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Abstract

Structural optimization is becoming an integral part of the modern

structural design process in the search to yield more economical

structures. The optimization of structures is typically performed with the

objective to minimize weight or displacement primarily for cost reasons.

Normally only one objective is considered, but methods enabling the

consideration of multiple objectives have been developed. With respect

to truss and frame structures, there are three well-known aspects which

can be considered during the optimization process, namely, member

sizing, shape and topology. These aspects refer to the size of the

structure’s members, the internal member configuration and its nodal

positioning respectively. During the optimization, these aspects can be

considered individually, simultaneously or sequentially, although typically

only member size is considered due to its simplicity. This study aims

to quantify the weight reduction in the resulting truss structure by

applying a more complex optimization approach such as considering

the three aspects simultaneously. Furthermore, this study also aims to

determine whether or not a meaningful weight reduction can be achieved

by adjusting the prescribed deflection limit of a frame structure whose

maximum deflection can be regarded as non-critical, for example a rural

warehouse.

These aims are achieved by researching both general and structural

optimization as well as available algorithms for successfully optimizing

a structure. Software is developed to find solutions to both single- and

multi-objective optimization problems. The software is used to optimize

various truss problems found in literature by considering different

combinations of the aforementioned structural aspects. The software is

also used to optimize a selection of frame structures in a multi-objective
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manner by minimizing both weight and displacement.

It is concluded that a 22 % more economical solution can be found by

considering the three aspects simultaneously as opposed to considering

only member size. From the frame structures considered in this study, it is

concluded that the majority of the structure’s weight can be reduced before

the deflection limit is reached. Therefore, an increase in the displacement

limit is not required.
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Opsomming

Strukturele optimering vorm ’n belangrike deel van die moderne

struktuurontwerp proses om ten einde meer ekonomiese strukture te

verkry. Strukture word tipies geoptimeer met die doel om die betrokke

struktuur se gewig of verplasing te minimeer. Alhoewel metodes ontwikkel

is vir die oorweging van meer as een doel, word normaalweg slegs een

oorweeg. Ten opsigte van vakwerk en raam strukture is daar drie

aspekte wat oorweeg kan word tydens die optimeringsproses, naamlik

elementgrootte, vorm en topologie. Hierdie aspekte verwys respektiewelik

na die grootte van elemente, die interne element konfigurasie en die

posisionering van knooppunte. Tydens die optimeringsproses kan hierdie

aspekte individueel, gelyktydig of agtereenvolgend oorweeg word, alhoewel

meestal slegs die element groottes oorweeg word weens die eenvoudigheid

daarvan. ’n Doelwit van hierdie studie is om die verbetering in die

vakwerk struktuur wanneer ’n meer komplekse optimeringstegniek

toegepas word te kwantifiseer, soos byvoorbeeld om al drie aspekte

gelyktydig in ag te neem. Verder het hierdie studie ook ’n doelwit om

te bepaal of ’n noemenswaardige gewigsbesparing gemaak kan word

indien die voorgeskrewe verplasingslimiet van ’n raamstruktuur, wat se

verplasing as nie-krities beskou kan word soos byvoorbeeld ’n landelike

pakhuis, aangepas word.

Hierdie doelwitte word behaal deur beide algehele en strukturele

optimering na te vors as ook beskikbare optimeringsalgoritmes.

Sagteware is ontwikkel om oplossings vir beide enkel en veeldoelige

optimeringsprobleme te vind. Hierdie sagteware word gebruik om verskeie

vakwerk probleme vanuit die literatuur te optimeer deur verkillende

kombinasies van die voorafgenoemde strukturele aspekte te oorweeg. Die

sagteware word ook gebruik om ’n seleksie raamstrukture te optimeer

iv
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deur beide gewig en verplasing op ’n veeldoelige wyse te minimeer.

Dit word gevind dat ’n 22 % meer ekonomiese oplossing verkry kan word

deur al drie die aspekte gelyktydig te beskou teenoor slegs die element

groottes. Vanaf die geoptimeerde raamstrukture word dit gevind dat die

meerderheid gewig alreeds bespaar kan word voordat die limiet bereik is.

Daarom is ’n aanpassing van die limiet nie nodig nie.

v

Stellenbosch University  https://scholar.sun.ac.za



Acknowledgements

I would like to express my sincere gratitude to the following people and

organisations for their support throughout this research.

• My supervisors, Mr. E. van der Klashorst and Dr. G.C. van Rooyen,

for all the guidance, support and mentorship throughout this research

project.

• The Centre for Development of Steel Structures (CDSS) of

Stellenbosch University for their financial support which made this

project possible.

• To my parents for their loving support and encouragement.

• To my colleagues and friends who provided valuable feedback during

the research project and for all the amusement throughout the past

two years.

• Cecile Pienaar for all her love and support throughout this project.

• S.R. Bezuidenhout and S.C. van Nierop for assisting in proofreading

and editing this document.

vi

Stellenbosch University  https://scholar.sun.ac.za



Contents

Abstract ii

Opsomming iv

Acknowledgements vi

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research aims and objectives . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background to formal optimization 6

2.1 What is optimization? . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Analytical and numerical approaches to optimization . . . . . . . . . . 11

2.4 Derivative free optimization approaches . . . . . . . . . . . . . . . . . . 14

3 Optimization from a structural perspective 18

3.1 General mathematical form . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Types of structural optimization . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Size optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Topology optimization . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Optimization algorithms 26

4.1 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Binary encoded variables . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 Real-value variables . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.4 Disadvantages of the genetic algorithm . . . . . . . . . . . . . . 33

4.1.5 Multi-objective adaptation . . . . . . . . . . . . . . . . . . . . . 33

4.2 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Procedure of simulated annealing . . . . . . . . . . . . . . . . . 37

vii

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS

4.2.3 Disadvantages of simulated annealing . . . . . . . . . . . . . . . 40

4.2.4 Multi-objective adaptation . . . . . . . . . . . . . . . . . . . . . 40

4.3 Particle swarm optimization . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Procedure of a particle swarm optimization . . . . . . . . . . . . 41

4.3.3 Disadvantages of particle swarm optimization . . . . . . . . . . 45

4.3.4 Multi-objective adaptation . . . . . . . . . . . . . . . . . . . . . 45

4.4 Ant colony optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Procedure of algorithm . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.3 Disadvantages of ant colony optimization . . . . . . . . . . . . . 51

4.4.4 Multi-objective adaptation . . . . . . . . . . . . . . . . . . . . . 52

5 Software implementation 53

5.1 Finite element analysis module . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2.1 Truss element . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2.2 Frame element . . . . . . . . . . . . . . . . . . . . . . 59

5.1.3 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.4.1 Perform an analysis . . . . . . . . . . . . . . . . . . . 67

5.1.4.2 Copying a model . . . . . . . . . . . . . . . . . . . . . 68

5.1.4.3 Meshing a model . . . . . . . . . . . . . . . . . . . . . 70

5.1.5 Reporting an analysis . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.6 A note on units . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Optimization module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 The MOEA Framework, a brief overview . . . . . . . . . . . . . 74

5.2.2 Adaptation to structural optimization . . . . . . . . . . . . . . . 76

5.2.2.1 Objectives and constraints . . . . . . . . . . . . . . . . 76

5.2.2.2 Basic Problem definition . . . . . . . . . . . . . . . . . 78

5.2.2.3 Size problem definition . . . . . . . . . . . . . . . . . . 80

5.2.2.4 Topology problem definition . . . . . . . . . . . . . . . 80

5.2.2.5 Shape problem definition . . . . . . . . . . . . . . . . . 81

5.2.2.6 Combination problem definition . . . . . . . . . . . . . 82

viii

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS

5.2.3 Reporting an optimization . . . . . . . . . . . . . . . . . . . . . 83

5.3 Visualization module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Single-objective truss optimization technique comparative study 87

6.1 10-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 25-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 47-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 72-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Combining results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Multi-objective quantification study 109

7.1 Automatic design module . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Formal problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Example structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.1 Plane 4-storey frame . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2 Plane portal frame . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.3 5-Bay portal frame . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.4 4-Storey building . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions and recommendations 132

8.1 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Consideration of objectives . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.1 Optimization approach comparison . . . . . . . . . . . . . . . . 134

8.3.2 Multi-objective study . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4 Recommendations for future research . . . . . . . . . . . . . . . . . . . 136

8.5 Concluding statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References 138

Appendices 148

A Additional optimization algorithm information 149

A.1 Micro-genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Direct search simulated annealing . . . . . . . . . . . . . . . . . . . . . 150

A.3 Improvements on particle swarm optimization . . . . . . . . . . . . . . 153

ix

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS

A.4 Improvements made on ant colony optimization . . . . . . . . . . . . . 154

B Truss optimization cross-section area list 155

B.1 10-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2 25-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.3 47-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.4 72-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C Analysis report example 157

D Optimization report example 161

E Design report example 164

F Multi-objective quantification study selected results 176

F.1 Plane 4-storey frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.2 Plane portal frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.3 5-Bay portal frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

F.4 4-Storey building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

x

Stellenbosch University  https://scholar.sun.ac.za



List of Figures

1.1 Structure of thesis adopted to address the defined objectives . . . . . . 5

2.1 Visual representation of a linear programming problem . . . . . . . . . 7

2.2 Visual representation of a non-linear programming problem . . . . . . . 8

2.3 Pareto optimality concept . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Function with local minima and maxima (Jamil et al. 2013, test

function no. 71) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 5-Element truss used for size optimization . . . . . . . . . . . . . . . . 16

3.1 Simple example of a structural engineering problem . . . . . . . . . . . 18

3.2 Size optimization - Thicker lines indicate larger elements . . . . . . . . 22

3.3 Topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Comparison between topology and shape optimization (adapted from

Auer (2005)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Sequence of selection, crossover and mutation (Adapted from Turing

Finance (2016)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Execution process of a GA with elitism . . . . . . . . . . . . . . . . . . 30

4.3 The SA process (Rao 2009, p. 706) . . . . . . . . . . . . . . . . . . . . 39

4.4 The PSO algorithm procedure (McCullock 2016) . . . . . . . . . . . . . 44

4.5 ε - dominance concept (Deb, Mohan, et al. 2003) . . . . . . . . . . . . . 46

4.6 The ACO process (Rao 2009, p. 714) . . . . . . . . . . . . . . . . . . . 48

5.1 Main FEM components . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Different cross-section forms . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 UML diagram illustrating cross-section class relation . . . . . . . . . . 56

5.4 A two-dimensional truss element . . . . . . . . . . . . . . . . . . . . . . 58

5.5 A three-dimensional truss element . . . . . . . . . . . . . . . . . . . . . 58

5.6 A two-dimensional frame element . . . . . . . . . . . . . . . . . . . . . 60

5.7 A three-dimensional frame element . . . . . . . . . . . . . . . . . . . . 61

5.8 UML diagram illustrating the loads package . . . . . . . . . . . . . . . 66

5.9 Structure to demonstrate analysis report . . . . . . . . . . . . . . . . . 72

5.10 UML diagram illustrating the constraint and objective handlers . . . . 78

xi

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES

5.11 An example of the visualization module . . . . . . . . . . . . . . . . . . 85

6.1 10-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 10-Bar truss simultaneous optimization result . . . . . . . . . . . . . . 91

6.3 Performance of the size and SIM approaches for the 10-Bar truss . . . . 92

6.4 Performance of the TS, STS and TSS approaches for the 10-Bar truss . 92

6.5 25-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Performance of the size and SIM approaches for the 25-Bar truss . . . . 97

6.7 Performance of the TS, STS and TSS approaches for the 25-Bar truss . 97

6.8 47-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.9 Performance of the size and SIM approaches for the 47-Bar truss . . . . 102

6.10 Performance of the TS, STS and TSS approaches for the 47-Bar truss . 103

6.11 72-Bar truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.12 Performance of the size and SIM approaches for the 72-Bar truss . . . . 107

6.13 Performance of the TS, STS and TSS approaches for the 72-Bar truss . 107

7.1 Example structure for the design report . . . . . . . . . . . . . . . . . . 111

7.2 Definition of optimal solution . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 4-Storey plane frame with loads . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Resulting pareto front of the two-dimensional 4-storey frame . . . . . . 116

7.5 Plane portal frame with loads . . . . . . . . . . . . . . . . . . . . . . . 118

7.6 Resulting pareto front of the two-dimensional portal frame . . . . . . . 119

7.7 Three-dimensional portal frame . . . . . . . . . . . . . . . . . . . . . . 121

7.8 The wind direction and induced loads on the three-dimensional portal

frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.9 Grouping configuration applied to the three-dimensional portal frame . 124

7.10 Resulting pareto front of the three-dimensional portal frame . . . . . . 125

7.11 4-Storey frame layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.12 Grouping configuration applied to the three-dimensional frame structure129

7.13 Resulting pareto front of the 4-storey frame . . . . . . . . . . . . . . . 130

A.1 The DSA process (Sonmez 2007) . . . . . . . . . . . . . . . . . . . . . 152

xii

Stellenbosch University  https://scholar.sun.ac.za



List of Tables

6.1 Parameters used for the GA . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 10-Bar truss design parameters . . . . . . . . . . . . . . . . . . . . . . 89

6.3 10-Bar truss results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 25-Bar truss nodal coordinates . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 25-Bar truss element information . . . . . . . . . . . . . . . . . . . . . 95

6.6 25-Bar truss loading information . . . . . . . . . . . . . . . . . . . . . . 95

6.7 25-Bar truss design parameters . . . . . . . . . . . . . . . . . . . . . . 95

6.8 25-Bar truss variable detail . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 25-Bar truss results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.10 47-Bar truss element definition . . . . . . . . . . . . . . . . . . . . . . . 99

6.11 47-Bar truss design parameters . . . . . . . . . . . . . . . . . . . . . . 99

6.12 47-Bar truss loading conditions . . . . . . . . . . . . . . . . . . . . . . 100

6.13 47-Bar truss variable detail . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.14 47-Bar truss results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.15 72-Bar truss design parameter . . . . . . . . . . . . . . . . . . . . . . . 105

6.16 72-Bar truss grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.17 72-Bar truss loading conditions . . . . . . . . . . . . . . . . . . . . . . 106

6.18 72-Bar truss results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 4-Storey frame loading magnitudes . . . . . . . . . . . . . . . . . . . . 115

7.2 Plane portal frame loading magnitudes . . . . . . . . . . . . . . . . . . 118

7.3 Three-dimensional frame loading magnitudes . . . . . . . . . . . . . . . 128

7.4 Grouping and section assignments for the three-dimensional 4-storey

frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1 10-Bar truss cross-section area list . . . . . . . . . . . . . . . . . . . . . 155

B.2 25-Bar truss cross-section area list . . . . . . . . . . . . . . . . . . . . . 155

B.3 47-Bar truss cross-section area list . . . . . . . . . . . . . . . . . . . . . 156

B.4 72-Bar truss cross-section area list . . . . . . . . . . . . . . . . . . . . . 156

F.1 Resulting sections of the plane 4-storey frame . . . . . . . . . . . . . . 176

F.2 Resulting sections of the plane portal frame . . . . . . . . . . . . . . . 176

F.3 Resulting sections of the three-dimensional portal frame . . . . . . . . . 177

xiii

Stellenbosch University  https://scholar.sun.ac.za



LIST OF TABLES

F.4 Resulting sections of the three-dimensional 4-storey frame . . . . . . . 177

xiv

Stellenbosch University  https://scholar.sun.ac.za



Nomenclature
Abbreviations

µGA Micro Genetic Algorithm

ACO Ant Colony Optimization

DSA Direct search simulated annealing

EA Evolutionary Algorithm

FEA Finite Element Analysis

FEM Finite Element Method

GA Genetic Algorithm

MOEA Multi-Objective Evolutionary Algorithm

MOOP Multi-Objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimizer

NSGA-II Non-Dominated Sorting Genetic Algorithm

PSACO Pareto Strength Ant Colony Optimization

PSO Particle Swarm Optimization

SA Simulated Annealing

SGA Simple/Standard Genetic Algorithm

SIM Simultaneous size, shape and topology optimization

SI International System of Units

SLS Serviceability Limit State

STS Size-Topology-Shape optimization

TSS Topology-Shape-Size optimization

xv

Stellenbosch University  https://scholar.sun.ac.za



Nomenclature

TS Topology-Size optimization

ULS Ultimate Limit State

UML Unified Modelling Language

Greek Symbols

α Weight of an objective

Other Symbols

f Objective function

{x} The vector x

xvi

Stellenbosch University  https://scholar.sun.ac.za



1. Introduction

1.1 Problem statement

Optimization, as described by Rao (2009, p. 1), is known as finding the best solution

under given conditions. This field has already been studied for a number of years and

many strategies have been developed and tested for the solution to specific problems.

Due to the magnitude and complexity associated with optimization problems, it

has become infeasible to find reasonable solutions without the aid of a computer.

Therefore, many software applications have been developed to solve these problems.

By doing so, the time required to effectively solve such problems has been reduced

while the complexity of the problems that can be solved has increased dramatically.

Optimization can be applied to a number of fields in both research and practice. These

applications include engineering, logistical planning, scheduling, reliability, network

configurations and many more. Various methods for solving optimization problems

have been developed by a number of researchers. A few of these methods are listed

below (Chong et al. 2013):

1. Linear programming

2. Newton’s method

3. Particle swarm optimization

4. Genetic algorithms

The majority of these methods have proven to be useful in the case of optimizing

structures and a vast amount of research has been done in this regard. The sole

focus has mainly been on the choice of cross-sections, which is referred to as size

optimization. There are however two additional aspects of a structure that can

be optimized namely, shape and topology. The shape of a structure refers to the

geometric layout and the topology refers to the interconnectivity of members within

a structure.

It is notable that some structures can not be optimized with respect to shape and

topology. This is due to these specifications being predetermined by other aspects of
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1.2 Research aims and objectives

the structure’s design. However, there are cases where meaningful cost savings can

be achieved by considering all three optimization aspects.

Another influence on the resulting design of a structure is the limit placed on

allowable deflection by design codes. By considering both deflection and cost, the

design has two conflicting objectives. This means that in the attempt to minimize

one objective, the other must be increased. For example, a structure requires more

material to reduce its deflection while the use of more material increases the cost of

the structure.

It can be argued that for structures situated in areas where deflection will not have

a significant influence on its performance, for example rural warehouses and other

storage facilities, the deflection limit prescribed by design codes may be adjusted in

favour of a significant cost reduction.

1.2 Research aims and objectives

Two aims are identified for this study. The first is to investigate the improvement

in the structure by optimizing the three aspects of size, shape and topology,

simultaneously as opposed to only optimizing the member size of the structure. This

will be done by comparing the percentages of reduced weight between the structures

resulting from different optimization routines and a base structure which also satisfies

the constraints of the optimization problem.

The second aim of this study entails the investigation of the cost that can be saved

by increasing the allowable deflection limit for a structure. This only applies when

deflection can be regarded as a non-critical aspect, for example, in rural structures

and storage facilities.

In order to successfully achieve the aims of this study, the research objectives are

broadly defined as:

1. Conduct a literature review on the subject of general and structural

optimization. Methods for finding solutions to single- and multi-objective

optimization problems and how structural optimization problems can be defined

2
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1.2 Research aims and objectives

to suit these methods should be considered. This will provide sufficient

background for the implementation of a framework that can be used to compare

various optimization methods.

2. Consider available meta-heuristic optimization algorithms which can be used to

solve optimization problems by means of a computer. It is acknowledged that

many algorithms exist and to consider all of them would be infeasible. For the

purposes of this study, only one or two of these algorithms should be selected

for use in the remainder of the study to optimize various structures.

3. For the determination of displacements and member forces within a structure, a

finite element analysis (FEA) module for truss and frame structures needs to be

developed in order to execute the optimization routines. These results will be

used to determine whether a candidate structure satisfies the constraints of the

optimization problem including maximum displacement and member capacity.

Allowance for multiple load cases will be advantageous as this reflects a typical

design situation and enables using force and deflection values from different load

cases for separate calculations, such as for different limit states.

4. The next objective is the development of an optimization framework to solve

structural optimization problems for given objectives and constraints. Only

truss and frame structures will be considered to match the FEA module.

This framework must make allowance for both single- and multi-objective

optimization problems in order to accommodate both aims of this research.

5. Results will be obtained by using the developed modules to solve structural

optimization problems found in literature. To limit the scope of this study, only

truss structures will be considered for this objective. The results from these

problems will be used to make a concluding statement for the first aim of this

study. Therefore, the structures from these problems must be optimized by

considering the size, shape and topology aspects as opposed to only the size

aspect of the structure. Considering these aspects individually, sequentially and

simultaneously would provide a good comparison to satisfactorily achieve the

first aim of this study. Given the variable nature of an optimization routine, the

best result from ten consecutive runs of the optimization module will be used

as a final result. The results available in literature will be used to validate that

the optimization implementation provides reasonable results.

3
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1.3 Thesis organisation

6. In order to achieve the second aim of this study, the final objective is to consider

frame structures and optimize them by minimizing the two conflicting objectives

of cost and displacement. For these structures, only the member size needs to

be optimized as it is assumed that the shape and topology have been prescribed.

The allowable limit of deflection for each structure, depicted by design codes,

will be used to interpret the optimization results.

1.3 Thesis organisation

The remainder of the thesis is structured as described below and illustrated in

figure 1.1:

Firstly, a background section introduces a basic definition of optimization. After

which the focus is diverted to the three aspects of structural optimization namely,

size, shape and topology.

With an extensive understanding of optimization, some of the available optimization

algorithms are discussed. This is required as there is a wide variety of algorithms

available, too many to all be used and evaluated. The majority of these algorithms

do, however, originate from a few core evolutionary principles.

With the optimization problem defined and the available algorithms examined,

the software implementation is discussed. This includes the development of an

appropriate FEA and optimization module.

Focus is then placed on the comparison of the results from applying size, shape

and topology optimization individually, sequentially and simultaneously to the same

structure. Test structures found in literature are evaluated with their respective

parameters.

Multi-objective problems are thereafter considered by minimizing the cost, which

is quantified by the weight, and displacement of a structure. The result from a

multi-objective optimization indicates as to whether or not a significant cost saving

can be achieved by slightly increasing the allowable displacement limit of a structure.

4
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1.3 Thesis organisation

Four structures are evaluated as test cases.

Finally, conclusions are drawn from the results obtained and recommendations are

made for future work to improve and expand the results as well as the tools developed

in this study.

5.1 FEA module
Module to perform
structural analysis of
trusses and frames

5.2 Optimization
Module to perform

structural optimization

Chapter 2
Provide background information

on general optimization

Chapter 3
Discuss structural optimization

Chapter 4
List and explain popular
optimization algorithms

Chapter 5
Development of required
software for the study

Chapter 6
Truss comparative study

Chapter 7
Multi-objective frame
displacement study

Figure 1.1: Structure of thesis adopted to address the defined objectives
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2. Background to formal

optimization

2.1 What is optimization?

According to Arora (2015, p. 1) the definition of optimization is finding the best

solution among many feasible solutions. The best solution from a practical point of

view can be considered as one which the efficiency of a system is maximized or the

cost is minimized. This can in terms of mathematics mean finding the maximum or

minimum value of a certain function.

By interpretation of the provided definition, one can realise that almost anything

can be optimized to a certain degree. A short example of a linear programming

optimization problem can be used to illustrate the concept. The example was adapted

from Chong et al. (2013, p. 332). The example is as follows.

maximize 3x1 + 5x2 (2.1)

subjected to x1 + 5x2 ≤ 40

2x1 + x2 < 20

x1 + x2 ≤ 12

x1, x2 ≥ 0

By visually plotting the above problem and its given constraints in figure 2.1, the

area of possible solutions is easily identified. The optimization component of this

example is searching for and finding the maximum value of the given function.

In other words, searching through all possible solutions and determining the best

solution for the given constraints.

6
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2.1 What is optimization?
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x1 + 5x2 = 40
x1 + x2 = 12
2x1 + x2 = 20
Feasible region

Figure 2.1: Visual representation of a linear programming problem

By examining the graphical solution, points (5, 7), (8, 4), (0, 8) and (10, 0) can be

identified as possible points where the function can be at its maximum. These points

are considered the corners of the search space. With the assistance of the contours

the optimal solution can be identified as (5, 7).

In this example the objective was to maximize the value of 3x1 + 5x2 within the

provided constraints. This is the fundamental concept of an optimization problem,

having to either maximize or minimize a certain function, or combination of functions,

subjected to some constraints.

It is also important to realise that, when the complexity of the problem constraints

or the so-called “objective function” increases, the problem can become extremely

complex. Referring to figure 2.1, the addition of more variables will increase the

dimension of the problem and the region of feasible solutions may take an irregular

shape.

To illustrate this statement, a few minor adjustments can be made to the problem of

equation 2.1 to make the problem non-linear. Consider the adjusted problem as in
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2.1 What is optimization?

equation 2.2.

maximize 3x2
1 + 5x2

2 (2.2)

subjected to x2
1 + 9x2 ≤ 90

2x1 + x2 < 19

x1 + x2 ≤ 12

x1, x2 ≥ 0

The first noticeable differences between the two problems is that the objective function

now takes the form of a circle and one constraint is a parabola. A problem of this

nature is usually termed a non-linear programming problem. The modified problem

can, same as before, be graphically plotted as in figure 2.2.

25

100

225

400

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

x1

x
2

x2
1 + 9x2 = 90
x1 + x2 = 12
2x1 + x2 = 19
Feasible region

Figure 2.2: Visual representation of a non-linear programming problem

The solution to the modified problem is significantly more difficult to obtain. In the

previous problem the solution can be deduced from the graphical representation.

This is no longer possible since there are no longer specific corners that can be

identified as points of interest, but rather entire edges. Therefore, the solution must

be obtained through a more advanced approach.
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2.2 Multi-objective optimization

Being able to move from a trivial problem to a more complicated problem by

making small modifications proves the computational complexity associated with

optimization problems. The constraints, objective function and the number of

variables present in the problem can have a big influence on its complexity. Typically

a problem with more variables is considered to be more complex.

According to Arora (2015, p. 3), the aforementioned objective function of an

optimization problem can be defined as the function that is either maximized or

minimized. By evaluating values of the objective function with respect to different

solutions, one can compare the fitness of one solution to another. The objective

function is used to determine which of the two solutions is classified as the superior

solution. It is sometimes also referred to as the criterion or the merit by which

solutions are compared.

2.2 Multi-objective optimization

In more complex optimization problems, there may be more than one objective

function present. These problems are referred to as multi-objective optimization

problems (MOOPs). This section describes how these problems are typically

addressed.

The objectives of multi-objective problems are often conflicting. For example in ship

design where efficiency would be improved by minimizing the required engine power,

but doing so conflicts with safety objectives which require reserve capacity (Korpus

2015). Rao (2009, p. 9) mentions that in structural design the minimum weight

design does not always correspond to the minimum stress or lowest cost design. The

selection of the objective function directly influences the solution to the problem.

Therefore, one of the most important choices in an optimization problem is the choice

of the objective function (Rao 2009, p. 9).

