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Abstract

The understanding and quantitative description of fluid flow through porous me-
dia, is a science which has been going on for many years and investigated in a
variety of disciplines. Studies in this field have primarily been based on mod-
els, which can either be described as empirical or theoretical. Part of the current
study is to understand fluid flow in porous media through studying three recent
theoretical pore-scale models based on the concept of a Representative Unit Cell
(RUC), to represent a porous medium. Amongst other assumptions, these mod-
els assumed plane Poiseuille flow throughout each pore section of a rectangular
RUC. The main objective of this study is to numerically verify this assumption
using Computational Fluid Dynamics (CFD) software, FLUENT version 6.2.16.

Attention is also paid to comparison between these models with the experimen-
tal data, obtained during the model tests of airflow through a timber stack end,
undertaken in a wind tunnel. The laminar and intermediate airflow through a
timber stack end is simulated using the commercial software FLUENT, and the
results are validated against the theoretical pore-scale models and experimental
data. Two turbulence models which are, the Standard k − ε and Reynolds-Stress
models are used in these computations, the aim being to determine how well they
are able to reproduce the experimental data. The numerical results are in good
agreement with one of the theoretical models presented and the experimental
data.



Abstract

Die verstaan en kwantitiewe beskrywing van die vloei van vloeistowwe deur
poreuse media, asook die oplossing en daarstel van die modelle wat die vloei
beskryf is al vir verskeie jare aan die gang en word in verskeie disiplines on-
dersoek. Studies in hierdie veld word hoofsaaklik gebaseer op modelle wat as
empiries of teoreties beskryf kan word. Hierdie studie poog ten dele om die vloei
van vloeistowwe deur poreuse media deur middel van drie onlangse skaalmod-
elle, wat gebaseer is op die Verteenwoordigende Eenheid Sel (RUC), te verstaan.
Onder andere word daar in hierdie modelle die aanname gemaak dat die Poiesuille
vloei deur elke gedeelte van die reghoekige RUC beweeg. Die hoofoogmerk van
hierdie studie is om hierdie aanname numeries te verifeer deur van Numeriese
Vloeidinamika sagteware, FLUENT 6.2.16 gebruik.

Aandag word ook geskenk aan die vergelyking van hierdie modelle met eksper-
imentele data, wat tydens die toetsing van die lugvloei deur hout in ’n lugton-
nel verkry is. Die laminre- en oorgangslugvloei deur die hout word met ge-
bruik van die kommersile sagteware FLUENT gesimuleer en die resultate word
geverifeer deur om dit te vergelyk met die teoreiese skaalmodelle en eksperi-
mentele data. Twee turbulensiemodelle , die Standard k − ε en die Reynolds-
Spanningsmodelle, word in hierdie simulasies gebruik. Die doel is om vas te stel
hoe goed die modelle die eksperimentele data kan reproduseer. Die numeriese
resultate stem goed ooreen met die teoretiese modelle en met die eksperimentele
dat.
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Chapter 1

Introduction

A large number of scientists in a variety of disciplines are currently engaged in
research that continuously contributes to the understanding and quantitative de-
scription of transport phenomena in porous media and to the solutions of models
that describes them, [ Bear & Buchlin (1991)]. The understanding of these phe-
nomena in the present study is of importance, since one focus of this work is to
evaluate fluid flow through porous structures. Bear & Bachmat (1991) defined a
porous medium as a domain that is occupied by both the persistent solid phase,
called solid matrix and the space within the domain that is not part of the solid
matrix, referred to as the void space.

The traversing fluid through the void space of the porous domain consists of a
two-phase fluid or single-phase fluid. The latter has received considerable atten-
tion in many applications, for example, movement of ground water through an
aquifer and oil and gas through the oil reservoirs. The numerical analysis of this
study will also be based on the traversing fluids through two-dimensional porous
media that consist of a single-phase fluid, which may be water or air.

In addition, many other industrial processes such as in fuel cells, food production,
airflow through tube banks in heat exchangers and drying process in industry, to
name but a few, involve flows through porous media. Other examples of such
problems and various disciplines where transport in porous media is encoun-
tered can be found in Bear & Buchlin (1991) and Kaviany (1995).



Introduction 2

Literature reveals that Darcy1 (1856) was amongst the first researchers who ad-
dressed the problem of flow through porous media. The results obtained by
Darcy1 (1856) were based on experimental measurements, which relate the over-
all discharge through a porous medium, q, linearly to the fluid pressure gradient
through the hydrodynamic permeability, k, of the porous medium such that

q = − k

µ

dp

dx
. (1.1)

Although Darcy’s law is useful and has been applied to various problems in
many disciplines such as chemical, civil and mechanical engineering, the devia-
tion from this law has been experimentally observed at high velocities, [ Kaviany
(1995)]. Thus it has been experimentally proven that Darcy’s law is valid only
at low Reynolds numbers. The flow is said to be in the Darcian regime at low
Reynolds numbers (Re < 1).

The Reynolds number is a non-dimensional parameter formulated by Reynolds2

(1883), and it was named after him. The Reynolds number is frequently used in
fluid dynamics to determine various flow regimes (laminar or turbulent). It is
defined as the ratio of inertial forces to viscous forces and is generally expressed
in a dimensionless form as follows:

Re ≡ UρL

µ
, (1.2)

where U is a representative mean velocity, L is a characteristic length and µ and ρ
are the viscosity and density of the fluid respectively. The choice of linear dimen-
sions and velocity appearing in the Reynolds number will affect the numerical
value of the Reynolds number. Therefore, when comparing different flow re-
sults it is important that corresponding lengths and velocities are used. At low
Reynolds numbers the viscous forces are dominant over the inertial forces whilst
the latter is dominant at high Reynolds numbers.

A modified equation of Darcy’s equation has been proposed by Forchheimer3

(1937), to account for the deviation experienced from Darcy’s law. Forchheimer3

(1937) introduced an extra term to the Darcy equation which is quadratic in over-
all discharge q, and an empirical inertia parameter β∗,

−dp

dx
=

µq

k
+ β∗ρq2. (1.3)

1Reference not read, referred to by Kaviany (1995)
2Reference not read, referred to by Ward-Smith (1980)
3Reference not read, referred to by Bear & Bachmat (1991)
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The inadequacies regarding the above equation are, lack of macroscopic convec-
tive terms which relates to an ability to capture macroscopic phenomena such as
boundary conditions and the fact that it is empirically based, [ Du Plessis & der
Westhuizen (1993)]. Many phenomenological models as described by Dullien
(1975), have been published to model flow phenomena in porous media. Al-
though Dullien (1975) reported that these models gave fairly useful results, the
approach was still based on the conduction of sets of experiments. Therefore,
more attention has to be paid to the development of more theoretical based mod-
els, which will reduce the need for continuous measurements.

The flow in porous media at microscopic level is governed by the Navier-Stokes
transport equations. It is worth mentioning that due to the complexity of the
porous media geometry, it is an arduous task to observe and measure trans-
port quantities at this level. Therefore, to overcome these difficulties the micro-
scopic transport equations need to be transformed to macroscopic equations. Be-
sides these difficulties, most industrial applications only require measurable fluid
properties.

The process of transforming the interstitial Navier-Stokes transport equations to
measurable parameters requires amongst others, the use of the local volume av-
eraging theories. The equations resulting from this process contain some terms
that are not macroscopically measurable, due to certain information lost in the
process of volume averaging of the microscopic transport equations. Therefore,
a complete closure of these open terms, as referred to in literature, necessitate
a conceptual model required to bring closure to the volume averaged transport
equations.

Part of this thesis will present three conceptual pore-scale models that use the
concept of a Representative Unit Cell (RUC) originally developed by Du Plessis
& Masliyah (1988), to solve the microscopic variables present in the volume aver-
aged transport equation. These models are referred to as the Rectangular Repre-
sentative Unit Cell (RRUC) model, which represents a simplified two-dimensional
configuration of the real porous structure and the transport phenomena that oc-
cur in it. Inclusion of these models in this work will provide an understanding of
the mathematical basis from which an estimate of these terms and their gradients
can be obtained.

As indicated earlier, many models for flow through porous media are still empir-
ically based. Although these models gave good results as reported by Dullien
(1975), it is usually considered expensive and time consuming to only depend on
experimental methods. An alternative that is cost-effective for predicting flow
through porous media will be analytical models.
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However, due to the technological advances of modern computers, application
of Computational Fluid Dynamics (CFD) modeling is considered to be more cost-
effective and is commonly used. CFD employs numerical methods to solve the
fundamental fluid transport equations that are derived from the laws of conser-
vation of mass, momentum and energy.

In carrying out a CFD calculation it is necessary to follow a number of steps.
These include, firstly, determining the important features of the flow to be mod-
eled, creating the model geometry and its finite-volume mesh of grid cells. The
fluid properties and the boundary conditions require specification before the set
of equations may be solved, as would be the case for any calculation. The sim-
ulations in this work will be carried out using the commercial CFD software,
FLUENT, which uses the finite volume approach combined with the SIMPLE al-
gorithm developed by Patankar (1980), to solve the governing equations.

A classical parallel fluid flow driven by pressure gradients through a channel
formed by two parallel plates, forms part of this study. The flow between par-
allel plates is called ”plane Poiseuille flow” or ”channel flow”. Shah & Lon-
don (1978) critically reviewed previous research studies on flow between parallel
plates. Some of the flow characteristics presented in their review are the velocity
distribution at any section, the pressure difference between any two sections and
the hydrodynamic entrance length (Lhy).

The concept of the entrance length is often to determine if the flow has reached
its steady state behaviour, as assumed in the pore-scale models. The numerical
hydrodynamic entrance length obtained using the criteria based on the position
where the maximum velocity is equal 0.99 umax, 0.9977 umax and 0.9999 umax will
be compared to the existing data presented in the review of Shah & London
(1978). Various authors have experimentally and theoretically investigated the
concept of the entrance length and various forms of approximations led to differ-
ent results.

One area of industrial application of fluid flow through porous structures that
is adopted in this study is an airflow through a timber stack end in a timber
drying kiln. As it was mentioned earlier, this is one practical example of flow
transport through two-dimensional porous media, in particular prismatic porous
structures. The numerical results in this case will be tested against the three re-
vised RRUC models and the experimental data obtained from Du Plessis (2002).
The simulation for the airflow through a timber stack end was conducted using
the Laminar viscous model with the aid of the two turbulence models, namely:
Standard k − ε and Reynolds-Stress models, in the intermediate Reynolds num-
ber regime and higher.
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1.1 Objectives Of This Study

The purpose of this study is twofold, with the main emphasis on numerical sim-
ulations and the secondary objective is based on the study of theoretical models,
associated with equations required for the analysis of transport in porous media.

The theoretical study include the following: Three pore-scale models based on
an RRUC, for both Darcian and Forchheimer regime are discussed, striving for
better understanding of these models. The study of analytical plane Poiseuille
flow is also necessary for this study. The purpose of the study of plane Poiseuille
flow is threefold:

• The analytical solutions will assist in evaluating the accuracy of the CFD
results,

• Secondly it will provide a better understanding of the definition of ”fully
developed” flow,

• Lastly, the results obtained here, will be useful when evaluating the as-
sumption made with respect to fully developed flow and constant wall
shear stresses in the porous media represented by a conceptual RRUC model.

The numerical part of the study include the following:

• Investigating two-dimensional laminar flow through parallel plates

• Investigating fluid flow through two-dimensional staggered porous struc-
tures.

The numerical solutions are then used to:

• Verify the fully developed flow assumption made in the derivation of the
mathematical expression through the RRUC model, which forms the main
part of this study.

• The results will also be validated against the existing experimental data and
the analytical predicted solutions by the RRUC models.
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1.2 Layout Of The Thesis

The contents of the remaining chapters are as follows:
In Chapter 2, the derivations of the macroscopic continuity and momentum
equations using the the volume averaging method are recalled. In this chapter
the concept of the pore-scale model employed by the RRUC models proposed by
Diedericks (1999), Lloyd et al. (2004) and Cloete & Du Plessis (2006) is analyzed.

A major part of this study contains application of CFD. Thus this necessitates a
brief discussion of the basic concepts of CFD and the commercial software, FLU-
ENT, used to conduct the simulations, which will be discussed in Chapter 3. A
classical fluid dynamic problem, with well known exact analytical solutions is
presented in Chapter 4. Numerical simulation of this flow is also presented in
this chapter and the numerical results will be validated against the exact analyti-
cal solution.

In Chapter 5 flow inside a two-dimensional staggered RRUC is simulated. The
main aim of the simulation is to observe the flow characteristics such as velocity
profile and wall shear stresses in the stream-wise and transverse channels. The
exact solution in Chapter 4 is also used in this case to validate the predicted re-
sults and mostly verify the assumption made when developing models in Chap-
ter 2. Attention is also focused on the change of flow behaviour as the porosity
and Reynolds number increase and an overall discussion of the results is pre-
sented.

Practical aspects of airflow through a timber stack in a timber drying kiln are
reviewed in Chapter 6. Flow characteristics for flow through a staggered section
of a timber stack, modeled experimentally by Du Plessis (2002), will be modeled
numerically in this section. These results are compared to the experimental data
and the RRUC model results, followed by a discussion. Chapter 7 gives main
conclusions and a short summary.



Chapter 2

Closure Model

2.1 Macroscopic Governing Equations

2.1.1 Volume Averaging Method

At microscopic level the flow in the porous media is governed respectively, by
the continuity and Navier-Stokes equations, that is,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.1)

ρ
∂v

∂t
+ ∇ · (ρvv) − ρg + ∇p −∇ · τ = 0 . (2.2)

In equation (2.1) and (2.2), v is the interstitial velocity, ρ is the fluid density, µ
is the viscosity, p is the microscopic pressure, g is the gravitational force per unit
mass acting on the fluid, τ is the local shear stress tensor and ∇ is the del op-

erator. For an incompressible fluid and steady flow the continuity equation (2.1)
takes the form,

∇ · v = 0 . (2.3)
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Application of these differential equations to a particular flow problem requires
a mathematical description of the boundary conditions. For flow through porous
media, it has been reported in the literature that due to the complexity of the
pores and the matrix structures it is difficult to describe boundary conditions at
the microscopic level. This lead to the study of flow through porous media in
terms of the mathematical description of the macroscopic equations.

The latter is possible through the volume averaging method obtained through
the application of the averaging theorem developed by Slattery4 (1967), which
expresses the volumetric average of a spatial derivative of a specific phase quan-
tity. A detailed analysis of the theory is found in literature, presented by Bear &
Bachmat (1991) and Kaviany (1995) amongst other authors.

The volume averaging theory facilitates a method of transforming the transport
equations at microscopic level to the macroscopic level by volumetrically aver-
aging over a Representation Elementary Volume (REV). Bear & Bachmat (1991)
defined a Representation Elementary Volume (REV) as a volume U0, consisting of
both fluid and solid parts, which are statistically representative of the properties
of the porous medium. A two-dimensional representation of an REV is shown in
Figure 2.1. The volume of the fluid and solid parts within an REV are denoted
by U f and Us respectively as illustrated in Figure 2.1.

L

Us

U f

S f f

S f s

Figure 2.1: Representative Elementary Volume (REV).

4Reference not read, referred to by Bear & Bachmat (1991) and Kaviany (1995)
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The porous media considered in this work consists of stationary solid matrixes
and void spaces which are filled with a single-phase fluid. The porosity of the
porous medium is defined by the following volume ratio of an REV as

ε ≡
U f

U0
, (2.4)

where U0 is the total volume and U f is the total fluid volume. The averaging op-
erators form a relationship between the averaged quantities and the microscopic
quantities. Bear & Bachmat (1991) defined the phase average 〈ψ〉 as

〈ψ〉 ≡ 1

U0

∫∫∫

U f

ψ dU , (2.5)

and the intrinsic phase average 〈ψ〉 f as

〈ψ〉 f ≡
1

U f

∫∫∫

U f

ψ dU , (2.6)

where ψ is a fluid phase tensor within an REV.

The relationship between the phase average and the intrinsic phase average fol-
lows from equations (2.4), (2.5) and (2.6) as,

〈ψ〉 = ε〈ψ〉 f . (2.7)

The deviation of any fluid phase quantity {ψ} at some point in U f is defined as,

{ψ} ≡ ψ − 〈ψ〉 f . (2.8)

If ψ is a scalar or tensorial fluid quantity, equations (2.5) up to (2.8) may be used
to formulate averaging identities that aid in the volumetric phase averaging pro-
cess. These identities are presented in Appendix A together with a set of averag-
ing rules derived from the Slattery’s theorem. A thorough presentation of these
rules and identities can also be found in literature, [ Bear & Bachmat (1991) and
Kaviany (1995)].
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2.1.2 Macroscopic Continuity And Momentum Equations

As mentioned previously, it seems not feasible to solve the transport equations at
microscopic level, due to lack of information pertaining to the microscopic con-
figuration of the interphase boundaries. Thus with the aid of the volumetric av-
eraging theory outlined in Section 2.1.1, the microscopic transport quantities and
equations (2.1) and (2.2) may now be integrated over an REV, to obtain macro-
scopic quantities. The superficial velocity q is defined as the phase average of the
interstitial velocity over an REV and can be expressed as,

q = 〈v〉 ≡ 1

U0

∫∫∫

U f

v dU . (2.9)

The direction of q is referred to as the stream-wise direction and may be denoted
by the stream-wise unit vector n̂. The drift velocity u presents the average velocity
of any particle in the stream-wise direction, and is defined as the intrinsic phase
average of the interstitial velocity, which yields the following equation:

u ≡ 〈v〉 f ≡
1

U f

∫∫∫

U f

v dU . (2.10)

The superficial and drift velocities yield a relationship known as the Dupuit-
Fochheimer and is expressed as follows,

q = εu . (2.11)

The volumetric averaging rules and identities mentioned in Section 2.1.1 are used
to finally transform the microscopic transport equations (2.1) and (2.2) to macro-
scopic variables. A step by step procedure for averaging the transport equations
is also presented in Appendix A. From equation (2.3) the phase averaged conti-
nuity equation yields,

∇ · q = 0 . (2.12)
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It is further assumed that a no-slip condition applies to all fluid-solid surfaces
and that the flow is free of body forces except for gavity, hence the phase average
of the momentum transport equation (2.2) can be expressed as follows,

ρ
∂q

∂t
+ ρ∇ · (qq/ ε) − ερg + ε∇p f −∇ · 〈τ〉

+ρ∇ · 〈{v}{v}〉 +
1

U0

∫∫

S f s

(
n{p} − n · τ

)
dS = 0 . (2.13)

It is assumed that the superficial velocity field is uniform, time independent and
that the gravitational force is included in the pressure term as a pressure head.
Thus equation (2.13) simplifies to

−ε∇p f =
1

U0

∫∫

S f s

(
n{p} − n · τ

)
dS . (2.14)

The fluid-solid surface integral terms in equation (2.13) emerged due to loss of
some information concerning the microscopic configuration of interphase bound-
aries, during the volume averaging process. For equation (2.14) to be of practical
use the surface integral terms need to be quantified in terms of measurable vari-
ables. The process of writing equation (2.14) in terms of macroscopic variables
is called closure. The closure of equation (2.14) in this study is realized through
the modeling of the surface integral in terms of measurable parameters, using a
conceptual model presented in the subsequent section.

2.2 A RRUC For Anisotropic Prismatic Bundles

This section does not aim to present any new models. Various existing pore-
scale models will be presented, which will later be used for comparison with
experimental and numerical results of flow through porous media.

A mathematical model predicting pressure gradient through isotropic and con-
solidated porous media was proposed by Du Plessis & Masliyah (1988). They
introduced a concept of a Representative Unit Cell (RUC) to represent the ge-
ometry of the porous structure and assumed the developing flow from uniform
inlet velocity through the pore sections of an RUC. Du Plessis & Masliyah (1991)
extended this model to evaluate the surface integral in equation (2.14) for an
isotropic unconsolidated porous medium using the same concept of an RUC and
also assuming a hydrodynamically developing flow through the pore sections of
an RUC.
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Fully developed laminar flow was assumed to prevail throughout the entire pore
sections of an RUC in the model proposed by Du Plessis (1994). This model for
isotropic granular porous media also adopted the concept of a representative unit
cell. All these models were compared with the empirical equations (based on the
experimental observation) and they gave good correlations.

In order to analyze the interactions on the fluid-solid surfaces two sets of informa-
tion are required, namely: it is necessary that the configuration of the interstitial
fluid-solid surface be adequately modeled and the flow pattern within the porous
medium configuration should also be addressed, [ Diedericks (1999)]. These fac-
tors will be addressed by a pore-scale model referred to as an RRUC (Rectangular
Representative Unit Cell), proposed by Diedericks (1999) for anisotropic porous
media. A closed form of equation (2.14) is determined through this model.

The RRUC is a schematic representation of a hypothetical control volume contain-
ing a single pore, which captures the locally averaged essence of the microstruc-
tural parameters in a physical plausible manner, [ Du Plessis & der Westhuizen
(1993)]. The RRUC model has been successfully used to evaluate equation (2.14),
for both Newtonian and Non-Newtonian fluid through isotropic porous media.
Due to the success of this model, in predicting pressure drop from equation (2.14),
Diedericks (1999) also extended the model introduced by Du Plessis & Masliyah
(1988) and improved by Du Plessis (1994), which gave attention to isotropic
porous media only.

Diedericks (1999) used the concept of an RUC to predict pressure gradients dur-
ing flow through anisotropic porous structures. Diedericks (1999) applied the
RRUC model to various types of anisotropic porous media, namely, two types of
foamlike material, granular media and prismatic microstructure. The model of
a two-dimensional anisotropic prismatic microstructure will be adopted in this
study, since the industrial application of a porous medium considered in this
work is an example of this type of porous domain.

