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Abstract 

 
alue at Risk (VaR) has been established as one of the most 
important and commonly used financial risk management tools. 

Nevertheless, the attractive features and wide-spread use of VaR could 
not help to avoid a number of financial crises and its severe impact on 
economies globally, the latest being the 2008 financial crisis. In 
isolation, VaR has, in the past, mostly focused on events that occur 
with a 1% or 5% probability. This is a popular reason offered for its 
failure of ‘predicting’ the financial crises, as the latter are viewed as 
‘extreme’ events and can therefore not be classified as events with a 
1% or 5% probability of happening. The use of Extreme Value Theory 
(EVT) in calculating VaR is a relatively new approach and attempts to 
expand on the traditional VaR-only approach to include potential 
extreme events. This approach has provided good results in developed 
markets and in this article we investigate if the same holds true in the 
more volatile South African equity space. We examine and compare 
the application of seven VaR and VaR-EVT models on the FTSE/JSE 
Total Return All Share Index. Our results suggest that the Filtered 
Historical Simulation VaR method is the best all-round model. It is, 
however, worthwhile to employ EVT in the form of the conditional 
Generalized Pareto Distribution (GPD) model when calculating very 
extreme quantiles such as the 0.1% quantile. Our results further 
highlight the importance of filtering the data in order to account for the 
conditional heteroskedasticity of the financial time series. 
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1 Introduction 
 

Value at Risk (VaR) is a common statistical risk measure that summarises the 

maximum potential loss over a specific time horizon at a given confidence level. It 

is a particularly pertinent risk measure in today’s high-risk financial climate and has 

become increasingly popular due to its ability to state a financial risk situation in a 

single figure. However, a number of financial crises that had severe adverse effects 

on financial markets, the latest being the financial crisis of 2008, have brought the 

application of VaR into question. VaR has, in the past, mostly focused on events that 

occur with a 1% or 5% probability which could, in theory, explain why the use of 

VaR alone is insufficient to predict such crises as these are regarded as extreme 

events rather than events associated with a 5% or even 1% probability of happening.  

In keeping with the devastating impact these crises had on economies around the 

world, it can be argued that for risk management and regulatory purposes, it has 

become even more important to also accurately predict the probability of an extreme 

event. Within the context of financial equity markets, these extreme events are 

reflected in extreme returns. The latter are found in the tails of the underlying return 

distribution and to be able to accurately predict it, the tails need to be accurately 

modeled. Although most financial returns are found to be fat-tailed (Jansen & De 

Vries, 1991), common VaR measures rely on the simplifying assumption that returns 

have a specific parametric distribution. These distributions do not display the 

required fat-tails to accurately model the financial returns and subsequently tend to 

underestimate the VaR at extreme quantiles (Dicks, Conradie & De Wet, 2014). 

 

The use of Extreme Value Theory (EVT) in calculating VaR is a relatively new 

addition to the tool kit of the financial risk manager. It produced good results in an 

Engineering sphere where it has been used to design flood walls and dykes 

(Danielsson, 2011), before it was applied to finance. EVT could also be appropriate 

for financial risk management because it fits extreme quantiles better than 

conventional approaches for heavy-tailed data (Gençay & Selçuk, 2004). It does not 

make a prior assumption about the underlying return distribution but instead focuses 

only on the modeling of the extreme returns found in the tail of the distribution. While 

more traditional VaR methods may be able to adequately estimate the 5% and 1% 

quantile, EVT may be better suited to the goal of estimating very small quantiles such 

as 0.5% and 0.1% (Diebold, Schuermann & Stroughair, 2000). Additionally, EVT is 

able to model the left and the right tails independently which is important because 

risk and reward are not equally likely, especially in emerging markets (Gençay & 

Selçuk, 2004). 

 

The aim of this study is to determine whether the use of EVT in calculating VaR for 

the South African equity market provides similarly good results as those associated 
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with more developed markets. As part of this objective, we examine which models 

are best suited to calculating VaR for the FTSE/JSE Total Return All Share Index 

(ALSI) across a range of quantiles. To reach this objective, seven candidate VaR 

models found to have commonly been used in prior research are examined for the 

ALSI. The candidate VaR models examined in this study are grouped into 

parametric, non-parametric and semi-parametric categories. Specifically, models that 

fall into the parametric category include the location-scale Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models, Historical 

Simulation (HS) is employed as a non-parametric method and Filtered Historical 

Simulation (FHS), the Generalised Pareto Distribution (GPD) EVT method and the 

conditional GPD EVT methods are included as semi-parametric VaR methods.  

 

This study adds to the existing body of related literature in the following ways: a) It 

is the first study to test and compare so many distinct VaR models on the broad South 

African equity market, making it the most comprehensive study of its type to date; 

b) we apply the independence test when back testing the models (the importance of 

applying the independence test is discussed in Section 3) which is novel for the South 

African market; c) we use a window period of 1000 days (rather than 250 days used 

in prior studies) to bring the results more in line with international literature; d) the 

accuracy of the models are examined at more quantiles than prior studies, namely at 

the 0.95, 0.99, 0.995 and 0.999 quantiles. 

 

The remainder of article is structured as follows: Section 2 provides a theoretical 

overview of EVT, VaR, the models employed and VaR back-testing methods. 

Relevant literature is discussed in Section 3, followed by a discussion on the data 

used and method applied in Section 4. The findings are discussed in Section 5 and 

the article is concluded in Section 6. 

 

2 Theoretical background 
 

From the literature (discussed in Section 3) we identified seven VaR models that we 

apply and compare. The models include three GARCH models with different 

innovations, the HS model, the unconditional GPD model, the FHS model and the 

conditional GPD model.  In this section we provide a brief summary of the theory 

that underlies these models. Before the theoretical properties of each model is 

discussed, a brief description of EVT and VaR is in order. The interested reader is 

referred to Coles, Bawa, Trenner and Dorazio (2001) and Alexander (2009) for a 

more detailed theoretical discussion on EVT and VaR respectively. 
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2.1 Extreme value theory 

 

Extreme value theory studies the statistical behaviour of the maximum, denoted 𝑀𝑛, 

of a dataset over n time units of observation. Let 𝑋1, 𝑋2, … , 𝑋𝑛 denote the return 

series. The variables 𝑋𝑖 , 𝑖 = 1,2, … , 𝑛  have a common distribution function 𝐹(𝑥) =
𝑃(𝑋𝑡 ≤ 𝑥) with mean 𝜇 and standard deviation 𝜎. The distribution function is 

unknown and it is assumed that the variables are independent and identically 

distributed (i.i.d). 

