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ABSTRACT 

 

Numerous studies indicate that the agricultural sector is physically and economically 

vulnerable to climate change.  In order to determine possible impacts of projected future 

climates on the financial vulnerability of selective farming systems in South Africa, a 

case study methodology was applied. The integrated modelling framework consists of 

four modules, viz.: climate change impact modelling, dynamic linear programming 

(DLP) modelling, modelling interphases and financial vulnerability assessment 

modelling. Empirically downscaled climate data from five global climate models 

(GCMs) served as base for the integrated modelling. The APSIM crop model was applied 

to determine the impact of projected climates on crop yield for certain crops in the study.  

In order to determine the impact of projected climates on crops for which there are no 

crop models available, a unique modelling technique, Critical Crop Climate Threshold 

(CCCT) modelling, was developed and applied to model the impact of projected climate 

change on yield and quality of agricultural produce.  Climate change impact modelling 

also takes into account the projected changes in irrigation water availability (ACRU 

hydrological model) and crop irrigation requirements (SAPWAT3 model) as a result of 

projected climate change.  The model produces a set of valuable results, viz. projected 

changes in crop yield and quality, projected changes in availability of irrigation water, 

projected changes in crop irrigation needs, optimal combination of farming activities to 

maximize net cash flow, and a set of financial criteria to determine economic viability 

and financial feasibility of the farming system.  A set of financial criteria; i.e. internal 

rate of return (IRR), net present value (NPV), cash flow ratio, highest debt ratio, and 

highest debt have been employed to measure the impact of climate change on the 

financial vulnerability of farming systems.  Adaptation strategies to lessen the impact of 

climate change were identified for each case study through expert group discussions, and 

included in the integrated modelling as alternative options in the DLP model.  This aims 

at addressing the gap in climate change research, i.e. integrated economic modelling at 

farm level; thereby making a contribution to integrated climate change modelling. 
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OPSOMMING 

 

Die fisiese sowel as ekonomiese kwesbaarheid van die landbousektor as gevolg van 

klimaatverandering word deur verskeie studies beklemtoon. ‘n Gevallestudie-benadering 

is gebruik ten einde die potensiële impak van klimaatsverandering op die finansiële 

kwesbaarheid van verskillende boerderystelsels te bepaal.  Die geïntegreerde 

klimaatsveranderingmodel bestaan uit vier modelleringsmodules, naamlik: 

klimaatsverandering, dinamiese liniêre programmering (DLP), interfases en finansiële-

kwesbaarheidsontleding. Empiries afgeskaalde klimatologiese data van vyf verskillende 

klimaatmodelle dien as basis vir die geïntegreerde klimaatsveranderingmodel.  Die 

APSIM gewas-model word aangewend om die impak van klimaatsverandering op 

gewasse-opbrengs te bepaal. Vir sekere gewasse is daar egter nie modelle beskikbaaar 

nie en het gevolglik die ontwikkeling van ‘n nuwe model genoodsaak.  Die Kritiese 

Gewasse Klimaatsdrempelwaarde (KGKD) modelleringstegniek is ontwikkel ten einde 

die impak van klimaatsverandering op die opbrengs en kwaliteit van gewasse te 

kwantifiseer. Die geïntegreerde klimaatsveranderingmodel neem ook die verwagte 

verandering in besproeiingswaterbeskikbaarheid (ACRU-hidrologiemodel) en gewas-

besproeiingsbehoeftes (SAPWAT3-model) as gevolg van klimaatsverandering in ag.  

Die model lewer waardevolle resultate op, naamlik: geprojekteerde veranderinge in 

gewasse-opbrengs en -kwaliteit, geprojekteerde verandering in beskikbaarheid van 

besproeiingswater en gewasse-besproeiingsbehoeftes, die optimale kombinering van 

boerdery-aktiwiteite om netto kontantvloei te maksimeer, asook ‘n stel finansiële 

resultate wat die impak van klimaatsverandering kwantifiseer.  Die finansiële kriteria 

sluit in: interne opbrengskoers, netto huidige waarde, kontanvloeiverhouding, hoogste 

skuldverhouding en hoogste skuldvlak.  Deur middel van deskundige-groepbesprekings 

is aanpassingstrategieë vir elk van die gevallestudies geïdentifiseer en by die 

geïntegreerde model ingesluit as alternatiewe opsies in die DLP-model.  Die studie poog 

om die gaping in die huidige klimaatsveranderingnavorsing met betekking tot ‘n 

geïntegreerde ekonomiese model op plaasvlak aan te spreek en sodoende ‘n bydrae tot 

geïntegreerde klimaatveranderingmodellering te maak. 
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CHAPTER 1 : INTRODUCTION 

______________________________________________________________________ 

 

“Climate change is a defining challenge of our times. Its impact and implications will 

be global, far-reaching and largely irreversible. Climate change is already increasing 

the risk of exposure to hunger, malnutrition and food insecurity among the poorest 

and most vulnerable people. Natural disasters are becoming more frequent and 

intense, land and water are becoming more scarce and difficult to access, and increases 

in agricultural productivity are becoming more difficult to achieve.” 

(Parry et al. 2009) 

 

1.1 Background 

By 2050, the number of people at risk of hunger as a result of climate change is expected 

to increase by 10% to 20% more than would be expected without climate change and the 

number of malnourished children is expected to increase by approximately 24 million – 

21% more than without climate change. Sub-Saharan Africa is likely to be the worst 

affected region. There is growing consensus amongst the international humanitarian 

community that adaptation measures are urgently needed to help vulnerable people cope 

with the changing environments in which they are living. This requires adapting global 

and local food production methods through investments, technical capacity transfers and 

technological innovations, while also making existing agricultural production systems 

more resilient, sustainable and equitable (Parry et al., 2009). 

Evidence from global climate models developed so far suggests that the agricultural 

sector in the Southern Africa region is highly sensitive to future climate shifts and 

increased climate variability (Gbetibouo and Hassan, 2004).  The availability of water is 

a major limiting factor for agricultural production in South Africa. The country 

experiences a high risk climatic environment, with a highly variable and spatially uneven 

rainfall distribution, as well as climate-related extremes. Any change in rainfall and 

temperature attributes could have far-reaching implications for agricultural production, 

and hence the vulnerability of farming systems. 

In some African countries there is limited research on climate change and related impacts 

on livelihood and the natural resources.   Responding to climate change impacts requires 

practical and resilient technological, social and economic adaptation strategies and 
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mitigation mechanisms. These can be developed through systematic research on climate 

change and associated impacts (Environmental Alert, 2010; Louw et al., 2012).   

There is much that is unknown about the socioeconomic implications of climate change 

and how best to design policy to promote adaptation and reduce household vulnerability. 

Social scientists need to step up to this agenda. Heltberg et al. (2008) propose four distinct 

pillars for the social science research agenda on adaptation: (1) monitoring change; (2) 

predicting the consequences; (3) assessing policy alternatives; and (4) institutional 

arrangements and sharing the costs internationally. 

It is critical to determine the possible impacts and consequences of projected future 

climates on the financial vulnerability of different farming systems and to evaluate 

suggested adaptation strategies. The proposed methodology integrates a number of 

models viz. empirically downscaled General Circulation Models (GCMs), hydrological, 

crop yield and quality models, Dynamic Linear Programming (DLP) and Financial 

Vulnerability Assessment models to accurately assess the impact of projected future 

climates on the financial vulnerability of different farming systems. 

1.2 Problem statement 

Farmers have developed various strategies to cope with the current climate variability 

experienced in South Africa.  These strategies, however, may not be sufficient to cope 

with projected future climatic changes which could potentially increase the financial 

vulnerability of farming systems significantly.  The identification of new adaptation 

strategies and in some instances the re-thinking of existing strategies to reduce financial 

vulnerability is of paramount importance for future sustainability of the agricultural 

sector in South Africa. 

There are currently very few “proofs of concept” i.e. examples of agricultural decision 

makers that have successfully drawn on climate change projection data to take decisions 

that have improved agricultural productivity or human well-being. This is a function of 

the temporal and spatial models at which climate data are provided as well as the way in 

which they are reported, perceived in terms of the reliability of the data, questions of their 

relevance to agriculture, and difficulty in accessing and understanding the data (Ziervogel 

et al., 2008). 
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Because of the complexity of South Africa’s physiography, climate and socio-economic 

milieu, detailed local scale analyses are needed to assess potential impacts (Schulze, 

2011). In order to address this “disconnectedness” between climate science and African 

agriculture, the capacity capable to link existing climate data and agricultural decision 

making needs to be created. This is as much an institutional challenge as it is a technical 

and human resource challenge. The nature of climate change adaptation demands that 

efforts to support African agriculture in the face of climate change incorporate a multi-

disciplinary set of stakeholders including climate science experts, agricultural 

practitioners and technicians, local communities/civil society, donors and policy makers 

(Ziervogel et al., 2008). 

1.3 Objectives of the study 

The primary objective of this research is to develop an integrated analytical model to 

investigate the financial vulnerability of farming systems to projected climate change 

scenarios.   

In order to achieve the primary objective the following secondary objectives will be 

addressed: 

 Develop appropriate whole-farm DLP models, based on selected case study 

farming systems. 

 Develop a modelling tool to quantify the impact of climate change on crop 

yield and quality for crops for which APSIM1 crop models do not exist.  

 Develop interphases to link the DLP model with modelling results from the 

hydrological model and crop yield and quality models based on empirically 

downscaled GCMs. 

 Evaluate the financial vulnerability of the selected case studies to projected 

future climates. 

 Determine and evaluate adaptation strategies to offset projected climate 

change impact. 

In order to determine the financial vulnerability of farming systems to climate change, 

research is needed to link projected climates on farm level to crop yield and quality, 

irrigation water availability and crop irrigation requirements. 

                                                 
1  Agricultural Production Systems sIMulator 
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1.4 Hypotheses  

The following research hypothesis will guide this study: 

 Farmers may be financially vulnerable to future climatic change conditions. 

 Adaptation strategies may decrease financial vulnerability towards potential 

climate change. 

1.5 The study area 

The research covers four selected case study areas.  These case study areas are based on 

typical farming systems in the following districts: 

 Vredendal, Western Cape Province (LORWUA2):   Irrigation - winter rainfall 

region. 

 Moorreesburg, Western Cape Province:   Dryland - winter rainfall region. 

 Hoedspruit, Limpopo Province (Blyde River WUA3):   Irrigation - summer 

rainfall region. 

 Carolina, Mpumalanga Province:   Dryland - summer rainfall region. 

The selection of the case study areas can be motivated as follows: 

Vredendal, Western Cape Province (LORWUA) 

 It is a water stressed region (semiarid) with relatively low assurance of water 

supply. 

 The contribution of long-term crops to total area irrigated is relatively high (89%) 

- main crops are wine grapes, raisins and table grapes. 

 It is located in a winter rainfall region. 

Moorreesburg, Western Cape Province 

 It is a dryland rainfed production area. 

 Dominant farming activities include small grain, canola, pastures and small 

livestock production (mainly mutton and wool). 

 It is located in a winter rainfall region. 

  

                                                 
2  Lower Olifantsriver Water Users Association 
3  Blyde River Water Users Association 
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Hoedspruit, Limpopo Province (Blyde River WUA) 

 The main irrigation source (the Blydepoort Dam) has a high current assurance of 

supply. 

 The contribution of long-term crops to total area irrigated is relatively high (88%) 

- main crops are citrus and mangoes. 

 It is located in a summer rainfall region. 

Carolina, Mpumalanga Province 

 It is a dryland rainfed production area. 

 Maize, soybeans, sugar beans, mutton and beef production are the main 

enterprises. 

 It is located in a summer rainfall region. 

These four selected case study areas are largely representative of dryland and irrigation 

farming for both summer and winter rainfall regions in South Africa.  Even so, the case 

studies are very case-specific and by no means imply that the results will be the same for 

other areas and/or farms.  However, the methodology which was developed can be 

applied to any other agricultural production region in South Africa (and in African 

countries where climate and hydrological models are available). 

1.6 Research method 

A case study methodology was applied instead of considering representative farms for 

the selected study areas.  The benefit of considering specific farms on a case study level 

is that a much more detailed analysis can be performed.  The participating case study 

farmers were selected in conjunction with local role-players. 

The case study was modelled in two phases: 

 An Excel spread sheet was used to construct the base case (farming system with 

present climate conditions). 

 In the second phase, a DLP model was constructed for each case study and a base 

analysis was done (farming system with present climate conditions).  The results 

were then compared with the Excel model in order to validate the DLP models.  

The technical, production and financial input data were validated during expert group 

discussions with the producers and various experts from different institutions and 
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agribusinesses.  The discussions were held to ensure accuracy of the data and also that 

the data is representative of the area.  At the same discussions the critical climate 

thresholds for crops and possible climate change impact on production and yields were 

debated and validated (see Appendix A for attendance registers). 

In recognising the context of the farmers’ multi-stressor environment it is important to 

uncover strategies for dealing with a variety of stressors by using different angles and 

questions.  During the expert group discussions the following questions were aimed at 

the role-players’ perspectives on climate change and their response to stressors: 

 How does the weather affect your farming decisions? 

 Does the general weather vary from year to year?  If “yes”, how? 

 Do these variations in weather from year to year impact your farming activities?  

If “yes”, how? 

 Has the weather pattern somehow changed over the years you have been farming?  

If “yes”, how has it changed? 

 Which climatic thresholds do you face in your farming system? 

- How has this affected your farming practices?  

- Have you found any ways to deal with the extreme events above? 

 Have you changed practices/strategies on the farm since you started farming? If 

“yes”, how, and to what were these changes a response?  

The most valuable of the above questions is the one in respect of climatic thresholds.  

These critical climate thresholds for crops would be applied in the newly developed Crop 

Critical Climate Thresholds (CCCT) modelling technique in order to quantify the impact 

of projected future climates on crop yield and quality. 

In order to analyse the financial vulnerability of the selected case studies to climate 

change, an integrated climate change model was developed.  The modelling framework 

consists of four modules. These are: 

 Climate change impact modelling: 

- Modelling of physical climate data (daily minimum and maximum 

temperatures and daily rainfall from different downscaled GCMs) that 

impact on crop yield and quality through APSIM and CCCT modelling.  
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- Hydrological modelling (ACRU4 model) - impact of climate change on 

the availability of irrigation water (for the Blyde River WUA). 

- Changing crop irrigation requirements (as a result of climate change) 

through SAPWAT35 model. 

 DLP model. 

 Modelling interphases. 

 Financial Vulnerability Assessment model. 

Adaptation strategies along with their cost/benefit implications were incorporated in the 

model to evaluate their suitability and ability to overcome the potential negative financial 

impacts as a result of changing climates. 

1.7 Contribution of the research 

This research will contribute towards the development of an integrated analytical 

framework to investigate the financial vulnerability of agricultural producers on farm 

level in the face of predicted climate changes.  The study contributes towards improved 

decision making in the planning and management of climate risk for agriculture and 

water resources management with reference to the case study areas in South Africa, and 

for a wider application in other regions with similar climate characteristics. 

Different rainfall areas (summer and winter), as well as rainfed versus irrigated 

agricultural production regions, were considered in order to analyse the expected 

financial vulnerability of farming systems due to climate change along with the different 

adaptation strategies applicable to the different areas. 

This research differs from previous research (see Section 2.9) in a number of ways. These 

are: 

 The research integrates several specialist fields into one optimisation model, viz. 

empirically downscaled climate models, ACRU hydrology model, APSIM crop 

model, the newly developed CCCT modelling technique, DLP model and 

financial assessment model. 

 The CCCT modelling technique, which was developed in this study, creates the 

link to quantify and integrate expert group discussion results into the integrated 

climate change model. 

                                                 
4  Agricultural Catchments Research Unit model 
5  South African Plant WATer model 
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 The CCCT model quantifies the impact of climate change on crops for both yield 

and quality.  It differs from other crop modelling techniques, e.g. APSIM, that 

only determines the impact of climate change on yield.   

 The research focuses on the financial vulnerability of farming systems, thereby 

implicating not only the effect of climate change on agricultural production, but 

also the long term sustainability of different farming systems in different regions. 

 The impact of climate change on the availability of irrigation water under 

different climate change scenarios is discounted in the modelling through the 

ACRU hydrological model and the link to farm level.  Although Louw et al 

(2012) applied the same methodology it was on a regional level and not at 

micro/farm level. 

 The impact of climate change on crop irrigation needs is discounted in the 

modelling, using the SAPWAT3 program and point-scale current and future 

climate data. 

1.8 Data used 

In order to construct a mathematical programming model which accurately represents the 

impact of climate change on the financial vulnerability of the selected case studies, both 

primary and secondary data are required.  These data requirements are: 

 Primary data of selected case study farms. 

 Crop enterprise budgets data. 

 Point-scale daily climate data (temperature and rainfall) for current and future 

projected climates. 

 Hydrological data to determine availability of irrigation water (current and future) 

and crop irrigation requirements (current and future). 

 APSIM crop modelling data (current and future). 

 CCCT model data for crops where no crop models exist. 

 Possible adaptation strategies and alternative crops. 

Farm surveys were conducted in order to gather primary information.  Various role-

players contributed to identify representative farming systems and make available crop 

enterprise budgets and other data required for the study. 
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The Climate Systems Analysis Group (CSAG) from the University of Cape Town (UCT) 

provided the point-scale daily climate data, which formed the basis of climate change 

projections in this study.  The University of KwaZulu-Natal (UKZN) provided the 

hydrological data from which available irrigation water and crop irrigation needs were 

derived through application of the ACRU and SAPWAT3 models.  The APSIM crop 

modelling was conducted by CSAG. 

Various experts from different fields contributed to several workshops that were held in 

order to validate the data used in the research.  They also contributed to the 

methodologies, identification of alternatives and adaptation strategies and the 

determination of crop critical climate thresholds. 

1.9 Chapter outline 

Chapter 1 describes the background, problem statement and objective of the study.  It 

demarcates the study area, defines the hypothesis that will guide the study, discusses the 

research method as well as the contribution of the research and the data used. 

Chapter 2 focuses on Literature review, including the definitions of climate change, a 

brief history of climate change research, impacts of climate change and climate change 

projections for the study areas.  Vulnerability assessment and adaptation to climate 

change are discussed, followed by an overview of relevant local and international 

research. 

The description of case study farms and norms in Chapter 3 includes discussions on 

climate, soil characteristics, water availability, adapted crops and livestock, cultivation 

practices, crop irrigation requirements, crop enterprise budgets and adaptation strategies. 

Chapter 4 is a layman’s description of the integrated climate change model which 

consists of four modules, viz. climate change impact modelling, whole-farm dynamic 

linear programming, modelling interphases and financial vulnerability assessment. 

The mathematical specification of the DLP and Financial Vulnerability Assessment 

model follow in Chapter 5. 

The integrated modelling results for each case study are discussed in Chapter 6.  

Discussions include projected climate change impacts on: quality and yield of crops, crop 
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irrigation requirements and availability of irrigation water.  Financial vulnerability 

assessment results and the evaluation of adaptation strategies are also described. 

Chapter 7 comprises the summary and conclusions for this study and recommends topics 

for further research.   
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CHAPTER 2 : LITERATURE REVIEW 

______________________________________________________________________ 

 

“Climate change represents one of the greatest environmental, social, and economic 

threats facing the planet today. In developing countries, climate change will have a 

significant impact on the livelihoods and living conditions of the poor. It is a particular 

threat to the attainment of the Millennium Development Goals (MDGs) and progress 

in sustainable development in Sub-Saharan Africa. Increasing temperatures and 

shifting rain patterns across Africa reduce access to food and create effects that impact 

regions, farming systems, households, and individuals in varying ways. Additional 

global changes, including changed trade patterns and energy policies, have the 

potential to exacerbate the negative effects of climate change on some of these systems 

and groups. Thus, analyses of the biophysical and socioeconomic factors that 

determine exposure, adaptation, and the capacity to adapt to climate change are 

urgently needed so that policymakers can make more informed decisions.” 

(Nzuma et al., 2010) 

 

2.1 Introduction 

Human activities such as the burning of fossil fuels, changes in land use and deforestation 

release greenhouse gases into the atmosphere. The main anthropogenic greenhouse gases 

are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The increasing 

concentration of greenhouse gases in the atmosphere disturbs the earth’s natural 

temperature control mechanisms resulting in the warming of the earth’s atmosphere – a 

phenomenon commonly referred to as “global warming”. This warming in turn disrupts 

the Earth’s climate system resulting in climate change. The effects of climate change 

include changes in wind and precipitation patterns, as well as increases in the frequency 

of climatic extremes including heat waves and heavy precipitation. The changes set in 

motion by past human activities are so significant that climate change is already a reality 

and it will continue to cause impacts in the future (CSIR-NRE, 2009). 

The accelerating pace of climate change, combined with global population and income 

growth, threaten food security in many places of the Earth. Agriculture is extremely 

vulnerable to climate change. Higher temperatures can reduce yields of desirable crops 

while encouraging weed and pest proliferation. Changes in precipitation patterns increase 

the likelihood of short-term crop failures and long-term production declines. Although 
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there will be yield gains in some crops in some regions of the world, the overall impacts 

of climate change on agriculture are expected to be negative, threatening global food 

security. Populations in the developing world, which are already vulnerable and food 

insecure, are likely to be the most seriously affected (Nelson et al., 2009). 

2.2 Defining climate change 

The Intergovernmental Panel for Climate Change (IPCC), a scientific intergovernmental 

body set up by the World Meteorological Organisation (WMO) and the United Nations 

Environment Programme (UNEP) to provide decision-makers and others interested in 

climate change with an objective source of information about climate change, defines 

climate change as: 

‘…any change in climate over time, whether due to natural variability or as a result of 

human activity’ (IPCC, 2007). 

The United Nations Framework Convention for Climate Change (UNFCCC), an 

international environmental treaty, defines climate change as: 

‘…change of climate that is attributed directly or indirectly to human activity that alters 

the composition of the global atmosphere and that is in addition to natural climate 

variability observed over comparable periods’ (UNFCCC, 1994). 

Climate change is also defined as any long-term and significant change in the expected 

patterns of a specific region’s average weather for an appropriately significant period of 

time. It is the result of several factors, including the earth’s dynamic processes, external 

forces and more recently, human activity. External factors that shape climate include 

such processes as variations in solar radiation, deviations in the earth’s orbit and 

variations in the level of greenhouse gas concentrations. Evidence of climatic change 

taken from a variety of sources can, in turn, be used to reconstruct past climates. Most 

climate evidence is inferred from changes in key climate indicators, including vegetation, 

ice cores, dendrochronology, sea-level change, and glacial geology (Nzuma et al., 2010). 

2.3 Brief history of climate change research 

"To a patient scientist, the unfolding greenhouse mystery is far more exciting than the 

plot of the best mystery novel. But it is slow reading, with new clues sometimes not 

appearing for several years. Impatience increases when one realizes that it is not the 
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fate of some fictional character, but of our planet and species, which hangs in the 

balance as the great carbon mystery unfolds at a seemingly glacial pace."    

(Schindler, 1999) 

The history of the centuries-long effort to document and understand climate change is 

often complex, marked by successes and failures, and has followed a very uneven pace. 

Testing scientific findings and openly discussing the test results have been the key to the 

remarkable progress that is now accelerating in all domains, in spite of inherent 

limitations to predictive capacity (Le Treut et al., 2007). 

Arrhenius (1896) was the first scientist to quantify the contribution of carbon dioxide to 

the greenhouse effect and to hypothesise that increases in the atmospheric concentration 

of carbon dioxide would contribute to long-term variations in climate.  Callender (1937) 

published an article “The artificial production of carbon dioxide and its influence on 

temperature”. In his article it is stated that through fuel combustion, man had added about 

150 000 million tons of carbon dioxide to the air during the half century preceding his 

paper. He estimated, from the best available data at the time, that approximately three 

quarters of this had remained in the atmosphere. The temperature observations at zoo 

meteorological stations were used to show that world temperatures had actually increased 

at an average rate of 0.005 °C per year during the preceding half century. 

In the early 1970s, the rise of environmentalism started to raise public doubts about the 

benefits of human activity for the planet. Curiosity about climate turned into anxious 

concern (Weart, 2008).  Alongside the greenhouse effect, some scientists pointed out that 

human activity was emitting dust and smog particles into the atmosphere, where they 

could block sunlight and cool the earth. Broecker (1975) popularized the term “global 

warming” and explained how ocean currents affect abrupt climate change.  

Greatly improved computer models began to suggest how abrupt temperature jumps 

could happen, for example through a change in the circulation of ocean currents. Experts 

predicted droughts, storms, rising sea levels, and other disasters (Weart, 2008).  An 

unexpected finding was that the level of certain other gases was rising, which would 

exacerbate global warming. Some of these gases also degraded the atmosphere’s 

protective ozone layer, and the news inflamed public worries about the fragility of the 

atmosphere (Weart, 2008). Moreover, by the late 1970s global temperatures had 
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evidently begun to rise again. International panels of scientists began to warn that the 

world should take active steps to cut greenhouse gas emissions. The scientists’ claims 

about climate change first caught wide public attention in the summer of 1988, the hottest 

on record until then (most years since then have been hotter). But the many scientific 

uncertainties, and the sheer complexity of climate, elicited vehement debate over what 

actions, if any, governments should take (Weart, 2008).  The first Southern African 

Climate Change conference was also held in 1988.  

Scientists intensified their research, organizing programs on an international scale. The 

world’s governments created the IPCC to give them the most reliable possible advice, as 

negotiated among thousands of climate experts and officials. By 2001, the IPCC had 

managed to reach a consensus, phrased so cautiously that scarcely any expert dissented. 

They announced that, although the climate system was so complex that scientists would 

never reach complete certainty, it was much more likely than not that our civilization 

faced severe global warming.  

The scientists who had predicted back in the 1980s that by the end of the 20th century the 

world would be warmer were now demonstrably correct, and the press and other 

influential people began to trust them. Many of the public did continue to doubt, 

supported by a small minority of scientists who clung to earlier views from ideological 

conviction or sheer stubbornness or vested interests in the oil industry. But an ever 

increasing number of individuals, government agencies, and corporate entities realized 

that something had to be done to mitigate the possible effects of climate change (Weart, 

2008). 

2.4 Impacts of climate change and global warming 

Climate change is a complex biophysical process. It is not possible to predict precise 

future climate conditions, but the scientific consensus is that global land and sea 

temperatures are warming under the influence of greenhouse gases, and will continue to 

warm regardless of human intervention for at least the next two decades (IPCC, 2007). 

The world’s climate experts almost all agree that the impacts listed below are more likely 

than not to happen (Weart, 2008). For some items, the probabilities range up to almost 

certain. Consequences will vary by region; in some places the effect will be minimal at 

first, except perhaps indirectly, while other places will be affected more severely. 
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The following are the likely consequences of warming by two or three degrees Celsius: 

 Most places will continue to become warmer, especially at night and during 

winter. The temperature change will benefit some regions while harming others - 

for example, patterns of tourism will shift. The warmer winters will improve 

health and agriculture in some areas, but globally, mortality is likely to rise and 

food supplies will be under pressure as a result of more frequent and extreme 

summer heat waves and other effects. Regions not directly harmed will suffer 

indirectly from higher food prices and an influx of refugees from afflicted 

regions. 

 Sea levels will continue to rise for many centuries.  

 Weather patterns will continue to change, resulting in an intensified water cycle 

with stronger floods and droughts. Most regions now subject to droughts will 

probably get drier (because of increased temperatures as well as less 

precipitation), and most wet regions will get wetter. Extreme weather events will 

become more frequent and worse. In particular, storms with more intense rainfall 

are likely to trigger extreme floods. Some places will get more snowstorms, but 

most mountain glaciers and winter snow packs will shrink, jeopardizing 

important water supply systems and winter tourism. Each of these has already 

begun to happen in some regions of the world. 

 Ecosystems will be stressed, although some agricultural and forestry systems will 

benefit, at least in the early decades of warming. Large numbers of valuable 

species, especially in the Arctic, mountain areas, and tropical seas, will need to 

shift their ranges.  Many that cannot will face extinction. A variety of pests and 

tropical diseases are expected to spread to warmed regions. These problems have 

already been observed in numerous places. 

 Increased carbon dioxide levels will affect biological systems independent of 

climate change. Some crops will benefit from CO2 fertilization, as will some 

invasive weeds (the balance of benefit vs. harm is uncertain). The oceans will 

continue to become markedly more acidic, gravely endangering coral reefs, and 

probably harming fisheries and other marine life. 

 There will be significant unforeseen impacts. Most of these will probably be 

harmful, since human and natural systems are well adapted to the present climate. 
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Approximately one billion people worldwide are currently already suffering from food 

insecurity, i.e. they do not at all times have physical and economic access to sufficient, 

safe and nutritious food that meets their dietary needs and food preferences for an active 

and healthy life (FAO, 2009a). The underlying reasons for food insecurity are embedded 

across all spatial scales, from global, regional and national levels, to community, 

household and individual levels. In dealing with the problem of hunger, underlying 

structural causes of poverty and food insecurity must be addressed through development 

of the agricultural sector and the socio-economic improvement of poor rural communities 

(World Bank, 2007; IAASTD, 2009; NEPAD, 2007). Climate change is already playing, 

and will increasingly play, a pivotal role in food security, through impacts on production, 

distribution and food prices (Easterling et al., 2007; FAO, 2007b). How and where this 

will play itself out is still uncertain, but it can be expected that as an additional stressor, 

the greatest impact will be on those who are already food-insecure, subjected to existing 

high levels of climate variability and stress, and unable to cope with or adapt to the added 

pressure.  

2.4.1 Climate change impacts on agriculture 

Consensus has been reached that agriculture, as a sector within the world economy, 

would be extremely vulnerable to climatic changes (Kaiser and Drennen, 1993; Darwin 

et al., 1995; IISD, 1997; IPCC, 2001; Mukheibir and Sparks, 2003; IFPRI, 2009).    

The croplands, pastures and forests that occupy 60% of the Earth’s surface are 

progressively being exposed to threats from increased climatic variability and, in the 

longer run, to climate change. Abnormal changes in air temperature and rainfall and 

increases in frequency and intensity of drought and flood events have long-term 

implications for the viability of these agricultural ecosystems. As climatic patterns 

change, so also do the spatial distribution of agro-ecological zones, habitats, distribution 

patterns of plant diseases and pests as well as fish populations and ocean circulation 

patterns which can have significant impacts on agriculture and food production (FAO 

inter-departmental working group on climate change, 2007; Schulze, 2011). 

Increased intensity and frequency of storms, drought and flooding, altered hydrological 

cycles and precipitation variance have implications for future food availability. The 

potential impacts on rainfed agriculture vis-à-vis irrigated systems are still not well 

understood. The developing world already contends with chronic food problems. Climate 
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change presents yet another significant challenge to be met. While overall food 

production may not be threatened, those least able to cope will likely bear additional 

adverse impacts (WRI, 2005). The estimate for Africa is that 25% to 42% of species 

habitats could be lost, affecting both food and non-food crops. Habitat change is already 

underway in some areas, leading to species range shifts, changes in plant diversity which 

includes indigenous foods and plant-based medicines (McClean et al., 2005). In 

developing countries, 11% of arable land could be affected by climate change, including 

a reduction of cereal production in up to 65 countries, about 16% of agricultural GDP 

(FAO Committee on Food Security, Report of 31st Session, 2005). Changes in ocean 

circulation patterns, such as the Atlantic conveyor belt, may affect fish populations and 

the aquatic food web as species seek conditions suitable for their lifecycle. Higher ocean 

acidity (resulting from carbon dioxide absorption from the atmosphere) could affect the 

marine environment through deficiency in calcium carbonate, affecting shelled 

organisms and coral reefs. 

Climate change impacts can broadly be divided into two groups (FAO inter-departmental 

working group on climate change, 2007): 

Biophysical impacts 

 Physiological effects on crops, pastures, forests and livestock (quantity and  

quality). 

 Changes in land, soil and water resources (quantity and quality). 

 Increased weed and pest challenges. 

 Shifts in spatial and temporal distribution of impacts. 

 Rise in sea level. 

 Changes in ocean salinity. 

 Rise in sea temperature causing fish to inhabit different ranges. 

Socio-economic impacts 

 Decline in yields and production. 

 Reduced marginal GDP from agriculture. 

 Fluctuations in world market prices. 

 Changes in geographical distribution of trade regimes. 

 Increased number of people at risk of hunger and food insecurity. 

 Migration and civil unrest. 
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The most vulnerable countries are in the less developed regions such as South Asia, 

South-East Asia, North Africa and Sub-Saharan Africa. In these regions one of the most 

exposed sectors is agriculture, and the impact on crop productivity is by far the most 

important source of damages (Bosello et al., 2012). 

2.4.2 Climate change and African agriculture 

The IPCC’s Fourth Assessment Report Summary for Africa (2007) describes a trend of 

warming in Africa at a rate faster than the global average, and increasing aridity. Climate 

change exerts multiple stresses on the biophysical as well as the social and institutional 

environments that underpin agricultural production. Some of the induced changes are 

expected to be abrupt, while others involve gradual shifts in temperature, vegetation 

cover and species distributions. Climate change is expected to, and in parts of Africa has 

already begun to, alter the dynamics of drought, rainfall and heat waves, and trigger 

secondary stresses such as the spread of pests, increased competition for resources, the 

collapse of financial institutions, and attendant biodiversity losses. 

In regions of East and Southern Africa, this vulnerability is further heightened by the 

large number of households that depend on the already marginalized natural resource 

base for their livelihoods. Agricultural production and the biophysical, political and 

social systems that determine food security in Africa are expected to be placed under 

considerable additional stress by climate change (Basher and Brecino, 2005; Meadows, 

2006; FAO, 2007). 

Predicting the impact of climate change on the complex biophysical and socio-economic 

systems that constitute agricultural sectors is difficult. In many parts of Africa it seems 

that warmer climates and changes in precipitation will destabilise agricultural production. 

This is expected to undermine the systems that provide food security (Gregory et al., 

2005).  Whilst farmers in some regions may benefit from longer growing seasons and 

higher yields, the general consequences for Africa are expected to be adverse and 

particularly adverse for the poor and the marginalized who do not have the means to 

withstand shocks and changes. 
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Christensen et al. (2007) summarises the key attributes of the IPCC’s Fourth Assessment 

Report for Africa as follows: 

 Warming is very likely to be larger than the global annual mean warming 

throughout the continent and during all seasons, with drier subtropical regions 

warming more than the moister tropics. 

 Annual rainfall is likely to decrease in much of Mediterranean Africa and the 

northern Sahara, with a greater likelihood of decreasing rainfall as the 

Mediterranean coast is approached. 

 Rainfall in southern Africa is likely to decrease in much of the winter rainfall 

region and western margins. 

 Mean annual rainfall is likely to increase in East Africa. 

 It is unclear how rainfall in the Sahel, the Guinean Coast and the southern Sahara 

will evolve. 

2.4.3 Climate change in Southern Africa 

Climate change is expected to exacerbate existing climate-related problems in Southern 

Africa where 38% of the population is rural (UN, 2014) and dependent on agriculture for 

basic livelihood. Climate change is already having an adverse impact on food security in 

Southern Africa, notably in the Least Developed Countries (LDCs) such as Lesotho that 

have a large rural population dependent on rainfed agriculture. Projected changes in 

future temperature and rainfall patterns for 2030 in Southern Africa indicate a significant 

decline in the production of major staple crops such as maize, wheat and sorghum 

(Dejene et al., 2011). 

A comprehensive analysis on impacts of climate change (Lobell et al., 2008) indicates 

that Southern Africa is likely to suffer negative impacts on several crops (e.g. maize and 

sorghum) that are very important to large food-insecure populations.  Davis (2011) 

summarizes the likely impact on crop and livestock production for Southern Africa in 

Table 2.1. 
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Table 2.1:  Impacts of projected climate change on crop and livestock production 

for Southern Africa 

 
Source: Davis (2011)  

Climate change is expected to not only impact on crop and livestock production, but also 

alter the agriculturally related socio-economic environment and general livelihood of the 

region.  

2.5 Climate change forecasting - South Africa 

GCMs have been developed to project future climates based on different greenhouse gas 

scenarios and complex earth-atmosphere interactions. As such GCMs provide the means 

of making climate change projections.  The development of climate projections for Africa 

is evolving rapidly (Ziervogel et al., 2008).  GCMs at the present point in time project 

climate parameters at a resolution of 250 km2, while downscaled models provide 

projections at 50 km2.  Whilst GCMs can more accurately project changes in average 

global temperature, these projections are often of little use to decision makers working 

on regional or local scales (Ziervogel et al., 2008). 

Two approaches dominate the downscaling efforts, each based on a specific set of 

assumptions and methodologies: empirical and dynamical downscaling (also known as 

Regional Climate Models or RCMs).  Figure 2.1 shows how these different types of 

climate modelling approaches fit together. These downscaled climate change models take 

• Even small increases in mean temperature between 1o and 2o C are projected 

to lead to a decrease in crop productivity

• Changes in temperature regimes could affect growing locations, the length of 

the growing season, crop yields, planting and harvest dates

• Increased need for irrigation in a region where existing water supply and 

quality is already negatively affected by other stressors

• Predicted higher temperatures are likely to negatively impact organic matter, 

thereby reducing soil nutrients

• Higher temperatures may favour the spread of significant pests and pathogens 

to a range of agricultural systems
• Changes in forage quality and quantity (including the availability of fodder 

• Changes in water quality and quantity

• Reduction in livestock productivity by increasingly exceeding the temperature 

thresholds above the thermal comfort zone of livestock which could lead to 

behavioural and metabolic changes (including altering growth rate, reproduction 

and ultimately mortality)

• Increased prevalence of "new animal diseases"

• Increases in temperature during the winter months could reduce the cold 

stress experienced by livestock, and warmer weather could reduce the energy 

requirements of feeding and the housing of animals in heated facilities

• Increased frequency in disturbances, such as wildfires

• Changes in biodiversity and vegetation structure

• Changes in income derived from crops and livestock production

• Shifts in land use (including consequences of land reform)

• Overall changes in food production and security

Socio-

economic/ 

livehood impacts

Crop production

Direct impacts

Indirect impacts

Livestock

Direct impacts

Indirect impacts
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values from GCMs and interpret them in relation to local climate dynamics (Tadross et 

al., 2005).  

 
Figure 2.1:  Overview of different types of climate models 

Source:  Ziervogel et al. (2008) 

Empirical downscaling makes use of the quantitative relationships between the state of 

the larger scale climatic environment and local variations sourced from historical data. 

Coupling specific local baseline climate data with GCM output provides a valuable 

solution to overcoming the mismatch in scale between climate model projections and the 

unit under investigation. Empirical downscaling can be applied to a grid or to a particular 

meteorological station. The later application of empirical downscaling is more common 

and is referred to as statistical empirical downscaling. 

CSAG operates the pre-eminent empirically downscaled model for Africa and provides 

meteorological station level responses to global climate forcings for a growing number 

of stations across the African continent. The data and technical skills intensity required 

for empirical downscaling have resulted in no other institutions in Africa currently 

producing such data. Existing adaptation studies and programs outside of South Africa 

have had limited awareness of the availability of such data (Ziervogel, et al. 2008).  

Dynamical downscaling and RCMs make use of the boundary conditions (e.g. 

atmospheric parameters from a GCM such as surface pressure, wind, temperature and 

water) and principles of physics within an atmospheric circulation system to generate 

small scale (high resolution) datasets. Owing to its reliance on high resolution physical 

STATISTICALGRID

CROP IMPACT MODELS

GCM

Empirical 
downscaling

Dynamical 
downscaling
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datasets, the approach is useful in the representation of extreme events. However, 

dynamical downscaling is a computationally and technically expensive method, a 

characteristic that has limited the number of institutions employing the approach 

(Ziervogel et al., 2008).  Since 2009, the Council for Scientific and Industrial Research 

(CSIR) [Climate Studies, Modelling and Environmental Health Research Group] uses 

the dynamical downscaling technique to produce regional climate models (Engelbrecht, 

2013).   

Table 2.2 displays the advantages and limitations of two downscaling techniques, namely 

empirical and dynamical downscaling. 

Table 2.2:  Comparison of empirical and dynamical downscaling techniques 

 
Source: Davis (2011) 

An important component of climate change science involves the description, 

understanding and representation of the inherent uncertainties in the modelling efforts. 

Uncertainty in climate change science is a function of the difficulties of modelling a 

complex and not entirely understood pair of inter-related systems (i.e. oceans and 

atmospheres), lack of complete knowledge on natural variability, an imperfect 

understanding of future greenhouse gas concentrations, and the likely impacts that 

surprises will bring to the climate system (Stainforth et al., 2007). Whilst it is known that 

specific models are more “skilled” at predicting specific parameters in certain regions, 

without a comprehensive exploration of multiple model outputs, choosing a single model 

for a specific region is not advisable (IPCC, 2007). An analysis of results from an 

“ensemble” of models, rather than a single model, is a sound way of addressing the 

RMC's (Regional Climate Models)

Definition Large-scale climate features are statistically related to local 

climate for a region - historical observations are utilised

A dynamic climate model (either a limited-area model or variable 

resolution global model) is nested/nudged within a GCM

• Station scale output • 10-15 km resolution output

• Less computational resources required

• Physical interactions and local fine-scale feedback process (not 

anticipated with statistical methods) can be simulated

• Available for more GCMs, allowing an assessment of 

probabilities and risks • Improved simulation of regional climate dynamics

• Can be applied to any observed variable, e.g. streamflow

• Can include additional processes not included by the GCM 

simulations

• Consistent with GCM simulations

• Do not rely on the assumption of stationarity1 in climate (Wilby et al. 

2003)

• May not account for some local scale interactions, e.g. between 

the land and the atmosphere • Computationally demanding

• Assume present-day statistical presentations between synoptic 

and local-scale climates will persist in the future (Wilby et al, 

2003) • Only a few scenarios usually developed

• Requires high quality observations data • Susceptible to the choice of physical parameterisations

• Choice of predictor variables can change results • Not easily transferred to new regions

• Results do not feed back to the GCM

• Limited regional-to-global feedbacks may be considered, but often 

are not 

• Choice of statistical transfer scheme can affect results

Statistical (empirical) downscaling

Advantages

Limitations
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uncertainty inherent in making a decision which is influenced by the future evolution of 

the climate system.  

For the purpose of this study, values derived from empirical downscaling (done by 

CSAG) were used as input data to the integrated model.  It would be useful to undertake 

the same exercise using values derived from the dynamical downscaling technique and 

to compare the results.  The focus of this study, however, was to develop the methodology 

and integrated model rather than to compare results from climate model outputs. 

2.5.1 Climate change projections for South Africa based on the empirically 

downscaled technique 

2.5.1.1 The climate change context 

There is overwhelming evidence, contained in thousands of scientific papers and 

summarised in a series of seminal reports emanating from the IPCC, that 

anthropogenically induced greenhouse gas emissions, often expressed through increases 

in atmospheric CO2 concentrations (Figure 2.2 bottom left), are increasing and 

accordingly global temperatures and sea level (Figure 2.2 bottom middle and right) are 

rising. These and other pieces of climate change evidence have been used by the 

International Geosphere-Biosphere Program (IGBP, 2009) in order to produce a 

composite climate change index, akin to composite stock exchange indices, and Figure 

2.2 (top) shows the clear rise in this index since 1980 (Schulze, 2011). 

 
Figure 2.2:  The IGBP’s composite climate change index (top) and  

some of the indicators used in its derivation (bottom) 

Source: After IGBP (2009) 
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With further projected changes in global climates into the future, changes in the South 

African agriculture sector will be inevitable, especially since the regional climate in 

South Africa is dependent on global climate, both presently and in the future (Schulze, 

2012). No one knows exactly how the future global climate will develop and what the 

resultant consequences in South Africa will be in, for example, the agriculture sector. 

