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Abstract 

The objective of this study was to implement an orbital propagation algo­
rithm, which could be used for the purpose of mission planning and hardware­
in-the-loop simulations for the SUNSAT microsatellite. Different propagation 
algorithms were investigated in order to find one for which the initial condi­
tions for the propagator was freely obtainable and that satisfied the accuracy 
specification as determined by the onboard activities. The SGP4 analytical 
algorithm was selected for this purpose. 

Along with the propagation of the position of the satellite in its orbit, 
different models were investigated and implemented for modelling the space 
environment as the sensors observe it onboard the satellite. A conceptual 
study was performed on methods to improve the quality of the orbital predic­
tions by the combination of sensor measurements with an orbital propagation 
algorithm in an extended Kalman filter. 

Knowledge was gained and documented in the field of astrodynamics and 
it was applied in a practical situation during the launch and operation of 
SUNSAT. 
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Opsomming 

Die doelwit van hierdie studie was die implementering van 'n wentelbaan 
voorspellings-algoritme wat gebruik kon word vir missie-beplanning en ap­
paratuur-in-die-lus simulasie van die SUNSAT mikrosatelliet. Verskeie voor­
spellings algoritmes is ondersoek in 'n poging om 'n algoritme te vind waar­
van die begintoestande algemeen beskikbaar is en wat aan die vereistes vir 
akkuraatheid, soos bepaal deur die aktiwiteite aan boord van die satelliet, 
voldoen. Die SGP4 analitiese voorspellings-algoritme is gekies vir hierdie 
doel. 

Saam met die voorspelling van die posisie van die satelliet in die wentel­
baan is verskeie modelle wat die ruimte omgewing beskryf soos wat dit deur 
die sensore waargeneem word, ondersoek en gelmplementeer. 'n Ondersoek in 
beginsel is ingestel na metodes wat gebruik kan word om die kwaliteit van die 
wentelbaan-voorspellings te verbeter deur sensor-lesings en 'n voorspellings­
algoritme te kombineer in 'n uitgebreide Kalman-filter. 

Kennis is versamel en gedokumenteer in die studieveld van ruimte-dina­
mika en hierdie kennis is prakties toegepas tydens die lansering en bedryf 
van SUNSAT. 
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Chapter 1 

Introduction 

The advent of the space age in the latter part of the twentieth century has 
seen the evolution of a number of new fields of research. One of these fields 
consisted of the determination of the orbit and the prediction of the posi­
tion of a satellite at some moment in the future by using knowledge of the 
orbit. Initially methods used to predict the future position of satellites was 
borrowed form the astronomical community, which used these methods to 
predict the position of the celestial bodies. The flaws in the astronomical 
methods applied to satellite orbit predictions soon became evident. Pertur­
bative forces, which are unique to satellite orbits, caused major deviations 
from predictions made with the existing methods. Along with the propaga­
tion algorithms, orbit determination algorithms were required which could 
be used to find the initial positions of satellites for use in the prediction 
algorithms. The shortcomings of the astronomical prediction and orbit de­
termination algorithms necessitated scientists and engineers to develop new 
prediction algorithms. It was customised for satellites in Earth orbit in that 
it modelled forces and effects unique to orbits around Earth. 

Knowledge of the position and orbit of a spacecraft is required for all 
missions to outer space. Knowledge of the orbit is required, as the position 
of the satellite is a function of the shape and orientation of the orbit in 
space. The position of the satellite at a future moment in time is primarily 
required to ensure that communication with the satellite is established from 
a groundstation. This task is only possible during times when the satellite is 
in view of a groundstation. Other tasks that require knowledge concerning 
the future position of the satellite are onboard operations such as remote 
sensing and observation of the Earth and the space environment near the 
Earth, which need to be planned and scheduled beforehand. 

The research presented in this document consisted of an investigation 
into orbit prediction algorithms to be used for orbit and mission analysis and 
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CHAPTER 1. INTRODUCTION 2 

planning activities related to the Stellenboch University Satellite (SUNSAT). 
Low accuracy prediction algorithms were considered sufficient for use during 
planning and analysis, but high precision predictions were required for the 
daily operation of the satellite. 

SUNSAT was built at the University of Stellenbosch and was launched 
in February 1999 into a near-circular polar orbit with an altitude ranging 
from 650 km to 870 km. The primary mission objectives were to successfully 
test, manage and operate the full payload of the satellite. The high-resolution 
pushbroom imager can be considered the most important part of the payload. 
Secondary objectives were the testing of new orientation-control software 
on the Attitude Determination and Control System (ADCS) hardware, the 
testing of functional software for implementation on the on-board computers 
and a variety of experiments involving the amateur radio community. An 
overview of all the sub-systems on the satellite is provided in appendix A. 

1.1 Problem Definition 

1.1.1 Mission phases 

The lifespan of a satellite is divided into different phases [27]. These phases­
usually applicable to satellites in geostationary orbit-include 

• pre-launch 

• LEOP (Launch and Early Orbit Phase) 

• spacecraft commissioning and subsystem calibration 

• main mission phase 

• EOL (End Of Life) 

The pre-launch phase in itself consists of different phases. On the level of 
the spacecraft, it includes the development of the different subsystems, the 
testing of the satellite on component level, the integration and environmen­
tal testing of the spacecraft and the testing of the complete system as an 
integrated unit. During this phase the interface between the spacecraft and 
the launch vehicle have to be provided and the launch and launch-procedures 
have to be finalised. A preliminary flight operations plan for the initial part 
of the orbit has to be decided on. 

The LEOP phase is very critical in terms of the stability and safety of 
the satellite. It is very important that the spacecraft is stabilised as soon as 
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CHAPTER 1. INTRODUCTION 3 

possible after the launch in order to protect delicate sensors from exposure 
to direct sunlight and ensure that over-heating of one side of the spacecraft 
does not occur. The major objective of this phase and the commissioning 
and calibration phase is to establish the spacecraft correctly in its operational 
configuration and to produce evidence that it is performing according to its 
predefined requirements. 

The main mission phase can begin after it has been verified that the 
satellite support structure-communication links, ADCS, Onboard Comput­
ers (OBC's) and power system-is healthy and able to support the operations 
of the main payload. This part of the overall mission is in itself divided into 
separate missions which has to be executed on a day-to-day basis. During 
this phase of the mission, the activities onboard the satellite and those at 
the groundstation have to be coordinated in such a way to ensure that every 
mission objective is met in a time and energy optimal way. Muraoka et al. 
[105] achieved this objective with an autonomous mission planning scheduler 
for the Aster satellite. 

For SUNSAT, the EOL phase will be initiated when the Nickel-Cadmium 
batteries which provide the power for the satellite, start to fail. It is expected 
that this stage of the mission will be reached approximately 4 to 5 years after 
the launch. During this phase no more missions for the main payload will 
be scheduled and spacecraft activities will be downscaled to basic telemetry 
and telecommand. This will continue until the spacecraft is no longer able 
to support these most basic activities. 

1.1.2 Objectives 

The research in this document was performed from the point of view pre­
sented in the previous section. The groundstation support describing the 
orbital motion of the satellite was required to ensure the successful execu­
tion of the various onboard activities and mission objectives. The last four 
mission phases depend heavily on accurate predictions of the satellite's po­
sition. Onboard operations and communication between the satellite and 
the groundstation need to be scheduled during the productive part of the 
mission. During the EOL phase of the mission, the orbital predictions could 
sometimes be necessary to predict the time of re-entry of the satellite into 
the atmosphere. 

The framework within which this groundstation support was provided 
can best be explained at the hand of figure 1.1. The top part of this figure 
describes the motion of an Earth orbiting satellite in its orbit. The orbital 
motion of a satellite is primarily determined by the equations of motion, but is 
greatly influenced by various perturbative forces. The combination of these 
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Predicted 
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Figure 1.1: Block diagram representation of the framework within which the 
study was performed. 

forces determines the position and velocity of the satellite at a particular 
moment in time. For some satellites the orbital motion of the satellite can 
be controlled by using thrusters, but for SUNSAT this was not the case as 
no thrusting mechanism is available onboard the satellite. 

The bottom part of the figure describes the methods which are used to 
predict the position and velocity of the satellite . The propagation model 
consists of a mathematical description of the motion of the satellite and the 
forces influencing it . This model uses initial conditions defined at a partic­
ular moment as input to the propagation algorithm. The initial conditions 
are required as they describe the position and velocity of the satellite for 
a specific moment- which is known as an epoch-at which the prediction 
commences. Due to the complexity of describing the exact motion of the 
satellite, the propagation model can only predict the satellite's position and 
velocity accurately for a limited period. New initial condit ions- defined at a 
new epoch- are then required. This will again provide an accurate prediction 
of the satellite's position, provided that the initial conditions are accurate. 
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The sensors in figure 1.1 can be used to improve the predictions of the 
propagation model. The sensors can be divided into two groups. The one 
group consists of sensor-systems that are used to create updated initial con­
dition of the satellite for use in the propagator. These sensors usually are 
Earth-based. The other group of sensors consists of sensors onboard the 
satellite that can be used to improve the predicted position and velocity of 
the satellite. 

The predicted position of the satellite is not only useful for activities 
surrounding the satellite, it is also possible to validate sensors by determining 
when a particular sensor is able to provide valid data. This could improve 
the quality of the prediction even more by eliminating the possibility of using 
invalid data in the propagator. An example of this can be found with the use 
of the Sun sensors to obtain orientation information of the satellite. These 
sensors can only provide data concerning the position of the Sun relative to 
the satellite when the Sun is visible to the satellite. By predicting the times 
when the satellite would be eclipsed by the Earth, the periods during which 
valid sensor data are available can be determined. 

This study was primarily concerned with the various propagation models 
used to predict the position of the satellite from a set of initial conditions. A 
thorough study was performed to gain knowledge of the available propagation 
models and the ways in which these models are used. Existing algorithms 
and techniques used in the practical implementation of these algorithms were 
studied in order to developed a propagation algorithm which could be used 
for the mission planning onboard SUNSAT and to perform hardware-in-the­
loop (HIL) simulations of the ADCS on an engineering model of the satellite. 
The use of sensors to improve the predictions of the propagation algorithm 
and methods of orbit determination were only studied in concept and can be 
considered as the logical next step for an extension of this research. 

A block diagram presentation of the connection between the orbit prop­
agator, environmental models and the HIL simulation is presented in figure 
1.2). Engelbrecht [15] presents a study of the HIL simulation for SUNSAT. 

1.1.3 Simulation Software Framework 

As defined above, the developed propagation algorithm were to be used in 
a HIL simulation of the control system and for mission planning activities. 
The following framework was specified within which the development of the 
software, which was used to fulfil these objectives, occurred. It was extracted 
from the preliminary study conducted by Du Plessis and Engelbrecht [13]. 

• It was required that the software should to be able to operate in a multi-
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Figure 1.2: Block diagram representation indicating the connection between 
the orbit propagator, environmental models and the HIL simulation. 

computer setup by providing the output data via a network (TCP lIP) 
connection to user applications. 

• The nature and format of the output data had to be representative of 
the sensor data of the ADCS system of the SUNSAT micro-satellite for 
it to be used in a HIL simulation. 

• The software needed to be modular in order to be transparent to new 
users. Modularity was required to ease future developments or changes 
to the source code. 

• It had to provide a user-friendly Graphical Users Interface for ease of 
operation by a new user. 

By combining the above stated specifications with the overall objective of the 
study, it can be seen that the selected software structure and architecture 
needed to satisfy the immediate requirements of the study while still being 
well suited to changes and upgrades of the software. 

1.2 Overview of chapters 

The document is structured so that it can be used effectively by both new­
comers to the field of astrodynamics and by persons with a good knowledge of 
the field. The main part of the document are presented with the assumption 
that the reader is familiar with the field of research. The appendices present 
the additional information to supplement the main part. It is recommended 
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that newcomers should first familiarise themselves with the contents of the 
appendices before the main part of the document is read. 

The main text consists of the following chapters: 

• Chapter 2 introduces the guidelines and criteria used in the research 
performed throughout the rest of this study. 

• Chapter 3 constitutes the most important part of this study and con­
sists of a discussion of various propagation and space environmental 
models and their implementation. Whenever possible, an evaluation 
of the applicable models is performed. An indication is given as to 
where the propagation and environmental models would fit into future 
research. 

• Chapter 4 provides an overview of the software environment developed 
for the implementation of the propagation and environmental models 
and the accuracy of predictions that was performed by the developed 
software, is evaluated. 

• Chapter 5 consists of a conclusion and recommendations for further 
research. 

As stated above, the appendices consist of information which is supple­
mentary to the research, with some of the appendices explaining subjects 
which make up an integral part of the field of astrodynamics. 

• Appendix A presents a short overview of the SUNSAT microsatellite, 
the subsystems onboard the satellite and the basic functionality of these 
subsystems. 

• Appendix B consists of a discussion of different coordinate and time 
systems used throughout the document and presents methods of con­
version between the different coordinate systems. 

• Appendix C introduces the equations of motion modelling the motion 
of a satellite in its orbit. Various descriptions of the shape, orientation 
and size of the orbit and the position of the satellite within the orbit 
are presented. 

• Appendix D describes the perturbative forces influencing the motion of 
a satellite in its orbit. This appendix consists of two parts. In the first 
part a general description of perturbations is provided in order to pro­
vide the reader with an overview of the effect that perturbations have 
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on the orbit. The second part of this appendix provides a mathemati­
cal description of the perturbative forces for inclusion into propagation 
algorithms. 

• In appendix E the mathematical algorithm of the International Ge­
omagnetic Reference Field (IGRF) for calculating the magnetic field 
vector is presented. 

• Appendix F presents the algorithm for the SGP4 analytical propagation 
algorithm. 

• Appendix G discusses various practicalities involved with the use of 
orbital elements in propagation algorithms. The different formats in 
which the elements are presented, an interpretation of the two-line 
element format and a discussion on initial conditions is provided. 
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Chapter 2 

Performance criteria 

In this chapter the criteria is formulated for the development of a kinematic 
orbit simulation environment1 for use in the hardware-in-the-loop (HIL) sim­
ulation of the ADCS of the SUNSAT satellite and for mission planning ac­
tivities. The measurement accuracy of the respective sensor sUbsystems and 
the hardware environment into which this simulation environment had to be 
embedded, are investigated in order to formulate the required accuracy and 
design specifications of the simulation software. 

The development' of the simulation environment occurred at the hand of 
the following objectives: 

• it had to accurately propagate the position of the satellite in the orbit. 
This means that an appropriate propagation mode12 to accurately de­
termine the position of the satellite in relation to the space environment 
as a function of time, was required. 

• it had to simulate the measurements made by the ADCS sensors by 
using accurate models of the space environment. 

• The output data of the above mentioned simulations needed to be pro­
vided in a number of coordinate systems which corresponded with the 
measurement systems of the actual sensors. 

• the simulated data had to be available to users on other computers. 

• the simulation environment was required for mission planning opera­
tions. 

1 Refer to De Villiers [12] for previous research on this subject. 
2The full significance of "an appropriate propagation model "will become clear in chap­

ter 3. 
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CHAPTER 2. PERFORMANCE CRITERIA 10 

The remainder of this chapter will translate these requirements into practical 
design-specifications. 

The accuracy of the mathematical models used in the simulation was 
determined by the activities and measurement accuracy of the sensors on 
board the satellite. As the simulation environment was to be used during 
actual mission planning operations, the highest possible simulation accuracy 
was required in order to model the actual position and derive the orientation 
of the satellite. This section will stipulate the specifications for the math­
ematical models used to simulate the motion of the satellite and the space 
environment seen by the internal sensors. 

2.1 Propagator Accuracy Specification 

The HIL simulation of the ADCS consists of the simulation of all the ac­
tivities that require the, use of the control system. Steyn [33] provides the 
specifications for the attitude control of the SUNSAT satellite. One of the 
specifications states that "the imager boresight position had to be determined 
better than 1 km close to the sub-satellite point ... ". This specification de­
fines the required accuracy of the propagator that is used to simulate the po­
sition of the satellite in the orbit. The prediction accuracy of the sub-satellite 
point had to be better than the 1 km accuracy needed for the imager. When 
it is compared to sampling (the spatial equivalent of the Nyquist criteria), 
the predicted position of the sub-satellite point had to be closer than 0.3 km 
to its true value to ensure that the specified imager-accuracy is achieved3

. 

In theory a modelling accuracy of 0.5 km is necessary for a measurement 
accuracy of 1 km. 

The 0.3 km accuracy can be transformed into an angular specification: 
when the Earth is taken as a perfect sphere with a diameter of 6378.14 
km, it has a circumference of 40075 km. When a great circle of the Earth 
(the equator) is divided by 360°, the 0.3 km specification is equivalent to an 
angular accuracy of 0.047 mrad (0.0027°). This means that the simulated 
position of the satellite has to be within a geocentric angle of approximately 
0.05 mrad from the true sub-satellite point. 

3 All subsequent modelling accuracy specifications will be three times more accurate 
than the measurement accuracy of the sensor. 
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2.2 Internal Sensor Modelling Specifications 

Each one of the ADCS sensors is related to a different aspect of the space en­
vironment. The modelling accuracy required for every environment is deter­
mined by the measurement accuracy of the sensor that measures the relevant 
environment. For each one of the following sensors the required modelling 
accuracy will be specified. 

• The 3-axis magnetometer is used to measure the geomagnetic field vec­
tor of the Earth. This measured data is filtered through a Kalman filter 
and the resulting vector is compared to a geomagnetic field model of 
the Earth to determine the attitude of the satellite. Since the vector 
can be determined with an accuracy of 1° per axis after Kalman filter­
ing and referred to the geomagnetic field model, the geomagnetic field 
needed to be modelled to an accuracy of at least 0.3° along all the axis. 

• The 2-axis horizon sensor measures the pitch and roll attitude angles 
to an accuracy of 0.5 mrad (0.029°). The horizon sensors [32] use 
the position of the Sun and the flattening of the Earth to make a 
measurement with the position of the satellite as reference. Since these 
sensors measure the position of the sunlit horizon, the position of the 
horizon has to be modelled to a higher accuracy than what the sensor 
can measure. The pixel resolution in these sensors is 0.25 mrad. To 
ensure that the simulated measurement is as accurate as possible, the 
modelling of the position of the horizon in terms of the angle between 
the sub-satellite point and the horizon need to be at least 0.08 mrad 
accurate. 

• The fine Sun sensor has an angular resolution of 2 mrad (0.117°) when 
it measures the position of the Sun relative to the satellite. This sensor 
has a narrow slit4 which is used to focus the sun on a CCD. The slit 
ensures that the focused image of the Sun on the CCD is a point-source 
representation of the Sun. This sensor is used to obtain high accuracy 
yaw orientation data of the satellite. The CCD-type sensors usually 
has a pixel resolution that is twice the required measuring accuracy 
obtained from the sensor, which means that it has a pixel resolution of 
1 mrad. In order to simulate the measurement of the position of the 
Sun accurately (the Sun is modelled as a single point source) within 
the 1 mrad resolution, the position of the Sun need to be modelled 
more accurate than the sensor pixel resolution. When the three times 

4Refer to Beuche [6] for a discussion on diffraction. 
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over-sampling specification is taken into consideration, the position of 
the Sun needs to be modelled to an accuracy of 0.3 mrad (0.019°). 

• The coarse Sun sensors are used to determine rough roll, pitch and 
yaw attitude information of the satellite. Since these sensors consume 
almost no power and are very reliable, they were used immediately 
after launch to determine the unstabilised satellite's attitude relative 
to the Sun. As the name specifies, these sensors do not have high 
measurement accuracy. It measures the position of the Sun relative to 
the satellite with an angular resolution of 5°. Since these sensors have 
lower measurement accuracy than the fine Sun sensors, the required 
modelling accuracy for the position of the Sun was determined by the 
fine Sun sensors and not by these coarse sensors . 

