joint probability distribution over all the random variables involved. A particular
model can specify a factorization of the joint distribution by making some independence
assumptions. PGMs encode the model-specific factorization as well as the independence
assumptions. After observations are made, inference can be performed by exploiting the
graph-structure of the PGM in order to draw conclusions about the model. We first

12
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discuss how a PGM is constructed.

The first step is to decide on which random variables to include in the model and exactly
what they represent. There can be latent random variables, which are variables of interest
that cannot be observed, as well as related random variables that can be observed. We
are usually interested in the latent variables, and want to infer distributions over the
values they can assume from what can be observed.

As a simple example, suppose a doctor wants to infer the disease a patient has from a
number of observed symptoms. We can define a set of binary random variables D =
{d1, . . . , dn}, such that a value of di = 1 indicates that the patient has disease i. These
are latent random variables since they are not observed directly. We can also include in
our PGM a set of binary random variables s = {s1, . . . , sm}, where sj = 1 indicates that
the patient exhibits symptom sj. This set denotes the observed random variables.

The next step is to decide how the variables are related to one another. It is of course
important that some dependencies exist between observations and latent variables, for
knowledge to be transferred from the observations to the latent variables.

2.1.1 Bayesian networks

Relationships between diseases and symptoms are causal (diseases cause symptoms).
Bayesian networks are a specific type of graphical model well suited to model such rela-
tionships. An example of a Bayesian network for the symptom-disease scenario is shown
in Figure 2.1(a). The joint distribution over all the variables present in Figure 2.1(a) can
be factorized (in general) as

p (d1, d2, s1, s2, s3) = p (d1) p (s1 |d1 ) p (d2 |s1, d1 ) p (s2 |s1, d1, d2 ) p (s3 |s1, s2, d1, d2 ) .
(2.1)

However, for simplicity in our model we make the following conditional independence
assumptions:

d2 ⊥ s1, d1, (2.2)
s2 ⊥ s1 | d1, (2.3)
s3 ⊥ s1, s2, d1 | d2, (2.4)

d1 d2

s1 s2 s3

(a)

d1 d2

s1 s2 s3

(b)

Figure 2.1: (a) A simple example of a directed PGM or Bayesian network. (b) An example of
a Markov network representation of (a).
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where ⊥ indicates statistical independence. The joint distribution then factorizes as

p (d1, d2, s1, s2, s3) = p (d1) p (s1 |d1 ) p (d2) p (s2 |d1, d2 ) p (s3 |d2 ) . (2.5)

Bayesian networks are defined in such a way that independencies can be deduced from
the graph structure. If, for each variable, a conditional distribution is defined over that
variable given its parents in the graph, the product of all such distributions will form the
model-specific factorization of the joint probability distribution.

In order to put this more formally, let us introduce the concept of d-separation. In
general, sets of variables X and Y are d-separated given a set of observations Z if one of
the following criteria is met:

• for any chain X ←−M ←− Y , at least one of the variables in the set M is in Z;

• there exists a fork X ←− M −→ Y and at least one of the variables in the set M
is in Z;

• there exists a v-structure X −→M ←− Y and none of the variables in M nor any
of their descendants are in Z.

It can then be said that X and Y are independent given an observation set Z if X and
Y are d-separated by all paths between them.

Once the conditional independence assumptions for the model are specified, all factors
in the resulting model-specific factorization must be known and supplied to the inference
algorithm. For our symptom-disease example, we would have to specify the probability
distributions that various symptoms are observed given the disease (p (s1 |d1 ), p (s2 |d1, d2 )
and p (s3 |d2 )) as well as prior probability distributions that diseases occur (p (d1) and
p (d2)). Note that there may exist more than one graph representation for the same
factorization.

In some cases the required distributions can be obtained through logical reasoning or
expert knowledge. In other cases it may be necessary to learn such distributions from
data samples. Kernel density estimation [71] is an option if no restriction is placed on
the class of target distribution, while maximum likelihood estimation [57] or expectation
maximization [54] can be employed for distributions assumed to be of a particular class.

2.1.2 Markov random fields

Another type of PGM is a Markov random field (MRF) in which the connections are not
directed. A Bayesian network can be converted to an MRF by a process called moral-
ization, where parent nodes with a common child are connected, in addition to already
connected nodes. An MRF version of the Bayesian network in Figure 2.1(a) is shown in
Figure 2.1(b). Markov random fields are used when no meaningful causal relationship
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exists between the variables, i.e. in situations where it is more natural to specify a joint
probability over a subset of the random variables than a conditional probability.

Similar to Bayesian networks, the independence assumptions can be deduced from the
graph. For Bayesian networks we introduced the notion of d-separation. For MRFs, a
set X is independent of another set of variables Y given an observation set Z if all paths
(in any direction) between X and Y pass through Z. From Figure 2.1(b) we see that
all paths between s1 and s2 must pass through d1, and all paths between s3 and the set
{s1, s2, d1} must pass through d2, so that (2.3) and (2.4) follow. The assumption (2.2)
does not follow from the graph and is an example of some of the expressiveness lost by
converting a Bayesian network to a Markov network.

The power of PGMs emerges in networks where independence assumptions are made,
since such assumptions lead to a more sparsely connected PGM and simplified inference.
Specifying the independence assumptions therefore introduces a possible trade-off between
computational complexity and accurate modelling of the problem. Also, since specifying
the factors and deciding on the independence assumptions go hand-in-hand, it may require
a number of design iterations to reach an appropriate model. In some cases relationships
between random variables can also be learned [36].

2.1.3 Factor graphs

A further representation of graphical models exists in the form of factor graphs, which
are also undirected. Both Bayesian and Markov networks can easily be converted into
factor graphs. When drawing factor graphs, random variables are represented by circles,
while every factor in the joint factorization is represented by a rectangle. A variable can
only be connected to a factor, and is connected only when it occurs in that factor. For
inference on PGMs these factors do not have to be normalized, and are therefore not
necessarily probability distributions. For this reason the notation φ(·) is introduced to
represent both probability distributions and unnormalized distributions or potentials.

An example of a factor graph for the symptom-disease model used previously is shown in
Figure 2.2, where

φ(d1) = p (d1) , (2.6)
φ(d2) = p (d2) , (2.7)

φ(d1, d2, s2) = p (s2 |d1, d2 ) , (2.8)
φ(d1, s1) = p (s1 |d1 ) , (2.9)
φ(d2, s3) = p (s3 |d2 ) . (2.10)

2.1.4 Cluster graphs

In a factor graph each random variable in the PGM occurs exactly once, and two variables
can be connected via a factor. Another representation exists where variables and factors
are grouped together. Such graphs are called cluster graphs. A specific grouping of factors
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d1 d2

s1 s2 s3

φ(d1) φ(d2)

φ(d1, s1) φ(d1, d2, s2) φ(d2, s3)

Figure 2.2: An example of a factor graph for the PGM in Figure 2.1.

is referred to as a cluster, while a grouping of random variables is called a sepset. Similar
to the factor graph, sepsets are connected via clusters, under the restriction that the
variables in a sepset between two clusters must be contained in the scope of the cluster
intersection (all variables that occur in both clusters).

Since there are many ways in which to group factors into clusters and variables into
sepsets, a cluster graph representation of a factor graph is not unique. In a cluster graph
the same variable may occur in multiple sepsets, but those sepsets may be separated by
many clusters. For inference, cluster graphs are required to possess the running intersec-
tion property, which is defined as follows. If a variable x occurs in cluster Ci and Cj, then
there must be a single path between Ci and Cj and x must be contained in all edges of
that path.

In Figure 2.3(a) we show an example of a Markov network. This graph is converted to
a cluster graph in (b) which does not satisfy the running intersection property. In (c) a
cluster graph is shown which does satisfy the running intersection property.

d

e ca

b

a

a

b

e

c, d

φ(a, b)

φ(b, e)φ(c, e)φ(d, e)

φ(a, e)

a

c, d

b, e

e

φ(a, b)φ(a, e)

φ(b, e)

φ(c, e)φ(d, e)

(a) (b) (c)

Figure 2.3: (a) A Markov network. (b) An example of a cluster graph that does not satisfy
the running intersection property. (c) An example of a cluster graph that satisfies the running
intersection property. Since the graph in (c) is a tree, it is also an example of a clique-tree.
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2.1.5 Clique trees

A special case of the cluster graph is called a clique tree or junction tree. As the name
suggests, these graphs are trees, i.e. contain no loops. Furthermore, all the sepsets are
cliques (fully connected) and must satisfy a more specific instance of the running in-
tersection property. This property states that, if a variable x occurs in clique Ci and
also in clique Cj, then x must also occur in every clique along the unique path between
clique Ci and Cj. The definition for clique trees implies that the sepsets must be equal
to all variables in the intersection of Ci and Cj, which is not a requirement for the first
definition.

An undirected graph (with or without loops) can be converted to a clique tree if and only
if every loop of length 4 or more has a chord (an edge that connects two non-adjacent
nodes in a loop). In such cases we say that the graph is triangulated. If the undirected
graph is not triangulated, extra links may be added to the chord-less cycles. The Markov
network in Figure 2.3(a) has a loop, but the cluster graph in Figure 2.3(c) has a tree
structure. Since it satisfies the running intersection property for clique trees, it is also a
clique tree.

2.2 Inference
Once a problem is modelled graphically and all the required distributions are known,
inference is performed so that meaningful conclusions can be drawn. The type of inference
that is performed depends on the type of conclusions that must be drawn from the PGM.
One query of interest is the probability distribution over all the random variables in the
PGM, given all the evidence. This is referred to as computing the conditional probability
query, and is formulated as

p (X |Y = ŷ ) , (2.11)

where X contains all the random variables in the PGM except the set of observations Y ,
and Y = ŷ is observed. Depending on the application, one may also be interested in a
marginal distribution over all or some of the latent variables, or perhaps the normalizing
constant [80]. In this work we are interested in conditional probability queries, since we
want to draw conclusions about the values of the random variables given observations.

Depending on the problem, one may be interested in the values of the random variables
that maximizes the posterior distribution, i.e. finding the set of values x such that

arg max
x

p (X = x |Y = ŷ ) . (2.12)

This problem is known as the maximum a posteriori (MAP) inference problem.

Both queries can only be made once the PGM is calibrated. This occurs when all pairs of
adjacent nodes are calibrated, which in turn occurs when the marginal distributions over
their sepsets agree. Performing both types of queries can be computationally intractable,
since the problem in general is NP-hard [36]. However, inference on many specific PGMs
can be performed efficiently using either exact or approximate inference algorithms.
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2.2.1 Exact inference

In exact inference a specific ordering exists in which the marginal distributions are com-
puted and the sums, or integrals in the case of continuous variables, can be computed
exactly. One example of an exact inference method is variable elimination, where a spe-
cific ordering of summations and products over factors are computed depending on the
query variables [36]. Consequently, inference has to be re-run for a different set of query
variables [80].

The sum product algorithm is a dynamic programming algorithm that shares intermediate
computational terms by propagating messages between nodes. In this algorithm, each
message is sent exactly once and two adjacent nodes are calibrated after messages in
both directions have been sent. This method of inference, which is also called belief
propagation, is widely used for PGMs containing discrete and/or Gaussian variables [80].
Inference using belief propagation is, however, exact only when the graph has a tree
structure (acyclic). This also applies to clique-trees that are derived from graphs with
loops.

2.2.2 Approximate inference

In cases where the PGM is not sufficiently sparse, exact inference becomes intractable
or even impossible. Fortunately algorithms exist that enable approximate inference. For
cluster graphs with loops, belief propagation can still be performed and is computationally
significantly cheaper than exact inference [36]. However, it must be said that the larger
the cluster the higher the computational cost and, since different cluster graphs can lead
to significantly different answers, a low cost approximation may sometimes be poor.

All messages are initialized to unity, and messages are passed between nodes. After all
messages have been propagated once, i.e. messages in both directions have been passed
between every pair of adjacent nodes, we are not guaranteed that these nodes will be
calibrated. Another round of message passing can be required, and the process may be
repeated until convergence. Even though there is no guarantee that convergence will
occur, loopy belief propagation (as it is called) remains a popular and useful algorithm
for inference [80].

Another approximate inference algorithm preserves the cluster structure, but gains ef-
ficiency by approximating the messages themselves. This is achieved by representing
complex joint distributions over many variables as a product of small factors, and is
called expectation propagation [36]. While this approach may provide a good approxi-
mation to the posterior belief [53], it grows in complexity with the size of the graph –
similar to belief propagation.

If the factors in the joint distribution specified by the PGM are stationary (i.e. do not
depend on the time parameter t), a random walk or traversal of states on the graph can
be generated, which forms a Markov chain since the next state in the walk depends only
on the current state. A Markov chain can be constructed in such a way that the desired
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posterior distribution is the equilibrium distribution, using for example Gibbs sampling.
Approximating the posterior distribution in this way is a so-called Markov chain Monte
Carlo (MCMC) method [7]. An alternative to MCMC is sequential Monte Carlo (or
particle filtering) methods. Particle filters approximate a sequence of target distributions
with weighted samples (particles) which represent random hypotheses about the state of
the system. MCMC methods have the drawback that it can be difficult to determine
whether or not equilibrium has been reached, while sequential Monte Carlo methods
suffer from the weight degeneracy issue where a small set of particles can dominate as
time progresses [85]. Particle-based methods in general are guaranteed to achieve accurate
results at the large sample limit, but the performance with practically reasonable sample
sizes is difficult to predict [36].

It turns out that the PGM we design for dynamic object detection consists of discrete and
Gaussian variables and, while it should be noted that any of the approximate inference
methods mentioned here may be suitable for our PGM, we focus on the sum product
algorithm described in the next section.

2.3 Sum product algorithm
In this section we provide details of sum product message passing on factor graphs without
loops, which results in exact inference. The procedure for applying the algorithm to a
clique tree is fundamentally no different, except that messages are propagated between
sepsets and cliques or clusters rather than variable and factor nodes.

In sum product message passing, messages can be propagated asynchronously, since each
node can send a message as soon as it is ready. A node is ready to propagate a message
to a neighbouring node Cj once it has received messages from all of its neighbours except
from Cj. Once a message is sent to a particular node, the belief over the variables at
that node is updated. Also, messages are scheduled so that every message is computed
and propagated exactly once. Once messages in both directions over an edge are sent,
those two adjacent nodes are calibrated. Formally, two adjacent nodes are calibrated if
the marginal distributions over the sepset of their updated beliefs agree. It can be shown
that the joint distribution over all variables in the graph factorizes as the normalized
product of the updated beliefs after calibration [36].

Generally, there are two types of messages: from a variable node to a factor node and
from a factor node to a variable node. Examples are shown in Figure 2.4(a) and (b)
respectively.

Consider the factor graph shown in Figure 2.4(c). Since variable node y is connected to
a single factor node φ(x, y), it receives no other incoming messages and can immediately
propagate a message to φ(x, y). The same applies to factor nodes φ(s, x) and φ(m,x).
Such nodes are referred to as leaf nodes. Say we decide to start message passing at
leaf node φ(s, x) by passing a message to x. Since variable node x is also connected
to factor nodes φ(s, x) and φ(m,x), it cannot propagate any messages until it receives
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either the message from φ(s, x) or φ(m,x). Since φ(m,x) is also a leaf-node, it can
propagate a message to x. Once this message is received it can propagate a message to
φ(x, y) which, in turn, propagates to y. Since y cannot propagate its message any further,
inference in this direction is complete. At this point, however, φ(s, x) and φ(m,x) have
not yet received any messages, while y has not propagated any messages. Therefore y
propagates a message to φ(x, y) (which is not dependent on the message from φ(x, y)),
φ(x, y) propagates to x and x propagates to both φ(s, x) and φ(m,x). This is an example
of one possible message passing scheme. We now proceed to describe these messages in
more detail.

