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Abstract

Due to growing concerns regarding environmental impacts and energy security, the renew-

able energy sector and its role in large-scale power generation is becoming increasingly sig-

nificant, both locally and internationally. While it reduces reliance on fossil fuels, however,

grid-integration of renewable energy generation also introduces considerable risks at high pen-

etration levels due to the intermittent nature of sources such as photovoltaic (PV) solar and

wind energy. The development of methodologies for addressing these concerns has become a

prominent field of research, which includes aspects such as smart-grid technologies and optimal

siting and sizing of renewable energy plants with regard to the grid infrastructure and demand

profile. This project investigates one such aspect, namely optimisation of the allocation of solar

PV generation capacity in the context of grid-related metrics such as the seasonal and daily

peak demand periods and energy supply variability. The main research objectives focus on

determining the impacts of optimal geographical distribution of solar PV sources in the South

African context, using grid support metrics defined in terms of diurnal and seasonal trends as

performance criteria.

The development and implementation of the optimisation strategy required the identifica-

tion and specification of appropriate optimisation parameters, such as sets of potential locations

that reflect the seasonal and diurnal diversity of the local solar resource, a comprehensive range

of objective functions that is representative potential grid support metrics and a range of opti-

misation algorithms. Three groups of locations, referred to as site groups, were selected based

on geographical significance with regard to diurnal and seasonal solar cycles. A set of op-

timisation objectives were defined based on grid-support considerations such as maximising

average energy delivery, prioritising delivery during peak demand periods and minimising the

day-to-day variability of the solar PV renewable energy contribution. A selection of candidate

metaheuristic optimisation algorithms were identified for evaluation, namely the genetic algo-

rithm, two standard variations of the pattern search technique and an additional pattern search

variation that incorporates a genetic algorithm for a hybrid approach. The various site groups,

diurnal and seasonal specifications, optimisation objectives and optimisation algorithms were

consolidated to define a comprehensive set of optimisation problem cases.

The evaluation and subsequent analysis of the problem cases was implemented via an in-

tegrated software platform that forms part of an ongoing software application development

project. Based on the designated optimisation strategy, a solar PV optimisation module was

developed and integrated with an established database-driven user interface. The correspond-
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ing relational database structure was optimised for all current and future applications. The

simulation software for implementing the optimisation problem cases on an external simulation

platform was developed and amalgamated with the solar PV optimisation module.

The results of the optimisation study confirm the seasonal and diurnal significance of the

geographical distribution of solar PV generation, with seasonal variation occurring along a

north-south axis and diurnal variation occurring along an east-west axis. The results for the

same optimisation objectives evaluated for different seasonal and diurnal periods often show

disparities. This indicates that solar PV distributions that exhibit the best performance char-

acteristics overall are not necessarily ideal for supporting peak demand periods. This supports

the notion that variable feed-in tariffs rather than the commonly used flat tariffs should ap-

ply to renewable energy generation, since this would encourage development that supports the

grid without sacrificing plant profitability. The results for the different optimisation objec-

tives also show a clear trade-off between maximising the annual cumulative energy yield and

minimising variability of supply. In general, the daily variability throughout a seasonal period

decreases as geographical dispersion increases, often at the cost of lowering the cumulative

annual energy yield. With regard to the optimisation algorithms investigated, the technique

combining pattern search and the genetic algorithm proved to be the most robust. Due to its

non-deterministic nature, however, the algorithm generally necessitated multiple evaluations to

ensure high quality solutions.

The quantitative impacts of the results achieved in the study are, to a degree, limited due

to the geographical parameters of the South African case study considered in the investigation.

The proposed optimisation strategy, however, has excellent potential in the context of larger

interconnected grids, such as the European grid, United States mainland and the Southern

African power pool region where an increased range of diurnal and seasonal characteristics

applies. With regard to future work, it is recommended that a similar optimisation strat-

egy should be investigated for combined wind and solar PV generation, since the contrasting

characteristics of these sources could produce much more optimal aggregated power profiles.

Stellenbosch University  https://scholar.sun.ac.za



Opsomming

As gevolg van groeiende kommer rakende omgewingsimpak en energie-sekuriteit word die her-

nubare energiesektor en die rol daarvan in grootskaalse kragopwekking tans van toenemend

belang, plaaslik sowel as internasionaal. Alhoewel dit afhanklikheid van fossielbrandstowwe

verminder, bied die netwerkintegrasie van hernubare energie-opwekking by hoë penetrasievlakke

ook aansienlike risikos as gevolg van die onderbroke aard van bronne soos fotovoltäıese (PV)

sonkrag en windkrag. Die ontwikkeling van metodes vir die hantering van hierdie probleme het

’n prominente navorsingsgebied geword, wat aspekte soos slimnetwerk tegnologie en optimale

plasing en vermoëns van hernubare energieaanlegte met betrekking tot die kragstelsel infras-

truktuur en aanvraagprofiel insluit. Hierdie projek ondersoek een van hierdie aspekte, naamlik

optimisering van die toekenning van PV opwekkingskapasiteit in die konteks van netwerkver-

wante eienskappe soos die seisoenale en daaglikse spitsaanvraag periodes en variasie in en-

ergieverskaffing. Die belangrikste navorsingsdoelwitte fokus op bepaling van die impakte van

optimale geografiese verspreiding van PV sonkragbronne in die Suid-Afrikaanse konteks, deur

gebruik te maak van netwerkondersteunende kriteria soos gedefinieer word in die konteks van

daaglikse en seisoenale tendense as prestasiekriteria.

Die ontwikkeling en implementering van die optimiseringstrategie het die identifisering en

spesifikasie van gepaste optimiseringsparameters, soos stelle van potensiële liggings wat die

seisoenale en daaglikse diversiteit van die sonkrag hulpbron reflekteer, ’n omvattende reeks van

optimeringsfunksies wat verteenwoordigend is van netwerk ondersteunings kriteria en reeks van

optimiseringsalgoritmes. Drie groepe van liggings, waarna verwys word as liggingsgroepe, is

gekies op grond van geografiese belang met verwysing na daaglikse en seisoenale sonsiklusse.

’n Stel van optimeringsdoelwitte is gedefinieer, gebaseer op netwerk ondersteuningsoorweg-

ings soos maksimering van gemiddelde energielewering, prioritisering van lewering gedurende

spitstyd aanvraagperiodes en die mimimering van die dag-tot-dag wisselvalligheid van die PV

hernubare energiebydrae. ’n Seleksie van metaheuristiese optimeringsalgoritmes is gëıdentifiseer

vir evaluering, naamlik die genetiese algoritme, twee standaard variasies van die patroonsoek

tegniek en ’n bykomende patroonsoek variasie wat ’n genetiese algoritme vir ’n hibriede be-

nadering inkorporeer. Die verskillende liggingsgroepe, daaglikse en seisoenale spesifikasies, op-

timeringsdoelwitte en optimeringsalgoritmes is gekonsolideer om ’n omvattende stel optimerings

probleemgevalle te definieer.

Die evaluering en daaropvolgende ontleding van die probleemgevalle is gëımplementeer deur

middel van ’n gëıntegreerde sagtewareplatform wat deel vorm van ’n deurlopende sagteware

iv
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ontwikkelingsprojek. Gebaseer op die aangewese optimiseringstrategie, is ’n PV sonkrag op-

timiseringsmodule ontwikkel en met die gevestigde databasis-gedrewe gebruikerskoppelvlak

gëıntegreer. Die relasionele databasisstruktuur is geoptimiseer vir alle huidige en toekomstige

toepassings. Die simulasiesagteware vir die evaluering van die optimerings probleemgevalle is op

’n eksterne simulasieplatform ontwikkel en met die PV son optimiseringsmodule gekombineer.

Die resultate van die optimiseringstudie bevestig die seisoenale en daaglikse belangrikheid

van die geografiese verspreiding van PV sonkragopwekking, met seisoenale variasie wat voorkom

langs ’n noord-suid-as en daaglikse variasie wat voorkom langs ’n oos-wes-as. Die resultate vir

dieselfde optimiseringsdoelwitte, geëvalueer vir verskillende seisoenale en daaglikse periodes,

toon dikwels verskille. Dit dui daarop dat PV sonverspreidings wat die beste algehele prestasie

eienskappe toon nie noodwendig ideaal is vir die ondersteuning van spitsaanvraag periodes nie.

Dit ondersteun die idee dat veranderlike invoertariewe eerder as die algemeen gebruikte plat

tariewe van toepassing moet wees vir hernubare energieopwekking, aangesien dit ontwikkeling

sal aanmoedig wat die netwerk ondersteun sonder om die winsgewendheid van aanlegte te

benadeel. Die resultate vir die verskillende optimiseringsdoelwitte toon ook ’n duidelike uitruil

tussen maksimering van die kumulatiewe jaarlikse energieopbrengs en mimimering van variansie

in voorsiening. In die algemeen neem die daaglikse variansie deur die loop van ’n seisoenale

tydperk af soos die geografiese verspreiding verhoog, dikwels ten koste van n verlaging in die

kumulatiewe jaarlikse energieopbrengs. Met betrekking tot die optimiseringsalgoritmes wat

ondersoek is, is bevind dat die die gekombineerde patroonsoek en genetiese algoritme tegniek

die mees robuuste is. As gevolg van die nie-deterministiese aard daarvan het die algoritme

verskeie evaluerings vereis om kwaliteit oplossings te verseker.

Die kwantitatiewe impakte van die resultate behaal in die studie is, tot ’n mate, beperk

as gevolg van die geografiese parameters van die Suid-Afrikaanse gevallestudie wat in die on-

dersoek aangespreek is. Die voorgestelde optimeringsstrategie het egter uitstekende potensi-

aal in die konteks van groter tussenverbinde netwerke, soos die Europese netwerk, Verenigde

State vasteland en die Suider-Afrikaanse kragpoel netwerk waar n wyer reeks van daaglikse en

seisoenale karakteristieke van toepassing is. Met betrekking tot verdere werk word aanbeveel

dat ’n soortgelyke optimiseringstrategie ondersoek word vir gesamentlike wind en PV sonkrag

opwekking, aangesien die kontrasterende eienskappe van hierdie bronne baie meer optimale

kumulatiewe kragprofiele kan produseer.
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Chapter 1

Introduction

1.1 Renewable energy in South Africa

In recent years the global energy market has encountered critical long-term challenges such as

environmental pollution, climate change and diminishing fossil fuel resources. This has given

rise to extensive growth in renewable energy generation capacity and technologies throughout

the world due to increased emphasis on sustainable development and energy security through

diversification of generation capacity [1]. South Africa is no exception to this trend and has

seen the development of a significant local renewable energy sector during the past five years,

which can largely be attributed to changes in energy policy due to environmental concerns

coupled with the urgent need for increased generation capacity [2].

Since the initial implementation of local utility-scale power generation, the South African

power system has consisted predominantly of large coal-fired power stations situated close to

the mines and industries of the inland provinces of Gauteng, Mpumalanga and Limpopo, with

generation and distribution almost entirely owned and controlled by the publicly owned national

power utility Eskom [3]. Since 2004, however, Eskom’s power reserve margins have declined

rapidly due to the growth of the national electricity demand overtaking the substantial excess of

generation capacity installed over the previous 20 years. This growing threat to energy security

necessitated the implementation of mitigating actions on both the demand and supply side,

leading to significant increases in electricity tariffs as well as investment in the construction of

two massive new coal-fired power stations [2]. By 2008, constraints on the power system had

become so severe that Eskom investigated load shedding to preserve the stability of the national

grid. Despite these mitigation measures, however, plant availability has been decreasing since

2009, mainly as a consequence of breakdowns and other maintenance-related problems [4]. The

increase in unplanned outages is attributed to factors such as the following:

� Long-term deterioration of maintenance quality.

� Delaying critical maintenance on plants in order to meet daily energy demand as reserves

declined.

1
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� Extended restoration times on base-load capacity plants, since the majority of installa-

tions are past their mid-life.

� Additional maintenance requirements due to the impacts of declining coal quality on plant

performance.

� Disruption of fuel supply to power stations.

In addition to these occurrences, the implementation of the new coal-fired plants suffered

severe delays, which further increased the risks to grid stability and diminished the reliability

of Eskom’s power generation capacity. Since a strong correlation exists between a reliable

and adequate electricity supply and positive economic growth [5], it is not surprising that the

South African economy also suffered significant adverse effects under these conditions. The

need for energy security to support economic development in a country already fraught with

socio-economic challenges consequently served as a strong motivator for policy makers to push

for accelerated implementation of local renewable generation capacity.

With regard to environmental impacts, the strong reliance on coal in South Africa’s mining-

based, energy-intensive economy results in an unusually high level of CO2 emissions per capita

and relative to the gross domestic product (GDP) [2]. Consequently, even though South Africa

was not bound by any obligations to reduce greenhouse gas (GHG) emissions under the 1992

Kyoto protocol or the United Nations Framework Convention on Climate Change, the De-

partment of Environmental Affairs initiated research on long-term mitigation strategies. This

initiative eventually led to South Africa pledging CO2 emissions reductions of 34 % by 2020

and 42 % by 2025 (subject to proper support from the international community) at the 2009

Copenhagen Conference of Parties [6]. At the 2011 COP17 meeting in Durban, public and

private sector stakeholders further consented to a list of commitments designed to realise the

government’s aim of creating 300 000 green economy jobs by 2020.

The aforementioned pledges led to the introduction of carbon emissions limitations as well

as the inclusion of renewable energy (RE) targets in the most recent Integrated Resource

Plan (IRP) (issued for the period 2010-2030 and last updated in 2013) [7], even though these

steps increased the overall cost of the energy plan [6]. The IRP stipulates the distribution

of new capacity required from various energy sources up to 2030, with 17 800 MW allocated

to RE (mainly solar photovoltaic (PV) and wind energy) [7]. Of this renewable capacity,

5000 MW must be operational by 2019 with an additional 2000 MW online by 2020. It was

these requirements, along with the immediate need to extend generation capacity, that laid the

foundation for the rapid and continuing development of RE generation in South Africa.

As reported by Eberhard et al. [2], the South African Department of Energy (DoE) first

considered the use of renewable energy feed-in tariffs (REFITs) to encourage private invest-

ment and accelerate development of the renewable energy sector to the levels stipulated in the

IRP. This approach, however, was later rejected in favour of competitive tenders, leading to

the formation of the Renewable Energy Independent Power Producer Procurement Program

(REIPPPP) in August 2011. The REIPPPP was established with the multi-faceted aim of
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CHAPTER 1. INTRODUCTION 3

expanding and diversifying the South African electricity generation capacity, decreasing its

dependence on fossil fuels and enhancing the local renewable energy industry with regard to

development, contracting, manufacturing and enhancement of skills [8]. In addition, it also in-

tends to contribute toward local socio-economic development and environmentally sustainable

growth.

The REIPPPP supports the procurement of electricity produced by the private sector using

a variety of renewable technologies, namely onshore wind, concentrated solar power (CSP),

solar PV, small hydro and biomass, which includes biogas, landfill gas and co-generation with

agricultural waste or by-products. In order to aid the implementation of the IRP and the

government’s National Development Plan (NDP) 2030, which stipulates the addition of 10000

MW of electricity generation capacity to the 2013 baseline of 44 000 MW by 2020

Thus far, the implementation of the REIPPPP has been quite successful, featuring a well-

organised bidding process, transparent and swift evaluation, and timely financial closure and

construction of selected projects [2]. It has resulted in South Africa ranking among the top ten

countries globally for renewable energy independent power producer (IPP) investment since

2012, as well as placing it among the top ten countries globally with regard to established

utility-scale solar power capacity [9].

By December 2015 the REIPPPP had awarded a total of 5037 MW of renewable generation

capacity to 77 projects over four rounds of competitive bidding, of which 1884 MW is allocated

to a total of 29 solar PV installations [10, 11]. Table 1.1 presents a summary of the total

generation capacity allocated throughout bid windows 1 to 4. The geographical distribution

and relative generation capacity of all solar PV projects approved in these four bid windows

are visually presented in Figure 1.1. Although there is a fair degree of overall geographical

diversity in this collection of solar PV plants, it should be noted that more than 50 % of the

aggregated generation capacity is confined to the indicated circular region in the center of the

country.

With regard to the generation costs associated with the REIPPPP projects, the impact

appears to be favourable in the context of the existing power generation network. Despite

starting undesirably high in round 1, the bidding tariffs for the various RE sources have dropped

significantly during each round as the competition was strengthened by increasing numbers of

international private sector investors, and are now approaching equivalence to the tariffs for

new coal-generated electricity [8]. This reflects international trends indicating that the costs

of RE generation are becoming increasingly competitive with that of conventional fossil fuel

generation options [12,13].
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Table 1.1: Summary of REIPPPP allocation of generation capacity [10,11].

Renewable Allocation [MW]

technology Window 1 Window 2 Window 3 Window 4 Total

Solar PV 632 417 435 415 1899

Wind 634 563 787 676.4 2660.4

CSP 150 50 200 0 400

Small hydro 0 14 0 4.7 18.7

Landfill gas 0 0 18 0 18

Biomass 0 0 16 25 41

Biogas 0 0 0 0 0

Total 1416 1044 1456 1121.1 5037.1

Longitude [degrees]
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Map of REIPPPP solar PV plants
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Bid window 4

Figure 1.1: Map of the locations of all selected solar PV bids for the REIPPPP.
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1.2 Challenges for large-scale grid-integration of RE

Despite offering economic viability and certain environmental advantages, the intermittent and

variable nature of widely-used renewable technologies such as wind and solar PV systems can

be problematic for both grid stability and supply reliability, especially for systems with high

penetration of RE [14–16]. While the extent of this variability is generally mild or slow enough to

be managed within a traditional grid context, much more extreme impacts may be experienced

on occasions when wind farms or solar PV plants of several hundred mega-watts fluctuate

unexpectedly between full and very low output in a matter of hours [17]. High RE penetration

also affects cost-efficiency since renewable plants tend to be operated at a lower capacity factor

as more capacity is installed, while significant renewable generation contributions result in

increased generation reserve requirements [18]. In the case of wind generation, for example,

the variability of generated power is absorbed within the variability of load at low penetration

levels [17], while increased penetration can cause greater ramp-rates, inter-hour variability and

scheduling errors, leading to greater reserve requirements [19].

In the local context, Bello et al. [20] described the technical implications for distribution net-

work planning associated with increasing RE penetration in the local grid to the level specified

by the IRP. The planned increase in RE distributed generation (DG) may lead to phenomena

such as step voltage fluctuations due to inrush currents, unexpected voltage reduction due to

generator disconnection, voltage rise due to reverse power flow from renewable plants, increased

load on individual elements in the network, rapid voltage change (RVC) due to large changes

in generation output and significant changes in network losses due to altered network configu-

rations. Many of these considerations stem from the fact that the local sub-transmission and

distribution networks were historically designed to operate radially, often with low levels of

interconnectivity in rural areas, in order to reduce fault levels and simplify protection strate-

gies. With the introduction of the REIPPPP, however, the number of generators connected to

Eskom’s transmission and distribution network, as well as the range of geographically dispersed

connection locations, are set to increase significantly up to 2030.

Around the globe, the myriad of challenges experienced or anticipated at high RE pen-

etration levels have necessitated the development of innovative grid management strategies,

including advanced demand-side management, active network management via SMART Grid

systems and optimisation of renewable energy resources with the view to improve grid sup-

port [21–23]. A substantial body of research indicates that a diverse portfolio of renewable

generation capacity offers significant advantages over relying predominantly on one renewable

resource [24–26]. Sovacool [27] found that deploying more renewable plants using a combina-

tion of resources, particularly wind and solar, increases grid stability and supply reliability. As

for the impact of RE on generation reserve requirements, Halamay et al. [19] found that the

diversification of renewable generation capacity with a combination of wind, solar and/or wave

energy also consistently improves the reserve requirements compared to the wind-alone case.

European countries have benefited from their extensively interconnected national grids in

handling the complexity associated with grid-integrated RE generation, since it facilitates con-
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venient exportation of surplus energy to areas of the network where the current demand is

high [18]. South Africa with its relatively isolated national grid, however, needs to design

alternative solutions to maintain network integrity and achieve economic dispatch with high

penetration renewable power generation. One mitigation option for handling intermittent re-

newable energy supply is pumped storage schemes, which has already been implemented locally

in the established Steenbras, Palmiet and Drakensberg pumped storage schemes, rated at 180

MW, 400 MW and 1000 MW respectively [20]. In addition, the new Ingula scheme, rated at

1333 MW, is due to become operational in 2017, with the 1520 MW Tubatse scheme scheduled

for 2022 [28]. Incorporating mitigation measures, however, should be secondary to developing

a diversified generation system that is optimised and self-sufficient due to thorough long-term

analysis and planning.

1.3 Optimising renewable energy generation

Appropriate site selection for non-dispatchable renewable energy sources is an integral compo-

nent of long-term energy system development and grid integration planning. The research re-

ported in literature for determining optimal solar PV plant locations generally focus on network

constraints, the availability of grid connection infrastructure and individual plant profitability

based on maximum annual energy generation. Gomez et al. [29] investigated the optimisation

of PV plant location by means of a particle swarm methodology, using cost and profitability

parameters as inputs with a flat annual feed-in tariff. Huy et al. [30] used Differential Evolu-

tion (DE) to optimise the location, sizing and power factor of solar PV plants for sequential

or concurrent integration into the grid such that network loss is minimised and power system

constraints are not violated. Urquhart et al. [31] conducted a multi-objective optimization

study to allocate a fixed PV capacity among a selection of candidate sites such that energy

is maximised while variability in the form of ramp rates is minimised according to a specified

design point. Carrin et al. [32] combined multi-criteria analysis, the analytic hierarchy process

and geographical information systems to define a decision-making model that incorporates a

wide selection of environmental, orographic, location-based and climatological indicators. In

the local context, a comparative analysis of solar PV plant location scenarios has been con-

ducted for South Africa, with the focus on grid infrastructure, the cost of transmission losses

and requirements for distribution and transmission system upgrades [33].