 

The maximum can be written, 

𝑀𝑛 = max (𝑋1 , 𝑋2, … , 𝑋𝑛) (1) 

 

The Fisher-Tippett theorem states that if there exists a sequence of constants 
{𝑎𝑛 > 0} and {𝑏𝑛} such that: 

 

𝑃 (
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑧) → 𝐺(𝑧) 𝑎𝑠 𝑛 → ∞ (2) 

 

where G is a non-degenerate distribution function, then G belongs to one of three 

families of distributions namely the Gumbel, Fréchet or Weibull. The Fisher-Tippet 

theorem suggests that, regardless of the original distribution of the observed data, the 

asymptotic distribution of the maxima belongs to one of the above three distributions.  

By taking the reparameterisation 𝛾 = 1/𝛼, due to Von Mises (1936) and Jenkinson 

(1955), the Gumbel, Fréchet and Weibull distribution can be written as a single 

model with just one parameter: 

 

𝐺𝛾(𝑥) = {exp {−(1 + 𝛾𝑥)
−

1

𝛾}, 𝑖𝑓 𝛾 ≠ 0, 1 + 𝛾𝑥 > 0

exp{− exp(−𝑥)} , 𝑖𝑓 𝛾 = 0
 (3) 

 

This representation is known as the Generalised Extreme Value Distribution (GEV), 

the parameter 𝛾 is called the extreme value index (EVI) and 𝛼 is the tail index. 

 

According to Marimoutou, Raggad and Trabelsi (2009) an efficient approach to 

modelling extreme events in practice is to attempt to focus not only the maximum 

events, but on all events greater than some large pre-set threshold.  An exceedance 

of a threshold u occurs when 𝑋𝑡 > 𝑢 for any t in t = 1, 2, …, n. An excess over u is 

defined by 𝑦 = 𝑋𝑖 − 𝑢. 

 

The conditional distribution of X, given that X exceeds some threshold u is given by: 

 

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) (4) 
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This represents the probability that X exceeds the threshold u by at most an amount 

y, given that X exceeds the threshold u. This can also be written as: 

 

𝐹𝑢(𝑥) =
𝐹(𝑢+𝑦)−𝐹(𝑢)

1−𝐹(𝑢)
,      𝑦 ≥ 0 (5) 

 

Since 𝑥 = 𝑦 + 𝑢 for 𝑋 > 𝑢, 𝐹(𝑥) can be written as  

 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐹𝑢(𝑦) + 𝐹(𝑢) (6) 

 

A theorem by Balkema and De Haan (1974) and Pickands (1975) states that for large 

enough u, the distribution of 𝑋 − 𝑢, given that 𝑋 > 𝑢, may be approximated by the 

GPD, which is defined as: 

 

𝐺𝛾,𝜎,𝜈(𝑥) = {
1 − (1 + 𝛾

𝑥−𝜈

𝛽
)

−
1

𝛾,   𝑖𝑓 𝛾 ≠ 0

1 − 𝑒
−(

𝑥−𝜈

𝛽
)
,                  𝑖𝑓 𝛾 = 0

 (7) 

 

 

where 𝑥 ∈ {
[𝜈, ∞], 𝑖𝑓 𝛾 ≥ 0

[𝜈, 𝜈 −
𝛽

𝛾
] , 𝑖𝑓 𝛾 < 0

 

𝛾 = 1/𝛼 is the shape parameter  

𝛼 is the tail index  

𝛽 is the scale parameter  

𝜈 is the location parameter 

 

when 𝜈 = 0 and 𝛽 = 1 then the representation is known as the standard GPD. 

 

One can either specify the number of upper order statistics in the tail used to model 

the GPD, or u, the threshold above which to model the GPD. In this study we follow 

the latter approach. There are a number of ways in which one can select a threshold, 

but there is no widely accepted method for determining u. Graphical methods, the 

approach we follow, include inspecting the mean excess function of the GPD. By 

detecting an area on the graph with a linear shape it is possible to choose an 

appropriate threshold. The choice of threshold is of importance when calculating the 

tail estimator (and consequently the VaR as will be seen in Section 2.5.2). 

 

Following from equation (6), since 𝐹𝑢(𝑦) converges to the GPD for sufficiently large 

u and since 𝑥 = 𝑦 + 𝑢 for 𝑋 > 𝑢, we have 
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𝐹(𝑥) ≈ (1 − 𝐹(𝑢))𝐺𝛾,𝛽,𝜈(𝑥 − 𝑢) + 𝐹(𝑢) (8) 

 

after determining a high threshold u, 𝐹(𝑢) can be estimated by 
𝑁−𝑁𝑢

𝑁
 where 𝑁𝑢 is the 

number of exceedences and N is the sample size. 

 

Subsequently it can be shown that the tail estimator becomes:  

 

�̂�(𝑥) = 1 −
𝑁𝑢

𝑁
(1 + �̂�

𝑥−𝑢

�̂�
)

−
1

�̂� (9) 

 

given that 

 

𝐺𝛾,𝛽,𝑢(𝑥) = 1 − (1 + 𝛾
𝑥−𝑢

𝛽
)

−
1

𝛾 (10) 

 

where �̂� and �̂� are the maximum likelihood estimators of 𝛾 and 𝛽 respectively, and 

u is the threshold. 

 

2.2 Value at risk 

 

Let 𝑟𝑡 = log (
𝑝𝑡

𝑝𝑡−1
) be the return at time t where 𝑝𝑡 is the price of an asset at time t 

and let 𝑟1, 𝑟2, … , 𝑟𝑛 be independent and identically distributed (i.i.d.) random 

variables.  