Cloete & Du Plessis (2006) and Lloyd et al. (2004) adopted the existing RRUC
model and made some corrections in the Darcy regime. Their corrections ana-
lyzed the assumption made by the existing model on the pressure term in the
fluid-solid surface integral equation. These two models will also be presented,
the aim being to test them against the experimental measurements and numeri-
cal solutions later.

The speciality of the RRUC model in general is that it was developed from basic
geometry of the porous material and its results are not dependent on experimen-
tal or numerical results. It is worth mentioning that all the revised RRUC models
that will be discussed in the subsequent section are based amongst others, on the
plane Poiseuille assumption made by Du Plessis (1994) on his model.
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In all subsequent sections in this chapter Diedericks (1999), Lloyd et al. (2004)
and Cloete & Du Plessis (2006)’s RRUC models will be referred to as Model 1,
Model 2 and Model 3 respectively.

2.2.1 Closure

Diedericks (1999) approximates a two-dimensional prismatic porous domain by
a rectangular prismatic RRUC of linear dimensions d‖ and d⊥ in the stream-wise
and transverse directions respectively, shown in Figure 2.2 (a). It is also assumed
that the solid structure is represented by a rectangular prism of solid material
within an RRUC and, the remaining part of the RRUC is occupied by fluid and is
referred to as the void part. The solid part is represented by a rectangle of lengths
ds‖ and ds⊥ , also shown in Figure 2.2 (a).

The width of the channel where the flow passes in the stream-wise direction is
denoted by dc⊥ and dc‖ is the width of the transverse channel. The neighbour-

ing staggered solid rectangular blocks of an RRUC form parallel surfaces where
the flow is taking place through all the duct sections. Using the geometry of a
two-dimensional anisotropic RRUC, we obtain the following expressions for vol-
umetric characteristics of the structure

U0 = d‖d⊥ ; U f = εU0 = εd‖d⊥ ; Us = ds‖ds⊥ = (1 − ε)U0 , (2.15)

and from the expression of the solid volume the porosity ε yields,

ε = 1 −
ds‖ds⊥

d‖d⊥
. (2.16)

The effective stream-wise and transverse flow areas are defined respectively as
follows,

A⊥ ≡ dc⊥ and A‖ ≡ dc‖ . (2.17)

The interstitial flow velocity is estimated by the following equation:

w‖ =
U0

U‖
q =

χ

ε
q . (2.18)
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The relationship between the stream-wise and transverse channel speeds yields
the following equation:

w⊥ = βw‖ , (2.19)

where β is the channel anisotropic factor, defined as

β =
dc⊥
dc‖

. (2.20)

d‖

d⊥

ds‖ dc‖

ds⊥

dc⊥

n
n

S‖

S⊥

U‖ Ut

Ut
U‖

S⊥

1
2 S‖

1
2 S⊥

U‖
UtA

2

U⊥
2

UtB
4

U‖
2

UtC
4

U⊥
2

UtD
2 U‖

U⊥
2

UtC
4

U‖
2

UtB
4

U⊥
2

(a) (b)

(c)
Figure 2.2: (a) is the streamlines in a two-dimensional anisotropic RRUC for
Model 1; (b) is the streamlines and volume partitioning of a unit cell of Model
2 and (c) the volume partitioning for fully staggered configuration of Model 3.
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Cloete & Du Plessis (2006) followed an assumption made by Firdaouss & Du
Plessis (2004) that the porous structure is represented by a solid phase and the
unit cell represented by rectangles of the same aspect ratio and, they extended
this assumption by incorporating the width of the transverse and stream-wise
channel ratio. The aspect ratio is thus defined as follows,

α∗ ≡ d⊥
d‖

=
ds⊥
ds‖

=
dc⊥
dc‖

. (2.21)

The porosity for this type of porous structure is given by the following expression:

ε = 1 −
(

ds⊥
d⊥

)2

, (2.22)

and this equation yields the following expression:

ds⊥
d⊥

=
√

1 − ε . (2.23)

In the RRUC’s models of Cloete & Du Plessis (2006) and Lloyd et al. (2004)
for a staggered configuration, the fluid volume U f is subdivided into three sub-
volumes namely the stream-wise volume U‖, the transverse volume U⊥ and the
transfer volume Ut. The volume, Ut, is considered simply as a transfer volume
for the fluid between two adjacent shear-inducing pairs of parallel plates. The
fluid volume partitions for each of the two models, [ Lloyd et al. (2004), Cloete &
Du Plessis (2006)], are indicated in Figure 2.2 (b) and (c) respectively.

The configuration of the transfer volumes, Ut, in the two revised RRUC models
(Model 2 and Model 3) is different, resulting in one of the major differences be-
tween the two models, which is the existence of the wall shear stresses on the
transverse walls. The transfer volume in Model 2 has no fluid-solid interface
while part of the fluid-solid interface on the transverse walls in Model 3 form part
of the transfer volume, Ut, as indicated in Figures 2.2 (b) and (c) respectively.

Model 2 assumes that the wall shear stress τw, exists on the entire transverse walls
indicated by bold dashed lines in Figure 2.2 (b). The wall shear stresses in Model
3, acting on the fluid-solid interfaces in the transfer volume, Ut, are neglected,
thus in this case the wall shear stress τw exists only on the remaining parts of the
transverse walls as illustrated by bold dashed lines in Figure 2.2 (c). Part of this
study will investigate the different approaches stated above numerically.
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2.2.2 Darcy Flow Regime

The difference in these three models as mentioned previously is brought about in
the analysis of the integral of the pressure term in the fluid-solid surface integral
equation, which is given below for easy reference,

−ε∇p f =
1

U0

∫∫

S f s

(
n{p} − n · τ

)
dS . (2.24)

As mentioned in Chapter 1, at low Reynolds numbers (Re −→ 0) the flow
is dominated by viscous forces and the inertial effects are negligible. Model 1,
[ Diedericks (1999)], assumes that the shear stresses in the transverse channel of
the RRUC do not contribute to the surface integral in equation (2.24). However,
the pressure drops occurring in the transverse channels will be incorporated in
the pressure deviation term. Thus the pressure deviation term contributes to the
surface integral by integrating the wall shear stress over the entire fluid-solid
interface (S f s = S‖ + S⊥), since the pressure drop in the transverse channels is as-
sumed to be equal to the wall shear stresses on the sides of the channels. Model
1’s [ Diedericks (1999)], assumptions simplify equation ( 2.24) to

−ε∇p f =
1

U0

∫∫

S‖
(−n · τ) dS + n̂

1

U0

∫∫

S⊥
|n · τ| dS . (2.25)

D

E

D

A A B B C C

Figure 2.3: The shifting method of the RRUC.
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Lloyd (2003) tested the RRUC model proposed by Du Plessis & Masliyah (1988),
which have the same assumption on the pressure deviation term as Model 1,
[ Diedericks (1999)], against the numerical results obtained from the CFX-5 model
for various porosities. The dimensionless permeability obtained from the RRUC
equation gave inaccurate results when compared with the numerical values, hence,
the revised RRUC model.

Lloyd (2003) evaluated each term of the pressure averaging equation for two
cases [ Lloyd (2003), equation (6.1)] . The first case considered a unit cell, with the
boundaries in the perpendicular direction of the unit cell going through the solid
region and the second case the unit cell is shifted in the stream-wise direction in
such a way that the boundaries do not pass through the solid region, as depicted
in Figure 2.3 by boundaries AA and BB respectively. It is reported in Lloyd
(2003) that the RRUC model proposed by Du Plessis & Masliyah (1988) gave
inaccurate results because it only considered the first case. The surface integral
of pressure evaluated using the staggered configuration shown in Figure 2.3 is
given by

1

U0

∫∫

S f s

n{p} dS =

(
U‖ + Ut

U f
− 1

)
· ∇〈p〉

=

(
1

χ
− 1

)
.∇〈p〉 , (2.26)

where χ =
U f

U‖+Ut
is the tortuosity for the staggered RRUC configuration. For

detailed analysis and step by step calculations the reader is referred to Lloyd
(2003).

The surface integral for the pressure deviation term can be written as follows
using equation ( 2.8)

1

U0

∫∫

S f s

n{p} dS =
1

U0

∫∫

S f s

np dS − 1

U0

∫∫

S f s

n〈p〉 f dS , (2.27)

and 〈p〉 f is assumed to be constant over the RRUC, Lloyd (2003), yielding the
last term in equation (2.27) to be zero. Thus, equation (2.24) simplifies to

−ε∇p f =
1

U0

∫∫

S f s

(
np − n · τ

)
dS . (2.28)



2.2 A RRUC For Anisotropic Prismatic Bundles 18

Model 2, [ Lloyd et al. (2004)], and Model 3, [ Cloete & Du Plessis (2006)], start
off with this simplified volume averaged Navier-Stokes equation to evaluate the
surface integral in terms of measurable variables. The surface integral (equation
(2.28)) is split into the surfaces adjacent to the stream-wise and transverse vol-
umes, [ Lloyd et al. (2004)], yielding

−ε∇p f =
1

U0

∫∫

S‖
n p dS +

1

U0

∫∫

S⊥
n p dS

− 1

U0

∫∫

S‖
n · τ dS − 1

U0

∫∫

S⊥
n · τ dS . (2.29)

The underlined integrals are assumed to be zero, since equal pressures at the
parallel channels will cancel out vectorially, similarly the shear stresses along the
transverse channels will also cancel out vectorially, [ Lloyd et al. (2004)]. The
remaining pressure integral is split into a channel wall average pressure, pw, and
a wall pressure deviation, p̃w where the wall average pressure is integrated over
all the RRUC possible transverse channels as shown in Figure 2.3 and we obtain
the following equation:

−ε∇p f =
ds

d
· 1

U0

∫∫

S⊥AA

n pw dS +
d − ds

d
· 1

U0

∫∫

S⊥BB

n pw dS

+
1

U0

∫∫

S⊥
np̃w dS − 1

U0

∫∫

S‖
n · τ dS , (2.30)

where both S⊥AA
and S⊥BB

denote the fluid-solid interface in U⊥ of a unit cell
where the walls cut through solid parts and where cell walls do not cut through
solid part as shown by dashed lines A and B in Figure 2.3 respectively. The
wall average pressure pw is assumed to be the same on walls D and E, leading
to the underlined integral in equation (2.30) being zero. Model 2 follows the
same assumption made in Model 1 by incorporating the pressure deviation term
through integration of the wall shear stress over the total solid-fluid interface S f s,
instead of only over the stream-wise surface S‖. The remaining surface pressure
integral in equation (2.30) is substituted with the pressure integral obtained by
Lloyd (2003) also given above in equation (2.26), thus, equation (2.30) yields:

−ε∇p f =
1

U0

∫∫

S‖
(−n · τ) dS + n̂

1

U0

∫∫

S⊥
|(n · τ)| dS

+

(
U‖ + Ut

U f
− 1

)
∇〈p〉 . (2.31)
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Adding the pressure gradient terms equation (2.31) yields:

−ε∇p f =
U f

U‖ + Ut
·
(

1

U0

∫∫

S‖
(−n · τ) dS + n̂

1

U0

∫∫

S⊥
|(n · τ)| dS

)
. (2.32)

Cloete & Du Plessis (2006)’s RRUC model referred to as Model 3 also split the
surface integrals in equation (2.24) into the stream-wise and transverse solid-fluid
surfaces and the pressure integral is also split into the average wall channel pres-
sure and the wall pressure deviation, then the surface integral yields,

−∇〈p〉 f =
1

U f

∫∫

S f s‖

npw dS +
ds‖

2d‖U f

∫∫

S f s⊥AA

npw dS +
dc‖

d‖U f

∫∫

S f s⊥BB

npw dS

+
ds‖

2d‖U f

∫∫

S f s⊥CC

npw dS +
1

U f

∫∫

S f s

np̃w dS −
ds‖

2d‖U f

∫∫

S f s⊥AA

n · τ dS

−
dc‖

d‖U f

∫∫

S f s⊥BB

n · τ dS −
ds‖

2d‖U f

∫∫

S f s⊥CC

n · τ dS

− 1

U f

∫∫

S f s‖

n · τ dS , (2.33)

where the S f s⊥BB
term corresponds to the instances when the boundaries of the

RRUC are situated in the transverse fluid channels while the S f s⊥AA
term and

S f s⊥CC
term correspond to the instance when the transverse boundaries of the

RRUC intersect the second half of the solid phase and the first half of the solid
phase respectively as shown in Figure 2.3.

Model 3 also assumes that the integral of the average wall channel over S f s‖ and

the integral of the shear stress over the transverse channels are zero based on
the same reasons as Model 2. However, one of the differences between Model 2
and 3 is the assumption made on the pressure deviation: Model 3 assumes that
the pressure deviation is zero based on the definition of deviation, that is, the
positive and the negative parts of the deviation will cancel out on each fluid-solid
interface. Thus equation (2.33) reduces to

−∇〈p〉 f =
ds‖

2d‖U f

∫∫

S f s⊥AA

npw dS +
dc‖

d‖U f

∫∫

S f s⊥BB

npw dS

+
ds‖

2d‖U f

∫∫

S f s⊥CC

npw dS − 1

U f

∫∫

S f s‖

n · τ dS . (2.34)
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With relevant substitutions according to the geometric assumptions of each model
this equation yields the following expression

−∇〈p〉 f = ξδp⊥

[
dc‖d⊥ + ds‖dc⊥

d‖U f

]
+ δp‖

[
ds⊥dc‖

d‖U f

]

− 1

U f

∫∫

S f s‖

n · τ dS , (2.35)

where ξ is a parameter which relates to the cross-stream staggeredness of the
solid material and δp‖ is the pressure drop in the parallel channels.

The three different models, summarized above, all assume existence of the fully
developed laminar flow throughout the void sections present in the RRUC. This
assumption will later be investigated using numerical simulations. However
based on the assumption that the flow between the parallel surfaces of the RRUC
is fully developed, the wall shear stress τw is assumed to be constant at all chan-

nels surfaces of the RRUC and is given by τw = 6µŵ
dc

. Thus equations (2.25), (2.33)
and (2.35) may be written as follows
Model 1:

−ε∇p f = n̂
1

U0

∫∫

S f s

τw dS

=
τw‖S‖ + τw⊥S⊥

U0
n̂

= 6µŵ

(
S‖ + S⊥

U0

)
n̂ ; (2.36)

Model 2:

−ε∇〈p〉 f =
U f

U‖ + Ut
·

τw‖S‖ + ξτw⊥S⊥
U0

n̂

=
S‖ + ξS⊥

U0
·
(

U f

U‖ + Ut

)
· 6µŵ

d − ds
n̂

=
S‖ + βξS⊥

U0
·
(

U f

U‖ + Ut

)2

·
6µq

ε(d − ds)
n̂ ; (2.37)

Model 3:

−∇〈p〉 f =
1

d‖dc⊥

[
τw‖S‖ + α∗ξτw⊥S⊥

]

=
1

d‖dc⊥

(
6µw‖
dc⊥

(2ds‖) + α∗ξ
6µw⊥

dc‖
(4ds⊥ − 2d⊥)

)
; (2.38)
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where τw‖ and τw⊥ are the wall shear stress in the stream-wise and transverse

channels respectively, α∗ is the aspect ratio of the RRUC and ξ is defined as a
parameter which relates to the cross-stream staggeredness of the solid material,
ξ = 1

2 for fully staggered array and ξ = 0 for regular array. With further substi-
tutions relevant to each model the three final equations of the pressure gradient
yield:

Model 1:

−∇p f =
12µχq

ε2d‖d⊥

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
n̂ ; (2.39)

Model 2:

−∇p f =
S‖ + βξS⊥

U0
·
(

U f

U‖ + Ut

)2

·
6µq

ε2(d − ds)
n̂ ; (2.40)

Model 3:

−∇〈p〉 f =
12µqd⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
n̂ . (2.41)

Permeability

Various flow regimes, in particular the Darcy and Forchheimer regimes may be
identified in flow through porous media. However, the proportionality coeffi-
cient k, appearing in the Darcy equation (1.1) is applicable at flows with low
Reynolds numbers (Darcy regime). This term is named after Darcy and is re-
ferred to as the Darcy permeability or hydrodynamic permeability. The perme-
ability is generally determined using equation (1.1), which is empirically based,
and is expressed as follows:

k ≡ − µq

dp/dx
. (2.42)

Much effort have been applied to model flow through porous media with no
empiricism involved. The three pore-scale models discussed above successfully
quantified the surface integral in the volume averaged transport equation. These
results were used to determine the hydrodynamic permeability, the results from
Models 2 and 3 yield the corrected expressions. When equations (2.39), (2.40)
and (2.41) are applied to equation (2.42), the following dimensionless expressions
predicting the hydrodynamic permeability were obtained by Diedericks (1999),
Lloyd et al. (2004) and Cloete & Du Plessis (2006), respectively
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Model 1:

K =
ε
(
1 −

√
1 − ε

)2

12(1 + β)
√

1 − ε
; (2.43)

Model 2:

K =

(
1 −

√
1 − ε

)3

12
√

1 − ε(1 + βξ)
; (2.44)

Model 3:

K =
α∗(1 −

√
1 − ε)3

12[
√

1 − ε + ξ2α∗4(2
√

1 − ε − 1)]
. (2.45)

2.2.3 Intermediate Reynolds Number Flow

Us
a

b
c

Figure 2.4: A two-dimensional representation of interstitial flow recirculation.

To account for the Forchheimer regime in the flow, Diedericks (1999)’s RRUC
model for modeling the form drag of a solid obstacle is considered. Forchheimer
regime in the flow occurs due to the gradual increase of the Reynolds number
from low (Re −→ 0) to intermediate Reynolds numbers (Re −→ 2000). In this
region the flow is still considered laminar and it is assumed that the inertia forces
dominate the viscous shear stresses. Based on the latter assumption, the shear
stresses are considered insignificant and therefore the contribution of the shear
stress in equation (2.24) is ignored.
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The predominance of the inertial forces causes recirculation downstream of the
prismatic solid material as illustrated in Figure 2.4. The above assumptions sim-
plify equation (2.24) to

−ε∇p f =
1

U0

∫∫

S f s

n{p} dS . (2.46)

The above equation was modeled by Diedericks (1999) at intermediate Reynolds
numbers and the following three equation were obtained

−∇p f =
ρχ2β2ds⊥q2

2ε3d‖d⊥
n̂ ; (2.47)

−∇p f =
ρχ2CDds⊥q2

2ε3d‖d⊥
n̂ ; (2.48)

−∇p f =
ρχ2β2CDds⊥q2

2ε3d‖d⊥
n̂ ; (2.49)

where CD and β are the drag coefficient and channel anisotropic factor for models
1, 2, and 3 respectively. The difference in these equations is the appearance of CD

and β, resulted in how the speed at the inflection point is interpreted. The Darcy
regime equations for each model presented above will now be asymptotically
matched with each of the Forchheimer regime equations. These equations will be
tested against the experimental data by Du Plessis (2002) and a suitable method
will thereafter be chosen to be evaluated against the numerical solutions.
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2.2.4 Asymptote Matching

Combining the results obtained for the Darcy and Forchheimer regimes by us-
ing the asymptote matching technique described by Churchill & Usagi (1972) we
obtain general expressions for predicting the pressure gradient of viscous flow
through an anisotropic porous medium. The next three equations follow respec-
tively from the Darcy regime RRUC models, which are Model 1 [equation (2.39)],
Model 2 [equation (2.40)] and Model 3 [equation (2.41)] added to Forchheimer
regime equations, that is equation (2.47), (2.48) and (2.49) respectively

Model 1:

−∇p f =
12χ

ε2Uo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
µq n̂ +

χ2β2ds⊥
2ε2U0/z

ρq2n̂ ; (2.50)

−∇p f =
12χ

ε2Uo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
µq n̂ +

χ2CDds⊥
2ε2U0/z

ρq2n̂ ; (2.51)

−∇p f =
12χ

ε2Uo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
µq n̂ +

χ2β2CDds⊥
2ε2U0/z

ρq2n̂ . (2.52)

Model 2:

−∇p f =
12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
µq n̂ +

χ2β2ds⊥
2ε2U0/z

ρq2n̂ ; (2.53)

−∇p f =
12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
µq n̂ +

χ2CDds⊥
2ε2U0/z

ρq2n̂ ; (2.54)

−∇p f =
12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
µq n̂ +

χ2β2CDds⊥
2ε2U0/z

ρq2n̂ . (2.55)

Model 3:

−∇p f =
12d⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
µq n̂ +

χ2β2ds⊥
2ε2U0/z

ρq2n̂ ; (2.56)

−∇p f =
12d⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
µq n̂ +

χ2CDds⊥
2ε2U0/z

ρq2n̂ ; (2.57)

−∇p f =
12d⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
µq n̂ +

χ2β2CDds⊥
2ε2U0/z

ρq2n̂ . (2.58)
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The pressure loss across the porous medium needs to be related with the flow
rate, by determining a meaningful friction factor. The frictional effects introduced
by the presence of the solid surfaces are governed by the following frictional co-
efficient for porous media

F =
ε

k

= − ε

µq

dp

dx
. (2.59)

When evaluating theoretical solutions against experimental data, it is always suit-
able to do it with dimensionless parameters. Thus dimensionless F is obtained
by multiplying equation (2.59) by d2

s⊥ and it yields

Fd2
s⊥ = −

εd2
s⊥

µq

dp

dx
. (2.60)

Equations (2.50) to (2.58) can now be expressed as the dimensionless friction fac-
tor in the same order as presented above:
Model 1:

Fd2
s⊥ =

12χ

εUo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
+

χ2β2d2
s⊥

2ε2U0/z
Reqds⊥

; (2.61)

Fd2
s⊥ =

12χ

εUo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
+

χ2CDd2
s⊥

2ε2U0/z
Reqds⊥

; (2.62)

Fd2
s⊥ =

12χ

εUo/z

(
ds‖

dc⊥
+ β

ds⊥
dc‖

)
+

χ2β2CDd2
s⊥

2ε2U0/z
Reqds⊥

. (2.63)

Model 2:

Fd2
s⊥ =

12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
+

χ2β2d2
s⊥

2ε2U0/z
Reqds⊥

; (2.64)

Fd2
s⊥ =

12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
+

χ2CDd2
s⊥

2ε2U0/z
Reqds⊥

; (2.65)

Fd2
s⊥ =

12χ(1 + ξβ)

U0/z

( √
1 − ε

ε(1 −
√

1 − ε)2

)
+

χ2β2CDd2
s⊥

2ε2U0/z
Reqds⊥

. (2.66)
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Model 3:

Fd2
s⊥ =

12εd⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
+

χ2β2d2
s⊥

2ε2U0/z
Reqds⊥

; (2.67)

Fd2
s⊥ =

12εd⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
+

χ2CDd2
s⊥

2ε2U0/z
Reqds⊥

; (2.68)

Fd2
s⊥ =

12εd⊥
d3

c⊥d‖

[
ds‖ + α∗4ξ2(2ds‖ − d‖)

]
+

χ2β2CDd2
s⊥

2ε2U0/z
Reqds⊥

. (2.69)

Reqds⊥
is the Reynolds number based on the superficial velocity through porous

media and the transverse channel width, and is defined as follows

Reqds⊥
=

ρqds⊥
µ

. (2.70)



Chapter 3

Computational Fluid Dynamics

In this study we will go through the process of using a Computational Fluid
Dynamics (CFD) program to describe fluid flow through channels and various
porous media geometries, that will be discussed in the subsequent chapters. Thus,
this necessitates a brief background information pertaining to CFD. The physical
features of any fluid flow are governed by the fundamental principles of mass,
momentum and energy conservation. These principles can be expressed in terms
of non-linear partial differential equations.