From the perspective of grid support, the incorporation of load considerations into the

optimisation process has the potential to improve operational performance with reference to

aspects such as availability and system stability, especially for systems with high penetration

of renewable sources. This approach, in principle, allocates solar PV generation capacity in

such a way that the aggregated PV power output profile provides improved grid support in

the context of the diurnal and seasonal characteristics associated with the system load profile,

thereby introducing the important operational aspect of economic dispatch. By improving the

availability of renewable energy generation during peak demand periods, the use of expensive

peak generation plants can be mitigated [27]. Many developing economies experience capacity
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constraints during peak periods, giving rise to high peak generation costs due to the use of

expensive generation sources .

Locating renewable energy sources for maximum annual energy yield can result in many

large installations located geographically in close proximity, which for solar PV plants typically

translates to the region with the highest solar radiation levels. The daily and seasonal power

generation profiles associated with this scenario yields high mean values, but can also yield high

variability for the aggregated power generation cycle. Furthermore, local weather conditions

can give rise to severe loss of the renewable generation component, both for solar PV and other

sources such as wind. Spatial diversification of renewable generation, however, has proved useful

in decreasing variability and facilitating power flow [27]. Finding the optimal implementation

of this diversification then becomes key to effective expansion and integration of the renewable

generation fleet.

Wind power generation, with its dependence on stochastically variable wind speed and wind,

is notoriously difficult to forecast, even with extensive historical data, and will always have a

significant margin of error [34]. Solar PV power generation, which is largely dependant on solar

radiation, is less uncertain although it can be significantly affected by location-specific weather

fluctuations in the short-term [19]. From a long-term perspective, however, the availability of

solar energy produces clear seasonal trends determined by the solar cycle as well as climato-

logical factors [35]. A significant amount of research has been conducted to establish accurate

methods of short-term power output prediction for solar PV plants using various environmental

factors, as discussed in a review by Mellit et al. [36]. These methods are commonly utilised by

grid-integrated PV solar plants as tools for predicting and optimising their day-to-day energy

dispatch scenarios.

From a long-term grid-support perspective, however, the day-to-day operation of individual

plants is of less concern than the aggregated yield forecast of all PV solar plants averaged

over specific months and seasons, along with the statistical probability of achieving these av-

eraged forecasts for a given day and time. Several significant long-term factors affecting the

performance of a solar PV plant in this regard can be clearly identified, namely the longitude

(which determines the diurnal cycle), the latitude (which determines the seasonal cycle) and

the climate (which determines the amount of solar energy available in the long-term as well as

the impact of adverse weather conditions). South Africa is a good candidate for investigating

the impacts of these factors as it has significant variation in longitude and latitude with strong

seasonal weather variations along both the east-west and north-south axes. Similar arguments

apply for large interconnected power systems spanning large geographical areas.
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1.4 Project description

1.4.1 Overview

Based on the growing energy demand and increasing significance of the RE sector in South

Africa, there is a clear need for effective methodologies and tools for planning the expansion

of power generation capacity, particularly when utilising RE sources. It follows that grid-

integration of the RE fleet would be most beneficial if the aggregated long-term energy genera-

tion profile of the distributed RE plants were optimised to satisfy known load characteristics. In

view of this consideration, this project explores one such optimisation methodology via a com-

prehensive optimisation study that investigates the allocation of solar PV generation capacity

in the context of various grid-support metrics.

1.4.2 Project scope

The optimisation study involves the design of an optimisation strategy based on meaningful

parameters pertaining to both solar PV power generation and long-term demand considerations

in the South Africa context, as well as the subsequent evaluation and comparative analysis of

the designated optimisation problem cases. The optimisation strategy comprises the design of

problem cases based on relevant aspects of the diurnal and seasonal cycles for both the solar

resource and the national demand profile, along with the identification of suitable grid-support

optimisation objectives and optimisation algorithms for evaluating the resulting problem cases.

The project specification requires that the optimisation study be implemented within an

integrated software platform that is to form part of an ongoing software project. The software

design element of the project encompasses the implementation of a solar PV optimisation

module as a plug-in application within an established database-driven user interface, along with

the integration of the necessary optimisation simulation software. While certain aspects of the

software implementation are prescribed due to the objective of integration with an ongoing

project, the structural design of the relational database as well as the functionality of the solar

PV optimisation module and its simulation software require due consideration.

As this is an investigative study aimed at assessing the potential contribution of selected

methodologies and techniques in facilitating energy generation planning, the scope of the project

does not extend to attaining concrete, specific solutions for immediate practical application.

The intent is rather to create a useful foundation, in terms of both the implementation of the

integrated software platform, as well as analysis of the optimisation study results to identify

underlying trends and considerations pertinent to future work. To this end, the software design

aspect of the project is approached with particular regard for potential expansion and addition

of features. Generic infrastructures for both the database and the user interface are desired in

order to accommodate future studies using energy sources other than solar PV and/or different

analytical methods.
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1.4.3 Project objectives

The project objectives can be categorised as follows:

� Design objectives pertaining to the implementation of the integrated software platform.

� Research objectives pertaining to the various optimisation algorithms and problem cases

considered in the optimisation study.

The following design objectives were identified with regard to the implementation of the

integrated software platform:

� A highly organised database structure capable of handling large data sets and a wide

variety of data profiles and simulation parameters efficiently.

� A modular approach to the implementation of the solar PV optimisation module as well

as optimisation simulation software in order to facilitate future expansion of the software

functionality.

� A generic approach to the structural design of the relational database as well as the

optimisation module with the view to accommodate different types of data and energy

sources in future studies.

The following research objectives were then identified with regard to the optimisation study:

� Investigation of the long-term implications of the diurnal and seasonal cycles pertaining

to both solar and demand profiles for optimising the allocation of solar PV generation

capacity.

� Investigation of the effects of optimising the allocation of solar PV generation capacity

for various grid-support objectives.

� Performance analysis of the selected optimisation techniques with regard to evaluating

the type of search problems.

1.4.4 Key questions

The following key questions pertaining to the software design component of the project were

identified:

� Which platform would be most suitable for performing the required optimisation simula-

tions?

� How will the various system components be effectively integrated into a single platform?
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� How can the optimisation module and database structure accommodate a wide range of

potential future applications?

� How can scalability of data and expandability of functionality be inherently included in

the system design?

Finally, the following key questions pertaining to the specified research objectives were

identified:

� What type of data would be suitable to use for solar PV performance evaluation and how

can that data be sourced?

� Which grid-support characteristics are most significant for RE integration and in what

format can they be used as optimisation parameters or objective functions?

� What additional optimisation parameters are important in the context of optimising the

allocation of solar PV generation capacity?

� Which optimisation algorithms would be suitable for analysing the selected optimisation

problem cases and how can they be implemented?

1.4.5 Project tasks

The aforementioned project objectives and key questions translate into the following research

and design activities:

� Conducting a thorough literature study to achieve a full understanding of the local power

generation and renewable energy sector, as well as all relevant solar theory, software tools,

analytical techniques and relevant past research.

� Evaluating and optimising the existing database topology of the ongoing software project

for organised storage of a wide range of plant and optimisation parameters, measured and

simulated power profiles, and analytical result sets.

� Developing a suitable user interface for the required solar PV optimisation module and

implementing efficient integration with the established application.

� Identifying a suitable set of objective functions and other optimisation parameters derived

from relevant grid-support metrics as well as seasonal and diurnal considerations.

� Identifying and obtaining suitable input datasets for evaluating solar PV performance in

the context of this study, and populating the database with this suite of data.

� Identifying suitable optimisation algorithms and implementing these methods in simula-

tion software integrated with the solar PV optimisation module.
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� Defining a set of optimisation problem cases based on the selected input data, objective

functions, optimisation parameters and optimisation techniques.

� Evaluating the specified optimisation problem cases via the integrated simulation platform

and analysing the resulting solutions in the context of the research objectives.

1.5 Thesis overview

The contents of this document is structured as follows:

� Chapter 1: Detailed discussion of the project motivation and project description, includ-

ing the project scope, research and design objectives, key questions and associated project

tasks.

� Chapter 2: Deconstruction of the optimisation strategy and design of optimisation prob-

lem cases, with reference to seasonal and diurnal considerations, optimisation objectives

identified with regard to grid-support metrics, and optimisation algorithms selected for

the evaluation of problem cases.

� Chapter 3: Discussion of the implementation of the optimisation study in the context

of the integrated software platform, including design and implementation of the required

software infrastructure, acquisition of suitable solar power profiles, and realisation of

appropriate objective functions for evaluating the specified optimisation objectives.

� Chapter 4: Presentation and analytical discussion of the results obtained for the various

problem cases evaluated in the context of the designated optimisation study.

� Chapter 5: Discussion of conclusions and recommendations for future work derived in the

context of the optimisation study implementation and results.
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Chapter 2

Optimisation strategy and problem

case selection

2.1 Overview

As described in Section 1.4, the main research objective of this project is the investigation of

strategies for optimising solar photovoltaic (PV) plant locations to provide grid support in a

long-term capacity. Considerations for grid support include both reliability in terms of the daily

variation presented by solar PV power generation, as well as the extent of its contribution during

peak demand periods. When considering solar PV performance from a long-term perspective,

the role of seasonal and diurnal cycles emerges as highly significant to the effort of improving

grid support. These cyclical parameters are pertinent both in terms of the regional location of

solar PV installations, as well as their performance throughout specific periods in those cycles.

With regard to the solar resource that solar PV power generation depends on, the presence

and significance of both seasonal and diurnal cycles are quite obvious. Furthermore, there

are strong correlations between this diurnal cycle and the geographical east-west axis as well

the seasonal cycle and the north-south axis. Eskom’s energy tariff structures, in particular

the Megaflex tariff structure that applies to the majority of their industrial and municipal

reseller clients, also present clear seasonal and diurnal cycles [37]. In this context, the diurnal

cycle is reflected in the daily Time-of-Use (TOU) schedule for which the weekday specification

is presented in Table 2.1. Meanwhile, the seasonal cycle consists of a high demand and low

demand season as shown in Table 2.2. Since this tariff structure is informed by the national

demand profile and the corresponding cost of generation [38], it is a highly relevant consideration

for energy generation optimisation.

12
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Table 2.1: Eskom’s Megaflex TOU schedule for weekdays [37].

Time period TOU period

06:00 - 07:00 Standard

07:00 - 10:00 Peak

10:00 - 18:00 Standard

18:00 - 20:00 Peak

20:00 - 22:00 Standard

22:00 - 06:00 Off peak

Table 2.2: Eskom’s Megaflex tariff structure for 2014/2015 [37].

TOU period Energy charge [ZAR/kWh]

High demand Low demand

season season

Peak 2.2384 0.7302

Standard 0.6780 0.5025

Off-peak 0.3682 0.3189

In view of this two-fold importance, the selection of the potential solar PV plant loca-

tions considered in this investigation was based on the aforementioned seasonal and diurnal

considerations. Furthermore, these cycles were also incorporated as independent optimisation

parameters. A selection of optimisation objectives aligned with various grid support aspects

were identified for evaluation, along with several optimisation algorithms for performing the

required optimisations. Consequently, this optimisation study consists of a range of problem

cases composed of the following parameters: a selection of potential plant locations, a diurnal

and seasonal specification, an optimisation objective, and optimisation algorithms.

In accordance with the main analytical objective, each problem case was evaluated by

optimising the allocation of a normalised per-unit generation capacity (i.e. a generation capacity

of arbitrary size) within the given selection of potential locations according to the relevant

optimisation objectives and cyclical parameters. Since the selected optimisation objectives all

concern some aspect of solar PV performance in terms of either power or energy output, the

solar power profiles for potential locations were used as the sole performance indicator for all

problem cases.

2.2 Seasonal and diurnal cycles

2.2.1 Seasonal cycle

Due to the Earth’s tilted axis and the nature of its yearly orbit around the sun, there is a

strong seasonal cycle associated with the availability of solar energy at any given location [39].

Figure 2.1 presents the estimated north-facing sun path diagram ranging from 21 December

(i.e. the summer solstice) to 21 June (i.e. the winter solstice) for the city of Polokwane, which

is located towards the northern extremity of South Africa. The diagram shows a significant

variation in daylight hours as well as the elevation of the sun relative to the horizon throughout
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Figure 2.1: Estimated variation of solar path observed in Polokwane between 21 Decem-

ber and 21 June [40].

the year. The amount of daylight as well as the solar elevation range from their highest level

at the summer solstice to their lowest level at the winter solstice.

Figure 2.2 presents the corresponding sun path diagram for the city of Port Elizabeth, which

is situated near the southern extremity of the country. While also exhibiting a notably seasonal

pattern, the form of this diagram clearly varies from the solar path observed at Polokwane,

which affirms the crucial role of regional latitude with regard to the seasonal availability of

solar energy. Conversely, Figure 2.3 presents the sun path diagram for a south-facing observer

in Frankfurt, Germany, which illustrates the reversal of the seasonal solstices between the

southern and northern hemisphere. The extreme latitude of this location relative to the South

African locations is also evident in the form and seasonal variation of its sun path diagram. The

seasonal cycle for the solar resource as well the corresponding variation along the north-south

axis is thus clearly established.
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Figure 2.2: Estimated variation of solar path observed in Port Elizabeth between 21

December and 21 June [40].

Figure 2.3: Estimated variation of solar path observed in Frankfurt between 21 December

and 21 June [40].
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Apart from the influence of the seasonal solar cycle, the long-term regional availability of

solar energy is also characterised by climatological patterns. In this regard, the South African

climate exhibit strong seasonal trends along the north-south axis. The northern part of the

country represents a summer rainfall region, where the summer season is associated with hot

and humid conditions and thunderstorm activity in the afternoons, while the winter season is

associated with dry and cold conditions with clear skies. Meanwhile, the southern part of the

country represents a winter rainfall region, where the summer season is associated with dry

and hot conditions with clear skies, while the winter season is associated with wet and cold

conditions with cloudy skies. In addition to these attributes, significant climatological features

can also be distinguished along the east-west axis. This is due to the effects of the cold Benguela

current travelling north in the Atlantic ocean on the western side of the country and the warm

Agulhas current travelling south in the Indian ocean on the eastern side of the country. The

result is that the western part of the country experiences a semi-desert climate, characterised

by dry and hot conditions and clear skies for most of the year. Conversely, the eastern part of

the country experiences a subtropical climate characterised by humid and hot conditions with

hazy skies and thunderclouds.

In view of this cyclical behaviour, the optimisation of solar performance for individual

seasons as well as the full year scenario is investigated for the various optimisation objectives.

The months allocated to each season are as follows:

� Summer : December, January and February

� Autumn: March, April and May

� Winter : June, July and August

� Spring : September, October and November

With regard to the seasonal cycle of the grid, Eskom defines an annual low demand and high

demand season for its Megaflex tariff structure that includes a distinct pricing adjustment, as

shown in Table 2.2. The high demand season consists of the months of June, July and August,

i.e. the traditional winter months, while the low demand season extends from September

through to May [37]. Consequently, the results of problem cases optimised for the winter months

is of particular interest throughout this study, especially compared to the corresponding results

for problem cases optimised on an annual basis.

While its merit in terms of grid support is evident, optimisation with regard to the seasonal

demand cycle may also be pertinent to the profitability of grid-connected solar PV plants.

Should South African renewable energy (RE) policy-makers replace the flat feed-in tariffs that

currently apply to large-scale PV installations with variable feed-in tariffs that reflect the de-

mand profile and current cost of generation, plants could generate more revenue by maximising

the energy delivered during the high demand season rather than the energy delivered annually.
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2.2.2 Diurnal cycle

The nature of the solar diurnal cycle is self-evident and its correlation with location in terms

of the east-west axis is intuitive. Figures 2.4 and 2.5 present the sun path diagrams associated

with the South African locations of Alexander Bay and Durban, respectively, which are situated

at the longitudinal extremities of the country. These diagrams are highly similar with regard to

form and total sunlight hours, yet there is a distinct time shift that shows earlier sunsets and

sunrises for Durban, the eastern location. This behaviour confirms the significance of regional

longitude for solar PV performance.

Figure 2.4: Estimated variation of solar path observed in Alexander Bay between 21

December and 21 June [40].
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Figure 2.5: Estimated variation of solar path observed in Durban between 21 December

and 21 June [40].

In the context of the grid, the daily TOU schedule for Eskom’s Megaflex tariff structure

is a reflection of the national diurnal demand profile as well as the corresponding generation

costs [38]. This schedule identifies peak, standard and off-peak TOU periods and varies for

weekdays, Saturdays and Sundays [37]. The weekday schedule, shown in Table 2.1, includes

two peak tariff periods while the weekend schedules consist only of standard and/or off-peak

charges. Since it is not expedient to optimise solar PV generation with different schedules for

different days, only the weekday schedule was considered for the purposes of this study. Based

on this schedule, the following diurnal specifications were identified as meaningful optimisation

parameters for comparative analysis:

� Full day scenario (i.e. all sunlight hours)

� Morning peak period (07:00 - 10:00)

� Evening peak period (18:00 - 20:00)

� Combined morning and evening peak periods

Due to the higher national load and associated generation costs per kilowatt-hour (kWh)

implied by these intervals, the benefits of maximising power generation over the peak periods

might potentially be greater than simply optimising for all sunlight hours. In terms of the

demand profile, such an approach could serve to alleviate the strain on the grid during high
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demand periods, thereby reducing the operation of costly diesel generators which currently

supplement generation during peak demand periods. As in the case of the seasonal demand

cycle, optimisation from the diurnal perspective could also be highly advantageous in terms

of plant revenue if a variable feed-in tariff should be introduced for grid-connected solar PV

installations.

It should be noted, however, that even at the western extremity of South Africa the sunset

times are relatively early compared to the evening peak period, ranging from 18:05 at the winter

solstice to 19:51 at the summer solstice. Conversely, the sunrise times at the eastern extremity,

which range from 06:51 at the winter solstice to 04:52 at the summer solstice, produces a much

more significant amount of sunlight during the morning peak period. From these specifics it

can be deduced that solar PV power generation could make a significant contribution during

the morning peak period, but is not a useful power source for the evening peak period in South

Africa. Optimisation with regard to the evening peak still merits evaluation, however, as it may

offer more significant benefits for networks spread over larger geographical regions or subject

to greater seasonal variation.

2.3 Site groups

All potential solar PV plant locations considered in this optimisation study were selected specif-

ically to investigate the seasonal and diurnal considerations previously discussed. The potential

locations were also restricted to the South African locations for which solar data is available

from chosen meteorological data source. Based on this limitation, three groups of locations

(forthwith referred to as site groups) were selected for evaluation, as detailed in Table 2.3. The

locations in site groups 1 and 2 were chosen to investigate, respectively, the impacts of the

seasonal and diurnal solar cycles on potential solar PV power generation, while site group 3

combines all the locations in site groups 1 and 2 for a more general approach. Comparative

analysis of the optimisation results for these three site groups therefore offers a thorough rep-

resentation of the seasonal and diurnal trends, while also illustrating the effects of optimising

for a larger number of potential locations with wider geographical dispersion.

Table 2.3: Site group locations.

Location Abbreviation Latitude Longitude Site group

1 2 3

Alexander Bay AB -28.6 16.5

Bloemfontein BFN -29.1 26.3

Durban DBN -30 30.9

Kimberley KIM -28.8 24.8

Middelburg MID -31.5 25

Polokwane PKW -23.9 29.5

Port Elizabeth PE -34 25.6

Pretoria PRE -25.7 28.2

Upington UTN -28.4 21.3
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In accordance with the longitudinal dependence of the solar diurnal cycle, the locations in

group 1 are situated at similar latitudes but distributed across the breadth of South Africa along

the east-west axis, as depicted in Figure 2.6. Meanwhile, Figure 2.7 shows that the locations

in group 2 are of similar longitude but distributed along the north-south axis of the country to

account for the seasonal solar cycle. Group 3 simply contains all locations in group 1 and 2,

thus incorporating geographical variation along both the east-west and north-south axes.

Figure 2.6: Map of the locations in site group 1.
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Figure 2.7: Map of the locations in site group 2.

2.4 Solar power

2.4.1 The solar resource

To a great extent, the maximum possible power output of a solar PV panel relative to its

rated power is determined by the solar irradiance delivered to the panel at any given moment

[41]. Solar irradiance, also known as solar radiation, denotes the instantaneous intensity of

electromagnetic radiation from the sun that is normal/perpendicular to a collector surface (e.g.

a PV panel) and is typically measured in W/m2 [39]. The cumulative sum of solar irradiance

collected on such a surface over a specified time interval is referred to as solar irradiation or

insolation and is commonly measured in Wh/m2.

The total solar radiation that strikes a collector surface consists of three elements, namely

the component of the Direct Normal Irradiance (DNI) that is perpendicular to the surface, the

diffuse sky radiation and the reflected ground radiation [42]. DNI refers to the irradiance on

a surface normal to the direct beam of radiation delivered from the sun to a given location on

the Earth’s surface, as depicted in Figure 2.8. Diffuse sky radiation, as shown in Figure 2.9,

includes incoming solar radiation that is scattered towards the ground by atmospheric particles

and moisture, reflected downwards by clouds or reflected by the Earth’s surface and then

scattered back down [39]. Consequently, the diffuse radiation is usually a much more significant

component of the total on hazy and cloudy days. Since precise estimation of diffuse sky radiation

is notoriously difficult, it is often assumed to be isotropic, i.e. radiating equally from all
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directions, which means that it is proportional to the fraction of the sky visible to a collector

surface [42].

Where diffuse radiation comes from the sky, reflected radiation results from solar radiation

reflected by surfaces in front of the collector surface, as depicted in Figure 2.10. It is generally

a small to negligible component of the total, with some models omitting it entirely, although

nearby surfaces of a highly reflective nature, e.g. snow or large bodies of water, may increase

it to a significant level [39]. Without such surfaces, the terrain surrounding a collector surface

is assumed to reflect radiation with equal intensity in all directions, which renders reflected

radiation proportional to the terrain that is visible to a collector surface. The reflective property

of a given terrain can be described by its albedo, which is the portion of incoming radiation that

is reflected by its overall surface [43]. Like diffuse sky radiation, reflected radiation is difficult

to estimate accurately and modelling it necessitates certain assumptions; consequently, most

models are likely to underestimate rather than overestimate both these components [42].

Location

90° 

Figure 2.8: DNI at a given location (adapted from [39]).

*

*

*

Figure 2.9: Diffuse radiation striking a collector surface (adapted from [39]).
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Figure 2.10: Reflected radiation striking a collector surface (adapted from [39]).