 

Adapted from Abad, Benito and López (2014), let 𝐹(𝑟) denote the cumulative 

distribution function 𝐹(𝑟) = 𝑃(𝑟 < 𝑟|Ω𝑡−1) conditionally on the information set  

Ω𝑡−1 that is available at time t-1.  

 

Assume that {𝑟𝑡} follows the stochastic process: 

 

𝑟𝑡 = 𝜇 + 𝜀𝑡 (11) 

 

𝜀𝑡 = 𝑧𝑡𝜎𝑡 and 𝑧𝑡~ i.i.d(0,1) (12) 

 

where 𝜎𝑡
2 = 𝐸(𝑧𝑡

2|Ω𝑡−1) and 𝑧𝑡 has the conditional distribution function G(z) where  

 

𝐺(𝑧) = 𝑃(𝑧𝑡 < 𝑧|Ω𝑡−1) (13) 
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The VaR with a given probability 𝛼 ∈ (0,1), is defined as the 𝛼 quantile of the 

probability distribution of financial returns (for ease of exposition the conditionality 

is not shown explicitly): 

 

𝐹(𝑉𝑎𝑅(𝛼)) = 𝑃(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) = 𝛼 (14) 

 

or 

 

𝑉𝑎𝑅(𝛼) = inf{𝑣|𝑃(𝑟𝑡 ≤ 𝑣) = 𝛼} (15) 

 

This VaR quantile can be estimated in one of two ways; either inverting the 

distribution function of the financial returns 𝐹(𝑟) or inverting the distribution 

function of the innovations 𝐺(𝑧). In the latter case it is also necessary to estimate 𝜎𝑡
2. 

Hence VaR can also be written as  

 

𝑉𝑎𝑅(𝛼) = 𝐹−1(𝛼) = 𝜇 + 𝜎𝑡𝐺−1(𝛼) (16) 

 

There are three types of VaR methodology, via which 𝐹(𝑟) or 𝐺(𝑧) can be estimated, 

namely parametric methods, non-parametric methods and semi-parametric methods. 

In this study we examine three parametric, one non-parametric and three semi-

parametric methods. 

 

2.3 Parametric methods 
 

GARCH models explicitly model the conditional volatility as a function of past 

conditional volatilities and returns. We assume that returns belong to a location-scale 

family of probability distributions of the form: 

 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 (17) 

 

where 𝜇𝑡 is the location parameter and  

 𝜎𝑡 is the scale parameter 

 

𝜇𝑡 and 𝜎𝑡 are determined by the data available at time t-1. 

 

𝑧𝑡~𝑖𝑖𝑑 𝑓𝑍(. ) where 𝑓𝑍 is a zero-location, unit-scale probability density function that 

can have additional shape parameters. The original GARCH models took 𝑧𝑡 to be 

Gaussian, although this assumption is often not appropriate for financial returns data. 

A fat-tailed and possibly asymmetric distribution could be found to be a better 

alternative.   
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The VaR forecast based on information up to time t can be written as:  

 

𝑉𝑎�̂�𝑡+1,𝛼 = −(�̂�𝑡+1 + �̂�𝑡+1𝑄𝛼(𝑧)) (18) 

 

where 𝑄𝛼(𝑧) is the 𝛼-quantile implied by 𝑓𝑍. 

 

When estimating VaR with a GARCH type model the innovation distribution can 

follow various distributions, such as a normal distribution, Student’s t distribution 

and skew Student’s t distribution. In this article we examine these three innovation 

distributions. 

 

2.4 Non-parametric methods 

 

HS is an example of a non-parametric VaR method. In HS the empirical quantile 

estimator is estimated from a sample of historical data. In other words, the empirical 

distribution of the financial returns is used as an approximation for 𝐹(𝑟).  

 

Mathematically, HS VaR can be defined as: 

 

𝑉𝑎𝑅𝑡+1,𝛼 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒{{𝑟𝑡}𝑡=1
𝑛 } (19) 

 

where 𝑟𝑡 is the return on day t 

 

2.5 Semi-parametric methods 

 

Semi-parametric VaR methods combine both the parametric and the non-parametric 

approach. They are designed to be able to take into account the time varying 

structures evident in financial time series by means of a parametric GARCH-type 

model, without placing the restriction of an assumption like that of normality when 

estimating the residual distribution. 

 

In contrast to non-parametric methods, semi-parametric methods deal with i.i.d data, 

instead of relying on resampling procedures for non-i.i.d. data and the associated 

assumptions for those to hold (Mancini & Trojani, 2005) 

 

2.5.1 Filtered historical simulation 

 

FHS combines a GARCH model with HS. This model can accommodate volatility 

clustering and the skewness inherent in the empirical distribution (Ghorbel & 

Trabelsi, 2009). First, a GARCH model is fitted to the return data and the 
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standardized residuals are extracted. If the model fits well then the standardized 

residuals should be i.i.d and HS can be applied to determine the VaR: 

 

𝑉𝑎𝑅𝑡+1,𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒{{𝑧𝑡}𝑡=1
𝑛 } (20) 

 

where 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒{{𝑧𝑡}𝑡=1
𝑛 } is the left quantile at 𝛼% of the standardized residuals.  

 

2.5.2 Unconditional GPD 

 
Following our discussion in Sections 2.1 and 2.2, an EVT estimate of VaR can be 

obtained by applying the following steps (Rocco, 2014): 

 

1) Assume that the data are in the maximum domain of attraction of a GEV 

distribution. 

2) Fix a high threshold u and fit the GPD to the exceedances over u. 

3) Obtain estimates for �̂� and �̂�. 

4) Estimate the tail probability using equation (9). 

5) Invert the formula to obtain an estimate of the 𝛼 quantile: 

 

𝑉𝑎𝑅𝛼(𝑋) = 𝑢 +
�̂�

�̂�
[(

𝑁

𝑁𝑢
(1 − 𝛼))−�̂� − 1] (21) 

 

where all variables are as previously defined. 