However, South Africa lies in one of the regions of the world that is most vulnerable to 

climate variability and change (IPCC, 2007). 

Impacts from a changing climate can be considerable. Different regions of the country 

will likely be affected in many different ways. For this reason alone local scale analyses 

are needed to assess potential impacts (Andersson et al., 2009). Changes in optimum 

growing areas and yields are anticipated, and with that many knock-on effects ranging 

from application of new crop varieties to increased pest infestations to issues of food 

security and international trade (Davis, 2011; Schulze, 2011). 

2.5.1.2 Dispelling misconceptions on climate change impacts over South Africa 

There are many misconceptions in the popular and even the official as well as scientific 

literature in South Africa with regard to projected changes in magnitude and direction of 

key climate change variables and the associated impacts of these. They have arisen either 

out of ignorance, and/or by citing from dated research results, and/or having pre-

conceived ideas that climate change implies only “gloom and doom” on the one hand, or 

is a non-issue on the other, and/or taking isolated statements/cases/criticisms out of 

context and disregarding the overwhelming body of evidence on climate change, and/or 

having been “conditioned” by what turns out to be very broad generalizations contained 

in IPCC reports (Schulze, 2011). 

2.5.1.3 GCMs – downscaling and databases 

Output from GCMs is the most widely applied method of assessing impacts of climate 

change since GCMs, despite many uncertainties associated with them, are able to 

simulate the most important features of the global climate (Schulze, 2011). 

However, because agricultural impacts occur at more local scales, outputs from the global 

scale GCMs have to be downscaled to an appropriate finer scale spatial resolution. The 

empirical downscaling of values to climate station level, used in this study, was 

undertaken by the UCT (CSAG). 
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Daily rainfall as well as maximum and minimum temperature values were the output 

from five accredited GCMs from the IPCC (2007), viz. CGCM3.1(T47), CNRM-CM3, 

ECHAM5/MPI-OM, GISS-ER and IPSL-CM4, in each case for two 20 year scenarios, 

viz. for- 

 present climate, from 1971 - 1990, and 

 intermediate future climate, from 2046 – 2065. 

2.5.1.4 Projected changes to temperature and rainfall 

The following paragraphs summarize projected temperature and rainfall changes into the 

intermediate future for South Africa, as per Schulze (2011), based on the empirical 

downscaling results of five GCMs by CSAG, UCT.  The explanatory content of this 

section is cited for the purpose of providing the reader with essential background 

information. 

2.5.1.4.1 Temperature 

Temperature affects a wide range of processes in agriculture and is used as an index of 

the energy status of the environment. It is the one climatic variable for which there is a 

high degree of certainty that it will increase with global warming. 

Annual temperatures 

 Into the intermediate future (2046 – 2065) annual temperatures are projected to 

increase by 1.5 °C to 2.5 °C along the coast (illustrating the moderating influence 

of the oceans) to 3.0 °C to 3.5 °C in the far interior. 

 By the end of the century an accelerating increase in temperatures becomes 

evident with projected increases between 3.0 °C to 5.0 °C along the coast and up 

to > 6.0 °C in the interior. 

 Year-to-year variability of annual temperatures tends to increase in the northern 

half of the country and decrease in the south. 

From assessments based on outputs from multiple GCMs, a number of points requires 

emphasizing in regard to projected temperature changes over South Africa, inter alia, that 

changes in patterns of critical seasonal temperatures differ from one another and from 

distributions of changes in annual temperatures (see Figure 2.3 to Figure 2.5) in which 

summer maxima are represented by January’s temperatures and winter minima by those 

of July. 
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Figure 2.3:  Averages of changes (°C) between the intermediate future and present 

climates in mean annual, derived from multiple GCMs 

Source:  Schulze (2011) 

 

 
Figure 2.4:  Averages of changes (°C) between the intermediate future and present 

climates in January maximum, derived from multiple GCMs 

Source:  Schulze (2011) 
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Figure 2.5:  Averages of changes (°C) between the intermediate future and present 

climates in July minimum temperatures, derived from multiple GCMs 

Source:  Schulze (2011) 

For the A2 emission scenarios, the rate of temperature increases by annual temperature 

changes in the range of 0.25 °C to 0.50 °C per decade into the intermediate future (Figure 

2.6 below). 

 
Figure 2.6:  Averages of rates of change per decade of mean annual temperatures 

between the intermediate future and present, derived from multiple GCMs 

Source:  Schulze (2011) 
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Summer and winter temperatures 

 Geographic patterns of changes in maximum temperatures in January (summer) 

and minimum temperatures in July (winter) vary in both the intermediate future 

and the more distant future. 

 Again, projected temperature differences between the more distant future and the 

present are considerably higher than between the intermediate future and present. 

Heat waves 

 In regard to heat waves (i.e. occurrences with Tmxd > 30 °C on 3 or more 

consecutive days) and extreme heat waves (occurrences with Tmxd ≥ 35 °C on 3 

or more consecutive days), the median number of heat waves per annum from the 

five GCMs used in this study is projected to increase by anything from 30% to 

more than doubling from the present to both the intermediate and more distant 

futures. 

 In the case of extreme heat waves, the median number from the five GCMs used 

is projected to more than double into the intermediate future, with the most 

affected areas being those that are already hot even today, viz. the eastern and 

northern borders of South Africa and the Northern Cape. 

 All the GCMs used display increases in the numbers of heat waves in future. 

However, differences between the GCMs remain as to how many more heat 

waves there will be. 

Cold spells 

 While the numbers of cold spells (defined as ≥ three or more consecutive days 

with minimum temperatures < 2.5 °C) and severe cold spells (≥ three or more 

consecutive days with minima < 0 °C) are shown not to change along the coast 

of South Africa under future climatic conditions, in the more continental interior 

a reduction to < 70% of present cold spells is projected by the GCMs used. 

 The overall patterns between the intermediate and more distant future ratios to 

the present are very similar. 

 Much of the interior of South Africa displays a high consistency between GCMs 

of cold spell and severe cold spell reductions in future climates. 
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2.5.1.4.2 Rainfall 

In agriculture, limitations in water availability are a restricting factor in plant 

development, with water being essential for the maintenance of physiological and 

chemical processes within the plant, acting as an energy exchanger and carrier of nutrient 

food supply in solution (Schulze, 2011). In any regional study of agricultural production, 

rainfall, as a basic driving force and pulsar input in many agricultural processes, is 

therefore of fundamental importance. Focus is invariably on the patterns of rainfall in 

time and over an area, by enquiring how much it rains, where it rains, when it rains, how 

frequently it rains, and what the duration and intensity of rainfall events are (Schulze, 

2011). 

Annual rainfall  

It has already been alluded to that overall changes in future scenarios of climate depend 

strongly on which GCMs were used, and how many GCMs were in the ensemble used.  

Output from GCMs applied in this study indicated that:  

 Even under current climatic conditions, South Africa is regarded as a semiarid 

country with 20% receiving < 200 mm per annum, 47% < 400 mm and only 9% 

with a Mean Annual Precipitation (MAP) in excess of 800 mm. Inter-annual 

variability is high (Lynch, 2004). 

 Projected medians of changes in MAP from the ensemble of GCMs used show 

an overall wetting into the intermediate future, very slight in the west and more 

pronounced in the east, particularly in the more mountainous areas. In the more 

distant future intensifications of changes in MAP become evident, with areas of 

decreases in the west and the increases in the east from 200 mm and up to 500 

mm in the escarpment and mountainous runoff producing areas. The period of 

significant change in the west appears to be in the latter half of the century. 

 The averaged ratio changes from multiple GCMs in the inter-annual variability 

of rainfalls show standard deviations (a measure of absolute variability) to be 

intensifying from the intermediate to the more distant future, with significant 

increases in the year-to-year variability of annual precipitation in the east (from 

30% up to a doubling), but with decreases in the west. 

 The overall increase in rainfall variability has severe repercussions for the 

management of water resources and operations of major reservoirs as well as on 

the year-on-year consistency of agricultural production. 
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Monthly rainfall 

 Changes in distribution patterns over South Africa of medians of precipitation in 

cardinal months are not uniform, but can vary markedly: 

- in direction 

- in intensity 

- spatially within South Africa in a given month 

- between different months of the year for the same statistic 

- between the intermediate future and the more distant future for the same 

statistic 

- in intensification and acceleration of impacts of climate change over time. 

 A recurring feature is a general wetting trend of varying intensity and distribution 

in all three periods of change considered, particularly in the east. This wetting 

trend is, in general, projected to be beneficial to South Africa’s agricultural 

production and to water availability for agriculture, but the flood damage or 

erosion associated with this trend could cause it to be detrimental. 

 There is a drying trend evident in the west, mainly towards the end of its rainy 

season. Combined with increases in temperature, the repercussions for 

agricultural production, irrigation demand and water resources could thus be 

severe in the west. 

 The GCMs used in this study also display a drying trend in the northern areas of 

South Africa in the latter half of this century, mainly in the middle and towards 

the end of the wet season (i.e. January and April), with projected negative impacts 

on crop yields and water availability. 

 The area which is transitional between the summer and winter rainfall areas in 

South Africa frequently displays marked relative increases in rainfall. 

 For the period up to the intermediate future marked differences in averaged ratio 

changes of standard deviations are seen in the four cardinal months, as are 

differences in direction and intensity within a given month. January and April 

display a narrow coastal strip of decreased rainfall variability into the future, but 

with a general increase over the interior which intensifies into autumn. 

 By mid-winter virtually the entire South Africa displays significant increases in 

the inter-annual variability of rainfall. Over much of the country this has little 

impact on agriculture and water resources as mid-winter coincides with the dry 
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season, but it does impact on the winter rainfall region of the southwest.  By 

October, when the rainy season starts for much of the country, the eastern half of 

South Africa and the southwest show reductions in variability, with only the 

semiarid central interior displaying averaged increases in variability. 

Rainfall concentration 

 The rainfall concentration statistics indicate whether the rainfall season is 

concentrated over a short period of the year only or extended over a longer period. 

 Median changes in ratios of intermediate future to present rainfall concentration 

computed from the five GCMs used, display a general reduction over much of 

South Africa, indicative of a slightly more even spread of the rainy seasons by 

the mid-century. 

 However, in the all year rainfall belt, as well as the transitional area between the 

winter and summer rainfall regions, the rainy season is projected to become more 

concentrated into shorter periods than at present. 

 Confidence in these projections is generally in the ‘High’ category in the northern 

areas of South Africa, but reduces to the ‘Low’ category in the south and east. 

Rainfall Seasonality 

 Large tracts of the current winter and summer rainfall regions are projected with 

high certainty by the various GCMs used in this study to remain as they are now. 

 However, the major uncertainties between the models in changes of future rainfall 

seasonality are in the transitional areas between the winter and summer regions 

in the west, and in the future location of the all year rainfall region, with 

confidence in the composite projections only in the ‘Medium High’ to ‘Medium 

Low’ categories. 

 Within the summer rainfall region individual GCMs display a contraction in the 

mid-summer rainfall region into the intermediate and the more distant future, and 

a corresponding expansion of late and very late rains. 

In regard to annual precipitation, the averages of the ratio changes in MAP from five 

GCMs which were available for detailed analysis in this study show relatively high 

increases from the present into the intermediate future, i.e. 40 years from now, especially 

in the western transitional belt between the winter and summer rainfall regions (see 

Figure 2.7).   The year-to-year variability of annual precipitation, expressed through the 

standard deviation and derived using output from multiple GCMs, is shown in Figure 2.8 

below to increase throughout South Africa between the present and intermediate future. 



32 
 

 
Figure 2.7:  Averages of ratio changes in mean annual precipitation between the 

intermediate future and present, derived from multiple GCMs 

Source:  Schulze (2011) 

 
Figure 2.8:  Averages of ratio changes in the standard deviation of annual 

precipitation between the intermediate future and present, derived from multiple 

GCMs 

Source:  Schulze (2011) 

Changes in annual characteristics of rainfall, however, obscure the many important 

attributes of rainfall that may change at sub-annual level, in which the distinct spatial 

differences in both magnitude and direction are shown for amounts and variabilities of 
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rainfall in both a summer (January) and spring (October) month (see Figure 2.9 to Figure 

2.12 below). 

 
Figure 2.9:  Medians of ratio changes in January rainfalls between the intermediate 

future and present, derived from multiple GCMs 

Source:  Schulze (2011) 

 
Figure 2.10:  Medians of ratio changes in October rainfalls between the 

intermediate future and present, derived from multiple GCMs 

Source:  Schulze (2011) 
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Figure 2.11:  Averages of ratio changes in January rainfalls between the 

intermediate future and present, derived from multiple GCMs 

Source:  Schulze (2011) 

 
Figure 2.12:  Averages of ratio changes in October standard deviations of rainfall 

between the intermediate future and present, derived from multiple GCMs 

Source:  Schulze (2011) 
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2.6 Climate change projections for study areas 

The climate change projections for the different study areas were undertaken by UCT 

(CSAG) and are described in the following paragraphs.  The reader is referred to Section 

4.2.1.1 for more detail on the methodology of empirical downscaling. 

The plots below show the range of projected future changes across various empirically 

downscaled GCMs. The solid bars represent the range between the middle 80% of 

projected change, and so exclude the upper and lower 10% as these are often considered 

to be outliers. However, the grey lines show the projected change for each model, so it is 

possible to see how individual models (intentionally not named) project the future 

changes. 
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2.6.1 Vredendal 

Summary: Rainfall: Most projections point to a drying in early winter, with the most 

likely decrease in May (up to 10 mm) and June (up to 12 mm), with an increase of up to 

5 mm in September. Temperature: Warming is illustrated in maximum temperature 

(approximately 1°C to 1.5 °C), and minimum temperature (1 °C to 1.5 °C) by 2050. 

 

 
Figure 2.13:  Climate projections for Vredendal from empirically downscaled 

GCMs 

Source: Calculations by CSAG (2013) 
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2.6.2  Hoedspruit 

Summary: Rainfall: Most projections indicate an increase in summer, with the most 

likely increases in January to March (of up to 20 mm per month), with a decrease of up 

to 12 mm in May and possible decrease in December of up to 10 mm. Temperature: 

Warming both in maximum temperature (approximately 1.5 °C to 2.0 °C) and minimum 

temperature (1.5 °C to 2.0 °C) is projected by 2050. 

  

 
Figure 2.14:  Climate projections for Hoedspruit from empirically downscaled 

GCMs 

Source: Calculations by CSAG (2013) 
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2.6.3 Moorreesburg 

Summary: Rainfall: Most projections point to a drying in summer and early winter, with 

the most likely decrease in June (of up to 10 mm), with an increase of up to 15 mm in 

September. Temperature: Warming is shown in maximum temperature (approximately 1 

°C to 1.5 °C) and minimum temperature (1 °C to 1.5 °C) by 2050. 

 

 
Figure 2.15:  Climate projections for Moorreesburg from empirically downscaled 

GCMs 

Source: Calculations by CSAG (2013) 
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2.6.4 Carolina 

Summary: Rainfall: Most projections display an increase in summer, with the most likely 

increases in January (of up to 30 mm per month), with a decrease of up to 20 mm in May 

and possible decreases in March, April, May (up to 20 mm per month) and August, 

October and December of up to 15 mm per month. Temperature: Warming both in 

maximum temperature (approximately 1.5 °C to 2.5 °C) and minimum temperature (1.5 

°C to 2.6 °C) by 2050. 

 

 
Figure 2.16:  Climate projections for Carolina from empirically downscaled GCMs 
Source: Calculations by CSAG (2013)   
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2.7 Vulnerability assessment 

2.7.1 Defining vulnerability 

The IPCC, in its Second Assessment Report, defines vulnerability as “the extent to which 

climate change may damage or harm a system”. It adds that vulnerability “depends not 

only on a system’s sensitivity, but also on its ability to adapt to new climatic conditions” 

(Watson et al., 1996).  In a presentation made at the Sixth Conference of the Parties of 

the UNFCCC (COP-6), Watson, the then Chairperson of the IPCC, defined vulnerability 

as “the extent to which a natural or social system is susceptible to sustaining damage 

from climate change, and is a function of the magnitude of climate change, the sensitivity 

of the system to changes in climate and the ability to adapt the system to changes in 

climate. Hence, a highly vulnerable system is one that is highly sensitive to modest 

changes in climate and one for which the ability to adapt is severely constrained” (IPCC, 

2000a).     

Looking at vulnerability from the food security point of view, the FAO (1999) 

publication - The State of Food Insecurity in the World, defines vulnerability as “the 

presence of factors that place people at risk of becoming food insecure or malnourished”. 

Clearly, this definition encompasses causes of food insecurity other than climate change 

(e.g. armed conflict, landlessness, etc.). Nevertheless, the concept of vulnerability 

includes hunger vulnerability, which refers to the vulnerability of individuals or 

households rather than that of regions or economic sectors (Olmos, 2001). 

Following Blaikie et al. (1994), Kelly and Adger (2000) defines vulnerability as “the 

ability or inability of individuals or social groupings to respond to, in the sense of cope 

with, recover from or adapt to, any external stress placed on their livelihoods and well-

being”. 

In the context of this study vulnerability will focus on the inability of individual 

commercial farmers to respond to, or cope with, climate change effects on crop yields 

from a financial vulnerability point of view.  Financial vulnerability criteria that were 

applied in this study will be discussed in the following section. 
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2.7.2 Financial vulnerability criteria 

Traditionally, lenders apply the five C‟s of credit when determining the creditworthiness 

of agricultural borrowers (Wilson et al., 2006): 

 The borrowers Capacity to repay the loan obligation and bear the associated 

financial risks, calculated by analysing both past and projected profitability and 

cash flow of the farm business. If a farmer has previously installed drainage, 

increased return as a result of drainage records will be useful; otherwise data from 

a close neighbour with similar conditions who has installed drainage, or verified 

simulation models can also be used.   

 The borrowers Capital available for farm operations, assessed from balance 

sheets with liquidity and solvency calculations to gauge equity investment in the 

farm and how effectively it generates cash flows. Without sufficient capital (and 

managerial expertise) to optimise the returns from the investment in drainage (e.g. 

planting more capital intensive higher value long term crops), the investment may 

be underutilised.  

 The borrowers‟ security Collateral as a final source of repayment if the borrower 

defaults on the terms of the loan agreement or dies. The higher the risk of the 

operation for which the loan is requested, the higher level of Collateral required. 

As drainage has no salvage value, the full costs of the drains often needs to be 

covered by some form of collateral. The higher the percentage of a farmers’ total 

land that needs to be drained, the less likely that the land itself can cover the 

collateral obligations. 

 The Conditions for use of the funds, or the intended purpose of the funds required 

by the borrower are considered in terms of general economic conditions, interest 

rates, inflation and the demand for money in order to come up with a discount 

rate with which to calculate the net present value (NPV), benefit cost ratio (B/C) 

and internal rate of return (IRR), all useful in comparing funding alternatives. 

 The Character of the borrower, i.e. the attitude of the borrower towards risk and 

financial track record available from credit bureaus, is also a very important factor 

for commercial lenders considering a loan application. In the case of subsidised 

state funding and grants the potential recipients character in terms of “money 

grabbing” and not applying the funds productively also needs to be evaluated to 

ensure efficient use of public funds. 
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“Collateral”, “Conditions” and “Character” cannot be calculated using quantitative 

inputs only and will differ for each analysis and also for different financiers.  However, 

the financial model addresses “Capacity” and “Capital” using the following ratios: 

 Cash flow ratio (an indicator of repayment ability and the enterprise’s ability to 

survive financial setbacks) 

 Debt ratio (an indicator of solvency) 

To determine the financial vulnerability of a farming system, the financial model 

provides a set of criteria.  These are: 

 IRR (Internal rate of return) 

 NPV (Net present value) 

 Cash flow ratio 

 Highest debt ratio 

 Highest debt. 

The definitions for these criteria are expounded below. 

Internal rate of return (IRR) 

The internal rate of return (IRR) is probably the most widely used sophisticated capital 

budgeting technique.  The IRR is the compound annual rate of return that the firm will 

earn if it invests in the project and receives the given cash inflows (Gitman, 2009). 

Net present value (NPV) 

Because net present value (NPV) gives explicit consideration to the time value of money, 

it is considered a sophisticated capital budgeting technique (Gitman, 2009). NPV can be 

described as the “difference amount” between the sums of discounted cash inflows and 

cash outflows. It compares the present value of money today to the present value of 

money in the future, taking inflation, risk and opportunity cost of capital into account. 

Cash flow ratio 

A measure of how well cash flow out is covered by the cash flow in. The cash flow ratio 

can gauge a company's liquidity in the short term. Using cash flow as opposed to income 

is sometimes a better indication of liquidity simply because cash is how bills are normally 

paid (Pienaar and Louw, 2002). 
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Debt ratio 

The debt position of a firm indicates the amount of other people’s money (debt) being 

used to generate profits (Gitman, 2009).  It is the total liabilities divided by total assets.  

If the ratio is less than 0.5, most of the company's assets are financed through equity. If 

the ratio is greater than 0.5, most of the company's assets are financed through debt. 

Highest debt 

Within the context of this study it is simply the highest debt in any specific year over the 

20-year planning horizon. 

2.8 Adapation to climate change 

Many natural systems, as well as the human drivers and respondents of such systems, 

are able to adapt naturally to change and, if they can do so, it is likely that they will be 

less vulnerable to potential impacts of climate change. However, many systems and 

components of such systems are likely to be vulnerable to certain climate impacts and 

not be able to adapt adequately or rapidly enough themselves. It is therefore important 

to identify who and what is most vulnerable to impacts of climate change, in order that 

support for adaptation can be targeted appropriately to reach the most vulnerable 

groups.  

(Ziervogel, 2008) 

2.8.1 Defining adaptation to climate change 

In climate change literature numerous definitions of adaptation have been proposed, as 

summarised below. 

Adaptation involves adjustments to enhance the viability of social and economic 

activities and to reduce their vulnerability to climate change, including its current 

variability and extreme events as well as longer term climate change (Smit, 1993). 

The term adaptation means any adjustment, whether passive, reactive or anticipatory, 

that is proposed as a means for ameliorating the anticipated adverse consequences 

associated with climate change (Stakhiv, 1993). 

Adaptation to climate change includes all adjustments in behaviour or economic structure 

that reduce the vulnerability of society to changes in the climate system (Smith et al., 

1996). 
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Adaptability refers to the degree to which adjustments are possible in practices, 

processes, or structures of systems to projected or actual changes of climate.  Adaptation 

can be spontaneous or planned, and can be carried out in response to or in anticipation of 

change in conditions (Watson et al., 1996). 

Adaptation is the adjustment in natural or human systems in response to actual or 

expected climatic stimuli or their effects, which moderates harm or exploit beneficial 

opportunities. Various types of adaptation can be distinguished, including anticipatory 

and reactive adaptation, private and public adaptation, and autonomous and planned 

adaptation (IPCC TAR, 2001a). 

Adaptation consists of the practical steps to protect countries and communities from the 

likely disruption and damage that will result from effects of climate change. For example, 

flood walls should be built and in numerous cases it is probably advisable to move human 

settlements out of flood plains and other low-lying areas…” (UNFCCC, cited by Levina 

and Tirpak, 2006). 

Adaptation is a process by which individuals, communities and countries seek to cope 

with the consequences of climate change, including variability. The process of adaptation 

is not new; throughout history, people have been adapting to changing conditions, 

including natural long term changes in climate. What is innovative is the idea of 

incorporating future climate risk into policy-making (UNDP, 2010). 

Adaptation is the process or outcome of a process that leads to a reduction in harm or risk 

of harm, or realisation of benefits associated with climate variability and climate change. 

(UK Climate Impact Programme [UKCIP], 2003). 

The aforementioned definitions have much in common. They all refer to adjustments in 

a system in response to (or in light of) climatic stimuli, but they also indicate differences 

in scope, application and interpretation of the term adaptation.  For example, the question 

“adaptation to what” is answered in different ways.  It can refer to climate change, to 

change and variability, or to just climate. It can be in response to adverse effects or 

vulnerabilities, but it can also be in response to opportunities. It can be in response to 

past, actual or anticipated conditions, changes or opportunities (Smit et al., 2000). 
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There are also differences in how the definitions relate to the question “who or what 

adapts?” It can be people, social and economic sectors and activities, managed or 

unmanaged natural or ecological systems, or practices, processes or structures of systems. 

The nature of adaptation and its effects will vary not only according to whether the object 

is natural or socio-economic, small or large scale, single sector/species or complex 

system, but also according to properties that relate to adaptation propensity such as 

adaptability, vulnerability, viability, sensitivity, susceptibility, resilience and flexibility. 

The definitions also hint at the ways in which forms or types of adaptation can be 

distinguished; in other words, “how does adaptation occur?” Adaptation refers to both 

the process of adapting and the resulting outcome or condition. Most definitions imply a 

change “to better suit” the new conditions. Adaptations can be passive, reactive or 

anticipatory; they can be spontaneous or planned. 

As summarized in Figure 2.17, these three elements together circumscribe the overall 

question “what is adaptation?”  A thorough description of adaptation would specify the 

system of interest (who or what adapts), the climate-related stimuli (adaptation to what), 

and the processes and forms involved (how adaptation occurs).  The exercise of 

identifying recommended adaptation options or measures as part of a response strategy 

involves the additional step of evaluation, in order to judge the merit of potential 

adaptations (how good is the adaptation?). Evaluations of adaptations can be based on 

criteria such as costs, benefits, equity, efficiency, urgency and ease/difficulty of 

implementation (Smit et al., 2000). 
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Figure 2.17:  Gross anatomy of adaptation to climate change and variability 

Source:  Smit et al. (2000) 

The success of adaptation strategies in this study will be evaluated by comparing 

financial vulnerability criteria of different climate and management scenarios. 

2.8.2 Types of adaptation 

Two main types of adaptation are autonomous and planned adaptation. Autonomous 

adaptation is the reaction of, for example, a farmer to changing precipitation patterns, 

in that the farmer changes crops or uses different harvest and planting/sowing dates. 

Planned adaptation measures are conscious policy options or response strategies, often 

multi-sectoral in nature, aimed at altering the adaptive capacity of the agricultural system 

or facilitating specific adaptations. Examples would include deliberate crops selection 

and distribution strategies across different agriclimatic zones, substitution of new crops 

for old ones and resource substitution induced by scarcity (Easterling, 1996). 

Farm level analyses have shown that large reductions in adverse impacts from climate 

change are possible when adaptation is fully implemented (Mendelsohn and Dinar, 

1999). Short-term adjustments are seen as autonomous in the sense that no other sectors 

(e.g. policy, research, etc.) are needed in their development and implementation. 
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Long-term adaptations are major structural changes to overcome adversity such as 

changes in land-use to optimize yield under new conditions, application of new 

technologies, new land management techniques, and water-use efficiency related 

techniques. Reilly and Schimmelpfennig (1999) define the following “major classes of 

adaptation”: 

 Seasonal changes and sowing dates 

 Different variety or species 

 Water supply and irrigation system 

 Other inputs (fertilizer, tillage methods, grain drying, other field operations) 

 New crop varieties 

 Forest fire management, promotion of agroforestry, adaptive management with 

suitable species and silvicultural practices. 

Accordingly, the types of responses include: 

 Reduction of food security risk 

 Identifying present vulnerabilities 

 Adjusting agricultural research priorities 

 Protecting genetic resources and intellectual property rights 

 Strengthening agricultural extension and communication systems 

 Adjustment in commodity and trade policy 

 Increased training and education 

 Identification and promotion of (micro-) climatic benefits and environmental 

services of trees and forests. 

With changes in precipitation and thus water availability, temperature, length of growing 

season and frequency of extreme weather events, considerable efforts would be required 

to prepare developing countries to deal with climate-related impacts in agriculture. 

Among the key challenges will be to assist countries that are constrained by limited 

economic resources and infrastructure, low levels of technology, poor access to 

information and knowledge, inefficient institutions, and limited empowerment and 

access to resources. Managed carefully, climate adaptation strategies could have 

environmental benefits for some countries (FAO, 2007b). 

Within the context of this study the focus will be on autonomous adaptation, in other 

words, adaptation strategies which can be applied at farm level without support from 

other levels e.g. policies, etc. 
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2.9 Integrated Climate Change Modelling 

2.9.1 International research 

Recent international research on integrated climate change modelling includes two IFPRI 

(The International Food Policy Research Institute) studies which are summarized in the 

sections below. 

2.9.1.1 Climate change impact on agriculture and cost of adaptation (Nelson et al., 

2009) 

The study brings together detailed modelling of crop growth under climate change with 

insights from a detailed global agriculture model, using two climate scenarios to simulate 

future climate. The results of the analysis suggest that agriculture and human well-being 

will be negatively affected by climate change: 

 In developing countries, climate change may result in yield declines for the most 

important crops. South Asia will be particularly hard hit. 

 Climate change may have varying effects on irrigated yields across regions, but 

irrigated yields for all crops in South Asia are projected to experience large 

declines. 

 Climate change may result in additional price increases for the most important 

agricultural crops such as rice, wheat, maize, and soybeans. Higher feed prices 

may result in higher meat prices. As a result, climate change may reduce the 

growth in meat consumption slightly and cause a more substantial fall in cereals 

consumption. 

 Calorie availability in 2050 may not only be lower than in the no–climate-change 

scenario.  It may actually decline relative to 2000 levels throughout the 

developing world. 

 By 2050, the decline in calorie availability may increase child malnutrition by 

20% relative to a world with no climate change. Climate change may eliminate 

much of the improvement in child malnourishment levels that would occur with 

no climate change. 

 Thus, aggressive agricultural productivity investments are needed to raise calorie 

consumption enough to offset the negative impacts of climate change on the 

health and well-being of children. 
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The research uses a global agricultural supply-and-demand projection model (IMPACT 

2009) linked to a biophysical crop model (DSSAT) of the impact of climate change on 

five important crops: rice, wheat, maize, soybeans, and groundnuts.   

Because climate change simulations are inherently uncertain, two climate models have 

been used to simulate future climate, using the A2 scenario of the IPCC’s Fourth 

Assessment Report: the National Center for Atmospheric Research, US (NCAR) model 

and the Commonwealth Scientific and Industrial Research Organization, Australia 

(CSIRO) model. The study refers to the combination of model runs with A2 inputs as the 

NCAR and CSIRO scenarios. Both scenarios project higher temperatures in 2050, 

resulting in higher evaporation and increased precipitation as this water vapour returns 

to earth. 

The report assesses climate-change effects on food security and human well-being using 

two indicators: per capita calorie consumption and child malnutrition numbers. It 

estimates the cost of investments - in three primary sources of increased agricultural 

productivity (agricultural research, rural roads, and irrigation) - needed to return the 

values of these two indicators from their 2050 values with climate change to their 2050 

values without climate change. In other words, this report isolates the effects of climate 

change on future well-being and identifies only the costs of compensating for climate 

change. 

This analysis brings together detailed modelling of crop growth under climate change 

with insights from a detailed global agriculture model. The results show that agriculture 

and human well-being will be negatively affected by climate change. Crop yields may 

decline, production may be affected, crop and meat prices may increase, and 

consumption of cereals may fall, leading to reduced calorie intake and increased child 

malnutrition (Nelson et al., 2009).  

2.9.1.2 Simulating the impact of Climate Change and Adaptation Strategies on 

Farm Productivity and Income – A Bio-economic Analysis (Fofana, 2011) 

This study aims at understanding the impact of climate change on agriculture in Africa. 

A bio-economic model that combines biophysical or cropping systems and farm 

optimization modelling is used to replicate the system of production of El Khir, a large 

commercial farm in Tunisia. 
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The study argues that climate is crucial in defining the production area for plant species 

and varieties. Even for crops that are well adapted to their environment, the effect of 

climate on yield remains important. It highlights the general action of climate variables, 

in particular temperature and precipitation, on plant growth and crop yield. 

Climate change possibilities are presented through climate scenarios. Because of the 

uncertainties surrounding the forecasts on climate change, the study runs various climate 

sensitivity tests based on increases in daily temperature of about 1 °C, 2 °C, and 3 °C; 

decreases in daily precipitation of 10% and 20%; and a doubling of the CO2 level from 

350 ppm to 700 ppm.  

The study reveals that the El Khir farm may experience a significant decline in 

productivity and income with climate change. The severity of productivity and income 

losses depends on the magnitude of changes in temperature and precipitation. Higher 

temperatures (plus 2 °C and above) or a significant decline in precipitation (minus 10% 

and below) or both may seriously affect most of the crop activities. In the perspective of 

the IPCC scenarios, farm productivity is most likely to fall by 15% to 20% in the near-

term, depending on the magnitude of changes in precipitation. In the long run, the 

declines are expected to be much higher: 35% to 55% for productivity and 45% to 70% 

for income. 

For this study the effects of climate change on irrigated crops are driven by temperature 

only, whereas rainfed crops face the effects of both temperature and precipitation. 

Consequently, irrigated crops are less affected than rainfed crops with about 10 

percentage points of the productivity gap.  Crops are affected differently by climate 

change. Among irrigated crops in this study, oat hay is less affected than hard wheat. 

Among rainfed crops, hard wheat, fava bean, and chickpeas experience a higher loss of 

yields. The reduction in yields is less important, but still high for soft wheat, whereas 

barley fodder is the least affected. 

Simple adaptation strategies (more irrigation and nitrogen fertilization and delay in 

sowing dates) contribute to coping with the adverse impact of climate change on farm 

productivity and income. But as the climate gets warmer, their mitigation effects are 

lessened. For the case of hard wheat, new management techniques implemented to cope 

with the adverse impact of climate change do not appear to be significantly more efficient 
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than baseline management techniques. Compensations for the negative effects of climate 

change are found to be worthwhile for the 1 °C increase in temperature scenario. 

However, the success of adaptation strategies depends very much on the availability of 

more water and the lower additional cost to mobilize it at farm level. 

2.9.2 South African research 

Climate change studies conducted in South Africa (including Africa wide studies) focus 

on: 

 Physical impacts - implications of climate change on crop yield and production 

(Schulze et al., 1993; Du Toit et al., 2002; Midgley et al., 2007; Walker and 

Schulze, 2008; Haverkort et al., 2013). 

 Economic impacts derived from yield losses (Erasmus et al., 2000; Blignaut et 

al., 2009; Gbetibouo and Hassan, 2005; Kurukulasuriya et al., 2006). 

 More comprehensive economic studies including vulnerability (Daressa et al., 

2007; Seo et al., 2009; Gbetibouo et al., 2010; Hassan et al., 2010) and adaptation 

options (Deressa et al., 2005; Gbetibouo and Hassan, 2005; Benhin, 2008). 

 Advanced integrated climate change modelling linking empirically downscaled 

climate models, a hydrological module and dynamic linear modelling to 

contribute to water resources policy, planning and management (Louw et al., 

2012). 

Schulze et al. (1993) developed an analysis tool to simulate primary productivity and 

crop yields for both present and possible future climate conditions. Southern Africa was 

delineated into 712 relatively homogeneous climate zones, each with specific climate, 

soil and vegetation response information. The primary productivity and crop yield 

models were linked with the climate zones via a cell-based agro-hydrological model, with 

the final output coordinated using a Geographic Information System (GIS). The results 

of this preliminary study show a large dependence of production and crop yield on the 

intra-seasonal and inter-annual variation of rainfall. The most important conclusion from 

the study is the readiness of the developed tool and associated infrastructure for future 

analysis into social, technological and political responses to food security in Southern 

Africa. 

Erasmus et al. (2000) link two different methodologies to determine the effects of climate 

change on the Western Cape farm sector. First, it uses a general circulation model (GCM) 
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to model future climate change in the Western Cape, particularly with respect to 

precipitation. Second, a sector mathematical programming model of the Western Cape 

farm sector is used to incorporate the predicted climate change, specifically rainfall, from 

the GCM to determine the effects on key variables of the regional farm economy. In 

summary, results indicate that future climate change will lead to lower precipitation, 

which implies that less water will be available to agriculture in the Western Cape. This 

will have a negative overall effect on the Western Cape farm economy. Both producer 

welfare and consumer welfare will decrease. Total employment in the farm sector will 

also decrease as producers switch to a more extensive production pattern. The total 

decline in welfare, therefore, will fall disproportionately on the poor. 

Deressa et al. (2005) employed a Ricardian model that captures farmers’ adaptation to 

analyse the impact of climate change on South African sugarcane production under 

irrigation and dryland conditions. The study utilized time series data for the period 1977 

to 1998 pooled over 11 districts. Results showed that climate change has significant non-

linear impacts on net revenue per hectare of sugarcane in South Africa with higher 

sensitivity to future increases in temperature than precipitation. Irrigation did not prove 

to provide an effective option for mitigating climate change damages on sugarcane 

production in South Africa. The study suggests that adaptation strategies should focus 

special attention on technologies and management regimes that will enhance sugarcane 

tolerance to warmer temperatures during winter and especially the harvesting phases. 

Gbetibouo and Hassan (2005) employed a Ricardian model to measure the impact of 

climate change on South Africa’s field crops and analysed potential future impacts of 

further changes in the climate. A regression of farm net revenue on climate, soil and other 

socio-economic variables was conducted to capture farmer-adapted responses to climate 

variations. The analysis was based on agricultural data for seven field crops (maize, 

wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic 

data across 300 districts in South Africa. Results indicate that production of field crops 

was sensitive to marginal changes in temperature as compared to changes in 

precipitation. Temperature rise positively affects net revenue whereas the effect of 

reduction in rainfall is negative. The study also highlights the importance of season and 

location in dealing with climate change; showing that the spatial distribution of climate 

change impact and consequently needed adaptations will not be uniform across the 
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different agro-ecological regions of South Africa. Results of simulations of climate 

change scenarios indicate many impacts that would induce (or require) very distinct shifts 

in farming practices and patterns in different regions. Those include major shifts in crop 

calendars and growing seasons, switching between crops to the possibility of complete 

disappearance of some field crops from some regions. 

Kurukulasuriya et al. (2006) used data from a survey of more than 9 000 farmers across 

11 African countries and a cross-sectional approach to estimate how farm net revenues 

are affected by climate change compared with current mean temperature. With warming, 

revenues fall for dryland crops (temperature elasticity of –1.9) and livestock (–5.4), 

whereas revenues rise for irrigated crops (elasticity of 0.5) that are located in relatively 

cool parts of Africa and are buffered by irrigation from the effects of warming. At first, 

warming has little net aggregate effect as the gains for irrigated crops offset the losses 

for dryland crops and livestock. Warming, however, will most likely reduce dryland farm 

income immediately. The final effects will also depend on changes in precipitation, 

because revenues from all farm types increase with precipitation. Because irrigated farms 

are less sensitive to climate, irrigation is a practical adaptation to climate change in 

Africa, if water is available. 

Benhin (2008) assesses the economic impact of the expected adverse changes in the 

climate on crop farming in South Africa using a revised Ricardian model and data from 

farm household surveys, long term climate data, major soils and runoffs.  Using selected 

climate scenarios, the study predicts that crop net revenues are expected to fall by as 

much as 90% by 2100, mostly affecting small-scale farmers.  Policies therefore need to 

be fine-tuned and more focused to take advantage of the relative benefits across seasons, 

farming systems and spatially, and by so doing climate change may be beneficial rather 

than harmful. 

Walker and Schulze (2008) modelled nine plausible future climate scenarios over a 44-

year period, using the CERES-maize model. The results showed that climatic changes 

could have major negative effects on the already drier western, and therefore more 

vulnerable, areas of the South African Highveld. An increase in temperature increases 

the variability of yields in the relatively moist Piet Retief area (MAP 903 mm), while at 

the more sub-humid Bothaville, with a MAP of only 552 mm, the inter-annual variability 

remains the same, but mean yield over 44 seasons is reduced by 30%. 
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Seo et al. (2009) examines the distribution of climate change impacts across the 16 Agro-

Ecological Zones (AEZs) of Africa. They combine net revenue from livestock and crops 

and regress total net revenue on a set of climate, soil, and socio-economic variables with 

and without country fixed effects. Although African crop net revenue is very sensitive to 

climate change, combined livestock and crop net revenue proves to be more resilient to 

climate change. With the hot and dry CCC climate scenario, average damage estimates 

reach 27% by 2100, but with the mild and wet PCM climate scenario, African farmers 

will benefit. The analysis of AEZs implies that the effects of climate change will be quite 

different across Africa. For example, currently productive areas such as dry/moist 

savannah are more vulnerable to climate change while currently less productive 

agricultural zones such as humid forest or sub-humid AEZs become more productive in 

the future. 

Blignaut et al. (2009) employed a panel data econometric model to estimate how 

sensitive the nation’s agriculture may be to changes in rainfall. Net agricultural income 

in the provinces, contributing 10% or more to the total production of both field crops and 

horticulture, is likely to be negatively affected by a decline in rainfall, especially rainfed 

agriculture. For the country as a whole, each 1% decline in rainfall is likely to lead to a 

1.1% decline in the production of maize (a summer grain) and a 0.5% decline in winter 

wheat. These results are discussed with respect to both established and emerging farmers, 

and the type of agriculture that should be favoured or phased out in different parts of the 

country, in view of current and projected trends in climate, increasing water use, and 

declining water availability. 

Hassan (2010) measured the economic impacts of climate change on crop and livestock 

farming in Africa based on a cross-sectional survey of over 8,000 farming households 

from 11 countries in East, West, North and Southern Africa. The response of net revenue 

from crop and livestock agriculture across various farm types and systems in Africa to 

changes in climate normals (i.e. mean rainfall and temperature) is analysed. The analyses 

controlled for effects of key socio-economic, technology, soil and hydrological factors 

influencing agricultural production. Results show that net farm revenues are in general 

negatively affected by warmer and drier climates. The small-scale mixed crop and 

livestock system predominantly typical in Africa is the most tolerant whereas specialized 

crop production is the most vulnerable to warming and lower rainfall. These results have 
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important policy implications, especially for the suitability of the increasing tendency 

toward large-scale mono-cropping strategies for agricultural development in Africa and 

other parts of the developing world in light of expected climate changes. Mixed crop and 

livestock farming and irrigation offer better adaptation options for farmers against further 

warming and drying predicted under various future climate scenarios. 

Gbetibouo et al. (2010) examined climate adaptation strategies of farmers in the Limpopo 

Basin of South Africa. Survey results show that while many farmers noticed long-term 

changes in temperature and precipitation, most could not take remedial action. Lack of 

access to credit and water were cited as the main factors inhibiting adaptation. Common 

adaptation responses reported include diversifying crops, changing varieties and planting 

dates, using irrigation, and supplementing livestock feed. A multinomial logit analysis of 

climate adaptation responses suggests that access to water, credit, extension services and 

off-farm income and employment opportunities, tenure security, farmers’ asset base and 

farming experience are key to enhancing farmers’ adaptive capacity. This implies that 

appropriate government interventions to improve farmers’ access to and the status of 

these factors are needed for reducing vulnerability of farmers to climate adversities in 

such arid areas. 

Gbetibouo et al. (2010a) analysed the vulnerability of South African agriculture to 

climate change and variability by developing a vulnerability index and comparing 

vulnerability indicators across the nine provinces of the country. Nineteen environmental 

and socio-economic indicators were identified to reflect the three components of 

vulnerability: exposure, sensitivity, and adaptive capacity. The results of the study show 

that regions most exposed to climate change and variability do not always overlap with 

those experiencing high sensitivity or low adaptive capacity. Furthermore, vulnerability 

to climate change and variability is intrinsically linked with social and economic 

development. 