There are generally two well-known methods for dealing with MOOPs. The first and

simplest approach to solving this problem is by reducing a multi-objective problem to

a single-objective problem by using the weighted sum method (Deb 2001, p. 48). This

method uses a linear combination of the objective functions as one objective, where

9
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2.2 Multi-objective optimization

each of the objective functions are assigned a weight, αi. This can be expressed as in

equation 2.3.

f(X) = α1f1(X) + α2f2(X) (2.3)

Where f(X) denotes an objective function and α denotes the relative importance or

weight of one objective function to another.

One drawback with this approach is that it only yields a single solution as a result

of the problem being reduced to one of a single-objective nature. In reality only

MOOPs for which the objectives are not conflicting have a solution where all the

objectives are at their optimum (Miettinen 1998, p. 5).

For the majority of MOOPs with conflicting objectives, it is impossible to find a

single solution at which all the objectives are at their optimum (Miettinen 1998,

p. 11). For this reason, the concept of pareto optimality was introduced. A solution

is regarded as pareto optimal when none of the objective values can be improved

without compromising one of the other objective values (Hwang et al. 1979, p. 16).

In some texts, a pareto optimal solution is also called a non-dominated solution.

To illustrate the concept of pareto optimality, consider figure 2.3. In this figure a

set of possible solutions is plotted according to their objective values. The solutions

which can be considered as pareto solutions are highlighted. The line formed by all

the pareto solutions is called the pareto front. Only two objectives are used in this

figure for simplicity, but this number may be increased depending on the nature of

the problem.

10
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2.3 Analytical and numerical approaches to optimization

Objective 1

O
b

je
ct

iv
e

2
Pareto front

Candidate solution

Figure 2.3: Pareto optimality concept

By considering each objective individually, this approach to a MOOP produces a

number of possible solutions as a result. The best solution can then be chosen based

on other limits or considerations not included in the optimization such as a desirable

cost or some other criteria.

In summary, optimization is the selection of the best fit solution out of many solutions.

This is done by using one or more objective functions which is able to quantify

the fitness of a solution and comparing it to the fitness of other possible solutions.

Special consideration is given for dealing with problems containing multiple objectives,

considering that they may have multiple solutions. In the next section the approaches

to solving optimization problems are discussed.

2.3 Analytical and numerical approaches to

optimization

Finding the solution to an optimization problem can be relatively easy if the problem

is of simple nature (Rothlauf 2011, p. 46). This means that if the problem is well

defined, with little to no constraints, a solution can be found with minimal effort.

For this discussion, only single-objective problems are considered, but the concepts

11
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2.3 Analytical and numerical approaches to optimization

can be adapted to suit multi-objective problems.

According to Rothlauf (2011, p. 46), simple problems can be solved in the manner

of determining the points where the value of the function’s gradient is zero. For the

case where the function, f(x), has multiple variables, a vector containing the partial

derivatives can be considered. This is illustrated by equation 2.4.

∇f(x) =

(
∂f

∂x1

, ...,
∂f

∂xn

)T
(2.4)

After determining all the so-called stationary points where ∇(f(x)) = 0, it can be

determined which of these points are classified as local maxima or minima. Figure 2.4

shows an example of a function with multiple local minima and maxima.

0

5

0

5

10
xy

Figure 2.4: Function with local minima and maxima (Jamil et al. 2013, test function

no. 71)

Rothlauf (2011, p. 47) mentions that a simple method of distinguishing between local

minima or maxima is by calculating two function values adjacent to the stationary
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2.3 Analytical and numerical approaches to optimization

point. By analysing these values, it can be stated a point is a local minima if the

function values at the points in close proximity to it are larger than at the point

itself. The opposite applies to local maxima.

An equivalent approach is to determine the Hessian matrix of the objective function.

This can be done as shown in equation 2.5 (Rothlauf 2011, p. 47).

H(f) =


∂2f
∂x21

∂2f
∂x1x2

· · · ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x22

· · · ∂2f
∂x2xn

...
...

. . .
...

∂2f
∂xnx1

∂2f
∂xnx1

· · · ∂2f
∂x2n

 (2.5)

If the determinant of the matrix, H(f), is equal to zero and this matrix is positive

definite at a stationary point, then the point is a local minimum. On the other hand,

in the case where the matrix is negative definite, the point is a local maximum.

In the case where constraints are applied to the problem, there are cut-off or

boundary points where the function values beyond these points are not considered

when searching for local maxima or minima. These points must also be considered as

stationary points during the identification of local maxima and minima. The reason

for this is that those boundary points may not be stationary points if the function is

considered in its entirety, but if the search is ended at these points, they might be

points of local minima or maxima for the specific problem at hand.

The analytical approach described above is one of many similar mathematical

approaches. There are numerous literature on the full mathematical derivation of

these methods and the variations thereof. Lange (2013) provides a good in-depth

explanation of some of these methods, and is summarized below.

1. MM algorithm

An iterative method useful for high-dimensional problems such as image

reconstruction.
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2.4 Derivative free optimization approaches

2. EM algorithm

A special case of the MM algorithm which is able to function without a complete

set of data by reconstructing the data from the input parameters.

3. Newton’s method

A very popular method for low dimensional problems, it uses the gradient of

the objective function to steer the search towards a better solution.

4. MM gradient

A combination of the MM algorithm and Newton’s method. The optimization

step of the MM algorithm is solved by using Newton’s method.

5. Conjugate gradient

A method suited for high-dimensional problems that do not rely on the second

derivative of the objective function or the inversion of matrices. It also requires

exact line searches.

6. Quasi-Newton

Very similar to the conjugate gradient methods, but it does rely on the inversion

of matrices and operates on inexact line searches.

These methods are typically not used for practical engineering problems because they

are intended for ideal problems. Rothlauf (2011, p. 45) notes that derivative based

methods are preferred for problems where the effort grows polynomially with the

problem size, this is generally not the case for engineering problems. For engineering

optimization problems, the effort required by derivative based methods is immense.

For the apparent inapplicability of derivative based methods, a detailed analysis and

discussion of these methods would be unnecessary. The research needs to be shifted

into optimization approaches which are applicable to real world scenarios, such as

meta-heuristic methods. This is done in the upcoming section.

2.4 Derivative free optimization approaches

For the majority of mathematical optimization techniques, an optimum solution is

found by utilising the derivative of the objective function. However, Conn et al.

(2009, p. 1) notes that there are cases when it is not possible to obtain such a
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2.4 Derivative free optimization approaches

derivative, but the optimization must still be completed. Goldberg et al. (1989,

p. 3) mention that for a practical implementation of optimization, a derivative based

approach only caters for a small number of problems because the real world is full of

discontinuities and huge search spaces.

Conn et al. (2009, p. 2) explain that, as the scale and complexity of an optimization

problem increase, more sophisticated derivative-based optimization methods become

essential to solving large scale problems. This requires the user of the software

implementation to provide the derivative to the software in order to perform

the optimization routine. Furthermore, Goldberg et al. (1989, p. 3) note that

the numerical approximation of derivatives also has its shortcomings. These

approximations tend to be both inaccurate and impractical as it could lead to a

noticeable increase in the computational time required to obtain a result.

With regards to developing an optimization module for structural optimization, as

required for this study, it is possible to consider the actual optimization routine

as a so-called black box operation. This implies that the optimization routine is

independent of the given application. This is useful in terms of simplifying the

extension of an existing application with the aforementioned module. A disadvantage

of such a design is that the actual objective function used by the module differs

for each application. Therefore, the use of an approach where the derivative of the

objective function is required is deemed inapplicable for inclusion in the development

of the optimization module for this study.

For these reasons, derivative free methods seem to be a better approach for the

solution of optimization problems when compared to the traditional derivative-based

methods. Researchers developed a number of derivative free optimization approaches.

A few of which are mentioned by Rios et al. (2013) are listed below.

1. Local search methods

• Nelder-Mead simplex

• Generalized pattern search

• Generating set search

• Trust-region methods

• Implicit filtering
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2. Global search methods

• Lipschitzian-based partitioning

• Multilevel coordinate search

• Response surface

• Surrogate management framework

• Branch-and-fit

• Hit-and-run

• Particle swarm algorithms

• Genetic algorithms

• Simulated annealing

• Ant colony optimization

The concept behind derivative free optimization techniques is elementary. Instead

of relying on derivative information, approximated or exactly determined, from

the objective function, it focusses on locating an optimal or near optimal solution

by utilising a sample set of function values (Conn et al. 2009, p. 2). This implies

that derivative free methods compare various collections of possible solutions to

the optimization problem. This comparison is performed to determine which

characteristics of the available solutions are better suited for the objective function.

By utilising the information of which solution characteristics produce better results,

the overall solution of the problem can be improved. New solutions are normally

generated from this information and are also compared to the previous collection of

solutions. This procedure is usually repeated a number of times until a solution of a

certain degree of fitness or goodness is obtained.

The search space size of an optimization problem varies for every problem. It can

either be a discrete space with a finite number of solutions, or a continuous one with

an infinite amount of possible solutions (Christensen et al. 2008, p. 7). The number of

solutions in a discrete space can vary, but the number of solutions associated with an

engineering problem is usually large. To illustrate this, consider a size optimization

of a 5-element truss as in figure 2.5.

F

Figure 2.5: 5-Element truss used for size optimization
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2.4 Derivative free optimization approaches

Presume that only equal-leg angle-sections may be used for the given structure,

then according to the Southern African Institute of Steel Construction (2013) there

are 46 available sections. For the 5 members, 465 possible solutions exist for this

small structure. This number would increase significantly if other sections are also

considered. This example shows that the search space can be large, even for small

problems.

Since derivative free methods follow an iterative process of obtaining, evaluating

and selecting the best solutions, they can easily accumulate a large amount of data

that must be processed. This sizeable amount of data makes these methods suitable

for using the aid of a computer to obtain an answer. However, in some cases the

computational requirement could be so much that a computer program still requires

a substantial amount of execution time in order to reach a satisfactory solution to the

optimization problem. Due to this predicament, it is recommended that, if possible,

a parallel computing approach is used (Conn et al. 2009, p. 6). By doing so, the

execution time of such a program may be significantly reduced, which would be an

important advantage with respect to typical time constraints.

One should be aware that there are significant drawbacks to not having the derivative

information. The lack thereof influences many aspects of solving an optimization

problem including the scale of the problem, stopping criteria and accuracy of the

solution (Conn et al. 2009, p. 2). Although derivative free methods are not superior

to derivative based methods, for the solution of current real world optimization

problems the known limitations of derivative free methods are deemed acceptable.

Furthermore, the current dilemmas associated in determining the derivative of

complex objective functions serve as the main motivation for the usage of derivative

free methods.
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3. Optimization from a structural

perspective
Due to an increasing scarcity of structural materials and environmental considerations,

the need for more economical structures has substantially increased in recent years

(Kirsch 1993, p. 1). The term economical refers to lighter and more cost-effective

structures. This chapter describes how structural optimization is generally defined

to match formal optimization definitions.

Christensen et al. (2008, p. 1) define structural optimization as: “The subject of

making an assemblage of materials to sustain loads in the best way.” In this definition

an assemblage of materials that sustains load can be considered as a structure (Gordon

1978). As a conceptual example, adapted from Christensen et al. (2008, p. 1), consider

a load at a certain position that has to be transferred to a support at another position.

The situation is illustrated in figure 3.1.

Fx

Fy

Figure 3.1: Simple example of a structural engineering problem

It is the structural engineer’s responsibility to design a structure that can successfully

transfer the applied load to the supports, without the structure collapsing. It is

obvious that this problem may have numerous solutions. For this reason, it can be

considered as an optimization problem. The objective in this case could be to find a

structure that transfers the load in the best possible way.
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For structural optimization problems, one must raise the question as to what is

considered the “best” or “optimal” structure. This is usually a matter of perspective.

One might view the optimal structure as one with minimal weight, which has an

influence on the cost of the structure. Another view might be to make the structure

as stiff as possible or to be as resistant to instability as possible (Christensen et al.

2008, p. 1). In industry, the optimal structure may be defined as one which satisfies

design code requirements for the least cost. There are many more considerations and

it could even be a combination of these considerations. All of these considerations

may be termed as objectives to the optimization problem.

The above-mentioned objectives are considered mathematically so that they can be

expressed in terms of values that a computer then uses to compare solutions. There

are also non-mathematical factors to be considered such as functionality, economy

and aesthetics (Christensen et al. 2008, p. 1). These factors are quite difficult

to express mathematically for use in optimization problems and even more so for

computer programs as it would make such an application quite complicated. For the

purpose of this research these subjective factors are not taken into consideration.

All these considerations must also have limits. Otherwise the result may be a

structure which is designed to withstand more loading than it will be subjected

to, but it meets the criterion for the optimal solution to this problem perfectly.

To avoid results of this nature, a combination of considerations can be used. For

example, a structure has to be as stiff as possible to resist the load but also have a

minimum weight. These criteria can be applied as a linear combination of objectives

as illustrated in equation 2.3. The maximum and minimum bounds of such properties

of the structure can also be added to the problem as constraints. By doing so the

search space of the problem is reduced, potentially decreasing the time required to

obtain a feasible solution.

The time available to a structural engineer for the successful design and optimization

of a structure is usually limited. This is due to increasing pressure to meet project

deadlines and avoid additional costs or other penalties. For this reason, the time

consumed by the optimization of a structure cannot be excessive. Therefore, the

optimization process itself must be as time efficient as possible in order to make

it usable for engineers. This serves as motivation to make simplifications to the
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optimization process which improves efficiency, but these simplifications typically

compromise the accuracy of the results to a certain degree.

3.1 General mathematical form

The mathematical form of structural optimization looks similar to equation 2.1 and

can be described as follows (Christensen et al. 2008, p. 3):

minimize f(x1, ..., xn, y1, ..., yn) = f({x}, {y}) (3.1)

subjected to: Behavioural constraints on yi

Design constraints on xi

Equilibrium constraints

Where:

1. f(x1, ..., xn, y1, ..., yn) denotes the objective function. For example, the weight

or cost of the structure.

2. xi denotes the design variable. This describes the design of the structure i.e.

the member configuration and properties. It is useful to write all these variables

in vector form as, {x}.

3. yi denotes the state variable. This refers to the response of the structure i.e.

the displacements obtained by performing a Finite Element Analysis (FEA). It

can also be written in vector form as, {y}.

The case may arise where more than one objective function is considered, resulting

in a multi-objective problem. This problem may be addressed in either of the two

ways presented in section 2.2. The first being a linear combination of the objectives

expressed in equation 2.3, rewritten for n objectives shown in equation 3.2. It is

important to note that the sum of all the weights must result in a value of 1,

mathematically expressed in equation 3.3.

f({x}, {y}) = α1f1({x}, {y}) + α2f2({x}, {y}) + ...+ αnfn({x}, {y}) (3.2)

n∑
i=1

αi = 1 (3.3)
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For the case where a weighted objective function is used, one typically tries to

achieve a pareto solution (Christensen et al. 2008, p. 3). The position of this solution

on the pareto front will depend on the chosen weights assigned to the problem.

Therefore, the values of these weights should be chosen after careful consideration. A

possible strategy is to obtain solutions corresponding to different choices of weights

and comparing them. Doing so will provide an understanding of how certain weight

distributions influence the final solution. From this information, the structural

engineer can decide on an appropriate choice for the values of αi. However, following

this strategy can be very inefficient with respect to the time required to solve the

optimization problem for various weight distributions. It is especially true for large

problems that consume a substantial amount of time to arrive at just one solution.

Alternatively, it would be more time efficient to utilise the multi-objective approach

which reveals a pareto set of solutions as illustrated in figure 2.3. This would require

the optimization to run only once and the structural engineer is then able to decide

which one of the solutions on the pareto front best meets the design requirements.

3.2 Types of structural optimization

There are typically three types of structural optimization, namely topology, size and

shape optimization. These types are discussed in sections 3.2.1 to 3.2.3.

3.2.1 Size optimization

Christensen et al. (2008, p. 5) define size optimization of structures as the optimization

of the size of elements in the structure, while the geometry and element connectivity

remains unaltered. This may be element thickness or cross-sectional area, and is

typically used for truss and frame structures. The concept of size optimization is

illustrated in figure 3.2.

21

Stellenbosch University  https://scholar.sun.ac.za



3.2 Types of structural optimization

F
(a)

F
(b)

Figure 3.2: Size optimization - Thicker lines indicate larger elements

Size optimization can typically be defined as cross-section or member selection. The

size of the member is typically determined by its cost, which can be quantified by

its weight or availability, and its ability to meet the design requirements. In several

structures, additional constraints are also placed on the choice of the members, for

example only a certain type of cross-section such as I- or H-profiles.

It is important to note that the use of a large number of different member sizes can

have a significant impact on the fabrication costs of the structure. For example, a

light structure comprising of many different cross-sections is inherently more difficult

to construct and may be prone to construction errors such as placing a member at

an incorrect position. Furthermore, the use of a variety of different cross-section may

increase the fabrication and transport costs.

Various research publications have applied size optimization. For example, Barraza

et al. (2017) optimized frames for seismic loads while many other publications focused

on developing an efficient algorithm for performing size optimization. These include

Degertekin (2013), Kaveh and Talatahari (2009b), and Gonçalves et al. (2015) which

optimised the size of various structures using teaching-learning-based optimization,

the big bang–big crunch algorithm and the search group algorithm respectively.
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3.2.2 Topology optimization

Auer (2005) states that topology optimization refers to the element-node connectivity

within a structure. In the context of truss and frame structures, this can be attributed

to the element configuration of the structure with respect to the predefined nodes.

Topology optimization is also the most general form of structural optimization

(Christensen et al. 2008, p. 5).

In the case of a truss or a frame structure as in figure 3.3, topology optimization is

performed by connecting all the nodes with structural elements as shown in figure 3.3a.

Elements are then allowed to be removable during the optimization routine. By

doing so all the initially defined excess elements are removed and the solution is the

remaining elements as in figure 3.3b.

F

(a)

F

(b)

Figure 3.3: Topology optimization

Topology optimization has been employed by a number of research papers. Goo et al.

(2016) optimized the topology of thin plate structures while Xia et al. (2013) presented

a method for optimizing the topology of a structure. Other studies considered

topology with size and shape optimization to improve the optimization results and test

their proposed optimization algorithms (Achtziger 2007; Ahrari et al. 2015; Miguel

et al. 2013).
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3.2.3 Shape optimization

Shape optimization relates to the contour or domain of a structure (Christensen et al.

2008, p. 5). This can be related to the physical shape of elements in a structure.

Typically, a solid element in a structure is chosen to be of either rectangular or

circular form. This doesn’t need to be the case in a shape optimized structure.

Consider a rectangular beam as in figure 3.4a of a constant width. To reduce the

amount of material required, the shape of the beam can be changed as in figure 3.4b,

which is still able to successfully transfer the load to the support.

F

(a)

N(x)

F

(b)

Figure 3.4: Shape optimization

In the case of truss structures, it is important to not confuse shape and topology

optimization. Shape optimization does not change the elemental configuration of the

structure, only the positioning of nodes in the structure. A comparison is shown in

figure 3.5.
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(a) Original

(b) Topology (c) Shape

Figure 3.5: Comparison between topology and shape optimization (adapted from Auer

(2005))

Shape optimization has been used to optimize structures by a number of researchers.

For example, Wang et al. (2002) optimized the shape of truss structures under

multiple displacements constraints and Nasrollahi (2017) optimized the shape of

large span trusses.

It is possible to consider combinations of these optimization types. The combination

of all three of these methods is termed “layout” (Auer 2005) or simultaneous

optimization. In most implementations, only one or two of these optimization types

are typically considered, since these types can sometimes produce contradicting

results.

In several structures, it may not be possible to optimize the topology or the shape

of the structure due to them being defined by other aspects of the structure’s design

phase. For example, the nodal positioning of a structure may be predetermined for

aesthetic reasons.
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As previously stated, derivative free methods for solving optimization problems prove

to be appropriate for practical problems. Therefore, this chapter is dedicated to the

discussion of popular optimization algorithms which use derivative free techniques.

From these algorithms, a decision is made on the algorithm best suited to the

optimization implementation of this study.

The majority of these algorithms are classified as evolutionary algorithms (EAs).

EAs refer to algorithms based on principles found in nature. For example, the

characteristics and behaviour of biological and molecular systems. The principles of

these algorithms are presented in the following sections with additional information

presented in appendix A.

Considering that both single- and multi-objective optimization problems are of

interest in this study, the adaptations made to these popular algorithms to cater

for multi-objective problems are also discussed. Multi-objective in this case refers to

algorithms that consider all the objectives individually and not as a single-objective

problem where the objective function comprises of a linear combination of the

respective objectives.

4.1 Genetic algorithms

Genetic algorithms (GAs) are the earliest and one of the most widely used forms

of EAs (Simon 2013, p. 35). They are defined by Goldberg et al. (1989, p. 1) as

search algorithms based on the mechanics of natural selection and natural genetics.

In general, they filter through generations of solutions, where the solutions improve

for every generation.

In this section a brief background of the GA is provided. Two different variable types

normally used by a GA, namely binary and real-value variables, are discussed as well

as how the typical GA operations are defined for each respective variable type. An

adaptation to the GA for multi-objective problems is also described in section 4.1.5.
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4.1.1 Background

Since the GA is based on biological processes, it often uses terminology derived from

biology. In order to discuss the workings of a GA, one must have an understanding of

these terms in the context of a GA. Short descriptions of these terms are listed below

as described by Mitchell (1999, p. 5).

1. Chromosome or individual - A candidate solution to a problem, comprising of

various genes. For example, a truss structure that satisfies a certain optimization

problem.

2. Gene - A single characteristic that describes the chromosome. For example, the

area of an element within a truss solution.

3. Population - A collection of individuals for a certain generation. It can be viewed

as many trusses that are all candidate solutions to an optimization problem. To

start the GA an initial population is randomly generated.

4. Generation - The population used by the algorithm during a certain iteration.

Each generation is an improved version of its predecessor. For example, a

generation is a collection of trusses that are adapted to find better solutions

than themselves.

5. Elitism - This is the retaining of the best-fit solution(s) from one generation to

the next (De Jong 1975, p. 101). For example, the five lightest structures from

the current generation is directly transferred to the next generation.

The main operators of a GA are selection, crossover and mutation (Coley 1997, p. 10).

These operators are used to improve the solutions from generation to generation by

means of utilising the genes that produce good solutions from a certain population.

They are defined as follows:

1. Selection

On a similar principal as natural selection, selection applies pressure on a

population in an attempt to eliminate weak performing individuals. This

ensures that fitter individuals have a better probability to pass their genes on

to the next generations (Coley 1997, p. 10). This operator promotes the idea

that fitter genes are passed to the following generations which increase the
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chances of obtaining better solutions.

A popular selection strategy is tournament selection. This strategy selects a

random portion of the current population, and the best fit individual is inserted

into a mating pool from which the next generation’s population is created (Miller

et al. 1995). Tournament selection is repeated until enough individuals have

been selected to create the next generation.

2. Crossover

This operation produces a new individual from two existing individuals (De Jong

1975, p. 21). It is best to view crossover as the scenario of two parents producing

a child, where the child’s genes are a combination of both of its parents’ genes.

There can be various versions of children from two single parents, simply on the

basis of which genes are obtained from which parent. Therefore, it is possible

to produce a number of children from two parents. The idea is that the good

genes from both parents are retained and the not-as-good genes are replaced by

good genes from the other parent. In theory, this operation will ideally result

in a child which is a better individual than each of its parents. An example

of crossover is the interchange of members between two structures to produce

a new structure. This new structure is a combination of the two and is then

placed in the next generation as a candidate solution.

3. Mutation

Mutation generates a new individual by means of independently modifying one

or more genes of an existing individual (De Jong 1975, p. 22). The specific

gene or genes that are mutated are selected randomly with the assistance of a

statistical distribution, for example a normal distribution. The probability of

an individual mutating, the mutation rate, can be selected before the start of

the optimization. It is typically chosen as a small percentage, usually < 5 %, to

avoid excessive mutation. In a structural context, an example of mutation may

be randomly changing the size of a member.

These operations are usually performed sequentially during the execution of a

GA. The order of the execution is typically selection, followed by crossover which is

succeeded by mutation. This sequence is illustrated in figure 4.1, where the respective
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colours indicate the genes from a single individual.

A graphical representation of a GA algorithm is shown in figure 4.2. This figure

illustrates the procedure of a GA using the elitism strategy. This strategy moves a

predefined number of best solutions from one generation to the next. By doing so, it

is ensured that potentially good solutions are not lost during the evolutionary process.

Selection Crossover Mutation

Figure 4.1: Sequence of selection, crossover and mutation (Adapted from Turing

Finance (2016))
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Start

Generate initial
population

Calculate fitness
of each individual

Satisfy stopping
criterion

Selection

Crossover

Mutation

Elitism

New population

Calculate fitness
of new individuals

Stop

No

Yes

Figure 4.2: Execution process of a GA with elitism

The GA has a number of parameters that must be chosen beforehand. These

parameters include the choice of the population size and the detail or criteria on

how the selection, crossover and mutation are going the be performed. If the elitism

strategy is included in the GA, the number of elite solutions which are transferred form

one generation to the next must also be prescribed. In addition, the approach used

to generate the initial population and encode the variables of the GA is an important

part of the algorithm. A number of these approaches have been developed, each with

its own advantages and disadvantages. Two of the available approaches to encode the

variables of the GA are described in the following sections.

4.1.2 Binary encoded variables

There are many ways to encode and decode the variables of individuals (Engel 2010,

p. 586). Usually a binary string encoding containing 1’s and 0’s is used. Binary

encoding enables the selection, crossover and mutation operations of the GA to be
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performed with relative ease.

As a simple example to illustrate binary encodings, consider the case where a

mathematical problem needs to be optimized. Integer values between 8 and 16 are

deemed to be solutions, or individuals in GA terms. Any integer can be represented

by a binary string which is 4 characters long. A few encoded integers are shown below:

1. 12 →1100

2. 14 →1110

3. 9 →1001

4. 13 →1101

Binary encodings allow for the use of schemata during the optimization routine.

Schemata is described by a set of chromosomes with certain common features (Chong

et al. 2013, p. 292). More specifically, schema is a set of chromosomes which have

0’s and 1’s in certain locations, while the rest of the binary string is denoted by a *

symbol. Hence the binary string can now contain one of three symbols, 0, 1 or *. In

the case of a binary string which is 4 digits long, it can be noted that the schema

1 ∗ 01 can refer to either 1101 or 1001.

Schemata can be used to identify good solutions. For example, when it is known

that a certain type of cross-section produces good results, a schema can be used to

constrain all elements in a structure to have that cross-section. This is useful as it

eliminates bad solutions early in the optimization process.

One disadvantage of binary encoding as described by Chong et al. (2013, p. 297)

is that it may cause the problem to be more complex than what it actually is. To

illustrate this in mathematical terms, consider g(x) to represent the binary decoding

function and x to be a chromosome. The objective function that is being optimized

is not the same as the original, f(x), but rather the combination of f and g. Now the

optimization problem can be described as

maximize f(g(x)) with respect to x (4.1)

The newly obtained optimization problem may be more complex than the original.

