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SUMMARY 
 

Excessive accumulation of salt in the plant root zone has a deteriorating effect on vegetation 

growth, resulting in reduced crop yield and rendering fertile soil barren, and ultimately leads to 

decreasing food production. This problem motivates the critical need for active salinity 

monitoring, with an aim to implement rehabilitation and preventive measures. Conventional 

salinity monitoring methods, such as regular field visits and laboratory analyses of soil samples, 

are ineffective for frequent salt accumulation monitoring over large areas. Earth observation 

techniques can complement conventional methods and potentially improve the cost- and time-

efficiency of the regular salt accumulation monitoring. 

A review of literature identified a number of direct and indirect approaches for detecting 

accumulated salts using remote sensing. Given that salt accumulation in South Africa is most 

prevalent in irrigation schemes, the indirect approach, which mainly focusses on salt induced 

vegetation response, was identified as the preferred approach. Little is known about the optimal 

combinations of very high resolution satellite imagery and image classification techniques in 

South African irrigation schemes, where accumulated salt generally occurs in small localized 

patches. Consequently, two experiments were carried out to: identify suitable spectral and spatial 

resolutions of imagery; test the value of various image-derived features and classification 

techniques; and evaluate the spatial scale at which salt accumulation is best identified. The first 

experiment, applied on an agricultural field scale, analysed WorldView-2 imagery with statistical 

(regression) and machine learning (decision trees) techniques, and found clear relationships 

between salt accumulation and image transformations (vegetation indices and image texture). 

Spatial resolutions of six metres or higher were found to be most suitable. A higher spectral 

resolution marginally improved classification accuracies, but the increases were insignificant. 

The second experiment, applied on an irrigation scheme level, assessed SPOT-5 imagery with 

statistical (regression) and machine learning (various algorithms) techniques in two irrigation 

schemes. The failure to highlight any consistent image transformation or classification 

techniques for both irrigation schemes emphasised the negative effect of varying salinity 

tolerances of crop types and growing phases in identifying salt accumulation. Knowledge gained 

from the two experiments aided the development of a field level object-based monitoring system 

that showed sufficient transferability. 

The quantitative experiments answered key research questions and will serve as a point of 

departure for future research regarding indirect methods for detecting salt accumulation in 

agricultural fields. This work will be instrumental in the establishment of a South African 
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salinity monitoring system – with the aim of rehabilitation – and will help to maximize 

agricultural production and ultimately contribute to sustainable food production. 
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OPSOMMING 

’n Oormaat sout in ’n plant se wortelarea het ’n nadelige effek op die plant se groei, veroorsaak 

’n afname in oesopbrengs en maak vrugbare grond onvrugbaar, wat uiteindelik tot ’n afname in 

voedselproduksie lei. Hierdie probleem motiveer die kritiese behoefte aan ’n stelsel wat 

grondversouting aktief moniteer, met die doel om versoute areas te rehabiliteer en te voorkom. 

Tradisionele metodes om grondversouting te moniteer sluit gereelde veldwerk en 

laboratoriumontleding van grondmonsters in, maar is nie vir die gereelde monitering van groot 

grondversoute-areas effektief nie. Afstandswaarnemingmetodes kan konvensionele metodes 

aanvul en moontlik tot ’n afname in die tyd en koste verbonde aan die gereelde montering van 

soutophoping lei. 

’n Literatuuroorsig het direkte en indirekte metodes vir die identifisering van grondversouting 

met behulp van afstandswaarneming uitgelig. Aangesien grondversouting in Suid-Afrika 

grootliks in besproeiingskemas voorkom, word die indirekte metode, wat die afname in 

plantegroei as gevolg van grondversouting monitor, verkies. Min inligting is beskikbaar oor die 

optimale kombinasies van baie hoë resolusie satellietbeelde en beeldklassifikasie-metodes in 

Suid-Afrikaanse besproeiingskemas, waar grondversouting in klein, gelokaliseerde areas 

voorkom. Gevolglik is twee eksperimente uitgevoer om geskikte spektrale en ruimtelike 

resolusies te identifiseer; kenmerke afgelei van beelde en beeldklassifikasie-tegnieke te toets; en 

die mees geskikte ruimtelike skaal vir die identifisering van grondversouting te evalueer. Die 

eerste eksperiment, toegepas op ŉ landeryskaal, het WoldView-2 beeldmateriaal met statistiese 

(regressie) en masjienleer- (beslissingsboom) metodes geanaliseer en het gevind dat daar 

duidelike verhoudings tussen grondversouting en beeldtransformasies (plantegroeiindeks en 

beeldtekstuur) bestaan. Ruimtelike resolusies as ses meter of kleiner was as aanvaarbaar beskou. 

’n Hoër spektrale resolusie het die resultate effens verbeter, maar was nie betekenisvol nie. Die 

tweede eksperiment, wat op ’n skema-vlak toegepas was, het SPOT-5-beeldmateriaal met 

statistiese (regressie) en masjienleermetodes (verskeidenheid algoritmes) op twee verskillende 

besproeiingskemas geëvalueer. Geen konsekwente beeldtransformasies of -klassifikasies vir die 

twee studieareas kon uitgelig word nie, wat op die negatiewe effek van die wisselende 

versoutingstoleransies en verskillende groeistadiums van die gewasse dui. Die kennis wat deur 

die twee eksperimente opgedoen is, het gelei tot die ontwikkeling van ’n objekgebaseerde-

moniteringsisteem op landeryskaal wat voldoende oordraagbaarheid getoon het. 

Die kwantitatiewe eksperimente het kernnavorsingsvrae beantwoord en sal as ’n vertrekpunt dien 

vir enige toekomstige navorsing oor die gebruik van indirekte afstandswaarneming metodes vir 

die identifisering van grondversouting. Die navorsing sal ook bydra tot die vestiging van ’n Suid-
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Afrikaanse grondversoutingmoniteringsisteem – met die oog op rehabilitasie – wat tot die 

maksimalisering van landbouproduksie en uiteindelik tot volhoubare voedselproduksie kan lei. 
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Soutgehalte van grond, soutophoping, besproeide landbou, afstandswaarneming, aardobservasie, 

regressie-analise, beslissingsboomanalise, gerigte klassifikasie, masjienleer, geografiese 

objekgebaseerde beeldanalise 
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CHAPTER 1:  INTRODUCTION 

Soil salinity, for the purpose of this study, is defined as the accumulation of soluble salts in the 

topsoil. Salinity can be classified as primary (i.e. when soil salinity occurs naturally), or 

secondary (when induced by human interference). Secondary salinity mainly occurs due to a lack 

of proper planning or maintenance of irrigation infrastructures and is a major concern, especially 

in irrigated areas. Extreme salt accumulation leads to the death of vegetation and consequently to 

a reduction in crop yield and general degradation of fertile soil (Ghassemi, Jakeman & Nix 

1995). Previous estimates of global salinity effects indicate that around 77 million hectare of the 

earth’s surface is affected by secondary salinity and that more than half of this area is made up of 

irrigated soil (Metternicht & Zinck 2003). The negative economic impact of salt-affected soils on 

the agricultural sectors’ production capacity is immense, with the added pressure of maintaining 

sustainable food production in a world with a growing population. With quality crop and soil 

management, good irrigation and drainage systems design and political and social support, 

irrigation can be a thriving, sustainable practice (Hillel & Vlek 2005; Van Rensburg et al. 2012). 

Quality management practice includes tracking and identifying salinity changes to anticipate 

further degradation and to undertake suitable reclamation and rehabilitation practices 

(Metternicht & Zinck 2003).  

1.1 SOIL SALINITY 

The term salinity is used to describe both the processes and impacts of salt on soil and water, 

while also being a measure of the amount of salt in soil or water (Hillel 2000; McGhie & Ryan 

2005). The electrolytic mineral solutes most commonly associated with salinity are the cations 

Na+, K+, Ca2+ and Mg2+ and the anions Cl-, SO4
2-, NO, HCO and CO3

2- (Hillel 2000). The 

sources and processes of salt accumulation are vast and dynamic. Soil salinity can occur 

naturally (primary) or as a result of human interference (secondary) (Ghassemi, Jakeman & Nix 

1995). Salts occur naturally in soils formed in arid regions simply because they have not been 

leached by rain (Hillel 2000). However, the salt content in such soils depends greatly on the 

nature of the soil. The salt content for sandy soils is generally lower than that of soils with a high 

content of clay minerals (Ghassemi, Jakeman & Nix 1995). Brackish groundwater can also 

infuse salts into top soil, typically where the subsoil contained accumulated salts from previous 

geologic eras. Rising water tables can transport these salts from the subsoil to the crop root zone. 

Rainwater is also considered a natural cause and can indirectly contribute to soil salinity, 

especially near industrialized regions where rainwater mixes with emitted gasses, or near coastal 

regions where sea spray can mix with rainwater.  
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The more insidious form of soil salinity occurs when previously productive soils are subjected to 

salinity due to human interference. This secondary salinity is mainly due to the extra water 

provided by human activities, such as irrigation and land clearing (Ghassemi, Jakeman & Nix 

1995).  

Some of the processes that give rise to human-induced salinity include:  

 When water containing mineral salts is used for irrigation, the salts are transported to the 

crop root zone. Through the processes of transpiration and evaporation, the water is 

returned to the atmosphere and the salts are left behind in the soil. Highly arid regions 

require more irrigation and have less rainfall to leach out the accumulated salts (Hillel 

2000; Umali 1993).  

 Irrigation in poorly drained areas leads to increased water infiltration and the rising of the 

natural water table (Ghassemi, Jakeman & Nix 1995). This effect is exacerbated by the 

over-application of irrigation water, which especially happens when water is priced 

below its true economic value (Umali 1993). Similar to the natural process, the rising 

water table (artificial rise) leads to the transportation of salts to the crop root zone.  

 Irrigation systems often have an intricate canal system for the transportation of irrigation 

water. The canals are mostly unlined and have a high seepage rate. The infiltrating water 

accumulates and over time can raise the water table to within a few metres of the land 

surface (Ghassemi, Jakeman & Nix 1995).  

 A change in the hydrological balance that occurs when land is cleared for farming and 

pastoral activities can be another major cause of rising water tables. When land is cleared, 

the deep-rooted natural vegetation is removed, leading to less evapotranspiration. 

Consequently, more water infiltrates the soil, supplementing the natural water table 

(Ghassemi, Jakeman & Nix 1995). 

An overview of secondary salinity, specifically in irrigated areas, is shown in Figure 1.1.  Umali 

(1993) ascribes most of the human-induced salinity to poor water-use efficiency on farms owing 

to a lack of awareness; poor engineering and maintenance on the canal systems (leading to 

increased seepage); insufficient or non-existing artificial drainage infrastructure; and poor design 

and maintenance of artificial drainage infrastructure. In irrigation schemes, most salt 

accumulation occurs as a result of the secondary process. 
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  Source: Abbas et al. (2013) 

Figure 1.1 Induced secondary salinization in irrigated areas  

1.1.1 Waterlogging 

Waterlogging, a process very closely related to soil salinity (Figure 1.1), is the saturation of the 

soil as a result of the water table being located at or near the surface (Barrett-Lennard 2003; 

McDonagh & Bunning 2009). The secondary salinity processes that lead to a rising water table 

similarly contributes to the occurrence of waterlogging. Waterlogging can also be caused by high 

sodicity levels in soils, which limit the infiltration of surface water as a result of compaction and 

crusting (Ghassemi, Jakeman & Nix 1995; Qureshi & Barrett-Lennard 1998). Soil sodicity 

occurs when clay particles in the soil becomes dominantly charged with sodium (Na) ions, rather 

than calcium (Ca) ions (Hillel 2000; Qureshi & Barrett-Lennard 1998).  

1.1.2 Effects and indicators of soil salinity and waterlogging 

Halophytic plants are adapted to grow in saline conditions (Hillel 2000; Qureshi & Barrett-

Lennard 1998). Some of these plants only occur in saline conditions and can therefore be used to 

identify areas affected by salt accumulation. These salinity indicator plants, however, vary 

between different regions (McGhie & Ryan 2005). Glycophytes, plants that are not adapted to 

survive in saline conditions, show indications of physiological stress in the presence of salinity.  

Most crop plants are glycophytic (Hillel 2000). 

If the accumulation of salts in the root zone is higher than the plant’s tolerance level, the plant 

will have a reduced ability to take up water. The plant then goes into an “osmotic adjustment” 
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process, using additional metabolic energy (i.e. from photosynthesis) in an attempt to take up 

more water (Hillel 2000). This inevitably leads to the dehydration and wilting of plant leaves and 

stems, known as the osmotic effect (McGhie & Ryan 2005).  

When a plant absorbs water and nutrients during transpiration, small amounts of salt will 

accompany the water. In persistent saline conditions, over time, these salts will accumulate and 

may have a toxic effect on the plant. Some of the ions related to salinity that cause the toxic 

effect are an abundance of chloride (Cl-) and sodium (Na+) (Hillel 2000).  The toxicity can lead 

to internal structural damage and more commonly leads to leaf injury symptoms (leaf tips of 

plants turn yellow) (Hillel 2000; McGhie & Ryan 2005). 

In the case of waterlogging, there is an oxygen deficiency in the soil due to the low solubility and 

diffusivity of oxygen in the water, which causes a state of hypoxia (Armstrong et al. 1991; 

Barrett-Lennard 2003). Since plant roots require oxygen for optimal production, the lack thereof 

results in a rapid decrease of growth, the loss of its ability to screen out salts at the root zone and 

the loss of its ability to absorb organic nutrients. Physiological indicators include discolouring of 

vegetation, defoliation, wilting and plant death (Barrett-Lennard 2003; McGhie & Ryan 2005; 

Qureshi & Barrett-Lennard 1998). McGhie & Ryan (2005) observed that waterlogging 

symptoms are very similar to those caused by an excess of salt. 

It should be clear from the above discussion that physiological vegetation stress is a potential 

indicator of salinity and waterlogging. There are also other, more direct, indicators of salinity 

and waterlogging. For instance, a white efflorescent salt crust on the soil surface is a direct sign 

of salt accumulation (McGhie & Ryan 2005). These efflorescent salt crusts form when saline 

water evaporates and salts crystalize on soil grains (Goodall, North & Glennie 2000). This 

results in a powdery or puffy texture that has a high reflectance (i.e. appear bright) (Metternicht 

& Zinck 2003) (Figure 1.2a). Other surface features of salinity include: black staining when iron 

in the soil reacts with sulphate salts (SO4
2-), bare patches without salt encrustations and soil 

erosion due to the loss of protective vegetation cover. Waterlogging is directly detectable on the 

surface in the visible saturation of the topsoil and surface ponding (Figure 1.2b) (Dwivedi, 

Sreenivas & Ramana 1999). When the water of a surface pond evaporates, salt encrustation also 

tends to form. 
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1.1.3 Salinity impacts 

In an advanced stage, the cumulative effects of soil salinity and waterlogging on its surroundings 

can lead to adverse agricultural and environmental impacts. If salinity reaches high levels, it kills 

off all vegetation, resulting in reduced crop yield and quality, and renders the once fertile soil 

barren, stripped of any biodiversity (Ghassemi, Jakeman & Nix 1995). Salinity is not as dramatic 

or damaging as earthquakes or landslides, yet it is still one of the most severe environmental 

factors impairing the production of agricultural crops (Ghassemi, Jakeman & Nix 1995; 

Metternicht & Zinck 2003; Pitman & Läuchli 2002; Umali 1993; Zinck 2000).  

Estimations of the extent of salt-affected areas vary greatly. Metternicht & Zinck (2003) 

estimated that primary salinity covers a total of 1 billion hectares of the earth surface – about 7% 

of the earth’s continental extent Secondary salinity accounts for an additional 77 million 

hectares, with 58% occurring in irrigated areas. According to Hillel (2000), irrigated cropland 

makes up 17% of cropland globally, while contributing 30% of the total agricultural production – 

highlighting the importance of irrigation and the impact that secondary salinity can have on food 

security. Ghassemi, Jakeman & Nix (1995) estimate that 20% of these irrigated croplands are 

salt-affected. Globally, the economic impact of the loss in production capacity due to salinity is 

estimated at $US 11.4 billion and $US 1.2 billion per year in irrigated and dryland areas 

respectively (Ghassemi, Jakeman & Nix 1995). A more recent global estimate is urgently 

needed, especially given that dryland crops are increasingly being converted to irrigated 

agriculture to increase agricultural production, which could lead to a dramatic increase in 

induced soil salinity (Metternicht & Zinck 2003). Other problems linked to soil salinity includes 

Figure 1.2 Examples of a) white efflorescent salt crust and b) surface ponding (waterlogging) in the Vaalharts 

irrigation scheme.  
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losses in property values, eutrophication of rivers, damage to infrastructure, increased soil 

erosion and engineering difficulties (Metternicht & Zinck 2003). 

1.1.4 South African situation 

In South Africa, the total area under irrigation is estimated at 1.3 million ha. Irrigation is critical 

for food security, specifically given that large parts of the country receives insufficient rainfall 

for dryland crop production (Backeberg 2003; Backeberg et al. 1996). In the comprehensive 

literature review by Ghassemi, Jakeman & Nix (1995), it is estimated that up to 9% of South 

African irrigated lands are susceptible to salt accumulation. Backeberg et al. (1996) reported that 

between 1% and 12% of the South African irrigation schemes suffer from severe waterlogging 

and salt accumulation, while between 5% and 20% are moderately affected. This percentage is 

much lower compared to other regions such as Argentina (34%), Egypt (33%), Iran (30%), 

Pakistan (26%) and USA (23%) (Ghassemi, Jakeman & Nix 1995). This favourable status is 

attributed to careful selection of irrigated areas, good drainage and the smaller sized irrigated 

areas in South Africa. Although the extent of salt-affected areas in South African irrigation 

schemes is less severe, Ghassemi, Jakeman & Nix (1995) warns that the salinization of 

reservoirs used for water supply can have a direct effect on salt accumulation in irrigation 

schemes. Also, there is no active programme in place to monitor the extent and changes in salt-

affected and waterlogged areas (De Villiers et al. 2003). Such complacency can potentially lead 

to conditions that may cumulatively cause rapid salt accumulation and loss of scarce productive 

land. 

1.1.5 Importance of irrigated agriculture 

Irrigation is necessary for the sustainable maintenance of food production in South Africa. For 

example, the fruit and wine industries of the Western Cape are entirely dependent on irrigation, 

while cropping in the Eastern and Northern Cape also rely heavily on irrigation (Van Rensburg 

et al. 2011). The posing threat of salinity in irrigation schemes is real, but manageable. Letey 

(1994), Rhoades (1997) and Van Schilfgaarde (1990) as cited in Van Rensburg et al. (2012) are 

all in agreement that sustainable irrigation is possible with well-designed irrigation and drainage 

systems, good crop and soil management practices and support from political and social 

structures. These factors can, according to Hillel & Vlek (2005), help to strengthen irrigated 

agriculture and increase food production.  

Pressure on agricultural land increases with an increase in population (currently at 1.6% per 

annum). Irrigation schemes account for almost 30% of the total crop production (De Villiers et 

al. 2003). Saline soils pose a threat to sustainable agriculture and can significantly reduce crop 
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yields – particularly in irrigation schemes. There is consequently a need for a systematic 

management of salt accumulation to mitigate further losses of fertile agricultural land. Salt 

accumulation management practice require monitoring to anticipate degradation and to make 

informed decisions about reclamation and rehabilitation (Metternicht & Zinck 2003). Monitoring 

includes identifying locations of salt accumulation and tracking its temporal and spatial 

dynamics.  

1.1.6 Salt accumulation monitoring 

An area’s salinity status is usually determined by carrying out field surveys and performing 

laboratory analyses of collected soil samples. There are a number of ways to measure the salt 

content in soils. The saturated paste technique is widely used for measuring the salt content in a 

soil sample, and has shown sufficient accuracy. The process involves extracting the salt 

concertation of a soil sample with the use of water to ultimately determine its electroconductivity 

(EC). Electroconductivity is defined as the degree to which water conducts electricity, which is 

proportional to the amount of salts in the solution (Hanson, Grattan & Fulton 2006). The 

measured EC value is widely used as an indicator of soil salinity. In South Africa, soil samples 

with EC values of 4.0 dS/m (deci-siemens per metre) or higher are regarded as being salt-

affected, while all samples with EC values below 4.0 dS/m are regarded as being unaffected 

(Bresler, McNeal & Carter 1982; Richards 1954; SASA 2007).  

Conventional methods for monitoring salt accumulation are laborious and costly and not viable 

when frequent monitoring is required over extensive (e.g. national) areas. A cost-effective 

solution for monitoring salt accumulation over large areas is consequently needed.    

1.1.7 Earth observation for monitoring soil salinity 

Earth observation by remote sensing can capture data on both a temporal and spatial scale and 

has the potential for identifying salt-affected areas. If successfully applied, remote sensing can 

serve as a monitoring solution that would not be as costly and labour intensive as regular field 

surveys and laboratory analyses.  

Various techniques and applications of remote sensing for the identification of salt-affected areas 

have been published. Salt accumulation can be detected either directly or indirectly using 

remotely sensed images (Bastiaanssen 1998; Mougenot, Pouget & Epema 1993). The direct 

detection of the accumulation of salts involves identifying salt encrustations on the bare ground, 

while the indirect method focuses mainly on vegetation responses to salt accumulation.  
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Several authors have successfully applied the direct approach for identifying salt accumulation 

(Abood, Maclean & Falkowski 2011; Dwivedi & Sreenivas 1998; Elnaggar & Noller 2010; Iqbal 

2011; Khan et al. 2005; Metternicht & Zinck 2003; Rao et al. 1995; Setia et al. 2013; Sidike, 

Zhao & Wen 2014). Most of these studies reported that salt crusts generally have high 

reflectance in the visible and near to mid-infrared regions of the electromagnetic spectrum, 

depending on the chemical composition of the salts (Metternicht & Zinck 2009). Specific 

spectral ranges for direct salinity detection (identified by laboratory analyses) are in the visible 

region (550-770 nm), near-infrared region (900-1030 nm, 1270-1520 nm) and middle infrared 

region (1940-2150 nm, 2150-2310 nm, 2330-2400 nm) (Csillag, Pasztor & Biehl 1993). 

Metternicht & Zinck (2009) observed that applying laboratory techniques to optical remote 

sensing data to detect salt accumulation is complicated by the variations in reflectance that 

cannot be attributed to a single soil property and salt type. Spectral variation in salt crusts can be 

attributed to the difference in the quantity of salts, the mineralogy of the salts (e.g. carbonates, 

sulphates or chlorides), soil moisture, colour of the salt crust (white to dark) and surface 

roughness of the salt crust (smooth to rough), which all vary among chemical structures. The 

direct approach also fails to take into account salt accumulation that occurs in the sub-surface, 

since it is limited to monitoring surface conditions. 

The indirect approach, which focuses mainly on vegetation monitoring, has also been 

successfully applied to remotely identify salt-affected areas. One approach is to identify 

halophytic vegetation types that commonly occur in salt-affected areas (Dehaan & Taylor 2002; 

Dehaan & Taylor 2003; Dutkiewicz, Lewis & Ostendorf 2009a; García Rodríguez, Pérez 

González & Guerra Zaballos 2007). However, this method is less suitable for application in 

irrigated areas where natural vegetation is removed during field preparations. A more common 

approach in irrigated areas is to monitor vegetation (crop) vigour. For this purpose, vegetation 

indices (VIs) are primarily used to distinguish between healthy vegetation and stressed 

vegetation. Two of the most used VIs are the NDVI (Abbas et al. 2013; Aldakheel 2011; 

Bouaziz, Matschullat & Gloaguen 2011; Elnaggar & Noller 2010; Hamzeh et al. 2012a; 

Platonov, Noble & Kuziev 2013; Sidike, Zhao & Wen 2014; Zhang et al. 2011) and the SAVI 

(Abood, Maclean & Falkowski 2011; Allbed, Kumar & Aldakheel 2014; Bouaziz, Matschullat & 

Gloaguen 2011; Elnaggar & Noller 2010; Hamzeh et al. 2012b; Koshal 2010; Zhang et al. 2011). 

However, using vegetation response for identifying salinity conditions should be used with 

caution because many factors besides soil salinity (e.g. farming practices) can contribute to loss 

of vegetation vigour (Metternicht & Zinck 2009). Different crops in different growing phases 
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also have different tolerances to soil salinity, which further complicates the implementation of 

the indirect approach.  

1.2 PROBLEM FORMULATION 

Conventional methods of monitoring the accumulation of salts include soil surveys and 

laboratory analyses. These methods are not practical for systematic monitoring over large areas. 

Earth observation has been shown to be effective for monitoring salt-affected areas by detecting 

vegetation stress caused by exposure to high levels of salts in the soil. Previous applications of 

the indirect approach have been carried out successfully in areas where soil salinity occurs at a 

grand scale (i.e. high levels of salinity and large affected areas). As a result, the satellite imagery 

most commonly employed for detecting soil salinity has low to medium spatial resolution. 

Examples include 30 m Landsat (Abdelfattah, Shahid & Othman 2009; Aldakheel 2011; Dehni 

& Lounis 2012; Gao & Liu 2008; Mohamed, Morgun & Goma Bothina 2011); 23 m IRS  (Abbas 

et al. 2013; Dwivedi et al. 2001; Dwivedi & Sreenivas 1998; Eldiery, Garcia & Reich 2005; 

Khan et al. 2001; Koshal 2010)  and  250 m MODIS (Lobell et al. 2010). Given the relatively 

small field sizes (e.g. 2 ha) in South African irrigation schemes and the narrowness of affected 

areas (generally only a few metres in width) (Nell et al. 2015), medium to low resolution 

imagery will be of little value for monitoring salt accumulation in South African irrigation 

schemes.  

The increasing availability of high resolution satellite imagery enables the assessment of the 

extent to which remote sensing can detect saline soils beyond the medium and low resolution 

image domains. Very high resolution (VHR) satellite imagery consequently provides a greater 

amount of spatial information, which enables the use of sophisticated data mining and image 

analysis techniques. Finding the optimal combination of high resolution imagery and image 

analysis techniques for indirectly identifying salt accumulation in South African irrigation 

schemes would greatly benefit a systematic salinity monitoring approach.  A literature review of 

published remote sensing and salt accumulation research revealed that no research has yet been 

done on the use of VHR imagery for indirectly identifying small patches of affected areas (such 

as those occurring in South Africa) in irrigation schemes. Early detection of affected areas (i.e. 

while they are still small) will facilitate the implementation of mitigating measures and may 

prevent losses of fertile agricultural land. 