An International Development Research Centre (IDRC) study “Managing climate risk 

for agriculture and water resources development in South Africa: Quantifying the costs, 

benefits and risks associated with planning and management alternatives” (Louw et al, 

2012) was concluded in 2012.  The objective of the project was to develop the capacity 

of South African and regional institutions in the private and public sectors, in order to 
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better integrate information about climate change and climate variability into water 

resources policy, planning and management, as well as demonstrate how this information 

can be used to evaluate alternative strategies and projects for adjusting/adapting to 

climate change and climate variability for application in other regions. 

The objective was accomplished through the development of three key modules to 

integrate information about climate change and climate variability in a systematic way to 

be used to influence water resources policy, planning and management. They are: 

 The regional climate change module by downscaling GCMs. 

 A hydrological module by using the ACRU model to estimate incremental runoff 

at specific locations within the study region. 

 A dynamic programming module with three components, viz. 

- Regional typical farm models (21 farms) to simulate the demand for 

agricultural water under different climate regimes (scenarios). 

- An inter-temporal spatial equilibrium model to simulate the bulk water 

infrastructure (main storage dams, canals, pipelines and tunnels) and farm 

dams. 

- An urban demand module to simulate the demand for urban water use 

sectors. 

In addition the integrated framework also made provision for external inputs such as: 

 Policies, plans and technology options for increasing water supplies (input by 

various stakeholders, amongst others the Department of Water Affairs, Western 

Cape Systems Analysis, Water Users Associations and the Berg River Catchment 

Management Agency). 

 Reducing water demand through water demand management options (input by all 

stakeholders in the region). 

The output of the model consists of: 

 Benefits and costs of structural and non-structural water management options. 

 Water values and water tariffs (prices). 

 Reservoir inflows, storage, transfers, releases and evaporation. 

 Water use by the urban and agricultural water use sectors. 

The integrated modelling framework which was developed by Louw et al. (2012) is 

unique in that it had not yet been done anywhere else in Africa and in very few other 
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places in the world. The project contributed towards the improvement of the 

methodologies to study the impact of climate change, climate vulnerability and 

evaluation methodology of adaptation strategies.  The project focused on a macro level 

and did not include detailed farm-level integrated modeling. 

From the international, African and South African research it is clear that there is a gap 

in the research in regard to integrated economic modelling at micro level.  This includes 

the linkages between changing projected climates, changing yield and quality of produce, 

hydrology (availability of irrigation water), changing crop irrigation needs (with new 

projected climates), financial vulnerability and financial sustainability of farming 

systems. This study sets out to fill that gap to some extent by making a contribution to 

integrated climate change modelling. 

2.10 Chapter summary 

Chapter 2 summarises the literature review that was undertaken for this study.  The 

chapter starts off defining climate change followed by a brief history of climate change 

research.  The impacts of climate change and global warming, and more specifically the 

likely consequences for agriculture, including bio-physical and socio-economic impacts 

are discussed. 

GCMs and the two downscaling approaches, viz. empirical and dynamical downscaling 

are elaborated on.  The CSAG, based at the University of Cape Town, South Africa, 

operates the pre-eminent empirically downscaled model for Africa and provides 

meteorological station level responses to global climate forcings for a growing number 

of stations across the African continent.   

The empirical downscaling of values to climate station level, used in this study, was 

undertaken by the CSAG.  Daily rainfall, as well as maximum and minimum temperature 

values, was the output from five accredited GCMs from the IPCC (2007), in each case 

for two 20 year scenarios for present climate (1971 – 1990) and an intermediate future 

climate (2046 – 2065). 

Chapter 2 also includes climate change projections for South Africa and more specifically 

for the case study areas.  Warming for minimum and maximum temperatures is projected 

over all four case study areas.  Most projections favour an increase in rainfall for the 
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summer rainfall areas.  For the winter rainfall areas most projections point to a decrease 

in rainfall for early winter and a slight increase during springtime.  

In the context of this study vulnerability will focus on the inability of individual 

commercial farmers to respond to, or cope with, climate change effects on crop yields 

from a financial vulnerability point of view.  In order to determine the impact of climate 

change, the case study farming systems will be measured against a set of financial 

vulnerability assessment criteria, viz. IRR, NPV, cash flow ratio, highest debt ratio and 

highest debt. 

Two main types of adaptation are autonomous and planned adaptation.  In this study the 

focus will be on autonomous adaptation, in other words, adaptation strategies which can 

be applied at farm level without support from other levels e.g. policies, etc.  The success 

of adaptation strategies will be evaluated by comparing financial vulnerability criteria of 

different climate and management scenarios. 

From the literature research it became clear that a gap exists in the integrated economic 

modelling at farm level, which this study is attempting to address. 
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CHAPTER 3 : DESCRIPTION OF STUDY REGIONS AND CASE STUDY 

FARMS 

______________________________________________________________________ 

3.1 Introduction 

The purpose of this chapter is to give the reader an overview of the four study areas. 

Different rainfall areas (summer and winter) as well as rainfed versus irrigated 

agricultural production regions are considered to analyse the projected financial 

vulnerability of different farming systems to climate change. 

Case studies from the following areas were earmarked to be included in the study:   

 Irrigation farm – Vredendal/LORWUA 

 Irrigation farm – Hoedspruit/Blyde River WUA 

 Dryland farm in Moorreesburg, Western Cape 

 Dryland farm in Carolina, Mpumalanga. 

The sections below give a condensed description of the LORWUA, Blyde River WUA, 

Carolina and the Moorreesburg regions and their respective case studies. The four areas 

broadly represent the summer- and winter rainfall areas as well as irrigation and dryland 

crop production areas of South Africa.  Two case studies per irrigation area and one case 

study per dryland area were selected to be included in the study.  The greater degree of 

homogeneity in the dryland areas is the reason for including only one case study per 

dryland area. 

3.2 Description of Lower Olifants River Water Users Association (LORWUA) 

3.2.1 Background 

The Olifants-Doorn Water Management Area is situated along the west coast of South 

Africa, close to the cold Benguela sea current of the Atlantic Ocean. The catchment is 

characterised by a Mediterranean climate with a strong deterministic water supply 

(winter rainfall) from mid-May to the end of August. The summer months, November to 

February, are very warm and dry, and are characterised by extremely high evaporation 

losses. Climate variation is extreme, with summer temperatures reaching 45 ºC in the 

Vredendal/Koekenaap area, and the occurrence of snowfalls until mid-September in the 

Cederberg wilderness area. Precipitation varies from over 1 000 mm/annum in the 
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Cederberg Mountains to less than 100 mm/annum in the northern coastal areas (DWAF, 

2009). 

The Olifants-Doorn Water Management Area has been proclaimed in Government 

Notice No. 20491, dated 1 October 1999, as Water Management Area (WMA) No.17 

and is described as follows: “The WMA is bounded by the Berg and the Breede WMAs 

to the south, the Gouritz WMA to the south-east, the Lower Orange WMA to the east 

and north and the Atlantic Ocean to the west. It lies on the West Coast of South-Africa, 

spread across two provincial jurisdictions, namely the Western Cape and the Northern 

Cape Provinces” (DWAF, 2009). 

The Clanwilliam Dam was originally built in 1935, and was later raised by pre-stressed 

cables and by adding gates. The current height of the dam wall is 43 m and the storage 

capacity of the dam is 122 million m3.  The Bulshoek Dam which merely serves as a 

balancing dam is 15 km downstream and has a storage capacity of 5.3 million m3.  The 

total irrigated area dependent on the Clanwilliam Dam is 11 316 ha. Various small towns 

receive water from the dam, but the bulk of the water goes to the three irrigation areas 

below the dam, comprising the area served by the canal immediately below the dam, the 

area along the river between the Clanwilliam Dam and Bulshoek Dam and the area served 

by the canal below Bulshoek Dam. The main channel system is 261 km long with an 

additional 60 km of smaller channels (DWAF, 2009). 

3.2.2 Water infrastructure 

In the 1800s, irrigation practices along the Olifants and Doring Rivers were based on the 

use of higher summer flows. Predictably, these were not very reliable and, together with 

the erosion-related problems, it became necessary to seek alternative methods of 

irrigation (DWAF, 2009). 

The construction of the Bulshoek Weir, located 24 km downstream of the Clanwilliam 

Dam on the Olifants River, commenced in 1913 and was completed in 1924. The full 

supply capacity of the dam was determined as 5 754 million m3. The construction of the 

Clanwilliam Dam was completed in 1935 with a capacity of 69.86 million m3. In 1962, 

it was decided to raise the Clanwilliam Dam by 6.10 m to increase the capacity to 128 

million m3 (DWAF, 2009). 
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Irrigation infrastructure in the ODWMA (Olifants/Doring Water Management Area) 

consists of irrigation directly out of the river, water pumped out of the river and stored in 

off-channel dams, and diversions of the river into irrigation canals. Below the 

Clanwilliam Dam, the Olifants River is used as the main conveyance system. Below the 

Bulshoek Dam, the Lower Olifants River Water Users Association (LORWUA) canal is 

the main conveyance system. Current canal losses are estimated as very high, and the 

canals and associated infrastructure are generally in a poor state (DWAF, 2009). 

The water distribution infrastructure in the Clanwilliam Water Users' Association area 

consists of abstraction directly from the Clanwilliam Dam basin, a lined canal from the 

Clanwilliam Dam, and natural streams and rivers (DWAF, 2009). 

The study will focus on the Lower Olifants River Water Users Association (LORWUA) 

which comprises the listed area of 9 510 ha below the Bulshoek Dam.  Withdrawal rights 

as per listed hectares is 12 200 m3/ha/year with a maximum extraction rate of 325 

m3/week. Although the official listing per hectare equals 12 200 m3/ha/year, the 

maximum quota water received per year by irrigators will not exceed 8 400 m3/ha/year, 

due to the maintenance programme and canal limitations. 

3.2.3 Operating rules and principles 

The operating rules for Clanwilliam Dam and Bulshoek Dam entail the following: 

 The starting date of the new water year is 1 October every year. 

 The water quota for irrigators is revised on a bi-weekly basis after taking into 

account the following: 

- 5% of Clanwilliam Dam’s capacity as reserve for household usage 

- Estimated evaporation losses 

- Transit and canal losses between Clanwilliam Dam and Bulshoek Dam. 

 Industrial water allocation (industrial operations, municipalities, households, etc.) 

to users downstream of Bulshoek Dam. 

A maximum quota of 8 400 m3/ha per annum will be allocated to irrigators if the 

Clanwilliam Dam still overflows by end of November. 

3.2.4 Restrictions on water source 

During years of drought, the Clanwilliam Dam does not fill up and then restrictions are 

placed on the irrigation water users. The uncertainty of the quota for the next year causes 

the farmers to be more conservative in their irrigation development.  
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Table 3.1 lists the actual volume of water received per ha over the last eighteen years of 

restrictions that were implemented in the ODWMA, including the year and the 

restrictions for the LORWUA.  The average over the 18 year period amounts to 6 485 

m3/ha/annum. 

Table 3.1:  List of actual volume of water received in the LORWUA (m3/ha) 

 
 Source: LORWUA (2012) 

3.2.5 Climate, natural resources and production potential 

3.2.5.1 Climate 

Refer to Section 2.6.1 for the climate change forecast for the Vredendal area. 

3.2.5.2 Soil characteristics 

Table 3.2 illustrates the soil characteristics in the LORWUA area. 

Table 3.2:  Soil characteristics - LORWUA  

 
Source: School of agricultural, earth and environmental sciences, UKZN (2012) 

The soils characteristics in Table 3.2 are area weighted from the land type information in 

the Institute for Soil, Climate and Water (ISCW) Land Type Survey Staff: 1972 - 2002 

soils database for the Quinary Catchment in which the location of interest is sited. The 

4-digit number (location) is the Quinary number in the SA Quinary Catchments Database 

(Schulze et al., 2010). The methods by which these characteristics for a 2-horizon soil 

have been derived are described in Schulze and Horan (2008) using the AUTOSOILS 

decision support system developed by Schulze and Pike (1995 and updates). Values of 

wilting points, field capacities and porosities (i.e. at saturation) imply the soil water 

content (in meter of water per meter thickness of soil) at those thresholds. Saturated 

Year Irrigation restrictions Year Irrigation restrictions

(m3) (m3)

1994 6 100 2003 5 700

1995 5 929 2004 4 745

1996 4 400 2005 6 278

1997 4 400 2006 6 700

1998 5 400 2007 7 650

1999 7 150 2008 7 400

2000 5 530 2009 8 150

2001 7 600 2010 8 400

2002 8 200 2011 7 000

Location       

(Quinary nr.)

Thickness 

 of 

Topsoil 

(m)

Thickness 

 of 

Subsoil 

(m)

Wilting 

Point of 

Topsoil 

(m/m)

Wilting 

Point of 

Subsoil 

(m/m)

Field 

Capacity 

of Topsoil 

(m/m)

Field 

Capacity 

of Subsoil 

(m/m)

Porosity 

of Topsoil 

(m/m)

Porosity 

of Subsoil 

(m/m)

Saturated 

Drainage 

(fraction/ 

day)

2511 0.26 0.31 0.101 0.108 0.19 0.204 0.45 0.445 0.51
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drainage implies the fraction of soil water above field capacity that drains into the next 

horizon (i.e. from the topsoil to the subsoil or from the subsoil out of the active rooting 

zone) per day. The soils at LORWUA tend to be well drained and relatively sandy. 

3.2.5.3 Adapted crops for the region 

Main perennial crops produced in the area include wine grapes (7 175 ha), table grapes 

(900 ha) and raisins (694 ha).  Table 3.3 illustrates the crop composition for the area 

(LORWUA survey, 2007). 

Table 3.3:  Types of crops planted in the LORWUA 

 
Source: Survey by LORWUA (2007) 

Wine grapes are by far the most dominant crop in the LORWUA area and occupy more 

than 70% of hectares planted. 

3.2.5.4 Crop irrigation requirements 

Table 3.4 illustrates the annual crop irrigation requirements for wine grapes, raisins and 

table grapes.  These crops were included in the model. 

  

Cash crops Hectare (ha)  %

Tomatoes processing  215 2%

Tomatoes table  166 2%

Tomatoes tunnels  14 0%

Seed production  95 1%

Pastures 0%

Vegetables (open)  615 6%

Vegetables (protected)  60 1%

Total 1 165 11%

Perennial crops

Table grapes  900 9%

Wine grapes 7 175 70%

Raisins  694 7%

Lucerne  130 1%

Other  164 2%

Total 9 063 89%

Total crops planted 10 228 100%
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Table 3.4:  Crop water requirements (m3/ha) 

 
Source:  Joubert (2012) 

3.2.5.5 Current cultivation practices 

Table 3.5 summarises current cultivation practices of dominant crops for the LORWUA 

study area. 

Table 3.5:  Current cultivation practices 

 
Source: LORWUA workshop and expert group discussions (2012) 

3.2.5.6 Critical crop climate thresholds 

The critical crop climate thresholds for different crops were collected during a workshop 

that was attended by various role-players, including amongst others, industry experts and 

farmers. 

Table 3.6 summarises the critical crop climate thresholds for wine grapes, raisins and 

table grapes.  These threshold values were used in the CCCT modelling to determine the 

impact of climate change on yield and quality.   

  

Wine grapes Raisins Table grapes

(m3/ha) (m3/ha) (m3/ha)

Jan 1 400 1 400 1 700

Feb 1 100 1 100 1 300

Mar 1 000 1 000 1 300

Apr  600  600  700

May  400  400  400

Jun  200  200  200

Jul  200  200  200

Aug  300  300  300

Sep  400  400  400

Oct  600  600 1 200

Nov  800  800 1 000

Dec 1 000 1 000 1 200

Total 8 000 8 000 9 900

Item

Cultivation practice Wine grapes Raisins Table grapes

Optimum planting dates
Jul - Aug (If not enough 

water:  Sept - Oct)

Jul - Aug (If not enough 

water:  Sept - Oct)

Jul - Aug (If not enough 

water:  Sept - Oct)

Lifespan of vineyard 20 years 20 years 20 years

Harvesting dates Jan - Mar Jan - Mar Dec - Feb

Sept - Jan - 80 kg/ha Sept - Jan - 80 kg/ha Sept - Jan - 90 kg/ha

Mar - Apr - 30 kg/ha Mar - Apr - 30 kg/ha Mar - Apr - 40 kg/ha
Nitrogen application
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Table 3.6:  Critical climate thresholds for wine grapes, raisins and table grapes 

 
Source: LORWUA workshop and expert group discussions (2012) 

Refer to Table 3.6 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for wine grapes can be interpreted as follows: 

 Tmxd > 38 °C for 5 days during flowering – maximum daily temperature in 

excess of 38 °C for more than 5 consecutive days have a negative impact of -5% 

on yield. 

 Tmxd > 45 °C in Nov – maximum daily temperature in excess of 45 °C in 

November have a negative impact of -5% on yield. 

 Tmxd > 42 °C in Nov - Dec – maximum daily temperature in excess of 42 °C in 

November to December have a negative impact of -5% on yield. 

Critical climate thresholds Impact

Wine grapes

Tmxd > 38 ⁰C for 5 days Negative

Tmxd> 45 ⁰C in Nov Negative

Tmxd> 42 ⁰C Nov - Dec Negative

Difference Tmax and Tmnd > 20 ⁰C in Dec Negative

Tmnd <9 ⁰C and Tmxd < 20 ⁰C May - Jun Positive

Average temperature < 22 ⁰C in summer Positive

5 days above 40 ⁰C Negative

> 33 ⁰C for > 5 days with high Tmnd Negative

5-10 mm rain Dec - Jan Negative

> 5 mm rain for 3 days Dec - Jan Negative

Any Rain from Dec to Apr = bursting/rotting Negative

Raisins

Tmxd > 38 ⁰C for 5 days Negative

Tmxd > 45 ⁰C in Nov Negative

Tmxd > 42 ⁰C Nov - Dec Negative

Difference Tmax and Tmnd > 20 ⁰C in Dec Negative

Tmnd < 9 ⁰C and Tmxd < 20 ⁰C May - Jun Positive

Average temperature < 22 ⁰C in summer Positive

5 days above 40 ⁰C Negative

> 33 ⁰C for > 5 days with high Tmnd Negative

5 - 10 mm rain Dec - Jan Negative

>  5 mm for 3 days Dec - Jan Negative

Any Rain from Dec to Apr = bursting/rotting Negative

Table grapes

Tmxd > 38 ⁰C for 5 days Negative

Tmxd > 45 ⁰C in Nov Negative

Tmxd > 42 ⁰C Nov - Dec Negative

Difference Tmax and Tmnd > 20 ⁰C in Dec Negative

Tmnd < 9 ⁰C and Tmxd < 20 ⁰C May - Jun Positive

Average temperature < 22 ⁰C in summer Positive

Difference Tmxd and Tmnd < 10 ⁰C Oct - Nov Negative

> 33 ⁰C for > 5 days with high Tmnd Negative

5 - 10 mm rain Dec - Jan Negative

> 5 mm for 3 days Dec - Jan Negative



66 
 

 Difference Tmax and Tmnd > 20 °C in Dec – a difference between daily 

minimum and daily maximum temperature in excess of 20 °C during the month 

of December has a -5% impact on yield. 

 Tmnd < 9 °C and Tmxd < 20 °C May-Jun – low temperatures during May and 

June positively impacts on yield (+10%). 

 Average temperature < 22 °C in summer – average temperature below 22 °C 

during summer months positively impacts on yield (+10%). 

 5 days above 40 °C – daily maximum temperature in excess of 40°C for 5 days 

or more impact negatively on yield (-5%). 

 > 33 °C for > 5 days with high Tmnd – daily maximum temperature in excess of 

33 °C with high daily minimum temperatures impact negatively on quality (-5%). 

 5-10 mm rain Dec-Jan – 5-10 mm rain (or more) per day during the months of 

December and January impacts negatively on quality (-5%).  

 > 5 mm rain for 3 days Dec-Jan – more than 5 mm rain per day for three 

consecutive days during the months of December and January impacts negatively 

on quality (-5%). 

 Any rain from Dec-Apr = bursting/rotting – any rain from December to April 

cause bursting/rotting, which impacts negatively on quality (-5%). 

 

Refer to Table 3.6 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for table grapes can be interpreted as follows: 

 Tmxd > 38 °C for 5 days during flowering – maximum daily temperature in 

excess of 38 °C for more than 5 consecutive days have a negative impact of -5% 

on quality. 

 Tmxd > 45 °C in Nov – maximum daily temperature in excess of 45 °C in 

November have a negative impact of -10% on yield and -5% on quality. 

 Tmxd > 42 °C in Nov-Dec – maximum daily temperature in excess of 42 °C in 

November to December have a negative impact of -10% on yield and -5% on 

quality. 

 Difference Tmax and Tmnd > 20 °C in Dec – a difference between daily 

minimum and daily maximum temperature in excess of 20 °C during the month 

of December have a -10% impact on yield and -5% impact on quality. 
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 Tmnd < 9 °C and Tmxd < 20 °C May-Jun – low temperatures during May and 

June positively impacts on yield (+10%) and quality (+10%). 

 Average temperature < 22 °C in summer – average temperature below 22 °C 

during summer months positively impacts on yield (+10%) and quality (+10%). 

 Difference Tmxd and Tmnd < 10 °C Oct-Nov – average of less than 10 °C in 

difference between maximum and minimum daily temperatures has negative 

impact (-5%) on quality. 

 > 33 °C for > 5 days with high Tmnd – daily maximum temperature in excess of 

33 °C with high daily min temperatures impact negatively on quality (-5%). 

 5-10 mm rain Dec-Jan – 5-10 mm rain (or more) per day during the months of 

December and January impacts negatively on quality (-5%).  

 > 5 mm rain for 3 days Dec-Jan – more than 5 mm rain per day for three 

consecutive days during the months of December and January impacts negatively 

on quality (-5%). 

 

Refer to Table 3.6 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for raisins can be interpreted as follows: 

 Tmxd > 38 °C for 5 days during flowering – maximum daily temperature in 

excess of 38 °C for more than 5 consecutive days have a negative impact of -5% 

on yield. 

 Tmxd > 45 °C in Nov – maximum daily temperature in excess of 45 °C in 

November has a negative impact of -10% on yield. 

 Tmxd > 42 °C in Nov-Dec – maximum daily temperature in excess of 42 °C in 

November to December have a negative impact of -5% on yield. 

 Difference Tmax and Tmnd > 20 °C in Dec – a difference between daily 

minimum and daily maximum temperature in excess of 20 °C during the month 

of December has a -5% impact on yield. 

 Tmnd < 9 °C and Tmxd < 20 °C May-Jun – low temperatures during May and 

June positively impacts on yield (+10%). 

 Average temperature < 22 °C in summer – average temperature below 22 °C 

during summer months positively impacts on yield (+10%). 

 5 days above 40 °C – daily maximum temperature in excess of 40 °C for 5 days 

or more impact negatively on yield (-10%). 

 > 33 °C for > 5 days with high Tmnd – daily maximum temperatures in excess of 

33 °C with high daily minimum temperatures impact negatively on quality (-5%). 



68 
 

 5-10 mm rain Dec-Jan – 5-10 mm rain (or more) per day during the months of 

December and January impacts negatively on quality (-5%).  

 > 5 mm rain for 3 days Dec-Jan – more than 5 mm rain per day for three 

consecutive days during the months of December and January impacts negatively 

on quality (-5%). 

 Any rain from Dec-Apr = bursting/rotting – any rain from December to April 

cause bursting/rotting, which impacts negatively on quality (-5%). 

3.2.5.7 Crop enterprise budgets 

Table 3.7 and Table 3.8 summarise the crops enterprise budgets that were used in the 

modelling. 

Table 3.7:  Crop enterprise budget summary: Perennial crops 

 
Source: Own calculations based on info from Vinpro, SAD and individual farmers (2012) 

Table 3.8:  Crop enterprise budget summary: Cash crops 

 
Source: Own calculations based on info from individual farmers (2012) 

Red wine grapes  Year 0 1 2 3 4  5 - 20

Yield (tonne/ha)  0  0  6  13  19

Gross income (R)  0  0 17 600 41 600 59 200

Yearly cash expenditure (R) 120 000 12 000 11 820 18 910 21 274 23 687

Margin above specified costs (R) -120 000 -12 000 -11 820 -1 310 20 326 35 513

White wine grapes  Year 0 1 2 3 4  5 - 20

Yield (tonne/ha)  0  0  11  26  30

Gross income (R)  0  0 21 450 50 700 58 500

Yearly cash expenditure (R) 108 000 12 000 10 745 17 191 19 340 21 534

Margin above specified costs (R) -108 000 -12 000 -10 745 4 259 31 360 36 966

Table grapes  Year 0 1 2 3 4  5 - 20

Yield (tonne/ha)  0  0  12  28  40

Gross income (R)  0  0 20 700 48 300 69 000

Yearly cash expenditure (R) 136 800 12 000 19 230 25 640 28 845 32 050

Margin above specified costs (R) -136 800 -12 000 -19 230 -4 940 19 455 36 950

Raisins  Year 0 1 2 3 4  5 - 20

Yield (tonne/ha)  0  0  11  25  36

Gross income (R)  0  0 26 169 59 475 85 644

Yearly cash expenditure (R) 136 800 12 000 20 287 27 050 30 431 33 812

Margin above specified costs (R) -136 800 -12 000 -20 287 - 881 29 044 51 832

Item Tomato Butternut Gem squash

Yield (tonne/ha)  60  20  30

Gross income (R) 180 000 25 400 39 900

Yearly cash expenditure (R) 139 938 21 271 37 383

Margin above specified costs (R) 40 062 4 129 2 517
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3.2.6 Description of selected case study farms 

Two case studies that are representative of the study area were selected. The case studies 

were selected in association with Vinpro who runs several study groups in the area.  Case 

Study 1 represents a typical small farm of 22 ha of wine grapes, raisins and table grapes. 

Case Study 2 represents an 86 ha farm which produces wine grapes, raisins and 

vegetables (see Table 3.9). 

Table 3.9:  Description of case study farms: LORWUA 

 
Source: Case study farmers’ records (2012) 

3.3 Description of Blyde River Water Users Association (Blyde River WUA) 

3.3.1 Background 

The Blyde River Catchment is approximately 2 000 km2 in size covering an area inclusive 

of Graskop and Pilgrim’s Rest in the south-east, Ohrigstad in the centre, and Hoedspruit 

in the east/north-east. The main river is the Blyde River (a tributary of the Olifants River) 

Description
Farm size 92 ha 26 ha

Irrigable 86 ha 22 ha

Actual irrigated 86 ha 22 ha

Wasteland 6 ha 4 ha

Total farm size 92 ha 26 ha

Land use
Perennial crops

Wine grapes 71 ha 16.6 ha

Raisins 6 ha 1.8 ha

Table grapes 3.3 ha

Total area perennial crops 77 ha 22 ha

Cash crops

Vegetables 9 ha

Total area cash crops 9 ha 0 ha

Total area perennial and cash crops 86 ha 22 ha

Irrigation system (total area)
Drip 86 ha 22 ha

Total 86 ha 22 ha

Water sources
Canal 86 ha 22 ha

Entitlement per ha per annum 12,200 m3 12,200 m3

Valuation of farm
Fixed improvements 3 775 200 1 652 000

Vehicles, machinery, implements, livestock & other 3 813 000  962 000

Land 10 967 455 2 594 805

Total assets 18 555 655 5 208 805

Liabilities
Short term   0   0

Medium term  800 000  87 000

Long term 3 000 000  800 000

Total liabilities 3 800 000  887 000

Net asset value 14 755 655 4 321 805

Debt ratio 20% 17%

(R)

Case study 1 Case study 2

(R) (R)

(R)
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which is an international water course, shared by South Africa and Mozambique. The 

Blyde River has its origins in Mauchsberg in the Drakensberg range south of Pilgrim’s 

Rest. For the first 60 km the Blyde River flows through the mountainous area surrounding 

Graskop and Pilgrim’s Rest and through the scenic Blyde River Canyon. The main 

tributary of the Blyde River is the Ohrigstad River, which flows in a parallel northerly 

direction to the west of the Blyde River. The Ohrigstad River joins the Blyde River just 

upstream from Blydepoort Dam near the escarpment of the Drakensberg.  The Blyde 

River flows 30 km into the Lowveld and into the Olifants River immediately north of the 

Blyde River irrigation area. The Blyde River Canyon is the third largest canyon in the 

world.  Blydepoort Dam, situated upstream of the confluence of the Blyde and Olifants 

Rivers, was completed in 1974 in order to stabilise the flow of the Blyde River for 

irrigation and for urban and industrial use in the Phalaborwa region (DWAF, 2010). 

3.3.2 Water abstractions 

The main abstractions from the Blyde River are from irrigators that either obtain their 

water from the pipeline at the dam or pump from the river.  There are no other major 

abstractors along the Blyde River except for the back-up station for Hoedspruit town 

which now gets its water from the pipeline. This pump station is no longer used. The 

other large abstraction takes place at the Phalaborwa Barrage which is operated by 

Lepelle Northern Water (DWAF, 2010).  

There is 8 978 ha agricultural land for irrigation listed under the Blyde River Water Users 

Association (Blyde WUA). The pipeline supply water to 7 010 ha while irrigation water 

for 1 968 ha is pumped from the river. Irrigators are entitled to 9 900 m3/listed ha. 

3.3.3 Operating rules and principles 

The new operating rule that was developed for the Blyde System is based on the 

knowledge gained from the yield analyses, existing operating rules and understanding of 

the total system and its requirements. From the long-term yield analyses it was found that 

the Blyderivierpoort Sub-system has a portion of excess yield (approximately 27 million 

m3/a at a 1 in 10 year reliability of supply) that could possibly be allocated in the future 

if the full allocation of the Lepelle demand is shared between available flows in the 

Olifants River and Blyderivierpoort Dam. Short-term yield characteristics were built into 
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the operating rule. The proposed new operating rule is fairly simple and entails the 

following: 

 Apply the short-term yield characteristics for the Blyderivierpoort Sub-system 

every year on 1 February, 1 May, 1 August and 1 November to determine the 

surplus or deficit in the system by using the relevant storage level in the dam as 

reference.  

 When there is a deficit in the Sub-system, impose curtailments according to the 

agreed priority classification. First curtail the low assurance use, then the medium 

low, followed by the medium high and high assurance use. 

3.3.4 Restrictions on water source 

The water supply from the Blyde catchment is fairly consistent. In the past ten years the 

only restrictions imposed on irrigators were during November and December 2003. 

3.3.5 Climate, natural resources and production potential 

3.3.5.1 Climate 

See Section 2.6.2 for the climate change forecast for the Hoedspruit area. 

3.3.5.2 Soil characteristics 

Table 3.10 illustrates the soil characteristics in the Blyde River WUA area. 

Table 3.10:  Soil characteristics – Blyde River WUA 

 
Source: School of agricultural, earth and environmental sciences, UKZN (2012) 

The soils characteristics given in the table are area weighted from the land type 

information in the ISCW soils database (ISCW, 2005) for the Quinary Catchment in 

which the location of interest is cited. The 4-digit number (location) is the Quinary 

number in the SA Quinary Catchments Database (Schulze et al., 2010).  The methods by 

which these characteristics for a 2-horizon soil have been derived are described in 

Schulze and Horan (2008) using the AUTOSOILS decision support system developed by 

Schulze and Pike (1995 and updates). Values of wilting points, field capacities and 

porosities (i.e. at saturation) imply the soil water content (in meter of water per meter 

Location       

(Quinary nr.)

Thickness 

 of 

Topsoil 

(m)

Thickness 

 of 

Subsoil 

(m)

Wilting 

Point of 

Topsoil 
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Subsoil 
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Field 

Capacity 

of Topsoil 
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Field 
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Porosity 

of Topsoil 

(m/m)

Porosity 

of Subsoil 
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Saturated 

Drainage 

(fraction/ 

day)

0675 0.3 0.31 0.117 0.146 0.205 0. 230 0.454 0.442 0.43



72 
 

thickness of soil) at those thresholds. Saturated drainage implies the fraction of soil water 

above field capacity that drains into the next horizon (i.e. from the topsoil to the subsoil 

or from the subsoil out of the active rooting zone) per day. The soils tend to gradually 

become sandier and less clayey in the Blyde River WUA area. 

3.3.5.3 Adapted crops for the region 

Main crops produced in the area include citrus (3 700 ha) and mangoes (3 500 ha) (see 

Table 3.11).  Other crops produced on a smaller scale include, amongst others, vegetables 

(open and protected), sweet corn and maize seed. The production of peppers under net 

irrigation constitutes approximately fifty hectares but cannot be regarded as typical for 

the region.  During the past couple of years there seems to be a shift in production 

patterns.  Citrus production increased and vegetable production decreased substantially 

when Tiger Brands decided to close down their tomato processing plant in Hoedspruit.  

Table 3.11:  Types of crops planted in Blyde River WUA area 

 
Source:  Own estimates based on interviews with industry leaders (2012) 

For the purpose of a representative case study the production of citrus and mangoes are 

included as main crops. 

3.3.5.4 Crop irrigation requirements 

Table 3.12 illustrates annual crop water requirements for mangoes and citrus. 

 

 

 

 

 

 

 

Cash crops Hectare %

Sweetcorn   200 2%

Seed production (maize)   200 2%

Vegetables (open)   550 7%

Vegetables (protected)   50 1%

Total  1 000 12%

Perennial crops

Citrus  3 700 45%

Mangoes  3 500 43%

Total  7 200 88%

Total crops planted  8 200 100%
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Table 3.12:  Crop water requirements (m3/ha) 

 
Source:  Du Preez (2012) 

3.3.5.5 Current cultivation practices 

Table 3.13 summarises the current cultivation practises for citrus and mangoes in the 

Blyde River WUA area. 

Table 3.13:  Current cultivation practices 

 
Source:  Blyde River WUA expert group discussions (2012) 

3.3.5.6 Crop critical climate thresholds 

When breaching a critical climate threshold, the impact on yield and/or quality can be 

either positive or negative. The critical crop climate thresholds for different crops were 

collected during a workshop which was attended by various role-players, including 

amongst others, industry experts and farmers.   

Table 3.14 shows the critical climate thresholds for different citrus types namely oranges 

(Valencia), lemons and grapefruit.  

  

Item Mangoes Citrus

Jan   840  1 020

Feb   840  1 020

Mar   525   935

Apr   525   510

May   233   425

Jun   233   255

Jul   233   255

Aug   525   425

Sep   525   765

Oct   840   850

Nov   840  1 020

Dec   840  1 020

Total  7 000  8 500

Cultivation practice Citrus Mangoes

Optimum planting dates Feb - Apr Sept - Feb

Lifespan of orchards 25 years 35 years

Harvesting dates Apr - Aug Jan - Mar

Oct - Dec - 30 kg/ha Jan - Mar - 35 kg/ha

Jul - Sept - 90 kg/ha Jul - Sept - 15 kg/ha
Nitrogen application
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Table 3.14:  Critical climate thresholds for citrus 

 
Source: Blyde River WUA workshop and expert group discussions (2012) 

Refer to Table 3.14 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for citrus can be interpreted as follows: 

Valencia 

 Tmxd > 40 °C and RH < 30% for 2 days Sept – daily maximum temperature in 

excess of 40 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -25% on yield. 

 Tmxd >35 °C and RH < 30% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -15% on yield. 

 Tmxd >35 °C and RH < 20% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -15% on yield. 

Critical climate thresholds Impact

Citrus - Valencia

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd >35 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept Negative

Fruit drop (Nov/Dec) >7 days of Tmxd > 36 ⁰C and RH < 40% Negative

During picking  temp > 36 ⁰C - increase rind problems Negative

> 14 days continuous rain during picking (autumn) causes leaf 

wetness and overripe fruit Negative

Citrus - Lemons

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd >35 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept Negative

Fruit drop (Nov/Dec) >7 days of Tmxd > 36  ⁰C and RH < 40% Negative

During picking  temp > 36 ⁰C - increase rind problems Negative

>14 days continuous rain during picking (autumn) causes leaf 

wetness and overripe fruit Negative

Citrus - Grapefruit

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd >35 ⁰C and RH < 30% for 2 days Sept Negative

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept Negative

Fruit drop (Nov/Dec) >7 days of Tmxd > 36 ⁰C and RH < 40% Negative

2 ⁰C warmer in May - colour deteriorates Negative

During picking  temp > 36 ⁰C - increase rind problems Negative

>14 days continuous rain during picking (autumn) causes leaf 

wetness and overripe fruit Negative
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 Fruit drop (Nov/Dec) > 7 days of Tmxd > 36  °C and RH < 40% - daily maximum 

temperatures in excess of 36 °C and relative humidity less than 40% for 7 days 

and more during November and December cause fruit drop and have a negative 

impact on yield (-40%). 

 During picking  temp > 36 °C - increase rind problems – maximum daily 

temperatures in excess of 36 °C increase rind problems and have a negative effect 

on quality (-1%). 

 >14 days continuous rain during picking (autumn) causes leaf wetness and 

overripe fruit – negative impact of -8% on quality. 

Lemons 

 Tmxd > 40 °C and RH < 30% for 2 days Sept – daily maximum temperature in 

excess of 40 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -25% on yield. 

 Tmxd >35 °C and RH < 30% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -15% on yield. 

 Tmxd >35 °C and RH < 20% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -15% on yield. 

 Fruit drop (Nov/Dec) > 7 days of Tmxd > 36  °C and RH < 40% - daily maximum 

temperatures in excess of 36 °C and relative humidity less than 40% for 7 days 

and more during November and December cause fruit drop and have a negative 

impact on yield (-40%). 

 During picking  temp > 36 °C - increase rind problems – maximum daily 

temperatures in excess of 36 °C increase rind problems and have a negative effect 

on quality (-1%). 

 >14 days continuous rain during picking (autumn) causes leaf wetness and 

overripe fruit – negative impact of -15% on quality. 

Grapefruit 

 Tmxd > 40 °C and RH < 30% for 2 days Sept – daily maximum temperature in 

excess of 40 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -40% on yield. 
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 Tmxd >35 °C and RH < 30% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -40% on yield. 

 Tmxd >35 °C and RH < 20% for 2 days Sept - daily maximum temperature in 

excess of 35 °C and relative humidity less than 30% for 2 days or more during 

the month of September have a negative impact of -40% on yield. 

 Fruit drop (Nov-Dec) > 7 days of Tmxd > 36  °C and RH < 40% - daily maximum 

temperatures in excess of 36 °C and relative humidity less than 40% for 7 days 

and more during November and December cause fruit drop and have a negative 

impact on yield (-30%) and quality (-10%). 

 2 °C warmer temperatures in May cause colour to deteriorate - impact negatively 

on quality (-4%). 

 During picking temp > 36 °C - increase rind problems – maximum daily 

temperatures in excess of 36 °C increase rind problems and have a negative effect 

on quality (-1%). 

 >14 days continuous rain during picking (autumn) causes leaf wetness and 

overripe fruit and has a negative impact of -10% on quality. 

 

Table 3.15 shows the critical climate thresholds for different mango cultivars namely 

Keitt, Kent and Tommy Atkins. 

Table 3.15:  Critical climate thresholds for mangoes 

 
Source:  Blyde River WUA workshop and expert group discussions (2012) 

Critical Climate Thresholds Impact

Mango - Keitt

Average May Tmnd 3 ⁰C warmer Negative

Tmnd < 2 ⁰C Jul - Aug Negative

Sept - Dec (HU requirement 350 hours > 17.9 ⁰C) cool temps 

averaging < 17.9 ⁰C cause late maturation and market delivery delay Negative

Tmxd > 38  ⁰C Dec - Jan Negative

Mango - Kent

Average May Tmnd 3 ⁰C warmer Negative

Tmnd < 2 ⁰C Jul - Aug Negative

Tmxd > 38 ⁰C Sept Negative

Sept - Dec (HU requirement 350 hours > 17.9 ⁰C) cool temps 

averaging < 17.9 ⁰C cause late maturation and market delivery delay Negative

Tmxd > 38 ⁰C Dec - Jan Negative

Mango - Tommy Atkins

Average May Tmnd 3 ⁰C warmer Negative

Tmnd < 2 ⁰C Jul - Aug Negative

Sept - Dec (HU requirement 350 hours > 17.9  ⁰C) cool temps 

averaging < 17.9  ⁰C cause late maturation and market delivery delay Negative

Tmxd > 38 ⁰C Dec - Jan Negative
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Refer to Table 3.15 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for mangoes can be interpreted as follows: 

Keitt 

 Average May Tmnd 3 °C warmer – an increase of 3% in average minimum 

temperatures for the month of May will impact negatively on yield (-4%). 

 Tmnd < 2 °C Jul – Aug – minimum daily temperatures less than 2 °C have a 

negative impact on yield (-4%). 

 Sept-Dec (HU requirement 350 hours > 17.9 °C) cool temps averaging < 17.9 °C 

cause late maturation and market delivery delay – less than the required 350 hours 

heat units > 17.9 °C during September to December has a negative impact on 

quality (-10%). 

 Tmxd > 38 °C Dec-Jan – maximum daily temperature in excess of 38 °C during 

the months of December to January have a negative impact on yield (-1%) and 

quality (-1%). 

Kent 

 Average May Tmnd 3 °C warmer – an increase of 3% in average minimum 

temperatures for the month of May will impact negatively on yield (-8%). 

 Tmnd < 2 °C Jul – Aug – minimum daily temperatures less than 2 °C have a 

negative impact on yield (-8%). 

 Tmxd > 38 °C Sept – maximum daily temperatures in excess of 38 °C during the 

month of September impact negative on yield (-1%) and quality (-1%). 

 Sept-Dec (HU requirement 350 hours > 17.9 °C) cool temps averaging < 17.9 °C 

cause late maturation and market delivery delay – less than the required 350 hours 

heat units > 17.9 °C during September to December have a negative impact on 

quality (-10%). 

 Tmxd > 38 °C Dec – Jan – Maximum daily temperature in excess of 38 °C during 

the months of December to January has negative impact on yield (-1%) and 

quality (-1%). 

Tommy Atkins 

 Average May Tmnd 3 °C warmer – an increase of 3% in average minimum 

temperatures for the month of May will impact negatively on yield (-6%). 

 Tmnd < 2 °C Jul-Aug – Minimum daily temperatures less than 2 °C have a 

negative impact on yield (-6%). 
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 Sept-Dec (HU requirement 350 hours > 17.9 °C) cool temps averaging < 17.9 °C 

cause late maturation and market delivery delay – less than the required 350 hours 

heat units > 17.9 °C during September to December has a negative impact on 

quality (-20%). 

 Tmxd > 38 °C Dec-Jan – Maximum daily temperature in excess of 38 °C during 

the months of December to January have a negative impact on yield (-1%) and 

quality (-1%). 

3.3.5.7 Crop enterprise budgets 

Table 3.16 to Table 3.17 summarise the crop enterprise budgets for mangoes and citrus 

for the Blyde River WUA case studies. 

Table 3.16:  Crop enterprise budget summary: mangoes 

 
Source: Own calculations with inputs from Mango Growers Association (2012) 

Table 3.17:  Crop enterprise budget summary: citrus 

 
Source: Own calculations with inputs from Citrus Growers Association (2012) 

3.3.6 Description of selected case study farms 

Two case studies that are representative of the study area were selected (see Table 3.18). 

The selected case studies were selected from the survey which was undertaken during 

Item Year 0 1 2 3 4

Yield (tonne/ha)   0   0   3   5

Gross income (R)   0   0  10 914  18 190

Yearly cash expenditure (R)  41 433  10 500  30 705  36 048  41 948

Margin above specified costs (R) - 10 500 - 30 705 - 25 134 - 23 758

Item Year 5 6 7 8  9 - 30

Yield (tonne/ha)   7   12   18   22   27

Gross income [R]  25 466  43 656  65 484  80 036  98 226

Yearly cash expenditure (R)  43 843  49 489  55 174  58 964  63 702

Margin above specified costs (R) - 18 377 - 5 833  10 310  21 072  34 524

Item Year 0 1 2 3

Yield (tonne/ha)   0   0   5

Gross income (R)   0   0  11 795

Yearly cash expenditure (R)  55 134  10 200  13 116  25 515

Margin above specified costs (R) - 55 134 - 10 200 - 13 116 - 13 720

Item Year   4   5   6  7 - 30

Yield (tonne/ha)   10   20   40   60

Gross income (R)  23 590  47 180  94 360  141 540

Yearly cash expenditure (R)  36 769  50 720  77 709  104 737

Margin above specified costs (R) - 13 179 - 3 540  16 651  36 803
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2011.  Case Study 1 represents a typical farm of sixty five hectares of mangoes and citrus. 