For example, by having additional maximizers the search for the global maximum
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may become more difficult.

When considering more complex optimization problems, it should be realised that

encoding the problem also becomes more complex. For example, a structure with

many elements and various configurations will have to be represented by a significantly

long binary string. In addition, the longer the string becomes, the higher the

probability that a crossover or mutated string has no meaning and should be discarded

from the optimization. It is possible, however, to consider a method by which only

part of the solution representation is binary encoded and the remainder is encoded

with another type of encoding. For example, a discrete variable in a problem may

be binary encoded, where a continuous variable may not be encoded at all. The case

where a variable is not encoded is referred to as a real-value variable, discussed in the

next section.

4.1.3 Real-value variables

The additional complexity related to a binary encoded variable provided motivation

for the development of GAs to accommodate variables which do not use any sort of

encoding. Instead they operate directly on the original optimization problem.

The approach for the real-value variable is the same as for the binary encoded one.

The only real differences occur in the crossover and mutation operations. There are

a few strategies which cater for the differences in these operations.

1. Crossover

The simplest option for a real-value crossover is to use averaging (Chong

et al. 2013, p. 297). For a more complex problem a random combination of

characteristics is also a feasible option, provided that the result can also be

considered as a solution to the optimization problem.

2. Mutation

For a real-value variable, mutation is applied by randomly changing a value by a

small percentage, provided that the result is still considered a feasible solution to

the problem. Patton et al. (1994) suggested that number creep can be used for
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mutation. Number creep entails that all values within a solution are “creeped”

up or down by a small, random amount.

4.1.4 Disadvantages of the genetic algorithm

As with any algorithm, the GA has a number of disadvantages which must be taken

into consideration before using the algorithm. These disadvantages are listed below:

1. An important disadvantage is the care that must be taken when defining the the

problem representation. This is related to the encoding of variable to represent

the problem. For example, if binary encodings are to represent continuous

variables, the length of the binary string can limit the precision of the variable

(Fogel 2005, p. 147).

2. The choice of parameters for the GA can have a significant influence on the

end result (Grefenstette 1994, p. 69). The parameters such as population size,

mutation rate and maximum number of function evaluations are usually chosen

by means of trial and error.

3. Another concern with the GA is that the algorithm may be subjected to

premature convergence (Andre et al. 2001). This is related to the random

generation of the initial population and the choice of the GA parameters. In

the case of a small population size, the probability exist that a number of

unacceptable solutions or one very good solution resides in the population. In

each of these cases, the algorithm may struggle to find better solutions and

maintain diversity during the optimization.

4.1.5 Multi-objective adaptation

The GA as discussed thus far caters for the case where only one objective function is

present in the problem. Allowance in the GA for use in multi-objective problems was

first made by Srinivas et al. (1994) and improved by Deb, Agrawal, et al. (2000) to

be known as the non-dominated sorting genetic algorithm (NSGA-II). The remainder

of the section describes the NSGA-II as presented by Deb, Agrawal, et al. (2000).

The NSGA-II uses a specialized selection scheme to select a range of solutions within

the population to act as parents for the next generation. When the initial parent

33

Stellenbosch University  https://scholar.sun.ac.za



4.1 Genetic algorithms

population, P0, is generated, the first step in this selection scheme is to rank each

solution in the population according to the level of non-domination. This entails

comparing all the solutions’ objective values to one-another in a procedure called

non-dominated ranking. This procedure identifies various fronts in the objective

space where one of these fronts is the current pareto front.

The second step of the specialized selection scheme is to perform a population density

evaluation. This involves gathering information regarding the spread of solutions

surrounding a particular position in the so-called objective space. The average

distance between the solutions adjacent to the point under consideration is used as a

measure of the density. This measure is typically termed crowding distance.

Once a non-domination rank and crowding distance value is assigned to each solution

in the population, the population is finally sorted based on these two parameters.

This assists the selection process to achieve a uniformly spread-out pareto optimal

front. Solutions with lower dominance ranks and members of prior fronts are

preferred. Between solutions with the same rank, the one with the larger crowding

distance is preferred. This sorting mechanism is termed the crowded comparison

operator, ≺n. From this population, the first child population, Q0, is created by

means of tournament selection, crossover and mutation.

The procedure is different for generations succeeding the first generation. First a

combined population, Rt, is created, where t indicates the generation number and

is greater than one. The next parent population, Pt+1, is formed by sorting Rt

with respect to non-domination and adding the lowest ranked solutions until the

desired population size is exceeded. Next all the solutions originating from the last

considered front are sorted according to their crowding distance and added to the new

parent population until it reaches the population size. Now the next child population,

Qt+1, can be created by means of tournament selection, crossover and mutation. It

is important to note that the tournament selection uses the crowded comparison

operator, ≺n.
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4.2 Simulated annealing

Simulated annealing (SA) is an optimization technique based on the gradual cooling

of a solid which is heated above its melting point (Haupt et al. 2004, p. 187). SA has

been used by a number of researchers for finding solutions to structural problems.

For example Erbatur (2002) used an efficient SA algorithm for complex structural

optimization problems, while Torbaghan et al. (2013) and Sonmez (2007) used SA

for size and shape structural problems respectively.

When a solid material, for example metal, is heated to a temperature that exceeds

the melting temperature of the material, the atoms in the molten material are free

to move with respect to each other. When the heated material’s temperature begins

to decrease, the movement of these atoms become restricted and the atoms order

themselves to finally be in a state of lowest energy. This cooling process is usually

controlled to be as slow as possible in order to have the least amount of energy in

the material, producing a result of better quality. This process of cooling at a slow

rate is known as annealing (Rao 2009, p. 702).

In this discussion of the SA algorithm, background information regarding how the

algorithm functions, its parameters and the process followed during an optimization

is described. A brief discussion of the multi-objective adaptation made to the SA is

also presented.

4.2.1 Background

Lamberti (2008) notes that SA follows a rather simple optimization strategy. A trial

solution is randomly generated and the fitness function is evaluated at this point. In

the case where the trial solution is deemed to be infeasible, the solution is rejected

and a new trial solution is evaluated. If a solution is found that is a better solution

than the current best solution, the current best solution is updated. In this manner,

the best solution resulting from each stage of the optimization procedure is stored

and used as a measure for the other trial solutions. If a trial point is considered

to be feasible but not a better solution than the current best solution, the point is

either accepted or rejected by the algorithm based on a probabilistic criterion which
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estimates whether this point will lead to a better solution in the coming trial solutions.

This probability criterion is determined by a parameter known as the “temperature”

parameter. This parameter may be an estimated target solution (Lamberti 2008) or

a combination of randomly generated solutions (Rao 2009). At the beginning of the

algorithm, a large temperature parameter is selected and it is reduced based on a

so-called “cooling schedule”. The acceptance probability gradually reduces to zero

as the temperature is reduced (Lamberti 2008). Torbaghan et al. (2013) note that

the acceptance of a solution by using the temperature parameter allows for “uphill”

climbing which potentially saves the SA algorithm from becoming stuck at a local

optimum.

A number of variations of the SA has been developed and tested by researchers

for different applications. During these developments, it became clear that the

effectiveness of any SA is dependent on three factors namely:

1. Choice of the temperature

2. Algorithm design

3. Extent of the problem that needs to be solved

Rao (2009, p. 705) presents five features of the SA method. These may be used as

considerations when determining whether or not an SA should be used for a certain

optimization problem. These features can be listed as:

1. The quality of the final solution is not affected by the initial trial solutions, but

the computational effort may increase with poor starting solutions.

2. Due to the discrete nature of SA, the convergence characteristics are not affected

by the continuity or differentiability of functions.

3. The design variables do not need to be positive.

4. SA is applicable to mixed-integer, discrete or continuous problems.

5. It utilizes objective functions in addition to the normal upper and lower bound

conditions.
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4.2.2 Procedure of simulated annealing

A general SA algorithm works on the simple procedure of starting with an initial

solution as well as the preselected values for the temperature and maximum number

of iterations. The procedure described here is adapted from Rao (2009, p. 703).

The temperature parameter is controlled by Boltzmann’s probability distribution

which implies that the energy, E, of a system in thermal equilibrium is probabilistically

distributed according to equation 4.2.

P (E) = e−E/kT (4.2)

Where P (E) denotes the probability of achieving an energy level of E, k denotes

Boltzmann’s constant and T denotes the temperature parameter. It can be deduced

from equation 4.2 that at high temperatures the system has a high probability to

be at any energy state, but at lower temperatures this probability decreases. The

Boltzmann’s probability distribution is used for function minimization in the same

way as for thermodynamic systems.

To illustrate this procedure, let the current solution, for example a truss or a frame

structure, be denoted by Xi with the corresponding value of the objective function,

for example the weight of the structure, denoted by fi = f(Xi). The energy in the

system at the current state, Ei, can be determined by equation 4.3.

Ei = fi = f(Xi) (4.3)

According to the Metropolis criterion (Metropolis et al. 1953), the probability of

the next solution, Xi+1, depends on the difference in the energy sate. This can be

expressed in terms of the objective function values given by equation 4.4.

∆E = Ei+1 − Ei = ∆f = fi+1 − fi = f(Xi+1)− f(Xi) (4.4)

The new solution, Xi+1, can be found by using the Boltzmann’s probability

distribution. This is shown in equation 4.5.

P [Ei+1] = min
{

1, e−∆E/kT
}

(4.5)
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It can be seen from the above equation that Boltzmann’s constant serves as a scaling

factor, therefore, for a SA implementation it can be chosen as 1. By doing so the

symbol, k, can effectively be removed from equation 4.5.

A characteristic of equation 4.5 is when ∆E < 0, the result is 1. This occurs when fi

is greater than fi+1. In the context of function minimization this means that Xi+1 is

a better solution and will be accepted.

For the case when ∆E > 0, the new solution is classified as a worse solution.

In typical optimization procedures this solution would just be discarded, but by

applying equation 4.5 the result is not always the same. The probability depends on

the values of ∆E and T . If T is large, the probability will be high for larger values

of ∆E. This means that at high temperatures, even remarkably worse solutions are

likely to be accepted. At low temperatures, this probability will decrease significantly.

The procedure of this algorithm can be graphically presented as shown in figure 4.3.

The values of n and c denote the maximum amount of iterations and the percentage

by which T is reduced in-between iterations respectively.
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Start with initial Xi.
temperature and other

parameters T, n, c

Find f1 = f(X1),
Set iteration number i = 1
and cycle number, p = 1

Generate new solution, Xi+1.
In the vicinity of Xi. Compute

fi+1 = f(Xi+1) and ∆f = fi+1 − fi

Accept or reject Xi+1

using Metropolis criterion
Update iteration number i = i + 1

Is i ≥ n?

Reduce temperature

Convergence
criteria satisfied?

stop

Yes

Yes

No

No

Figure 4.3: The SA process (Rao 2009, p. 706)
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4.2.3 Disadvantages of simulated annealing

When considering the SA algorithm for an optimization routine, the following

disadvantages must be taken into consideration.

1. The main disadvantage of the SA algorithm is that it is known to be a slow

algorithm (Rutenbar 1989). This is due to the algorithm’s nature to consider

many configurations in order to reach a good solution..

2. The nature of SA allows it to only be applicable to specific kinds of problems

(Rutenbar 1989). For example, problems which combine different variable types

can not be solved by means of a SA algorithm.

3. When multi-objective problems are considered, the SA algorithm typically use

a population of solutions. The use of a population in SA may lead to redundant

searches which degradates its performance (Nam et al. 2000).

4.2.4 Multi-objective adaptation

There exist several modifications made by various researchers to the standard SA

algorithm to accommodate multi-objective problems. The majority involve a single

change in the way the solutions are compared to one another.

For example, Bandyopadhyay et al. (2008) suggested a non-dominance comparison

similar to the method used by the NSGA-II. Solutions are then replaced based on

whether or not they are non-dominated as opposed to comparing the single objective

value.

4.3 Particle swarm optimization

Particle swarm optimization (PSO) was first presented by Eberhart et al. (1995) to

mimic the natural behaviour of swarms, flocks or schools of animals in an optimization

routine. It was found by Kennedy (2011) that the PSO algorithm performs well

on the same test functions as that of a GA, justifying why it is considered in this study.

This section provides background information regarding the PSO algorithm which

includes the associated terminology and parameters. The procedure followed during
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an optimization and its multi-objective adaptation is discussed in sections 4.3.2

and 4.3.4 respectively.

4.3.1 Background

The term particle refers to an individual within a swarm, for example, a bird in a

flock. Each particle behaves in an individual way using its own knowledge and also

the collective knowledge of the swarm. If one particle discovers food, or a good

solution, the rest of the swarm is guided by this information and start to follow the

general direction towards the good solution, irrespective of how far away it may

be (Couceiro et al. 2015, p. 2). Optimization methods that are based on swarm

intelligence are termed behavioural inspired algorithms.

The size of the swarm is generally preselected and particles are generated at

random positions in the so-called “solution space”. Each particle is awarded two

characteristics, namely, a position and a velocity (Kiranyaz et al. 2014, p. 46). During

the optimization, each particle remembers the best position corresponding to the

best solution it has discovered. Particles also communicate with each other to share

information regarding good positions and they adjust their respective positions and

velocities accordingly. The behaviour of particles is based on the following factors

(Rao 2009, p. 709):

1. Cohesion - Stick together.

2. Separation - Do not move too close to each other.

3. Alignment - Follow the general heading of the swarm.

4.3.2 Procedure of a particle swarm optimization

The procedure described here is adapted from Rao (2009, p. 710). It illustrates how

the PSO algorithm manages to locate a good solution, for example a light structure,

from start to finish. Consider a maximization problem expressed as:

Maximize f(X)

With X l ≤ X ≤ Xu (4.6)
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Where X l and Xu denote the lower and upper boundaries of X respectively. These

boundaries can be seen as the range a node within a structure can be move during

a shape optimization problem or the amount of available cross-sections for a size

optimization problem. By keeping the format in Rao (2009), the procedure can be

described by the following steps.

1. Start by selecting the size of the swarm, denoted by N . To reduce the total

number of function evaluations, the value of N may be reduced, although a too

small value of N will cause the algorithm to consume more time to arrive at a

solution. Usually the value of N is chosen to be between 20 and 30.

2. The initial population of solutions, X, is generated within prescribed boundaries.

The size of the population is equal to N . Every particle is assigned a different

initial solution. In other words particle j is assigned Xj(0), where 0 indicates the

initial solution. Now the objective function value of the solution attributed to

each particle is determined. With respect to structural optimization, during this

step each particle is assigned a candidate structure and its weight is calculated.

3. Velocities are now assigned to each particle. At the beginning of the algorithm,

all velocities are assumed to be zero. The iteration number, i, is set as 1.

4. In the ith iteration, the following steps are executed by particle, j:

(a) Two parameters are obtained by the particle. The first is the best solution

that the particle has come across during its search, this particular solution,

X, is named Pbest. The second is the best solution that has been found by

any particle within the swarm, this is termed to be Gbest. The fitness values

of both Pbest and Gbest are obtained and denoted as f(Pbest) and f(Gbest)

respectively.

(b) Now the velocity of the particle is determined using equation 4.7.

Vj(i) = Vj(i− 1) + c1r1[Pbest −Xj(i− 1)] + c2r2[Gbest −Xj(i− 1)] (4.7)

Where c1 and c2 are individual and social learning rates respectively while

r1 and r2 are uniformly distributed random numbers in the range of 0 to 1.

The parameters c1 and c2 represent the relative importance of the position

of the particle to the position of the swarm. The values of c1 and c2

are typically selected to be 2. This selection ensures that the particles
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have a 50 % chance to overshoot the target solution. In a structural

size optimization context, the velocities can be considered a weighted

combination of the cross-sections of the current candidate structure and the

best structure present in the entire swarm as well as the current particle.

(c) Finally, the new solution can be found of the jth particle for the ith iteration

by using equation 4.8.

Xj(i) = Xj(i− 1) + Vj(i) (4.8)

The value of the objective function is determined for each new solution,

Xj.

5. The current solution is then checked for convergence. When the positions of

all the particles converge to the same set of values, the method is assumed to

have converged. If convergence is not achieved, step 4 is repeated for the next

iteration i = i+ 1.

The above described procedure for the PSO algorithm can be graphically expressed

as shown in figure 4.4.
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Initialise particles

Calculate fitness of each particle

Is current fitness
better than Pbest?

Assign current
fitness as new Pbest

Keep previous Pbest

Assign best particle’s
Pbest value to Gbest

Calculate velocity of each particle

Let particles move
using their velocity

Convergence
achieved?

End

NoYes

YesNo

Figure 4.4: The PSO algorithm procedure (McCullock 2016)

44

Stellenbosch University  https://scholar.sun.ac.za



4.3 Particle swarm optimization

4.3.3 Disadvantages of particle swarm optimization

The PSO algorithm has the following disadvantages which must be considered before

implementing it to solve optimization problems:

1. PSO is known to have a tendency for premature convergence on local optimum

points in large search spaces (M. Li et al. 2014). By converging prematurely, the

algorithm stops while the optimum result still needs to be located. This leads

to the possibility of the PSO yielding sub-optimal results.

2. Bratton et al. (2007) note that there is no fixed swarm size which suits all

problem definitions. Therefore, the PSO algorithm must be calibrated by trial

and error to determine a suitable swarm size for each problem.

3. The PSO algorithm may also have a slow convergence rate in small search areas

(Ab Wahab et al. 2015). This weak local search ability causes the PSO to

struggle in the scenario of refining a good solution in order to reach the optimum

solution.

4.3.4 Multi-objective adaptation

As in the previous algorithms, allowance has also been made to apply the

PSO algorithm to a multi-objective problem. Although there are a number of

variations available, only the adaptation made by Sierra et al. (2005) to develop the

multi-objective particle swarm optimizer (MOPSO) is discussed here.

In the MOPSO introduced by Sierra et al. (2005), the best particles, Pbest and Gbest,

are replaced by a number of non-dominated best particles. The size of the allowable

particles in this set of solutions is fixed to avoid excessive results. The number of

best particles is prescribed to be smaller than or equal to the swarm size. This allows

the result of the algorithm to yield a pareto set of solutions. In addition, a crowding

factor is also introduced for the comparison of particles to ensure that a spread of

solutions is obtained within the objective space. This approach is analogous with

that of the NSGA-II.

Furthermore, the concept of ε - dominance is also used. This concept allows similar

solutions to be filtered out of a population and promotes the search for a more diverse
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population. A value for ε is selected and a grid is created in the objective space. If

more than one solution is situated inside a cell in the grid, only the best one is kept

while the rest are discarded. This concept is shown in figure 4.5. After ε - dominance

has been applied, only the filled solutions will remain in the population.

Objective 1

O
b

je
ct

iv
e

2

ε

ε

Figure 4.5: ε - dominance concept (Deb, Mohan, et al. 2003)

4.4 Ant colony optimization

One of the most popular search algorithms used for a wide range of practical problems

is ant colony optimization (ACO). This search algorithm mimics the behaviour of

an ant colony searching for food. Each ant leaves a trial of pheromone behind such

that other ants can decide to follow it if they believe it leads to more food. This

procedure is repeated until a satisfactory food source has been located.

The ACO algorithm has been applied to a number of structural optimization

problems. For example, Kaveh and Talatahari (2009a) used it in combination of

other algorithms to optimize truss structure and Camp and Bichon (2004) optimized

the design of space trusses.

In this section, background information on the general ACO algorithm is provided.

Thereafter, the procedure of the algorithm and an adaptation to suit multi-objective

problems are discussed.
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4.4.1 Background

ACO is, as the name suggests, based on the cooperative behaviour of an ant colony

to locate food or other resource. The process is fairly simple, thousands of ants

leave the nest in search of food, each following a unique path. As each ant moves, it

releases a pheromone. This can be interpreted as a trail that other ants can follow.

If an ant is successful in locating food, the amount of pheromone on its path is

increased. Ants follow the paths with the most pheromone as they are aware that

such paths lead to food. The pheromone on paths that are not frequently taken

fades. This process is repeated until a satisfactory resource is found by the ant colony.

For the formulation of ACO, the behaviour of the ants and the fading of pheromone

must be explicitly defined. The following discussion is adapted from Rao (2009,

p. 715).

By considering figure 4.6, it is clear that the ACO process is approached as a

multi-layered problem. The number of layers correspond to the number of design

variables and the number of nodes that each layer contains is the amount of discrete

values that the layer can assume.
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Home

Destination

Layer 1 ( x1) x11 x21 x31 x41 x51 x61 x71 x81

Layer 2 ( x2) x12 x22 x32 x42 x52 x62 x72 x82

Layer 3 ( x3) x13 x23 x33 x43 x53 x63 x73 x83

Layer 4 ( x4) x14 x24 x34 x44 x54 x64 x74 x84

Layer 5 ( x5) x15 x25 x35 x45 x55 x65 x75 x85

Layer 6 ( x6) x16 x26 x36 x46 x56 x66 x76 x86

Figure 4.6: The ACO process (Rao 2009, p. 714)

The colony consists of N ants which all start from the home node and travel through

the layers until the final layer to end at the so-called destination node. This process

is repeated for every iteration, while the pheromone from the previous iteration is

still present on the paths. Each ant can select only one node in each layer based on

probability, which is calculated using equation 4.9.
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p
(k)
ij =


ταij∑

i∈N(k)
i

ταij
, if j ∈ N (k)

i

0 if j 6∈ N (k)
i

(4.9)

Where an ant, k, situated at node i uses the pheromone trail, τij, to calculate the

probability of choosing j as its next node. The importance degree of pheromones is

denoted by α and the set of neighbourhood nodes adjacent to ant k when its situated

at node i is denoted by N
(k)
i . This neighbourhood of nodes contains all the nodes

directly connected to node i, except the last visited node in order to avoid the ant

returning to the previous node.

The nodes visited by an ant along the path represent a candidate solution. In the

context of structural optimization, each node can be considered as a variable of the

problem such as nodal positions and member sizes. When the path is complete, the

ant releases pheromone on that path on it’s way back to the nest. The amount of

pheromone, ∆τij, released on each section of its path is calculated based whether or

not the section forms part of the best path during that iteration. In the case the

section forms part of the best path, ∆τij is calculated using the ratio of the best

and worst objective function values of that iteration, otherwise no pheromone is

deposited. This pheromone updating procedure is mathematically expressed in the

upcoming section.

Another aspect of ACO is that there is a scheme which represents the fading of

pheromone. By doing so it favours other paths with higher pheromone to be explored

by other ants. As an ant moves to its next node, the amount of pheromone released

by the ant on its path is reduced. This scheme will become clearer during the

procedural discussion of the algorithm in section 4.4.2.

At the start of the optimization process, all possible paths are given the same amount

of pheromone. This leads to the ants randomly selecting a path to follow in the

beginning, until certain paths contain more pheromone. The optimization procedure

is terminated when a maximum number of iterations have been reached or the best

solution could not be improved for a selected number of continuous iterations. When
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all the ants have completed their paths, the path with the most pheromone is deemed

to be the best solution.

4.4.2 Procedure of algorithm

The procedure of a typical ACO algorithm can be described by the following steps:

1. Start with a suitable size for the colony, N . Generate a set of discrete values

for each of the n design variables. Name these values as in figure 4.6, with each

value denoted by xij, where i and j denote the index of the design variable

and the index of the value of that variable in the generated set respectively.

i = 1, 2, .., n and j = 1, 2, ..., p with p being the number of values in the discrete

set. Assume an equal amount of pheromone τ 1
ij, where the superscript indicates

the iteration number, along all paths. Set the iteration number, α = 1.

2. (a) Compute the probability of selecting a trail as:

pij =
ταij
p∑

m=1

ταim

; i = 1, 2, .., n; j = 1, 2, .., p (4.10)

(b) The path chosen by an ant is determined by means of a randomly generated

number between 0 and 1. To use this number, the cumulative probability

ranges associated with different paths are calculated.

3. (a) Generate N random numbers between 0 and 1, one for each ant, rk. The

path that ant k is to assume is the one whose probability range, determined

in the previous step, includes the value of rk.

(b) Repeat the step 3a for all design variables i = 1, 2, .., n.

(c) Evaluate the objective function for paths chosen by all the ants. Each

complete path corresponds to the solution, Xk. Hence, compute

fk = f(Xk) with k = 1, 2, ..., N .

(d) Determine the best and worst paths among the calculated fitnesses, this

yields fbest and fworst.

4. Test if convergence was achieved by checking whether or not all the ants take

the same path. In other words, if all the ants found the same solution. In

the case where convergence was not achieved, assume all the ants return to the
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nest to start the next iteration. Increment the iteration number and update the

pheromone on different trails. These are shown in equations 4.11 to 4.14

α = α + 1 (4.11)

τ
(α)
ij = τ

(old)
ij +

∑
k

∆τ
(k)
ij (4.12)

Where

τ
(old)
ij = (1− ρ)τ

(α−1)
ij (4.13)

∆τ
(k)
ij =

ζfbest
fworst

(4.14)

τ
(old)
ij represents the pheromone left from the previous iteration, after evaporation

has occurred. ∆τ
(k)
ij denotes the pheromone deposited by the best ant, k, on its

path and the summation extends over all the ants which chose the globally best

path, if there are more than one. The pheromone evaporation rate factor, ρ, is

typically in the range of 0.5 to 0.8 and the amount of pheromone deposited is

determined with equation 4.14, where ζ is a parameter that is used to control

the scale of the pheromone amount. The larger ζ, the more pheromone is

deposited. This allows for more pheromone to be added to the paths that yield

better solutions.

Now, with all the updated values the ants can be released for their next search.

This implies that the procedure is repeated from step 2 onward. The procedure

is carried out until convergence or a maximum number of iterations is reached.

4.4.3 Disadvantages of ant colony optimization

As with the previously discussed algorithms, the ACO algorithm also has a few

disadvantages. These are described below:

1. The choice of parameters of the ACO algorithm needs to be established through

iteration (Abbaspour et al. 2001). The more iterations used, the better suited

the parameters for the problem at hand.

2. The sequences of random decisions taken by the ants during each iteration is not

independent (Selvi et al. 2010). This may cause the algorithm have an inherent

bias during the optimization.
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3. The time to convergence is uncertain (Selvi et al. 2010). If a maximum number

of iterations is not prescribed, the optimization may continue for a significant

amount of time before all the ants arrive at the same solution. Convergence is

however guaranteed irrespective of the time required to achieve it.

4.4.4 Multi-objective adaptation

The standard ACO algorithm has been adapted for multi-objective problems in a

number of different ways. To illustrate how this can be done, the method devised by

Thantulage (2009) and summarised by Ariyasingha et al. (2015) is discussed.

Thantulage (2009)’s adaptation is called pareto strength ant colony optimization

(PSACO). The PSACO is based on the normal ACO with the difference being that the

pheromone trial is updated using the non-dominance concept, similar to the NGA-II

discussed in section 4.1.5.

The pheromone updating procedure is complemented by including two sets of

solutions to the algorithm. Namely, a population, Pt, and an archive, At. Solutions

produced by the current iteration, t, are kept in Pt and At contains the globally best

non-dominated solutions.