• Unlike the other ADCS sensors, the star sensor is a largely independent 
sub-system that does not supply the ADCS with raw measurements. 
This sensor interprets the measurements and provides processed orien­
tation data. The star sensor can determine the 3-axis orientation of the 
satellite with an accuracy of 0.5 mrad (Steyn [33]). The environment 
that should be simulated when testing this sensor is a complete rotat­
ing image of the sky at nighttime. Since this is a complex task, which 
falls outside the scope of this study, it was not attempted. The other 
option was to simulate the orientation data that will be supplied to the 
ADCS by the star sensor. As this would require knowledge about the 
attitude of the satellite, it was again not attempted. 
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Chapter 3 

Orbit Propagation 

This chapter will discuss some of the mathematical models available for mod­
elling the space environment as viewed from a satellite. The models applica­
ble to every aspect of the space environment will be presented and evaluated. 
SUNSAT and the sensors onboard this particular satellite were used to de­
termine which aspects of the space environment would be modelled. 

It is assumed that the reader has some background knowledge on the 
fundamentals of orbital motion, coordinate systems and transformations be­
tween coordinate systems. These topics are covered in the appendices and it 
is recommended that the reader should be familiar with the contents of the 
appendices before reading this chapter. 

3.1 Modelling Satellite Position 

This section will handle the problem of predicting the state (position and 
velocity) of a satellite in orbit at a given time, t, given the state at some 
reference time, to. The problem which will be addressed here is historically 
known as Kepler's problem or simply as orbital propagation. Differ­
ent solutions to the problem of orbital propagation exist depending on the 
intended application and the required accuracy of prediction. The simplified 
case where no perturbations are taken into account in the prediction of the 
satellite's motion is commonly known as Keplerian motion and a solution 
can be obtained via the two-body propagator. It can be extended to include 
some perturbative effects, but is of limited use due to its short-term accuracy. 
When the perturbations1 to the orbit is taken into account, the motion of 
the satellite is known as non-Keplerian motion with solutions of a higher 

1 Refer to appendix refOrbitalPerturbations for a discussion of orbital perturbations 
and the underlying mathematics. 

13 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ORBIT PROPAGATION 14 

complexity than the basic two-body propagator. The solutions available for 
this problem can be divided into two categories viz. analytical propagators 
and numerical propagators. 

3.1.1 Orbital Models 

Two-body Propagator 

The two-body propagator is the most basic of all propagational algorithms 
with its main disadvantage being that it does not consider the perturbations. 
However, because of its simplicity, it is a good starting point for describing 
the motion of the satellite in its orbit2, something which is not always easy 
to grasp when a complex propagational algorithm is used. The two-body 
propagator is often used for rough calculations and analysis during mission 
planning phases when high accuracy is not required. Combined with the 
simplified descriptions for the perturbative forces, it is a useful tool during 
the mission planning phase or when basic orbital analysis is performed. For 
the daily operation of the satellite, high accuracy predictions are required to 
accurately determine the access times of the satellite from the groundstation. 

The basic two-body equation of motion was the first method used by 
Kepler himself to find a solution to what is known today as Kepler's problem. 
He defined the problem by expressing the position of the satellite in terms 
of the classical or Keplerian orbital elements as defined in appendix C. The 
solution starts with the six classical elements a, e, i , w, nand Mo defined at 
a particular epoch. The parameter Mo is often substituted with the true 
anomaly, 1/ , or the eccentric anomaly, E. When the assumption is made 
that no perturbative forces are present, the values of the first five classical 
elements stay constant, but the value of M changes linearly with time via 
the equation 

M = Mo +ntlt (3.1) 

In this equation tlt is the time since epoch and n is the mean motion of the 
satellite defined by 

(3.2) 

From this, the eccentric anomaly can be determined. It is obtained from the 
algorithm known as Kepler 's equation 

M = E - esinE (3.3) 

2Refer to Brown [7] for a discussion on the basic two-body motion and its applications. 
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Since this is a transcendental equation, it cannot be inverted directly to 
obtain E from M. It is usually solved through an iterative method such 
as the Newton-Rhapson technique with the initial value taken as E = M . 
The true anomaly, lI, can be calculated from the eccentric anomaly from the 
equations 

sinll = yl- e2 sinE 
1- ecosE 

cos II = cos E - e 
1- ecosE 

II = tan-1 sin II cos II 

(3.4) 

The result obtained from equation 3.4 presents the position of the satellite 
as a function of time in terms of the classical orbital elements. This for­
mat of presenting the satellite state is not very suitable for the purposes of 
analysing its motion relative to a rotating Earth or comparing its position 
with the celestial bodies. For this reason, the position of the satellite is 
usually transformed3 to another coordinate system in which it is easier to 
analyse the state of the satellite. These transformations include conversion 
to the Eel coordinate system for comparison with celestial bodies, conver­
sion to the SEZ coordinate system for tracking purposes or representing the 
ground-track of the satellite in terms of geodetic latitude and longitude. 

Analytical Theories 

Analytical theories of orbital propagation consist of an analytical description 
of the motion of a satellite under the influence of the perturbative forces . 
These theories are of historical significance as they were the first propaga­
tional theories that were developed. They are also of practical significance 
as they provide fast and computationally efficient desriptions of a satellite's 
motion and give some insight into the influence of the perturbations on the 
orbit. 

Methods of Kozai and Brouwer In October 1959 two outstanding ar­
ticles on the influence of perturbations on Low Earth Orbit satellites were 
published in the same issue of the Astronomical Journal. The authors of the 
two articles were Yoshihide Kozai and Dirk Brouwer. The theories presented 
by these two articles were so outstanding that numerous advanced propaga­
tional theories are still based on it today. Kozai and Brouwer had the same 
ideas, but they had different approaches to solving the problem. 

3Refer to section B.3 for a discussion of coordinate transformations. 
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Kozai: Kozai's approach was to use LaGrange's variation of parame­
ters4 to describe the effect of an oblate Earth on the motion of a satellite. His 
original theory did not consider atmospheric drag. The influence of the per­
turbative forces was separated into secular, short-periodic and long-periodic 
variations. These variations were combined to find the position of the satel­
lite. The process followed and the results obtained in appendix 0 for the 
analytical modelling of the oblate Earth, was the exact process followed and 
results obtained by Kozai. As indicated, he used an averaging technique to 
determine the mean variations in the elements. As this technique is unique 
to Kozai's theory, only variations in the elements that was determined with 
Kozai's averaging process can be used in his propagation theory. 

Kozai's theory is described by the following equations: 

a = a + i1asp 

e eo + i1e LP + i1esp 

't io + i1iLP + i1isp 

w Wo + wi1t + i1wLP + i1wsp 

0 0 0 + Oi1t + i10LP + i10sp 

M Mo + ni1t + i1Msp 

n { 3a;J,.jl - e5 } 
no 1 + 4p2 (2 - 3 sin2 (io)) 

no - I?i (3.5) 

where overbars indicate "mean" values and the subscripts "SP" and "LP" 
indicate short-periodic and long-periodic variations, respectively. The i1t 
indicate the time that has passed since the epoch of the elements, 0 and w 

4The variation of parameters technique is discussed in appendix D. 
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CHAPTER 3. ORBIT PROPAGATION 17 

are the secular variations in the respective elements and the "0" subscript 
indicate the initial mean values of the elements. 

The new classical element set calculated from equation 3.5 is used with 
the two-body propagator presented in the previous section to determine the 
position of the satellite. Every time the position of the satellite is calculated, 
equation 3.5 must be used to update the classical elements. 

The equations presented above present the full theory of Kozai, but are 
sometimes used in part as a perturbed two-body propagator theory. Es­
cobal [16] describes such a case where only the dominating perturbative ef­
fects are considered for propagation. 

The accuracy of the perturbation theory depends on the number of terms 
included in the series expansion for each perturbative effect. For simpli­
fications, the periodic terms are often ignored and only the secular terms 
are included. This results in the propagation of the "mean" position of the 
satellite. 

Brouwer: Kozai developed his theory for the variations in the classical 
elements while Brouwer developed his for the variations in the Delauney5 
elements. His theory modelled the same perturbations as that of Kozai­
oblate Earth without drag modelling-but his calculation of the variations 
in the elements due to perturbative forces differed from that of Kozai. The 
updated set of classical elements determined from Brouwer's theory is similar 
to that presented by Kozai and is found from 

M = Mo + fi!J.t + !J.MLP + !J.Msp 

5Refer to Vallado [35] for a discussion of Delauney variables. 
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CHAPTER 3. ORBIT PROPAGATION 18 

(3.6) 

Brouwer also refer to the initial orbital elements as mean elements, but 
they differ from those defined by Kozai as their derivation was based on 
different assumptions concerning the perturbations. The expressions for the 
short periodic variations are the same in both the theories of Brouwer and 
Kozai, but the expressions for the long-periodic and secular variation differ 
considerably. 

Simplified General Perturbation Methods The analytical theories in­
troduced by Kozai and Brouwer in 1959 had significant shortcomings in that 
both theories only modelled the perturbative effects of an oblate Earth. It 
soon became apparent that atmospheric drag greatly influences the motion of 
satellites in Low Earth Orbit and that the perturbative effect of drag needed 
to be included in the propagations. This lead to the extension of the above 
mentioned theories to include the effect of drag on the orbit. 

Kozai's theory was used as the basis for the first operational, analytical 
propagation technique. A simplified version of his gravitational model was 
combined with a drag model that expresses the influence of drag on the mean 
anomaly as linear with time. In the 1970's, the U.S. Air Force conducted a 
survey to determine what theories were available and in order to obtain a 
measure of configuration control over all the theories that were in circulation. 
They published the results of this investigation in the Spacetrack Report No.3 
[103]. The propagation model derived from the theory of Kozai was published 
in this report as the Simplified General Perturbation (SGP) technique. 
The North American Aerospace Defence Command (NORAD) started to 
distribute orbital element sets that were compatible with the SGP in that it 
presented the Kozai mean values for the elements. Due to their format , these 
element sets quickly became known as two-line element sets or TLE. TLE's 
are the format of orbital elements most commonly available today. NORAD 
provides TLE's for over 9000 objects orbiting the Earth. 

Brouwer developed his theory with the perturbations being presented in 
a canonical format, which, due to its ease of use when implementing new per­
turbations, became very popular. This theory was also extended to include 
the effect of atmospheric drag on the orbit with a power density function 
being used as an atmospheric model. The most widely used form of this 
extension to the work of Brouwer was published in the Spacetrack Report 
No.3 [103] and became known as the SGP4 algorithm. The SGP4 algo­
rithm was developed in such a way that the same TLE's could be used in 
any of the propagational theories presented in the Spacetrack Report. This 
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was achieved by changing the interpretation of some of the parameters in the 
TLE, such as the derivatives of the mean motion and the drag parameter, 
depending on the propagational algorithm that is used. As stated above, the 
theories of Brouwer and Kozai are based on different assumptions concern­
ing the mean values of the elements. In order to maintain generality in the 
composition of the TLE's, the SGP4 algorithm transforms the Kozai mean 
values presented in the TLE to osculating values which are compatible with 
the theory of Brouwer. 

Semianalytical Theories 

Analytical propagation theories dominated numerical theories for many years 
due to its faster speed of execution. With the use of modern computers, high 
accuracy propagation predictions using numerical methods can be computed 
quicker than previously, but it still requires a lot of computational time and 
power. This opened the door for the use of semianalytical techniques which 
includes the best of both worlds in that it executes almost as fast as analyt­
ical theories while it has the accuracy of numerical methods. As previously 
mentioned, the increased accuracy of the numerical methods results from 
the numerical calculation of the influence of perturbative forces on the orbit. 
The idea is to separate the short-periodic variations in the orbit from the 
secular and long-periodic variations. The high frequency in variation of the 
short-periodics usually requires a very small integration step size that slows 
the propagation process. By removing the short-periodics, the long-periodics 
and secular variations can be numerically integrated with large step sizes (on 
the order of a day). At the integration step times the contributions from the 
short-periodics-which is modelled as Fourier series in the 27r periodic fast 
varying true anomaly-can be combined to determine the osculating motion 
of the satellite. 

The Draper Semianalytical Satellite Theory (DSST) was developed 
by Paul Cefola and his colleagues at the C.S. Draper Laboratory based on the 
above-mentioned idea. It is a very high accuracy propagation method that 
is flexible enough for most orbit geometries and which contains complete 
models for all the major perturbative forces. The operation of DSST can 
be described by referring to figure D.l. The secular variations in the orbit 
are numerically integrated with large integration step sizes with the periodic 
terms being calculated at the integration step times. 

Brouwer's theory became the basis for numerous extensions in the analyt­
ical theories of orbital propagation. The SGP4 algorithm was extended to the 
SDP4 algorithm for use with satellites above Low Earth Orbit-considered 
as deep space. The algorithm uses numerical integration techniques to model 
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some of the perturbations above low Earth orbit. 

Numerical propagators 

Numerical propagators predict the motion of a satellite by numerically inte­
grating the perturbed equation of motion: 

..... J.L.......... a= --r+a r3 p (3.7) 

With the inclusion of the most important perturbations for low Earth orbit, 
this expression can be written as 

...., J.L....,...., ........... ...... 
a = - 3r + anonspherical + adrag + a3- body + aSR 

r 
(3.8) 

where the perturbative accelerations result from the nonspherical Earth, at­
mospheric drag, third body attractions and solar radiation pressure, respec­
tively. Expressions for the numerical calculation of the perturbative accelera­
tions are supplied in appendix D.2.2. The perturbative accelerations can also 
be calculated from the direct numerical integration of the variation of param­
eter equations of Gauss and Lagrange6 . The advantage of using equation 3.8 
is that all the secular and periodic variations is automatically included into 
the computation of the satellite motion via the formulation of the perturbing 
forces. When all the perturbative forces are included to the highest possible 
order, the propagation made with the numerical integration of equation 3.8 
is of a superior accuracy compared to analytical techniques. 

Unlike analytical solutions (general perturbations) , no complete numer­
ical propagation theory exists. Complete high accuracy implementations of 
the special perturbation theory do exist , but the computer source-code is 
usually not available for general use. The numerical technique that is re­
quired for a particular application usually needs to be developed from first 
principles. By considering the specified accuracy, the degree of accuracy 
to which the perturbative accelerations need to be calculated can be deter­
mined. The solution of equation 3.8 becomes quite a complex process when 
all the different methods of solution and perturbative models are considered 
to a significant degree of accuracy. 

The two numerical methods that are commonly used are Encke's method 
and Cowell's method. These two theories are presented in appendix D.2.2. 
When the first numerical techniques were implemented, Encke's method was 
preferred over that of Cowell as it was computationally much more efficient 
for implementation on the limited capability computers available at that 

6Refer to appendix D.2.1. 
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time. The increase in the computational power and speed of modern com­
puters combined with the simplicity in the formulation of Cowell's method 
cause it to be the preferred numerical method. A variety of numerical in­
tegration techniques exists for the solution of Cowell's method and it is not 
always easy to determine what technique should be used. Vallado [35] dis­
cusses some of the more important numerical integration techniques used and 
provides an indication of the integration step size that should be selected for 
different applications. The integration step size is one of the most important 
parameters in the numerical propagation algorithm as it influences both the 
execution speed and the accuracy of the propagation. 

The following passage will summarise three independent implementations 
of the special perturbations techniques . 

• Barker et al. [3] used a high accuracy numerical propagation technique 
to compare the accuracy of various analytical and semianalytical prop­
agation theories. This numerical propagator used a 12th order summed 
Cowell/ Adams Predict-Partial Correct integrator. The perturbations 
were modelled as follows: the gravitational field of the Earth used a 
21 x 21 Goddard Earth Model (GEM), drag was modelled using the 
Jacchia 70 dynamic atmosphere model, lunar and solar gravitational 
attraction were included and the direct solar radiation pressure was 
used. The accuracy of the system was stated as classified. 

\ 

• Shum et al. [31] developed an extremely high accuracy numerical prop­
agator for use in the calibration of the sensors of the Space Surveillance 
Network (SSN). The integration technique is not stated, but the par­
ticular perturbation models used and the accuracy of the predictions 
are presented. The gravitational field of the Earth was modelled with 
the 70 x 70 JGM-3 gravitational model. The positions of the Sun and 
the Moon were obtained from the high precision DE-200 ephemeris 
supplied by the Jet Propulsion Laboratory (JPL). Atmospheric drag 
was modelled with the Drag Temperature Model (DTM). The other 
perturbations that were modelled included the solid Earth tides (de­
formations in the Earth due to the perturbing forces), the ocean tides, 
solar radiation pressure and the Earth radiation pressure-solar radi­
ation reflecting off the Earth. In order to ensure the maximum accu­
racy, all measurements, calculations and positions of the sensor sites 
were referred to the same J2000 mean equinox and mean equator ref­
erence frame. With this complete numerical technique, the following 
prediction accuracy was obtained: the orbits of Lageos-1 and Lageos-2 
which is at 6000 km altitude were 50 m accurate over a 14 month time 
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span and the 1300 km TOPEX/Poseidon orbit was predicted 1500 m 
accurate over a 40-day time span . 

• Du Toit [14] required a relatively high accuracy propagation of the orbit 
for the evaluation of constellation control procedures using drag. As 
it was a conceptual investigation, absolute accuracy was not required, 
but the inclusion of drag and all the major perturbative effects were 
essential. The propagations performed lasted only for a few days and 
for this reason no long-term high accuracy predictions were needed. He 
used a 4th order Runge-Kutta numerical integration algorithm with a 
step size of 28 seconds. The step size meant that the position of the 
satellite would be updated 200 times per orbit. It was expected that 
the small step size would maintain the maximum accuracy over the 
short period under consideration. The perturbations were modelled as 
follows: a modified exponentially varying drag model was used with 
the modifications representing the variations due to solar flares and 
the day-night variations, the gravitational model only included the J2 

zonal harmonics, the third-body model used simplified orbits for the 
Sun and the Moon and solar radiation pressure was modelled as a 
constant value. 

It is significant to note that the accuracy of each implementation in the 
above case study depended purely on the application for which it was needed. 
In the first two cases the numerical technique was selected due to its superior 
accuracy, but for the third case the numeric solution was selected over a 
general perturbations method due to its superior accuracy over the short term 
and the ease with which it could be included in the simulation environment 
of the particular application. 

3.1.2 Evaluation of Propagation Techniques 

Barker et al. [3] performed a study to determine the accuracy of several 
general perturbations and semianalytical theories. The general perturba­
tions theories which were evaluated included SGP, SGP4 and the Hoots An­
alytic Dynamic Ephemeris (HANDE). The semianalytic theories included the 
Semianalytic Liu Theory (SALT), which was developed specifically as an im­
provement to SGP4 for high drag and/or high eccentricity orbits, and DSST. 
These theories were evaluated against a high accuracy special perturbations 
technique. In order to perform a comprehensive evaluation of the propaga­
tion theories, a variety of orbits representative of the entire orbit geometries 
were required. These orbits were grouped into different categories for evalu­
ation purposes. The evaluation which is of importance to this study is that 
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performed on the category of orbits with eccentricity smaller than 0.05 (cir­
cular orbits) and altitude between 575 km and 1000 km. Figure 3.1 shows 
the propagation accuracy of the different theories compared to the special 
perturbations theory for this category of orbits. The values presented in the 
graph are the root mean square (RMS) values of the position magnitudes 
relative to the special perturbations theory. The RMS values were computed 
form the equation 

RM S = V x' + C : 1 ) ,,' (3.9) 

where x represents the mean value and (J the standard deviation of a data 
sample and n represents the number op data points. 
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Figure 3.1: Propagator accuracy for satellites in low Earth orbit. 