Case Study 2 represents a bigger farm (130 ha) farm which produces citrus and mangoes. 

Table 3.18:  Description of case study farms: Blyde River WUA 

 
Source: Case study farmers’ records (2012) 

3.4 Description of the Moorreesburg dryland mixed farming area 

3.4.1 Background 

A case study farm was selected in Moorreesburg, Western Cape, to model the impact of 

climate change on a typical winter rainfall dryland mixed farming system.  The selection 

of the case study was done in conjunction with the Moorreesburgse Koringboere (Edms) 

Beperk (MKB), who also assisted with the provision of data, information and study group 

Description
Farm size 70 ha 140 ha

Irrigable 65 ha 130 ha

Actual irrigated 65 ha 130 ha

Waste land 5 ha 10 ha

Total farm size 70 ha 150 ha

Land use
Perennial crops

Mangos 55 ha 10 ha

Citrus 10 ha 120 ha

Total area perennial crops 65 ha 130 ha

Cash crops

0 ha 0 ha

Total area cash crops 0 ha 0 ha

Total area perennial and cash crops 65 ha 130 ha

Irrigation system (total area)
Drip 65 ha 130 ha

Total (ha) 65 ha 130 ha

Water sources
Pipeline 65 ha 130 ha

Total (ha) 65 ha 130 ha

Entitlement per ha per annum  9 900 m3  9 900 m3

Valuation of farm
Fixed improvements 1 140 000 2 940 000

Vehicles, machinery, implements, livestock, etc  560 000 1 500 000

Land 5 950 000 13 150 000

Total assets 7 650 000 17 590 000

Liabilities
Short term 1 050 000 2 000 000

Medium term  200 000  500 000

Long term 2 000 000 2 000 000

Total liabilities 3 250 000 4 500 000

Net asset value (R) 4 400 000 13 090 000

Debt ratio 42% 26%

(R) (R)

(R) (R)

Case study 1 Case study 2
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results.  The participating case study farm has a high level of record keeping and 

provided, with assistance of the MKB, most of the information needed to do the 

modelling. 

3.4.2 Climate, natural resources and production potential 

3.4.2.1 Climate 

See Section 2.6.3 for the climate change forecast for the Moorreesburg area. 

3.4.2.2 Soil characteristics 

Table 3.19 illustrates the soil characteristics in the Moorreesburg area. 

Table 3.19:  Soil characteristics - Moorreesburg 

 
Source: School of agricultural, earth and environmental sciences, UKZN (2012) 

The soils characteristics supplied in Table 3.19 are area weighted from the land type 

information in the ISCW soils database (ISCW, 2005) for the Quinary Catchment in 

which the location of interest is sited. The 4-digit number (location) is the Quinary 

number in the SA Quinary Catchments Database (Schulze et al., 2010).  The methods by 

which these characteristics for a 2-horizon soil have been derived are described in 

Schulze and Horan (2008) using the AUTOSOILS decision support system developed by 

Schulze and Pike (1995 and updates). Values of wilting points, field capacities and 

porosities (i.e. at saturation) imply the soil water content (in meter of water per meter 

thickness of soil) at those thresholds. Saturated drainage implies the fraction of soil water 

above field capacity that drains into the next horizon (i.e. from the topsoil to the subsoil 

or from the subsoil out of the active rooting zone) per day. The soils in the Moorreesburg 

area tend to be well drained and relatively sandy. 

3.4.2.3 Adapted crops for the region 

Wheat is by far the dominant crop produced in the area and accounted for 96% of crop 

production in 1996 (MKB, 2012).  Other smaller crops include canola, lupines, oats and 

triticale.   Livestock production consists mainly of sheep (mutton and wool production).   

Table 3.20 reflects the physiological lifecycle of wheat. 

Location       

(Quinary nr.)

Thickness 

 of 

Topsoil 

(m)

Thickness 

 of 

Subsoil 

(m)

Wilting 

Point of 

Topsoil 

(m/m)

Wilting 

Point of 

Subsoil 

(m/m)

Field 

Capacity 

of Topsoil 

(m/m)

Field 

Capacity 

of Subsoil 

(m/m)

Porosity 

of Topsoil 

(m/m)

Porosity 

of Subsoil 

(m/m)

Saturated 

Drainage 

(fraction/ 

day)

2625 0.29 0.77 0.069 0.076 0.163 0.18 0.455 0.466 0.63
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Table 3.20:  Physiological lifecycle of wheat 

 
Source: Moorreesburg workshop and expert group discussions (2012) 

3.4.2.4 Current cultivation practices 

Table 3.21 summarises the current cultivation practises for wheat in the Moorreesburg 

area. 

Table 3.21:  Current cultivation practices 

 

Source: Moorreesburg workshop and expert group discussions (2012) 

3.4.2.5 Livestock 

The case study farm shows typical Swartland mixed farming activities consisting of 

wheat and livestock (mutton and wool production).   

Table 3.22 reflects the carrying capacity for the farm. 

Table 3.22:  Carrying capacity for the Moorreesburg case study 

 
Source:  Moorreesburg workshop and expert group discussions (2012) 

3.4.2.6 Crop climate thresholds 

When breaching a critical climate threshold, the impact on yield and/or quality can be 

either positive or negative. The critical crop climate thresholds for different crops were 

collected during a workshop that was attended by various role-players, including amongst 

others, industry experts and the case study farmer.   

Wheat

Planting May

Germination May

Tillering stage Jun - Jul

Jointing and booting stage Jul

Heading and flowering stage Aug

Harvesting Oct - Nov

Cultivation practice Wheat

Optimum planting dates May

Lifespan 1 year

Harvesting dates Oct - Nov

May - 15 kg/ha

Jun - 20 kg/ha

Jul - 20 kg/ha

Nitrogen application

Carrying capacity

Medics 1.25 SSU/ha/year

Wheat stubble 5 SSU/ha for 90 days
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Table 3.23 shows the critical climate thresholds for wheat.  

Table 3.23:  Critical climate thresholds for wheat 

 
Source:  Moorreesburg workshop and expert group discussions (2012) 

Refer to Table 3.23 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for wheat can be interpreted as follows: 

 Mid May-Aug Tmxd > 20 °C – maximum daily temperatures in excess of 20 °C 

from mid-May to August have a negative impact of -10% on yield. 

 Tmxd > 25 °C in Sept – maximum daily temperatures in excess of 25 °C in 

September have a negative impact of -10% on yield. 

 Rainfall May - less than 50 mm – less than 50 mm of rain in the month of May 

impacts negatively on yield (-10%). 

 Rainfall May - Sept < 200 mm – less than 200 mm of rainfall for the period from 

May to September has a -30% negative impact on yield. 

 Rainfall May - Sept > 400 mm – more than 400 mm of rainfall from May to 

September has a positive impact on yield (+20%). 

 Rainfall May-Sept > 10 mm/week – weekly rainfall of 10 mm or more from May 

to September positively impact on yield (33%). 

 Rainfall Sept weeks 1 and 2 > 10 mm – rainfall of 10 mm or more during week 1 

and week 2 of September impacts positively on yield (+10%). 

 Rainfall Sept weeks 3 and 4 > 10 mm – rainfall of 10 mm or more during week 3 

and week 4 of September has a positive impact on yield (+10%). 

 May-Jun no rain – no rain during May and June results in -10% impact on yield. 

Critical climate thresholds Impact

Mid May - Aug Tmxd > 20 ⁰C Negative

Tmxd > 25 ⁰C in Sept Negative

Rainfal May  -  less than 50 mm Negative

Rainfal May  -  Sept < 200 mm Negative

Rainfal May  -  Sept > 400 mm Positive

Rainfal May  -  Sept > 10 mm/week Positive

Rainfal Sept weeks 1 and 2 > 10 mm Positive

Rainfal Sept weeks 3 and 4 > 10 mm Positive

May-Jun no rain Negative

Jun - Jul < 70 mm Negative

Jul - Aug < 70 mm Negative

Sept < 15 mm Negative

Sept < 5 mm Negative
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 Jun - Jul < 70 mm – less than 70 mm of rain from June to July has a negative 

impact on yield (-10%). 

 Jul - Aug < 70 mm – less than 70 mm of rain from July to August has a negative 

impact on yield (-10%). 

 Sept < 15 mm – less than 15 mm of rainfall in September impacts negatively on 

yield (-10%). 

 Sept < 5 mm – less than 5 mm of rain during the month of September has a 

negative impact on yield (-10%). 

3.4.2.7 Crop enterprise budgets 

Table 3.24 and Table 3.25 summarise the crop enterprise budgets for wheat, medics, 

mutton and wool production for the Moorreesburg case study. 

Table 3.24:  Crop enterprise budget summary: wheat and medics 

 
Source:  Hough and Coetzee (2012) 

Table 3.25:  Crop enterprise budget summary: mutton and wool production 

 
Source:  Hough and Coetzee (2012) 

3.4.3 Description of selected case study farm 

Table 3.26 reflects the composition of the selected winter rainfall case study farm. 

  

Item Wheat after medics Medics yearly cost

Yield (tonne/ha)   3   0

Price per tonne (R)  2 500   0

Income/ha (R)  7 500   0

Total cash expenditure/ha (R)  3 940   459

Margin above specified costs (R)  3 560 -  459

Assumptions

Weaning % 90%

Weaning weight (kg) 20 kg

Price/kg (R) R42

Kg wool/ewe 2 kg

Price/kg (R) R75

Income and cost (gross margin)

Income per ewe (R) R906

Total cost per ewe (R) R284

Gross margin per ewe (R) R622
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Table 3.26:  Description of case study farm: Moorreesburg 

 
Source: Case study farmer’s records (2012) 

3.5 Description of the Carolina dryland mixed farming area 

3.5.1 Background 

A case study farm was selected in Carolina, Mpumalanga to model the impact of climate 

change on a typical summer rainfall dryland farming system.  The participating case 

study farm has a high level of record keeping and provided most of the information 

needed to do the modelling. 

Agriculture in the Carolina region is generally dominated by extensive grain production 

and the grazing of beef cattle and sheep.  Mainline grain production includes maize, sugar 

beans, soybeans and sunflowers. 

Description
Farm size  1 010 ha

Dryland   445 ha

Pastures   445 ha

Veldt   107 ha

Waste land   13 ha

Total farm size  1 010 ha

Land use
Perennial crops

Medics   445 ha

Total area perennial crops   445 ha

Cash crops

Wheat after medics   445 ha

Total area cash crops   445 ha

Total area perennial and cash crops   890 ha

Livestock
Sheep (producing ewes)  1 300

Valuation of farm
Fixed improvements 2 600 000

Vehicles, machinery, implements, livestock, etc 7 235 800

Land 9 520 000

Total assets 19 355 800

Liabilities
Short-term 1 570 000

Medium term  750 000

Long-term  630 000

Total liabilities 2 950 000

Net asset value (R) 16 405 800

Debt ratio 15%

(R)

(R)
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3.5.2 Climate, natural resources and production potential 

3.5.2.1 Climate 

See Section 2.6.4 for the climate change forecast for the Carolina area. 

3.5.2.2 Soil characteristics 

Table 3.27 illustrates the soil characteristics in the Carolina area. 

Table 3.27:  Soil characteristics – Carolina 

 
Source: School of agricultural, earth and environmental sciences, UKZN (2012) 

The soils characteristics are area weighted from the land type information in the ISCW 

soils database (ISCW, 2005) for the Quinary Catchment in which the location of interest 

is sited. The 4-digit number (location) is the Quinary number in the SA Quinary 

Catchments Database (Schulze et al., 2010).  The methods by which these characteristics 

for a 2-horizon soil have been derived are described in Schulze and Horan (2008) using 

the AUTOSOILS decision support system developed by Schulze and Pike (1995 and 

updates).  Values of wilting points, field capacities and porosities (i.e. at saturation) imply 

the soil water content (in meter of water per meter thickness of soil) at those thresholds. 

Saturated drainage implies the fraction of soil water above field capacity that drains into 

the next horizon (i.e. from the topsoil to the subsoil or from the subsoil out of the active 

rooting zone) per day. From the characteristics in the table the soils tend to have a sandy 

loam texture at Carolina. 

3.5.2.3 Adapted crops for the region 

Main crops produced in the area include maize, sugar beans and soybeans.  Livestock 

production consists mainly of cattle (weaner production), sheep (mutton and wool 

production) and dairy production. 

Table 3.28 reflects the physiological lifecycle of maize, sugar beans and soybeans. 

  

Location       

(Quinary nr.)

Thickness 

 of 

Topsoil 

(m)

Thickness 

 of 

Subsoil 

(m)

Wilting 

Point of 

Topsoil 

(m/m)

Wilting 

Point of 

Subsoil 

(m/m)

Field 

Capacity 

of Topsoil 

(m/m)

Field 

Capacity 

of Subsoil 

(m/m)

Porosity 

of Topsoil 

(m/m)

Porosity 

of Subsoil 

(m/m)

Saturated 

Drainage 

(fraction/ 

day)

0429 0.3 0.58 0.116 0.158 0.205 0.243 0.456 0.433 0.44
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Table 3.28:  Physiological lifecycle of maize, sugar beans and soybeans 

 
Source: Carolina workshop and expert group discussions (2012) 

3.5.2.4 Current cultivation practices 

Table 3.29 summarises the current cultivation practices for maize, soybeans and sugar 

beans in the Carolina area. 

Table 3.29:  Current cultivation practices 

 
Source: Carolina workshop and expert group discussions (2012) 

Crop rotation includes maize and soybeans/sugar beans. 

Maize

Planting Oct and first half of Nov

Germination Nov

Leaf development stage Nov, Dec to mid Jan

Plume & cob development Mid Jan to end Feb

Harvesting May, Jun and Jul

Sugar beans

Planting Mid Nov

Germination Nov

Leaf development stage Dec to mid Jan

Flowering stage Mid to end Jan

Pods development Feb

Harvesting Mar

Soybeans

Planting Mid Nov

Germination Nov

Leaf development stage Dec to mid Jan

Flowering stage Mid to end Jan

Pods development Feb

Harvesting Apr - May

Cultivation practice Maize - dryland

Optimum planting dates Oct

Lifespan 1 year

Harvesting dates May - Jul

Oct - 20 kg/ha

Dec - 90 kg/ha

Cultivation practice Soybeans - dryland

Optimum planting dates Nov

Lifespan 1 year

Harvesting dates Apr -  May

Nitrogen application Nov - 10 kg/ha

Cultivation practice Sugar beans - dryland

Optimum planting dates Nov

Lifespan 1 year

Harvesting dates Mar

Nitrogen application Nov - 20 kg/ha

Nitrogen application
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3.5.2.5 Livestock 

The case study farm has typical Highveld mixed farming activities consisting of grain 

and livestock production.  Activities include weaner calf, lamb and wool production. 

Table 3.30 reflects the carrying capacity for the farm. 

Table 3.30:  Carrying capacity – Carolina case study 

 
Source: Case study farmer (2012) 

3.5.2.6 Crop climate thresholds 

When breaching a critical climate threshold, the impact on yield and/or quality can be 

either positive or negative. The critical crop climate thresholds for different crops were 

collected during a workshop which was attended by various role-players, including 

amongst others, industry experts and the case study farmer.   

Table 3.31 shows the critical climate thresholds for maize, soybeans and sugar beans.  

  

Carrying capacity

Natural veld 3 ha/LSU/year

Natural veld 1 SSU/ha/year

Field (post harvest) 1 LSU/ha for 75 days

Field (post harvest) 6 SSU/ha for 75 days
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Table 3.31:  Critical climate thresholds for maize, soybeans and sugar beans 

 
Source: Carolina workshop and expert group discussions (2012) 

Refer to Table 3.31 and Appendix B for threshold penalty weights for yield and quality.  

The critical thresholds for wheat can be interpreted as follows: 

Critical Climate Thresholds Impact

Maize

Tmnx < -5 ⁰C in Dec Negative

Tmxd > 35 ⁰C for 3+ days Jan - Feb Negative

Tmnd < 12 ⁰C in Nov Negative

Rainfall < 40 mm in Oct Negative

Rainfall < 60 mm in Nov Negative

Rainfall < 80 mm in Dec Negative

Rainfall < 100 mm in Jan Negative

Rainfall < 60 mm in Feb Negative

Rainfall > 80 mm in Feb Positive

Rainfall > 80 mm in Mar Positive

Rainfall > 160 mm in Feb - Mar Positive

Soybeans

Tmnd < -5 ⁰C Oct - Jan Negative

Tmxd > 28 ⁰C for 3+ days in mid Jan - Feb Negative

Average temperature > 25  ⁰C in Nov Negative

Tmxd > 35 ⁰C Jan Negative

Tmxd > 30 ⁰C with low RH in Jan Negative

Rainfall < 50 mm in Nov Negative

Rainfall < 80 mm in Dec Negative

Rainfall < 100 mm in Jan Negative

Rainfall < 60 mm in Feb Negative

Rainfall < 40 mm Jan Negative

Rainfall > 60 mm and < 150 mm in Feb Positive

Rainfall > 60 mm and < 150 mm in Mar Positive

Rainfall > 120 mm and < 300 mm in Feb - Mar Positive

Sugar beans

Tmnd < -5 ⁰C Oct - Jan Negative

Tmxd > 26 ⁰C for 3+ days in mid Jan - Feb Negative

Tmxd > 30 ⁰C with high RH in Jan Negative

Tmxd > 30 ⁰C during Jan Negative

Rainfall < 50 mm in Nov Negative

Rainfall < 80 mm in Dec Negative

Rainfall < 100 mm in Jan Negative

Rainfall < 60 mm in Feb Negative

Rainfall > 140 mm in Jan Positive

Rainfall > 60 mm en < 100 mm in Feb Positive

Rainfall > 60 mm en < 100 mm in Mar Positive

Rainfall > 120 mm en < 200 mm in Feb - Mar Positive
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Maize 

 Tmnx < -5 °C in Dec – daily minimum temperature of less than -5 °C results in a 

-5% reduction in yield. 

 Tmxd > 35 °C for 3+ days Jan-Feb – maximum daily temperatures of 35 °C for 3 

days or more during January and February have a negative impact on yield (-5%). 

 Tmnd < 12 °C in Nov – minimum daily temperatures of less than 12 °C negatively 

impact on yield (-1%). 

 Rainfall < 40 mm in Oct – less than 40 mm of rain during the month of October 

has a negative impact on yield (-5%). 

 Rainfall < 60 mm in Nov - less than 60 mm of rain during the month of November 

has a negative impact on yield (-5%). 

  Rainfall < 80 mm in Dec - less than 80 mm of rain during the month of December 

has a negative impact on yield (-5%). 

 Rainfall < 100 mm in Jan - less than 100 mm of rain during the month of January 

has a negative impact on yield (-15%). 

 Rainfall < 60 mm in Feb - less than 60 mm of rain during the month of February 

has a negative impact on yield (-5%). 

 Rainfall > 80 mm in Feb – more than 80 mm of rain during the month of February 

has a positive impact on yield (+10%). 

 Rainfall > 80 mm in Mar – more than 80 mm of rain during the month of March 

has a positive impact on yield (+10%). 

 Rainfall > 160 mm in Feb-Mar – more than 160 mm of rain during February and 

March has a positive impact on yield (+10%). 

Soybeans 

 Tmnd < -5 °C Oct – Jan – daily minimum temperatures less than -5 °C during 

October to January impact negatively on yield (-50%). 

 Tmxd > 28 °C for 3+ days in mid Jan-Feb – maximum daily temperatures in 

excess of 28 °C for 3 days or more from mid-January to end of February have a 

negative impact on yield (-5%). 

 Average temperature > 25 °C in Nov – average temperature in excess of 25 °C 

impacts negatively on yield (-10%). 

 Tmxd > 35 °C Jan – maximum daily temperatures in excess of 35 °C during the 

month of January have a negative impact on yield (-10%). 
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 Tmxd > 30 °C with low RH in Jan - maximum daily temperatures in excess of 30 

°C with low relative humidity during the month of January have a negative impact 

on yield (-10%). 

 Rainfall < 50 mm in Nov - less than 50 mm of rain during the month of November 

has a negative impact on yield (-10%). 

 Rainfall < 80 mm in Nov - less than 80 mm of rain during the month of December 

has a negative impact on yield (-10%). 

 Rainfall < 100 mm in Jan - less than 100 mm of rain during the month of January 

has a negative impact on yield (-10%). 

 Rainfall < 60 mm in Feb - less than 60 mm of rain during the month of February 

has a negative impact on yield (-10%). 

 Rainfall < 40 mm in Jan - less than 40 mm of rain during the month of January 

has a negative impact on yield (-10%). 

 Rainfall > 60 mm and < 150 mm in Feb – total rainfall of more than 60 mm but 

less than 150 mm during the month of February has a positive impact on yield 

(+5%). 

 Rainfall > 60 mm and < 150 mm in Mar - total rainfall of more than 60 mm but 

less than 150 mm during the month of March has a positive impact on yield 

(+5%). 

 Rainfall > 120 mm and < 300 mm in Feb-Mar - total rainfall of more than 120 

mm but less than 300 mm during February and March has a positive impact on 

yield (+5%). 

Sugar beans 

 Tmnd < -5 °C Oct-Jan – daily minimum temperatures less than -5 °C during 

October to January impact negatively on yield (-50%). 

 Tmxd > 26 °C for 3+ days in mid Jan-Feb – maximum daily temperatures in 

excess of 26 °C for 3 days or more from mid-January to end of February have a 

negative impact on yield (-10%). 

 Tmxd > 30 °C with low RH in Jan - maximum daily temperatures in excess of 30 

°C with low relative humidity during the month of January have a negative impact 

on yield (-10%). 

 Tmxd > 30 °C Jan – maximum daily temperatures in excess of 30 °C during the 

month of January have a negative impact on yield (-10%). 
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 Rainfall < 50 mm in Nov - less than 50 mm of rain during the month of November 

has a negative impact on yield (-10%). 

 Rainfall < 80 mm in Nov - less than 80 mm of rain during the month of December 

has a negative impact on yield (-10%). 

 Rainfall < 100 mm in Jan - less than 100 mm of rain during the month of January 

has a negative impact on yield (-10%). 

 Rainfall < 60 mm in Feb - less than 60 mm of rain during the month of February 

has a negative impact on yield (-5%). 

 Rainfall > 140 mm Jan - total rainfall of more than 140 mm during the month of 

January has a positive impact on yield (+5%). 

 Rainfall > 60 mm and < 100 mm in Feb - total rainfall of more than 60 mm but 

less than 100 mm during the month of February has a positive impact on yield 

(+5%). 

 Rainfall > 60 mm and < 100 mm in Mar - total rainfall of more than 60 mm but 

less than 150 mm during the month of March has a positive impact on yield 

(+5%). 

3.5.2.7 Crop enterprise budgets 

Table 3.32 to Table 3.33 summarise the crop enterprise budgets for the Carolina case 

study. 

Table 3.32:  Crop enterprise budget summary: maize, sugar beans and soybeans 

 
Source:  Own calculations, with inputs from case study farmer 

  

Maize - dryland Sugar bean - dryland Soybean - dryland

Yield (tonne/ha)   6   2   2

Price per tonne (R)  1 800  8 000  4 500

Income/ha (R)  10 800  12 000  8 100

Total cash expenditure/ha (R)  6 062  7 352  4 890

Margin above specified costs (R)  4 738  4 648  3 210
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Table 3.33:  Crop enterprise budget summary: beef and mutton production 

 
Source:  Own calculations, with inputs from case study farmer 

3.5.3 Description of selected case study farm 

The table below reflects the composition of the summer rainfall dryland case study farm. 

Table 3.34:  Description of case study farm: Carolina 

 
Source: Case study farmer’s records (2012) 

Assumptions - beef production

Weaning % 80%

Weaning weight (kg) 220 kg

Price/kg [R] R16

Income and cost

Income per cow R2 816

Total cost per cow R1 000

Net income per cow R1 816

Assumptions - mutton production

Weaning % 90%

Weaning weight (kg) 22 kg

Price/kg [R] R45

Kg wool/ewe 2 kg

Price/kg [R] R75

Income and cost

Income per ewe R1 041

Total cost per ewe R   340

Net income per ewe R   701

Description
Farm size  3 305 ha

Dryland  1 050 ha

Pastures   70 ha

Veldt  2 170 ha

Odd   15 ha

Total farm size  3 305 ha

Land use
Cash crops

Maize dryland   700 ha

Sugar beans dryland   50 ha

Soybeans dryland   300 ha

Total area cash crops  1 050 ha

Livestock
Cattle (producing cows)   600

Sheep (producing ewes)  2 500

Valuation of farm
Fixed improvements 5 000 000

Vehicles, machinery, implements, livestock, etc 26 363 500

Land 57 325 000

Total assets 88 688 500

Liabilities

Short-term 11 000 000

Medium term 1 200 000

Long-term 16 500 000

Total liabilities 28 700 000

Net asset value 59 988 500

Debt ratio 32%

(R)

(R)
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3.6 Chapter summary 

Chapter 3 gives an overview of the four study areas, i.e. LORWUA, Blyde River WUA, 

Moorreesburg and Carolina, which broadly represent the summer- and winter rainfall, as 

well as irrigation and dryland crop production, areas of South Africa. 

The description of case study areas include discussions on climate, natural resources, 

adapted crops, crop irrigation requirements, crop cultivation practices and crop enterprise 

budgets.  The critical climate thresholds for crops in the different regions, which form an 

integral part of the integrated climate modelling in this study, are also specified. 

The different case studies are defined in terms of farm size, land use, irrigation water 

availability and valuation of assets and liabilities. 
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CHAPTER 4 : DESCRIPTION OF THE INTEGRATED CLIMATE CHANGE 

MODEL 

______________________________________________________________________ 

 

“A mathematical model can be defined as a representation of the essential aspects of 

an existing system (or a system to be constructed) which presents knowledge of that 

system in usable form. Mathematical models can take many forms, including but not 

limited to dynamical systems, statistical models, differential equations, or game 

theoretic models.” 

Eykhoff (1974) 

 

4.1 Introduction 

Chapter 3 described the LORWUA, Blyde River WUA, Carolina and Moorreesburg 

regions and their respective case studies.  In this chapter the model is developed to predict 

the impact of climate change on the financial vulnerability of different farming systems.  

The modelling framework includes 4 modules that will be discussed in more detail below. 

4.2 Layman’s description of the model 

Figure 4.1 is a diagrammatical illustration of the modelling framework which consists of 

4 modules: 

 Climate change impact modelling: 

- Modelling of physical climate data (daily minimum and maximum 

temperatures and daily rainfall from different downscaled GCMs) that 

impact on crop yield and quality. 

- Changing crop irrigation requirements (as a result of climate change). 

- Hydrological modelling - impact of climate change on the availability of 

irrigation water (for the Blyde WUA). 

 DLP model. 

 Modelling interphases. 

 Financial Vulnerability Assessment model. 
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Figure 4.1:  Diagrammatic illustration of the modelling framework 

In the next four sections these modules are discussed in more detail. 

4.2.1 Climate change impact modelling 

The impact of climate change on the financial vulnerability of the case study farms is 

modelled by using downscaled climate information from different GCMs to determine 

the impact of climate change on: 

 Yield and quality of agricultural produce in the case study areas 

 Crop irrigation requirements (for irrigation case studies LORWUA and the Blyde 

River WUA) 

 Availability of irrigation water (for the Blyde River WUA case study). 

The subsections of climate change impact modelling are discussed in more detail below. 

4.2.1.1 Downscaled GCMs 

4.2.1.1.1 GCMs 

The interactions between the many processes that govern the Earth’s climate are so 

complex and extensive that quantitative predictions of the impacts of increasing 

concentrations of greenhouse gases on climate cannot be made through simple intuitive 

reasoning (Shaka, 2008). For this reason computer models, i.e. GCMs, have been 

developed, which are mathematical representations of the Earth’s system, and in which 

Module 2

Dynamic Linear 
Programming Model (DLP)

Module 3

Modelling interphases

Apsim Crop model yield 
interphase

CCCT model yield & quality 
interphase

ACRU hydrological model 
interphase 

SAPWAT crop irrigation 
requirements interphase

An interphase to generate at 
random coefficients

Module 1
Climate change impact 

modelling
GCMs (downscaled)

Method 2
Crop Critical Climate 
Threshold module

Method 1
Apsim Crop module

Module 4

Financial
vulnerability 
assessment 

model

Not 
vulnerable

Vulnerable

Adaptation Interventions

Irrig water 
availability

(ACRU model) 

module

Case study data

Crop irrigation 
needs  (SAPWAT3 

model) module
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physical and biogeochemical processes are described numerically to simulate the climate 

system as realistically as possible (Jacob and van den Hurk, 2009).  

GCMs are founded on assumptions about the evolution of drivers of climate change, for 

example the distributions of aerosols and greenhouse gases, and their respective 

concentrations, in the atmosphere (Jacob and van den Hurk, 2009). These depend directly 

on natural and anthropogenic emissions, which are estimated through emission scenarios 

developed by using so-called “storylines” (Nakićenović et al., 2000) that describe 

possible developments in global population growth and other aspects of the socio-

economic system (Cox and Stephenson, 2007; Jacob and van den Hurk, 2009). These 

emission scenarios are used to drive atmospheric chemistry and carbon cycle models that 

simulate changes in the concentration of greenhouse gases and aerosols (Cox and 

Stephenson, 2007). The resulting concentration scenarios are then input into GCMs, 

which generate climate change scenarios that in turn drive models of the impacts on 

human and natural systems (Cox and Stephenson, 2007). 

4.2.1.1.2 Uncertainties inherent to GCMs 

Uncertainties inherent in GCMs have been well documented (UKCIP, 2003; Cox and 

Stephenson, 2007; Giorgi et al., 2008; Jacob van den Hurk, 2009; Schulze, 2009). In 

addition to the limitations resulting from uncertainties, GCMs are less capable of 

simulating second order atmospheric processes such as precipitation, compared to those 

related to first order atmospheric processes such as surface heat and vapour fluxes 

(Hardy, 2003). These limitations include (Schulze et al., 2011): 

 Failure to simulate individual convective rainfall events, owing to the coarse 

spatial resolutions of GCMs, and the smaller spatial and temporal nature of 

convective rainfall, which poses problems in many parts of the world, including 

most of southern Africa, where convective rainfall is a dominant form of 

precipitation. 

 Difficulty in simulating the intensity, frequency and distribution of extreme 

rainfall (IPCC, 2007). 

 Tending to simulate too many light rainfall events and generally too few heavy 

rainfall events, whilst maintaining a fairly realistic mean precipitation (IPCC, 

2007). 
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 Poorly representing major drivers of climate variability, such as the El Niño - 

Southern Oscillation phenomenon (Hulme et al., 2001), which is associated with 

a broad band of variability throughout southern Africa (Tyson, 1996). 

 Poorly accounting for climatological variables that represent other atmospheric 

conditions that lead to high magnitude precipitation and flood-producing events.  

These factors tend to reduce the accuracy of precipitation output from GCMs. 

Additionally, global mean temperatures can be quite unrepresentative at the local scale 

(Jacob and van den Hurk, 2009) and so can any subsequent estimations of potential 

evaporation. Therefore, questions remain in regard to the usability of direct GCM output 

in detailed hydrological studies, where precipitation, temperature and potential 

evaporation at the local scale are primary inputs into hydrological models (Schulze et al., 

2011). 

Nevertheless, output from GCMs forms the basis for climate change impact assessments. 

A significant discontinuity, however, exists between the output from GCMs (spatial 

scales of 104 - 105 km2) and the catchment scale (101 - 102 km2) at which local decisions 

are sought and local adaptation options need to be considered (Schulze, 2009). It is due 

to this discontinuity that GCM output needs to be translated from the coarse to more local 

scales by the process of regional climate downscaling (Giorgi et al., 2008, cited by 

Schulze, 2011). 

4.2.1.1.3 Empirically/Statistically downscaled GCMs 

Empirical downscaling involves developing a quantitative relationship between local-

scale variables and large-scale atmospheric variables, which is subsequently applied to 

the GCM output to obtain local and regional climate change signals (Jacob and van den 

Hurk, 2009). An advantage of this technique is that GCM output can be downscaled to a 

point, which is useful for obtaining projections for, say, rainfall at a particular site, which 

can then be input into a hydrological or crop yield model.  A major disadvantage of this 

approach is the implicit assumption that these statistical relationships will remain 

stationary under a future climate (UKCIP, 2003; Jacob and van den Hurk, 2009). 

The resolving scale of GCMs has improved significantly in the past ten years with many 

state of the art GCMs able to resolve at a scale of around 100 km.  Downscaled climate 

data (daily rainfall and temperature) were obtained from CSAG. 
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The climate change scenarios developed by CSAG for application in this project were 

derived from global scenarios produced by five GCMs, all of which were applied in the 

IPCC’s (2007) Fourth Assessment Report [AR4] (Schulze et al., 2011).  Details of the 

five GCMs used in this study are provided in Table 4.1.  All of the future global climate 

scenarios that were downscaled by CSAG to point scale for use in this study were based 

on the A2 emissions scenario (Figure 4.2) defined by the IPCC SRES (Nakićenović et 

al., 2000). 

 
Figure 4.2:  SRES scenario storylines considered by the IPCC  

Source: After Nakićenović et al., 2000; graphic illustration from IPCC-TGICA (2007) 

Table 4.1 gives a condensed description of the information on GCMs, the global climate 

change scenarios of which were empirically downscaled by CSAG to point scale for 

application in this project. Five GCMs were used from various respected international 

organisations. 

Table 4.1:  GCMs description 

 

Institute GCM

Canadian Center for Climate Modelling Name: CGCM3.1(T47)

and Analysis (CCCma), Canada First published: 2005

  Abbreviation:  CCC Website: http://www.cccma.bc.ec.gc.ca/models/cgcm3.shtml

Meteo-France / Centre National de 

Recherches 

Name: CNRM-CM3

Meteorologiques (CNRM), France First published: 2004

  Abbreviation:  CRM Website: http://www.cnrm.meteo.fr/scenario2004/indexenglish.html

Max Planck Institute for Meteorology 

(MPI-M), 

Name: ECHAM5/MPI-OM

Germany First published: 2005

  Abbreviation:  ECH Website: http://www.mpimet.mpg.de/en/wissenschaft/modelle.html

NASA / Goddard Institute for Space 

Studies

Name: GISS-ER

(GISS), USA First published: 2004

  Abbreviation:  GISS Website: http://www.giss.nasa.gov/tools/modelE

Institut Pierre Simon Laplace (IPSL), Name: IPSL-CM4

France First published: 2005

  Abbreviation:  IPS Website: http://mc2.ipsl.jussieu.fr/simules.html
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The empirically downscaled climate data from the various GCMs include daily minimum 

and maximum temperatures and rainfall.  The climate change scenarios were developed 

for the “present” (1971 – 1990) and “intermediate future” (2046 – 2065).   

These empirically downscaled GCMs values were used in various modelling phases 

including determining: 

 Climate change impacts on yield and quality of crops 

 Climate change impacts on crop irrigation requirements 

 Climate change impacts on irrigation water availability. 

4.2.1.1.4 A note of caution on the GCMs used in this study 

Overall changes in future scenarios of climate depend strongly on (Schulze et al., 2011): 

 which GCMs were used, and 

 how many GCMs were in the ensemble used.  

The five GCMs which were available for use in this study, viz. CGCM3.1(T47), CNRM-

CM3, ECHAM5/MPI-OM, GISS-ER and IPSL-CM4 are considered by climatologists to 

produce rainfall output possibly on the wetter side of the spectrum (Hewitson, 2010. 

Personal communication with Prof Schulze), and this has to be borne in mind in 

interpreting any impacts in which rainfall is an input variable. Furthermore, an error in 

GISS GCM’s rainfall values for parts of South Africa was reported during the course of 

the project and all statistics from multiple GCMs involving rainfall had to be re-

calculated in order to eliminate the known error from that GCM (Schulze et al., 2011).   

However, the reader should note that the main contribution of this study is to develop the 

methodology to analyse the financial vulnerability of farmers on a micro level.  The 

accuracy of the selected GCMs and the error which was discovered in one of the GCMs 

is therefore irrelevant for the purpose of this study.  The methodology developed in this 

study can use the data/information generated by any existing/future GCM.  However, at 

this point in time the GCMs remain the only credible tools we have for climate change 

impact studies (Schulze, 2014). 

The following sections will focus on the methodologies applied to quantify the impact of 

climate change on the financial vulnerability of farming systems. 
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4.2.1.2 Climate change impact on yield and quality of crops 

Two different methodologies were used to determine the impact of projected future 

climates on yield and quality (only for CCCT scenarios) of crops in the different case 

study areas.  In both these methodologies the empirically downscaled climate values were 

used as input to determine present and projected future yield and quality.  The 

methodologies used to determine the impact of climate change are: 

 APSIM for impact on yield. 

 CCCT for impact on yield and quality. 

The methodologies will be discussed in the following sections. 

4.2.1.2.1 APSIM 

The APSIM software is a modular modelling framework that has been developed by the 

APSIM Initiative and its predecessor, the Agricultural Production Systems Research Unit 

(APSRU) in Australia (McCown, 1995).  

APSIM was developed to simulate biophysical processes in agricultural systems, 

particularly as it relates to the economic and ecological outcomes of management 

practices in the face of climate risk. It is structured around plant, soil and management 

modules. These modules include a diverse range of crops, pastures and trees, soil 

processes including water balance, N and P transformations, soil pH, erosion and a full 

range of management controls. APSIM resulted from a need for tools that provided 

accurate predictions of crop production in relation to climate, genotype, soil and 

management factors while addressing the long-term resource management issues 

(Keating et al., 2003). 

The APSIM modelling framework is made up of the following components (Keating et 

al., 2003):  

 A set of biophysical modules that simulate biological and physical processes in 

farming systems. 

 A set of management modules that allow the user to specify the intended 

management rules that characterise the scenario being simulated and that control 

the simulation. 

 Various modules to facilitate data input and output to and from the simulation. 
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 A simulation engine that drives the simulation process and facilitates 

communication between the independent modules. 

 

APSIM has been used in a broad range of applications, including support for on-farm 

decision making, farming systems design for production or resource management 

objectives, assessment of the value of seasonal climate forecasting, analysis of supply 

chain issues in agribusiness activities, development of waste management guidelines, 

risk assessment for government policy making and as a guide to research and education 

activity (Keating et al., 2003). 

APSIM was used to determine probable yield changes that could materialise with 

different downscaled GCMs data from present to intermediate future climate scenarios.  

APSIM calibration and simulation for this study were performed by CSAG relying on 

project data made available and summarised in the WRC (2012) report. 

Crop yields were simulated under climate change scenarios for the following: 

 Wheat (Moorreesburg) 

 Maize (Carolina) 

 Grape vineyards (LORWUA) – [prototype model] 

  

The APSIM crop model for vineyard is a prototype model and does not distinguish 

between wine grapes, table grapes and raisins.  Hence, results for future wine grape 

simulations should be interpreted carefully. 

Fruit tree models are uncommon, and no mango model was found to respond to the 

process-based, future climate driven, including management options, requirements of the 

study.  APSIM does not currently have a model for citrus or mangoes and could therefore 

not contribute to the modelling of the impact of climate change on yield and/or quality 

of mango or citrus crops.  Like most numerical models, the APSIM model strength relies 

on quantitative information, while qualitative information is difficult to extract. 

The results of the APSIM crop modelling (crop yield for different crops) will be 

discussed with the different case study analyses.  The projected yields are integrated into 

the DLP model via an interphase namely APSIM crop model interphase (see Section 

4.2.3.2.). 
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In the absence of crop models to model the impact of climate change on yield and/or 

quality of certain crops, a new methodology was developed namely the CCCT modelling 

technique, which will be discussed in Section 4.2.1.2.2 below. 

4.2.1.2.2 CCCT modelling  

The CCCT modelling technique is based on the following pillars: 

 Empirically downscaled daily climate values (rainfall, minimum and maximum 

temperatures). 

 Physical/biological critical climate thresholds for different crops. 

 Expert group discussions (for guidance on crop critical climate thresholds and 

also the impact on yield and/or quality should a threshold be exceeded). 

The use of expert group discussions, as a research method is suitable, firstly, for gathering 

information in a meaningful manner and, secondly, to stimulate individual creativity by 

presenting alternative perspectives provided by various participating experts (Hoffmann, 

2010).  However, due to the various uncertainties in the models, when analysing CCCT 

modelling results the emphasis should be on trends in projected yield and quality, rather 

than absolute values. 

The CCCT modelling consists of the following steps: 

 The crop critical climate thresholds for different crops were determined during 

workshops with farmers and experts. This includes the impact on yield and/or 

quality of the crop if the threshold is breached. 

 These thresholds are then applied to different climate scenarios (present and 

intermediate) of the downscaled GCMs to determine the number of breaches per 

threshold for the different climate scenarios. 

 The effects of critical climate threshold breaches (which can be positive or 

negative) are then calculated to determine the impact on yield and/or quality of 

crops.   

The results of the crop critical threshold modelling are integrated into the DLP model 

through an interphase (critical crop climate threshold interphase), to be discussed in 

Section 4.2.3.3. 
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4.2.1.3 Climate change impacts on crop irrigation requirements 

The term crop water requirement is defined as the "amount of water required to 

compensate the evapotranspiration loss from the cropped field" (Allen et al., 1998). The 

ICID (2000) describes it as the "total water needed for evapotranspiration, from planting 

to harvest for a given crop in a specific climate regime, when adequate soil water is 

maintained by rainfall and/or irrigation so that it does not limit plant growth and crop 

yield". "Although the values for crop evapotranspiration and crop water requirement are 

identical, crop water requirement refers to the amount of water that needs to be supplied, 

while crop evapotranspiration refers to the amount of water that is lost through 

evapotranspiration" (Allen et al., 1998). 

Crop irrigation requirements are a function of various climate variables and therefore will 

vary under different climate scenarios.  In order to provide for changing crop irrigation 

requirements in the integrated model, the SAPWAT3 program was used to calculate crop 

irrigation requirements under different climate scenarios.  The following section will 

briefly described the SAPWAT3 program. 

4.2.1.3.1 SAPWAT3 

SAPWAT3 is essentially an enhanced and improved version of SAPWAT (South African 

Plant WATer), a program that is extensively applied in South Africa and was developed 

to establish a decision-making procedure for the estimation of crop irrigation 

requirements by irrigation engineers, planners and agriculturalists.  Subsequent to the 

development of the initial SAPWAT programme, the FAO published the Irrigation and 

Drainage Report No. 56, Crop Evapotranspiration - Guidelines for computing crop water 

requirements (Allen et al., 1998) – hereafter referred to as FAO 56.  This comprehensive 

document is highly acclaimed and has become accepted internationally.  As the 

calculation of crop evapotranspiration is the first and essential element of any routine for 

estimating crop irrigation requirement, the decision was taken to reprogram the initial 

model and SAPWAT3 has at its core the computer procedures contained in FAO 56 and 

all recommendations have been applied to the letter (Van Heerden et al., 2009). 