With these newly added parameters, the pheromone update step can be performed

as in the standard ACO algorithm by replacing the single fitness value with a value

which represents the quality of a solution, Qi. This value is determined by combining

the fitness values of a solution with a density value. This density value is calculated

using a method which determines how close solutions are to one another known as

the k-th nearest neighbour method.

At the end of each iteration, a new archive is created by gathering all the

non-dominated solutions from the current population, Pt, and the current archive,

At. If the size of the new archive exceeds the prescribed amount, it is truncated by

removing several of the worse performing solutions until the archive is of the prescribed

size.
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The theoretical basis with regard to basic optimization, chapter 2, structural

optimization, chapter 3, and algorithms to solve optimization problems, chapter 4,

have been covered. This chapter discusses how these concepts are combined to

develop a software package that can solve both single- and multi-objective problems

for both two- and three-dimensional truss and frame structures.

The first section discusses the development of a finite element analysis (FEA)

module required to determine whether or not a structure meets the constraints

of the optimization problem. The second section discusses the development of an

optimization module with which a given optimization problem can be solved using a

chosen algorithm. Both these modules must work together to successfully optimize

a structure. Lastly, the development of a visualization module, which simplifies the

model creation process and prevents input errors, is discussed.

5.1 Finite element analysis module

In this section the development of a finite element analysis (FEA) module is discussed.

The FEA module is required to calculate the nodal displacements and element forces

that arise in a structure under certain load conditions. These displacements and

forces are used to determine whether or not a structure violates the prescribed

constraints of the optimization problem. This information is then used to determine

if a generated structure is a suitable solution to a given optimization problem.

For the purposes of this study, only linear elastic analyses are considered. This is

done taking the iterative nature of both optimization algorithms and higher-order

analysis methods into consideration. If a higher-order analysis method is used, the

optimization procedure would be subjected to a significant amount of additional

computation. However, the use of a second-order or non-linear analysis would

improve analysis results.

It is important to note that, given the iterative nature of an optimization

algorithm and the amount of structures which are present in the population of
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each iteration, this FEA module must be able to manage its memory effectively to

avoid an overconsumption. The Java programming language, which is used for this

implementation, provides automatic clearing of memory which is no longer in use.

With this knowledge, emphasis must be placed on ensuring that memory which is no

longer required is made available for clearing.

The Java language utilises an object-oriented approach. This approach allows for easy

allocation of various functionalities and attributes to certain objects. Furthermore,

it allows for collectively creating a module where the definition and interaction of

objects can be easily outlined and understood. For a typical FEA module, the main

components required are shown in figure 5.1:

Model

Nodes

Elements

Loads

Supports

Figure 5.1: Main FEM components

The nodes of the model represent the nodal positions of points where elements are

connected. This may be either two- or three-dimensional. The vertical axis is chosen

as the y-axis as this complies with many element formulations found in literature.

Each element included in the model must consist of a material. The material provides

the mechanical properties to the element that are used to determine its structural

stiffness. In this study, all the elements in a structure will share the same material
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as typical in truss or frame structures.

The model also has various boundary conditions assigned to it. These are points

where certain displacements are prescribed. For truss structures it relates to x,

y and z displacements only and for frames the rotation about each axis is also included.

The remainder of the components require a more detailed discussion. These

components are discussed in the following subsections.

5.1.1 Cross-sections

Every truss or frame element within the model must have a defined cross-section.

A cross-section has a predefined shape and provides properties which relate to the

behaviour of each element. A few well-known cross-sections are shown in figure 5.2.

I-Section H-Section T-Section

Channel Equal-leg angle Unequal-leg angle

Circular

hollow section

Square

hollow section

Rectangular

hollow section

Figure 5.2: Different cross-section forms

For the implementation of a cross-section, the class CrossSection is used to provide

the required functionality. Properties such as area and moments of inertia are stored

in a Map structure with predefined key values. The Map structure simplifies the

process of retrieving values form a cross-section in the sense that all the key values

are already defined and can easily be selected.
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This study only considers steel cross-sections. A number of steel cross-sections with

standard dimensions and properties are typically available in a tabulated format.

These tables are accommodated by using a database extension to the standard

CrossSection class. The popular SQLite database library is utilised to provide this

functionality (Hwaci - Applied Software Research 2017).

Since there are different forms of cross-sections, a class named Profile is used

to differentiate between these different sections. The Profile class provides basic

database functions including reading, writing and attributing the correct profile from

the corresponding table in the database.

All the different section forms in the database have their own class which extends

the Profile class and defines their specific properties, such as perimeter, leg length or

height. For the purposes of this study, only I-, H- and angle-sections are included, but

extension to other cross-section forms is possible. To illustrate the relation between

these classes, a shortened unified modelling language (UML) diagram is presented in

figure 5.3.

CrossSection

Area, Ixx, Iyy, J

�Abstract�
Profile

Designation

AllNames

Database functions

ISection

h, bf , tf , tw

HSection

h, bf , tf , tw

EqualAngle

h, bf , tf , tw

UnEqualAngle

h, bf , tf , tw

Figure 5.3: UML diagram illustrating cross-section class relation
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5.1.2 Elements

In this study, only truss and frame structures are considered for the optimization,

therefore, only these two elements require implementation. These element

implementations are done keeping in mind the potential need for expandability to

include additional elements in future studies.

To provide expandability, a superclass called AbstractElement is created to

prescribe the basic requirements for all elements. This includes a name, material,

cross-section and nodes. From this basis, the specific elements are added as subclasses.

Both two- and three-dimensional versions of the truss and frame elements are

considered to cover a wide base of problems. The details of how this implementation

is done for each element are discussed in the following subsections.

5.1.2.1 Truss element

The truss element is a simple element which only makes allowance for axial forces.

This leads to catering for one degree of freedom at each node to represent the axial

force within the element.

By means of rotation, the one-dimensional element can be transformed to both two-

and three-dimensional versions. By applying the rotation, the one degree of freedom

is divided into two or three components, depending on the dimension of the element

under consideration. Figures 5.4 and 5.5 illustrate how the two- and three-dimensional

elements are represented.
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2 Fx2 , u2

Fy2 , v2

1 Fx1 , u1

Fy1 , v1

x

y

Figure 5.4: A two-dimensional truss element

x

y

z

Fx2 , u2

Fy2 , v2

Fz2 , w2

Fx1 , u1

Fy1 , v1

Fz1 , w1

Figure 5.5: A three-dimensional truss element

The element matrices for both the two- and three-dimensional truss elements are

shown in equations 5.1 and 5.2. The two- and three-dimensional rotation matrices

are shown in equations 5.3 and 5.4 respectively (Logan 2011, pp. 87, 103).
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[k2Dtruss] =
A · E
L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (5.1)

[k3Dtruss] =
A · E
L



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(5.2)

[T2Dtruss] =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ

 (5.3)

[T3Dtruss] =



Cx Cy Cz 0 0 0
Cx Cy Cz 0 0 0
Cx Cy Cz 0 0 0
0 0 0 Cx Cy Cz
0 0 0 Cx Cy Cz
0 0 0 Cx Cy Cz


(5.4)

With

θ as the angle of rotation in the 2D space

Cx =
x2 − x1

L

Cy =
y2 − y1

L

Cz =
z2 − z1

L
L being the length of the element

5.1.2.2 Frame element

For the analysis of frame structures, the implementation of the frame element is

required. The frame element is an extension to the truss element in the sense that

allowance is made for bending moments in addition to normal forces.
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There is a significant difference between the two- and three-dimensional frame element

regarding the degrees of freedom. While the two-dimensional case consists of three

degrees of freedom at each node, the three-dimensional case has six to include the

torsional effect on the element. The element definitions for both cases are shown in

figures 5.6 and 5.7.

2 Fx2 , u2

Fy2 , v2

m2 , φ2

1
Fx1 , u1

Fy1 , v1

m1 , φ1

x

y

Figure 5.6: A two-dimensional frame element
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x

y

z

Fx2 , u2

Fy2 , v2

Fz2 , w2

Fx1 , u1

Fy1 , v1

Fz1 , w1

mx2 , φx2

my2 , φy2

mz2 , φz2mx1 , φx1

my1 , φy1

mz1 , φz1

Figure 5.7: A three-dimensional frame element

The element stiffness matrices for the two- and three-dimensional cases are shown in

equations 5.5 and 5.6 respectively (Logan 2011, pp. 238, 278).

[k2D] =



C1 · · −C1 · ·
· 12C2 6C2L · −12C2 6C2L
· 6C2L 4C2L

2 · −6C2L 2C2L
2

−C1 · · C1 · ·
· −12C2 −6C2L · 12C2 −6C2L
· 6C2L 2C2L

2 · −6C2L 4C2L
2


(5.5)

[k3D] =



C1 · · · · · −C1 · · · · ·
· 12C2 · · · 6C2L · −12C2 · · · 6C2L
· · 12C3 · −6C3L · · · −12C3 · −6C3L ·
· · · C4 · · · · · −C4 · ·
· · −6C3L · 4C3L

2 · · · 6C3L · 2C3L
2 ·

· 6C2L · · · 4C2L
2 · −6C2L · · · 2C2L

2

−C1 · · · · · C1 · · · · ·
· −12C2 · · · −6C2L · 12C2 · · · −6C2L
· · −12C3 · 6C3L · · · 12C3 · 6C3L ·
· · · −C4 · · · · · C4 · ·
· · −6C3L · 2C3L

2 · · · 6C3L · 4C3L
2 ·

· 6C2L · · · 2C2L
2 · −6C2L · · · 4C2L

2


(5.6)
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with

C1 =
A · E
L

C2 =
E · Ix
L3

C3 =
E · Iy
L3

C4 =
G · J
L

For a number of elements within a structure it may be necessary to specify certain

end-releases. The term end-release refers to removing the element’s stiffness for a

certain degree of freedom at one of its ends. For example, a frame element may be

required to be pinned at one or both of its ends in order to ensure no moment is

being transferred by this element to its supporting member. This pin connection will

then be modelled as an end release of the element’s rotational degrees of freedom.

Any of an element’s degrees of freedom may be released to achieve the desired

structural behaviour, on the condition that the structure remains stable. In the

case of both ends of a frame being pinned to allow rotation, the member effectively

reduces to a truss element with axial stiffness only. The releasing of the degrees of

freedom at an element’s end is represented by adapting its stiffness matrix. For this

formulation, the element’s local forces and displacements are partitioned as shown in

equation 5.7, where the subscripts p and r refer to prescribed and released respectively

(Gavin 2012). {
fp
fr

}
=

[
kpp kpr
krp krr

]{
dp
dr

}
(5.7)

By simultaneously solving the two rows for the matrix expression in equation 5.7, a

single expression may be obtained to represent the new stiffness matrix for only the

prescribed degrees of freedom of the element as shown in equation 5.8. The remaining

part of the formulation is to fill the rows and columns of the stiffness matrix which

corresponds to the released degree of freedom with zeros to indicate that the element

has no stiffness to resist the released degree of freedom.

{fp} =
(
[kpp]− [kpr][krr]

−1[krp]
)
{dp} (5.8)

{fp} = [kreleased]{dp}
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Using this formulation any selected degree of freedom of an element may be released

by adapting its local element stiffness matrix. The same transformation may still

be used to transform the element from its local to global orientation. These

transformation matrices do however differ for the two- and three-dimensional frame

elements considering the additional degrees of freedom. The two-dimensional rotation

matrix is very similar to the one used for the truss element and is given in equation 5.9

(Logan 2011, p. 238).

[T2Dframe] =



cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1


(5.9)

In the three-dimensional case, the rotation matrix consists of the same submatrix,

[γ], placed on its diagonal as shown in equation 5.10. Additional allowance is made

to accommodate local axis rotation of an angle, α. Furthermore, the generic case

for rotation becomes undefined in the event where the element is vertical. For this

reason, two rotation matrices are defined, one for the rotation of a vertical element and

another for any other element orientation. These submatrices for a vertical element

and a general element are shown in equations 5.11 and 5.12 respectively (Saouma

1999, eqn 4.41 and 4.49).

[T3Dframe] =


[γ]

[γ]
[γ]

[γ]

 (5.10)

[γvertical] =

 0 Cy 0
−Cy cosα 0 sinα
Cy sinα 0 cosα

 (5.11)

[γgeneral] =


Cx Cy Cz

−CxCy cosα− Cz sinα

Cxz
Cxz cosα

−CyCz cosα + Cx sinα

Cxz
CxCy sinα− Cz cosα

Cxz
−Cxz sinα

CyCz sinα + Cx cosα

Cxz

 (5.12)
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With

Cx, Cy, Cz as in equation 5.4

Cxz =
√
C2
x + C2

z

α: The angle of local rotaion

An additional requirement for a frame element is to provide a method to mesh it

into four sub-elements. This is due to the requirements provided in SANS 10162-1

where the capacity of lateral unsupported elements subjected to bending needs to be

calculated. This functionality only applies to elements whose ends are not pinned and

simply involves creating three sub-nodes in the element and defining new elements

of the same type between these nodes. It is important to note that, if the element

has line loads acting on it, these loads must also be correctly divided for each new

sub-element. This is needed as the original element and its line loads are removed

from the model entirely to avoid doubling the stiffness at the original nodes of the

element.

5.1.3 Loads

Any structure must be designed to withstand certain loading conditions or a

combination thereof. Typical loading examples are self-weight, imposed loadings,

wind and snow loads.

The loading can be applied to a structure in various different ways. The first is

to simply apply a load of a given magnitude to an existing degree of freedom in a

structure. These are known as point loads or moments. The second way is to define

a loading on a specific element, these are known as element loads. A third method

is to apply a so-called volume load to the entire structure. Volume loads are a good

application for gravity loads.

For the FEA module developed in this study, only point and element loads are

utilised. Point loads are the only loadings applicable to truss structures since truss

elements can not carry bending moments, only axial forces.
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Element loads typically apply to frame elements as they are required to resist loads

acting laterally on them, such as floor or wind loads. The element loads are used for

frame elements to calculate the element end-forces and end-moments which are used

for checking whether or not an element has sufficient capacity to resist the applied

loading.

For this implementation, the class, LoadManager, is used to contain all the

information regarding the loading for a specific model. Classes are also created

for point loads, point moments and line element loads. These classes are named

PointLoad, PointMoment and LineLoad respectively. For simplicity, the superclass,

Load, serves as a parent class for any loading which acts at a given point.

A single loading effect, such as wind or gravity, may induce multiple loads. All

individual loads induced by a single effect is called a load case. By conforming to the

traditional naming the class, LoadCase, is utilised to group all the individual loads

of a single loading effect together.

Furthermore, LoadManager is also equipped to handle a linear combination of load

cases. In typical design situations of real world structures there are almost no cases

where only one loading condition acts on a structure. For this reason, the class,

LoadCombination, is utilised as an extension to class LoadCase to provide a linear

combination of multiple load cases.

For convenience, all the classes associated with the loading of a model are put into

a package named “loads”. The class, LoadException, is also included to account for

errors. The relationship of the “loads” package is shown as a shortened UML diagram

in figure 5.8.
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�Abstract�
Loads

Name
Load case name
Node
Degree of freedom
Magnitude

Copy functionality

PointLoad

DOF = 1− 3

Copy functionality

PointMoment

DOF = 4− 6

Copy functionality

LineLoad

Name
Load case name
Direction
Element
Magnitude

Copy functionality
Divide into PointLoads
Divide into PointMoments

LoadCase

Name
Loads
LineLoads
Resutling reactions
Resutling displacements

Copy functionality

LoadCombination

Load cases
Weights
Resutling reactions
Resutling displacements

Copy functionality

LoadManager

Load cases
Load combinations

Copy functionality

LoadException

Prints exception

Figure 5.8: UML diagram illustrating the loads package

5.1.4 Model

With all the components of the model defined, a functioning object which is

compiled from these components must be produced. The class containing the model

functionality is named GenericModel.

A GenericModel has a designated LoadManager as well as collections of nodes,

elements and supports to describe the model in its entirety. Functionality to add,

remove and manipulate these attributes is provided since it will be used by the

optimization routine. Further functions of the GenericModel class are discussed in

more detail in the upcoming subsections.
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The model also has the ability to determine its own-weight by adding the own-weight

of all the elements together. Weight is typically used as an objective in a structural

optimization problem. The simplest way to determine the weight of a structure with

the current software architecture is by allocating the calculation to the model which

has access to all the elements.

5.1.4.1 Perform an analysis

To solve the unknown displacements and forces in a finite element problem, a few

standard steps are followed. Firstly, a system of equations is created. These equations

comprise of all the element stiffness values, applied loads and prescribed displacement

values. These values are acquired from the components present in the GenericModel

and are sorted according to the degrees of freedom in the system. In other words,

all the element values corresponding to a degree of freedom are assembled together.

By doing so, the system of equations is created in the from of equation 5.13. The

procedure described here is adapted from Cook et al. (2001, p. 40).

[Ks]{Ds} = {Fs} (5.13)

The system is then partitioned into its prescribed and free parts which correspond to

the supports of the structure. This step is shown in equation 5.14 where the subscripts

f and p indicate the free and prescribed degrees of freedom.[
Kff Kfp

Kpf Kpp

]{
Df

Dp

}
=

{
Ff
Fp

}
(5.14)

With the partitioned system, the first unknown term to be solved is the unknown

displacements, {Df}. Equation 5.15 shows how this is done.

{Df} = [Kff ]
−1
(
{Ff} − [Kfp]{Dp}

)
(5.15)

With the unknown displacements calculated, the unknown forces are determined using

equation 5.16. This step concludes the solution process.

{Fp} = [Kpf ]{Df}+ [Kpp]{Dp} (5.16)

For creating, storing, manipulating and solving matrices and vectors, a linear algebra

module from the Civil Engineering department of Stellenbosch University is used

67

Stellenbosch University  https://scholar.sun.ac.za



5.1 Finite element analysis module

in this FEA module. This module, named LinearAlgebra, also provides options to

solve matrix equations such as equation 5.15. For example, instead of computing the

inverse through a computationally expensive operation, a decomposition technique

such as Cholesky, LU or LDL may be used. In this study, the LU-decomposition

is used to solve equation 5.15 when the matrix, [Kff ], has less than 850 columns,

as it has been shown to be efficient compared to other available methods (Müller

2015). For cases when the [Kff ] matrix contains more than 850 columns, a native

method from the MTJ library (Halliday 2015), which is accessible from the provided

linear algebra module, is employed for the solution as it performs better than the

LU-decomposition for larger matrices (Müller 2015).

An advantage of the finite element method is that allowance is inherently made for

the analysis of multiple load cases. Only the force vector, {Fs}, needs to be replaced

for each load case, while the rest of the matrices present in equation 5.13 remains

unchanged. With this knowledge, the stiffness matrix for a specific structure, [K],

only needs to be assembled once for all the load cases.

Keeping in mind that the model will only be analysed once, allowance is made to store

the resulting displacements and forces for later use. To ensure that the correct results

are placed with the correct load case, functionality is provided such that these results

can be allocated to each LoadCase object directly after it has been obtained. By

doing so the element forces and displacements can be assigned based on the preferred

load case.

5.1.4.2 Copying a model

The process of an optimization routine requires solutions, in this case finite element

models, to first be created at random and then from other solutions. Therefore,

it is necessary to define a way of creating a copy of a model which can be altered

to represent an encoded solution used by an optimization algorithm. For example,

during a topology optimization, the original model will have all the variable elements,

upon creating a copy to represent an encoded solution, the solution can be decoded

and the variable elements which are not present in the decoded solution can be

removed from the copied model. By doing so, the copied model is a representation

of the solution to the optimization problem, which can be analysed to determine its
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objective values.

Depending on the nature of the optimization problem, the copied model will have

differences in terms of nodal positions, element cross-sections or topology. It is

therefore necessary to ensure that the new model is completely independent of the

original it was copied from. Another reason for the copy to be independent is for

memory purposes. By creating independent copies, the models that are no longer

used can be deleted by the Java Garbage Collector to free up space for future models.

The implementation of this functionality is extensive, since each component of the

model including nodes, elements, loads and supports must be copied. Therefore,

copying methods are introduced to each of these classes. The ability of each class

to copy itself simplifies the process of copying an entire model. A new model is

assembled by using each attribute of the original model’s ability to copy itself and

assigning the copy to the new model.

The general procedure for copying a component is outlined in algorithm 1 and the

procedure for copying an entire model object is given in algorithm 2.

Algorithm 1 Standard copy pseducode

1: Create new instance of the object

2: for All defined attributes do

3: if Attribute must also be copied then

4: Create a copy of the attribute

5: end if

6: Assign attribute to new object

7: end for
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Algorithm 2 Model copy pseducode

1: Create new GenericModel instance named model

2: for Node n : all nodes of the current model do

3: Create a copy of n

4: Add to the new model

5: for LoadCase lc : all load cases of the current model do

6: for Load l : all loads in lc do

7: if l acts on n then

8: Add a copy of l to the new model

9: end if

10: end for

11: end for

12: for Support s : The supports of the current model do

13: if s acts at n then

14: Add a copy of s to the new model

15: end if

16: end for

17: end for

18: for Element e : all elements of the current model do

19: Create a copy of e and add it to the new model

20: for LineLoad ll : The line loads of the current model do

21: if ll acts on e then

22: Create a copy of ll (acting on the copy of e) to the new model

23: end if

24: end for

25: end for

5.1.4.3 Meshing a model

To accommodate the meshing of frame elements to determine their bending capacity,

the class, MeshModel, is implemented as an extension of GenericModel. The

MeshModel introduces the ability to automatically mesh frame elements which are

not specified as being pinned on both sides.

The original elements in the model are retained for copying the model. This allows

the MeshModel to be used by the optimization module described in section 5.2. The

main difference between the MeshModel and the GenericModel is that the elements

70

Stellenbosch University  https://scholar.sun.ac.za



5.1 Finite element analysis module

in the MeshModel must be meshed before an analysis is performed, otherwise errors

will arise.

5.1.5 Reporting an analysis

As with any FEA program, results are provided to validate the analysis and design

the structure. Although the optimization module does not require a human-readable

output, output is required to validate results and ensure that the module functions

correctly.

For this reason, a table based output feature is added to list all the components

of the model along with the results obtained. The open source Java reporting

library DynamicReports (Mariaca 2017) is utilised to create these reports. The

DynamicReports library provides the ability to generate a PDF document containing

the output tables, each having its own data and format.

It should be noted that the reporting functionality is only enabled for frame

models, both meshed and unmeshed. The truss element models are easily verified

by considering the resulting matrices from the analysis. The console printing

functionality provided by the LinearAlgebra module is used for verifying truss

structures. However, this is not an option for frame structures as they have more

degrees of freedom and the force vectors contain significantly more entries.

A small example analysis report from the structure shown in figure 5.9 is included

in appendix C. This structure is a two-dimensional frame structure with only two

elements. For the analysis, each element has been divided into four sub-elements to

illustrate how a meshed model containing sub-nodes and sub-elements is reported in

the output.
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2
m

1
m

3 m

1
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Permanent load: 1 kN/m
Imposed load: 3 kN/m

Figure 5.9: Structure to demonstrate analysis report

5.1.6 A note on units

It is well known that the choice of units and using the same units throughout are

of great importance when it comes to FEA. In this module, no units are specified.

This choice is made with the reasoning that several optimization problems may be

defined in a different set of units, which would mean that this module cannot be used

without performing tedious unit conversions.

It is however recommended that the base SI (International System of Units) units are

used. This ensures unit consistency throughout the modelling process. An option is

provided in the FEA module to write results in engineering notation which formats

any value to be in the form 10x with x being a multiple of three. This option simplifies

the results interpretation in terms of forces and stresses which is typically measured

in kN and MPa.

The database functionality implemented for reading cross-section profiles, discussed in

section 5.1.1, has been adapted to convert measurements to standard SI meters. The

original values are assumed to be in milimeters as in the Southern African Institute of

Steel Construction (2013). However the units can be changed by altering the source

code of the Profile subclasses.
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5.2 Optimization module

Various methods to solve an optimization problem were identified in chapter 4.

In this study, focus is now placed on the genetic algorithm with elitism (GA)

for single-objective problems and the non-dominated sorting genetic algorithm

(NSGA-II) for multi-objective problems. The decision to use the GA and NSGA-II

is made because it has been proven to yield good results for structural optimization

problems (Rahami et al. 2008; Tang et al. 2005; Barraza et al. 2017; Vo-Duy et al.

2017; Koumar et al. 2017) and its inherent ability to cater for different variable

encodings as well as its ease of implementation. In the remainder of this section GA

refers to both GA and NSGA-II.

By implementing various encodings, different parts of a solution can easily be

distinguished by considering the variable type. This distinction is advantageous

for the structural optimization problem where two or more different aspects are

considered, for example, the size, shape and topology of a structure. The respective

variables associated with each aspect can be identified and the evolutionary operations

of the GA can be applied to each type of variable. Another advantage is that this

distinction simplifies the process of decoding the solution to retrieve the structure it

represents.

Without the chosen distinction between the different variables, additional bookkeeping

would be required to remember which variables are associated with which aspect of

the structure. Without such a clear distinction of variables, the implementation may

be prone to errors and may result in additional computation within each iteration of

the optimization routine.

The only real disadvantage of using different types of variables is that each type

requires its own strategies for how operations are performed. Referring to the

crossover operation utilised by the GA described in section 4.1.1, this operation

differs for a binary and real-value variable, discussed in sections 4.1.2 and 4.1.3

respectively. Therefore, it should be explicitly be defined for both.

As different optimization software libraries have already been developed, it is suitable

to use one of these libraries for the implementation as opposed to implementing an
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entire optimization module from scratch. Most of the available libraries have been

developed over a number of years and it would be impossible to develop a module

that matches the standard of the available libraries. It would be advantageous to

adopt one of the libraries and adapt it to suit the current structural optimization

problems.

From the wide range of available optimization libraries, only those written in Java are

considered to allow for easy integration with the FEA module. A few of the available

libraries are listed below:

• JGAP (Steghoefer 2015)

• Jenetics (Wilhelmstötter 2016)

• MOEA Framework (Hadka 2015)

• Watchmaker Framework (Dyer 2010)

From the available libraries, the MOEA Framework is used in this module. The

reason this library was chosen over the other available options is that it is still actively

supported with updates and bug fixes. The other libraries are no longer maintained

as their development has been halted. A brief overview of the MOEA framework is

provided in the next subsection.

5.2.1 The MOEA Framework, a brief overview

The MOEA (multi-objective evolutionary algorithm) Framework is an open source

Java library for multi-objective optimization problems with an extension that

accommodates problems of a single-objective nature. The library’s development

started in 2009 and since then a number of improvements and extensions have been

made to create a very powerful optimization tool. It provides an extensive set of

features including: monitoring performance, adding custom algorithms, adding new

variable types and displaying results. The design of the library is modular and simple

to follow, therefore, allowing for adaptation to suit structural optimization problems.