Satellites in the orbit category under investigation experience moderate 
quantities of drag with the major perturbation effect being that of the oblate 
Earth. This becomes apparent from figure7 3.1 where the unmodelled grav­
itational harmonics in all the theories except DSST and the special pertur­
bations theory caused short periodic and longer periodic variations (on the 

7Image taken from Barker et al. [3]. 
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order of a day). The high accuracy predictions were obtained from DSST by 
using an 8 x 8 gravitational model with the inclusion of some higher order 
harmonics. 

In chapter 2 it is stated that the required accuracy of the propagation 
algorithm should be approximately 0.3 km when projected onto the surface 
of the Earth. Figure 3.1 presents the RMS magnitude of the error in the 
position vector for the various propagation theories and not the projection 
onto the surface of the Earth. When the value is interpreted as a projection 
onto the surface of the Earth, it can be seen that the projected accuracy 
will at least be of the same magnitude as the RMS position magnitude, but 
probably better than that presented in figure 3.1. From Jones [19] it can be 
seen that the major part of this error represents an along-track displacement 
from the true position of the satellite. 

From the study performed by Barker et al. it became apparent that three 
possibilities existed from which a propagator had to be selected for use during 
this study. The three methods were SGP4, DSST and a special perturbations 
technique. SGP4 was considered due to the availability of the computer 
code for the algorithm and the availability of orbital elements that are used 
with this theory for all Earth orbiting satellites. DSST was considered due 
to the accuracy of the propagator, its speed of computation and the ease 
with which it could be customised to a variety of orbital geometries. The 
special perturbations technique was considered due to its supreme accuracy 
of propagation. From figure 3.1 it can be seen that DSST has a propagation 
accuracy of approximately 150 m. From the study of Shum et al. [31] it was 
found that a high quality special perturbations technique such as used by 
Barker et al. could be considered as absolutely accurate for this study. SGP4 
has an initial propagation accuracy of approximately 1 km that translates to 
a projection error that falls on the boundary of the above specified accuracy. 

When the accuracy of the propagators are compared, an important fac­
tor, which should be taken into consideration, is the accuracy of the initial 
conditions, which is discussed in appendix G. The TLE files generated by 
NORAD and distributed via the Internet are generated by means of a differ­
ential correction process by using the SGP4 algorithm, which has an initial 
accuracy of only 1 km. DSST can use the TLE data as initial conditions, but 
osculating orbital data for the special perturbations method are not generally 
available. The best substitution is the use of GPS measurements made on­
board the satellite, but this is not generally available. When the data in the 
TLE is used as initial conditions in the special perturbations technique and 
DSST, the accuracy of the propagations will degrade. DSST will continue 
the propagation with the 1 km accuracy of the TLE, but the accuracy of the 
special perturbations technique cannot be predicted. 
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When the problem with the initial conditions is taken into consideration, 
it is clear that a special perturbations technique could not be used for this 
study. The computer code for the DSST algorithm could not be obtained 
which left SGP4 as the only option available for implementation. In evaluat­
ing SGP4 from figure 3.1, it is found that the accuracy specification for the 
propagation algorithm will either be marginally satisfied or not be satisfied 
at all. In order to maintain propagation accuracy close to the theoretical 
accuracy of the theory, the orbital elements should be updated as frequently 
as possible and at least once a week. When high accuracy ephemerides is 
required, the propagation should be performed close to the epoch of the ele­
ment set in order to use the inherent accuracy of the TLE for propagations 
performed close to the epoch. 

An important feature of propagation theories which became apparent 
from the study performed by Barker et al. [3] and which should be noted is 
that a propagation theory does not perform equally effective for all orbital 
geometries. Some of the theories-such as SALT and HANDE-were devel­
oped to model high eccentricity orbits and therefore they perform well for 
this type of orbits. However, these same two theories delivered an average 
performance for the medium drag circular orbits under consideration in the 
Barker-study. Vallado [35] compares the accuracy of a simplified numerical 
propagator to a very high accuracy numerical propagator for various orbits. 
It is clear that perturbations that are of importance are different for each 
orbit considered. The accuracy of a propagation technique will be different 
for different types of orbits as the influence of perturbations on the orbit 
depends on the altitude, eccentricity and inclination of the orbit. 

3.2 Modelling the space environment 

3.2.1 Modelling the Sun Position 

Sun Prediction Models 

The position of the Sun and the Moon can be determined from high accuracy 
numerically integrated ephemerides or from analytical algorithms. The high 
accuracy ephemerides are calculated at the Jet Propulsion Laboratory and 
supplied in the annual Astronomical Almanac. A variety of analytical theo­
ries exist and it is usually more convenient to use an analytical algorithm in 
a computer program than the list of numerically determined ephemerides. 

For this particular study, the position of the Moon was not required. 
Meeus [22] presents a low accuracy and a high accuracy analytical algorithm 
for calculation of ephemeris for the Sun. The low accuracy algorithm has 
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an 0.01° accuracy which is better than the accuracy that was specified in 
chapter 2. 

The assumption is made that the Earth follows a purely elliptical orbit . 
It means that the perturbations to the orbit of the Earth due to the gravi­
tation of the Moon and other planets can be ignored. In the first instance 
the number of Julian centuries from J2000, T, need to be calculated from 
equation B.6. The geometric mean longitude of the Sun referred to the mean 
equinox of date is calculated from 

Lo = 280.46645° + 36000.76983° T + 0.0003032° T2 

The mean anomaly of the Sun is 

M = 357.52910° + 35999.05030° T - 0.0001559° T2 
-0.00000048° T3 

The eccentricity of the Earth's orbit around the Sun is 

e = 0.016708617 - 0.000042037 T - 0.0000001236 T2 

The equation for the center of the Sun is 

C = (1.914600° - 0.004817° T - 0.000014° T2) sin M 

+(0.019993° - 0.000101 ° T) sin 2M 

+0.000290 sin 3M 

From these equations the true longitude of the Sun follows as 

e = Lo +C 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

For the calculation of the apparent longitude, A, of the Sun, e needs to 
be corrected for the nutation and the aberration8

. For this particular low 
accuracy algorithm, this correction is calculated as follows 

n = 125.04° - 1934.136° T 

A = e - 0.00569° - 0.00478° sin n 

(3.15) 

(3.16) 

For the calculation of the apparent position of the Sun, the above defined 
expressions must be used with the value for the apparent obliquity of the 

8Seidelmann [30] defines aberration as: "the apparent angular displacement of the 
observed position of a celestial object from its geometric position, caused by the finite 
velocity of light in combination with the motions of the observer and the observed object." 
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ecliptic, E. This value is determined by correcting the mean obliquity of the 
ecliptic, EO, defined by equation B.4 to obtain the quantity 

E = EO + 0.00256° cos n 

The right ascension and declination of the Sun can then be determined as 

cos Esin e 
tan a = e 

cos -
(3.17) 

sin <5 = sin E tan e (3.18) 

These values of right ascension and declination are combined with the mag­
nitude of the Sun's radius vector, r0 ,expressed in astronomical units (AU)9, 
as 

_ 1.000001018(1 - e2
) AU 

T0 - - - - - ----'.,..---,----'--
. 1 + ecos(v) 

(3.19) 

to determine the components of the Sun's radius vector in the ECI coordinate 
system as 

[ 

T0 cos(a) cos(<5) 1 
r 0 = r 0 sin(a) cos(<5) 

r 0 sin(<5) 

Evaluation of Sun Prediction Model 

(3.20) 

The low-accuracy model presented by Meeus [22] was selected for modelling 
the position of the Sun. Meeus states the accuracy as being approximately 
0.01°. This could only be evaluated by comparison with the true position of 
the Sun. The most accurate ephemeris available for the Sun is the DE200 
numerically integrated ephemeris from JPL that is presented in the Astro­
nomical Almanac [1]. When the ephemeris for a particular time is required, 
the on-line computation of the position of the Sun can be used. The on­
line calculation is performed by the software known as MICA lO (Multiyear 
Interactive Computer Almanac) which uses the same DE200 ephemeris as 
is used for the calculations presented in the Astronomical Almanac. These 
ephemerides were the most accurate data available for evaluating the model 
of the Sun and therefore it was considered to be representative of the true 
position of the Sun. 

91 AU = 1.4959787 X 1011 m 
lOhttp://aa.usno.navy.mil/ AA/ 
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The Astronomical Almanac presents the position of the Sun in terms of 
right ascension, declination and radial distance. By using the conversion 
methods presented in appendix B.3.6, it can be converted to Cartesian ECI 
coordinates. This is the most useful reference frame for comparison between 
the data from MICA and the implemented model of Meeus. By using vector 
algebra, the angular separation between the two position vectors can be 
determined. The angular separation between the true position of the Sun and 
the modelled position of the Sun is presented in table 3.1. It was calculated 
at four evenly spaced moments throughout the duration of the year in order 
to eliminate biases in the model. 

Date Time (UTe) Error ( 0) 
1 Jan 1999 00:00:00 0.00575 
1 Apr 1999 00:00:00 0.00343 
1 Jul1999 00:00:00 0.00118 
1 Oct 1999 00:00:00 0.00423 

Table 3.1: Error in the prediction of the position of the Sun. 

It is clear that the error in the model never exceeds the specified 0.019° 
modelling accuracy. Therefore, the model can be considered as a satisfactory 
accurate model. 

3.2.2 Horizon 

Modelling the Horizon 

The true shape of the Earth is not a perfect sphere. It can be represented 
by a variety of models that differ in complexity. The more complex models 
define the shape of the Earth by means of an expansion of the gravitational 
potential in terms of the spherical harmonics as presented in equation D.9. 
Wertz [36] presents a way to model the horizon of the Earth as seen from 
space where it is assumed that the shape of the Earth can be modelled as 
an ellipsoid with flattening f = 1/298.257. He defines the distance from the 
center of the Earth to the subsatellite point as 

R = ae(1- f) 
J 1 - (2 - f) f cos2 A 

(3.21) 

where ae is the Earth's equatorial radius and A, in this case, refer to the 
geocentric latitude. The angular radius of the horizon of the Earth as a 
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function of the azimuth angle of the horizon vector is defined as 

(3.22) 

where A is the geocentric latitude of the subsatellite point, d is the radial 
distance of the satellite from the center of the Earth and III is the azimuth 
angle of the horizon vector measured counterclockwise from east. 

Equations 3.21 and 3.22 can be used to determine the loci of points de­
scribing the position of the horizon as seen from the satellite, or it can be 
used to determine the angular separation from the subsatellite point to the 
horizon for a particular sensor. For this to be achieved, it is necessary to 
know the attitude of the satellite, as the orientation of the body-mounted 
sensors is determined from the attitude of the satellite. 

Evaluation of Horizon Model 

Wertz [36] indicates that the ellipsoid defined above is a good approximation 
to the true shape of the Earth. Vallado [35] also refers to the ellipsoid as 
being a good approximation to the mean surface height of the Earth, but no 
real verification of the accuracy of the model was found. 

The modelling specification which was laid down in chapter 2 used the 
measurement accuracy of the horizon sensors to specify the accuracy required 
in modelling the horizon, but as no model was found which satisfied the 
specifications, the unverified model was used. 

3.2.3 Magnetic Field 

Modelling the Magnetic Field 

The magnetic field of the Earth is predominantly a dipole field with the Sun 
being the primary source of perturbations to the dipole field. The South 
Pole of the field is located in the Northern Hemisphere and the North Pole 
is located in the Southern Hemisphere. The magnitude of the field is the 
strongest over the magnetic poles and the weakest over the magnetic equa­
tor. The magnetic field can be modelled as the gradient of a scalar potential 
function with the potential function being expanded in terms of the Gaussian 
coefficients. The International Geomagnetic Reference Field (IGRF) model 
is the empirical representation of the Earth's magnetic field recommended for 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ORBIT PROPAGATION 30 

scientific use by the International Association of Geomagnetism and Aeron­
omy (IAGA). This model represents the main (core) field without external 
sources. As the magnetic field rotates with the Earth, the IGRF model 
employs the spherical harmonics expansion of the scalar potential in EeEF 
coordinates. The objective of the 10th order IGRF model is to empirically. 
determine the Gaussian coefficients by doing a least squares fit based on all 
available data sources. It includes geomagnetic measurements from observa­
tories, ships, aircraft and satellites. The magnetic field model is presented as 
an analytical theory that is well suited for implementation on a computer. 

Appendix E contains the mathematical expressions describing the algo­
rithm and proposals presented in Wertz [36] to make the algorithm com­
putationally more efficient. The coefficient setsll for the IGRF model are 
available in steps of 5 years (1990, 1995, 2000 ... ) with the coefficients and 
the first time derivatives of the coefficients being included in the coefficient 
sets. For a thorough discussion on the Earth's magnetic field, refer to Wertz 
[36] and the ESA Space Environments and Effects Analysis Section [102]. 

Evaluation of Magnetic Field Model 

As it was indicated in the previous section, the IGRF magnetic field model 
is an empirical representation of the magnetic field of the Earth derived from 
measurement of the magnetic field. Unpredictable time-varying solar activ­
ities cause a varying intensity in the solar wind that distorts the magnetic 
field. The time-varying intensity of the solar wind has a major influence on 
the model of the magnetic field. Measurements, which were used to derive 
an empirical model of the averaged field, may be biased or may have been 
obtained during times of extreme solar activity. The majority of these mea­
surements were taken from sites on or over the continents with almost no 
measurements being made over the oceans or in space. The lack of accurate 
measurements over certain areas of the Earth resulted in the available mea­
surements being extrapolated to obtain a model that represents the complete 
magnetic field. As it can be expected, the accuracy of this model derived 
from extrapolated data, will be less accurate over areas of low measurement 
concentrations. The result is that the IGRF model is exactly what its name 
indicates it to be-a model of the field which does not necessarily represent 
the true magnitude and orientation of the field at a particular time. 

Wertz [36] indicates that the magnitude of the dipole field determined 
from the IGRF model on the magnetic equator at an altitude of 445 km is 
approximately 25 /-LT. At this altitude the maximum error in the magnitude 

llThe coefficients for the IGRF model can be obtained via the Internet from 
ftp://nssdc.gsfc. nasa. gov /models / geomagnetic/igrf;' 
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of the IGRF model is 0.54 J-lT and the RMS error in the magnitude of the 
IGRF model is 0.18 J-lT. He also indicates that the maximum errors in the 
IGRF model for the other components of the field-the azimuthal and coel­
evation components-are approximately 1 J-lT. When the influence of the 
solar wind on the intensity of the components of the field is taken into con­
sideration, it should be clear that even the indications of modelling accuracy 
presented by Wertz, could be far from the truth for certain conditions of 
solar activity. 

The IGRF model was the only model available for implementation into 
the simulation environment. As this is the model which was used to deter­
mine the attitude of the satellite from the magnetometer measurements, the 
attitude obtained from Kalman filtering will be, at best, as accurate as the 
IGRF model. Therefore, the specification for the implementation accuracy 
of the magnetic field model could not be fulfilled. The errors in the model 
exceed the measurement accuracy of the magnetometer. This modelling error 
is recognised by control system engineers and therefore the data derived from 
magnetometer readings-even if it is very accurate-cannot be considered as 
high accuracy attitude or position information. 

3.2.4 Terminator 

Modelling the Terminator 

Wertz [36] defines the terminator as "the boundary between the day and the 
night on a planet or a planetary satellite which forms an approximate great 
circle 90° from the subsolar point". It is defined as "approximate" as this 
boundary does not appear as a well-defined line on the surface of the Earth, 
but rather as a fuzzy transition from light to dark regions. The reason for 
modelling the terminator is that it is used to determine the validity of some 
of the sensors on board a satellite. The fuzzy appearance of the terminator 
prevents it to be used for the direct triggering of sensor measurements, but 
knowing the location of the terminator, it can be used to determine whether 
the horizon sensors see a sun-lit or a dark horizon. These sensors determine 
the location of the horizon in the optical part of the spectrum and are enabled 
only when a sun-lit horizon is visible. Another reason for modelling the 
terminator is that orientation of the Sun with respect to the satellite, is 
determined in the calculation of the position of the terminator. The Sun 
orientation obtained from the terminator calculation is used to determine 
the validity of the measurements from the Sun sensors. 

Steyn [32] models the terminator by using the Earth centred angle be­
tween the sub-satellite and subsolar points. The direction of motion of the 
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satellite is determined by constructing a great circle through the current 
sub-satellite point and a point delayed by 18° in the orbit plane from the 
current sub-satellite point. The Earth is assumed to be perfectly spherical 
and by using spherical trigonometry, the Earth centred angle between the 
sub-satellite and subsolar points and the azimuth angle-measured counter 
clockwise from the negative direction of motion-of the Sun is determined. 

Evaluation of Terminator Model 

As indicated above, the position of the terminator was only required to de­
termine the validity of some of the sensors on the satellite. Therefore the 
vague definition of the position of the terminator could be tolerated and the 
modelling accuracy specified in chapter 2 did not have to be verified. 

3.2.5 Modelling the Stellar Positions 

As mentioned in chapter 2, the modelling of the stellar positions was not con­
sidered part of this study. Refer to Wertz [36], Meeus [22], Seidelmann [30], 
Jacobs [18] or The Astronomical Almanac [1] for information on modelling 
the position of the stars as seen by the satellite. 

3.3 Combining Propagations with Sensors 

This section will provide a more thorough discussion than chapter 1 on certain 
aspects of figure 1.1. The topics discussed in this section was not researched 
in detail and was not implemented, but the inclusion of the conceptual study 
which will be presented in the following paragraphs was considered necessary 
as it should indicate to the reader where the researched topics fit into the 
total field of study. 

3.3.1 Improvement of Predictions 

It is possible to improve the accuracy of the predictions made with a propa­
gation algorithm by using the input from a number of sensors. These sensors 
can be divided into two groups that consist of internal or onboard sensors and 
external sensors. When it is compared to the classical model of an estima­
tor12 , the internal sensors are used to update the states of the estimator-in 
this case the orbital states of the propagator-and the external sensors are 

12Refer to Franklin et al. [17] for a discussion on estimation techniques. 
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used to update the initial conditions of the estimator- in this case the ini­
tial conditions of the propagation algorithm. Table 3.2 indicate the different 
types of sensors used to improve the accuracy of the orbital predictions. 

I Internal sensors I External sensors I Hybrid sensors I 
Sun sensor Radar GPS 

Magnetometer Satellite Laser Ranging 
Horizon sensors Optical sensors 

Star sensor RF tracking antennae 

Table 3.2: A summary of sensors used to improve the accuracy of the orbital 
predictions. 

Internal Sensors 

Internal sensors include the magnetometer, horizon sensors, Sun sensor and 
star sensor. GPS can be considered as a hybrid sensor as it uses external 
sources to obtain its data, but as its measurements are available onboard the 
satellite, it will be considered as an internal sensor. 

By using sensors onboard the satellite, it is possible to improve the accu­
racy of a propagation algorithm through comparison with the true measured 
position of the satellite. The improvement of the propagation accuracy usu­
ally consists of the implementation of an Extended Kalman Filter (EKF) 
along with the measurements. When implemented onboard a satellite, the 
use of an EKF with sensor data to predict the orbit of a satellite is usually 
known as an autonomous orbit determination system. The measurements 
made onboard the satellite can also be used at the groundstation to improve 
the accuracy of the orbit propagation algorithms at the groundstation. 