The irrigation requirement of crops is dominated by weather, particularly in the yearly 

and seasonal variation in the evaporative demand of the atmosphere as well as 
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precipitation.  SAPWAT3 has included in its installed database comprehensive weather 

data that is immediately available to the user (Van Heerden et al., 2009):  

 Firstly it includes the complete FAO Climwat climate data base encompassing 

not only South Africa, but many other countries in the world where there is 

irrigation development.   Climwat comprises 3 262 weather stations from 144 

countries, including South Africa, and contains long-term monthly average data 

for calculating Penman-Monteith ET0 values as well as rainfall.  While Climwat 

climate data output is monthly averages, SAPWAT3 calculations are based on 

daily values, thus requiring interpolation.  This has been facilitated in SAPWAT3 

by statistically fitting a curve to the monthly ET0 values. 

 The second installed set of weather data in SAPWAT3 consists of data derived 

from weather stations and is only applicable to South Africa.  This database was 

developed from the “South African Atlas of Climatology and Agro hydrology” 

by the team from the School of Bioresources Engineering and Environmental 

Hydrology, University of KwaZulu-Natal (Schulze, 2008).  The data were 

generated from actual weather stations and then interpolated to locations at the 

centroids of the polygons that represent each of the 1 946 Quaternary Catchments 

(drainage regions) covering the country, thereby provide not only comprehensive 

spatial coverage, but also 50 years of historical (1950 to 1999) daily climate data 

for each Quarternary Catchment on a calendar basis (Schulze, 2008). This 

capability has major implications when it comes to planning and strategy 

development.  It is possible to select any day during this period and access the 

maximum and minimum temperatures, humidity, rainfall, solar radiation and ET0. 

SAPWAT3 provides facilities for importing data from additional weather stations.  If the 

weather station database consists of average monthly values, similar to Climwat, then 

manual importation is recommended, but if the data are more detailed there are facilities 

for formatting and importing the data files as a package (Van Heerden et al., 2009). 

SAPWAT3 can be applied for estimating the irrigation requirements for a single crop, 

for a field with multiple cropping, for a single farm, for a group of farms (e.g. WUA), for 

a group of WUAs or even a river basin.  Output is provided, where appropriate, in 

millimetres and cubic metres.  Provision is made for printing comprehensive output 

tables and/or saving to file and/or exporting for further processing by spread sheet 

applications (Van Heerden et al., 2009). 
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SAPWAT3 utilises the four stage crop development curve procedure based on relating 

crop evapotranspiration in each stage to the short grass (Penman-Monteith) reference 

evapotranspiration by applying a crop coefficient.  Typical values of expected average 

crop coefficients under a mild, standard climatic condition are published in FAO 56 and 

are applied in SAPWAT3 (Van Heerden et al., 2009).   

SAPWAT3 incorporates the internationally recognised Köppen-Geiger climatic system.  

The system is based on temperature-rainfall combinations so that the climate of the 

weather station can be classified by using the temperature and rainfall data of a weather 

station record (Van Heerden et al., 2009).   

SAPWAT3 makes use of the FAO 56 procedure that separates soil water evaporation 

from plant transpiration and, therefore, conforms to the FAO 56 defaults that determine 

soil water characteristics and evaporation parameters.  Fortunately, FAO 56 specifies 

soils according to the familiar sand, silt and clay criteria into nine texture classes.  The 

profile water balance during irrigation is also calculated and tabulated strictly in 

accordance with FAO 56 methodology (Van Heerden et al., 2009). 

The methodology for estimating crop evapotranspiration under so-called “standard” 

conditions has been well researched and due allowance can be made for non-standard 

conditions arising from unusual circumstances and the realities of practical management 

(Van Heerden et al., 2009).   

The SAPWAT3 program was applied to determine changing crop irrigation requirements 

under present and future climate scenarios using downscaled climate data of the various 

GCMs used in this study.  The changing crop irrigation requirements will be discussed 

with the different case study analyses. 

The crop irrigation requirements data is introduced to the DLP model via the crop 

irrigation requirements interphase which will be elaborated upon in later sections.  

4.2.1.4 Climate change impacts on the availability of irrigation water 

The availability of irrigation water is dependent on dam levels that are a function of, 

amongst others, rainfall patterns and catchment responses to rainfall.  To determine the 

impact of climate change on the financial vulnerability of irrigation farming systems, the 

availability of irrigation water should be investigated (subject to data availability).   

The projected future dam levels for the Blydepoort Dam were computed by the Centre 

of Water Resources Research in the School of Agricultural, Earth and Environmental 
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Science, University of KwaZulu-Natal (UKZN). The daily present and intermediate 

climate values from downscaled GCMs were used in the ACRU model to project future 

changes in dam levels.  The following sections give a brief description of the background 

and methodology followed to arrive at the projected dam levels. 

For this study the projected dam level information for LORWUA was not available and 

the availability of irrigation water could thus not be factored into the integrated model. 

The proposed enlargement of the Clanwilliam Dam is another uncertainty which 

contributed to the decision to rather treat the availability of irrigation water in the 

Olifants-Doorn system as a constant and focus on the projected impact of climate change 

on yield and quality of crops in that catchment. 

4.2.1.4.1 The concept of quinary catchments  

The erstwhile South African Department of Water Affairs and Forestry (DWAF; later 

DWA - the Department of Water Affairs and as of June 2014 DWS – the Department of 

Water and Sanitation) delineated the RSA, together with Swaziland and Lesotho, into 22 

primary catchments, which in turn were disaggregated into secondary, then tertiary and 

finally, into 1 946 interlinked and hydrologically cascading quaternary catchments 

(QCs), as shown in Figure 4.3. This “fourth level” of discretisation has, to date, 

constituted the most detailed spatial level of operational catchment in the DWA (now 

DWS) for general planning purposes (Schulze et al., 2011). 

 
Figure 4.3:  Primary and quaternary catchments covering the RSA, Lesotho and 

Swaziland  

Source: After Midgley et al. (1994) 
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Schulze and Horan (2007; 2010) have shown that many fourth level quaternary 

catchments in southern Africa are physiographically too diverse for hydrological 

responses from them to be considered relatively homogeneous. By applying Jenks’ 

optimisation procedures available within the ArcGIS software suite, a three-fold altitude 

break based sub-delineation of QCs into fifth level quinary catchments (the Upper, 

middle and lower quinaries of a QC) has been carried out (Figure 4.4). These quinary 

catchments were then configured within the QC configuration, such that the outflow of 

the upper quinary enters the middle, which in turn flows into the lower quinary.  

However, the lower quinary outflow of a QC does not enter the upper quinary of the next 

downstream quaternary catchment, because that QC’s upper quinary may be at a higher 

altitude than the lower quinary of the immediate upstream quaternary. Therefore, the 

outflow of the lower quinary has been configured to rather enter the downstream 

Quaternary at its exit (Schulze and Horan, 2010). A schematic of the flowpath 

configuration between quinaries and quaternaries, taken from the Upper Thukela 

Catchment, is given in Figure 4.5. 

The sub-delineation of quaternary into quinary catchments has resulted in 5 838 

hydrologically interlinked and cascading quinaries (Figure 4.6) covering the RSA, 

Lesotho and Swaziland. These have been demonstrated to be physiographically 

considerably more homogeneous than the quaternaries (Schulze and Horan, 2007; 2010) 

and on a national and smaller scale are considered to be relatively homogeneous 

hydrological (as well as agricultural) response zones. 

 
Figure 4.4:  Sub-delineation of quaternary catchments from altitude (left) into three 

quinaries by natural breaks (middle) with flow paths (right) of water  

Source: Schulze and Horan (2010) 
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Figure 4.5:  Flowpaths between quinary and quaternary catchments, with the 

example taken from the Upper Thukela catchment  

Source: Schulze and Horan (2010) 

 

 

 
Figure 4.6:  Delineation of the RSA, Lesotho and Swaziland into 5 838 

hydrologically interlinked and cascading quinary catchments  

Source: Schulze and Horan (2010) 
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4.2.1.4.2 From a quaternary to quinary catchments database 

Following the delineation of the southern African countries of the RSA, Lesotho and 

Swaziland into hydrologically interlinked quinary catchments, the formerly used  

Quaternary Catchments Database (QCB) (Schulze et al., 2005) needed to be expanded to 

form a new database, viz. the Southern African Quinary Catchments Database, QnCDB 

(Schulze et al., 2011). The expansion of the QCD to the newly created QnCDB was 

achieved in collaboration with researchers from another climate change impact study 

(Schulze et al., 2010a). 

The key climatic and catchment input into the QnCDB include (Schulze et al., 2011): 

 Daily rainfall input per quinary catchment: 

- Estimations of daily rainfall values for simulations under baseline 

historical climatic conditions. 

- Estimations of daily rainfall values for simulations with GCM derived 

present and future climate scenarios. 

Rainfall is generally considered to be the most important input into any 

hydrological model. 

 Daily temperature input per quinary catchment: 

- Estimations of daily values of maximum and minimum temperatures for 

simulations under baseline historical climatic conditions. 

- Estimations of daily values of maximum and minimum temperatures for 

simulations with GCM derived present and future climate scenarios. 

Daily maximum and minimum temperature values, derived from procedures 

described in detail by Schulze and Maharaj (2004), facilitate estimations to be 

made, either implicitly or explicitly, of solar radiation, vapour pressure deficit 

and potential evaporation (Schulze, 2008). Using these variables in addition to 

rainfall, as input into hydrological models such as ACRU, the generation of soil 

moisture content, runoff and/or irrigation demand becomes possible (Schulze et 

al., 2010b). 

 Estimations of daily values of reference crop evapotranspiration per quinary 

catchment: 

- Estimations of daily values of reference crop evapotranspiration for 

simulations under baseline historical climatic conditions. 
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- Estimations of daily values of reference crop evapotranspiration for 

simulations with GCM derived present and future climate scenarios. 

Methods of estimating potential evapotranspiration (Ep) range from complex 

physically based equations to relatively simple surrogates based on single 

variables such as temperature. The various methods all yield different estimates 

under different climatic conditions, and a reference potential evaporation (Er) 

therefore has to be selected as that evaporation against which other methods must 

be adjusted appropriately. In simulating the hydrological landscape with a 

vegetative cover and/or under irrigation, the physically based FAO (1992) version 

of the Penman-Monteith equation (Penman, 1948; Monteith, 1981) has now 

become the de facto international standard of what is termed reference crop 

evapotranspiration, replacing the A-Pan and other techniques (Schulze et al., 

2010b). 

 Soils information 

The ACRU model (Schulze, 1995 and updates) revolves around multi-layer soil 

water budgeting and therefore requires soils information as input. Being a 

threshold based model, ACRU needs input values on the following soils variables 

(Schulze et al., 2010b): 

- thickness (m) of the topsoil and the subsoil 

- soil water contents (m/m) at: 

 saturation (porosity) 

 drained upper limit (also commonly referred to as field capacity) 

 permanent wilting point (i.e. the lower limit of soil water 

availability to plants) 

- rates of saturated drainage from topsoil horizon into the subsoil, and from 

the subsoil horizon into the intermediate groundwater zone 

- erodibility of the soil (Schulze et al., 2010b). 

Values of these variables have been derived by Schulze and Horan (2008) using 

the AUTOSOILS decision support tool (Pike and Schulze, 1995 and updates) 

applied to the soils database from the Institute for Soil, Climate and Water (SIRI, 

1987 and updates) for each of the soil mapping units, called Land Types, which 

cover South Africa, on the basis that the hydrological properties of all the soil 

series making up an individual land type were area-weighted. For each quinary 

catchment the values of the hydrological soils variables required by the ACRU 



111 
 

model were derived from the land types identified in that quinary, again on an 

area-proportioned basis (Schulze et al., 2010b). 

 Baseline land cover information 

It is reported in Schulze et al. (2010b) that in order to assess impacts of land use 

or of climate change on hydrological responses, a baseline land cover is required 

as a reference against which to evaluate the impacts. For the RSA, Lesotho and 

Swaziland the 70 veld types delineated by Acocks (1988) have become the 

recognised baseline (i.e. reference) land cover for application in hydrological 

impact studies (Schulze, 2004). 

Based on a set of working rules, month-by-month hydrological attributes, 

developed by and given in Schulze (2004), were assigned to each of the 70 

Acocks veld types and were incorporated into the QCD. These attributes are 

(Schulze et al., 2010b): 

- the water use coefficient (Kcm) 

- interception loss per rain day (Il) 

- fraction of roots in the topsoil (RA) 

- a coefficient of infiltrability (c) dependent on rainfall intensity estimates 

- soil surface cover by litter (Cs%), an index of suppression of soil water 

evaporation by a litter / mulch layer. 

For each of the 5 838 quinaries in the database the spatially most dominant veld 

type was then selected as the representative baseline land cover (Schulze et al., 

2010b). 

From all of the above daily runoff could be computed using the climate input from the 

GCMs used and dam levels generated.  The projected dam levels of the Blydepoort Dam 

for the GCMs used in this study (present and future climate scenarios) are introduced to 

the DLP model as constraints through the irrigation water availability interphase. 

4.2.2 Whole-farm dynamic linear programming approach 

The main objective of the mathematical modelling exercise is to simulate the selected 

farming systems (case studies) with the best available information. Climate change 

scenario data are then imported into the models to study the impact on economic and 

financial vulnerability with no adaptation. In the second round of analysis adaptation 

strategies are tested to analyse their efficiency in reducing vulnerability. Linear 
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programming (LP) is one of the most practical agricultural economic tools to simulate 

farming systems and has been used by various South African researchers, e.g. Hancke 

and Groenewald, 1972; Van Rooyen, 1979; Brotherton and Groenewald, 1982.  Later 

researchers used dynamic linear programming (DLP) (Backeberg, 1984; Oosthuizen, 

1994; Maré, 1995; Louw, 1996; Louw and Van Schalkwyk, 1997; Haile et al., 2003).  

DLP is a mathematical technique that can be employed by management to determine the 

optimal utilisation of limited resources. It comprises the formulation of a model, which 

is solved mathematically to provide an optimal answer (Redelinghuis et al., 1985). In 

order to analyse a problem using DLP, it must be moulded into a particular structure that 

must at least contain the following components: 

 Objective – to obtain the best or optimal solution, i.e. maximizing profit. 

 Activities or decision variables which define what to do. 

 Constraints or restrictions that limit the availability of a resource. 

Therefore it is important that any attempt to simulate the farm system should include the 

objectives of the farm unit, the resources available to reach these objectives as well as 

the alternative activities to reach them. These elements are presented in the following 

conceptual framework below (see Figure 4.7). 

 

 
Figure 4.7:  Conceptual dynamic linear programming modelling framework 

Source:  Louw and Jooste (2006) 

TYPICAL WHOLE-FARM PLANNING MODEL

OBJECTIVE: 
Gross revenue minus

direct expenditure + overhead expenditure + household expenditure

RESOURCES:
- Land
- Labour
- Water
- Capital

ACTIVITIES:
- Dryland crop production
- Irrigated crop production
- Livestock production
- Crop and livestock selling activities
- Water buying activities
- Labour remuneration
- Short term loans
- Overhead expenditure
- Household expenditure
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The structure of a whole-farm planning model with the capability to simulate the impact 

of climate change should contain at least the following elements: 

 A description of producers’ economic behaviour (the objective function). 

 A description of production functions, and technology sets. 

 The relationship between climate (temperature and rainfall) and crop 

yield/quality. 

 The relationship between climate and the availability of irrigation water.  

 A specification of the market environment in which the producer operates. 

 A specification of the policy environment of the sector. 

The primary objective with economic planning is to establish the best choice between 

alternative uses of limited resources in order to maximise return on capital.  Independent 

of the scale of farming, five objectives must be reached: 

 Establish which plan reflects the best use of land, water, capital and human 

resources. 

 Establish the financial implications of the plan based on the expected future cash 

flow. 

 Establish the capital required and the time when needed from own and borrowed 

sources. 

 Analyse the complexity of marketing, financial and production management and 

the demands it will put on management capability. 

 Analyse the financial incentive to put the plan into operation. 

 

With this information it is possible to put forward the implications of alternative choices. 

The aim is to maximise return on capital. The plan put forward is not a guarantee for 

success but it is undoubtedly of help for better decision making. In farm planning the 

human element is the starting point: What are the objectives of the farmer, can the farm 

comply with these objectives and what are the financial consequences? Technology 

determines what is possible, economic analysis shows what is feasible and financial 

analysis shows how much money is needed and when.  Analysis and planning, therefore 

evaluate current performance as well as potential changes to this performance (Louw, 

1996). 

Evaluating the profitability and financial feasibility of farms within the context of climate 

change requires a high level of specialisation. The task is challenging and requires the 

analyst to integrate information regarding climate change, hydrology, crop irrigation 

requirements, crop yield and quality response to changing water and temperature, 
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infrastructural constraints, credit availability and input and output prices into the 

modelling framework in order to conduct a thorough feasibility analysis. The analyses 

are furthermore complicated by the stochastic (risky) and dynamic environment in which 

decisions are made. Mathematical programming techniques are pre-eminently suited for 

conducting this study of the financial vulnerability of farming systems without and with 

climate change adaptations. Modern programming languages such as GAMS (General 

Algebraic Modelling System) allow the modeller to realistically represent the link 

between crop production (yield and quality) and projected climate change.  

For the purpose of this study two generic types of DLP models were programmed in 

GAMS and then adapted for each of the regions. These are: 

 Irrigation model (applicable to LORWUA and Blyde River WUA case studies). 

 Dryland model with livestock (applicable to Moorreesburg and Carolina case 

studies). 

The sections below are brief descriptions of the models (not in mathematical terms). 

4.2.2.1 Irrigation DLP 

4.2.2.1.1 Description of the objective of households in mathematical terms 

The objective of households is to make a living out of farming. In quantitative terms this 

means that the farmer must at least be able to pay for: 

 operational expenditure 

 overhead expenditure  

 household expenditure.  

If there is any surplus left this can be invested to make provision for expansions and/or 

provision for risk. 

The objective functions of the LORWUA and Blyde River WUA case studies are 

calculated in two steps (b = region, tu = case study, ph = year): 

 Equation NDICALC(b,tu,ph) calculates the net disposable income per farm 

(b,tu) and per year (ph) 

Plus gross income from product sales 

Plus non farm income (if applicable) 

Minus direct allocated production costs 

Minus overhead cost 

Minus household cost 

Minus water tariffs 
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Minus pumping costs 

Plus loans (cash inflow) 

Minus payback of loans (cash outflow) 

Plus surplus (if any from the previous year) + interest on surplus 

Plus terminal values 

= EndB(b,tu,ph) 

 Objective function Z (quantified in mathematical terms) 

Z = Maximize sum (EndB(b,tu,ph)) 

Although two case studies (per region) are included in one model, all the calculations are 

done per case study. By including the two case studies in one model enables the user to 

use one climate data set to impose on both the farms and thereby save time to run 

scenarios. 

4.2.2.1.2 Activities/variables 

The variables include both short and long-term crop activities but no livestock activities. 

The variables included in the models are: 

 Z (total cumulative net cash balance per case study) 

 Area of crop production per year 

 Total crop area per LT crop per growth stage per farm per year 

 Total LT irrigation crop area for all regions 

 Total ST irrigation crop area for all region 

 Sum of total production volume per crop per farm 

 Irrigation crops total monthly water use in any specific year 

 Overhead expenditure per case study farm 

 Household expenditure per case study farm 

 Own capital in the first year per case study farm 

 Short term production loans per case study farm per year 

 Investment of surplus funds in per year 

 End balance at end of planning horizon 

 Terminal value of LT crops at the end of the planning horizon. 

4.2.2.1.3 Resource constraints 

Resource constraints included in the models are: 

 Irrigation land (area). 
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 Water delivery capacity (canal delivery constraint by month) – linked to monthly 

water availability depending on climate change. Also linked to the crop irrigation 

requirements (a function of climate scenarios). 

 Total water allocation (by year) – linked to climate scenarios. 

 Operational capital requirements (linked to the annual surplus available plus the 

maximum loans available if there is inadequate funds available from own 

sources). 

 Maximum loans. 

 Overhead costs – forced into the model and currently based on the existing 

overhead costs. 

 Household costs – forced into the model. 

 Non-farm income. 

 Minimum and maximum temperature thresholds. 

 Rainfall and temperature thresholds linked to yield. 

 Rainfall and temperature thresholds linked to both yield and quality. 

 Calibration constraints to trim the model in order to simulate the current farm 

structure – these are released when calculating the farming system’s adaptive 

capacity. 

4.2.2.2 Dryland with livestock DLP model 

The dryland model is similar to the irrigation model in many aspects.  Unique features 

are highlighted in the sections below. 

4.2.2.2.1 Description of the objective of households in mathematical terms 

The objectives in mathematical terms are exactly the same as for the irrigation model; 

however, the objective also includes maximizing livestock production within the 

limitation of natural veld carrying capacity, crop residue and own feed production.  

4.2.2.2.2 Activities/Variables 

The following variables are unique to the dryland and livestock model: 

Livestock variables 

 Present livestock numbers 

 Sell livestock products per annum 
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 Reproduction of livestock 

 Total number in specific year 

 Calculates maximum weight of livestock sales in kg 

 Calculates wool production in kg 

 Sums terminal values for livestock 

Feed transfer variables 

 Initial stock of feed 

 Feed bank transfer to period j+1 

 Purchase feed 

 Use of natural veld 

 Transfer of feed production to feed use 

 Total animal feed mix 

 Total stock plus production 

4.2.2.2.3 Resource constraints 

The resource constraints unique to the dryland livestock model are: 

 Minimum feed requirements in terms of dry matter, crude protein and energy per 

livestock unit 

 Dry matter production of feed and fodder crop per ha 

 Nutrient production (protein and energy) per tonne of dry matter 

 Transfer of dry matter (where possible) from one year to the next year 

The mathematical specification of the DLP model will be discussed in Chapter 5. 

4.2.3 Modelling interphases 

4.2.3.1 Introduction 

The development of interphases between the downscaled climate data sets which were 

applied in the CCCT, ACRU and SAPWAT3 models and the DLP model is of paramount 

importance. Not only do they enable a better understanding of the relative changes in the 

observed and projected climate, but they also make a substantial contribution towards the 

interpretation and the dissemination of the results. For the purpose of this project, four 

interphases were developed. They are: 

 The APSIM crop yield model – DLP model interphase 
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 The CCCT yield and quality model – DLP model interphase 

 The ACRU hydrological model - DLP model interphase 

 The SAPWAT3 crop irrigation requirement – DLP model interphase 

 An interphase to generate at random variation coefficients to be imposed on all 

the crops in the model where APSIM/CCCT models are not available. 

In the sections below each of the interphases is briefly discussed. 

4.2.3.2 APSIM crop yield model interphase  

APSIM crop models were used to simulate crop yields for different climate scenarios 

where available. These crops include: grapes (LORWUA) [only a generalised prototype 

model available], wheat (Moorreesburg) and maize (Carolina).  Where APSIM crop 

models were not available, the research team had to rely on expert knowledge to attempt 

to simulate the impact of climate change on these crops by applying crop critical climate 

thresholds to different climate scenarios (Section 4.2.1.2.2).   

Figure 4.8 illustrates the APSIM crop model interphase in GAMS file format.   

 

 
Figure 4.8:  APSIM crop model interphase – GAMS file format 

After normalization of the APSIM crop model results, the annual projected crop yields 

are imported into the DLP model through a link to the GAMS file which contains the 

crop yield information.  Table YSTACT (i,ph) in the figure above is the projected crop 

yield per annum derived from APSIM crop model results.  
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4.2.3.3 The CCCT yield and quality model interphase 

Crop models for annual crops are fairly straight forward (Crespo (2012); Midgley 

(2012)). However, there is a considerable gap in the knowledge and the technology to 

simulate the response of perennial crops to climate change.  The need for an alternative 

simulation method ultimately resulted in the development of the CCCT modelling 

technique, which proved to be a reliable tool for the purpose of this study. The output of 

the technique depends heavily on the quality of the input.  For this reason the input that 

went into the modelling was obtained from expert group discussions in the various case 

study areas. 

The downscaled climate data sets for the various GCMs feed into the CCCT model.  The 

basic output of the CCCT model is projected yield and quality (annually and per crop 

cycle) over the planning horizon for each GCM data set in this project specifically in 

respect of- 

 the present (observed) - 1971 to 1990, and 

 the intermediate future - 2046 to 2065. 

The output of the CCCT model (projected annual yield and quality) feeds into the DLP 

model.  

The following section gives an overview of the different elements in the modelling 

process. 

Similar to Hoffmann’s (2010) approach, the minimum and maximum climate thresholds 

(temperature and rainfall) for all the important crops were identified during a validation 

workshop and through expert group discussions.   

These climate thresholds are used as input to the CCCT model, which is then run with 

different climate data sets.  The model calculates the number of times that each critical 

threshold is breached.  A factor (positive or negative) is assigned to each critical 

threshold, which implies that the crop yield/quality will be adjusted each time a threshold 

is breached. 

Table 4.2 reflects the crop critical climate thresholds for citrus (grapefruit) in the Blyde 

River WUA area as well as the expected impact on yield and/or quality. 
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Table 4.2:  Example of Blyde River WUA citrus (grapefruit) critical climate 

thresholds 

 

The following procedures are then executed: 

Step 1 

The daily temperature and rainfall for each climate change scenario per planning horizon 

(present [1971 – 1990] and intermediate future [2046 – 2065]) as received from the 

climatologists are converted to a pivot table in Excel.  This includes daily data for five 

downscaled climate models (GCMs). The data are then processed through a procedure 

where the threshold breaches for temperature and rainfall are identified. 

The threshold breach results for a specific crop are summarised into one table (see Table 

4.2 above and Table 4.3 below). The yield/quality is then penalised with a certain 

percentage according to the breaches of each threshold. In this specific model all the 

threshold breaches have a negative effect on the yield/quality. Owing to a lack of positive 

factors, a dummy scaling factor is used to normalise the data, without disturbing the 

trends.  The combined effect of all the threshold breaches that occurred in that specific 

year is then calculated.  

For yield calculation, the DLP model provides for 19 levels of impact ranging from -50% 

to plus 50% at intervals of 5% to 10% (which can easily be changed). During the 

procedure any number from 1 to 19 is allocated in the event that the climate condition 

exceeds the threshold. These are converted into tables for each crop (it can be any 

number) that is compatible with the GAMS program. 

Similar to the yield calculation, the impact of climate change on quality is calculated.  

The DLP model provides for 10 levels of impact ranging from -40% to plus 50% of the 

base quality (price).  The results are summarised in a table to be fed into the DLP model. 

Critical climate thresholds

Yield 

penalty 

factor

Quality 

penalty 

factor

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept -0.40 0.00

Tmxd >35 ⁰C and RH < 30% for 2 days Sept -0.40 0.00

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept -0.40 0.00

Fruit drop (Nov/Dec) >7 days of Tmxd > 36 ⁰C and RH < 40% -0.30 -0.10

2 ⁰C warmer in May - colour deteriorates 0.00 -0.04

During picking  temp > 36 ⁰C - increase rind problems 0.00 -0.01

>14 days continuous rain during picking (autumn) causes leaf wetness and overripe fruit 0.00 -0.10
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For illustration purposes, quality scaling as a result of climate change will be illustrated 

in the rest of this section.  Table 4.3 presents the process to arrive at a quality scaling 

code due to temperature and rainfall threshold breaches.  For each year under 

consideration the quality deviation from the base quality (realistic price) is incorporated 

in the respective row e.g. for 2047 there is a 25% negative impact and a 5% positive 

impact (scaling dummy). The net effect is therefore -20% which results in a quality 

scaling Code 3 which GAMS will read as 80% x base quality. See Step 2. 

Table 4.3:  Allocation of quality deviation per code derived from Step 1  

 

The GAMS program now uses the scaling code number in Table 4.3 and applies the 

adjustment factor in Table 4.4 to determine with how much the model must 

increase/decrease the base quality (price).  It should be clear that by following this 

procedure it is possible to trace back the specific reason why the experts were of the 

opinion that the quality will decrease in a specific year. 

Step 2 

In this step a scaling percentage is attached to the quality scaling codes which were 

calculated in Step 1.  The quality code is adjusted by allocating a model code of 1 to 9 to 

the event (where 5 means no change and the others are four factors negative and four 

factors positive). 

  

Climate 

impact 

quality 

scaling

Tmxd > 40 

⁰C and RH 

< 30% for 2 

days Sept

Tmxd >35 

⁰C and RH 

< 30% for 2 

days Sept

Tmxd > 35 

⁰C and RH 

< 20% for 2 

days Sept

Fruit drop 

(Nov/Dec) 

>7 days of 

Tmxd > 36 

⁰C and RH 

< 40%

2 ⁰C warmer 

in May - 

colour 

deteriorates

During 

picking  

temp > 36 

⁰C - 

increase 

rind 

problems

>14 days 

continuous 

rain during 

picking 

(autumn)

Scaling 

dummy

Temp 

Quality 

Scaling 

factor

Rainfal 

Quality 

Scaling 

factor

Temp & 

Rain 

Quality 

Scaling 

factor

Climate 

model 

Quality 

scaling 

code

2046     -0.04 -0.1875 0.05 -0.1775 -0.1775 3

2047     -0.04 -0.21 0.05 -0.2 -0.2 3

2048     -0.04 -0.1425  0.05 -0.1325 -0.1325 4

2049     -0.04 -0.1875  0.05 -0.1775 -0.1775 3

2050      -0.15  0.05 -0.1 -0.1 4

2051     -0.04 -0.1725  0.05 -0.1625 -0.1625 3

2052      -0.12  0.05 -0.07 -0.07 4

2053     -0.04 -0.21  0.05 -0.2 -0.2 3

2054  0   -0.04 -0.1725  0.05 -0.1625 -0.1625 3

2055     -0.04 -0.1875  0.05 -0.1775 -0.1775 3

2056     -0.04 -0.15  0.05 -0.14 -0.14 4

2057      -0.18  0.05 -0.13 -0.13 4

2058     -0.04 -0.165  0.05 -0.155 -0.155 3

2059     -0.04 -0.18  0.05 -0.17 -0.17 3

2060     -0.04 -0.1875  0.05 -0.1775 -0.1775 3

2061     -0.04 -0.21  0.05 -0.2 -0.2 3

2062     -0.04 -0.15  0.05 -0.14 -0.14 4

2063      -0.1425  0.05 -0.0925 -0.0925 4

2064     -0.04 -0.18  0.05 -0.17 -0.17 3

2065     -0.04 -0.165  0.05 -0.155 -0.155 3



122 
 

Table 4.4:  Allocating a code to scale quality (price) of crops 

 

For example, if a Code 5 is allocated the GAMS model will establish that there is zero 

change in quality/price.  Figure 4.9 illustrates the CCCT quality model interphase with 

the DLP model in GAMS file format.  A Code 4 will result in the model changing the 

quality of, for example, crop CitPom (Citrus Grapefruit) to 80% of base quality (price). 

 

 
Figure 4.9:  CCCT quality model interphase – GAMS file format 

Figure 4.10 illustrates the CCCT yield model interphase with the DLP model in GAMS 

file format.  A Code 4 will result in the model changing the quality of, for example, crop 

CitPom (Citrus Grapefruit) to 70% of base yield. 

 

Scaling code 1 2 3 4 5 6 7 8 9 10

ManTA 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ManKent 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ManSens 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ManKeitt 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

CitPom 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

CitVal 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

CitLem 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ManA 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

CitA 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
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Figure 4.10:  CCCT yield model interphase – GAMS file format 

The procedure described here is a practical solution to estimate yield and quality variation 

based on critical climate thresholds for crops. It can be very useful where crop models 

either do not exist, or where there is doubt about the reliability of the crop models or 

where crop models do not account for the quality of produce. 

4.2.3.4 The ACRU hydrological model interphase   

The present and intermediate daily climate values from downscaled GCMs were used in 

the ACRU model to project future dam levels, which form the base to calculate the annual 

allocation of irrigation water quotas to farmers.  The projected total annual irrigation 

water quota (m3) allocated to a farming system and monthly canal capacity is included in 

the DLP model as a resource constraint. 

The ACRU hydrological model interphase and canal capacity restraint in GAMS code 

file format are illustrated in Figure 4.11. 

 
Figure 4.11:  Annual irrigation quota allocation and monthly canal constraint – 

Blyde River WUA example (GAMS code) 
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4.2.3.5 The SAPWAT3 crop irrigation requirements interphase  

The SAPWAT 3 program was used to determine changing crop irrigation requirements 

under present and future climate scenarios using downscaled climate data of the various 

GCMs used in this study.  The monthly irrigation water requirements per crop per growth 

stage are included in the DLP model (see Figure 4.12 - crop irrigation requirements 

interphase in GAMS code file format). 

 

 
Figure 4.12:  Monthly crop irrigation requirements – Blyde River WUA example 

(GAMS code) 

4.2.3.6 An interphase to generate at random variation coefficients   

There are several smaller crops where very little information on the thresholds is 

available. However, it is possible to impose decreases or increases in variation in GAMS 

through a very simple but useful function in the program. This function can be 

incorporated to generate at random variation in yield from a base yield. The upper and 

lower variation can be changed to increase or decrease variation based on estimates from 

the climate data. For example, if a climate change scenario indicates that the standard 

deviation from the base is increasing (for both temperature and rainfall or for a 

combination thereof), it can be interpreted as an increase in climate variability and also 

possibly an increase in yield variability. 
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Figure 4.13 illustrates a random variation in yield over a twenty-year projected period 

with -10% and 10% as the lower and upper boundaries.  

 

 
Figure 4.13:  Relative variation in yield (-10% to 10%) 

Variation can simply be increased by increasing the upper and lower boundary.  Also, if 

the resilience of a farming system needs to be tested it is possible to increase the 

pessimistic boundary to establish whether or not the farm will still be economically 

viable. 

This tool is extremely useful in studying the impact of climate variability on farming 

systems in a realistic way considering the many uncertainties surrounding climate change 

predictions. 

4.2.4 Financial Vulnerability Assessment model 

The output of the DLP whole-farm model feeds into an excel-based financial assessment 

model.  In order to determine the financial vulnerability of the farming system, a set of 

criteria provided for in the financial model are applied. 

 These criteria are: 

 IRR 

 NPV 

 Cash flow ratio 
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 Highest debt ratio  

 Highest debt 

Refer to Section 2.7.2 for definitions for each of the financial criteria. 

The financial vulnerability assessment in respect of each case study includes individual 

assessment runs for present and intermediate climate scenarios for each of the five GCMs 

included in the study.  The results for each case study will be discussed in Chapter 6. 

4.3 Chapter summary 

In Chapter 4 the development of the integrated climate change model was discussed.  It 

comprises a layman’s description of the integrated model and the four modules that form 

the pillars of the integrated climate model.  These four modules are: (a) climate change 

impact modelling, (b) DLP model, (c) modelling interphases, and (d) the Financial 

Vulnerability Assessment model. 

Climate change impact modelling comprises the modelling of empirically downscaled 

data climate data which impacts on crop yield and quality, changing crop irrigation 

requirements as a result of climate change and hydrological modelling to determine the 

availability of irrigation water due to changing weather patterns.  

Chapter 4 outline the role of GCMs, empirical downscaling, the APSIM crop modelling 

and the newly developed CCCT modelling technique.  The contribution of the ACRU 

hydrological model and the SAPWAT3 model, as well as where the respective modelling 

outputs fit into the integrated climate model are also described. 

The objective, purpose and reasons for using the DLP modelling technique in the study 

are discussed in detail. The primary objective with the economic planning for a farming 

system is to establish the best choice between the alternative uses of limited resources to 

maximise return on capital invested. Independent of the scale of farming, five objectives 

must be reached: 

 Establish which plan reflects the best use of land, water, capital and human 

resources. 

 Establish the financial implications of the plan based on the expected future cash 

flow. 
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 Establish the capital required and the time when needed from own and borrowed 

sources. 

 Analyse the complexity of marketing, financial and production management and 

the demands it will put on management capability. 

 Analyse the financial incentive to put the plan into operation. 

Mathematical programming techniques are pre-eminently suited to conducting the study 

of the financial vulnerability of farming systems without and with climate change 

adaptations. 

The modelling interphases that link the output from the climate change modelling, 

hydrological modelling, crop irrigation requirements modelling and an interphase that 

generate at random variation coefficients, are discussed and graphically illustrated. 

The Financial Vulnerability Assessment model comprises a set of criteria namely: IRR, 

NPV, cash flow ratio, debt ratio and highest debt. 

The mathematical specification of the whole-farm DLP and Financial assessment model 

follows in Chapter 5.    
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CHAPTER 5 : MATHEMATICAL SPECIFICATION OF THE DLP AND 

FINANCIAL VULNERABILITY ASSESSMENT MODELS 

______________________________________________________________________ 

 

5.1 Introduction 

Chapter 4 discussed the integrated climate change model of which the Dynamic Linear 

Programming (DLP) model forms an integral part.  The reader is referred to Section 4.2.2 

for more detail regarding the DLP model and Section 4.2.4 for the Financial Vulnerability 

Assessment model.  This Chapter specifically deals with the mathematical specification 

of the DLP.   

The following section expounds the structural outlay of the DLP model with the various 

components. A section on the basic algebraic terminology follows. The third section 

presents the models mathematically and the chapter is concluded with a summary of the 

special characteristics of the models. 

For the sake of brevity the two DLP models (irrigation model and dryland model) will 

be discussed under the same headings.  The main discussion will be in respect of the 

irrigation model followed by the additional info regarding the dryland model.  For 

example, after the sets structure for the irrigation model the additional sets, which are 

included in the dryland model, will be stated in a subsection.  The LORWUA and 

Moorreesburg case study models will be used to illustrate the specifications of the 

respective irrigation and dryland models.  

5.2 Mathematical specification of the DLP model 

5.2.1 Basic algebraic terminology 

The DLP model was developed in the GAMS.  Brooke et al. (1998) define the basic 

components of a GAMS model as: 

 sets 

 data 

 variables 

 equations. 

 

The following sections will provide the reader with a short description of the meaning of 

each of these components (Brooke et al. 1998 and Louw, 2001). 
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5.2.1.1 Sets 

Sets are the basic building blocks of a GAMS model, corresponding exactly to the indices 

in the mathematical representations of models. The members of sets are defined as 

elements. For example, if:  

I = crops then wine grapes, table grapes, citrus, etc., are defined as the elements of set I 

and they are denoted as i. It should be clear that the elements in set I could be infinite. It 

can sometimes be useful to have subsets for a set. For instance, if it proves to be necessary 

C can be declared as a subset of I with element citrus as the only element in the subset.  

Sets can also be used to relate elements to each other. For example, H is the set for 

irrigation intensity with elements (h) dryland, optimal, supplemental and deficit irrigation 

and L the set for land type with elements (l) dryland and irrigation. It may be useful to 

create a set h to l, meaning that optimal, supplemental and deficit irrigation relates to the 

irrigation land type and dryland production relate to the dryland land type. 

5.2.1.2 Data 

Data can be captured into a model through tables, lists and direct assignments, all referred 

to as parameters in this study. Each parameter is given a name. The data in a table can 

either refer to all the elements of a set or to specific data items not declared as sets or 

elements of sets. In the latter case the data in a table is indicated by using asterisks (*) 

where the asterisks denote any of the data items in the table (e.g. labour, water, yield).  

To clarify the meaning of * in a parameter the following are provided as examples: 

Table Overhead(b,t,*) Overhead and household costs of farm t in region b 

  Household Overheads 

HoedS.1 300 000 231 099 

HoedS.2 600 000 639 951 

 

When the parameter Overhead(b,t,*) is stated in an equation to refer to household or 

overhead expenses, it will be used as Overhead(b,t,"Household") and 

Overhead(b,t,"Overheads") respectively. 
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5.2.1.3 Variables 

The decision variables (or endogenous variables) are also given names and must be 

declared as variables through a variable statement. A z variable must be declared to serve 

as the quantity to be minimised or maximised. 

5.2.1.4 Equations 

The power of algebraic modelling languages like GAMS is most apparent in the creation 

of the equations and the inequalities that comprise the model under construction. This is 

because whenever a group of equations or inequalities have the same algebraic structure, 

all the members of the group are created simultaneously, not individually (Louw, 2001). 

The DLP model operates by maximising an objective function subject to a set of 

mathematical constraints. The set structure, parameters and variables are presented 

below, followed by the objective function and the equations (constraints) of the model. 

Parameters and scalars are presented in upper case and variables in lower case. 

5.2.2 Set structure – irrigation model 

Stating the set first and then the elements within each of the sets provides the set structure. 

If not in table format, the abbreviation for elements is provided in brackets.  C = set of 

all farm enterprises, elements of which are donated as c. The enterprises are presented in 

Table 5.1. 

Table 5.1:  Elements of the set C – irrigation model 

 

Description Element

Raisons Irrigation raisins

Tgrape Irrigation table grapes

Rwine Irrigation red wine cultivars

Wwine Irrigation white wine cultivars

RaisinsA Irrigation raisins with adaptation stategies

TgrapeA Irrigation table grapes with adaptation strategies

RwineA Irrigation red wine cultivars with adaptation strategies

WwineA Irrigation white wine cultivars with adaptation strategies

GBeans Irrigation green beans

Buttern Irrigation butternuts

Peas Irrigation peas

Potat Irrigation potatoes

Cabbag Irrigation cabbage

Gpep Irrigation greenpepper

Gsque Irrigation gem squash

Tomat Irrigation tomatoes

Onions Irrigation onions
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I = set of all crop enterprises, elements are donated as i. I is a subset of C. Elements 

and subsets of I are listed in Table 5.2. Enterprises are grouped into subsets: 

 Ioji  is the set for cash term crop enterprises  

 Imji  is the set of all long-term crop enterprises  

 Iv  is the set of vegetable enterprises 

 

Table 5.2:  Elements and subsets of I – Irrigation model 

 

L = set of land types with elements denoted by l. There are only two land types: 

Irrigation land (Irr) 

Dryland (Dryland) 

J = set of all water use types with elements donated by j. There is only one irrigation 

region included in the model (Clanw).  The model however makes provision for other 

uses e.g. urban region, the ecology, reserve, etc. 

T = set of possible users, elements of which are denoted as t. The LORWUA model 

includes 2 case study farms. 

M = set of months, elements of which are denoted by m (January to December). 

Sm = a sub-set of m of summer months, elements are denoted as sm (October to 

March). 

Wm = a sub-set of m of winter months, elements are denoted as wm (April to 

September). 

Description Element Ioji Imji Iv

Raisons Irrigation raisins *

Tgrape Irrigation table grapes *

Rwine Irrigation red wine cultivars *

Wwine Irrigation white wine cultivars *

RaisinsA Irrigation raisins with adaptation stategies *

TgrapeA Irrigation table grapes with adaptation strategies *

RwineA Irrigation red wine cultivars with adaptation strategies *

WwineA Irrigation white wine cultivars with adaptation strategies *

GBeans Irrigation green beans * *

Buttern Irrigation butternuts * *

Peas Irrigation peas * *

Potat Irrigation potatoes * *

Cabbag Irrigation cabbage * *

Gpep Irrigation greenpepper * *

Gsque Irrigation gem squash * *

Tomat Irrigation tomatoes * *

Onions Irrigation onions * *

Item Subsets of I
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GSL = growth stage, elements of which are denoted by g (1 to 20). 

Th = total time serie, elements of which are denoted by (1992 to 2031). 

Ph = planning horizon, elements of which are denoted by ph (2012 to 2031). 

Py = previous years, elements of which are denoted by py (1992 to 2011). 

Fy = first year of the planning horizon, (2012). 

Sa = savings of surplus cash flow (Invest). 

Lo = debt required to finance operations (Stloan). 

Oh = set of overheads, elements are denoted as Oh. 

Household cost (Housh) 

Overhead costs (Overh) 

Res = set of resources for crops, elements are denoted as Res. 