The MOEA Framework also includes several algorithms other than the GA without

elitism and NSGA-II which can be used including: differential evolution, particle

swarm optimization and genetic programming. The general architecture of the
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framework is designed for easy extension to include more algorithms, problems and

variation operators. The addition of any class to represent a new feature, such

as an algorithm, problem or variation operator, needs to extend the appropriate

superclass. For example, to define a new algorithm the class must extend the

framework’s Algorithm superclass. The framework also provides the ability to

change the parameters of an algorithm, such as population size, before executing an

optimization.

Considering that the GA with the elitism strategy, which is discussed in section 4.1.1,

is to be used in this study and that it is not natively supplied by the MOEA

Framework, it must be added. This is done by creating an appropriate class, named

GAElitism, which extends the MOEA Framework’s Algorithm superclass.

The evolutionary operators such as crossover and mutation are all grouped under

the class, Variation. This standardises the use of these operators and allows for the

addition of new ones. The framework does have native implementations of a number

of popular variations including crossover and mutation for both binary and real-value

variables.

For the encoding of solutions, the class, EncodingUtils, is provided which creates

binary, boolean and real-value variables. This class simplifies the effort for deciding

on an encoding scheme and allows for the reallocation of time to other parts of

the optimization. It is important to note that solutions must be decoded in order

to perform the FEA. Since a GenericModel must be created from each solution,

a function needs to be implemented in the adapted MOEA Framework to suit the

current structural optimization application.

Another important feature of the library is the native ability to compare and sort

solutions according to their non-dominating objective values. A pareto optimal set of

solutions is obtained allowing for easy interpretation of the result. It is also possible

to manually specify how solutions should be compared, but for this study the native

methods are deemed sufficient.

By using the means provided by the MOEA Framework to encode and decode

variables, perform variation operations and specify optimization algorithms as well
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as their parameters, an excellent basis for adapting an existing software module to

perform optimization routines is established. The next step is to adapt the existing

architecture to suit the MOEA framework specifications. In the following subsection,

it is discussed how the MOEA framework is used to create an optimization framework

specifically for structural optimization applications.

5.2.2 Adaptation to structural optimization

With the availability of the MOEA Framework to perform optimizations, adaptations

are made to merge the features of the MOEA Framework with the existing structural

analysis implementation, discussed in section 5.1. The GenericModel class functions

as a solution representation of the structural optimization problems considered in

this study, therefore, a method to encode it into a solution which can be used by the

MOEA framework must be established.

Furthermore, the structural optimization problems, namely, size, shape and topology,

are defined to suit the architecture of the MOEA Framework. Classes to define

objectives and constraints to the structural problems and classes to define the specifics

of these problems are added. The details of these additions are described in the

upcoming subsections.

5.2.2.1 Objectives and constraints

Any optimization problem consists of at least one objective and may be subjected

to a number of constraints. Therefore, objectives and constraints must be contained

in any problem representation as attributes. It is deemed efficient to provide these

attributes in the superclass of any problem such that all the subclasses inherently

contain these attributes.

According to the MOEA Framework, both constraints and objectives are attributes

of the Solution class. This enables each solution the ability to state whether or not

it satisfies the given constraints and its calculated objective values. These objective

and constraint values are used for comparing different solutions to sort the population.

It is important to note that there may be a number of objectives and constraints

present in a given problem. The MOEA Framework makes provision for this as each

Solution object stores two numerical arrays, one for the objective and another for
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the constraint values. When a solution is evaluated, the numerical values of the

objectives and constraints are calculated and stored in their respective arrays.

Adapting to the existing architecture, two interfaces, ConstraintHandler and

ObjectiveHandler, are used to define any specific constraint or objective. These

interfaces are parametrised to comply with the solution representation, which in this

case will always be a GenericModel. This parametrisation enables the constraints

and objectives to be used for any future problem definition such as a scheduling

problem.

The above-mentioned interfaces prescribe the ability to compute and assign the

values of the objectives and constraints. For the objectives, a weighting function

is provided, although, it is only applicable when a linear combination of objectives

is considered. In this study, the classes, DisplacementConstraintHandler and

MassObjectiveHandler, implement these interfaces.

To accommodate the handling of multiple objectives and constraints, the classes,

CompoundConstraintHandler and CompoundObjectiveHandler, are used and

implement the aforementioned interfaces. These classes simply allow for multiple

handlers to be added and automatically combine the handlers’ calculate functions.

Figure 5.10 shows a shortened UML diagram which illustrates how these objective

and constraint handling interfaces function. The aforementioned classes which

implement these two interfaces are also shown in the figure.

These created interfaces and classes which implement them can be used to define

the objectives and constraints of any problem. The compounding classes enable the

use of more than one objective or constraint. This is essential as practical structural

optimization problems have a number of objectives, for example, displacement and

weight minimization. In the current implementation, allowance is made for stress and

displacement constraints and also for mass and displacement objectives.
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�Interface�
ObjectiveHandler

Number of objectives
Weights of objectives
Calculate objectives
Assign objective values

CompoundObjectiveHandler

A List of objectivehandlers

Add an objective handler
All ObjectiveHandler methods

MassObjectiveHandler

ObjectiveHandler methods

DisplacementObjectiveHandler

ObjectiveHandler methods

�Interface�
ConstraintHandler

Number of constraints
Weights of constraints
Calculate constraints
Assign constraint values

CompoundConstraintHandler

A List of constrainthandlers

Add an objective handler
All ConstraintsHandler methods

StressConstraintHandler

ConstraintsHandler methods

DisplacementConstraintHandler

ConstraintsHandler methods

Figure 5.10: UML diagram illustrating the constraint and objective handlers

5.2.2.2 Basic Problem definition

With methods to handle both objectives and constraints established, the problem

definition can be discussed. The class, AbstractStructuralProblem, is the

first under discussion. This class is an extension of the MOEA Framework’s

AbstractProblem class and serves as the basis for all implementations of structural

optimization problems. This class is later extended to define size, shape, topology

and simultaneous problems.

The AbstractStructuralProblem class is parametrised to specify which object class

serves as the representation of a solution to the problem. The same parameter type is

assigned to its objective and constraint handlers, which are both of the compounding
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type as previously described in section 5.2.2.1.

As a final specification, the AbstractStructuralProblem class prescribes that

methods are defined by which a Solution object, from the MOEA Framework,

can be created from the parametrised object which represents a solution of the

optimization problem. In other words, the AbstractStructuralProblem class

prescribes that any class extending it must provide methods to encode and decode a

Solution object from the MOEA Framework to an object of the parametrised type.

This functionality is required as solutions must be decoded in order to analyse the

candidate structure for determining its objective and constraint values and encoded to

be used by the optimization routine to perform variation operations such as crossover.

In this study, the GenericModel class represents a solution to an optimization

problem. This is because a GenericModel is used to calculate the required objective

and constraint values for the structural problems. For this reason, the class,

StructuralProblem, is established and extends the AbstractStructuralProblem

class with the GenericModel as parametrisation. The StructuralProblem class

implements the method to evaluate a solution, while the encoding and decoding

operations are left for problem specific extensions of this class. This is done because

the method for encoding a size optimization solution, for example, differs from the

encoding of a topology optimization solution. The pseudocode for the evaluate method

is shown in algorithm 3.

Algorithm 3 GenericModel evaluation pseducode

1: Build a GenericModel from the Solution

2: if Model must be meshed then

3: Mesh the unpinned frame elements in the model

4: end if

5: Analyse the model

6: if The analysis was successful then

7: Calculate and assign objective and constraint values to the Solution

8: else

9: Assign maximum objective and constraint values, indicating a bad solution

10: end if
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5.2.2.3 Size problem definition

To find solutions to size optimization problems, the class, SizeProblem, is

implemented. The SizeProblem class extends StructuralProblem, described in

section 5.2.2.2, and provides the ability to decode a Solution object from the MOEA

Framework to a GenericModel and vice-versa. These abilities are briefly described

in this section.

As the variables of a size problem are chosen from an available list of cross-sections,

an integer binary encoding is used. These integer variables range from zero up to,

but not including, the number of available cross-sections for a specific member. The

integer value of the variable corresponds to the index of the selected cross-section in

the array of available cross-sections. In other words, the binary variable represents

the index of the chosen cross-section in the array of available cross-sections. By doing

so, one array of cross-sections may be kept for each element while only the binary

integers are used in the optimization.

By using binary integer variables, standard methods for the crossover and mutation

operations, which are included in the MOEA Framework, are used. This not only

avoids implementing custom operators, but also simplifies the required methods for

decoding a solution back to a GenericModel.

For the specification of element groupings, the class, SizeSettings, is used. This

class allows for specifying the selection of cross-sections available to each variable

member and which elements are designated to have the same cross-section as this

member.

In summary, the SizeProblem class is used to define a size optimization problem.

This is done by establishing a means to encode and decode size variables as well

as member groupings within the structure. To optimize the size of a structure, the

elements which are considered to be variables, their list of available cross-sections and

member grouping must be defined.

5.2.2.4 Topology problem definition

For the implementation of a topology optimization problem, the class,

TopologyProblem, is implemented. Similar to class SizeProblem, TopologyProblem
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also extends the StructuralProblem class. The approach followed by this

implementation is described below.

A topology optimization problem aims to determine the presence or absence of

elements within a structure. Since the only options for a variable member is to either

be present or not, a boolean variable is well suited for such a problem. A boolean

variable implementation is provided by the MOEA Framework in the form of a single

binary string, which can have a value of either one, or zero.

With only boolean variables present, the encoding and decoding of a topology

optimization problem is elementary. Each element that is selected to be a variable is

allowed to have its original cross-section in the case it is present in the structure, and

a “zero” cross-section if it is left out.

The term “zero” cross-section refers to a cross-section which causes an element to

have no stiffness or weight contributions to the structure. This means setting the

cross-sectional area and moment of inertia properties of the cross-section to zero. By

doing so, the element is effectively removed from the structure, although it still exists

in the model to be reinstated during another iteration.

To accommodate grouping and the variable selection functionality, the class,

TopologySettings, is used. This class keeps track of the elements considered as

variables and also the elements that are grouped together. By doing so, the problem

details and general definition are separated. This enables the ability to handle unique

structures without changing the problem definition.

The TopologyProblem class is used to define a topology optimization problem. This

problem determines whether or not an element should be present or removed from

a structure. To optimize a structure’s topology, the removable members must be

identified and the member grouping to determine which elements are dependent on

others.

5.2.2.5 Shape problem definition

A shape optimization problem deals with the nodal positioning of a given structure.

To cater for such problems the class, ShapeProblem, is used.
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The variables of a shape optimization problem are continuous, with minimum and

maximum bounds specified for each node. For these variables, the MOEA Framework

provides real-value variables, where upper and lower bounds are specified upon

instantiation. This available variable type simplifies the implementation and allows

for simple encoding and decoding methods.

Similar to the other optimization approach classes, size and topology, the

ShapeProblem class is accompanied by the settings class, ShapeSettings. This class

allows for bookkeeping of which nodes can be moved and which must be cloned from

the variables. Furthermore, the settings class keeps track of each encoded variable

and its associated nodal position.

Since symmetry is prescribed for a number of structures, the ShapeSettings class

is extended to clone a selection of the variable node characteristics. Cloning refers

to copying one or more nodal positions, x, y or z, from one node to another. This

cloning process may be set to clone a value and make it negative to cater for the case

where the line of symmetry lies on the origin.

It is interesting to note that for a shape problem, each directional coordinate of a

node can be regarded as an independent variable. For instance, each directional

coordinate, x, y and z, can be assigned an upper and lower bound which yields three

variables. This means that if all the directional coordinates of all the nodes within a

three-dimensional structure are allowed to be variables, the total number of variables

will be three times greater than the number of nodes in the structure.

To summarize, the ShapeProblem class defines how the shape of a structure is

optimized. This includes a feature to accommodate symmetric nodes as well as

independent directional variables of each node. This is required as in a number of

problems only the x-coordinate is altered while the y- and z-coordinates are chosen

to remain in place.

5.2.2.6 Combination problem definition

It is possible to consider more than one structural aspect, size, topology or shape,

within an optimization problem. This may either be simultaneous or sequential.
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However, these problems have increased complexity as not only more variables

are introduced, but also the relationship between these variables may conflict.

For example, if shape optimization positions a node to improve the structural

performance, while topology optimization removes all the elements connected at that

node, the nodal positioning of the shape optimization becomes redundant.

These combination problems are created using the same principles as the individual

problems discussed in sections 5.2.2.3 to 5.2.2.5. Furthermore, the same settings

classes are used for a combination problem. For a combination problem, the only

required task is to combine the encoding and decoding methodologies from the

respective problems.

It is important to note that each structural aspect uses a different variable type.

Size uses binary integers, topology uses boolean and shape uses real-value variables,

enabling easy identification. By using the variable type to identify different variables,

the encoding and decoding methodologies from the individual problems are separated.

These different encodings enable the variables associated with each aspect to be

identified and encoded or decoded in a manner similar to the individual problems.

In this implementation the following combination problems are defined and compared

to one-another for various truss structures in chapter 6.

• Simultaneous size, shape and topology

• Sequential topology and size

• Sequential topology, size and shape

• Sequential size, topology and shape

5.2.3 Reporting an optimization

Reporting functionality is added to the optimization module to provide feedback

on the routine. The reported information is listed below and an example report is

included in appendix D.

• The variable elements and their available cross-sections
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• Variable grouping

• The time the optimization used to complete

These reports provide a method for comparing the performance and results between

different optimizations of the same structure. The results may be influenced by using

differing population sizes and maximum number of iterations. From these comparisons

the optimization parameters can be calibrated. Reports may also be kept as a record

of the results from multiple optimizations.

5.3 Visualization module

To create finite element models and visualize structural behaviour, a visual

representation of a structure is required. By using a three-dimensional computer

generated representation of the created model, input errors and software bugs can

easily be identified. In terms of optimization, it is also preferential to specify

optimization settings in a visual manner as opposed to a text-based manner. For

this reason, a visualization module is added to provide the means for inspecting and

evaluating a FEA model and optimization inputs.

Considering that both two- and three-dimensional problems are catered for in the

FEA and optimization modules, the visualization of both two- and three-dimensional

structures are accommodated. Two-dimensional structures are visualized as

three-dimensional structures without their third dimension. This allows the

visualization module to only be designed for three-dimensional structures. As the

two- and three-dimensional FEA elements discussed in section 5.1.2 are defined to

have their y-axis vertical, the y-axis of the visualization is also taken as vertical.

The visualization is rendered using standard JavaFX and the three-dimensional library

FXyz (Pereda et al. 2016). These libraries enable rendering of three-dimensional

extrusions within an environment which includes pan, rotate and zoom capabilities.

To successfully render structural elements, each Profile class is given a method to

provide the polygon points of the cross-section. These points are used to draw the

cross-section, while the nodes of the structural elements provide the spatial positions

of the members. Any object representation of a member consisting of a cross-section
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attribute which is an extension of the Profile class can be drawn. For members

without a Profile cross-section, a square box is used by default to represent these

members.

An arrow shape is created by combining a cylinder and cone object. This arrow

shape enables the visualization of loads. Currently only point and line loads are

available in the visualizer. These two load types are deemed to be sufficient for

viewing purposes as structures are typically only subjected to these loads directly.

Bending moments are in turn induced by these loads but these moments do not need

to be visually represented.

By using the viewer, the model representation is easily visualized and errors due to

incorrect input are prevented. An example of how the viewer is used to render a

portal frame is shown in figure 5.11.

Figure 5.11: An example of the visualization module

The visual input also allows for the specification of multiple load cases and load

combinations. This avoids the process of specifying such values in a text format.

A disadvantage of text based input is that it is error prone due to the inability to

visually perceive how data is inserted. In the visualizer, each load combination can

be seen independently ensuring that the data is correctly inserted.

An extension to the visualization module is the ability to perform a FEA or

optimization. Both of these produce their respective report files which can be
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examined upon completion of the FEA or optimization. The parameters required for

each of these routines, such as whether or not to mesh elements for the FEA or the

population size for the optimization, can be specified.

As a final remark, the Java language provides a Serialization interface which is

used to save any model created in the visualization to an external file. These files are

imported to the visualization module to resume editing or to execute a finite element

analysis or optimization of a model.
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optimization technique

comparative study
Many studies have been done to find an effective algorithm for optimizing structures

(Coello et al. 1994; Camp and Bichon 2004; Tang et al. 2005; Lamberti 2008; Kaveh

and Talatahari 2009a; Luh et al. 2011; Jalili et al. 2015; Mortazavi et al. 2016), while

little research has been done to quantify the improvement of the resulting structure

if a more comprehensive optimization approach is used. In other words the question

“How much is to gain by optimizing the size, shape and topology of a structure

as opposed to just the size?” is raised. It is well-known that considering the size,

shape and topology of the structure simultaneously will produce the best result (Luh

et al. 2011; Miguel et al. 2013), although this is rarely used due to the additional

complexity. This study aims to justify the usage of a more complex approach in

favour of a significant improvement in the resulting structure.

Comparisons between optimization approaches have previously been made. For

example, Kocvara et al. (1996) present results by comparing a topology and size

problem with a topology, size and shape problem and Achtziger (2007) compared the

simultaneous with the staged approaches. The current study differs from others in the

way the comparison is presented. Neither of the aforementioned studies considered

the increased computation for more complex approaches, or a comprehensive set of

approaches as done in this study.

In an attempt to quantify the improvement of the resulting structure, the optimization

framework, described in chapter 5, is utilized for optimizing various benchmark

truss structures that are found in literature. These structures include both two- and

three-dimensional trusses.

To achieve an extensive range of tests, seven different routines are defined for testing

and comparison. These include the three individual approaches, size, shape and

topology, along with three staged routines and a simultaneous approach. The staged

and simultaneous approaches are:
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1. Topology followed by size optimization (TS)

2. Size, followed by topology and then shape optimization (STS)

3. Topology optimization, followed by shape and then size optimization (TSS)

4. Simultaneous optimization where size, shape and topology are considered at the

same time (SIM)

The majority of the optimization problems found in literature have only one objective

which is weight minimization (Achtziger 2007; Kaveh and Talatahari 2009b; Kaveh

2013; Mortazavi et al. 2016). For this single-objective problem, the GA with elitism

which is added to the MOEA Framework in the optimization module, described

in section 5.2, is used. The parameters used for this GA are outlined in table 6.1.

These parameters were obtained by attempting a number of different combinations

and selecting suitable values which yielded good results.

To obtain reliable results, ten independent runs were executed. From these runs the

average time and best resulting structure are presented as results. Multiple runs are

required as the result obtained from a meta-heuristic search algorithm may deviate

for each run.

For staged optimization, namely the TS, STS and TSS approaches, the number of

iterations are divided to allow an acceptable amount for each stage. The transition

from one stage to the next is defined as taking the best solution from the previous stage

as a template for the next stage. For example, if a size routine must succeed a topology

routine, the size routine will use the best topology found by the topology optimization

routine and generate a new population by randomly initialising the cross-sections for

the specific truss.

Table 6.1: Parameters used for the GA

Parameter Value

Population size 80

Total iterations 1000

Elite solutions 5
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6.1 10-Bar truss

One of the more popular structures, typically used as a starting point for evaluating

new optimization algorithms, is the 10-Bar truss. This structure was first used by

Schmit (1974) and consists of ten elements connected by six nodes as shown in

figure 6.1. The design parameters used for this problem are listed in table 6.2. The size

variables are selected from a discrete set of 42 cross-sections ranging from 1045 mm2

to 21 613 mm2 as shown in table B.1 in appendix B.

9.144 m9.144 m

9.144
m

1 2 3

456

445 kN 445 kN

Figure 6.1: 10-Bar truss

Table 6.2: 10-Bar truss design parameters

Parameter Value

Young’s modulus 68.95 GPa

Material density 2768 kg/m3

Allowable compressive stress 172.25 MPa

Allowable tensile stress 172.25 MPa

Allowable displacement 50.8 mm
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For this optimization problem, the selection of variables is simple. All the elements

are regarded as size and topology variables. For the shape optimization approach,

the nodes on the bottom chord of the truss cannot move, while the nodes on the top

chord can move in the vertical direction as defined in equation 6.1. This results in

the problem consisting of ten size and topology variables with three shape variables.

5 m ≤y4 ≤ 25 m

5 m ≤y5 ≤ 25 m

5 m ≤y6 ≤ 25 m

(6.1)

The results of the various optimization approaches are shown in table 6.3. The

execution time and the percentage reduction from the base structure are also

indicated. The weight of the base structure is determined from assigning the largest

cross-section to all the members. This weight is calculated as 6367 kg.

Table 6.3: 10-Bar truss results

Approach Time Result Reduction

(s) (kg) (%)

Size 1.50 2490.56 60.9

Topology 1.02 3735.37 41.3

Shape 1.16 5365.77 15.7

TS 1.20 2507.98 60.7

STS 1.31 2305.54 63.8

TSS 1.23 2383.88 62.6

SIM 2.37 1230.24 80.7

To prove the adequacy of the GA used, the results obtained are compared to

those found in literature. For the size problem, the resulting weight of 2491 kg is

comparable to the 2540 kg of Sivakumar et al. (2004) and the 2474 kg of Nanakorn

et al. (2001). For the SIM approach, the GA’s result of 1230 kg compares well to

those of 1282 kg and 1235 kg obtained by Tang et al. (2005) and Rahami et al. (2008)

respectively.

These comparisons indicate that the GA provides reasonable results. Therefore, the

algorithm can be regarded as a suitable optimization routine making it eligible for

this comparative study. It is also important to ensure consistency throughout this
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comparative study. This is done by using the the same algorithm for all test problems.

The resulting optimal structure from the SIM approach is shown in figure 6.2. The

figure shows the optimal structure’s topology along with how the nodes are moved in

order to produce the lightest structure. Since no elements are connected at node 4, it

has been removed.

1 2 3

5

6

Figure 6.2: 10-Bar truss simultaneous optimization result

The performance of the various approaches with respect to weight versus iteration

is illustrated in figures 6.3 and 6.4 by plotting the current best solution for each

iteration. The performance data is presented in two figures due to the difference in

nature between the routines. The size and SIM routines converge in significantly less

iterations, therefore, different scales are used on the horizontal axis of these figures.

These differences may be attributed to the fact that the staged routines only proceed

to the next stage after a certain number of iterations. The performance of the GA

can be seen in more detail in figure 6.3. The maximum number of iterations is shown

in figure 6.4 to illustrate what happens when the transition is made from one stage

to another during the execution of the respective routines. These transitions may be

observed at either 400, 600 or 800 iterations.
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Figure 6.3: Performance of the size and SIM approaches for the 10-Bar truss
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Figure 6.4: Performance of the TS, STS and TSS approaches for the 10-Bar truss

As expected, the SIM optimization routine produces the lightest structure. This is

clear in figures 6.3 and 6.4. However, it is interesting to note that the standalone

size optimization performs better when compared with two of the staged approaches.

The reduction percentage from the staged optimization routines is only a 3 %

improvement to the size approach. The performance of the staged approaches may

be improved by introducing more alterations between aspects as frequently found
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in literature (Achtziger 2007). For example, a better result may be obtained by

considering several STS routines in succession. This type of routine will, however,

require more iterations or a reduction in the number of iterations allocated to each

stage.

The topology and shape optimization routines are not shown due to their relatively

poor performance. From these results the initial conclusion can be made that the

shape and topology optimization routines do not perform well as single approaches.

However, they do allow for improvement when used in conjunction with other

strategies.

The weak performance of the shape and topology approaches may be attributed to

their respective limitations. For example, topology optimization may only remove

elements in the structure. In the case of the structure only having 10 elements, the

number of elements that can be removed before the structure becomes unstable is

very small. This limitation may become insignificant in more complicated structures.

A similar argument can be made for the shape optimization approach where the nodes

that can vary in coordinates will only reduce the weight if the length of elements are

reduced. As a number of nodes have predefined constraints, the effectiveness of this

approach is quite limited.

The behaviour of the TSS routine is interesting in this problem. During the transition

from shape to size optimization at the 800th iteration, the random initialization of the

size variables causes an increase in the weight of the structure. This weight is then

reduced to produce a good end result by the size stage of the optimization.

6.2 25-Bar truss

The first three-dimensional structure investigated is the 25-Bar space truss shown

in figure 6.5. The problem definition was taken from Schmit (1974) with the nodal

coordinates listed in table 6.4 and the design parameters listed in table 6.7. The

element information along with the grouping of elements are shown in table 6.5 and

the loading conditions applied to the structure is shown in table 6.6. The 30 available

cross-sections are defined in table B.2 in appendix B.
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Figure 6.5: 25-Bar truss

Table 6.4: 25-Bar truss nodal coordinates

Node x (m) y (m) z (m)

1 -0.9525 0.0 5.08

2 0.9525 0.0 5.08

3 -0.9525 0.9525 2.54

4 0.9525 0.9525 2.54

5 0.9525 -0.9525 2.54

6 -0.9525 -0.9525 2.54

7 -2.54 2.54 0.0

8 2.54 2.54 0.0

9 2.54 -2.54 0.0

10 -2.54 -2.54 0.0
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Table 6.5: 25-Bar truss element information

Group Element name (end nodes)

A1 1(1,2)

A2 2(1,4), 3(2,3), 4(1,5), 5(2,6)

A3 6(2,5), 7(2,4), 8(1,3), 9(1,6)

A4 10(3,6), 11(4,5)

A5 12(3,4), 13(5,6)

A6 14(3,10), 15(6,7), 16(4,9), 17(5,8)

A7 18(3,8), 19(4,7), 20(6,9), 21(5,10)

A8 22(3,7), 23(4,8), 24(5,9), 25(6,10)

Table 6.6: 25-Bar truss loading information

Node Fx (kN) Fy (kN) Fz (kN)

1 4.4482 -44.4822 -44.4822

2 0 -44.4822 -44.4822

3 2.2241 0 0

6 2.6689 0 0

Table 6.7: 25-Bar truss design parameters

Parameter Value

Young’s modulus 68.9 GPa

Material density 2768 kg/m3

Allowable compressive stress 275.79 MPa

Allowable tensile stress 275.79 MPa

Allowable displacement 8.89 mm

Only a few nodes form part of the five shape variables. Furthermore, grouping is used

to reduce the amount of size and topology variables to eight. These decisions force

the structure to stay symmetrical. The detail regarding shape variables is shown in

table 6.8.
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Table 6.8: 25-Bar truss variable detail

Variable Detail

Shape Variables (mm)

0.508 ≤ x4 ≤ 1.524

1.016 ≤ y4 ≤ 2.032

2.286 ≤ z4 ≤ 3.302

1.016 ≤ x8 ≤ 2.032

2.54 ≤ y8 ≤ 3.556

Symmetry

x4 = x5 = −x3 = −x6

y4 = y3 = −y5 = −y6

z4 = z3 = z5 = z6

x8 = x9 = −x7 = −x10

y8 = −y9 = −y10

The optimization routines were executed for the seven approaches and the results

obtained are summarised in table 6.9. The heaviest possible structure from assigning

the biggest section resulted in a total weight of 510 kg.