From a research perspective, very little is known about the optimal combinations of VHR 

spectral bands for detecting salt-affected areas. It is also not clear which image analysis 
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techniques are best for indirectly identifying salt accumulation. The following research questions 

were consequently set: 

1. What spatial and spectral resolutions would be suitable for the indirect detection of salt-

affected areas in a typical South African irrigation scheme? 

2. Would the identified spatial and spectral resolutions be viable and robust for 

implementation over large areas? 

3. To what extent would the dynamic nature of crops and their varying salinity tolerance 

influence the indirect monitoring of salt accumulation? 

4. What observation scale (field level or scheme level) would be the most efficient for 

indirectly detecting salt accumulation over large areas?   

5. Which image transformations and classification techniques are most robust (transferable) 

for indirectly identifying salt accumulation across multiple irrigation schemes?  

1.3 RESEARCH AIM AND OBJECTIVES 

The primary aim of this research is to implement and assess indirect earth observation 

approaches for detecting salt accumulation in soils, with a particular focus on irrigation schemes. 

The secondary aim is to develop and evaluate an earth observation methodology in the context of 

finding operational solutions for monitoring salt accumulation in South African irrigation 

schemes.   

To achieve the research aim, the objectives are to: 

1. review the literature on detecting salt accumulation using earth observation; 

2. collect and prepare in situ reference data and acquire suitable remotely sensed imagery;  

3. assess the value of high (spectral and spatial) image resolution for indirectly identifying 

salt accumulation in a single cultivated field; 

4. identify the image features and classification techniques most successful in 

discriminating between salt-affected and unaffected areas at irrigation scheme level; 

5. develop and demonstrate a semi-automated, transferable earth observation methodology 

for monitoring salt accumulation in South African irrigation schemes; and 

6. critically evaluate the developed methodology in the context of finding operational 

solutions for monitoring salt-affected areas in South African irrigation schemes. 
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1.4 RESEARCH METHODOLOGY AND THESIS STRUCTURE 

The research approach was deductive and experimental in nature. The quantitative analyses 

included statistical techniques (regression analysis), machine learning (decision trees, k-nearest 

neighbour, random forest, and support vector machines) and expert systems (rule-based 

classification models). Two experiments were carried out using empirical datasets obtained from 

in situ field surveys and remotely sensed imagery.  

The first experiment focused on a single field analysis and aimed to contribute towards research 

questions one, two, four and five. The main aim of the experiment was to determine the optimal 

spatial and spectral resolutions required for identifying salt accumulation in a typical irrigated 

field. The experiment used empirically measured in situ EC data and WoldView-2 (WV2) 

imagery. The data was quantitatively analysed using regression modelling and a decision tree 

algorithm.  

The second experiment was carried out at irrigation scheme level and aimed to contribute 

towards research questions three, four and five. Two irrigation schemes were selected for 

examining the influence of variations in crop type and salt tolerance on detecting affected areas. 

This experiment also aimed to identify specific image transformation or classification techniques 

that are consistently effective at monitoring soil salinity at irrigation scheme level. Empirically 

measured in situ EC data and SPOT-5 satellite imagery were used as main data sources. The data 

was quantitatively analysed using regression modelling, decision tree analysis and image 

classification techniques. The findings of the two experiments were applied in an inductive 

spatial modelling approach in order to develop a robust (i.e. transferable) salinity monitoring 

technique. 

Figure 1.3 outlines the research design and illustrates how it relates to the thesis structure. The 

real world problem and research questions, together with the research aims and objectives, were 

outlined in this chapter. Chapter 2 provides an overview of earth observation and remote sensing, 

followed by a review of how remote sensing techniques have been used to detect salt 

accumulation. 

Chapters 3 and 4 present the two experiments that evaluated the indirect earth observation 

approach’s capability to detect salt accumulation at a field and a scheme level respectively. 

Chapter 5 builds on the knowledge gained from the two experiments, and proposes a robust and 

transferable monitoring technique. Chapters 3 and 4 are structured as independent research 

articles and consequently include theoretical discussions as well as overviews of the study areas, 
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datasets and quantitative methods used. Repetition of certain concepts and methods was 

consequently unavoidable. 

Chapter 6 provides a summary and a critical evaluation of the research. It reflects on the research 

questions, aims and objectives, and discusses the key findings in the context of establishing an 

operational solution for monitoring salt accumulation in irrigated areas. Recommendations for 

further research are also made.  

The next chapter provides a brief overview on the concepts of earth observation and remote 

sensing. Applications of remote sensing for detecting salt accumulation, identified in published 

literature, are then discussed. 
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CHAPTER 2:  EARTH OBSERVATION FOR SALINITY DETECTION 

An understanding of salinity, its causes, effects and dynamic processes, together with remote 

sensing and its capabilities, was vital for achieving the aims and objectives of this study. The 

first section of this chapter consequently summarizes relevant earth observation concepts, while 

the rest of the chapter is dedicated to a review of remote sensing applications for detecting soil 

salinity.    

2.1 EARTH OBSERVATION 

Earth observation is a wide-ranging term used to describe remote sensing and geographical 

information systems (GIS) technologies and applications. Remote sensing is widely defined as 

attaining and recording information about a specific object without being in direct contact with it 

(Campbell 2007; Fischer, Hemphill & Kover 1976; Gibson 2000). For this study, it is more 

specifically defined as acquiring information about the earth’s surface with satellite sensors by 

recording electromagnetic radiation through one or more regions of the electromagnetic 

spectrum reflected from the earth’s surface (Campbell 2007). A GIS refers to a computerized 

system for capturing, storing, querying, analysing and displaying geospatial data (Chang 2010). 

2.1.1 Electromagnetic spectrum 

Electromagnetic (EM) energy, most commonly experienced as visible light, consists of two 

oscillating components, namely electric and magnetic fields (Tempfli et al. 2009). 

Electromagnetic energy is measured by its wavelength or frequency unit (Figure 2.1). This 

energy is generated by all matter with an absolute temperature above zero (Tempfli et al. 2009). 

The sun, however, is the prime source of this energy and produces a full spectrum of 

electromagnetic radiation, known as the electromagnetic spectrum.  Of this full range, the visible 

spectrum only encompasses one ten-thousandth of one percentage of the total range (Gibson 

2000). As the electromagnetic energy passes through the atmosphere to interact with objects on 

the earth’s surface, its behaviour changes. The levels of reflection and absorption of each object 

on the earth’s surface vary and each object uniquely interacts with the EM energy. By recording 

the changes in how surface objects behave under different EM energy spectra, scientists can 

attain knowledge of the different characteristics of objects (e.g. vegetation cover, water bodies, 

soils or urban structures) by using remotely sensed data (Campbell 2007). The most relevant 

regions of the electromagnetic spectrum for remote sensing applications are described by 

Chuvieco & Huete (2010) as the visible (VIS), near-infrared (NIR), shortwave infrared (SWIR) 

and thermal infrared (TIR) regions. 
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The VIS, with wavelengths ranging from 0.4 to 0.7 micrometres (μm), is named after the energy 

that human eyes are capable of sensing. It includes the blue, green and red areas of the spectrum 

(Figure 2.1). This part of the spectrum is also used to visualize the EM energy humans cannot 

directly see. 

The NIR includes wavelengths of 0.7 to 1.2 μm, is invisible to humans and is well-known for its 

ability to record green vegetation. Healthy vegetation has a high reflectance in this region and 

reflectance decreases with increased plant stress (Tempfli et al. 2009).  

The SWIR is delimited by 1.2 and 3 μm wavelengths and is known for its vegetation and soil 

moisture identification. 

With wavelengths longer than the 3 μm, the TIR is associated with emissive electromagnetic 

radiation from the earth’s surface. The earth’s surface has a peak wavelength of 10 μm (Tempfli 

et al. 2009). 

The shortest microwave wavelengths have properties similar to the thermal region and the 

longest wavelengths merge into radio wavelengths used for commercial broadcasts (Campbell 

2007). The microwave wavelengths are commonly known for its capability to penetrate cloud 

cover. 

 
          Source: SEOS (2016) 

Figure 2.1 Electromagnetic spectrum and its relation to passive and active remote sensors.  
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2.1.2 Active (microwave) vs passive (optical) sensors 

Remote sensors, the physical devices that detect EM energy, can be grouped into two main 

types, namely passive and active remote sensors. A passive remote sensor measures solar energy 

reflected from or radiation emitted by the earth’s surface. To detect solar energy reflected from 

the earth’s surface, instruments (known as optical sensors) must be capable of recording in the 

visible and preferably also in near-infrared spectrum. Some of the key variables in the process of 

capturing data with these sensors are atmospheric clarity, spectral properties of objects, angle 

and intensity of the sun, and choices of films and filters (Campbell 2007). To detect radiance 

emitted from the earth’s surface, instruments (known as thermal sensors) must be capable of 

recording in the thermal infrared region. These sensors are also considered passive because they 

do not create electromagnetic energy themselves, but only record what is reflected or emitted 

from the earth. 

An active remote sensor emits its own EM energy and then detects the energy returned from the 

target object or surface (Tempfli et al. 2009). Active remote sensors are independent of solar and 

terrestrial radiation and can thus operate during day or night. These sensors are represented by 

the NIR region, in the form of light detection and ranging (LiDAR) instruments, and the 

microwave region, in the form of radio detection and ranging (RADAR) instruments. The latter 

has wavelengths long enough to penetrate could cover.   

2.1.3 Characteristics of optical imagery 

Satellite sensors capture the reflected or emitted electromagnetic energy and convert it into a grid 

array of cells (pixels). Each pixel contains a raw digital number (DN), representing the amount 

of reflectance/emittance of a specific region in the electromagnetic spectrum (VIS, NIR or 

SWIR). This specific region is commonly known as a sensor band. The collective array of pixels 

forms a raster image, used for analysis. Each raster image is uniquely defined by certain 

characteristics relative to its satellite system, which ultimately determines its value for specific 

remote sensing problems. These characteristics are spatial, spectral, temporal and radiometric 

resolution. 

Spatial resolution refers to the detail visible in an image, e.g. what is the smallest object 

detectable on the ground surface. For satellites, it is primarily determined by its instantaneous 

field of view (IFOV) (Figure 2.2) and measured by metres on the ground (Chuvieco & Huete 

2010; Gibson 2000). The spatial resolution of satellite images can range from a few centimetres 

to kilometres, depending on the satellite system.  
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Spectral resolution determines how many sensor bands are provided. A larger spectral resolution 

means a greater coverage of the electromagnetic spectrum, which enables a better recording of 

surface objects’ spectral characteristics. Multispectral raster images have spectral resolutions that 

range from three bands to more than 30, while hyperspectral images can contain in excess of 100 

narrow spectral bands.  

Temporal resolution is a measurement of how often a satellite system revisits a specific area. 

This resolution is determined by the satellite system’s orbital characteristics and its swath 

overlap (Chuvieco & Huete 2010). Satellite systems with a high temporal resolution would be 

more valuable for monitoring change. Some satellite systems capture data of a specific region 

twice daily, while others capture data only a few times monthly.    

Radiometric resolution refers to the sensitivity of a satellite's sensor and its ability to 

discriminate between variation in the recorded spectrum (Chuvieco & Huete 2010). A higher 

radiometric resolution generally refers to a higher number of grey levels within one band and is 

measured by the images’ bit number (Gibson 2000).The resolutions described above are finely 

interconnected and an increase in one usually leads to a decrease in another (Chuvieco & Huete 

2010). For instance, satellite sensors that capture images at a high spatial resolution generally 

have low temporal and spectral resolutions, and vice versa. This is due to a combination of 

factors, including the IFOV, the satellites scan speed, the optics of the satellite (e.g. aperture and 

lens) the sensor itself and download link speeds. Choosing which satellite data source is most 

appropriate for analysis thus greatly depends on the scope of the problem. Weather prediction, 

for example, needs constant hourly information (very high temporal resolution), but does not 

require a high spatial resolution. Geological exploration, on the other hand, needs a higher spatial 

resolution, where a low temporal resolution would be sufficient.  

 Source: Tso & Mather (2009) 

Figure 2.2 Instantaneous field of view of a satellite sensor capturing data at nadir and of-nadir  
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2.1.4 Available optical imagery 

Optical imagery is the most cost-effective way of gathering remotely sensed data, and offers the 

widest range of sources. Optical imagery can be acquired mainly from two platforms, namely 

aerial (including unmanned aerial vehicles) or space-borne (i.e. satellite-based). 

Aerial imagery can be obtained by a camera system that points vertically or oblique down at the 

landscape from the aerial craft (Gibson 2000). Aerial imagery generally has a high spatial 

resolution that is dependent on the height of the aircraft or the obliqueness of the photo. The 

temporal resolution of aerial imagery is dependent on the image vendor and is generally very 

low. Most hyperspectral sensors, e.g. HyMap (126 spectral bands), Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS) (224 spectral bands) and Compact Airborne Spectrographic 

Imager (CASI) (288 spectral bands), are also aircraft specific sensors.   

There are approximately 1 381 operating satellites in orbit, of which roughly 344 satellites 

(including 152 optical imaging satellites) are used for earth observation (UCS 2016). From this 

list, there are a select few platforms that distribute optical imagery freely, commercially or for 

research purposes. Popular sources of optical imagery are listed in Table 2.1, together with 

relevant information regarding their spectral, spatial and temporal resolutions.  

2.1.5 Image processing and interpretation  

Specialized knowledge of and experience with image interpretation is required to extract useful 

information from remotely sensed data. Campbell (2007) suggests that there are three different 

levels of knowledge required for capable image interpretation. First, knowledge of the subject of 

interest is needed. The subject is the motivation for image interpretation and a sufficient 

knowledge is required to understand what the imagery is portraying. Second, the location of the 

study can be equally important given that each area has unique characteristics that influence 

patterns (tones and textures) on an image. Third, the type of remote sensing system is important, 

since each remote sensing system has a unique blend of resolution characteristics (spatial, 

spectral, temporal and radiometric resolutions). Therefore, knowing how these characteristics 

influence the ability to derive useful information about the subject of interest is essential. 
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Table 2.1 Popular sources of optical imagery (OI) and their characteristics 
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2.1.5.1 Image pre-processing 

Due to radiometric (measuring electromagnetic energy) and geometric (shape, size and relative 

position of objects) distortions, satellite imagery has to undergo a rigorous pre-processing phase 

prior to interpretation and analysis. The rectification and restoration of the acquired imagery are 

necessary for both spatial and spectral comparisons.  

Geometric distortions can be caused by various factors such as oblique viewing distortions 

(objects in the foreground appear larger than objects farther away), relief displacement and 

displacement effects caused by the rotation of the earth and satellite sensors’ scan speed 

(Chuvieco & Huete 2010; Tempfli et al. 2009). These geometric distortions occur either 

systematically (predictably) or randomly, and are dealt with accordingly. Predictable errors (e.g. 

the movement of the earth) are better understood and can be corrected by applying 

mathematically derived formulas. Remaining random distortions are corrected by comparing the 

distorted image to known, well-distributed ground control points (GCP’s). Least squares 

regression, used to determine coefficients for two coordinate transformation equations, 

interrelates the geometrically correct coordinates and the distorted image coordinates (Lillesand, 

Kiefer & Chipman 2004). Resampling then occurs during which the image is essentially warped 

to accurately fit the ground coordinates. The preferred approach for image resampling for 

scientific analysis is the nearest neighbour approach, mainly because it is computationally 

simplistic and the original input pixel values are not compromised. Other resampling methods 

include bilinear interpolation and cubic convolution, which are more appropriate for continuous 

variables and display purposes. The quality of the geometric correction is largely attributed to the 

selected GCP’s and is a process that generally requires human input (Chuvieco & Huete 2010; 

PCI Geomatics 2014). 

Similar to geometric distortions, radiometric effects are highly variable and sensor-specific. 

Main causes of radiometric distortions are the deterioration of the sensor’s general performance, 

discrepancies due to the earth-sun distance and distortions due to the atmospheric effects on EM 

reflectance (e.g. haze). The sensor effects are compensated for by sensor-specific calibration 

coefficient values, which are applied in a mathematical model for rectification. When images 

from different seasons are compared to one another, the seasonal earth-sun elevation differences 

need to be accounted for. This rectification process normalizes the pixel brightness values, 

assuming the sun was at the zenith on each date of image sensing (Lillesand, Kiefer & Chipman 

2004). When EM energy is reflected or emitted from the earth and move through the atmosphere, 

it experiences degradation due to atmospheric scattering (which is wavelength dependant) 

(Tempfli et al. 2009). This effect reduces the contrast in the image. A principle used to correct 
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this degradation is based on measuring the radiance recorded over areas of essentially zero 

reflectance (e.g. water) and applying the offset correction to the distorted image (Lillesand, 

Kiefer & Chipman 2004). Atmospheric correction is particularly important when converting the 

DN’s of the raw image file to units such as absolute radiance or percentage surface reflectance. 

This conversion is essential when image data needs to be compared to ground measurements, or 

when imagery of different sensors acquired at different times needs to be compared to one 

another.  

Image fusion is a component of image pre-processing and refers to the process of combining 

images of two separate resolutions, for example the high spatial resolution of a panchromatic 

band with the coarser spatial but wider spectral resolution of the corresponding multispectral 

image (Campbell 2007). This technique assumes that the two images to be fused are compatible, 

since they were acquired at the same date and time. It is also vital that the two images to be fused 

share the exact same geometry and have similar spatial properties, emphasising the importance 

of the geometric correction step. Various image fusion algorithms exist to accommodate 

different kinds of image fusion needs. Less processing-intensive fusion algorithms, for example 

the intensity hue and saturation (IHS) spectral domain technique, can usually not be used for 

quantitative image analysis and is best suited for visualization purposes only. The fusion 

techniques that can be used for quantitative analysis purposes include the Pansharp, local mean 

matching (LMM) and local mean and variance matching (LMVM) algorithms (Nikolakopoulos 

2008; Zhang 2002). 

2.1.5.2 Image transformations 

Image transformation is the process of generating a new image from one or more spectral bands 

with the use of arithmetic operators. The purpose of image transformation is to generate a new 

image with properties more suitable for a specific purpose compared to the original spectral 

bands from which it was derived. Various image transformations have been proposed through 

scientific research and each transformation serves a unique purpose.  

Some of the well-known image transformations include band ratios and vegetation indices (VIs); 

principal component analysis (PCA); IHS transform; and image textures. Band ratios are 

quotients that enhance or reveal underlying information where there is an inverse relationship 

between bands (Campbell 2007). VIs are based on the principle of band rationing and use 

addition, subtraction, division and/or multiplication to yield a single value that represents the 

degree of vegetation vigour in a single pixel (Campbell 2007). A wide range of VIs exits, with 

the most popular being the normalized difference vegetation index (NDVI) (Table 2.2). Some 

Stellenbosch University  https://scholar.sun.ac.za



22 
 
VIs are empirically derived from taking into account factors that are not addressed by the NDVI. 

The soil-adjusted vegetation index (SAVI) (Table 2.2), for example, includes a soil-adjustment 

factor that accounts for background reflectance/noise in less dense vegetation. The enhanced 

vegetation index (EVI) (Table 2.2) furthermore includes aerosol coefficient values to minimize 

the effect of atmospheric disturbances on the vegetation response.   

  Table 2.2 Commonly used VIs 

Vegetation Index Equation 

Normalized difference vegetation index (NDVI) 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)  
 

Soil-adjusted vegetation index (SAVI) 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = (1 + 𝐿𝐿)((𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐿𝐿)) 

Enhanced vegetation index (EVI) 𝑬𝑬𝑬𝑬𝑬𝑬 = 𝐺𝐺((𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐿𝐿)) 

* where L is the soil-adjustment factor, G is a gain factor and C1 and C2 are aerosol resistance coefficients 

Principal component analysis (PCA) is a data reduction technique that reduces the feature 

dimensionality of the input dataset. This statistical technique essentially identifies optimum 

linear combinations of the original amount of input channels (bands), which accounts for most of 

the variation of pixel values within an image. The statistical procedure (Gould 1967) calculates 

the optimum set of coefficients that will concentrate the maximum amount of information in a 

few principal components (often stored as image bands) (Campbell 2007).  

The IHS is a spectral domain transformation that alters multispectral data from the red, green and 

blue (RGB) domain to the IHS domain. Intensity relates to the total brightness of a colour, hue to 

the dominant/average wavelength or light contributing to a colour, and saturation to the pureness 

of a colour, relative to grey (Campbell 2007; Lillesand, Kiefer & Chipman 2004). The IHS 

transformation is useful when the intensity (brightness) of a colour needs to be separated from 

the colour itself. This transformation is also widely used in image fusion. 

Image texture is loosely defined as the local brightness variation from pixel to pixel in a small 

neighbourhood (Russ 1999). The earth’s surface and the angle of illumination are two vital 

contributors to image texture. The observation of image texture is determined by two factors, 

namely the scale of variation and the scale of observation (Mather & Magaly 2011). Perhaps the 

most well-known texture analysis involves extracting various texture measurements from a grey 

level co-occurrence matrix (GLCM) (Haralick, Shanmugam & Dinstein 1973). This approach 

uses second order statistics of the grayscale image histograms. Texture is valuable for image 

interpretation, because humans have the ability to perceive the subtle pattern differences 

contained in image texture measures. 
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2.1.5.3 Image classification 

Image classification is a key part of image interpretation and is the process of assigning image 

pixels or objects to specified informational classes. Computer algorithms, called classifiers, are 

often used to perform image classification. Image classification varies in levels of complexity. 

For instance, a classification of land use may have more than ten classes, while a binary 

classification only differentiates between two classes.  

There are two main approaches to image classification, namely unsupervised classification and 

supervised classification. Unsupervised classification is a technique that defines certain clusters 

or structures in multidimensional data space, which are then matched to informational categories 

(classification classes) (Campbell 2007). Well-known unsupervised classification (clustering 

algorithms) are generally based on distance measuring algorithms, e.g. the Euclidean or 

Mahalanobis distance (Mather & Magaly 2011). The ISODATA algorithm is one of the most 

popular clustering algorithms, known for its flexibility and robustness (Chuvieco & Huete 2010). 

Supervised classification is the process of using pixels with known identity (training areas) to 

classify pixels with an unknown identity (Campbell 2007). This classification approach therefore 

requires prior knowledge of the study area. An advantage of supervised classification, compared 

to unsupervised classification, is that the analyst has more control over the informational 

categories. Results from different supervised classifications are also more comparable.  

The minimum distance (MinD) classifier is one of most simple supervised classifiers and is 

based on the Euclidean distance algorithm. Its simplicity and low processing requirements can be 

beneficial for classifications with limited class overlap, as it does not account for class variance 

(Campbell 2007; Chuvieco & Huete 2010). The maximum likelihood (ML) classifier addresses 

the class variability limitation of MinD and is one of the most used classifiers of remotely sensed 

data. The algorithm deals with class overlap by using training data to compute the mean and 

variability of brightness for each class, thereby maximizing the probability of a correct 

classification (Campbell 2007; Foody, Warner & Nellis 2009). One of the main limitations of the 

ML and MinD classifiers is that they require a normal distribution of input datasets. The 

classifiers are also highly sensitive to the quality of training data, as outliers can substantially 

influence the distance and probability calculations (Campbell 2007; Chuvieco & Huete 2010).  

The k-nearest neighbour (KNN) classifier is another algorithm based on distance measurements. 

The advantage of this simple yet efficient non-parametric classifier over ML and MinD is that it 

makes no prior assumptions about the data distribution. KNN examines each pixel value in the 

context of its neighbouring pixel values (in feature space). These neighbouring values were 
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either labelled during the classification process itself  or  prior knowledge (i.e. training data) was 

used to label them (Campbell 2007). The candidate pixel is then assigned to the class that is most 

represented by its k-defined neighbours. Inverse distance weighting calculations assign a higher 

significance to closer neighbours than distant neighbours (Campbell 2007).  

A decision tree (DT) classifier generates a set of binary rules that are sequentially applied to 

specified features to differentiate between chosen target classes (Chuvieco & Huete 2010). DTs 

are non-parametric, robust, flexible and easy to interpret. DTs can, however, suffer from 

overfitting, which occurs when a model achieves a high accuracy on a training set, but fails to 

produce an accurate classification on different data. This points to the actual underlying 

relationships and exposes patterns arising purely by chance (Schaffer 1993). The support vector 

machine (SVM), a classifier more recently introduced to the field of remote sensing, is also non-

parametric and less sensitive to training samples’ size (Foody, Warner & Nellis 2009; Myburgh 

& Van Niekerk 2014). SVM finds the optimal hyperplane between classes by using training data. 

Mountrakis, Im & Ogole (2011) state that SVM is superior to most of the alternative algorithms 

because of its quick learning, self-adaptability and limited reliance on training size.   

The random forests (RF) classifier, an ensemble of DT classifiers, makes use of bootstrapping 

and an unit voting system for each tree classifier (Breiman 2001; Gislason, Benediktsson & 

Sveinsson 2006). When comparing the SVM classifier to the RF classifier, Pal (2005) found that 

the RF produced comparable results and that its capability to handle categorical, unbalanced and 

even missing values is superior to that of SVM. A main advantage of the RF classifier is that it 

ranks feature importance during the classification process, which can be used for feature 

selection (Gislason, Benediktsson & Sveinsson 2006; Pal 2005).  

The classifiers described above can also be used to classify hyperspectral data; however, some of 

the classifiers may have limitations when working with a high number of input variables (e.g. 

hyperspectral imagery), reducing their potential to identify certain features. Consequently, a 

number of classifiers have been designed specifically for hyperspectral data. For instance, 

spectral mixture analysis (SMA) evaluates hyperspectral data and extracts specific endmembers 

(spectral signatures) and its fractional abundance within each pixel (Foody, Warner & Nellis 

2009). This is particularly useful for hyperspectral imagery with a coarse spatial resolution. 