2.3.1 Message passing from a variable node to a factor node

We first discuss message passing from a variable node to a factor node, or sepset to clique
in the case of clique trees. Note that, in a factor graph, a specific variable node is only
connected to factor nodes and vice versa. Therefore a variable node can only receive
messages from factor nodes, and only propagate messages to factor nodes.

In the sum product algorithm all factor leaf nodes have their outgoing messages set to
their own factors, while all variable leaf nodes have their outgoing messages initialized
to unity. If a variable node receives a message from a single factor node, the outgoing
message is equal to the message received from that factor node. If, however, a variable
node receives messages from more than one factor node, its outgoing message to another
factor node is defined as the product of all incoming messages. In order to formulate this
mathematically we require the notation µa→b (·), which indicates that a message is sent
from node a to b. Also, we denote factors by φ(A), where A is the set of all variables
that occur in the factor. The message that variable node x sends to factor node φ(A) is
defined as

µx→φ(A) (x) =
∏

φ(B)∈{ne(x)\φ(A)}

µφ(B)→x (x) , (2.13)

where x ∈ A, x ∈ B and ne(x) refers to all neighbouring factor nodes directly connected
to node x. The \-symbol is the set difference operator. Note that the product is taken
over factors (or messages) that are only functions of x.

(c)

yx φ(x, y)

φ(m,x)

φ(s, x)

x φ(x, y)

(a)

yφ(x, y)

(b)

Figure 2.4: (a) Isolated message from a variable to a factor. (b) Isolated message from a
factor to a variable. (c) An example of a message passing scheme for a factor graph. We start
with messages passed in the direction of the red arrows, and follow with messages passed in the
direction of the blue arrows.
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For the example factor graph in Figure 2.4(c), we can now calculate the message from x
to the factor node φ(x, y) as shown in Figure 2.4(a), as

µx→φ(x,y) (x) = µφ(s,x)→x (x) · µφ(m,x)→x (x) =

(∑
s

φ(s, x)

) (∑
m

φ(m,x)

)
. (2.14)

The formulation presented in this section holds for exact inference algorithms. In the
case where loopy belief propagation is applied, the same definition (2.13) applies, but
this message may be propagated many times.

2.3.2 Message passing from a factor node to a variable node

Since factor nodes are only connected to variable nodes in a factor graph (clique nodes
to sepset in the case of clique trees), factor nodes can only receive and send messages
to variable nodes. Since a factor node has received messages from (possibly) multiple
variable nodes, the message received by the factor node is calculated as in (2.13). Next,
this message is multiplied by the factor node’s own factor, and summed over all variables
except the one receiving the message from the factor. Mathematically this is stated as

µφ(A)→x (x) =
∑
A\x

φ(A)
∏

y ∈{ne(φ(A))\x}

µy→φ(A) (y) . (2.15)

This formulation holds only if the variables are discrete. For continuous variables the
summation is replaced by the appropriate integral.

Using the formulation in (2.15) the message from factor node φ(x, y) to y in Figure 2.4(b)
and (c) is given by

µφ(x,y)→y (y) =
∑
x

φ(x, y) · µx→φ(x,y) (x) =
∑
x

φ(x, y)
∑
s

φ(s, x)
∑
m

φ(m,x). (2.16)

If the ultimate goal is to perform MAP inference, i.e. to find

arg max
x1,x2,...,xn

p(x1, x2, . . . , xn), (2.17)

the max product algorithm may be used instead of the sum product algorithm. The
formulation of messages is similar to that of the sum product algorithm, except that the
summation in (2.15) is replaced by the maximum operator.

2.3.3 Message passing to and from observed variables

Up to this point in the message passing process no variables were observed, since we
propagated probability distributions or factors between all the nodes. If no observations
are made, little can be inferred about the values of the latent variables, since the PGM
only propagates what we already know about the problem in the form of distributions
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yx φ(x, y)

φ(m,x)

φ(s, x)

Figure 2.5: The factor graph in Figure 2.4(c), where y is observed.

we specify. Consequently, propagating messages from observations are essential for useful
inference.

Observing a variable fixes its value wherever it occurs in the PGM. To illustrate this,
consider the same example as in Figure 2.4(c) where a value of ŷ is observed for the
variable node y. To indicate that a variable is observed, its node is usually shaded as
in Figure 2.5. In this example the message from factor node φ(x, y) to variable node x
becomes

µφ(x,y=ŷ)→x (x) = φ(x, y = ŷ). (2.18)

2.3.4 Belief over a variable given all observations

The conditional probability that a variable takes on a particular value given all obser-
vations, also known as the belief, can be calculated once the PGM is calibrated. This
belief is formulated as p (x |Z ), the probability distribution of the random variable x given
the set of all observations Z. This belief is given simply by the product of all incoming
messages after proper normalization.

In Figure 2.5 for example, if y = ŷ is observed, the belief over x is

p (x |y = ŷ ) ∝
∑
s,m

µφ(s,x)→x (x) µφ(m,x)→x (x) µφ(x,y=ŷ)→x (x) (2.19)

∝
∑
s,m

φ(s, x)φ(m,x)φ(x, y = ŷ). (2.20)

The expression on the right hand side can be normalized (divided by the sum over all
possible x) to arrive at p (x |y = ŷ ).

For dynamic object detection we can define a number of latent random variables, such
as a binary variable to indicate whether or not a feature is dynamic, or a variable that
indicates to which object the feature belongs. From the robot’s environment sensors
we can also retrieve observations related to these variables. Therefore, we can design a
PGM that models this problem. In this case we are interested in the posterior marginal
distribution that a feature is dynamic, and to which object it belongs.
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Chapter 3

Probabilistic graphical model design

In the previous chapter we provided some background on probabilistic graphical models.
Since PGMs are particularly well suited to model latent variables and infer distributions
over them from observations, we can use this representation to reach our two main goals:
classifying observed features as static or dynamic at every time step (motion segmenta-
tion), and clustering dynamic features together that belong to the same object (object
segmentation).

This chapter focuses on the modelling choices behind the PGM we propose in order to
reach the two goals. Details on how inference is performed over this PGM are given
in Chapter 4. We divide the design of our PGM into two interacting components: one
related to motion segmentation and one relation to object segmentation. We first describe
the components for a single time step and then expand them to incorporate additional
time steps consecutively.

3.1 The component related to motion segmentation
The core idea behind the PGM component related to motion segmentation is to link
velocity measurements to static or dynamic features. In order to do so, we introduce
a binary random variable xi,t to indicate whether or not feature i is moving at time t,
where xi,t = 1 is the event that the feature is moving (dynamic) and xi,t = 0 that it is
static. By including this binary random variable we can eventually infer the probability
distribution over xi,t from the PGM. Since xi,t has only two possible values, we can apply
a threshold to decide if feature i is in fact moving at time t. The same can be applied
to all features, for a classification of all features at time t as either static or dynamic.
Since xi,t is a latent variable, a distribution over its values has to be inferred from other
variables that can be observed.

Note that the discussion here pertains to a single time step, and should be viewed as
a first step in the development of our full PGM formulation in which variables are also
linked over consecutive time steps. In fact, the distributions given in this section will be
used only for the first time step that a particular feature is observed, where information
from previous time steps is not available.

23
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3.1.1 Incorporating velocity measurements

Suppose that feature i is moving at time t with velocity vi,t, which can be zero if the
feature is static. The variable vi,t is a continuous random variable in R3. Physical
constraints may limit its range, depending on the types of dynamic objects in a particular
environment.

The true value of vi,t is hidden, since we can only measure the velocity with some error.
We denote the measured velocity by v̂i,t, which is also a continuous random variable. This
measurement can be obtained if we can measure the feature positions at time t and time
t−1. Note that in the absence of any other information, the measured value v̂i,t will also
be our best estimate of vi,t. However, as we shall see, if additional indirect information
is available, a more accurate estimate of vi,t is attainable.

One way to specify a graphical model over the variables mentioned thus far, for a partic-
ular time index t, is shown in Figure 3.1. Note that whether or not a feature i is currently
dynamic, xi,t, influences the current true velocity vi,t, which in turn influences the cur-
rent velocity measurement v̂i,t. The model shown is a Bayesian network, since there are
directed links between the variables. For this type of graphical model the distributions
p (v̂i,t |vi,t ) and p (vi,t |xi,t ) in particular are required for inference (p (xi,t) is also required,
but we discuss it in Section 3.1.2).

In order to choose an appropriate distribution for p (v̂i,t |vi,t ), which is also called a mea-
surement model, let us first consider how the measurement is obtained. There are many
sensors that may be used to obtain velocity measurements, but nearly all will require
some pre-processing. If the 3D coordinates of a feature can be measured at every time
step, e.g. through the triangulation of stereo features and proper incorporation of the
robot’s pose, then the difference between consecutive coordinates can act as a measure-
ment of the feature’s velocity. It is common to assume that measured 3D coordinates are
characterized by a Gaussian distribution [48] and therefore that the velocity measurement
is also normally distributed. Details of these calculations, and the transformation from
robot pose and measured locations to velocity measurements, follow in Chapter 5.

Thus we assume that
p (v̂t |vt ) = N (v̂t |vt, Vi,t ) , (3.1)

where N (· |µ,Σ) is the multivariate Gaussian distribution with mean µ and covariance
Σ. The matrix Vi,t is the measurement covariance of the velocity of feature i at time t
(we discuss its calculation in Section 5.5).

xi,tvi,tv̂i,t

Figure 3.1: The PGM that shows the dependence between the velocity measurement, the true
velocity and the current motion state of feature i at time t.
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Next we consider the distribution over the true velocity vi,t given the current motion
state xi,t. A static feature has zero velocity, so we may assume

p (vi,t |xi,t = 0) = δ (vi,t) , (3.2)

with δ (·) the dirac-delta function. Without any additional information about the true
velocity of dynamic features, a uniform distribution over the possible expected veloci-
ties can be assumed. Such expected velocities depend on the robot’s environment and
the dynamic objects that may be encountered. However, for convenience and tractable
inference in our final PGM we choose a Gaussian distribution centred around zero:

p (vi,t |xi,t = 1) = N (vi,t |0, Cv ) , (3.3)

where Cv is chosen to encompass all realistic velocities of objects in the environment. It
may seem unusual to set the mean velocity to zero for dynamic objects, but we do so
to account for velocities in any direction. At this point we may be tempted to combine
the distributions over v̂i,t and vi,t by obtaining the marginal distribution over xi,t but,
as we see in Section 3.4.1, all three variables are required when the PGM is expanded to
include multiple time steps.

3.1.2 Accommodating semi-static features

Dynamic objects are not necessarily always moving and can be temporarily stationary.
To model this, we introduce an additional binary variable mi,t to indicate whether or
not a feature i is capable of movement. By mi,t = 1 we mean that feature i is capable
of movement (and can currently be either moving or stationary), while mi,t = 0 means
that the feature is always stationary. Since a feature’s capability of movement should
not change over time, mi,t also cannot change over time. We include the time subscript
simply for convenience. The motivation behind including both x- andm- variables, rather
than only one of the two, becomes clear in Section 3.2.1.

Since knowing whether or not a feature is capable of movement tells us something about
the likelihood of it currently moving, there exists a dependency between the x- and m-
variables. We model this dependency as shown in the partial PGM in Figure 3.2, where
the dotted line indicates previously defined connections. From this figure it follows that
the distributions p (xi,t |mi,t ) and p (mi,t) are required. We note that xi,t = 1 is impossible
when mi,t = 0, and set the other entries of the conditional probability distribution table
for the discrete distribution p (xi,t |mi,t ) as in Table 3.1. Here we include a probability
ax|m that the feature is currently dynamic if it is capable of movement. One can argue

xi,t mi,t

Figure 3.2: The partial PGM that shows the relationship between xi,t and mi,t. The dotted
line indicates previously defined connections.
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xi,t mi,t p (xi,t |mi,t )
0 0 1
1 0 0
0 1

(
1− ax|m

)
1 1 ax|m

Table 3.1: Conditional distribution table for p (xi,t |mi,t ). Here ax|m represents the probability
that a feature capable of movement is currently in motion.

that if a feature can be dynamic (without knowing the type of object on which it is
located), it will be more likely that it is currently dynamic, i.e. 0.5 < ax|m ≤ 1. Without
prior information about the environment we may assume p (mi,t = 1) = 0.5.

The partial PGM that contains only the variables v̂i,t, vi,t, xi,t and mi,t forms the com-
ponent related to motion segmentation. We now proceed to the partial PGM related to
object segmentation.

3.2 The component related to object segmentation
Grouping observed features into different objects is essentially a clustering problem, and
has been thoroughly researched. Blatt et al. [9] propose the notion of computing the
typical cut, which is a variation of graph cuts, where edges between neighbouring nodes
are weighed according to their distance. Shental et al. [68] show that the typical cut
framework is equivalent to performing inference on an undirected graphical model, where
a binary random variable between a pair of neighbouring nodes indicates whether or not
they belong to the same cluster.

In this work we use the formulation of Shental et al. [68] as the starting point for the
object segmentation part of our PGM. Specifically, the goal is to cluster all static features
together while also clustering dynamic features that belong to the same objects. The core
idea behind the object segmentation component is to introduce a binary variable that
connects pairs of features, while using a measurement of the relative distance between
two features as an indication of whether or not they belong to the same object. We also
discuss a method to enforce a consistent segmentation boundary between objects.

3.2.1 Modelling the relationship between features

Consider two features i and j where i is currently static while j is currently dynamic.
These features cannot be part of the same rigid object, and the same holds if one is capa-
ble of movement (mi,t = 1) while the other is not (mj,t = 0). To model such relationships
between features we introduce a latent binary variable sij,t to indicate whether or not fea-
tures i and j belong to the same object (sij,t = 1) or not (sij,t = 0). Figure 3.3 graphically
depicts the relationship between xi,t, xj,t, mi,t, mj,t and sij,t. An exception occurs if one of
the features is located at the instantaneous centre of rotation of a particular object, where
it will be (momentarily) static. It is unlikely, however, that the instantaneous centre of
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xi,t xj,t

mi,t mj,tsij,t

Figure 3.3: The partial PGM that shows the relationship between features i and j. The dotted
line represents previously defined relationships.

rotation will be on the surface of an object where observable features are located. One
could also argue that the velocity variables vi,t and vj,t should be directly connected to
sij,t. However, since they are indirectly connected, information can still flow from vi,t
and vj,t to sij,t, while lowering the complexity of message passing (which turns out to be
important in Chapter 4).

The graphical model in Figure 3.3 can be expanded to accommodate N features by
repeating it for every possible pair of features. This results in

2N +

(
N

2

)
=
N(N + 3)

2
(3.4)

random variables, which can lead to intractable inference for large N . In order to avoid
this, only features that are spatially close are connected. One way to connect features is
to perform a Delaunay triangulation [19] on the 3D feature locations, to obtain a set of
tetrahedra connecting features that are spatially close. Section 3.2.3 describes how such
a triangular structure can also be exploited to enforce continuous boundaries.