Table 6.9: 25-Bar truss results

Approach Time Result Reduction

(s) (kg) (%)

Size 2.34 219.57 57.0

Topology 1.88 452.21 11.3

Shape 1.79 449.61 11.8

TS 2.01 220.50 56.8

STS 1.91 198.28 61.1

TSS 1.94 173.87 65.9

SIM 2.86 51.93 89.8

It is interesting to note that the size approach consumed more time than the other

approaches, except for the SIM approach. The simultaneous approach again delivered

the best result with a 89.8 % lighter solution than the original structure.

The performance of the approaches is shown in figures 6.6 and 6.7. By comparing

figures 6.3 and 6.6 it can be seen that the performance of the optimization is fairly
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similar. It is also worth noting the 4 % difference between the results of the STS

and TSS approaches. This indicates that their results are almost equivalent, with the

main difference being the weight of the initial structure. The TSS initial structure has

the same cross-section assigned to all the elements, while the STS initial structure’s

cross-sections are randomly initialized.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Iteration

W
ei

gh
t

(k
g)

Size
SIM

Figure 6.6: Performance of the size and SIM approaches for the 25-Bar truss
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Figure 6.7: Performance of the TS, STS and TSS approaches for the 25-Bar truss
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As a validity check of the results obtained, they are compared to the results presented

in literature. For the size optimization approach, Toğan et al. (2008) and Coello

et al. (1994) arrived at 219.3 kg and 224 kg respectively, which correlates well with

the 219.6 kg found in this study. When considering the simultaneous approach, the

51.93 kg obtained is comparable to 50.7 kg found by Mortazavi et al. (2016).

6.3 47-Bar truss

The next benchmark structure is the two-dimensional 47-Bar truss shown in figure 6.8,

with the element definitions given in table 6.10 and the list of the 50 available

cross-sections shown in table B.3 in appendix B. This problem has been used by

a number of researchers to test their developed algorithms (Mortazavi et al. 2016;

Ahrari et al. 2015; Erbatur 2002).
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Figure 6.8: 47-Bar truss
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Table 6.10: 47-Bar truss element definition

Element name (start node, end node)

A1 (1,3) A17 (9,11) A33 (15,21) A2 (2,4) A18 (10,12)

A34 (16,22) A3 (2,3) A19 (10,11) A35 (17,19) A4 (1,4)

A20 (9,12) A36 (18,20) A5 (3,5) A21 (11,13) A37 (15,17)

A6 (4,6) A22 (12,14) A38 (16,18) A7 (4,5) A23 (12,13)

A39 (14,21) A8 (3,6) A24 (11,14) A40 (13,22) A9 (5,7)

A25 (13,21) A41 (21,22) A10 (6,8) A26 (14,22) A42 (13,14)

A11 (6,7) A27 (13,15) A43 (11,12) A12 (5,8) A28 (14,16)

A44 (9,10) A13 (7,9) A29 (19,21) A45 (7,8) A14 (8,10)

A30 (20,22) A46 (5,6) A15 (7,10) A31 (15,19) A47 (3,4)

A16 (8,9) A32 (16,20)

What makes this problem interesting is that there is no displacement constraint.

However, an additional buckling constraint, expressed in equation 6.2, along with

differing allowable tensile and compression stresses are imposed on this problem.

These constraints along with other design parameters are shown in table 6.11.

σcompi ≤ BEAi/L
2
i

with i = 1, ..., 47

B = 3.96

(6.2)

Table 6.11: 47-Bar truss design parameters

Parameter Value

Young’s modulus 206.84 GPa

Material density 8301 kg/m3

Allowable compressive stress 103.42 MPa

Allowable tensile stress 137.9 MPa

Another difference between the previous structures and the 47-Bar truss is that it is

subjected to multiple load cases. These load cases are given in table 6.12. Intuitively

more load cases lead to more analyses resulting in longer execution times. More load
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cases also increase the complexity of the problem in terms of applying constraints

and finding an optimal solution. Problems with multiple load cases are important to

consider as it reflects a real-world scenario where structures are typically subjected to

multiple load cases.

Table 6.12: 47-Bar truss loading conditions

Case Nodes Fx (kN) Fy (kN)

1 17,18 26.69 -62.28

2 17 26.69 -62.28

3 18 26.69 -62.28

Symmetry about the y-axis is preserved by prescribing symmetrical nodes to have the

same value while its counterpart is allowed to be a shape variable. These variables are

shown in table 6.13. In total this problem consists of 27 size and topology variables

and 17 shape variables which is significantly more than the previous two problems.
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Table 6.13: 47-Bar truss variable detail

Variable Detail

Size and topology

Am = Am−1

with m = 2, 4, 6, ..., 40

A41, A42, A43, ..., A47

Shape (mm)

0 ≤ x2, x4, x6, x8 ≤ 3810

0 ≤ x10, x12, x14 ≤ 2286

0 ≤ x20 ≤ 3810

0 ≤ x22 ≤ 2286

0 ≤ y4 ≤ 6096

3048 ≤ y6 ≤ 9144

6096 ≤ y8 ≤ 10668

9144 ≤ y10 ≤ 12192

10668 ≤ y12 ≤ 13716

12192 ≤ y14 ≤ 15240

13716 ≤ y20, y22 ≤ 16764

Symmetry

x2 = −x1;x4 = −x3

x6 = −x5;x8 = −x7

x10 = −x9;x12 = −x11

x14 = −x13;x20 = −x19

x22 = −x21

y4 = y3; y6 = y5

y8 = y7; y10 = y9

y12 = y11; y14 = y13

y20 = y19; y22 = y21

The results obtained from the various approaches are shown in table 6.14. The initial

structure had a weight of 2989 kg and this was significantly reduced with the different

optimization routines. The performance of the various optimization routines is shown

in figures 6.9 and 6.10.
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Table 6.14: 47-Bar truss results

Approach Time Result Reduction

(s) (kg) (%)

Size 12.41 1381.66 53.8

Topology 11.00 2683.97 10.2

Shape 16.68 2407.19 19.5

TS 12.16 1422.37 52.4

STS 13.26 1420.75 52.5

TSS 15.16 1322.23 55.8

SIM 18.94 909.48 68.6
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Figure 6.9: Performance of the size and SIM approaches for the 47-Bar truss
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Figure 6.10: Performance of the TS, STS and TSS approaches for the 47-Bar truss

The resulting structure obtained from SIM optimization had a weight of 909 kg. This

value is 8.7 % more than the 837 kg from Gholizadeh (2013) and 13.5 % more than the

801 kg reported by Mortazavi et al. (2016). The resulting weight difference between

these papers may be attributed to the use of a better suited algorithm for a larger

search space for the continuous shape variables compared to the GA used in this study.

Similar to the previous structures, the simultaneous optimization routine produced

the lightest result. However, the SIM routine required significantly more time to

arrive at a solution for the same number of iterations. This indicates that there is

an additional computation involved when optimizing a structure simultaneously as

opposed to a staged approach.

It is interesting to note that, for this problem, the size approach produced lighter

solutions than the TS and STS approaches. This implies the inclusion of topology

optimization, when run independently, results in a worse solution. It is also worth

noting that this phenomenon only occurs for this example and it may be attributed

to the nature if this specific problem. Another reason for this phenomenon may be

due to the nature of the sequential approach. While the one stage improves the best

structure, the next may negate the improvement. For example, the size stage may
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6.4 72-Bar truss

select a good member, then during the next topology stage the member is removed

from the structure.

6.4 72-Bar truss

The 72-Bar space truss, shown in figure 6.11, was optimized for size and topology

by Kaveh (2013) by applying both static and dynamic constraints. In this case only

static constraints are applied, but the shape of the structure is also optimized.
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Figure 6.11: 72-Bar truss

The design parameters along with the displacement and stress constraints used in this

problem are shown in table 6.15. The element grouping for the 16 size and topology

variables is shown in table 6.16. The 64 cross-sections used for this problem was taken

from Kaveh, Kalatjari, et al. (2016) and are shown in table B.4 in appendix B.
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Table 6.15: 72-Bar truss design parameter

Parameter Value

Young’s modulus 68.95 GPa

Material density 2768 kg/m3

Allowable stress 172.38 MPa

Allowable displacement 6.35 mm

Table 6.16: 72-Bar truss grouping

Group Element name (end nodes)

A1 1(1,5), 2(2,6), 3(3,7), 4(4,8)

A2 5(2,5), 6(1,6), 7(2,7), 8(3,6),

9(3,8), 10(4,7), 11(1,8), 12(4,5)

A3 13(5,6), 14(6,7), 15(7,8), 16(5,8)

A4 17(5,7), 18(6,8)

A5 19(5,9), 20(6,10), 21(7,11), 22(8,12)

A6 23(6,9), 24(5,10), 25(6,11), 26(7,10),

27(7,12), 28(8,11), 29(5,12), 30(8,9)

A7 31(9,10), 32(10,11), 33(11,12), 34(9,12)

A8 35(9,11), 36(10,12)

A9 37(9,13), 38(10,14), 39(11,15), 40(12,16)

A10 41(10,13), 42(9,14), 43(10,15), 44(11,14),

45(11,16), 46(12,15), 47(9,16), 48(12,13)

A11 49(13,14), 50(14,15), 51(15,16), 52(13,16)

A12 53(13,15), 54(14,16)

A13 55(13,17), 56(14,18), 57(15,19), 58(16,20)

A14 59(14,17), 60(13,18), 61(14,19), 62(15,18),

63(15,20), 64(16,19), 65(13,20), 66(16,17)

A15 67(17,18), 68(18,19), 69(19,20), 70(17,20)

A16 71(17,19), 72(18,20)

The structure is subjected to two load cases, each applying a different stress pattern

within the structure. These load cases are specified in table 6.17.
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Table 6.17: 72-Bar truss loading conditions

Case Nodes Fx (kN) Fy (kN) Fz (kN)

1 17 22.25 22.25 -22.25

2 17,18,19,20 - - -22.25

With regards to shape optimization, the nodes on each level are allowed to vary

between 0.5 m and 2.5 m in both the x and y directions, with no movement in the z

direction. The other three nodes in the level are subsequently changed to maintain

symmetry of the vertical structure. A total of 10 shape variables are, therefore,

introduced to the problem.

The results from the various optimization routines are given in table 6.18. The base

structure used has a weight of 626.9 kg. This is not the heaviest structure possible

from the selection of sections, but given the large range of section sizes and the results

obtained, a lighter structure which also satisfies the constraints was selected for the

comparison.

Table 6.18: 72-Bar truss results

Approach Time Result Reduction

(s) (kg) (%)

Size 10.30 181.27 71.1

Topology 9.12 410.96 34.4

Shape 9.06 408.28 34.8

TS 9.83 243.6 61.1

STS 8.95 154.31 75.4

TSS 9.5 166.02 73.5

SIM 11.97 100.84 83.9

When comparing the result of 181 kg obtained for the size optimization with the

170 kg found by several other researchers (Jalili et al. 2015; Degertekin 2013; Camp

2007), there is a 6 % deficit. This may be due to a grouping discrepancy between

the respective problem definitions and the use of a better suited algorithm with

calibrated parameters. Unfortunately, no results to the SIM approach have been
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published for the 72-Bar truss and the results obtained in this study can not be

compared to ones from literature.

The performance of the individual routines is shown in figures 6.12 and 6.13.

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

Iteration

W
ei

gh
t

(k
g)

Size
SIM

Figure 6.12: Performance of the size and SIM approaches for the 72-Bar truss
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Figure 6.13: Performance of the TS, STS and TSS approaches for the 72-Bar truss
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6.5 Combining results

From the results obtained, the well-known statement that considering the size, shape

and topology aspects of a structure simultaneously produces the lightest structures,

is validated. Through the quantification used in this chapter, it is concluded that

the simultaneous approach yields, on average, a 13 % better solution than its best

alternative, but requires additional computation time to complete.

Comparing only the individual approaches, size optimization clearly leads to better

results, but consumes more time. From the results obtained in this study, the weight

improvement is approximately 32 %. The reason for this can be attributed to the

fact that the choice of cross-section has a significant influence on the weight of

the structure, while removing certain non-critical elements and moving joints has a

limited influence on the weight of the structure.

The staged approaches typically produce reasonable results with the same amount

of iterations as the SIM approach. However, the iterations allowed for each stage

is rather limited when each routine is forced to have the same total number of

iterations. It is interesting to note that there is, on average, a 12 % difference

between considering the three aspects in a staged manner as opposed to considering

them simultaneously. The separation of the size, shape and topology aspects of the

structure may be the cause for this difference since these aspects are not independent

when it comes to the performance of the structure.

It is possible to quantify from the results obtained in this study that the simultaneous

approach produces, on average, 22 % more economical structures than the size

approach. It also always arrived at a better result than any of the considered

staged approaches. This indicates that in search of a truly optimal structure, simply

performing a size optimization is insufficient and that significant savings in terms of

weight can be made by upgrading the optimization routine’s complexity by considering

more aspects of the structure. Based on the results in this study, it is evident that

it is worthwhile to devote the additional effort to apply a more complex optimization

approach in favour of a significantly better solution.
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study
The serviceability limit state (SLS) sometimes governs the design of a structure. The

SLS is used to verify that the structure does not exceed the prescribed displacement

limit. In the case where the deflection limit is exceeded, the structure is stiffened

by increasing the size of its members, resulting in a heavier structure. However, in

several instances the deflection of a structure can be regarded as a non-critical factor.

In other words, a structure’s deflection will not influence the usability thereof. For

example, a rural warehouse structure will remain functional even if the deflection is

occasionally greater than the prescribed limit.

It can be argued for a number of structures, such as the warehouse in the

aforementioned example, the deflection limit may be increased in favour of a

significant cost reduction. In this study, an attempt is made to quantify the amount

of weight, if any, that can be saved by increasing the allowable deflection limit. It is

assumed that the weight of a structure can be used as an indication of its cost.

The quantification is performed by introducing the two objectives, weight and

deflection, to a multi-objective problem and minimizing them simultaneously. The

resulting pareto front of solutions is used to determine whether or not increasing the

deflection limit will lead to a meaningful weight reduction in the structure.

For this investigation, moment resisting frame structures are considered. The FEA

and optimization module discussed in sections 5.1 and 5.2 are used for this purpose.

To determine the capacity of a frame, a structural design module is introduced to

automatically design the generated solutions. Further details of this module are

presented in section 7.1.

With tools to determine the capacity of a frame structure, a formal definition of the

multi-objective problem is required. The definition used in this study is given in

section 7.2. It outlines the objectives and constraints present in this study and how
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they are determined using the developed software.

Four structures are considered for this study. Their definition along with their

respective results are discussed in section 7.3, after which a conclusion is drawn from

these obtained results.

7.1 Automatic design module

Any steel structure is required to meet the requirements provided by the national

standards of a country. In this study, SANS 10162-1 is used to determine if a structure

can resist the applied loadings at the ultimate limit state (ULS). Considering the large

number of structures that must be designed during an optimization, it is infeasible

to design them by means of hand calculations. Therefore, the addition of a module

which can automatically design structures is required.

SANS 10162-1 provides guidelines for determining the resistance of compression,

tension and bending elements. Interaction equations and further considerations are

also provided for an element subjected to a combination of forces. These guidelines

are implemented to design all the elements in a structure.

With regards to the analysis of the structure, SANS 10162-1 stipulates that a

second order analysis is required to determine the element forces. In this study, the

analysis module, described in section 5.1, only caters for linear-elastic analyses. For

the purposes of this study the use of a linear-elastic analysis is deemed sufficient,

although analysis results may be improved by utilising a second order analysis.

A number of values used for the design of members, such as effective length factors,

are difficult to determine from a software perspective. Therefore, these values should

be explicitly defined for all elements before the design can be done. These values

remain constant for all the solutions within the optimization routine and can simply

be assigned for all of them. The values which must be defined before the optimization

are listed below:

• Effective length factors for compression, Kx, Ky and Kz.

• Member lengths, Lx, Ly and Lz.
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• Whether a bending member is laterally supported or unsupported. In the

case the member is laterally unsupported, the effective length factor of the

unsupported length, Kb is required.

One value that is particularly difficult to determine from the software’s perspective

is the ω2 value which applies to laterally unsupported bending members. A formula

for ω2 is, however, presented in CSA S16-09 (2009), which can be determined by

the software. This formula is given in equation 7.1 and is based on the quarter point

moments within the element, namely, Ma, Mb and Mc. This formula is accommodated

by using the MeshModel described in section 5.1.4.3.

ω2 =
4 ·Mmax√

M2
max + 4 ·M2

a + 7 ·M2
b + 4 ·M2

c

(7.1)

The results of the design module are validated using the provided reporting

functionality. Using this function, a comprehensive design calculation sheet for the

entire structure can be generated for checking the design. A small example of such a

design sheet for the structure and loading shown in figure 7.1 is added to appendix E.

This is the same structure for which the analysis report, shown in appendix C, is

generated, hence the analysis and design reports are for the same structure.

2
m

1
m

3 m

1

2

3

Permanent load: 1 kN/m
Imposed load: 3 kN/m

Figure 7.1: Example structure for the design report

7.2 Formal problem definition

The formal definition of the multi-objective problem is expressed in equation 7.2

and applied to all the problems considered in this study. In the aforementioned
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expression, the two objective functions, W (x) and D(x), correspond to the weight

and displacement of the structure respectively. The constraint, C1, is added to avoid

allowing excessive deflection within the structure. This allows the optimization routine

to be guided in a favourable direction. The second constraint, C2, specifies that the

structure must adhere to the requirements set by the design code. These requirements

are focused on the load carrying capacity of the structure.

minimize W (x) =
m∑
i=1

ρiliAi (7.2)

D(x) = max(displacement)

subjected to:

C1 ≡ max(displacement) ≤ 1 m

C2 ≡ Satisfies code requirements

For the problems considered in this study, only size optimization is used. This is

done based on the assumption that the other aspects of the structure have been

defined during other phases of its design. Therefore, only cross-section options can

be defined for variable elements within these structures.

In this study, the optimal structure is defined as the one having the best trade-off or

balance between the objectives. It is noteworthy that this is only one consideration

as many others exist, for example simply considering the optimal as the lightest

structure which satisfied the deflection and resistance requirements. In the case of

two objectives, the result which best suits this balance definition is regarded as the

point closest to a 45° tangent to the pareto front. This technique can be applied by

normalising the weight and displacement axes to range from zero to one. This will

accurately determine the solution of interest. This concept can be visually illustrated

as in figure 7.2.
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Figure 7.2: Definition of optimal solution

The merit of this definition of optimality is evaluated in the example structures by

comparing how close the optimal structure is to the allowable deflection limit. In

the case that the optimal solution exceeds the limit, it can be argued that the limit

may be adjusted in favour of having an optimal structure. The opposite case of the

optimal structure’s deflection being less than the limit can be used as an indication

that the optimal definition is not ideal and that a more suitable definition is required.

In all the examples of this study, a single, ULS, load combination is used to determine

whether or not the structure has sufficient capacity to carry the applied load. For

the allowable deflection calculation, another load combination, called SLS, is used to

determine the maximum deflection within the structure. Therefore, each structure

is analysed for two load combinations. In reality more combinations need to be

considered, but one ULS and SLS combination is sufficient for the purpose of this

study.
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7.3 Example structures

A total of four structures are considered as examples of multi-objective optimization

problems where both weight and displacement are minimized. These include two- and

three-dimensional structures subjected to different loading and support conditions.

The parameters used for the NSGA-II optimization algorithm include a population

size of 80 individuals and a maximum of 100 000 objective function evaluations

which result in 1250 iterations throughout the optimization. The member grouping

and available cross-sections for each variable is specified for each respective example

problem.

The weight of the structure is determined in a manner similar to the one used in

chapter 6. The density of steel is taken as 7860 kg/m3 and is multiplied by the volume

of each element to produce the resulting weight of a candidate solution structure.

Furthermore, S355JR steel is used with a yield stress, fy, and Young’s modulus, E,

of 355 MPa and 200 GPa respectively.

With regards to the values required for the automatic design of elements, the

unsupported lengths are taken as the distance between the element’s end-nodes as

it is assumed that sufficient lateral support is provided at these points. All the

effective length factors are chosen as one for simplicity. This choice is considered to

be conservative given no element in the example structures considered in this study

has translation free ends, which would increase its effective length. In other words,

all the effective length factors for the elements are actually less than one, decreasing

its effective length which would result in a larger resistance value.

7.3.1 Plane 4-storey frame

The first example structure is a two-dimensional 4-storey frame. An illustration of

the frame and its applied loads is shown in figure 7.3. This structure is based on the

example used by Barraza et al. (2017) for minimizing the weight and inter-storey drift

under seismic loads.
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Figure 7.3: 4-Storey plane frame with loads

The loads applied to the structure include its own weight, DL, the imposed load, LL,

and a wind load case, WL. The magnitudes of these loadings are shown in table 7.1.

These loadings need to be combined to collectively produce the ULS and SLS load

combinations. These combinations are expressed in equations 7.3 and 7.4.

Table 7.1: 4-Storey frame loading magnitudes

Load Value

Own weight (DL) 3.0 kN/m

Imposed load (LL) 8.0 kN/m

Wind load (WL) 25.0 kN

ULS = 1.2 ·DL+ 1.6 · 0.3 · LL+ 1.3 ·WL (7.3)

SLS = 1.1 ·DL+ 1.0 · 0.3 · LL+ 0.6 ·WL (7.4)
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For this example structure, the weight and lateral displacement induced by the wind

loads are minimized. The limit placed on the lateral deflection is specified by SANS

10162-1 as height/400 which results in a limit of 35 mm.

With regards to grouping applied to the optimization problem, the two columns

from n1 to n5 and n11 to n15 are grouped together and may comprise of either I-

or H-sections. This leaves the elements in the middle column from n6 to n10 to be

grouped together, with the same cross-section options. The beams of the structure

are grouped such that two floors have the same section. In other words, the beams

between nodes n2 and n12 on the first floor and n3 and n13 on the second floor are

specified to have the same cross-section. This leaves the beams on the last two floors

to be the last grouping for this structure. All the beams may consist of any I-section

from the database.

The multi-objective optimization results obtained are shown in figure 7.4. The

displacement limit of 35 mm is also indicated on the graph.
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Figure 7.4: Resulting pareto front of the two-dimensional 4-storey frame

From the results, the solution which is the best trade-off between the two objectives

has a weight of 4.66 Mg and a displacement of 17.82 mm. The found cross-sections for

this optimal solution is shown in table F.1. The displacement of the optimal solution
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is well below the limit of 35 mm. However, the structure which is the closest to the

limit has a deflection of 34.1 mm and a corresponding weight of 3.91 Mg, leading

towards a 16 % reduction of 750 kg from the predefined optimal solution.

For the case where the prescribed limit can be altered the weight can be reduced

between 20 kg and 410 kg with the maximum displacement ranging between 35.8 mm

and 52.04 mm. These ranges indicate that a meaningful weight reduction of up

to 10 % can be achieved by allowing the deflection to exceed the prescribed limit.

However, for this reduction the limit must be approximately doubled.

It is important to note that the change in structural weight is not taken into account

during the optimization. In other words, the value of the permanent load, DL, applied

to the structure is not recalculated for every new solution. If the resulting structure

is re-analysed with its actual own weight forming part of the permanent load, the

deflection will be reduced.

7.3.2 Plane portal frame

The next example is a typical portal frame structure. A portal frame is a popular

structure normally used for industrial purposes such as warehouses and factories.

The layout and applied loads of the two-dimensional portal frame in this example is

shown in figure 7.5.

Portal frame structures normally function by allowing individual frames to carry their

in-plane loads and installing a bracing system for dealing with lateral loads. It is

efficient to determine which frame is the most heavily loaded and only designing that

specific frame in detail and using one frame throughout the structure. Therefore, only

the single most heavily loaded individual frame within such a portal frame structure

needs to be optimized.
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Figure 7.5: Plane portal frame with loads

For the frame shown in figure 7.5, it is assumed that adequate lateral support is

provided to both flanges at all nodal positions. The nodes n6 and n7 are both in

the middle of the rafter beams. The positioning of lateral support is specifically

important for the structural design of elements for both bending and compression.

The sections of an element between lateral supports are checked according to SANS

10162-1 for flexural and torsional buckling.

The numerical values used for the indicated loadings are shown in table 7.2. For this

structure it is assumed that the imposed load on the roof is negligible and that the

permanent load, DL, includes both the own weight of the rafters and the roof which

is resting on top of it. The two load combinations used during the optimization to

determine the structure’s capacity and deflection are shown in equations 7.5 and 7.6.

Table 7.2: Plane portal frame loading magnitudes

Load Value

Permanent load (DL) 1.6 kN/m

Wind load (WL1) 5.9 kN/m

Wind load (WL2) 2.8 kN/m

Wind load (WL3) 3.8 kN/m

Wind load (WL4) 1.4 kN/m
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ULS = 1.2 ·DL+ 1.3 ·WL (7.5)

SLS = 1.1 ·DL+ 0.6 ·WL (7.6)

The grouping applied for the optimization of the portal frame is quite elementary.

The two side columns are to have the same cross-section while the two rafter beams

are prescribed to consist of the same cross-section. This yields an optimization

problem with only two variable elements. All the I- and H-shaped sections are made

available for the two columns, while the rafters may only consist of I-sections. All

these available sections result in 2666 possible combinations for this portal frame.

The resulting pareto front from the optimization routine is shown in figure 7.6.

According to SANS 10162-1, the lateral deflection limit of an industrial portal frame

can range between height/400 to height/200 which amounts to an allowable deflection

range of 10 mm to 20 mm. In this instance the lowest deflection of 10 mm is used, which

is the same as for non-industrial buildings. This allowable lateral deflection value is

also indicated on the graph.
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Figure 7.6: Resulting pareto front of the two-dimensional portal frame

By applying the previous definition of the optimal trade-off between the two

objectives, the so-called “optimal” solution, identified from the pareto front, has a
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weight of 1.91 Mg and a lateral deflection of 8.6 mm. The location of this solution’s

data point on the resulting pareto front is marked on figure 7.6 and the corrosponding

cross-sections are shown in table F.2.

This optimal solution is well within the capacity requirements of SANS 10162-1, with

the most critical element’s interaction equation having a value of 0.29, indicating the

structure has reserve capacity. However, its lateral displacement is very close to the

10 mm limit which indicates that the definition of the optimal solution is suitable for

this example structure. The solution closest to the limit has a weight of 1.8 Mg and

a lateral displacement of 9.96 mm. By comparing the optimal point with the solution

closest to the limit, a 6 % weight reduction can be achieved. Keeping in mind that

the deflection is only increased by a mere 1.4 mm.

If the limit is allowed to be increased to 15 mm, the weight of the structure decreases

to 1.47 Mg, about 330 kg lighter than the solution which satisfied the limit. This

amounts to a 18 % reduction in structural weight which can be regarded as a

significant reduction.

If the higher limit of 20 mm was selected, then 76 of the 80 solutions obtained by

the optimization are satisfactory. In such a case, simply the lightest solution of

the population, which satisfies the constraints, could be used without any further

consideration.

7.3.3 5-Bay portal frame

The first three-dimensional structure presented, in this chapter, is a typical portal

frame structure. These structures are widely used to function as warehouses,

retail facilities and agricultural buildings. The majority of the loadings on the

structure are carried by the plane frames as in the previous example, while the out of

plane loads, normally wind, are transferred through the structure to a bracing system.