Spectral angle mapper (SAM) uses the angular distance between a reference spectrum and a 

target. SAM measures similarity between spectra by calculating the spectral contrast instead of 

the absolute difference, making it insensitive to different illumination conditions (Chuvieco & 

Huete 2010). Spectral feature fitting (SFF) matches absorption features in the spectra by using a 

least squares technique with continuum removed data (Dehaan & Taylor 2002). 
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Image classifiers can be employed within the pixel or object spatial domain, as outlined in the 

following section.  

2.1.5.4 Spatial domains: Object-based vs pixel-based image analysis  

The pixel-based spatial domain refers to individual pixels, not taking into account the spatial or 

contextual information related to each pixel (Weih & Riggan 2010). The first decade of remote 

sensing research focused on the spectral analysis of image pixels (Addink, Van Coillie & De 

Jong 2012). This led to the development of many sophisticated and well-established pixel-based 

techniques that can successfully classify remotely sensed imagery. With the increase of spatial 

resolution, the within class spectral variability also increased (causing the so-called “salt and 

pepper effect”). This phenomenon has a detrimental effect on the accuracies of pixel-based 

classifiers (Blaschke et al. 2014) and has resulted in an increased research interest in object-

based solutions around 2000. This new paradigm in remote sensing was further supported by 

increased computer processing power and the realization that pixels are no longer the optimal 

spatial unit for mapping landscape elements (Addink, Van Coillie & De Jong 2012; Blaschke 

2010). The resulting new approach, called geographic object-based image analysis (GEOBIA), is 

a process that mimics higher order logic, similar to human interpretation (human eye-brain 

combination), to identify and group useful shapes, sizes and textures within image data (pixels) 

(Campbell 2007; Hay & Castilla 2008). GEOBIA starts with a segmentation process that divides 

a high resolution image into segments of spatially continuous and homogenous regions, called 

objects. Image segmentation algorithms are commonly based on one of the two basic properties 

of the pixel’s grey level values – discontinuity and similarity. The discontinuity (abrupt changes 

in pixel levels) principle is used to partition the image into several non-overlapping objects, 

while the similarity principle is used for methods like region growing and merging (Addink, Van 

Coillie & De Jong 2012; Haralick & Shapiro 1985). Objects hold key advantages over pixels, in 

particular, an increase in the number of available spectral variables (e.g. mean, median, 

maximum, minimum and variance) and spatial features (e.g. distances, neighbourhood, 

topologies and hierarchical properties) (Blaschke & Strobl 2001; Flanders, Hall-Beyer & 

Pereverzoff 2003; Hay & Castilla 2008). The use of spatial information in object-based methods 

also allows for the integration of vector and raster data, enabling a GIS-like functionality for 

classification (Blaschke et al. 2014).  
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2.2 SALINITY DETECTION USING REMOTE SENSING 

Given that remote sensing has the ability to capture data at both a temporal and spatial scale, it 

has the potential for identifying the dynamic accumulation of salts. When attempting to detect 

salt accumulation with remote sensing there are two main approaches. One approach is to detect 

salt accumulation directly on bare ground, exploiting the spectral characteristics of salt-affected 

soils (e.g. its mineralogy and the presence of salt crusts). Another approach is to detect salt 

accumulation indirectly by studying secondary manifestations of salt accumulation (Bastiaanssen 

1998; Mougenot, Pouget & Epema 1993). The following subsections explain these two 

approaches in more detail. 

2.2.1 Direct detection of salt-affected soils 

To identify salt accumulation directly, it is necessary to understand the spectral behaviour of salt 

crusts within the electromagnetic spectrum. The main factors affecting the reflectance of salts, as 

determined by ground observations and radiometric measurements, are the quantity and 

mineralogy of salts, soil moisture, colour and roughness (Metternicht & Zinck 2003). Previous 

studies showed that salt-affected soils have higher reflectance in the visible and near to mid-

infrared (NIR/SWIR) regions of the spectrum compared to unaffected soils (Abood, Maclean & 

Falkowski 2011; Dwivedi & Sreenivas 1998; Elnaggar & Noller 2010; Iqbal 2011; Khan et al. 

2005; Metternicht & Zinck 2003; Rao et al. 1995; Setia et al. 2013; Sidike, Zhao & Wen 2014).  

The direct spectral behaviour of commonly-occurring salts (chlorides, sulphates, carbonates and 

bicarbonates) was studied by Metternicht & Zinck (2009). They found that the mineralogy of 

these salts determines the presence or absence of certain absorption and reflection features in the 

EM spectrum. Under laboratory conditions, Csillag, Pasztor & Biehl (1993) identified six 

spectral ranges where the salinity status of soil are best characterized. This included the visible 

region (550–770 nm), two in the near-infrared region (900–1030 nm and 1270–1520 nm) and 

three in the middle infrared region (1940–2150 nm, 2150–2310 nm and 2330–2400 nm).  Rao et 

al. (1995)  similarly found that including a middle infrared band (1550 nm–1720 nm) in a false 

colour composite (FCC) display improved the identification of salt-affected soils. Likewise, 

Howari (2003) identified five wavelengths in the electromagnetic spectrum, namely 1000, 1400, 

1900, 2200 and 2300 nm, in which distinct absorption features and high variability among salt 

crusts can be detected.   

Studying the dielectric properties of salt-affected soils and crusts in the microwave region of the 

spectrum is also considered a direct approach. Although relatively few studies investigating the 

use of air and space-borne microwave sensors for salinity detection exist, microwave data has the 
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advantage of actively gathering data independent of atmosphere conditions (Metternicht & Zinck 

2003). According to Shao et al. (2003), both soil water content and salinity are positively 

correlated with the dielectric constant. Del Valle et al. (2009) stated that using radar imagery 

from more than one satellite system is highly desirable for salinity detection because each might 

have different identification capabilities. They observed that one of the major factors influencing 

the scattering properties of salt-affected areas is surface roughness. In general, the microwave C 

and L bands can be used for salinity detection (Archer & Wadge 2001; Sreenivas, 

Venkataratnam & Rao 1995; Taylor et al. 1996; Del Valle et al. 2009).  

A number of limitations of the direct approach are highlighted in the comprehensive reviews of 

Metternicht & Zinck (2003, 2009). The spectral behaviour of salt crusts is highly variable, 

mostly owing to a difference in quantity, mineralogy, soil moisture, colour (white to dark) and 

roughness (smooth to rough). Surface roughness is also highly variable in agricultural areas, 

especially were ploughing frequently occurs. The spatial pattern of salt accumulation is also 

constantly changing, which means that it often occurs in small patches, leading to mixed pixels. 

These temporal changes are dependent on seasonal rainfall, which can alter the spectral 

properties of salt-affected areas. In addition, the occurrence of vegetation (e.g. halophytic plants 

and weeds) in salt-affected areas can cause spectral confusion. This is exacerbated by other 

features with similar reflectance properties to saline soils (e.g. loose sand, eroded surfaces and 

non-saline structural crusts). The fact that the direct approach is confined to monitoring surface 

conditions when using satellite sensors is another limitation. Salt accumulation in early stages do 

not necessarily form a crust and, therefore, is not visible on the earth’s surface.  

The direct approach has proven to be effective at identifying salt accumulation with unique 

spectral signatures, especially in the near to mid-infrared regions. However, in South African 

irrigation schemes, ploughing and tillage is a frequent occurrence and crops are grown 

throughout the year. To prevent erosion, fallow fields are usually covered by dry plant material 

remains of the previous harvest. Since the soils are only fully exposed for a short period (i.e. 

after ploughing and before vegetation growth occurs) and tillage causes a variation in surface 

roughness, the direct approach will be less effective in these areas. In contrast, the indirect 

approach can overcome some of the limitations of the direct approach because it is independent 

of the spectral characteristics of soils or salt crust and can account for sub-surface salt 

accumulation to a certain extent.  
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2.2.2 Monitoring vegetation by remote sensing 

Monitoring vegetation condition with remote sensing requires an understanding of how 

vegetation reacts to electromagnetic radiation. To use the indirect approach for detecting salt 

accumulation, it is necessary to understand how it affects vegetation condition. The next section 

explains how remote sensing can be used to monitor vegetation conditions and how salt 

accumulation affects vegetation condition.    

2.2.2.1 Methods for monitoring vegetation condition 

The spectral characteristics of plant leaves are very prominent and enable the establishment of 

strong relationships with selected spectral bands of multispectral imagery. Chlorophyll is the 

green substance in plant leaves that enables the plant to absorb sunlight, making photosynthesis 

possible. However, chlorophyll does not absorb all sunlight equally, resulting in its distinct 

spectral characteristics (Campbell 2007). EM energy in the VIS spectrum is mostly absorbed by 

the plant chlorophyll. More of the red and blue band are absorbed compared to the green band, 

which has slightly higher reflectance at roughly 10 to 15%  (Gibson 2000) (Figure 2.3). This 

gives the green appearance of healthy vegetation in the VIS spectrum. A sharp contrast in 

absorption/reflective properties occur in the wavelengths between the red and NIR region of the 

EM spectrum. Close to 50% of the NIR EM energy, which is not visible to the human eye, is 

reflected from healthy plant leaves (Figure 2.3). The reflectance of the NIR energy occurs as a 

result of the mesophyll layer, situated deeper in the leaf structure below the chlorophyll layer. 

The mesophyll tissue is where the leaf’s oxygen and CO2 exchange, necessary for photosynthesis 

and respiration, takes place (Campbell 2007). Many plant stresses alter (decrease) the reflectance 

in the NIR region and sensors operating in this spectral range can be used for plant stress 

detection (Lillesand, Kiefer & Chipman 2004).  

The band ratios used in VIs are particularly efficient due to the inverse relationship between the 

absorption of the red light by the chlorophyll and the reflectance of the NIR radiation by the 

mesophyll. Owing to the efficiency of VIs, earth observation and remote sensing have played a 

vital role in the agriculture sector. Agricultural applications of remote sensing include biomass 

and yield estimation; vegetation vigour and drought stress monitoring; assessment of crop 

phenological development; crop acreage estimation and cropland mapping; and precision 

agriculture (Atzberger 2013). 
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Source: HSU (2016) 

Figure 2.3 Spectral reflectance of healthy vegetation 

2.2.2.2 Effect of salt accumulation on vegetation 

Excessive accumulation of salts in the root zone leads to a decreased ability of the plant to take 

up water. This “osmotic effect” causes the plant to use more metabolic energy in an attempt to 

take up more water, which leads to dehydration and wilting (McGhie & Ryan 2005). An excess 

of salt in the root zone may also lead to the absorption of dangerously high quantities of salts 

which, over time, becomes toxic. The toxicity leads to internal structural damage such as leaf 

injury symptoms and wilting (Hillel 2000; McGhie & Ryan 2005). Physiological plant stress and 

a deteriorating vegetation condition are thus closely linked to the accumulation of salts in the 

root zone. In some cases, the accumulation of salts leads to the invasion of salt tolerant weeds 

(halophytic vegetation). By adapting to saline conditions over time, halophytic vegetation has 

developed distinctive leaf and stem structures, making it an indirect indicator of salt 

accumulation (Dehaan & Taylor 2002). The next section summarizes research on indirect 

salinity detection using remote sensing methods.     

2.2.3 Indirect remote sensing methods for monitoring salt accumulation 

Indirect approaches that emerged in the literature review are discussed in the next section. A 

summary of satellite imagery and image classification techniques used for the indirect detection 

of salt accumulation is then given, followed by a general evaluation of the literature. 
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2.2.3.1 Detecting salt induced vegetation stress 

The most common indirect remote sensing approach involves identifying physiological 

vegetation stress that relates to salt accumulation. Although this approach is applied in various 

ways, the methodology is mostly centred around the use of VIs for vegetation stress detection. A 

wide range of VIs for detecting salt accumulation has been evaluated and includes NDVI 

(Abood, Maclean & Falkowski 2011; Aldakheel 2011; Bouaziz, Gloaguen & Samir 2011; 

Fernández-Buces et al. 2009; Fernández-Buces et al. 2006; Golovina et al. 1992; Hamzeh et al. 

2012a; Hamzeh et al. 2012b; Iqbal 2011; Khan et al. 2001; Lenney et al. 1996; Leone et al. 2007; 

Lobell et al. 2010; Naumann, Young & Anderson 2009; Peñuelas et al. 1997; Sidike, Zhao & 

Wen 2014; Stals 2007; Turhan et al. 2008; Wiegand et al. 1994; Wu et al. 2008), SAVI (Abood, 

Maclean & Falkowski 2011; Alhammadi & Glenn 2008; Allbed, Kumar & Aldakheel 2014; 

Bouaziz, Gloaguen & Samir 2011; Hamzeh et al. 2012a; Zhang et al. 2011),  EVI (Bouaziz, 

Gloaguen & Samir 2011; Lobell et al. 2010), the combined spectral response index (COSRI) 

(Fernández-Buces et al. 2006), the moisture stress index (Iqbal 2011), the narrow band indices, 

the water index (WI) (Leone et al. 2007; Naumann, Young & Anderson 2009), the physiological 

reflectance index (PRI) (Hamzeh et al. 2012a; Naumann, Young & Anderson 2009) and the 

chlorophyll index (Naumann, Young & Anderson 2009).  Modifications of VIs included that of 

Abood, Maclean & Falkowski (2011), who substituted the yellow band with the red band in the 

NDVI and SAVI; Zhang et al. (2011), who created a number of narrow band modifications of 

the SAVI; and Hamzeh et al. (2012a), who similarly created narrow band indices based on the 

SAVI and water indices. In each case, the modified indices slightly improved the accuracy for 

the identification of salts. Al-Khaier (2003) incorporated a biophysical approach (surface balance 

algorithm for land (SEBAL) (Bastiaanssen et al. 1998)) to successfully identify salt induced 

vegetation stress, but concluded that this approach is too reliant on highly detailed information 

(e.g. land surface and climate parameters) often not available. Zhang et al. (2011) suggested that 

the narrow wavelengths of 395–410; 483–507; 632–697; 731–762; 812–868; 884–909 and 918–

930 nm are most sensitive to salt-affected vegetation response.  

According to the literature, the success rate of the identification of vegetation stress due to salt 

accumulation both on a field level (Eldiery, Garcia & Reich 2005; Hamzeh et al. 2012a; 

Platonov, Noble & Kuziev 2013) and for larger areas (Abbas et al. 2013; Abood, Maclean & 

Falkowski 2011; Lobell et al. 2010) is high. Trends that surfaced within this approach are set out 

below.  

 When using vegetation response for detecting salt accumulation, the time of peak 

vegetation growth is preferred (Allbed, Kumar & Aldakheel 2014; Hick & Russell 1990; 
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Johnstone & Barson 1990; Lobell et al. 2010). Sparse vegetation introduces soil 

background noise that reduces VIs' effective detection of vegetation stress (Aldakheel 

2011; Alhammadi & Glenn 2008; Douaoui, Nicolas & Walter 2006). 

 Confusion between salt induced vegetation stress and vegetation stress caused by other 

factors is more likely to occur when single date imagery is used (Mashimbye 2005; Stals 

2007). Other factors that lead to poor vegetation response include rainfall variation, poor 

farming practices and other soil conditions (e.g. compaction). When a scene is observed 

at multiple dates, certain characteristics of salt accumulation become more apparent 

(Lenney et al. 1996). It is assumed that if a specific area experiences poor vegetation 

growth throughout multiple seasons, it is more likely to be salt-affected (Furby et al. 

1995). Lobell et al. (2010) and Platonov, Noble & Kuziev (2013) used a multi-temporal, 

indirect approach to detect accumulated salts to good effect.   

 Different crop types and growing phases have varying salt tolerances (Hanson, Grattan & 

Fulton 2006; Zhang et al. 2011). This phenomenon often leads to spectral confusion 

when using vegetation response as an indirect indictor for salt accumulation (Aldakheel 

2011; Zhang et al. 2011). Zhang et al. (2011) stressed that a single vegetation index 

might not be sufficient to monitor the salt accumulation of a variety of crop species.  

2.2.3.2 Methods unrelated to vegetation stress 

Another indirect remote sensing approach is based on the concept that certain distinctive 

vegetation types (halophytes) often occur in salt-affected areas. Contrary to the first approach, 

this approach tries to identify healthy vegetation that can be linked to the occurrence of salt 

accumulation. Since this approach requires vegetation type identification, it is largely confined to 

hyperspectral studies, which includes matching spectral reflectance through narrow spectral 

bands to certain vegetation types (Dehaan & Taylor 2002; Dehaan & Taylor 2003; Dutkiewicz, 

Lewis & Ostendorf 2009a).  

Other indirect indicators unrelated to vegetation response include ground water modelling and 

elevation derivatives such as water accumulation models, slope gradient, slope aspect, hilltops, 

upper slopes, lower slopes and valleys (Caccetta, Allen & Watson 2000; Elnaggar & Noller 

2010; Fraser 2009; Furby, Caccetta & Wallace 2010; Stals 2007). These indirect indicators 

mainly serve as supplementary information for the direct or indirect approach in detecting salt 

accumulation.  
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2.2.3.3 Satellite imagery and image classification techniques  

The majority of the literature related to the indirect approach focuses on medium resolution 

satellite imagery, for example 30 m Landsat (Abdelfattah, Shahid & Othman 2009; Aldakheel 

2011; Al-Khaier 2003; Caccetta, Allen & Watson 2000; Dehni & Lounis 2012; Elnaggar & 

Noller 2010; Fernández-Buces et al. 2006; Furby, Caccetta & Wallace 2010; Gao & Liu 2008; 

García Rodríguez, Pérez González & Guerra Zaballos 2007; Howari 2003; Lenney et al. 1996; 

Mohamed, Morgun & Goma Bothina 2011); 23 m IRS  (Abbas et al. 2013; Dwivedi et al. 2001; 

Dwivedi & Sreenivas 1998; Eldiery, Garcia & Reich 2005; Khan et al. 2001; Koshal 2010) and 

250 m MODIS (Lobell et al. 2010), with some notable exceptions of IKONOS (Allbed, Kumar 

& Aldakheel 2014; Eldiery, Garcia & Reich 2005), QuickBird (Sidike, Zhao & Wen 2014) and 

WV2 (Abood, Maclean & Falkowski 2011). The reason for the relatively few studies involving 

very high resolution imagery is that most case studies focus on areas where salt accumulation 

occurs on a grand scale, such as Australia (Caccetta, Allen & Watson 2000; Dehaan & Taylor 

2002; Dehaan & Taylor 2003; Dutkiewicz, Lewis & Ostendorf 2009b; Fraser 2009), USA 

(Elnaggar & Noller 2010; Howari 2003; Lobell et al. 2010; Naumann, Young & Anderson 

2009), Northern Africa (Douaoui, Nicolas & Walter 2006; Lenney et al. 1996), Arabian regions 

(Alhammadi & Glenn 2008; Al-Khaier 2003; Koshal 2010; Tajgardan, Shataee & Ayoubi 2007) 

and  Pakistan and India (Abbas et al. 2013; Khan et al. 2001; Koshal 2010). 

Image classification and statistical analysis techniques are commonly used to evaluate the ability 

of vegetation response to detect salt accumulation. Examples of unsupervised classification 

(Khan et al. 2001; Lenney et al. 1996; Mashimbye 2005; Wiegand et al. 1994; Wu et al. 2008) 

and supervised classification (Howari 2003; Iqbal 2011) exist. Specific supervised classification 

techniques include MinD (Douaoui, Nicolas & Walter 2006; Hamzeh et al. 2012b),  ML (Abbas 

et al. 2013; Hamzeh et al. 2012b; Wu et al. 2008), SVM (Hamzeh et al. 2012b), RF (Abood, 

Maclean & Falkowski 2011), SAM (Hamzeh et al. 2012b), while Stals (2007) employed a rule-

based classification approach. Statistical techniques include correlation analysis (Allbed, Kumar 

& Aldakheel 2014; Peñuelas et al. 1997; Tajgardan, Shataee & Ayoubi 2007; Turhan et al. 

2008), regression analysis (Douaoui, Nicolas & Walter 2006; Hamzeh et al. 2012a; Leone et al. 

2007; Lobell et al. 2010; Tajgardan, Shataee & Ayoubi 2007; Wiegand et al. 1994), ordinary 

least square regression (Eldiery, Garcia & Reich 2005), partial least square regression (Sidike, 

Zhao & Wen 2014; Zhang et al. 2011),  analysis of variance (ANOVA) (Naumann, Young & 

Anderson 2009) and kriging (Aldakheel 2011; Douaoui, Nicolas & Walter 2006). Hyperspectral 

specific classification techniques such as SAM, SFF, matched filtering and mixture tuned 

Stellenbosch University  https://scholar.sun.ac.za



33 
 
matched filtering were successfully used to identify halophytic vegetation (Dehaan & Taylor 

2002; Dehaan & Taylor 2003; Dutkiewicz, Lewis & Ostendorf 2009b). 

2.2.3.4 Literature evaluation 

According to the literature, the indirect approach has great potential for detecting salt 

accumulation and seems to be more effective than the direct approach. In the context of this 

study, methods identified in the literature still present some challenges. With the perspective of 

developing a large scale transferable salinity monitoring system, hyperspectral imagery will not 

provide a cost-effective solution. Without hyperspectral imagery, the identified narrow band VIs 

would not be useful, as upscaling them to multispectral bands would negate its advantage. The 

identification of halophytic vegetation also relies heavily on hyperspectral imagery and therefore 

would not be useful in the context of this study.  

Since the mean field size of South African irrigation schemes are relatively small compared to 

study areas mentioned in literature and the occurrence of soil salinity is mainly confined to small 

localized patches across these fields, medium to low resolution satellite imagery would not be 

effective for identifying these areas. The wide range of identified image classification techniques 

also present a challenge, as it suggests that each technique might only be applicable to its 

respective study area and may not be transferable.   

Apart from these challenges, multispectral-based VIs show great potential for indirectly 

identifying salt accumulation by monitoring vegetation stress. However, little is known about the 

optimal combinations of image transformations and classification techniques for detecting salt 

accumulation using VHR imagery. Identifying these combinations is vital in the context of 

finding a transferable approach for monitoring salt accumulation on over large areas. This study 

therefore sets out to identify suitable spatial and spectral resolutions for detecting salt 

accumulation in a South African irrigation scheme; test whether there are particular image 

transformations or classification techniques that can consistently identify salt accumulation; 

assess the effect of different crop types and their salinity tolerances; and determine at what 

spatial level salt accumulation is best detected in South Africa. The next chapter presents the first 

of two experiments and aims to identify the optimal spectral and spatial factors for indirectly 

detecting salt accumulation in cultivated fields.   
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CHAPTER 3:  IDENTIFICATION OF WORLDVIEW-2 SPECTRAL 
AND SPATIAL FACTORS IN DETECTING SALT ACCUMULATION IN 

CULTIVATED FIELDS0F

1 

3.1 ABSTRACT 

Soil salinity is a global threat to agricultural production and necessitates the monitoring thereof.  

Saline conditions in South African irrigation schemes generally occur in small patches (some 

only a few metres in diameter) and this study, which forms part of a Water Research 

Commission (WRC) project, evaluates the use of very high resolution (VHR) satellite imagery, 

in particular those produced by the WoldView-2 (WV2) sensor, for the detection of salt 

accumulation in irrigated areas. A range of features derived from the WV2 image was evaluated, 

namely eight WV2 bands, ten vegetation indices (VIs), 25 texture measures and two principal 

component analysis (PCA) components. These features were generated at six spatial resolutions 

(0.5 m, 2 m, 6 m, 10 m, 15 m and 20 m) to investigate the value of high spatial resolution for 

detecting affected areas. The relationships between the image features and electric conductivity 

measurements of 30 soil samples were studied by means of regression analysis and classification 

and regression tree (CART) modelling. The regression analysis results showed that a spatial 

resolution of 6 m or higher is ideal when VIs are used as input. When texture measures are used, 

higher spatial resolution (0.5 m) produced better models. The regression results also showed that 

the relatively high spectral resolution of the WV2 sensor (compared to other VHR sensors) did 

not provide a significant improvement in accuracy. The CART results provided a categorical 

quantification of salt accumulation and showed that VIs generated at 0.5 m resolution were the 

best features to use. Because the use of WV2 images is not financially viable for operational use 

in very large irrigation schemes, the study concludes with some guidelines on the spectral and 

spatial requirements of images for monitoring salt accumulation in irrigation schemes with 

similar conditions. 

3.2 INTRODUCTION 

Soil salinity refers to the accumulation of soluble salts in soils (Al-Khaier 2003). Salt 

accumulation in soils is a naturally occurring process, but can be induced by human interference, 

known as secondary salinity. Factors such as vegetation clearing, landscape reshaping through 

earthworks, and irrigation can lead to an increase of water and salt in soils and change where 

they accumulate (McGhie & Ryan 2005). About 77 million ha of the estimated one billion ha 

1 This chapter was published in Geoderma Journal and consequently conforms to the prescribed structure of that 
journal  
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associated with salt accumulation is caused by secondary salinity, of which irrigation has the 

largest impact (Ghassemi, Jakeman & Nix 1995; Metternicht & Zinck 2003). 

A plant’s ability to take up water is reduced when an excess of salt is present in the root zone. 

The salts reduce the osmotic potential of water and hinder its movement from the soil into the 

roots and is known as the osmotic effect. When saline conditions persist, a toxic effect can occur, 

caused by the continuous accumulation of salts in the plant through the process of water 

absorption (Hillel 2000; McGhie & Ryan 2005). The osmotic and toxic effects lead to visible 

indicators such as spotty/uneven growth of vegetation, plant wilting, a blue-green tinge and 

moisture stress. Depending on the quantity and mineralogy of salt accumulation, it can also 

result in the formation of white salt crusts, puffy soil, dark greasy surfaces, dehydrated cracks 

and coarser topsoil (Ghassemi, Jakeman & Nix 1995; McGhie & Ryan 2005; Metternicht & 

Zinck 2003).  

Soil salinity can be detected using remotely sensed data either directly, by attempting to identify 

indicators of salt accumulation on the bare soil, or indirectly, by monitoring vegetation responses 

to saline conditions (Bastiaanssen 1998; Mougenot, Pouget & Epema 1993).  Challenges in 

identifying salt accumulation through direct indicators include spectral ambiguity caused by 

variance in salt mineralogy, quantity, soil moisture, colour and surface roughness, which is 

exacerbated by farming practices such as tillage and irrigation(Metternicht & Zinck 2003; Zhang 

et al. 2011). Different vegetation types also respond differently to salt accumulation due to their 

varying tolerances to saline conditions (Zhang et al. 2011). This is particularly problematic in 

highly dynamic irrigation schemes where multiple crops can be planted per season. Temporal 

variability within irrigation schemes is less of a problem when an indirect approach is used. 