 

2.5.3 Conditional GPD 

 
The unconditional GPD method assumes i.i.d data. To deal with the non-i.i.d. nature 

of financial returns a two-step procedure is used that first models the correlation 

structure of the observations and then performs the estimation of the GPD 

distribution on the resulting residuals which can be considered to be roughly i.i.d. 

 

This two-step procedure was first suggested by Diebold et al. (2000) and 

implemented by McNeil and Frey (2000). It can be summarized as follows (McNeil 

& Frey, 2000): 

 

1) Fit a GARCH-type model to the return data making no assumptions about 𝐹(𝑧) 

and using pseudo-maximum-likelihood estimation (PML). Calculate the 

estimates of the conditional mean and variance for day t+1 and extract the 

residuals. 
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2) Consider the residuals to be a realisation of a strict white noise process and use 

EVT to model the tail of 𝐹𝑍(𝑥). Use this EVT model to estimate the quantile of 

interest. The VaR is then calculated as: 

 

𝑉𝑎𝑅𝛼,𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡(𝑍) (22) 

 

where all variables are as previously defined. 

 

2.6 Back-testing 

 

Back-testing is an important tool that can be used to check the adequacy of a 

particular VaR model and to compare various VaR models. It takes ex ante VaR 

forecasts from a particular model and compares them with the ex post realized return. 

When the realized loss exceeds the VaR, a violation is said to have occurred 

(Danielsson, 2011). An accurate VaR model should correctly measure the frequency 

of VaR exceedances as well as determine whether exceedances occur independently 

of each other (Campbell, 2006). Kupiec’s unconditional coverage test (1995) checks 

that the exceedance rate is in line with the expected number of violations, while the 

independence test checks that violations occur independently of each other. 

 

2.6.1 Violation ratio 

 

The violation ratio is defined as the total number of violations divided by the total 

number of one-day VaR forecasts  (Danielsson, 2011):  

 

𝑉𝑅 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
=

𝐸

𝛼×𝑁
 (23) 

 

where  E is the number of exceedances 

 𝛼 is the confidence level at which the VaR was calculated 

 N is the number VaR forecasts made 

 

A violation ratio of 1 is expected. A violation ratio greater than one means that the 

VaR model has under forecasted the risk and if it is smaller than one then the model 

has over forecasted the risk (Danielsson, 2011). The Kupiec Test (1995) can be used 

to determine whether any value other than one is statistically significant. 

 

2.6.2 Kupiec’s unconditional coverage test 

 
Kupiec (1995) proposed a proportion of failures (POF) test that examines how many 

times a financial institution’s VaR is violated over a given time frame. If the number 

of violations is significantly different from the expected number of failures, 𝛼 ×
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100% of the sample, then the accuracy of the underlying VaR model is called into 

question (Campbell, 2006). 

 

Let 𝑁 = ∑ 𝐼𝑡+1
𝑇
𝑡=1  be the number of days over a T period that the portfolio loss was 

larger than the VaR estimate, where 𝐼𝑡+1 is a sequence of violations that can be 

defined as: 

 

For the left tail: 

 

𝐼𝑡+1 = {
1, 𝑖𝑓 𝑋𝑡+1 < 𝑉𝑎𝑅𝑡+1

0, 𝑖𝑓 𝑋𝑡+1 ≥ 𝑉𝑎𝑅𝑡+1 
 (24) 

 

For the right tail: 

 

𝐼𝑡+1 = {
1, 𝑖𝑓 𝑋𝑡+1 > 𝑉𝑎𝑅𝑡+1

0, 𝑖𝑓 𝑋𝑡+1 ≤ 𝑉𝑎𝑅𝑡+1 
 (25) 

 

Let 𝑝 be the expected failure rate. If the total number of trials is T, then the number 

of failures F can be modelled with a binomial distribution with probability of 

occurrence 𝛼. 

 

The null and alternate hypothesis can be written as: 

𝐻0:
𝐹

𝑇
= 𝛼 

𝐻1:
𝐹

𝑇
≠ 𝛼 

 

We want to determine whether the observed failure rate is significantly different from 

the expected failure rate. Kupiec’s POF test (1995) is conducted via a likelihood-

ratio (LR) test. 

 

The likelihood ratio statistic is: 

 

𝐿𝑅𝑈𝐶 = 2 [log ((
𝐹

𝑇
)𝐹 (1 −

𝐹

𝑇
)𝑇−𝐹) − log (𝛼𝐹(1 − 𝛼)𝑇−𝐹)] (26) 

 

Under 𝐻0, 𝐿𝑅𝑈𝐶 → 𝜒2(1) i.e. the likelihood ratio statistic is asymptotically chi-

squared distributed with one degree of freedom. If 𝐿𝑅𝑈𝐶 exceeds the critical value of 

the 𝜒2(1) distribution then the null hypothesis will be rejected and the model is said 

to not accurately model the number of VaR exceedances (Nieppola, 2009). 

 

 



 
98 J.STUD.ECON.ECONOMETRICS, 2018, 42(1) 

 

 

 

 

 

 

2.6.3 Independence testing 

 

Define an indicator variable I that is assigned a value of 1 if the VaR is exceeded and 

a value of 0 if it is not exceeded. Next define 𝑛𝑖𝑗 as the number of days when 

condition j occurred assuming that condition i occurred on the previous day. 

Therefore 𝑛10 means that a day with no VaR violation followed a day that 

experienced a VaR violation. 