By including a random variable that indicates whether two features belong to the same
object or not, we can arrive at a segmentation without specifying the number of distinct
objects beforehand. Also, it is not required that all points on a specific object be con-
nected via tetrahedra. Theoretically, the PGM can express the fact that two points form
part of the same object if they are connected with a chain of edges [68]. This means that
by connecting only spatially close features little, if any, expressiveness is lost.

Since the purpose of segmenting dynamic features into separate objects is for dynamic
object detection, it is unnecessary to segment the static features into different objects.
For this reason we view all static features as part of one super-object.

Now that the relationship between features has been specified as a partial PGM in Fig-
ure 3.3, it follows that we require the distribution p (sij,t |xi,t, xj,t,mi,t,mj,t ). The nonzero
entries of an unnormalized version of this distribution table are shown in Table 3.2, where
we use the shorthand notation ‘x’ to mean either 0 or 1. The first two entries of the table
represent configurations where the feature is currently moving, yet the feature is inca-
pable of movement. In such cases we choose the probability that the features belongs to
the same object as 0.5, since the way we set up other distributions will eliminate these
scenarios once inference is performed. We also see an advantage of including both x-
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sij,t xi,t xj,t mi,t mj,t p̃ (sij,t |xi,t, xj,t,mi,t,mj,t )
x 1 x 0 x 0.5
x x 1 x 0 0.5
1 0 0 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 1 0 1 0 1
0 0 1 0 1 1
0 1 0 1 1 1
0 0 1 1 1 1
x 0 0 1 1 0.5
x 1 1 1 1 0.5

Table 3.2: Conditional unnormalized distribution table for p̃ (sij,t |xi,t, xj,t,mi,t,mj,t ). Here we
use the shorthand notation ‘x’ to indicate either 0 or 1.

variables and m-variables in the PGM: if two features have the same x-value but different
m-values, they cannot be part of the same object.

The last two rows of Table 3.2 imply that if both features are semi-static and they
currently have the same x-value, we need additional information to ascertain whether
or not they belong to the same object. We address this issue in the next section by
incorporating a similarity measurement.

3.2.2 Incorporating a feature similarity measurement

Consider two features i and j belonging to the same object. Assuming that the object is
rigid, we know that the distance between the two remains constant regardless of object
motion. Consequently we introduce the change in relative distance between two features
as an indication of whether or not they belong to the same object. This measurement
is calculated by taking the distance between two points at time t− 1 and subtracting it
from the distance between the same two points at time t. More details on this calculation
follow in Chapter 5.

The incorporation of the similarity measurement into the PGM is shown in Figure 3.4,
where r̂ij,t and rij,t denote the measured and true value of the change in relative distance
between features i and j. An advantage of calculating the change in relative distance
between two features is that the effect of pose uncertainty is eliminated in this process.
Depending on the sensors involved, one may decide to incorporate other feature similarity
measurements such as colour, difference in velocity vectors, etc. This is achieved simply
by copying the structure in Figure 3.4 for each such measurement.

From the figure we can see that the measurement distributions p (r̂ij,t |rij,t ) and p (rij,t |sij,t )
are required. We assume that the measured values are normally distributed around the
true values, i.e.

p (r̂ij,t |rij,t ) = N (r̂ij,t |rij,t, Rij,t ) . (3.5)
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rij,tr̂ij,t sij,t

Figure 3.4: The partial PGM that shows the addition of a change in relative distance mea-
surement between features i and j at time t. The dotted line represents previously defined
relationships.

The process of estimating the covariance Rij,t is discussed in Chapter 5.

For the remaining distribution we assume

p (rij,t |sij,t = 0) = δ (rij,t) , (3.6)
p (rij,t |sij,t = 1) = N (rij,t |0, Cr ) . (3.7)

That is, we expect the change in relative distance to be zero if the two features are on
the same object, and normally distributed around zero if they are not. Again, we might
be tempted to combine the distributions over r̂ij,t, rji,t into a marginal distribution over
sij,t. Essentially this is what happens when the messages from the continuous variables
to the discrete ones are computed (as explained in Chapter 4).

3.2.3 Enforcing consistent object segmentation

Incorporating similarity measures between pairs of features does not guarantee a consis-
tent final segmentation. Consider three features i, j and k connected in a triangle. If
sij,t = 0, which implies that i and j belong to different objects, but sik = 1 and sjk = 1,
we have an inconsistency. Note that here, and in the rest of this section, we omit time
indices from the s-variables for neatness.

An example of such a situation is shown in Figure 3.5. In (a) a segmentation boundary
(which corresponds to sij = 0) enters a triangle formed between three feature locations
and one connection is broken (in the sense that its adjacent vertices are believed to belong
to different objects). It is still possible for the neighbouring edge to be intact if there is not
enough evidence to support a split between those two features. However, the situation
in (a) is impossible because a segmentation boundary cannot enter a triangle without
leaving it, but both the situations in (b) and (c) are possible. Note that although (c)
might not be the correct segmentation, it does not violate the consistent segmentation
boundary requirement.

From this observation it follows that, in order to enforce a consistent segmentation, we
must require for every triangle over three neighbouring features that either none of the
s-variables are zero, precisely two are zero, or precisely three are zero. Consider a factor
defined over the three connections in a single triangle such as the one in Table 3.3. Here
the factor over the three triangle connections is shown. Note that all configurations with
a single broken connection have zero entries while all others are nonzero and equal.
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segmentation boundary
broken connection
intact connection

feature of object 1

feature of object 2

(a) (b) (c)

Figure 3.5: In order to obtain a consistent segmentation, a segmentation boundary entering a
triangle must also leave it. Consequently the segmentation in (a) is invalid, as opposed to (b)
and (c) which are valid segmentations (though not necessarily correct).

sij sik sjk φ (sij, sik, sjk)
0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0
0 1 1 0
1 1 1 1

Table 3.3: Factor over sij , sik, and sjk.

In 3D the Delaunay triangulation provides a set of tetrahedra that connects features.
Since a tetrahedron consists of four triangles defined by four points, say features i, j,
k and `, each of the triangles must adhere to the same constraints specified above. If
three additional factors such as the one in Table 3.3 are specified over sjk, sj`, sk` and
sij, si`, sj` and si`, sik, sk` respectively, all four factors can be multiplied to form a factor
over all six connections in the tetrahedron. The entries which, after multiplication, have
nonzero probabilities are shown in Table 3.4.

By applying the restrictions above to all triangular faces of a tetrahedron over four neigh-
bouring points, the five possible configurations in Figure 3.6 arise (up to graph isomor-
phism). It is easily verified that each of these configurations results in a consistent
segmentation.

We expand our PGM by incorporating an additional factor over every tetrahedron as in
Table 3.4. If a tetrahedron is formed over features i, j, k and `, the six variables sij, sik,
si`, sjk, sj` and sk` are connected as shown in Figure 3.7(b). Here we depict a Markov
network, since in this case it is more natural to specify a joint factor over all the variables
than to specify conditional distributions in a Bayesian network.
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sij sik si` sjk sj` sk`
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 1 0 0
0 1 1 0 0 1
0 0 0 1 1 1
1 0 1 0 1 0
1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0
1 1 1 1 1 1

Table 3.4: Entries with nonzero probabilities in the factor over all six connections in a tetra-
hedron, where the continuous segmenation boundary constraints on each of the four triangles is
enforced. These entries have equal probability, while all other entries have zero probability.

Figure 3.6: Five configurations of boundaries arising from Table 3.4 for a tetrahedron. Broken
connections are indicated in grey while blue and red lines indicate intact connections between
different features believed to be part of the same object.

xj

xi

xk

x`

sij

sj`

sk`

sik

si`

sjk

(a)

xj

xi

xk

x`

sij

sj`

sk`

sik

si`

sjk

(b)

Figure 3.7: A Markov network representation of our model (a) before and (b) after adding
factors to enforce consistency in the segmentation on a tetrahedron connecting four features
(different colours indicate different factors).
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3.3 The PGM for t = 1

In this work we follow the convention that t = 1 is the first time step where feature
velocity measurements are available (in other words the second time step for which feature
position estimates are available). In Figure 3.8(a) we show the entire Bayesian network
for two features i and j at time step 1. The dotted line represents connections to other s-
variables as a result of the continuous boundary enforcement factors, not shown to reduce
clutter. The corresponding factor graph is shown in Figure 3.8(b), with factor potentials
as specified in Sections 3.1 and 3.2.

Note that we do not include direct links between v̂i,1, r̂ij,1 and v̂j,1, even though these
are dependent since the measurements are all calculated, in some way or another, from
the same set of 3D feature positions. For tractable inference, however, we assume that
these different measurements are mutually independent.

mi,1 mj,1

xi,1 xj,1sij,1

vi,1 vj,1rij,1

v̂i,1 v̂j,1r̂ij,1

mi,1 mj,1

xi,1 xj,1sij,1

vi,1 rij,1 vj,1

v̂i,1 r̂ij,1 v̂j,1

P (xi,1|mi,1 )P (mi,1) P (xj,1|mj,1 )P (mj,1)
P (sij,t |xi,1, xj,1,mi,1,mj,1 )

p (vi,1 |xi,1 ) p (rij,1 |sij,1 ) p (vj,1 |xj,1 )

p (v̂i,1 |vi,1 ) p (r̂ij,1 |rij,1 ) p (v̂j,1 |vj,1 )

(a) (b)

Figure 3.8: (a) The entire Bayesian network for two features i and j at time step t = 1. (b)
The corresponding factor graph (the dotted line represents connections to other s-variables as a
result of the continuous boundary enforcement factors, not shown here to reduce clutter).

3.4 Expanding the PGM temporally
With the PGM described for time step t = 1, we proceed to show how more time steps
can be added. Once again we split the development into two parts: motion segmentation
and object segmentation.

3.4.1 Expanding the motion segmentation component

For the part of the model that relates to motion segmentation we simply duplicate the
PGM from t = 1 for the number of time steps required. We add connections between
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relevant variables across time, as is indicated in Figure 3.9. Here we assume that measure-
ments of the velocity over time are conditionally independent given the true velocities.
By linking the velocities across time steps, the PGM can model smooth feature motion
and possibly obtain better performance if a feature is observed for multiple time steps.
Adding such links adds complexity to the message passing algorithm, but enables more
accurate motion segmentation and allows for the handling of semi-static objects.

We also assume that a previous feature state xi,t−1 influences the current state xi,t, al-
lowing the PGM to express that a feature is more likely to remain in a particular state,
if required. Finally, we add links between m-variables over time simply because they are
all really the same variable (time subscripts are used only for convenience).

This temporal expansion requires the specification of some additional probability distri-
butions. The distribution p (mi,t |mi,t−1 ) is trivial, since the two variables are actually
the same. It remains to specify p (xi,t |xi,t−1,mi,t ) and p (vi,t |vi,t−1, xi,t ).

We specify p (xi,t |xi,t−1,mi,t ) as shown in Table 3.5, where as is the probability that a
feature is currently static if it was previously static, yet has the ability to move. Similarly
ad is the probability that a feature is currently dynamic if it was previously dynamic and
is capable of movement. Both these probabilities can be set to high values.

Specifying p (vi,t |vi,t−1, xi,t ) is equivalent to specifying motion models for xi,t = 0 and
xi,t = 1. If the feature is static, vi,t must be zero regardless of the value of vi,t−1, i.e.

p (vi,t |vi,t−1, xi,t = 0) = δ (vi,t) . (3.8)

If the feature is dynamic, we adopt the widely used constant velocity motion model

p (vi,t |vi,t−1, xi,t = 1) = N (vi,t |vi,t−1, Cv ) . (3.9)

mi,1

xi,1

vi,1

v̂i,1

mi,2

xi,2

vi,2

v̂i,2

mi,t

xi,t

vi,t

v̂i,t

. . .

. . .

. . .

Figure 3.9: Temporal expansion of the PGM related to motion segmentation, where dotted
diagonal lines represent additional relationships.
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xi,t xi,t−1 mi,t p (xi,t |xi,t−1,mi,t )
0 0 0 1
1 0 0 0
0 1 0 0.5
1 1 0 0.5
0 0 1 as
1 0 1 1− as
0 1 1 1− ad
1 1 1 ad

Table 3.5: Conditional distribution table for p (xi,t |xi,t−1,mi,t ). Here as and ad are high
probabilities.

A constant acceleration model is another option, but for tractability we require the model
to be linear in vi,t.

Incidentally, if vi,t = vi,t−1 +qi,t and v̂i,t = vi,t+ki,t, where qi,t and ki,t are noise vectors,
our approach is similar to a Kalman filter with measurement model and prediction model
given by(3.1) and (3.9) respectively. Given this similarity one can argue that our model,
in some sense, also tracks features.

3.4.2 Expanding the object segmentation component

We temporally expand the part of the PGM related to object segmentation as shown in
Figure 3.10. Connections from the s-variables to the x- and m-variables are not shown,
but are similar to those shown in Figure 3.3. In this graph we do not include links over
time between r-variables, since it adds unnecessary complexity to the message passing
algorithm.

The only distribution to specify is p (sij,t |sij,t−1 ), which is trivial since sij,t and sij,t−1 are
the same variable (we add time indices simply for convenience).

sij,1

rij,1

r̂ij,1

sij,2

rij,2

r̂ij,2

sij,t

rij,t

r̂ij,t

. . .

Figure 3.10: Temporal expansion of the PGM related to object segmentation, where dotted
diagonal lines represent additional relationships.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. PROBABILISTIC GRAPHICAL MODEL DESIGN 35

The PGM proposed in this chapter consists of latent variables vi,t, xi,t,mi,t, sij,t and rij,t,
as well as observations v̂i,t and r̂ij,t. In this case all the leaf nodes (v̂i,t and r̂ij,t), which
are singly-connected variables, are observations connected to continuous variables (vi,t
and rij,t). These continuous variables are, in particular, connected to discrete variables
(xi,t and sij,t), and the discrete variables are densely inter-connected. The next chapter
contains details on how to perform inference on our PGM, with particular attention to
the fact that it contains both discrete and continuous random variables.
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Chapter 4

Inference

In the previous chapter we described the modelling aspect of the proposed PGM. Once
observations are made, inference can be performed and conclusions can be drawn about
latent variables. Details on how to obtain and pre-process the measurements (or observa-
tions) are given in Chapter 5, and in this chapter we discuss how inference is performed
on the PGM. Typically, message passing is performed by running a belief propagation
algorithm. However, when a PGM contains both discrete and continuous random vari-
ables, as it does in our case, performing message passing is no longer straightforward. We
pay particular attention to this issue, and propose a solution for our PGM.

4.1 Inference on hybrid PGMs
A hybrid PGM is a model that contains both discrete and continuous random variables,
and message passing in such a PGM can be much more challenging than in a purely dis-
crete one [36]. Challenges arise from the fact that there is no universal representation of
a factor over continuous variables. Even if the same parametric family is chosen to repre-
sent each continuous distribution, operations like multiplication during message passing
may result in distributions that are no longer in that same family. Since marginalization
over continuous variables requires integration rather than summation, difficulties can also
arise when the function is not integrable or does not have a closed-form integral.