Several authors have successfully applied the indirect approach to monitor plant stress caused by 

salt accumulation (Abood, Maclean & Falkowski 2011; Fernández-Buces et al. 2006; Lenney et 

al. 1996; Lobell et al. 2010; Peñuelas et al. 1997; Wiegand et al. 1994; Zhang et al. 2011). All of 

these studies relied on vegetation indices (VIs) (e.g. NDVI, EVI, and SAVI). However, poor 

farming practices and soil preparation can also lead to poor VI responses, which can easily be 

mistaken for saline conditions (Furby, Caccetta & Wallace 2010). Further limitations of the use 

of VIs for detecting areas affected by salt accumulation includes the negative impact of bare 

ground backscatter/noise, especially during the early stages of growth (Dehni & Lounis 2012; 

Douaoui, Nicolas & Walter 2006) and the varying salinity tolerances  of vegetation types (Zhang 

et al. 2011). Other indirect indicators of salt accumulation can include soil properties, terrain 

characteristics, and surface texture features (Caccetta, Allen & Watson 2000; Furby, Caccetta & 

Wallace 2010; García Rodríguez, Pérez González & Guerra Zaballos 2007; Howari 2003; Jenkin 
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1981; Metternicht & Zinck 2003). Data related to these indirect indicators can be sourced from 

previous soil surveys, digital elevation models (DEMs) and image texture information 

respectively.   

An estimated 10% to 18% of irrigated areas in South Africa are affected by waterlogging, 

sodicity or salinity (Backeberg et al. 1996). Ghassemi, Jakeman & Nix (1995) observed that, in 

general, the extent of salt accumulation and waterlogging in South Africa is less than in many 

other countries and seem to be largely under control. This is perceived to be due to sound 

planning in the selection of irrigated soils, good drainage and the fact that the irrigated areas of 

South African are generally small (Ghassemi, Jakeman & Nix 1995). Consequently, salt 

accumulation often occurs in small patches of a few metres in diameter.  

Although the extent of salt accumulation in South Africa is relatively small compared to many 

other countries (e.g. Egypt, Iran, and Argentina) (Ghassemi, Jakeman & Nix 1995), proactive 

monitoring is needed to keep track of the negative effects of salt accumulation and to determine 

if it is adequately managed.   

From the literature, it is apparent that the majority of remote sensing applications for salt 

accumulation monitoring are focused on areas where salinity occurs on a grand scale in relatively 

large cultivated fields. As a result, medium to low resolution satellite imagery is often favoured 

with Landsat (30 m) (Abdelfattah, Shahid & Othman 2009; Aldakheel 2011; Al-Khaier 2003; 

Caccetta, Allen & Watson 2000; Dehni & Lounis 2012; Elnaggar & Noller 2010; Fernández-

Buces et al. 2006; Furby, Caccetta & Wallace 2010; Gao & Liu 2008; García Rodríguez, Pérez 

González & Guerra Zaballos 2007; Howari 2003; Lenney et al. 1996; Mohamed, Morgun & 

Goma Bothina 2011) and IRS (20 m) (Abbas et al. 2013; Dwivedi et al. 2001; Dwivedi & 

Sreenivas 1998; Eldiery, Garcia & Reich 2005; Khan et al. 2001; Koshal 2010) being the most 

popular. Given that the mean field sizes are relatively small (e.g. 2 ha) in some of South Africa’s 

irrigation schemes, medium to low resolution imagery will have little value, particularly when 

fields are elongated. Salt-affected areas in South Africa are also generally much smaller than 

what can be detected with medium resolution imagery (Nell & Van Niekerk 2014).  

Very few applications of VHR imagery for salt accumulation monitoring exist. Notable 

exceptions are Abood, Maclean & Falkowski (2011) and Douaoui & Yahiaoui (2015) who used 

2 m resolution WoldView-2 (WV2) imagery; and Eldiery, Garcia & Reich (2005) who used 4 m 

resolution IKONOS imagery. However, none of these studies investigated the value of spatial 

features (such as texture measures) for the identification of salt-affected areas. Also, VHR 

imagery has, to our knowledge, never been used for monitoring salt accumulation in South 

Africa. The primary aim of this study, which forms part of a WRC project, is therefore to 
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evaluate the use of VHR satellite imagery, specifically WV2, to identify suitable spectral and 

spatial features for the identification of salt accumulation in a cultivated field. A secondary aim 

is to improve the understanding of the importance of spatial resolution for detecting salt-affected 

areas with small spatial extents. Several fields in this study area have been abandoned due to 

uncontrolled salt accumulation. Proactively identifying salt-affected areas while they are still 

relatively small in size will improve rehabilitation strategies. In South Africa, soils with 

electroconductivity (EC) values of 4.0 dS/m (deci-siemens per metre) are considered as being 

salt-affected (Bresler, McNeal & Carter 1982; SASA 2007). This corresponds to the USDA 

classification of slightly, moderately and strongly saline (USADA 2015).  

These objectives will be evaluated by analysing the WV2 derived features at six different spatial 

resolutions. Regression modelling and CART analysis will be used. The results are interpreted in 

the context of finding the best image features and optimal spatial resolution for 

predicting/identifying salt-affected areas in a South African irrigation system. 

3.3 METHODS 

3.3.1 Study area 

A 2.8 ha irrigated lucerne (alfalfa) field in the Vaalharts irrigation scheme was chosen as the 

study site (Figure 3.1). The Vaalharts irrigation scheme is situated near the towns of Jan 

Kempdorp and Hartswater at the juncture of the Northern Cape, North West and the Freestate 

provinces. The scheme is drained by the low gradient, non-incising Harts River and 

consequently, has very limited topographical variance (Gombar & Erasmus 1976; Liebenberg 

1977). The irrigation scheme has a semi-arid climate with cold, dry winters (June to August) and 

long warm summers (December to February) with a mean annual temperature of 19°C (Schulze 

2006). It receives a mean annual rainfall of 400 mm (mostly during late summer) which 

necessitates irrigation (Schulze 2006). The irrigation methods applied in the scheme comprises 

roughly 70% flood irrigation and 30% pivot irrigation (Maisela 2007). The principal cash crops 

of the scheme are maize, wheat, barley, lucerne and groundnuts (Kruger, Van Rensburg & Van 

den Berg 2009).  
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Figure 3.1 Study site location within the Vaalharts irrigation scheme 

The selected lucerne field is supplied with flood irrigation to supplement the rainfall. Lucerne 

was targeted for this study because it is moderately sensitive to saline conditions and starts 

wilting at EC levels of 2.0 dS/m and above (at root zone level) (Hanson, Grattan & Fulton 2006). 

For this study, a single crop was selected so as to eliminate the complexities associated with 

multiple crop types that have varied spectral properties and tolerances to salt accumulation 

(Hanson, Grattan & Fulton 2006; Zhang et al. 2011). 

3.3.2 Data acquisition and preparation 

The timing of image acquisition is important for discriminating between saline and non-saline 

conditions. When using features like VIs, image data from the time of maximum growth (i.e. the 

end of a wet season) should ideally be used (Furby, Caccetta & Wallace 2010; Hick & Russell 

1990). Since crop production and irrigation occurs almost continuously throughout the year in 

Vaalharts, the timing of image acquisition was less critical. A WV2 image covering a 100 km2 

section (Figure 3.1) of the Vaalharts irrigation scheme captured on 23 May 2012 was acquired. 

At the time of capture, the WV2 sensor offered higher spectral and spatial resolution compared 
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to other VHR sensors, with eight 2 m resolution relatively narrow bands in the visible and near-

infrared spectral range (Table 3.1). 

Table 3.1 WV2 bands and spatial resolution 

Band 
number 

Band description 
(WV2) 

Wavelength 
(nm) (WV2) Resolution(WV2) 

1 Coastal blue (CB) 400-450 2 m 

2 Blue 450-510 2 m 

3 Green 510-580 2 m 

4 Yellow 585-625 2 m 

5 Red 630-690 2 m 

6 Red Edge (RE) 705-745 2 m 

7 Near-Infrared1 (NIR1) 770-895 2 m 

8 Near Infrared2 (NIR2) 860-1040 2 m 

9\Pan Panchromatic 450-800 0.5 m 

Geometric corrections were carried out on the image using PCI Geomatica (version 2013 Service 

Pack 2). A north-oriented implementation of the Gauss conform coordinate system (also known 

as the LO coordinate system) was used with central meridian set to 25 °E. Nearest neighbour 

(NN) resampling was selected during orthorectification to preserve the original digital numbers 

(DN) (Campbell 2007; Lillesand, Kiefer & Chipman 2004). Radiometric corrections were 

carried out using the ATCOR-2 model which converted the DNs into percentage reflectance.   

The fusion of multispectral and panchromatic images is an effective technique for optimizing the 

spatial and spectral resolution of images (González-Audícana et al. 2004). The Pansharp 

algorithm as implemented in PCI Geomatica software was used to increase the 2 m spatial 

resolution of the multispectral data to 0.5 m. The Pansharp algorithm has been shown to 

preserve most of the spectral characteristics of the multispectral data in the resulting 

pansharpened image (Nikolakopoulos 2008; Zhang 2002).  

To evaluate the effect of spatial resolution on the identification of salt-affected areas, the original 

2 m multispectral bands were down-sampled to even 6, 10, 14, 16 and 20 m resolution using the 

mean aggregate function in ArcMap 10.1. The original 2 m multispectral image was used as a 

snap raster in the down-sampling process so as to eliminate any chance of misalignment and 

blurring. The 0.5-20 m resolution range was chosen as it covers the resolutions of common 

sensors indicated in Table 3.2 (RapidEye, LISS IV, SPOT-6/7, CBERS-4, SENTINEL-2, and 

ASTER).  
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Table 3.2 Relevant spectral and spatial resolutions of common satellite sensors  
Satellite Bands (resolution) 

RapidEye Blue(5 m), Green(5 m), Red(5 m), Red Edge(5 m), NIR (5 m) 

LISS IV (IRS) Green (6 m); Red (6 m); NIR (6 m) 

SPOT 6, 7 Blue (6 m), Green (6 m), Red(6m, NIR (6 m) 

CBERS 4  Green (10 m), Red(10 m), NIR (10 m) 

SENTINEL-2 Blue(10 m), Green(10 m), Red(10 m), NIR(10 m) 

ASTER Green(15 m), Red(15 m, NIR(15 m) 

A field survey was carried out to collect suitable training and reference data. Salinity occurrences 

are highly dynamic and can change within months. To get a true representation of the 

relationship between remotely sensed features and salt accumulation, it was vital that the 

captured image date corresponded closely with the field surveyed date. The survey was 

consequently conducted from 5 to 8 June 2012, less than two weeks after the image was 

acquired. A grid-based sampling approach was used to effectively capture the transition between 

salt-affected and unaffected areas (Figure 3.2). A total of 30 samples were collected by means of 

a soil auger at a depth of 15 cm (i.e. topsoil). The soils were characterized as being orthic and 

were classified as being from the Kimberly soil group (Macvicar et al. 1977). Differential GPS 

coordinates (10 cm accuracy), notes on the visual appearance and photographs of vegetation 

condition relative to the rest of the field were also recorded. Severe physiological stress was 

noted in salt-affected areas, while unaffected areas were generally characterized by normal 

vegetation growth. The EC of the soil samples were determined in a laboratory using the 

saturated paste technique. Soil samples with EC values of 4.0 dS/m or higher were regarded as 

being salt-affected, while all samples with EC values below 4.0 dS/m were regarded as being 

unaffected (Nell & Van Niekerk 2014; SASA 2007). 
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Figure 3.2 Surveyed points of the grid-based sampling approach. The adjacent field consists similarly of lucerne and 

orthic Kimberly soil 

3.3.3 Image features 

Vegetation indices (VIs) 

VIs are the most popular and scientifically-proven remote sensing features for monitoring 

biomass and vegetation vigour (Campbell 2007). VIs that have been successfully used for 

mapping salt-affected areas include the normalized difference vegetation index (NDVI) (Abood, 

Maclean & Falkowski 2011; Dehni & Lounis 2012; Fernández-Buces et al. 2006; Koshal 2010; 

Lenney et al. 1996; Leone et al. 2007; Lobell et al. 2010; Peñuelas et al. 1997; Turhan et al. 

2008; Wiegand et al. 1994; Wu et al. 2008; Zhang et al. 2011), soil-adjusted vegetation index 

(SAVI) (Abood, Maclean & Falkowski 2011; Alhammadi & Glenn 2008; Allbed, Kumar & 

Aldakheel 2014; Koshal 2010; Zhang et al. 2011) and enhanced vegetation index (EVI) (Lobell 

et al. 2010). NDVI is defined as: 

        Equation 3.1 

NDVI = (𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 + 𝑅𝑅)  
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where N is the reflectance in the near-infrared (NIR) band and R is the reflectance in the red 

band. Although NDVI is useful for a wide range of applications, it is very sensitive to soil 

background brightness (Bausch 1993; Huete 1988). Huete (1988) proposed using a soil-

adjustment factor (L) to reduce soil background brightness. This factor accounts for first-order, 

non-linear, differential NIR and red radiative transfer through a canopy (Jiang et al. 2008). The 

resulting SAVI is defined as: 

        Equation 3.2 

SAVI = (1 + 𝐿𝐿)((𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 + 𝑅𝑅 + 𝐿𝐿))  

where N is the reflectance in the NIR band, R is the reflectance in the red band and L is the soil-

adjustment factor. L can vary from 0 to 1 depending on the amount of visible soil. Lower L 

values with increases in vegetation cover are needed as less soil is exposed. A value of 0.5 is a 

reasonable approximation for L when the amount of visible soil is unknown (Koshal 2010). 

SAVI provides better results at low vegetation cover than NDVI because of its ability to reduce 

the soil background effect (Koshal 2010). 

The relatively low spectral resolution of VHR sensors has limited the development of other salt-

affected soil detection VIs (Metternicht & Zinck 2003). Abood, Maclean & Falkowski (2011) 

took advantage of the additional spectral bands and high spatial resolution of the WV2 imagery 

to evaluate six adaptations of the NDVI and SAVI indices. The indices that proved to be the 

most successful in distinguishing salt-affected areas utilized the yellow band, specifically NDVI 

no. 3 (Equation 3.3) and SAVI no.2 (Equation 3.4). 

        Equation 3.3 

NDVI no. 3 = (𝑁𝑁𝑁𝑁𝑁𝑁1 − 𝑌𝑌)/(𝑁𝑁𝑁𝑁𝑁𝑁1 + 𝑌𝑌)  

where NIR1 is the reflectance of the WoldView-2’s first near-infrared band and Y is the 

reflectance of the WoldView-2’s yellow band. 

        Equation 3.4
  

SAVI no. 2 = 1.5((𝑁𝑁𝑁𝑁𝑁𝑁1 − 𝑌𝑌)/(𝑁𝑁𝑁𝑁𝑁𝑁1 + 𝑌𝑌 + 0.5))  

where NIR1 is the reflectance of the WoldView-2’s first near-infrared band and Y is the 

reflectance of the WoldView-2’s yellow band. The EVI was developed to optimize the 

vegetation signal with improved sensitivity in high biomass regions. It also improves vegetation 

monitoring by  separating the canopy background signal and reducing atmospheric influences 

(Jiang et al. 2008). EVI is defined as: 
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        Equation 3.5 

EVI = 𝐺𝐺((𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 +  𝐶𝐶1𝑅𝑅 − 𝐶𝐶2𝐵𝐵 + 𝐿𝐿))  

where N is the reflectance in the NIR band, R is the reflectance in the red band, B is the 

reflectance in the blue band, G is a gain factor, L is the soil-adjustment factor and C1 and C2 are 

aerosol resistance coefficients. The parameters, as adopted in the MODIS EVI algorithm, are L 

=1; C1 = 6; C2 = 7.5 and G = 2.5, and are used as a de facto standard for other sensors. All WV2 

derived VIs were produced by performing raster calculations in ArcMap (10.1).  

Image texture  

There is no consensus on a definition for image texture as the meaning seems to vary according 

to the particular application. For the purposes of this study, it is defined as the variation in 

reflectance from pixel to pixel in a small neighbourhood (Russ 1999). The observation of image 

texture is determined by two factors, namely the scale of variation and the scale of observation 

(Mather & Magaly 2011). Howari (2003) noted that salt-affected soils tend to have uneven 

(‘spotty’) vegetation growth, which suggests a scale of variation. In this study, we manipulated 

the scale of observation by resampling the WV2 image to seven spatial resolution levels (0.5 m, 

2 m, 6 m, 10 m, 14 m, 16 m and 20 m). 

A total of 25 texture measurements were considered in this study (Table 3.3). The measurements 

were based on relative frequency distribution statistics (Conners & Harlow 1980; Haralick 1979; 

Haralick, Shanmugam & Dinstein 1973) and histogram statistics (Dekker 2003). The red and 

NIR bands, on each of the seven spatial scales, together with the original panchromatic band 

were used as input for the 25 texture algorithms considered, resulting in a total of 375 texture 

features. The panchromatic band was selected because it provides the highest resolution (0.5 m), 

while the red and NIR1 bands were selected because of its well-known sensitivity to vegetation 

variations.   
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Table 3.3 Algorithms used for texture feature generation 

# Neighbourhood-based texture 
algorithms (A) 

Histogram-based texture 
algorithms (B) 

1.  Homogeneity Mean 

2.  Contrast Median 

3.  Dissimilarity Mean deviation from mean 

4.  Mean Mean deviation from median 

5.  Variance Mean Euclidean distance 

6.  Entropy Variance 

7.  Angular second moment Coefficient of variation 

8.  Correlation Skewness 

9.  GLDVa angular second moment Kurtosis 

10.  GLDV entropy Energy 

11.  GLDV mean Entropy 

12.  GLDV contrast Weighted-rank fill ratio 

13.  Inverse difference  

  a  GLDV = Grey level difference vector. 

PCA image transform 

Campbell (2007) describes PCA as the process of identifying the optimum linear combinations 

of the original image layers that account for most of the variation in pixel values. PCA is widely 

used in salinity detection (Abbas et al. 2013; Dehni & Lounis 2012; Dwivedi et al. 2001; Eldiery, 

Garcia & Reich 2005; Khan et al. 2001; Tajgardan, Shataee & Ayoubi 2007). In this study only 

the first two components were included in the feature dataset as it accounted for more than 99% 

of the variation. These components were generated for all seven spatial levels resulting in a total 

of 14 features.  

Table 3.4 provides a summary of the 515 features that were considered in the regression and 

CART analyses. The feature set consists of the eight WV2 bands, ten VIs, 25 texture features 

(Table 3.3; Neighbourhood and Histogram-based textures) and two PCA components for each of 

the seven spatial resolution sets.   
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Table 3.4 Summary of features considered for each of the six feature sets (spatial resolution scenarios) 

Type Feature 
  

Total 
Bands Coastal Blue 

 
56 

 
Blue 

 
 

 
 

Green 
 

 
 

 
Yellow 

 
 

 
 

Red 
 

 
 

 
Read Edge 

 
 

 
 

NIR1 
 

 
 

 
NIR2 

 
 

 VIs NDVI & NDVIb   70 

 
SAVI & SAVIb   

 
 

EVI & EVIb   
 

 
NDVI no 3 & NDVIb no3   

 
 

SAVI no 2 & SAVIb no 2   
 PCA PCA band 1 

 
 14 

 
PCA band2 

   Texture Homogeneity (A) 
  

375 

 
Contrast (A)   

 
 

Dissimilarity (A)   
 

 
Mean (A)   

 
 

Variance (A)  
 

 
Entropy (A)   

 
 

Angular second moment (A)   
 

 
Correlation (A)   

 

 

GLDV angular second moment 
(A)   

 
 

GLDV entropy (A)   
 

 
GLDV mean (A)   

 

 

GLDV contrast (A) 
Inverse difference (A)   

 
 

Mean (B)   
 

 
Median (B) 

 
 

  Mean deviation from mean (B)    
 Mean deviation from median(B)    
 Mean Euclidean distance (B)    
 Variance (B)    
 Coefficient of variation (B)    
 Skewness (B)    
 Kurtosis (B)    
 Energy (B)    
 Entropy (B)    
 Weighted-rank fill ratio (B)    

   
Total number of 
features: 515 

  b with NIR2 band 

3.3.4 Spectral, statistical and CART analysis 

According to Hick & Russell (1990) and Zhang et al. (2011), vegetated salt-affected areas have a 

higher reflectance in the red band and a lower reflectance in the NIR region. This is due to the 

decline in vegetation vigour in the presence of high levels of salts. A spectral analysis was 

carried out to investigate to what extent salt-affected areas can be differentiated using the bands 

of the WV2 image. The first step was to plot the spectral responses of vegetation in salt-affected 

and unaffected areas on a graph to allow a visual interpretation of the two profiles. The original 2 

m multispectral bands were used as input in the spectral analysis.  
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The statistical relationships between the image features and salt-affected areas were then 

explored by modelling EC values through regression analyses. The WV2-derived features were 

specified as independent variables, while the measured EC values were specified as the 

dependent variable. Stepwise linear regression, partial least squares (PLS) regression and curve 

estimation regression were carried out in IBM SPSS (version 21) software. The curve 

estimations tested the fit between the EC values and the independent variables for various 

models (linear, logarithmic, inverse, quadratic, cubic, compound, power, s-curve, growth, 

exponential and logistic). The R2 values produced by the regression analyses were used to 

compare the models as they quantify the variation explained by the model and consequently 

provide a good estimate of the overall predictive power of the model and the nature of the 

relationship between the input variables (Field 2006).  

A CART, as implemented in the Salford Predictive Modeller software suite, was carried out to 

better understand the relationships between measured EC and the image features. CART has 

been shown to be a robust decision tree (DT) classifier and was designed for data mining and 

predictive modelling purposes (Laliberte, Fredrickson & Rango 2007; Myburgh & Van Niekerk 

2013; Steinberg & Golovnya 2007; Yu et al. 2006). CART produces a number of classification 

trees from which it generates a variable importance list (VIL) based on best relative errors and 

receiver operating characteristics (ROC) values (a.k.a. area under the curve or AUC). The best 

relative error (BRE) describes the relationship between classification errors and tree size with 

zero representing no error and one indicating random guessing. A tree with an ROC value of 0.5 

and lower is considered to have poor predictive power, while a tree with an ROC value of 0.7 or 

higher is likely to produce a good classification (Fawcett 2006; Steinberg & Golovnya 2007). 

The VIL summarizes the contribution of a specific feature to the overall tree when all nodes are 

examined. It contains the primary splitters (the feature that was used to split a node) and 

surrogate splitters (a backup feature that could be used when a primary splitter is missing). The 

VIL, therefore, acknowledges the influence of variables whose significance is hidden by other 

variables in the process of tree building (Steinberg & Golovnya 2007). In contrast to regression 

analysis, which investigates the continuous relationships between variables, CART can examine 

both continuous and categorical data. CART results in a crisp classification (e.g. salt-affected or 

unaffected) rather than a continuous regression model that is fuzzy in nature and difficult to 

interpret.  

Unlike many other “black box” supervised classifiers, CART is transparent as the contribution of 

specific features to the classification result can be visualized and inspected. In addition, the DT 

that CART produces can be used to generate a ruleset that can be manipulated or modified as 
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needed. This DT also has great transferability potential, which makes it ideal for developing a 

salt accumulation monitoring solution. 

3.4 RESULTS AND DISCUSSION 

The spectral responses of vegetation in salt-affected and unaffected areas based on the WV2 

bands are shown in Figure 3.3. The reflectance of the salt-affected areas in the red band is higher 

than that of unaffected areas. This suggests that the vegetation in salt-affected areas is growing 

less vigorously. 

The difference between salt-affected and unaffected vegetation responses in the NIR band was 

found to be marginal. This contradicts studies done by Peñuelas et al. (1997), Wang et al. (2002), 

Tilley et al. (2007) and Zhang et al. (2011) who showed that when studying vegetation cover, a 

more substantial spectral difference between salt-affected and unaffected areas exists in the NIR 

region. A likely explanation for the smaller than expected differences in NIR reflectance in our 

study is the influence of background soil reflection. During the field surveys, it was noted that 

affected areas generally had incomplete vegetation canopy cover. Due to the compromised 

canopy cover, background features (e.g. bare ground and salt encrustations) are more likely to be 

exposed when plant wilting occurs. Salt encrustations, depending on the salt type, generally have 

higher reflectance in the NIR spectrum compared to unaffected soil (Abood, Maclean & 

Falkowski 2011; Elnaggar & Noller 2010; Iqbal 2011; Khan et al. 2005; Metternicht & Zinck 

2003; Setia et al. 2013; Sidike, Zhao & Wen 2014) and this could have contributed to the 

relatively high reflectance in the NIR band. 

Nevertheless, the relatively large difference in reflectance in the red band suggests that a VI that 

makes use of the ratio between the red and NIR bands has the potential to distinguish between 

salt-affected and unaffected areas. However, the fairly high standard deviations (as indicated by 

the error bars in Figure 3.3) show that such an approach will not be successful in all cases.  
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Figure 3.3 Spectral profile of salt-affected and unaffected vegetation. The series represents the mean response of the 

surveyed points where 4.0 dS/m separates salt-affected vegetation from unaffected vegetation (error bars represent 

one standard deviation) 

Table 3.5 summarizes the regression results of models that produced the best R2 values for each 

spatial resolution scenario. A strong relationship between the yellow band and the topsoil EC 

values was observed, with R2 values of 0.7261, 0.6915 and 0.7311 at 0.5 m, 2 m and 6 m 

resolutions respectively. This is attributed to the absorption of yellow light by vegetation (Zhang 

et al. 2011) and the high reflectance of yellow wavelengths by salt efflorescence on exposed soils 

(Abood, Maclean & Falkowski 2011; Elnaggar & Noller 2010; Iqbal 2011; Khan et al. 2005; 

Metternicht & Zinck 2003; Setia et al. 2013; Sidike, Zhao & Wen 2014). The S-curve that 

models this relationship is shown in Figure 3.4a. Despite the high R2, it is clear from Figure 3.4a, 

that the model becomes less reliable as EC increases. Considering the variability in radiance 

between images, it is also unlikely that the use of a model based on a single band will be robust 

enough for the operational identification of salt-affected areas in large irrigation schemes 

covered by multiple images. The transferability of this model to other areas is consequently 

questionable. VIs have been shown to be more robust and transferable as it makes use of relative 

measures such as band ratios (Asrar et al. 1984; Bannari et al. 1995). Table 3.5 shows that some 

of the VIs that were considered in the regression analyses also produced relatively strong 

models. Figure 3.4b, for instance, shows that the relationship between EVI (with the NIR2 band) 

and EC at 6 m resolution can be described using a compound curve with relatively strong 

predictive power (R2 = 0.7045).  