The component of DNI that is normal to a collector surface depends on the relative positions

of the sun and the surface in question. As shown in Figure 2.11, the solar position at a

given time and location can be described by an altitude angle β (also referred to as the solar

elevation), which is measured relative to the Earth’s surface, and an azimuth angle φS, which

is measured relative to north in the southern hemisphere and relative to south in the northern

hemisphere [39]. As indicated in Figure 2.12, the position of the collector surface is also

described by an azimuth angle φC along with an elevation angle Σ, which is measured relative

to the horizontal ground surface. From these relative positions the incidence angle of the DNI

on the collector surface can be derived. The incidence angle θ is measured relative to the normal

of the surface as illustrated in Figure 2.13, and describes the component of DNI that strikes

the collector surface, denoted by IBC , via the following formula [39,42]:

IBC = DNI · cos θ (2.1)

N

S
φS

β

90° Location

Horizon

Figure 2.11: Description of solar position at a given location (adapted from [39]).
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Σ

 

N

S

φC

Figure 2.12: Description of collector surface position (adapted from [39]).

θ 

90° 

Σ

 

Figure 2.13: Incidence of DNI on a collector surface (adapted from [39]).

When the collector surface is taken as horizontal relative to the Earth’s surface, the total

perpendicular solar radiation is known as Global Horizontal Irradiance (GHI), while the total

radiation normal to any tilted surface is known as Global Tilted Irradiance (GTI) [42].1 Annual

1It should be noted that the acronyms DNI, GHI and GTI may be used to refer to either power (i.e.

irradiance) or energy (i.e. irradiation). For the sake of clarity, however, they will only be used in the context of

power profiles throughout the remainder of this document. References to irradiation will be explicitly indicated

where necessary.
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global horizontal irradiance, i.e. the cumulative solar energy delivered to a horizontal surface

over the course of a year, is often used to evaluate the potential for solar PV power generation

at a given location. Figures 2.14 to 2.17 present solar maps of the annual global horizontal

irradiance as well as the direct normal irradiance throughout South Africa and the world as a

whole [44]. A comparison of these maps indicate that the annual solar energy available for the

majority of land area in South Africa is quite high by international standards, which makes it

a very favourable candidate for large-scale solar PV power generation.

Figure 2.14: Annual direct normal irradiation throughout South Africa [44].
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Figure 2.15: Annual direct normal irradiation throughout the world [44].

Figure 2.16: Annual global horizontal irradiation throughout South Africa [44].
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Figure 2.17: Annual global horizontal irradiation throughout the world [44].

2.4.2 Solar power profiles

The actual power output of a solar PV plant is, of course, influenced by a range of factors

besides the available solar irradiance, including heat and conversion losses, panel and inverter

specifications, panel temperature and maximum-power-point-tracking capabilities. Even for

large solar PV installations that contain a multitude of system components, however, the local

solar irradiance profile remains the strongest indicator of plant performance [41]. Since this

study is exploratory rather than aimed at obtaining results for specific, real-world scenarios,

it was therefore deemed unnecessary to include plant-specific parameters in the optimisation

process. Consequently, each optimisation problem case considered in this project uses the solar

irradiance profiles corresponding to the selected seasonal period and set of locations as the

sole performance indicator for hypothetical solar PV power generation. In the context of each

problem case, these irradiance profiles are therefore treated as a scalable equivalent of the power

output profile for a solar PV installation of arbitrary size.2 As a result, the power profile for a

given distribution of generation capacity is represented by the aggregate (i.e. the sum) of the

power profiles for each potential location scaled according to its per-unit capacity allocation.

In order to reflect the performance of potential solar PV plants realistically, GTI profiles

of averaged hourly resolution are used to represent the power performance for the selected

locations. It is a general guideline of solar PV system design that an elevation angle equal to

the local latitude combined with an azimuth angle of zero (i.e. facing due north in the southern

hemisphere) results in optimal annual energy collection for fixed-tilt PV panels [39]. The

seasonal GTI profiles for each location were therefore obtained using these parameters, since

2For the sake of convenience, the term power will be used interchangeably with irradiance throughout the

rest of the document, while energy will refer to irradiation.
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they reflect realistic design configurations for hypothetical fixed-tilt solar PV installations. A

combination of configurations that are somewhat eastern- or western-facing would likely be

more complementary to the national demand profile, but the added complexity of optimising

such an approach was deemed beyond the scope of this project. Naturally, the incident solar

irradiance profiles associated with tracking PV panels would also be significantly different, but

the dominant industry presence and lower costs associated with fixed-tilt PV plants [45] make

them a more relevant focus point for this analysis.

2.5 Optimisation objectives

2.5.1 Overview

As stated in 2.1, the concept of grid support concerns both the extent of energy generation

during peak demand periods, as well as the variability of the power profiles corresponding to

solar PV generation. In view of these considerations, the following five optimisation objectives

were identified for evaluation in the context of this study:

� Maximisation of the daily averaged energy

� Minimisation of the coefficient of variation (CV) for the daily averaged power profile

� Maximisation of the daily averaged energy weighted according to Eskom’s Megaflex tariff

structure

� Minimisation of the standard deviation (SD) for the cumulative daily energy

� Maximisation of the negative skewness of the probability distribution for the cumulative

daily energy

Each of these optimisation objectives was derived to explore a significant aspect of the

potential grid support applications of solar PV power generation, particularly with regard to

the discussed seasonal and diurnal cycles. The first three objectives focus on the optimisation of

energy generation for various seasonal and diurnal considerations, while the latter two objectives

address the variability associated with solar power profiles on a seasonal basis. The various

optimisation scenarios associated with each objective are implemented via their corresponding

objective functions, which are presented in detail in Section 3.5.

2.5.2 Maximisation of the daily averaged energy

This optimisation objective aims to maximise the average availability of energy within a speci-

fied diurnal interval throughout a given seasonal period. In other words, the per-unit allocation

of generation capacity is optimised to produce the highest cumulative energy value over a spec-

ified diurnal interval in the daily averaged aggregated power profile. In this context, the daily
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averaged profile refers to the 24-hour power profile produced by averaging the values for each

hour over the full annual or seasonal duration of the original profile. The use of these averaged

power profiles is in accordance with the long-term focus of this project, which is concerned with

the improvement of aggregated solar PV performance on average rather than for any particular

day.

With regard to the diurnal consideration, three specifications are evaluated for this optimi-

sation objective, namely the full day scenario, the morning peak period and the evening peak

period. All four seasons as well as the full year scenario are considered for both the full day and

morning peak period specifications. As indicated in Section 2.2.2, however, the solar energy

available during the evening peak period is limited and as such only the summer and full year

scenarios are considered for this specifications.

2.5.3 Minimisation of the coefficient of variation for the daily aver-

aged power profile

This optimisation objective aims to minimise the CV [p.u.] associated with a specified diurnal

interval in the daily averaged aggregated power profile of a given seasonal period. The CV of a

dataset, also known as the relative standard deviation (RSD), is defined as the ratio of the SD

to the mean value and can be expressed per unit or as a percentage3. The formula for finding

the CV of a dataset is as follows [46]:

CV =
σx
µx

(2.2)

with

σx =

√∑n
i=1 (xi − µx)2

n− 1
(2.3)

where n denotes the number of data points in the data vector x,

µx denotes the mean of x,

and σx denotes the SD of x.

Minimisation of this value therefore incorporates maximisation of the mean value for a set

of values with simultaneous minimisation of the SD for the dataset, thereby implementing a

multi-objective approach as a single minimisation problem. In theory, the aim of optimising the

distribution of PV generation capacity according to this objective is to produce an aggregated

daily averaged power profile characterised by a wide, flat shape. Compared to the solar power

profiles typically associated with a single location, a power profile of this nature should have a

lower peak power level in the middle of the day with more power available in the early morning

3For the sake of clarity, the term CV will be used to express per-unit values in the remainder of this document,

while RSD will refer to percentage values.
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and late afternoon hours. Since the maximisation and minimisation objectives are integrated

rather than separately defined and weighted, however, there is no guarantee as to which element

will be prioritised when converging to an optimal solution. The performance and usefulness of

the described optimisation objective in this context is a significant aspect of this exploratory

analysis.

Daily averaged profiles are once again utilised in order to reflect the average performance

throughout a given seasonal period. The diurnal specifications considered for this approach

consist of the full day scenario, for which all four seasons and the full year are evaluated, and

the combined peak periods, for which only summer and the full year are evaluated.

2.5.4 Maximisation of the daily averaged energy weighted according

to Eskom’s Megaflex tariff structure

This optimisation objective also aims to maximise the average availability of energy throughout

a given seasonal period, but incorporates Eskom’s Megaflex tariff structure and its correspond-

ing TOU schedule for weekdays as a weighting function. The energy profile associated with the

aggregated daily averaged power profile of a distribution is therefore scaled according to the

Megaflex structure to produce a prioritised cumulative energy value. Due to the nature of the

TOU schedule, this approach includes an inherent diurnal cycle and as such is only evaluated

for the full day scenario. In the seasonal context, all four seasons as well as the full year scenario

are considered, with the weighting function adapted according to the Megaflex specifications

for the high and low demand seasons.

2.5.5 Minimisation of the standard deviation for the cumulative

daily energy

This optimisation objective simply aims to minimise the SD for the cumulative daily energy

throughout a given seasonal period4. In other words, the per-unit allocation of generation

capacity is optimised to produce the lowest variation (relative to the mean value) of the cumu-

lative aggregated energy available for each day over the duration of a given seasonal interval.

This should serve to increase the density and decrease the range of the mean-relative proba-

bility distribution histogram for the cumulative daily energy, as visualised is Figure 2.18. The

value of this optimisation objective is apparent: lower day-to-day variability in the aggregated

solar PV generation profile increases its reliability as a power source, while reducing the risks

presented to the grid by large and/or frequent fluctuations of solar PV power output.

4In the context of this study, cumulative daily energy refers to the total energy available to a distribution

over a 24-hour daily period. The cumulative daily energy throughout the duration of a seasonal period thus

refers to the set of cumulative energy values for each day in the period.
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Mean Mean

Probability distribution Probability distribution

Figure 2.18: Visualisation for minimisation of the SD for the cumulative daily energy.

2.5.6 Maximisation of the negative skewness of the probability dis-

tribution for the cumulative daily energy

This optimisation objective aims to maximise the negative (i.e. right) skewness of the probabil-

ity distribution for the cumulative daily energy throughout a given seasonal period. Essentially,

this means the per-unit allocation of generation capacity is optimised so that the cumulative

aggregated energy available on the majority of days throughout a seasonal period is as close

as possible to the maximum cumulative energy delivered on any one day. When considering

the probability distribution of the cumulative daily energy relative to the maximum cumulative

energy value, this optimisation should serve to increase the negative (i.e. right) skewness of the

histogram in the manner illustrated by Figure 2.19.

Probability distribution Probability distribution

Maximum Maximum

Figure 2.19: Visualisation for maximising the negative skewness of the probability dis-

tribution for the cumulative daily energy.

2.6 Optimisation algorithms

2.6.1 Overview

The varied and dissimilar nature of the selected optimisation objectives, combined with the

discrete nature of the solar power profiles used to evaluate said objectives, serve to create
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a complex set of search problems. The nature of these search-spaces is multi-dimensional

and discontinuous, with unknown topologies that may contain a myriad local minima. In this

context, the implementation of classical derivative-based optimisation methods such as gradient

descent or the Newton method are not feasible. Meanwhile, the application of exhaustive,

derivative-free search algorithms for finding the global optimum of each search problem is also

undesirable, since these methods can quickly become extremely expensive when increasing the

size of multi-dimensional search spaces [47].

The preferred approach for this project is an optimisation algorithm that is directly ap-

plicable for any of the objective functions associated with the given optimisation objectives,

as well as different objectives that may arise in future development. In addition, it should be

relatively inexpensive in terms of both time requirements and computational resources, while

remaining fairly robust with regard to performance over all problem cases. In view of these

considerations, the field of metaheuristic optimisation algorithms was identified as the ideal

source for suitable candidate algorithms.

2.6.2 Metaheuristics

This section discusses the subject of metaheuristics as presented in the book by Rothlauf [48],

although similar information is available in a wide range of literature [49, 50]. Metaheuristics,

also known as modern heuristics, is a subcategory in the field of heuristic optimisation methods.

These methods were developed as an alternative to standard numerical optimisation methods for

instances where the difficulty of solving a problem increases exponentially with the problem size.

In many such cases, the resources and/or time required by traditional optimisation methods to

find an optimal solution quickly become impractical as the problem size increases. Heuristic

methods, in contrast to standard optimisation techniques, do not guarantee an exact solution,

but usually have much lower resource requirements.

Three types of heuristic optimisation methods can be distiguished, namely: heuristics,

approximation algorithms and metaheuristics. Heuristics are designed to use problem-specific

(i.e. heuristic) information to solve optimisation problems quickly and deliver reasonably good

solutions without guaranteeing optimality. Proper exploitation of problem knowledge in the

design of the search method is usually necessary to ensure high-quality solutions. Heuristic

optimisation is therefore less concerned with finding optimal solutions than developing optimum

solution processes.

Heuristics can be implemented as either construction or improvement heuristics. The former

constructs the elements of a complete solution through iterative construction steps, while the

latter initialises a complete solution which is then iteratively improved via search operators.

Approximation algorithms are simply heuristics that include a bound on the solution quality,

i.e. construction or improvement heuristics that return an approximate solution of guaranteed

quality.

Improvement heuristics that implement a problem-invariant search strategy are defined as
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metaheuristics. These methods offer the distinct advantage of being applicable to a fairly wide

and diverse range of problems due to their problem-independant definition/design. Metaheuris-

tics typically use alternating intensification and diversification steps throughout the search

process, the first of which increases the focus on promising familiar areas in the search space,

while the second explores new areas of the search space. The aim of intensification is to lead

the search in the direction of solutions with higher fitness, while diversification aims to escape

local optima.

Metaheuristics are characterised by the following design elements:

Representation The representation describes how problem solutions are encoded in the

context of the search space. It must be designed to accurately represent

an optimal solution as well as enabling the application of variation

operators to solutions.

Variation

operator(s)

One or more variation operators, also known as search operators, are

iteratively applied to represented solutions to generate new solutions.

Variation operators can produce a new solution either by constructing

one similar to an existing solution or by recombining properties of two

or more existing solutions.

Fitness function The fitness function is used to assess the quality of solutions, i.e. to

distinguish between high- and low-quality solutions. The objective func-

tion of a search problem is often directly used as its metaheuristic fit-

ness function, resulting in a solution fitness that is equal to its objective

value.

Initial solution(s) As metaheuristics are a type of improvement heuristics, one or more

initial solutions are required to initiate the optimisation process. Initial

solutions are often generated randomly, but high-quality initial solu-

tions can also be created based on problem-specific knowledge or via an

improvement heuristic.

Search strategy The search strategy defines the operation and sequence of the inten-

sification and diversification steps previously mentioned. These steps

can either occur in an explicit progression or run in parallel during the

iterative optimisation process.

Search strategies can be classified as either local search methods or recombination-based

search methods. Local search methods, also known as direct search methods, aim to find an

optimum point in the search space by iterating across neighbouring solutions, usually with the

use of only one initial solution. These methods therefore rely primarily on intensification for

their search strategy. A weakness of this approach is that the search can easily be led to a

local rather than global optimum, especially if there are many local optima within the space.

Consequently, various diversification strategies are incorporated by different metaheuristics to

minimise the likelihood of this pitfall. Such strategies include the use of controlled diversification
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steps, modification of the representation, search operator or fitness function, and conducting

repeated searches using different initial solutions.

In contrast to direct search methods, recombination-based search methods aim to converge

a population of solutions to an optimal solution over a series of iterations. At each iteration

the current population is used to create a new set of solutions through the implementation of a

selection and subsequent recombination process. High-quality individuals are normally strongly

favoured by the selection process to serve as parent solutions, thereby ensuring that favourable

characteristics are retained within the population while undesirable characteristics are even-

tually eliminated. Once the pool of parent solutions is established, characteristics of selected

individuals are recombined by recombination operators to produce a population of offspring

solutions. The population is converged once all solutions possess the same characteristics, i.e.

once the population is homogeneous. If the population converges to and consequently cannot

escape a local optimum, it is referred to as premature convergence.

The main source of diversification in these search methods is the creation of a diverse initial

population of solutions; thereafter, recombination operators iteratively enforce intensification

by discarding characteristics that seem to produce low-quality solutions. Once again, various

strategies can be implemented to increase diversification and the probability of avoiding prema-

ture convergence. Options include increasing the population size in order to increase the initial

population diversity, limiting the level of intensification enforced by the selection process, or

modifying the implementation of one or more of the design elements.

Due to the nature of the problems considered and the described analysis objectives, meta-

heuristics were deemed the most suitable optimisation approach for this study. Firstly, since

the focus is on investigation rather than the development of exact solutions, the speed of

heuristic methods is more desirable than the optimality of conventional methods. Further-

more, the problem-invariant nature of metaheuristic search techniques is preferable over both

traditional heuristics and most classical optimisation methods since it facilitates the implemen-

tation of multiple objective functions within the same optimisation and simulation framework.

With this approach, a range of possible objective functions can be evaluated using different

metaheuristics without requiring individual design for each combination or adhering to a rigid

problem structure.

The limitation of metaheuristics is of course that optimal or even reasonably good solutions

are not guaranteed. Apart from the challenges presented by search spaces with many local

optima, solution quality depends on proper selection and parameter adjustment of the search

method in the context of the optimisation problem. Consequently, any given metaheuristic

that is reasonably successful in solving a wide range of search problems, might deliver poor

solutions for a different type of problem.

Although the optimisation algorithms in themselves are not the main subject of this study,

evaluating the effectiveness of selected metaheuristics in solving the problem cases described

in this chapter is a highly relevant analytical aspect. To this end, multiple methods utilising

both types of search strategies were selected and applied to each problem. From among the
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recombination-based metaheuristics the popular genetic algorithm (GA) was selected, while

pattern search optimisation was chosen as the candidate direct search method.

2.6.3 Genetic algorithm

Since its initial introduction by Fraser [51] in 1958 and further development by Bremermann [52]

and Holland [53] in 1958 and 1975 respectively, the GA has been established as a powerful

optimisation tool that can be applied to a diverse range of problems. Today the technique

is widely used throughout various scientific fields and has been frequently and thoroughly

described in literature [54, 55]. The rest of this section describes the principles and operation

of simple GAs as presented in the book by Burke and Kendall [56].

Simple GAs incorporate the principles of genetics to simulate the processes of biological

reproduction and natural selection in order to evolve good solutions for a given search problem.

The algorithm creates a population of candidate solutions within the search space, after which

the evolution of solutions is guided over a series of iterative steps using a problem-specific

objective function as fitness measure to discriminate between good and bad solutions. Objective

functions in this context are usually referred to as fitness functions. Candidate solutions take

the form of strings of alphabets, which are encoded with the decision variables of the problem.

The strings (i.e. solutions) are known as chromosomes, the alphabets on each string are referred

to as genes and the values of genes are known as alleles.

The process to evolve good solutions consists of the following steps:

1. Initialisation The initial population of candidate solutions is generated across the

search space, either randomly or based on problem-specific knowledge.

Population size is an important consideration when using GAs as it can

affect both the scalability and performance of the algorithm. A popu-

lation that is too small might lead to premature convergence, resulting

in substandard solution quality. On the other hand, overly large pop-

ulations could result in unnecessary usage of computational time and

resources.

2. Evaluation Once an initial or offspring population of candidate solutions are cre-

ated, the relative fitness of each solution is evaluated using the specified

objective function.

3. Selection A mating pool of individuals is selected from within the current popu-

lation based on their fitness values. Numerous selection methods have

been proposed to perform this step, all of which aim to allocate more

slots to solutions with higher fitness values. By favouring good solutions

over bad ones, the selection step incorporates the survival-of-the-fittest

mechanism inherent to natural selection in biological evolution.
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4. Recombination Segments of two or more parental solutions are combined to create

new, potentially better offspring solutions that are not identical to any

of their parents. This step can be executed either with a problem-

specific strategy or using one of the many generic recombination (also

known as crossover) operators already established. Appropriate design

or selection of the recombination operator in the context of the search

problem is essential to ensure satisfactory performance of the algorithm.

5. Mutation Once the recombination step has been completed, individuals are locally

and randomly modified via mutation. Once again, there are a variety

of mutation operators, all of which make changes to the genes of a can-

didate solution by performing a random walk in its vicinity. Although

mutation is usually a secondary operator in GAs and occurs with low

probability, it offers the advantage of increased diversity within the

population and facilitates exploration throughout more of the search

space.

6. Replacement The original population is replaced by the offspring population created

via the selection, recombination and mutation steps. Depending on the

replacement technique used, the old population is either replaced in its

entirety or a specified number of individuals are replaced.

7. Iteration Steps 2 - 6 are repeated until a terminating condition is met.

2.6.4 Pattern search

The abstract definition of pattern search methods for solving non-linear unconstrained optimi-

sation problems was first introduced by Torczon [57] in 1997, before being further expanded by

Lewis and Torczon for bound constrained problems [58] and linearly constrained problems [59].

These pattern search methods, which became known as generalised pattern search (GPS) al-

gorithms, explore a given search domain by means of a mesh structure in order to generate a

series of iterates with non-increasing objective function values until convergence is achieved.

A unified and convenient description for GPS algorithms is presented in the convergence anal-

ysis by Audet and Dennis Jr. [60]. Using this description, the GPS algorithm for a linearly

constrained search problem with objective function f(x) consists of the following steps:

1. Initialisation An initial point x0 is defined so that f(x0) is finite, the initial mesh M0

with mesh size parameter ∆0 > 0 and positive spanning directions set

D0 is defined on the search space, and the iteration counter k is set to

zero.

2. Search

iteration

For each iteration k, an optional search and/or poll step is performed

to attempt to find a feasible, improved mesh point xk+1 on the mesh

Mk, i.e. an iterate xk+1 that satisfies the search space constraints as

well as the condition f(xk+1) < f(xk).
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2.1 search step The objective function f is evaluated at a finite number of trial points on

the mesh Mk to find one that yields a lower value than the incumbent.

Any user-defined search strategy may be applied for this step as long

as a finite number of points are selected.