The first exact-inference hybrid Bayesian algorithm was developed under the assumption
that every continuous node has discrete parents and that each conditional probability
distribution is a multivariate Gaussian [41]. The marginal distribution of each continuous
variable is then assumed to be a mixture of Gaussians. Later, Koller et al. [37] proposed
to model the distributions of discrete nodes with continuous parents by a mixture of
exponentials, and to use Monte Carlo methods for approximate inference. In expectation
propagation [53] assumed density filtering (ADF) , which is an extension of the Kalman
filter, and traditional loopy belief propagation are consolidated into an accurate iterative
message passing algorithm. While these methods enable inference in hybrid PGMs, they
can become intractable for large networks since complexity generally grows with the size
of the graph.

36
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If the PGM consists of Gaussian random variables and discrete random variables, as
our PGM does, the continuous distributions may be modelled as mixtures of Gaussians.
However, the complexity of these distributions and message passing between the variables
is prohibitive, and an alternative solution is required.

Our solution involves fixing the belief over all variables at time t − 1 before performing
message passing at time t. This means that the variables in the PGM are updated
incrementally with each new time step, and messages are not propagated back in time.
While such an approximation may seem like a limitation, three points should be noted.

The first point is that, at time step t− 1, an appropriate action must be taken to reach
time step t collision-free. Therefore, once time step t − 1 has passed, we are no longer
interested in those variables. In general loopy belief propagation, however, variables at
time step t − 1 can propagate messages to time step t multiple times, thereby altering
the beliefs over variables in which we are interested (variables at time t). However,
an argument can be made that messages propagated back and forth over time will not
change significantly. In Chapter 6 we show that the PGM’s performance increases over
time, which justifies this assumption.

Secondly, by solving the inference problem incrementally, we only perform message pass-
ing at time t between variables related to those observed at time t. This means that
the PGM “forgets” variables assumed to be irrelevant at time t, which has the advantage
that the number of variables in the PGM does not really grow over time and complexity
remains more or less the same for each time step.

The third point to note is that, by fixing the beliefs in this way, we are able to calculate
closed-form expressions for the messages sent from the continuous variables (which are all
leaf-node adjacent) to the discrete variables, thereby separating the PGM into continuous
and discrete parts. In doing so, we can perform loopy belief propagation on only the
densely inter-connected discrete variables and, after calibration, propagate messages back
to the continuous variables in order to update their beliefs. Following this approach we
avoid propagating messages that grow exponentially in complexity during calibration and
thus enable tractable inference.

Interestingly, our approach exhibits some similarities to assumed density filtering in that
observations are processed one at a time and beliefs from previous observations are not
revisited or updated. During the ADF projection step, messages are projected down onto
a tractable exponential family distribution by matching moments. In our approach we
do not perform this reduction but keep messages in their original form.

Since there are two types of continuous random variables in our PGM, the change in
relative distance between two features rij,t and the velocity of a feature vi,t, we discuss
the messages sent by each of these to their discrete neighbours separately, starting with
the change in relative distance variable rij,t.
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4.2 Messages passed between rij,t and sij,t
Consider the factor graph in Figure 4.1(a). The change in relative distance measurement
r̂ij,t of the continuous latent random variable rij,t, and the discrete variable sij,t that
indicates whether or not feature i and j belong to the same object, are connected in a
chain structure. Message passing on chains results in exact inference. Consequently, the
message from r̂ij,t to rij,t and from rij,t to sij,t can be computed exactly. The message
from r̂ij,t across the factor p (r̂ij,t |rij,t ) to rij,t is given by

µr̂ij,t→rij,t (rij,t) = p (r̂ij,t |rij,t ) . (4.1)

After receiving this message, rij,t can pass the message

µrij,t→sij,t (sij,t) =

∫
µr̂ij,t→rij,t (rij,t) p (rij,t |sij,t ) d rij,t (4.2)

=

∫
p (r̂ij,t |rij,t ) p (rij,t |sij,t ) d rij,t (4.3)

to sij,t. By substituting the appropriate conditional distributions given in Chapter 3, we
obtain this message in closed-form:

µrij,t→sij,t (sij,t = 0) = N (r̂ij,t |0, Rij,t + Cr ) , (4.4)
µrij,t→sij,t (sij,t = 1) = N (r̂ij,t |0, Rij,t ) . (4.5)

Note that it can be computed directly from the measurement value r̂ij,t and the measure-
ment covariance Rij,t (Cr is a constant matrix).

Illustrations of unnormalized versions of (4.4) and (4.5) are shown in Figure 4.2. If a
measurement r̂ij,t = 0.9 is received, we see that the blue curve (which corresponds to

r̂ij,t rij,tp (r̂ij,t |rij,t ) p (rij,t |sij,t ) sij,t−1sij,t p (sij,t |sij,t−1 )

(a)

r̂ij,t rij,tp (r̂ij,t |rij,t ) p (rij,t |sij,t ) sij,t
∑

sij,t−1

p (sij,t |sij,t−1 ) p (sij,t−1 |ẑ1:t−1 )

(b)

Figure 4.1: (a) Factor graph of the object segmentation component for time steps t − 1 and
t. In (b) we approximate (a) by fixing the belief over sij,t and only propagating a message from
this variable over the connection shown in red (not back to sij,t−1). Here ẑ1:t−1 denotes all
measurements received by the PGM up to time t− 1 and dotted lines represent connections to
other parts of the PGM (not shown for neatness).
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Figure 4.2: Illustrations of the messages passed to sij for two different measurements of rij .
On the left the blue curve has a higher value at r̂ij = 0.9 than the green curve, which means
that in this case it is more likely that sij = 1. On the right r̂ij = 2, and the opposite situation
occurs. (Time indices are omitted from all variables to reduce clutter.)

sij,t = 1) has a higher value than the green curve (which corresponds to sij,t = 0). These
two values are then normalized to form a probability distribution, which means that, in
this case, it is more likely that sij,t = 1. On the other hand, if r̂ij,t = 2, we see that the
green curve has a higher value than the blue one, which implies a higher probability for
sij,t = 0.

The variable sij,t first receives the message from sij,t−1 before it propagates its message
to the rest of the PGM. Since sij,t is connected to xi,t and sij,t−1 is connected to xi,t−1,
the two s-variables form part of a loop and thus the message from sij,t−1 cannot be pre-
computed. However, for tractability we assume that this message is fixed in the sense that
future messages cannot alter it. This implies that we fix the belief over sij,t−1, which can
be obtained from a PGM query as p (sij,t−1 |ẑ1:t−1 ) where ẑ1:t−1 denotes all measurements
received by the PGM up to time t−1. In doing so the connection between sij,t and sij,t−1
is replaced by the factor p (sij,t |sij,t−1 ) p (sij,t−1 |ẑ1:t−1 ) after marginalization over sij,t−1,
as shown in Figure 4.1(b). The message passed to sij,t may then be calculated as

µsij,t−1→sij,t (sij,t = 0) = p (sij,t−1 = 0 |ẑ1:t−1 ) , (4.6)
µsij,t−1→sij,t (sij,t = 1) = p (sij,t−1 = 1 |ẑ1:t−1 ) . (4.7)

In standard belief propagation messages are also passed back to rij,t but, since knowledge
of the belief over rij,t is not necessary for our goals and rij,t does not influence any other
variables, we omit this step.

Both µr̂ij,t→sij,t (sij,t) and µsij,t−1→sij,t (sij,t) can be viewed as factors over sij,t, and are
supplied to the sum product algorithm at time t before inference is performed. In fact,
by calculating these messages directly from the PGM at time t − 1 and the measure-
ment r̂ij,t, we eliminate the need to perform inference on the continuous variables and
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loopy belief propagation can be performed over the discrete variables only. This means
that, once observations are made, we calculate the messages propagated from r̂-variables
to s-variables using (4.4) and (4.5). Since s-variables are only connected to other dis-
crete variables, we eliminate the need for performing inference over continuous variables
from the object segmentation component of the PGM. The same applies to the motion
segmentation component, as we see in the next section.

4.3 Messages passed between vi,t and xi,t
Consider the connections in Figure 3.9(a). Deriving expressions for the messages passed
to xi,t is not as simple as for sij,t, since the latent continuous variable vi,t depends on
vi,t−1 and influences vi,t+1. However, it turns out that, by fixing the beliefs over variables
at time t − 1, we can find closed-form expressions for the messages passed from the
continuous variables to the discrete ones analytically, so that loopy belief propagation
can be performed on the discrete variables only.

We first calculate the message passed from vi,t to xi,t along with any additional factors
that may arise over the discrete variables xi,t and mi,t. With these messages available, we
only need to perform belief propagation between the discrete variables. Once the PGM
is calibrated, we calculate the belief over vi,t given all the measurements received up to
time t. We then assume that the messages passed from variables that exist at time t to
variables that exist at time t+ 1 are fixed, i.e. that no updates are sent back to variables
at time t after inference is performed at time t + 1. This allows for the beliefs over vi,t,
xi,t and mi,t to be fixed when propagated to time step t+ 1. In the rest of this section we
consider a particular feature, and for neatness omit feature subscripts from all variables
(e.g. xi,t is written as xt).

4.3.1 Message passing at t = 1

Consider the factor graph for the first time step shown in Figure 4.3(a). The mes-
sage passed from the continuous variable v1 to the discrete variable x1 is the integral
of p (v̂1 |v1 ) p (v1 |x1 ) over v1. Substituting the measurement model p (v̂1 |v1 ) and the
motion model p (v1 |x1 ) from Chapter 3 yields

µv1→x1 (x1 = 0) = N (v̂1 |0, V1 ) , (4.8)
µv1→x1 (x1 = 1) = N (v̂1 |0, V1 + Cv ) , (4.9)

after application of the product of Gaussians identity (see Appendix A). The message,
which can be viewed as a factor over x1, can be computed directly from the measurement
v̂1 and its covariance V1 (Cv is a constant matrix). The message is supplied to the sum
product algorithm, along with the factors p (x1 |m1 ) and p (m1) as defined in Chapter 3.
By doing so the continuous part of the PGM is replaced by a discrete factor, which is
equivalent to the original PGM as viewed from the discrete part. Recall from Chapter 3
that x1 and m1 are connected to the discrete s-variables, which indicate whether or not
two features belong to the same object.
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v̂1

v1

x1

m1

p (v̂1 |v1 )

p (v1 |x1 )

p (x1 |m1 )

p (m1)

(a)

v̂1

v1

x1

m1

p (v̂1 |v1 )

p (v1 |x1 )

p (x1 |m1 )

p (m1)

v̂2

v2

x2

m2p (m2|m1 )

p (x2 |x1,m2 )

p (v̂2 |v2 )

p (v2 |v1, x2 )

(b)

v̂2

v2

x2

m2

p (v̂2 |v2 )

∫
p (v1 |v̂1, ŵ1 ) p (v2 |v1, x2 ) dv1

∑
x1

p (x1 |v̂1, ŵ1 ) p (x2 |x1,m2 )

∑
m1

p (m1 |v̂1, ŵ1 ) p (m2 |m1 )

(c)

Figure 4.3: Factor graphs of the motion segmentation component for (a) t = 1, (b) t = {1, 2}
and (c) t = 2 (connections shown in bold red indicate that those messages are passed only from
time step t = 1 to t = 2 and we assume them to be fixed).

After message passing between the discrete variables, a message is passed back from the
discrete variable x1 to the continuous variable v1. At this point the belief over x1 can
be inferred by querying the PGM, and is given by p (x1 |v̂1, ŵ1 ) where ŵ1 denotes all
measurements received by the PGM excluding v̂1. The belief over x1 consists of the
product of all incoming messages. Consequently, the messages from x1 to the factor
p (v1 |x1 ) and from that factor to v1 are

µx1→p(v1|x1 ) (v1, x1) =
p (x1 |v̂1, ŵ1 )

µv1→x1 (x1)
, (4.10)

µp(v1|x1 )→v1 (v1) =
∑
x1

p (x1 |v̂1, ŵ1 )

µv1→x1 (x1)
p (v1 |x1 ) . (4.11)

The belief over v1 is therefore

p (v1 |v̂1, ŵ1 ) = µv̂1→v1 (v1) µp(v1|x1 )→v1 (v1)

= p (v̂1 |v1 )
∑
x1

p (x1 |v̂1, ŵ1 )

µv1→x1 (x1)
p (v1 |x1 )

= N (v̂1 |v1, V1 )

[
`
(1)
0 δ(v1)

N (v̂1 |0, V1 )
+

`
(1)
1 N (v1 |0, Cv )

N (v̂1 |0, V1 + Cv )

]
= `

(1)
0 δ (v1) + `

(1)
1 N

(
v1

∣∣∣µ(1)
1 ,Σ

(1)
1

)
, (4.12)

where `(t)u = p (xt = u |v̂1:t, ŵ1:t ), Σ
(t)
1 =

(
C−1v + V −1t

)−1 and µ(t)
1 = Σ

(t)
1

(
V −1t v̂t

)
.
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4.3.2 Message passing at t = 2

We are constructing an incremental message passing algorithm, and next we consider the
factor graph for the first two time steps, shown in Figure 4.3(b). As mentioned earlier,
we fix the beliefs over m1, x1 and v1, which are given by p (m1 |v̂1, ŵ1 ), p (x1 |v̂1, ŵ1 )
and p (v1 |v̂1, ŵ1 ) respectively. As for sij,t−1 we replace connections between fixed-belief
variables and variables at time t = 2 by appropriate factors, as shown in Figure 4.3(c),
thereby decoupling the two time steps.

The message from v2 to x2 is

µv2→x2 (x2) =

∫
p (v̂2 |v2 )

∫
p (v1 |v̂1, ŵ1 ) p (v2 |v1, x2 ) dv1 dv2, (4.13)

and by substituting the conditional distributions in (3.1), (3.8) and (3.9),

µv2→x2 (x2 = 0) = (`
(1)
0 + `

(1)
1 )N (v̂2 |0, V2 ) , (4.14)

µv2→x2 (x2 = 1) = `
(1)
0 N (v̂2 |0, V2 + Cv ) + `

(1)
1 N (v̂2 |µ1, V2 + Cv + Σ1 ) . (4.15)

The factors in Figure 4.3(c) that remain are

φ (x2,m2) =
∑
x1

p (x1 |v̂1, ŵ1 ) p (x2 |x1,m2 ) , (4.16)

φ (m2) =
∑
m1

p (m1 |v̂1, ŵ1 ) p (m2 |m1 ) , (4.17)

which, after substitution of the appropriate conditional distributions, can be computed
as

φ (x2 = 0,m2 = 0) = `
(1)
0 + 1

2
`
(1)
1 , (4.18)

φ (x2 = 0,m2 = 1) = `
(1)
0 (as) + `

(1)
1 (1− ad) , (4.19)

φ (x2 = 1,m2 = 0) = 0, (4.20)

φ (x2 = 1,m2 = 1) = `
(1)
0 (1− as) + `

(1)
1 (ad) , (4.21)

φ (m2 = 0) = p (m1 = 0 |v̂1, ŵ1 ) , (4.22)
φ (m2 = 1) = p (m1 = 1 |v̂1, ŵ1 ) . (4.23)

These two factors together with µv2→x2 (x2) are supplied to the sum product algorithm
at time t = 2 before inference is performed. All three can be calculated from the mea-
surement v̂2 and covariance V2 as well as the beliefs calculated at t = 1.