The VIs that make use of the yellow band (Equations 3.3 and 3.4) generally performed best 

when compared with the normal NDVI and SAVI indices (Equations 3.1 and 3.2). This is 

consistent with Abood, Maclean & Falkowski (2011) who found that the detection of salt-

affected areas improved when the WV2 red band was substituted with the yellow band in the 
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generation of VIs. The differences in R2 between the yellow and second NIR band indices 

compared to the standard VIs, however, were statistically insignificant in this study. This 

suggests that the greater spectral resolution of the WV2 image is superfluous in the creation of 

VIs. Only minor differences in R2 values of the VI-based models were observed between 0.5 m 

and 6 m spatial resolutions after which the R2 value dropped significantly (Table 3.5).  

Table 3.5 Significant regression results from all spatial resolutions 

 
Bands VIs Texture  

Resolution R2 Feature model R2 Feature Model R2 Feature model Mean R2 

0.5 m 0.7261 Yellow S 0.6680 EVIc Compound 0.7661 B12 (red band) S 0.720 

2 m 0.6915 Yellow S 0.6782 SAVIc no2 Compound 0.7169 B2 (red band) S 0.6955 

6 m 0.7311 Yellow S 0.7045 EVI Compound 0.6780 A4 (red band) S 0.7045 

10 m 0.5872 Red S 0.5561 EVI Compound 0.6590 B2 (red band) S 0.6007 

14 m 0.5123 Yellow S 0.4429 EVIc Compound 0.5111 B8 (red band) Compound 0.4887 

16 m  0.5430 Yellow S 0.4901 EVIc Compound 0.5219 B2 (red band) Power 0.5183 

20 m 0.4400 
Red 
Edge Compound 0.2240 EVIc Compound 0.3760 B10 (red band) Cubic 0.3467 

  c  with NIR2 band 

Of all the texture features evaluated, B12 (Table 3.3) together with the red band produced the 

strongest model at 0.5 m (R2 = 0.766). The texture-based regression model outperformed the 

spectral-based models at all resolution scenarios except at 6 m. Figure 3.4c plots the relationship 

between the texture measure B12 and measured EC at 0.5 m resolution. This result is 

encouraging as texture measures are spatial measurements relative to the size of its kernel only 

and thus, theoretically less affected by radiometric variations. Texture should, therefore, produce 

models that are more robust and transferable.  

The reduction of spatial resolution generally had a detrimental effect on the regression models, 

with most significant decreases between 6 m and 10 m resolutions (mean R2 of 0.7045 and 

0.6007 respectively) and between 10 m and 14 m resolutions (mean R2 of 0.6007 and 0.4887 

respectively). The pansharpening of the 2 m multispectral bands to 0.5 m improved the models 

based on the textural features, while the spectral and VI-based models were highly comparable to 

those generated from the original 2 m multispectral data.   

The relatively poor performance of the models generated from 10m and lower resolutions is 

attributed to the limited extents of salt-affected areas, as observed during the field surveys. This 

finding suggests that spatial resolutions of 6 m or higher are required. For texture-based models, 

the highest possible resolution should be used (preferably 0.5 m). These resolutions are however 

subjected to the degree of salt accumulation.  
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Figure 3.4 a) S-curve regression model (6 m yellow band) b) Compound regression model (6 m EVI) c) S-curve 

regression model (0.5 m B12) 

Figure 3.5 is the resulting classification tree produced by CART and shows a relatively good 

classification (ROC = 0.875; BRE = 0.278) although the tree only has one main splitter (NDVI 

no. 3 at 0.5 m resolution). The VIL results, as determined by CART, are summarized in Table 

3.6. Of the 515 features, the VIs dominated the classification tree and, in contrast to the 

regression analysis, the texture features had no significant influence. Based on the VIL results, 

any of the VIs with 100% variable importance can be used with their specified split value to 

reproduce the same result (Table 3.6). Band 5 (red) at 0.5 m resolution was also listed in the 

VIL. This corresponds with Figure 3.3 which indicates that maximum spectral separation 

between salt-affected and unaffected vegetation occurs in the red portion of the electromagnetic 

spectrum. This is attributed to the relatively high absorption of red light by healthy vegetation 

and its contrastingly strong reflection by bare soils and soils covered by salt encrustations 

(depending on the salt type). The red band was consequently of great value for salt accumulation 

detection in the study area. 

a) R2: 0.7311 b) R2: 0.7045 

c) R2: 0.7661 
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The features identified in Table 3.6 are all of 0.5 m spatial resolution indicating the positive 

influence of pansharpening on the results. This result suggests that, when a more precise (crisp) 

delineation between unaffected and salt-affected areas is needed, the higher resolution VIs are 

most effective. This is likely because a VI at 0.5 m resolution can accommodate a finer 

delineating line than, for instance, a VI at 6 m.    

 

Figure 3.5 CART classification tree and descriptive statistics 

 

Table 3.6 VIL of 445 features and split values 

  

 

 

 

 

More work is needed to determine to what extent the CART models can be transferred to other 

areas, as “overfitting” (i.e. producing high accuracies on specific training data while failing to 

produce similar accuracies on other data) is a well-known limitation of DT classifiers (Schaffer 

1993). The performance of other machine learning classifiers such as k-nearest neighbour (k-

NN), support vector machines (SVM), and random forests (RF) should also be investigated. 

 

Feature % importance Split values 

EVI** 0.5 m 100 0.31630 

SAVI** 0.5 m 100 0.64892 

NDVI** 0.5 m 100 0.43633 

SAVI no2 0.5 m 100 0.63730 

NDVI no3 0.5 m 100 0.428574 

Band 5 0.5 m 89.4118 16.39065 
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3.5 CONCLUSION 

In this study 515 WV2-derived spectral and spatial (texture) features were analysed at 0.5 m, 2 

m, 6 m, 10 m, 14 m, 16 m and 20 m resolutions to evaluate their potential for distinguishing 

between salt-affected and unaffected soils in an irrigated lucerne field. 

Regression analyses were carried out to investigate the relationships between the image features 

and EC values of 30 soil samples collected in the study area. The results showed that there are 

significant and strong continuous relationships between EC and several of the features 

considered and that the yellow band, as well as a number of VIs and texture features, produced 

the strongest models. Generally, the strength of these relationships diminished as the spatial 

resolution was reduced.  

CART was used to better understand the importance of specific features for producing a 

categorical (i.e. crisp) output. The CART analysis identified VIs as the most important variables 

at the highest resolution of 0.5 m. Although there is inherently a compromise of spectral 

information when pansharpening is performed (in this case from 2 m to 0.5 m), this result seems 

to agree with those of Zhang (2002) and Nikolakopoulos (2008) who showed that pansharpening 

can have a positive effect in some applications. 

Overall, the regression analysis and CART results are very promising as they show that VIs 

generated at 6 m and higher resolution can potentially be used for the identification of salt 

accumulation in South African irrigation schemes. The results also suggest that high resolution 

texture features can potentially be used together with VIs for the indirect monitoring of salt-

affected soils. Furthermore, the relatively high spectral resolution of the WV2 imagery is not 

critical, as the VIs (based on red and NIR wavelengths only) performed relatively well compared 

to the performance of the individual bands.  

The results show that slightly lower spatial and spectral resolution imagery might produce 

comparable results. Notable candidates are SPOT-5 (2.5 m panchromatic; 10 m multispectral), 

SPOT-6 (1.5 m panchromatic; 6 m multispectral), RapidEye (5m multispectral) and Sentinel-2 

(10 m multispectral) data. However, more work is needed to determine whether similar results 

will be obtained from using such imagery.  

The models generated in this study only considered soil samples collected in a cultivated field 

with a single crop. It is well-known that crops differ in their response to saline conditions and 

more work is needed to investigate how these variations will affect remote sensing methods. 

Plant stress observed with satellite imagery might also be the result of factors unrelated to salt 

accumulation (e.g. irrigation and fertilisation). Such factors will have to be taken into 
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consideration in a monitoring system. One possible solution is to make use of multi-temporal 

imagery to identify areas within fields that are consistently under stress. More work is, however, 

needed to investigate the value of such approaches for the identification of salt-affected areas in 

irrigation schemes. 
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CHAPTER 4:  AN EVALUATION OF SUPERVISED CLASSIFIERS 
FOR INDIRECTLY DETECTING SALT-AFFECTED AREAS AT 

IRRIGATION SCHEME LEVEL1F

1 

 

4.1 ABSTRACT 

Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated 

areas are particularly at risk due to intensive cultivation and secondary salinization caused by 

waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep 

its negative effects under control. The dynamic spatial and temporal characteristics of remote 

sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation 

scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral 

bands, vegetation indices, image textures and image transformations) for classifying salt-affected 

areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede 

River. The relationship between the input features and electroconductivity measurements were 

investigated using regression modelling (stepwise linear regression, partial least squares 

regression, curve fit regression modelling) and supervised classification (maximum likelihood 

(ML), nearest neighbour (NN), decision tree (DT) analysis, support vector machine (SVM) and 

random forests (RF)). Classification and regression trees (CART) and RF were used to select the 

most important features for differentiating salt-affected and unaffected areas. The results showed 

that the regression analyses produced weak models (< 0.4 R-squared). Better results were 

achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected 

areas. A key finding was that none of the feature sets or classification algorithms stood out as 

being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to 

the large variations in the spectral responses of different crops types at different growing stages, 

coupled with their individual tolerances to saline conditions.    

4.2 INTRODUCTION 

The term salinity is used to describe the processes and impacts of salt and water, while also 

being a measure of the amount of salt in soil or water (McGhie & Ryan 2005). Soil salinity is 

defined as the accumulation of soluble salts in the soil (Al-Khaier 2003). Salt accumulation can 

occur naturally (primary salinity) or as a result of human interference (secondary salinity). 

Human activities such as vegetation clearing, irrigation, and landscape reshaping through 

1 This chapter is published in the International Journal of Applied Earth Observation and Geoinformation and 
consequently conforms to the prescribed structure of that journal 
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earthworks can, for example, increase the volume of water and salt in the soil and change how 

they move and where they accumulate (Ghassemi, Jakeman & Nix 1995; McGhie & Ryan 2005; 

Metternicht & Zinck 2009). Determining salinity risk goes hand in hand with the understanding 

of groundwater movement since this controls the mobility and transfer of salt deposits, among 

other landscape factors (Spies & Woodgate 2005).  

According to Hillel (2000), soil salinity is a severe environmental hazard that affects the growth 

of various crops. Although salinity might not be as dramatic or damaging as earthquakes or 

landslides, it is an environmental hazard that greatly reduces crop yields and agricultural 

production (Ghassemi, Jakeman & Nix 1995; Metternicht & Zinck 2009; Umali 1993; Zinck 

2000). Salt accumulation also has additional secondary negative impacts, such as the devaluation 

of farm properties, land degradation, eutrophication of rivers, damage to infrastructure, increased 

soil erosion and engineering difficulties (Metternicht & Zinck 2003).    

It is estimated that nearly one billion hectares (ha), which is equivalent to about 7% of the earth’s 

continental extent, is associated with salt-affected areas (Ghassemi, Jakeman & Nix 1995). 

According to the Food and Agriculture Organization of the United Nations (FAO), of the 230 

million ha land available for  irrigation, 45 million ha (19.5%) are salt-affected (FAO 2016).  

Most of these affected areas are the consequence of human activities, in particular, irrigation 

(Metternicht & Zinck 2003). This is an alarming statistic and Abbas et al. (2013) estimate that, at 

a global scale, soil salinization is increasing at a rate of up to 2 million ha per annum. 

Proactive monitoring of salt accumulation is needed to keep its negative effects under control. 

Salinity monitoring involves the identification of areas where salts concentrate and the detection 

of temporal and spatial changes in this occurrence (Zinck 2000). Remotely sensed data can 

contribute a great deal to monitoring these processes because of its ability to capture information 

in both spatial and temporal scales (Abbas et al. 2013). Bastiaanssen, Molden & Makin (2000) 

state that remote sensing has the potential to predict soil salinity, perform diagnosis and assess its 

impact. Compared to solely relying on regular field surveys for monitoring salt accumulation, the 

synthesis of remote sensing with field surveys can potentially save labour, time, and effort 

(Eldiery, Garcia & Reich 2005; Metternicht 1996).  

Soil salinity can be detected from remotely sensed data either directly or indirectly (Bastiaanssen 

1998; Mougenot, Pouget & Epema 1993). When studying the spectral properties of bare soil 

directly, indicators of salt accumulation includes white salt crusts, puffy soil, dark greasy 

surfaces, dehydrated cracks and coarser topsoil (Goodall, North & Glennie 2000; McGhie & 

Ryan 2005; Metternicht & Zinck 2003). The main limitation of the direct approach is that 

farming practices such as tillage and irrigation compromise the spectral properties of soils 
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(Metternicht & Zinck 2003; Zhang et al. 2011), particularly in highly dynamic irrigation 

schemes. 

Techniques other than the direct approach are considered indirect methods for detecting salt 

accumulation. The aim of the indirect approach is to map the effect that salt accumulation has on 

land cover. Most indirect indicators are related to vegetation types and growth. An excess of salt 

in a plant’s root environment leads to a reduced ability to take up water. The salts reduce the 

osmotic potential of water and hinder the movement of water from the soil into the root. If saline 

conditions persist, the small amount of salt that enters a plant along with water accumulates over 

time and becomes toxic (Hillel 2000; McGhie & Ryan 2005). These effects lead to spotty/uneven 

growth, plant wilting, blue-green tinge and moisture stress.  

Several authors have successfully applied the indirect approach to identify plant stress caused by 

salt accumulation (Abood, Maclean & Falkowski 2011; Fernández-Buces et al. 2006; Koshal 

2010; Lenney et al. 1996; Lobell et al. 2010; Peñuelas et al. 1997; Wiegand et al. 1994; Zhang et 

al. 2011). In all of these cases, vegetation indices (VIs) (e.g. NDVI, EVI and SAVI) were 

employed. The use of VIs is, however, not without complications. Plant species with a high salt 

tolerance can lead to ambiguity in the response of vegetation indices (Aldakheel 2011); poor 

farming practices and soil preparation can lead to poor vegetation responses which can be 

misinterpreted as being caused by salinity conditions (Furby et al. 1995); and using VIs in study 

areas with a high bare ground backscatter/noise can influence some of the vegetation indices 

negatively (Dehni & Lounis 2012; Douaoui, Nicolas & Walter 2006). Other indirect indicators of 

salt accumulation include soil types (García Rodríguez, Pérez González & Guerra Zaballos 

2007) elevation and terrain data (Caccetta, Allen & Watson 2000; Farifteha, Farshada & 

Georgeb 2006; Furby et al. 1995; Jenkin 1981; McFarlane, George & Caccetta 2004) and image 

texture (Metternicht & Zinck 2003). 

Most applications of remote sensing for monitoring salt accumulation have been carried out in 

areas where salt accumulation occurs on a grand scale. As a result, the majority of the satellite 

imagery used for the identification of salt accumulation has medium to low resolutions. Landsat 

(30 m) (Abdelfattah, Shahid & Othman 2009; Aldakheel 2011; Al-Khaier 2003; Caccetta, Allen 

& Watson 2000; Dehni & Lounis 2012; Elnaggar & Noller 2010; Fernández-Buces et al. 2006; 

Furby et al. 1995; Gao & Liu 2008; García Rodríguez, Pérez González & Guerra Zaballos 2007; 

Howari 2003; Lenney et al. 1996; Mohamed, Morgun & Goma Bothina 2011); IRS (20 m) 

(Abbas et al. 2013; Abbas & Khan 2007; Dwivedi et al. 2001; Dwivedi & Sreenivas 1998; 

Eldiery, Garcia & Reich 2005; Khan et al. 2001; Koshal 2010) and MODIS (250 m) (Lobell et 

al. 2010) are most commonly used. However, agricultural activities in irrigation schemes are 
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normally diverse in nature as many different crops are usually planted, often on a rotational 

basis. This poses a unique challenge for detecting salt accumulation, especially if it occurs in 

small patches within relatively small fields. Such areas will be difficult to detect using medium 

to low resolution (e.g. 20 to 250 m) satellite images. Few studies on the use of very high 

resolution (VHR) imagery for indirect salt accumulation monitoring exist. Exceptions include 

Douaoui & Yahiaoui (2015), and the unpublished work of Abood, Maclean & Falkowski (2011) 

who used WorldView-2 (WV2) (2 m) imagery; as well as Howari & Goodell (2009), Eldiery, 

Garcia & Reich (2005), Dwivedi, Kothapalli & Singh (2009) and Allbed, Kumar & Aldakheel 

(2014) who used IKONOS (4 m) imagery. Other high resolution imagery used for detecting soil 

salinity include airborne multispectral (Hick & Russell 1990; Howari 2003; Wiegand et al. 1994) 

and hyperspectral imagery (Dehaan & Taylor 2002; Dehaan & Taylor 2003; Dutkiewicz, Lewis 

& Ostendorf 2009b; Farifteh 2009; Naumann, Young & Anderson 2009; Schmid, Magaly & 

Gumuzzio 2009). Hyperspectral imagery in particular holds key advantages over standard 

multispectral imagery due to its rich spectral information (Metternicht & Zinck 2009). Due to 

limited coverage and low availability of these images, they were not considered for this study. 

Supervised classification is a proven tool for successfully identifying salt accumulation. The ML 

classification is the most commonly applied supervised method for the identification of salt 

accumulation. Its application stretches across various satellite platforms, namely Landsat (Abbas 

et al. 2013; Castaneda & Herrero 2009; García Rodríguez, Pérez González & Guerra Zaballos 

2007; Howari 2003; Iqbal 2011; Wu et al. 2008), LISS-II (Abbas et al. 2013) and IKONOS 

(Dwivedi, Kothapalli & Singh 2009; Howari & Goodell 2009). To our knowledge, however, no 

research has been done to evaluate the ability of different supervised classifiers for detecting salt-

affected areas using VHR imagery in highly complex and dynamic irrigated areas.    

The aim of this paper, which forms part of a Water Research Commission (WRC) project (WRC 

2010), is thus to evaluate a range of indirect indicators – derived from SPOT-5 imagery – for 

detecting and classifying salt-affected areas at irrigation scheme level. Several supervised image 

classification techniques are evaluated, namely ML, SVM, NN, DT, and random forest (RF). The 

techniques are evaluated on two contrasting irrigation schemes in South Africa (Vaalharts and 

Breede River) to determine whether any of the classifiers consistently produce superior results 

and to identify the indirect indicators that can reliably be used to detect salt accumulation. The 

results are discussed and interpreted in the context of finding operational solutions for salt 

accumulation monitoring at irrigation scheme level. 
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4.3 METHODS 

4.3.1 Study area 

The Vaalharts irrigation scheme, situated on the borders of the Northern Cape, North West and 

the Free State provinces, near the towns of Jan Kempdorp, Hartswater, and Pampierstad, was 

selected as the first study area (Figure 4.1). The scheme covers 29181 ha and is one of the largest 

irrigation schemes in South Africa (Van Rensburg et al. 2012). The area borders two plateaus on 

the east and west of the Harts River Valley. The valley slopes towards the south with very little 

topographical changes due to the low gradient of the non-incising Harts River (Gombar & 

Erasmus 1976; Liebenberg 1977). Vaalharts is known for its sandy soils, which are prone to 

waterlogging and salt accumulation. This is exacerbated by insufficient natural drainage and soil 

compaction (Maisela 2007). Typically the soils consist of 8% clay, 2% silt, 68% fine sand and 

22% medium and coarse sand (Streutker 1997). The scheme is located at an altitude of 1175 m 

above sea level and is known for its cold winters and long warm summers (Maisela 2007). The 

area receives a mean annual rainfall of 400 mm with a mean annual temperature of 19°C 

(Schulze 2006).  

Due to its semi-arid climate, irrigation is required for crop production (Van Rensburg et al. 

2012). Vaalharts receives its irrigation water from the Vaal and Harts rivers. Approximately 70% 

of the irrigation infrastructure comprises of flood irrigation, while pivot irrigation contributes to 

the remainder (Maisela 2007). The principal crops planted are maize, wheat, barley, lucerne, 

groundnuts and increasingly pecan nuts (Barnard 2013; Kruger, Van Rensburg & Van den Berg 

2009). In addition to the high variation in crop type, most of the annual cash crops are subjected 

to a double cropping rotation system, which involves the planting and harvesting of two 

successive crops per year (Barnard 2013). This crop system implies that most crops are at 

different growing phases at any given time, which contributes to a high variation in vegetation 

responses observed with remote sensing.  

The Breede River irrigation scheme was selected as the second study area (Figure 4.1). The 

Breede River originates in the Ceres Valley +- 100 km North West of Cape Town and flows 320 

km in a south easterly direction where it reaches the Indian Ocean at Witsand (Kirchner 1995). 

The river drains a catchment of about 1.26 million ha. About a 100 000 ha is used for agriculture 

in the middle parts of the greater catchment, between Worcester and Robertson,. This intensively 

cultivated region was chosen as the focus area as it is a good representation of the larger 

irrigation scheme. The focus area has a gentle hilly relief defined with high mountain ranges 

north (Langeberg Mountain) and south (Riviersonderend Mountain) parallel to the river. These 
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mountain ranges are formed by resistant quartzite and sandstones, reaching heights of up to 1800 

m in the north west of the catchment (Ghassemi, Jakeman & Nix 1995). The valleys are mainly 

underlined with shale and siltstone from the Malmesbury and Bokkeveld basements (Beuster, 

Shand & Carter 2003).  The focus area is located at a mean altitude of 233 m above sea level and 

has a Mediterranean climate with dry and hot summers and moderately warm wet winters 

(Flügel & Kienzle 1989). It receives an annual rainfall of 290 mm mainly during the winter 

rainfall season (May to October), and is thus classified as semi-arid (Schulze 2006). The annual 

mean temperature for the area is 17°C (Schulze 2006).  

The Greater Bandvlei Dam supplies the irrigation scheme with water in the dry season. The 

majority of the farm irrigation infrastructure comprises of drip and microjet systems (Beuster, 

Shand & Carter 2003). The crop mix in the Breede River irrigation scheme is less diverse 

compared to the Vaalharts scheme with wine grape variations being the primary (65%) crop. 

Other crops include peaches and apricots (13%), vegetables, mainly tomatoes (3%) and irrigated 

pastures (7%) (Moolman et al. 1999). In contrast to Vaalharts, the crops in the Breede River are 

generally not planted in an annual rotation, resulting in their growing phases being more 

harmonized (seasonal).  

 

Figure 4.1 Study area map 
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Hanson, Grattan & Fulton (2006) compiled a database of crop types and their “maximum root 

zone salinity at which 100% yield occurs” (Threshold A) and a “reduction in relative yield per 

increase in soil salinity” (Slope B) rates. The figures of A and B for the dominant crops planted 

in the two selected irrigation schemes are listed in Table 4.1. The table also includes a qualitative 

rating for each crop type, based on the interpretation of A and B. Apricots are the most intolerant 

to high levels of salt accumulation, with a relatively low threshold value (A = 1.60) and steep 

slope (B = 24), while barley is the least sensitive to saline conditions (A = 8.00; B = 5). In 

general, the tolerances of the dominant crops produced in Vaalharts are more variable, with A 

having a standard deviation of 2.44 dS/m compared to 0.40 dS/m in Breede River. There is 

consequently a substantial difference in salt tolerance levels of the crops produced in two 

irrigation schemes.  

Table 4.1 Salinity tolerances of dominant crops in the Vaalharts and Breede River irrigation schemes. Threshold A 

is the maximum root zone salinity at which 100% yield occurs. Slope B is the reduction in relative yield per increase 

in soil salinity. 

 
Crop type 

Threshold (A) 
dS/m 

Slope (B)  Qualification 

Vaalharts Maize\corn 1.70 12 Moderately intolerant 

 
Wheat 6.00 7.1 Moderately tolerant 

 
Barley 8.00 5 Tolerant 

 
Lucerne \ alfalfa 2.00 7.3 Moderately intolerant 

 
Groundnuts 3.20 29 Moderately intolerant 

     
Breede River Grapes 1.50 9.6 Moderately intolerant 

 
Peaches 1.70 21 Intolerant 

 Apricots 1.60 24 Intolerant 

 Tomatoes 2.50 9.9 Moderately intolerant 

 

According to Backeberg et al. (1996) between 10% and 18% of irrigated areas in South Africa 

are affected by waterlogging, salinity, and sodicity. Ghassemi, Jakeman & Nix (1995) observed 

that, in general, the extent of salt-affected and waterlogged areas in South Africa is less than in 

many other countries and seems to be largely under control. This is due to sound planning in the 

selection of irrigated soils, good drainage and the fact that South African irrigated areas are 

generally smaller in size. It is mainly due to this favourable status why there are no programmes 

in place to monitor the extent of waterlogging and salt accumulation in South African irrigation 

schemes. However, salinity and waterlogging in the Vaalharts and Breede River irrigation 

schemes has increased to such an extent that some fields can no longer be cultivated, thereby 

reducing production and contributing to the loss of high potential agricultural land. The 
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underlying processes contributing to salinity in these areas are the artificial rise of the water table 

through leaky canal systems and over irrigation. Furthermore, since both areas have semi-arid 

climates, the rainfall necessary to sufficiently flush away these salts is often not enough. 

Considering that there are no programmes in place to monitor salt-affected areas in South Africa 

(De Villiers et al. 2003), remote sensing offers a promising support structure to optimize and 

improve otherwise costly field-based surveys. 