The best results from a combination of internal sensors with an EKF will 
be obtained when a high accuracy propagation algorithm is used to propa­
gate the orbital state of the satellite. Most reasonably accurate analytical 
algorithms require mean orbital elements as initial conditions. The disad­
vantage of mean elements is that the generation of the orbital elements is 
quite a complex process and the elements have a limited accuracy. Numerical 
algorithms require the osculating state of the satellite as initial conditions. 
These algorithms are very well suited for implementation in an EKF as the 
osculating orbital state of the satellite is usually quite easily derived from the 
measurements. The increased accuracy obtained from the combination of a 
numerical algorithm with appropriate force models also has the added benefit 
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that the time intervals between updates of the EKF with sensor measure­
ments can be increased as the predictions would stay accurate for a longer 
period of time. 

Magnetometer Measurements made with a magnetometer are probably 
the most general and most easily obtainable position data available onboard 
the majority of satellites. By comparing magnetometer measurements with 
the IGRF model, a rough estimate of the position of the satellite can be 
obtained. When this comparison is performed with an EKF, it is possible to 
make reasonably accurate-on the order of 1 km to 10 km-predictions of 
the position of the satellite. Jordaan [20], Psiaki [28], [29] and Bar-Itzhack 
and Shorshi [2] investigated the use of a magnetometer for orbit determi­
nation and prediction. Two basic methods were followed for doing orbit 
prediction with magnetometer data. The first method consisted of using the 
magnitude of the magnetic field measurement as measurement inputs to the 
EKF. This resulted in predicted accuracy on the order of tens of kilometres. 
The improved method consisted of using attitude information to improve the 
quality of the measurement data used as input to the EKF. By using attitude 
information, the components of the magnetic field vector could be used as 
measurement inputs that provides three measuring points instead of one for 
every update of the EKF. 

Star sensor The star sensor is the highest accuracy sensor onboard SUN­
SAT and is used to accurately determine the orientation of the satellite in 
all three axis of orientation. The camera cannot be used autonomously for 
orbit determination, but, as indicated by Psiaki [29], the accuracy of the 
orbit prediction made with other sensors such as the magnetometer, can be 
improved by using attitude information obtained from the star sensor. 

Sun sensor Measurements obtained from the fine Sun sensor for SUNSAT 
are almost ten times more accurate than direct measurements obtained from 
the magnetometer. Psiaki [29] presents a method to combine the magni­
tude of the measurements obtained from the magnetometer with the angle 
between the magnetic field vector and the Sun vector in such a way that 
high accuracy orbital predictions are obtained without the need for attitude 
information. The advantage of this proposal is that, instead of using the 
relatively complex and expensive star sensor, the Sun sensor, which is less 
expensive and functionally less complex than the star sensor, can be used for 
improving the orbital predictions. 
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Horizon sensor Two types of horizon sensors are generally used onboard 
satellites. The two types are CCD sensors, such as are used onboard SUN­
SAT, and conical scan horizon scanners13. Nagarajan et al. [26] presents a 
method to use scanner type horizon sensors along with attitude information 
in an EKF to obtain 2 km accurate orbital predictions. The angular radius 
of the Earth as seen by the satellite and the radial distance from the satellite 
to the Earth is obtained from the sensor measurements. This information is 
combined with attitude information in the EKF to estimate the orbital state 
of the satellite. 

GPS CPS measurements performed onboard a satellite contains high ac­
curacy position and velocity information of the satellite. CPS measurements 
performed onboard SUNSAT are approximately 50 m accurate with the pos­
sibility to improve the accuracy of the measurements to sub-meter level with 
some processing of the data. As CPS measurements provide the orbital 
state vector of the satellite in terms of position and velocity vectors, these 
measurements are well suited for inclusion in an orbit prediction EKF as in­
dicated by Psiaki [29] and by Jordaan [20]. The disadvantage of using CPS 
measurements-as highlighted by Psiaki-is that it is not truly autonomous 
as it depends on obtaining data from the constellation of CPS satellites. 
Availability of these data can be affected by political factors which result 
is satellite designers usually not relying solely on CPS measurements for 
position information. Another disadvantage is that CPS receivers that are 
currently used onboard satellites consumes excessive amounts of power which 
result in the receivers being operated only for short periods of time. 

The advantage of using CPS data is the accuracy of the data. When 
combined with a high accuracy propagation algorithm in an EKF, the im­
proved propagation accuracy should enable the increase of the time between 
measurement updates of the EKF. The increased interval between measure­
ment updates would eliminate the drawback that the power consumption of 
the receiver has on the availability of data. Therefore, the receiver would not 
need to be operated continuously. 

External Sensors 

External sensors consist of radar measurements, Satellite Laser Ranging 
(SLR), optical sensors and measurement data derived from tracking anten­
nae. Vallado [35] provides some information on these sensors, where the 
sensors are situated and how the data is used. Except for data derived 

13Refer to Wertz [36J for a discussion on different types of horizon sensors. 
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from tracking antennae at the local groundstation and G PS measurements, 
the measurements of the external sensors are not available for general use. 
The measurements made with external sensors are used to update the initial 
conditions14 used as input for the propagation algorithms. As discussed in 
appendix G, initial conditions for analytical propagators are available on the 
Internet where as the initial conditions for numerical propagators are not 
available for general use. By combining G PS measurements or the angular 
measurements obtained from a tracking antenna in a Kalman filter or least 
squares process, initial conditions for numerical algorithms can be generated. 
For the best results in both analytical and numerical propagators, the initial 
conditions need to be updated as frequently as possible. 

3.3.2 Validation of Sensors 

Some of the sensors such as the horizon and Sun sensors can only be used 
under certain conditions. The Sun sensor can only provide valid data when 
the satellite is not eclipsed and the horizon sensor can only be used when 
the satellite is in view of a sunlit horizon and the terminator is not in view. 
For the best estimation results the predicted position of the satellite should 
be combined with the modelled position of the Sun to ensure that the data 
from the horizon and Sun sensors are only used when valid. 

14 Appendix G contains a short discussion on the way initial conditions are derived. 
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Chapter 4 

Simulation Environment for 
Satellites 

The two most important specifications stipulated for the project stated that 

1. the satellite position and the space environment had to be modelled 
and 

2. the output of the simulation needed to be distributed to its area of 
application via a TCP lIP network. 

The mathematical models for the space environment and the orbital propa­
gation algorithms are presented in chapter 3. By considering these models as 
fixed, what remained was to decide upon the format in which these models 
would be incorporated. into the software environment. 

The specifications for the simulation software are stipulated in section 
1.1.3. This chapter will discuss the decisions made to satisfy these specifi­
cations and present an evaluation of the quality of the predictions obtained 
from the implemented model. 

4.1 Software Architecture 

The specification stated that the data of the satellite position and the space 
environment needed to be generated on one computer and transmitted to 
the system involved in the hardware-in-the-Ioop simulation via a TCP lIP 
network. Two basic architectures were considered for the distributed appli­
cation. 

The first and least complex architecture that was considered involved a 
simple pipeline structure between only two users. It is illustrated in figure 

37 
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TCP/IP network 
Orbit 

~ propagation and HIL simulation 
sensor data -V modelling 

Figure 4.1: The initial architecture considered for distributing the orbital 
data. 

4.1. A single connection is established between the orbit simulation and 
the computer involved in the hardware simulation with data flowing in one 
direction from the orbit simulation to the hardware simulation computer. 
The receiving computer would simply require an interface that could be used 
to capture the data transmitted form the orbital simulation computer. All 
the propagation algorithms and models for the space environment would be 
located on the orbital simulation computer. In this implementation, only 
these two systems would be involved without any third party being able to 
obtain data for another application. 

The second architecture that was considered was the basic client-server 
model (Tanenbaum [34]) which is illustrated in figure 4.2. It is the natural 

Server 

Orbit TCP/IP network 
propagation and / '------=--=:':"":":':"-'-=="----'\ 

Client 
sensor data 
modelling 

Figure 4.2: The client-server architecture which was implemented for dis­
tributing the orbital data. 

extension of the pipelined architecture and can be considered as a more 
general architecture in which more that one user can obtain simulation data 
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at the same time. In this architecture, the server contains almost all the 
functionality of the application. The client has the minimum functionality 
required and connects to the server via a TCP lIP network. The advantage 
of this architecture is that more than one application can obtain data from 
the server at the same time. 

The client-server architecture was selected as the basis for the develop­
ment of the software. By using this architecture, it was possible to make the 
software less application specific. The possibility was created for the server 
to be used by other applications to generate orbital ephemerides while it was 
involved in the HIL simulation. The immediate objective of this study was 
to master the field of orbit propagation and to model the space environment 
for the purpose of hardware-in-the-Ioop simulation. Therefore, the client­
server model was selected for implementation as it provided the maximum 
flexibility in the software without taking up too much developing time. 

4.2 Software Structure 

Delphi 4 was selected for the development of the software as it is generally 
used in the laboratory and well known to the author. The selected environ­
ment was well suited to the implementation of the above mentioned spec­
ifications for the structure of the software code. The well-defined TCP lIP 
components provided by Delphi 4 significantly reduced the time spent on 
developing the network interface for data distribution. These components 
could be used as "black boxes" without the user requiring expert knowledge 
of the network protocol. The Delphi Visual Component Library was a handy 
tool in developing the G VI. 

The software for the propagation algorithms and some of the environmen­
tal models that were used, were based on Pascal code developed by Kelso 
[104] and Steyn [32], [33]. Kelso's software were developed for general use 
among the amateur space observing community and Steyn's software formed 
part of a simulation environment for the development of the ADCS of SVN­
SAT. 

The selected architecture required the simulation environment to be di­
vided into two components viz. the client component and the server compo­
nent. The two components will be discussed separately due to the functional 
differences in the two systems, but it combines into a complete functional unit 
when implemented. The following discussion will be from the perspective of 
the HIL simulation. 
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4.2.1 Client Component 

The client component is used on the HIL simulation computer to acquire 
orbital and sensor data from the server. This component is in essence a GUI 
for the server in that all the conditions for the simulation such as the start 
times, stop times, simulation step size and format and type of data required 
from the simulation is specified by the user via this GUI. The position of the 
observer and the data-output file is determined by the user by means of this 
GUI before a simulation can be initiated. 

The user specifies the IP address of the server and upon connection be­
tween the client and the server, the server transmits the names of the satellites 
for which TLE's are available, to the client. The user selects a satellite from 
the list and the name of the satellite along with all the simulation conditions 
are transmitted to the server when the simulation commences. Upon receiv­
ing this message, the server instantiates the simulation. The data generated 
during every simulation step is transmitted to the client before the next step 
in the simulation is performed. As it is received, the client saves the data to 
a file for later use. Upon termination of the simulation, the server terminates 
the connection to the client. Before commencement of the next simulation, 
a new connection needs to be established. 

The functional layout of the client component software is illustrated in 
figure 4.3. 

4.2.2 Server Component 

The server component consists of a small GUI indicating the number of clients 
connected to it. The GUI is used to start and stop the server and to define 
the files from which the TLE's should be extracted when the server is started. 
When a client connects to the server, the list of satellites for which TLE's 
are available on the server is transmitted to the client. Upon the receival 
of the simulation data from the client, the simulation is instantiated by the 
server. This is done by the creation of a propagator thread that is placed 
in a list consisting of all the propagator threads active on the server. The 
simulation data received form the client is passed to the propagator thread 
and the execution of the thread commences. At this stage of the simulation, 
the propagator thread continues to execute separate from the server and the 
server is ready to receive another request for data from a different client. 

The models for the space environment and the orbit propagator are em­
bedded into the propagator thread. A flow diagram describing the propaga­
tor thread is presented in figure 4.4. The data is determined in the format 
~pecified by the client and is transmitted to the client via the network as it 
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Figure 4.3: The functional layout of the client component software. 

is generated. The simulation continues for the client-specified time-interval 
and upon completion of the simulation, the server closes the connection to 
the client, removes itself from the thread-list and terminates. 

The functional layout of the server component software is illustrated in 
figure 4.5. 

4.3 Evaluation 

This section consists of an evaluation of the output data generated by the 
simulation environment by using the SGP4 propagation algorithm. The eval­
uation is performed from the perspective of groundstation operations and or­
bit simulations of SUNSAT. Predictions obtained from the SGP4 algorithm 
is compared to GPS data measured onboard the 0rsted satellite, predic­
tions made with Satellite Toolkit (STK) and new initial conditions obtained 
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Figure 4.4: The functional layout of the propagator thread. 

from two-line element (TLE) files. GPS measurements from the receiver on­
board SUNSAT were not available for this study and therefore measurements 
made onboard 0rsted were used to evaluate the simulation environment. The 
0rsted GPS measurements can be considered as representative of measure­
ments made onboard SUNSAT as the two satellites are in identical orbits with 
the only difference being the positions of the satellites within their respective 
orbits. 
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Figure 4.5: The functional layout of the server component software. 

4.3.1 Comparison with GPS data 

The comparison between G PS data measured onboard the 0rsted satellite 
and data generated with TLE's in the SGP4 propagator is presented in figure 
4.6. The period of evaluation was 25 days. A single TLE set, with epoch at 
the start of the evaluation period, was used to propagate the position of the 
satellite for the total period of evaluation. It was compared to GPS measure­
ments which were used as the best available description of the position of the 
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Figure 4.6: A comparison between the predicted position of the satellite with 
a SGP4 propagator and GPS measurements. 

satellite with 50 meter position accuracy. Some of the measurement points 
seem to indicate erroneous measurements. Most of the measurements used 
in the comparison were made after a 5 hour period of operation. The GPS 
receiver should have converged at the time the measurements were made but 
the data indicate that this was apparently not the case for all the measure­
ments. 

It seems like the predicted position of the satellite is approximately 4.5 
km accurate at the end of the evaluation period. When compared to the 
results obtained by Barker et al. [3], it does not seem correct as Barker in­
dicated an error of 4 km after only 7 days. This could be due to the GPS 
measurements being less accurate than the specified 50 meters, the receiver 
not having converged at the time that the measurements was made or a mis­
interpretation of the data obtained from the GPS due to an undocumented 
telemetry format. 

Another possible reason for the difference between the expected and mea­
sured predictions, could be that the TLE's generated for SUNSAT could be of 
extremely high quality. According to Vallado [106] it does sometimes happen 
that TLE's are generated that contains good approximations of the pertur­
bative effects. These element sets would then provide accurate predictions 
for a longer period of time than would usually be expected. 
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4.3.2 Comparison with TLE 

The comparison between the initial positions at the epoch of a number of 
TLE's and data generated with TLE's in the SGP4 propagator is presented 
in figure 4.7. The position of the satellite was propagated for a period of 28 

PropagatQ( and TLE comparison 
o .8 .----_-_-~-_-_-_____, 

°OLL-~-~10--lL5 -~20-~25-~30 
Days 

Figure 4.7: A comparison between the SGP4-predicted position of the satel­
lite and the position predicted with new TLE's. 

days using a TLE with epoch at the beginning of the evaluation period. It 
was compared to the positions predicted by TLE's generated during the eval­
uation period. The TLE's was used as a reasonably accurate--approximately 
1 km accurate--indication of the position of the satellite at the epoch of the 
particular set of elements. 

The results indicate a surprisingly small difference between the propa­
gated position and that indicated by the TLE's updated during the evalua­
tion period. These results could be due to the way in which the TLE's are 
generated with a least squares approximation. The method consists of using 
the latest available set of TLE's to predict the position of the satellite. These 
predictions are then combined with position measurements of the satellite in 
a least squares algorithm to determine an updated set of TLE's at a new 
epoch which best fits the previous TLE and the measurements. 

From the above mentioned results it seems like the TLE-files did not 
need to be updated during the period of evaluation as the error between the 
position predicted with the initial TLE and that predicted by the updated 
TLE's at their respective epochs is very small. It could also indicate that 
the suggestion made in the previous paragraph concerning the quality of the 
TLE, was correct. 
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4.3.3 Comparison with STK 

The comparison between the predictions made with Satellite ToolKit (STK) 
and data generated with TLE's in the SGP4 propagator is presented in figure 
4.8. 

Propagator and SlK comparison 
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Figure 4.8: A comparison between the SGP4-predicted position of the satel­
lite and STK predictions. 

This evaluation was performed over the same period as the comparison 
with the TLE's. It is seen that the difference between the two predictions 
is approximately 36 meters after the 28 days of the evaluation. This indi­
cates that the implemented SGP4 algorithm closely resembles the algorithm 
implemented in the industry standard STK1. 

1 Refer to Carter [9]. 
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Chapter 5 

Conclusions and Recommendations 

The objective of this study was to develop a simulation environment to simu­
late the orbital motion and the space environment experienced by Low Earth 
Orbit satellites. This simulation environment needed to be able to operate in 
a multi-computer setup. It required software that could provide the output 
data via a network (TCP lIP) connection. The nature of the output data had 
to be representative of the sensor data of the ADCS system of the SUNSAT 
micro-satellite in order to be used in a hardware-in-the-Ioop (HIL) simula­
tion and for mission planning purposes. The connection between the orbital 
propagator and the HIL simulation is presented in figure 1.2. A propagation 
algorithm was selected which was well defined and easy to use while at the 
same time it provided the required accuracy of propagation. The main ad­
vantage of the selected propagation algorithm, the SGP4 algorithm, is the 
general availability of orbital elements which is generated specifically for use 
with this algorithm. The software structure which was selected paved the 
way for future developments and extensions which can enhance the capability 
of the developed product. 

5.1 Summary of Research 

In chapter 2 the criteria is stipulated against which the product of this study 
should be evaluated. The results which was obtained can be summarised as 
follows: 

1. Research was performed in the field of orbital propagation and the 
space environment in Low Earth Orbit. This knowledge was essential 
for a successful mission in more than one way and was used for 

• accurately predicting the position of the satellite for the purposes 

47 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 48 

of antenna tracking and the calculation of the Doppler shift in ra­
dio frequency during a pass of the satellite over the groundstation, 

• initial signal acquisition subsequent to launch, 

• simulating the change in Sun-time (the position of the Sun with 
respect to the satellite) throughout the lifetime of the satellite in 
order to predict periods when high quality imaging sessions would 
be possible, as presented in Mostert et al. [25], 

• trying to predict potentially hazardous events such as the satellite 
moving through the South Atlantic Magnetic Anomaly-which re­
sulted in data loss onboard the satellite-and loss of communica­
tion due to interference from mountains surrounding the ground­
station, 

• trying to explain the failure of an action on board the satellite, 
for example, when the coastline should have been photographed, 
but the final image had only water in sight, 

• predicting the position of the satellite for use in upgrading ADCS 
software, 

• the evaluation of different orbit propagators. 

2. It was specified that an orbit propagation environment should be devel­
oped which was as accurate as possible in its predictions, yet practical 
and easy to implement. This was achieved satisfactorily by using the 
SGP4 orbit propagation algorithm along with models of the space en­
vironment which have been proven accurate in the past. The term 
"accurate" indicates that results were required which were comparable 
to actual measurements taken in space. The onboard imaging activities 
were used as a guideline to determine the level of modelling accuracy 
that was required from the propagator. The measurement accuracy of 
the ADCS sensors determined the accuracy by which the modelling was 
performed. It was seen that the SGP4 algorithm is not a truly high ac­
curacy propagation algorithm and that the initial conditions used in the 
SGP4 algorithm is of a limited accuracy due to the way it is determined. 
For this reason, better quality orbital predictions would be obtained by 
either using a numerical propagation algorithm or, even better, com­
bining onboard sensor measurements with a numerical propagator in 
an extended Kalman filter. 

3. It was required that the developed software had to distribute its data 
over a TCP lIP network. This objective was achieved and by carefully 
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selecting the architecture for the network connection, a number of pos­
sibilities for future developments to the software were created. The 
network connections were implemented as a client-server system. The 
server handles all computations and orbital elements while the clients 
only need to handle the data transmitted by the server and thus freeing 
it for other computationally intensive operations. It is possible for mul­
tiple users to obtain data from the server at the same time. The user 
interface for the client is of a general form that is not specific to the HIL 
setup and can be used by anyone who wants to do orbital propagation. 
This was illustrated when the software was used in a separate study 
to obtain orbital information for graphically displaying the position of 
the satellite. 