After inference, the belief over v2 is updated (as before):

p (v2 |v̂1:2, ŵ1:2 ) = µv̂2→v2 (v2) µx2→v2 (v2)

= p (v̂2 |v2 )
∑
x2

p (x2 |v̂1:2, ŵ1:2 )
∫
p (v1 |v̂1, ŵ1 ) p (v2 |v1, x2 ) dv1

µv2→x2 (x2)

= `
(2)
0 δ (v2) + C

(2)
1 N

(
v2

∣∣∣µ(2)
1 ,Σ

(2)
1

)
+ C

(2)
2 N

(
v2

∣∣∣µ(2)
2 ,Σ

(2)
2

)
, (4.24)
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where we define

C
(2)
1 =

`
(2)
1 `

(1)
0 N (v̂2 |0, V2 + Cv )

µv2→x2 (x2 = 1)
, (4.25)

C
(2)
2 =

`
(2)
1 `

(1)
1 N

(
v̂2

∣∣∣µ(1)
1 ,Σ

(1)
1 + Cv + V2

)
µv2→x2 (x2 = 1)

, (4.26)

Σ
(t)
i =

((
Cv + Σ

(t−1)
i−1

)−1
+ V −1t

)−1
, i ∈ {2, . . . , t} , (4.27)

µ
(t)
i = Σ

(t)
1

((
Cv + Σ

(t−1)
i−1

)−1
µ

(t−1)
i−1 + V −1t v̂t

)
, i ∈ {2, . . . , t} . (4.28)

To summarize, at the end of time step t = 2, the velocity distribution is a mixture of
Gaussians, and the PGM only consists of variables at time step 2, which means that the
PGM has not grown in size. Also, we have decoupled time steps 1 and 2.

4.3.3 Message passing at t > 2

The described scheme can be generalized to any two consecutive time steps. To this end,
suppose the belief over vt−1 is given by

p (vt−1 |v̂1:t−1, ŵ1:t−1 ) = `
(t−1)
0 δ(vt−1) +

t−1∑
i=1

C
(t−1)
i N

(
vt−1

∣∣∣µ(t−1)
i ,Σ

(t−1)
i

)
, (4.29)

which we know holds for t = 3 (compare (4.24) and (4.29)). Following similar steps as
before, it can be shown that by computing

µvt→xt (xt) =

∫
p (v̂t |vt )

∫
p (vt−1 |v̂1:t−1, ŵ1:t−1 ) p (vt |vt−1, xt ) dvt−1 dvt, (4.30)

the message passed from vt to xt is given by

µvt→xt (xt = 0) =

(
`
(t−1)
0 +

t−1∑
i=1

C
(t−1)
i

)
N (v̂t |0, Vt ) , (4.31)

µvt→xt (xt = 1) = `
(t−1)
0 N (v̂t |0, Vt+Cv )+

t−1∑
i=1

C
(t−1)
i N

(
v̂t
∣∣∣µ(t−1)

i ,Σ
(t−1)
i +Vt+Cv

)
.(4.32)

The factors φ (xt,mt) and φ (mt) turn out to be

φ (xt = 0,mt = 0) = `
(t−1)
0 + 1

2
`
(t−1)
1 , (4.33)

φ (xt = 0,mt = 1) = `
(t−1)
0 (as) + `

(t−1)
1 (1− ad) , (4.34)

φ (xt = 1,mt = 0) = 0, (4.35)

φ (xt = 1,mt = 1) = `
(t−1)
0 (1− as) + `

(t−1)
1 (ad) , (4.36)

φ (mt = 0) = p (mt−1 = 0 |v̂1:t−1, ŵ1:t−1 ) , (4.37)
φ (mt = 1) = p (mt−1 = 1 |v̂1:t−1, ŵ1:t−1 ) , (4.38)
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and can be calculated from the measurement v̂t with covariance Vt and the beliefs from
time t− 1. Inference is performed, whereafter we calculate the belief over vt as

p (vt |v̂1:t, ŵ1:t )

∝ µv̂t→vt (vt) µxt→vt (vt)

∝ p (v̂t |vt )
∑
xt

p (xt |v̂1:t, ŵ1:t )

µvt→xt (xt)

∫
p (vt−1 |v̂1:t−1, ŵ1:t−1 ) p (vt |vt−1, xt ) dvt−1

∝ `
(t)
0 δ(vt) +

t∑
i=1

C
(t)
i N

(
vt
∣∣∣µ(t)

i ,Σ
(t)
i

)
, (4.39)

where

C
(t)
1 =

`
(t)
1 `

(t−1)
0 N (v̂t |0, Vt + Cv )

µvt→xt (xt = 1)
, (4.40)

C
(t)
i =

C
(t−1)
i−1 `

(t)
1 N

(
v̂t
∣∣∣µ(t−1)

i−1 ,Σ
(t−1)
i−1 + Cv + Vt

)
µvt→xt (xt = 1)

, i ∈ {2, . . . , t} . (4.41)

The belief has the same form as (4.29), and by induction we now know that it holds for
any t > 2. Consequently, the message µvt→xt (xt) can be calculated according to (4.31)
and (4.32) using the Ci-, µi- and Σi-constants calculated at time t − 1, the belief over
xt−1 obtained after inference at time t− 1, and the current velocity measurement v̂t with
covariance Vt. Note that the number of components in the mixture of Gaussians in (4.39)
grow by one component with each time step. If the robot is moving, this may not be a
problem since a feature is typically observed only for a short period of time. One may also
decide to discard components by approximating the relevant term with a single normal
distribution, if necessary.

4.4 Summary
With the full structure of our PGM in place, as well as a means to compute messages
between the continuous and discrete variables, we can now summarize the complete op-
eration of the system. At a particular time step the following steps are performed.

1. A set of 3D coordinates of features is obtained. This set contains only features
successfully matched with the previous time step (if a feature disappears for a frame
and later reappears, it will be handled as if seen for the first time). Distributions
over velocity measurements (v̂i,t) are generated from the 3D feature coordinates, as
explained in Chapter 5, with due incorporation of uncertainty in the measurements
as well as the uncertainty in the estimate of the robot’s current pose. Measurement
distributions of relative change in distance between two features (r̂ij,t) are also
generated for pairs of features, as is also explained in Chapter 5. For features
already under consideration, random variables are connected in the PGM to those
at the previous time step, while for new features random variables are initialized in
a way similar to what we do for features at the first time step (Section 3.3).
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2. For tractable inference in our PGM, we pre-compute messages from the continuous
variables to the discrete ones before we perform belief propagation in the next
step. More specifically, for every feature i we compute the message µvi,t→xi,t (xi,t)
according to (4.31) and (4.32), as well as the factors φ (xt,mt) and φ (mt) given in
(4.38), and all three are supplied to the sum product algorithm. For every possible
pair of features (as dictated by a Delaunay triangulation) we also compute a message
sent to sij (the variable that indicates whether or not features i and j belong to the
same object) as described in Section 4.2.

3. Finally we run loopy belief propagation over the discrete variables, to infer posterior
distributions over those variables given the measurements and messages from the
continuous variables. After belief propagation we infer the belief over vi,t according
to (4.39).

Once these steps are completed, marginal distributions over variables of interest can be
inferred. From these marginal distributions we can apply a threshold to the feature state
probabilities xi,t at a particular time step, for a motion segmentation of all the features
observed at time t. Similarly, a grouping of all features for which the belief over sij,t is
higher than a chosen threshold provides an object segmentation of the dynamic features
observed at time t.

Contrary to traditional belief propagation algorithms, the message passing algorithm
proposed in this chapter is incremental in the sense that time step t − 1 is decoupled
from time step t. Consequently, the PGM does not grow in size over time, since the only
variables included in message passing at time t are those related to the observations made
at time t. We also avoid propagating messages that grow exponentially in complexity
during calibration and thus enable tractable inference.
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Chapter 5

Measurement pre-processing

Our PGM approach to solving the dynamic object detection problem is compatible with
various types of sensors and environments. In order to evaluate performance we consider
the KITTI datasets [23]. They are well suited for our approach since they provide a
sequence of stereo images captured from a platform driving through urban environments.
Environment and object types vary across the sets, which allows for testing in various
scenarios. These datasets have also become a popular benchmark against which the per-
formance of different algorithms can be compared [79]. Our approach requires feature
velocities as well as change in relative distance measurements, and both must be char-
acterized with Gaussian distributions. In this chapter we discuss how to extract these
requirements from the KITTI datasets. We stress that our method for detecting dynamic
objects is not limited to these sets. Even though the discussion here may be viewed as
an example of measurement pre-processing, most practical systems may require similar
calculations.

We start by discussing the KITTI sensor set-up, followed by how a position estimate
relative to the stereo rig for a particular feature is obtained. The KITTI vehicle is also
equipped with an IMU/GPS unit for pose estimation. To calculate the feature position
estimates in a global coordinate system, we have to understand the raw output from
the IMU/GPS unit and describe how these pose measurements are applied to transform
camera coordinates to global coordinates. Sections 5.1 to 5.4 contain details on how to
calculate distributions over global 3D feature positions. Sections 5.5 and 5.6 describe the
general procedure to obtain feature velocity measurements and change in relative distance
measurements.

5.1 Sensor set-up
In Figure 5.1 a schematic representation of the sensor set-up is shown. In particular, the
KITTI datasets provide sequences of stereo images after stereo rectification and distor-
tion removal [26]. The vehicle is also equipped with an IMU and GPS for localization
measurements. Measurements from a Velodyne laser range scanner are also available, but
we do not use those. It is worth mentioning, however, because the KITTI development
kit provides homogeneous coordinate transformations between the IMU and the range

46
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Figure 5.1: Schematic of the KITTI vehicle sensor set-up. Image reproduced with permission
from www.cvlibs.net.

scanner, and between the range scanner and the stereo rig. Coordinate conversion be-
tween the stereo rig and the IMU therefore occurs via the range scanner, as we explain
in Section 5.3.

5.2 Feature positions in the camera coordinate system
Our PGM assumes that all measurement models are described by Gaussian error dis-
tributions, i.e. that each is described by a mean and covariance where the mean is the
measured value. Recall from Chapter 3 that we require two types of measurement distri-
butions: one over the velocity of a feature, and one over the change in relative distance
between two features. For the first of these we require a distribution over every global
3D feature position and for the second we require a distribution over the 3D position of
a feature in a body-fixed coordinate system. Sections 5.5 and 5.6 deal with how these
distributions can be calculated. In this section we focus on how to obtain a distribution
over every 3D feature position in the camera body-fixed system.

In order to obtain a distribution over position, a particular feature under consideration
must be observed from at least two spatially separate viewpoints. The process of deter-
mining the 3D position from image coordinates in two images is known as triangulation,
and a schematic representation is shown in Figure 5.2. In reality the 3D position Xcam

of a feature in the camera coordinate system is projected onto the left and right camera
coordinates xL and xR respectively. From these image coordinates the 3D position Xcam

can be recovered, assuming that the two cameras in the stereo rig are calibrated [26].

5.2.1 Feature extraction

The first step towards triangulation is to detect and match a set of features that occur in
both the left and right camera images at a particular time t. In order to do so, interest
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xL xR

Xcam
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z

Figure 5.2: Schematic representation of the triangulation process. CL and CR are the left and
right camera centres respectively, while xL and xR are the image coordinates of the projections
of point Xcam (after stereo rectification) in the left and right images. In the KITTI set-up CL
is chosen as the origin of the camera coordinate system, with axes as shown.

points are detected separately in each image using a feature extractor such as Good
Features to Track [69], SIFT [44], SURF [5] or ORB [66]. Next, the descriptor vectors
of features are matched across the left and right images exhaustively or by means of an
optimized nearest neighbour search [55]. The same process can be used to match features
over consecutive time steps. If a match cannot be found for a feature in the left or right
image, or if the feature cannot be matched with a feature from the previous time step,
that feature is not included in the PGM. This implies that the number of features that
can be matched depends largely on the speed of the robot. If it is moving slowly the
likelihood of observing the same feature in consecutive time steps is higher than when
the robot is moving at a high speed. On the other hand, features may reappear after
being obscured from view. Unless such features are compared to all previously observed
features, which is computationally intensive, they will be regarded as newly observed
features.

Suppose the left and right image coordinates of a particular feature at time t are

xL,t =

[
xL,t
yL,t

]
, xR,t =

[
xR,t
yR,t

]
, (5.1)

respectively. If the images are rectified [26], we expect yL,t = yR,t. Consequently we
discard any features for which |yL,t− yR,t| > 1, i.e. where their y-image coordinates differ
by more than a single pixel. This restriction rejects some outliers, and we compute a new
y-image coordinate yt = 1

2
(yL,t + yR,t) for every remaining feature.

The process of locating feature points in a discrete pixel space can lead to uncertainty.
It is common practice to assume that such uncertainties can be modelled effectively by a
Gaussian distribution [48] centred around the detected coordinates. In our experiments
we determined that a variance of 0.04 pixels in the coordinates xL,t and xR,t is suitable,
and a variance of 0.02 in yt.
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5.2.2 Triangulation

From the feature coordinates in the left and right image we can compute 3D coordi-
nates relative to the current camera position at time t. This is achieved through the
transformation

Xcam,t =


(xL,t−px)B
xL,t−xR,t

(yt−py)B
xL,t−xR,t

fB
xL,t−xR,t

 , (5.2)

where B is the distance between the centres of the two cameras (the baseline), f is
the focal length and (px, py) is the principal point [26]. Axis definitions are shown in
Figure 5.2, and correspond to the KITTI axis definitions.

We require Gaussian distributions over all measurements. We follow standard practice
by assuming a Gaussian distribution over the image coordinate measurements, but note
that the transformation in (5.2) is nonlinear in the vector

x′ = [ xL,t, xR,t, yt ]T . (5.3)

Therefore, a linearization process is required to ensure that the distribution over Xcam is
also Gaussian, and we proceed to compute the accompanying covariance matrix Σcam,t.
For stereo triangulation it is common practice to perform the linearization using the Tay-
lor approximation (as described in Appendix B) [10]. This method requires the Jacobian
matrix which we compute as

Jt =

 B(px−xR,t)
d2

B(xL,t−px)
d2

0
B(py−yt)

d2
B(yt−py)

d2
B
d

−Bf
d2

Bf
d2

0

 , (5.4)

where d = xL,t − xR,t. The resulting covariance matrix is computed as

Σcam,t = Jt

 0.04 0 0
0 0.04 0
0 0 0.02

 JTt . (5.5)

With both Xcam,t and Σcam,t known, the Gaussian distribution over the 3D feature posi-
tion relative to the stereo rig from which it is observed, is described.

5.3 Feature positions in the IMU coordinate system
SinceXcam,t is calculated relative to the stereo rig and, since pose estimation is performed
by the IMU, we first have to transform Xcam,t to the body-fixed coordinate system of
the IMU. This transformation is fixed, and supplied in the KITTI development kit. A
schematic of the two coordinate systems is given in Figure 5.3(a).
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Figure 5.3: (a) Definition of the right-handed camera and IMU coordinate systems as viewed
from above the vehicle. (b) Definition of the roll (φ), pitch (θ) and yaw (ψ) angles in the
IMU/GPS coordinate system.

The transformation that maps a feature position in camera coordinates to the IMU co-
ordinate system is given by[

Ximu,t

1

]
= T−1imu→veloT

−1
velo→cam

[
Xcam,t

1

]
, (5.6)

where Timu→velo and Tvelo→cam are homogeneous coordinate transformations from the IMU
to the range scanner, and from the range scanner to the stereo rig respectively. Since the
transformation in (5.6) is linear, the resulting covariance matrix is given by

Σimu,t = AΣcam,tA
T , (5.7)

where A = T−1imu→veloT
−1
velo→cam.