2.2 poll step If an improved mesh point is not found during the search step, the

poll step invoked to evaluate f at a poll set of mesh points neigh-

bouring the current iterate xk in the directions of the set Dk. Once an

improved mesh point is found, the polling process stops immediately. If

the poll step fails to produce an improved mesh point, the incumbent

solution is defined as a mesh local optimiser, i.e. its objective function

value is less than or equal to that neighbouring mesh points.

3. Parameter

update

If the search or poll steps produced an improved mesh point, the

mesh size parameter is either kept the same or coarsened (i.e. ∆k+1 ≥
∆k) so that upcoming search steps might explore more distant areas

of the search domain. If xk is a mesh local optimiser, the mesh size

parameter is refined (i.e. ∆k+1 ≤ ∆k) so as to focus the search towards

the region of the incumbent solution. After updating the mesh, the

counter k is increased, xk+1 is set to xk, and the next search iteration is

initiated. Steps 2 - 3 are repeated until a terminating condition is met.

The key advantage of this method lies in the search step, since it accommodates the

use of almost any heuristic or metaheuristic technique for performing random searches on the

mesh. In view of this inherent flexiblility associated with pattern search algorithms, three

different variations were selected for implementation and analysis with regard to the described

optimisation objectives. The variations are specified as follows:

1. No search step: This variation is the simplest implementation of the pattern search

method, with the optional search step omitted entirely.

2. search step with generating set search (GSS): The GSS method follows the same ap-

proach as the GPS algorithm for finding improved mesh points unless the current point is

near a constraint boundary [61]. As such, it is often more efficient for finding optimal so-

lutions for linearly constrained search problems and offers an advantage for the problems

considered in this study.

3. search step with GA: This variation is essentially a hybrid of the GA and GPS methods

and therefore offers a useful comparison to optimisation using the individual methods.

2.7 Summary of problem cases

When combined, the optimisation parameters discussed in this chapter produce a varied set of

problem cases which all share a common design. Figure 2.20 presents the design parameters
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along with the logical progression that produces each distinct problem case.

PROBLEM CASE DESIGN

Potential locations 

(Site group)
Seasonal specification

Diurnal specification
Solar power profiles

(GTI profiles)

Optimisation objective

(Objective function)

Optimisation algorithms

Grid support 

· Demand profile

· Variability

Solar cycles
· Seasonal

· Diurnal

Optimisation parameters

Motivating factors

Figure 2.20: Design of problem cases in terms of optimisation parameters.

Table 2.7 provides a summary of the optimisation parameter sets that characterise the

various problem cases identified for evaluation in this chapter. In addition to the parameters

specified in the aforementioned table, each of the indicated problem cases was considered for

all three site groups and was evaluated using all four of the described optimisation techniques.

Due to the non-deterministic nature of the GA, a total of 50 evaluations were performed with

each problem case for both pattern search variation 3 and GA optimisation.

Table 2.7: Summary of simulation parameters for problem cases.

Objective Diurnal Season

function period Autumn Winter Spring Summer Full year

1 Full day

Morning peak

Evening peak

2 Full day

Combined peak

periods

3 Full day

4 Full day

5 Full day
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Chapter 3

Implementation of optimisation

methodology

3.1 Overview

Having established the optimisation strategy and resulting problem cases for this exploratory

study, a suitable set of solar power profiles was acquired and the necessary objective functions

were defined for evaluating problem cases in the context of each optimisation objective. The

software infrastructure required for implementation was subsequently constructed. As described

in Section 1.4, the scope of this project includes the creation of a solar photovoltaic (PV)

optimisation module based on the described optimisation parameters, which is to be integrated

into an existing database-driven software application as part of an ongoing, overarching software

project. The purpose of producing this module is not only to facilitate evaluation of the

optimisation problem cases described in Chapter 2, but also to establish a set of practically

applicable analysis tools as the foundation for future studies. In this regard, the software

implementation of the optimisation methodology is a meaningful aspect of the project as a

whole.

Figure 3.1 illustrates the interaction of the various components in the integrated software

platform used for the implementation of the optimisation study. The user application interface

consists of an established main application interface with the solar PV optimisation module

incorporated as one of a number of independent plug-in modules created for various analysis

purposes. The user application interface interacts with the relational database to retrieve

and store information and data profiles associated with optimisation problem cases, while also

facilitating the actual optimisation of said problem cases on an external simulation platform.

The established database management functionality of the main application was extended to

the solar PV module to facilitate database transactions, while communications with the external

simulation platform is conducted solely within the environment of the solar PV module.

39
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Figure 3.1: Diagram of integrated software platform.

With regard to the design of the relational database, the original relational database struc-

ture utilised by the main application interface was evaluated and partially adapted to better

accommodate solar PV projects while remaining suitable for a wide range of diverse applica-

tions. Meanwhile, the necessary software functions for optimising the described problem cases

in the context of the simulation platform were developed and incorporated into solar PV opti-

misation module. Apart from its role in the implementation of optimisation simulations, the

module also includes analysis tools for evaluating the simulation results, as well as options for

storing results in the database or exporting it to comma-separated values (CSV) files.

Figure 3.2 presents a diagram of the optimisation framework that applies to the evaluation

of all optimisation problem cases. As indicated in the diagram, the framework consists of

three steps, namely the input, simulation and output steps. In the context of the integrated

software platform used to conduct each optimisation simulation, both the input and output

steps are performed in the environment of the user application, while the simulation component

is performed via the simulation platform.
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Figure 3.2: Diagram of optimisation framework.

For the input step, the user loads the solar power profiles for the relevant locations and

seasonal period from the database and then selects the optimisation objective, diurnal spec-

ification and optimisation algorithm to be used in the simulation. When either the genetic

algorithm (GA) or pattern variation 3 are selected as optimisation algorithm, the user also

specifies the total number of evaluations to be performed. In the simulation step, all input

parameters are passed to the optimisation software implemented for the simulation platform,

which then attempts to find an optimal solution for the specified problem case. For the output

step, the per-unit distribution produced by the optimisation simulation is returned to the user

application interface, along with its corresponding aggregated solar power profile and objective

function minimum. The user can then analyse these results via the solar PV optimisation

module to produce secondary results such as the aggregated daily averaged profile.

3.2 User application interface

3.2.1 Overview

The software for the main application interface as well as the solar PV module was developed

using the Embarcadero Delphi software development kit (SDK), which combines the Delphi

programming language and Visual Component Library (VCL) framework within an Object

Pascal integrated development environment (IDE). This development strategy was motivated

by a number of factors, including the following [62]:

� Delphi offers extensive, robust functionality for graphical user interface (GUI) develop-

ment coupled with very efficient compilers.
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� Modular software development can easily be implemented in the form of different GUIs

integrated into a root module, with the option of sharing common functional code where

applicable.

� The object-oriented VCL framework offers a visual, highly intuitive approach for designing

and implementing GUIs, which facilitates rapid development of user-friendly applications.

� Delphi offers strong database support and supplies various database drivers and compo-

nents for the implementation of database-driven applications.

� Delphi software supports native cross-compilation as well as cross-platform development,

which facilitates the ongoing expansion of the main application to include independent

modules produced by different developers.

� External software developed with different programming languages can easily be incor-

porated into Delphi software through the use of dynamic-link library (DLL)s.

3.2.2 Main application interface

The key role of the main application interface within the integrated software platform is to

perform user-driven database management and serve as the root application for all plug-in

analysis modules. It offers the following database-related functionality:

� Management of database connections: The application can connect to a local or remote

database that conforms to the expected database management system (DBMS) and struc-

tural configuration.

� Navigation of the current database: The application enables the user to explore connected

databases in a step-wise fashion that follows the prescribed structural hierarchy presented

in Section 3.3. At each level, the user can select any of the displayed data entries in order

to retrieve and load associated entries in either the current level or one step down the

hierarchy.

� Retrieval of datasets: After navigating to the lowest level of the database structure, i.e.

the level at which large datasets or profiles are stored, the user can load a selection of

these datasets to the application. The datasets can then be used for analysis purposes in

a plug-in module or exported to files.

� Alteration and creation of database entries: The application allows the user to alter exist-

ing database entries and create new entries at each level of the structural hierarchy, while

enforcing prescribed dependencies to maintain data integrity. The necessary information

has to be entered manually by the user at each level except the last, for which data sets

may be imported from CSV files.
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3.2.3 Solar photovoltaic optimisation module

The features of the solar PV optimisation module can be characterised as follows:

� Optimisation of the per-unit allocation of generation capacity for solarPV plant locations:

A user-defined problem case is evaluated via the external simulation platform to find the

optimal distribution of per-unit solar PV generation capacity within a selection of loca-

tions. The relevant power profiles for the potential locations are selected and loaded from

the database, while the user manually specifies the remaining optimisation parameters.

The power profiles and optimisation specifications are passed to the simulation software,

which performs the optimisation and returns the resulting per-unit distribution along

with its aggregated power profile.

� Analysis of the results produced for an optimisation problem case: The aggregated power

profile produced for an optimisation problem case is evaluated to determine one or more

of the following:

– The daily averaged power profile.

– The total energy associated with the full day, morning peak period or evening peak

period.

– The standard deviation (SD) of the cumulative daily energy.

– The probability distribution of the cumulative daily energy with regard to the mean

value.

– The probability distribution of the cumulative daily energy with regard to the max-

imum value.

� Data storage of optimisation and analysis results: The results returned by an optimi-

sation simulation are either added to the database or exported in the form of a CSV

file. Alternatively, the results produced for an analysis of the solution returned by an

optimisation simulation are added tot the database or exported to a file.

3.3 Database development

3.3.1 Overview

For many software development purposes the use of a relational database offers a great deal

of versatility compared to options such as a flat file system. In addition to offering the ideal

structural platform for incorporating a range of data dependencies, the management of data is

optimised via a DBMS and data integrity can be inherently guaranteed. The usefulness of a

relational database for a particular application, however, depends a great deal on its structural

design. This is of particular significance for the relational database used in the integrated

software platform presented in Figure 3.1. Since the implemented database structure is in fact
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part of an ongoing software project that includes a variety of analytical features for a diverse

range of applications, the design of the aforementioned structure had to be approached from

this perspective. As such, the final database design is highly organisational, with a wide yet

generic range of data fields that aim to accommodate all foreseeable data requirements.

3.3.2 The relational database model

By definition, an electronic database is a collection of information, preferably related, stored

within a structure, preferably of an organised form [63]. Every database has both an intensional

and an extensional component, with the former denoting its structural definition and the latter

referring to the total data set stored within the database [64]. The intension of a database,

often referred to as the database schema, is usually designed according to a specific database

model. The first such models that emerged in the quest for efficient storage and management of

electronic data was the hierarchical and network database models. The hierarchical database

model is a simple inverted-tree structure with all links between entities taking the form of

parent-child, one-to-many relationships. The network database model refines this approach

with the addition of multiple-parent capability, which enables the mapping of many-to-many

relationships [63].

The relational database model (RDM) was first introduced by Codd in 1970 [65] with the

aim of facilitating the direct retrieval of data subsets from larger data sets [63]. In this respect,

the RDM improves upon the limitations of the hierachical database model, which requires all

data to be accessed via the root node of the structure. It also allows any part of the database

topology to be linked to any other part, regardless of the data hierarchy. Over the ensuing

years, the research of Codd and others served to establish the contemporary format of the

RDM along with its general data access language, the Structured Query Language (SQL).

Although various new database types, e.g. object-oriented databases and document-oriented

databases, have been developed in recent years to better support specific applications, the RDM

remains the most commonly used, straightforward and versatile approach for general purposes.

As such, it was deemed the most appropriate database design stategy for the purposes of this

project.

A relational database stores information in a set of tables, generally with each table rep-

resenting a type of entity or object. The rows in a table are known as records or tuples and

represent instances of that entity type, while the columns represent its various attributes. In

order to preserve data integrity, each record in a table must be distinct and identifiable. To

this end, each table contains an identifier column or set of columns called the primary key

(PK), which consists of unique, not null values. When the data stored in two different tables

is related, the primary key of one table appears in the related table as a foreign key (FK), thus

linking associated records and enabling concurrent data retrieval across various tables [62].

An important characteristic of RDM design is the process of normalization, which eliminates

duplication and data redundancy from a potential database schema via a series of normal forms.

1st Normal Form (1NP) removes repeating fields from a table by moving them to a new table
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that is linked to the truncated original in a parent-child, one-to-many relationship as depicted

in Figure 3.3 [63]. In other words, attributes that exhibit consistently repeating values in the

original table are relegated to a parent table, for which the primary key of each record can

appear multiple times in the resulting child table as a foreign key.

Once the schema is in 1NP, 2nd Normal Form (2NP) is applied to move repeated values

that are not functionally dependant on the primary key to new tables that are linked to the

truncated original in a many-to-one relationship as shown in Figure 3.4 [63]. 2NP generally

results in the creation of master-detail, many-to-one relationships between static and dynamic

data, i.e. data that will stay much the same throughout the lifetime of the database versus data

that will regularly be expanded or updated. Further normalization steps include 3rd Normal

Form (3NP), Boyce-Codd Normal Form, 4th Normal Form, 5th Normal Form and Domain Key

Normal Form [63], but these were deemed superfluous for the purposes of this project.

Parent table

PK PK:Parent

 Attribute 1
 Attribute 2
 :
 Attribute N

Child table

PK PK:Child

 Attribute 1
 Attribute 2
 :
 Attribute M
FK1 PK:Parent

Figure 3.3: Result of 1NP.

Master table

PK PK:Master

 Attribute 1
 Attribute 2
 :
 Attribute N
FK1 PK:Detail

Detail table

PK PK:Detail

 Attribute 1
 Attribute 2
 :
 Attribute M

Figure 3.4: Result of 2NP.

3.3.3 Database management system

The implementation and management of any database is accomplished via a DBMS, which

comprises the database engine as well as the software tools that controls interactions with the

database [64]. A variety of SQL-based relational DBMSs are currently available, with some of

the most popular being the following [66]:

� DB2

� Microsoft Access

� Microsoft SQL Server

� MySQL

� Oracle

� PostgreSQL

� SQLite

As one of the most widely-used relational DBMSs that is also available in various low-

cost or free products, MySQL was identified as the most suitable DBMS candidate for the
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purposes of the ongoing software project. In addition to being low-cost and compatible with

a wide range of operating systems and software, MySQL is user-friendly and can easily handle

huge volumes of data, allowing for virtually unlimited data scaling [67]. The specific product

selected for the database implementation performed in the context of the current project is

the free, open-source software package WampServer, named for its four main components: the

Windows operating system, the Apache HTTP Server, the MySQL relational DBMS and the

PHP programming language. MySQL Workbench was subsequently selected as the software

environment for database development, as it offers a convenient and versatile user interface.

3.3.4 Database architecture

In order to implement a detailed organisational structure that accommodates information and

datasets of a diverse nature, the database was designed as a hierarchy of data components (i.e.

entity types). These data components, which are classified as Projects, Plants, Units, Profile

Sets, Profiles and Profile Data, produce a structure that is consistent with 1NP and therefore

facilitates data handling and maintenance.

Each component consists of a main table supported by one or more auxiliary tables, which

contain information pertaining to possible component categories, tags or, in the case of the

Profile component, measurement units. Each component maintains a relationship to the com-

ponents above and below it via link tables, also known as associative tables, while classifications

from the supporting tables are included in the main component table via foreign keys. Fig-

ure 3.5 provides a visual representation of the overall component hierarchy.

Project

 

Plant

 

Unit

 

Profile Set

 

Profile

 

Profile Data

 

Figure 3.5: Top-to-bottom component hierarchy in the database structure.
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3.3.4.1 Data components

Projects Projects are a mechanism for categorising data from one or more sources that serve

a single user-defined purpose. All data stored in the database belong firstly to a Project,

which contains one or more Plants. The Project component consists of the main project table

presented in Table 3.1, as well as the supporting tables projectcategory and projecttag.

Table 3.1: Design of the project table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

Comments Text —

CategoryID Integer Foreign

TagID Integer Foreign

Plants Plants refer to power plants, whether existing or potential, and are represented by

the main plant table, shown in Table 3.2, along with the auxiliary tables plantcategory and

planttag. All Plants belong to a Project via the link table linkplant and contains one or more

units.

Table 3.2: Design of the plant table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

Comments Text —

CategoryID Integer Foreign

TagID Integer Foreign

Location Text —

Latitude Decimal —

Longitude Decimal —

Units Power generation components of plants are classified as Units and are subordinated

to a Plant via the link table linkunit. Units contain one or more Profile Sets of data and are

fully described by the unit table, shown in Table 3.3, in conjunction with the unitcategory and

unittag supporting tables.

Profile sets Profile sets consist of one or more Profiles from the same Unit that are grouped

together for a user-defined purpose. Profile sets are assigned to Units via the link table linkpro-

fileset and are represented by the main profileset table shown in Table 3.4 along with the

auxiliary tables profilesetcategory and profilesettag.
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Table 3.3: Design of the unit table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

Comments Text —

CategoryID Integer Foreign

TagID Integer Foreign

Rating Decimal —

Table 3.4: Design of the profileset table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

Comments Text —

CategoryID Integer Foreign

TagID Integer Foreign

Profiles A measured or simulated set of time series data over a specified interval is defined

as a Profile, and belongs to a Profile set via the linkprofile link table. The Profile component

consists of the main profile table shown in Table 3.5, the subsidiary tables profilecategory and

profiletag, as well as the additional supporting table profileunit.

Table 3.5: Design of the profile table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

Comments Text —

CategoryID Integer Foreign

TagID Integer Foreign

UnitID Integer Foreign

Profile data Profile data entries consist of single data points (i.e. a value and timestamp pair)

that belong to a Profile. Since this is the bottom-level component in the database hierarchy, it

will store the majority of data and handle the most SQL transactions. Consequently, Profile

Data rows refer to their parent Profile via a foreign key in the main profiledata table rather

than utilising a link table, as the intermediary table would significantly slow down queries and

transactions from external sources when the database grows sufficiently large. The Profile data

component is fully described by the profiledata table presented in Table 3.6 along with the

profiledatatag auxiliary table. In this case, there is no need for a category table as the data is

already categorised at Profile level.
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Table 3.6: Design of the profiledata table structure.

Attribute Data type Key

ID Integer Primary

ProfileID Integer Foreign

Timestamp Datetime —

Value Decimal —

TagID Integer Foreign

3.3.4.2 Auxiliary tables

In accordance with 2NP, static aspects of the main data components are relegated to auxiliary

tables that have a many-to-one relationship with the main component table. These tables

act as classification systems for pertinent aspects of each component and as such take the

form presented in Table 3.7. The value of category classifications is evident, as is that of

the profileunit specification for the Profile component. Furthermore, tag classifications may

prove useful for categorising or grouping components belonging to different parents according

to specific user-defined traits.

Table 3.7: Design of the auxiliary table structure.

Attribute Data type Key

ID Integer Primary

Designation Character string —

Description Text —

3.3.4.3 Link tables

Link tables are generally utilised in 3NP for the mapping of many-to-many relationships to a

single table. For this database structure, however, link tables featuring one-to-many relation-

ships were deemed useful for separating data components in order to establish a more distinct

hierarchy. Incorporating the link tables thus helps to preserve data integrity for large transac-

tions extending through multiple levels of the database hierarchy, while also streamlining the

main component tables. The table structure is straightforward, as shown in Table 3.8.

Table 3.8: Design of the link table structure.

Attribute Data type Key

ID Integer Primary

ParentID Integer Foreign

ChildID Integer Foreign

3.3.5 Database model

Figure 3.6 provides the entity relationship diagram (ERD) for the complete database structure,

which is organised according to the described database components and clearly maps the column

names, index keys and dependencies for each table.
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Figure 3.6: Entity relationship diagram (ERD) for the complete database structure.
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3.4 Solar power profiles

Reliable long-term, high-resolution radiation data for South African locations is generally very

difficult to obtain without incurring high costs [68]. However, since the goal of this optimisation

study is not to obtain specific solutions but rather to evaluate the merits of the described

approach, it is not essential to use actual measured values as long as the data displays realistic

levels of seasonal and geographic variation. On this basis, all data used for the optimisation

study was obtained from the PVsyst software package and its built-in meteorological data

source.

The PVsyst application delivers solar radiation data as a set of synthetic hourly values for a

typical meteorological year (TMY). To create these values for a selected location, the application

first retrieves a set of monthly averages produced by long-term solar radiation measurements

from the integrated METEONORM database. A random sequence of daily radiation values

are generated from these average values using the model presented by Aguiar et. al [69],

which incorporates a library of Markov matrices (also known as probability matrices) based

on measured data. The autoregressive Gaussian model of Aguiar and Collares-Pereira [70] is

then applied to the daily values to generate daily sequences of hourly values. The final yearly

sequence of synthetic hourly values produced by these stochastic models consist of forward-

filled averages, i.e. each data point represents the average radiation for the hour following its

timestamp, with statistical properties that are analogous to measured solar radiation data [71].

For each location included in the site groups described in Section 2.3, the synthetic TMY

dataset for the required Global Tilted Irradiance (GTI) (i.e. the GTI for a tilt angle equal to

the local latitude and an azimuth angle of zero) was generated in PVsyst and exported to a

CSV file. These files were processed to obtain the hourly GTI profiles for the individual seasons,

each of which was stored in a separate CSV file. The complete set of hourly GTI profiles for

the selected locations were then added to the database to be used in the relevant optimisation

simulations.

With regard to the database structure, each site group was defined as a Project, while their

various locations were defined as Plants. A single Unit with one Profileset was subsequently

created for each Plant, with each Profileset containing five Profiles corresponding to the hourly

GTI profiles obtained for the relevant location. Finally, the actual GTI profiles were imported

to the database as Profiledata values belonging to the relevant Profile.

3.5 Objective functions

3.5.1 Overview

Each of the optimisation objectives defined in Section 2.5 require an equivalent objective func-

tion to evaluate the relative fitness of a given per-unit allocation during the optimisation process.