5.2 The future 

Due to the nature of the simulation environment, it can be extended to 
include a number of new features. The following group of features can be 
added without too much difficulty or change to the software . 

• With the addition of a real-time kernel, the client-server topology can 
be extended to a real-time system. This will have a few advantages 
over the current system: 

- For a HIL simulation, the current system has the disadvantage 
that the client need to obtain the data before the simulation is 
started. It needs to be stored in a file from which it is read into 
memory for the duration of the simulation. When a real-time 
system is implemented, this could all happen real-time. When the 
server is started, it could synchronise the time via the Internet. 
Before the simulation is initiated, the client would synchronise its 
time with that of the server. At the initiation of the simulation, 
the server would calculate the required data (being either "real" 
time or simulation time) and at the specified time, transmit it 
to the client(s). This would add some flexibility to the system 
in that the client computer, which would be engaged in the HIL 
simulation, would eliminate disk I/O and would possibly have 
more computation time available. 

- Another advantage of a real-time kernel would be the simulation 
of constellations of satellites. Multiple clients could connect to the 
server with each client requesting data for a different satellite in 
the constellation. The data from the clients could then be used 
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to calculate the inter-satellite distances and communication times. 
The possibility of doing constellation control and simulating the 
motion of the satellites through this environment can be investi­
gated. It may not in essence be necessary to use the client-server 
topology for the simulation of constellations, but the fact that the 
client-server-propagation tools do exist, creates interesting possi­
bilities. An important fact that needs to be kept in mind when the 
system is extended to include real-time constellation simulations, 
is the scheduling of processes. Some thought will have to be given 
concerning the fact that in a multiprogramming environment, it 
cannot be predicted when a process will terminate. It will be es­
sential that data for all the satellites are generated and that it is 
available at the "same" time for it to be combined. 

- A Sun-Moon-Earth constellation for simulation of the phases of 
the Moon can be implemented. This will pave the way to an­
swer questions concerning the phase of the Moon and determine 
whether a satellite would be able to determine the exact time of 
full Moon. This is of great importance to countries in the Middle 
East which determine some of their religious days from the phase 
of the Moon. 

• Since the software was written in Delphi, the propagator can be encap­
sulated in component form. This will make it possible for users without 
extensive knowledge of orbital propagators to use it as a Delphi com­
ponent without knowing any detail of its operation. 

5.3 Conclusion 

Extensive knowledge on orbit modelling was evaluated and documented so 
that the propagators could be used with confidence in a field of study which 
constituted a crucial segment of the groundstation operation of the SUNSAT 
microsatellite. The importance of accurate propagation and verification of 
the applicable models used in the practical simulations were observed. It 
was seen that analytical propagators are only of limited accuracy due to 
the difficulty in describing perturbations by means of analytical methods. 
This highlighted a problem with the SGP4 algorithm which is an analytical 
method and for which the orbital elements are only of limited accuracy and 
quickly degrades with time. When high precision propagation is required, it 
should be done with a numerical propagation technique which is accurate, but 
very computationally intensive, or a semianalytical technique which combines 
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the speed of the analytical techniques with the accuracy of the numerical 
techniques. 

A simulation environment was developed to function in a multi-computer 
environment. This environment can be used to compute orbital ephemerides 
for multiple satellites and can distribute the ephemerides via a TOP lIP net­
work to the users. The environment was developed with a generalised archi­
tecture that enables it to be used for multiple applications. This generalised 
architecture can be used to form the foundation for a simulation environment 
for a constellation of satellites. 

A conceptual study was performed on the improvement of the accuracy of 
orbital predictions by combining onboard sensor measurements with a prop­
agation algorithm in an extended Kalman filter. By comparing the propa­
gation accuracy of propagation algorithms with results obtained from such 
filters which was found in the literature, it was seen that this method would 
significantly increase the accuracy of the predictions. 
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Appendix A 

Spacecraft Systems Overview 

This appendix is an adapted version of the summary done by Cardoza [8] 
supplemented from Milne [24]. Figure A.I is a diagram of SUNSAT after sec­
ond stage separation from the Delta II launch vehicle, but before deployment 
of the boom. The subsystems are the ADCS, OBCI (Onboard Computer 1) 
and OBC2 (Onboard Computer 2), TCMD (Telecommand), TLM, IMS (Im­
age Subsystem) or optics, GPS, Communication and SPS (SUNSAT Power 
System). 

A.I ADCS 

A T800 transputer based computer is responsible for ADCS processing as it 
has a powerful floating-point instruction set. SGP4 propagation algorithms 
are used to do satellite position calculations. The ADCS consist of the fol­
lowing subsystems: 

A.I.1 Star Sensors 

The star sensor enables the ADCS to provide extra fine stability during 
imaging operations. Two star sensors are included, one mounted on the 
top plate and the other one fixed on the boom along with the tip mass. 
Only one of the sensors will normally be used at a time. These star sensors 
use CCD's (Charge Coupled Device). A complete onboard star catalogue 
is included and therefor no future updates need to be made. The attitude 
of the satellite at the time of the stellar sighting need to be available to 
the star sensor identification software. This is calculated by onboard flight 
software that extrapolates satellite motion from an initial attitude and set of 
Keplerian elements. 
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Figure A.l: SUNSAT Satellite - Configuration before boom deployment 

A.1.2 Two-Axis Horizon Sensor 

Two orthogonal linear CCD and lens assemblies look below the local horizon 
level, to obtain orthogonal measurements of the sunlit earth horizon. 

A.1.3 Sun Sensors 

The sun sensor uses a linear CCD sensor that is externally mounted on the 
top panel of the satellite. Its purpose is to measure the orientation of the 
sun about the satellite's Z-axis. 

The fine sun sensor faces the sun during imaging operation to provide 
accurate yaw attitude information. When the satellite is spinning, sensor 
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data will be available on average only 20% of each orbit. 
Six cosine-law solar cells mounted on each spacecraft facet are used to 

obtain full attitude information to within 5° with the aid of the sun and the 
satellite orbital model. Surface temperature of each cell is also measured to 
make the necessary sensitivity corrections to all measurements. 

A.1.4 Reaction Wheels 

The 3-Axis reaction wheels provide accurate and fast attitude corrections 
that are needed by the pushbroom imager. Precise angled manoeuvres from 
any known attitude are possible. The z-axis reaction wheel is used to align 
the satellite before imaging sessions (Steyn [33]). 

A.1.5 Magneto Torque Coil 

The 3-Axis magnetorquer air coils are initially used for detumbling and atti­
tude capture. These coils wound into channels around the X/V solar panels 
and around the Z facets. Magnetic torquing is used as the primary active 
stabilisation method to do libration damping, Z spin rate control and mo­
mentum dumping of reaction wheels. It is highly reliable since no moving 
parts are used and will be used as backup for possible reaction wheel failure. 

A.1.6 Three-Axis Fluxgate Magnetometer 

The magnetometer is used to measure the strength and direction of the ge­
omagnetic field vector. This information is used to calculate the magnetic 
torque and to obtain full attitude data by comparing the measurements to 
geomagnetic field models. Attitude data from the magnetometer is available 
throughout the orbit, but is plagued by inaccuracies due to errors in the 
geomagnetic field models. 

A.1.7 Tip Mass and Boom 

The 2.3 meter long gravity gradient boom is a passive means to ensure satel­
lite nadir. One of the two star cameras is situated on the boom together 
with a tip mass of 6.0 kg. 

A.2 Communications Subsystem 

There are four frequency bands for communicating with SUNSAT. Under 
normal operations the two uplink bands are on VHF (145 MHz) and L-band 
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(1.265 GHz), and the two downlinks are on UHF (435 MHz) and S-band 
(2.250 GHz). 

Two different sets of antennae are used for VHF communication. The 
one antenna is for use on commercial frequencies (COM) and the other is for 
amateur packet communications (AM). Two different sets of antennae are 
used for UHF communication. As in the case of the VHF communication 
system, one antenna is used on commercial frequencies and the other is used 
for amateur packet communications. The UHF system also contains a QPSK 
(Phase Shift Key) modem for high-speed data communications. Data can 
originate from the RAM tray or from the DSP on the OBC1 tray. 

L-band frequencies are only used for uplinks to SUNSAT. This uplink can 
be used for high speed data communications (2M baud), low speed telecom­
mands (1200/9600 baud) or in a transponder configuration. 

S-band frequencies are only used for downlinks from SUNSAT. The down­
link can be used for high-speed data communication, a colour PAL video link, 
or as the downlink in a transponder configuration. The S-band system also 
contains a QPSK modem for high-speed data communications. 

All the analogue baseband signals are fed to the modems tray where the 
signals are multiplexed and routed to other subsystems onboard SUNSAT. 
These include seven 1200 baud FSK (Frequency Shift Key) modems, two 9600 
baud PAM (Pulse Amplitude Modulated) modems and two audio busses. 

A.3 Telecommand (TCMD) 

Telecommands to be executed onboard SUNSAT will be one of two types: 

• ATC (Absolute Time Command) that is issued from the TCMD system 
terminal on the ground station or onboard subsystems for immediate 
execution on SUNSAT. 

• RTCS (Relative Time Command Sequence), that is issued in the form 
of a DIARY command file, which includes a sequence of commands, for 
execution at a specified time. 

The TCMD subsystem listens for telecommands on the following chan­
nels: 

Modem Signal Baud Rate Audio Signal From RX Default Frequency 
RXD1 1200 ARX5 RX1 145.825 MHz 
RXD2 1200 ARX3 RX3 436.291 MHz 
RXD9 9600 ARX6 Selectable, default RX6 1.265 GHz 
RXD10 9600 ARX22 Selectable, default RX2 145.850 MHz 
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A.4 TLMS 

The TLMS (Telemetry System) constructs a frame of data, which may con­
tain up to 255 bytes of data, every 2.56 seconds. OBC1 or OBC2 forward 
this data for storage to the RAM disk at a rate of 1200 baud or 9600 baud. 

A.5 OBC's 

At the heart of OBC1 and OBC2 are the INTEL 80C188 and INTEL 80386SX 
CPU's (Central Processing Units), respectively. General flight management. 
tasks such as scheduling, CCD imager control and communications manage­
ment are performed by OBC2. Both have access to all peripherals, but OBC2 
is the preferred flight controller. 

A T800 transputer is dedicated to the ADCS, but its tasks can be taken 
over by the 386 in case of failure. Seven additional embedded micro con­
trollers provide further support for telemetry, TCMD, power control and 
ADCS. 

A.6 SPS 

The SPS (SUNSAT Power System) consists of four body mounted solar arrays 
and re-chargeable Nickel-Cadmium batteries. Battery lifetime is estimated 
at 4-5 years. Solar panels are connected to the battery charge regulators 
and directly to the power bus on the satellite. Distributed regulators ensure 
that the required voltages are supplied to each of the subsystems. It has 
a peak power capability of 90 W to handle peak loads during image data 
transmissions. Depth of discharge of the batteries are limited to 20 % to 
ensure that the predicted lifetime is reached. 

A.7 Payloads 

A.7.1 Pushbroom Imager 

The high-resolution imager, one ofthe main payloads, produces stereoscopic, 
tricolour images. Pixel size was chosen as 15 m square with a swath width of 
at least 50 km, using the pushbroom scanning method. Output from each of 
the three linear CCD's, each covering a separate spectral band, are digitised 
to 8 bits each, resulting in a 24-bit colour picture. The three video channels 
are implemented independently to reduce the chance of total system failure. 
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Up to five single colour frame images may be stored onboard, depending on 
compression. 

A.7.2 GPS 

NASA's TurboRogue/Turbostar GPS receiver and laser retro-reflector will 
support experiments in gravity recovery, atmospheric occultation science and 
ionospheric tomography. Telemetry and command are implemented via a 
RS422 link from the onboard computers. The GPS receiver provides three­
dimensional position and velocity of the satellite together with UTC (Univer­
sal Time Coordinate) time all in a digital format to the TCMD. Accuracy of 
position information is within 60 m, which can subsequently be re-calibrated 
to provide 1 m accuracy. The GPS receiver has two operational modes, 
namely a high power mode and a low power mode. 

A.7.3 Amateur Packet Radio Services 

Onboard software is available to enable amateur packet radio communication. 
Amateur packet radio communication uses a SCC (Serial Control Card) to 
do frame synchronisation, bit stuffing and CRC (Cyclic Redundancy Code) 
checking. The AX.25 (Amateur X.25) communication protocol is run on top 
of the SSC hardware. FTLO (File Transfer Level 0), a protocol used for 
file transfer, is combined with PBP (PACSAT Broadcast Protocol) to form 
the PACSAT protocol suite. This protocol suite enables store-and-forward 
applications such as PBBS (Packet Bulletin Board Services) and file transfers 
via AX.25. 

A. 7.4 School Experiments 

SUNSAT will be flying with two school-projects on board. The first experi­
ment is a CMOS Radiation Experiment developed by the Rhenish Girls High 
School in Stellenbosch. The experiment monitors radiation damage to CMOS 
electronic equipment. Its purpose is to investigate the effect of radiation on 
CMOS logic gates that are used on several of the circuit boards onboard 
the satellite. The second school experiment, developed by George Campbell 
Technical High School in Durban, consists of a sensitive microphone, which 
will pick up vibrations in the structure of the satellite, and a temperature 
sensor, which will measure the temperature on the inside of the tray. 

Although not part of the schools project, two other external experiments 
were included onboard the satellite. A dust particle impact detection exper­
iment was submitted by the Cape Town Peninsula Technikon. Its purpose 
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is to detect and measure the frequency of small meteorite impacts on the 
satellite by using sensors mounted on the satellite's exposed top plate. The 
Universiti Kebangsaan Malaysia submitted a materials exposure experiment 
to measure the temperature and conductivity in space of a high tempera­
ture superconductor and a glassy carbon sample developed by its Physics 
department. 
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Reference systems 

In order to describe the position and orientation of an object in space, it is 
necessary to define a coordinate system towards which the movement of the 
object can be referenced. This chapter will address all the coordinate systems 
and the transformations between the coordinate systems used throughout 
this study. The study of coordinate systems and transformations between 
these systems requires that a system for the measurement of time should 
also be defined as time plays an integral part in some of the transformations. 
As the field of coordinate and time systems are a very wide field of study, 
this chapter will only address the systems that were used throughout this 
study. For a complete explanation of coordinate systems used in space flight, 
refer to Vallado [35], Wertz [36], Escobal [16], Chobotov [11] or any other 
text on astrodynamics and space flight. Vallado, Wertz and especially Sei­
delmann [30] handle the topic of time systems and the calculation of time. 
Seidelmann contains a comprehensive study on this topic, but may be diffi­
cult to comprehend for first-time readers. Vallado has made excellent work 
of explaining the concepts introduced by Seidelmann without too much rep­
etition. It is advised that the work of Vallado should be used along side that 
of Seidelmann in order to obtain a complete picture of coordinate and time 
systems. 

B.l Coordinate Systems 

The Earth and its orbit around the Sun are used as a reference for most Earth­
based coordinate systems. The ecliptic is described as the mean plane of 
the Earth's orbit around the Sun. It is defined as the mean plane because 
the Earth does not move exactly on the ecliptic plane throughout its orbit 
around the Sun. The equatorial plane extends the equator from the Earth. 
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The angle between the Earth's equatorial plane and the ecliptic is called the 
obliquity of the ecliptic, E. The value of this angle is approximately 
23.5° as it varies slightly over time due to perturbations in the orbit of the 
Earth. The line of intersection between the equatorial plane and the ecliptic 
is called the line of nodes and is used as a principal direction in defining 
some coordinate systems. The Sun passes through the intersection twice a 
year with the two passages being called the equinoxes. When the Sun rises 
from South to North across the equatorial plane in March every year, it is 
called the vernal equinox. If the Sun was modelled as a satellite of the 
Earth, the vernal equinox would be the ascending node of the Sun in its orbit 
around the Earth. The direction of the vernal equinox is designated by Y 
and is often referred to as the first point of Aries. This direction is used as 
a basis for an inertial coordinate system, but due to precession and nutation 
of the Earth, it is not truly inertial in its orientation. A plane that is normal 
to the fundamental plane of the coordinate system is called a meridional 
plane or simply a meridian. The definition of a meridian will differ slightly 
between coordinate systems. 

When a rectangular coordirrate system is defined, it is necessary to specify 
its origin, fundamental plane, primary axis and the positive direction for each 
one of the axis. The following sections will describe a number of coordinate 
systems in terms of these concepts. 

B.1.l Earth Centred Inertial (ECI) 

This system originates at the center of the Earth, as its name indicates, and 
is designated either by the abbreviation ECI, or by the letters I J K. As in­
dicated in figure B.l, the fundamental plane is the Earth's equator. The f 
axis is the primary axis and points towards the vernal equinox, the J axis 
is 90° to the east of the faxis in the equatorial plane and the R axis ex­
tends through the North Pole. This coordinate system does not rotate, but 
is assumed to be fixed in inertial space. It is one of the most common ref­
erence systems used in astrodynamics. Due to the precession and nutation 
of the Earth, this system is not really fixed in inertial space and it actually 
moves over time!. For this reason, it is necessary to refer this system to 
a specific time at which the equator's and equinox's orientation is precisely 
known. Such a time is 12:00 noon on January 1, 2000, or J2000. Therefore 
this coordinate system is often called J2000-ECI or simply the J2000 system 
and it is considered sufficiently inertial to be used for applications requiring 
an inertial reference frame. The term sufficiently inertial means that N ew-

lSee section B.2.1 for a discussion on precession and nutation. 
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Figure B.1: The Cartesian ECI coordinate system. 
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ton's laws of motion are valid in this system. By using a set of reduction 
Jormulas 2 observations at other times can be referred to this epoch. It 
should also be noted that simply specifying a coordinate system as ECI is 
not an accurate enough description since the direction of the vernal equinox 
depends on time. The epoch or reference time should always be included 
in the description of the coordinate system. The Earth Centred Inertial sys­
tem is often designated by its older B1950 epoch, and care should be taken 
when transforming between coordinate systems in which the epoch differ. 
Inertial coordinate systems that are not referred to the J2000 epoch but to 
a specific time, are called true-oj-date inertial frames since they refer to 
the true orientation of the equator and equinox on that date. These systems 
will not be aligned with the J2000-ECI system and measurements-even if 
it is the same ones-described in a true-of-date system will differ from those 
described in the J2000-ECI system. 

In the ECI reference frame position and velocity are usually expressed 

2See Vallado [35] and Seidelmann [30] for a thorough discussion on reduction formulas . 
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in terms of vectors within the I J K Cartesian coordinate system and the 
first derivatives of these vectors. The state vector obtained in this reference 
system is designated by 

x = [x y z Vx Vy vzl (B.1) 

An alternative way of defining the position and velocity of an object in 
the ECl system is to define it in terms of spherical coordinates. The three 
variables that are used to define the position of an object is the right as­
cension (a), declination (8) and radial distance (r). The orientation 
of these variables is indicated in figure B.2. The right ascension is the an-

.... 
K 

--. 

J 

.... 
I 

Figure B.2: The spherical ECl coordinate system. 

gle measured eastward in the equatorial plane from the vernal equinox to 
a plane-the meridional plane-which is normal to the equator and con­
tains the object under investigation. The declination is the angle between 
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the equatorial plane and the object measured in the meridional plane. The 
radial distance is simply the magnitude of the Cartesian position vector of 
the object. The velocity of the object in spherical coordinates is defined in 
terms of the inertial speed, {V}, the flight-path angle, (¢!pa) and the 
azimuth angle (Az). The inertial speed is the magnitude of the inertial 
velocity vector as it was measured in the Cartesian system. The flight-path 
angle is the angle between the position vector of the object, r, and the ve­
locity vector of the object, v. The azimuth or heading angle is the angle 
between the projection of the inertial velocity vector onto the local geocen­
tric horizontal plane and the northerly direction, measured in a clockwise 
direction. 