The structure considered in this example has the same portal frame as in the previous

example, spaced at 7 m intervals and connected via angle-sections and a cross-bracing

system. This configuration is illustrated in figure 7.7.
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Figure 7.7: Three-dimensional portal frame

For the analysis of the structure, part of the bracing system is removed. This is

done to ensure that the bracing elements only carry tensile forces in the considered

load combination. If the transverse wind was acting in the opposite direction, the

removed members will be required as they would then act in tension.

By ensuring that only tensile forces are carried by the bracing members, the limit

placed on their slenderness ratios is increased from 200 to 300. This increase

along with the members being braced at midspan, reduces the probability that

their lengths are a limiting factor. If compressive forces are to be accommodated,

these members would need to be shortened or lateral supports installed to avoid

buckling. In a real structure these members will be present and compressive

forces may be implicitly induced in these members. Although this may be the

case, these elements will not be able to carry the compressive force and will buckle,

leaving the force to be transmitted to the other bracing members to carry it in tension.

For the automatic design of this three dimensional structure, the effective lengths of

the elements connecting the frames, with regards to compression, are assumed to be

3.5 m. This decision is justified by considering that these elements may be laterally

supported by the roof sheeting or bracing elements added between these members to

prevent buckling.
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The wind load case applied to this structure is taken as the wind blowing on the

face of the structure to induce forces in the bracing members as shown in figure 7.8a.

By doing so, the maximum horizontal displacement is determined by the stiffness

of the bracing elements and not the in-plane stiffness of the portal frames as in the

previous example. For this wind load case, only the two faces perpendicular to the

wind experience a positive pressure, while the rest of the structure is subjected to

negative pressure. This causes a reduction in downward force in the structure which

in turn increases the maximum lateral deflection.

The loads induced by the applied wind case are shown in figure 7.8. Figure 7.8a

shows the effect on the two windward faces. It is assumed that all the wind on

these faces are transferred by the members connecting the frames and not the frames

themselves. By doing so, the frames do not resist forces which causes bending about

its weak axis for which a stiffer choice of cross-section would be required. The

pressure on these faces are therefore converted to point loads of equal magnitude and

applied at the nodes of the connecting members.

Figures 7.8a to 7.8e illustrate the forces applied to the various portal frames in this

structure. These line loads were calculated by considering the variation of wind

pressure on the roof of the building and that the surface area carried by each frame

is equal to half the distance to the next frame on each side. Therefore, frames 2 to 4

are subjected to the same loads, while due to the increased pressure carried by frames

5 and 6 their roof loads would be higher. The two edge frames carry only half of the

surface area compared to the other frames which in turn results in them carrying less

load.
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Figure 7.8: The wind direction and induced loads on the three-dimensional portal

frame

The same load combinations as the two-dimensional case were applied for the ULS

and SLS cases. The value of the dead load applied to the rafters was slightly

increased to 1.8 kN/m to account for the additional bracing elements. Doing so is

not technically correct considering a number of members are now carrying more

load than what is present because the braced bay is only situated in one bay. This

approach is, however, considered to be conservative.
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With regards to the grouping applied to the structure, a total of eight groupings were

created and is shown in figure 7.9. Six of which apply to the frames. The rafter beams

and columns are paired from the outside inward, which also promotes symmetry in

the structure. Each column grouping can use any I- or H-shaped cross-section, which

amounts to 62 cross-sections, while the rafters may only comprise of one of the 43

I-sections. Furthermore, the elements connecting the frames are all grouped together

while the final grouping is all the bracing members. Both these groupings may use

any of the 46 equal-leg angle-sections during the optimization. All these groupings

result in a total of 40 · 1012 possible solutions to the optimization problem.

Frames 3 & 4

Frames 2 & 5

Frames 1 & 6

Cross bracing Frame connectors

Figure 7.9: Grouping configuration applied to the three-dimensional portal frame
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The pareto front obtained from the optimization is presented in figure 7.10. As in the

previous example, the deflection limit and the optimal structure as per the previous

definition is indicated on the graph.
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Figure 7.10: Resulting pareto front of the three-dimensional portal frame

The same horizontal displacement limit of 10 mm from the previous example applies

to this structure. In this case, the maximum lateral displacement occurs in the

windward direction, which is primarily resisted by the bracing members within the

structure.

The lightest structure which conforms to the displacement limit has a weight of

9.29 Mg and a displacement of 9.6 mm. The optimal solution as previously defined

slightly exceeds the displacement limit with a lateral displacement of 12.4 mm and

a weight 8.4 Mg. The optimal solution is an 11 % reduction from the first structure

which satisfies the displacement limit. The obtained cross-sections from this optimal

solutions is shown in table F.3. For the case where the same adjusted limit of 15 mm,

as suggested in the two-dimensional case, is applied the weight of the structure

reduces to 7.98 Mg which amounts to a significant 16 % reduction.

It is also interesting to note that 37 of the 80 solutions on the pareto front exceed the

displacement limit of 10 mm. Considering all the structures obtained in this pareto
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front satisfies the design requirements, the variability of the resulting weight can be

vast. In this case, the displacement limit reduces the number of viable options which

indicates that the prescribed displacement can be considered a limiting factor when

searching for the optimal structure.

7.3.4 4-Storey building

The fourth example structure considered in this study is a rectangular four storey

building which may be used as an office or residential building. This structure is

considered as a three-dimensional finite element model with wind blowing on the

structure. A diagram of this structure is shown in figure 7.11. This structure consists

of four storeys, each with a height of 3 m, with each floor having an area of 288 m2

which totals an area of 1440 m2.
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Figure 7.11: 4-Storey frame layouts

With regards to the structural considerations, all the columns are rigidly connected to
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the foundations which enables moments to be resisted at the supports. All the beams

connecting to the columns are pin connected which ensures that no bending-moments

can be transferred from the beams to their respective supporting columns. For this

pin end-condition, however, torsional restraint must be provided in order to avoid a

zero-pivot error during the analysis of the structure. This error arises when a beam

with torsional stiffness is left unrestrained against torsion, which leads to the global

matrix equation, equations 5.15 and 5.16, to be unsolvable. For this end-condition to

be enabled, only the x- and y-axis moment degrees of freedom are released from the

element stiffness matrix, leaving the torsional degree of freedom unaltered.

Bracing members are also present in the structure to provide lateral stability and

reduce the maximum deflection. Since it is assumed that bracing only acts in

tension, the bracing members which will be in compression during the considered

load combinations were consequently removed from the analysis. This operation is

needed to prevent slender bracing members in compression from entering the design

stage, which they will fail due to buckling.

The orientation of the columns is also selected to improve lateral stiffness in the

direction where bracing is not installed. By doing so the structure itself has sufficient

lateral stiffness in one direction, while the bracing increases the overall stiffness in

the other. In total the structure consists of 236 elements, which are all meshed into

four sub-elements during the analysis in order to successfully execute the automatic

design module.

In this example, the structure is subjected to three main loading scenarios. The first

two include the permanent, DL, and imposed, LL loads. The third is a wind load,

WL, blowing across the structure as indicated in figure 7.11c.

The wind load induces a load of 1.6 kN/m per floor on both the windward and

leeward faces of the structure. This line load is converted to two point loads of

each 9.6 kN on the outer beams of each floor as it is assumed that the wind load is

transferred to the floor bracing which distributes it to the supporting columns on

that floor, rather than allowing the load to be resisted by only the columns directly

facing the wind which induces large deflections.
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The permanent load is applied to only the beams and it is assumed that the weight

of the columns, bracing and floors are included in this loading. The imposed load

includes the loads applied on the floors which are supported by the beams and the

services installed in the structure such as air conditioning. The same beams which

carry the permanent load is also required to carry an imposed loading.

A distinction is made between perimeter and internal beams since each will be required

to carry a different part of the load transferring from the floor. Internal beams support

a floor on both sides while perimeter beams only support one part of the floor. By

utilising this assumption, the loadings applied to the beams are illustrated in table 7.3.

One remark that should be made is that the top floor is also loaded similarly to the

other floors and that the roof of the building is excluded from the model.

Table 7.3: Three-dimensional frame loading magnitudes

Load Internal Perimeter

Permanent load (DL) 17 kN/m 13 kN/m

Imposed load (LL) 14 kN/m 7 kN/m

With regards to the grouping applied to the structure as a multi-objective optimization

problem, a total of six groups were identified to group elements of similar length and

loading together. The applied grouping is the same for all levels and can therefore

be represented in a simple manner as in figure 7.12. The various groups and their

available cross-sections are shown in table 7.4.

Table 7.4: Grouping and section assignments for the three-dimensional 4-storey frame

Grouping Assigned cross-section

Perimeter / outer columns All I- and H-sections

Internal columns All I- and H-sections

Perimeter/ outer beams All I-sections

Lateral internal beams All I-sections

Transverse internal beams All I-sections

Bracing members All Equal-leg angle-sections

128

Stellenbosch University  https://scholar.sun.ac.za



7.3 Example structures

Outer beams Outer columns
Bracing

Lateral beams Transverse beams Internal columns

Figure 7.12: Grouping configuration applied to the three-dimensional frame structure

The load combinations applied to this structure are shown in equations 7.7 and 7.8.

For ULS, the case where no wind is blowing on the structure is selected as this case

induces larger bending moments in the beams. Although the columns are subjected

to bending moments if the wind blows, the factor applied to the imposed load, LL,

reduces to 0.48 which dramatically reduces the applied beam loadings, leading to a

reduction in the design forces. Since lateral deflection is minimized for the SLS, it

is appropriate to apply the maximum wind load with a reduced imposed load. This

SLS combination promotes lateral deflection with a high lateral load and reduced

downward force acting on the structure.

ULS = 1.2 ·DL+ 1.6 · LL+ 0 · 1.3 ·WL (7.7)

SLS = 1.1 ·DL+ 0.3 · 1 · LL+ 0.6 ·WL (7.8)

The resulting pareto front obtained from the optimization is presented in figure 7.13.

The deflection limit of this structure is calculated as height/400 which yields a limit
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of 30 mm and the optimal structure as per the previous definition is indicated on the

graph.
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Figure 7.13: Resulting pareto front of the 4-storey frame

The structure closest the prescribed limit has a weight of 58.52 Mg and a displacement

of 28.7 mm. It is notable that only eight solutions on this front exceed the limit with

the maximum displacement reaching 76.8 mm while the remaining 72 solutions are

well within the limit.

The optimal point as per the previous definition has a weight of 65.81 Mg and a

displacement of 12.7 mm. The corresponding cross-sections obtained for this optimal

solutions are shown in table F.4. This solution is an 11 % weight increase from the

one closest to the displacement limit. Therefore, the structure closest to the limit can

be considered to be a significant weight reduction compared to the structure which

results from the best trade-off optimality definition.

From the results obtained, the lightest solution with a 76.8 mm displacement has

a weight of 56.1 Mg, a mere 4.1 % reduction in weight while the displacement is

increased by 268 %. These numbers indicate that it would be infeasible to increase

the displacement limit for such a small reduction of structural weight.
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7.3.5 Concluding remarks

A total of four framed structures were considered as example problems where the

weight and displacement are minimized by using multi-objective optimization. These

structures were also required to satisfy the design requirements from SANS 10162-1.

The aim of the investigation is to determine whether or not a significant weight

reduction can be made by increasing the displacement limit set by SANS 10162-1

for the serviceability limit state (SLS). The example structures show that a weight

reduction of up to 16 % can be achieved when the displacement limit is increased.

However, for the reduction to be significant the limit should be increased by a large

margin, in a number of cases almost doubled, which makes the limit alteration

infeasible.

The optimum solution is defined as the best trade-off between the two objectives and

proves to be a reasonable solution in the considered examples. In a number of cases

such as the two portal frame examples, the optimum solution’s displacement is very

close to the limit which supports the applicability of this definition of optimality.

This definition of optimality may be used as an initial choice of the optimal structure

and may be changed based on the requirements of the structure, for example, when

a certain type of cross-section is preferred.

As a final remark, the displacement limit imposed on the structures considered in

this study is not the governing factor when it comes to reducing the weight of the

structure. In all the considered cases, the limit only removes a number of the lightest

solutions on the pareto front from being considered with the weight difference being

less than 20 %. This indicates that the majority of the structure’s weight can be saved

before reaching the prescribed limit and that the limit does not need adjustment for

a significant weight reduction.
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recommendations

8.1 Research overview

Research into the field of optimization has received attention over the years.

Various methods for solving optimization problems have been developed including

mathematical and non-mathematical techniques. These problems are typically solved

with the aid of a computer due to their complexity and large number of iterations.

Research has been done to apply these methods for the optimization of structures.

Generally, three aspects of a structure can be optimized, namely its size, shape

and topology. Size refers to the choice of element cross-sections, shape to the

nodal or boundary positioning and topology to the internal element configuration.

A combination of these aspects can also be considered, be it sequentially or

simultaneously.

Typically, only the size aspect of a structure is optimized, while a more complex

approach can be followed such as considering the size, shape and topology aspects

simultaneously. Although the majority of studies only optimize the size aspect of a

structure, more complex approaches exist where the size, shape and topology of the

structure is optimized simultaneously. This simultaneous approach is known to yield

a more economical result. However, it is not known how much is gained by applying

a more complex approach in terms of structural weight reduction. The first aim of

this research is to investigate this improvement by means of a quantitative study.

Furthermore, multi-objective optimization enables the minimization of two or more

conflicting objectives in an optimization problem, for example, the maximum

displacement and weight of a structure. In this study, the second aim is to investigate

whether or not the deflection limit placed on a structure by design codes should be

increased in favour of a significant weight reduction. It is assumed that the weight of

a structure can be used as an indication of its cost.
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8.2 Consideration of objectives

For the successful execution of this study, the objectives identified in chapter 1 have

been addressed as outlined below.

1. The first was to gain insight in the field of single- and multi-objective

optimization in general as well as how standard optimization methods

are adapted to suit structural optimization problems. Chapter 2 defines

optimization in general and chapter 3 discusses how a structure can be optimized

by considering its size, shape and topology aspects.

2. The second objective was the evaluation of available meta-heuristic algorithms

which can be used to solve complex single- and multi-objective optimization

problems, and to use this evaluation to select an algorithm for use in the

framework implementation of this study. This objective is met through the

comprehensive overview of four popular optimization algorithms in chapter 4.

From these, the genetic algorithm (GA) was selected for single-objective

problems and its multi-objective variant, the non-dominated sorting genetic

algorithm (NSGA-II), for the problems of a multi-objective nature.

3. The third objective was the development of a finite element analysis module

which is required for the preceding objectives. This objective was met and is

discussed in chapter 5 under section 5.1. The FEA module caters for both truss

and frame elements as well as for multiple load cases. Visual and documented

reporting functionality was added to these modules to simplify the validation

and testing processes.

4. This objective required the development and implementation of an optimization

framework which can be used for the numerical experiments in the study. This

is described in chapter 5 under section 5.2. The MOEA Framework served as a

starting point with much of the specialised variation operations and algorithms

already available. The framework was extended to cater for structural problems

as well as the addition of the GA with elitism to solve single-objective problems.

5. The fifth objective was the main objective required to achieve the first aim of

this study and is discussed in chapter 6. It entailed the utilization of the software

developed to achieve the previous two objectives to quantify the improvement of
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the resulting truss structure by applying a more complex optimization approach.

A total of four truss structures found in literature were used to gather results.

The resulting weight and elapsed time for each of the seven different optimization

approaches were used to determine which approach yields better results.

6. The final objective was necessary to achieve the second aim of the study. This

objective, discussed in chapter 7, was to optimize the maximum displacement

and weight of a frame structure as a multi-objective problem. The result

from the optimization has been compared to the limit given in design codes

to determine whether or not a change in this limit is justified in favour of a

significant weight reduction. A total of four frame structures were used as

example structures for this objective.

8.3 Findings

This study gathered findings regarding each of the two identified aims. The first was

the quantitative comparison of optimization approaches for truss structures and the

second was the multi-objective frame optimization to determine whether or not the

displacement limit should be altered in favour of a more economical structure. Each

of these findings are discussed in the preceding sections.

8.3.1 Optimization approach comparison

A total of seven different approaches towards optimizing truss structures were

identified and executed on four different problems found in literature. These include

the three individual approaches, size, shape and topology, along with three staged

routines. The first entails topology followed by size optimization (TS), the second

starts with size, followed by topology and concludes with shape optimization (STS)

and the third is a topology optimization, followed by shape and concluded with size

optimization (TSS). The last routine is a simultaneous (SIM) optimization routine

where size, shape and topology are considered at the same time. Both the elapsed

time and the resulting weight of the best structure was recorded.

From the results obtained from these experiments, it was concluded that the

simultaneous approach produces, on average, a 13 % lighter structure than the best

staged alternative and a 22 % improvement on the size-only approach. Whereas
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8.3 Findings

between the individual approaches the size optimization yields a 32 % improvement

compared to the shape and topology approaches.

It is worth noting that the simultaneous approach consumed more time to complete

the same number of iterations which gives an indication of its increased complexity

with regards to performing additional variation and encoding operations. The

topology optimization was the fastest executing approach which can be attributed to

its simplicity for only catering for boolean variables.

From the results obtained in this study it can be concluded that significant

improvements can be made by applying a more complex optimization approach, such

as considering all three aspects, namely, size shape and topology, simultaneously.

It also indicates that the true optimal solution can only be found by combining

the structural aspects rather than separating them as they are not independent of

one-another.

8.3.2 Multi-objective study

Four structures were optimized in a multi-objective manner by simultaneously

minimizing their maximum displacement under SLS loads and their structural weight

while satisfying the design requirements of SANS 10162-1. These include both two-

and three-dimensional structures under different loading conditions. The optimal

solution was defined as the point where the best trade-off between the two conflicting

objectives is achieved.

From the obtained results it was found that up to 16 % of weight can be reduced by

increasing the displacement limit, although the limit has to be increased by a large

margin, rendering the structure infeasible. The defined optimum solution proved to

be reasonable when its displacement is considered in relation to the limit.

When considering the position of where the limit falls on the pareto front, it excludes

only a few of the solutions with a weight difference of about 20 %. This indicates that

the majority of the structure’s weight can be reduced before the prescribed deflection

limit is reached and therefore the limit does not need to be adjusted in search of a

larger weight reduction.
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8.4 Recommendations for future research

The following recommendation can be made for future studies:

1. In the quantification study, only four truss structures were considered. This

can be extended to include more test problems as well as frame structures to

improve the accuracy of the obtained results.

2. The inclusion of plate or shell elements to the finite element module would

enable the consideration of a more comprehensive set of structures, including

floors. For this extension, the optimization of a plate element’s thickness falls

within the size aspect of the structure. For a concrete floor, the thickness can

be considered a continuous variable with a specified range. The design module

would also need to be adapted for determining the resistance of slabs.

3. In this study, a maximum of two load cases were considered where in reality a

structure may be subjected to a number of loading conditions. This number

may be extended to represent more realistic problems. For this extension,

the optimization module needs to be altered for the maximum displacement

constraints in all directions.

4. The automatic design module used in this study did not include shear capacity.

The module can therefore be extended to include this check which will make

the design more comprehensive.

5. This study solely focused on optimizing member sizes and shapes within a

structure. The next step could be to include the optimization of connections

for beam ends and supports to be either pinned or fixed, considering certain

connections are more expensive than others.

6. Another extension that could be made is the optimization for fire resistance

based on the protection applied. The objective could be the desired fire rating

with a number of options for fireproofing different structural elements and

determining the fire rating for each generated solution.

7. The optimization can also be extended to post-tensioning slabs or bridge decks.

Aspects such as size, tendon profile, number of strands and cost could be

optimized.
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8.5 Concluding statement

This study compared different optimization approaches to one-another and considered

whether or not the displacement limit imposed on structures should be increased in

search of more economical structures. In order to answer these questions, a number of

objectives were identified and met successfully with the results presented in this thesis.

This study expanded the current knowledge base regarding structural optimization,

however, there is still much to be learnt through future studies.
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“Multi-objective optimization of structural steel buildings under earthquake loads

using NSGA-II and PSO”. In: KSCE Journal of Civil Engineering 21 (2). doi:

10.1007/s12205-017-1488-7 (cit. on pp. 22, 73, 114).

Bratton, D. and J. Kennedy (2007). “Defining a Standard for Particle Swarm

Optimization”. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium.

Washington, DC, USA: IEEE Computer Society, pp. 120–127. isbn: 1-4244-0708-7.

doi: 10.1109/SIS.2007.368035. url: http://dx.doi.org/10.1109/SIS.2007.

368035 (cit. on p. 45).

Camp, C. V. (2007). “Design of Space Trusses Using Big Bang–Big Crunch

Optimization”. In: Journal of Structural Engineering 133 (7). doi: 10 . 1061 /

(asce)0733-9445(2007)133:7(999) (cit. on p. 106).

Camp, C. V. and B. J. Bichon (2004). “Design of space trusses using ant colony

optimization”. In: Journal of Structural Engineering 130.5, pp. 741–751 (cit. on

pp. 46, 87).

Chong, E. K. and S. H. Zak (2013). An introduction to optimization. Vol. 76. John

Wiley & Sons (cit. on pp. 1, 6, 31, 32).

Christensen, P. W. and A. Klarbring (2008). An introduction to structural

optimization. Vol. 153. Springer Science & Business Media (cit. on pp. 16, 18–21,

23, 24).

Coello, C. C., M. Rudnick, and A. D. Christiansen (1994). “Using genetic algorithms

for optimal design of trusses”. In: Tools with Artificial Intelligence, 1994.

Proceedings., Sixth International Conference on. IEEE, pp. 88–94. doi: 10.1109/

tai.1994.346509 (cit. on pp. 87, 98).

Coley, D. A. (1997). An introduction to genetic algorithms for scientists and engineers.

Har/Dis. World Scientific. isbn: 9810236026,9789810236021. url: http://gen.

lib.rus.ec/book/index.php?md5=A98BA27D5B8B7AC24281043174D51033 (cit.

on p. 27).

Conn, A. R., K. Scheinberg, and L. N. Vicente (2009). Introduction to derivative-free

optimization. Vol. 8. Siam (cit. on pp. 14–17).

Cook, R. D., D. S. Malkus, M. E. Plesha, and R. J. Witt (2001). Concepts

and Applications of Finite Element Analysis, 4th Edition. 4th ed. Wiley. isbn:

0471356050 (cit. on p. 67).

139

Stellenbosch University  https://scholar.sun.ac.za

https://doi.org/10.1007/s12205-017-1488-7
https://doi.org/10.1109/SIS.2007.368035
http://dx.doi.org/10.1109/SIS.2007.368035
http://dx.doi.org/10.1109/SIS.2007.368035
https://doi.org/10.1061/(asce)0733-9445(2007)133:7(999)
https://doi.org/10.1061/(asce)0733-9445(2007)133:7(999)
https://doi.org/10.1109/tai.1994.346509
https://doi.org/10.1109/tai.1994.346509
http://gen.lib.rus.ec/book/index.php?md5=A98BA27D5B8B7AC24281043174D51033
http://gen.lib.rus.ec/book/index.php?md5=A98BA27D5B8B7AC24281043174D51033


REFERENCES

Couceiro, M. and P. Ghamisi (2015). Fractional Order Darwinian Particle Swarm

Optimization: Applications and Evaluation of an Evolutionary Algorithm. Springer

(cit. on p. 41).

CSA S16-09: Design of Steel Structures (2009). Standard. CSA. isbn: 1554912245,

9781554912247 (cit. on p. 111).

De Jong K, A. (1975). “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems”. PhD thesis (cit. on pp. 27, 28).

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. 1st ed.

Wiley. isbn: 047187339X,9780471873396. url: http://gen.lib.rus.ec/book/

index.php?md5=AB91F4816A98B0377C2372BB50BCEBAF (cit. on p. 9).

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2000). “A Fast Elitist

Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation:

NSGA-II”. In: Proceedings of the 6th International Conference on Parallel Problem

Solving from Nature. PPSN VI. London, UK, UK: Springer-Verlag, pp. 849–858.

isbn: 3-540-41056-2. url: http://dl.acm.org/citation.cfm?id=645825.

668937 (cit. on p. 33).

Deb, K., M. Mohan, and S. Mishra (2003). “A fast multi-objective evolutionary

algorithm for finding well-spread pareto-optimal solutions”. In: KanGAL report

2003002, pp. 1–18 (cit. on p. 46).

Degertekin S.O.; Hayalioglu, M. (2013). “Sizing truss structures using

teaching-learning-based optimization”. In: Computers & Structures 119. doi:

10.1016/j.compstruc.2012.12.011 (cit. on pp. 22, 106).

Vo-Duy, T., D. Duong-Gia, V. Ho-Huu, H. Vu-Do, and T. Nguyen-Thoi (2017).

“Multi-objective optimization of laminated composite beam structures using

NSGA-II algorithm”. In: Composite Structures 168.Supplement C, pp. 498–509.

issn: 0263-8223. doi: https : / / doi . org / 10 . 1016 / j . compstruct . 2017 .

02 . 038. url: http : / / www . sciencedirect . com / science / article / pii /

S0263822316323728 (cit. on p. 73).

Dyer, D. W. (2010). The Watchmaker Framework. url: http : / / watchmaker .

uncommons.org/ (visited on 05/10/2016) (cit. on p. 74).

Eberhart, R. C., J. Kennedy, et al. (1995). “A new optimizer using particle swarm

theory”. In: Proceedings of the sixth international symposium on micro machine

and human science. Vol. 1. New York, NY, pp. 39–43 (cit. on p. 40).

Engel, A. (2010). Verification, validation and testing of engineered systems. Vol. 73.

John Wiley & Sons (cit. on p. 30).

140

Stellenbosch University  https://scholar.sun.ac.za

http://gen.lib.rus.ec/book/index.php?md5=AB91F4816A98B0377C2372BB50BCEBAF
http://gen.lib.rus.ec/book/index.php?md5=AB91F4816A98B0377C2372BB50BCEBAF
http://dl.acm.org/citation.cfm?id=645825.668937
http://dl.acm.org/citation.cfm?id=645825.668937
https://doi.org/10.1016/j.compstruc.2012.12.011
https://doi.org/https://doi.org/10.1016/j.compstruct.2017.02.038
https://doi.org/https://doi.org/10.1016/j.compstruct.2017.02.038
http://www.sciencedirect.com/science/article/pii/S0263822316323728
http://www.sciencedirect.com/science/article/pii/S0263822316323728
http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/


REFERENCES

Erbatur, O. H. F. (2002). “On efficient use of simulated annealing in complex

structural optimization problems”. In: Acta Mechanica 157 (1-4). doi: 10.1007/

bf01182153 (cit. on pp. 35, 98).

Fogel, D. B. (2005). Defining Artificial Intelligence. John Wiley & Sons, Inc. isbn:

9780471749219. doi: 10.1002/0471749214.ch1. url: http://dx.doi.org/10.

1002/0471749214.ch1 (cit. on p. 33).