 

The possible outcomes can then be displayed as follows: 

 
 𝐼𝑡−1 = 0 𝐼𝑡−1 = 1  

𝐼𝑡 = 0 𝑛00 𝑛10 𝑛00 + 𝑛10 

𝐼𝑡 = 1 𝑛01 𝑛11 𝑛01 + 𝑛11 

 𝑛00 + 𝑛01 𝑛10 + 𝑛11 N 

 

Let 𝜋𝑖 be the sample probability of observing an exceedence conditional on state i on 

the previous day: 

 

 (27) 

𝜋0 =
𝑛01

𝑛00 + 𝑛01
 

 (28) 

 

𝜋 represents the violation rate: 

 

𝜋 =
𝑛01+𝑛11

𝑛00+𝑛01+𝑛10+𝑛11
 (29) 

 

under the null hypothesis: 𝐻0: 𝜋1 = 𝜋0 

 

In other words a VaR exceedance does not depend on whether or not an exceedance 

occurred the previous day (Nieppola, 2009). The test statistic of independences of 

exceptions is a likelihood ratio: 

 

𝐿𝑅𝑖𝑛𝑑 = 2ln (
(1−𝜋)𝑛00+𝑛10𝜋𝑛01+𝑛11

(1−𝜋0)𝑛00𝜋0
𝑛01(1−𝜋1)𝑛10𝜋1

𝑛11) (30) 

 

under 𝐻0, 𝐿𝑅𝑖𝑛𝑑 → 𝜒2(1) 

 

If the test statistic is above the critical value then the null hypothesis is rejected and 

the model does not generate VaR exceedances that are independent. This test does 

not depend on the true value of the expected failure rate. It only tests for 
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independence of violations and thus should be assessed in conjunction with Kupiec’s 

unconditional coverage test.  

 

3 Literature review 
 

We start off our discussion on related research by focusing on literature associated 

with developed markets, followed by emerging markets and in the last section we 

turn our attention to South African related research.  

 

3.1 Developed markets 

 

EVT was introduced to a financial setting by Koedijk, Schafgans and De Vries (1990) 

and Jansen and De Vries (1991). Since then there has been much work done 

combining EVT and VaR to better model extreme quantiles that are of interest to 

financial risk managers. 

 

Danielsson and De Vries (2000) compare the J.P Morgan RiskMetrics VaR technique 

with HS and their own semi-parametric method. This method uses the empirical 

distribution for smaller risks and extreme value theory for the largest risks. A window 

period of 1500 days of return data is used and they find that at low probability 

RiskMetrics under predicts the VaR while HS over predicts the VaR. They conclude 

that their semi-parametric method is more accurate than the other two methods.  

 

McNeil and Frey (2000) combine the fitting of a GARCH-type model, to estimate 

the current volatility, with EVT, to estimate the tail of the innovation distribution of 

the GARCH model. They develop a two-step method (discussed in Section 2.5.3) for 

calculating a conditional EVT-VaR measure which they test on the Standard and 

Poor’s and DAX index. An AR(1)-GARCH(1,1) model with normal innovations is 

used to model the volatility and then a GPD is fitted to the tails of the extracted 

standardized residuals. A moving window period of 1000 days is used and they test 

at the 0.95, 0.99 and 0.995 quantiles. A simulation study is conducted to determine 

the threshold choice for use in their two-step method. It is determined that the choice 

of a threshold equal to100 (or 10% of the window size) is optimal. They find that 

their procedure gives better results than those methods which ignore the heavy tails 

of the innovations or the stochastic nature of the volatility.  

 

Gençay, Selçuk and Ulugülyağci (2003) compare the Variance-Covariance, HS, 

GARCH(1,1) with both normal and Student t innovations, adaptive and nonadaptive 

GPD models. Three different rolling window sizes of 500, 1000 and 2000 are used 

to calculate the high quantiles for both the Istanbul Stock Exchange Index (ISE-100) 

and the S&P-500. They find that the quantile forecasts of the GARCH models are 
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very volatile in comparison to the GPD quantile forecast. The GPD model is found 

to be a robust quantile forecasting tool which is practical to implement and regulate 

for VaR purposes. 

 

Marimoutou et al. (2009) apply EVT to the oil market. They compare an 

unconditional Normal VaR model, HS, FHS, an AR(1)-GARCH(1,1) model with 

both normal and Student t innovations, a GPD and a conditional GPD model. Both 

the FHS and conditional GPD are filtered using an AR(1)-GARCH(1,1) model with 

normal innovations. The VaR methods are all calculated using a rolling window of 

1000 days and at quantiles of 0.95, 0.99, 0.995 and 0.999. A sensitivity analysis is 

done for the conditional GPD approach to determine the optimal threshold value 

which is set at 10% of the window size. This is in concurrence with McNeil and 

Frey’s (2000) suggestion. They conclude that the conditional GPD and the FHS VaR 

methods provide improved results over the more conventional methods and that the 

filtering process is important for the success of these two methods. 

 

3.2 Emerging markets 

 

Gençay and Selçuk (2004) compare the Variance-Covariance method with the 

normal and Student-t distribution, HS and the unconditional GPD VaR method. They 

test the models on the daily stock market returns of nine different emerging markets, 

namely Argentina, Brazil, Hong Kong, Indonesia, Korea, Mexico, Singapore, 

Taiwan and Turkey. Sliding windows of three different sizes are used, specifically 

500, 1000 and 1500 days, except for the GPD method where they use all the data up 

to the point of the VaR estimation. The upper 2.5% of the data points were used for 

the GPD approach. It was found that risk and reward are not equally likely in the 

developing markets which they modeled. They conclude that the GPD VaR estimate 

was the most accurate at higher quantiles. 

 

Pattarathammas, Mokkhavesa, and Nilla-Or (2008) study VaR methods using EVT 

on ten Asian equity markets. They use Normal VaR, HS and the GPD VaR method. 

They also filter each method using an exponentially weighted moving average 

(EWMA), as used in RiskMetrics, and a GARCH(1,1) model resulting in nine 

different VaR methods. The conditional approaches are based on the two-step 

method of McNeil and Frey (2000) using a threshold of 100. A rolling window of 

1000 data points is used and they test at the 0.95 and 0.99 quantile. They find that 

unconditional GPD and simple HS perform less accurately when calculating the VaR 

estimate, especially at higher confidence levels, when compared to FHS. The 

conditional GPD does not perform much differently from FHS and there is not much 

difference between the use of the EWMA and the GARCH-based filter. GARCH 
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models may reflect more flexible volatility adjustment than EWMA, but the models 

perform quite similarly.  

 

Angelidis and Benos (2008) evaluate many different VaR methods for Greek stocks. 