B.1.2 ECEF Coordinate System 

The Earth-Centred, Earth-Fixed Coordinate System, ECEF, is orig­
inated at the centre of the Earth, but it rotates with the Earth. The main 
difference between this system and the ECI system is that the primary axis 
is always aligned with a meridian that is fixed on the Earth. This merid­
ian is usually the Greenwich meridian resulting in the coordinate system 
sometimes being called the Earth-Fixed Greenwich, EFG, coordinate 
system. Positions in this coordinate system can be specified either in rect­
angular Cartesian coordinates (x, y, z) where the x-axis is the primary axis, 
or in spherical coordinates. Spherical coordinates are presented in either 
the geocentric coordinate system or the geodetic coordinate system. The 
geocentric system is defined with the assumption that the Earth is a perfect 
sphere and consists of latitude, ¢/, longitude, )..', and radial distance, p. 
The longitude is measured positively to the east from Greenwich and ranges 
between ±180°. Latitude is measured from the equator (0°) to ±90°, pos­
itively to the north. The radial distance is the magnitude of the Cartesian 
position vector. The geodetic coordinate system differs from the geocentric 
system in that it refers to a model of the Earth that is a spheroid and not 
a perfect sphere in describing the position of an object. It uses geodetic 
latitude, ¢, geodetic longitude, .x, and geodetic height, h, as coordi­
nates. Geodetic longitude is equal to geocentric longitude. Geodetic latitude 
differs from geocentric latitude in that it refers to the angle between the 
vector normal to the spheroid and the equatorial plane. The two definitions 
of latitude is illustrated in figure B.3. The two values may differ by up to 
10 minutes of arc (20 km in position) in mid-latitudes. Geodetic height is 
the distance above the spheroid measured along the normal to the spheroid. 
The Global Positioning System (GPS) indicates position in the geodetic co­
ordinate system. The position-coordinates on most maps are also indicated 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. REFERENCE SYSTEMS 68 

North pole 

Figure B.3: The difference between the geodetic and geocentric coordinate 
systems. 

in this coordinate system. The transformation between the two coordinate 
systems is described in section B.3. 

B.1.3 Perifocal Coordinate System, PQW 

The perifocal coordinate system is a convenient system for describing 
satellite observations. The orientation of the coordinate system is indicated 
in figure B.4. It is a right-handed coordinate system that has the satellite's 
orbital plane as the fundamental plane. The origin of this system is at the 
center of the Earth. The P axis point towards perigee, the Q axis is 90° 
from the P axis in the direction of motion and the W axis is normal to the 
orbit and it completes the right-handed coordinate system. This coordinate 
system can be described as an inertial system in that it maintains its orien­
tation towards perigee in the orbital plane. Perturbative forces , which act 
to change the orientation of the orbital plane, will also change the orienta­
tion of this coordinate system in inertial space. This system will be used for 
the transformation from the classical orbital elements to the Eel coordinate 
system. 
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Figure B.4: The perifocal (PQW) coordinate system. 

B.1.4 Topocentric Horizon Coordinate System, SEZ 
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The topocentric horizon coordinate system, SEZ, is very useful for defining 
observations of satellites and is often used in sensor systems. This system is 
defined at a particular site on Earth as illustrated in figure B.5. The local 
horizon is the fundamental plane. The § axis always points directly south 
from the site. The E axis points east from the site and is undefined for 
the North or South Pole. The Z (zenith) axis points radially outward along 
the site's position vector normal to the fundamental plane. This coordinate 
system is used to define "look angels" which is used to view satellites or 
celestial bodies from a groundstation. The azimuth angle is the angle 
in the fundamental plane measured clockwise from north to the location 
beneath the satellite. It usually assumes values between 00 and 3600

, but 
other conventions do exist. The elevation angle is the angle measured 
perpendicular from the local horizon to the position of the satellite. Elevation 
angles assume values in the range form -900 to 900

• Objects that are above 
the horizon have positive values of elevation and objects below the horizon 
have negative values of elevation. 
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Figure B.5: The topocentric horizon coordinate system. 

B.2 Time 

70 

In order to accurately describe an event, it is necessary to refer it to the time 
or epoch of its occurrence. In order to accurately describe the epoch of an 
event, it is necessary to be able to accurately measure a time interval and 
have a fundamental epoch from which the intervals can be counted. From 
ancient times, the day was the fundamental unit for measuring time. In 
modern times the motion of the Sun is still used to define time, but the 
process of measurement of solar time has been refined to satisfy the need for 
very accurate time measurements. The different needs in terms of accuracy 
resulted in the four systems of timekeeping that is currently in use. The four 
systems are sidereal time, solar time , dynamical time and atomical 
time . 
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B.2.1 Precession and Nutation 

The equatorial plane of the Earth and the ecliptic plane are used to define 
an inertial coordinate system, but both planes are not really fixed in inertial 
space. Perturbative forces acting on the Earth cause the equator to expe­
rience a wobbling movement over a period of time and it also results in a 
secular change in the direction of the vernal equinox. This motion of the 
Earth introduces errors into the historical method of timekeeping, which was 
based on observations of the celestial bodies. The result is that if an accurate 
determination of time is required, the effects of the precession and nutation 
of the rotational axis of the Earth need to be taken into account. 

The gravitational fields of the Sun and the Moon exercise a torque on the 
equatorial bulge of the Earth. This force combined with the forces applied 
by the gravitational fields of the other planets in the solar system has the 
effect that the Earth's axis of rotation experiences a slow drift or preces­
sion as displayed in figure3 B.6. This motion has a period of 26000 years. 

Luni-solar precession 
effect /Nutation effect 

Ecliptic plane 

equinox 

Figure 8.6: Precession and nutation of the Earth's rotational axis. 

The obliquity of the ecliptic (23.5°) causes the precession of the Earth's axis 
of rotation to trace out a rough circular shape over each period of rotation. 
Another effect is that the vernal equinox slowly regresses- move in a west­
erly direction- along the ecliptic plane. Due to the movement of the vernal 
equinox, the observed coordinates of celestial bodies continuously change 
over time. Therefore it is necessary to define the time of observation or the 

3Image taken from Vallado [35] . 
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epoch of the coordinate system for the observation that was made in order to 
be able to determine the exact observed position of the celestial body some 
time after the observation. 

The Moon produces an additional torque on the equatorial bulge of the 
Earth that results in the Earth experiencing nutation. This torque is the 
result of a very complex superposition of forces caused by the inclination (5°) 
of the Moon's orbit to the equator and the precession of the Moon's orbit 
due to solar perturbations. The nutation causes a periodic oscillation of the 
rotational axis of the Earth around its mean position as indicated in figure 
B.6. This periodic oscillation advances around the pole of the ecliptic due to 
the precession of the rotational axis of the Earth. 

The motion of the Earth because of nutation can be partitioned into two 
components, one parallel to the ecliptic and one perpendicular to the ecliptic. 
The component parallel to the ecliptic is denoted by fl'IjJ and is called nuta­
tion in longitude. The component perpendicular to the ecliptic is denoted 
by flE and is called the nutation in obliquity. The values of fl'IjJ and 
flE are needed to determine the apparent (true) position of a celestial body 
and for the calculation of apparent sidereal time4 . Seidelmann [30] supplies 
approximate procedures for the calculation of the nutations in longitude and 
obliquity as 

-0.0048° sin(125.00 - 0.05295°d) 

-0.0004° sin(200.9° + 1.97129°d) 

+0.0026° sin(125.00 - 0.05295°d) 

+0.0002° cos(200.9° + 1.97129°d) (B.2) 

where d is the number of days from Julian day 2451545.0. Equation B.2 
is called an approximate calculation of the two nutation terms because it 
consists of only the dominant terms of a series of terms, but it is still accurate 
to about 1 second of arc. 

From equation B.2 the true obliquity of the ecliptic can be calculated 
from 

(B.3) 

where EO is the mean obliquity of the ecliptic that is given by 

EO = 23°26'21."448 - 46."8150 T - 0."00059 T2 + 0."001813 T3 (B.4) 

T is calculated from equation B.6. 

4See section B.2.3 for the calculation of apparent sidereal time 
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B.2.2 Solar Time 

Solar time is loosely defined as successive transits of the Sun over a local 
meridian. Apparent solar time is the observation of the true motion of 
the Sun from a particular location. The length of an apparent solar day 
varies due to the motion of the Earth in an orbit with non-zero inclination 
and eccentricity. This apparent irregular motion of the Sun- actually the 
Earth in its orbit around the Sun-makes it difficult to use the Sun as an 
accurate reference for timekeeping. It necessitated the definition of a fictitious 
mean Sun that represents the position of the Sun as if it were travelling at 
a constant speed in the equatorial plane throughout the year. This averaged 
motion of the Earth resulted in the concept of mean solar time. Mean 
solar time at Greenwich is defined as universal time, UT. The difference 
between mean and apparent solar time is called the equation of time. 

Universal time must be divided into three values for the purpose of precise 
timekeeping. These values are UTO, UT1 and UT2. UTO is the solar 
time observed at a particular ground station. Because the position of the 
Sun cannot be measured as accurately as the position of the stars, UTO is 
in fact determined from the sidereal time at a specific groundstation. UTI 
is determined by correcting UTO for the irregularities in the motion of the 
Earth and making it independent of the position of the observer. UT2 is 
obtained by correcting UTI for seasonal variations in the orbit of the Earth. 
UT2 is not commonly used in calculations. Coordinated universal time, 
UTC is the time system most commonly used throughout the world for the 
purpose of civilian timekeeping. It is calculated by combining atomical time 
and universal time into a value that is accurate to the standards of atomical 
time and still correct when compared to the motion of the Earth. 

Referring to figure B. 7, an exaggerated view can be seen of how solar time 
is measured compared to sidereal time, which will be introduced in section 
B.2.3. The Greenwich meridian was chosen as a fixed point for determining 
solar time. It should be clear from this figure that , due to its orbital motion 
around the Sun, the Earth rotates more than 3600 between successive transits 
of the Sun over Greenwich. 

Julian Date 

The Julian date, JD , is an important concept in astrodynamics. It is 
the continuous amount of time measured in days from the epoch of January 
1, 4713 B.C. A Julian day starts at Greenwich mean noon resulting in the 
Julian date of 00:00 UTC to always end in ".5". The biggest advantage in 
using the Julian date is that the information of the year, month, day, hour, 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. REFERENCE SYSTEMS 74 

Earth Sun 

Stars ~ 

Figure B.7: The measurement of Solar and Sidereal time. 

minute and second are all preserved in one variable that is very useful for 
computer applications. The Julian date for a certain day and time is found 
by using the following procedure presented by Meeus [22]. 

For a given calendar date, let Y be the year (four digit value), M the 
month number and D the day of the month (with decimals if it has any). If 
M > 2 then Y and M should be left unchanged. If M = 1 or M = 2 then 
Y should be replaced by Y - 1 and M by M + 12. The Julian date is then 
obtained from the formula 

A INT (1~0) 
B 2 - A + I NT ( ~ ) 

JD INT(365 .25(Y + 4716)) + INT(30.6001(M + 1)) 

+D + B -1524.5 (B.5) 

where I NT denotes real truncation. Other formulations for the calculation 
of the Julian date do exist , but unlike equation B.5 they are usually only valid 
for a specific interval of time. Since Julian date is often used as an epoch 
for observations, the Julian date for 12:00, January 1 2000 (JD 2451545) is 
commonly assigned the shorthand notation of J2000. For some calculations, 
it is necessary to use the number of Julian centuries from a certain epoch. The 
number of Julian centuries from J2000 is often encountered in calculations 
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and can be calculated from 

JD - 2451545 
T = 36525 (B.6) 

B.2 .3 Sidereal Time 

Sidereal time is defined as the angle, measured in the equatorial plane, 
between the vernal equinox and a local meridian. Refer to figure B.7 for a 
comparison between the measurement of solar and sidereal time. It should be 
clear that sidereal time is a direct measurement of the diurnal motion5 of the 
Earth. Apparent sidereal time is the angle between the local meridian 
and the true vernal equinox. The position of the vernal equinox is affected by 
the precession and nutation of the axis of the Earth. The periodic variations 
due to nutation introduce periodic variations into the apparent sidereal time. 
Mean sidereal time is defined as the time determined from the diurnal 
motion of the mean vernal equinox. Only secular variations in the orientation 
of the vernal equinox resulting form precession is taken into account when 
determining the mean sidereal time. The difference between apparent and 
mean sidereal times is defined as the equation of the equinoxes. For the 
practical determination of the rotational position of the Earth, it is necessary 
to obtain the apparent sidereal time. The calculation of mean sidereal time is 
mathematically well defined. This means that in order to obtain the apparent 
sidereal time, the mean sidereal time is first calculated from the following 
formula as presented by Meeus [22] 

OMST = 280.46061837° + 360.98564736629°(JD - 2451545.0) 

+0.000387933° T2 - (1/38710000t T3 (B. 7) 

where OMST is the Mean Sidereal Time in degrees, T is Julian centuries from 
J2000 as calculated in equation B.6 and JD is the Julian day-number (and 
fraction). The formula is presented in this particular format to preserve 
numeric accuracy when implemented in a computer. The equation of the 
equinoxes is calculated as 

equation of equinoxes = /1 'IjJ cos E (B.8) 

where section B.2.1 discusses the computation of /1'IjJ and E. The value ob­
tained from equation B.8 is then added to the value obtained from equation 
B.7 to obtain the correct value for the apparent sidereal time. 

5Seidelmann [30] defines diurnal motion as "the apparent daily motion of celestial bodies 
across the sky from east to west, caused by the Earth's rotation." 
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B.2.4 Dynamical and Atomical Time 

Dynamical time uses observations of the motion of bodies in the solar 
system to determine t ime from the mathematical description of the motion 
of these bodies. 

International Atomic Time, TAl , is considered the most accurate 
time system available because it is independent of variations in the Earth's 
rotation. It is based on the counting of the cycles of oscillation of a high­
frequency electrical circuit kept in resonance by a cesium-133 atom in tran­
sition. Due to its accuracy, this system of t imekeeping is used to correct all 
other timekeeping systems. 

B.3 Coordinate Transformations 

Observations of celestial bodies or spacecraft always need to be referred to 
a coordinate system. It does happen quite frequently that an observation is 
described in one coordinate system and that it needs to be compared to an 
observation made in another coordinate system. A transformation between 
coordinate systems is required to accomplish this. After the transformation 
of a vector, it is still the same vector, but the numeric value used to describe 
it has changed according to the definition of the coordinate system in which it 
is described after the transformation. Since the understanding of coordinate 
transformations is essential to understanding astrodynamics, this section will 
describe the coordinate transformations that were used during this study. 

B.3.1 Classical Orbital elements to ECI 

As it was already indicated, the ECI coordinate system suits the specification 
for an inertial reference frame as laid down by Newton. Since the classical 
orbital elements or Kepler elements, defined in section C.2 .3, are defined 
in an inertial reference frame, the ECI coordinate system will be suitable 
as a reference frame. The Kepler element set will not be considered as a 
separate coordinate system, but simply as another coordinate formulation in 
the ECI system. Instead of using Cartesian coordinates, the position and 
orientation of the orbital plane and the satellite in the orbit is defined by 
means of the six Kepler elements. It will still be, however, necessary to 
define the transformation equations which are necessary to transform the 
description of an object in classical elements to the ECI coordinate system. 
This transformation is essential when the propagation of a satellite in its 
orbit is performed. The transformation will consist of a two-step process. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. REFERENCE SYSTEMS 77 

The first step is to transform the classical elements to the perifocal co­
ordinate system. Referring to figure B.8, it can be seen that the position of 
the satellite in the perifocal coordinate system can be described in terms of 
the classical elements as 

[ 

r cos(v) 1 
rFQw = r Si~( v) (B.9) 

where r is determined from the trajectory equation (equation C.15). The 

Q 

rsm V 

--+ 

~~----~----~p 
r cos V 

Figure B.8: The position and velocity vectors in the perifocal coordinate 
system. 

Hi -component is zero because the P and Q vectors are situated entirely in 
the orbital plane. The velocity of the satellite in the perifocal system can be 
expressed in terms of the classical elements as 

[ 
-j'! sin(v) 1 

vPQW = /W (e ~ cos(v)) (B.I0) 

where p is the semi-parameter as defined in equation C.14. 
The second step in the transformation from classical elements to the ECI 

system is to transform the position and velocity vectors obtained in perifocal 
coordinates to the ECI coordinate system. From figure B. 9 is should be 
clear that the PQW axis of the perifocal coordinate system can become the 
I J K axis of the ECI coordinate system by three successive rotations. These 
rotations consist of 
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------- Orbit 

~--~----~----~~J 

I 

Figure B.9: The relationship between the Eel and the PQW coordinate 
systems. 

1. a rotation about the ltV axis by -w, 

2. a rotation about the pi axis by -i and 

3. a rotation about the W" axis by -D. 

In the rotations the first rotation changes the PQW axis to the pi Q'W' axis, 
the second rotation changes the pi Q'W' axis to the P" Q"W" axis and the 
third rotation changes the P" Q"W" axis to the I J K axis. In matrix notation 
the three transformations can be presented as follows: 

(B.11) 

-~nil [~; 1 
cos'/, W' 

(B.12) 
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[ 
I] [ cos n - sin nO] [ P" ] 
J = sin n cos n 0 Q" 
K 0 0 1 W" 

(B.13) 

The complete transformation is then 

[ 1] ~ [T,JlT,JlT3J [ ~ ] (B.14) 

where Tl is the rotation matrix in equation B.ll, T2 the rotation matrix 
in equation B.12 and T3 the rotation matrix in equation B.13. The three 
successive rotations are sometimes combined into a single matrix expression 
[R] = [T1][T2][T3] to ease the implementation in a computer. The combined 
expression is 

[ 

CnCw - SnSWCi 
[R] = SnCw + CnSwCi 

SwSi 

-CnSw - SnCwCi 
-SnSw + CnCwCi 

CWSi 

(B.15) 

where Cangle and S angle are used to denote the sine and cosine values of 
the angles. Equation B.14 can be used for transforming both the position 
and the velocity vectors from the perifocal coordinate system to the ECI 
coordinate system. For an inverse transformation from the ECI system to the 
perifocal system, the inverse of the R-matrix must be used. For a complete 
transformation from the ECI coordinate system to the classical elements, a 
different technique is necessary. This technique will be introduced in the 
following section. 

B.3.2 ECI to Classical Orbital Elements 

Although observations are commonly made in terms of the SEZ or spherical 
ECI coordinate systems, the observations of a satellite are usually reduced 
to position and velocity vectors. These vectors are convenient for numerical 
processing and locating the satellite in general, but they are not very de­
scriptive to a mission analyst. The analysis of an orbit is much easier if the 
classical elements are known. Most commercial propagation software uses 
the classical elements as input and therefore it will frequently be necessary 
to t ransform the position and velocity vectors to classical elements. The 
equations that are necessary to perform the transformation are presented as 
the definitive equations for the classical elements in section C.2.3. They will 
be presented here again in order to present the complete set of equations 
which is used for the transformation. 
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The first two values that are needed are the magnitude of the position 
and velocity vectors, which are 

(B.16) 

and 

v = Jv2 + v2 + v2 
x y z (B.17) 

The angular momentum vector will be needed and is defined as 
--+ 

h=rx v h= Ihl (B.18) 

The node-vector pointing to the ascending node is defined as 

(B.19) 

With the orbit in the equatorial plane, the node-vector will be zero which 
will cause the right ascension of the ascending node to be undefined. 