The objective functions are defined as follows for each optimisation objective:
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� Objective function 1 : Maximisation of the daily averaged energy

� Objective function 2 : Minimisation of the coefficient of variation (CV) for the daily

averaged power profile

� Objective function 3 : Maximisation of the daily averaged energy weighted according to

Eskom’s Megaflex tariff structure

� Objective function 4 : Minimisation of the SD for the cumulative daily energy

� Objective function 5 : Maximisation of the negative skewness of the probability distribu-

tion for the cumulative daily energy

Since the distribution of solar PV generation capacity is expressed on a per-unit basis,

each optimisation problem is inherently characterised by boundary conditions specifying an

allocation between the values of 0 and 1 for all locations, as well as the constraint that the

aggregated allocation over all locations must have a value of 1. Furthermore, all optimisation

objectives were implemented as minimisation problems, with the objective function fitness

values simply taken as negative for maximisation objectives. The form of the search problems

considered in this study can thus be defined as follows:

minimise
x

f(x),

subject to 0 ≤ xn ≤ 1, n ∈ {1, ..., N},
N∑

n=1

xn = 1,

(3.1)

where xn denotes the per-unit allocation of generation capacity for each location n,

and f(x) denotes the objective function value.

Objective function 1 This function determines the aggregated daily averaged power profile

for a given per-unit distribution of generation capacity and then calculates the cumulative

energy [Wh/m2] available over a specified diurnal period of that profile.

Objective function 2 This function determines the aggregated daily averaged power profile

for a given per-unit distribution of generation capacity and then calculates the CV [p.u.] for a

specified diurnal period.

Objective function 3 This objective function uses Eskom’s Megaflex tariff structure and

corresponding Time-of-Use (TOU) schedule for weekdays (previously shown in Table 2.2 and

Table 2.1, respectively) as a weighting function to calculate a cumulative daily energy value

for the aggregated daily averaged power profile of a given distribution. The weighting function

is derived by representing the Megaflex tariffs for the relevant demand season as fractions of
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the maximum tariff, and then implementing these values as a vector of hourly weights [p.u.]

in accordance with the TOU schedule. Each hourly value in the daily averaged energy profile

[kWh/m2] is then scaled according to the corresponding value in the weighting vector and

summed to produce the cumulative daily energy. In the case of the full year analysis, the

objective function calculates a weighted cumulative energy value for each of the four seasons

using the relevant daily averaged profile, and then sums these values to produce the overall

result. For this scenario, the weights of both the high and low demand seasons are expressed

as a fraction of the maximum tariff for the high demand season.

Objective function 4 This objective function simply calculates the SD of the cumulative

daily energy for a distribution throughout the relevant seasonal period. In contrast to the

objective functions 1 to 3, the aggregated power profile is not resolved to a daily averaged

profile but used to calculate the total energy delivered for each day. The SD of this dataset of

cumulative daily energy values then serves as the objective function value.

Objective function 5 This objective function again finds the cumulative daily energy values

for a given distribution and seasonal period, after which it normalises the dataset relative to its

maximum value to produce a dataset of per unit values. The sum of these values then serves

as the objective function value.

3.6 Simulation software

3.6.1 Simulation environment

All aspects of the simulation component in the optimisation framework shown in Figure 3.2 were

implemented in the MATLAB simulation environment. The MATLAB platform was selected for

this purpose based on its powerful computational capabilities, built-in simulation toolboxes and

overall versatility. Novel software functions were developed for the general optimisation function

as well as all five objective functions described in the previous section, while the GA and pattern

search optimisation techniques were incorporated via the pre-defined functions available in

MATLAB’s Global Optimization Toolbox. The objective functions and optimisation algorithms

are deployed within the general optimisation function, which was implemented as a DLL that

can be accessed by the solar PV optimisation module.

3.6.2 Optimisation functions

3.6.2.1 GA function

The Matlab function declaration for finding a function minimum with the GA technique is

given as [72]:
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[x,fval] = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)

with the input and output arguments defined as follows:

x The best point in the search-space of nvars problem variables located by

ga during its iterations. For the optimisation problems described in this

chapter, this variable is a column vector of length nvars representing the

optimal distribution of generation capacity found for a set of specified case

parameters.

fval The value returned by the fitness function for the point x, i.e. the optimi-

sation minimum.

fitnessfcn The handle to the fitness function defined for the problem, i.e. one of the

objective functions defined in Section 3.5. Amongst its input arguments

the fitness function must accept a row vector of length nvars, which in this

case represents the fractional distribution of generation capacity, and it must

return a scalar value, which is the described parameter calculated by each

objective function.

nvars A positive integer representing the number of variables in the problem, which

translates to the number of sites for each problem case considered in this

study.

A, b The matrix A and vector b for linear inequality constraints of the form

A · x ≤ b. Since the problems considered in this chapter contain no linear

inequalities, these variables are specified as [] when calling the function.

Aeq, beq The matrix Aeq and vector beq for linear equality constraints of the form

Aeq · x = beq. Since all problems in this study are subject to the constraint

that the fractional distributions over all sites must add up to one, Aeq is a

row vector of ones with length nvars, while beq is a scalar with the value 1.

LB, UB Vectors of length nvars representing the lower and upper bounds for the

problem variables. Since the fractional distribution for each site must always

be between zero and one, the values of LB are set to 0 while the values of UB

are set to 1.

nonlcon The handle to a function that describes all non-linear problem constraints.

Since this study contains no non-linear constraints, this variable is specified

as [] when calling the function.

options A structure of optimisation options defined with the gaoptimset function.

The options argument allows for the specification of a wide range of simulation parameters,

most of which are either not pertinent or set to default specifications that an initial analysis

deemed sufficient for the purposes of this study. Only the MaxGenerations parameter, denoting
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the maximum number of generations allowed before terminating the simulation, was increased

from the default of 100·nvars to 100000·nvars.

3.6.2.2 Pattern search function

The function declaration for finding a function minimum with the pattern search method is

given as [72]:

[x,fval] = patternsearch(fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)

with fun denoting the handle to the relevant fitness function and x0 denoting a vector

specifying the initial point (i.e. initial distribution) for the search problem. As previously

stated, the initial distribution for each problem case is defined as uniform with a value of

1/N for each location, where N represents the number of potential locations considered in the

problem. The remainder of the input and output arguments are equivalent to their counterparts

as defined for the GA function declaration.

Once again, the options argument allows for the specification of a wide range of simulation

parameters, many of which are not pertinent or set to default specifications that an initial

analysis deemed sufficient for the purposes of this study. The parameters that were adjusted

include InitialMeshSize, which was decreased from 1 to 0.2, MaxIterations, which was

increased from 100·nvars to 100000·nvars, and MaxFunctionEvaluations, which was increased

from 2000·nvars to 100000·nvars. The search function parameter was also set to generalised

pattern search (GPS), generating set search (GSS) and GA for pattern search variations 1, 2

and 3 respectively.

3.6.2.3 General optimisation function

The function declaration for the general optimisation function used to analyse each problem

case is given by:

[dists, mins, cumprof] = simulation(nloc, power, ts, ...

tou, season, objfun, optm, iter)

with the input and output arguments defined as follows:

dists An array with nloc rows and iter columns representing the optimal distri-

butions found for each optimisation simulation performed.

mins A vector of length iter representing the optimisation minima associated

with each solution in dists.
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cumprof An array with iter rows representing the cumulative seasonal power profile

corresponding to each solution.

nloc An integer denoting the number of potential locations considered.

power Generally an array with nloc rows representing the seasonal power profiles

for each potential location. When using objective function 1 for the full year

scenario, this parameter becomes a cell array containing a set of seasonal

nloc power profiles for each season.

ts The timestamps corresponding to the values in power and represented by

datetime arrays following the same structure as power.

tou An array representing the start and end times of the optimisation TOU

period(s) in term of hours on a scale of 0 to 24.

season An iteger representing the seasonal period for which the optimisation is

performed, with 1 denoting autumn, 2 denoting winter, 3 denoting spring,

4 denoting summer and 5 denoting the full year.

iter An integer denoting the number of optimisation simulations to be performed

for the problem case in question. The parameter defaults to 1 for pattern

search variations 1 and 2.

objfun An integer representing the objective function to be used for optimisation.

Objective functions are identified according to their description number de-

tailed in Section 3.5.
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Chapter 4

Results and discussion

4.1 Overview

This chapter presents a detailed analysis of the results for all problem cases analysed during the

implementation of the optimisation study. Discussions are presented separately with regard to

performance evaluation of the optimisation algorithms and problem case results, with only the

best solution found for each problem case considered in the latter analysis. In order to simplify

the analysis process, the problem cases are grouped in terms of the optimisation objectives and,

where applicable, further organised according to the diurnal specification.

4.2 Analysis of optimisation techniques

4.2.1 Overview

This section compares the performance of the selected optimisation techniques in solving the

problem cases for each objective function. In each case the minima for pattern search variations

1 and 2 are considered along with the best and worst minima found for pattern search variation

3 as well as the genetic algorithm (GA). The results are expressed as the percentage deviation

from the best overall minimum found by the techniques for each problem case, with a value of

zero for each method that equalled the best minimum.

Apart from solution quality, speed is also a prevalent factor in assessing the effectiveness

of the selected metaheuristic methods. Though the priority for an optimisation problem is

to approximate the global minimum of the objective function, very small improvements to

the solution may not be desirable if it greatly extends the simulation runtime. The duration

of simulations for pattern search variations 1 and 2 proved to be negligible, and as such are

omitted from the discussion, but the simulation times and multiple evaluations associated with

pattern search variation 3 and the GA can result in a much more significant time consideration.

To this end, the average duration of evaluations performed by pattern search variation 3 as well

as the GA is also discussed for each objective function.

57
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4.2.2 Objective function 1: Maximisation of the daily averaged en-

ergy

Table 4.1 presents the results for problem cases using objective function 1. For the full day

scenario the overall best minimum for each problem case is the best minimum found by pattern

search variation 3 and/or the best GA minimum. Overall, pattern search variation 3 performed

slightly worse than the GA, with deviation for every winter case and fewer overall best minima.

The worst minima for both these methods show some variation, with the highest deviation

occurring for winter in site groups 1 and 3. The minima for pattern search variation 1 and 2 also

show varying degrees of deviation relative to the overall best minima, again with particularly

high instances for winter in site groups 1 and 3. Pattern search variation 2 generally performed

better for site groups 1 and 2, while pattern search variation 1 shows the best solution quality

for site group 3, with the exception of the winter case.

For these problem cases, the average simulation runtime for pattern search variation 3 was

found to be up to 1 second for site groups 1 and 2 and up to 3.1 seconds for site group 3.

Meanwhile the average duration of the GA simulations was up to 3.9 seconds for site groups 1

and 2 and up to 70.4 seconds for site group 3. Therefore, although the GA performed slightly

better in terms of solution quality, pattern search variation 3 significantly outperformed it with

regard to speed, particularly for site group 3.

For the morning peak period the results are more varied: all four methods produced multiple

overall best minima, with the GA finding the most. Pattern search variation 2 shows the best

performance for site group 1, but deviates greatly from the overall best minima for several

problem cases in site groups 2 and 3, most notably for the winter cases. The GA consistently

produced the best overall minima for site group 2 and also shows the best general performance

for site group 3, although it deviates notably from the overall minimum for the winter case.

The results for pattern search variation 1, as well as the worst minima for both pattern search

variation 3 and the GA, show significant variation for all three site groups. For the latter

two methods, this variation indicates that a significant number of evaluations are necessary to

guarantee the current solution quality.

The simulations for pattern search variation 3 averaged a runtime of up to 1 second for site

groups 1 and 2, and up to 3.9 seconds for site group 3. The GA simulations had an average

duration of up to 6.5 seconds for site groups 1 and 2, and up to 96.9 seconds for site group 3.

When considering the results for all site groups in terms of both solution quality and speed, no

one method stands out as the best overall performer. Pattern search variation 2 produced the

best combined set of minima for site group 1 with negligible runtime, while the GA produced

the best overall minima for site group 2 with relatively short simulation times. For site group

3, the significantly lower runtime of pattern search variation 3 may render it preferable to the

GA, even though the GA performed slightly better in terms of solution quality.

For the evening peak period, the GA produced the overall best minima for all problem cases,

with pattern variation 3 equalling these minima for all but one case. Pattern search variations
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1 and 2 produced varying results, with variation 1 showing significant deviation for site group

1 and 2 but not for site group 3, while the variation 3 minima greatly deviate for site group 2

and 3 but not for site group 1. The worst minima for pattern search variation 3 and the GA

show significant variation only for site group 2, with deviations that are substantial but still

better than those produced by pattern search variations 1 and 2.

Table 4.1: Percentage deviation of optimisation minima relative to the best minimum

found for problem cases using objective function 1.

Problem case description Pattern Pattern Pattern search GA

Diurnal Site Seasonal search search variation 3

period group period variation 1 variation 2 Best Worst Best Worst

Full day 1 Autumn 2.439 0.854 0.043 0.865 0.000 0.875

Winter 5.591 8.059 0.301 4.677 0.000 2.742

Spring 3.476 0.005 0.000 0.037 0.000 0.026

Summer 3.361 0.006 0.000 0.011 0.000 0.024

Full year 1.904 0.230 0.000 0.232 0.030 0.253

2 Autumn 1.638 0.002 0.000 0.031 0.000 0.025

Winter 1.819 0.511 0.092 0.551 0.000 0.522

Spring 0.198 0.344 0.000 0.351 0.026 0.368

Summer 1.119 1.906 0.062 1.917 0.000 1.917

Full year 0.462 0.000 0.000 0.022 0.000 0.026

3 Autumn 0.533 1.326 0.000 0.538 0.529 0.547

Winter 7.857 6.623 0.253 3.696 0.000 3.830

Spring 0.005 1.736 0.000 0.014 0.000 0.014

Summer 0.006 1.679 0.000 0.011 0.000 0.015

Full year 0.217 1.052 0.212 0.224 0.000 0.228

Morning 1 Autumn 3.832 0.000 0.056 4.942 0.132 3.108

peak Winter 2.292 0.024 0.438 7.257 0.000 4.998

Spring 2.625 0.003 0.000 4.029 0.056 3.534

Summer 2.855 0.000 0.006 4.999 0.068 3.674

Full year 3.650 0.000 0.090 4.107 0.041 4.676

2 Autumn 5.864 9.815 0.560 9.806 0.000 6.323

Winter 11.496 19.204 0.390 10.998 0.000 6.564

Spring 1.892 0.003 0.000 0.029 0.000 0.025

Summer 1.315 0.003 0.000 0.249 0.000 0.015

Full year 3.914 6.556 0.291 6.548 0.000 3.999

3 Autumn 8.963 8.963 0.967 10.292 0.000 8.036

Winter 18.708 18.708 0.000 13.492 1.296 11.031

Spring 0.000 0.000 0.345 3.109 0.302 4.755

Summer 0.000 0.000 0.119 2.252 0.080 1.974

Full year 5.681 5.681 0.617 6.295 0.000 3.753

Evening 1 Summer 18.790 0.030 0.000 0.029 0.000 0.031

peak Full year 0.013 0.019 0.000 0.026 0.000 0.024

2 Summer 15.933 23.163 0.000 11.196 0.000 12.919

Full year 16.959 27.062 0.479 13.017 0.000 8.117

3 Summer 0.000 9.371 0.000 0.029 0.000 0.037

Full year 0.000 13.755 0.000 0.021 0.000 0.019
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The average simulation runtime for pattern search variation 3 was found to be up to 1

second for site groups 1 and 2, and up to 2.5 seconds for site group 3. Meanwhile the average

simulation runtime for the GA was up to 4.7 seconds for site groups 1 and 2 and up to 53.7

seconds for site group 3. Given that pattern search variation 3 closely matched the performance

of the GA in terms of accuracy, its obvious advantage in terms of simulation duration indicates

that overall it is the more desirable optimisation technique for these problem cases.

4.2.3 Objective function 2: Minimisation of the coefficient of varia-

tion (CV) for the daily averaged power profile

Table 4.2 presents the results for problem cases using objective function 2. For the full day as

well as the combined peak periods, pattern search variation 3 produced the overall best minima

for the majority of problem cases with negligible deviation for the remaining cases. The GA

performed almost as well, with its best minima either matching the overall best minima or

showing negligible to very small deviations. Pattern search variations 1 and 2 both performed

slightly worse than the GA by producing more significant and frequent deviations.

Table 4.2: Percentage deviation of optimisation minima relative to the best minimum

found for problem cases using objective function 2.

Problem case description Pattern Pattern Pattern search GA

Diurnal Site Seasonal search search variation 3

period group period variation 1 variation 2 Best Worst Best Worst

Full day 1 Autumn 0.152 0.097 0.005 0.107 0.000 0.102

Winter 0.047 0.237 0.000 0.745 0.002 0.908

Spring 2.524 0.000 0.000 0.000 0.000 1.671

Summer 0.063 0.085 0.000 0.101 0.002 0.738

Full year 0.068 0.479 0.000 0.476 0.004 0.475

2 Autumn 0.544 1.094 0.008 0.483 0.000 0.322

Winter 0.229 0.000 0.000 0.561 0.011 1.060

Spring 0.071 0.171 0.003 0.171 0.000 0.171

Summer 0.061 0.000 0.011 0.069 0.014 0.306

Full year 0.048 0.104 0.000 0.121 0.002 0.160

3 Autumn 1.463 1.463 0.000 0.871 0.173 1.031

Winter 2.285 2.162 0.000 1.933 0.180 1.833

Spring 0.000 0.937 0.000 0.000 0.000 0.000

Summer 0.003 0.000 0.015 0.504 0.103 0.787

Full year 0.406 0.160 0.000 0.412 0.075 0.495

Combined 1 Summer 0.714 0.165 0.000 0.166 0.001 0.165

peak Full year 0.315 2.213 0.000 2.106 0.001 1.191

periods 2 Summer 0.000 0.000 0.000 0.000 0.019 0.817

Full year 0.092 0.000 0.003 0.224 0.011 0.918

3 Summer 0.159 0.046 0.000 0.163 0.038 0.164

Full year 1.982 1.007 0.000 1.927 0.084 1.510
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With regard to the simulation runtime for these problem cases, pattern search variation 3

averaged a duration of up to 1.1 seconds for site groups 1 and 2, and up to 3.7 seconds for site

group 3. The GA simulations averaged a runtime of up to 5.3 seconds for site groups 1 and 2,

and up to 64.8 seconds for site group 3. Considering its solution quality as well as its average

simulation times, pattern search variation 3 appears to offer the best overall performance for

this objective function.

4.2.4 Objective function 3: Maximisation of the daily averaged en-

ergy weighted according to Eskom’s Megaflex tariff structure

Table 4.3 presents the results for problem cases using objective function 3. For each problem

case, the best overall minimum is either the best minimum found by pattern search variation

3 and/or the best GA minimum. The two optimisation methods show very similar general

solution quality with regard to their best minima, while both also show notable variation in

their worst minima, especially for the winter period. Pattern variations 1 and 2 both show a

similar level of deviation, though not necessarily for the same problem cases.

Table 4.3: Percentage deviation of optimisation minima relative to the best minimum

found for problem cases using objective function 3.

Problem case Pattern Pattern Pattern search GA

description search search variation 3

Site Seasonal variation 1 variation 2 Best Worst Best Worst

group period

1 Autumn 2.674 2.318 0.035 2.319 0.000 2.329

Winter 3.629 0.007 0.000 3.360 0.076 3.778

Spring 3.097 0.003 0.000 0.017 0.000 0.021

Summer 2.555 0.005 0.000 0.023 0.000 0.023

Full year 2.280 3.116 0.000 3.105 0.081 2.396

2 Autumn 1.824 0.004 0.000 0.016 0.000 0.032

Winter 4.038 6.778 0.227 5.235 0.000 4.690

Spring 0.036 0.000 0.000 0.014 0.000 0.024

Summer 0.914 1.542 0.000 1.542 0.036 1.558

Full year 1.022 0.001 0.000 0.015 0.000 0.015

3 Autumn 1.831 2.009 0.006 1.835 0.000 1.842

Winter 6.255 6.255 0.000 6.569 0.075 5.428

Spring 0.003 1.546 0.000 0.006 0.000 0.018

Summer 0.005 1.276 0.000 0.010 0.003 0.013

Full year 2.861 2.443 0.116 2.871 0.000 2.862

The average simulation runtime for pattern search variation 3 was found to be up to 6

seconds for site group 1 and 2, and up to 19.5 seconds for site group 3. The execution time

for the GA simulations averaged at up to 38.6 seconds for site groups 1 and 2, and up to

327 seconds for site group 3. Given their similar performance in terms of solution quality, the
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significantly shorter simulation durations exhibited by pattern search variation 3 once again

makes it a more advantageous option than the GA. It also offers consistently better solution

quality compared to pattern search variations 1 and 2, provided that a sufficient number of

evaluations are performed.

4.2.5 Objective function 4: Minimisation of the standard deviation

(SD) for the cumulative daily energy

Table 4.4 presents the results for problem cases using objective function 4. For this objective

function, all three pattern search variations consistently delivered the same minima, with the

one exception of a small variation in the winter period for site group 3. For the GA results, the

best minima show negligible or no deviation from those found by the pattern search variations,

while the worst minima show more significant variation. With regard to the time consideration,

the average simulation runtime for pattern search variation 3 was up to 1.4 seconds for site

groups 1 and 2, and up to 4.8 seconds for site group 3. For the GA simulations, the average

duration was up to 3.5 seconds for site groups 1 and 2, and up to 88.5 seconds for site group 3.

Table 4.4: Percentage deviation of optimisation minima relative to the best minimum

found for problem cases using objective function 4.

Problem case Pattern Pattern Pattern search GA

description search search variation 3

Site Seasonal variation 1 variation 2 Best Worst Best Worst

group period

1 Autumn 0.000 0.000 0.000 0.000 0.000 0.214

Winter 0.000 0.000 0.000 0.000 0.001 2.231

Spring 0.000 0.000 0.000 0.000 0.001 0.268

Summer 0.000 0.000 0.000 0.000 0.001 0.559

Full year 0.000 0.000 0.000 0.000 0.000 0.141

2 Autumn 0.000 0.000 0.000 0.000 0.001 0.366

Winter 0.000 0.000 0.000 0.000 0.001 0.262

Spring 0.000 0.000 0.000 0.000 0.001 0.117

Summer 0.000 0.000 0.000 0.000 0.002 0.159

Full year 0.000 0.000 0.000 0.000 0.002 0.167

3 Autumn 0.000 0.000 0.000 0.000 0.002 2.121

Winter 0.136 0.136 0.000 0.114 0.009 2.832

Spring 0.000 0.000 0.000 0.000 0.003 0.561

Summer 0.000 0.000 0.000 0.000 0.009 2.241

Full year 0.000 0.000 0.000 0.000 0.004 1.246

In view of these results, all three variations of the pattern search method offer a clear ad-

vantage over the GA for this particular objective function, in terms of both solution quality and

especially speed. With the exception of the slight variation for winter for site group 3, the re-

sults indicate that for each problem case all evaluations performed with pattern search variation
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3 produced the same minimum. Thus it appears that the three pattern search variations yield

the same solution for each of these cases, with pattern search variation 3 requiring only one

evaluation to find this optimal solution. Given the fact that there is an exception to this trend,

however, it cannot be confidently predicted that the pattern search methods would maintain

this consistency and solution quality with different input data and/or simulation parameters.