These included the Variance-Covariance method, RiskMetrics with GARCH, 

EGARCH and TARCH volatility modeling under the normal, Student-t and Skewed 

Student-t distributions as well as the HS, FHS and GPD methods. They find that FHS 

performs the best at the 99% confidence level and that the GPD method also performs 

acceptably well. At the lower confidence level of 97.5% most of the models that they 

tested gave similar, good results.  

 

3.3 South Africa 

 

Seymour and Polakow (2003) use the methods proposed by Danielsson and De Vries 

(2000) and McNeil and Frey (2000) as well as HS to calculate the VaR at high 

confidence levels on a portfolio of South African stocks. A threshold of 10% of the 

window size is used in accordance with McNeil and Frey (2000) and they find that 

McNeil and Frey’s conditional GPD method works the best for the South African 

market, but that none of the methods worked nearly as well as when tested in 

developed markets.  

 

McMillan and Thupayagale (2010) compare the RiskMetrics model with GARCH 

models that include asymmetric and long memory models when calculating VaR for 

the JSE All Share Index. They find that GARCH models consistently outperform the 

RiskMetrics model and conclude that the latter may not be of great relevance in the 

South African equity market. GARCH models that incorporate long memory 

components or asymmetric effects, or both, are found to perform best. 

 

Dicks, Conradie and de Wet (2014) use McNeil and Frey’s (2000) two-step process 

combining both symmetric and non-symmetric GARCH models with EVT to the JSE 

Financial Index. They use a window period of 250 days which results in their 

GARCH models not converging and they propose a method to overcome this. They 

calculate VaR at a 99% confidence level, taking a threshold equal to 20% of the 

window size and also look at various VaR scaling methods. They conclude that none 

of their models is universally optimal. 

 

4 Data and Methodology 
 

Daily data for the FTSE/JSE Total Return All Share Index was obtained from I-NET 

Bridge and covers the period from 30 June 1995 to 17 November 2014, resulting in 

a total of 4 844 observations in the dataset. The daily log-returns of the index are 
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presented in Figure 1. All data modeling was performed using the statistical 

programming language R. 

 

The summary statistics and related statistical tests1  confirm that the data follows a 

non-normal distribution, conditional heteroskedasticity is present and the time series 

is stationary. We note that the data is not i.i.d. which is a necessary condition for the 

application of EVT. Hence, it is necessary to first filter the returns with a GARCH 

model in order to get approximately i.i.d. data to which EVT can then be applied. 

 

4.1 HS 

 

We apply equation (19) using a rolling sample of 1000 observations in order to 

calculate the one-day ahead VaR forecast for α ∈ {0.95,0.99,0.995,0.999}. 

 

4.2 GARCH approach 

 

Similar to McNeil and Frey (2000) we use the GARCH(1,1) process for the volatility 

and an AR(1) model for the dynamics of the conditional mean. We investigate an 

AR(1)-GARCH(1,1) model with normal, Student’s t and skewed Student-t 

distributed innovations. All the parameter estimates are significant indicating that our 

models fit the data well2. The three different AR(1)-GARCH(1,1) models are used 

directly to calculate VaR, as described in section 2.3. The AR(1)-GARCH(1,1) 

specification is estimated using a rolling window of 1000 days. For each rolling 

window one one-day-ahead VaR forecast is calculated. 

 

4.3 GPD modeling  
 

Following the approach discussed in Section 2.5 we fit the GPD to the right hand tail 

of the first 1000 data points. EVT is designed to work with maximums so when 

modeling the left tail of the distribution the returns are multiplied by -1. The 

parameters are extracted from the modeling and the predicted VaR is calculated for 

the 1001st day using the calculation method as described in Section 2.5. The window 

is then moved forward by one day and the procedure is repeated until the last day, 

resulting in a total of 3844 VaR forecasts.  

 

As discussed in Section 2.1, the choice of threshold is critical in the fitting of a GPD 

to data. Following a similar approach to McNeil and Frey (2000) and Marimoutou et 

                                                        
1 The table of summary statistics is available from the authors on request. 
2 Tables with results of fitting the GARCH models are available from the authors on request. 
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al. (2009) we conclude that a threshold of 100 is suitable to be used on each rolling 

window to calculate the relevant VaR values3. 

 

4.4 FHS and conditional GPD 

 

After examining the parameter estimation results and the graphs of the standardized 

residuals4, it is seen that there is very little difference to using an AR(1)-GARCH(1,1) 

model with normal innovations compared to one with Student-t or skew Student-t 

innovations. As such, we continue forward using only the AR(1)-GARCH(1,1) with 

normal innovations to filter the return data for the purposes of applying the FHS and 

conditional GPD models. 

 

The AR(1)-GARCH(1,1) specification is estimated on the entire data set and the 

standardised residuals are extracted from the estimated model. The standardized 

residuals are used to investigate the adequacy of the fitted model and also to use to 

filter the data for the use in the FHS and the conditional GPD models. The residual 

series is found to have significant excess kurtosis and skewness, is independently 

distributed and there are no signs of heteroskedasticity in the residuals. This means 

that the series has been filtered satisfactorily and we are now dealing with i.i.d. data 

which can be used in the FHS and conditional GPD risk measurement methods. 

 

4.5 Evaluation of VaR models 

 

We use a combination of the violation ratio, Kupiec’s unconditional coverage test 

and the independence test as discussed in Section 2.6 to compare and evaluate the 

different VaR models. 

 

5 Results 
 

In Table 1 the violation ratios for the left and right hand tails respectively are 

reported. In Table 2 the p-values for the unconditional coverage test are reported and 

in Table 3 the p-values of the independence test are reported. Note that the following 

abbreviations are used to refer to the different models: The GARCH VaR model with 

normal innovations (GARCH~n); the GARCH VaR model with Student t distributed 

innovations (GARCH~t); the GARCH VaR model with skew Student t distributed 

innovations (GARCH~st); Historical Simulation VaR (HS), GARCH filtered 

Historical Simulation VaR (FHS~n); unconditional Generalised Pareto Distribution 

VaR (GPD) and the conditional GPD EVT VaR (GPD~n). 