4.3.2 Data collection and preparation 

Image data from the time of maximum growth is optimal for indirectly discriminating between 

saline and non-saline conditions (Furby et al. 1995; Furby, Caccetta & Wallace 2010; Hick & 

Russell 1990). SPOT-5 imagery was preferred for this study since it offers superior ground 

coverage relative to cost compared to other VHR satellite imagery, making it more viable for 

national monitoring application. Two SPOT-5 satellite images, dated 27 April 2012 (Vaalharts) 

and 16 January 2013 (Breede River), were acquired from the South African National Space 

Agency (SANSA). Although SPOT-5 imagery has limited spectral resolution (Table 4.2) it 

contains the red and near-infrared (NIR) bands required for the generation of most VIs. Based on 

field observations of the extents of salt-affected areas in the two study areas, the 2.5 m and 10 m 

spatial resolutions of the SPOT-5 panchromatic and multispectral bands respectively, were 

considered to be adequate, particularly if the multispectral images are pansharpened (fused) to 

2.5 m. The fusion of multispectral and panchromatic images has been shown to be an effective 

technique to optimize the spatial resolution of the coarser multispectral image (González-

Audícana et al. 2004). 

Table 4.2 SPOT-5 bands and spatial resolution 

Band 
number 

Band description (SPOT-5) 
Wavelength 

(nm) (SPOT-5) 
Resolution 
(SPOT-5) 

1 Green 500-590 10 m 

2 Red 610-680 10 m 

3 Near-Infrared (NIR) 790-890 10 m 

4 Short Wave Infrared (SWIR) 1580-1750 20 m 

5\Pan Panchromatic 450-690 2.5 m 

Geometric and radiometric correction of all images were done using the software package PCI 

Geomatica (version 2013 SP2). A north-oriented implementation of the Gauss conform 

coordinate system (also known as the LO coordinate system), with central meridians 25ºE and 

19ºE for Vaalharts and Breede River respectively, was used in the orthorectification process. NN 

resampling was employed during orthorectification to preserve the original digital numbers (DN) 
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(Campbell 2007; Lillesand, Kiefer & Chipman 2004). Radiometric corrections were carried out 

using the ATCOR-2 model, which resulted in images representing percentage surface 

reflectance. The Pansharp algorithm, as implemented in Geomatica, has been shown to preserve 

most of the spectral characteristics of the multispectral data in the resulting pansharpened image 

(Zhang 2002; Nikolakopoulos 2008) and was used to increase the 10 m resolution SPOT-5 

multispectral data to 2.5 m.  

A number of field surveys were carried out to collect suitable in situ data. Due to cloud cover, 

time of maximum vegetation growth prioritization and the temporal resolution of SPOT-5, the 

field surveys were contemporaneous with the image data on a scale of a year. Seasonality 

between the field surveys and images were kept constant as far as possible due to the 

characteristic changes of salt accumulation in different seasons (Metternicht & Zinck 2003). An 

indirect study of salt accumulation would, however, minimize this effect to some extent. 

Different sampling approaches were used to accommodate accessibility restrictions (e.g. canal 

systems and fencing). An attempt was made to include sites that represented as much as possible 

variation in terms of salt accumulation, soil types and crop types (Figure 4.1). A total of 69 and 

48 samples were collected for Vaalharts and Breede River respectively. Soil samples were 

collected by means of a soil auger at a constant depth of 15 to 20 cm (topsoil) and analysed for 

the electroconductivity (EC) in a laboratory using the saturated paste technique. Differential GPS 

coordinates (10 cm accuracy), notes on the visual appearance of the immediate area, and in some 

cases, photographs were also captured.  

4.3.3 Indirect indicator features 

Features derived from the pansharpened SPOT-5 imagery included vegetation indices (VIs), 

image transformations and image texture. These features were analysed, together with the EC 

values, for its capability to indirectly classify salt accumulation.  

Vegetation indices  

VIs are the most popular and scientifically-proven tools for monitoring biomass and vegetative 

vigour (Campbell 2007). VIs that have been successfully used for mapping salt-affected areas 

include the normalized difference vegetation index (NDVI) (Abood, Maclean & Falkowski 

2011; Dehni & Lounis 2012; Fernández-Buces et al. 2006; Koshal 2010; Lenney et al. 1996; 

Leone et al. 2007; Lobell et al. 2010; Peñuelas et al. 1997; Turhan et al. 2008; Wiegand et al. 

1994; Wu et al. 2008; Zhang et al. 2011), soil-adjusted vegetation index (SAVI) (Abood, 

Maclean & Falkowski 2011; Alhammadi & Glenn 2008; Allbed, Kumar & Aldakheel 2014; 
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Koshal 2010; Zhang et al. 2011) and enhanced vegetation index (EVI) (Lobell et al. 2010). 

NDVI is defined as: 

     Equation 4.1 

NDVI = (𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 + 𝑅𝑅)  

where N is the reflectance in the NIR band and R is the reflectance in the red band. Although 

NDVI is useful for a wide range of applications, it is very sensitive to soil background brightness 

(Bausch 1993; Huete 1988). In order to adjust the soil background brightness constraint, Huete 

(1988) proposed using a soil-adjustment factor (L). This factor accounts for first-order, non-

linear, differential NIR and red radiative transfer through a canopy (Jiang et al. 2008). The 

resulting SAVI is defined as: 

     Equation 4.2 

SAVI = (1 + 𝐿𝐿)((𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 + 𝑅𝑅 + 𝐿𝐿))  
 

 

where N is the reflectance in the NIR band, R is the reflectance in the red and L is the soil-

adjustment factor. L can vary from 0 to 1 depending on the amount of visible soil. Lower L 

values are needed as vegetation cover increases and less soil is exposed. However a value of 0.5 

is a reasonable approximation for L when the amount of visible soil is unknown (Koshal 2010). 

SAVI provides better results than NDVI at low vegetation cover because of its ability to reduce 

the soil background effect (Koshal 2010). 

The EVI was developed to optimize the vegetation signal with improved sensitivity in high 

biomass regions. It also improves vegetation monitoring by disconnecting the canopy 

background signal and reducing atmospheric influences (Jiang et al. 2008). EVI cannot be 

applied to SPOT-5 images as it requires a blue band. EVI-2 is a modification of EVI that does 

not require a blue band. Jiang et al. (2008) found that EVI-2 images show very similar patterns to 

EVI at a global scale with only minor differences. EVI-2, with optimal parameter values, is 

defined as: 

     Equation 4.3 

𝐸𝐸𝐸𝐸𝐸𝐸 2 = 2.5((𝑁𝑁 − 𝑅𝑅)/(𝑁𝑁 +  2.4𝑅𝑅 + 1))  

where N is the reflectance in the NIR band and R is the reflectance in the red band. In addition to 

NDVI, SAVI, and EVI-2, the general vegetation moisture index (GVMI) was also considered in 

this study as it optimizes the retrieval of vegetation water content and minimizes the disturbing 
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effects of geophysical and atmospheric effects (Ceccato et al. 2002). GVMI makes use of the 

shortwave infrared band (SWIR), which distinguishes between variations in vegetation water 

content (Ceccato et al. 2002). GVMI is defined as: 

     Equation 4.4 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = ((𝑁𝑁 + 0.1) − (𝑆𝑆 + 0.02))/(𝑁𝑁 + 0.1) +  (𝑆𝑆 + 0.02)  

where N is the reflectance in the NIR band and S is the reflectance in the SWIR band. 

Image transformations  

Two image transformations, namely principal component analysis (PCA) and intensity, hue and 

saturation (IHS) transformation, were considered in this study. Campbell (2007) describes PCA 

as the process of identifying the optimum linear combinations of the original image layers that 

account for most variation of pixel values within an image. PCA is widely used to aid in salinity 

detection (Abbas & Khan 2007; Dehni & Lounis 2012; Dwivedi et al. 2001; Eldiery, Garcia & 

Reich 2005; Khan et al. 2001; Tajgardan, Shataee & Ayoubi 2007). Only the first two principal 

components were included in the feature set as it accounted for more the 99% of the variation. 

The IHS (Carper 1990) transform is a spectral domain procedure that transforms three image 

bands to IHS space. The three bands chosen as input to the IHS transform were red, green and 

NIR.  

Image texture features 

Image texture – local brightness variation from pixel to pixel in a small neighbourhood (Russ 

1999) – of the different spectral bands were considered as indirect indicators of salt 

accumulation. The observation of image texture is determined by two factors, namely the scale 

of variation and the scale of observation (Mather & Magaly 2011). Spotty growth of vegetation 

due to salt accumulation (Howari 2003) suggests a potential scale of variation. Given the 

relatively small extents of salt-affected areas in the study areas, the finest scale of observation (a 

3x3 kernel) was used. Histex algorithms (Dekker 2003), as implemented in PCI Geomatica 

software, were implemented for processing first-order histogram-based texture layers for each of 

the four spectral bands and the first principal component (Table 4.3). 
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Table 4.3 Histex algorithms as implemented by the PCI software  

Histex  Algorithm 

Energy [SUM(i,j)(x_i,j)^2] 

Entropy -[SUM(i,j)(p_i,j * LOG2(p_i,j))] 

Kurtosis [SUM(i,j)(x_i,j - Mean)^4] / [(M - 1) * Var^2] 

Mean Deviance [SUM(i,j)(|x_i,j - Mean|)] / M 

Mean Deviance Median [SUM(i,j)(|x_i,j - Median|)] / M 

Mean Euclidean Distance ([SUM (i,j)(x_i,j - x_c)^2]) / (M - 1) 

Mean [SUM(i,j)(x_i,j)] / M 

Median [SUM(i,j)(x_i,j)] / M 

Normalized Coefficient SQRT( Var ) / Mean 

Skewness [SUM(i,j)(x_i,j - Mean)^3] / [(M - 1) * Var^(3/2)] 

Variance [SUM(i,j)(x_i,j - Mean)^2] / (M - 1) 

Weight Rank Fill [SUM(p% brightest pixels)] / [SUM(i,j)(x_i,j)] 

  Where:     M is the number of pixels in the window (K * L) 
                   i = 0, …, K-1  
                   j= 0, …, L-1 
                   x_c is the value of the central pixel of the window 
                   x_i,j is the value of a current pixel of the texture window centred on x_c  
 
  

      Source: Dekker (2003) 

Table 4.4 provides a summary of the 73 indirect indicator features considered for analysis. The 

feature set consists of the four SPOT-5 bands; four VIs; 12 image texture measurements per 

spectral band, the first two principal components, and three IHS image transforms.  
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Table 4.4 Indirect indicator feature sets considered 

Type Feature Total 

Spectral bands: Green 4 

 

Red  

 

NIR  

 

SWIR  

VIs: NDVI 4 

 

SAVI  

 

EVI2  

 

GVMI  

Texture: Energy 60 

 

Entropy  

 

Kurtosis  

 

Mean Deviance  

 

Mean Deviance Median  

 

Mean Euclidean distance  

 

Mean  

 

Median  

 

Normalized Coefficient  

 

Skewness  

 

Variance  

 

Weight rank fill  

Image transformations: PCA band 1 5 

 

PCA band2  

 

Intensity  

 

Hue  

 

Saturation  

   

 Total number of features 73 

4.3.4 Model building 

A land cover map and field boundary data were used to exclude non-cultivated areas (e.g. non-

agricultural land uses and the fallow fields) from the analyses. Given that increased reflectance 

in the visible and reduced reflectance in the NIR spectra have been shown to be consistent in the 

vegetation responses to salt stress (Hick & Russell 1990; Tilley et al. 2007; Wang et al. 2002; 

Zhang et al. 2011), a spectral reflectance analysis was performed to better understand the effect 

of salt accumulation on vegetation growth in each study area. The samples collected during the 

field surveys were used to extract the reflectance values from the pansharpened image bands to 

create the profiles. 

Regression analyses were carried out to investigate the continuous statistical relationships 

between the indirect indicator features and salt-affected areas, mainly to provide a basis for 

comparison with the supervised classification results. The regression analysis could also be used 
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as a feature selection platform should it produce sufficient results. To model EC values the 

indirect indicator features (Table 4.4) were used as the independent variables, while measured 

EC values were defined as the dependent variable. Stepwise linear regression (SLR) and curve 

estimation regressions were carried out using IBM SPSS (version 21) software (Table 4.5). 

Partial least squares (PLS) regression was carried out using XLSTAT (Table 4.5). The R-squared 

value was used to interpret the overall fit of the regression model and the size of the relationship 

between the two variables.    

Table 4.5 Regression models and algorithms 

Regression model (Curve Fit) Equation Multiple regression 
model Equation 

Linear E(Yt)=β0+β1t Partial least squares (PLS) Y = X.Wh(Ph’.Wh)-1.Ch’ + Eh 

Logarithmic E(Yt)=β0+β1ln(t) Stepwise linear regression 
(SLR) E(Yt)=β0+β1t+β2t+… βnt 

Inverse E(Yt)=β0+β1/t   

Quadratic E(Yt)=β0+β1t+β2t2   

Cubic E(Yt)=β0+β1t+β2t2+β3t3   

Compound E(Yt)=β0βt1   

Power E(Yt)=β0tβ1   

S E(Yt)=exp(β0+β1/t)   

Growth E(Yt)=exp(β0+β1t)   

Exponential E(Yt)=β0eβ1t   

Logistic E(Yt)=(1u+β0βt1)−1   

Where: Yt is the observed series (t =1 …n) 
                E(Yt) is the expected value of Yt 
                Βn is a constant value 
               β0 is an optional user defined constant value 
   

Where (PLS): Y is the dependent variable 
                      X is the independent variable 
                       Eh is the matrix of residuals 
                       Wh, Ph, Wh,Ch are matrices generated by PLS  

The regression analyses were followed by a series of categorical (binary) supervised 

classifications using the indirect indicator features as input. For this purpose, the EC values of 

the samples were split into two distinct classes (salt-affected and unaffected) using a threshold of 

4.0 dS/m in accordance with the Soil Science Society of America (Bresler, McNeal & Carter 

1982; SASA 2007). Samples with EC values equal to or higher than this threshold were regarded 

as being salt-affected while all samples with lower EC values were classified as being 

unaffected.  

Because it is known that some classifiers are sensitive to high feature dimensionality (Friedman 

1997; Hughes 1968; Oommen et al. 2008), the CART and RF algorithms, as implemented in the 

Salford Predictive Modeller software suite, were used to identify the most important indirect 

indicators of salt accumulation at scheme level. CART is a robust DT classifier designed for data 

mining and predictive modelling (Steinberg & Golovnya 2007). RF as defined by Breiman 

(2001) is an ensemble of unpruned CART-like tree classifiers (Gislason, Benediktsson & 
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Sveinsson 2006; Pal 2005). Unlike CART and other common DT classifiers, RF is less sensitive 

to overfitting (Breiman 2001) and has been shown to be an effective feature selection tool 

(Cutler et al. 2007; Gislason, Benediktsson & Sveinsson 2006). Although its known that the use 

of CART and RF is not ideal for selecting features when dissimilar classifiers (e.g. ML, SVM, 

NN) are used, many examples exist where these algorithms have successfully been implemented 

for feature dimensionality reduction (Laliberte, Fredrickson & Rango 2007; Myburgh & Van 

Niekerk 2013; Yu et al. 2006). 

All the features in Table 4.4 were used as predictor variables in the feature selection process. The 

resulting variable importance lists (VILs) summarize the contribution of a particular feature to 

the classification success and give recognition to the variables whose significance are hidden by 

other variables in the process of tree building (Steinberg & Golovnya 2007). The VIL’s essential 

function is to reduce the feature dimensionality and the computational requirement, while 

preserving the overall accuracy of the classification (Laliberte, Fredrickson & Rango 2007; Yu et 

al. 2006).  

Six supervised classification algorithms (Table 4.6) were evaluated. Customized software 

developed in C++ using libSVM and OpenCV libraries was used for this purpose (Myburgh & 

Van Niekerk 2014). SVM is known for its superior results in classification accuracy when 

compared to less sophisticated (e.g. ML and NN) classifiers (Mountrakis, Im & Ogole 2011; 

Myburgh & Van Niekerk 2013; Myburgh & Van Niekerk 2014; Pal & Mather 2005; Tzotsos & 

Argialas 2008). RF (aka Random Trees) is a relatively new classifier in the field of remote 

sensing and has been shown to compare well, and even outperform SVM (Bosch, Zisserman & 

Muoz 2007; Novack et al. 2011; Pal 2005).  

Table 4.6 Supervised classifiers considered and their implementations 

Classifier Library 

Support Vector Machine (SVM1) Libsvm 3.2 (Chang & Lin 2011) 

 Support Vector Machine  (SVM2) OpenCV 2.4.10 (Bradski 2000) 

Nearest Neighbour (NN) OpenCV 2.4.10 

Maximum likelihood classification 

(MLC) 
OpenCV 2.4.10 

Decision Trees (DT) OpenCV 2.4.10 

Random Forest (RF) OpenCV 2.4.10 

The supervised classifications were carried out in an object-based image analysis (OBIA) 

paradigm. The main advantage of an OBIA approach is that the feature values at each surveyed 

point and its immediate neighbourhood are considered during the training and classifying 

process (Blaschke & Strobl 2001; Flanders, Hall-Beyer & Pereverzoff 2003; Hay & Castilla 

2008). Objects were generated using the multi-resolution image segmentation algorithm in the 
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eCognition software program. A scale parameter suitable for identifying salt-affected areas was 

determined through experimentation and visual interpretation. A scale parameter of two was 

found to produce objects that are sufficiently homogenous (i.e. slightly over-segmented). All 

four pansharpened SPOT-5 bands were used as input for the segmentation. The same set of 

objects was used for each supervised classification implementation. Each of the six supervised 

classifiers was trained separately using the different feature sets outlined in Table 4.4.  

The classifiers were trained using 60% of the reference data, while the remaining 40% was used 

for accuracy assessment purposes. Error matrices representing the classified areas relative to the 

reference areas were produced for each classifier from which the overall accuracy and the kappa 

statistic was extracted (Congalton & Green 2009). The training and accuracy assessments sample 

sets were kept consistent for all the classifiers for comparison purposes.  

4.4 RESULTS AND DISCUSSIONS 

4.4.1 Spectral analysis 

Figure 4.2 shows the spectral profiles of salt-affected (EC > 4.0 dS/m) and unaffected (EC < 4.0 

dS/m) crops in the Vaalharts irrigation scheme. Compared to healthy crops, salt-affected crops 

generally have a higher reflectance in the blue to red region of the electromagnetic spectrum, 

while reflectance is lower in the near and shortwave infrared regions. This suggests that 

vegetation in salt-affected areas experience weaker growth (vegetation vigour) than in unaffected 

areas. This result is in accordance with the findings of Hick & Russell (1990), Tilley et al. 

(2007), Wang et al. (2002) and Zhang et al. (2011) and suggests that VIs that make use of the 

ratio between the red and NIR bands have the potential to distinguish between salt-affected and 

unaffected crops. However, the relatively high standard deviation in the NIR region (indicated by 

error bars in Figure 4.2) indicates that an approach using VIs only might not be successful in all 

cases. The high standard deviation can be attributed to the fact that not all vegetation stress is 

directly related to salt accumulation and that vegetation types differ in its sensitivity to salinity.  
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Figure 4.2 Spectral profiles of salt-affected (n = 19; EC >4.0 dS/m) and unaffected (n = 50; EC < 4.0 dS/m) 

vegetation as extracted from the SPOT-5 image of Vaalharts with error bars indicating one standard deviation 

The spectral profiles of the samples taken in the Breede River irrigation scheme (Figure 4.3) 

differs from in the expected profile in that salt-affected samples generally have a higher 

reflectance in all the bands. This is most likely due to the presence of background soil 

reflectance, as the predominant crops in the Breede River area are wine grapes and pruning fruit 

trees, which are planted in rows and separated by bare soil for easy access during harvesting. In 

addition, visible salt encrustations on bare soil are known to have high reflectance in the visible 

and NIR regions (Abood, Maclean & Falkowski 2011; Elnaggar & Noller 2010; Iqbal 2011; 

Khan et al. 2005; Metternicht & Zinck 2009; Metternicht & Zinck 2003; Rao et al. 1995; Setia et 

al. 2013; Sidike, Zhao & Wen 2014), which may further contribute to the atypical shape of the 

salt-affected profile in Figure 4.3. This result suggests that VIs will be less effective for 

differentiating between salt-affected and unaffected crops in the Breede River irrigation scheme 

and that other image features such as intensity, image texture, principal components, or even the 

image bands themselves, may provide better discriminations of these classes. 
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Figure 4.3 Spectral profiles of salt-affected (n = 23; EC > 4.0 dS/m ) and unaffected (n = 25; EC < 4.0 dS/m) 

vegetation as extracted from the SPOT-5 image of the Breede River with error bars indicating one standard 

deviation 

4.4.2 Regression modelling 

A series of regression modelling procedures were carried out to identify the individual or 

combinations of image features that best relate to salinity levels (as represented by EC). For 

either study areas, none of the singular (curve fit) or multiple linear regression models (SLR, 

PLS) produced any significant results and none of the 78 features paired with the EC values 

produced a model with an R-squared value greater than 0.4. This result contradicts findings of 

Hamzeh et al. (2012a) and Leone et al. (2007) who showed that strong relationships (R-square 

values greater than 0.65) between soil salinity and vegetation response exist. However, these 

studies focused on a single crop type and a likely explanation for the poor performance of the 

regression modelling in this study might be that different crops with varying tolerances to saline 

conditions were considered (Hanson, Grattan & Fulton 2006; Zhang et al. 2011). Better results 

would likely have been obtained if each individual crop type were considered independently. 

However, this would require accurate crop type data, which was not available for the study areas 

and is often not routinely available at scheme level. Also, the different growth stages of crops 

(even of the same type) planted at different times and in separate fields is also a source of 

variation and probably had a negative impact on the success of regression models.      

4.4.3 Feature selection  

It is clear from the VILs in Table 4.7 that VIs played an important role in the CART and RF 

analyses of Vaalharts, confirming the observations made based on Figure 4.2. Texture measures 

also featured strongly in this irrigation scheme.  
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Table 4.7 Six most important variables in Vaalharts according to CART and RF respectively 

CART Random Forests 

Feature 
Variable 

Importance % 
Feature 

Variable 
Importance % 

EVI2 100.00 Histex, Variance algorithm;  
M = Red layer (Table 4.3) 

100 

Histex, Median algorithm;  
M = NIR layer (Table 4.3) 

 
58.89 SAVI 89.6632 

SAVI 51.63 Histex, Median algorithm,  
M = NIR layer   (Table 4.3) 

82.9395 

NDVI 51.63 NDVI 81.7054 

Histex, Energy algorithm;  
M = NIR layer (Table 4.3) 

44.53 GVMI 76.9302 

Histex, Mean algorithm;  
M = NIR layer    (Table 4.3) 

44.53 Histex, Mean deviation algorithm;  
M = Red layer (Table 4.3)                                                         

74.4403 

All of the important indirect indicators of salt accumulation in the Breede River relate to texture 

measures (Table 4.8). Although it was expected (based on the spectral profiles in Figure 4.3) that 

VIs will not feature as strongly as in Vaalharts, the strong influence of texture over other features 

(e.g. intensity and principal components) was unforeseen. At closer inspection, it was determined 

that the importance of texture measures can be attributed to the woody vines and orchards that 

make up the majority of the crops in the Breede River. Because these crops are planted in rows, 

they are characterized by high levels of image texture. A reduction in biomass caused by saline 

conditions results in a dramatic reduction in texture as it increases reflectance from the soil 

background and thereby reduces the contrast between the planted and unplanted rows. This effect 

is amplified by the relatively low root zone salt tolerance threshold (A) and high deterioration 

slope (B) of these crops (Table 4.1) which can lead to rapid reductions in biomass under saline 

conditions. 

Table 4.8 Six most important variables in Breede River according to CART and RF respectively 

CART Random Forests 

Feature 
Variable 

Importance % 
Feature 

Variable 
Importance % 

Histex, Mean Euclidean distance algorithm;  
M = PCA layer(Table 4.3)  

 
100.00 Histex, Mean deviation algorithm;  

M = PCA layer (Table 4.3) 
100 

Histex, Mean Euclidean distance algorithm;  
M = Red layer (Table 4.3)  

 
89.68 Histex, Variance algorithm;  

M = PCA layer    (Table 4.3) 
83.2958 

Histex, Mean Euclidean distance algorithm;  
M = Green layer (Table 4.3)  

 
88.98 

Histex, Mean Euclidean distance 
algorithm;  

M = PCA layer 
 (Table 4.3) 

76.4266 

Histex, Mean Euclidean distance algorithm;  
M = SWIR layer (Table 4.3)  

 
80.17 

Histex, Mean Euclidean distance 
algorithm; 

 M = Green layer (Table 4.3)  
 

72.194 

Histex, Variance algorithm; 
 M = Red layer (Table 4.3) 

80.17 
Histex, Mean Euclidean distance 

algorithm;  
M = Red layer (Table 4.3)  

 

68.1412 

Histex, Variance algorithm;  
M = Green layer (Table 4.3)  

78.97 Histex, Mean deviation algorithm,  
M = Red layer (Table 4.3) 

65.5552 
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4.4.4 Supervised Classification 

4.4.4.1 Summary of error matrices 

Each of the six supervised classifiers were applied to seven different sets of input features (Table 

4.4) namely: all the features (Feature Set A, n = 73); only the spectral bands (Feature Set B, n = 

4); only the VIs (Feature Set C, n = 4); only the texture measures (Feature Set D, n = 60); and a 

combination of the image transformations (PCA, IHS) (Feature Set E, n = 5). Two additional 

feature sets (F, n = 6 and G, n = 6), representing the first six features of the VILs generated by 

CART and RF respectively, were also used as separate inputs to the classifiers.  

The overall accuracy (OA) and Kappa coefficient (KC) for each feature set and classifier, as 

extracted from the error matrices are listed in Table 4.9 and Table 4.10 for Vaalharts and Breede 

River respectively. 