5.4 Feature positions in the global coordinate system
Next we require the transformation from vehicle coordinates to world coordinates. This is
achieved by considering the measurements returned by the IMU. Before we calculate this
transformation and specify exactly how the world coordinate system is defined, we require
some preliminaries on the raw measurements returned by the vehicle’s pose estimator.

Here we assume independence between raw measurements taken at different time steps
and that the true values are normally distributed around these measurements. In the
next two sections we discuss the raw measurements that describe the vehicle’s position
and orientation, following the notation of the IMU reference manual [60] as well as the
KITTI development kit.

5.4.1 Raw position measurements

The differential GPS on the KITTI vehicle provides an absolute location estimate at
each time step. This estimate is provided in the form of a global latitude, longitude
and altitude above sea-level, where latitude and longitude are measured in degrees, and
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altitude in metres. We represent the uncertainty in these measurements by the covariance
matrix

Σ
(raw_pos)
t =

 10−12 0 0
0 10−12 0
0 0 0.0004

 , (5.8)

which corresponds to a standard deviation of 2 cm in altitude and roughly 7 cm in
horizontal and vertical vehicle position (as viewed from above), and are of the same order
as the estimated accuracy in the IMU reference manual [60]. Here we assume that the
latitude, longitude and altitude measurements are uncorrelated, and that the error is
normally distributed around a measured value.

5.4.2 Raw orientation measurements

The vehicle’s orientation can be described using three angles: roll (φ), pitch (θ) and yaw
(ψ), which are rotations about the axes shown in Figure 5.3(b). Here the axis definitions
are in accordance with the KITTI set-up in Figure 5.1, where the positive x-axis points
toward the front of the vehicle and the origin is at the centre of the IMU/GPS unit. The
unit outputs these three angles in degrees at each time step, and we convert them to
radians.

Following the IMU reference manual [60], we assume Gaussian noise with a standard
deviation of 0.1◦ in each of these angles, so that the covariance matrix is

Σ
(raw_orient)
t =

(
0.1π

180

)2
 1 0 0

0 1 0
0 0 1

 . (5.9)

5.4.3 Global vehicle position

From the raw position and orientation measurements a distribution over the absolute
vehicle position and orientation can be computed.

The altitude above sea-level estimate altt at time t is simply the z-coordinate of the
vehicle, zveh,t, but the latitude and longitude require some processing before they can
be viewed as x- and y-coordinates. We employ the well-known Mercator projection [73],
which we state here for completeness. The surface of the earth is mapped to a cylinder
such that latitudes remain horizontal, and the cylinder is cut vertically and unrolled. In
this coordinate system the origin is at the meeting point of the central meridian and the
equator, the x-axis along the equator and the scale in metres. The underlying assumption
in this mapping is that the coordinate system is inertial, which is not entirely true because
of the rotation of the earth, and also Cartesian, which it is not because of the curvature of
the earth. However, for movement on a small part of the earth’s surface, these coordinates
are close to inertial and locally Cartesian. The equations to convert the raw latitude and
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longitude measurements are given by

xveh,t =
πerlatts(lat1)

180
, (5.10)

yveh,t = er s(lat1) ln
(

tan (90 + longt)
π

360

)
, (5.11)

where er = 6, 378, 137 is the average radius of the earth in metres and s is computed as

s(lat1) = cos

(
lat1π
180

)
. (5.12)

5.4.4 Global vehicle orientation

From the raw angle measurements φ, θ and ψ, a rotation matrix can be composed that
rotates a vector in the IMU coordinate system to the absolute coordinate system. Ac-
cording to the KITTI development kit and the IMU reference manual [60], this rotation
matrix is given by

Rt = Rψ,tRθ,tRφ,t, (5.13)

where

Rφ,t =

 1 0 0
0 cos (φt) − sin (φt)
0 sin (φt) cos (φt)

 , Rθ,t =

 cos (θt) 0 sin (θt)
0 1 0

− sin (θt) 0 cos (θt)

 , (5.14)

and

Rψ,t =

 cos (ψt) − sin (ψt) 0
sin (ψt) cos (ψt) 0

0 0 1

 . (5.15)

5.4.5 Global vehicle pose

Since the mapping that takes a point in the IMU coordinate system to global coordinates
involves a rotation and translation, a pose matrix that combines the two can be computed
as

P̂t =

[
Rt xveh,t

0T 1

]
, (5.16)

where
xveh,t = [xveh,t, yveh,t, zveh,t ]T (5.17)

is the translation vector. When this transformation is applied to a vector in the IMU
coordinate system, the resulting vector will be in the global coordinate system.

Following the KITTI development kit, we choose the origin of the global coordinate
system to align with the first pose of the sequence, and compute all poses relative to the
first. This means that the global vehicle pose in our world coordinate system is given by

Pt =
(
P̂1

)−1
P̂t. (5.18)
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5.4.6 Vehicle pose distribution

Now that we have described how the global vehicle pose is obtained from the raw IMU
measurements, we proceed to calculate the resulting vehicle pose distribution. If we
consider the final pose matrix that represents the pose at time t in (5.18), we see that it
depends on raw measurements at time t, as well as time t = 1. Also, the transformation
should take a point in IMU coordinates Ximu,t and transform it to world coordinates.
Accordingly, we define the Gaussian random variable

x̂t =
[
lat1, long1, alt1, φ1, θ1, ψ1, latt, longt, altt, φt, θt, ψt, X

T
imu,t

]T
, (5.19)

where we combine the covariance matrices from (5.8), (5.9) and (5.7) into the final co-
variance matrix

Σ̂t =


Σ

(raw_pos)
1 · · · 0

Σ
(raw_orient)
1 ··

·

Σ
(raw_pos)
t

··
·

Σ
(raw_orient)
t

0 · · · Σimu,t

 . (5.20)

In Algorithm 1 we define the transformation function g(x) that takes the raw pose mea-
surements and the point in IMU coordinates (all packed into a vector x as in (5.19)) to
the world coordinate system.

Algorithm 1 Transformation function to map point in IMU coordinates to world coor-
dinates. x[i] denotes the i-th entry of x.
1: function g(x)
2: compute s = cos

(
πx[1]
180

)
3: compute t1 =

 π erx[1]
180

er s ln
(
tan(90 + x[2]) π

360

)
x[3]


4:

5: compute tt =

 π erx[7]
180

er s ln
(
tan(90 + x[8]) π

360

)
x[9]


6: compute R1 using x[4],x[5],x[6] according to (5.13)
7: compute Rt using x[10],x[11],x[12] according to (5.13)

8: compute P̂1 =

[
R1 t1
0T 1

]
9: compute P̂t =

[
Rt tt
0T 1

]
10: compute P = P̂−11 P̂t
11: let X = [x[13],x[14],x[15], 1 ]T

12: compute y = PX
return [y[1],y[2],y[3] ]T
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Since the function g(x) is nonlinear, the transformed distribution is not Gaussian. It
can, however, be approximated by a Gaussian distribution. One option is use a Taylor
expansion, as in Section 5.2.2. However, because of the specific nonlinearities in the func-
tion, we found this method to be inadequate. The unscented transform (see Appendix B),
which is an alternative linearization method, samples points from the original distribution
and fits a Gaussian distribution over the transformed points. We apply this transform
with κ = 0.5 and α = 0.55, in order to obtain the distribution over the global 3D feature
position in the world coordinate system as

p(Xt) ≈ N (Xt |µt,Σt ) . (5.21)

Since both µt and Σt are known at a particular time, and describe a distribution over
the global 3D feature position, we can proceed to calculate the measurements required
as observations for our PGM.

5.5 Velocity measurement
For a velocity measurement we require data from two time steps. Suppose a particular
feature i has world coordinates Xi,t−1 at time t − 1 and Xi,t one time step later. The
velocity measurement v̂i,t is simply calculated as

v̂i,t = Xi,t −Xi,t−1. (5.22)

Since we subtract two consecutive feature positions, the velocity is given in metres per
time step. This measurement can be converted to metres per second but, if the same
calculation is used throughout, this step can be omitted.

If Xi,t and Xi,t−1 have covariance matrices Σi,t and Σi,t−1 respectively, and since the
velocity measurement is a linear transformation, the velocity measurement covariance
matrix (occuring in (3.1)) is given by

Vi,t = Σi,t + Σi,t−1. (5.23)

Here we must assume that consecutive position measurementsXi,t andXi,t−1 of the same
feature are independent.

5.6 Change in relative distance measurement
The change in relative distance measurement is calculated by taking the distance between
two points at time t−1 and subtracting it from the distance between the same two points
at time t. Since we are only interested in the change in relative distance, these coordinates
need not be in the global coordinate system when subtracted from each other.

If the measured 3D positions of features i and j at time t−1 relative to the stereo cameras
are X(i)

cam,t−1 and X
(j)
cam,t−1, as calculated in (5.2), the distance between these two features
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at time t− 1 is given by

dij,t−1 =
∥∥∥X(i)

cam,t−1 −X
(j)
cam,t−1

∥∥∥ , (5.24)

where ‖·‖ denotes the Euclidean norm. Similarly, at time t we have

dij,t =
∥∥∥X(i)

cam,t −X
(j)
cam,t

∥∥∥ , (5.25)

so that the change in relative distance measurement is

r̂ij,t = dij,t − dij,t−1. (5.26)

If we define a new Gaussian random variable dt as

dt =
[
X

(i)
cam,t−1,X

(j)
cam,t−1,X

(i)
cam,t,X

(j)
cam,t

]T
, (5.27)

with accompanying covariance matrix

Σd,t =


Σ

(i)
cam,t−1 · · · 0

Σ
(j)
camt−1 ··

·

· ·
·

Σ
(i)
cam,t

0 · · · Σ
(j)
cam,t

 , (5.28)

we can define the transformation function h(d) in Algorithm 2 that provides the change
in relative distance from the vector d.

Algorithm 2 Transformation function to calculate the change in relative distance mea-
surement from the vector dt. d[i] denotes the i-th entry of d.
1: function h(d)
2: compute r1 using d[1],d[2],d[3] and d[4],d[5],d[6] according to (5.24)
3: compute r2 using d[7],d[8],d[9] and d[10],d[11],d[12] according to (5.25)
4: compute r̂ = r2 − r1

return r̂

The function h(d) is nonlinear in d, which means that the distribution over the change
in relative distance measurement can only be approximated by a Gaussian distribution.
Again, we apply the unscented transform with κ = 0.5 and α = 0.55, in order to obtain

p(r̂ij,t |rij,t ) ≈ N (r̂ij,t |rij,t, Rij,t ) . (5.29)

To summarize, there are two types of measurements required for inference on our PGM
at each time step: velocity measurements and change in relative distance measurements.
For the first we require a global 3D feature position distribution which, in the case of the
KITTI datasets, can be computed as described in Sections 5.2 to 5.4. The second type of
measurement can be calculated using a body-fixed 3D feature position distribution, such
as the one described in Section 5.2.2. Once the required distributions are obtained, the
two types of measurements can be computed as described in Sections 5.5 and 5.6.
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Chapter 6

Experimental results

In this chapter we describe results from a number of experiments on several datasets from
the KITTI benchmark suite [23] which cover rural, suburban and city traffic environments.
Details on the specific sets we chose to consider and motivation behind these choices are
provided in Section 6.1, and in Section 6.2 we state some preliminaries.

We compare the performance of our PGM approach to triTrack [43] which, to our knowl-
edge, is the most recent publicly available feature-based motion segmentation system.
For the purposes of this comparison we use their feature detector, Libviso [24], although
our approach is compatible with any good feature detector. We first compare the overall
performance of both methods on all the datasets (Section 6.3). After that we investigate
the ability of our method to perform motion segmentation over time (Section 6.4) as well
as to handle semi-static objects (Section 6.5). Finally we provide a qualitative analysis
of the performance on our method and that of triTrack (Section 6.6).

6.1 Datasets
The KITTI benchmark suite contains about 50 datasets in total in their city, residential
and road categories. Every dataset typically contains a few hundred stereo frames, and
within each typical frame around 1,000 features are detected. We decided to manually
annotate the features for ground truth in our quantitative evaluations, and label each
one as either “static” (xi,t = 0, mi = 0), “semi-static and currently stationary” (xi,t = 0,
mi = 1), “semi-static and currently moving” (xi,t = 1, mi = 1), or “unclear”. Annotating
all the features in all the datasets (which would be about 5 million feature measurements
in total) was not feasible, and we resorted to choosing sets representative of the type of
scenarios that a mobile robot may encounter in practice. Each dataset is chosen for a
specific reason and tests the algorithm’s performance in a specific scenario.

Every set includes pose estimates from an IMU as well as rectified stereo images captured
at 10 Hz. We lowered the frame rate, by processing every third frame, as a compromise
between having more information (from a high frame rate) and more movement between
frames (from a lower frame rate).
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Recall that only features observed at time t are included in the PGM at time t, which
means that the PGM does not increase in complexity over time. Also, a particular
dynamic feature is typically not observed for more than 7 or 8 frames. Since every
feature had to be manually annotated, it was decided to limit the length of each set to
about 15 frames (or time steps). This means that we have about 6,700 unique features
per sequence (out of approximately 15,000 feature measurements in total per dataset).

The first three frames of every chosen dataset are shown in Figure 6.1. In the first
dataset (2011_09_26_drive_0013) the KITTI vehicle is driving at a medium speed along
a straight road, with other vehicles driving at a similar speed in the same direction. Tests
on this dataset will indicate how well our method performs while following dynamic
objects.

(a) 2011_09_26_drive_0013

(b) 2011_09_26_drive_0005

(c) 2011_09_26_drive_0106

(d) 2011_09_26_drive_0057

(e) 2011_09_26_drive_0014

(f) 2011_09_26_drive_0011

Figure 6.1: Sample frames from the six KITTI datasets chosen for testing.
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The second dataset (2011_09_26_drive_0005) contains a scene where the KITTI vehicle
is driving behind a cyclist and a minivan, while turning a corner. This dataset will assess
how well our method identifies different types of dynamic objects while turning, when
pose estimation may be more inaccurate.

In the third dataset (2011_09_26_drive_0106) the KITTI vehicle is driving along a
straight road with slow-moving approaching vehicles, and this set will assess how well our
method handles approaching traffic and slow-moving objects.

The fourth dataset (2011_09_26_drive_0057) contains a semi-static object. In this
sequence the KITTI vehicle stops behind another vehicle at a traffic light. After a while
the traffic light turns green and the vehicle in front starts to drive.

In the first few frames of the fifth dataset (2011_09_26_drive_0014), the KITTI vehicle
is stationary. After a while it makes a right turn and encounters fast-moving approaching
vehicles.

The sixth dataset (2011_09_26_drive_0011) contains frames where the KITTI vehicle
approaches an intersection, while other vehicles are moving across its field of view. Theo-
retically, this case should be the simplest for dynamic object detection, since the apparent
movement in the image is large.

By testing our algorithm on these six datasets we cover a wide variety of situations: slow
moving objects, fast moving objects, different types of dynamic objects, objects moving
in the same direction, objects moving in the opposite direction and objects moving in a
direction perpendicular to the KITTI vehicle.

6.2 Preliminaries
Our method requires values for a number of hyperparameters. In this work we determined
those values through manual tuning while visualizing the results on a dataset different
from the six chosen for further tests. This tuning process was purposefully cursory and,
once set, the parameters were kept constant in all our experiments.