4.2.6 Objective function 5: Maximisation of negative skewness of

the probability distribution for the cumulative daily energy

Table 4.5 presents the results for problem cases using objective function 5. Once again, the

overall best minimum produced for each problem case is either the best minimum found by

pattern search variation 3 and/or the best GA minimum. On the whole, the GA performed

worse than pattern search variation 3 since it produced fewer overall minima and shows greater

deviation from the overall minima, especially for site group 3. The worst minima for both

pattern search variation 3 and the GA show notable variation, in many cases producing worse

solutions than one or both of pattern search variations 1 and 2.

Table 4.5: Percentage deviation of optimisation minima relative to the best minimum

found for problem cases using objective function 5.

Problem case Pattern Pattern Pattern search GA

description search search variation 3

Site Seasonal variation 1 variation 2 Best Worst Best Worst

group period

1 Autumn 2.321 1.527 0.000 1.625 0.080 1.491

Winter 0.324 0.744 0.043 0.635 0.000 0.457

Spring 0.041 0.087 0.078 0.673 0.000 1.612

Summer 0.987 0.001 0.000 0.006 0.000 0.006

Full year 0.258 0.250 0.000 0.636 0.081 1.513

2 Autumn 0.382 0.382 0.000 0.434 0.023 1.581

Winter 0.096 0.108 0.000 0.405 0.029 0.535

Spring 0.800 0.802 0.014 1.118 0.000 0.601

Summer 0.127 0.250 0.023 0.794 0.000 0.920

Full year 0.075 0.075 0.000 0.473 0.013 0.402

3 Autumn 0.274 0.576 0.000 1.589 0.181 1.567

Winter 0.482 0.860 0.000 1.243 0.615 1.880

Spring 0.148 0.142 0.000 1.531 0.476 2.883

Summer 0.057 0.251 0.000 0.226 0.222 0.955

Full year 0.285 0.674 0.000 1.358 0.190 2.415

The average simulation runtime for pattern search variation 3 was found to be up to 2.1

seconds for site group 1 and 2, and up to 9 seconds for site group 3. The execution time

for the GA simulations averaged at up to 6.7 seconds for site groups 1 and 2, and up to 195

seconds for site group 3. Pattern search variation 3 therefore once again outperformed the
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GA in both speed and overall solution quality, most significantly for site group 3. Although it

also consistently outperformed pattern search variations 1 and 2 in terms of solution quality,

the variation of the worst minima again indicates that a sufficient number of evaluations are

necessary to guarantee solution quality.

4.2.7 Summary

As expected, results for the selected optimisation techniques reveal that their performance in

optimising all the selected problem cases varies somewhat, both compared to each other and for

different optimisation functions and simulation parameters. Pattern search variations 1 and 2

proved inconsistent for all objective functions except objective function 4, with pattern search

variation 1 exhibiting the worst overall solution quality. The minima for both these methods

frequently show notable deviations from the overall best minima, especially for objective func-

tions 1 and 3, which indicates that the search algorithms struggle to escape local minima in

the search space of the problem cases considered.

Pattern search variation 3 shows the best overall solution quality for all five objective func-

tions, with the most overall best minima and only small to negligible deviations. The GA

delivered generally similar results, which are slightly better for certain sets of problem cases

but worse overall. Although only the best minima were considered in evaluating the perfor-

mance of both pattern search variation 3 and the GA, their worst minima offer some insight as

to the consistency of the solutions and the difficulty of optimising for particular objective func-

tions. Frequent variation, especially when reflected in the minima of pattern search variations

1 and 2, may indicate the presence of prominent and/or numerous local minima in the search

space associated with specific data sets and objective functions.

The worst minima for many problem cases using objective function 1 shows significant

deviation from the overall best minimum, with lesser and less frequent deviations for objective

functions 2, 3 and 5. The greatest variation by far occurs for selected evening peak and winter

morning peak problem cases, which can probably be ascribed to the very low energy levels

associated with these periods. These low energy levels produce small objective function values,

which means that discrepancies between values quickly become large when considered from a

relative perspective.

The variation exhibited by the non-deterministic solutions affirms the necessity of perform-

ing multiple simulations for the relevant problem cases, since any one evaluation may converge

to a local minimum. Depending on the tolerance placed on optimal solution quality, problem

cases that show only small variations in the minima produced over multiple evaluations could

be simplified to a single evaluation. For these problem cases, however, it seems difficult to

predict when and why pattern search variation 3 and the GA will produce minima that fall

within a sufficiently small range for all evaluations.

Objective function 4 clearly produced the most consistent (and therefore possibly the most

reliable) results, with all three pattern search variations achieving the same minima for all but
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one problem case while the best GA minima also shows negligible deviation. The worst minima

for pattern search variation 3 also show no deviation apart from that of the aforementioned

exception case, while the worst GA minima do show notable deviation in some cases. This

indicates that the pattern search approach is very well suited for solving this particular set

of optimisation problems, even without the use of a GA search step and multiple evaluations,

while the GA is less consistent. Considering these results in comparison to those of the other

objective functions, it seems that some objective functions are inherently easier to solve for a

global minimum and clearly more suited for a particular optimisation technique.

With regard to simulation runtime, pattern search variation 3 shows significantly shorter

average durations than the GA simulations for all problem cases, which can be ascribed to the

simplified nature of the GA used in the search step. Both techniques also show an apparently

exponential difference in average simulation runtime between site groups 1 and 2 and site group

3, resulting in a much more pronounced difference between the simulation times for pattern

search variation 3 and those for the GA in site group 3. This increase in simulation time

can be ascribed to the higher number of potential locations analysed in site group 3, since

each additional location increases the size of the problem by adding a dimension to the search

space. This behaviour indicates that these two methods, especially the GA, may become very

expensive when optimising the selected objective functions over a sufficiently large number of

locations.

Apart from demonstrating the aforementioned general trends, however, analysis of the av-

erage simulation times produced almost no consistent patterns. One exception is the problem

cases for objective function 3, which averaged a much longer runtime for the full year cases.

This is most likely a result of the more complex approach that objective function 3 has to

the full year scenario, where the Megaflex structure is applied to all four seasons separately.

With regard to the rest of the results, there is significant variation in the average runtime of

different problem cases using the same objective function, the degree of difference between the

simulation times of the two methods, as well as the extent to which runtime increases.

After due consideration of all the relevant aspects, this analysis indicates that pattern search

variation 3 has the best overall performance for the various types of optimisation problems eval-

uated in this study and could be used as the sole optimisation method. For all the objective

functions apart from objective function 4, however, multiple evaluations are required to guar-

antee near optimal solution quality, thereby necessitating a corresponding increase in the total

simulation runtime. The set of 50 evaluations used throughout this study proved adequate to

approximate the best minima for the majority of problem cases, although a higher number of

evaluations may further improve the average solution quality at the cost of more time. The total

runtime for a set of evaluations ranged from very low (i.e. less than 1 second) to moderate (i.e.

approximately 17 minutes) throughout the selected problem cases, although these simulation

times would increase proportionally for evaluating a greater number of potential locations.
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4.3 Analysis of simulation results

4.3.1 Overview

This section presents and analyses the simulation results of the problem cases analysed for

each objective function. As previously stated, only one result is considered for each problem

case, namely the distribution that produced the best minimum. Visual representations of the

optimal solutions are included, along with the corresponding daily averaged aggregated power

profile for each distribution. Since both winter and full year considerations are of particular

interest in the context of energy demand, additional aspects of the results are analysed within

that seasonal specification.

One aspect considered is the cumulative energy available for a distribution over the pertinent

dirunal periods (namely the full day, morning peak and evening peak periods) throughout the

full year and the winter months. These cumulative energy values are presented for every problem

case that was analysed for either the winter or the full year scenario. For parameter sets where

only the summer months and the full year are considered, the cumulative energy values are

indicated for the summer scenario as well.

The cumulative available energy at each potential optimisation location is shown for the

relevant seasons and diurnal periods in Table 4.6. These values show that Upington receives the

highest cumulative annual energy, while Polokwane receives the highest annual energy over the

morning peak period and Alexander Bay receives the highest annual energy during the evening

peak. When considering only the winter months, Upington and Polokwane still receive the

highest cumulative energy throughout the full day and the morning peak period respectively.

Throughout the rest of this section, these values are used as a reference for measuring the

cumulative energy of optimised distributions relative to the maximum available energy.

Table 4.6: Cumulative available energy [MWh/m2] for each location.

Location Cumulative annual energy Cumulative energy in

[MWh/m2] winter [MWh/m2]

Full day Morning Evening Full day Morning

peak peak peak

AB 2552.383 367.715 30.519 544.438 61.377

BFN 2444.946 505.358 3.698 581.101 103.609

DBN 1874.741 434.410 1.219 456.605 97.622

KIM 2335.400 458.863 4.635 538.265 89.801

MID 2416.583 470.093 4.983 561.930 91.463

PKW 2332.189 541.027 1.317 584.422 128.312

PE 2099.824 406.197 5.085 456.543 73.370

PRE 2255.653 504.306 1.964 561.487 115.530

UTN 2558.221 431.345 9.417 592.704 83.588

In addition to the cumulative energy values associated with the results of the specified

problem cases, the variability of their corresponding aggregated power profiles over the full

seasonal period is also of some interest. The relative standard deviation (RSD) [%] of the
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cumulative daily energy throughout the specified seasonal period is therefore included as an

indication of this variability.

The RSD of the cumulative daily energy at each potential optimisation location is shown

for the relevant seasons in Table 4.7. Upington has the lowest RSD for both the full year and

winter periods, with Alexander Bay in a relatively close second position while all the other

locations show significantly higher variability. Once again, these values are used throughout

the rest of this section as a reference for assessing the daily variability of aggregated power

profiles for optimised distributions.

Table 4.7: RSD of cumulative daily energy for each location.

Location RSD of cumulative daily

energy [kWh/m2]

Full year Winter

AB 18.3 11.4

BFN 24.2 17.4

DBN 32.7 26.4

KIM 26.7 23.5

MID 23.3 18.1

PKW 24.6 17.0

PE 29.4 22.1

PRE 27.5 22.7

UTN 17.0 8.4

For objective functions 4 and 5, which aim to reduce or adjust the variability of cumulative

daily energy, auxiliary analyses of the resulting aggregated power and energy profiles are in-

cluded. The probability distribution of the cumulative daily energy throughout each relevant

seasonal period is presented in the form of a histogram normalised relative to the mean value,

as well as a histogram normalised relative to the maximum value. Additionally, a Global Tilted

Irradiance (GTI) scatter plot showing the hourly distribution of the aggregated power profile

throughout the full seasonal period is included.

4.3.2 Objective function 1: Maximisation of the daily averaged en-

ergy

4.3.2.1 Full day problem cases

Figures 4.1, 4.3 and 4.5 present the optimal distributions found for site groups 1 to 3 for

objective function 1 for the full day, while Figures 4.2, 4.4 and 4.6 present the daily averaged

power profiles corresponding to these distributions. For site group 1 the distributions are

predominantly allocated to Upington and Alexander Bay, the two locations previously identified

as having the highest cumulative energy throughout the year. A seasonal correlation is indicated

by the fact that 100 % capacity is allocated to Alexander Bay for the spring and summer cases,

while most of the capacity for the winter and autumn cases is allocated to Upington, which has

a slightly more northerly latitude.
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The daily averaged GTI profiles indicate a similar peak power level for all seasons, although

the variation during the early morning and late afternoon hours is more significant. The

autumn, winter and full year profiles are highly similar, which can be ascribed to their similar

distributions, and are spread relatively symmetrically around the midday point. There is a

clear discrepancy, however, between the spring and summer profiles, with summer showing

significant lower power levels in the early morning hours. Interestingly, the spring profile has

the lowest peak value of all the profiles, yet shows the highest power levels during both the late

afternoon and especially the early morning hours.

The distributions for site group 2 show a more clear seasonal trend, with the generation

capacity predominantly allocated to the second-most southern location for the spring and sum-

mer cases, the central location in terms of latitude for the autumn and full year cases, and the

northernmost location for the winter case. It is not surprising that no capacity is allocated

to Port Elizabeth or Durban for any of the problem cases, since these two locations offer the

lowest cumulative energy within the site group.

When considering the GTI profiles, the difference between seasons for the morning and late

afternoon hours is less pronounced than for site group 1, though the spring profile clearly favours

the morning while the summer profile is the highest during the late afternoon. In contrast to

site group 1, the spring profile also shows the highest peak value of all five profiles. This spring

peak is slightly higher than its counterpart for site group 1, though resulting in notably lower

power levels during the late afternoon, while the other profiles all show lower peak values than

the equivalent profiles for site group 1.

The generally lower power profiles for site group 2 can be ascribed to the fact that the two

dominant locations in site group 1 offer higher overall energy levels than any of the locations

in site group 2. It is therefore not unexpected that the distributions for site group 3, which

encompasses all the potential locations for site groups 1 and 2, largely correspond to the results

for site group 1. There are small discrepancies between the group 1 and 3 distributions for

the autumn and full year cases, though the GTI profiles are not notably different. This either

indicates that slight variations in the distribution could produce equivalent optimisation minima

for this objective function, or that the complexity introduced by a larger selection of potential

locations can impact the solution quality.
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Figure 4.1: Optimal distributions in site group 1 for objective function 1 for the full day

during each season.
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Figure 4.2: Aggregated daily averaged GTI profiles for optimal distributions in site group

1 for objective function 1 for the full day during each season.

Site names
BFN MID PKW PE PRE

A
ll
o
ca
ti
on

[p
.u
.]

0

0.2

0.4

0.6

0.8

1

Autumn

Winter

Spring

Summer

Full year

Figure 4.3: Optimal distributions in site group 2 for objective function 1 for the full day

during each season.
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Figure 4.4: Aggregated daily averaged GTI profiles for optimal distributions in site group

2 for objective function 1 for the full day during each season.
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Figure 4.5: Optimal distributions in site group 3 for objective function 1 for the full day

during each season.
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Figure 4.6: Aggregated daily averaged GTI profiles for optimal distributions in site group

3 for objective function 1 for the full day during each season.

4.3.2.2 Morning peak problem cases

Figures 4.7, 4.9 and 4.11 present the optimal distributions found for site groups 1 to 3 for

objective function 1 for the morning peak period, while Figures 4.8, 4.10 and 4.12 present the

daily averaged power profiles corresponding to these distributions. The results for site group 1

present no seasonal variation, with 100 % capacity allocated to the second-most eastern location

for all problem cases. Although Durban is located at a significantly more eastern longitude, it

is not unexpected that this location is avoided since it has significantly lower cumulative energy

levels, both during the full day and the morning peak period, than any other potential location.

When comparing the daily averaged GTI profiles for these distributions to those produced

by the results for the full day scenario, the power levels during the morning peak period are

notably higher for all seasons. In accordance with this shift, the power levels during the late

afternoon hours are notably lower than for the full day results, while the peak power values are

also diminished for all but the spring profile.

The results for site group 2 favour the two locations with the highest cumulative energy levels

for the morning peak period, with the total capacity allocated to the northernmost location

for the autumn, winter and full year cases, and to the middle location in terms of latitude for

the summer and spring cases. The difference between the daily averaged GTI profiles for the

morning peak period and those corresponding to the full day distributions is not as pronounced

as for site group 1, though clear improvements can be observed for all but the winter case.

Once again, these adjustments also result in lower peak values and power levels during the late
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afternoon.

The distributions found for site group 3 largely correspond to the results for site group 2,

although there are once again small discrepancies that do not present significant changes in the

daily averaged GTI profiles. The difference in power levels when compared to the site group 3

profiles for the full day scenario, however, is quite evident for every season.
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Figure 4.7: Optimal distributions in site group 1 for objective function 1 for the morning

peak period during each season.
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Figure 4.8: Aggregated daily averaged GTI profiles for optimal distributions in site group

1 for objective function 1 for the morning peak period during each season.
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Figure 4.9: Optimal distributions in site group 2 for objective function 1 for the morning

peak period during each season.
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Figure 4.10: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 1 for the morning peak period during each season.
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Figure 4.11: Optimal distributions in site group 3 for objective function 1 for the morning

peak period during each season.
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Figure 4.12: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 1 for the morning peak period during each season.

4.3.2.3 Evening peak problem cases

Figures 4.13, 4.15 and 4.17 present the optimal distributions found for site groups 1 to 3 for

objective function 1 for the evening peak period, while Figures 4.14, 4.16 and 4.18 present

the daily averaged power profiles corresponding to these distributions. As expected, the full

capacity is allocated to the western-most location for the summer and full year cases for site

group 1. The daily averaged GTI profiles show distinctly higher power levels during the late

afternoon compared to the equivalent profiles produced for the morning peak period as well as

the full year profile produced for the full day scenario (the distributions for the evening peak

and full day summer cases are the same). Even though there is no significant level of energy

available during the evening peak period itself, using it as an optimisation parameter succeeded

in prioritising the availability of energy during the late afternoon.

Interestingly, the results for site group 2 favour the southernmost location, which results

in GTI profiles with slightly lower power levels during the late afternoon than the equivalent

profiles produced for either the full day or morning peak cases. This indicates that sufficiently

high and/or differing evening peak energy levels are required within the available locations to

ensure results with increased power levels during the late afternoon. In view of the unfavourable

solutions found for site group 2, it is unsurprising that the results for site group 3 are identical

to those produced for site group 1.
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Figure 4.13: Optimal distributions in site group 1 for objective function 1 for the evening

peak period during each season.
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Figure 4.14: Aggregated daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 1 for the evening peak period during each season.
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Figure 4.15: Optimal distributions in site group 2 for objective function 1 for the evening

peak period during each season.
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Figure 4.16: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 1 for the evening peak period during each season.
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Figure 4.17: Optimal distributions in site group 3 for objective function 1 for the evening

peak period during each season.
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Figure 4.18: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 1 for the evening peak period during each season.

4.3.2.4 Summary

In terms of distribution, the optimal solutions for problem cases analysed with objective func-

tion 1 consistently allocate all or most of the available capacity to a single location. This makes

sense in the context of the objective function, since the maximisation of daily averaged energy

for various diurnal periods is clearly correlated to the single locations exhibiting the highest

cumulative energy levels for each set of simulation parameters.

The results of the problem cases analysed for site group 1 confirm the correlation of diurnal

and longitudinal variation with regard to maximising solar energy, with more eastern locations

providing higher power levels in the early morning hours and more western locations increasing

power delivery during the late afternoon. The results for site group 2, on the other hand, confirm

the correlation of seasonal and latitudinal variation, with more northern locations favoured for

winter and autumn, and more southern locations favoured for spring and summer.

Comparative analysis of the three site groups show that the results for site group 3 generally

replicate or closely resemble the best results found in either site group 1 or 2 for each problem

case. As previously stated, the discrepancies occurring for some problem cases could either

indicate that the true optimal solution becomes more difficult to find due to an increase in

search parameters or that the additional search parameters create an area in the search space

where small variations can occur with negligible change in the objective function fitness value.

Table 4.8 presents the cumulative energy values associated with the optimal distributions

found for relevant problem cases analysed with objective 1, while Table 4.9 presents the vari-
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ability of the cumulative daily energy associated with each solution. For the distributions

consisting of a single location allocated with 100 % capacity, the cumulative energy and RSD

variables are equivalent to the values presented in Tables 4.6 and 4.7.

Comparative analysis of the cumulative energy values show that the diurnal period as well as

the season used for optimisation is significant: most of the distributions optimised for energy

output during the morning peak period deliver significantly less energy annually than the

equivalent distributions for the full year, while some distributions optimised for the winter (e.g.

the full day case for site group 2) have distinctly lower annual energy levels than their full year

counterparts. In contrast, it can be observed that even the low degree of distribution exhibited

for these solutions can improve its yearly or seasonal variability from that of the least variable

single location. Examples include the full day winter cases for site groups 1, 2 and 3, the full

day full year case for site group 3, and the morning peak winter and full year cases for site

group 2.

Table 4.8: Cumulative available energy for problem cases analysed for objective function

1 with GTI profiles.

Problem case description Cumulative annual energy Cumulative energy in

Diurnal Site Seasonal [MWh/m2] winter [MWh/m2]

period group period Full day Morning Evening Full day Morning

peak peak peak

Full day 1 Winter 2553.930 434.090 9.204 592.249 84.330

Full year 2558.210 431.225 9.457 592.614 83.546

2 Winter 2334.923 539.595 1.397 584.095 127.460

Full year 2444.946 505.358 3.698 581.101 103.609

3 Winter 2532.802 443.224 8.524 590.953 87.997

Full year 2557.849 427.290 10.762 589.629 82.172

Morning 1 Winter 2444.775 505.337 3.697 581.064 103.607

peak Full year 2444.946 505.358 3.698 581.101 103.609

2 Winter 2332.311 540.916 1.322 584.388 128.250

Full year 2332.511 540.834 1.327 584.372 128.203

3 Winter 2332.570 539.426 1.381 583.649 127.475

Full year 2332.112 535.908 1.516 582.212 125.914

Evening 1 Summer 2552.383 367.715 30.519 544.438 61.377

peak Full year 2552.383 367.715 30.519 544.438 61.377

2 Summer 2104.920 407.651 5.065 458.379 73.812

Full year 2135.089 413.311 5.073 468.276 75.384

3 Summer 2552.383 367.715 30.519 544.438 61.377

Full year 2552.383 367.715 30.519 544.438 61.377

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 79

Table 4.9: RSD of cumulative daily energy for problem cases analysed for objective

function 1 with GTI profiles.