CFD is an essential tool in fluid mechanics that approximates and numerically
solves the fluid flow equations by descritizing them over the domain of inter-
est. Many industrial applications such as petroleum reservoirs and heat exchang-
ers involve fluid flow through channels and ducts with obstacles which resem-
ble porous media. For this reason we need CFD programs to model fluid flow
through the channels and porous media to obtain an overall understanding of
the behaviour of flow through these domains.

Also in the process of designing systems such as air conditioning units, auto-
mobiles and airplanes to name a few, various tests with different parameters are
required to obtain a general trend for the response of the system. It is obviously
very costly and time consuming to build these models and facilities to test them.

Advances of computer power have provided an effective means of evaluating
these models and obtaining solutions to the problems at hand using the CFD.
Computer simulation give a general idea of the response of a system being de-
signed and reduces the number of experimental tests that are required for design
purposes. Today, the use of CFD software occurs in modeling fluid dynamics
problems due to its effectiveness and economical viability.
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Most fluid flows encountered in the industrial applications are turbulent, thus
some kind of approximate and statical turbulence methods are needed. There
are three main approaches to turbulent flow simulations namely: (i) Direct Nu-
merical Simulation (DNS), (ii) Large Eddy Simulation (LES) and (iii) Reynolds-
Averaged Navier-Stokes (RANS) [ 3.2].

Theoretically, turbulent flows can be simulated by numerically solving the full
Navier-Stokes equations, using the DNS model, however this exercise poses dif-
ficulties since it is not practical for industrial flows and it is also expensive, [ Flu-
ent Inc. (2005)]. CFD techniques predict solutions to both laminar and turbulent
flows by solving appropriate partial differential equations numerically.

Although CFD programs are convenient to use, it is crucial to understand and
use the correct models and solution algorithms in the programs to obtain accu-
rate results without excess computational time. The simulations for this study
will be run using a CFD based software package, FLUENT version 6.2.16. The
FLUENT software package is categorized into two sections namely: A grid gen-
erator known as Geometry and Mesh Building Intelligent Toolkit ”GAMBIT” and
the solver package ”FLUENT”.

3.1 GAMBIT

A key step in all CFD simulations is the construction of the geometric model. The
computational domains in this study will be created using GAMBIT. GAMBIT is
designed for constructing the geometry and creating a variety of structured and
unstructured grids to be used by the solver. GAMBIT provides a graphical user
interface (GUI) to receive inputs from the user.

The Gambit GUI uses basic steps for creating the two - and three - dimensional
geometries, meshing and assigning zone types to a geometry. Various volumes
such as cubes, cylinders, cones and pyramids are also available. The complex
three-dimensional models are created using these volumes. The adjacent vol-
umes and faces can be united, subtracted and intersected with each other. For an
in depth discussion regarding the usage of each specific command in GAMBIT,
the reader is referred to Fluent Inc. (2005).

Another crucial aspect in numerical computations is the generation of a mesh or
grid once a geometry has been created. The grid has an impact on, amongst other
things, the rate of convergence and solution accuracy. A poor constructed grid on
any given geometry may result in slow convergence and inaccurate solutions. In
general, a fine grid will reduce numerical errors, which will improve the accuracy
of the solution. However, too fine grids will lead to huge memory requirements
and if there is limited computer power available it becomes difficult to run the
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simulations. A balance therefore between a fine enough grid for acceptable accu-
racy and computing time is sought.

For any given domain, GAMBIT recognizes the outer sides of the geometry as
walls and the space between these sides as interior which can either be a fluid or
solid. So it is important that after geometry and mesh generation, the boundary
conditions should be specified according to the model specifications. The zones
should also be set as either a fluid or solid. After the above summarized steps are
completed, from the file menu in GAMBIT the mesh file is exported to FLUENT.

3.2 FLUENT Solver

After the mesh file has been exported to FLUENT, several user controlled options
must be specified in the solver. The FLUENT solver supplies various options, of
which only few relevant to this work will be mentioned. Once the mesh file is
opened in FLUENT, it checks the grids and if there are no errors occur, then the
parameters can be set to solve a particular problem.

The FLUENT solver uses a finite-volume procedure, which converts the gov-
erning differential equations presented in Section 4.1.1 into algebraic form, to-
gether with the SIMPLE (Semi-Implicit-Method for Pressure Linked Equations)
algorithm to solve these equations numerically, [ Fluent Inc. (2005)]. For the dis-
cretization of equations the second-order upwind scheme was selected for all the
laminar flow simulations carried out. Details about the numerical methods in
general and other discretization schemes can be found in literature, [ Patankar
(1980)].

Results are obtained by specifying certain parameters and the FLUENT solver
offers default parameters which were used in our simulations. FLUENT also
provides two types of solvers: coupled and segregated and the latter will be used
in all the simulations conducted in this work. The default solution methods de-
fined in FLUENT are, 2D space, segregated solver, implicit formulation, steady
flow and absolute velocity formulation. The segregated approach solves the gov-
erning equations sequentially using the iterative method while, with the coupled
solver, the equations are solved simultaneously.

Definition of the physical properties of the fluid and boundary conditions, as
specified in GAMBIT, is also a requirement for setting up the numerical model.
For fluid materials, the values of the following parameters are required: density,
viscosity, thermal conductivity and specific heat capacity. The mass flow rate
or pressure gradient should be specified in the case of the periodic boundary
condition.
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The velocity boundary condition is used to define the flow velocity at the flow
inlets and the pressure outlet boundary condition requires the specification of
gauge pressure at the outlet. In case of a symmetric physical geometry, a sym-
metric boundary condition is used which sets the normal velocity gradients to
zero. The outer boundaries defined as walls, mean that the flow does not exist at
these boundaries, and the boundary condition at these walls is represented by a
no-slip condition.

Selection of proper numerical control, for updating the computed variables af-
ter each iteration, and modeling techniques is of importance to speed up con-
vergence and stability of the calculations. The default under-relaxation factors
shown in Table 3.1 were used to perform the laminar flows calculations. Since
numerical computations can only give approximated values, a check for the con-
vergence of the equations is made. Convergence in FLUENT is obtained by mon-
itoring the scaled residuals and flow parameters at critical points as well as suc-
cessively reducing the value of the criterion.

Table 3.1: Solution Controls for FLUENT

Under Relaxation Discretization Convergence Criteria

Pressure 0.3 Pressure Standard Momentum 0.001
Density 1.0 P-V-C SIMPLE X-Velocity 0.001

Body Forces 1.0 Momentum (Laminar) 2nd- O-U Y-Velocity 0.001
Momentum 0.7 Momentum (k − ε) 1st- O-U

Momentum (RSM) 1st- O-U
T-k-E (k − ε & RSM) 1st- O-U
T-D-R (k − ε & RSM) 1st- O-U

FLUENT also provides a variety of turbulence scales and prediction methods.
As mentioned previously, the two approaches for the turbulence modeling that
FLUENT offers are RANS and LES. In this study two RANS equations models,
namely: the Standard k − ε model and the Reynolds-Stress model will be used
to model the fluid flow through the timber stack ends at high Reynolds num-
bers. Various RANS equations models are tabulated in Table 3.2 and various
techniques are generally described in Fluent Inc. (2005).



3.2 FLUENT Solver 31

Table 3.2: Turbulence Models in FLUENT

Model Description
Spalart Allmaras One-Equation RANS based model
Standard k − ε Two-Equation RANS based model
RNG k − ε Two-Equation RANS based model
Realizable k − ε Two-Equation RANS based model
Standard k − ω Two-Equation RANS based model
Shear-stress transport (SST) k − ω Two-Equation RANS based model
Reynolds-Stress model (RSM) Two-Equation RANS based model
Large eddy simulation LES model

A significant factor in acquiring accuracy of the converged solution in the nu-
merical computations as mentioned earlier, is the good quality of the grid dis-
tribution. FLUENT offers a function for post processing and analysis of the re-
sults. If satisfactory results are not obtained, the grids on the geometry have to
be adapted with subsequent repeat of the numerical simulation. If the solution
does not change, grid independence results are obtained otherwise, the process
of refining the grids continues.



Chapter 4

Poiseuille Flow

In this chapter we shall devote our attention to a discussion of fully developed
laminar flow through a channel, formed by two parallel plates. The derivation
of the fully developed flow equation relies on conditions that must be approx-
imately satisfied to produce acceptable predictions. The analytical background
and numerical simulations of fluid flow through a channel will be presented,
to provide a better understanding of the flow physics in channels and provide
a complete picture of the hydrodynamic variations in the flow within the entire
channel. An understanding of this type of flow is fundamental to our study, since
one objective of this work is to verify the assumption made with respect to fully
developed flow in porous structures mentioned in Chapter 2.

Fluid flow between parallel plates is widely used as a test problem for assess-
ing the accuracy of numerical methods because of the availability of the exact
solutions for this type of flow. In this study the results of the fully developed
flow between parallel plates will not only aid in verifying the assumption of the
RRUC model, they will also be used to determine the accuracy and application
of numerical modeling simulations by comparing the predicted velocity profiles
with the exact solution of the Navier-Stokes equations. The exact solution of the
Navier-Stokes equation for fully developed flow between parallel plates, gives
a velocity profile that helps in calculating other parameters such as shear stress,
pressure drop and flow rate.
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4.1 Analytical Background Of Flow Between Parallel

Plates
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Boundary Layer

Boundary Layer

Figure 4.1: Developing and developed laminar flow.

In a case of the flow between two parallel plates separated by a distance H, the
fluid enters the plates with nearly uniform velocity profile then, a thin layer re-
ferred to as a boundary layer near the wall surface develops [Figure 4.1]. The
boundary layer created by viscous effects increases in size with downstream axial
distance. As the boundary layer’s thickness increases the velocity profile between
the plates also varies with the downstream distance. At some point along the ax-
ial direction the boundary layers merge on the centerline of the plates as shown
in Figure 4.1 and the velocity profile also cease varying in the axial direction.

When the velocity profile no longer changes, the flow is said to be fully devel-
oped and is referred to as Hagen-Poiseuille flow or simply plane Poiseuille flow,
after the first two investigators of this type of flow. At this point where the veloc-
ity profile developed into a parabolic profile, the pressure gradient and the wall
shear stress reach the state of equilibrium. The distance from the entrance of the
parallel plates to the position where the fully developed flow is observed is called
the entrance length. A detailed discussion of the hydrodynamic entrance length
is given in subsection 4.1.2.

A brief discussion of the mathematical equations and the general underlying as-
sumptions that are generally used to describe the basics of fluid flow between
parallel plates is presented in the subsequent section, followed by a review of the
entrance length of the fully developed flow. A numerical simulation of fluid flow
through channels will also be presented using FLUENT.
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4.1.1 Mathematical Model

In this work, an incompressible Newtonian fluid flow is considered. Based on
this assumption, the continuity and the momentum equations are presented in
Cartesian two-dimensional domain as follows,

Continuity:

∂ρ

∂t
+ ρ

[
∂u

∂x
+

∂v

∂y

]
= 0; (4.1)

x-momentum:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ ρ fx + µ

[
∂2u

∂x2
+

∂2u

∂y2

]
; (4.2)

y-momentum:

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+ ρ fy + µ

[
∂2v

∂x2
+

∂2v

∂y2

]
; (4.3)

where u and v are the velocity components in the x and y directions respectively,
ρ is the fluid density and µ is the coefficient of dynamic viscosity. To solve these
equations relevant boundary conditions are required. The boundary conditions
for the analytical solution are presented below.

Further assumptions for fluid flowing between two parallel plates are such that,
the flow is in a steady state and laminar, and the gravitational force is also ne-
glected. Let x be the axial distance along the plates and let y be the normal dis-
tance measured upward from the lower wall as shown in Figure 4.1. The flow
is driven by a pressure gradient in the direction of the flow, and is slowed down
by viscous forces along both plates. If we let the flow be directed along the axial
direction, it implies that the velocity component v in the y-direction goes to zero
and is constant in the fully developed region.

Using the assumptions made above and the fact that v = 0 and constant in the

continuity equation (4.1), it yields that ∂u
∂x = 0. This means that the velocity com-

ponent in the x-direction depends on y only. Inserting a constant v = 0 into the

y-momentum equation, it simplifies to
∂p
∂y = 0, thus the pressure is a function of x

only. Therefore, under fully developed conditions, the flow can be described by
the Navier-Stokes equation as

µ
d2u

dy2
=

dp

dx
, (4.4)
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where
dp
dx is the pressure gradient in the axial direction. Equation (4.4) shows that

at every point in the fully developed flow region, the total pressure force is in
equilibrium with the total shear stress.

The imposed boundary conditions for this problem are:

(i) Wall boundary:

u = 0 and v = 0 at 0 ≤ y ≤ H; 0 ≤ x ≤ L. (4.5)

(ii) Centerline boundary:
The flow must be symmetrical about the centerline of the plates,

∂u

∂y
= 0 and v = 0 at y =

H

2
; 0 ≤ x ≤ L. (4.6)

Integrating equation (4.4) twice and implementing above boundary conditions,
yields,

u(y) = −dp

dx

1

2µ
(yH − y2). (4.7)

Equation (4.7) gives a unique velocity profile and it is referred to as the plane
Poiseuille flow equation. The velocity profile is the key result in fluid flow analy-
sis because many other fluid properties are found from it, by simple relation. The
maximum velocity umax, is obtained from equation (4.7) by evaluating it at the
centerline of the plates (y = H

2 )

umax = −dp

dx

H2

8µ
. (4.8)

From equation (4.7) the mean velocity is obtained as follows,

um =
1

H

∫ H

0
u(y)dy

= −dp

dx

H2

12µ
. (4.9)
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From equation (4.8) and (4.9) it follows that,

umax =
3

2
um. (4.10)

The shear stress on the upper wall of the plate (y = H) can be related to the
velocity gradient as follows:

τw = −µ
du

dy
|y=H =

6µum

H
. (4.11)

The Fanning friction factor is defined as the ratio of the wall shear stress to the
flow kinetic energy per unit volume and is expressed mathematically as follows:

f =
τw

1
2 ρu2

m

, (4.12)

where f is the Fanning friction factor, τw is the wall shear stress, ρ is the fluid
density and um is the average velocity. Pressure drop is one of the key variables
when dealing with internal flows. It is needed in industrial applications such as
heat sinks to determine the pumping or fan power required to maintain the flow.
The expression of the friction factor in terms of the pressure drop yields:

f = −dp

dx

(
DH

1
2 ρu2

m

)
. (4.13)

The relation between the friction factor and Reynolds number for fully devel-
oped laminar flow between parallel plates, defined by Poiseuille, is derived in
Appendix B and gave the following expression:

f Re = 24. (4.14)

The Reynolds number Re, is based on the uniform mean velocity um between
parallel plates and the hydraulic diameter DH, and is expressed as follows:

Re =
ρumDH

µ
. (4.15)
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Du Plessis & Collins (1992) in their analysis of the hydrodynamic entrance length
in straight ducts, obtained the following expression for the apparent friction fac-
tor,

fappRe = 24[1 + (0.0205/x+)1.19]0.42. (4.16)

The apparent friction factor fapp, is the friction factor due to the transition of fluid
flow from developing flow to fully developed flow and x+ is the dimensionless
axial distance. This equation will be used later in the analysis of the wall shear
stress at the fully developed flow in the porous structures.

4.1.2 Hydrodynamic Entrance Length

The hydrodynamic entrance length for channels has been investigated by various
authors. For instance Shah & London (1978) presented correlations of entrance
lengths obtained by various authors. In this section, a definition of the entrance
length presented by Shah & London (1978) is given and the equations defin-
ing the entrance length given by McComas5 (1967), Atkinson6 et al. (1969) and
Chen7 (1973), will also be presented. The above models are well described in the
review by Shah & London (1978). The hydrodynamic entrance length defined by
Du Plessis & Collins (1992) will also be presented in this section. The aim here is
to later, compare these definitions with the numerically predicted entrance length
and give a general conclusion to which definition is more useful for practical ap-
plications.

The hydrodynamic entrance region in a plane Poiseuille flow may be defined
as a region where the flow profiles (i.e. velocity profile, wall shear stress and
pressure gradient) are still developing from a uniform profile to a fully developed
flow profile. The hydrodynamic entrance length is in general a function of the
cross-sectional geometry, the inlet profile and lastly the measure being used to
assess the degree of fully developed flow, where the latter differs between author
variability.

5Reference not read, referred to in Shah & London (1978)
6Reference not read, referred to in Shah & London (1978)
7Reference not read, referred to in Shah & London (1978)
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Schlichting (1968) proposed an analytical expression for the entrance length for
two-dimensional flow between parallel plates, with uniform inlet velocity. He
obtained the following expression based on the boundary layer theory,

Le = 0.04(2a)Re, (4.17)

where 2a is the width channel and Re denotes the Reynolds number referred to
the width of the channel, [ Schlichting (1968)]. It is worth mentioning that most
textbooks provide the entrance length for both parallel plates and ducts with cir-
cular cross section. However, the criterion defining these entrance lengths is not
unique. For example, an often used approach to defining the entrance length, is
that length at which the velocity profile becomes approximately parabolic, whilst
the other criterion uses the axial location where the developing flow changes to
be fully developed.

Shah & London (1978) defined the hydrodynamic entrance length, Lhy, as the
duct length required to achieve a duct section maximum velocity of 99% of the
corresponding fully developed magnitude when the entering flow is uniform.
This definition together with other criteria will be used to attain the entrance
length from the numerical predicted fully developed velocity profile. The en-
trance length is expressed non-dimensionally as follows:

L+
hy =

Lhy

DHRe
, (4.18)

where DH is the hydraulic diameter and Re is the Reynolds number, definitions
of these parameters are presented in Appendix B. McComas5 (1967) determined
an approximation of the entrance length that does not depend on a certain per-
centage of the fully developed velocity profile, and is expressed as follows

L+
hy =

Lhy

DHRe
=

(umax /um)2 − 1 − K(∞)

4 f Re
. (4.19)

In the case of a fully developed flow between parallel plates with a uniform inlet
velocity profile, umax in equation (4.19) is the centerline velocity, um is the inlet
velocity and K(∞) is the incremental pressure drop at the fully developed region.
The value of the K(∞) is calculated in Appendix B [equation B.22] and, it corre-
sponds to the one given by Lundgren8 et al. (1964) listed in (Ward-Smith, 1980,
Table D7, pg 236) with other values of K(∞) defined by various authors. Ward-
Smith (1980) gives the following expression of the entrance length obtained by
McComas5 (1967),
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Lhy =
0.094Ub2ρ

µ
, (4.20)

Lhy

DH
= 0.00588 Re, (4.21)

where 2b is the distance between the parallel plates and the hydraulic diame-
ter is twice this distance, DH = 4b. Using equation (4.15) with equation (4.20)
leads to equation (4.21). The method used by McComas5 (1967) to obtain the en-
trance length is reported in literature to have neglected the effect of viscous dis-
sipation throughout the developing flow. According to Shah & London (1978),
McComas5 (1967)’s assumption yield values of the entrance length that are too
low compared to values from other analysis and experiments. Ward-Smith (1980)
suggests that the entrance length determined by McComas5 (1967) should be
doubled to give more realistic approximation.

For a laminar flow between parallel plates, Atkinson6 et al. (1969) and Chen7

(1973) proposed the following two approximations of the dimensionless entrance
length which are related to the Reynolds number, respectively,

Lhy

DH
= 0.3125 + 0.011Re, (4.22)

Lhy

DH
=

0.315

0.0175Re + 1
+ 0.011Re. (4.23)

Du Plessis & Collins (1992) obtained an analytical solution for the entrance length
based on the method of asymptote matching presented by Churchill & Usagi
(1972). Du Plessis & Collins (1992) deviated from the commonly used definition
of the entrance length defined by Shah & London (1978) and used the method
that combines the asymptotic functions for the friction factor-Reynolds number
product in the upstream (developing section) and downstream (fully developed
section).