The three parameters required in Tables 3.1 and 3.5, namely the probabilities ax|m, as and
ad, are all set to be 0.9. From a logical standpoint these values should be high. Through
some experimentation we found that the performance of our method is not sensitive to
these values, and remains high with values as low as 0.7.

Appropriate values for the covariance matrices Cv and Cr were determined as

Cv =

0.52 0 0
0 0.52 0
0 0 0.52

 , Cr = 12. (6.1)

We also found our method to be fairly insensitive to the values in these matrices.
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The unscented transform parameters α = 0.55 and κ = 0.5 used in Chapter 5 were
determined by visualizing error ellipses around 3D feature positions and choosing values
that seemed to reflect the fact that features close to the vehicle should have a standard
deviation in the order of centimetres. Of all the required hyperparameters, our method
seems to be most sensitive to α. However, by the cursory manner in which we chose a
value for α it is unlikely that the optimal value was chosen, which does indicate some
insensitivity to this parameter.

If suitable data is available, the hyperparameters may also be learned through expectation
maximization or a Markov chain Monte Carlo method.

As mentioned, features are extracted from the stereo images and matched over time using
the triTrack dependency Libviso, where features are detected by a corner and blob filter
and matched using visual odometry. No further outlier rejection is performed after this
step. Our method is of course not limited to the Libviso features, and may be used in
conjunction with any good feature extractor and matching algorithm.

6.3 Overall performance
The motion segmentation result from triTrack is a labelling of all features as either “static”,
“dynamic” or “unknown”. With our manually annotated ground truth feature labels for
the datasets listed in Section 6.1, we can compare our method’s motion segmentation ca-
pability to triTrack’s in a quantitative manner. Following the steps set out in Section 4.4,
we can infer the marginal distribution over xi,t for each feature after message passing, ap-
ply a threshold and compare it to the annotated label of that feature. Processing a single
stereo frame takes about 5 to 6 seconds, depending on the number of features detected in
the image. The feature extraction and matching typically takes less than a second, while
the bulk of the computation time is dedicated to loopy belief propagation.

Results measured over the six datasets are shown in Table 6.3, where the percentage of
each error type is calculated for every frame and averaged over the entire dataset. For our
method we applied a threshold of 0.5 to the obtained feature state probabilities to arrive
at classifications. In the table we show both the type I and type II errors made by each
method. Here a type I error occurs when a stationary feature is classified as dynamic,
and a type II error occurs when a dynamic feature is classified as stationary. We express
these two errors as percentages of all features classified as dynamic and of all features
classified as static, respectively. For comparisons with triTrack, the label “semi-static and
currently moving” is grouped with “dynamic”, and “semi-static and currently stationary”
with “static”, since their method does not include a label for semi-static features.

The results indicate that our method significantly outperforms triTrack. The weaker
performance of our method regarding type II error for the third dataset can be explained
by the apparent motion of some features being too small compared to the associated
measurement uncertainties (this set contains slow-moving approaching vehicles). We do
note that the type II error made by our approach is comparable to that of triTrack.
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triTrack [43] error % our PGM approach error %

dataset type I type II type I type II
2011_09_26_drive_0013 7.2 17.7 2.3 1.2
2011_09_26_drive_0005 11.9 23.5 7.3 3.9
2011_09_26_drive_0106 6.7 25.4 1.3 29.1
2011_09_26_drive_0057 6.6 18.9 3.4 7.7
2011_09_26_drive_0014 12.9 22.9 7.6 3.5
2011_09_26_drive_0011 3.7 5.9 3.4 4.0

average 8.2 17.8 4.2 8.2

Table 6.1: Motion segmentation error percentages of triTrack and our method, measured over
six KITTI datasets against manually annotated ground truth.

If we consider the fourth dataset, which contains the semi-static object, we see that the
type II error of our method is significantly lower than that of triTrack. This may be
attributed to our explicit handling of semi-static objects, which enables our method to
alter its belief quickly if a stationary feature starts to move.

6.4 Motion segmentation accuracy over time
We now proceed to investigate certain aspects of our method’s performance by analysing
specific sections of the datasets. We start by assessing the motion segmentation perfor-
mance for features that are observed over a number of frames.

For this assessment we take the first dataset (2011_09_26_drive_0013), and consider
only the features that are observed for at least four consecutive time steps. Results are
plotted as receiver operating characteristic (ROC) curves in Figure 6.2, where “dynamic”
is taken as the positive label and “static” as the negative label.

The advantage of explicitly modelling time dependency between feature states and veloc-
ities is quite clear, since the motion segmentation accuracy tends to improve over time.
This means that, the longer we are able to observe a feature, the clearer it becomes
whether the feature is static or dynamic. Similar experiments on the other five datasets
support this tendency.

6.5 Handling of semi-static objects
Next we consider the ability of our PGM to deal with semi-static objects for which the
states of features may change over time. We consider a particular subset of frames from
the dataset 2001_09_26_drive_0057, where a vehicle directly in front of the KITTI
vehicle is stationary for about four frames before it starts moving forward.
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Figure 6.2: ROC curves showing the motion segmentation accuracy for a group of features
over time, and a zoom-in on the right (we take “dynamic” to be the positive label).

Figure 6.3(a) shows a number of ROC curves that indicate how accurately our system
estimates the current states of features on the vehicle, from the moment that it starts to
move. We see weak performance at time t = 5 (when the vehicle starts to move), because
the PGM has strong reason to believe that most of the features are stationary. However,
as more observations become available, the prior belief is corrected and performance
increases quickly and dramatically with each additional time step, until near perfect
classification is reached at t = 9. Our method is able to do this because of the m-variables
that make provision specifically for semi-static features. Snapshots of the feature state
probabilities are depicted in Figure 6.4, for the same time steps shown in Figure 6.3.
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Figure 6.3: (a) ROC curves showing the motion segmentation accuracy for a group of features
on a semi-static object over time (here the object was stationary for t < 5 and dynamic for
t ≥ 5). (b) ROC curves showing the motion segmentation accuracy for a group of features on
another semi-static object over time (here the object was dynamic for t ≤ 4 and static for t > 4).
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t = 5 t = 6 t = 7 t = 8 t = 9

probability that xi,t = 1 :
0 0.5 1

Figure 6.4: A depiction of the probabilities that features are dynamic, as returned by our PGM
approach, for the same semi-static test case as in Figure 6.3(a).

Figure 6.3(b) shows ROC curves for a scenario involving the opposite case, where a
dynamic object moves for four frames and then becomes stationary. We see that clas-
sification accuracy initially increases, and then decreases slightly. Unfortunately ROC
curves cannot be drawn for t > 4, because all features are stationary and thus there are
no positives. However, the PGM also classifies all features as stationary at t = 5 (after
applying a threshold of 0.5 to the feature state probabilities).

6.6 Qualitative analysis
We now proceed with a qualitative assessment of the performance of our method in
comparison to that of triTrack. In this section we show snapshots to illustrate certain
behaviour of these two methods.

6.6.1 Motion segmentation

We first show results from the KITTI dataset 2011_09_26_drive_0005, where the KITTI
vehicle is taking a turn while observing another vehicle and a cyclist. In Figure 6.5 we
show a sequence of motion segmentation results from both triTrack and our approach.

TriTrack provides a hard classification of the features at every time step, as indicated
in the figure, and we see that many static features are misclassified as dynamic. This
misclassification may be a result of distant measurements from stereo vision carrying
significantly larger uncertainty.

For our approach we see that features on the dynamic objects are given high probabilities
of being dynamic, while the probabilities of the rest of the features vary from 0 to 0.5.
This indicates that the model is quite certain about which features are currently dynamic,
while it is less certain whether or not stationary features are in fact stationary. Apart
from a few features in the second time step, our method appears to label the features
correctly as static or dynamic.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTAL RESULTS 63

probability that xi,t = 1
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t = 5
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t = 2
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dynamic static

Figure 6.5: A sequence of motion segmentation results over time for KITTI dataset 2011_09_
26_drive_0005, from triTrack on the left and our approach on the right.
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This example illuminates the benefits of including both pose and measurement uncer-
tainties when inferring feature states. Keep in mind that the robot is moving through
the environment as frames are captured, so most (if not all) of the features appear to be
moving from the robot’s point of view. Static features measured with large uncertainty
may easily be misclassified as dynamic if those uncertainties are not properly included in
the model.

In Figure 6.6(a) and (b) we show snapshots of the motion segmentation results obtained
on dataset 2011_09_26_drive_0013 with triTrack, and the feature state probabilities
obtained with our PGM approach. Similar to the previous example, triTrack misclassifies
a handful of static features while our approach appears to be very successful in separating
the dynamic features from static ones.

Next we show an example where both methods do not perform that well. Figure 6.7
shows a snapshot of results from dataset 2011_09_26_drive_0106, where cars in the left
lane (on the left side of the frame) are all slowly moving towards the vehicle. Our method
fails to detect the motion of the white minivan as well as a number of features on the car
behind it, because those objects are moving very slowly. It seems as if triTrack performs
slightly better, although a few features on the car are incorrectly labelled as static.

dynamic

static

1.0

0.5

0.0

(a)

(b)

Figure 6.6: Example motion segmentation results from (a) triTrack and (b) our PGM approach
on KITTI dataset 2011_09_26_drive_0013.
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Figure 6.7: Example motion segmentation results from (a) triTrack and (b) our PGM approach
on KITTI dataset 2011_09_26_drive_0106.

6.6.2 Object segmentation

We now proceed to analyse the object segmentation performance.

The triTrack method first clusters moving points into objects, which are then associated
with tracklets. If a tracklet is observed for a sufficient period of time, the associated
object is identified for tracking and is represented by a bounding box in the image. Our
segmentation is obtained by applying a threshold of 0.6 to the posterior distributions over
all s-variables. That is to say, if the posterior probability that sij = 1 is greater than
0.6, features i and j are taken to be part of the same object. Separate objects are then
identified as groups of connected features.

In Figure 6.8 we show a sequence of snapshots from dataset 2011_09_26_drive_0005
and results from both triTrack and our approach. Once triTrack has identified an object
for tracking, it is displayed with a number and a bounding box, as can be seen for time
steps t = 5, 6, 7. We see that for the first four time steps, no objects were identified for
tracking, and the cyclist is never detected in these seven time steps.

For our method, we see that an incorrect segmentation occurs at time t = 1, where the
minivan and the cyclist have approximately the same instantaneous velocities, as well as
at time t = 2, where three stationary points are incorrectly grouped as a dynamic object.
However, since we introduce a time-dependency between variables into our PGM, those
errors are eliminated in subsequent time steps.
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t = 7
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t = 3
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Figure 6.8: A sequence of object segmentation results over time for KITTI dataset 2011_09_
26_drive_0005, from triTrack on the left and our approach on the right.
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In time steps t = 5 and t = 6 we see that the minivan has been over-segmented by both
methods (and also by our method at t = 4). This may be due to the fact that the wheels
appear to be moving at a velocity different from the rest of the minivan.

A further object segmentation result is shown in Figure 6.9. In this example the dynamic
object is travelling at roughly the same speed as the KITTI vehicle. At the point in time
shown, the vehicle has been in view for at least seven frames yet triTrack fails to identify
it for tracking. Our method on the other hand correctly identifies the vehicle as the only
moving object in view.

From this evaluation we can conclude that triTrack seems to require quite a number of
time steps to identify objects for tracking, and in some cases misses them completely. Our
method is able to identify objects quickly, though it may produce an over-segmentation
from time to time.

object 3

object 2

object 1

(a)

(b)

Figure 6.9: Example object segmentation results from (a) triTrack and (b) our PGM approach
on KITTI dataset 2011_09_26_drive_0013.

The results in this chapter show that our method frequently outperforms triTrack, which
is a state-of-the art feature-based method for dynamic object detection. The results also
show that the motion segmentation from our method typically improves over time and
is able to handle semi-static objects effectively. The results further demonstrate that
our PGM can struggle to segment the features correctly in the presence of slow moving
objects, and is sometimes prone to over-segment.
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Conclusion

In this work we set out to develop a technique that can detect dynamic objects for a
mobile robot navigating through a dynamic environment. This is a challenging problem
since measurements of the environment returned by on-board sensors may indicate that
everything in the environment is moving, while much of it may be caused by the robot’s
own motion.

A literature review revealed that almost none of the currently available methods incorpo-
rate pose uncertainty to compensate for this, and rather assume an exact known pose even
though pose estimates and environment measurements may carry significant uncertainty.
Furthermore, most methods assume that the robot’s ego-motion can be retrieved from
the environment measurements and, in doing so, that the environment is predominantly
static.

The majority of approaches operate on the image plane, where information is lost during
the projection from 3D to 2D. Furthermore, most methods consider all the pixels in
an image, which leads to high dimensionality and computational cost. Alternatively,
features can be detected in the images, which enables fast tracking because of a lowered
complexity. Surprisingly, there exist few feature-based motion segmentation algorithms.

Moreover, despite the ability of PGMs to model a problem with many latent variables
whose values can be inferred after observing related variables, PGMs have not been a
popular approach to the motion and object segmentation problems. This may be partly
due to the fact that modelling the problem is challenging, with no guarantees of success.
Inference in large networks can also be computationally complex, which creates a trade-off
between realistic problem modelling and tractable inference.

7.1 Proposed solution
In order to solve the dynamic object detection problem, we proposed a novel feature-
based method for probabilistic motion segmentation that achieves two main goals. Firstly,
observed features are classified as static or dynamic and secondly, dynamic features are
grouped into separate objects. We presented a novel application of probabilistic graphical
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models that can, accordingly, be divided into two interacting components. The first is
the motion detection component, which is developed from first principles and offers a new
way of describing the problem.

Within the first component we assign a time-dependent binary state variable to every
feature that indicates whether or not it is currently dynamic (current state variable).
Furthermore, we accommodate for semi-static objects by connecting the current state
variable to an additional binary discrete variable which indicates whether or not the
feature is part of an object that is capable of movement. This allows for stationary
features to become dynamic and vice versa, without losing track of which features should
be monitored for collision avoidance.

The second component builds on an idea from Shental et al. [68], adapted to interact with
the first component as well as to fit into our PGM framework. Within this component
we connect each feature pair (that is connected in a Delaunay triangulation) to a binary
variable that indicates whether or not those two features are part of the same object.

At every time step we assume access to a belief distribution over the robot’s pose, ob-
tained from some type of localization estimator. We also assume a set of known feature
correspondences between the current time step and the previous one, as well as a mea-
surement model over the individual features in order to compute feature velocities. We
pre-process the feature image coordinates into observations of a feature’s velocity and we
also calculate the change in relative distance between two features. The first observation
is a direct indication of whether the feature is currently static or dynamic, while the sec-
ond is an indication of whether or not two features belong to the same object. Both these
types of observations are connected to latent random variables that represent their true
respective values (i.e. the true feature velocity and the true change in relative distance).

By modelling the problem in this way the PGM contains both continuous and discrete
random variables. Tractable inference in such PGMs is challenging and, in some cases,
even impossible. In our case, however, a few simplifying assumptions allow for closed-
form computation of the messages sent from continuous variables to discrete ones, thereby
decoupling the continuous and discrete variables. Loopy belief propagation can then
be performed on the discrete variables only, which enables tractable inference. After
calibration, messages are propagated back to the continuous variables in order to update
their beliefs.