The eccentricity is calculated as 

--+ (v2 
- ;) r - (r· v)V 

e = -->-------'-----

J-L 
e = 1e1 (B.20) 

with the eccentricity vector always pointing towards perigee. 
The semimajor axis is calculated from the vis viva equation that states 

that 

v
2 

= J-L (~ - ~) (B.2I) 

The inclination is determined from 

j(·h 
i = COS- 1 _

h
- (B.22) 

The right ascension of the ascending node is determined from 

- 1 f· ii 
n = cos liil (B.23) 

The quadrant in which n is situated should be verified. If J . ii < 0 then 
n = 3600 

- n. 
The argument of perigee is calculated from 

ii·e -1 
W = cos liille1 (B.24) 
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if K . e < 0 then w = 3600 
- w. 

The final value that needs to be calculated is the true anomaly that is 
determined from 

e·f -1 
1/ = cos 1e11f1 (B.25) 

if f . iJ < 0 then 1/ = 3600 
- 1/. 

This set of calculations will only be valid for elliptical inclined orbits. For 
orbit configurations which have either zero inclination (equatorial orbit) or 
which are circular, the sequence of transformations will not be valid since 
some of the equations will become singular. Vallado [35] defines variations 
in the classical orbital elements which should be used for these alternative 
orbit configurations. 

B.3.3 ECI and ECEF 

Both the ECI and the ECEF reference frames depend on the Earth's equator 
as the fundamental plane. The only difference between the ECI and the 
ECEF reference frames is that the ECI system can be considered as fixed in its 
orientation in inertial space while the ECEF system rotates with the Earth. 
This has the effect that the transformation between the two systems is simply 
a rotation about one of the axis with the rotation angle of the Earth. This 
rotation angle is determined from the calculation of the apparent sidereal 
time of the Earth as presented in section B.2.3. If 0 AST is the apparent 
sidereal time at Greenwich at the moment of performing the transformation, 
then the transformation from the ECl to the ECEF systems is performed as 
follows: 

[

COS 0 AST sin 0 AST 0 1 
rECEF = - sin 0 AST cos 0 AST 0 rEC I 

o 0 1 
(B.26) 

The transformation from the ECEF system to the ECl system is performed 
by using the same transformation matrix which was used in equation B.26 
with the angle substituted with -0 AST. The measurement of the Earth's 
rotation angle is illustrated in figure B.IO. 

B.3.4 ECEF, Geocentric and Geodetic Coordinates 

As it was indicated earlier in section B.1.2, the ECEF reference system is 
a Cartesian coordinate system that rotates with the Earth. The position of 
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Earth viewed 
from North Pole 

82 

J 

Figure B.lO: The relationship between the ECI and the ECEF coordinate 
systems. 

an object in this reference system can be described either in terms of the 
Cartesian coordinates or in terms of spherical coordinates. 

The logical first choice for a spherical description of position is the geo­
centric coordinate system since it is simply the spherical equivalent of the 
Cartesian coordinates. The transformation from the Cartesian ECEF coor­
dinates, [x y z], to geocentric coordinates, [4>' A r] is 

tan-1 z 

[ ! 1 
Jx2 + y2 

tan-l 11 (B.27) 
x 

..jX2 + y2 + Z2 

This value of A is determined following the transformation from ECEF to 
ECI coordinates. It is often found that the longitude needs to be calculated 
directly from the ECI coordinates. This can be calculated from 

A = a - BasT (B.28) 

where a = tan-1 (~) is the right ascension of the object in the ECI system 
and BasT is the apparent sidereal time at the Greenwich meridian. The 
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inverse transformation, from geocentric to ECEF coordinates, is given by 

[
Xl [ cos 1/ cos A 1 
y = r cos ?' sin A 
z smq/ 

(B.29) 

The transformation that is most often needed in practice is the conversion 
from the Cartesian coordinate system (either the ECI or the ECEF systems) 
to the geodetic coordinate system. This process usually involves iteration as 
it will be shown shortly, but Chobotov [11] supplies a high accuracy closed­
form solution for converting from the ECI system which eliminates the itera­
tion. This closed-form solution for calculating the geodetic coordinates from 
ECI coordinates will be presented first , followed by the iterative procedure. 
In the closed-form solution the height is calculated from 

h [f . 2 r P. 2 r (ae 1) 1 = r - ae 1 - sm u - 2 sm 2u -;: - 4" (B.30) 

where r is the magnitude of the position vector, 6 is the declination of the 
object in the ECI system, ae is the equatorial radius of the Earth and f = 

1/298.257 is the flattening of the Earth. The geodetic latitude of the object 
is calculated from 

¢ = 6 + sin-l [sin(¢ - 6)] (B.31) 

where 

sin( ¢ - 6) = :e [f sin 26 + f2 sin 46 (:e - ~) ] (B.32) 

Since the value for the longitude is the same for both geodetic and geocentric 
coordinates, it can still be calculated from equation B.28. 

The iterative procedure for the calculation of geodetic coordinates from 
ECEF coordinates is explained in the Astronomical Almanac [1]. It will be 
presented here for obtaining insight in the coordinate system. The first values 
to be calculated are 

A = tan-1 (~) r' = .Jx2 + y2 (B.33) 

where x, y and z refer to the components of the position vector in the ECEF 
coordinate system. 
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The first approximation of cp is calculated from cp = tan-1(z/r'). The 
following iteration is then performed until cp is unchanged to the required 
precision: 

C (B.34) 

then the geodetic height, h, is calculated from 

h = r' cos ¢ - aeC (B.35) 

The final conversion is the conversion from geodetic to ECEF Cartesian 
coordinates. This is obtained from 

[
Xl [( N ¢ + h) cos cp cos). 1 
y = r (N¢ + h) coscpsin). 
z ((1 - e2)N¢ + h) sincp 

(B.36) 

where 

(B.37) 

B.3.5 Eel and SEZ 

The transformation from ECl coordinates to the Topocentric Horizon coor­
dinate system is often needed for accurate antenna pointing during a pass 
of a satellite over a particular groundstation. The first value that should be 
determined is the vector from the observer to the satellite in the ECl coordi­
nate system, PIJK. This is obtained by subtracting the ECl position vector 
of the groundstation for a particular moment, rSiteIJK , from the ECl position 
vector of the satellite, TsatIJK , at the same moment. 

pIJ K = rsatI J K - TsiteIJ K (B.38) 

The transformation of the vector in the EC I system to the S E Z system is 
performed via the rotation 

(B.39) 
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where Cangle and Sangle are used to denote the sine and cosine values of the 
angles, ¢ is the geodetic latitude of the observer and (hST is the local apparent 
sidereal time which is the sum of the Greenwich apparent sidereal time and 
the longitude of the observer. The range to the satellite is calculated from 

P= Jp~+p~+p~ 
the elevation is calculated from 

El . -1 pz 
=Sln -

p 

and the azimuth is calculated from 

A t 
-1 -PE 

Z = an --
Ps 

(B.4D) 

(B.41) 

(B.42) 

The minus sign is necessary in the calculation of the azimuth angle because 
azimuth is measured clockwise from north instead of being measured counter­
clockwise from south as it should normally be done for a right-handed or­
thogonal coordinate system. The quadrant for the azimuth must always be 
checked to ensure that the correct value for the azimuth is used. 

B.3.6 ECI Rectangular and ECI Spherical 

The position vector in the rectangular EOl reference frame can be obtained 
from the right ascension, a, and declination, 6, through the relationship 

[ 

r cos( 6) cos( a) 1 
fi J K = r cos (6) sin ( a ) 

r sin(6) 
(B.43) 

The rectangular velocity vector can be obtained from the spherical coordi­
nates as 

VIJF [~: 1 (B.44) 

where 

V I V (cos a ( - cos Az sin ¢ fpa sin 6 + cos ¢ fpa cos 6) - sin Az sin ¢ jpa sin a) 

V J V (sin a ( - cos Az sin ¢fpa sin <5 + cos ¢ fpa cos 6) + sin Az sin ¢jpa cos a) 

VK V (cos Az cos 6 sin ¢/pa + cos ¢/pa sin 6) 

(B.45) 
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where the variables are defined in section B.l.l. 
The transformation from the rectangular ECI coordinates to the spherical 

ECI coordinates is defined as 
y 

sma 
Jx2 + y2 

X 
cos a 

J x2 + y2 

-1 (Sin a) a tan --
cos a 

6 sin-1 (~) 

¢fpa (rov) cos-
1 

r· V 

-; f' xV W 
If' x VI 

-; Wxf' 
A -; 

IW x f1 
p (f' x k) x f' 

I(f' x k) x f1 
cosAz }f.p 

-; 

sinAz 
-; -; r 

A x p.-
r 

Az tan -1 (Sin AZ) 
cosAz 

(B.46) 
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Orbital mechanics 

This chapter discusses concepts that form the foundation for the description 
of the orbital motion of a satellite. A brief historical background will be 
presented followed by a derivation of the equations of two-body motion. Fi­
nally, the different representations of the orbital state of a satellite will be 
provided. 

C.l Historical background 

A large number of astrologers worked for many centuries trying to under­
stand the principles behind the orbital motion of the planets. These govern­
ing principles that they were looking for could only be grasped as a result 
of the work done by a new era of astronomers which started emerging in 
the fifteenth century. The work done by Nicholas Copernicus (1473-1543), 
Galileo Galilei(1564-1642), Johannes Kepler(1571-1630) and Isaac Newton 
(1642-1727) was integrated into a unified theory describing the orbital motion 
of the planets. They brought together the historic theories and observations 
made earlier and combined it with their own theories to form a basic set of 
equations describing the orbital motion of the planets. These formulae are 
not only applicable to the motion of the planets, but, when simplified, also 
describe the motion of a satellite in orbit around a planet. 

Copernicus was the first in the emerging era of astronomers and was, like 
his predecessors, still thinking mainly in terms of circular orbits. He was the 
first astronomer to suggest that the Sun is at the center of our solar system, 
but he could not prove it. By making his own observations, he started a 
divergence in thinking from the theories of Ptolemy which, up to that time, 
have been dominating the thoughts of the astronomical community for almost 
1500 years. 

87 
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Kepler continued the process that was initiated by Copernicus. His close 
study of the orbit of Mars led him to formulate his three laws of orbital motion 
with which he attempted to correct the flaws in the theories formulated by 
Copernicus and those before him. The three laws are: 

1. orbits of planets are ellipses, which are orientated in a fixed inertial 
plane around the Sun, and it has the Sun at its one focus, 

2. the line joining the planets to the Sun sweeps out equal areas in equal 
times and 

3. the square of the period of a planet is inversely proportional to the 
cube of its mean distance to the Sun. 

Kepler's laws were quite remarkable considering the equipment he had, but 
it did not completely solve all the questions surrounding planetary motion. 

Galileo picked up where Copernicus ended his work. He proved the theory 
of Copernicus by studying the moons of Jupiter with his telescope. His 
observations and initial calculation of the value of gravity, was a significant 
contribution to the work of Newton. 

Newton brought it all together. He mathematically formulated the laws 
of nature that control the motion of the planets. His mathematics proved 
the observations of Copernicus, Kepler and Galileo and with the formulation 
of his Universal law of gravitation, it was possible to describe the forces 
between celestial bodies and also the positions of the planets in relation to 
one another. It was the tools supplied by the great astronomers that enabled 
scientists in the twentieth century to achieve the wonders of space flight. To 
put it in the words of Newton: "We stand on the shoulders of giants." 

C.2 Orbital motion 

C.2.1 Basic parameters 

The first formulation of the Laws of Orbital Motion formulated by Kepler 
can be extended to include all types of satellite and planetary motion. 

Kepler's first law states that orbits of celestial bodies (including those 
of satellites around a planet) are conic sections. Celestial bodies which are 
permanently connected follow elliptical orbits which means that satellites 
follow elliptical orbits when in a permanent orbit around a planet. The 
following properties of conic sections are important when defining an orbit 
and is illustrated in figure C.l. 
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Figure C.l: The most important properties of elliptical orbits. 

89 

• Every conic section has two foci. In astrodynamics the foci are impor­
tant because when the mass of one of the bodies in a two-body system 
is negligible, the planetary center of the major body coincides with one 
focus, this focus being called the primary focus. Circular and ellip­
tical orbits are called closed orbits since the satellites more or less 
retrace their positions over time. These two types of orbits have foci 
at finite positions. Hyperbolic and parabolic orbits are called open 
orbits since the satellites in general do not retrace their positions. 
Parabolas have one focus at infinity and hyperbolas have a different 
open branch of orbital motion associated with each focus. 

• The scale (size) of a conic section is determined by the value of the 
major axis. The parameters that is used to describe the scale is the 
semimajor axis, a, the semiminor axis, b and half the distance 
between the foci, c with a and b being half the value of the major 
and minor axis respectively. For circular and elliptical orbits, the value 
of a is positive, it is undefined for parabolic orbits and it is negative 
for hyperbolic orbits. 

• The eccentricity (e) is a parameter which is used to specify the shape 
of the conic section. It is defined as the ratio of the distance from 
either focus to the orbit and the distance to a stationary line called the 
directrix . For an elliptical orbit the eccentricity is always between 0 
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and 1 with it being 0 in the case of an exact circular orbit and 1 when 
the orbit is parabolic (the satellite is on the verge of escaping from the 
gravitational field of the planet) .. For hyperbolic (or interplanetary) 
orbits the value of e is greater than 1. Circular and parabolic orbits do 
not exist in practice. Perturbative forces acting on the satellites have 
the effect that all closed orbits are always either elliptical (even if only 
very slightly so) or hyperbolic. 

The extreme points of an elliptical orbit are called the apoapsis and 
periapsis with the apoapsis being the farthest and the periapsis being the 
nearest points of the orbit to the central body. For satellites orbiting the 
Earth, these extreme positions are called the apogee and the perigee, re­
spectively. The line connecting the apogee and perigee is defined as the line 
of apsides. 

C.2.2 Two-body motion 

The two-body problem is a simplified version of the motion of a satellite 
in orbit, but it is crucial to understanding astrodynamics. The discussion 
of the two-body problem will serve as an introduction to orbital mechanics 
and it will be used as a foundation for the more advanced topics such as 
perturbations and different types op orbital propagators. 

Equation of motion 

Newton's second law and his universal law of gravitation is the starting point 
for virtually any study of orbital motion, especially when combined with 
Kepler's Laws. Newton's law of gravitation states that any two particles of 
mass M and m, distance r apart, are attracted toward each other with a 
force which is equal, but opposite in direction. For the case where the larger 
body is the Earth and the smaller one is a satellite orbiting the Earth, the 
force of gravity that the Earth exercises on the satellite is 

F=_GMmf 
r2 r 

(C.l) 

where G is a universal constant called the gravitational constant. The value 
of G and the value of M, where M is the mass of the Earth, is known to 
a limited accuracy, but the value of f-t = G M is known to a much higher 
accuracy and this value is therefore used for astrodynamic calculations. 

Newton's second law states that the time rate of change of linear momen­
tum is proportional to the force applied. For a fixed mass system, this means 
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that 

... d(mv) .. 
LF= =mx dt 

(C.2) 

The result is that for a system with constant mass, the sum of all the forces, 
F, acting on a body is equal to the mass, m, times the acceleration, ii, of 
that body. 

To determine the equation of motion, equations C.1 and C.2 are com­
bined. There are two ways to determine the equation of motion for a two­
body system. The two methods are the general two-body problem and the 
restricted two-body problem which can be defined as the process of deter­
mining the relative motion between a small mass, m, and a larger mass, M, 
which are moving in an inertial reference frame. The position vectors for 
the large mass and the small mass in the inertial reference frame are Ii and 
p, respectively. The vector between the two bodies (from the Earth to the 
satellite) will be defined as r = p - Ii. The general two-body problem results 
when Ii =1= O. The restricted two-body problem results when the larger mass 
is situated at the origin of the inertial reference frame. Combining the two 
laws stated above, it is found that for the general two-body problem 

.~ GMmr 
MR =--::--­

r3 

and for the smaller mass, m, 

.. GMmr 
mp=--­

r3 

(C.3) 

(C.4) 

Isolating the acceleration on the left sides of both equations and then sub­
tracting equation C.4 from equation C.3 yields 

.~ G(M +m)r 
r = - ---'.--::--~ 

r3 

or 

.~ G(M +m)r 
r+ =0 

r3 
(C.5) 

In a restricted two-body problem, the principal mass,M , is assumed to be 
fixed in inertial space. This implies that M » m, so that m does not affect 
the motion of M. By letting M be at the origin of the inertial reference 
frame, the force on the mass m is 

... G(M +m)r .~ 
F = - =mr 

r3 
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where p = r. It can therefore be seen that 

.. GMf 
f+--=O 

r3 

or in simplified form 

d2f f 
dt2 = -/-1 r3 

where ~~f = f = acceleration of mass m relative to the inertial frame. 
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(C.6) 

(C.7) 

The general and the restricted two-body problems differ only in the grav­
itational constant term. Since, for satellites orbiting the Earth, M » m, the 
difference between the two problems is negligible and the simpler solution to 
the restricted two-body problem can be used to describe two-body orbital 
motion. Equation C.7 is the basic two-body equation of motion that will be 
used as a basis to explain more complex orbital motion. 

Conservation of Angular Momentum 

An expression can be obtained for the angular momentum of a satellite with 
this expression being independent of the mass of the satellite and constant for 
the specific orbit . This specific angular momentum, h, for a satellite can be 
derived by starting with the vector-multiplication of the two-body equation 
and the position vector, f: 

(C.8) 

Because fx f = 0, the second term in equation C.8 disappears. Now consider 
the following differential: 

:t (f x f) = f x f + f x f = f x f (C .9) 

This can be substituted into equation C.8, but since the derivative is equal 
to zero, the internal quantity, f x f , must be of a constant value h. When 
the position derivative is substituted with the velocity, v, it is found that 

h = f x if = constant (C.lO) 

Equation C.lO defines the angular momentum1 of the satellite. Due to the 
absence of mass in this equation, it is called the specific angular momentum. 
Since the vector h is the cross product between the two vector quantities, r 

1 Refer to Meriam and Kraige [23J for a discussion on angular momentum. 
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and V, it is in a direction perpendicular to the plane (the orbital plane) which 
contains rand v. This and the fact that h is constant is a verification of the 
first law of Kepler which states that "the orbits of planets are ellipses which 
are orientated in a fixed inertial plane around the Sun". For the ideal case 
where there are no perturbative forces to change the orientation, the plane 
defined by r and v will stay fixed in inertial space and the satellite's motion 
will be confined to this plane. 

From figure B.2 it is seen that , using the flight-path angle, ¢>fpa, the 
angular momentum can be described as 

h = rv sin( ¢> jpa) (C.ll) 

At apoapsis and at periapsis the position and velocity vectors are perpen­
dicular resulting in the flight-path angle being zero. The respective angular 
momenta are then given by 

(C.12) 

From analytical geometry the angular momentum of a body undergoing 
curvilinear motion can be written as 

h = ViiP (C .13) 

with p being the semi-parameter or semilatus rectum which is defined 
as 

(C.14) 

a and e is the semimajor axis and the eccentricity of the orbit , respectively. 
Another equation that is important in describing the motion of a satellite 

in orbit is the trajectory equation that is defined as 

p 
r=----

1 + e cos ZI 
(C.15) 

This equation can be derived in a way that is equivalent to the derivation 
of the angular momentum equation, but will not be derived2 here since the 
derivation of this equation is not considered of importance to this discussion. 
Equation C.15 is of importance for some transformations between coordinate 
systems, as it defines the relationship between the classical orbital elements 
a, e and ZI and the magnitude of the position vector of the satellite. 