Input cost (Cost) 

Produce price (Price) 

Produce yield (Yield) 

Csc = scaling of yield due to climate impact, elements are denoted as Csc (1 - 19). 

Qsc = scaling of quality due to climate impact, elements are denoted as Qsc (1 - 10). 

H = set of irrigation intensity possibilities, elements which are denoted as h. There are 

four levels: 

Optimal irrigation   (Opt) 

Supplemental irrigation  (Supp) 

Deficit irrigation   (Defc) 

Supplemental irrigation is defined as three to four irrigations per season. Deficit irrigation 

is defined as lower intensity irrigation over the whole season with the exception of 

irrigation during specific critical phases of the production season (for instance during 

blooming, fruit set and post-harvest irrigations). However, strict quality demands by the 

fresh produce markets preclude the possibility to do supplemental or deficit irrigation on 
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some crops.  It is for instance not possible to produce high quality table grapes, prunes 

and vegetables under lower intensity irrigation (Louw, 2001). 

h_to_l(h,l) = a set of relating irrigation intensity to land type 

Optimal, deficit and supplemental irrigation intensities relate to irrigation land 

((Opt,Supp,Defc).Irrigat) and dryland relates to dryland (Dry.Dry). 

5.2.2.1 Set structure – dryland model 

Similar to the irrigation model, C = set of all farm enterprises, elements of which are 

donated as c. The enterprises are presented in Table 5.3. 

Table 5.3:  Elements of the set C – dryland model (Moorreesburg) 

 

I = set of all crop enterprises, elements are donated as i. I is a subset of C. Elements 

and subsets of I are listed in Table 5.4.  Enterprises are grouped into subsets: 

 Ig  is the set of grain crops 

 If  the set of feed crops  

 Ic  is the set of no-feed crops 

 Iw  is the set of wheat crops 

 

 

 

 

Description Element

Whwmo Wheat-wheat-medics-saltbush (old man) crop rotation with conventional cropping system

Whwm Wheat-wheat-medics crop rotation with conventional cropping system

Whmon Wheat monoculture production with conventional cropping system

Whcl Wheat-canola-lupin crop rotation with conventional cropping system

Canola Canola with conventional cropping system

Lupin Lupin with conventional cropping system

Medics Medics with conventional cropping system

Whwmoca Wheat-wheat-medics-saltbush (old man) crop rotation with conservation agricultural practices

Whwmca Wheat-wheat-medics crop rotation with conservation agricultural practices

Whmonca Wheat monoculture production with conservation agricultural practices

Whclca Wheat-canola-lupin crop rotation with conservation agricultural practices

Canolaca Canola with conservation agricultural practices

Lupinca Lupin with conservation agricultural practices

Medicsca Medics with conservation agricultural practices

HpVeld Natural veld

Sheep Mutton and wool production

Lick Sheep lick

LHay Wheat hay
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Table 5.4:  Elements and subsets of I – Dryland model (Moorreesburg) 

 

Note that for the remainder of the section, only sets that appear in the dryland model and 

not in the irrigation model, are discussed. 

P = set of by-products, elements include: 

Grain1 = Grain 1st grade 

Grain2 = Grain 2nd grade 

Grain3 = Grain 3rd grade 

Cp = a sub-set of p of cash products, elements are denoted as cp.  Elements include: 

Grain1, Grain2, Grain3 and Hay 

Qp = a sub-set of p of product quality, elements are denoted as qp.  Elements include:  

Grain1, Grain2 and Grain3 

Hp = a sub-set of p of small grain hay product, elements are denoted as Hp. 

V = a sub-set of i of veld camps, elements are denoted as v. 

A = a sub-set of c of livestock production, elements are denoted as a. Mutton and wool 

production are included. 

Ap = a set of livestock products, elements are denoted as ap.  Elements include:  Live 

sheep and wool. 

At = a sub-set of ap of terminating livestock products, elements are donated as at. 

Description Element gi  fi  ci  wi  

Whwmo Wheat-wheat-medics-saltbush (old man) crop rotation with conventional cropping system * * *

Whwm Wheat-wheat-medics crop rotation with conventional cropping system * * *

Whmon Wheat monoculture production with conventional cropping system * *

Whcl Wheat-canola-lupin crop rotation with conventional cropping system * *

Canola Canola with conventional cropping system * *

Lupin Lupin with conventional cropping system * *

Medics Medics with conventional cropping system *

Whwmoca Wheat-wheat-medics-saltbush (old man) crop rotation with conservation agricultural practices * * *

Whwmca Wheat-wheat-medics crop rotation with conservation agricultural practices * * *

Whmonca Wheat monoculture production with conservation agricultural practices * *

Whclca Wheat-canola-lupin crop rotation with conservation agricultural practices * *

Canolaca Canola with conservation agricultural practices * *

Lupinca Lupin with conservation agricultural practices * *

Medicsca Medics with conservation agricultural practices *

Item Subsets of i
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N = a set of nutrients, elements are denoted as n.  Elements include:  Bulk, TDN and 

TRP. 

Fb = a sub-set of p of feedbank possibilities, elements are donated as fb.  Elements 

include:  Grain1, Grain2, Grain3 and hay. 

F = a sub-set of i of purchase feed, elements are donated as f.  Elements include:  Lick 

and Lhay. 

5.2.3 Parameters 

Parameters are the exogenous data supplied to the model and consist largely of the input 

coefficients, restriction values (right-hand side values) and scalars for the model. In the 

description of the parameters, the sets are not always described in the sequence that they 

appear in the parameter. This is done to make the description logical. It will, for example, 

not make much sense to describe ALANDbtl as region b farm t availability of landtype l. 

Instead, availability of land type l to farm t in region b makes more sense. The irrigation 

model (LORWUA) has the following parameters: 

TYPDjt  Defines water users t in region j 

ALANDbtl  Availability of land type l to farm t in region b 

AREAUim  Monthly land requirement for land type of crop i in month m 

YEARSOCi  Lifespan of crop i 

RESCRRESigsll* Operating cost and yield per hectare of crop i for land type l and 

growth stage gsl 

RESCRGSLigsllph Area crop production of crop i per growth stage gsl for land type l 

over planning horizon ph 

RESCROTHi* Produce price per unit of crop i  

PRICESCALEilt Scale produce price per unit of crop i for land types l  

WCigslm  Water requirement of crop i in period m per growth stage gsl 

TRADJUSTiph Scaling of yield due to temperature threshold conditions for crop i 

over planning horizon ph (for CCCT modelling) 

TEMPRAINSCiCsc Scaling of yield for crop i due to climate impact (for CCCT 

modelling) 

PQUALITYSCiCsc Scaling of quality for crop i due to climate impact (for CCCT 

modelling) 
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PRICEADJUSTiph Attach climate threshold breaches to price adjustment of crop i 

over planning horizon ph (for CCCT modelling) 

YSTACTigsllph Yield projection for crop i per growth stage gsl for land types l 

over planning horizon ph (for APSIM crop modelling) 

WTbt  Scaling factors for water requirements in region b on farm t 

IRINTih  Irrigation intensity possibilities h for crop i  

IRINTSCmh  Scaling of irrigation intensity possibilities h per month m  

IRINCSCih  Scaling of the gross margin of crop i when using irrigation 

intensity h 

TOTWDEFihbth Calculation of total deficit and supplemental water for irrigation 

intencity h for crop i in region b over time serie th 

OVERHEADbt* Overhead and household expenses of farm t in region b 

TYPibt   Defines enterprise combinations i for farm t in region b 

MAXAREAilbt      Maximum base amount of enterprise i for land type l on farm t in 

region b  

MAXGRCTbt*   Maximum base amount for a combination of vegetables of farm t 

in region b where * denotes the vegetable area 

BUDSCibt  Scaling of budget information for enterprise i on farm t in region 

b 

CRBDi* Budget data coefficients * for crop i.  The * denotes yield (Yield) 

and present value of gross margins (PV) 

INTSTlo  Real interest rate on loans  

INTINVsa  Real investment rate on investments 

MAXLOANbtlo Maximum short term loan lo per user t  

MAXOCbtph  Maximum own capital per user t over planning horizon ph 

TERMVALilgsl Terminal values for perennial crops i per growth stage gsl per land 

type l 

AREASPLITbtipy Production of perennial crops i farm t in region b for previous years 

py 

VERDISKTph  Calculates NPV of cash flow 

CANALCAPmbt Canal capacity per month m in region b on farm t 

LOBND  Relative lower bound for flexibility constraints 

UPBND  Relative upper bound for flexibility constraints 

WENTITLEbt Area allocation in region b for farm t 
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WCigslm Irrigation requirements of crop i per hectare per growth stage gsl 

per month m 

TOTWALLOCbtph Total annual water allocation in region b on farm t over planning 

horizon ph 

TRYIELDCALCigsllPh Calculates yield of crop i per growth stage gsl per land type 

l over planning horizon ph due to threshold breaches – Step 1 (for 

CCCT modelling) 

YIELDCALC2igsllPh Calculate yield of crop i per growth stage gsl per land type l over 

planning horizon ph due to threshold breaches – Step 2 (for CCCT 

modelling) 

PRICESETiphCsc Calculate price set due to climate threshold condition csc for crop 

i over planning horizon ph (for CCCT modelling) 

PRICEQUALilph Calculate annual price of crop i per land type l over planning 

horizon ph due to quality considerations 

5.2.3.1 Parameters – dryland model (Moorreesburg) 

The following unique parameters are exclusive to the dryland model and not already 

specified in the irrigation model: 

Veldareav Calculate maximum dry matter yield of veld v 

OSipPh Specify begin stocks of feed p in tonne 

ESVip Calculate value of end stocks of feed p 

PRBip Declare production possibilities by-products p 

Pfeedprfp Specify prices of purchased feed fp per tonne 

AninaPhRes Specify inputs for animal enterprises a 

TermvLSa Calculate terminal value for livestock a 

Apricea Specify price per kg for livestock a products  

YAaap Calculate yield for livestock products ap in kg 

MaxliveaPh Specify maximum present livestock a numbers 

LiveGa Limit annual growth in livestock a numbers 

LiveSa Limit maximum livestock a selling percentage 

NRCna Specify livestock a groups nutrient n requirement per unit (%) 

INCipa Specify maximum inclusion levels of nutrients n and by-products 

p 
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NCipn Specify nutrient n and by-products p contents in percentage 

QDPha Specify feed quantity demanded per stock unit a in tonne per day 

FBPOSip Declare feed bank possibilities of by-products p 

YSTip Crop i by-products p yield in tonne 

TRCscCalciphcsc Calculate set for yield impact of climate 

TRYIELDCALCilph  Calculate yield based on climate thresholds Step 1 

YIELDCALC2ilpph Calculate yield based on climate thresholds Step 2 

TOTYIELDilph Calculate yield for Grade 1 to Grade 3 products 

5.2.4 Variables 

The LORWUA irrigation model contains two types of variables. They are described in 

terms of the variables contained in the objective function and the agricultural production 

variables. 

5.2.4.1 Variables included in the objective function 

The variable included in the objective function is: 

z Total welfare (objective function value) 

 

5.2.4.2 Agricultural production variables 

The agricultural production variables are the building blocks for the construction of the 

case study farms in the model. For the irrigation model (LORWUA), they are the 

following: 

crihbtth Area of crop i grown with irrigation intensity h on farm t in region 

b for the total time serie th 

crILTtotbtMjith Total long-term crop Mji on farm t in region b for the total time 

serie th 

TotGSLMjibtgslph Total long-term crop Mji per growth stage gsl on farm t in region 

b for the planning horizon ph 

crISTtotbtOjith Total cash crop Oji on farm t in region b for the total time serie th 

crILTtMjiph Total long-term irrigation crop Mji for all regions over planning 

horizon ph 

crISTtOjiph Total irrigation cash crop Oji for all regions over planning horizon 

ph 
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 RCPcbtph Sum of regional production volume for crop c for region b for the 

planning horizon ph 

TCPcph Sum of total production volume for crop i for all regions over 

planning horizon ph 

TFMWbtmph Monthly m water demand for farm t in region b for the planning 

horizon ph 

TFAWbtph Total annual irrigation water demand for farm t in region b for the 

planning horizon ph 

OCbtph Overhead costs for farm t in region b for the planning horizon ph 

HCbtph Household costs for farm t in region b for the planning horizon ph 

Owncapbtph Own capital in the first year for farm t in region b 

Loanstbtloph Short term production loan lo for farm t in region b for the 

planning horizon ph 

Investmntbtph Investment of surplus funds for farm t in region b for the planning 

horizon ph 

Endbt End balance at end of planning horizon for farm t in region b 

EndInvbt End investment for farm t in region b 

EndIncbt End income for farm t in region b 

Tvaluesbt Terminal values at the end of the planning horizon for farm t in 

region b 

5.2.4.3 Agricultural production variables – dryland model (Moorreesburg) 

The following unique production variables are exclusive to the dryland model and not 

specified in the irrigation model: 

CSipph            Sell by-products p of cash crops i over planning horizon ph  

Livebegaph         Present livestock a numbers over planning horizon ph 

LSTpurchaph        Livestock a purchases over planning horizon ph 

Livesellaph         Sell livestock a over planning horizon ph 

Livereproaph       Reproduction of livestock a over planning horizon ph 

LSTTOTaph         Total number of livestock a in specific year over planning horizon 

ph 

LTAPaapph         Calculates weight of livestock products ap sales (kg) per year over 

planning horizon ph 
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WoolSaapph        Calculates wool production (kg) of livestock a in specific year 

over planning horizon ph 

TermLSvala         Sums terminal values for livestock a 

FBstockipph       Initial stock of feed ip 

Fbtripph           Feed bank transfer to period j+1 

PFipaph          Purchase feed ip for livestock a in specific year over planning 

horizon ph 

Veldipaph        Use of natural veld ip for livestock a in specific year over planning 

horizon ph 

AFRipaph         Transfer of feed production ip to feed use in specific year over 

planning horizon ph 

TAFRaph           Total livestock a feed mix in specific year over planning horizon 

ph 

TOTTPfcpph      Total stock fc plus feed production p in specific year over planning 

horizon ph 

 

5.2.5 Objective function 

The objective is to maximise the aggregated net disposable income (NDI) of case study 

farms t in region b. 

max 𝑍 = 𝑛𝑑𝑖𝑐𝑎𝑙𝑐 

Where ndicalc is the aggregated net disposable income of farm t in region b. 

𝑛𝑑𝑖𝑐𝑎𝑙𝑐 = ∑ 𝑛𝑑𝑖  

𝑝ℎ

𝑏𝑡

 

5.2.6 Equations 

The agricultural production equations are typical of those normally used in whole-farm 

planning models.  This section discusses these equations in more detail. 

5.2.6.1 Land use and production equations – irrigation model (LORWUA) 

Constraint 1 aggregates the crop area for all crop types and irrigation levels in each 

region and soil type and should be less than or equal to the area of each soil type (dryland 

or irrigation) in each region. 
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∑ 𝑐𝑟    ≤    𝐴𝐿𝐴𝑁𝐷 𝑏𝑡𝑙   

𝑏𝑡𝑙

𝑖𝑡

 

Constraint 2 aggregates the total regional area under long-term crops in region b. 

𝑇𝑜𝑡𝐿𝑇𝑐𝑟𝑜𝑝𝑀𝑗𝑖 = ∑ 𝑐𝑟  

𝑀𝑗𝑖

𝑏𝑡𝑇ℎ

 

Constraint 3 aggregates the total crop per growth stage per annum. 

𝑇𝑜𝑡𝐺𝑆𝐿𝑐𝑎𝑙𝑐𝑀𝑗𝑖 = ∑ 𝑐𝑟  

𝑀𝑗𝑖

𝑏𝑡𝑔𝑠𝑙ℎ𝑇ℎ

 

Constraint 4 aggregates the total regional area under cash crops in region b for all 

technologies. 

𝑇𝑜𝑡𝑆𝑇𝑐𝑟𝑜𝑝𝑂𝑗𝑖 = ∑ 𝑐𝑟  

𝑂𝑗𝑖

ℎ𝑏𝑡𝑝ℎ

 

Constraint 5 represents the regional production of all crops and this should be equal to 

the sum of the crop production on all typologies, land types and irrigation levels in each 

region. 

𝑅𝐶𝑝𝑟𝑜𝑑𝑖 = ∑ 𝑐𝑟    𝑥   𝑌𝐼𝐸𝐿𝐷𝐶𝐴𝐿𝐶2𝑡𝑔𝑠𝑙𝑙𝑝ℎ

𝑖

ℎ𝑏𝑡𝑇ℎ

  𝑥   𝐼𝑅𝐼𝑁𝐶𝑆𝐶𝑐ℎ   𝑥   𝐼𝑅𝐼𝑁𝑇𝑡ℎ 

Constraint 6 represents the total production of all crops in all regions. 

𝑇𝐶𝑝𝑟𝑜𝑑𝑖 = ∑ 𝑡𝑐𝑝  

𝑖

𝑝ℎ

 

5.2.6.2 Other resource equations – irrigation model (LORWUA) 

Constraint 7 represents farm irrigation water demand and must be less or equal to the 

irrigation system delivery capacity.   
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𝑇𝐹𝑀𝑊𝑎𝑡𝑢𝑖 = ∑ 𝑐𝑟    𝑥  𝑊𝐶cgslm  

𝑖

ℎ𝑏𝑡𝑇ℎ

𝑥  𝑊𝑇bt   𝑥   𝐼𝑅𝐼𝑁𝑇𝑆𝐶mh  𝑥   𝐼𝑅𝐼𝑁𝑇ch  

Constraint 8 represents the monthly water demand per case study farm and must be less 

equal to canal capacity. 

∑ 𝑇𝐹𝑀𝑊    ≤   𝐶𝑎𝑛𝑎𝑙𝑐𝑎𝑝𝑚𝑏𝑡

𝑖

𝑏𝑡𝑚𝑝ℎ

 

Constraint 9 represents the annual water per farm per year constraint and must be less 

or equal to the annual irrigation water availability/quota. 

. 

∑ 𝑚    ≤   𝑇𝐹𝐴𝑊𝑏𝑡𝑃ℎ

𝑇𝐹𝑀𝑊

𝑏𝑡𝑚𝑝ℎ

 

 

Constraint 10 represents the total annual water demand per farm per year constraint by 

annual water allocation. 

∑ 𝑇𝐹𝐴𝑊    ≤   𝑇𝑜𝑡𝑊𝐴𝑙𝑙𝑜𝑐𝑏𝑡𝑃ℎ

𝑖

𝑏𝑡𝑝ℎ

 

5.2.6.3 NDI calculations 

The first two equations force overhead and household cost activities into the solution. 

This is followed by an equation that calculates the NDI for case study farms.  

Constraint 11 represents total overhead cost and it is equal to the overhead cost per case 

study farm. 

𝑂𝑐𝑜𝑠𝑡𝑏𝑡𝑃ℎ   =   𝑂𝐶𝑏𝑡𝑃ℎ ∗  

The asterisk denotes overhead costs. 

Constraint 12 represents total household cost and it is equal to the household cost per 

case study farm. 

𝐻𝑐𝑜𝑠𝑡𝑏𝑡𝑃ℎ   =   𝐻𝐶𝑏𝑡𝑃ℎ ∗ 

The asterisk denotes household costs. 
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Constraint 13 calculates the net disposable income per case study farm in each of the 

irrigation regions.  

𝑁𝐷𝐼𝐶𝐴𝐿𝐶𝑖

= ∑ 𝑐𝑟    𝑥  𝑃𝑟𝑖𝑐𝑒𝑄𝑢𝑎𝑙𝑖𝑙𝑃ℎ 

𝑖

ℎ𝑏𝑡𝑃ℎ

 𝑥   𝑃𝑟𝑖𝑐𝑒𝑆𝑐𝑎𝑙𝑒𝑖𝑙𝑡   𝑥   𝑉𝑒𝑟𝑑𝑖𝑠𝑘𝑇𝑃ℎ   𝑥   𝐵𝑢𝑑𝑠𝑐𝑖𝑏𝑡  

The terms above calculates the total gross margin per farm in each region.   

The following terms are the direct allocated production costs. 

− ∑ 𝑖   𝑥  𝑅𝑒𝑠𝑐𝑟𝑟𝑒𝑠𝑖𝑔𝑠𝑙𝑙∗

𝑖

ℎ𝑏𝑡𝑇ℎ

  𝑥   𝑉𝑒𝑟𝑑𝑖𝑠𝑘𝑇𝑃ℎ   𝑥   𝐼𝑅𝐼𝑁𝑇𝑖ℎ 

The asterisk denotes cost. 

The following terms are the aggregated overhead and household costs. 

−  𝑂𝐶𝑏𝑡𝑃ℎ  −   𝐻𝐶𝑏𝑡𝑃ℎ 

The left-hand term is the aggregated overhead cost and the right-hand term is the 

aggregated household cost.   

The following terms represent the financing part of the farm model. 

+  𝐿𝑜𝑎𝑛𝑠𝑡𝑏𝑡𝑙𝑜𝑃ℎ  −   𝐿𝑜𝑎𝑛𝑠𝑡𝑏𝑡𝑙𝑜𝑃ℎ−1   𝑥   𝐼𝑁𝑇𝑆𝑇𝑙𝑜+1 

The left-hand term is the loan for the current year the middle term is the loan for the 

previous year and the right-hand term is the real interest rate on loan.   

The following term represents the investment of surplus funds. 

+  𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑛𝑡𝑏𝑡𝑙𝑃ℎ−1   𝑥   𝐼𝑁𝑇𝐼𝑁𝑉𝑠𝑎+1 

The left-hand term is the investment amount of the previous year and the right-hand term 

is the real investment rate.  The following term represents the maximum own capital 

investment in the first year. 

+  𝑀𝑎𝑥𝑂𝐶𝑏𝑡𝑃ℎ  
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The calculation of the NDI can be summarised as follows: The net disposable income for 

each farm in every region is equal to the sum of the gross margins for the production 

activities over all land types and irrigation intensities minus overhead and household cost 

minus interest paid on loan plus interest received on investment. 

5.2.6.4 Resource equations – dryland model 

Resource equations unique to the Dryland model are as follows: 

Constraint 1 represents the maximum number of livestock per year. 

∑ 𝐿𝑖𝑣𝑒𝑏𝑒𝑔   

𝑎

𝑝ℎ

+   ∑ 𝐿𝑖𝑣𝑒𝑟𝑒𝑝𝑟𝑜

𝑎

𝑝ℎ

  +     ∑ 𝐿𝑆𝑇𝑝𝑢𝑟𝑐ℎ

𝑎

𝑝ℎ

 −   ∑ 𝐿𝑖𝑣𝑒𝑠𝑒𝑙𝑙

𝑎

𝑝ℎ

    

=   𝐿𝑆𝑇𝑇𝑂𝑇𝑎𝑃ℎ  

Constraint 2 calculates reproduction of livestock per year. 

𝐿𝑆𝑇𝑇𝑂𝑇𝑎𝑝ℎ   𝑥   𝐿𝑖𝑣𝑒𝐺𝑎    =   𝐿𝑖𝑣𝑒𝑟𝑒𝑝𝑟𝑜𝑎𝑝ℎ  

Constraint 3 calculates maximum selling of living livestock per year. 

𝐿𝑖𝑣𝑒𝑠𝑒𝑙𝑙𝑎𝑓𝑢𝑦    ≤   𝐿𝑆𝑇𝑇𝑂𝑇𝑎𝑓𝑢𝑦   𝑥   𝐿𝑖𝑣𝑒𝑆𝑎 

Constraint 4 sums livestock sales numbers per year. 

(𝐿𝑖𝑣𝑒𝑠𝑒𝑙𝑙𝑎𝑝ℎ  𝑥   (𝑌𝐴𝑎𝑙𝑖𝑣𝑒  𝑥  𝑀𝑎𝑛𝑙 ))   −   𝐿𝑇𝐴𝑃𝑎𝑙𝑖𝑣𝑒𝑝ℎ   =    0  

Constraint 5 sums wool production per year. 

(𝐿𝑆𝑇𝑇𝑂𝑇𝑎𝑝ℎ  𝑥   (𝑌𝐴𝑎𝑤𝑜𝑜𝑙  𝑥  𝑀𝑎𝑛𝑙 ))   −  𝑊𝑜𝑜𝑙𝑆𝑎𝑤𝑜𝑜𝑙𝑝ℎ   =    0  

Constraint 6 calculates total feed stock per year. 

𝑇𝐶𝑃𝑓𝑐𝑝𝑝ℎ  +  𝐹𝑏𝑠𝑡𝑜𝑐𝑘𝑓𝑐𝑝𝑝ℎ   =     𝑇𝑂𝑇𝑇𝑃𝑓𝑐𝑝𝑝ℎ  

Constraint 7 calculates bulk transfer of by-products p to livestock or sell. 

 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ  + (𝐶𝑆𝑓𝑐𝑝𝑝ℎ  𝑥  𝑃𝑅𝐵𝑓𝑐𝑝)   + (𝐹𝑏𝑡𝑟𝑓𝑐𝑝𝑝ℎ  𝑥  𝐹𝐵𝑃𝑂𝑆𝑓𝑐𝑝)    

−  (𝐹𝑏𝑡𝑟𝑓𝑐𝑝𝑝ℎ−1  𝑥  𝐹𝐵𝑃𝑂𝑆𝑓𝑐𝑝)    =     0  
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Constraint 8 calculates nutrient transfer of bulk feed. 

( 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ 𝑥  𝑁𝐶𝑓𝑐𝑝𝑏𝑢𝑙𝑘 )  + (𝑃𝐹𝑓𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑓𝑝𝑏𝑢𝑙𝑘)  + (𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑣𝑝𝑏𝑢𝑙𝑘)  

=    (𝑇𝐴𝐹𝑅𝑎𝑝ℎ  𝑥  𝑁𝑅𝐶𝐵𝑢𝑙𝑘𝑎)  

Constraint 9 calculates minimum percentage total digestible nutrients (TDN). 

( 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ 𝑥  𝑁𝐶𝑓𝑐𝑝𝑇𝐷𝑁 )  + (𝑃𝐹𝑓𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑓𝑝𝑇𝐷𝑁)   +  (𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑣𝑝𝑇𝐷𝑁)  ≥

≥    (𝑇𝐴𝐹𝑅𝑎𝑝ℎ  𝑥  𝑁𝑅𝐶𝑇𝐷𝑁𝑎)  𝑥  0.9  

Constraint 10 calculates maximum percentage total digestible nutrients (TDN). 

( 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ 𝑥  𝑁𝐶𝑓𝑐𝑝𝑇𝐷𝑁 )  + (𝑃𝐹𝑓𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑓𝑝𝑇𝐷𝑁)   +  (𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑣𝑝𝑇𝐷𝑁)   

≤    (𝑇𝐴𝐹𝑅𝑎𝑝ℎ  𝑥  𝑁𝑅𝐶𝑇𝐷𝑁𝑎)  𝑥  1.1  

Constraint 11 calculates minimum total crude protein percentage (TCP). 

( 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ 𝑥  𝑁𝐶𝑓𝑐𝑝𝑇𝐶𝑃 )  + (𝑃𝐹𝑓𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑓𝑝𝑇𝐶𝑃)   + (𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑣𝑝𝑇𝐶𝑃)   

≥    (𝑇𝐴𝐹𝑅𝑎𝑝ℎ  𝑥  𝑁𝑅𝐶𝑇𝐶𝑃𝑎)  x  0.9  

Constraint 12 calculates maximum total crude protein percentage (TCP). 

( 𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ 𝑥  𝑁𝐶𝑓𝑐𝑝𝑇𝐶𝑃 )  + (𝑃𝐹𝑓𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑓𝑝𝑇𝐶𝑃)   + (𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ  𝑥  𝑁𝐶𝑣𝑝𝑇𝐶𝑃)   

≤    (𝑇𝐴𝐹𝑅𝑎𝑝ℎ  𝑥  𝑁𝑅𝐶𝑇𝐶𝑃𝑎)  𝑥  1.1 

Constraint 13 calculates maximum bulk feed. 

𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ  +  𝑃𝐹𝑓𝑝𝑎𝑝ℎ  +  𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ   ≤    𝑇𝐴𝐹𝑅𝑎𝑝ℎ   

Constraint 14 calculates maximum inclusion levels of own proceeds. 

𝐴𝐹𝑅𝑓𝑐𝑝𝑎𝑝ℎ  𝑥   𝑃𝑅𝐵𝑓𝑐𝑝    ≤      𝐼𝑁𝐶𝑓𝑐𝑝𝑎    𝑥   𝑇𝐴𝐹𝑅𝑎𝑝ℎ  

Constraint 15 calculates maximum inclusion levels of purchased feeds. 

𝑃𝐹𝑎𝑝ℎ   ≤      𝐼𝑁𝐶𝑓𝑝𝑚𝑖𝑥𝑎    𝑥   𝑇𝐴𝐹𝑅𝑎𝑝ℎ  
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Constraint 16 calculates maximum inclusion levels of veld in total mix. 

𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ   ≤      𝐼𝑁𝐶𝑣𝑝𝑎𝑠𝑡𝑢𝑟𝑒𝑎    𝑥   𝑇𝐴𝐹𝑅𝑎𝑝ℎ  

Constraint 17 calculates maximum inclusion levels of veld in total mix. 

𝑉𝑒𝑙𝑑𝑣𝑝𝑎𝑝ℎ   ≤      𝐼𝑁𝐶𝑣𝑝𝑎𝑠𝑡𝑢𝑟𝑒𝑎    𝑥   𝑇𝐴𝐹𝑅𝑎𝑝ℎ  

Constraint 18 sums total animal feed demand. 

𝑇𝐴𝐹𝑅𝑎𝑝ℎ   − (( 𝑄𝐷𝑎𝑝ℎ   x   𝐷𝑃𝑃)  𝑥  𝐿𝑆𝑇𝑇𝑂𝑇𝑎𝑝ℎ ))    ≤    0 

Section 5.2 deals with the structural outlay and mathematical specification of the DLP 

model.  The results of the DLP model feeds into the Financial Vulnerability Assessment 

model.  Section 5.3 deals with the mathematical specification of the Financial 

Vulnerability Assessment model. 

5.3 Mathematical specification of the Financial Vulnerability Assessment model 

The Financial Vulnerability Assessment model is an excel-based model which feeds from 

the DLP model results.  The Financial Vulnerability Assessment model calculates a set 

of financial criteria to determine the financial vulnerability of farming systems.  The 

financial criteria are: 

 IRR 

 NPV 

 Cash flow ratio 

 Highest debt ratio  

 Highest debt 

The following sections will deal with the mathematical specification of each criterion.  

The reader is referred to Section 2.7.2 for definitions and Section 4.2.4 for graphical 

illustration of financial vulnerability assessment criteria. 

The following terms represent the mathematical formula for the internal rate of return 

(IRR).  Denoting the IRR by r, we have 

∑    
𝐶𝑖

(1 + 𝑟)𝑖
  

𝑇

𝑖=0

   =   0 

where T is the time at which the cash flow Ci occurs. 



147 
 

The following terms represent the mathematical formula for net present value (NPV). 

𝑁𝑃𝑉 =  −𝐶0  + ∑    
𝐶𝑖

(1 + 𝑟)𝑖
  

𝑇

𝑖=1

 

Where:  - C0 = Initial investment 

  C = Cash flow 

  R = Discount rate 

  T = Time 

The following terms represent mathematical formula for cash flow ratio. 

        Cash flow ratio =   ∑ 𝐶𝐼    /     ∑ 𝐶𝑂        𝑥       100 

Where CI is annual cash inflow and CO is annual cash outflow. 

The following represents the mathematical formula of debt ratio 

𝐷𝑒𝑏𝑡 𝑟𝑎𝑡𝑖𝑜  =    ∑ 𝑇𝐷     /        ∑ 𝑇𝐴          𝑥      100 

Where TD is total debt and TA is total assets. 

5.4 Chapter summary 

Chapter 5 presents the design and the mathematical specification of the DLP and 

Financial Vulnerability Assessment models.  The agricultural part of the model is to a 

large extent based on work done in Australia and applied in South Africa by Louw 

(2001), who added several newly developed formulas and techniques to the model.   

The interphases between the DLP model and other models that were developed in this 

study are unique and contribute to the existing DLP model.  These interphases include: 

 The APSIM crop model data whole-farm model interphase 

 The CCCT yield model data whole-farm model interphase 

 The CCCT quality model data whole-farm model interphase 

 The ACRU hydrological model data whole-farm model interphase 

 The SAPWAT3 crop irrigation requirements data whole-farm model interphase 



148 
 

The link between the output of the DLP model and the Financial Vulnerability 

Assessment model also constitutes a new contribution to the DLP model. 

The integrated modelling results will be discussed in Chapter 6.  
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CHAPTER 6 : INTEGRATED MODELLING RESULTS FOR THE SELECTED 

CASE STUDIES 

_____________________________________________________________________ 

 

6.1 Introduction 

In Chapter 5 the DLP and the Financial Vulnerability Assessment model were 

mathematically specified.  In Chapter 6 the integrated modelling results, impact of future 

projected climates on financial vulnerability and possible adaptation strategies will be 

discussed. 

The modelling results for each of the case study areas will be discussed under the 

following headings (where applicable): 

 Climate change impact on quality and yield of crops 

- APSIM (for selected crops - depending on availability) 

- CCCT modelling. 

 Climate change impact on crop irrigation requirements (for irrigation crops only 

– SAPWAT3 modelling). 

 Climate change impact on the availability of irrigation water requirements (only 

in respect of Blyde River WUA – ACRU modelling). 

 Available adaptation strategies. 

 Financial vulnerability assessment results. 

 Summary. 

6.2 LORWUA  

6.2.1 Climate change impact on quality and yield of crops modelling results 

6.2.1.1 APSIM crop modelling results 

It needs to be reiterated that the APSIM model for grapes is currently still a prototype 

and therefore the outcome needs to be interpreted with caution. 

Figure 6.1 shows the projected yield for grapes for the intermediate future (2046 – 2065) 

in the LORWUA area, derived from APSIM calculations.  The figures are expressed as 

percentage of the yield used in the base analysis.  
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Figure 6.1:  Projected yield (%) [2046 – 2065] for grapes in the LORWUA area 

based on APSIM calculations 

Climate data from four GCMs were applied in the APSIM modelling.  All the GCMs 

project a 20-year average decrease in yield, varying from 9% to 18%.   

6.2.1.2 CCCT modelling results 

Table 6.1 shows the CCCT modelling results for the different GCMs for the present and 

intermediate future (2046 – 2065).  The values are 20-year average values for the 

different models.  All the GCMs project a decrease in yield for wine grapes, table grapes 

and raisins and a decrease in quality for table grapes.  E.g. average yield for raisins 

decreases from code 11 tot code 10, implying a 5% decrease in projected yield.  Average 

projected quality for table grapes decreases from code 5 to code 4, equalling 10% 

decrease in projected quality.  

Table 6.1:  CCCT modelling yield and quality projections for wine grapes, table 

grapes and raisins in the LORWUA area 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CCC

CRM

GISS

IPS

Base yield

Model Base yield CCC CRM GISS IPS

20-year average 1.00 0.82 0.86 0.91 0.84

Model Yield Quality Yield Quality Yield Quality

CCC Pres 12 4 12 5 12 4

CCC Int 10 4 9 4 10 4

CRM Pres 12 4 12 5 12 4

CRM Int 10 4 9 4 10 4

ECH Pres 12 4 12 5 12 4

ECH Int 10 4 10 5 10 4

GISS Pres 11 4 11 5 11 4

GISS Int 10 4 10 5 10 4

IPS Pres 11 4 11 5 11 4

IPS Int 10 4 10 4 10 4

AVE Pres 11 4 11 5 11 4

AVE Int 10 4 10 4 10 4
Legend: Yield (% of base yield) Legend: Quality (% of base quality)

8 = 90% 3 = 80%
9 = 95% 4 = 90%

10 = 100% 5 = 100%
11 = 105% 6 = 110%
12 = 110% 7 = 120%

Wine grapes Table grapes Raisins
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6.2.2 Climate change impact on crop irrigation requirements results 

Tables 6.2 to Table 6.4 display the simulated irrigation requirements for table grapes, 

wine grapes and raisins for the current and intermediate future projected climates. 

A 10% average annual increase in irrigation requirements is projected for table grapes 

for intermediate future climates in order to obtain the same yield as with present climates 

(Table 6.2). 

Table 6.2:  SAPWAT3 simulated irrigation requirements for table grapes for the 

present and intermediate future projected climates 

 

For wine grapes, an average annual increase of 11% in irrigation requirements is 

projected for intermediate future climates in order to obtain the same yield as with present 

climates (Table 6.3).  

Table 6.3:  SAPWAT3 simulated irrigation requirements for wine grapes for the 

present and intermediate future projected climates 

 

An 11% average annual increase in irrigation requirements is projected for raisins for 

intermediate future climates in order to obtain the same yield as with present climates 

(Table 6.4).  

Table grapes - present

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total

Vredendal_CCC_PR3                       146 137 115 61 9 0 0 0 0 12 113 153 746

Vredendal_ECH_PR3                       159 126 98 55 7 0 0 0 0 9 124 155 733

Vredendal_GISS_PR3                      175 151 126 74 28 0 0 0 0 25 142 186 907

Vredendal_IPS_PR3                       159 135 128 61 14 0 0 0 0 21 132 162 812

Average 160 137 117 63 15 0 0 0 0 17 128 164 800

Table grapes - intermediate future

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total  % change

Vredendal_CCC_INT                       180 139 126 60 16 0 0 0 0 21 132 172 846 13%

Vredendal_ECH_INT                       160 142 110 57 12 0 0 0 0 12 128 180 801 9%

Vredendal_GISS_INT                      185 164 144 77 29 0 0 0 0 36 150 199 984 8%

Vredendal_IPS_INT                       170 145 130 71 17 0 0 0 0 22 143 180 878 8%

Average 174 148 128 66 19 0 0 0 0 23 138 183 877 10%

Wine grapes - present

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total

Vredendal_CCC_PR3                       119 109 86 50 11 0 0 0 0 5 90 124 594

Vredendal_ECH_PR3                       132 100 81 38 7 0 0 0 0 4 94 131 587

Vredendal_GISS_PR3                      147 129 96 66 28 0 0 0 0 12 125 150 753

Vredendal_IPS_PR3                       133 112 92 54 9 0 0 0 0 13 104 138 655

Average 133 113 89 52 14 0 0 0 0 9 103 136 647

Wine grapes - intermediate future

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total  % change

Vredendal_CCC_INT                       147 116 94 54 14 0 0 0 0 10 106 149 690 16%

Vredendal_ECH_INT                       139 109 84 47 8 0 0 0 0 7 101 143 638 9%

Vredendal_GISS_INT                      154 140 119 68 24 0 0 0 0 20 130 158 813 8%

Vredendal_IPS_INT                       142 120 102 61 20 0 0 0 0 8 126 150 729 11%

Average 146 121 100 58 17 0 0 0 0 11 116 150 718 11%
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Table 6.4:  SAPWAT3 simulated irrigation requirements for raisins for the present 

and intermediate future projected climates 

 

6.2.3 Climate change impact on the availability of irrigation water requirements 

The projected dam level data for Clanwilliam Dam (ACRU calculation), which determine 

the availability of irrigation water, was not available at the time and is not included as a 

constraint in the calculations for the LORWUA case studies.  Another reason for not 

including projected dam levels and availability of irrigation water for the Clanwilliam 

Dam is the uncertainty associated with the expansion of the dam, of which construction 

is due to start by the end of 2014. The final distribution of additional water between 

different sectors of the economy also still needs to be finalised. 

6.2.4 Adaptation strategies available 

For the grape producing area of LORWUA the adaptation strategies that were identified 

to be included in the integrated model are: 

 Shift wine grape cultivars towards cultivars that are more tolerant towards 

projected climate change. 

 Increase raisin and table grape production. 

 Install shade nets over table grapes production areas. 

6.2.4.1 Shift in wine grape cultivars 

The world is experiencing a warming trend. Warming may bring benefits to cool 

viticultural regions, but is likely to create problems in areas that are already close to the 

upper temperature limits for the cultivars and wine styles concerned. In these cases, 

relocation, or replacement with varieties that are better adapted to the higher temperatures 

will be necessary if it is not possible to ameliorate the effects of climate change through 

management practices (Wooldridge, 2007).  Problems that could occur due to climate 

Raisins - present

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total

Vredendal_CCC_PR3                       119 109 86 50 11 0 0 0 0 5 90 124 594

Vredendal_ECH_PR3                       132 100 81 38 7 0 0 0 0 4 94 131 587

Vredendal_GISS_PR3                      147 129 96 66 28 0 0 0 0 12 125 150 753

Vredendal_IPS_PR3                       133 112 92 54 9 0 0 0 0 13 104 138 655

Average 133 113 89 52 14 0 0 0 0 9 103 136 647

Raisins - intermediate future

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total  % change

Vredendal_CCC_INT                       147 116 94 54 14 0 0 0 0 10 106 149 690 16%

Vredendal_ECH_INT                       139 109 84 47 8 0 0 0 0 7 101 143 638 9%

Vredendal_GISS_INT                      154 140 119 68 24 0 0 0 0 20 130 158 813 8%

Vredendal_IPS_INT                       142 120 102 61 20 0 0 0 0 8 126 150 729 11%

Average 146 121 100 58 17 0 0 0 0 11 116 150 718 11%
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change include: (a) delayed or uneven bud break, (b) change in phonological stages, (c) 

yield reduction, (d) change in harvest date, and (e) change in wine type and style (Vink 

et al., 2012). 

Bonnardot et al. (2011) emphasises the importance of understanding regional and wine 

cultivar differences as cultivars have fairly narrow optimal ranges within which they can 

produce wines of a certain style.  As the climate changes, certain regions may move out 

of these optimal temperature ranges resulting in altered wine style or even altered optimal 

cultivars that should be planted.  

It is important to state that one must take mesoclimatic differences into account. Within 

a larger area, local climates that are determined by slope aspect, altitude and distance 

from the sea, can result in average growing season temperatures that are very different 

(Carey, 2001, cited by Bonnardot et al., 2011). 

Certain wine cultivars may, however, be more tolerant to increased temperatures than 

others and a shift to more heat tolerant cultivars in wine production can also be an 

adaptation strategy.  Vink et al. (2012) highlighted the fact that South Africa’s wine grape 

growing regions are characterised by diversity (in climate, topography, soil type, etc.) 

and for most farmers diversity is the key to managing the effects of climate change, 

mainly in terms of increasing wine complexity brought by blending wines from different 

terroir units/regions.  

The expert panel indicated that within the case study region, white wine grape cultivars 

that will be more tolerant towards climate change include Chenin Blanc and Colombard.  

White wine grape cultivars that will be most vulnerable towards climate change include 

Sauvignon Blanc and Chardonnay. 

Red wine grape cultivars that will be more tolerant towards climate change include 

Cabernet Sauvignon, Pinotage and Ruby.  Red wine grape cultivars that will be most 

vulnerable towards climate change are Shiraz and Merlot. 

6.2.4.2 Increase raisin and table grape production 

Raisin and table grapes cultivars in general are more resilient to climate change 

projections (Bonnardot et al., 2011).  The expert panel agreed that a shift from wine grape 
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production to raisin and table grape production can be an adaptation strategy which will 

reduce the negative impact of climate change on wine grape production. 

6.2.4.3 Shade nets 

Netting is used in agriculture to protect crops from either excessive solar radiation, i.e. 

shading, or environmental hazards, e.g. hail, strong winds, sand storms, or flying pests 

such as birds, fruit-bats, insects (Shahak et al., 2004). 

The production of table grapes under shade nets has already started to take place in the 

LORWUA area, but to a limited extent.  In other areas e.g. Marble Hall and Groblersdal 

it is common practice to produce table grapes under shade nets, although the initial main 

driver was the risk of hail damage.  