Table 4.9 Summary of average and individual classifiers for Vaalharts 

Feature  
Set 

SVM 1 SVM 2 NN ML DT RF Mean STDDEV 

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC 

All  
features  

(A) 
76.5 0.50 78.9 0.54 79.8 0.60 73.7 0.38 86.9 0.72 85.8 0.70 80.3a 0.58 4.73 0.12 

Bands  
(B) 70.6 0.39 68.7 0.36 79.6 0.58 69.4 0.40 64.6 0.20 77.3 0.53 71.7 0.41 5.18 0.12 

VIs  
(C) 77.9 0.55 70.3 0.40 59.8 0.14 72.7 0.49 76.1 0.48 76.9 0.51 72.3 0.43 6.15 0.14 

Texture  
(D) 82.5 0.62 82.0 0.60 79.8 0.60 62.9 0.06 81.4 0.60 77.3 0.50 77.7 0.50 6.83 0.20 

Image 
transform  

(E) 
76.3 0.51 83.4 0.65 73.8 0.48 77.6 0.57 56.8 0.04 78.4 0.56 74.4 0.47 8.39 0.20 

CART  
VIL  
(F) 

77.8 0.56 78.7 0.56 58.6 0.08 71.1 0.46 69.5 0.30 80.4 0.59 72.7 0.42 7.44 0.18 

RF VIL  
(G) 69.3 0.34 70.0 0.38 78.8 0.57 63.8 0.23 92.9c 0.85 82.2 0.63 76.2 0.50 9.67 0.21 

Mean 75.8 0.50 76.0 0.50 72.9 0.43 70.2 0.37 72.6 0.46 79.8b 0.57     
Standard 
deviation 4.20 0.09 5.72 0.11 8.87 0.21 4.91 0.16 10.1 0.27 3.06 0.07     

a Best feature set result; b Best classifier result; c Best classification resul 
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Table 4.10 Summary of average and individual classifiers for Breede River  

Feature  
Set 

SVM 1 SVM 2 NN ML DT RF Mean STDDEV 

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC 

All  
features  

(A) 
88.4 0.76 83.2 0.64 86.9 0.74 88.4 0.76 72.5 0.49 72.5 0.49 82.0 0.65 6.9 0.12 

Bands  
(B) 88.4 0.76 75.1 0.53 84.2 0.69 81.9 0.64 88.4 0.76 88.4 0.76 84.4 0.69 4.9 0.09 

VIs  
(C) 79.3 0.60 79.3 0.60 72.0 0.48 74.8 0.53 70.5 0.46 70.5 0.46 74.4 0.52 3.7 0.06 

Texture  
(D) 91.6c 0.81 91.3 0.80 86.9 0.74 88.4 0.76 72.5 0.49 76.8 0.56 84.6a 0.69 7.3 0.12 

Image 
transform  

(E) 
75.1 0.53 88.4 0.76 78.3 0.58 84.2 0.69 74.8 0.53 72.0 0.48 78.8 0.60 5.7 0.10 

CART  
VIL  
(F) 

83.1 0.61 83.1 0.61 84.9 0.64 83.6 0.62 79.8 0.54 78.5 0.48 82.2 0.58 2.2 0.05 

RF VIL  
(G) 82.6 0.59 82.6 0.59 84.9 0.64 84.3 0.64 78.3 0.50 85.7 0.67 83.1 0.61 2.4 0.06 

Mean 82.8 0.67 83.3b 0.65 82.6 0.64 83.7b 0.66 76.7 0.54 77.8 0.56     
Standard 
deviation 4.73 0.10 4.98 0.09 5.08 0.08 4.26 0.08 5.68 0.10 6.45 0.11     

a Best feature set result; b Best classifier result; c Best classification result 

4.4.4.2 Vaalharts discussion 

In Vaalharts Feature Set A produced the best classification result with a mean OA and KC of 

80.3% and 0.58 respectively (Table 4.9). The relatively high accuracy achieved when using the 

full feature set supports the findings of Myburgh & Van Niekerk (2013) who showed that most 

of the classifiers considered (in particular SVM, DT and RF) are relatively insensitive to the so-

called “curse of dimensionality”. When mapping salinity stress Hamzeh et al. (2012b) similarly 

found that a larger feature set (multiple hyperspectral bands) performed similarly well or even 

outperformed smaller feature sets (VIs, PCA) when using the SVM classifier. The RF feature 

selection strategy produced comparable mean results (OA 76.2%; KC 0.50) while the CART 

feature selection generally produced lower accuracies. Generally, the mean OA of the features 

and classifiers are relatively high (72.7-80.3%), but the relatively low (0.42-0.58) mean KC 

values suggest only a fair to moderate agreement between modelled and observed salt 

accumulation when accounting for chance (Viera & Garrett 2005). 

The relatively poor performances of the feature selection strategies suggest that the feature 

selection process was too aggressive. The inclusion of more than six features in the VILs might 

have provided better results. Nevertheless, the feature selection strategy resulted in very good 

classifications in some cases. For instance, the best classification result for Vaalharts was 

achieved when the DT classifier was applied to Feature Set G, which consisted of the six best 

features according to the RF VIL. This combination produced an OA of 92.9% and KC 0.85 
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which is much higher than when the full set of features was used for the same classifier 

(OA=86.9; KC=0.72) (Figure 4.4). Although Figure 4.4 illustrate a good agreement between the 

in situ data and the classification, it seems like the classifier overestimates salt-affected areas. 

These misclassifications are mainly attributed to the differences in vegetation response between 

different crop types and other factors such as poor farming practices or soil compaction.  

On average, the most successful classifier in Vaalharts was RF, with a mean OA of 79.76% 

(Table 4.9). To our knowledge, RF has not been applied for identifying salt accumulation in 

published literature, and this result suggests that this classifier holds much potential for this 

purpose. The relatively good performance of RF is attributed to its ability to produce accurate 

classifications with limited training data (Ham et al. 2005; Mountrakis, Im & Ogole 2011). RF is 

also non-parametric and consequently has the capability to perform well with data that is not 

normally distributed, as was the case in this study. 

 

Figure 4.4 DT classification results (a and c) using Feature Set G in two detail areas within the Vaalharts irrigation 

scheme. On the right true colour images of the same areas are provided for comparison purposes (b and d). 

4.4.4.3 Breede River discussion 

Feature Set D (texture measures) was the most successful set of features in the Breede River 

study area, producing a mean OA and KC of 84.6% and 0.69 respectively (Table 4.10). The 

individual  best-performing classification was with the SVM1 classifier using feature set D with 

a 91.6% OA and a KC value of 0.81 (Figure 4.5). Very similar accuracies were achieved when 

the original bands (Feature Set B) were used as input (OA=88.4; KC=0.76). Compared to 

a) b) 

c) d) 
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Vaalharts, the feature selection strategies were more successful in the Breede River, with both 

the CART (Feature Set F) and RF (Feature Set G) methods providing higher mean accuracies 

compared to when all the features were considered (Feature Set A). Feature Set C (VIs) produced 

the poorest classification results in the Breede River area. This result was anticipated given the 

spectral profiles of the classes shown in Figure 4.3. Feature Set E, containing the image 

transformation data (e.g. PCA and IHS), unexpectedly produced relatively poor results. Although 

Figure 4.3 shows that salt-affected areas generally have higher reflectance responses in all bands, 

it seems that this relationship is not consistent (supported by the large standard deviations in 

Figure 4.3 and that the classifiers were unable to successfully separate the classes using image 

transformation features such as intensity and the first principal component).   

Overall, SVM2 and ML produced the best classifications with a mean OA of 83.29% and 

83.66% respectively (Table 4.10). This result corresponds with the findings of Hamzeh et al. 

(2012b) and Bouaziz, Gloaguen & Samir (2011) in which SVM outperformed other classifiers 

(e.g. spectral angle mapper, minimum distance & ML) for detecting salt-affected areas. The good 

performance of the SVM classifier is attributed to its ability to find support vectors with limited 

training data (Pal & Mather 2005). SVM has the added advantage of being a binary (2-class) 

classifier, which is ideal for differentiating between salt-affected and unaffected areas. In spite of 

its sensitivity to high feature dimensionality, ML performed surprisingly well in the Breede 

River study area. 

Generally, higher accuracies were achieved in Breede River compared to Vaalharts and the 

higher mean KC values (0.52-0.69) of Breede River suggest a fair to substantial agreement when 

chance is taken into consideration (Viera & Garrett 2005). The higher accuracies in the Breede 

River area are attributed to the lower variation in crop types (Table 4.1). 
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Figure 4.5 SVM classification result using Feature Set D in two detail areas within the Breede River irrigation 

scheme (a and c). On the right true colour image combination (b and d) 

4.4.4.4 General discussion 

A key finding of this study is that none of the feature sets and/or classification algorithms stood 

out as being superior for monitoring salt accumulation at irrigation scheme level. At best, the 

feature set which showed the most consistency in identifying salt accumulation on a scheme 

level was image texture (77.7% OA in Vaalharts and 84.6% OA in Breede River). This finding is 

notable as, to our knowledge, no published research on the use of image texture for indirectly 

classifying salt accumulation exists. Image texture has great potential for operational salt 

accumulation monitoring as it will likely be more stable and transferable than VIs at scheme 

level. However, more research is needed to test this hypothesis.  

Due to the large variations in how different crops respond to saline conditions, the classifications 

in this study tended to produce many false positives (over-classification). This suggests, in 

agreement with Metternicht (1996), that supervised classification methods can be used as a 

scoping mechanism for identifying salt accumulation in cultivated fields and that the identified 

areas should be visited to determine the extent of accumulation. Supervised classification of 

remotely sensed imagery can consequently be used to reduce in situ monitoring, but more work 

is needed to find earth observation solutions that can be applied for operational monitoring of 

salt accumulation in large, complex irrigation schemes.  

c) 

a) b) 

d) 
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One approach to overcome some of the limitations of supervised classification is to shift the 

focus from scheme level to field level. An evaluation of each individual field (planted with a 

single crop type) relative to itself might reduce the temporal and spatial variances of crop types 

and their salinity tolerances. The use of multi-temporal imagery might help in determining 

whether an area within a field is consistently experiencing poor vegetation growth (Abdelfattah, 

Shahid & Othman 2009; Caccetta, Allen & Watson 2000; Furby et al. 1995; Lenney et al. 1996; 

Lobell et al. 2010). According to Furby et al. (1995), persistently poor vegetation cover over 

multiple growing seasons are more likely to be caused by salt accumulation than poor farming 

practices (Lenney et al. 1996). More work is needed to evaluate whether a field-based, multi-

temporal approach will improve classification accuracies. 

4.5 CONCLUSIONS  

This study examined a number of indirect indicators for identifying salt-affected areas in 

cultivated fields at irrigation scheme level. Given that affected areas tend to occur in small 

patches within fields, 2.5 m pansharpened SPOT-5 high resolution satellite imagery was 

evaluated in two distinctly different South African irrigation schemes (Vaalharts and Breede 

River).   

A series of regression analyses were carried out to evaluate the continuous relationships between 

the observed in situ salinity levels (represented by EC) and 78 different geospatial features. The 

results showed that all the regression models were insignificant, most likely due to the high 

levels of variation in the spectral responses of different crop types at different growing stages, 

coupled with their individual tolerances to saline conditions (Hanson, Grattan & Fulton 2006; 

Zhang et al. 2011).  

A categorical, supervised classification approach to identifying salt-affected areas was also 

evaluated. CART and RF were used to reduce the dimensionality of the full feature set to two 

feature subsets, each containing the six most important features. Four other subsets of features 

(image bands; VIs; texture; image transformations) were also used as input to six different 

classification algorithms (ML, NN, RF, DT, and two implementations of SVM). The results 

showed that DT using the RF VIL as input (Feature Set H) produced the best result in Vaalharts 

(OA=92.9%; KC=0.85), while SVM1, using texture measures as input, produced the best result 

in Breede River (OA=91.6%; KC=0.81).  

The high levels of accuracies achieved suggest that supervised classification of image features 

holds much potential for monitoring salt accumulation in agricultural areas. However, based on 

visual interpretations of the results and inputs from local experts it was determined that the 
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classifications tend to over-estimate salt-affected areas in both irrigation schemes and that the 

outputs can at best be used as a scoping mechanism for monitoring salt accumulation. More 

work, possibly using a multi-temporal approach at individual field level, is needed to find robust 

solutions for routine monitoring of salt accumulation in large complex irrigation schemes.   
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CHAPTER 5:   QUANTIFICATION OF SALT-AFFECTED AND 
WATERLOGGED AREAS IN SELECTED SOUTH AFRICAN 

IRRIGATION SCHEMES USING A MULTI-TEMPORAL GEOBIA 
APPROACH2F

1 

5.1 INTRODUCTION 

The complex nature of irrigation schemes poses a unique challenge for salt accumulation and 

waterlogging monitoring. The large variation in crop types and small field sizes, combined with 

the occurrence of salt accumulation and waterlogging in small patches, requires a transferable, 

robust methodology. In Chapter 3 a good relationship between image features and soil EC values 

was found at individual field level. Chapter 4 demonstrated that the use of a single classification 

technique or feature set at scheme level is not sufficiently transferable or accurate for quantifying 

and monitoring purposes. Seasonal variability of vegetated and fallow fields necessitates the 

combination of both the indirect and direct approach to provide useful information about the 

status of salt accumulation and waterlogging. Based on the experiments of Chapters 3 and 4, it 

seems that a field-based approach, where a crop would be evaluated relative to itself, would 

reduce the variances introduced by different crop types in different growing stages and with 

different salinity tolerances. A field-based approach would additionally enable the use of both 

direct and indirect indicators. 

In this chapter, a rule-based classification approach, which delineates patches within each field 

with significantly different spectral properties compared to the rest of the field (i.e. anomalies), is 

proposed. The technique applies geographical object-based image analysis (GEOBIA) on multi-

temporal SPOT-5 imagery. The methodology was applied to nine different irrigations schemes 

across South Africa. In contrast to Chapters 3 and 4, which focused exclusively on the 

identification of salt accumulation, both salt accumulation and waterlogging is targeted in this 

new approach as they are strongly related (Section 1.1.1). The results are discussed and 

interpreted in the context of finding an operational solution to salt accumulation and 

waterlogging in South Africa. The chapter concludes with an overview of remaining challenges 

and recommendations for further work are made. 

 

 

 

1 This chapter is structured as an article with the intention to submit it to a journal for publication. An in depth 
discussion of the rationale and literature is excluded to reduce duplication from previous chapters. 
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5.2 METHODS 

5.2.1 Study areas 

To represent the true variability of South African irrigation schemes, nine schemes across the 

country, namely Vaalharts, Loskop, Makhatini, Olifants River, Tugela River, Breede River, 

Sundays River, Pondrif and Douglas, were selected for analysis. Figure 5.1 shows the location of 

each scheme. A short description of each scheme follows. Overviews of Vaalharts and Breede 

River are excluded here as they were described in Section 4.3.1. 

Loskop Irrigation Scheme 

The Loskop irrigation scheme is located in the Limpopo province, intersecting the towns of 

Marblehall and Goblersdal. The scheme forms part of the Olifants River basin, where 

salinization has been identified as the main agricultural pollution problem (Aihoon, Groenewald 

& Sartorius Von Bach 1997). The area is situated at 916 m above sea level and the geography 

ranges from mountainous bushveld to undulating terrain with thorn trees (Tren & Schur 2000). 

The region comprises a mix of the central sandy bushveld region and the Springbokvlakte and 

Loskop thornveld regions (Mucina & Rutherford 2006). Loskop has a mean annual temperature 

of 20°C and a mean annual rainfall of 552 mm (Schulze 2006). The main crops grown in the 

scheme are citrus, table grapes, maize, wheat, soya bean, cotton, tobacco and groundnuts.  

Makhatini Irrigation Scheme  

The Makhatini irrigation scheme is situated in the KwaZulu-Natal (KZN) province east of the 

town Jozini and south of the Phongolo River. The scheme is situated 92 m above sea level in the 

Makhatini and Western Maputaland clay bushveld region (Mucina & Rutherford 2006) and  has 

a humid subtropical climate with a mean annual temperature of 22°C and a mean annual rainfall 

of 577 mm (Schulze 2006). The majority of crops is sugar cane, while cotton and a variety of 

vegetables are also grown. 

Tugela River Irrigation Scheme 

Located 1104 m above sea level in the KZN province, the Tugela river irrigation scheme 

includes the towns Bergville and Winterton. Drained by the upper part of the Tugela River, the 

area falls within the moist grassland bioclimatic region of KZN (Mucina & Rutherford 2006). 

Over the past 30 years, the scheme has changed from furrow and overhead sprinkler irrigation to 

mainly centre pivot irrigation systems. The scheme has a mean annual temperature of 18°C and a 

mean annual rainfall of 745 mm (Schulze 2006). Crops grown in this area are mostly commodity 
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and industrial crops, mainly maize and winter wheat with soybeans as a rotational crop (Phipson 

2012).       

Olifants River Irrigation Scheme 

The Olifants River irrigation scheme is located in the Western Cape and includes the towns of 

Lutzville and Vredendal. Irrigation water is provided by the Olifants River, which has the second 

largest catchment in South Africa. Bordering the Atlantic Ocean, the scheme has a mean 

elevation of 31 m above sea level and consists mainly of the Namaqualand Riviera region 

(Mucina & Rutherford 2006). The mean annual temperature of the area is 18.5°C, while the 

mean annual rainfall is 134 mm (Schulze 2006). Crops in this region are mostly grapes and 

citrus.  

Sundays River Irrigation Scheme 

The Sundays River irrigation scheme is located at 83 m above sea level at the foot of the Eastern 

Cape, bordering the Indian Ocean. Major settlements in the vicinity of the irrigation scheme are 

Addo and Kirkwood. The scheme is situated predominantly between two series of alluvial 

terraces, and according to Mucina & Rutherford (2006) forms mostly part of the Albany alluvial 

vegetation region. Sundays River has a mean annual temperature of 18.5°C and a mean annual 

rainfall of 380 mm (Schulze 2006). Citrus is the dominant crop in this irrigation scheme. 

Pondrift Irrigation Scheme 

The Pondrift irrigation scheme receives its water supply from the Limpopo River, which forms 

the boundary between the Limpopo province, Zimbabwe and Botswana. The scheme, located in 

the northern-most water management area near the town of Pondirft, has a mean height of 506 m 

above sea level. The area consists of alluvial deposits from the Quaternary system and forms part 

of the subtropical alluvial vegetation region (Mucina & Rutherford 2006). The mean annual 

temperature in the Pondirft irrigation scheme is 22°C and the mean annual rainfall is 314 mm 

(Schulze 2006). Cotton, grain sorghum and tobacco are the main crops in this region.  

Douglas Irrigation Scheme 

The Douglas irrigation scheme receives water from the Orange and Vaal rivers and is located in 

the eastern part of the Northern Cape near the towns of Douglas and Salt Lake. The irrigation 

scheme is located 1014 m above sea level and has a mean annual temperature of 19°C. The mean 

annual rainfall is 293 mm (Schulze 2006). Accoding to Armour (2002), 28% of the area is flood 

irrigated while 70% is sprinkler irrigated. The trend is, however, towards the conversion to 

centre pivots. The region comprises a combination of the upper Gariep alluvial vegetation and 
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the Kimberly thornveld regions (Mucina & Rutherford 2006). Main crops grown in this 

irrigation scheme are wheat, maize, lucerne, potatoes, cotton and groundnuts (Armour 2002). 

 
Figure 5.1 Geographical distribution of the nine irrigation schemes across South Africa, with elevation data as 

backdrop 

5.2.2 Within-field anomaly detection (WFAD)  

Vegetation response, as an indirect indicator of salt accumulation, is ambiguous because of 

varying tolerances of plants to saline or waterlogged conditions. This is exacerbated by crops 

being in different growing phases, as it confounds inter-field response comparisons (Hanson, 

Grattan & Fulton 2006; Zhang et al. 2011). Direct indicators are similarly ambiguous as they can 

vary from white salt crusts to greasy black surfaces and surface ponding (McGhie & Ryan 2005). 

To effectively quantify salt accumulation and waterlogging at a scheme level, each of these 

indicators needs to be considered. However, developing a methodology to identify each unique 

indicator separately will result in a highly complex system. Such an approach will likely not be 

robust as the indicators may vary from region to region.  

The indicators of salt accumulation and waterlogging share a common characteristic that can be 

exploited for their detection and delimitation. If it can be assumed that a salt accumulation or 

waterlogging indicator only affects a part of a field (i.e. is spatially smaller than the entire field 
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in which it occurs), each indicator will appear as an area of abnormality (anomaly) in an 

otherwise spectrally homogenous field. When such an anomaly is compared to the average 

spectral response of the field in which it occurs, it becomes more apparent. Conceptually, this 

approach – called WFAD – would be ideal for the characteristically small and patchy nature of 

salt-affected and waterlogged areas in South African irrigation schemes (see Section 3.3, Figure 

3.2) and would be applicable to both fallow and vegetated fields. Potentially, the WFAD should 

also accommodate the limitations posed by the spectral ambiguity of direct and indirect 

indicators of salt accumulation and waterlogging. For example, using this approach in a wheat 

field that has a relatively high root zone salinity tolerance (Section 4.3, Table 4.1), the anomaly 

would be compared to the wheat field itself and not to a more sensitive maize field. The 

following sections explain how the WFAD method was implemented and evaluated in the nine 

study areas. 

5.2.3 Data collection and preparation 

According to Lobell et al. (2010), the risk of producing poor results is high when single date 

remotely sensed imagery is used to identify salinity. When using multi-temporal remote sensing 

data, certain characteristic trends become more apparent, and if poor vegetation conditions 

persist throughout multiple growing seasons, they are more likely to be caused by salt 

accumulation (Furby et al. 1995; Lenney et al. 1996). Two-year multi-temporal SPOT-5 scenes 

covering most of the nine study areas were consequently acquired from the South African 

National Space Agency (SANSA). In some areas, multiple scenes were required as a single 

SPOT-5 scene did not cover the full extent of the study area (Table 5.1). With a relatively high 

temporal resolution and the capability of pan-fusing multispectral bands to 2.5 m, SPOT-5 

imagery provides a cost-effective alternative to other VHR alternatives such as WorldView-2, 

QuickBird or IKONOS imagery.   

Table 5.1 SPOT-5 scenes acquired for the study areas 

Irrigation Scheme Scene Date 

Vaalharts 
27 April 2012 

20 Feb 2011 

Loskop 

30 Sept 2012 

3 June 2012 

18 May 2012 

15 June 2011 

5 May 2011 
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17  Aug 2011 

Makhathini 
26 July 2012 

2 Aug 2011 

Tugela 
22 March 2012 

1 Aug 2011 

Olifants 
26 Jan 2013 

10 April 2012 

Breede 

16 Jan 2013 

26 Feb 2013 

26 March 2012 

11 Dec 2012 

Sundays 
18 Feb 2013 

12 April 2012 

Pondrift 
23 Feb 2013 

12 March 2012 

Douglas 
13 Aug 2013 

16 April2013 

 

Geometric and radiometric corrections of all images were done using the software package PCI 

Geomatica (v 2013 SP2), while the nearest neighbour method was used to do all necessary 

resampling during pre-processing in order to preserve the original digital numbers (DN) 

(Campbell 2007; Lillesand, Kiefer & Chipman 2004). A north-oriented implementation of the 

Gauss conform coordinate system (also known as the LO coordinate system), with the central 

meridian adjusted for each scheme, was used. The mathematical model ATCOR-2 was employed 

to convert the DN’s into percentage reflectance, while the Pansharp algorithm was used to 

increase the resolution of all the 10 m and 20 m multispectral bands to 2.5 m. 

To compare each field to itself, detailed field boundaries were needed for each study area. Field 

boundaries in GIS vector format were obtained from the Department of Agriculture, Forestry and 

Fisheries and refined and improved for each area using manual editing. 

Field surveys were conducted from June 2012 to October 2014 to collect suitable reference data. 

Accessibility was often restricted by canal systems and fencing, but an attempt was made to 

include sites that represent great variation in terms of salt accumulation, waterlogging and 

unaffected areas. Surveyed points varied from being clustered to being randomly spaced across 
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each scheme. The location of the surveyed points was guided by an initial analysis of each area 

and expert knowledge of the scheme (i.e. areas known to be affected). 

Soil samples were collected by means of a soil auger and analysed for its electroconductivity 

(EC) value using laboratory analyses (saturated paste technique). Soil samples with EC values of 

4.0 dS/m or higher were regarded as being salt-affected. Some waterlogging were caused by 

shallow or rising water tables and do not necessarily result in surface ponding (Dwivedi, 

Sreenivas & Ramana 1999). Waterlogging status in such areas can only be established by 

analysing the vertical soil profile, therefore this analysis was carried out up until 1 m below the 

soil surface at each sample site.  Saturation of the top soil was determined in situ to identify 

waterlogging status. All survey points were accompanied by a GPS coordinate, notes on the 

visual appearance of the immediate area and in some cases a photograph was also recorded.  

5.2.4 Applied GEOBIA 

Sophisticated and well-established pixel-based techniques that successfully classify lower 

resolution images exist (Blaschke et al. 2014). However, high resolution images often lead to a 

high within-class spectral variability that can decrease the accuracy of pixel-based approaches 

(Hay, Niemann & McLean 1996). In this study, the extent of salt-affected and waterlogged areas 

are greater than that of the image pixels of the pan-fused SPOT-5 imagery (2.5 m), making it 

susceptible to within class variabilities. As discussed in Section 2.1.5.4, GEOBIA mimics higher 

order logic, similar to human interpretation, for identifying useful shapes, sizes and textures from 

image data (Campbell 2007).  

The WFAD technique was implemented in eCognition Developer 8 and 9. The first step in the 

WFAD process is to perform image segmentation. The implementation of the segmentation for 

each of the nine irrigation schemes was based on three SPOT-5 spectral bands as they have 

higher spatial resolutions (10 m) compared to the SWIR band (20 m). Segmentation was done on 

each SPOT-5 image for each year. The scale factor of the multi-resolution segmentation (MRS) 

algorithm, which determines the size of the objects, was adjusted individually (using visual 

interpretation) to produce meaningful objects that best represent the levels of homogeneity 

within a field for each irrigation scheme. 

Hierarchical segmentation, one of the spatial features of GEOBIA, enables more than one level 

of segmentation sharing inherent properties (Campbell 2007). For each individual scheme, the 

vector layer delineating the fields was used for the first (parent) segmentation level. Below the 

parent level objects, MRS was used to populate the parent objects with smaller child level 
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objects (Figure 5.2). Each child object inherits all the properties (e.g. mean, median, mean ratio 

and variance per band) of its relative parent object.  