Problem case description RSD of cumulative daily

Diurnal Site Seasonal energy [kWh/m2]

period group period Full year Winter

Full day 1 Winter 16.5 8.2

Full year 17.0 8.4

2 Winter 23.8 16.5

Full year 24.2 17.4

3 Winter 15.1 7.9

Full year 16.3 8.3

Morning 1 Winter 24.2 17.4

peak Full year 24.2 17.4

2 Winter 24.5 16.9

Full year 24.5 16.9

3 Winter 23.7 16.4

Full year 21.9 15.4

Evening 1 Summer 18.3 11.4

peak Full year 18.3 11.4

2 Summer 28.9 21.7

Full year 26.1 19.9

3 Summer 18.3 11.4

Full year 18.3 11.4

4.3.3 Objective function 2: Minimisation of the CV for the daily

averaged power profile

4.3.3.1 Full day problem cases

Figures 4.19, 4.21 and 4.23 present the optimal distributions found for site groups 1 to 3 for

objective function 2 for the full day, while Figures 4.20, 4.22 and 4.24 present the daily averaged

power profiles corresponding to these distributions. In contrast to the results for objective

function 1, the distributions for site group 1 show a significant division of the total capacity for

all except the spring case. For the winter, summer and full year cases the distribution is split

between the westernmost and easternmost locations, while for the autumn case it is divided

between the westernmost location and the location that is central with regard to longitude.

Apart from the spring case, the GTI profiles for these distributions show much lower peak

power values than the equivalent profiles for the full day problem cases optimised with objective

function 1. In the context of this lower peak power level and compared to the aforementioned

equivalent profiles, certain profiles appear somewhat adjusted towards the diurnal extremities.

The summer profile is shifted towards the morning peak period, while the full year profile is

shifted towards the evening peak period. The profile for the spring distribution, which is the

same as for the full day problem case optimised with objective function 1, remains perhaps the

most balanced profile with regard to both the morning and evening peak considerations.

In contrast to site group 1, the results for site group 2 allocate most or all of the capacity to a
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single location for every problem case. This can probably be ascribed to the lack of longitudinal

variation within site group 2 that would enable a more diurnally balanced distribution. With

regard to seasonal variation, a clear trend can be observed in accordance with the latitudinal

correlation established in the previous section. Due to very similar distributions, the winter

and spring GTI profiles closely resemble the equivalent profiles for the full day problem cases

optimised with objective function 1. For the full year, autumn and summer cases, however, the

GTI profiles exhibit distinctly lower peak power values, with the full year and autumn cases

also showing a shift towards the morning peak period.

The results for site group 3 retain the summer and spring distributions of site group 1, with

a different set of longitudinally dispersed distributions for winter, autumn and full year cases.

Once again, the GTI profiles for all but the spring distribution show lower peak power values

than the equivalent profiles for the full day cases optimised with objective function 1. The

summer, autumn and winter profiles also show a shift towards the morning peak.
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Figure 4.19: Optimal distributions in site group 1 for objective function 2 for the full

day during each season.
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Figure 4.20: Aggregated daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 2 for the full day during each season.
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Figure 4.21: Optimal distributions in site group 2 for objective function 2 for the full

day during each season.
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Figure 4.22: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 2 for the full day during each season.
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Figure 4.23: Optimal distributions in site group 3 for objective function 2 for the full

day during each season.
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Figure 4.24: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 2 for the full day during each season.

4.3.3.2 Combined peak problem cases

Figures 4.25, 4.27 and 4.29 present the optimal distributions found for site groups 1 to 3 for

objective function 2 for the full day, while Figures 4.26, 4.28 and 4.30 present the daily averaged

power profiles corresponding to these distributions. Similar to the results for several of the full

day problem cases, the distributions for site group 1 are divided between the easternmost and

westernmost locations, albeit with different ratios. The resulting GTI profile for the full year

case has a lower peak power value and is shifted towards the morning peak with regard to the

equivalent profile for the full day problem case. The summer profile, on the other hand, has a

higher peak power value and is shifted towards the evening peak with regard to the equivalent

profile for the full day scenario.

For site group 2, the distribution for the summer case matches the result for the equivalent

full day case. The full year distribution, however, is allocated to the northernmost location,

resulting in slightly higher peak power levels and slightly lower power levels during the late

afternoon compared to the equivalent profile for the full day case. The distributions for site

group 1 are replicated for site group 3, resulting in very similar differences of peak power values

and diurnal shift with regard to the equivalent full day power profiles.
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Figure 4.25: Optimal distributions in site group 1 for objective function 2 for the com-

bined peak periods during each season.
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Figure 4.26: Aggregated daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 2 for the combined peak periods during each season.
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Figure 4.27: Optimal distributions in site group 2 for objective function 2 for the com-

bined peak periods during each season.
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Figure 4.28: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 2 for the combined peak periods during each season.
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Figure 4.29: Optimal distributions in site group 3 for objective function 2 for the com-

bined peak periods during each season.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 86

Time of day [HH:SS]
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

A
gg
re
ga
te
d
G
T
I
[W

/m
2]

0

200

400

600

800

1000

1200

Summer

Full year

Figure 4.30: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 2 for the combined peak periods during each season.

4.3.3.3 Summary

The power profiles of the optimisation results for this objective function indicate that it may

be useful for finding distributions that show reduced midday power peaks while retaining sig-

nificant levels of one or both of the early morning and late afternoon power components. The

full day seems more useful in this regard, as the seasons applicable to the combined peak pe-

riod consideration are limited by low evening peak energy levels and its results offer no clear

advantages. This objective function would likely be much more useful for optimising solar

photovoltaic (PV) installations with tracking capabilities, as such systems could produce a

much flatter, wider aggregated power profile. The same principle applies to optimisation for

an interconnected grid spanning a much larger range in terms of latitude.

Table 4.10 presents the cumulative energy values associated with the optimal distributions

found for relevant problem cases analysed with objective function 2, while Table 4.11 presents

the variability of the cumulative daily energy associated with each solution. The energy values

for the full day results indicate that the diminished midday power levels can result in a signif-

icant loss of cumulative annual or seasonal energy relative to the maximum energy available

within a selection of locations. Once again, several distributed RSD values prove to be lower

than the best RSD for any one location, e.g. the full day, full year cases for site groups 1 and

3.
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Table 4.10: Cumulative available energy for problem cases analysed for objective function

2 with GTI profiles.

Problem case description Cumulative annual energy Cumulative energy in

Diurnal Site Seasonal [MWh/m2] winter [MWh/m2]

period group period Full day Morning Evening Full day Morning

peak peak peak

Full day 1 Winter 2236.127 398.842 16.844 503.446 78.293

Full year 2356.471 386.997 22.048 519.045 71.856

2 Winter 2332.189 541.027 1.317 584.422 128.312

Full year 2257.854 505.362 1.945 562.147 115.898

3 Winter 2382.627 491.619 9.260 570.899 109.446

Full year 2496.917 408.180 23.553 553.160 77.067

Combined 1 Summer 2470.998 375.725 27.000 533.889 65.730

peak Full year 2101.556 412.087 11.026 486.004 85.490

periods 2 Summer 2099.824 406.197 5.085 456.543 73.370

Full year 2332.189 541.027 1.317 584.422 128.312

3 Summer 2478.384 374.998 27.319 534.846 65.335

Full year 2141.894 412.755 12.129 493.480 85.003

Table 4.11: RSD of cumulative daily energy for problem cases analysed for objective

function 2 with GTI profiles.

Problem case description RSD of cumulative daily

Diurnal Site Seasonal energy [kWh/m2]

period group period Full year Winter

Full day 1 Winter 17.4 14.4

Full year 16.3 12.1

2 Winter 24.6 17.0

Full year 26.7 22.0

3 Winter 18.1 13.3

Full year 15.4 10.3

Combined 1 Summer 17.1 11.3

peak Full year 21.2 18.1

periods 2 Summer 29.4 22.1

Full year 24.6 17.0

3 Summer 17.1 11.3

Full year 19.2 16.5

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 88

4.3.4 Objective function 3: Maximisation of the daily averaged en-

ergy weighted according to Eskom’s Megaflex tariff structure

Figures 4.31, 4.33 and 4.35 present the optimal distributions found for site groups 1 to 3 for

objective function 3 for the full day, while Figures 4.32, 4.34 and 4.36 present the daily averaged

power profiles corresponding to these distributions. Apart from the winter case, which matches

the morning peak distribution for objective function 1, the distributions found for site group 1

are almost identical to the results for the full day scenario for objective function 1. The GTI

profiles indicate that the morning peak period is prioritised for the winter and autumn cases,

while the evening peak period is prioritised for the summer case. Meanwhile, both the spring

and full year cases are more balanced throughout the diurnal cycle, with a slight bias towards

the evening peak.

Once again, the results for site group 2 match the full day distributions for objective function

1 very closely, with the exception of the spring case, which corresponds to the morning peak

distribution for objective function 1. Since the diurnal variation within site group 2 is limited

by a lack of longitudinal diversity, the GTI profiles show a similar distribution with the winter

profile presenting a slight bias and the spring profile presenting a prominent bias towards the

morning peak period.

The results for site group 3 also closely resemble the full day distributions for objective

function 1, with the winter case reflecting the morning peak result for objective function 1.

The GTI profiles show a strong bias towards the morning peak period for the winter case,

with the summer case biased towards the evening peak period, and the remaining profiles more

evenly balanced around a midday peak.
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Figure 4.31: Optimal distributions in site group 1 for objective function 3 for the full

day during each season.
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Figure 4.32: Aggregated daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 3 for the full day during each season.
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Figure 4.33: Optimal distributions in site group 2 for objective function 3 for the full

day during each season.
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Figure 4.34: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 3 for the full day during each season.
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Figure 4.35: Optimal distributions in site group 3 for objective function 3 for the full

day during each season.
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Figure 4.36: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 3 for the full day during each season.

The optimisation results for objective function 3 strongly reflect the full day distributions for

objective function 1, which indicates that in many cases simply maximising the daily averaged

energy will also deliver the optimal distribution for taking advantage of the Megaflex tariff

structure. In certain cases, however, the increased weight of the morning peak period is clearly

strong enough to produce a distribution that favours the morning with regard to its power

profile. It seems that such distributions occur when prioritising for the morning peak does not

significantly reduce the peak power level and there is no option where the evening peak carries

noticeable weight.

Table 4.12 presents the cumulative energy values associated with the optimal distributions

found for relevant problem cases analysed with objective 3, while Table 4.13 presents the

variability of the cumulative daily energy associated with each solution. The cumulative energy

values confirm that the winter distributions for site groups 1 and 3 are optimised for maximum

morning peak energy rather than maximum cumulative energy (for site group 2 the distribution

with the maximum morning peak energy in winter also offers the maximum cumulative energy

for the season). The full year distributions for site groups 1 and 2, on the other hand, are

optimised for the maximum cumulative annual energy, while the full year distribution for site

group 3 exchanged a small portion of the maximum cumulative annual energy for slightly

increased morning peak energy.

The variability impact of the aforementioned distributions is varied, depending on the avail-

able locations and optimisation focus of each problem case. All results with even a slight degree

of distribution, however, show improved RSD values from those associated with the dominant
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location.

Table 4.12: Cumulative available energy for problem cases analysed for objective function

3 with GTI profiles.

Problem case Cumulative annual energy Cumulative energy in

description [MWh/m2] winter [MWh/m2]

Site Seasonal Full day Morning Evening Full day Morning

group period peak peak peak

1 Winter 2444.946 505.358 3.698 581.101 103.609

Full year 2558.220 431.325 9.424 592.690 83.581

2 Winter 2332.048 540.664 1.329 584.257 128.145

Full year 2444.946 505.358 3.698 581.101 103.609

3 Winter 2340.418 537.007 1.569 583.923 126.141

Full year 2543.811 437.582 9.520 589.531 85.217

Table 4.13: RSD of cumulative daily energy for problem cases analysed for objective

function 3 with GTI profiles.

Problem case description RSD of cumulative daily

Site Seasonal energy [kWh/m2]

group period Full year Winter

1 Winter 24.2 17.4

Full year 17.0 8.4

2 Winter 24.3 16.8

Full year 24.2 17.4

3 Winter 22.8 15.9

Full year 15.1 8.1

4.3.5 Objective function 4: Minimisation of the SD for the cumula-

tive daily energy

Figures 4.37, 4.39 and 4.41 present the optimal distributions found for site groups 1 to 3 for

objective function 4 for the full day, while Figures 4.38, 4.40 and 4.42 present the daily averaged

power profiles corresponding to these distributions. The results for all three site groups show

a much higher level of geographical dispersion than any distributions found for the previous

objective functions. The strongest preference for a single location is evident in the winter cases

for site groups 1 and 3 and, to a lesser degree, the summer cases for site group 1 and 3. This

results makes sense given the low levels of variability indicated for these locations in Table 4.7.

The GTI profiles generally exhibit lower overall power levels than the equivalent profiles for the

full day objective function 1 distributions.
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Figure 4.37: Optimal distributions in site group 1 for objective function 4 for the full

day during each season.
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Figure 4.38: Aggregated daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 4 for the full day during each season.
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Figure 4.39: Optimal distributions in site group 2 for objective function 4 for the full

day during each season.
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Figure 4.40: Aggregated daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 4 for the full day during each season.
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Figure 4.41: Optimal distributions in site group 3 for objective function 4 for the full

day during each season.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 95

Time of day [HH:SS]
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

A
gg
re
ga
te
d
G
T
I
[W

/m
2]

0

200

400

600

800

1000

1200

Autumn

Winter

Spring

Summer

Full year

Figure 4.42: Aggregated daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 4 for the full day during each season.

Table 4.14 presents the cumulative energy values associated with the optimal distributions

found for relevant problem cases analysed with objective function 4, while Table 4.15 presents

the variability of the cumulative daily energy associated with each solution. The cumulative

energy values show that for each problem case there is a significant loss of cumulative annual

energy relative to the maximum available energy in the site group. The RSD values, however,

show that the lower energy levels correspond to a notable improvement in the overall variability

for each distribution relative to the variability of any single location. The results for site group

3 have the lowest RSD values, indicating that variability continues to be improved by more

diverse geographical dispersion (i.e. distribution of the capacity amongst a wider range of

locations).

Table 4.14: Cumulative available energy for problem cases analysed for objective function

4 with GTI profiles.

Problem case Cumulative annual energy Cumulative energy in

description [MWh/m2] winter [MWh/m2]

Site Seasonal Full day Morning Evening Full day Morning

group period peak peak peak

1 Winter 2458.445 432.383 10.052 568.011 84.740

Full year 2364.271 440.484 9.397 547.108 87.728

2 Winter 2316.515 486.842 3.418 549.847 102.508

Full year 2308.112 488.083 3.283 550.446 103.874

3 Winter 2410.891 442.130 8.308 560.079 88.442

Full year 2323.580 463.107 6.124 547.953 96.561
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Table 4.15: RSD of cumulative daily energy for problem cases analysed for objective

function 4 with GTI profiles.

Problem case description RSD of cumulative daily

Site Seasonal energy [kWh/m2]

group period Full year Winter

1 Winter 13.3 7.8

Full year 11.8 9.1

2 Winter 13.1 10.4

Full year 12.7 10.7

3 Winter 11.8 7.5

Full year 10.2 8.6

Figures 4.43 and 4.44 and Figures 4.45 and 4.46 represent the relevant probability distri-

butions for the site group 1 winter and full year results, respectively, while Figures 4.47 and

4.48 present the corresponding hourly GTI graphs. These results show that the cumulative

daily energy for the optimal winter distribution is limited within 25 % and -20 % of the mean

value and goes no lower than 60 % of the maximum value throughout the season, while the

cumulative daily energy for the optimal full year distribution is limited within 35 % and -40 %

relative to the mean value and goes no lower than 40 % of the maximum value throughout the

year. The hourly GTI values for both the winter and full year cases produce a distinct value

range throughout the diurnal cycle with relatively few outliers visible.
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Figure 4.43: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 1 for objective function 4.
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Figure 4.44: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 1 for objective function 4.
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Percentage variation of cumulative GTI [Wh/m2] relative to mean
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Figure 4.45: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 1 for objective function 4.
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Figure 4.46: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 1 for objective function 4.
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Figure 4.47: Hourly GTI values for the optimal winter distribution in site group 1 for

objective function 4.
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Figure 4.48: Hourly GTI values for the optimal full year distribution in site group 1 for

objective function 4.

Figures 4.49 and 4.50 and Figures 4.51 and 4.52 represent the relevant probability distribu-

tions for the site group 2 winter and full year results, respectively, while Figures 4.53 and 4.54

present the corresponding hourly GTI graphs. These results reflect the same trends observed

for site group 1, with the cumulative daily energy for the optimal winter distribution limited

to a variation of 30 % relative to the mean value throughout the season and the cumulative

daily energy for the optimal full year distribution limited within of 35 % and -45 % of the mean

value throughout the year. Meanwhile the cumulative daily energy also goes no lower than 60

% of the maximum value throughout the season and no lower than 40 % of the maximum value

throughout the year. The hourly GTI values for both the winter and full year cases once again

produce distinct value ranges throughout the diurnal cycle, although the value range is wider

and the outliers more prominent than for the hourly GTI distributions shown for site group 1.
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Figure 4.49: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 2 for objective function 4.
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Figure 4.50: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 2 for objective function 4.

Percentage variation of cumulative GTI [Wh/m2] relative to mean

-50 -40 -30 -20 -10 0 10 20 30 40

P
ro
b
ab

il
it
y

0

0.05

0.1

0.15

Figure 4.51: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 2 for objective function 4.
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Figure 4.52: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 2 for objective function 4.
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Figure 4.53: Hourly GTI values for the optimal winter distribution in site group 2 for

objective function 4.
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Figure 4.54: Hourly GTI values for the optimal full year distribution in site group 2 for

objective function 4.

Figures 4.55 and 4.56 and Figures 4.57 and 4.58 represent the relevant probability distri-

butions for the site group 3 winter and full year results, respectively, while Figures 4.59 and

4.60 present the corresponding hourly GTI graphs. These results show significant improvements

compared with the results for both site groups 1 and 2, with the cumulative daily energy for the

optimal winter distribution limited to a variation of 20 % relative to the mean value throughout

the season and the cumulative daily energy for the optimal full year distribution limited to a

variation of 30 % relative to the mean value throughout the year. Meanwhile the cumulative

daily energy goes no lower than 70 % of the maximum value throughout the season and no

lower than 50 % of the maximum value throughout the year. With regard to the hourly GTI

values for both the winter and full year cases, a slight decrease in the frequency and extremity

of outliers can be observed relative to the results for site group 1, along with a notable decrease

in the value range for the full year case.
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Figure 4.55: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 3 for objective function 4.
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Figure 4.56: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 3 for objective function 4.
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Figure 4.57: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 3 for objective function 4.
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Figure 4.58: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 3 for objective function 4.
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Figure 4.59: Hourly GTI values for the optimal winter distribution in site group 3 for

objective function 4.
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Figure 4.60: Hourly GTI values for the optimal full year distribution in site group 3 for

objective function 4.

Overall, the results for the problem cases analysed with objective function 4 indicate that it

is a very successful approach for minimising the daily variability within a distribution through-

out the duration of a season or the full year. It is also strongly evidenced that the results

are improved by increasing the number and geographical diversity of potential locations. As

previously indicated, the decrease in variability comes at a cost with regard to the cumulative

energy available to the distribution. However, when considering the higher predictability and

corresponding mitigation of risk to the grid that is inherent to a distribution with a low level

of daily variability, the decrease in cumulative energy could be preferable. After all, the size

of solar PV installations within a distribution may be scaled up to produce additional energy,

but the effects of high variability is exacerbated for increased generation capacity.

4.3.6 Objective function 5 : Maximisation of negative skewness of

the cumulative daily energy

Figures 4.61, 4.63 and 4.65 present the optimal distributions found for site groups 1 to 3 for

objective function 5 for the full day, while Figures 4.62, 4.64 and 4.66 present the daily averaged

power profiles corresponding to these distributions. The results for all three sites groups show a

significant level of dispersion for most problem cases, though the two locations with the highest

cumulative energy levels, namely Alexander Bay and Upington, appear to be strongly favoured

in site groups 1 and 3. The distributions are therefore less evenly dispersed than those found

for the problem cases optimised with objective function 4. The GTI profiles show that these
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distributions generally produce higher overall energy levels than those found for the equivalent

objective function 4 problem cases.
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Figure 4.61: Optimal distributions in site group 1 for objective function 5 for the full

day during each season.
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Figure 4.62: Cumulative daily averaged GTI profiles for optimal distributions in site

group 1 for objective function 5 for the full day during each season.
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Figure 4.63: Optimal distributions in site group 2 for objective function 5 for the full

day during each season.
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Figure 4.64: Cumulative daily averaged GTI profiles for optimal distributions in site

group 2 for objective function 5 for the full day during each season.

Site names
AB BFN DBN KIM MID PKW PE PRE UTN

A
ll
o
ca
ti
on

[p
.u
.]

0

0.2

0.4

0.6

0.8

1

Autumn

Winter

Spring

Summer

Full year

Figure 4.65: Optimal distributions in site group 3 for objective function 5 for the full

day during each season.
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Figure 4.66: Cumulative daily averaged GTI profiles for optimal distributions in site

group 3 for objective function 5 for the full day during each season.

Table 4.16 presents the cumulative energy values associated with the optimal distributions

found for relevant problem cases analysed with objective function 5, while Table 4.17 presents

the variability of the cumulative daily energy associated with each solution. The cumulative

energy values confirm that the energy levels attained by the distributions found for objective

function 5 are generally higher than that of the equivalent solutions for objective function 4

(though still falling short of the maximum possible energy, to varying extents), with the notable

exception of the winter distribution for site group 3. Meanwhile, the RSD values are distinctly

higher for each optimised season when compared to the equivalent results for objective function

4. Interestingly, the RSD values produced by the full year distributions in site groups 1 and 2

for only the winter season are lower than their counterparts for the objective function 4 results.

Table 4.16: Cumulative available energy for problem cases analysed for objective function

5 with GTI profiles.

Problem case Cumulative annual energy Cumulative energy in

description [MWh/m2] winter [MWh/m2]

Site Seasonal Full day Morning Evening Full day Morning

group period peak peak peak

1 Winter 2531.567 411.074 16.132 571.198 76.696

Full year 2544.152 428.902 11.706 584.197 82.233

2 Winter 2292.874 514.060 2.042 564.924 117.507

Full year 2372.666 494.367 3.549 563.920 102.770

3 Winter 2434.015 424.959 16.429 553.530 83.616

Full year 2445.572 451.458 8.653 573.448 92.340
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Table 4.17: RSD of cumulative daily energy for problem cases analysed for objective

function 5 with GTI profiles.