The entrance length of straight ducts obtained by Du Plessis & Collins (1992) is
defined as the distance between the inlet and the critical point x+

c , where the two
asymptotic functions mentioned above intersect. The advantage of this definition
is that the fully developed velocity profile does not have to be known before hand,
[ Du Plessis & Collins (1992)]. The entrance length by Du Plessis & Collins (1992)
is expressed mathematically by the following non-dimensional expression,

8Reference not read, referred to in Ward-Smith (1980)
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L+
c = x+

c =

[
3.44

f Re

]2

. (4.24)

4.2 Numerical Flow Simulations

4.2.1 Problem formulation for parallel plate model

In this section simulations are conducted to examine the motion of an incom-
pressible viscous fluid contained between two parallel plates. The geometric con-
figuration for two-dimensional parallel plates and coordinate system with a uni-
form velocity U at the entrance, are illustrated in Figure 4.2. The channel length,
L, is set to 0.2 m and the plates are separated by distance H = 0.01 m. The com-
putational domain for the present problem was kept simple, thus, a structured
two-dimensional and uniform grid spacing in both x and y were used.

y

x

H=0.01 m

L=0.2 m

U=0.002 m/s

ρ=998.2 kg/m3

µ=0.001003 Pa.s

Wall

Outlet

Inlet

Wall

Figure 4.2: Computational Domain.

For this and all subsequent simulations in this chapter water is considered as an
operating fluid with constant properties. The governing equations presented in
Section 4.1.1 were solved numerically for the computational domain shown in
Figure 4.2 subject to the following boundary equations:

(i) The velocity-inlet boundary condition is applied to the left edge of the do-
main (inlet).

(ii) The right edge (outlet) is set as the pressure outlet boundary condition.

(iii) The top and bottom edges are set as a wall boundary, where a no-slip con-
dition is assumed.

The boundary conditions given above for the computational domain were de-
fined in GAMBIT. The uniform velocity was assumed at the inlet. The gauge
pressure needs to be specified at the outlet for the pressure outlet boundary con-
dition. In this case the default value of 101, 325 [Pa] was used. As with the analyti-
cal model a no-slip boundary condition was imposed at the top and bottom walls.
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The accuracy of the converged solution is dependent amongst other things upon
the grid resolution. Before proceeding further, it is necessary to determine the re-
liability and accuracy of the present simulations. Hence, the grid independence
test on the results and validation will be investigated in the next subsection.

4.2.2 Grid Independence Test And Validation

The grid independence tests were conducted by performing computations on
several grids of different resolutions. The main objective of grid independency
test is to observe the solution sensitivity from the grid changes and finally the
mesh that yield the grid independent results will be selected for the problem cal-
culations. A uniform mesh in both x and y was used in all the grids tested.

The grids were refined with subsequent repeat of the numerical computations
until further refinement showed less than 1% difference in the results. Different
grid sizes used in this problem are tabulated in Tables 4.1 to 4.3, the first and sec-
ond set of grid sizes tested the effect of the radial and axial nodes on the results.
For grid independency test and code validation computations, the inlet velocity
at the channel entrance was fixed yielding Reynolds number, Re = 20 that was
used throughout this test.

The results obtained from the grid independency investigation of different meshes
and also for the validation of the code were compared with the exact two-dimensional
Navier-Stokes equation for fully developed flow between parallel plates, given in
Section 4.1. The results are given in Tables 4.1 to 4.3. Figure 4.3 (a) and (b) show
that, lower radial nodes yield a slightly different solution whereas if we keep the
radial node constant and vary the axial nodes, all the results coincide with the
analytical solution (Figure 4.4).

Table 4.1: First set of grid points tested

Grid Points Maximum Velocity (ms−1) ] iterations

50x5 0.00145 24
60x10 0.00147 23
70x15 0.00149 26
80x20 0.00149 37
90x30 0.0015 69
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Table 4.2: Second set of grid points tested

Grid Points Maximum Velocity (ms−1) ] iterations

50x5 0.00145 24
50x10 0.00147 23
50x15 0.0015 28
50x20 0.0015 36
50x30 0.0015 61

Table 4.3: Third set of grid points tested

Grid Points Maximum Velocity (ms−1) ] iterations

50x30 0.0015 61
60x30 0.0015 66
70x30 0.0015 72
80x30 0.0015 69
90x30 0.0015 69
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(a) Velocity profile when varying both the axial and radial nodes at Re = 20
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(b) Velocity profile keeping the axial nodes fixed and varying the radial nodes at Re = 20

Figure 4.3: Computed axial fully developed velocity profiles.
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Figure 4.4: Computed axial fully developed velocity profiles when varying the
axial nodes and keeping the radial nodes fixed at Re = 20.
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Under conditions assumed when modeling the flow between the planes, accord-
ing to the Poiseuille flow theory the flow is expected to attain a parabolic velocity
profile. The predicted velocity vectors depicted in Figure 4.5 illustrate the flow
behaviour also confirming the assumption mentioned above, and it can also be
seen that the flow developed rapidly to a fully developed flow (Figure 4.5). The
graphs plotted in Figure 4.4 also confirms the expected velocity profile obtained
numerically.
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Figure 4.5: Velocity development vectors
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Thus it can be concluded that the numerical simulations conducted using FLU-
ENT yield good predicted values. Table 4.4 shows a short profile of the analytical
and numerical results for the 50x30 mesh. The 50x30 grid size is adopted for the
remaining computations and its mesh consisting of 1500 rectangular elements is
shown Figure 4.6.

Table 4.4: Analytical and FLUENT results for Validation Test

Numerical solution Analytical solution

Mean u (m/s) 0.001 0.001
Mean v (m/s) 0 0
Max u (m/s) 0.0015 0.0015

Reynolds number 20 20

Figure 4.6: Computational domain mesh generated in GAMBIT
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4.3 Numerical Solution

Computations were carried out to simulate flow between two parallel plates as-
suming a uniform velocity profile, U, at the channel inlet. The length of the com-
putational domain was set to L = 0.2 m and the distance between the plates was
set to H = 0.01 m.

Numerical simulations were aimed at analysis of the velocity profile through
straight channels, the hydrodynamic entrance length for a range of various Reynolds
numbers and the wall shear stress. The predicted hydrodynamic entrance length
will be compared with the results obtained by researchers mentioned earlier and
other parameters will be complimented by the analytical solutions. The computa-
tional analysis was performed using the commercial software package FLUENT,
version 6.2.16.

In order to confirm the validity of the present numerical results, the predicted
velocity profile for Re = 20 was compared with the theoretical plane Poiseuille
velocity profile. The predicted results show a fairly good agreement with the the-
oretical solution at the grid size of 50x30 mesh. Hence, the computations hence-
forth were done using the 50x30 mesh. The effect of the Reynolds number on
the friction factor will also be discussed, and the results will thereof be used to
analyze the entrance length proposed by Du Plessis & Collins (1992).
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4.3.1 Effect Of The Reynolds Number On The Hydrodynamic

Entrance Length

Simulations were carried out to determine the entrance length, and it was defined
as corresponding to a location where the numerical centerline velocity reaches, (I)
99 %, (II) 99.77 % and (III) 99.9 %, of its asymptotic value, respectively. As men-
tioned previously, the existing theoretical analysis often uses the first criterion,
(I). We introduced the other two criteria, (II) and (III), to give more insight into
the physical properties of the flow.

The Reynolds numbers used ranged from 1 to 200 and were obtained by varying
the inlet velocity U. The dimensionless entrance length is computed using differ-
ent formulas, Lhy/D

H
and Lhy/(ReD

H
), for comparison with data from literature.

In Figures 4.7 (a) and 4.7 (b), the dependence of numerical Lhy/D
H

on Reynolds
number is considered. Figure 4.7 (a) serves to demonstrate the variations of the
entrance length evaluated on the basis of the above criteria, at very low Reynolds
numbers that are not plotted in Figure 4.7 (b).

Figure 4.7 (a) shows that the numerical Lhy/D
H

is not sensitive to variations
of the Reynolds number at low values Re < 60, and increases asymptotically
with increasing Reynolds number as illustrated in Figure 4.7 (b). One observable
feature on the entrance length as depicted in Figure 4.7 (a), is that sets of constant
values change with the Reynolds number.

Included in Figure 4.7 (b) are approximations from Atkinson6 et al. (1969), Chen7

(1973) and McComas5 (1967). It is can be seen from Figure 4.7 (b) that the nu-
merical values obtained using criterion (I), closely approximated estimations pro-
posed by Chen7 (1973), while values predicted by criterion (II), are closer to the
estimations by Atkinson et al. (1969).

Values obtained from criterion (III) yield better approximation at Re = 80 & 100,
and it gives an upper bound as the Reynolds number increases. It is illustrated in
Figure 4.7 (b) that the entrance length increases with increasing Reynolds num-
ber, as expected. Figure 4.7 (b) confirms the criticism made by Shah & London
(1978) and Ward-Smith (1980), that McComas5 (1967)’s assumptions lead to sub-
stantially shorter entrance lengths than those from other analyses.
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The dimensionless hydrodynamic entrance lengths, Lhy/(ReD
H
), obtained nu-

merically, together with values obtained from literature as discussed in Section
4.1.2 are listed in Tables 4.5, 4.6 and 4.7. The lengths in Table 4.5 are presented,
respectively, as follows in dimensionless form

(i) L+
hy(1) is obtained using equation (4.21) [ McComas5 (1967)]

(ii) L+
hy(2) is obtained using equation (4.22) [ Atkinson6 et al. (1969)]

(iii) L+
hy(3) is obtained using equation (4.23) [ Chen7 (1973)]

(iv) L+
c is obtained using equation (4.24) [ Du Plessis & Collins (1992)]

(v) L+
hy(4) represents the values obtained numerically.

Table 4.5: Dimensionless Hydrodynamic Entrance Length (L+
hy)

Re L+
hy(1) L+

hy(2) L+
hy(3) L+

c L+
hy(4)

99 % 0.9000
1 0.00588 0.3235 0.3206 0.0205 99.77 % 2.5000

99.9 % 2.9000
99 % 0.4500

2 0.00588 0.1673 0.1632 0.0205 99.77 % 1.2500
99.9 % 1.4500
99 % 0.3000

3 0.00588 0.1152 0.1108 0.0205 99.77 % 0.8333
99.9 % 0.9667
99 % 0.2250

4 0.00588 0.0891 0.0846 0.0205 99.77 % 0.5250
99.9 % 0.6250
99 % 0.1800

5 0.00588 0.0735 0.0689 0.0205 99.77 % 0.4200
99.9 % 0.5000
99 % 0.1286

7 0.00588 0.0556 0.0511 0.0205 99.77 % 0.3000
99.9 % 0.3571
99 % 0.1125

8 0.00588 0.0501 0.0455 0.0205 99.77 % 0.2625
99.9 % 0.2625
99 % 0.1000

9 0.00588 0.0457 0.0412 0.0205 99.77 % 0.2333
99.9 % 0.2333
99 % 0.0900

10 0.00588 0.0422 0.0378 0.0205 99.77 % 0.1700
99.9 % 0.2100
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Table 4.6: Dimensionless Hydrodynamic Entrance Length (L+
hy)

Re L+
hy(1) L+

hy(2) L+
hy(3) L+

c L+
hy(4)

99 % 0.0750
12 0.00588 0.0370 0.0327 0.0205 99.77 % 0.1417

99.9 % 0.1750
99 % 0.2308

13 0.00588 0.0350 0.0307 0.0205 99.77 % 0.1308
99.9 % 0.1615
99 % 0.2143

14 0.00588 0.0333 0.0291 0.0205 99.77 % 0.1214
99.9 % 0.1500
99 % 0.2000

15 0.00588 0.0318 0.0276 0.0205 99.77 % 0.1133
99.9 % 0.1400
99 % 0.0450

20 0.00588 0.0266 0.0227 0.0205 99.77 % 0.0650
99.9 % 0.1050
99 % 0.1000

30 0.00588 0.0214 0.0179 0.0205 99.77 % 0.0433
99.9 % 0.0567
99 % 0.0225

40 0.00588 0.0188 0.0156 0.0205 99.77 % 0.0225
99.9 % 0.0425
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Table 4.7: Dimensionless Hydrodynamic Entrance Length (L+
hy)

Re L+
hy(1) L+

hy(2) L+
hy(3) L+

c L+
hy(4)

99 % 0.0117
60 0.00588 0.0162 0.0136 0.0205 99.77 % 0.0217

99.9 % 0.0217
99 % 0.0113

80 0.00588 0.0149 0.0126 0.0205 99.77 % 0.0163
99.9 % 0.0163
99 % 0.0110

100 0.00588 0.0141 0.0128 0.0205 99.77 % 0.0150
99.9 % 0.0150
99 % 0.0100

130 0.00588 0.0134 0.0117 0.0205 99.77 % 0.0131
99.9 % 0.0146
99 % 0.0107

140 0.00588 0.0132 0.0117 0.0205 99.77 % 0.0136
99.9 % 0.0150
99 % 0.0113

150 0.00588 0.0131 0.0116 0.0205 99.77 % 0.0140
99.9 % 0.0153
99 % 0.0106

160 0.00588 0.030 0.0115 0.0205 99.77 % 0.0131
99.9 % 0.0144
99 % 0.0106

180 0.00588 0.0127 0.0114 0.0205 99.77 % 0.0128
99.9 % 0.0150
99 % 0.0105

200 0.00588 0.0126 0.0114 0.0205 99.77 % 0.0125
99.9 % 0.0145
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The solid blue line in Figure 4.8 serves to demonstrate that the entrance length
predicted by McComas5 (1967) yield a better estimate when compared with cor-
responding entrance of other definitions cited above, after being doubled, as sug-
gested by Ward-Smith (1980) and Shah & London (1978). The variations of the
dimensionless entrance length listed in Tables 4.5 through 4.7 are shown in Fig-
ure 4.8. It is observed that all the estimations of the entrance length considered
here, decay to an approximately constant values ranging between 0.01 and 0.015
for each criteria. The 99.9 % still show an upper bound compared to other estima-
tions. The estimated value of the dimensionless entrance length L+

hy (not plotted),

obtained from the boundary layer theory, [ Schlichting (1968)], gives a constant
value of 0.02, when the Reynolds number in equation (4.17) is referred to a hy-
draulic diameter, which is slightly higher compared to the ones shown on the
graphs.

Du Plessis & Collins (1992) also investigated the flow between parallel plates nu-
merically for Reynolds number of 200. They obtained L+

hy = 0.012, based on the

99 % of the fully developed velocity profile, which is not far from the value we
obtained in the present simulation as listed in Table 4.7. The entrance length pro-
posed by Du Plessis & Collins (1992) will be discussed in the following section.
Du Plessis & Collins (1992) used a different criterion from the above mentioned
definitions to define the entrance length as mentioned previously.
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4.3.2 Assessment Of The Predicted Fanning Friction Factor f .

Part of the numerical simulation of the flow between parallel plates was aimed at
the analysis of the entrance effect resulting from the increased flow resistance due
to developing boundary layers downstream of the channel inlet. The Skin Fric-
tion Factor, C f = τw

1
2 ρre f v2

re f

, defined in FLUENT is consistent with the definition of

the Fanning friction factor (see Appendix A). Therefore, throughout this section
the skin friction factor, C f will be referred to as the predicted Fanning friction
factor.

The effects of the entrance region on the flow frictional losses are illustrated
in Figures 4.9 through 4.10, where the results of the Fanning friction factor
Reynolds number product are graphed as function of the dimensionless axial
distance, x+. Also plotted in these graphs is the theoretical predicted friction
factor ( f Re = 24) which corresponds to the fully developed laminar flow. The
predicted Fanning friction factors from the numerical simulations show similar
trends graphically at low Reynolds numbers, hence, only a few Reynolds num-
bers were selected for discussion.

Du Plessis & Collins (1992) suggested that there exists a transition point at the
intersection of two asymptotes which correspond respectively with the friction
factor in the developing flow section and the fully developed flow section. This
critical point, as referred to in Du Plessis & Collins (1992), has a value of x+ =
0.0205 which represent the new proposed hydrodynamic entrance length for fluid
flow between parallel plates, [Du Plessis & Collins (1992)]. The graphs in Figures
4.9 and 4.10 will be useful in the analysis of the hydrodynamic entrance length,
L+

c = 0.0205, proposed by Du Plessis & Collins (1992). A straight vertical line
indicating the position where x+ = 0.0205 is also plotted in the same axis with
the f Re graphs.

It can be observed from Figures 4.9 to 4.10 that the product f Re decreases asymp-
totically from the maximum value at the inlet of the channel and attains a value
independent of the axial position downstream of the channel. The higher val-
ues of f Re in the entrance region of the parallel plates are due to higher velocity
gradients experienced by the fluid in this region. Furthermore, it can be seen
from the graphs that the numerical f Re tends to a constant value of 24, which is
consistent with the plane Poiseuille flow friction factor, ( f Re)theory = 24.

The variations of f Re values as the Reynolds number is increased, are also evi-
dent in all the four figures. For Re

DH
≥ 100, the Fanning friction factor is slightly

higher at the entrance region compared to lower Reynolds numbers Re < 100
(Figures 4.9 and 4.10). Figures 4.10 (a) and (b) clearly show that for higher
Reynolds numbers the f Re product takes longer to settle at the fully developed
flow region. It is seen in Figure 4.9 (a) and (b) that the numerical f Re diminishes
to the fully developed flow region at approximately the same axial position pro-



4.3 Numerical Solution 55

posed by Du Plessis & Collins (1992) (x+ = 0.0205). However, Figure 4.10 (a)
and (b) illustrate that as the Reynolds number increases, the distance for f Re to
approach the fully developed flow region extends to x+ ≈ 0.05, which is almost
twice the entrance length defined by Du Plessis & Collins (1992). This behaviour
is expected since the hydrodynamic entrance length for the developing flow in a
channel increases linearly with the Reynolds numbers.
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Figure 4.9: fappRe for predicted developing laminar flow.
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Figure 4.10: fappRe for predicted developing laminar flow.
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4.4 Discussion

To evaluate the accuracy of the calculations, the calculated velocity distribution,
entrance length, and pressure drop were compared with those obtained by pre-
vious researchers and analytically. The numerical velocity profile predicted the
plane Poiseuille flow velocity profile accurately, after some grid refinements as
presented in subsection 4.2.2.

All criteria used to obtained the entrance length exhibit good sensitivity. How-
ever they all lead to different values of Lhy with criterion (III) giving the upper
bound for Lhy. The difficulty with criteria using the percentage approximations
is that they require knowledge of the centerline velocity to obtain Lhy. Whereby
the computational flow field might not be accurately computed, due to the uncer-
tainties of the CFD techniques. This will definitely lead to the incorrect estima-
tions of the entrance length. There is no theoretical evidence which awards, any
of the criteria used to define the entrance length in this study, to be better than
any other. Thus, the advantage of one criterion above the other will be suitable
through different applications.

However, based on numerical observations the entrance length proposed by Du
Plessis & Collins (1992) seem to be the best criteria to determine the entrance
length since it does not depend on any computed parameters. As mentioned
earlier the expression for the entrance length proposed by Du Plessis & Collins
(1992), is a function of the apparent friction factor and can be useful in the de-
veloping flow regions and fully developed flow regions. The entrance length,
L+

c = 0.0205, estimates the boundary layer theory, entrance length Le = 0.02
proposed by Schlichting (1968) fairly well. This also confirms that the entrance
length proposed by Du Plessis & Collins (1992) may be sufficient to predict the
hydrodynamic entrance length between parallel plates.



Chapter 5

Flow Through Porous Domain

The derivation of the RRUC model relies on various assumptions to predict the
pressure gradient through porous media. These assumptions are such that the
model should be as simple as possible, but still give accurate results. A fully
developed laminar flow is assumed to prevail throughout the stream-wise and
transverse channels of the RRUC geometry. However, due to the positioning of
neighbouring RRUC’s the fluid will take a tortuous path when moving through
the RRUC geometry, thus, deviations from the parallel plate model may be ex-
pected. This is our goal in this chapter, to simulate fluid flow through the porous
structures with an emphasis on verifying an assumption made with respect to the
plane Poiseuille flow between the adjacent surfaces of solid rectangles within the
RRUC.

In case of plane Poiseuille flow a constant wall shear stress is therefore assumed
to exist throughout the fluid-solid interface in both the stream-wise and trans-
verse channels. The numerical wall shear stress in the porous structures will also
be analyzed. In addition, the surface areas on which the wall shear stress acts
according to Model 2 and Model 3 mentioned in Chapter 2 will also be investi-
gated numerically. The results obtained from these simulations will be compared
with the analytical solutions and the numerical results of the fully developed flow
between uninterrupted parallel plates discussed in the previous chapter.
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5.1 Flow Simulation

Eight different cases, each representing a different geometry in terms of varia-
tion of porosity, similar to the geometry shown in Figure 5.1 were constructed
and meshed using GAMBIT. The objective of the present numerical simulation is
to assess the variation of the flow profile (velocity profile and wall shear stress)
within the channels of these geometries. For simplification a configuration of
square cells staggered in a rectangular array (SCSRA) similar to the one stud-
ied by Firdaouss & Du Plessis (2004), was adopted. The dashed lines on Figure
5.1 represent what is referred to as a unit cell in the RRUC model and the unit
cell together with extended solid lines square show a computational model. The
computational domain was translated during the construction of the geometry to
obtain more realistic results, as schematically shown in Figure 5.2.

The different geometries, each representing a specific porosity ε, will be referred
to as Cases 1 through 8 throughout this chapter. In order to obtain the wide
range of porosities the width (2d‖) and the length (d⊥) of the rectangle were kept
constant at 0.2 m and 0.1 m respectively, and we varied the size of the square
embedded within the rectangle from 0.09 m to 0.01 m. The porosities for each case
and mesh elements are listed in Table 5.1. A range of eleven Reynolds numbers
were used in the computations of each case. The stream-wise average channel
velocity w‖, was altered with other fluid parameters fixed to vary the interstitial
Reynolds number.