Gavin, H. P. (2012). Frame Element Stiffness Matrices. Department of Civil and

Environmental Engineering Duke University. url: http://people.duke.edu/

~hpgavin/cee421/frame-element.pdf (cit. on p. 62).

Gholizadeh, S. (2013). “Layout optimization of truss structures by hybridizing cellular

automata and particle swarm optimization”. In: Computers & Structures 125. doi:

10.1016/j.compstruc.2013.04.024 (cit. on p. 103).

Goldberg, D. E. et al. (1989). Genetic algorithms in search optimization and machine

learning. Vol. 412. Addison-wesley Reading Menlo Park (cit. on pp. 15, 26).
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Toğan, V. and A. T. Daloğlu (2008). “An improved genetic algorithm with initial

population strategy and self-adaptive member grouping”. In: Computers &

Structures 86 (11-12). doi: 10.1016/j.compstruc.2007.11.006 (cit. on p. 98).

Torbaghan, M. K., S. M. Kazemi, R. Zhiani, and F. Hamed (2013). “Improved Hill

Climbing and Simulated Annealing Algorithms for Size Optimization of Trusses”.

In: Proceedings of World Academy of Science, Engineering and Technology. 74.

World Academy of Science, Engineering and Technology (WASET), p. 114 (cit.

on pp. 35, 36).

Turing Finance (2016). Using Genetic Programming to evolve Trading Strategies. url:

http://www.turingfinance.com/using-genetic-programming-to-evolve-

security-analysis-decision-trees/ (visited on 07/05/2016) (cit. on p. 29).

Wang, D., W. Zhang, and J. Jiang (2002). “Truss shape optimization with multiple

displacement constraints”. In: Computer Methods in Applied Mechanics and

Engineering 191.33, pp. 3597–3612. issn: 0045-7825. doi: https://doi.org/

10.1016/S0045-7825(02)00297-9. url: http://www.sciencedirect.com/

science/article/pii/S0045782502002979 (cit. on p. 25).

Wilhelmstötter, F. (2016). Jenetics. url: http : / / jenetics . io/ (visited on

05/10/2016) (cit. on p. 74).

Xia, Q., M. Y. Wang, and T. Shi (2013). “A method for shape and topology

optimization of truss-like structure”. In: Structural and Multidisciplinary

Optimization 47.5, pp. 687–697. issn: 1615-1488. doi: 10.1007/s00158-012-

0844-y. url: https://doi.org/10.1007/s00158-012-0844-y (cit. on p. 23).

Yang, J. and Y. Zhuang (2010). “An improved ant colony optimization algorithm

for solving a complex combinatorial optimization problem”. In: Applied Soft

Computing 10.2, pp. 653–660 (cit. on p. 154).

147

Stellenbosch University  https://scholar.sun.ac.za

https://doi.org/10.1016/j.compstruc.2007.11.006
http://www.turingfinance.com/using-genetic-programming-to-evolve-security-analysis-decision-trees/
http://www.turingfinance.com/using-genetic-programming-to-evolve-security-analysis-decision-trees/
https://doi.org/https://doi.org/10.1016/S0045-7825(02)00297-9
https://doi.org/https://doi.org/10.1016/S0045-7825(02)00297-9
http://www.sciencedirect.com/science/article/pii/S0045782502002979
http://www.sciencedirect.com/science/article/pii/S0045782502002979
http://jenetics.io/
https://doi.org/10.1007/s00158-012-0844-y
https://doi.org/10.1007/s00158-012-0844-y
https://doi.org/10.1007/s00158-012-0844-y


Appendices

148

Stellenbosch University  https://scholar.sun.ac.za



A. Additional optimization

algorithm information
Within chapter 4 various optimization algorithms which were considered for this

study is discussed. This appendix chapter includes additional information regarding

variations and improvements made on these algorithms.

A.1 Micro-genetic algorithm

The simple GA (SGA) normally requires a population size of 30 to 200. A micro

GA (µGA) requires a much smaller population of about 5 individuals, known as a

µ-population (Krishnakumar 1990). The µGA still follows the same approach as the

normal SGA, but with a small twist.

Senecal (2000) states that mutations are not applied in the µGA since enough

diversity is introduced after convergence of a µ-population. Furthermore, Senecal

(2000) also notes that µGAs reach the optimum in fewer function evaluations than

a SGA, for their test functions. This provides enough motivation to consider a µGA

for an object-oriented optimization framework.

The steps for a GA with a small population can be outlined as follows:

1. Randomly generate a small population.

2. Perform genetic operations until nominal convergence.

3. Generate a new population by transferring the best individuals of the converged

population and then generate the remaining individuals randomly.

4. Go to step 2 and repeat.

Krishnakumar (1990) suggested a similar procedure for a population of 5 individuals,

but where one good individual, possibly from a previous search, is intentionally

inserted into the population. This procedure is the following:
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1. Randomly generate a small population of 4 individuals and insert the

pre-selected individual.

2. Evaluate the fitness and determine the best individual and label it. This process

is termed elitism.

3. Follow a selection process to determine which individuals will be selected for

crossover.

4. Apply crossover.

5. Check for nominal convergence, if converged repeat from step 1.

6. Repeat from step 2.

This start and restart procedure of the µGA assists in avoiding premature convergence.

It is noted by Krishnakumar (1990) that a µGA located the optimum quickly. This

may be attributed to it not having to analyse a large population.

A.2 Direct search simulated annealing

When considering a SA and a GA, one would notice that a GA works with a population

of solutions, where the SA only keeps a single solution as its best solution. Ali et al.

(2002) proposed a SA approach which utilises a population of solutions which is known

as the direct search simulated annealing (DSA) approach. The DSA approach was

used by Sonmez (2007) for the optimization of two-dimensional trusses which yielded

promising results in terms of performance.

There are mainly two differences between a normal SA and a DSA. These are listed

below (Sonmez 2007):

1. The DSA keeps a set of solutions rather than just one solution.

2. The best solution is always retained by the DSA through elitism.

With this change in approach, a few adjustments need to be made to the algorithm in

order to accommodate the added population of solutions. The adjustments that follow

in this discussion are adapted from Sonmez (2007). Firstly, an important aspect is to
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decide on a size for the population. This size, denoted by N can be determined with

equation A.1. Where n denotes the dimension of the problem.

N = 7(n+ 1) (A.1)

Secondly, it must be considered how solutions are managed within the population.

Sonmez (2007) describes that, in the case a solution is accepted, the worst solution

in the population is replaced.

For this procedure, methods were developed to determine the amount of iterations

for the inner loop, denoted by Lk, where k refers to the kth level of T . It can be

determined as in equation A.2. The symbols fl and fh denote the lowest and highest

fitness values found in the population respectively. Furthermore, L = 10n, where n is

the dimension of the problem.

Lk = L+ L(1− efl−fh) (A.2)

Lastly, a different scheme for decreasing the temperature parameter is used. The

factor that decreases the parameter, T , is denoted by α. For the calculation for the

value of Tk+1, equation A.3 is used. It is also important to define boundaries on this

factor to ensure that it is not ridiculously large or small. The value of αk+1 can be

determined as shown in equation A.4.

Tk+1 = αk+1Tk (A.3)

αk+1 =


αmax, if Lk > L′k
αk − (αk − αmin)(1− L′k−1/Lk), else if Lk > L′k−1

αmax − (αmax − αk)(Lk/L′k−1), else Lk ≤ L′k−1

(A.4)

Where L′k is the actual number of iterations executed in the kth inner loop. If a

better solution is not found in the inner loop, L′k is set to Lk. If a better solution was

found, the inner loop is terminated and the value of L′k is set to the actual number

of iterations.

The described procedure is graphically shown in figure A.1.
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Start with N initial solutions
Calculate their fitness, f

Specify initial
temperature, T0 and c

Set k = 0

Set j = 0 and k = k + 1

Calculate Markov chain length, Lk

Set iteration number j = j + 1

Generate new solution, Xj ,
Compute fj = f(Xj)

Is fj > fl?

Replace worst solution

Is fj > fh?

Is j > Lk?

Lk = j

Check convergence
and max iteration

Stop

Update T

No

Yes

No

YesYes

No

No

Yes

Figure A.1: The DSA process (Sonmez 2007)
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A.3 Improvements on particle swarm

optimization

Since PSO was first introduced, some flaws were discovered and changes were made

to the algorithm to rectify these flaws. Changes were also made to improve the

overall performance of the algorithm.

The variable θ was introduced by Shi et al. (1998) into equation 4.7 and is termed the

inertia weight. This can be seen in equation A.5. The reason for this introduction

is due to the fast build-up of velocities, which could lead to the best solution being

skipped by the algorithm. A larger value of θ relates to global exploration while a

smaller value denotes to local search. The value of θ also varies during the search

with the assistance of equation A.6.

Vj(i) = θVj(i− 1) + c1r1[Pbest −Xj(i− 1)] + c2r2[Gbest −Xj(i− 1)] (A.5)

θ(i) = θmax −
(
θmax − θmin

imax

)
i (A.6)

Where θmax and θmin are the initial and final values of the inertia weight respectively

and imax is the maximum number of iteration allowed by the PSO. Commonly θmax

and θmin are chosen to be 0.9 and 0.4 respectively.

Another change was made to the velocity function in order to incorporate passive

congregation. Seeing as most swarms of animals congregate both actively and

passively. Passive congregation can be defined as an attraction of an individual

to other group members, but not a display of social behaviour (L. Li et al. 2007).

Therefore this type of congregation was added to the PSO algorithm and it sometimes

termed as a hybrid PSO with passive congregation (PSOPC). This change is shown

in equation A.7 (L. Li et al. 2007).

Vj(i) = θVj(i−1)+c1r1[Pbest−Xj(i−1)]+c2r2[Gbest−Xj(i−1)]+c3r3[Ri−1−Xj(i−1)]

(A.7)

Where Ri−1 is the solution of a particle that is randomly selected from the swarm.

c3 and r3 is the congregation coefficient and a uniformly distributed random number
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in the range of 0 to 1.

Several benchmark tests have been performed by He et al. (2004) to compare the PSO

and PSOPC. The results obtained indicates that PSOPC has a better convergence

rate and a higher accuracy than the normal PSO.

A.4 Improvements made on ant colony

optimization

Almost all the improvements made to the ACO was in the form of combining it with

another optimization approach. For example, Yang et al. (2010) used a combination

of a GA and an ACO to solve combinatorial optimization problems and Kaveh and

Talatahari (2009a) used an ACO combined with PSO for the optimization of truss

structures. Both of them obtained promising results.
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B. Truss optimization

cross-section area list

B.1 10-Bar truss

Table B.1: 10-Bar truss cross-section area list

Cross-sectional area (mm2)

1045.16 1161.29 1283.87 1374.19 1535.48 1690.32 1696.77 1858.06

1890.32 1993.54 2019.35 2180.64 2238.71 2290.32 2341.93 2477.41

2496.77 2503.22 2696.77 2722.58 2896.77 2961.28 3096.77 3206.45

3303.22 3703.22 4658.06 5141.93 7419.34 8709.66 8967.72 9161.27

9999.98 10322.56 10903.20 12129.01 12838.68 14193.52 14774.16 17096.74

19354.80 21612.86

B.2 25-Bar truss

Table B.2: 25-Bar truss cross-section area list

Cross-sectional area (mm2)

64.52 129.03 193.55 258.06 322.58 387.10 451.61 516.13

580.64 645.16 709.68 774.19 838.71 903.22 967.74 1032.26

1096.77 1161.29 1225.80 1290.32 1354.84 1419.35 1483.87 1548.38

1612.90 1677.42 1806.45 1935.48 2064.51 2193.54
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B.3 47-Bar truss

Table B.3: 47-Bar truss cross-section area list

Cross-sectional area (mm2)

64.52 129.03 193.55 258.06 322.58 387.10 451.61 516.13

580.64 645.16 709.68 774.19 838.71 903.22 967.74 1032.26

1096.77 1161.29 1225.80 1290.32 1354.84 1419.35 1483.87 1548.38

1612.90 1677.42 1741.93 1806.45 1870.96 1935.48 2000.00 2064.51

2129.03 2193.54 2258.06 2322.58 2387.09 2451.61 2516.12 2580.64

2645.16 2709.67 2774.19 2838.70 2903.22 2967.74 3032.25 3096.77

3161.28 3225.80

B.4 72-Bar truss

Table B.4: 72-Bar truss cross-section area list

Cross-sectional area (mm2)

71.61 90.97 126.45 161.29 198.06 252.26 285.16

363.23 388.39 494.19 506.45 641.29 645.16 792.26

816.77 940.00 1008.39 1045.16 1161.29 1283.87 1374.19

1535.48 1690.32 1696.77 1858.06 1890.32 1993.54 729.03

2180.64 2238.70 2290.32 2341.93 2477.41 2496.77 2503.22

2696.77 2722.58 2896.77 2961.28 3096.77 3206.45 3303.22

3703.22 4658.06 5141.93 5503.21 5999.99 6999.99 7419.43

8709.66 8967.72 9161.27 9999.98 10322.56 10903.20 12129.01

12838.68 14193.52 14774.16 15806.42 17096.74 18064.48 19354.80

21612.86
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TM Consulting Analysis Report

Input Data :

Nodes :
Name X Y Z

n1 0.0 0.0 0.0

sn1_e1 0.0 500.0E-3 0.0

sn2_e1 0.0 1.0 0.0

sn3_e1 0.0 1.5 0.0

n2 0.0 2.0 0.0

sn1_e2 750.0E-3 2.3 0.0

sn2_e2 1.5 2.5 0.0

sn3_e2 2.3 2.8 0.0

n3 3.0 3.0 0.0

Elements :
Name From To Section Local rotation End fixity

se1_e1 n1 sn1_e1 254x254x89 0.0 Fully fixed

se2_e1 sn1_e1 sn2_e1 254x254x89 0.0 Fully fixed

se3_e1 sn2_e1 sn3_e1 254x254x89 0.0 Fully fixed

se4_e1 sn3_e1 n2 254x254x89 0.0 Fully fixed

se1_e2 n2 sn1_e2 203x133x30 0.0 Fully fixed

se2_e2 sn1_e2 sn2_e2 203x133x30 0.0 Fully fixed

se3_e2 sn2_e2 sn3_e2 203x133x30 0.0 Fully fixed

se4_e2 sn3_e2 n3 203x133x30 0.0 Fully fixed

Element loads :
LoadCase Element Local direction Magnitude

LIVE se4_e2 2 3.0E3

LIVE se2_e2 2 3.0E3

LIVE se1_e2 2 3.0E3

LIVE se3_e2 2 3.0E3

DEAD se3_e2 2 1.0E3

DEAD se1_e2 2 1.0E3

DEAD se2_e2 2 1.0E3

DEAD se4_e2 2 1.0E3

Supports :
Node Restraint

n1 Pinned

1 of 3
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Node Restraint

n3 Fixed

Load Combinations :
Name LocaCase Factor

ULS LIVE 1.60

ULS DEAD 1.20

Results :

Reactions :
Node Rx Ry Rz Mx My Mz

ULS
n1 2.07E3 10.25E3 0.00 0.00 0.00 0.00

n3 -8.07E3 7.75E3 -5.46E3 0.00 0.00 0.00

Nodal displacements :
Node dx dy dz phix phiy phiz

ULS
n1 0.00 0.00 0.00 0.00 0.00 35.42E-6

sn1_e1 -16.20E-6 -2.25E-6 0.00 0.00 0.00 26.37E-6

sn2_e1 -23.35E-6 -4.50E-6 0.00 0.00 0.00 -787.86E-9

sn3_e1 -12.40E-6 -6.74E-6 0.00 0.00 0.00 -46.05E-6

n2 25.71E-6 -8.99E-6 0.00 0.00 0.00 -109.41E-6

sn1_e2 83.25E-6 -198.64E-6 0.00 0.00 0.00 -271.04E-6

sn2_e2 112.02E-6 -301.98E-6 0.00 0.00 0.00 35.26E-6

sn3_e2 59.15E-6 -160.41E-6 0.00 0.00 0.00 296.58E-6

n3 0.00 0.00 0.00 0.00 0.00 0.00

|Max| 112.02E-6 301.98E-6 0.00 0.00 0.00 296.58E-6

Element Forces :
Element

Node 1

Node 2

Fx Fy Fz Mx My Mz

Fx Fy Fz Mx My Mz

ULS
se1_e1

n1

sn1_e1

10.25E3 -2.07E3 0.00 0.00 0.00 0.00

-10.25E3 2.07E3 0.00 0.00 0.00 -1.04E3

se2_e1

sn1_e1

sn2_e1

10.25E3 -2.07E3 0.00 0.00 0.00 1.04E3

-10.25E3 2.07E3 0.00 0.00 0.00 -2.07E3

se3_e1

sn2_e1

sn3_e1

10.25E3 -2.07E3 0.00 0.00 0.00 2.07E3

-10.25E3 2.07E3 0.00 0.00 0.00 -3.11E3
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Element

Node 1

Node 2

Fx Fy Fz Mx My Mz

Fx Fy Fz Mx My Mz

se4_e1

sn3_e1

n2

10.25E3 -2.07E3 0.00 0.00 0.00 3.11E3

-10.25E3 2.07E3 0.00 0.00 0.00 -4.14E3

se1_e2

n2

sn1_e2

5.21E3 9.07E3 0.00 0.00 0.00 4.14E3

-5.21E3 -4.33E3 0.00 0.00 0.00 1.15E3

se2_e2

sn1_e2

sn2_e2

5.21E3 4.33E3 0.00 0.00 0.00 -1.15E3

-5.21E3 416.00 0.00 0.00 0.00 2.70E3

se3_e2

sn2_e2

sn3_e2

5.21E3 -416.00 0.00 0.00 0.00 -2.70E3

-5.21E3 5.16E3 0.00 0.00 0.00 496.11

se4_e2

sn3_e2

n3

5.21E3 -5.16E3 0.00 0.00 0.00 -496.11

-5.21E3 9.90E3 0.00 0.00 0.00 -5.46E3

Analysis statistics :
Elapsed time : 6.43 [ms]

Number of DOFs : 27

Number of Nodes : 9

Number of Elements : 8

Number of Load Cases : 2

Number of Load Combinstions : 1
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1

2

Optimization report:

 
Population size: 80 
Function evaluation: 100000 
 

Size Settings

Variable elements
e1

356x171x45 356x171x67 457x191x67 457x191x89 254x146x31 406x178x67 254x146x37 457x191x82
IPE-AA180 203x133x25 IPE-AA140 IPE-AA160 305x165x54 406x140x46 533x210x92 305x102x33
356x171x57 IPE120 IPE-AA200 IPE-AA100 406x178x54 IPE100 533x210x109 IPE-AA120
254x146x43 406x178x74 457x191x98 IPE200 305x102x28 IPE180 305x102x25 533x210x101
406x140x39 IPE160 305x165x40 406x178x60 457x191x74 IPE140 356x171x51 305x165x46
533x210x122 203x133x30 533x210x82 203x203x86 305x305x137 305x305x158 203x203x60 203x203x71
254x254x107 305x305x198 203x203x52 254x254x73 254x254x167 203x203x46 254x254x89 254x254x132
305x305x118 152x152x30 152x152x23 152x152x37 305x305x97 305x305x240

e5
356x171x45 356x171x67 457x191x67 457x191x89 254x146x31 406x178x67 254x146x37 457x191x82
IPE-AA180 203x133x25 IPE-AA140 IPE-AA160 305x165x54 406x140x46 533x210x92 305x102x33
356x171x57 IPE120 IPE-AA200 IPE-AA100 406x178x54 IPE100 533x210x109 IPE-AA120
254x146x43 406x178x74 457x191x98 IPE200 305x102x28 IPE180 305x102x25 533x210x101
406x140x39 IPE160 305x165x40 406x178x60 457x191x74 IPE140 356x171x51 305x165x46
533x210x122 203x133x30 533x210x82 203x203x86 305x305x137 305x305x158 203x203x60 203x203x71
254x254x107 305x305x198 203x203x52 254x254x73 254x254x167 203x203x46 254x254x89 254x254x132
305x305x118 152x152x30 152x152x23 152x152x37 305x305x97 305x305x240

e13
356x171x45 356x171x67 457x191x67 457x191x89 254x146x31 406x178x67 254x146x37 457x191x82
IPE-AA180 203x133x25 IPE-AA140 IPE-AA160 305x165x54 406x140x46 533x210x92 305x102x33
356x171x57 IPE120 IPE-AA200 IPE-AA100 406x178x54 IPE100 533x210x109 IPE-AA120
254x146x43 406x178x74 457x191x98 IPE200 305x102x28 IPE180 305x102x25 533x210x101
406x140x39 IPE160 305x165x40 406x178x60 457x191x74 IPE140 356x171x51 305x165x46
533x210x122 203x133x30 533x210x82 203x203x86 305x305x137 305x305x158 203x203x60 203x203x71
254x254x107 305x305x198 203x203x52 254x254x73 254x254x167 203x203x46 254x254x89 254x254x132
305x305x118 152x152x30 152x152x23 152x152x37 305x305x97 305x305x240

e17
356x171x45 356x171x67 457x191x67 457x191x89 254x146x31 406x178x67 254x146x37 457x191x82
IPE-AA180 203x133x25 IPE-AA140 IPE-AA160 305x165x54 406x140x46 533x210x92 305x102x33
356x171x57 IPE120 IPE-AA200 IPE-AA100 406x178x54 IPE100 533x210x109 IPE-AA120
254x146x43 406x178x74 457x191x98 IPE200 305x102x28 IPE180 305x102x25 533x210x101
406x140x39 IPE160 305x165x40 406x178x60 457x191x74 IPE140 356x171x51 305x165x46

Designer Optimizer Page
Date 10/07/2017 Total
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2

2

Result objectives

4,000 5,000 6,000 7,000 8,000 9,000 10,000
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t 

(m
m

)

Post optimization: 

Total time = 64.76E3 ms 

 

533x210x122 203x133x30 533x210x82 203x203x86 305x305x137 305x305x158 203x203x60 203x203x71
254x254x107 305x305x198 203x203x52 254x254x73 254x254x167 203x203x46 254x254x89 254x254x132
305x305x118 152x152x30 152x152x23 152x152x37 305x305x97 305x305x240

Grouping elements
e5

e6 e7 e8

e13
e15 e14 e16

e17
e19 e18 e20

e1
e2 e3 e4 e9 e10 e11 e12
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1

11

* Disclaimer: Bending is ignored for members with Mu < 3.50 kNm

Designing for LoadCase ULS
Designing member e1 as a Beam-Column

Section : 254x254x89
Forces: Axial = 10.3 kN Mux = 4.14 kNm Muy = 0.00 kNm

Overall member Strength SANS 10162-1 13.8.2
b)

Classify Bending section:

Flange:

SANS 10162-1 Table 4

Web:

SANS 10162-1 Table 4

Class 1 in bending

SANS 10162-1 13.3.2

Check Slenderness SANS 10162-1 10.4.2

Classify I or H for compression

Flange:

Designer Auto Page
Date 10/07/2017 Total

Project Masters
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2

11

SANS 10162-1 Table 3

Web:

SANS 10162-1 Table 3

Class 3 in Compression

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

CSA S16-09 13.6

SANS 10162-1 13.5

SANS 10162-1 13.5

SANS 10162-1 13.8

Lateral torsional buckling Strength SANS 10162-1 13.8.2
c)

Designer Auto Page
Date 10/07/2017 Total

Project Masters
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3

11

SANS 10162-1 13.3.2

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

SANS 10162-1 13.3.2

SANS 10162-1 13.3.2

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

Designer Auto Page
Date 10/07/2017 Total

Project Masters

Stellenbosch University  https://scholar.sun.ac.za



4

11

SANS 10162-1 13.6

SANS 10162-1 13.6

SANS 10162-1 13.5

SANS 10162-1 13.8

SANS 10162-1 13.6

Designer Auto Page
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Project Masters
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11

SANS 10162-1 13.6

SANS 10162-1 13.5

SANS 10162-1 13.8

Member e1 has sufficient capacity

Designer Auto Page
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11

Designing member e2 as a Beam-Column
Section : 203x133x30

Forces: Axial = 5.21 kN Mux = 5.46 kNm Muy = 0.00 kNm

Overall member Strength SANS 10162-1 13.8.2
b)

Classify Bending section:

Flange:

SANS 10162-1 Table 4

Web:

SANS 10162-1 Table 4

Class 1 in bending

SANS 10162-1 13.3.2

Check Slenderness SANS 10162-1 10.4.2

Classify I or H for compression

Flange:

Designer Auto Page
Date 10/07/2017 Total

Project Masters
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11

SANS 10162-1 Table 3

Web:

SANS 10162-1 Table 3

Class 3 in Compression

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

CSA S16-09 13.6

SANS 10162-1 13.5

SANS 10162-1 13.5

SANS 10162-1 13.3.2

Designer Auto Page
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8

11

SANS 10162-1 13.8

Lateral torsional buckling Strength SANS 10162-1 13.8.2
c)

SANS 10162-1 13.3.2

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

SANS 10162-1 13.3.2

SANS 10162-1 13.3.2

SANS 10162-1 13.3.1

SANS 10162-1 13.3.1

Designer Auto Page
Date 10/07/2017 Total
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SANS 10162-1 13.6

SANS 10162-1 13.6

SANS 10162-1 13.5

SANS 10162-1 13.3.2

SANS 10162-1 13.8

Designer Auto Page
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SANS 10162-1 13.6

SANS 10162-1 13.6

SANS 10162-1 13.5

SANS 10162-1 13.8

Member e2 has sufficient capacity

Designer Auto Page
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Model sufficient for LoadCase ULS

Model sufficient for ALL LoadCases.

Designer Auto Page
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F. Multi-objective quantification

study selected results
In this appendix the structures which corresponded with the best trade-off solution

between the weight and displacement objectives are presented for each of the four

examples of section 7.3.

F.1 Plane 4-storey frame

Table F.1: Resulting sections of the plane 4-storey frame

Grouping Assigned cross-section

Outer columns 406x140x39

Inner column 406x140x46

Floor 1 & 2 406x178x60

Floor 3 & 4 356x171x45

F.2 Plane portal frame

Table F.2: Resulting sections of the plane portal frame

Grouping Assigned cross-section

Columns 457x191x67

Rafters 457x191x67
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F.3 5-Bay portal frame

Table F.3: Resulting sections of the three-dimensional portal frame

Grouping Assigned cross-section

Frame 1 & 6 columns 305x165x54

Frame 1 & 6 rafters 406x140x46

Frame 2 & 5 columns 254x146x31

Frame 2 & 5 rafters 406x140x39

Frame 3 & 4 columns 254x146x31

Frame 3 & 4 rafters 305x102x33

Frame Frame connectors 90x90x6

Cross bracing 60x60x6

F.4 4-Storey building

Table F.4: Resulting sections of the three-dimensional 4-storey frame

Grouping Assigned cross-section

Perimeter / outer columns 533x210x82

Internal columns 533x210x109

Perimeter/ outer beams 356x171x51

Lateral internal beams 356x171x67

Transverse internal beams 254x146x37

Bracing members 200x200x16
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