The expert panel agreed that shade nets over table grapes can eliminate most problems 

associated with projected climate change and will have the following advantages: 

 More efficient water use 

 More consistent yield and quality 

 Increase in quality (less wind damage, less quality loss due to birds) 

 Lower input cost (lower labour cost due to increased quality) 

6.2.4.4 Other adaptation strategies (not included in the model) 

The following are a list of adaptation strategies debated but not included in the integrated 

climate change model: 

 Irrigate at night to save water 

 Plastic or mulch cover to conserve moist 

 Soil preparation and site selection are important for future plantings to ensure 

optimum production – rather scale down and eliminate marginal blocks. 

6.2.5 Financial vulnerability assessment results 

6.2.5.1 Financial vulnerability assessment methodology 

To determine the financial vulnerability of a farming system, the financial model 

provides a set of criteria, viz. IRR, NPV, cash flow ratio, highest debt ratio and highest 

debt. 
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The financial vulnerability assessment for each case study includes individual assessment 

runs for present and intermediate climate scenarios for each of the five GCMs included 

in the study. 

The modelling scenarios can be divided into four broad categories namely: 

 Base run use current average yields and prices to project over a 20 year period – 

15% variability in yield and price. 

 Present climate scenario – static production system 

- Crop Critical Climate Threshold (CCCT modelling technique) - use crop 

critical climate thresholds and present climate scenarios data to determine 

potential yield and grading of crop produce as input to the model. 

 Intermediate climate scenario  – static production system 

- CCCT modelling technique - use crop critical climate thresholds and 

intermediate future climate scenarios data to determine potential yield and 

grading of crop produce as input to the model – model is restrained to 

simulate current production structures. 

- Use APSIM crop model results for the intermediate future climate 

scenarios as input (yield) to the model – model is restrained to simulate 

current production structures. 

 Intermediate climate scenario - including adaptation strategy options 

- CCCT modelling technique - use crop critical climate thresholds and 

intermediate future climate scenarios data to determine potential yield and 

grading of crop produce as input to the model – adaptation strategy 

options are included. 

- Use APSIM crop model results for the intermediate future climate 

scenarios as input to the model – adaptation strategy options are included. 

The first runs can be described as static runs, where the production structure is not altered 

and only climate change is imposed on the farming system.  During the second round, 

the adaptation strategy options are included in the modelling in order to quantify the 

potential reduction in vulnerability by including adaptation strategy options. 
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6.2.5.2 Financial vulnerability assessment results – LORWUA case studies 

6.2.5.2.1 Case Study 1 

Table 6.5 summarises the financial ratios of the different climate scenarios that were 

modelled.  The model assumes a 20% start-up debt ratio.  

Table 6.5:  Financial assessment results for LORWUA Case Study 1 

 

The modelling results for Case Study 1 (20% start-up debt ratio) can be interpreted as 

follows: 

 An average internal rate of return (IRR) of 8% is projected under the present 

climate scenario.  When intermediate climate scenarios are imposed on the model, 

the IRR decreases to respectively 2% for the CCCT model and 0% for the APSIM 

crop model (ACM).  The inclusion of adaptation strategies tends to have a 

positive effect on profitability with the IRR increasing to 5% (CCCT) and 2% 

Model IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 8% 13,661,925 126% 34% (6,133,936)

CCC Present (1971 - 1990) 8% 12,761,558 124% 38% (7,110,334)

CRM Present (1971 - 1990) 8% 11,501,920 123% 36% (6,648,816)

ECH Present (1971 - 1990) 8% 11,009,134 123% 36% (6,410,320)

GISS Present (1971 - 1990) 7% 9,369,220 121% 33% (5,892,668)

IPS Present (1971 - 1990) 7% 7,285,521 120% 37% (6,578,781)

CCC Intermediate (2046 - 2065) -1% (10,978,058) 77% 182% (30,392,710)

CRM Intermediate (2046 - 2065) 2% (3,588,125) 107% 38% (6,862,694)

ECH Intermediate (2046 - 2065) 4% (363,189) 110% 37% (6,651,443)

GISS Intermediate (2046 - 2065) 4% 176,284 112% 40% (7,066,932)

IPS Intermediate (2046 - 2065) 3% (2,448,110) 108% 38% (6,721,745)

CM CCC Intermediate (2046 - 2065) -1% (11,719,450) 73% 223% (35,560,588)

CM CRM Intermediate (2046 - 2065) 0% (9,068,582) 86% 123% (22,928,438)

CM GISS Intermediate (2046 - 2065) 3% (2,982,295) 108% 47% (8,290,861)

CM IPS Intermediate (2046 - 2065) 0% (8,879,978) 85% 125% (23,705,675)

CCC Intermediate (2046 - 2065) Adaptations 4% 230,363 95% 119% (31,512,108)

CRM Intermediate (2046 - 2065) Adaptations 5% 2,538,502 101% 87% (23,509,123)

ECH Intermediate (2046 - 2065) Adaptations 6% 6,689,431 105% 69% (18,791,899)

GISS Intermediate (2046 - 2065) Adaptations 6% 6,074,350 104% 75% (20,546,507)

IPS Intermediate (2046 - 2065) Adaptations 5% 4,467,748 103% 82% (22,200,220)

CM CCC Intermediate (2046 - 2065) Adaptations -2% (12,011,770) 67% 398% (51,850,648)

CM CRM Intermediate (2046 - 2065) Adaptations 2% (4,189,793) 105% 56% (10,389,262)

CM GISS Intermediate (2046 - 2065) Adaptations 5% 2,788,969 117% 52% (9,954,975)

CM IPS Intermediate (2046 - 2065) Adaptations 2% (5,743,530) 98% 70% (12,998,011)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

Apsim technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included

Apsim technique for different GCM's - Intermediate climate - adaptation options included
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(ACM).  Intermediate climate projections will ultimately impact negatively on 

profitability and return on investment. 

 An average net present value (NPV) of R10.3 million is projected under present 

climate conditions.  For intermediate climate conditions a negative NPV is 

projected for both the CCCT (-R3.4 million) and ACM models (-R8.2 million).  

Both these projections are positively influenced by the inclusion of adaptation 

strategies in the model.  A NPV of R4 million is projected for the CCCT model 

and a NPV of (-R4.8 million) for the ACM model.  Intermediate climate 

projections will ultimately impact negatively on profitability and return on 

investment. 

 A cash flow ratio of 122% is projected under present climate conditions.  This 

ratio, however, declines to 103% (CCCT model) and 88% (ACM) when 

intermediate climate scenarios are imposed on the model.  Both models show an 

improvement in cash flow ratio when adaptation strategies are included in the 

model (CCCT model = 102%, ACM model = 97%).  The intermediate climate 

projections will strain cash flow and repayment ability and may put the farming 

business in a financial position that falls outside the generally accepted financing 

norms.  A cash flow ratio of less than 110% for a farming business is not attractive 

to any financier.  

 A highest debt ratio of 36% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 67% (CCCT model) and 130% (ACM model).  The inclusion of 

adaptation strategies negatively influences the highest debt ratio to 86% and 

144% for the CCCT model and the ACM model respectively.  This is however 

due to expensive capital outlay forced into the model over a very short period of 

time.  In order to be attractive to outside financiers, the highest debt ratio should 

not exceed 50%.  It seems that without adaptation, intermediate climate 

projections will push the farming business outside this norm. 

 A highest debt level of R6.5 million is projected under present climate conditions.  

This level increased to R11.5 million (CCCT model) and R22.6 million (ACM 

model) when intermediate climate scenarios are imposed on the model.  With the 

inclusion of adaptation strategies in the model, the highest debt levels of R23.3 
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million (CCCT model) and R21.3 million (ACM model) are projected.  It is clear 

that intermediate climate projections will ultimately increase debt levels. 

6.2.5.2.2 Case Study 2  

Table 6.6 summarises the financial ratios of the different climate scenarios that were 

modelled.  The model assumes a 20% start-up debt ratio. 

Table 6.6:  Financial assessment results for LORWUA Case Study 2 

 
 

The modelling results for Case Study 2 (20% start-up debt ratio) can be interpreted as 

follows: 

 An average internal rate of return (IRR) of 7% is projected under the present 

climate scenario.  When intermediate climate scenarios are imposed on the model, 

IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 7% 2,799,405 125% 33% (1,640,398)

CCC Present (1971 - 1990) 8% 3,291,840 126% 29% (1,445,470)

CRM Present (1971 - 1990) 7% 2,916,788 125% 35% (1,771,662)

ECH Present (1971 - 1990) 7% 2,374,958 123% 38% (1,881,231)

GISS Present (1971 - 1990) 6% 1,909,257 122% 33% (1,664,205)

IPS Present (1971 - 1990) 5% 1,020,348 119% 43% (2,143,920)

CCC Intermediate (2046 - 2065) 1% (2,228,002) 87% 120% (4,757,187)

CRM Intermediate (2046 - 2065) 1% (1,792,781) 94% 75% (3,377,952)

ECH Intermediate (2046 - 2065) 2% (1,389,240) 100% 55% (2,621,659)

GISS Intermediate (2046 - 2065) 2% (1,279,782) 100% 55% (2,770,071)

IPS Intermediate (2046 - 2065) 1% (1,628,370) 100% 55% (2,590,152)

CM CCC Intermediate (2046 - 2065) 1% (2,378,007) 79% 169% (6,687,537)

CM CRM Intermediate (2046 - 2065) 1% (2,245,535) 84% 138% (5,582,665)

CM GISS Intermediate (2046 - 2065) 2% (1,485,437) 93% 81% (4,116,514)

CM IPS Intermediate (2046 - 2065) 1% (2,284,209) 84% 142% (5,650,910)

CCC Intermediate (2046 - 2065) Adaptations 9% 6,095,140 106% 96% (5,810,083)

CRM Intermediate (2046 - 2065) Adaptations 10% 8,487,143 110% 93% (5,813,761)

ECH Intermediate (2046 - 2065) Adaptations 11% 9,146,352 112% 83% (5,403,461)

GISS Intermediate (2046 - 2065) Adaptations 11% 9,399,558 112% 88% (5,518,351)

IPS Intermediate (2046 - 2065) Adaptations 11% 9,675,078 112% 88% (5,689,920)

CM CCC Intermediate (2046 - 2065) Adaptations 1% (2,266,151) 67% 331% (13,480,037)

CM CRM Intermediate (2046 - 2065) Adaptations 2% (1,448,736) 91% 99% (4,951,281)

CM GISS Intermediate (2046 - 2065) Adaptations 4% (329,267) 110% 80% (4,170,584)

CM IPS Intermediate (2046 - 2065) Adaptations 1% (2,058,579) 82% 154% (6,562,455)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

Apsim technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included

Apsim technique for different GCM's - Intermediate climate - adaptation options included
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the IRR decreases to respectively 1% for the CCCT model and 1% for the APSIM 

crop model (ACM).  The inclusion of adaptation strategies tends to have a 

positive effect on profitability with the IRR increasing to 10% (CCCT) and 2% 

(ACM).  Intermediate climate projections will ultimately impact negatively on 

profitability and return on investment. 

 A net present value (NPV) of R2.3 million is projected under present climate 

conditions.  For intermediate climate conditions a negative NPV is projected for 

both the CCCT model (-R1.7 million) and ACM model (-R2.1 million).  Both 

these projections are positively influenced by the inclusion of adaptation 

strategies in the model.  A NPV of R8.5 million is projected for the CCCT model 

and a NPV of -R1.5 million for the ACM model. 

 A cash flow ratio of 123% is projected under present climate conditions.  This 

ratio, however, declines to 96% (CCCT model) and 85% (ACM) when 

intermediate climate scenarios are imposed on the model.  Both models show an 

improvement in cash flow ratio when adaptation strategies are included in the 

model (CCCT model = 110%, ACM model = 88%).  The intermediate climate 

projections will strain cash flow and repayment ability and may put the farming 

business in a financial position that falls outside the generally accepted financing 

norms.  A cash flow ratio of less than 110% for a farming business is not attractive 

to any financier.  

 A highest debt ratio of 36% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 72% (CCCT model) and 133% (ACM model).  The inclusion of 

adaptation strategies negatively influences the highest debt ratio to 90% and 

166% for the CCCT model and the ACM model respectively.  This is, however, 

due to expensive capital outlay forced into the model over a very short period of 

time.  In order to be attractive to outside financiers, the highest debt ratio should 

not exceed 50%.  It seems that without adaptation, intermediate climate 

projections will push the farming business outside this norm. 

 A highest debt level of R1.7 million is projected under present climate conditions.  

This level increased to R3.2 million (CCCT model) and R5.5 million (CM model) 

when intermediate climate scenarios are imposed on the model.  With the 

inclusion of adaptation strategies in the model, the highest debt level of R5.6 

million (CCCT model) and R7.2 million (ACM model) is projected.  It is clear 

that intermediate climate projections will ultimately increase debt levels. 
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 It is also significant to note that there is a strong correlation between the CCCT 

(expert opinions) and the Apsim model (crop model) approach. The results 

indicate that the CCCT methodology can be used with confidence. 

6.3 Blyde River WUA  

The following sections show a summary of the financial modelling results for the Blyde 

River WUA area. 

6.3.1 Climate change impact on quality and yield of crops modelling results 

There are no APSIM crop models (or any other crop model) for citrus and mangoes.  For 

the Blyde River WUA area, the CCCT modelling technique (guided by expert opinions), 

was the only tool available to model the impact of projected climate change on the yield 

and quality of citrus and mangoes.  The positive correlation between APSIM crop 

modelling results and CCCT modelling results in other areas increases confidence in the 

accuracy of the modelling outcome for the Blyde River WUA area. 

6.3.1.1 CCCT modelling results 

Table 6.7 shows the CCCT modelling results for the different GCMs for the present and 

intermediate future (2046 – 2065).  The values are 20-year average values for the 

different models.  Although only one out of five GCMs projects a decrease in yield for 

citrus, all models project a negative impact on quality.  For mangoes the models project 

a negative impact on both yield and quality. 

Table 6.7:  CCCT modelling yield and quality projections for citrus and mangoes 

in the Blyde River WUA area 

 

Yield Quality Yield Quality Yield Quality Yield Quality Yield Quality Yield Quality

CCC Pres 10 6 10 6 10 6 10 5 10 5 10 5

CCC Int 10 4 10 4 10 4 9 4 8 4 8 4

CRM Pres 10 5 10 5 10 6 10 5 10 5 10 5

CRM Int 10 3 10 3 10 4 8 4 7 4 8 4

ECH Pres 10 5 10 5 10 6 10 5 8 5 9 5

ECH Int 10 3 10 4 10 4 8 4 7 4 8 4

GISS Pres 10 6 10 6 10 6 11 6 10 5 10 6

GISS Int 8 4 9 4 9 4 9 4 8 4 8 4

IPS Pres 10 5 10 5 10 5 10 5 9 5 10 5

IPS Int 10 3 10 4 10 4 9 4 8 4 8 4

AVE Pres 10 5 10 5 10 6 10 5 9 5 10 5

AVE Int 10 4 10 4 10 4 8 4 7 4 8 4
Legend: Yield (% of base yield) Legend: Quality (% of base quality)

8 = 90% 3 = 80%
9 = 95% 4 = 90%

10 = 100% 5 = 100%
11 = 105% 6 = 110%
12 = 110% 7 = 120%

Citrus Mangoes

Tommy AtkinsGrapefruit Lemons Valencia Keitt Kent
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6.3.2 Climate change impact on crop irrigation requirements results 

Table 6.8 and Table 6.9 display the simulated irrigation requirements for citrus and 

mangoes for the current and intermediate future projected climates. 

An 8% average annual increase in irrigation requirements is projected for citrus for 

intermediate future climates in order to obtain the same yield as with present climates 

(Table 6.8).  

Table 6.8:  SAPWAT3 simulated irrigation requirements for citrus for the present 

and intermediate future projected climates 

 
 

An 8% average annual increase in irrigation requirements is projected for mangoes for 

intermediate future climates in order to obtain the same yield as with present climates 

(Table 6.9).  

Table 6.9:  SAPWAT3 simulated irrigation requirements for mangoes for the 

present and intermediate future projected climates 

 

Citrus - present

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total

Hoedspruit_CCC_PR3                      105 90 105 100 82 54 97 99 110 114 96 110 1,162

Hoedspruit_CRM_PR3                      64 44 64 84 88 62 105 111 111 98 70 74 975

Hoedspruit_ECH_PR3                      100 78 83 75 85 58 96 103 109 112 102 74 1,075

Hoedspruit_GISS_PR3                     101 92 99 86 82 49 89 95 94 83 90 88 1,048

Hoedspruit_IPS_PR3                      89 84 92 90 79 58 108 105 107 107 99 84 1,102

Average 92 78 89 87 83 56 99 103 106 103 91 86 1,072

Citrus - intermediate future

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total  % change

Hoedspruit_CCC_INT                      105 100 114 100 96 63 102 98 127 122 104 108 1,239 7%

Hoedspruit_CRM_INT                      80 54 67 73 91 71 108 120 131 108 72 86 1,061 9%

Hoedspruit_ECH_INT                      102 85 81 75 91 70 105 114 122 113 98 113 1,169 9%

Hoedspruit_GISS_INT                     107 91 108 99 94 60 104 101 99 100 98 109 1,170 12%

Hoedspruit_IPS_INT                      83 83 102 90 90 63 96 111 103 121 103 90 1,135 3%

Average 95 83 94 87 92 65 103 109 116 113 95 101 1,155 8%

Mangoes - present 

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total

Hoedspruit_CCC_PR3                      122 112 116 89 65 99 99 105 128 128 107 122 1,292

Hoedspruit_CRM_PR3                      76 50 76 80 69 105 107 121 125 118 77 96 1,100

Hoedspruit_ECH_PR3                      112 86 99 73 67 96 101 116 122 133 110 95 1,210

Hoedspruit_GISS_PR3                     114 106 113 85 67 94 91 104 107 102 109 106 1,198

Hoedspruit_IPS_PR3                      99 103 100 85 64 107 104 119 121 121 115 98 1,236

Average 105 91 101 82 66 100 100 113 121 120 104 103 1,207

Mangoes - intermediate future

Case study region Irri01 Irri02 Irri03 Irri04 Irri05 Irri06 Irri07 Irri08 Irri09 Irri10 Irri11 Irri12 Total  % change

Hoedspruit_CCC_INT                      120 116 129 98 75 108 101 117 134 141 121 125 1,385 7%

Hoedspruit_CRM_INT                      96 70 79 69 77 115 121 135 139 118 88 105 1,212 10%

Hoedspruit_ECH_INT                      116 114 93 74 74 118 119 120 130 130 116 120 1,324 9%

Hoedspruit_GISS_INT                     130 106 126 90 75 108 97 110 117 116 113 119 1,307 9%

Hoedspruit_IPS_INT                      99 98 120 83 75 105 103 115 112 141 119 106 1,276 3%

Average 112 101 109 83 75 111 108 119 126 129 111 115 1,301 8%
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6.3.3 Climate change impact on the availability of irrigation water requirements 

The Blyde River WUA is an irrigation area and dependent on irrigation water for 

production.  The present and intermediate climate data for downscaled GCMs were used 

in the ACRU model to project future dam levels, which forms the base for calculating 

the annual allocation of irrigation water quotas to farmers.  The projected total annual 

irrigation water quota (m3) allocated to a farming system and monthly canal capacities 

are included in the DLP model as resource constraints. 

The projection of the Blydepoort Dam level was done by UKZN, using the ACRU model.  

Figure 6.2 illustrates the historical and projected dam level of the Blydepoort Dam. 

 
Figure 6.2:  Historical and projected dam level for Blydepoort Dam 

All indications are that the availability of irrigation water for the Blyde area irrigators (in 

terms of quota consistency) will not be negatively affected by the projected climate 

scenarios. 

6.3.4 Adaptation strategies available 

Increases in average temperatures and seasonal shifts are the biggest threats that the 

Blyde River WUA area faces. The following are problems associated with increased 

temperatures: 

 Quality losses as a result of wind and sunburn (citrus and mangoes) 

 Reduction in fruit set (citrus) as a result of sunburn 

 Seedless cultivars are less tolerant to increased temperatures than seeded 

cultivars; the demand, however, is for seedless cultivars (citrus). 

The only adaptation strategy that was identified to eliminate the threats associated with 

climate change to be included in the integrated model is the installation of shade nets 

over citrus and mango production areas 
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6.3.4.1 Shade nets 

While water efficiency is a key concept to solve water-shortage problems in semiarid 

areas, shading nets structures in semiarid and arid environments can be considered as an 

intermediate solution for increasing water use efficiency and reducing plant water stress. 

It offer many advantages and environmental benefits, which is why an increasing area of 

crops, including citrus, is being grown under shading materials of various types. It was 

found that the use of the shading net reduces wind speed within the foliage and helps to 

decrease fruit dropping. The shade provided by the net does not affect yield and internal 

fruit quality (ratio of sugar to acid) but may increase fruit average weight and diameter 

(Abouatallah et al., 2012).  Also refer to Section 6.2.4.3. 

The panel of experts agreed that shade nets on citrus and mangoes can eliminate most 

threats associated with projected climate change and will have the following advantages: 

 Improvement in fruit quality (less hail, wind and sun damage) 

 Less stress on tree (more consistent yields) 

 More effective use of irrigation water (less evapotranspiration). 

6.3.4.2 Other adaptation strategies (not included in the model) 

The following are a list of adaptation strategies debated but not included in the integrated 

climate change model: 

 Mulching cover to conserve moisture 

 More effective management of irrigation systems 

 Cultivar development to increase natural heat resistance. 

6.3.5 Financial vulnerability assessment results – Blyde River WUA case studies 

6.3.5.1 Case Study 1  

Table 6.10 summarises the financial ratios of the different climate scenarios that were 

modelled.  The model assumes a 20% start-up debt ratio. 
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Table 6.10:  Financial assessment results for Blyde River WUA Case Study 1 

 
 

The modelling results for Case Study 1 can be interpreted as follows: 

 An IRR of 16% is projected under the present climate scenario.  When 

intermediate climate scenarios are imposed on the model, the IRR decreases to 

1%.  The inclusion of adaptation strategies tends to have a positive effect on 

profitability with the IRR increasing to 7%.  Intermediate climate projections will 

ultimately impacts negatively on profitability and return on investment. 

 A NPV of R13.3 million is projected under present climate scenarios.  For 

intermediate climate scenarios a negative NPV (-R3.7 million) is projected.  The 

inclusion of adaptation strategies in the modelling has a positive impact on 

profitability, to the extent that a NPV of R10.5 million is projected if adaptation 

strategies are included in the model. 

 A cash flow ratio of 126% is projected under present climate conditions.  This 

ratio however declines to 89% when intermediate climate scenarios are imposed 

on the model.  The model shows an improvement in cash flow ratio when 

adaptation strategies are included in the model (cash flow ratio = 115%).  The 

intermediate climate projections will strain cash flow and repayment ability and 

may put the farming business in a financial position that falls outside the general 

accepted financing norms.  A cash flow ratio of less than 110% for a farming 

business is not attractive to any financier.  

IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 14% 12,258,800 129% 43% (3,419,599)

CCC Present (1971 - 1990) 18% 15,324,906 131% 56% (4,439,923)

CRM Present  (1971 - 1990) 19% 15,135,705 125% 35% (2,759,573)

ECH Present (1971 - 1990) 13% 9,520,929 122% 46% (3,638,295)

GISS Present (1971 - 1990) 19% 18,387,418 138% 42% (3,342,224)

IPS Present (1971 - 1990) 13% 11,213,918 128% 56% (4,446,420)

CCC Intermediate (2046 - 2065) 3% (1,779,436) 97% 112% (8,858,550)

CRM Intermediate (2046 - 2065) -1% (5,563,182) 79% 295% (23,441,992)

ECH Intermediate (2046 - 2065) 0% (4,800,209) 83% 235% (18,687,659)

GISS Intermediate (2046 - 2065) 2% (2,374,432) 94% 84% (6,675,536)

IPS Intermediate (2046 - 2065) 3% (1,426,069) 100% 76% (5,958,340)

CCC Intermediate (2046 - 2065) Adaptions 7% 10,616,893 115% 177% (28,995,741)

CRM Intermediate (2046 - 2065) Adaptations 7% 10,616,893 115% 177% (28,995,741)

ECH Intermediate (2046 - 2065) Adaptations 7% 10,616,893 115% 177% (28,995,741)

GISS Intermediate (2046 - 2065) Adaptations 7% 10,311,704 114% 175% (28,350,214)

IPS Intermediate (2046 - 2065) Adaptations 7% 10,616,893 115% 177% (28,995,741)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included
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 A highest debt ratio of 47% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 176%.  To be attractive to outside financiers, the highest debt ratio 

should not exceed 50%.  It seems that, without adaptation, intermediate climate 

projections will push the farming business outside this norm. 

 A highest debt level of R3.7 million is projected under present climate conditions.  

This level increased to R14 million when intermediate climate scenarios are 

imposed on the model. It is clear that intermediate climate projections will 

ultimately increase debt levels. 

6.3.5.2 Case Study 2  

Table 6.11 summarises the financial ratios of the different climate scenarios that were 

modelled.  The model assumes a 20% start-up debt ratio. 

Table 6.11:  Financial assessment results for Blyde River WUA Case Study 2 

 

The modelling results for Case Study 2 (20% start-up debt ratio) can be interpreted as 

follows: 

 An average IRR of 21% is projected under the present climate scenario.  When 

intermediate climate scenarios are imposed on the model, the IRR turns negative.  

The inclusion of adaptation strategies tends to have a positive effect on 

IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 18% 28,534,499 121% 31% (5,490,201)

CCC Present Static (1971 - 1990) 27% 45,642,841 130% 45% (7,854,056)

CRM Present Static (1971 - 1990) 23% 37,444,867 125% 22% (3,946,723)

ECH Present Static (1971 - 1990) 20% 31,694,562 124% 24% (4,270,149)

GISS Present Static (1971 - 1990) 30% 49,489,167 133% 24% (4,161,145)

IPS Present Static (1971 - 1990) 17% 26,358,453 119% 24% (4,237,474)

CCC Intermediate Static (2046 - 2065) 6% 4,868,599 106% 43% (7,482,152)

CRM Intermediate Static (2046 - 2065) 2% (5,044,555) 97% 55% (9,772,454)

ECH Intermediate Static (2046 - 2065) 2% (3,320,299) 102% 46% (7,967,866)

GISS Intermediate Static (2046 - 2065) 4% (467,839) 99% 40% (6,955,239)

IPS Intermediate Static (2046 - 2065) 3% (1,782,510) 104% 49% (8,523,710)

CCC Intermediate(2046 - 2065) Adaptations 7% 17,291,478 104% 193% (64,441,051)

CRM Intermediate (2046 - 2065) Adaptations 7% 17,291,478 104% 193% (64,441,051)

ECH Intermediate (2046 - 2065) Adaptations 7% 17,291,478 104% 193% (64,441,051)

GISS Intermediate (2046 - 2065) Adaptaions 7% 17,595,057 106% 186% (60,869,250)

IPS Intermediate (2046 - 2065) Adaptations 7% 17,291,478 104% 193% (64,441,051)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included
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profitability with the IRR increasing to 7%.  Intermediate climate projections will 

ultimately impact negatively on profitability and return on investment. 

 A NPV of R30.4 million is projected under present climate scenarios.  For 

intermediate climate scenarios a negative NPV (-R8.8 million) is projected.  The 

inclusion of adaptation strategies in the modelling has a positive impact on 

profitability, to the extent that a NPV of R17.2 million is projected if adaptation 

strategies are included in the model. 

 A cash flow ratio of 119% is projected under present climate conditions.  This 

ratio, however, declines to 81% when intermediate climate scenarios are imposed 

on the model.  The model shows an improvement in cash flow ratio when 

adaptation strategies are included in the model (cash flow ratio = 97%).  The 

intermediate climate projections will strain cash flow and repayment ability and 

may put the farming business in a financial position which falls outside the 

general accepted financing norms.  A cash flow ratio of less than 110% for a 

farming business is not attractive to any financier.  

 A highest debt ratio of 45% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 246%.  To be attractive to outside financiers, the highest debt ratio 

should not exceed 50%.  It seems that without adaptation, intermediate climate 

projections will push the farming business outside this norm. 

 A highest debt level of R7.9 million is projected under present climate conditions.  

This level increased to R43.4 million when intermediate climate scenarios are 

imposed on the model. It is clear that intermediate climate projections will 

ultimately increase debt levels. 

6.4 Moorreesburg case study  

6.4.1 Climate change impact on quality and yield of crops modelling results 

6.4.1.1 APSIM crop modelling results 

Figure 6.3 shows the projected yield for wheat for the intermediate future (2046 – 2065) 

in the Moorreesburg area, derived from APSIM calculations.  The figures are expressed 

as percentage of the yield used in the base analysis.  
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Climate data from four GCMs were applied in the APSIM modelling to project 

intermediate future yield for wheat.  The different GCM projections (20-year average) 

vary from a decrease of 4% to an increase of 4% compared to present yield.  The overall 

average yield between the four models equals the average present yield. 

 

 
Figure 6.3:  Projected yield (% of base yield) [2046 – 2065] for wheat in 

Moorreesburg area based on APSIM calculations 

6.4.1.2 CCCT modelling results 

Table 6.12 shows the CCCT modelling results for five different GCMs for the present 

and intermediate future (2046 – 2065).  The values are 20-year average values for the 

different models.  Despite relative small variances between the different GCM 

projections, no major changes in yield, from the present to the intermediate future, are 

projected.  This result correlates with the APSIM crop modelling results, which increases 

confidence in the CCCT modelling technique. 

 Table 6.12:  CCCT modelling yield projections for wheat in the Moorreesburg area 
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6.4.2 Adaptation strategies available 

Adaptation options for the Moorreesburg area can be divided in two categories, namely 

changes in: 

 Cropping systems 

 Production practices 

6.4.2.1 Cropping systems (crop rotation) 

The benefit of crop rotation in reducing production risk involves three distinct influences 

that were described by Helmers et al. (2001).  Firstly, rotations, as opposed to 

monoculture cropping, may result in overall higher crop yields as well as reduced 

production costs. Secondly, rotation cropping is generally thought to reduce yield 

variability compared with monoculture practices. Thirdly, crop rotation involves 

diversification, with the theoretical advantage that low returns in a specific year for one 

crop are combined with a relatively high return for a different crop.  Drought, however, 

is usually detrimental to all crops, often preventing this advantage from occurring. An 

obvious benefit of diversification is the reduction of risk through the inclusion of 

alternative crops with relatively low risk (Nel and Loubser, 2004). 

Higher yields associated with rotated crops will increase the per hectare cost of activities 

such as harvesting. On the other hand, weed and often pest control costs are less on 

rotated than monoculture crops, which will increase the net return. It is also known that 

nitrogen fertilization of grain crops can be reduced when grown in rotation with oil and 

protein rich crops without affecting the yield. The savings on inputs most probably 

outweigh the extra costs of harvesting higher yields, which suggests that the net returns 

and risk for the rotation systems are conservative estimates (Nel and Loubser, 2004). 

The current cropping system for the case study is wheat-medics-wheat-medics combined 

with mutton and wool production. Other alternative cropping systems adapted for the 

region to be included in the model are: 

 Wheat-medics-wheat-medics (with old man saltbush) 

 Wheat-medics-medics-wheat 

 Wheat-wheat-wheat-wheat (mono cropping system with no sheep) 

 Wheat-lupin-wheat-canola (no sheep). 
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6.4.2.2 Production practices 

In the past 15 years, successful adoption of conservation agriculture (CA) took place 

among grain and sugar farmers in Kwa-Zulu Natal, as well as among grain farmers in the 

Western Cape and Free State, but has remained rather slow in other production areas of 

South Africa. The main reasons for adopting CA relate to the improved water 

conservation properties and the ability to substantially lower production costs (Du Toit, 

2007). 

In 2004 it was reported that 45% of the total land cultivated in Brazil is estimated to be 

managed with no-till. In the case of land cropped by smallholder farmers (<50 ha), this 

figure is even reported to exceed 80% (Du Toit, 2012). Worldwide, a total of 

approximately 95 million hectares (ha) are currently being cultivated according to the 

principles of CA (Derpsch, 2005). The United Nations Food and Agriculture 

Organization, who has promoted the concept for the past ten years, states that CA has 

great potential in Africa, being the only truly sustainable production system for the 

continent (FAO, 2006). 

Conservation agriculture (CA) is an integrated system built on the following basic 

principles (Nel, 2010; Du Toit, 2012): 

 Minimum soil disturbance – conventional tillage methods are replaced by 

reduced or no-tillage and crops being planted by adapted planting equipment. 

 Establishment and maintenance of an organic soil cover in the form of a mulch. 

 Implementation of crop diversification and rotations, as opposed to mono-

cropping. 

The BFAP study (Du Toit, 2007) extensively researched conservation agriculture and 

concluded that it can definitely serve as an adaptation strategy. The study indicated 

significant economic and biological benefits, in the form of increased crop yields and net 

farm income, since starting with CA. 

Adaptations options in terms of production practices for the Moorreesburg area include: 

 Conservation agricultural production practices versus conventional production 

practices. 



170 
 

6.4.3 Financial vulnerability assessment results – Moorreesburg case study 

Table 6.13 summarises the financial ratios of the different climate scenarios that were 

modelled.  The model assumes a 20% start-up debt ratio. 

Table 6.13:  Financial assessment results for Moorreesburg case study 

 
 

The modelling results for Moorreesburg case study (20% start-up debt ratio) can be 

interpreted as follows: 

 An average IRR of 6% is projected under the present climate scenario.  When 

intermediate climate scenarios are imposed on the model, the IRR decreases to 

respectively 5% for the CCCT model and 5% for the ACM.  The inclusion of 

adaptation strategies tends to have a positive effect on profitability with the IRR 

increasing to 15% (CCCT) and 13% (ACM).   

IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 5% 2,340,998 127% 17% (3,871,160)

CCC Present (1971 - 1990) 6% 5,425,457 133% 17% (3,871,160)

CRM Present (1971 - 1990) 5% 2,492,260 126% 14% (3,871,160)

ECH Present (1971 - 1990) 6% 4,149,426 128% 14% (3,871,160)

GISS Present (1971 - 1990) 5% 1,942,384 126% 10% (3,871,160)

IPS Present (1971 - 1990) 7% 5,727,930 133% 7% (3,871,160)

CCC Intermediate (2046 - 2065) 5% 2,197,053 126% 17% (3,871,160)

CRM Intermediate (2046 - 2065) 5% 2,552,802 127% 12% (3,871,160)

ECH Intermediate (2046 - 2065) 7% 5,499,782 133% 17% (3,871,160)

GISS Intermediate (2046 - 2065) 5% 1,460,138 124% 22% (4,281,636)

IPS Intermediate (2046 - 2065) 2% (4,187,047) 112% 10% (3,871,160)

CM CCC Intermediate (2046 - 2065) 5% 3,324,716 129% 23% (4,417,363)

CM CRM Intermediate (2046 - 2065) 5% 3,418,428 129% 24% (4,573,033)

CM GISS Intermediate (2046 - 2065) 4% 1,081,604 123% 23% (4,401,884)

CM IPS Intermediate (2046 - 2065) 6% 4,204,177 131% 21% (3,976,255)

CCC Intermediate (2046 - 2065) Adaptations 14% 24,560,173 159% 8% (3,871,160)

CRM Intermediate (2046 - 2065) Adaptations 17% 24,332,290 158% 0% (3,871,160)

ECH Intermediate (2046 - 2065) Adaptations 18% 28,973,417 167% 8% (3,871,160)

GISS Intermediate (2046 - 2065) Adaptations 14% 23,437,682 156% 17% (3,871,160)

IPS Intermediate (2046 - 2065) Adaptations 11% 14,254,306 139% 0% (3,871,160)

CM CCC Intermediate (2046 - 2065) Adaptations 13% 22,798,326 158% 14% (3,871,160)

CM CRM Intermediate (2046 - 2065) Adaptations 13% 23,072,360 159% 14% (3,871,160)

CM GISS Intermediate (2046 - 2065) Adaptations 11% 19,347,228 153% 15% (3,871,160)

CM IPS Intermediate (2046 - 2065) Adaptations 14% 24,985,717 161% 14% (3,871,160)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

Apsim technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included

Apsim technique for different GCM's - Intermediate climate - adaptation options included
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 A NPV of R3.9 million is projected under present climate conditions.  For 

intermediate climate scenarios a NPV of R1.5 million for the CCCT model and 

R3 million for the ACM model are projected.  Both these projections are 

positively influenced by the inclusion of adaptation strategies in the model.  A 

NPV of R23 million is projected for the CCCT model and a NPV of R22 million 

for the ACM model.  The impact of intermediate climate projections tends to be 

marginally negative on profitability and return on investment.  The inclusion of 

adaptation strategies can ultimately put the farming system in a better position 

than the current conventional system under present climate scenarios. 

 A cash flow ratio of 129% is projected under present climate conditions.  This 

ratio, however, declines marginally to 124% (CCCT model) and 128% (ACM) 

when intermediate climate scenarios are imposed on the model.  Both models 

show an improvement in cash flow ratio when adaptation strategies are included 

in the model (CCCT model = 155%, ACM model = 158%).  The adoption of 

conservation agriculture principles seems to counter the negative effect of climate 

change completely in the Moorreesburg area. 

 A highest debt ratio of 12% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 16% (CCCT model) and 22% (ACM model).  The inclusion of 

adaptation strategies positively influences the highest debt ratio to 7% and 14% 

for the CCCT model and the ACM model respectively.  All these ratios are well 

within acceptable financing norms. 

 A highest debt level of R3.8 million is projected under present climate conditions.  

This level increased to R4 million (CCCT model) and R4.3 million (ACM model) 

when intermediate climate scenarios are imposed on the model. With the 

inclusion of adaptation strategies in the model, the highest debt level of R3.9 

million (CCCT model) and R3.9 million (ACM model) is projected.  It is clear 

that neither the intermediate climate projections nor the inclusion of adaptation 

strategies will cause a significant increase in debt levels. 

 The case study farm is already on a profitable crop rotation system (wheat-

medics-wheat).  With optimisation of the farming system there was no significant 

deviation in the crop rotation, except the inclusion of old man saltbush.  Old man 

saltbush is commonly known as a drought strategy for small livestock farming in 
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South Africa. The results clearly indicate that changing to conservation 

agriculture is an efficient adaptation strategy for climate change in the 

Moorreesburg region. 

6.5 Carolina case study  

6.5.1 Climate change impact on quality and yield of crops modelling results 

6.5.1.1 APSIM crop modelling results 

Figure 6.4 shows the projected yield for maize for the intermediate future (2046 – 2065) 

in the Carolina area, derived from APSIM calculations.  The figures are expressed as 

percentages of the yield used in the base analysis.  

Climate data from four GCMs were applied in the APSIM modelling to project 

intermediate future yield for wheat.  One model projects an average decrease of 25% 

while three models project an increase in average yield of approximately 10%. 

 
Figure 6.4:  Projected yield (% of base yield) [2046 – 2065] for maize in Carolina 

area based on APSIM calculations 

6.5.1.2 CCCT modelling results 

Table 6.14 shows the CCCT modelling results for five different GCMs for the present 

and intermediate future (2046 – 2065).  The values are 20-year average values for the 

different models.  All five models project an average increase in yield of approximately 

10%.  This result correlates to a large extent with the APSIM crop modelling results 

where three out of four models projected similar increases in average yield. 
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 Table 6.14:  CCCT modelling yield projections for maize in the Carolina area 

 

6.5.2 Adaptation strategies available 

Adaptation options for the Carolina area can be divided in two categories, namely 

changes in: 

 Cropping systems 

 Production practices 

6.5.2.1 Cropping systems (crop rotation) 

For a detailed discussion on cropping systems refer to Section 6.4.2.1 (Cropping 

systems). 

Current cropping systems are maize-soybeans-maize-soybeans and maize-sugar beans-

maize-sugar beans combined with beef and mutton production. An alternative cropping 

system adapted for the region to be included in the integrated model is maize-maize-

maize-maize (mono system). 

6.5.2.2 Production practices 

For a detailed discussion on production practices refer to Section 6.4.2.2 (Production 

practices). 

Adaptations options include conservation agricultural production practices versus 

conventional production practices. 

6.5.2.3 Other adaptation strategies (not included in the model) 

The following are a list of adaptation strategies debated in the group discussions, but not 

included in the integrated climate change model: 

 Narrower row width (for better moist conservation) 

 More short growers (access to genetics is a problem) 

 Moisture management is very important 

 Grain sorghum and sunflower production as alternatives (to be researched). 

CCC Pres CCC Int CRM Pres CRM Int ECH Pres ECH Int GISS Pres GISS Int IPS Pres IPS Int AVE Pres AVE Int

10 12 9 12 10 12 10 12 10 12 10 12
Legend: Yield (% of base yield)

8 = 90%
9 = 95%

10 = 100%
11 = 105%
12 = 110%
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6.5.3 Financial vulnerability assessment results 

Table 6.15 summarises the financial ratios of the different climate scenarios that were 

modelled. 

Table 6.15:  Financial assessment results for Carolina case study 

 

The modelling results for Carolina case study (20% start-up debt ratio) can be interpreted 

as follows: 

 An IRR of 5% is projected under the present climate scenario.  When intermediate 

climate scenarios are imposed on the model, the IRR increases to respectively 6% 

for the CCCT model and 7% for the ACM model.  The inclusion of adaptation 

strategies tends to have a positive effect on profitability with the IRR increasing 

to 9% (CCCT) and 12% (ACM).   

IRR NPV

Cash flow 

ratio

Highest 

debt 

ratio

Highest 

debt

Base run 5% 8,810,019 134% 16% (17,600,000)

CCC Present (1971 - 1990) 5% 9,642,378 134% 14% (17,600,000)

CRM Present (1971 - 1990) 4% 2,951,799 130% 15% (17,600,000)

ECH Present (1971 - 1990) 5% 10,191,475 135% 16% (17,600,000)

GISS Present (1971 - 1990) 5% 9,164,137 134% 16% (17,600,000)

IPS Present (1971 - 1990) 5% 6,971,932 133% 14% (17,600,000)

CCC Intermediate (2046 - 2065) 6% 19,911,856 142% 14% (17,600,000)

CRM Intermediate (2046 - 2065) 6% 25,137,859 146% 15% (17,600,000)

ECH Intermediate (2046 - 2065) 6% 19,456,349 141% 14% (17,600,000)

GISS Intermediate (2046 - 2065) 6% 22,965,632 144% 14% (17,600,000)

IPS Intermediate (2046 - 2065) 6% 21,677,866 144% 14% (17,600,000)

CM CCC Intermediate (2046 - 2065) 4% (2,984,864) 123% 11% (17,600,000)

CM CRM Intermediate (2046 - 2065) 7% 38,604,274 158% 12% (17,600,000)

CM GISS Intermediate (2046 - 2065) 8% 44,826,148 162% 12% (17,600,000)

CM IPS Intermediate (2046 - 2065) 7% 38,858,886 158% 12% (17,600,000)

CCC Intermediate (2046 - 2065) Adaptations 9% 51,182,114 160% 12% (17,600,000)

CRM Intermediate (2046 - 2065) Adaptations 9% 56,165,104 165% 13% (17,600,000)

ECH Intermediate (2046 - 2065) Adaptations 9% 50,892,980 160% 11% (17,600,000)

GISS Intermediate (2046 - 2065) Adaptations 9% 52,960,065 164% 12% (17,600,000)

IPS Intermediate (2046 - 2065) Adaptations 9% 52,083,487 164% 12% (17,600,000)

CM CCC Intermediate (2046 - 2065) Adaptations 9% 46,472,120 157% 5% (17,600,000)

CM CRM Intermediate (2046 - 2065) Adaptations 13% 104,039,509 194% 5% (17,600,000)

CM GISS Intermediate (2046 - 2065) Adaptations 14% 113,484,946 198% 5% (17,600,000)

CM IPS Intermediate (2046 - 2065) Adaptations 13% 103,346,315 193% 7% (17,600,000)

   Colour code legend:

Base run

CCCT technique for different GCM's - Present climate - static runs

CCCT technique for different GCM's - Intermediate climate - static runs

Apsim technique for different GCM's - Intermediate climate - static runs

CCCT technique for different GCM's - Intermediate climate - adaptation options included

Apsim technique for different GCM's - Intermediate climate - adaptation options included
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 A NPV of R7.8 million is projected under present climate conditions.  For 

intermediate climate scenarios a NPV of R21.8 million for the CCCT model and 

R29.8 million for the ACM model are projected.  Both these projections are 

positively influenced by the inclusion of adaptation strategies in the model.  A 

NPV of R52 million is projected for the CCCT model and a NPV of R91 million 

for the ACM model.  The impact of intermediate climate projections tends not to 

have a negative impact on profitability and return on investment.  The inclusion 

of adaptation strategies can ultimately put the farming system in a better position 

than the current conventional system under present climate scenarios. 