The interstitial Reynolds number is derived from the Reynolds number for chan-
nel flow at some mean velocity, defined in Chapter 4 by equation (4.15). Thus
an interstitial Reynolds number for the stream-wise flow between the parallel
sections of an RRUC, a distance dc apart, is expressed as follows:

Rec =
ρw2dc

µ
, (5.1)

where w is the average channel velocity, ρ is the fluid density, µ is the dynamic
viscosity and 2dc is derived from the hydraulic diameter D

H
, which is defined as

four times the cross sectional flow area divided by the wetted perimeter.

The Quadrilateral-Pave scheme, [ Fluent Inc. (2005)], was used in meshing all
geometries considered and the resulting grid distribution for one of the com-
putational domain is shown in Figure 5.3. Suitable number of elements were
used to obtain convergent results. When adjacent RRUC’s are tightly fitted in a
rectangular array, they can therefore be characterized by a geometry periodically
repeating in the flow direction. Hence, we chose a periodic boundary at the inlet
and outlet of the computational domain.
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Symmetry boundary condition was imposed on four horizontal dashed line sur-
faces shown on Figure 5.2. All solid lines in Figure 5.2 were specified as walls
and a no-slip boundary condition was applied to all these walls. For all cases con-
sidered in these simulations the numerical iteration criterion for x and y velocity
and the continuity equations was set to less than 10−5. The Fluent post processor
was used to analyze the results.

q

Figure 5.1: Staggered arrays of squares with a unit cell.

1
2

3
4

2d‖ = 0.2m

Symmetry Symmetry

Symmetry Symmetry

Periodic Periodic

A B

Figure 5.2: Computational Domain
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Table 5.1: Parameters and Conditions for Validation Test

Case Mesh Elements 2 x d‖ (m) d⊥ (m) ds‖ = ds⊥ (m) ε = 1 −
(

ds⊥
d⊥

)2

1 7600 0.2 0.1 0.09 0.19
2 14400 0.2 0.1 0.08 0.36
3 20400 0.2 0.1 0.07 0.51
4 6400 0.2 0.1 0.06 0.64
5 7675 0.2 0.1 0.05 0.75
6 8400 0.2 0.1 0.04 0.84
7 23296 0.2 0.1 0.03 0.91
8 9600 0.2 0.1 0.02 0.96
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5.2 Numerical Results

In an attempt to evaluate the assumption of constant wall shear stresses and fully
developed flow made in the RRUC model, we considered plane parallel flow
through a two-dimensional porous geometry. Table 5.1 gives the dimensions of
the eight geometries considered for this simulation and each case was studied for
different combination of Reynolds numbers. The length of the parallel surfaces
under investigation denoted by ds‖ of different porosities are also listed in Table

5.1. The Reynolds number used in all the computations of this particular problem
is given by the following formulas for the stream-wise and transverse directions,
respectively:

Rec‖ =
2dc⊥ρw‖

µ
(5.2)

Rec⊥ =
2dc‖ρw⊥

µ
(5.3)

where dc⊥ and dc‖ are the widths of the channels in the stream-wise and trans-

verse directions, and w‖ and w⊥ are the stream-wise and transverse average chan-
nel velocities. The presentation of the computational results in this section will
be divided into two parts. The first part will present the numerical velocity pro-
files at the stream-wise and transverse parallel surfaces and the second part will
discuss the wall shear stresses also at the stream-wise and transverse parallel sur-
faces.

The analysis of the predicted velocity profiles and the wall shear stresses will be
made from the stream-wise parallel surfaces indicated by a dashed line circle il-
lustrated in Figure 5.2 and at the planes created in the transverse channels at
positions 1, 2, 3 and 4 as indicated in Figure 5.2, since the main aim is to inves-
tigate the fully developed flow assumption and the wall shear stress, that takes
place between these parallel plates.

Simulations were conducted over a range of Reynolds numbers given in Table
5.2, for each computational geometry listed in Table 5.1. It should be noted that
care must be taken when calculating the Reynolds number corresponding to a
desired velocity profile and wall shear stress. There are four transverse channels
in the computational domains and the velocity profiles are the same at various
locations for the respective porosities. Although eleven different Reynolds num-
bers were used for the computations of each geometry, only few results will be
presented since their trends are similar.
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Table 5.2: Different Reynolds numbers for the RRUC model

Rec‖ =
2dc⊥ρw‖

µ

0.1
0.3
0.5
1
2
5

10
15
20
30
40

5.2.1 Velocity Distribution

The velocity distribution at the inlet of the porous geometry (Case 1 to 8) yields
a parabolic profile, as demonstrated in Figure 5.4 by velocity vectors, this was
achieved by applying the periodic boundary conditions at the inlet and outlet
cross-sections. There were no specifications made about the flow-field and the
flow through the computation geometry was driven by the specified mass flow
rate. Due to the geometry effect the axial velocity profile will experience changes
from the initial value to the final value after flowing over a distance from the inlet.

The results of the simulation will be presented graphically for selected Reynolds
numbers and porosities and they will all be compared with the theoretical fully
developed laminar flow between parallel plates (plane Poiseuille flow). The ve-
locity distribution in the stream-wise and transverse channels at each position
was normalized by the value of the uniform inlet average velocity w‖ and w⊥ re-
spectively, while the position was normalized with the channel height dc⊥ = dc‖
for all the configurations.

In order to follow the development of the velocity profile along the stream-wise
channel, the results were obtained at different axial locations starting at the lead-
ing edge up to the middle of the parallel plates indicated by a dashed line circle
in Figure 5.2 for all the porosities considered. To study more closely the veloc-
ity development between the leading edge and 0.1 m downstream (middle line),
measurement positions of 0.0025 m increment were selected. The leading edge
will be referred to as edge A.
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Figures 5.5 (a) and (b) show the velocity profiles from the leading edge up to
0.1 m downstream (middle line) for Rec‖ = 5 and 30, respectively. The two plots

in Figure 5.5 (a) and (b) are nearly identical indicating that for this particular
geometry the Reynolds number does not have an effect on the development of the
flow. The velocity profile from the leading edge A of the parallel surface under
investigation up to 0.0575 m downstream deviates from the Poiseuille velocity
profile as depicted in Figure 5.5 (a) and (b). It is also seen that for both Reynolds
numbers, Rec‖ = 5 and 30, the velocity profile cease to change at approximately

x = 0.06 m downstream.

For the same Reynolds numbers as in Figure 5.5 (a) and (b), but different porosity
of ε = 0.36, the flow is already fully developed at x = 0.065 m and the numerical
velocity profile shows very close agreement with the theoretical fully developed
flow. Figures 5.7 and 5.8 show that there is an increment of 0.0025 m downstream
for the velocity profile to reach the fully developed profile when compared to
the graphs shown in Figure 5.5 and 5.6. This small change might be due to the
change in porosity. However, the flow profile still show the same pattern as those
discussed above.

The velocity gradient at the leading edge A of the cases discussed above, is due
to the change of flow direction from the transverse channel to the stream-wise
channel and the sudden increase of the cross-sectional area. However, based on
the numerical results given in the figures below it is observed that the developing
flow at the leading edge approaches a parabolic profile, that is in agreement with
the plane Poiseuille velocity profile, within a fairly short entrance length.

Furthermore it is observed that an increase in the Reynolds number does not
bring any major changes to the velocity profile. This observation may be due
to the parabolic inlet flow assumed at the inlet of the computational domain.
The stream-wise and transverse velocity vectors of porosity ε = 0.36 are shown
in Figure 5.4. The stream-wise velocity vectors also confirm the stream-wise
velocity profile presented graphically, that the flow is developing at the beginning
of the channel and finally attains the fully developed flow condition downstream.



5.2 Numerical Results 67

2.51e-04

2.39e-04

2.26e-04

2.14e-04

2.01e-04

1.89e-04

1.76e-04

1.64e-04

1.51e-04

1.38e-04

1.26e-04

1.13e-04

1.01e-04

8.82e-05

7.57e-05

6.31e-05

5.06e-05

3.81e-05

2.55e-05

1.30e-05

Figure 5.4: Predicted velocity vectors along the stream-wise and transverse chan-
nels of an RRUC.
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Figure 5.5: The variation of the stream-wise velocity distribution at the entrance
of the parallel surfaces (edge A) within the RRUC geometry for Case 1.
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Figure 5.6: The variation of the stream-wise velocity distribution at the entrance
of the parallel surfaces (edge A) within the RRUC geometry for Case 2.
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Figure 5.7: The variation of the stream-wise velocity distribution at the entrance
of the parallel surfaces (edge A) within the RRUC geometry for Case 3.
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Figure 5.8: The variation of the stream-wise velocity distribution at the entrance
of the parallel surfaces (edge A) within the RRUC geometry for Case 4.
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As pointed out earlier, in all four transverse channels present in the computa-
tional domain for all the porosities considered the predicted velocity profile yield
similar results at each location. Hence, the velocity predictions at several loca-
tions in the first transverse channel of the computational domain indicated by
dotted lines 1 up to 4 in Figure 5.2 will be chosen for discussion.

If w‖ and w⊥ are the channel average velocities in the stream-wise volume, U‖,
and transverse volume, U⊥, respectively, the RRUC model assumes the following
relationship, w⊥ = βw‖. In a case of a staggered geometry the stream-wise flux is
split into two in the transverse channel and flux conservation yields:

w‖
d⊥
2

= w⊥d‖. (5.4)

It then follows that

w⊥ =
w‖
2

d⊥
d‖

, (5.5)

where d⊥
d‖

= α∗ is an aspect ratio, which is equal to unity in this case. Therefore

the value of β = 1
2 , and the analytical velocity profile will be adjusted accordingly

for comparison with the transverse velocity profile.

The staggering level of the solid structure within the computational domain con-
sidered is a fully staggered array. This configuration forces the flow to bifurcate
in opposite directions from the stream-wise channel into the transverse channel.
Figures 5.9 to 5.13 show the axial velocity profile at locations mentioned above
in the transverse channel of the computational geometries and they are plotted
together with the plane Poiseuille flow velocity profile.

It is mentioned earlier that the flow enters the stream-wise channel at the peri-
odic boundary of the computational domains with a parabolic velocity profile.
However, Figure 5.9 shows a noticeable change in the velocity profile of Case 1
at y = 0.005 m (line 2) and y = −0.005 m (line 3) for both Rec⊥ = 2.5 and 15.
It can be seen that the flow enters the transverse channel with a skewed velocity
profile as plotted in Figure 5.9. This is mainly due to the sudden change in the
flow direction and the large mass flow rate from the stream-wise channel into the
transverse channel. But as flow progresses in the channel, the axial velocity pro-
file becomes almost parabolic and it shows a good agreement with the theoretical
fully developed velocity profile.
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The velocity profile for Case 2 yields the same flow pattern as in Case 1 for
Rec⊥ = 2.5, as illustrated in Figure 5.10 (a). Figure 5.10 (b) shows that an in-
crease in the Reynolds number yield a different flow behaviour for Case 2. It is
noticed that the location of the maximum velocity shifted slightly from the plane
Poiseuille flow velocity profile, but it can be seen that the flow still has a parabolic
profile.

The velocity distributions in the transverse channels for Cases 3 through 5 are
shown in Figures 5.11 to 5.13 for Rec⊥ = 2.5 and 15. It is observed that the ve-
locity along the transverse channels deviate completely from the plane Poiseuille
flow velocity profile. The visualization of the flow pattern in these figures re-
veals that, the fully developed plane Poiseuille flow assumption does not apply
for flow between neighboring solid surfaces for high porosities. Velocity distri-
bution for Case 6 through 8 (not plotted) exhibits similar flow behavior.
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Figure 5.9: Comparison between predicted transverse velocity profiles at differ-
ent locations with the analytical solution for Case 1.
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Figure 5.10: Comparison between predicted transverse velocity profiles at differ-
ent locations with the analytical solution for Case 2.
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Figure 5.11: Comparison between predicted transverse velocity profiles at differ-
ent locations with the analytical solution for Case 3.
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Figure 5.12: Comparison between predicted transverse velocity profiles at differ-
ent locations with the analytical solution for Case 4.



5.2 Numerical Results 78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/H

u/
U

Fully Developed Flow

y =   0.025 m

y = − 0.025 m

(a) ε = 0.75 ; Rec⊥ = 5

Figure 5.13: Comparison between predicted transverse velocity profiles at differ-
ent locations with the analytical solution for Case 5.
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Figure 5.14 shows the pattern of the flow, presented by the velocity path lines
around the solid structure within the computational domain. A steady flow sym-
metrically circulating around the solid structure within the computational do-
main of porosity 0.75 is observed in Figure 5.14 at Rec‖ = 10. As the Reynolds

increases, Rec‖ ≥ 30, Figure 5.15 reveals the presence of small recirculations

around the solid structure within the geometry. Du Plessis (1994) mentioned
that the recirculation zone are caused by the prevailing inertial effects.

It is worth mentioning that the simulations for Case 1 through 8, were conducted
with various Reynolds number up to Rec‖ = 40. This observation of flow recir-

culations started to occur for a computational model of porosity 0.75 at approxi-
mately Rec‖ = 30. It must be kept in mind that the level of porosity also have an

effect on the flow. This particular flow behaviour resembles flow over a square
cylinder and it probably contributes greatly to the deviation of the prediction of
the theoretical model from the numerical results at high porosities. The numer-
ical results are further analyzed to determine the wall shear stresses along the
fluid-solid interfaces in the stream-wise and transverse channels.
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Figure 5.14: Velocity path lines in the computational domain, Rec‖ = 10 and
ε = 0.75.
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Figure 5.15: Velocity path lines in the computational domain, Rec‖ = 30 and
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5.2.2 Wall Shear Stress τw

As mentioned previously plane Poiseuille flow is assumed in the pore sections of
the porous media and constant wall shear stresses

τw‖ =
6µw‖
dc⊥

and τw⊥ =
6µw⊥

dc‖
, (5.6)

are therefore assumed to exist throughout the stream-wise and transverse fluid-
solid interface, respectively. The wall shear stress on the stream-wise and trans-
verse fluid-solid interfaces, corresponding to the plane Poiseuille flow will be
denoted respectively by (τw‖)theory and (τw⊥)theory. The magnitude of the numer-

ical wall shear stress depends on both the stream-wise and transverse channel
configurations and they will be denoted by (τw‖)num and (τw⊥)num, respectively.

The numerical dimensional wall shear stress on the stream-wise fluid-solid inter-
face is plotted against the axial distance x from the leading edge A to the trailing
edge B of the channel considered. On the same axis, the wall shear stress corre-
sponding to the stream-wise plane Poiseuille flow [equation (5.6)] is also plotted
together with the predicted constant wall shear stress obtained from the simula-
tion of the flow between the uninterrupted parallel plates. This constant value is
the predicted value of fully developed flow. For the uninterrupted parallel plate
model simulation, the channel width between the parallel plates was chosen to
match the stream-wise channel width dc⊥ of the RRUC computational domain
and the simulations were run similarly as in Chapter 4.

Du Plessis & Collins (1992) used the plane Poiseuille flow Fanning friction factor
f Re = 24 in equation (4.24), to obtain a new proposed hydrodynamic entrance
length x+

c = 0.0205. To obtain an apparent friction factor independent of the axial
position, Du Plessis & Collins (1992) substituted the proposed entrance length in
equation (4.16) and the following constant value was obtained,

( fappRe)c = 32.1. (5.7)

The Fanning friction factor formula was used to determine the wall shear stress
τw corresponding to equation (5.7). The results will also be plotted on the same
axis with other graphs already mentioned above, in order to determine if the
results obtained by Du Plessis & Collins (1992) do not give a better estimation
than equation (5.6) for average τw.
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The stream-wise wall shear stress τw‖ , obtained from simulations of Case 1 through

Case 8 will be presented graphically for only two Reynolds numbers, i.e, Rec‖ = 5

and 30. The transverse wall shear stress τw⊥ will also be discussed for Cases 1 and
2 at Rec⊥ = 2.5 and 15, and Case 3 for only Rec⊥ = 2.5 due to the deviation of the
flow profile from fully developed as porosity increases.

The percentage error calculated as the percentage of the difference between the
theoretical fully developed flow wall shear stress, (τw)theory, and the numerical
predicted fully developed flow wall shear stress (τw)num, will be used to obtained
the percentage error of the simulation results. The percentage error is presented
mathematically as follows:

Percentage error =
(τw)theory − (τw)num

(τw)theory
× 100. (5.8)

Figures 5.16 through 5.20 show a good agreement between the fully developed
flow wall shear stress (τw‖)num, obtained from the computations of the flow be-

tween the uninterrupted parallel plates and the plane Poiseuille flow wall shear
stress (τw‖)theory. The numerical solution for the wall shear stress on the parallel

surfaces under investigation, shows that at any instant of time there exist three
flow regimes in this channel, namely: an entrance region (edge A), a fully devel-
oped flow regime and an exit region (edge B). The existence of the entrance and
exit region is due to the sharp corners at the leading edge A and B that lead to
sudden change of flow direction.

Following the sudden pressure drop at the entrance region (edge A), the pre-
dicted stream-wise wall shear stress (τw‖)num for Case 1 at Rec‖ = 5 decreases

asymptotically from the maximum value almost immediately downstream and
becomes independent of the axial distance, as depicted in Figure 5.16 (a). An
increase in the predicted (τw‖)num at the exit region (edge B) is observed, [Figure

5.16]. It should be noted that the drastic increase in the value of the predicted wall
shear stress at either end of the parallel surfaces is owing to the change of flow
direction from the stream-wise into the transverse channel, with the entrance ef-
fect being predominant. The fully developed flow (τw‖)num in Case 1 for Rec‖ = 5

under-predicted the plane Poiseuille flow wall shear stress (τw‖)num by 1.7 %.

The results of computation shown in Figure 5.16 (b) are qualitatively identical
with data in Figure 5.16 (a) revealing, however, one noticeable difference down-
stream of the entrance region. The plot clearly shows that as Rec‖ increases, the

entrance effect is dominant, leading to an extension of the length to reach an axial
independent wall shear stress. The (τw‖)num in this case, also under predicted the

analytical wall shear stress by 1.25%. Figure 5.17 also shows similar stream-wise
wall shear stress distribution as in Figure 5.16.
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The numerical results for fully developed flow, for Cases 3 through 5 and for
each case of the flow between the uninterrupted parallel plates are shown in Fig-
ures 5.18 through 5.20 to be in excellent agreement with the analytical solution.
However, the comparison of the predicted (τw‖)num for Case 5 at Rec‖ = 30 with

(τw‖)theory in Figure 5.20 (b) reveals that due to the short lengths of the stream-

wise channel as porosity increases, the flow is not quite fully developed and the
entire flow length is in the developing flow region. The flow deviation from the
fully developed flow for this particular Re and higher Reynolds numbers may
also be due to the fact that the hydrodynamic entrance length increases linearly
with the Reynolds number. It should also be noted that this is the case where the
flow recirculation started to show.

This deviation extends to even higher porosities (Cases 6 through 8). Figure 5.20
to 5.21 demonstrates the discrepancy in the flow behaviour as the porosity in-
creases. These results are to be expected since as explained in the case of the
velocity profile that at higher porosities the neighboring solid materials within
the computational domain become far apart from each other. This geometry as
porosity increases deviates from the assumption made in the development of the
RRUC model, [ Du Plessis (1994)], of neighboring solid materials forming parallel
surfaces. However, for the high porosity case as depicted in Figure 5.22 it seems
that the wall shear stress according to Du Plessis & Collins (1992) gives a better
representation when compared to the numerical wall shear stress.
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Figure 5.16: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 1.
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Figure 5.17: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 2.
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Figure 5.18: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 3.
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Figure 5.19: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 4.
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Figure 5.20: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 5.
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Figure 5.21: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 6 and Case 7.
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Figure 5.22: Dimensional stream-wise wall shear stress τw‖ as a function of axial

distance x for Case 8.
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The wall shear stress in the transverse channels will be analyzed similarly to the
stream-wise channels except that the three RRUC models mentioned previously
have different regions where the wall shear stress is constant in the transverse
channels. Model 1 [ Diedericks (1999)], divided the fluid volume into two sub-
volume, the stream-wise volume U‖ and transverse volume U⊥ [Figure 2.2 (a)],
and a constant wall shear stress is assumed to prevail on the entire fluid-solid
interface of these sub-volumes.

The other two models, [ Lloyd et al. (2004) and Cloete & Du Plessis (2006)],
treated the fluid volume as three different volumes U‖, U⊥ and the transfer vol-
ume Ut. It is shown in Figure 2.2 (b) and (c) that the transfer volumes of the
two models are different. The transfer volume defined by Model 2, [ Lloyd et al.
(2004)], does not consist of any solid interfaces as illustrated in Figure 2.2 (b),
hence for this model the transfer volume just acts as a transfer volume for fluid
and the pressure drop is assumed to be zero in this volume. Therefore for Model
2 a constant wall shear stress also exists along the entire fluid-solid interface as in
Model 1.

Model 3, [ Cloete & Du Plessis (2006)] has a different scenario from the other two
models as also depicted in Figure 2.2 (c). Model 3 suggests that the constant wall
shear stress exists only on sections of the fluid-solid interface not occupied by the
transfer volume. Model 3 neglected the wall shear stresses acting on the solid-
interfaces in the transfer volume and further assumed that the pressure drop is
zero there.

Figures 5.23 through 5.25 show the transverse wall shear stress on the wall op-
posite the stream-wise channel. The most notable phenomenon in Figure 5.23
(a), is variation of the wall shear stress along the fluid-solid interface in the trans-
verse channel. However it is also observed in the same graph that in the farther
transverse distance exceeding the dimensions of the middle section of the wall,
the wall shear stress (τw⊥)num is practically constant. The constant (τw⊥)num ob-
served on a portion of the transverse wall is a convincing evidence of the fully
developed flow.