Problem case description RSD of cumulative daily

Site Seasonal energy [kWh/m2]

group period Full year Winter

1 Winter 14.0 8.2

Full year 14.5 8.0

2 Winter 16.4 13.2

Full year 16.8 12.3

3 Winter 12.1 9.0

Full year 11.8 7.6

Figures 4.67 and 4.68 and Figures 4.69 and 4.70 represent the relevant probability distri-

butions for the site group 1 winter and full year results, respectively, while Figures 4.71 and

4.72 present the corresponding hourly GTI graphs. These results show that the cumulative

daily energy for the optimal winter distribution is limited within 20 % and -25 % of the mean

value and goes no lower than 60 % of the maximum value throughout the season, while the

cumulative daily energy for the optimal full year distribution varies between 30 % and -70 %

relative to the mean value and upwards of 20 % of the maximum value throughout the year.

When compared with the results for objective function 4, the variability for winter is fairly

similar with a slight increase in the negative skewness of the probability distribution relative to

the maximum value. This similarity is also reflected in the corresponding hourly GTI profiles.

In contrast, the variability of cumulative daily energy for the full year distributions show a pro-

nounced disparity, with the probability distribution relative to the maximum clearly exhibiting

increased negative skewness for objective function 5. The adjustment of skewness, however,

comes at the cost of a much greater maximum deviation from both the mean and maximum

values throughout the year. This behaviour is reflected in the corresponding hourly GTI pro-

file, which shows increased peak power levels with outliers occurring at a significantly higher

frequencies and extremities.
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Figure 4.67: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 1 for objective function 5.
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Figure 4.68: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 1 for objective function 5.
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Figure 4.69: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 1 for objective function 5.

Percentage of cumulative GTI [Wh/m2] relative to maximum

0 10 20 30 40 50 60 70 80 90 100

P
ro
b
ab

il
it
y

0

0.1

0.2

0.3

0.4

Figure 4.70: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 1 for objective function 5.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 110

Time of day [HH:MM]
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

H
ou

rl
y
G
T
I
fo
r
al
l
d
ay
s
[W

/m
2
]

0

200

400

600

800

1000

1200

Hourly mean

Figure 4.71: Hourly GTI values for the optimal winter distribution in site group 1 for

objective function 5.
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Figure 4.72: Hourly GTI values for the optimal full year distribution in site group 1 for

objective function 5.
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Figures 4.73 and 4.74 and Figures 4.75 and 4.76 represent the relevant probability distribu-

tions for the site group 2 winter and full year results, respectively, while Figures 4.77 and 4.78

present the corresponding hourly GTI graphs. These results show that the cumulative daily

energy for the optimal winter distribution varies within -40 % and 20 % of the mean value and

goes no lower than 50 % of the maximum value throughout the season, while the cumulative

daily energy for the optimal full year distribution varies between 30 % and -70 % relative to

the mean value and upwards of 30 % of the maximum value throughout the year.

When compared with the results for objective function 4, the variability of cumulative daily

energy for both the winter and full year distributions show a distinct increase in negative

skewness of the probability distribution relative to the mean. Once again, this comes at the

cost of greater maximum deviation relative to both the mean and the maximum value, which

is reflected in the increased downwards dispersion of values in the hourly GTI profiles for both

the winter and full year cases.
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Figure 4.73: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 2 for objective function 5.
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Figure 4.74: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 2 for objective function 5.
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Percentage variation of cumulative GTI [Wh/m2] relative to mean
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Figure 4.75: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 2 for objective function 5.
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Figure 4.76: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 2 for objective function 5.
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Figure 4.77: Hourly GTI values for the optimal winter distribution in site group 2 for

objective function 5.
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Figure 4.78: Hourly GTI values for the optimal full year distribution in site group 2 for

objective function 5.

Figures 4.79 and 4.80 and Figures 4.81 and 4.82 represent the relevant probability distri-

butions for the site group 3 winter and full year results, respectively, while Figures 4.83 and

4.84 present the corresponding hourly GTI graphs. These results show that the cumulative

daily energy for the optimal winter distribution is limited within 15 % and -30 % of the mean

value and goes no lower than 60 % of the maximum value throughout the season, while the

cumulative daily energy for the optimal full year distribution varies between 20 % and -55 %

relative to the mean value and upwards of 30 % of the maximum value throughout the year.

For the winter case, the probability distribution of cumulative daily energy relative to the

maximum value shows a distinct increase in negative skewness compared to the equivalent result

for objective function 4, without any increase in the maximum deviation relative to the mean

or maximum values. This is reflected in the hourly GTI profile, which exhibits a slightly lower

level of vertical dispersion than the equivalent profile for objective function 4. The results

for the full year case also show increased negative skewness for the probability distribution

relative to the maximum, though there is a corresponding increase in the maximum deviation

of cumulative daily energy relative to the mean and maximum values. The hourly GTI profile

shows decreased vertical dispersion (i.e. a smaller value range) for the majority of values,

resulting in a more frequent occurence of outliers.
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Figure 4.79: Probability distribution of cumulative daily energy relative to the mean

value for the optimal winter distribution in site group 3 for objective function 5.
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Figure 4.80: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal winter distribution in site group 3 for objective function 5.
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Figure 4.81: Probability distribution of cumulative daily energy relative to the mean

value for the optimal full year distribution in site group 3 for objective function 5.
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Percentage of cumulative GTI [Wh/m2] relative to maximum
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Figure 4.82: Probability distribution of cumulative daily energy relative to the maximum

value for the optimal full year distribution in site group 3 for objective function 5.
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Figure 4.83: Hourly GTI values for the optimal winter distribution in site group 3 for

objective function 5.
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Figure 4.84: Hourly GTI values for the optimal full year distribution in site group 3 for

objective function 5.

Overall, the results for problem cases optimised with this objective function confirm that

it is successful in intensifying the negative skewness of the probability distribution for the

cumulative daily energy relative to its maximum value. For some cases the objective function

was shown to also increase the worst-case scenario, i.e. the lowest cumulative daily energy value

relative to the maximum and mean values, when compared to the results for objective function

4 where the SD is minimised. This can be problematic as it pertains to the grid and its energy

demand profile, and would likely necessitate the installation of a higher surplus generation

capacity. However, it appears that the worst-case scenario is mitigated by the larger selection

of potential locations available in site group 3, which again indicates that geographical diversity

is a highly advantageous factor for controlling variability.
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Chapter 5

Conclusions and recommendations

5.1 Overview

Historically, the generation of electrical energy in South Africa has relied predominately on

the use of fossil fuels, particularly coal. A strong renewable energy program, mostly consisting

of wind energy and photovoltaic technologies, have been implemented successfully in recent

years. Due to the solar potential of the region and decreasing cost of solar PV systems, solar

photovoltaic sources represent a major component of this RE fleet. To date, however, the

feed-in tariffs negotiated for renewable energy sources are flat in both the seasonal and diurnal

contexts. This is not compatible with the very strong pricing signals associated with consumer

tariff systems such as Eskom’s Megaflex tariff structure, which applies to various prominent

load sectors, including the industrial sector and municipal resellers. This pricing structure is

currently also being aggressively expanded to the commercial and residential sectors through

the use of smart metering systems. It therefore follows that the feed-in tariffs applied to RE

generation should also reflect the Megaflex tariff structure in the sense that it represents the

cost of electricity generation along seasonal and diurnal timelines.

In the face of the increasing penetration of renewable energy, modern smart grid approaches

to energy balance require that the mix of renewable energy (RE) technologies, e.g. wind and

solar PV, should be optimised for maximum grid support. The geographical distributions of

these RE plants should therefore take cognizance of the seasonal and diurnal cycles associated

with both the grid load profile and the RE generation profiles. This project investigates one

of these aspects, namely the long-term effects of the geographical distribution of solar PV

plants on grid-related metrics such as the availability and variability of available energy in the

context of relevant seasonal and diurnal considerations. The investigation was implemented as

a optimisation study in the South African context, with the methodology characterised by the

following aspects:

� Selection of potential photovoltaic (PV) plant locations that provide a meaningful geo-

graphical basis for the evaluation of seasonal and diurnal trends.

117
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� Identification of a range of meaningful optimisation objectives for evaluating the signifi-

cance of various grid-support metrics for long-term solar PV power generation.

� Identification of various optimisation algorithms for finding optimal distributions of PV

generation capacity using objective functions derived from the aforementioned optimisa-

tion objectives.

� Design and subsequent evaluation of set of optimisation problem cases incorporating the

aforementioned features.

The evaluation of the designated optimisation problem cases was implemented within an

integrated software platform that required the development of a novel solar PV optimisation

module. The module was integrated with the established main application interface and re-

lational database structure of an ongoing diversified software project, and the necessary sim-

ulation software was incorporated to perform optimisation simulations on a suitable external

simulation platform. The main research emphasis regarding the analysis and interpretation of

the optimisation results is on the following:

� Determining the long-term seasonal and diurnal trends with regard to the aggregated

solar PV power profiles and cumulative available energy associated with the distribution

of generation capacity along the geographical north-south and east-west axes.

� Evaluating the potential merits of optimising the geographical allocation of solar PV

generation capacity using grid-support strategies that incorporate diurnal and seasonal

considerations.

� Evaluating the performance of the various optimisation algorithms in the context of the

difficult multi-dimensional search spaces associated with the selected optimisation prob-

lem cases.

5.2 Conclusions

5.2.1 Integrated software platform

As prescribed by the project description, a solar PV optimisation software module was designed

and utilised for the implementation of the designated optimisation study. The module was

successfully consolidated with the established main application interface and relational database

infrastructure of an ongoing software project, and external simulation software was incorporated

for performing optimisation simulations. The relational database structure originally associated

with the main application interface was evaluated and adapted where needed to provide efficient

long-term storage for all data utilised and produced throughout the optimisation process. Due

to its communal use in the context of the ongoing software project, the database structure was
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designed from a generic perspective in order to accommodate data associated with a diverse

range of analytical applications.

The organisational storage capabilities offered by the relational database proved highly

useful in the context of the optimisation study, both in terms of evaluating optimisation problem

cases and facilitating the subsequent analysis of the optimisation results. In this regard, the

graphical user interface (GUI) functionality of the solar PV optimisation module along with

its built-in analytical features also proved very advantageous for the evaluation of individual

problem cases. Meanwhile, the external simulation platform and its corresponding optimisation

software performed well in its role of implementing the required optimisation simulations.

Although this integrated software platform was developed and used for the implementation

of the described optimisation study, it can be used for the evaluation of optimisation prob-

lem cases with any seasonal characteristic, diurnal specification (where applicable), group of

locations or power profile resolution. Additionally, the type of power profiles used, whether

solar or electrical, are also not important as long as the data is of an averaged nature. This

effectively means that despite its designation as a solar PV optimisation module, the imple-

mented module can theoretically be used to optimise the distribution of generation capacity

for any type of energy source. With regard to future development, the nature of the software

infrastructure is such that the functionality of the solar PV optimisation module can easily

be extended to include additional objective functions or optimisation algorithms for which the

simulation software has been independently implemented.

5.2.2 Optimisation algorithms

For most of the problem cases evaluated in the optimisation study, the relative discrepancies

between both the minima found by different optimisation algorithms, as well as the minima

for different evaluations by a non-deterministic algorithm, proved to be negligible to fairly

small. This is consistent with the metaheuristic characteristic of producing solutions of “good

enough” quality, which approximate the global optimum without guaranteeing convergence to

the true global minimum within the problem search space. It also indicates that the selected

optimisation algorithms are fairly robust with regard to the diverse range of multi-dimensional

search problems produced by the implementation of the different optimisation objectives.

The greatest variation in solution quality occurred for problem cases with a particular focus

on the evening peak period, which can likely be ascribed to the low power levels associated with

that diurnal specification. In other words, a difference that is relatively small when considered

for minima based on large power or cumulative energy values becomes much more significant

when a disparity of the same value occurs for minima based on low power or energy values. It

can therefore be concluded that the solution quality of the optimisation algorithms deteriorates

when the power levels associated with specified diurnal period are very low.

The genetic algorithm (GA) proved to be the most expensive optimisation function in terms

of simulation runtime and memory requirements. For a single evaluation the cost is not too
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significant, but the non-deterministic nature of the technique necessitates multiple evaluations

to ensure that the best solution available to the algorithm is found, resulting in a substantial

cumulative duration. Due to its wider range of potential locations, which increases problem

difficulty by introducing additional dimensions to the search space, the problem cases evaluated

for site group 3 were also considerably more expensive than those evaluated for site groups 1

and 2. Consequently, even though it yielded high-quality solutions when a sufficient number of

evaluations were considered, the GA was deemed non-ideal for the purposes of this optimisation

study due to its relatively expensive time requirement and low tolerance for problem scalability.

Pattern search variations 1 and 2 performed at a similar level for the various optimisation

objectives, with pattern variation 2 exhibiting slightly better solution-quality overall. This

is consistent with the tendency of pattern search algorithms incorporating the generating set

search (GSS) method to perform better for bounded search problems than pattern search

algorithms that only use the generalised pattern search (GPS) technique. Both variations

generally exhibit lower overall solution quality than the best solutions produced by both the

GA and pattern variation 3, with the notable exception of the problem cases evaluated with

objective function 4. In contrast to the other objective functions, for which the consistency of

solution quality varies, the solutions produced for objective function 4 are characterised by very

high quality and consistency. This implies that the pattern search technique is very well suited

for solving search problems of the type described by objective function 4. Despite the more

inconsistent solution quality exhibited for the other problem cases, however, the deterministic

nature and negligible simulation runtime associated with these algorithms make them viable

candidates for solving problems where approximate solutions are sufficient.

Of the four optimisation algorithms investigated, pattern search variation 3 produced the

best overall solution quality over the range of objectives functions while remaining considerable

less expensive than the GA in terms of simulation runtime. Its solution quality can be as-

cribed to the combined use of both GPS and GA search functionality, while the integrated GA

implementation is simple enough to render it relatively inexpensive. As such, pattern search

variation 3 was identified as the most suitable candidate for general optimisation purposes in

the context of this study, given that a sufficient number of evaluations are performed to en-

sure that the best possible solution is found. With regard to the latter consideration, pattern

search variation 3 exhibits a similar level of variation to the GA for different evaluations of the

same problem case, with the exception of the problem cases evaluated for objective function 4.

The consistency of solution quality in this regard can likely be improved via proper parameter

adjustment for the implementation of each objective function.

5.2.3 Optimisation results

5.2.3.1 Overview

Overall, the results produced throughout the optimisation study clearly confirm the significance

of diurnal and seasonal considerations for optimising the allocation of solar PV generation in the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 121

context of grid support. The results associated with the individual optimisation objectives also

indicate the merits of optimising solar PV allocation for the particular grid-support aspect con-

sidered by each objective. Moreover, the observed trends strongly support the implementation

of variable feed-in tariff structures for RE generation as a means of optimising the geographical

distribution of solar PV generation capacity according to grid-support metrics. The frequent

disparity between the results of problem cases optimised for the full year scenario compared

to the results for equivalent winter cases indicate that due consideration of the high and low

demand seasons is especially important in this regard.

5.2.3.2 Objective function 1: Maximisation of the daily averaged energy

The results for problem cases analysed with this optimisation objective clearly show the vari-

ation introduced in the longitudinal dimension when solar PV distribution is optimised for

different diurnal specifications, as well as the variation introduced in the latitudinal dimension

when considering different seasonal specifications. The distributions for maximised energy in

the morning peak period or evening peak period often differ from the corresponding allocation

for the full day scenario, while the same solutions also vary from season to season. For all of

the analysed problem cases the optimised solutions favour a single location with all or most of

the available generation capacity, which is expected for the maximisation of cumulative energy.

Due to this lack of geographical diversity for a given allocation, however, the variability of

the power profile and cumulative daily energy exhibited over a seasonal or annual duration is

largely dictated by the often significant variability associated with a single location.

5.2.3.3 Objective function 2: Minimisation of the coefficient of variation for the

daily averaged power profile

For the site groups that incorporate geographical diversity along the east-west axis, the majority

of the solutions found for this optimisation objective distribute most or all of the generation

capacity between two locations extending over a significant portion of the available longitudinal

range. Compared to the power profiles produced by maximisation of the cumulative daily

energy, the resulting aggregated daily averaged power profiles manage to reduce the midday

peak power level while maintaining relatively high power levels at the start and/or the end of

the diurnal cycle.

Although the optimisation objective is satisfied to a certain extent, the conceptual goal of

producing an aggregated averaged power profile characterised by a wide, flat diurnal cycle is not

achieved, most likely due to the limited geographical range of the country in the longitudinal

dimension. As such, the merit of this optimisation objective proved somewhat limited in the

local context. If applied to a grid spanning a significantly larger geographical area, however,

the potential benefits offered by this optimisation objective may be amplified considerably.

One excellent candidate for such an evaluation is the United States mainland, which has a

latitudinal span of approximately 23.5 degrees and a longitudinal span of approximately 57
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degrees, compared to the South African range of 12.6 degrees and 16.4 degrees, respectively.

The inter-connected European grid presents another highly suitable option.

5.2.3.4 Objective function 3: Maximisation of the daily averaged energy weighted

according to the Megaflex tariff structure

For many of the problem cases analysed for this optimisation objective, the resulting solar PV

distributions are very similar to the solutions found for the equivalent problem cases optimised

for the full day scenario with objective function 1. The distinct exception to this trend is the

solutions for the winter period for site groups 1 and 3. This disparity between the allocations

of generation capacity made for the weighted and unweighted energy maximisation objectives

is highly significant as it illustrates the substantial impact of the extreme tariff associated

with the peak periods of the high demand season. This characteristic is a strong indicator

for the potential value of incorporating variable feed-in tariffs with diural as well as seasonal

specifications for solar PV power generation. The precise structuring of such tariffs should be

investigated further in the context of both plant profitability and long-term grid-support that

is complementary to RE generation profiles from other sources.

5.2.3.5 Objective function 4: Minimisation of the relative standard deviation of

the cumulative daily energy

This optimisation function was highly successful in producing distributions with low variability

of the cumulative daily energy values presented for an entire seasonal or annual duration. For

most of the problem cases, the daily variability for the resulting distribution is significantly lower

compared to that of corresponding distributions found for maximised energy levels, but comes

at the cost of lower cumulative energy delivered over the course of a season or year. For the first

time, the allocation of generation capacity is highly diversified and seasonal trends become less

obvious. However, the significance of a seasonal consideration is again confirmed by the fact

that the problem cases optimised for the full year scenario do not reflect the optimal solutions

for the winter scenario and vice versa. The lowest variability is also consistently exhibited by

the distributions found for site group 3, which supports the notion that an increase in the

geographical range and intensity of diversification serves to reduce variability for aggregated

solar PV power profiles.

5.2.3.6 Objective function 5: Maximisation of the negative skewness of the prob-

ability distribution for the cumulative daily energy

The distributions produced for this optimisation objective were successful in skewing variability

throughout the relevant seasonal period so that the cumulative available energy for the majority

of days is in the region of the maximum value for any one day. The distributions still show a

significant level of diversification, but tends to favour locations with high cumulative annual

or seasonal energy yields. As such, the variability for these distributions is consistently worse
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than for equivalent solutions found for objective function 4, exhibiting much more frequent and

extreme outlier values on a daily and hourly basis. On the other hand, the cumulative energy

yield on an annual or seasonal basis is generally notably higher than that of the distributions

produced by objective function 4. The same applies to the cumulative yield for the daily

averaged power profile.

5.3 Recommendations

5.3.1 Optimisation algorithms

The following research aspects regarding the use of optimisation algorithms in the context of

this study are recommended for further exploration:

� Implementation of test problem cases with larger groups of locations in order to evaluate

the performance of the pattern search variations for increased problem difficulty.

� Parameter adjustment of pattern variation 3 to maximise solution quality and consis-

tency for the types of search problems associated with each of the objective functions

implemented in this study.

� Comparative evaluation of the performance of single-solution metaheuristic techniques

other than pattern search in the context of this optimisation study. Suitable algorithms

for this purpose include simulated annealing, tabu search and variable neighbourhood

search.

� Comparative evaluation of the performance of population-based metaheuristic techniques

other than GA in the context of this optimisation study. Suitable algorithms for this

purpose include particle swarm optimisation and scatter search.

� Implementation of promising metaheuristic techniques as combined algorithms similar

to pattern search variation 3, followed by comparative evaluation in the context of this

optimisation study.

5.3.2 Optimisation strategy

This project by no means offers a complete solution to the complex problems surrounding

grid-integration of large-scale RE generation, but it does provide a good foundation for the

development of comprehensive models for optimising the allocation of RE generation capac-

ity. The following research is recommended with regard to further evaluation, refinement and

development of the optimisation methodology investigated in this project:

� Implementation of the described optimisation strategy using the locations of all the ex-

isting and planned solar PV installations in South Africa, with subsequent evaluation of
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the current allocation of PV generation capacity compared to scenarios optimised for the

grid-support.

� Evaluation of the described optimisation strategy in the context of a power grid spanning

a larger geographical area.

� Implementation of the described optimisation strategy using high-quality measured solar

data in order to validate the trends exhibited by the results produced for the synthetically

generated solar power profiles.

� Comparative analysis of measured solar PV power generation and local solar radiation

data to evaluate the suitability of predicting long-term solar PV performance character-

istics via solar power profiles.

� Development and implementation of comprehensive models that incorporate plant pa-

rameters and additional environmental parameters for more accurate estimation of the

power output profiles for hypothetical solar PV plants.

� Evaluation of alternative approaches for reducing the variability of solar PV power gen-

eration, such as the cost-variance analysis method commonly used for optimising wind

farm allocation [73,74].

� Implementation of hybridised optimisation of generation capacity allocation for a mix of

solar PV and wind energy.

� Investigation of multi-objective optimisation for RE power generation that combines vari-

ability minimisation and maximisation of energy availability for high demand periods.

� Comprehensive evaluation of the effects of variable feed-in tariff structures for optimis-

ing the allocation of RE generation capacity, both in terms of grid support and plant

profitability.
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