                                                        
3 A detailed discussion on the approach followed to determine the threshold level used in our study is 

available on request. 
4 Results and graphs are available from the authors on request. 
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Table 1: Violation ratios 
 

This table reports the violation ratios of the return distribution of the ALSI as 

calculated by the different VaR models. The expected value of the violation ratio is 

the corresponding tail size i.e. the expected VaR violation ratio for the 5% quantile 

is 5% (Marimoutou et al., 2009). A violation ratio greater than the expected value at 

that confidence level indicates that the model has under forecasted the risk and if it 

is less than the expected value then the model has over forecasted the risk. The 

ranking of the model for each quantile, α ∈ {0.95, 0.99, 0.995, 0.999}, is shown in 

parenthesis. 
 

 Left tail violation ratios Right tail violation ratios 

𝜶 𝜶 

VaR model 5% 1% 0.5% 0.1% 5% 1% 0.5% 0.1% 

GARCH~n 5,489 

(5) 

1,639 

(7) 

1,119 

(7) 

0,494 

(7) 

3,460 

(7) 

0,780 

(6) 

0,442 

(3) 

0,156 

(5) 

GARCH~t 5,775 

(6) 

1,138 

(5) 

0,806 

(6) 

0,182 

(3) 

3,720 

(6) 

0,546 

(7) 

0,234 

(7) 

0,052 

(3) 

GARCH~st 5,281 

(2) 

1,093 

(4) 

0,572 

(3) 

0,104 

(1) 

4,604 

(4) 

0,911 

(3) 

0,416 

(4) 

0,052 

(3) 

HS 4,683 

(3) 

0,989 

(1) 

0,572 

(3) 

0,260 

(6) 

4,657 

(3) 

0,911 

(3) 

0,598 

(5) 

0,260 

(7) 

FHS~n 5,151 

(1) 

0,911 

(3) 

0,468 

(2) 

0,182 

(3) 

4,917 

(1) 

1,119 

(5) 

0,546 

(2) 

0,156 

(5) 

GPD 4,630 

(4) 

0,937 

(2) 

0,520 

(1) 

0,182 

(3) 

4,527 

(5) 

0,989 

(1) 

0,624 

(6) 

0,078 

(1) 

GPD~n 3,824 

(7) 

0,702 

(6) 

0,390 

(5) 

0,052 

(2) 

4,865 

(2) 

1,067 

(2) 

0,468 

(1) 

0,078 

(1) 

 

Table 2: p-Values of unconditional coverage test 
 

This table reports the p-values of the unconditional coverage test. Under H0 the 

exceedances are correct. A p-value greater than 5% indicates that the number of 

exceedances is correct. 

 
 𝜶 

5% 1% 0.5% 0.1% 

VaR model Left Right Left Right Left Right Left Right 

GARCH~n 0,170 0,000 0,000 0,155 0,000 0,605 0,000 0,310 

GARCH~t 0,031 0,000 0,026 0,002 0,013 0,009 0,149 0,230 

GARCH~st 0,428 0,255 0,570 0,571 0,534 0,448 0,937 0,230 

HS 0,362 0,323 0,944 0,571 0,534 0,402 0,009 0,009 

FHS~n 0,669 0,812 0,571 0,468 0,778 0,688 0,149 0,310 

GPD 0,288 0,171 0,689 0,943 0,859 0,293 0,149 0,654 

GPD~n 0,000 0,699 0,050 0,681 0,315 0,778 0,300 0,654 
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Table 3: p-Values of independence test 

 
This table reports the p-values of the independence test. Under H0 the exceedances 

are not dependent on whether or not an exceedance was recorded the day before. A 

p-value greater than 5% indicates that the exceedances are independent. 

 
𝜶 5% 1% 0.5% 0.1% 

 Left Right Left Right Left Right Left Right 

GARCH~n - 0,1596 0,1473 0,4920 0,3712 0,6473 0,6639 0,8730 

GARCH~t - 0,0693 0,2509 0,5828 0,4777 0,8371 0,9091 0,9636 

GARCH~st - 0,1196 0,3239 0,4093 0,5828 0,6975 0,9091 0,9636 

HS 0,0000 0,0000 0,3836 0,0416 0,6147 0,0069 0,8193 0,8193 

FHS~n - - 0,4225 0,5080 0,6806 0,6310 0,8730 0,8910 

GPD 0,0000 0,0000 0,4093 0,0584 0,6473 0,0083 0,8730 0,9454 

GPS~n 0,0140 - 0,5365 0,4606 0,7317 0,6806 0,9636 0,9454 

 

The results reported in Table 1 through Table 3 are discussed for each respective 

model below. 

 

5.1 GARCH~n 
 

The AR(1)-GARCH(1,1) VaR model with normally distributed innovations does not 

perform well for neither the left hand nor right hand tail at any of the calculated 

quantiles. In seven of the eight confidence levels that we tested it ranked 5th or worse. 

The poor performance is confirmed by the unconditional coverage test where we 

reject the null hypothesis of the correct number of exceedances in four of the eight 

cases at the 5% testing level. However, it is found that the exceedances are 

independent of each other.  

 

The model takes the heteroskedastic nature of the volatility of the returns into 

account, but due to the assumption of normality for the innovations it is the model 

which performs the worst. For the left hand tail, the GARCH~n model 

underestimates risk, while for the right hand tail the model overestimates risk. This 

is intuitive due to the negative skewness of the returns as well as the excess kurtosis 

of the returns over that of a normal distribution. Since a risk manager is primarily 

interested in the left hand tail’s extreme returns the use of the normal assumption 

with this particular GARCH model is not recommended. 

 

Figure 2 displays the back-testing results of the model. The 5% and 0.1% forecasted 

VaR is plotted against the observed returns for the period between 1999 and 2014. 
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5.2 GARCH~t 

 

The AR(1)-GARCH(1,1) VaR model with Student-t distributed innovations 

performs ever so slightly better than the same GARCH model with normal 

innovations. The left tail is still underestimated while the right tail is overestimated. 