It is also demonstrated that under the same flow rate the wall shear stresses at
the middle of the wall, where there is no parallel plates, are less than the constant
value expected from the plane Poiseuille flow wall shear stress [equation ( 5.6)].
The numerical wall shear stress at −0.04 m < y > 0.04 m of the transverse wall
underestimated the plane Poiseuille flow value by up to 67% [Figure 5.23 (a)].
At the trailing edges of the walls the flow yields a different flow profile from
the plane Poiseuille flow, very high values of the (τw⊥)num are observed with a
difference of up to 100%. This is due to velocity gradients experienced by the
flow at these points.
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At ε = 0.36, the difference, at the section mentioned above, between the numeri-
cal values and the expected analytical values starts to increase to up to 83%, and
this difference will definitely be higher for higher porosities. The deviation from
the plane Poiseuille flow between the transverse channels is increasing as the
porosity increases as illustrated in Figures 5.24 and 5.25. This is due to the fact
that as the porosity increases, the length of the perpendicular solid-fluid interface
ds⊥ decreases and as a result the flow is not taking place between parallel plates
anymore, but around an obstacle.

Due to the short sections the flow will not become fully developed, thus, the
flow through the pore sections of an RRUC at high porosities will be mostly in
the developing stage. Similarly like in the stream-wise channel, Figures 5.24 (b)
and 5.25 show that as the porosity increases the wall shear stress predicted by
Du Plessis & Collins (1992) gives relative better approximations than the plane
Poiseuille flow wall shear stress when compared to the numerical results.
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Figure 5.23: Dimensional transverse wall shear stress τw⊥ as a function of radial
distance y for Case 1.
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Figure 5.24: Dimensional transverse wall shear stress τw⊥ as a function of radial
distance y for Case 2.
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Figure 5.25: Dimensional transverse wall shear stress τw⊥ as a function of radial
distance y for Case 3.
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5.2.3 Comparison Between Models

This subsection is aimed at comparing the performance of the three different
models described above, by graphically analyzing the dimensionless permeabil-
ity, K, obtained from each model. The numerical results are also tested against
the three analytical predictions. In this case as discussed previously the geomet-
ric configuration considered was an array of which square solids are staggered in
the cross-sectional direction, yielding an aspect ratio α∗ to be unity.

The dimensionless permeability K, is plotted as a function of porosity in Figure
5.26. All three models perform well at low porosities, with deviation from values
predicted by Model 3, [ Cloete & Du Plessis (2006)], as the porosity increases [Fig-
ure 5.26]. However these results are expected since for staggered configurations
the model predicted the permeability for porosities up to a point where ds⊥ = dc⊥ .
Despite the difference between Model 1, [ Diedericks (1999)], and Model 2 [ Lloyd
et al. (2004)], they yield similar results with a slight difference at high porosities.

The numerical values in Figure 5.26 predicted the solutions of the three models
very well at lower porosities, and followed closely the two models, [ Diedericks
(1999) and Lloyd et al. (2004)], as porosity increases.
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Figure 5.26: Numerical and analytical dimensionless permeability predictions.
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5.3 Discussion

The theoretical based RRUC models under investigation in this study [ Dieder-
icks (1999), Lloyd et al. (2004) and Cloete & Du Plessis (2006)], assumed fully
developed laminar flow in the pore sections of the porous domain, and the fluid-
solid interface in both the stream-wise and transverse channels are exposed to a
constant wall shear stress at very low Reynolds numbers. The main aim of the
present analysis was to verify the capacity of the plane Poiseuille flow through-
out the stream-wise and transverse channels of the porous geometry (RRUC). We
also tested the performance of these models by analyzing the dimensionless per-
meability obtained from each model graphically.

To achieve our objective we performed a detailed numerical analysis of the ve-
locity profiles and wall shear stress distribution in eight two-dimensional porous
geometries referred to as Cases 1 to 8, each representing a different porosity, for
Reynolds numbers ranging from 0.1 to 40. It should also be remarked that the
effect of different porosities on the flow behaviour was also revealed. The nu-
merical simulations of single-phase fluid flow between parallel plates presented
in Chapter 4 resulted in comparable velocity profiles with the plane Poiseuille
flow, confirming the validity of the data obtained by numerical simulation.

Numerical solutions gave good approximations when compared to the dimen-
sionless permeability obtained from the three models for this range of porosities
0.19 ≤ ε ≤ 0.75. It was shown in Figure 5.26 that the numerical solutions for the
remaining porosities considered, approximated solutions obtained from Model 1
and 2 fairly well. Thus it can be concluded that the models can be successfully
used to predict the permeability for flow through porous structures similar to our
computational domains to reduce the empiricism on this value.

To determine more precisely the areas over which the flow is fully developed,
we analyzed the velocity profile at various positions from the leading edge A of
the parallel surfaces chosen for investigation. The simulations showed that the
velocity profile in the stream-wise direction is fully developed for the major per-
centage of the channel length. The velocity gradients only occurred at the leading
edge A and downstream in the channel, due to the change of flow direction from
the transverse channel to the stream-wise channel and vise versa caused by the
sharp corners of the solid structures embedded in the RRUC geometry.

The predicted velocity profile in the transverse channel approximated fully de-
veloped flow conditions less accurately when compared to the estimations from
the stream-wise channels. However, the fully developed flow was observed in
some sections of the transverse channels at very low porosities. This difference
in the parabolic velocity profile in the transverse channels is more predominant
at high porosities as illustrated in the figures. It can be concluded that the flow
in the transverse channel deviate from the plane poiseuille flow at high porosi-
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ties, due to the fact that as porosity increases only small sections of the parallel
surfaces are opposite each other.

Therefore, based on the velocity profiles predicted numerically, a general con-
clusion can be made that indeed the plane Poiseuille flow between all pairs of
parallel surfaces exists only for very low porosities (ε ¿ 0.5). Furthermore it
should also be mentioned that the plane Poiseuille flow is approximated much
better in the stream-wise channels than transverse channels, as it was observed
earlier that the parabolic velocity profile in the stream-wise channel prevail for
porosities slightly higher than 0.5, (ε ≤ 0.75). The numerical results were further
analyzed to determine the wall shear stresses along the fluid-solid interfaces in
the stream-wise and transverse channels.

The wall shear stress predicted numerically, in the stream-wise direction esti-
mated the theoretical wall shear stress (τw)theory fairly accurately, except at the
entrance region and exit region, for the same reasons advanced for the velocity
profile. However, it is once more demonstrated that the results in the transverse
channel do not produce the expected conditions. It was shown graphically, in the
previous section, that the wall shear stress becomes constant at a certain section of
the transverse wall at very low porosities. The wall shear stress in the transverse
channel drops by more than 60% from the constant value and the variations of
the wall shear stress became greater as the porosity is increased.

It should also be mentioned that a geometric configuration considered for this
analysis has limitations. As porosity reaches ε ≡ 0.75 the solid structures in
the transverse channels do not overlap anymore to form parallel surfaces with
the neighbouring solid structures. From Figures 5.16 through 5.25 for both the
stream-wise and transverse channels, we noticed that, in contrast with the nu-
merical wall shear stress, which reaches asymptotically the fully developed flow
values, and the plane Poiseuille flow wall shear stress, the wall shear stress distri-
bution obtained using Du Plessis & Collins (1992)’s analysis, exhibited a certain
deviation except in certain cases mentioned in the previous section.

The computations clearly showed that the plane Poiseuille flow conditions are
not well represented in the transverse channels of the porous media. Thus, fur-
ther work should focus on the means, either numerically or theoretically, to cor-
rectly determine the wall shear stress at regions where the flow is not fully de-
veloped and in cases of higher porosities. Based on simulation predictions it is
recommended that for low porosities the fluid-solid interface in the transverse
channels, should be divided into sections, where the flow has reached the fully
developed flow condition and the other section should represent the wall shear
stress where it forms a certain percentage of the constant value given by equa-
tion (5.6), or should be represented by other estimations for wall shear stress τw,
for an example, estimation according to Du Plessis & Collins (1992) at higher
porosities.



Chapter 6

A Simulation of Airflow Through a
Timber Stack End

The purpose of this chapter is twofold: to better understand the process of timber
drying in a timber drying kiln and a CFD analysis will be performed on a section
of a scale model tested in a wind tunnel, conducted by Du Plessis (2002), to
investigate the airflow through the timber stack in a drying kiln, which forms
the major purpose of this chapter. The numerical results will be compared to the
experiment measurements obtained by Du Plessis (2002).

Experimental laboratory kilns are used for drying schedule development or op-
timization but this approach is expensive, time consuming and the results are
not always representative of industrial drying as far as biological variability and
energy consumption are concerned, [ Fortin et al. (2004)]. If the numerical re-
sults could successfully predict the experimental data, this will demonstrate that
the CFD models can provide fast, reliable and low cost solutions. This will be
of great help to the timber drying kiln designers and operators, to overcome the
challenges experienced in the laboratories as indicated by Fortin et al. (2004).

The stacking arrangement of timber in a timber drying kiln, results in the stag-
gered ends that resembles an anisotropic porous structure. Hence, the
two-dimensional pore scale models, for an anisotropic porous media presented
in Section 2.2, are used to predict the airflow through the timber stack ends. This
investigation forms the second purpose of this study.



6.1 Airflow Through A Stack In A Timber-Drying Kiln 101

Firdaouss & Du Plessis (2004) indicated that the circulation of warm air through
a timber stack for drying, is an example of flow through porous structures mod-
eled by the RRUC models in Chapter 2. This phenomenon guarantee us a fair
comparison. The analytic predictions obtained from the pore scale models will
be tested against the experimental data as well. The numerical results will again
be validated gainst the three RRUC models as presented in Section 2.2. The sub-
sequent section will give a brief background of wood drying in a timber drying
kiln.

6.1 Airflow Through A Stack In A Timber-Drying Kiln

Wood drying is a process where the moisture content of the wood is reduced to
a specific level. One primary method for drying timber is through air drying,
which exposes the stack of sawn timber to natural atmospheric conditions. It is
said that this method is cheaper but, it also has certain limitations for example
it can be a slow process during winter in South Africa. The disadvantage of this
method is that, the drying rate depends on the prevailing weather conditions and
there is little control over the drying degrade. Therefore, timber drying kilns were
developed to overcome some of the limitations that the air drying method has.

Drying timber protects timber against stains, decay and damage caused by in-
sects, it also adds value to the wood processing industries. Drying of green timber
can be expensive and time consuming, however, a well designed timber drying
kiln makes it possible to dry timber boards to an acceptable standard in the short-
est time in order to produce quality wood products. A timber drying kiln may be
defined as a closed structure designed for the purpose of reducing the moisture
content of timber and other wood products. A schematic diagram of a typical
timber kiln is shown in Figure 6.1.

The process of kiln drying is energy intensive because great amount of energy
is needed to reduce the total amount of water in timbers to a specific percentage
of moisture content. The contribution of energy to the total drying of timber is
obtained from direct fire, that is, burning wood wastes, although some kilns use
heat exchangers to generate heat. Electrical energy is also used to generate air
movement through timber stack by means of fans.

Drying Conditions (air temperature, humidity and air velocity) and the changes
of these conditions within a timber stack can affect the drying rate and the mois-
ture content distribution, [ Hua et al. (2001)]. Hence, the goal of most researchers
has been to develop drying schedules which can achieve maximum drying rate
with less drying defects. Due to technological advances the operation of modern
kilns depend on automated, computerized drying schedules, which control the
temperature, relative humidity and air velocity during the drying process. These
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conditions are designed to increase the rate of drying so as to achieve the most
economical drying conditions without causing drying defect.

The configuration of wood stack in a wood drying kiln has a great influence on
the air flow pattern, [ Sun & Carrington (1999)]. The correct piling of timber is
of importance in optimizing the drying process. Stickers are small uniform sized
boards, which create spaces for air to move across the timber stack. The stickers
are used in stacks to give space between timbers so that air can move through the
stack. Based on the way the timber boards are stacked, their configuration can
be divided into three parts. The first is the central area where the boards create
a flat rectangular duct section in the flow direction. The other two parts have a
staggered layout at both ends of the stack, [ Smit et al. (2007)]. A picture of a
timber stack showing how the stickers are used is shown in Figure 6.2.

The optimization of kilns does not depend only on the well controlled drying
schedule and proper stacking of timber, it is also necessary to consider the influ-
ence of the airflow across the timber stack. Airflow is necessary to transfer hot
and moist air through the timber stacks. The uniformity of drying and the quality
of the wood in a kiln are strongly influenced by the airflow, [ Hua et al. (2001)].
Thus the airflow has a major impact on the final drying of wood.

Airflow resistance in a kiln is caused by changes in kiln geometry that affect the
pressure loss in the kiln and redistribute the airflow, [ Hua et al. (2001)]. Hence
it is necessary when optimizing a kiln design to know the pressure loss across
the stack for different configurations. The airflow in the timber drying kilns is
influenced by parameters such as the geometry of the kiln plenum, air ducts, roof
design, the timber dimensional control and the stacking method of wood, [ Hua
et al. (2001)]. In the next section we will see how the staggered ends of the stack
influence the pressure through the timber stack in a kiln.
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Figure 6.1: A schematic of a typical timber-drying kiln with a stack in the center.
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Figure 6.2: A picture of a typical cross-piled timber stack to be dried in a kiln.
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6.2 Review Of Experimental Data

The end parts of a stack, which are in a staggered form due to the stacking
method, resemble a staggered configuration of an RRUC model presented in Sec-
tion 2.2. For further analysis the staggered ends of the stack will be considered as
a porous medium with an anisotropic unidirectional microstructure. The model
tested in the experiment conducted by Du Plessis (2002) is depicted in Figure 6.3
and the simplified timber stack of the staggered ends is shown in Figure 6.4.

The applicable drag coefficient CD, used in equations obtained from the RRUC
models will be obtained from the drag coefficient values published by White8

(1994). The drag coefficient was obtained for a range of rectangular cylinders with
different aspect ratios. A curve fitted through the data resulted in the following
expression [ Du Plessis (2002)]

CD =


c1 + c2

(
ds‖

ds⊥

)
+ c3

(
ds‖

ds⊥

)2



−1

(6.1)

where c1 = 0.238; c2 = 0.198; c3 = −0.00849

Figure 6.3: Test model of stack end.

8Reference not read, referenced in Du Plessis (2002)
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considered in the airflow simulations.
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Du Plessis (2002) experimentally determined the pressure drop of airflow through
the timber stack ends. Throughout the experiment the timber boards for the stack
ends were placed in a controlled wind tunnel, and the air was forced through the
inlet with a uniform speed. Measurements of pressure drop across the stack were
conducted with a set of Betz manometers and standard Bernoulli obstruction flow
meters. The volume airflow was calculated from the mouth pieces readings and
air properties from which the air speed through the stack can be determined.
The air properties used during the experiment and during the present numerical
simulations are listed in Table 6.1 together with the dimensional values of the
experimental model of the staggered stack.

Table 6.1: Air properties and experimental data obtained from the model of a
stack end in the wind tunnel.

Property Value Variable Description Value [mm]

Temperature 20 [oC] - Stack width 468

Density 1.225 [kg/m3] ρ Stack height 485
Humidity 60 [%] - Stack depth 455

Viscosity 1.8 x 10−5 [N.s/m2] µ Board width 65
Board height 20.6
Sticker width 20
Sticker height 11.5
Distance between 428
stickers

The dimensional values presented by Du Plessis (2002) were used to obtained
results for the RRUC model equations given in Section 2.2.4, and they are given
in Table 6.2 below. The experimental results obtained by Du Plessis (2002) are
presented in Table 6.3 and will be used later for comparison with numerical and
theoretical models. In Table 6.3, Q is the total volume flow through the stack and
∆pstack is the total pressure drop across the experimental stack. Various parame-
ters such as the mean velocity and the Fanning friction factor will be calculated
using this data for comparison with the computed data.
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Table 6.2: Values used to produce results for the RRUC solution.

Variable Value

d⊥ 0.0332 [m]
d‖ 0.130 [m]

ds⊥ 0.0206 [m]
ds‖ 0.065 [m]

U0/z 0.0044 [m2]
ε 0.69
χ 1.82
β 0.19

CD 1.29

Table 6.3: Experimental data obtained from the model of a stack end in the wind
tunnel.

Airflow Q [m3/s] ∆pstack [Pa]

0.07422 2.5
0.11036 6
0.15685 10
0.23256 23
0.37496 55
0.56138 126
0.81999 271.5
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6.3 Numerical Analysis

In this section, three different CFD viscous models, namely: Laminar model,
Standard k − ε model and Reynolds-Stress model are evaluated by modeling an
incompressible airflow across a portion of the scale model of the staggered tim-
ber ends, tested by Du Plessis (2002). FLUENT v6.2.16 facilitates the numerical
simulation of fluid flow features using both laminar and turbulence models, by
solving appropriate partial differential equations.

The two turbulence models were chosen randomly from a list of models available
in Fluent Inc. (2005), after an earlier transition occurred in FLUENT when using
the Laminar model. It is reported that the Standard k − ε model is widely used in
turbulence simulations, because of its general applicability, despite its limitations
of being a semi-empirical based model, [ Fluent Inc. (2005)]. The effectiveness of
the two turbulence models will also be investigated.

6.3.1 Problem Description And Boundary Conditions

Figure 6.4 (a) shows the staggered arrangement of six timber boards of a large
staggered timber stack. The basic unit indicated by dashed lines is considered as
a computational domain for this numerical model and is shown in Figure 6.4 (b).
The dimensions used to create the computational geometry are the same as the
ones used by Du Plessis (2002) for the RRUC models, also listed in Table 6.2.
The present simulation assumes a periodic boundary condition over the compu-
tational domain.

The operating fluid in this case is air and the fluid is assumed to be Newto-
nian, incompressible and steady with constant properties. The variable parame-
ter for these computations is the pressure gradient, and the flow Reynolds num-
ber varies from 0 ≤ Re ≤ 5538. More than 40 cases were computed for this part
of this study and the variable parameters for the three models considered are
tabulated in Table 6.5 to 6.7.

The periodic boundary conditions were applied at lines AJ and EF from Figure
6.4 (b), symmetric boundary conditions were used at lines CD and HI and, the
solid lines AC, BC, DE, FG, GH and IJ are modeled as walls. A no-slip boundary
condition is imposed on these walls. For all the cases considered in this study
the pressure gradient for each case was specified as the periodic boundary condi-
tion, and the predicted mass flow rate from FLUENT was used to calculate flow
parameters of interest to this study.
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6.3.2 Mesh Independence

The effect of the grid size on the accuracy of the results was evaluated by con-
ducting three pre-tests simulations. The results were obtained using the default
parameters provided by FLUENT, using the Reynolds-Stress model. The pres-
sure gradient for this analysis was maintained at ∇p = −5.495 [Pa/m], which
gives a Reynolds number of Re = 548.9. The following three different grid sizes
are employed, to achieve the optimum mesh,

(i) 3023 nodes; 2860 elements.

(ii) 4668 nodes; 4480 elements.

(iii) 6513 nodes; 6300 elements.

The computational results of the grid independence study are shown in Table
6.4. The results from Table 6.4 show that the numerical errors between (i) and (ii)
meshes are 2.4% and 3.4% for the mass flow rate and maximum velocity respec-
tively. The numerical error between (ii) and (iii) meshes is less than 2% for both
the mass flow rate and maximum velocity.

Table 6.4: Grid Independence.

Number of INPUT OUTPUT OUTPUT
elements −∇p [Pa/m] Mass flow rate [kg/s] umax [m/s]

2860 5.495 0.0142 1.1968
4480 5.495 0.0146 1.2390
6300 5.495 0.0144 1.2280

Figure 6.5 shows the stream-wise velocity profiles for the three sets of grids tested
at location x = 0.065 m. For the remaining computations, a grid size of 4480
number of elements has been used, as shown in Figure 6.5 and Table 6.4 that,
this gives better results. The computational grid used in this simulation, meshed
with quadrilateral elements is illustrated in Figure 6.6.
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Figure 6.6: Mesh distributions
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6.4 Presentation Of Results

This part of the present study was concerned with the numerical simulations of
a steady laminar airflow through an anisotropic porous structure using SIMPLE
based algorithm implemented into FLUENT version 6.2.16. Acceptable results
could not be obtained with FLUENT using laminar model and therefore, we con-
tinued the simulations using the turbulence models. The wide array of available
turbulence models, often developed for specific applications, creates a difficulty
in selecting the right model for particular application. For this particular problem
we chose the two turbulence models and one laminar model mentioned previ-
ously.

However, the two turbulence models are shown to consist of a different level of
complexity, as well as computational efficiency , [ Fluent Inc. (2005)]. Thus, the
two models will be tested against the experimental data to test the sensitivity of
these models on predicting the experiment values. The discussion of the results
is divided into two sections: the first part will discuss the three viscous models
flow characteristic prediction behaviour (such as recirculation zones, reattach-
ment length and mean velocity). Secondly comparison of the numerical data
with the experimental data and analytical predictions obtained from the RRUC
models will be presented.

6.4.1 Evaluation Of The CFD Models

Various physical phenomena including flow separation, reattachment and recir-
culation are common features found in geometries similar to the computational
domain considered in this chapter. This subsection will assess these features ob-
served using the three mentioned models. Lack of experimental data, conducted
by Du Plessis (2002), on the features mentioned above (recirculations and reat-
tachment lengths) precludes the direct comparison with the numerical solutions.
However, this section serves to demonstrate the difference between the models
considered.