 

Figure 5.2 Hierarchical WFAD segmentation process 

The second step in the WFAD process was to classify the image objects. Although a wide range 

of classification approaches and procedures to assign classes to the objects is available (see 

Section 2.1.5.3), a rule-based (expert system) classification approach was preferred as it has the 

ability to accommodate observable differences and changes within the data. A ruleset approach 

also does not require training data and the rules can progressively be applied and refined while 

maintaining full control of the classification process (Lucas et al. 2007). 

Fields of each irrigation scheme were firstly classified as vegetated or bare on the parent level 

using the NDVI. Secondly, for the identification of anomalies, the spectral response of each child 

object was compared to the average spectral response of its relative parent object. If a substantial 

difference occurred between the child object and the relative parent object, the child objects 

were identified as an anomaly. This mean difference (MeaD) process is illustrated in Figure 5.3.  

Raster Data: SPOT-5 image 

Parent level: Fields segmentation layer 

Child level: Multi-resolution segmentation layer 
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Figure 5.3 Mean difference threshold process. a) Parent level segmentation with mean NDVI value b) Child level 

segmentation with individual NDVI values c) Identified anomalies with MeaD equation when a threshold of -0.07 is 

applied. 

A MeaD equation was used to identify threshold values that highlight anomalies with a 

substantially different spectral response. The equation is described as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑅𝑅𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
   Equation 5.1 
 

where 𝑆𝑆𝑅𝑅𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the mean spectral response of a child object; and 

 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the mean spectral response of the relative  parent 
object. 

A positive MeaD threshold identifies a child object with a substantially higher spectral response 

compared to the relative parent object, while a negative MeaD threshold identifies a child object 

with a substantially lower spectral response compared to the relative parent object.  

The spectral response used for comparing the child and parent objects differed for vegetated 

(indirect indicators) and fallow (direct indicators) fields to accommodate the different indicators 

for soil salinity and waterlogging.  

a) b) 

c) 
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The NDVI was used to identify anomalies in vegetated fields (Figure 5.3). Given that the main 

indicator of salt accumulation and waterlogging in vegetated fields is physiological stress 

(Abood, Maclean & Falkowski 2011; Fernández-Buces et al. 2006; Koshal 2010; Lenney et al. 

1996; Lobell et al. 2010; Peñuelas et al. 1997; Wiegand et al. 1994; Zhang et al. 2011), only a 

negative MeaD threshold was implemented. Although halophytic vegetation can occur within 

vegetated fields, it was assumed that its vegetation response would be less than that of a 

commercially grown crop. Image texture was identified as a promising image transformation for 

indirect salinity detection (Chapter 3 and 4), but was not included in the implementation of the 

WFAD because it is still an unestablished method for salinity detection. Within the context of 

WFAD, image texture would only highlight the boundary between an affected and not-affected 

area due to brightness differences and as such is not of much use. 

For fallow fields, the NDVI and a brightness band ratio (Br) (Equation 5.2) were used. A 

positive MeaD threshold was implemented for the NDVI on bare fields to identify potential 

halophytic plants (Dehaan & Taylor 2002; Dehaan & Taylor 2003; Dutkiewicz, Lewis & 

Ostendorf 2009a; Elnaggar & Noller 2010; García Rodríguez, Pérez González & Guerra 

Zaballos 2007). To detect salt encrustations, with generally high reflectance values in the visible 

and near-infrared regions, a positive MeaD threshold was used for the Br (Abood, Maclean & 

Falkowski 2011; Dwivedi & Sreenivas 1998; Elnaggar & Noller 2010; Iqbal 2011; Khan et al. 

2005; Metternicht & Zinck 2003; Rao et al. 1995; Setia et al. 2013; Sidike, Zhao & Wen 2014). 

A negative MeaD threshold was used to accommodate the generally low reflectance values 

associated with waterlogging (ponding) (Dwivedi & Sreenivas 1998). The Br (brightness) can be 

defined as: 

𝐵𝐵𝐵𝐵 = (𝐺𝐺 + 𝑅𝑅 + 𝑁𝑁)/3       Equation 5.2 
 

where G is the reflectance in the green band; 

 R is the reflectance in the red band; and 

 N is the reflectance in the near-infrared band. 

 

Because of its lower (20 m) resolution, the SWIR band was not included in the brightness ratio. 

The positive and negative MeaD threshold values were manually determined for each SPOT-5 

image during analysis. To improve the automation of WFAD, further research should be directed 

towards achieving a higher level of image standardization in order to use single threshold values 

for all areas.  
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5.2.5 Multi-temporal analysis and quantification 

A multi-temporal analysis was carried out for each scheme using the anomalies identified for 

both years. ArcGIS software was used for this purpose. Anomalies occurring in both years were 

exclusively considered as potential salt-affected or waterlogged areas. The multi-temporal 

analysis would potentially eliminate anomalies caused by factors unrelated to salt accumulation 

or waterlogging (Furby et al. 1995; Lenney et al. 1996; Lobell et al. 2010).  

An anomaly ratio (Ar), describing the relationship between anomalies caused by salt 

accumulation and waterlogging and other non-related anomalies, was introduced to account for 

the likelihood of failing to completely eliminate all anomalies unrelated to salt accumulation or 

waterlogging. The Ar (Equation 5.3) was calculated using categories (Asw and Ao) derived from 

the ground surveyed data of each scheme.  

𝐴𝐴𝐴𝐴 =
𝐴𝐴𝑠𝑠𝑤𝑤

(𝐴𝐴𝑠𝑠𝑠𝑠 +  𝐴𝐴𝑜𝑜)
 

     Equation 5.3 
 

where 𝐴𝐴𝑠𝑠𝑠𝑠 represents the anomalies related to salt accumulation or 
waterlogging; and 

 𝐴𝐴𝑜𝑜 represents anomalies related to other factors.  

 

Final estimations of affected areas were calculated by using the Ar to alter the total percentage 

covered by the anomalies (Equation 5.4). The most recent extents of the anomalies were used for 

area calculations. 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 (%) = ((𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ×  100)  ×  𝐴𝐴𝐴𝐴 

 

    Equation 5.4 
 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 represents the total area of anomalies in hectares; and 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the total area of fields in the relative irrigation scheme 
in hectares. 

Because no training data was needed for the rule-based classification, the field surveyed points 

were exclusively used for testing the accuracy of the WFAD method. Accuracy assessment for 

each scheme was carried out to produce error matrices and the final quantification percentages. 
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5.3 RESULTS 

Error matrices (also called confusion matrices) show the accuracies achieved by the WFAD 

method for each irrigation scheme (Table 5.2 to Table 5.10). The field verification columns 

represent three categories, namely Salt-affected\Waterlogged, Stressed and Unaffected areas. 

Anomalies that appear to be caused by salt accumulation and waterlogging (e.g. indicators such 

as plant stress and the occurrence of halophytic vegetation), but were found to show no sign 

thereof during the field surveys, are represented by the Stressed category. This category 

essentially represents anomalies unrelated to salt accumulation and waterlogging that the multi-

temporal imagery was unable to eliminate. These observations were used to calculate Ar. 

Anomalies that were found to have been caused by salt accumulation and/or waterlogging were 

arbitrarily labelled “Anomaly1” in the error matrices, while the predicted observations that were 

verified to be caused by other factors were labelled as “Anomaly2”. Given that the WFAD 

method does not differentiate between anomalies caused by salt accumulation and/or 

waterlogging, the User’s Accuracy percentage for the two types of anomalies were combined for 

accuracy assessment purposes.  

Table 5.2 Vaalharts irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 18  0 6 24 
81.25 

Anomaly2  0 8  0 8 

Not Anomaly  11 3 24 38 63.2 

Totals 29 11 30 70   

Producer's 
Accuracy (%) 62.1 72.73 80     

 
Overall 

accuracy 71.64      

 Kappa 0.58     
 

Table 5.3 Loskop irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 35 0  5 40 
90.7 

Anomaly2  0 14 0  14 

Not Anomaly  8 3 25 36 69.5 

Totals 43 17 30 90    

Producer's 
Accuracy (%) 81.4 82.4 83.3     

 
Overall 

accuracy 82.20      

 Kappa 0.72      
 

  

Table 5.4 Makhatini irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 25  0 6 31 
86.04 

Anomaly2  0 12 0  12 

Not Anomaly  5  0 8 13 61.54 

Totals 30 12 14 56   

Producer's 
Accuracy (%) 83.3 100 57.14     

 
Overall 

accuracy 80.4      

 Kappa 0.672      
 

Table 5.5 Tugela irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 43  0 10 53 
85.3 

Anomaly2 0  15  0 15 

Not Anomaly  5  3 7 15 46.67 

Totals 48 18 17 83   

Producer's 
Accuracy (%) 89.58 83.33 41.18     

 
Overall 

accuracy 78.3      

 Kappa 0.6      
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Accurate delineation of salt-affected or waterlogged areas is vital for quantification purposes. 

Field survey points were used to visually verify the accuracy of the delineated areas (Figure 5.4). 

Hanson, Grattan & Fulton (2006) showed that crop types have a unique rate at which relative 

yield is reduced relative to soil salinity increases. The transition between affected and unaffected 

Table 5.6 Olifants River  irrigation  scheme  error  

matrix 
P

re
di

ct
ed

 d
at

a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 34 0 13 47 
79.7 

Anomaly2 0 17 0 17 

Not Anomaly  6 0 12 18 66.67 

Totals 40 17 25 82   

Producer's 
Accuracy (%) 85 100 48     

 
Overall 

accuracy 76.8      

 Kappa 0.6      
 

Table 5.7 Breede River irrigation scheme error    

matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 26 0 5 31 
85.7 

Anomaly2 0 4 0 4 

Not Anomaly  8 7 35 50 70 

Totals 34 11 40 85   

Producer's 
Accuracy (%) 76.47 36.36 87.5     

 
Overall 

accuracy 76.5      

 Kappa 0.58      
 

  

Table 5.8 Sondags River irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 15 0 3 18 
84.2 

Anomaly2 0 1 0 1 

Not Anomaly  7 0 25 32 78.13 

Totals 22 1 28 51   

Producer's 
Accuracy (%) 68.18 100 89.29     

 
Overall 

accuracy 80.4      

 Kappa 0.6      
 

Table 5.9 Pondrift irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 14 0 11 25 
65.6 

Anomaly2 0 7 0 7 

Not Anomaly  17 2 26 45 57.78 

Totals 31 9 37 77   

Producer's 
Accuracy (%) 45.16 77.78 70.27     

 
Overall 

accuracy 61.0      

 Kappa 0.326      
 

  

Table 5.10 Douglas irrigation scheme error matrix 

P
re

di
ct

ed
 d

at
a 

Field verification data 

  

Salt-
affected/ 

Waterlogg
ed  

Stressed Unaffected Total 
User's 

Accuracy 
(%) 

Anomaly1 21 0 9 30 
72.7 

Anomaly2 0 3 0 3 

Not Anomaly  13 0 20 33 60.61 

Totals 34 3 29 66   

Producer's 
Accuracy (%) 61.76 100 68.97     

 
Overall 

accuracy 66.7      

 Kappa 0.387      
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areas will thus vary among different crop types and can have a significant effect on the 

delineated extent of an anomaly. Figure 5.4a and b indicate a highly accurate delineation of the 

extent of the affected areas, while Figure 5.4c and d show some inconsistencies.    

 
Figure 5.4 Indication of the extent of anomaly delineation for four areas, with a and b representing examples of good 

delineations and c and d highlighting some inconsistencies  

The mean overall accuracy (OA) for the nine schemes is 75% with a mean kappa of 0.6. The 

error matrices (Table 5.2 to Table 5.10) aid in the interpretation of the salt-affected and 

waterlogging quantification percentage for each scheme in Table 5.11. 

Table 5.11 Salt-affected and waterlogging quantification 

Irrigation 
scheme 

Total area  
considered (ha) 

Anomalies 
(ha) Ar 

Estimated 
affected 

 area (ha) 

Estimated 
affected 
 area (%) 

Vaalharts 26434 572 0.725 414.7 1.57 

Loskop 38831 1239 0.716 887.124 2.28 

Makhatini 4312 194 0.714 138.516 3.21 

Tugela River 27384 2032 0.727 1477.264 5.39 

Olifants River 11284 320 0.702 224.64 1.99 

a) b) 

c) d) 
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Breede River 29129 1807 0.773 1396.811 4.80 

Sondags River 18608 556 0.95 528.2 2.84 

Pondrift 8681 604 0.775 468.1 5.39 

Douglas 22748 1614 0.919 1483.3 6.52 

 

5.4 DISCUSSION 

The WFAD achieved a mean accuracy of 75% across the nine study areas, demonstrating its 

robustness and potential for monitoring salt-affected and waterlogged areas in South Africa. 

Producer’s accuracies (PA) of salt-affected and waterlogged areas ranged from high (Tugela 

89.6%; Olifants 85%; Makhatini 83.3%; Loskop 81.4%; Breede 76.5%), to medium (Sondags 

68.2%; Vaalharts 62%, Douglas 61.8%) to low (Pondrift 45.16%). A likely explanation for the 

poor PA in the Pondrift and Douglas irrigation schemes is the occurrence of false positives due 

to recent flood damage. Flood damage leads to heterogeneous patches in fields unrelated to salt 

accumulation or waterlogging. During a flood, salts are temporarily flushed from the soil, only to 

return at a later stage. The rehabilitation period after a flood also varies. All of these factors 

highlight the importance of synchronizing the capture of satellite and field data. In some cases, 

the area of salt accumulation or waterlogging is greater than the area of normal growth in a field 

(often also related to flood damage). As a result, the MeaD algorithm highlights the areas of 

normal growth as anomalies and were consequently recorded as false positives.  

Field digitizing errors also contributed to false positives. A common cause is when vector 

boundaries do not accurately delineate the true field boundary, especially when areas slightly 

outside a field is included. The spectral properties of these areas do not match the associated 

field and are consequently identified as anomalies by the MeaD equation. Using object 

relationships, the ruleset was modified to eliminate most of these errors, but some errors could 

not be avoided. 

False positives may also occur when a fixed threshold value (e.g. 4.0 dS/m (EC) for salt 

accumulation) is used to verify if an area is affected or not. Even though the WFAD 

accommodates various crop sensitivities to salt accumulation and waterlogging, the accuracy of 

the method can be compromised if a salt tolerant crop displays no physiological stress at an EC 

level of 4.0 dS/m.   
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The two-year multi-temporal approach failed to effectively eliminate all anomalies not 

associated with salt accumulation or waterlogging. Anomalies caused by features such as ground 

compaction, drought stress and poor farming practices frequently occurred in both images. 

Increasing the period of analysis to 3 or 4 years may improve the elimination of non-related 

anomalies. The multi-temporal imagery did, however, eliminate most anomalies unrelated to salt 

accumulation and waterlogging. Harvesting remnants such as symmetrical tracks caused by 

harvesters and stacking of bales all lead to areas of high heterogeneity within a field, but were 

successfully eliminated by the multi-temporal approach.  

Considering the false positives and varying anomaly extents, the quantification of salt-affected 

and waterlogged areas presented in this study should be considered as an estimation and not 

absolute figures (Table 5.11). The quantifications (Table 5.11) only represent the current active 

fields in each scheme and does not consider fields that were abandoned due to salt accumulation 

and/or waterlogging. If abandoned fields were to be included, the percentages will be higher. 

Some fields have been abandoned for an extended period of time and a much larger temporal 

analysis would be needed to credibly identify such cases. Nevertheless, the estimations based on 

the WFAD method is a good representation of the current status of each scheme and serves as a 

starting point for further monitoring. Apart from the abandoned areas, the percentages indicate 

that salt accumulation and waterlogging is under control, especially when compared to the 

percentages of other areas such as Egypt, Iran, and Argentina that have affected areas of 30% or 

more (Ghassemi, Jakeman & Nix 1995).  

5.5 CONCLUSIONS 

A robust WFAD approach to quantify salinity and waterlogging was applied to nine different 

irrigation systems in South Africa. The great variety of crop types, field size and different 

indirect and direct salinity indicators across the irrigation schemes posed a unique challenge. The 

WFAD method uses a GEOBIA approach with a rule-based classification scheme. MeaD 

thresholds were applied separately for vegetated and bare fields to accommodate the various salt 

accumulation and waterlogging indicators. The WFAD has various strengths and weaknesses. 

The weaknesses include: 

 The manual delineation of field boundaries for a large irrigation scheme is a time-

consuming process. Inaccuracies in delineations led to an increase in false positives. 

 The multi-temporal approach does not eliminate all anomalies unrelated to salt 

accumulation and waterlogging. The addition of more seasons is suggested to remedy 

this. 
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 Currently, the approach cannot distinguish between salt-affected or waterlogged areas. 

The strengths of the WFAD are: 

 Unlike with supervised classification, training data is not necessary and ground truth data 

(where available) can thus be used exclusively for accuracy assessment. 

 The technique is not restricted to only vegetated or only bare areas. 

 Most of the known salinity and waterlogging indicators are accounted for by the various 

MeaD thresholds. 

 The approach accounts for (at least to a certain extent) the different crop growing phases 

and sensitivities to salt accumulation and waterlogging by evaluating each field relative 

to itself. 

 The approach is easily transferable across different irrigation schemes. 

 Seasonal factors unrelated to salt accumulation and waterlogging are accounted for by 

using multi-temporal imagery. 

 The approach produces a quantifiable result. 

The monitoring of salt-affected and waterlogged areas is necessary for the mitigation of potential 

damage to agricultural areas (De Villiers et al. 2003). With a mean OA and kappa of 75% and 

0.6 respectively, the WFAD presents a robust, systematic approach for keeping track of these 

areas. Recent satellite imagery can easily be incorporated to identify salt-affected and 

waterlogged areas and to monitor spatial and temporal changes. 

More research is needed to automate the field boundary delineation, as the manual digitizing of 

fields is very time-consuming and error prone. Further analyses of the spectral properties of the 

anomalies could also help in distinguishing between salt-affected or waterlogged areas.  

The next and final chapter provides a summary and a critical evaluation of the research. After 

reflecting on the research aims and objectives, recommendations for further research are 

presented and the value of the research is outlined. 
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CHAPTER 6:  DISCUSSION AND CONCLUSIONS 

This chapter presents a summary, discussion and critical evaluation of the collective results of 

the study. The specified aims and objectives are revisited, suggestions for future research are 

made and conclusions are drawn.   

6.1 ASSESSING THE INDIRECT APPROACH FOR SALINITY DETECTION USING 

EARTH OBSERVATION TECHNIQUES 

The primary aim of this study was to evaluate the capability of the indirect approach to detect 

salt accumulation in South African irrigation schemes, specifically within the context of 

developing a robust (transferable) salinity monitoring system. The research was motivated by the 

detrimental impact of high salinity levels on the agricultural sector and the absence of a 

monitoring system in South Africa.  

The literature review presented in Chapter 2 related directly to Objective 1 of the study and 

provided an overview of earth observation and the various remote sensing approaches to 

mapping salt accumulation. The review highlighted the potential of the indirect approach to 

detect salt accumulation and identified vegetation deterioration as one of the key indicators. Most 

of the previous research on remotely sensed salinity detection was conducted with medium to 

low resolution satellite imagery in areas where salt accumulation occurs on a grand scale. The 

literature study helped to formulate the research questions and shaped the research approach to 

achieve the aims of this study.    

Chapters 3 and 4 were dedicated to examining the capability of the indirect approach to identify 

salt accumulation at a field and scheme level respectively. For each of these experiments, 

appropriate in situ reference and remote sensing data were acquired, satisfying Objective 2.  

Experiments in Chapter 3 were aimed at identifying suitable spatial and spectral properties to 

effectively detect salt accumulation at a field level (Objective 3). Empirical data used for this 

experiment was a combination of WV2 derived image features and field surveyed EC values. 

The relationship between the two datasets was tested using quantitative analysis, specifically 

regression modelling and decision tree analysis (CART).   

Chapter 3 showed that utilizing vegetation response for detecting salt accumulation at a field 

level is promising. Regression modelling results achieved R-squared values of 0.766, 0.704 and 

0.731 for image texture, VIs, and spectral bands respectively, and CART produced an ROC 

value of 0.875 using VIs. Spatial resolutions of 6 m or below were found to be acceptable and a 

wider spectral resolution improved the results marginally (Research question 1). However, the 
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improvements of the wide spectral resolution (eight spectral bands) were insignificant, 

suggesting the use of more cost-effective, high resolution satellite imagery for a large scale 

implementation (Research question 2). 

The experiments of Chapter 4 aimed to evaluate the capability of pan-fused 2.5 m SPOT-5 

imagery (with relevant derived image features) to indirectly detect salt accumulation at an 

irrigation scheme level by using different classification techniques (Objective 4). The 

experiments were conducted on two distinctly different irrigation schemes. Continuous 

relationships between the two empirical datasets (image-derived features and EC values) were 

tested using regression modelling, while CART analyses and RF classifications were used for 

feature selection. Supervised classifiers (ML, NN, DT, SVM and RF) were tested for delineating 

areas of salt accumulation.  

The regression modelling results showed poor continuous relationships between EC values and 

indirect indicators (< 0.4 R-squared). Although the supervised classifications produced high 

accuracies (92.9% and 91.6% OA for Vaalharts and Breede River respectively), the models 

overestimated the observed salt accumulation. No individual classification technique or set of 

image features performed consistently well across both study areas, which suggests that this 

approach is not sufficiently transferable for large scale monitoring purposes. These findings can 

largely be attributed to the variation in spectral responses between different crop types, growing 

stages and salinity tolerances in different irrigation schemes (Research question 3). For the 

supervised classification approach to be successful at a national level, extensive training data 

would be required for each scheme. This data would also have to be updated regularly to 

accommodate the dynamic nature of salt accumulation and waterlogging. This would negate 

some of the advantages of using remote sensing over traditional in situ monitoring methods.  

The evaluation of the usefulness of the indirect approach to detect salt accumulation showed that 

its potential lies at field level (Research question 4). When a field is compared only to itself, 

different crop growing phases and varying salinity tolerances will have less of an effect and the 

distinct relationship between vegetation response and salt accumulation will become more 

apparent. Consequently, if a viable salinity monitoring approach is to be implemented, a field-

based approach is proposed.     
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6.2 DEVELOPMENT AND EVALUATION OF AN EARTH OBSERVATION 

METHODOLOGY FOR MONITORING SALT ACCUMULATION 

The secondary aim of the study was to develop and evaluate a transferable earth observation 

methodology for monitoring salt accumulation in South African irrigation schemes by taking the 

results of Chapters 3 and 4 into consideration. In Chapter 5, a semi-automated GEOBIA rule-

based classification approach was presented (Objective 5).  

Multi-temporal SPOT-5 images were acquired for nine irrigation schemes in South Africa and 

ground truth data was collected. The within-field anomaly detection (WFAD) method was 

implemented on a field level across each irrigation scheme. This was achieved through 

hierarchical segmentation using predefined field boundaries of the study areas. The rule-based 

classification system considered the spectral characteristics of all known salinity and 

waterlogging indicators, both direct and indirect. An equation that measured each object’s mean 

spectral difference relative to the field in which it occurs was employed.  

The mean OA and kappa values of 75% and 0.6 respectively across the nine irrigation schemes 

are very encouraging and demonstrate that the procedure is transferable (Research question 5). 

The key advantages of this approach are that it does not require training data; is able to deal with 

bare and vegetated areas; accommodates the variability in crop growing stages and salinity 

sensitivity by evaluating each field with itself; eliminates areas not related to salt accumulation 

and waterlogging by using multi-temporal imagery; and produces a quantifiable result. 

The WFAD approach is, however, not without shortcomings: the manual field boundary 

delineation is time-consuming; it currently only uses  imagery over two years for multi-temporal 

analysis; and it cannot distinguish between waterlogging or salt-affected areas. 

6.3   FUTURE RESEARCH RECOMMENDATIONS 

For further evaluation of the indirect approach, it is recommended that the use of image texture 

to monitor vegetation response to salt accumulation be more thoroughly investigated. Even 

though there was variation in the performance of different texture algorithms in Chapters 3 and 

4, texture measures seem to be more transferable than VIs at scheme level. No published 

literature on the use of image texture for indirectly classifying salt accumulation were found, 

suggesting a gap in existing knowledge.  

The automation of field boundary delineation would greatly benefit the WFAD method. This 

would require studying various edge detection algorithms and possibly considering hyperspectral 

and active remote sensing data. Research on the spectral characteristics of the areas identified as 
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anomalies can also be valuable for identifying the source of the anomaly. The spectral properties 

could, for example, indicate whether the anomaly was caused by waterlogging or by salt 

accumulation. For instance, if a salt crust is exposed, imagery with a wider spectral range (e.g. 

Sentinel-2) might be able to identify the type of salt compound (e.g. carbonates, sulphates or 

chlorides) (Metternicht & Zinck 2009). These salt types are characterized by their absorption and 

reflectance features in the visible, near and shortwave infrared regions. Being cognizant of the 

source of the anomaly would be of very helpful in designing rehabilitation activities. 

6.4 CONCLUSIONS 

Salt accumulation poses a threat to sustainable agriculture and can reduce crop yield – 

particularly in irrigation schemes. A need for systematic management of salt accumulation is 

needed to mitigate against further losses of agricultural land. To successfully manage salt 

accumulation, it is necessary to keep track of and monitor the changes thereof. Traditional 

salinity monitoring methods are laborious, necessitating alternative methods for monitoring salt 

accumulation over large areas.  

This study contributed towards the use of VHR satellite imagery in indirectly identifying salt 

accumulation. Specifically, it identified optimal combinations of VHR imagery and image 

analysis techniques and answered several other key research questions in the field of remotely 

sensed salinity detection. The results provide a point of departure for future work on salt 

accumulation monitoring in irrigation schemes.  

The experiments conducted in this study laid a foundation for the development of an earth 

observation salinity monitoring system. The WFAD approach presents a viable solution for 

delimiting salt-affected and waterlogged areas and implementing rehabilitation measures. 

Continuous monitoring and rehabilitation of salt accumulation and waterlogging in irrigation 

schemes will help to sustain agricultural production. In turn, this will contribute to improved 

food security for South Africa and its citizens. 
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