7.2 Performance analysis
We tested our PGM approach on several datasets from the KITTI benchmark suite [23].
The chosen datasets cover urban and residential environments, scenarios where the dy-
namic objects are approaching, departing and crossing the road, scenarios where the
KITTI vehicle drives along a straight road and drives around a corner. It also con-
tains vehicles, cyclists and semi-static objects. We compared our method to an existing
state-of-the-art feature-based method called triTrack [43].
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Experimental results indicate that our PGM approach performs well overall, and out-
performs triTrack significantly on type I and II error percentages on five out of the six
datasets. It also does not perform significantly worse on the sixth set. An investiga-
tion of the performance for features seen over multiple time steps revealed that accuracy
increases as more observations become available.

Our PGM is also able to handle semi-static objects in the sense that, if a stationary
object starts to move, the PGM is able to identify the transition within a small number
of frames. Similarly for dynamic objects that become stationary, the PGM is able to
classify such features as stationary within one or two frames, even though the object may
have been dynamic for longer than that.

A qualitative comparison with triTrack revealed that the latter is prone to label dis-
tant stationary features as dynamic, possibly due to the fact that the measurements of
such features carry significant uncertainty or because pose uncertainty can affect distant
features more severely. Since our approach accommodates for measurement and pose
uncertainty, such errors are markedly reduced. On the other hand, we also identified
scenarios in which both methods do not perform that well. When the KITTI vehicle
encounters slow moving objects, their movement is overwhelmed by the measurement un-
certainty and our method fails to detect them. TriTrack suffers from a similar problem,
but seemingly to a lesser degree.

Finally, we saw that our method is able to detect the dynamic objects in the environment
correctly after about three frames, while triTrack struggles to identify some of these
objects after as many as seven frames. Both methods are prone to over-segmentation.
For our method this can be explained by the rigid object assumption.

7.3 Future work
Possible future work may include an investigation into further similarity metrics, such
as colour, shape or other existing similarities, to improve object segmentation. Another
route is to investigate a relaxation of the rigid body assumption, which may solve the
over-segmentation problem.

In our current solution there are a few parameters that need to be fixed, namely the
covariances Cv, Cb and Cr as well as the probabilities ax|m, as and ad. Learning these
values in a training phase may increase the generality of the technique. Taking this idea
one step further may be to learn the entire structure of the PGM.

Other ways in which to enable even faster inference presents another research direction,
since our current implementation is not quite fast enough for real-time applications (pro-
cessing a stereo frame typically takes about 5 seconds). Additionally, ways to handle
slow-moving objects can be researched, and the tracking component of the PGM can be
refined to relax the known correspondence assumption. With all these components in
place, dynamic object trajectory prediction may become a promising research topic.
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7.4 Contributions and significance
By modelling the problem as a PGM, we developed a novel application for PGMs in a
research area where it has not been particularly popular. An important advantage of
PGMs is that they can be extended fairly effortlessly, in the sense that any additional
information can simply be added to the graph structure. The output of the PGM is
probabilistic, which means that it provides a soft classification, and may be more advan-
tageous than hard classifications for subsequent modules in the autonomous navigation
process that also reason under uncertainty.

The PGM design process of specifying random variables, relationships and distributions
entailed a number of decisions, which relied on an in-depth understanding of the problem
while trading off assumptions and tractability with accuracy. Some of these assumptions
include independence between the change in relative distance and velocity measurements,
Gaussian distributions over all continuous random variables, and that variables at time
t cannot propagate messages back to variables at time t− 1. These assumptions enabled
us to develop an incremental inference algorithm in which we decouple the PGM at time
t − 1 from the one at time t, and imply that the number of variables in the PGM does
not grow over time. As a consequence, inference becomes tractable, even though we have
both continuous and discrete random variables in the PGM.

On the other hand, we avoided some common assumptions typically made to solve the
motion segmentation problem. Our method does not require the exact pose of the robot
to be known at every time step. In fact, we accommodate for both pose and measurement
uncertainty in our model. By including a distribution over the pose in the pre-processing
of the velocity measurements, we also avoid the requirement that the scene must be
predominantly stationary. This means that the system is able to function in highly
dynamic environments without the need for an expensive localization sensor.

For the object segmentation component of the PGM we designed the similarity mea-
surements such that they are unaffected by pose uncertainty. In this component we have
made the assumption that dynamic objects are rigid, which can lead to over-segmentation.
However, the chosen PGM structure does not require the number of dynamic object be-
forehand, contrary to many other clustering algorithms.

Our PGM has also been specifically designed to also handle semi-static objects. Con-
sequently, if the robot is in an environment where dynamic objects may stop and start
moving again, such as busy urban intersections, the robot will not lose track of the objects
capable of movement and be able to plan its own set of actions accordingly.

Even though we have used the example of urban environments, our method is not limited
to that. By not training on environment-specific data, our algorithm may, with a few
simple adaptations, be amenable to underwater or aerial vehicles. Also, even though the
method was tested using stereo cameras, it can be employed using different sensors, as
long as 3D feature positions can be estimated at every time step, since we have avoided
operating on the image plane.
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Overall we have avoided some common limiting assumptions and, even though we intro-
duced a few of our own assumptions, our method outperforms the state-of-the-art. We
believe that modelling the dynamic object detection problem as a PGM and following the
design choices made in this work, significant progress has been made towards the goal of
having autonomous vehicles assist humans in everyday life.
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Appendix A

Probability Theory

In this appendix we provide a very brief overview of some concepts from Probability
Theory employed in this dissertation. We start with a number of definitions in Section A.1
and then state a few useful identities in Section A.2.

A.1 Definitions
Here we define the concepts of a random variable, probability functions, joint and con-
ditional probabilities, marginalization and independence. We end the section with quick
mention of the dirac-delta function and Gaussian distributions.

A.1.1 Random variable

A random variable X is a variable that can take on a set of possible values, each with an
associated probability. If the set is discrete, X is said to be a discrete random variable,
and if X can assume only two possible values (typically denoted as 0 and 1), it is called
a binary random variable. If the set of possible values is continuous, X is a continuous
random variable.

As an example, consider the statistical experiment of throwing a die and let X denote
the outcome. The possible events are {X = 1, X = 2, . . . , X = 6}. In this case X is a
discrete random variable. An example of a continuous variable is one that denotes the
outcome of measuring the time it takes to complete a particular task.

A.1.2 Probability functions

A probability function is used to describe the relative likelihood that a random variable
takes on a particular value. Such a function is nonnegative and sums to one.

If the random variable is discrete, its probability function is called a probability mass
function. For the die example above, the probability mass function might be

p (X = i) =
1

6
, i ∈ {1, 2, 3, 4, 5, 6}. (A.1)
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For continuous random variables the probability function is called the probability density
function. An example of such a function is the uniform probability density function,
which is defined as

p(X = x) =

{
1
b−a , a ≤ x ≤ b,

0 otherwise. (A.2)

A.1.3 Joint probability

We might be interested in the probability function over the combined possible values
of two or more random variables. We define that as the joint probability. The joint
probability of X and Y is written as p (X, Y ).

A.1.4 Conditional probability

We use a conditional probability when we are interested in the probability of some variable
X given that we observe the value of another variable Y . This probability is defined as

p (X |Y ) =
p (X, Y )

p (Y )
. (A.3)

A.1.5 Marginalization

From the joint probability over a set of variables {X, Y }, we can obtain the probability
for a subset X through a process called marginalization. It is defined as

p (X) =
∑
Y

p (X, Y ) (A.4)

for discrete random variables, and

p (X) =

∫
p (X, Y ) d Y (A.5)

for continuous random variables. Note that we sum or integrate over all possible values
of Y .

A.1.6 Statistical independence

Two random variables X and Y are said to be statistically independent if an observation
of the one does not influence the probability of the other. More formally, X and Y are
statistically independent if and only if

p (X |Y ) = p (X) , (A.6)

which, according to A.3, is equivalent to

p (X, Y ) = p (X) p (Y ) . (A.7)

Furthermore, two random variables X and Y are said to be conditionally independent
given a third random variable Z if and only if

p (X, Y |Z ) = p (X |Z ) p (Y |Z ) , (A.8)

It means that if Z is observed, then observing X will not influence the probability of Y .
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A.1.7 Dirac-delta function

The dirac-delta function is a distribution function defined on real numbers, and is zero
everywhere except at zero. That is,

δ (x) =

{
∞, x = 0,
0, x 6= 0.

(A.9)

A property of the dirac-delta function used throughout this work is∫ ∞
−∞

f (x) δ (x) dx = f (0) . (A.10)

A.1.8 Gaussian distribution

The Gaussian (or normal) distribution is commonly encountered in statistics, and also
throughout this dissertation. For a one-dimensional continuous random variable x it is
defined as

N
(
x
∣∣µ, σ2

)
=

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (A.11)

This distribution is completely described by the mean µ and standard deviation σ. Some
examples of this distribution are shown in Figure A.1 (left).

If the random variable is k-dimensional, we may define the multivariate Gaussian proba-
bility density function as

N (x |µ,Σ) =
1√

(2π)k |Σ|
exp

(
− (x− µ)T Σ−1 (x− µ)

)
, (A.12)
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Figure A.1: Examples of one-dimensional Gaussian distribution functions on the left, and a
two-dimensional Gaussian distribution with µ = 0 and Σ equal to the 2× 2 identity matrix on
the right.
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where |∗| denotes the determinant of a matrix. This distribution can also be uniquely
specified by the mean vector µ and covariance matrix Σ. Figure A.1 (right) shows an
example of a two-dimensional normal distribution.

A.2 Useful identities
Here we state some useful identities, including the chain rule, Bayes’ rule, and also an
identity involving the product of two Gaussian distributions.

A.2.1 Chain rule

The chain rule allows us to express the joint probability over many variables as a product
of conditional probabilities. It is given by

p (x1, . . . , xN) =
N∏
i=1

p (xi |x1, . . . , xi−1 ), (A.13)

and also applies to conditional probabilities, i.e.

p (x1, . . . , xN |z ) =
N∏
i=1

p (xi |x1, . . . , xi−1, z ). (A.14)

A.2.2 Bayes’ rule

Bayes’ rule is a combination of the definition of conditional probability and the chain
rule. It can be stated as

p (a |b) =
p (b |a) p (a)

p (b)
. (A.15)

A.2.3 Product of two Gaussian distributions

The product of two Gaussian distributions over a common variable is also a Gaussian
distribution.

Mathematically this is expressed as

N (x |a, A)N (x |b, B ) = N (a |b, A+B )N (x |c, C ) , (A.16)

where

C =
(
A−1 +B−1

)−1
, (A.17)

c = C
(
A−1a+B−1b

)
. (A.18)
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Appendix B

Transformation of random variables

In this appendix we provide details of how a distribution resulting from the transformation
of random variables can be calculated. There are many types of transformations and ways
to calculate the resulting distribution, but we limit the discussion to techniques relevant
to the work in this dissertation.

Suppose the transformation g(·) maps the continuous random variable X to the contin-
uous variable Y , i.e. Y = g(X). Suppose further that X has a distribution function
fX(x). The goal is to find the distribution function over Y , that is fY (y).

In this work we consider random variables with a Gaussian distribution, so

fX(x) = N (x |µX ,ΣX ) . (B.1)

B.1 Sum of two independent random variables
Suppose we are interested in the distribution resulting from the sum of two random
variables X1 and X2. If X1 and X2 have distribution functions fX1(x1) and fX2(x2)
respectively, the distribution over Y resulting from the transformation Y = g(X1,X2) =
X1 +X2 is given by

fY (y) =

∫ ∞
−∞

fX1(x)fX2(y − x)dx, (B.2)

which is the convolution of the two distributions fX1 and fX2 [27].

If X1 and X2 are both Gaussian random variables, i.e. fX1 = N (x1 |µ1,Σ1 ) and fX2 =
N (x2 |µ2,Σ2 ), we have

fY (y) =

∫ ∞
−∞
N (x |µ1,Σ1 )N (y− x |µ2,Σ2 ) dx = N (y |µ1 + µ2,Σ1 + Σ2 ) , (B.3)

which indicates that Y is also normally distributed with mean µ1 + µ2 and covariance
Σ1 + Σ2 [27].
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B.2 The transformation AX + b

Next we consider the linear transformation, where the Gaussian random variable X is
multiplied by the matrix A and the vector b is added to the result.

If Y = g(x) = AX + b, where X is Gaussian with fX(x) = N (x |µX ,ΣX ), then

fY (y) = N
(
y
∣∣AµX + b, AΣXA

T
)
. (B.4)

B.3 Nonlinear transformations
In Sections B.1 and B.2 two linear transformations are considered. If the transformation
y = g(x) is nonlinear in x, fY (y) is not necessarily a Gaussian distribution. In many
cases, however, it can be approximated by a Gaussian distribution. We discuss two
methods to perform such an approximation.

B.3.1 The Taylor approximation

A popular method to approximate the density function fY when the transformation is
nonlinear, is to compute the first-order Taylor approximation of the function g(X). This
results in a linear transformation of the form AX + b. The method is also called the
delta method, and lays the foundation for the extended Kalman filter (EKF) [78].

The first step is to perform the first-order Taylor approximation of the function

g(X) ≈ g(µX) + g′(µX)(X − µX). (B.5)

If we let g′(µX) = δY
δX

∣∣
µX

= J , which is the Jacobian matrix, we have

g(X) ≈ JX + b, (B.6)

where b = g(µX)− g′(µX)µX . If g(X) is a nonlinear function approximated thusly, and
if X is a Gaussian random variable with density function fX(x) = N (x |µX ,ΣX ), then
it can be shown that

fY (y) ≈ N
(
y
∣∣g(µX), JΣXJ

T
)
. (B.7)

The Taylor approximation approach generally works well when the transformed mean
g(µx) is close to the true mean µY .

B.3.2 The unscented transform

The unscented transform [32] is another way to linearize nonlinear transformations of
random variables. The general idea is to identify points in the original distribution
fX , called sigma points, to encode the mean and covariance information of fX . The
sigma points are then transformed using the nonlinear function g(X), and a Gaussian
distribution is fitted over the transformed sigma points in order to approximate fY (Y ).
This method lays the foundation for the unscented Kalman filter (UKF).
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Formally, if g(X) is a nonlinear function and X an n-dimensional Gaussian random
variable with density function fX(x) = N (x |µX ,ΣX ), then fY (y) can be approximated
as

fY (y) ≈ N
(
y
∣∣∣µ̂Y , Σ̂Y

)
. (B.8)

By using the unscented transform, the mean and covariance are given by

µ̂Y =
2n∑
i=0

w(i)
m g(X(i)), Σ̂Y =

2n∑
i=0

w(i)
c

(
g(X(i))− µ̂Y

) (
g(X(i))− µ̂Y

)T
, (B.9)

where

w(0)
m =

λ

n+ λ
, (B.10)

w(0)
m = w(0)

m + (1− α2 + β), (B.11)

w(i)
m = w(i)

c =
1

2(n+ λ)
, i ∈ {1, . . . , 2n}, (B.12)

X(0) = µX , (B.13)

X(i) = µX +
[√

(n+ λ)ΣX

]
i
, i ∈ {1, . . . , n}, (B.14)

X(i) = µX −
[√

(n+ λ)ΣX

]
i
, i ∈ {n+ 1, . . . , 2n}. (B.15)

Here α ∈ (0, 1], β = 2, λ = α2(n + κ) − n, κ ≥ 0, and
[√
·
]
i
denotes the i-th column of

the matrix square root.

The unscented transform is usually preferred over the Taylor approach when the trans-
formed mean g(µX) is far from the true mean µY .
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