As mentioned earlier the predicted solutions computed using the viscous laminar
model started to diverge at Re = 108, and we continued the computations using
the turbulence models. It is evident from the value of the Reynolds number that
the transition occurred under laminar flow conditions. Therefore, the use of tur-
bulence models does not imply that the airflow through a timber stack experience
turbulence immediately after the transition. The mean velocity obtained from the
two turbulence models will be compared with the mean velocity calculated using
the experimental data.
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The pressure gradients specified as periodic boundary condition for the three
models are tabulated in Tables 6.5 to 6.7. It is worth mentioning that the pressure
gradients listed in Tables 6.6 and 6.7 from number 8 to 14, are specified from
the experimental conditions and the Reynolds number was computed from the
predicted results. The mass flow rates are also included in Tables 6.5 to 6.7
and they will be used in computing the mean velocity. The difference between
the two turbulence models started to show when, the computer processing time
needed for the solutions to converge using Reynolds-Stress model was found to
be significantly less than that for the Standard k − ε model.

Table 6.5: Parameters and Results for ”Laminar Model”.

No. ∆p [Pa] d‖ [m] INPUT OUTPUT

− ∆p
d‖

[Pa/m] ṁ [kg/s]

1 0.00002 0.455 4.4x10−5 1.3x10−6

2 0.00005 0.455 1.1x10−4 4.5x10−6

3 0.0001 0.455 2.2x10−4 8.9x10−6

4 0.0005 0.455 1.1x10−3 4.3x10−5

5 0.001 0.455 2.2x10−3 8.4x10−5

6 0.002 0.455 4.4x10−3 0.00016

7 0.003 0.455 6.6x10−3 0.0002

8 0.004 0.455 8.8x10−3 0.00028
9 0.005 0.455 0.01 0.00034
10 0.01 0.455 0.02 0.0006
11 0.02 0.455 0.04 0.0009
12 0.03 0.455 0.07 0.0013
13 0.04 0.455 0.09 0.0015
14 0.05 0.455 0.11 0.0018
15 0.1 0.455 0.22 0.0029
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Table 6.6: Parameters and Results for ”Standard k − ε Model”.

No. ∆p [Pa] d‖ [m] INPUT OUTPUT

− ∆p
d‖

[Pa/m] ṁ [kg/s]

1 0.15 0.455 0.33 0.0028
2 0.2 0.455 0.44 0.003
3 0.25 0.455 0.55 0.004
4 0.5 0.455 1.10 0.005
5 1 0.455 2.20 0.008
6 1.5 0.455 3.30 0.010
7 2 0.455 4.40 0.0111
8 2.5 0.455 5.50 0.0125
9 6 0.455 13.19 0.0195
10 10 0.455 21.98 0.025
11 23 0.455 50.55 0.038
12 55 0.455 120.88 0.059
13 126 0.455 276.92 0.090
14 271.5 0.455 596.70 0.133

Table 6.7: Parameters and Results for ”Reynolds-Stress Model”.

No. ∆p [Pa] d‖ [m] INPUT OUTPUT

− ∆p
d‖

[Pa/m] ṁ [kg/s]

1 0.15 0.455 0.33 0.0032
2 0.2 0.455 0.44 0.0038
3 0.25 0.455 0.55 0.0045
4 0.5 0.455 1.10 0.0065
5 1 0.455 2.2 0.0093
6 1.5 0.455 3.3 0.011
7 2 0.455 4.40 0.013
8 2.5 0.455 5.50 0.0146
9 6 0.455 13.19 0.0225
10 10 0.455 21.98 0.030
11 23 0.455 50.55 0.045
12 55 0.455 120.90 0.068
13 126 0.455 276.92 0.098
14 271.5 0.455 596.70 0.141



6.4 Presentation Of Results 116

The path lines coloured by velocity magnitude are illustrated in Figure 6.7 through
to 6.10, in order to study the influence of the geometry as well as the Reynolds
number on the fluid flow field. The laminar model simulation shows that the
flow moves steadily throughout the computational domain at Re = 0.14. Figure
6.8 reveals the presence of small recirculation zones with very low velocity at the
corners immediately upstream and downstream of the computational domain.
The observation in Figure 6.8 is obtained from simulation using laminar viscous
model at Re = 5.9. The recirculation regions should be expected in geometries
similar to the current computational domain, since the flow encounters a sudden
expansion followed by a sudden contraction.

The reattachment location is determined by finding the point where stream-wise
wall shear stress is equal to zero. It is observed in Figure 6.11 (a) even though the
flow started to recirculate in the laminar model regime the flow did not separate.
The recirculation zones predicted by the two turbulence models are observed
to grow in size as compared to the laminar model recirculations. In order to
evaluate the difference between the two turbulence flow models by determining
the reattachment lengths, we specified a similar periodic boundary condition at
each model since the uniqueness of the solution is determined by the boundary
conditions.

The different sizes of the recirculation zones depicted in Figures 6.8 and 6.9
are evident. The Standard k − ε model shows separation at more than one loca-
tion. The first reattachment length predicted by the Standard k − ε model is at
x ≡ 0.002 m and the second length is seen to take place at x ≡ 0.008 m. These
predictions are illustrated in Figure 6.11 (b). The reattachment length predicted
by the Reynolds stress model is longer than the one predicted by Standard k − ε
and is at x ≡ 0.025 m as illustrated in Figure 6.11 (b). It is unfortunate that the
predicted reattachment lengths can not be verified with the experimental results.
However, it is clear that despite the unique boundary condition applied to the
two turbulence models the predicted results showed different results.
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Figure 6.7: Predicted velocity path lines by Laminar viscous model, Re = 0.14.
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Figure 6.8: Predicted velocity path lines by Laminar viscous model, Re = 5.9.



6.4 Presentation Of Results 119

1.04e+00

9.88e-01

9.36e-01

8.84e-01

8.32e-01

7.80e-01

7.28e-01

6.76e-01

6.24e-01

5.72e-01

5.20e-01

4.68e-01

4.16e-01

3.64e-01

3.12e-01

2.60e-01

2.08e-01

1.56e-01

1.04e-01

5.20e-02

Figure 6.9: Predicted velocity path lines by Standard k − ε model, Re = 0.14.
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The validation of the turbulence models against the experimental data is car-
ried out here. The numerical mean velocities obtained using the computed mass
flow rate from both the Standard k − ε and Reynolds-Stress models denoted by
(um)num are calculated from the following expression,

(um)num =
ṁnum

ρA
, (6.2)

where ṁ(num) is the numerical predicted mass flow rate, ρ is the fluid density
and A = dc⊥ is the cross-sectional area. The mean velocity values through the
entire experimental staggered timber stack obtained from the experimental data
are calculated from the following expression,

(um)exp =

[
Qs

Hs × Ws

] (χ

ε

)
, (6.3)

where Qs is the airflow through the stack, Hs is the stack height, Ws is the stack
width, χ and ε are the tortuosity and the porosity of the anisotropic porous con-
figuration, respectively. The experimental data will be used as a reference to com-
pare the two turbulence models, and the comparison will be done through the
percentage error (PE) for the mean velocity, which is defined as:

P E =
(um)exp − (um)num

(um)exp
× 100 %. (6.4)

According to the above expression for the percentage difference, positive values
indicate that the numerical values under estimated while negative values indi-
cate over estimation. A comparison of the numerical predicted mean velocities
obtained from both the Standard k − ε and Reynolds-Stress models with the ex-
perimental data are summarized in Table 6.8 and 6.9, respectively together with
their percentage error.

The pressure gradient (−∇p), specified as an input, and the mass flow rate com-
puted by FLUENT (ṁnum) are listed again in Tables 6.8 and 6.9 for easy refer-
ence. For comparison, the mass flow rates obtained using experimental data are
also listed in both tables mentioned above and they are represented by ṁexp.

Comparing the mean velocity obtained using the Standard k − ε model with the
experimental mean velocity, as given in Table 6.8, it is apparent that the numer-
ical predicted values under estimated the experimental data, except one value
where the numerical solution over estimated the experimental data by 1.5 %. In
this case the numerical results presented a difference ranging between 2.2 % and
9 % as listed in Table 6.8.
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It is evident from Table 6.9 that the numerical mean velocities obtained using
the Reynolds-Stress model tend to over estimate the measured values. The over
estimation ranges between the maximum value of 17.7 % to the lowest value of 0.4
%. However, an under estimation of 0.8 %, for this case is observed also indicated
in Table 6.9. In general the numerical predictive results compare fairly well with
the experimental data.

Table 6.8: Comparison of the predicted (um)num obtained using Standard k − ε
model with measured (um)exp obtained from Du Plessis (2002) with their per-
centage errors.

FLUENT- FLUENT-
INPUT OUTPUT
−∇p ṁnum [kg/s] ṁexp [kg/s] (um)num [m/s] (um)exp [m/s] (PE) [%]
5.50 0.0125 0.0129 0.89 0.91 2.2
13.19 0.0195 0.0191 1.38 1.36 - 1.5
21.98 0.025 0.0272 1.79 1.93 7.3
50.55 0.038 0.0403 2.72 2.86 4.9
120.90 0.059 0.065 4.20 4.61 8.9
276.92 0.090 0.0973 6.39 6.90 7.4
596.70 0.133 0.1421 9.41 10.08 6.7

Table 6.9: Comparison of the predicted (um)num obtained using Reynolds stress
model with measured (um)exp obtained from Du Plessis (2002) with their percent-
age errors.

FLUENT- FLUENT-
INPUT OUTPUT
−∇p ṁnum [kg/s] ṁexp [kg/s] (um)num [m/s] (um)exp [m/s] (PE) [%]
5.50 0.0146 0.0129 1.03 0.91 - 13.2
13.19 0.0225 0.0191 1.60 1.36 - 17.7
21.98 0.030 0.0272 2.09 1.93 - 8.3
50.55 0.045 0.0403 3.19 2.86 - 11.5
120.90 0.068 0.065 4.84 4.61 - 5.0
276.92 0.098 0.0973 6.93 6.90 - 0.4
596.70 0.141 0.1421 10.00 10.08 0.8
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6.4.2 Comparison Of The Numerical Results With

Experimental And Theoretical Results.

A number of computations have been performed to investigate the airflow through
a timber stack end shown in Figure 6.4 (b), using three different CFD models
mentioned earlier. This subsection is aimed at validating the results obtained
from these CFD models by comparing them with the experimental data obtained
from Du Plessis (2002), and the solutions obtained from the expressions for
the dimensionless friction factor through anisotropic porous media obtained in
Chapter 2. The analytic predictions from the three RRUC model expressions will
also be tested against the experimental data.

The predicted values obtained from all three viscous models considered in this
problem and the experimental results by Du Plessis (2002) are presented as the
dimensionless friction factor Fd2

s⊥ to be compared with the three RRUC models
presented in Section 2.2. It is evident from the graphs in Figure 6.12 to 6.14
that equations ( 2.47) and ( 2.49) yield results that are not near the experimental
data, therefore, these two equations are not appropriate methods to represent the
Forchheimer regime for this type of flow. Thus, for further comparison with the
numerical results only the RRUC models from equations ( 2.62), ( 2.65) and ( 2.68)
will be used.
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Figure 6.12: Comparison of dimensionless friction factor between theoretical
RRUC Model 1 equations with experimental data (Du Plessis (2002)); ε = 0.69.
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Figure 6.14: Comparison of dimensionless friction factor between theoretical
RRUC Model 3 equations with experimental data (Du Plessis (2002)); ε = 0.69.
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Figure 6.15 through 6.17 illustrate the comparison between the three CFD mod-
els, the theoretical models and the experimental data. The results will be pre-
sented in the following chronological order: firstly the computed dimensionless
friction factor obtained from the Laminar model, will be compared to the theo-
retical RRUC Model 1, Model 2 and Model 3, respectively. The numerical solu-
tions obtained using the Standard k − ε and the Reynolds-Stress model will re-
spectively, be compared to the three RRUC models. The two turbulence models
(Standard k − ε and Reynolds-Stress models) will be validated using the exper-
imental measurements. Lastly the theoretical RRUC models will also be tested
against the experimental data.

The percentage errors listed in Tables 6.10 to 6.12 are calculated as the percentage
of the difference between the dimensionless friction factor from the theoretical
RRUC models and the numerical results divided by the theoretical models values.
The percentage error expression yield:

err =
(Fd2

s⊥)
RRUC

− (Fd2
s⊥)num

(Fd2
s⊥)

RRUC

× 100 % (6.5)

The predicted dimensionless friction factor obtained from the Laminar viscous
model are listed in Table 6.10 and illustrated in Figure 6.15 together with the
results obtained from an RRUC Model 1 proposed by Diedericks (1999). It can be
clearly seen from Figure 6.15 that the numerical solution from the laminar model
correspond reasonably with the RRUC Model 1 results, obtained from equation
(2.62). The percentage error between the two results represented by err1 in Table
6.10 varies between 6.5 % and 26 %, except one point that is above the theoretical
solution by 29.26 %.

Figure 6.16 illustrates the deviation of the numerical predicted results, obtained
from the laminar model, from the theoretical RRUC Model 2, proposed by Lloyd
et al. (2004). The numerical results in this case over estimated the theoretical
results calculated from equation (2.65). The difference between the two results is
listed in Table 6.10 as a percentage error represented by err2. However, it is seen
from Figure 6.16 that the numerical prediction becomes better as the Reynolds
number increases but still in the laminar model regime.

The numerical dimensionless friction factor obtained from the laminar model
gives less accurate results when compared to the theoretical RRUC Model 3 re-
sults proposed by Cloete & Du Plessis (2006). A comparison between the numer-
ical data and the calculated dimensionless friction factor obtained from equation
(2.68) is given in Figure 6.17, and as can be seen the numerical results under esti-
mated the analytic predictions obtained from an RRUC Model 3. The numerical
values in this case are lower by the difference ranging between 23 % and 49 %.
This difference is presented in Table 6.10 as a percentage error represented by
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err3.

Table 6.10: Comparison of the predicted Fd2
s⊥ obtained using ”Laminar viscous

model” with analytical predicted Fd2
s⊥ obtained from the three RRUC Models 1,

2 and 3 with their percentage errors.

Fd2
s⊥

Reqds⊥
RRUC err1 RRUC err2 RRUC err3 Laminar

Model 1 % Model 2 % Model3 % Model
0.0486 15.9530 -29.26 6.5581 -214.44 29.1728 29.31 20.6213
0.1674 16.0044 6.48 6.6095 -126.46 29.2082 48.76 14.9677
0.3340 16.0765 6.66 6.6816 -124.59 29.2580 48.71 15.0062
1.6344 16.6393 7.85 7.2444 -111.66 29.6463 48.28 15.3335
3.1673 17.3027 8.54 7.9079 -100.12 30.1041 47.43 15.8249
5.9340 18.5001 8.68 9.1053 -85.53 30.9303 45.38 16.8934
8.3915 19.5637 8.41 10.1689 -76.21 31.6642 43.41 17.919
10.6279 20.5317 8.12 11.1368 -69.39 32.3321 41.65 18.8643
12.6988 21.4280 7.90 12.0331 -64.01 32.9505 40.11 19.735
21.5325 25.2512 7.82 15.8563 -46.80 35.5885 34.59 23.2775
35.4776 31.2866 9.69 21.8918 -29.07 39.7530 28.92 28.2557
47.0808 36.3084 12.04 26.9136 -18.67 43.2180 26.10 31.938
57.3638 40.7589 14.25 31.3641 -11.43 46.2888 24.49 34.9504
66.7931 44.8399 16.32 35.4451 -5.86 49.1047 23.59 37.5205
107.9226 62.6407 25.86 53.2459 12.78 61.3873 24.34 46.4428

As mentioned earlier, the use of the turbulence models do not imply that the
flow experiences turbulence, therefore, for comparison with the RRUC models
we assume that the flow is in the Forchheimer region at the point where FLU-
ENT ceases to use the laminar model. On comparison with an RRUC Model 1
dimensionless friction factor, it becomes clear that the numerical solutions ob-
tained from using the Standard k − ε model over estimated the analytical predic-
tions. The comparison is schematically illustrated in Figure 6.15. The difference
given in Table 6.11 as err1 varies between 14% and 26%.

Although the numerical results obtained using the laminar model over estimated
the analytical results obtained from an RRUC Model 2 in the Darcian regime, it
is evident from Figure 6.16 that the Standard k − ε model results predicted the
theoretical solutions nearly correctly in the Forchheimer regime. However, an
over estimation ranging between 26% and 35% is observed as listed in Table 6.11
as err2. The numerical results obtained using the same model as above also over
estimated the results obtained from the RRUC Model 3 as depicted in Figure 6.17,
but in this case the difference is higher when compared to the other two RRUC
models. The difference is also listed in Table 6.11, ranging between 16% to a
maximum value of 79.6% and these values are represented by err3.



6.4 Presentation Of Results 129

Table 6.11: Comparison of the predicted Fd2
s⊥ obtained using ”Standard k − ε

model” with analytical predicted Fd2
s⊥ obtained from the three RRUC Models 1,

2 and 3 with their percentage errors.

Fd2
s⊥

Reqds⊥
RRUC err1 RRUC err2 RRUC err3 Standard k − ε

Model 1 % Model 2 % Model3 % Model
106.3 62.00 -14.03 52.60 -34.41 60.90 -16.09 70.70
124.6 69.90 -15.02 60.50 -32.89 66.40 -21.08 80.40
140.8 76.90 -15.73 67.50 -31.85 71.20 -25.00 89.00
204.1 104.30 -17.74 94.90 -29.40 90.10 -36.29 122.80
293.5 143.00 -19.44 133.60 -27.84 116.80 -46.23 170.80
362 172.60 -20.34 163.20 -27.27 137.30 -51.27 207.70

419.6 197.60 -20.90 188.20 -26.94 154.50 -54.63 238.90
470.4 219.50 -21.37 210.10 -26.80 169.60 -57.08 266.40
734.4 333.80 -22.68 324.40 -26.23 248.50 -64.79 409.50
950.8 427.40 -23.35 418.00 -26.12 313.10 -68.38 527.20
1442.1 640.10 -24.89 630.70 -26.75 459.80 -73.86 799.40
2229.8 981.00 -26.02 971.60 -27.24 695.10 -77.86 1236.30
3388.5 1482.50 -25.72 1473.10 -26.52 1041.10 -79.02 1863.80
4989 2175.10 -25.41 2165.70 -25.95 1519.00 -79.57 2727.70

Table 6.12 gives a summary of the comparison between the numerical results
obtained using the Reynolds-Stress model and the three RRUC models. The nu-
merical results are found to be less than the RRUC Model 1’s results as listed in
Table 6.12 and also illustrated in Figure 6.15. The percentage error represented by
err1 in Table 6.12 shows that the difference fluctuates between 8.4% and 25%. As
mentioned previously, the negative percentage error indicates an over estimation,
it also applies in this case. The numerical results also show a better correspon-
dence with the results obtained from the RRUC Model 2, illustrated in Figure
6.16.

The percentage error, err2, in Table 6.12 shows that at the point of transition
when Re = 120.5, the numerical predictions over predicted the theoretical re-
sults and also when Re = 143, 1442.1, 3677.9 and 5306.6. At other values of the
Reynolds numbers, err2 shows that the numerical solutions under predicted the
RRUC Model 2’s results by a difference ranging from 4.09% to 9.13% also given
in Table 6.12. The numerical results obtained from using the Reynolds stress
model under estimated the RRUC Model 3’s results as tabulated in Table 6.12
by err3, but as the Reynolds number increases the numerical results yield higher
values compared to the RRUC Model 3’s results as depicted in Figure 6.17 and
also listed in Table 6.12.
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Table 6.12: Comparison of the predicted Fd2
s⊥ obtained using ”Reynolds-Stress

model” with analytical predicted Fd2
s⊥ obtained from the three RRUC Models 1,

2 and 3 with their percentage errors.

Fd2
s⊥

Reqds⊥
RRUC err1 RRUC err2 RRUC err3 Reynolds-Stress

Model 1 % Model 2 % Model3 % Model
120.5 68.10 8.37 58.70 -6.30 65.10 4.15 62.40
143 77.80 9.90 68.40 -2.49 71.90 2.50 70.10

168.2 88.70 16.01 79.30 6.05 79.40 6.17 74.50
244.5 121.80 15.85 112.40 8.81 102.20 -0.29 102.50
349.4 167.20 14.23 157.80 9.13 133.50 -7.42 143.40
428.7 201.50 12.95 192.10 8.69 157.20 -11.58 175.40
494.8 230.10 11.95 220.70 8.20 176.90 -14.53 202.60
548.8 253.50 9.94 244.10 6.47 193.10 -18.23 228.30
848.9 383.30 7.57 373.90 5.24 282.70 -25.33 354.30
1110.5 496.60 9.12 487.20 7.37 360.80 -25.08 451.30
1442.1 640.10 -24.89 630.70 -26.75 459.80 -73.86 799.40
1693.3 748.80 9.08 739.40 7.93 534.80 -27.30 680.80
2569.4 1127.90 4.88 1118.60 4.09 796.40 -34.72 1072.90
3677.9 1607.70 -6.80 1598.30 -7.43 1127.50 -52.29 1717.10
5306.6 2312.60 -10.89 2303.20 -11.34 1613.90 -58.89 2564.40
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The experimental data is also plotted on the graphs in Figures 6.15 through 6.17
and is used as a reference value in equation ( 6.5) to calculate the percentage error
for comparison with both the numerical solutions and the analytical predictions
from the three RRUC Models. Both the turbulence models yield a good approxi-
mation when compared to the experimental data as can be seen from all the three
figures [Figure 6.15 to 6.17]. The percentage error between the experimental data
and the Standard k − ε and Reynolds stress model is represented by err1 and err2,
respectively in Table 6.13.

Table 6.13: Comparison of the predicted Fd2
s⊥ obtained using ”Standard k − ε

model” and ”Reynolds-Stress model” with the experimental data.