The reason for this is that the skewness of the return distribution is not taken into 

account. 

 

In six of the eight cases the GARCH~t model performs 5th or worse and the 

unconditional coverage test is rejected in six of the eight cases. The model performs 

marginally better at the 0.1% quantile. The hypothesis of independent exceedances 

is accepted at all confidence levels. Figure 3 shows the back-testing results of the 

model.  
 

5.3 GARCH~st 
 

The AR(1)-GARCH(1,1) VaR model with skew Student-t distributed innovations 

performs the best of the three GARCH VaR models, attaining rankings between 1 

and 4 for all quantiles. Specifically, the model produces good results for the left hand 

tail indicating that the skew Student’s t distribution for the innovations is able to take 

the skewness of the return distribution into account. The unconditional coverage and 

independence exceedance hypothesis is accepted at every confidence level. Figure 4 

shows the back-testing results of the model.   
 

5.4 HS 
 

The HS VaR model performs relatively well for the 5% and 1% confidence levels, 

but the performance of the model decreases as the confidence level increases. This is 

due to there being very few observations in the tails at the 0.5% and 0.1%. The poor 

performance of the HS VaR model is confirmed with the unconditional coverage test 

rejecting the hypothesis of correct exceedances at the 0.1% level for both the left and 

the right tail. The model fails the independence test for the right tail, except at the 

0.1% confidence level. This is because the heteroskedastic nature of the volatility is 

not taken into account.  
 

In Figure 5 one can see how extreme negative and positive returns affect the predicted 

VaR. Extreme returns will increase the VaR and will affect the VaR until they fall 

out of the 1000 day rolling window period used to calculate the VaR. This is 

particularly noticeable at the 0.1% level. 
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5.5 FHS~n 
 

The FHS VaR model performs well at all confidence levels, achieving high rankings 

of 1, 2 and 3 for the left tail. It performs slightly worse for the right tail. The model 

satisfies the hypothesis of correct exceedances and independence of exceedances at 

all confidence levels. The FHS model offers an improvement on the HS method by 

taking into account the heteroskedastic nature of the volatility of the returns, by 

filtering the data with an AR(1)-GARCH(1,1) model with normally distributed 

innovations in order to produce i.i.d data. Figure 6 shows the back-testing results of 

the model.  
 

5.6 GPD 
 

The EVT-VaR method using the GPD only takes the tails of the return distribution 

into account as detailed in Section 2.1. Since the return data is not i.i.d it is not 

expected that the unconditional GPD method will perform very well. The method 

ranked in the top 4 for 6 of the 8 confidence levels. The hypothesis of correct 

exceedances is supported at every confidence level although the hypothesis of 

independence of exceedances is rejected at the 5% level as well as for the right hand 

tail at the 1% and 0.5% level. As can be seen in Figure 7, the VaR estimates are not 

quick to adjust following large positive or negative returns and as with HS, VaR 

estimates only return to normal levels once the extreme values have fallen out of the 

rolling window 1000 days later. 
 

5.7 GPD~n 

 

The conditional GPD VaR model does not perform well for the 5% and 1% quantiles, 

but the model’s results improve as the quantile size decreases. The model also 

appears to model the right hand tail better than it does the left. For the right tail the 

model ranks 1st or 2nd for all 4 confidence levels and for the left tail it achieves a rank 

of 2nd at the 0.1% confidence level. The model fails the unconditional coverage test 

for the left hand tail at the 5% and 1% confidence level and it fails the independence 

test at the 5% level. This model therefore appears to perform well only at the 0.1% 

quantile. 

 

Benefits of using this model are that the heteroskedastic nature of the volatility is 

taken into account as well as the fact that the observations of importance, i.e. the 

extreme returns above a certain high threshold, are taken into account in the 

modelling. Figure 8 shows the back-testing results of the model.  
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6 Conclusion 
 

In this study we examine seven different VaR models in order to determine which 

model is best to use when calculating VaR for the South African equity market. The 

models are applied to the ALSI for the period 30 June 1995 to 17 November 2014. 

VaR forecasts are made based on each model and these are back-tested against the 

observed returns. The violation ratio, unconditional coverage test and independence 

test are used to rank the models and analyse the results statistically. 

 

Of the three different parametric GARCH VaR models the AR(1)-GARCH(1,1) 

model with skew Student t distributed innovation performed the best over all the 

quantiles tested. The semi-parametric Filtered Historical Simulation VaR model 

performed the best overall for quantiles 5%, 1% and 0.5%, while the conditional 

GPD VaR model performed very well when calculating quantiles 0.1% and smaller.  

 

Our findings suggest that the use of EVT has a place in calculating VaR, but it must 

be used for the correct purpose, which is that of calculating very extreme quantiles. 

EVT becomes increasingly inaccurate as we move further away from the very 

extreme quantiles. Our findings further suggest that the Filtered Historical 

Simulation VaR method is best to apply when calculating VaR for the South African 

equity market for quantiles 5%, 1% and 0.5%, while the conditional GPD method is 

superior when calculating VaR at the 0.1% quantile. 
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Figure 1: Daily returns form 30 June 

1995 to 17 November 2014 

Figure 2: Back-testing the AR(1)-

GARCH(1,1) VaR model with 

normal innovations at the 5% and 

0.1% quantiles 
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Figure 3: Back-testing the AR(1)-

GARCH(1,1) VaR model with 

Student t distributed innovations at 

the 5% and 0.1% quantile 

Figure 4: Back-testing the AR(1)-

GARCH(1,1) VaR model with skew 

Student t distributed innovations at 

the 5% and 0.1% quantiles 
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Figure 5: Back-testing the Historical 

Simulation VaR model at the 5% and 

0.1% quantiles 

Figure 6: Back-testing the Filtered 

Historical Simulation VaR model at 

the 5% and 0.1% quantiles 
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Figure 7: Back-testing the Extreme 

Value Theory GPD VaR model at the 

5% and 0.1% quantiles 

Figure 8: Back-testing the 

conditional GPD VaR model at the 

5% and 0.1% quantiles 
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