 A cash flow ratio of 133% is projected under present climate conditions.  This 

ratio, however, declines marginally to 143% (CCCT model) and 150% (ACM) 

when intermediate climate scenarios are imposed on the model.  Both models 

show an improvement in cash flow ratio when adaptation strategies are included 

in the model (CCCT model = 163%, ACM model = 186%).  The adoption of 

conservation agriculture principles seems to contribute to profitability in the 

Carolina area. 

 A highest debt ratio of 15% is projected under present climate scenarios.  When 

intermediate climate scenarios are imposed on the model, the highest debt ratio 

increases to 14% (CCCT model) and 12% (ACM model).  The inclusion of 

adaptation strategies positively influences the highest debt ratio to 12% and 5% 

for the CCCT model and the ACM model respectively.  All these ratios are well 

within acceptable financing norms. 

 A highest debt level of R17.6 million is projected under present climate 

conditions.  This is the starting debt level for all scenarios and also the highest for 

the 20-year projection period. 

 Similar to the Moorreesburg case study, the Carolina case study farm already 

converted to the more sustainable cropping system. The best adaptation strategy 

for the region is also to convert to conservation agriculture. 

6.6 Chapter summary 

Chapter 6 considers the integrated climate change modelling results for the selected case 

study areas.  The modelling results are analysed in terms of climate change impact on: 

 Quality and yield of crops (APSIM and CCCT modelling results). 
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 Crop irrigation requirements (for irrigation crops only – SAPWAT3 modelling 

results). 

 The availability of irrigation water requirements (only for Blyde River WUA – 

ACRU modelling results). 

 Financial vulnerability assessment results (for current and intermediate future 

climates). 

The modelling results for the LORWUA case studies can be summarised as follows: 

 Climate data from four GCMs was applied in the APSIM modelling.  All the 

GCMs project a 20-year average decrease in yield, varying from 9% to 18%.   

 Data from five GCMs was applied in the CCCT model.  All five models project 

a decrease in yield for wine grapes, table grapes and raisins and a decrease in 

quality for table grapes.  

 A 10% average annual increase in irrigation requirements is projected for table 

grapes for intermediate future climates in order to obtain the same yield as with 

present climates.  For wine grapes and raisins, an 11% average increase in 

irrigation requirements is projected. 

 The ACRU was not included in the integrated climate change modelling for 

LORWUA due to various reasons (see Section 4.2.1.4). 

 Both climate change financial modelling techniques (APSIM crop modelling and 

CCCT modelling technique) indicate that intermediate climate scenarios from 

five different GCMs pose a threat to the financial vulnerability of farming systems 

in the LORWUA grape producing area. 

 Several adaptation strategies to counter the impact of climate change on financial 

vulnerability were included in the model.  These strategies include: 

- Shift wine grape cultivars towards cultivars that are more tolerant towards 

projected climate change 

- Increase raisin and table grape production 

- Install shade nets over table grapes production areas. 

 The above adaptation strategies all seem to lessen the impact of climate change 

on financial vulnerability to a certain extent and seem worth further investigation. 

 Adaptation strategies not included in the model, but worth investigation, include:   

- Irrigation at night to save water 
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- Plastic or mulch cover to conserve moisture 

- Soil preparation and site selection for future plantings in order to ensure 

optimum production – rather scale down and eliminate marginal blocks. 

The modelling results for Blyde River WUA case studies can be summarised as follows: 

 Empirically downscaled climate values of five GCMs were applied in the CCCT 

model.  Although, only one out of five GCMs projects a decrease in yield for 

citrus, all models project a negative impact on quality.  For mangoes the models 

project a negative impact on both yield and quality. 

 An 8% average annual increase in irrigation requirements is projected for both 

citrus and mangoes for intermediate future climates in order to obtain the same 

yield as with present climates. 

 The projection of the Blydepoort Dam level was done by UKZN, using the ACRU 

model.  All indications are that the availability of irrigation water for the Blyde 

River WUA area irrigators (in terms of quota consistency) will not be negatively 

affected by the projected climate scenarios. 

 The CCCT modelling results indicate that intermediate climate scenarios from 

different GCMs pose a threat to the financial vulnerability of farming systems in 

the Blyde River mango and citrus producing area. 

 The impact of intermediate climate scenarios on financial vulnerability will be 

more severe on farming systems that are highly geared (high debt levels). 

 An adaptation strategy to counter the impact of climate change on financial 

vulnerability is to install shade nets over mango and citrus production areas.  The 

installation of shade nets proves to lessen the impact of climate change on 

financial vulnerability to a certain extent and seems worthwhile to investigate 

further. 

 Adaptation strategies not included in the model, but worth investigation, include:   

- Mulching cover to conserve moisture 

- More effective management of irrigation systems 

- Cultivar development to increase natural heat resistance 

The modelling results for the Moorreesburg case study can be summarised as follows: 

 Climate data from four GCMs were applied in the APSIM modelling to project 

intermediate future yield for wheat.  The different GCM projections (20-year 

average) vary from a decrease of 4% to an increase of 4% compared to present 
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yield.  The overall average yield between the four models equals the average 

present yield. 

 Data from five GCMs was used in CCCT modelling.  Despite relatively small 

variances between the different GCM projections, no major changes in yield, 

from the present to the intermediate future, are projected.  This result correlates 

with the APSIM crop modelling results, which increases confidence in the CCCT 

modelling technique. 

 Both climate change financial modelling techniques (APSIM crop modelling and 

CCCT modelling technique) indicate that intermediate climate scenarios from 

different GCMs pose a very marginal threat to the financial vulnerability of 

farming systems in the Moorreesburg dryland wheat producing area. 

 The impact of intermediate climate scenarios on financial vulnerability will be 

more severe on farming systems that are highly geared (high debt levels). 

 Adaptation strategies to counter the impact of climate change on financial 

vulnerability were included in the model.  These strategies include: 

- Cropping systems 

- Production practices. 

 The above adaptation strategies seem not only to counter the impact of climate 

change, but to positively impact on profitability. 

The modelling results for the Carolina case study can be summarised as follows: 

 Climate data from four GCMs was applied in the APSIM modelling to project 

intermediate future yield for maize.  One model projects an average decrease of 

25% while three models project an increase in average yield of approximately 

10%. 

 Data from five GCMs was used in CCCT modelling.  All five models project an 

average increase in yield of approximately 10%.  This result correlates to a large 

extent with the APSIM crop modelling results where three out of four models 

projected similar increases in average yield. 

 Both climate change financial modelling techniques (APSIM crop modelling and 

the CCCT modelling technique) indicate that intermediate climate scenarios from 

five different GCMs pose no threat to the financial vulnerability of farming 

systems in the Carolina summer rainfall dryland area.  Please note that abnormal 

climate events like storms, hail, etc., are not included in the climate modelling. 
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 Adaptation strategies to counter the impact of climate change on financial 

vulnerability were included in the model.  These strategies include: 

- Cropping systems 

- Production practices. 

 The above adaptation strategies seem to not only counter the impact of climate 

change, but to positively impact on profitability. 

 

Figure 6.5 illustrates the mapping of selective case studies included in the study, viz. 

LORWUA, Blyde River WUA, Moorreesburg and Carolina.  The map shows the location 

of the case studies and the financial vulnerability towards projected future climates.  The 

colour coding legend indicates the degree of vulnerability to climate change, i.e. pink – 

marginally vulnerable, red – vulnerable, light green – marginally less vulnerable than 

present scenario, and green – less vulnerable than present scenario. 

 

 
Figure 6.5:  Mapping of selective case studies and their financial vulnerability to 

projected future climates  
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The LORWUA and Blyde River WUA are more vulnerable towards climate change than 

Moorreesburg and Carolina areas. 

Chapter 7 follows with the summary, conclusions and recommendations. 
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CHAPTER 7 : SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

______________________________________________________________________ 

7.1 Summary 

Chapter 1 describes the background, problem statement and objective of the study.  The 

chapter demarcates the study area, defines the hypothesis that will guide the study, 

discusses the research method as well as the contribution of the research and the data 

used. 

There is limited research on climate change and related impacts on livelihoods and the 

natural resources in some African countries (Environmental Alert, 2010; Louw et al., 

2012).  However, evidence from GCMs developed so far suggests that the agricultural 

sector in the Southern African region is highly sensitive to future climate shifts and 

increased climate variability (Gbetibouo et al., 2004).  Therefore, Schulze (2011) 

suggests that, because of the complexity of South Africa’s physiography, climate and 

socio-economic milieu, detailed local scale analyses are needed to assess potential 

impacts of climate change.  In order to fill this gap, the challenge for this study was to 

develop an integrated climate change model to determine financial vulnerability of 

farming systems at farm level. 

Chapter 2 summarises the literature review that was undertaken for this study.  The 

chapter starts off by defining climate change followed by a brief history of climate change 

research.  The impacts of climate change and global warming and more specifically, the 

likely consequences for agriculture, including bio-physical and socio-economic impacts, 

are discussed. 

GCMs and the two downscaling approaches, viz. empirical and dynamical downscaling, 

are expounded.  The CSAG, based at the University of Cape Town, South Africa, 

operates the pre-eminent empirically downscaled model for Africa and provides 

meteorological station level responses to global climate forcings for a growing number 

of stations across the African continent. 

The empirical downscaling of values to climate station level used in this study was 

undertaken by the CSAG.  Daily rainfall, as well as minimum and maximum temperature 
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values, constitutes the output from five accredited GCMs from the IPCC (2007), in each 

case for two 20 year scenarios for present climate (1971 – 1990) and an intermediate 

future climate (2046 – 2065). 

Chapter 2 also includes climate change projections for South Africa and more specifically 

for the case study areas.  Warming for minimum and maximum temperatures is projected 

in respect of all four case study areas.  Most projections favour an increase in rainfall for 

the summer rainfall areas.  For the winter rainfall areas most projections point to a 

decrease in rainfall for early winter and a slight increase during springtime. 

In the context of this study vulnerability means the inability of individual commercial 

farmers to respond to, or cope with, climate change effects on crop yields from a financial 

vulnerability point of view.  Chapter 2 also defines the financial vulnerability assessment 

criteria that comprise a set of financial ratios, viz. IRR, NPV, cash flow ratio, highest 

debt ratio and highest debt. 

Two main types of adaptation are autonomous and planned adaptation.  In this study the 

focus was on autonomous adaptation, in other words, adaptation strategies that can be 

applied at farm level without support from other levels e.g. policies, etc.  The success of 

adaptation strategies was evaluated by comparing the financial vulnerability criteria of 

different climate and management scenarios. 

From the literature review it was clear that a gap exists in the research with reference to 

integrated economic modelling at farm level.  This includes the linkages between 

changing projected climates, changing yield and quality of produce, hydrology 

(availability of irrigation water), changing crop irrigation needs (with new projected 

climates), financial vulnerability and financial sustainability of farming systems.  

Chapter 3 gives an overview of the four case study areas, i.e. LORWUA, Blyde River 

WUA, Moorreesburg and Carolina, which broadly represent the summer and winter 

rainfall as well as irrigation and dryland crop production areas of South Africa. 

The description of the case study areas include discussions on climate, natural resources, 

adapted crops for the region, crop irrigation requirements, crop cultivation practices and 

crop enterprise budgets.  The critical climate thresholds for crops in the different regions, 
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which form an integral part of the integrated climate modelling in this study, are also 

specified. 

The different case studies were defined in terms of farm size, land use, irrigation water 

availability and valuation of assets and liabilities. 

In Chapter 4 the development of the integrated climate change model is discussed.  It 

comprises a layman’s description of the integrated model and the four modules that form 

the pillars of the integrated climate model.  These four modules are: (a) climate change 

impact modelling, (b) DLP model, (c) modelling interphases, and (d) the Financial 

Vulnerability Assessment model. 

Climate change impact modelling comprises the modelling of empirically downscaled 

climate data that impact on crop yield and quality, changing crop irrigation requirements 

as a result of climate change and hydrological modelling to determine the availability of 

irrigation water due to changing weather patterns.  

Chapter 4 outlines the role of GCMs, empirical downscaling, the APSIM crop modelling 

and the newly developed CCCT modelling technique.  The contribution of the ACRU 

hydrological model and the SAPWAT3 model, as well as where the respective modelling 

outputs fit into the integrated climate model, are also described. 

The objective, purpose and motivation for using the DLP modelling technique in the 

study are discussed in Chapter 4.  The primary objective with the economic planning for 

a farming system is to establish the best choice between the alternative uses of limited 

resources to maximise return on capital invested.  Independent of the scale of farming, 

five objectives must be reached: 

 Establish which plan reflects the best use of land, water, capital and human 

resources. 

 Establish the financial implications of the plan based on the expected future cash 

flow. 

 Establish the capital required and the time when needed from own and borrowed 

sources. 

 Analyse the complexity of marketing, financial and production management and 

the demands it will put on management capability. 
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 Analyse the financial incentive to put the plan into operation. 

Mathematical programming techniques are pre-eminently suited to conducting the study 

of the financial vulnerability of farming systems without and with climate change 

adaptations. 

The modelling interphases that link the output from the climate change modelling, 

hydrological modelling and crop irrigation requirements modelling are discussed and 

graphically illustrated. 

Chapter 5 presents the design and the mathematical specification of the DLP and 

Financial Vulnerability Assessment models.  The agricultural part of the model is to a 

large extent based on work done in Australia and applied in South Africa, by Louw 

(2001), who added several newly developed formulas and techniques to the model, to be 

applied at macro/regional level. 

The interphases between the DLP model and other models that were developed in this 

study are unique and contribute to the existing DLP model.  These interphases include: 

 The APSIM crop model data whole-farm model interphase 

 The CCCT yield model data whole-farm model interphase 

 The CCCT quality model data whole-farm model interphase 

 The ACRU hydrological model data whole-farm model interphase 

 The SAPWAT3 crop irrigation requirements data whole-farm model interphase. 

 

The link between the output of the DLP model and the Financial Vulnerability 

Assessment model also constitutes a new contribution to the DLP model. 

The output of the DLP module is used as input to determine financial vulnerability of the 

farming system to future climates, evaluated by a set of financial ratios criteria, viz. IRR, 

NPV, cash flow ratio, highest debt ratio and highest debt.  The comparison of financial 

vulnerability analysis results for present climates and projected future climates (with 

current cropping patterns and production practices) clearly illustrates the farming 

system’s financial vulnerability to climate change. 

The value added by the DLP model is clearly illustrated in the next step when available 

adaptation options are included in the model and the calibration constraints are released, 
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which enables the model to determine the optimal solution.  This result ultimately 

illustrates the farming system’s vulnerability to climate change with due consideration to 

adaptation strategies and technologies that are currently available. 

The integrated climate change model proves to be a useful tool to model the impact of 

projected climate change on the financial vulnerability of farming systems.  A unique 

feature of the CCCT modelling technique is its ability to also model the impact of climate 

on crop quality and not only on yield, as in the case of APSIM crop modelling.   

The interphase between the ACRU hydrological model and the DLP model links 

projected climate change impact on availability of irrigation water and financial 

vulnerability at farm level. 

A new approach was developed in this study by developing an interphase between the 

SAPWAT3 model and the DLP model to link projected impact of changing climates on 

crop irrigation water requirements and ultimately to financial vulnerability at farm level. 

Chapter 6 considers the integrated climate change modelling results for the selected case 

study areas.  The modelling results are analysed in terms of climate change impact on: 

 Quality and yield of crops (APSIM and CCCT modelling results). 

 Crop irrigation requirements (for irrigation crops only – SAPWAT3 modelling 

results). 

 The availability of irrigation water requirements (only for Blyde River WUA – 

ACRU modelling results). 

 Financial vulnerability assessment results (for current and intermediate future 

climates). 

 

Possible adaptation strategies with their associated benefits and costs were identified 

during expert group discussions in the different regions.  These adaptation options were 

brought into the DLP model as alternative options/activities available, which could be 

brought into the solutions when constraints are released during the second round of 

modelling.  

The integrated modelling results for the case studies are summarised below: 
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LORWUA case studies 

Both climate change financial modelling techniques (prototype APSIM crop model and 

CCCT modelling technique) indicate that intermediate climate scenarios from five 

different GCMs pose a threat to the financial vulnerability of farming systems in the 

LORWUA grape producing ara.  Sensitivity analysis shows that the impact of 

intermediate climate scenarios on financial vulnerability will be more severe on farming 

systems that are highly geared (high debt levels). 

Adaptation strategies to counter the impact of climate change on financial vulnerability 

include: (a) Shift wine grape cultivars towards cultivars that are more tolerant towards 

projected climate change, (b) increase raisin and table grape production, and (c) install 

shade nets over table grapes production areas.  These strategies all seem to lessen the 

impact of climate change on financial vulnerability to a certain extent and seem 

worthwhile to further investigate.  

Adaptation strategies that were not included in the model, but worth investigation, 

include:  (a) Irrigation at night to save water, (b) plastic or mulch cover to conserve 

moisture, and (c) optimal site selection and soil preparation for future plantings in order 

to ensure optimum production (rather scale down and eliminate marginal blocks). 

Blyde River WUA case studies 

The modelling results from the CCCT modelling technique for the Blyde River WUA 

case studies indicate that intermediate climate scenarios from five GCMs pose a threat to 

the financial vulnerability of farming systems in the Blyde River WUA mango and citrus 

producing area.  The impact will be more severe on highly geared farming systems.  

The only adaptation strategy suggested by the expert group discussion to counter the 

impact of climate change on financial vulnerability is to install shade nets over mango 

and citrus orchards, which will offer the following advantages: (a) Improvement in fruit 

quality (citrus and mangoes) [less hail, wind and sun damage], (b) less stress on trees 

(citrus and mangoes) [more consistent yields], and (c) more effective use of irrigation 

water (citrus and mangoes) [less evapotranspiration]. 
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Other adaptation strategies which could be investigated are: (a) Mulching cover to 

conserve moisture, (b) more effective management of irrigation systems, and (c) cultivar 

development to increase natural heat resistance. 

Moorreesburg case study 

The intermediate climate scenario modelling results from both climate change financial 

modelling techniques (APSIM crop modelling and CCCT modelling technique) point to 

a marginal threat to financial vulnerability of farming systems in the Moorreesburg wheat 

producing area, except for highly geared entities, for which the projected threats are more 

serious.  

Alternative cropping systems (crop rotation) and alternative production practices 

(conservation agriculture) are adaptation strategies that not only counter the impact of 

climate change, but increase profitability. 

Carolina case study 

The APSIM crop modelling and CCCT modelling technique were applied to determine 

the financial vulnerability of the Carolina case study farming system to projected 

intermediate climates from five GCMs.  The modelling results show that projected 

climates will not impact negatively on profitability of the farming system in the Carolina 

summer rainfall dryland area.  All indications are that intermediate climate change 

scenarios will positively impact on the financial position of farming systems in the 

dryland maize and livestock producing area.  However, it needs to be reiterated that 

abnormal climate events such as storms, hail, etc., are not included in the climate 

modelling. 

The inclusion of crop rotation and conservation agriculture in the farming system has a 

positive impact on profitability. 

Chapter 7 comprises the summary, conclusions and recommendations of the study.  An 

integrated climate change model was successfully developed to quantify the financial 

vulnerability of different farming systems to projected climate change.  This includes the 

integration of various models, viz. empirically downscaled climate models, whole-farm 

DLP models, ACRU hydrological model, SAPWAT3 model and Financial Vulnerability 
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Assessment model.  The newly developed CCCT modelling technique and modelling 

interphase linkages are unique contributions to integrated climate change modelling at 

farm level. 

7.2 Conclusions 

This study sets out to develop an integrated climate change model to determine the 

financial vulnerability of different farming systems to climate change.  The approach in 

this study successfully links a series of models, viz. empirically downscaled GCMs, 

whole-farm DLP model, APSIM and CCCT crop modelling techniques, ACRU 

hydrological model, SAPWAT3 crop irrigation requirements model and a Financial 

Vulnerability Assessment model.  

Empirically downscaled climate data from five GCMs, all of which were applied in the 

IPCC’s (2007) Fourth Assessment Report [AR4], served as basis for the APSIM, CCCT, 

ACRU and SAPWAT3 models.  The modelling output from these models feed into the 

DLP model through a series of interphases.  These modelling interphases are unique and 

for the first time successfully link the APSIM, CCCT, ACRU and SAPWAT3 model 

outputs to the DLP model at micro/farm level.  The interphase that links the DLP model 

output to the financial assessment model is also a new contribution. 

Extensive validation of climate models have been undertaken and while GCMs generally 

capture present climatic conditions adequately there are differences between the outputs 

of the various GCMs and especially individual events and extreme conditions are not 

captured as well as one would like.  It is for this reason that ratio changes between future 

climatic conditions and present climatic conditions are made, rather than evaluating 

absolute outputs from the climate models.  Uncertainty and the way in which to express 

it remain a challenge in climate change impact studies.  At the time this project 

commenced the GCMs were the only credible tools that were available for climate 

change impact studies.  Subsequently various downscaling attempts have been made, but 

the validation of these were not available for input in this project (Schulze, 2014; 

Johnston, 2014).  Future research should take updated models into account. 

The newly developed CCCT modelling technique proves to be a useful tool to determine 

the impact of projected climates on crop yield and quality.  The APSIM crop modelling 

results and CCCT modelling results demonstrate similar trends for the two dryland case 
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study areas, i.e. Moorreesburg and Carolina and also for the prototype APSIM model for 

grapes in LORWUA area.  The similar trends in the results prove that, where APSIM 

crop models are not available, the CCCT modelling technique is suitable to quantify the 

impact of climate change on crop yield and quality.  When interpreting crop modelling 

results the emphasis should be on changing trends in yield and quality projections rather 

than on absolute values. 

No APSIM crop models exist for citrus and mangoes in the Blyde River WUA producing 

area and only the CCCT modelling technique could be applied to model the impact of 

projected climates on crop yield and quality.  The crop modelling results and expected 

impact of projected climates on crop yield and quality were validated by expert opinions.  

A unique feature of the CCCT modelling technique is its ability to model the impact of 

projected climate change on both crop yield and quality as oppose to APSIM and other 

crop models that only model impact on yield.  The value of this feature is underlined in 

the Blyde River WUA area for citrus where the projected impact of climate change will 

be more severe on quality than on yield. 

The Financial Vulnerability Assessment model quantifies the economic and financial 

impact of changes in crop yield and quality as a result of changing climates.  The model 

criteria provide for economic viability criteria (IRR and NPV) as well as for financial 

feasibility criteria, i.e. cash flow ratio and debt ratio, over a twenty year planning horizon.  

Not only does the model provide an accurate tool to quantify the financial impact of 

changing climates on farm level, but is also very useful to determine the economic 

viability and financial feasibility of adaptive strategies.   

The empirically downscaled climate data from five GCMs applied in this study underline 

the correctness of those early predictions in the 1980s, that the world would become 

warmer.  Increases in temperature for the intermediate future are projected for all four 

case study areas, varying from 1 °C to 2.5 °C with the highest projected increases (1.5 °C 

to 2.5 °C) in respect of the Carolina area. 

This study clearly indicates the importance of biophysical factors and the capacity to 

adapt to climate change. The Moorreesburg as well as the Carolina case study results 

indicated that changing to conservation agriculture (more resilient cropping system) 

improves the adaptive capacity of the farming systems.  In the Blyde River WUA case 
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study, shade netting improves the biophysical adaptive capacity of mangoes and citrus 

(in terms of yield and quality).  The LORWUA case study showed similar results for 

table grapes under shade nets. 

For the Carolina case study, all five CCCT models project an average increase in maize 

yield of approximately 10%.  This result correlates to a large extent with the APSIM crop 

modelling results where three out of four models projected similar increases in average 

yield and the findings of Du Toit et al. (2002).  The study results show that, similar to 

Nelson et al. (2009), some regions will gain due to the impact of climate change and 

some will lose e.g. Blyde River WUA area (mangoes and citrus).  The results of the study 

echoed those of Andersson et al. (2009), indicating that impacts of a changing climate 

could be considerable. Different regions of the country will likely be affected in many 

different ways.  For this reason alone local scale analyses are needed to assess potential 

impacts (showing the importance of a micro scale integrated climate change modelling 

approach). 

As already been pointed out by various studies, this study also clearly illustrates that, 

without the capacity to implement adaption strategies such as conservation agriculture 

(Moorreesburg and Carolina), shade netting (LORWUA and Blyde River WUA) and 

structural changes to land use patterns (LORWUA), the farming systems of the selected 

case studies will financially be extremely vulnerable to climate change (as indicated by 

reduction in IRR and NPV, higher debt ratios and decreasing cash flow ratios). 

The high capital cost of certain adaptive strategies, e.g. shade nets would not be 

affordable to all farmers, especially on smaller operations and those that are highly 

geared.  Systematic and timely implementation over a longer period of time can reduce 

the pressure on cash flow.  This once again highlights the importance of strategic and 

long term planning, in which Government also could have a role to play.  Timely research 

efforts should be implemented to determine the most appropriate adaptation strategies 

and communicate research findings on an ongoing basis to all role-players.  For the sake 

of food security, regional socio-economic welfare, protection of much needed export 

earnings and to preserve land resources for generations to come, it may be worthwhile to 

investigate subsidies or green box grants in some instances to assist farmers to timeously 

adapt to projected climate change.  The Scottish Government, for instance, has developed 

a policy initiative, “Farming for a better climate (FFBC)”, with the specific aim of 
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mitigating climate change in agriculture.  The FFBC has a communication programme 

that encourages farmers to adopt efficiency measures that reduce emissions, while at the 

same time having an overall positive impact on business performance.  The purpose of 

such a body could not only be to identify and research the best practices, etc. but also to 

serve as communication channel to inform and keep role-players up to date with latest 

research, developments, etc. 

This study shows the importance of research for cultivar development e.g. short grower 

cultivars (e.g. maize) for the summer rainfall area and more heat resistant cultivars for 

the Blyde River WUA area (citrus and mangoes).  It also points out the importance of 

locality for future plantings and the projected switch to cultivars that are more tolerant to 

increasing temperatures (e.g. wine grape cultivars in the LORWUA area).  The different 

results in terms of yield and quality projections for the four case study areas emphasise 

the importance of locality specific climate change research.  In the summer rainfall area, 

for example, an increase in yield is projected for maize (Carolina case study) compared 

to a projected decrease in yield and quality for citrus and mangoes (Blyde River WUA 

area).  The impact of projected climate change on yield and quality also differs in the 

winter rainfall area; the LORWUA grape producing area seems more vulnerable than the 

dryland wheat producing area of Moorreesburg. 

In terms of vulnerability, the sensitivity in Moorreesburg is relatively low compared to 

e.g. the Blyde River WUA farming systems where adaptation strategies (shade nets) are 

more costly than adaptation strategies in Moorreesburg (converting to conservation 

agriculture and alternative cropping systems).  The return on investment for 

implementing adaptation strategies is also more rapid for Moorreesburg compared to the 

Blyde River WUA area. 

This study points out that citrus and mangoes in the Blyde River WUA area are extremely 

vulnerable to increasing temperatures.  This is because prices of perishable produce 

depend to a large extent on quality grading and market requirements.  The Moorreesburg 

and Carolina dryland mixed crop and livestock farming systems are less vulnerable. 

This study achieved its primary and secondary objectives by filling the identified gap in 

climate change research, i.e. integrated economic modelling at micro or farm level and 

thereby making a contribution to integrated climate change modelling. 
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7.3 Recommendations 

A number of recommendations for further research are presented as outcome of this 

study:  

 In terms of the CCCT modelling technique the critical climate thresholds for 

crops should be further researched and refined.  It could be worthwhile for future 

research to merge existing climate and existing yield data sets and deriving a 

variance-covariance matrix to test the assumption of independence and capture 

the interdependence of climate effects. 

 The financial vulnerability assessment of farming systems to climate change 

should be executed throughout all production regions in South Africa.  This will 

provide policy makers, industry leaders, input suppliers and researchers with 

valuable information for future strategizing. 

 Adaptation options identified in this study should be further researched and 

validated.  Research should focus on a number of items, viz. cropping patterns, 

production practices, cultivar development, optimal irrigation equipment and 

practices, soil water conservation techniques and shade nets.    

 The development of crop models should be a high priority on the research agenda. 

Models that cover more crops and more accurate models will make a significant 

contribution to the integrated climate change impact modelling framework that 

was developed through this study. 

 The role that Government, in particular Department of Environmental Affairs and 

Department of Agriculture, Forestry and Fisheries, could play in research and 

communication with regard to climate change research, adaptation treatments and 

implementation of adaptive interventions. 

 

________________________________ 
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APPENDIX B:  SUMMARY OF CROP CRITICAL CLIMATE THRESHOLD 
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Summary of crop threshold breaches – LORWUA case study area 

 
 

  

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 38 ⁰C for 5 days -5% 0% 0 0 0 0 0 0 0 1 1 0 0 0 2 0

Tmxd> 45 ⁰C in Nov -5% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd> 42 ⁰C Nov - Dec -5% 0% 1 0 1 0 2 4 1 32 14 8 2 7 63 13

Difference Tmax and Tmnd > 20 ⁰C in Dec -5% 0% 1 0 1 0 0 2 0 7 3 2 0 3 15 3

Tmnd <9 ⁰C and Tmxd < 20 ⁰C May - Jun 10% 0% 16 16 17 25 16 90 18 3 3 9 2 2 19 4

Average temperature < 22 ⁰C in summer 10% 0% 3 2 2 0 0 7 1 0 0 0 0 0 0 0

5 days above 40 ⁰C -5% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> 33 ⁰C for > 5 days with high Tmnd 0% -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5-10 mm rain Dec - Jan 0% -5% 12 7 10 6 12 47 9 8 10 10 4 13 45 9

> 5 mm rain for 3 days Dec - Jan 0% -5% 1 0 0 0 0 1 0 0 0 0 0 0 0 0

Any Rain from Dec to Apr = bursting/rotting 0% -5% 20 19 20 17 20 96 19 20 20 20 17 20 97 19

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)

Wine grapes
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Summary of crop threshold breaches – LORWUA case study area  

 
 
  

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 38 ⁰C for 5 days 0% -5% 0 0 0 0 0 0 0 1 1 0 0 0 2 0

Tmxd > 45 ⁰C in Nov -10% -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 42 ⁰C Nov - Dec -10% -5% 1 0 1 0 2 4 1 32 14 8 2 7 63 13

Difference Tmax and Tmnd > 20 ⁰C in Dec -10% -5% 1 0 1 0 0 2 0 7 3 2 0 3 15 3

Tmnd < 9 ⁰C and Tmxd < 20 ⁰C May - Jun 10% 10% 16 16 17 25 16 90 18 3 3 9 2 2 19 4

Average temperature < 22 ⁰C in summer 10% 10% 3 2 2 0 0 7 1 0 0 0 0 0 0 0

Difference Tmxd and Tmnd < 10 ⁰C Oct - Nov 0% -5% 75 55 93 25 69 317 63 62 64 69 35 100 330 66

> 33 ⁰C for > 5 days with high Tmnd 0% -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 - 10 mm rain Dec - Jan 0% -5% 12 7 10 6 12 47 9 8 10 10 4 13 45 9

> 5 mm for 3 days Dec - Jan -10% -5% 1 0 0 0 0 1 0 0 0 0 0 0 0 0

Table grapes

Threshold 

Penalty 

weight 

Yield

Threshold 

Penalty 

weight 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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 Summary of crop threshold breaches – LORWUA case study area  

  

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 38 ⁰C for 5 days -5% 0% 0 0 0 0 0 0 0 1 1 0 0 0 2 0

Tmxd > 45 ⁰C in Nov -10% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 42 ⁰C Nov - Dec -5% 0% 1 0 1 0 2 4 1 32 14 8 2 7 63 13

Difference Tmax and Tmnd > 20 ⁰C in Dec -5% 0% 1 0 1 0 0 2 0 7 3 2 0 3 15 3

Tmnd < 9 ⁰C and Tmxd < 20 ⁰C May - Jun 10% 0% 16 16 17 25 16 90 18 3 3 9 2 2 19 4

Average temperature < 22 ⁰C in summer 10% 0% 3 2 2 0 0 7 1 0 0 0 0 0 0 0

5 days above 40 ⁰C -10% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> 33 ⁰C for > 5 days with high Tmnd 0% -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 - 10 mm rain Dec - Jan 0% -5% 12 7 10 6 12 47 9 8 10 10 4 13 45 9

>  5 mm for 3 days Dec - Jan 0% -5% 1 0 0 0 0 1 0 0 0 0 0 0 0 0

Any Rain from Dec to Apr = bursting/rotting 0% -5% 20 19 20 17 20 96 19 20 20 20 17 20 97 19

Raisins

Threshold 

Penalty 

weight 

Yield

Threshold 

Penalty 

weight 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Blyde River WUA case study area 

  

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept -40% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd >35 ⁰C and RH < 30% for 2 days Sept -40% 0% 0 0 0 0 1 1 0 0 0 0 7 1 8 2

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept -40% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fruit drop (Nov/Dec) >7 days of Tmxd > 36 ⁰C and RH < 40% -30% -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 ⁰C warmer in May - colour deteriorates 0% -4% 0 0 3 0 2 5 1 18 18 19 10 16 81 16

During picking  temp > 36 ⁰C - increase rind problems 0% -1% 89 119 119 58 146 531 106 332 520 505 232 460 2 049 410

>14 days continuous rain during picking (autumn) causes leaf wetness 

and overripe fruit 0% -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept -25% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd >35 ⁰C and RH < 30% for 2 days Sept -15% 0% 0 0 0 0 1 1 0 0 0 0 7 1 8 2

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept -15% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fruit drop (Nov/Dec) >7 days of Tmxd > 36  ⁰C and RH < 40% -40% -1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

During picking  temp > 36 ⁰C - increase rind problems 0% -1% 89 119 119 58 146 531 106 332 520 505 232 460 2 049 410

>14 days continuous rain during picking (autumn) causes leaf wetness 

and overripe fruit 0% -15% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Tmxd > 40 ⁰C and RH < 30% for 2 days Sept -25% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd >35 ⁰C and RH < 30% for 2 days Sept -15% 0% 0 0 0 0 1 1 0 0 0 0 7 1 8 2

Tmxd > 35 ⁰C and RH < 20% for 2 days Sept -15% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fruit drop (Nov/Dec) >7 days of Tmxd > 36 ⁰C and RH < 40% -40% -1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

During picking  temp > 36 ⁰C - increase rind problems 0% -1% 89 119 119 58 146 531 106 332 520 505 232 460 2 049 410

> 14 days continuous rain during picking (autumn) causes leaf wetness 

and overripe fruit 0% -8% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Citrus Lemons

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)

Citrus Grapefruit

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)

Citrus Valencia

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Blyde River WUA case study area 

  

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Average May Tmnd 3 ⁰C warmer -4% 0% 0 0 2 0 0 2 0 14 19 14 15 13 75 15

Tmnd < 2 ⁰C Jul - Aug -4% 0% 1 4 6 2 2 15 3 0 0 0 0 0 0 0

Sept - Dec (HU requirement 350 hours > 17.9 ⁰C) cool temps averaging < 

17.9 ⁰C cause late maturation and market delivery delay 0% -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 38  ⁰C Dec - Jan -1% -1% 5 13 10 0 10 38 8 24 58 37 0 30 149 30

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Average May Tmnd 3 ⁰C warmer -8% 0% 0 0 2 0 0 2 0 14 19 14 15 13 75 15

Tmnd < 2 ⁰C Jul - Aug -8% 0% 1 4 6 2 2 15 3 0 0 0 0 0 0 0

Tmxd > 38 ⁰C Sept -1% -1% 53 20 44 46 63 226 45 113 151 166 142 145 717 143

Sept - Dec (HU requirement 350 hours > 17.9 ⁰C) cool temps averaging < 

17.9 ⁰C cause late maturation and market delivery delay 0% -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 38 ⁰C Dec - Jan -1% -1% 5 13 10 0 10 38 8 24 58 37 0 30 149 30

CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total 

All 

models

Avg All 

models

Average May Tmnd 3 ⁰C warmer -6% 0% 0 0 2 0 0 2 0 14 19 14 15 13 75 15

Tmnd < 2 ⁰C Jul - Aug -6% 0% 1 4 6 2 2 15 3 0 0 0 0 0 0 0

Sept - Dec (HU requirement 350 hours > 17.9  ⁰C) cool temps averaging < 

17.9  ⁰C cause late maturation and market delivery delay 0% -20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 38 ⁰C Dec - Jan -1% -1% 5 13 10 0 10 38 8 24 58 37 0 30 149 30

Mango Keitt

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)

Mango Tommy Atkins

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)

Mango Kent

Threshold 

Penalty 

weight - 

Yield

Threshold 

Penalty 

weight - 

Quality

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Moorreesburg case study area 

  

CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models

Mid May - Aug Tmxd > 20 ⁰C -10% 0 0 0 0 0 0 0 14 17 5 10 20 66 13

Tmxd > 25 ⁰C in Sept -10% 0 0 0 0 0 0 0 0 2 1 0 2 5 1

Rainfal May  -  less than 50 mm -10% 6 9 8 10 8 41 8 5 5 7 8 13 38 8

Rainfal May  -  Sept < 200 mm -30% 1 5 3 4 0 13 3 1 0 1 2 4 8 2

Rainfal May  -  Sept > 400 mm 20% 1 2 2 2 1 8 2 2 3 3 4 1 13 3

Rainfal May  -  Sept > 10 mm/week 33% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rainfal Sept weeks 1 and 2 > 10 mm 10% 16 12 14 12 13 67 13 14 15 12 10 11 62 12

Rainfal Sept weeks 3 and 4 > 10 mm 10% 8 7 7 6 9 37 7 7 8 8 9 9 41 8

May-Jun no rain -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Jun - Jul < 70 mm -10% 1 3 5 2 2 13 3 1 4 0 1 0 6 1

Jul - Aug < 70 mm -10% 4 4 2 2 1 13 3 1 5 1 2 2 11 2

Sept < 15 mm -10% 4 6 2 3 6 21 4 2 1 3 6 3 15 3

Sept < 5 mm -10% 0 0 0 1 1 2 0 0 1 1 3 2 7 1

Wheat
Threshold 

Penalty 

weight

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Carolina case study area 

  

CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models

Tmnd < -5 ⁰C in Dec -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 35 ⁰C for 3+ days Jan - Feb -5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmnd < 12 ⁰C in Nov -1% 211 165 188 160 165 889 178 82 51 68 72 51 324 65

Rainfall  < 40 mm in Oct -5% 6 3 5 2 5 21 4 2 0 1 0 2 5 1

Rainfall  < 60 mm in Nov -5% 5 5 6 0 4 20 4 2 0 2 1 5 10 2

Rainfall  < 80 mm in Dec -5% 3 4 3 4 6 20 4 3 2 6 4 1 16 3

Rainfall  < 100 mm in Jan -15% 6 6 3 6 5 26 5 3 5 3 6 1 18 4

Rainfall  < 60 mm in Feb -5% 5 5 6 8 5 29 6 5 3 6 2 5 21 4

Rainfall  > 80 mm in Feb 10% 12 10 10 10 10 52 10 10 13 9 13 14 59 12

Rainfall  > 80 mm in Mar 10% 10 8 9 10 9 46 9 10 10 12 12 9 53 11

Rainfall  > 160 mm in Feb - Mar 10% 13 8 10 10 11 52 10 11 14 14 15 8 62 12

Maize
Threshold 

Penalty 

weight

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Carolina case study area 

  

CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models

Tmnd < -5 ⁰C Oct - Jan -50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 28 ⁰C for 3+ days in mid Jan - Feb -5% 18 17 19 20 23 97 19 107 104 125 110 94 540 108

Average temperature > 25  ⁰C in Nov -10% 0 0 0 0 0 0 0 2 0 0 0 0 2 0

Tmxd > 35 ⁰C Jan -10% 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Tmxd > 30 ⁰C with low RH in Jan -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rainfall  < 50 mm in Nov -10% 5 5 6 0 4 20 4 2 0 2 1 5 10 2

Rainfall  < 80 mm in Dec -10% 3 4 3 4 6 20 4 3 2 6 4 1 16 3

Rainfall  < 100 mm in Jan -10% 6 6 3 6 5 26 5 3 5 3 6 1 18 4

Rainfall  < 60 mm in Feb -10% 5 5 6 8 5 29 6 5 3 6 2 5 21 4

Rainfall  < 40 mm Jan -10% 1 0 1 0 1 3 1 1 0 1 2 0 4 1

Rainfall  > 60 mm and < 150 mm in Feb 5% 14 15 12 10 15 66 13 13 14 12 17 13 69 14

Rainfall  > 60 mm and < 150 mm in Mar 5% 14 11 14 15 13 67 13 9 14 13 14 9 59 12

Rainfall  > 120 mm and < 300 mm in Feb - Mar 5% 17 17 16 16 15 81 16 15 18 16 19 15 83 17

Soybeans
Threshold 

Penalty 

weight

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)
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Summary of crop threshold breaches – Carolina case study area 

 
 

CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models CCC CRM ECH GISS IPS

Total All 

models

Avg All 

models

Tmnd < -5 ⁰C Oct - Jan -50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 26 ⁰C for 3+ days in mid Jan - Feb -10% 62 50 53 61 55 281 56 166 146 157 147 135 751 150

Tmxd > 30 ⁰C with high RH in Jan -10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tmxd > 30 ⁰C during Jan -10% 5 5 6 0 4 20 4 2 0 2 1 5 10 2

Rainfall  < 50 mm in Nov -10% 3 4 3 4 6 20 4 3 2 6 4 1 16 3

Rainfall  < 80 mm in Dec -10% 6 6 3 6 5 26 5 3 5 3 6 1 18 4

Rainfall  < 100 mm in Jan -10% 5 5 6 8 5 29 6 5 3 6 2 5 21 4

Rainfall  < 60 mm in Feb -5% 9 9 11 9 9 47 9 12 11 13 10 13 59 12

Rainfall  > 140 mm in Jan 5% 8 7 7 4 9 35 7 9 8 7 8 5 37 7

Rainfall  > 60 mm en < 100 mm in Feb 5% 10 8 10 9 9 46 9 5 8 6 6 8 33 7

Rainfall  > 60 mm en < 100 mm in Mar 5% 13 11 10 10 11 55 11 10 11 7 10 13 51 10

Sugar beans
Threshold 

Penalty 

weight

Present climate (1971 - 1990) Intermediate future climate (2046 - 2065)