Fd2
s⊥

Reqds⊥
Standard k − ε err1 Reynolds-Stress err2 Experimental

Model % Model % Data
501.3 266.40 -6.56 228.30 8.68 250.00
745.3 409.50 -1.49 354.30 12.19 403.50
1059.3 527.20 -11.41 451.30 4.63 473.20
1570.7 799.40 -8.91 680.80 7.25 734.00
2532.4 1236.30 -13.57 1072.90 1.44 1088.60
3791.4 1863.80 -11.89 1717.10 -3.09 1665.70
5538 2727.70 -11.01 2564.40 -4.36 2457.20

The following comparison demonstrate how each RRUC model produces the ex-
perimental data. The difference between the experimental data and the results
obtained from the expressions of the RRUC Model 1, 2 and 3 are listed in Table
6.14 as err1, err2 and err3, respectively. The RRUC Model 1 and Model 2 pre-
dicted the experimental data fairly well as illustrated in Figures 6.15 and 6.16
respectively. However, as shown in Figure 6.17 the analytical predictions from
the RRUC Model 3 under estimated the experimental data by far when compared
to other two RRUC models.
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Table 6.14: Comparison of the analytic predicted Fd2
s⊥ obtained from the three

RRUC Models 1, 2 and 3 with the experimental data.

Fd2
s⊥

Reqds⊥
RRUC err1 RRUC err2 RRUC err3 Experimental

Model 1 % Model 2 % Model3 % Data
501.3 232.90 6.84 223.50 10.60 178.90 28.44 250.00
745.3 338.50 16.11 329.10 18.44 251.70 37.62 403.50

1059.3 474.40 -0.25 465.00 1.73 345.50 26.99 473.20
1570.7 695.70 5.22 686.30 6.50 498.20 32.13 734.00
2532.4 1111.90 -2.14 1102.60 -1.29 785.40 27.85 1088.60
3791.4 1656.90 0.53 1647.50 1.09 1161.40 30.28 1665.70
5538 2412.80 1.81 2403.40 2.19 1683.00 31.51 2457.20
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Figure 6.15: Comparison between the friction factor predicted by Laminar vis-
cous model ; Standard k − ε and Reynolds-Stress models with the experimental
data and theoretical Model 1.
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Figure 6.16: Comparison between the friction factor predicted by Laminar vis-
cous model ; Standard k − ε and Reynolds-Stress models with the experimental
data and theoretical Model 2.
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Figure 6.17: Comparison between the friction factor predicted by Laminar vis-
cous model ; Standard k − ε and Reynolds-Stress models with the experimental
data and theoretical Model 3.
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6.5 Discussion

The pressure drop across the timber stack end in a timber drying kiln, presented
as a dimensionless friction factor Fd2

s⊥ , was the main parameter of interest of the
present chapter. A set of numerical simulation has been carried out to simulate
airflow through the timber stack end, resembling an anisotropic porous structure
for several Reynolds numbers from a low value to 5538. The simulations were
conducted using the commercial CFD code FLUENT 6.2.16.

The choice of grid size of 4668 nodes and 4480 number of elements was found
to provide grid independence results reported in the previous sections of this
chapter. Three tests for the grid independence were done, for the purpose of
improving the accuracy of the results. The grids were refined with subsequent
repeat of simulation to arrive at this grid distribution, as discussed in Subsection
6.3.2.

Du Plessis (2002) presented experimental measurements of the airflow through
the entire timber stack, for both the inline and staggered ends. His results for the
timber stack ends are used for comparison with the current simulation results, in
order to gain confidence in the numerical predictions. Three different porous
medium models representative of an anisotropic porous structure, referred to
as RRUC Model 1, 2 and 3 have been introduced, and were applied to predict
the dimensionless friction factor across the timber stack end. The numerical re-
sults were also validated using these models in both the Darcy and Forchheimer
regimes. Lastly the RRUC models were tested against the experimental data.

The mean velocity profiles across the computational domain and parameters such
as reattachment lengths and recirculation zones were also investigate. We no-
ticed, as presented in Subsection 6.4.1 that the flow through the computational
domain encountered a sudden expansion followed by a sudden contraction down-
stream, hence, the formation of the recirculation zones as the Reynolds number
increases from very low values. The reattachment lengths obtained from using
the Standard k − ε model and Reynolds-Stress model yielded different values,
despite common boundary conditions applied to each model. This observation
gave us an overview of these two models.

A comparison of the numerical mean velocity values, obtained from using both
the Standard k − ε model and Reynolds stress model, with the experimental
data is summarized in Tables 6.8 and 6.9. it is evident that the Standard k − ε
model generally under estimated the experimental mean velocity values, while
the Reynolds-Stress model’s results over estimated the measured values. This
observation also showed the difference between the two turbulence models.
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The principal objective of the validation study presented above was to examine
the sensitivity of the numerical results to the different models used in the present
simulations by comparing them with the available data. In Subsection 6.4.2 we
plotted the dimensionless friction factor Fd2

s⊥ as a function of the Reynolds num-
ber, as illustrated in Figures 6.15 through 6.17. A better correspondence of the
numerical results, from all the CFD viscous models considered, with the analyt-
ical predictions from an RRUC Model 1, indicate that the model adequately ad-
dresses the geometric structure of the computational domain considered in this
chapter. The predictions obtained from the RRUC Model 1 also predicted the
experimental data fairly well, confirming the above statement.

The two turbulence models still show a slight difference when compared to both
the experimental data and analytical predictions, as can be seen in Figures 6.15
to 6.17. Thus it can be concluded that the results obtained from each model are
not unique. The Laminar viscous model gave less accurate results when com-
pared with both the analytical predictions from the RRUC Models 2 and 3. The
discrepancy in these cases is due to the limitations these models have on the ge-
ometric structure. However, the two turbulence models gave a reasonable corre-
spondence when compared to the RRUC Model 2 in the Forchheimer region. The
predictions from an RRUC Model 2 also compared well with the experimental
data in this region.

Although equations ( 2.54) and ( 2.57) (Model 2 and 3) are reported to be suffi-
ciently accurate for porosities up to 0.75 some limitations were revealed numer-
ically in the previous chapter. This difference between the results predicted by
RRUC Model 2 and 3 with the numerical results, is indicative of the fact that
these two models are limited to a certain range of porosity less than 0.75 since the
porosity for the current porous structure is 0.69.

Another factor contributing to the discrepancy between the predicted results, ex-
perimental data and the theoretical Model 3 may be explained by noting that the
configuration of the present geometry, Figure 6.4, differs from the conceptual
geometry used in the derivation of equation ( 2.57). For a staggered array, equa-
tion ( 2.57) was modeled for geometries where the solid phase in the transverse
channel is greater than or equal to the width of the stream-wise fluid channel,
ds⊥ ≥ dc⊥ , [ Cloete & Du Plessis (2006)].
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Conclusion

Detailed numerical studies were performed in order to investigate the quantita-
tive correspondence of fully developed laminar flow in porous structures repre-
sented by an RRUC model. To achieve this, an investigation of low Reynolds
number fluid flow in parallel plates has been conducted using a two dimensional
finite-volume Navier-Stokes solver FLUENT, Fluent Inc. (2005). The validation
of numerical solutions was accomplished by comparing numerical and analytical
fully developed velocity profiles across the channel. In addition, hydrodynamic
entrance lengths are compared with data published in earlier studies

The numerical results of the non-dimensional entrance length Lhy/DH, deter-
mined using the different criteria showed not to vary with Reynolds number at
1 ≤ Re ≤ 60 and increased with increasing Reynolds number. It was also ob-
served that numerically predicted Lhy/ReDH values are approximately constant
at Re ≥ 80. In general, the calculated values considered comparable with those
reported in the literature. However based on numerical calculations and analy-
sis, the entrance length proposed by Du Plessis & Collins seem to perform better
than those predicted based on estimation of the centerline velocity of the fully
developed flow.

As mentioned previously the main part of this study was to verify an assump-
tion made in the RRUC pore-scale model with respect to the fully developed
flow throughout the pore section. To accomplish this, we have simulated two-
dimensional single phase fluid flow for eight different geometries. The peri-
odic boundary conditions were used to attain the fully developed flow condition.
Based on numerical analysis in a few geometries for porosities ranging from 0.19
to 0.96, we conclude that indeed the plane Poiseuille flow is constant through
the stream-wise pore sections of the RRUC geometry, provided the porosity ε,
does not exceed a certain threshold value. This upper limit, though, will vary
depending on configuration of the geometry considered.



Conclusion 138

However, it was found that the plane Poiseuille flow is not well represented in the
transverse channels. This research also underlines the care which must be taken
in interpreting the wall shear stress along the transverse channels of the RRUC.
It was numerically observed that the wall shear stress in the transverse channels
cannot be estimated on the basis of the plane Poiseuille flow. It requires a careful
separation of the wall shear stress in the transverse region of interest.

Three different numerical CFD models have been employed to simulate airflow
through a section of the timber stack end model. The predictions of the anisotropic
prismatic materials were validated against the experimental dimensionless fric-
tion factor and numerical predictions. The Standard k − ε and Reynolds-Stress
turbulence models appeared to reflect the experimental conditions with equal
accuracy. However, Reynolds-Stress model demanded less computational time
than the Standard k-epsilon model, which could be a method of choice for large
size problems.

Qualitative trends are captured equally well by the two turbulence models when
compared to the dimensionless friction factor obtained from Model 1 and 2 in the
Forchheimer regime. Model 1 and 2 proposed by Diedericks (1999) and Lloyd et
al. (2004), provide the best overall approximation when compared with the ex-
perimental data. The numerical solutions in the Laminar model regime also gave
good approximations when compared to RRUC Model 1 in the Darcian regime.
RRUC Models 1 and 2 gave greater differences when compared to the numerical
solutions in the Darcian regime.

In summary, we were able to confirm the plane Poiseuille flow through stream-
wise channels of the RRUC geometry numerically. We determined that the de-
terministic expression relating the pressure gradient to the flow rate of Newto-
nian fluid flow through anisotropic porous media (Model 1), despite its simplic-
ity, may be successfully used in practical applications. CFD simulations using
FLUENT (Fluent Inc. (2005), have proved to be a useful tool for predicting flow
through complex geometries including porous media
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Averaging Identities And Rules

A.1 Derivation Of Volume Averaging Identities

The averaging identities are useful when deriving and transforming the aver-
aged transport equations. The following identities, with α constant and ψ and
λ fluid phase tensors of similar order, are derived using the averaging operator
definitions presented in Section 2.1.1. Only the Identities used in the volumetric
averaging procedure are derived.
The relation between the phase average and intrinsic phase averages is given by

〈ψ〉 =
1

U0

∫∫∫

U f

ψ dU

=
U f

U0

1

U f

∫∫∫

U f

ψ dU

= ε〈ψ〉 f . (A.1)

If we set ψ = 1 in equation (2.5) it follows that,

〈1〉 =
1

U0

∫∫∫

U f

1 dU

=
U f

U0

= ε. (A.2)
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The intrinsic phase average of ψ = 1 yields:

〈1〉 f =
1

U f

∫∫∫

U f

1 dU

=
U f

U f

= 1. (A.3)

Using the definition of the phase average, equation (2.5) we obtain the following
identity

〈ψ + λ〉 =
1

U0

∫∫∫

U f

(ψ + λ) dU

=
1

U0

∫∫∫

U f

ψ dU +
1

U0

∫∫∫

U f

λ dU

= 〈ψ〉 + 〈λ〉. (A.4)

If α is any constant, it may be removed from the averaging operator in case of the
average of a product between α and a dependent variable

〈αψ〉 =
1

U0

∫∫∫

U f

αψ dU

= α
1

U0

∫∫∫

U f

ψ dU

= α〈ψ〉. (A.5)

Applying the definition of the intrinsic phase average, we obtain

〈ψ〉 f 〈λ〉 f + 〈{ψ}{λ}〉 f =
1

U f

∫∫∫

U f

ψ dU
1

U f

∫∫∫

U f

λ dU +
1

U f

∫∫∫

U f

{ψ}{λ} dU

=
1

U f

∫∫∫

U f

ψλ dU

= 〈ψλ〉 f . (A.6)



A.2 Identities Based On The Averaging Theorem 141

The following identity shows that the average of the deviation is zero

〈{ψ}〉 =
1

U0

∫∫∫

U f

{ψ} dU

=
1

U0

∫∫∫

U f

(ψ − 〈ψ〉 f ) dU

= 0. (A.7)

A.2 Identities Based On The Averaging Theorem

Slattery’s averaging theorem yields the following equation

∇
∫∫∫

U f

ψ dU =
∫∫

S f f

nψ dS. (A.8)

The following theorem is derived using equation (A.8) and the divergence theo-
rem. The divergence theorem as applied to U f yields

∫∫∫

U f

∇ψ dU =
∫∫

∂U f

nψ dS

=
∫∫

S f s

nψ dS +
∫∫

S f f

nψ dS (A.9)

and

∫∫

S f f

nψ dS =
∫∫∫

U f

∇ψ dU −
∫∫

S f s

nψ dS (A.10)

Substituting equation (A.10) into equation (A.8), we obtain

∇
∫∫∫

U f

ψ dU =
∫∫∫

U f

∇ψ dU −
∫∫

S f s

nψ dS (A.11)

It then follows that

∫∫∫

U f

∇ψ dU = ∇
∫∫∫

U f

ψ dU +
∫∫

S f s

nψ dS. (A.12)

Taking the volume U0 to be of constant magnitude and shape, we get
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1

U0

∫∫∫

U f

∇ψ dU = ∇
(

1

U0

∫∫∫

U f

ψ dU

)
+

1

U0

∫∫

S f s

nψ dS. (A.13)

Using the phase average definition we obtain the following theorem

〈∇ψ〉 = ∇〈ψ〉 +
1

U0

∫∫

S f s

nψ dS. (A.14)

If we set ψ = 1 and use the results of equation (A.2), equation (A.14) yields

∇ε = − 1

U0

∫∫

S f s

n dS. (A.15)

Using the identity in equation (A.1), equation (A.14) can be written as

〈∇ψ〉 = ∇
(
ε〈ψ〉 f

)
+

1

U0

∫∫

S f s

nψ dS. (A.16)

Applying the identity ∇αξ = (∇α)ξ + α(∇ξ) to the term ∇
(
ε〈ψ〉 f

)
in equation

(A.16) together with equation (A.15), we obtain

〈∇ψ〉 = ∇
(
ε〈ψ〉 f

)
+ ε∇〈ψ〉 f +

1

U0

∫∫

S f s

nψ dS

= 〈ψ〉 f

(
− 1

U0

) ∫∫

S f s

n dS +
1

U0

∫∫

S f s

nψ dS + ε∇〈ψ〉 f

=
1

U0

∫∫

S f s

n(ψ − 〈ψ〉 f ) dS + ε∇〈ψ〉 f

= ε∇〈ψ〉 f +
1

U0

∫∫

S f s

n{ψ} dS. (A.17)

Since equation (A.14) is valid for any tensorial quantity ψ, it also yields the fol-
lowing

〈∇ · ψ〉 = ∇ · 〈ψ〉 +
1

U0

∫∫

S f s

ψ · n dS. (A.18)
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A.3 Volume Averaging Of Transport Equations

The following expression gives a relation between the superficial velocity q and
the interstitial velocity v

q ≡ 〈v〉 = ε〈v〉 f (A.19)

The volumetric phase averaging of the continuity equation (2.1), yields

〈∇ · v〉 = ∇ · 〈v〉 +
1

U0

∫∫

S f s

n · v dS = 0 {rule A.18} (A.20)

Applying the no-slip condition to the above equation (Eq. (A.20)), yields:

∇ · 〈v〉 + 0 = 0

∇ · q = 0. {Eq. A.19} (A.21)

The volumetric averaging of each term in the momentum transport equation (2.2)
respectively, yields

〈
ρ

∂v

∂t

〉
= ρ

〈
∂v

∂t

〉
{rule A.5}

= ρ
∂

∂t
〈v〉

= ρ
∂q

∂t
{Eq. A.19} (A.22)

〈∇ · (ρvv)〉 = ρ〈∇ · vv〉 {rule A.5}
= ρ∇ · 〈vv〉 +

ρ

U0

∫∫

S f s

n · vv dS {rule A.18}

= ρ∇ · 〈vv〉 {rule A.18}

= ρ∇ ·
{

1

ε
〈v〉〈v〉 + ε〈{v}{v}〉 f

}
{rule A.1 & A.6}

= ρ∇ ·
{

qq/ε + ε〈{v}{v}〉 f

}
{rule A.1 & Eq. A.19}(A.23)
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〈ρg〉 = ρ〈g〉 {rule A.5}

=
ρ

U0

∫∫∫

U f

g dU {Eq. (2.5)}

= ρg ·
U f

U0

= ερg (A.24)

〈∇p〉 = ε∇〈p〉 f +
1

U0

∫∫

S f s

n{p} dS {rule A.17}

= ε∇p f +
1

U0

∫∫

S f s

n{p} dS (A.25)

〈µ∇2v〉 = µ〈∇2v〉 {rule A.5}
= µ〈∇ · ∇v〉
= µ∇ · 〈∇v〉 +

µ

U0

∫∫

S f s

n · ∇v dS {rule A.18}

= µ∇ ·
{
∇〈v〉 +

1

U0

∫∫

S f s

nv dS

}
+

1

U0

∫∫

S f s

µn · ∇v dS {rule A.14}

= µ∇ · {∇〈v〉} +
1

U0

∫∫

S f s

µn · ∇v dS {rule A.14}

= µ∇ · ∇q +
1

U0

∫∫

S f s

µn · ∇v dS {rule A.19}

= µ∇2q +
1

U0

∫∫

S f s

µn · ∇v dS. (A.26)

Adding all the above volume averaged terms, we obtain the following volumetric
phase averaged momentum transport equation,

ρ
∂q

∂t
+ ρ∇ · (qq/ ε) − ερg + ε∇p f −∇ · 〈τ〉 + ρ∇ · 〈{v}{v}〉 +

1

U0

∫∫

S f s

(
n{p} − n · τ

)
ds = 0. (A.27)
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Dimensionless Groups

The dimensionless groups that are needed in this study are presented in this sec-
tion. The velocity in the fully developed region between parallel plates, defined
by Shah & London (1978) is written as

u(y) = − 1

2µ

dp

dx

[
yH − y2

]
. (B.1)

Differentiating u(y) with respect to y, we obtain

du

dy
|y=H =

H

2µ

dp

dx
. (B.2)

The shear stress at the wall is given by,

τw = µ
du

dy
=

H

2

dp

dx
. (B.3)

The mean velocity is obtained from,

um =
1

H

∫ H

0
u(y)dy

= − H2

12µ

dp

dx
. (B.4)

According to Shah & London (1978) the Reynolds number is defined as the ra-
tio of flow momentum rate (”inertia force”) to viscous force for a specified duct
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geometry. The Reynolds number therefore can be defined as:

Re =
ρumDH

µ
(B.5)

where ρ is the fluid density, um is the mean velocity, µ is the fluid viscosity and
DH is the hydraulic diameter, defined as follows

DH =
4 × area

wetted perimeter
=

4A

P
. (B.6)

For parallel plates the hydraulic diameter is twice the separation of plates. In our
case

DH = 2H. (B.7)

The Fanning friction factor is defined in Bird et al. (1960) as follows,

f =
τw

1
2 ρu2

m

. (B.8)

Mass flow rate represented by w is the product of the cross-sectional area H, the
density ρ and the mean velocity um,

w = Hρum. (B.9)

Substituting the mean velocity um from equation (B.4) into equation (B.9), we
obtain,

w = −H3ρ

12µ

dp

dx
. (B.10)

Substituting the value of τw from equation (B.3) in equation (B.8) yields,

f =
dp
dx

H
2

1
2 ρu2

m

. (B.11)

Inserting
dp
dx from equation (B.10) into equation (B.11), we get
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f = −
(

H

2

)
12µw

H3ρ(1
2 ρu2

m)
. (B.12)

Substituting w from equation (B.9) in equation (B.12), f simplifies to,

f = − 12µ

Hρum
. (B.13)

Inserting H = DH
2 in equation (B.13) yields,

f =
12µ

DH
2 ρum

=
24µ

ρum

=
24

Re
(B.14)

where Re is the Reynolds number. The hydrodynamic entrance length is defined
in subsection 4.1.2 and its dimensionless form is expressed as

L+
hy =

Lhy

DHRe
. (B.15)

The axial distance in the flow direction for the hydrodynamic entrance region is
defined as

x+ =
x

DHRe
. (B.16)

The new definition of the hydrodynamic entrance length defined by Du Plessis &
Collins (1992) is

L+
c = x+

c =

[
3.44

f Re

]2

. (B.17)
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To obtain the Incremental Pressure Drop number we use equation (B.1) and (B.4).
Thus follows

(
u

um

)2

=
36y2

H2
− 72y3

H3
+

36y4

H4
. (B.18)

From Shah & London (1978) the Momentum Flux Correlation Factor Kd(x) is de-
fined as

Kd(x) =
1

Ac

∫

Ac

(
u

um

)2

dAc

=
1

H

∫ H

0

(
u

um

)2

dy

=
1

H

∫ H

0

(
36y2

H2
− 72y3

H3
+

36y4

H4

)
dy

=
6

5
. (B.19)

From equation (B.18) it follows that

(
u

um

)3

=
216y3

H3
− 648y4

H4
+

648y5

H5
− 216y6

H6
. (B.20)

The Kinetic Energy Correlation Factor Ke(x) is also defined by Shah and London
(1978) as

Ke(x) =
1

Ac

∫

Ac

(
u

um

)3

dAc

=
1

H

∫ H

0

(
u

um

)3

dy

=
1

H

∫ H

0

(
216y3

H3
− 648y4

H4
+

648y5

H5
− 216y6

H6

)
dy

= 1.543. (B.21)
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Thus the Incremental Pressure Drop Number K(∞) is as follows

K(∞) =
2

Ac

∫

Ac

[(
u

um

)3

−
(

u

um

)2
]

dAc

= 2 [Ke(x) − Kd(x)]

= 0.686. (B.22)
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