2See Chobotov [11], Bate et al. [4] or Vallado [35] for the derivation of equation C.15. 
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Conservation of Mechanical Energy 

The energy constant of motion that is independent of mass-the specific 
mechanical energy-will now be derived for a satellite undergoing two­
body motion. Consider equation C.6 in the form 

.. I1r 
r+-=O 

r3 
(C.16) 

. . .. 
Scalar multiplication of equation C.16 by r with the substitution of iJ = r, 
results in 

...:.. ... 11... 0 v· v +v· -r = 
r3 

(C.17) 

Generally the form of the dot product is r· iJ = rv cos( (}) which is a scalar 
quantity with the angle () = rPfpa being the angle between iJ and r. Also, 
v cos( (}) = r, with r being the radial component of change in the position 
vector of the satellite (not the magnitude of the velocity ,:ector, iJ). When 
substituting all these equations, it yields r· iJ = rr and iJ· iJ = vv. Equation 
C.17 can now be written as 

(C.18) 

and noticing that 

(C.19) 

equation C.18 becomes 

~ (V2) + ~ (_I!.) = 0 
dt 2 dt r 

(C.20) 

If the time rate of change in equation C.20 is zero, the quantity which is 
differentiated must be a constant. If both sides of this equation are integrated 
with respect to time, the differentials disappear and the right hand side 
becomes a constant. This constant is called the specific mechanical energy, 
~, and can be expressed as 

v2 11 
~= 2-; (C.21) 

Equation C.21 is known as the energy integral or the vis-viva equation. 
When equations C.12, C.13 and C.14 are substituted into equation C.21, 

the value for ~ is found to be 

11 
~=--

2a 
(C.22) 
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Equations C.21 and C.22 can then be combined into a formula which can be 
used to determine the speed of the satellite at different positions in the orbit: 

v
2 

= JL (~ - ~) (C .23) 

Period of orbital motion 

The third law of Kepler states that "the square of the period of a planet is 
inversely proportional to the cube of its mean distance to the Sun". This law 
can be expressed as 

~ P = 27ry-; 
where P is the period of the orbit. It can also be expressed as 

n=~=/fs 

(C.24) 

(C.25) 

where n represent the mean motion of the satellite in units of radians per 
unit of time. Equation C.25 is important in designing and analysing orbits 
since it relates the period of rotation of the satellite to the size of its orbit. 

C.2.3 Satellite orbital state representation 

Six quantities are used to define what is called the orbital state of a satel­
lite in space. These six quantities may take on many equivalent forms. The 
orbital state is called either a state vector (Vallado [35]) which is asso­
ciated with position and velocity vectors , or it is called an element set 
( elset) consisting of scalar magnitude and angular representations of the or­
bit. These elements in the elset are commonly known as orbital elements . 
Either of the above mentioned quantities completely specifies the orbit of 
the satellite and provides a complete set of initial conditions for solving an 
initial value class of differential equations such as can be obtained from the 
basic two-body equation of motion. Time is an inherent quantity in both 
the above-mentioned sets of data and it is often considered a seventh com­
ponent. In fact , without the time at which the state vector or elset was 
formed, the information is useless. The orbital elements are used to generate 
a list containing the position of a satellite at specific times. This list of or­
bital data is commonly known as an ephemeris with the plural form being 
ephemerides . 

State vectors and element sets are referenced to a particular coordinate 
frame. Appendix B describes different coordinate reference frames. The el­
ement sets have different formats due to the variety of representations of 
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orbital elements used to form this vector. The most commonly used repre­
sentation of the orbital state of the satellite is the set of classical orbital 
elements that is also known as K eplerian elements. Alternative meth­
ods which is used to represent the orbital elements are the 2-line elements 
(TLE's or NORAD elements), equinoctial elements, Delauney elements and 
Poincare elements. The last four types of orbital representations were devel­
oped to avoid the difficulties experienced with the classical orbital elements 
for certain orbital geometries. Appendix G describes different formats in 
which orbital elements are presented. 

Keplerian Elements 

The Keplerian or classical orbital elements consist of six parameters with a 
few augmentation parameters. All these parameters can be divided into 3 
groups viz. 

1. parameters which define the shape and size of the orbit , 

2. parameters which define the orientation of the orbital plane in inertial 
space and 

3. parameters which define the position of the satellite in the orbit. 

As stated previously, time is an inherent quantity in the orbital parameters 
and for this reason, the parameters are specified at a specific time or epoch. 
The definitions of the orbital elements are illustrated in figure C.l and in 
figure C.2. 

Since the orbits under consideration are Low Earth Orbit which are either 
elliptical or circular, the parameters which define the shape and size of 
the orbit are similar to the parameters defined in section C.2.1. It can be 
summarised as: 

• The semimajor axis, a, is usually used to define the size of the 
orbit , but the mean motion, n as defined in equation C.25 can be 
used interchangeably with a. Either the semiparameter or the radii 
of apoapsis and periapsis can also be used to determine the size of the 
orbit . When the velocity and position vector of the satellite is available 
at a specific time, it is possible to determine the value of a with the 
vis-viva equation . 

• The eccentricity, e, specifies the shape of the orbit. Although it is not 
generally used in that way, the eccentricity is in fact the magnitude of 
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Equatorial 
plane 

Orbit 
plane 

K 

Line of nodes 

Figure C.2: The classical orbital elements. 
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J 

a vector quantity. It can be determined from the velocity and position 
vectors as 

__ ( v2 - ;) f - (f. v)v 
e = --'--------''------

1-£ 
(C.26) 

This vector points towards the perigee. The value of e can also be 
determined by using the semimajor axis, a, and the semiminor axis, c, 
through the equation e = c/ a. 

The following parameters define the orientation of the orbital plane in 
inertial space. 
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• The inclination, i refers to the tilt of the orbit plane and is mea­
sured with respect to the Earth's equatorial plane. The value of the 
inclination can be determined via the relationship 

. -1 K· h 
'/, = cos ........ 

IKllhl 
(C.27) 

with K the vector from the center of the Earth through the North pole 
and h the angular momentum vector. Orbits with values of inclination 
between 0° and 90° is known as direct or prograde orbits. When the 
value of the inclination is between 90° and 180°, the orbit is called a 
retrograde orbit. 

• The right ascension of the ascending node, n, or longitude of 
the ascending node is measured counterclockwise in the inertial plane 
(when viewed from the North pole) from the direction of the vernal 
equinox (the f vector) to the location of the ascending node. The 
ascending node is the point in the equatorial plane where the satellite 
crosses the equator from south to north. The descending node is the 
position where the satellite crosses the equatorial plane from north to 
south. For orbits with zero inclination, the nodes are undefined. The 
line connecting the two nodes is known as the line of nodes. The 
value for n can be determined as follows 

-1 f· ii n = cos - .... -
IIIIiil 

(C.28) 

where ii = K x h is the node-vector. 

• The argument of perigee, w, is measured counterclockwise (when 
viewed from the North pole) in the orbit plane from the ascending 
node to the perigee. This parameter is used to locate the position of 
the perigee in the orbit. It can be defined as 

-1 fi· e 
W = cos Ifille1 

The angle is undefined for circular orbits. 

(C.29) 

The third group of parameters defines the position of the satellite within 
the orbit. 
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• The true anomaly, v is used to locate the satellite in the orbital 
plane and is the angular displacement measured from the perigee to 
the position vector along the direction of motion. This parameter can 
be mathematically defined as 

-1 e· r 
v = cos 1e11f1 (C.30) 

The true anomaly will vary from 0° to 360° as the satellite travels 
through one revolution of motion. This angle is not defined for circular 
orbits because they have no perigee. Usually computer software rou­
tines account for this special case by selecting a point in the orbit to 
replace the perigee as the location for initial measurement . 

• The mean anomaly, M and the eccentric anomaly, E are auxil­
iary parameters originally defined by Kepler. The eccentric anomaly is 
defined in figure C.3. It is used in conjunction with an auxiliary circle 

Apofocus 

Location of 
satellite 

Perifocus 

Figure C.3: The relationship between the true anomaly and the eccentric 
anomaly. 

to describe the true anomaly. The original intention of the eccentric 
anomaly parameter was to express the relationship between Kepler's 
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second law and the true position (1/) of the satellite in the orbit. The 
problem when describing the motion of a satellite in its orbit is that 
the true anomaly varies non-linearly with an increase in time and the 
eccentric anomaly do not use the center of the Earth as reference. This 
necessitated the formulation of a parameter which varies linearly with 
increase in time and which could be combined with the mean motion to 
determine the position of the satellite with time. This parameter, the 
mean anomaly, M, describes the position of the satellite as if the or­
bit was circular. In fact , when the orbit is circular, the mean anomaly, 
eccentric anomaly and true anomaly all assume the same value. The 
relationship between the mean anomaly and the eccentric anomaly is 
defined as: 

M = E - e sin(E) = n!:lt (C.31) 

where n is the mean motion as defined in equation C.25 and !:It is the 
time that has passed since the epoch-time of the Kepler elements. The 
relationship M = E - esin(E) is known as Kepler's equation. A 
more thorough discussion concerning the use of equation C.31 is given 
in section 3.1.1 that describes the propagation of orbital parameters 
using the two-body equation of motion. The relationship between the 
true anomaly and the eccentric anomaly is defined as 

1/ = cos -1 ( cos(E) - e ) 
1 - e cos(E) 

(C.32) 

From the parameters discussed above the set of classical orbital elements 
can be extracted. This set consists of the parameters 

XKep = [a e i n w v(t)] (C.33) 

Various alternate definitions and combinations for the classical elements exist 
which are used to describe the motion of satellites in special orbits. These 
definitions are described by Vallado [35] and are used for describing circular 
orbits for which the perigee is undefined and uninclined orbits for which the 
inclination is zero and the node-parameters are undefined. 

Two-line elements 

The classical orbital elements are widely known, understood and used to 
define the position of a satellite in orbit, but they are not always the most 
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suitable orbital data to use. The North American Aerospace Defence Com­
mand (NORAD) uses a set of elements called the two-line element set3 , 

the two-line elements are probably the most widely used type of orbital data 
used to generate orbital ephemerides for satellites orbiting the Earth. 

The data is presented in a text file (commonly known as a TLE-file) 
consisting of two lines of data. A number of parameters are presented in the 
file with the most important ones being 

it 
'2 

ii 
6" 

e 

B* = lcoAp 
2 m 0 

w M 
(C.34) 

UTC 

where Po is the atmospheric density at perigee (assumed to be 2.461 x 
1O-5kg/m2/ER), CD is the drag coefficient and A is the effective cross­
sectional area of the satellite. ER refer to one Earth radius. n is in units of 
revolutions per day. 

The first six values are the independent quantities required for calcu­
lations and represent roughly the same variables as the classical elements. 
The other four parameters listed in equation C.34 are the mean motion rate, 
mean motion acceleration, a drag-like parameter (B*) and the epoch time for 
the elements which is presented in a packaged format containing the number 
of the day in the year and UTC time. The classical elements were used to 
present the precise location of the satellite at a certain time, but the two-line 
elements represent the mean values of the orbital elements. The barred pa­
rameters are the Kozai mean values for the mean motion and the semimajor 
axis . The significance of the Kozai mean values is discussed in section 3.1.1. 
Another parameter that differs from the classical elements is the presentation 
of the satellite 's position in the orbit in terms of the mean anomaly in stead 
of the true anomaly. As the name indicates, this parameter do not represent 
the true position of the satellite in the orbit, but an "average" position as a 
linear function of time. The B* term is used to calculate the true ballistic 
coefficient, Be, of the satellite. The ballistic coefficient is used when pertur­
bations due to atmospheric drag is taken into account in the calculation of 
orbital ephemerides. 

Equinoctial Orbital Elements 

Equinoctial orbital elements are useful for overcoming difficulties ex­
perienced with the special geometry orbits and are useful in the study of 

3Refer to appendix G.2 which is similar but not identical to the classical orbital el­
ements. Due to its availability on the Internet for an explanations of the format of the 
elements and a key to the composition of the TLE-file. 
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perturbations. New parameters are introduced to define the parameters that 
become undefined due to the geometry of the orbit. This set of elements is 
described in Vallado [35] and it is used in virtually all high-accuracy computer 
programs to eliminate problems with specific orbit geometries. 

Canonical Variables 

For some applications such as the construction of some of the perturbation 
solutions, the equations of motion need to be presented in a form where it 
can be written as a 6 x 6 matrix multiplied by a 6 x 1 state vector. When 
the classical elements are written in this format, the 6 x 6 matrix contains 
non-zero elements off the diagonal. In order to avoid any non-zero terms 
off the diagonal. of the 6 x 6 matrix, it is written in canonical form. When 
the classical elements are written in its canonical form, it is known as the 
Delauney variables. There is no real difference between this form and 
the classical form in that it still possesses singular points for uninclined or 
circular orbits. In order to overcome the singular points in the Delauney 
variables, the equinoctial elements can also be written in canonical form. 
This representation of the elements is known as the Poincare variables. 
The definitions of these variables can be found in Vallado [35]. 
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Orbital perturbations 

"In problems of celestial mechanics, the simple solutions are not 
good and the good solutions are not simple. " 

Unknown astronomer 

The derivation of the two-body equations of motion was made by Newton 
with the assumption that the only forces present were the mutual gravi­
tational attraction between the two bodies under consideration. With the 
advent of the space age, the gaps in the initial assumption started to show. 
The first satellites were launched into orbits of around 100 km altitude and 
the motion of satellites in these orbits could no longer be accurately predicted 
using the general two-body equation. It became apparent that atmospheric 
drag still played an important part in low-Earth orbit and that other forces 
caused the predicted position of the satellite to differ considerably from the 
observed position. The need for accurate predictions of the motion of a satel­
lite in Earth-orbit became crucial since huge amounts of money were involved 
and the lives of astronauts depended on predicting when a satellite would be 
in view of a groundstation and when it would re-enter the atmosphere. All 
these factors initiated a complete new field of study of space which is still 
in progress today: the study of disturbing forces, known as perturbative 
forces, which cause the true orbit of a satellite to deviate from the orbit 
predicted by the two-body equation of motion. The perturbing forces expe­
rienced by the satellite include forces due to the non-spherical shape of the 
Earth and its non-symmetrical mass distribution, atmospheric drag, solar ra­
diation pressure, the tides of the Earth's oceans and gravitational attractions 
from the Sun and the Moon. 

A complete knowledge of perturbative forces and the formulation of these 
forces are not easy to obtain and not needed by everyone involved with space­
operations, but the fundamentals involved are very important. Knowing 
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why and how a satellite is influenced by the perturbative forces will lead 
to a better understanding of the motion and operation of a satellite. First 
order approximations of the dominating forces are used everyday for mission 
planning and these approximations play an important part in the design of 
orbits for specific mission requirements. 

This chapter will consist of two parts. The first part will be a general 
discussion of the major perturbations to the orbits of artificial satellites in 
Earth-orbit. It will be attempted to equip the reader with a basic knowledge 
and an intuitive feeling of the different perturbations. The second part will 
address the mathematical foundations of orbital perturbations and the gen­
eral methods used to describe the influence that the perturbative forces have 
on the motion of the satellite. For a more thorough discussion of pertur­
bations and the mathematical foundations involved, the reader should refer 
to Vallado [35], Chobotov [11], Bate et al. [4] or Escobal [16]. Wertz [36] 
presents a discussion of perturbative forces from the viewpoint of attitude 
determination and control. The work of Battin [5] consists of an almost 
exhaustive collection of the descriptive mathematics of orbital motion. 

D.I Introduction to Perturbations 

Perturbations in the orbit of a satellite are mirrored in the description of the 
satellite's motion. Describing the satellite's motion in terms of position and 
velocity vectors conceals the obvious effect of perturbative forces, but when 
the motion is described by means of the classical elements, the perturbations 
become apparent and their effect can be analysed quite easily. The variations 
in the satellite's motion which are reflected in the classical elements consist 
of secular and periodic variations. 

Secular variations grow with time. This growth is usually a linear 
function of time, but can be proportional to some power of time. This type 
of variation provides the primary contribution to deviations from general 
two-body motion. Secular variations are often called mean variations in the 
orbit as this is the change in the orbit that is experienced over a long time 
when the periodic variations are ignored. 

Periodic variations can be divided into short-periodic and long­
periodic variations. Short-periodic variations typically have a period of 
repetition on the order of the orbital period of the satellite. Long-periodic 
variations usually have a period of repetition much longer than the orbital 
period of the satellite and the duration of the variations vary significantly 
depending on the source of the perturbation. Escobal [16] presents a way 
of describing the perturbative effects on the classical elements in a Fourier 
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series. This description was extended by Vallado [35] into the form 

C = Co + (\(t - to) + K1 cos(2w) + K2 sin(211 + w) + K3 cos(211) (D.1) 

where K1, K2 and K3 are constants which can be expressed as sums and 
products of polynomials of the orbital elements. Co is the initial value of an 
element in the classical set, (;1 represents the secular change in the element, 2w 
represents the long-periodic change, 211 represents the short-periodic change 
and (211 + w) represents the mixed-periodic change in the element. These 
variations are illustrated in figure 1 D.1. When analytical solutions are for-

c 

Short periodic plus long-periodic 
....J and secular 

Secular 

Figure D.1: The effect of perturbative forces on the orbital elements of a 
satellite. 

mulated, the inclusion of all the variations presented in equation D.1 is not 
always possible as this will lead to a very complex model which is difficult to 
develop. Numerical solutions do not pose this problem since the formulation 
of the numerical solution encapsulates all the variations into the solution. 

Not all the classical elements experience the full combination of pertur­
bative effects described by equation D.1. Each perturbative force influences 
the set of classical elements in a different way and may result in one of the 
elements experiencing a secular variation for the one perturbative force and a 
short-periodic variation for another force. The perturbative forces themselves 
can be divided into two groups viz. conservative and non-conservative forces. 
Conservative forces do not change the total energy of the satellite-it 
stays constant. Non-conservative forces result in a change in the en­
ergy of the satellite, mainly due to friction or external sources. Central-body 
and third-body effects are examples of conservative forces while atmospheric 

1 Image was obtained from Vallado [35]. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. ORBITAL PERTURBATIONS 106 

drag, solar-radiation pressure and the tidal friction are examples of non­
conservative forces. 

D.l.I Earth's Oblateness 

The Earth is not perfectly spherical. The polar radius is approximately 22 
km less than the equatorial radius and for this reason the Earth is often 
modelled as an ellipse rotated about its minor axis. This shape, called an 
ellipsoid, does not exactly represent the shape and mass distribution of the 
Earth, but is a good first order approximation. The non-spherical shape of 
the Earth results in the vector of gravitational attraction of the Earth on 
an orbiting satellite to not be directed exactly to the center of the Earth. 
All Earth-orbiting satellites experience the perturbative effects of an oblate 
Earth and for satellites above the densest part of the atmosphere-above 
approximately 300 km-and below 8000 km, it is the major perturbative 
force. When this perturbation is described in terms of the classical elements, 
it is found that all six elements experience periodic variations. The variations 
in a, e and i average to zero over an orbit, but M, nand w experience 
secular variations beside the periodic variations. These secular variations are 
of primary interest and can in general be considered the largest perturbative 
effect for low-Earth orbit satellites. 

In order to understand the primary effect that the oblate Earth has on 
the orbit, the Earth can be modelled as a point mass with a ring of uni­
form density in the equatorial plane which represents the equatorial bulge. 
The added attraction of the equatorial bulge introduces a force component 
towards the equator which accelerates the satellite and cause it to reach 
the equator short of the crossing point for a spherical Earth as illustrated 
in figure2 D.2. This force combines with the angular momentum vector of 
the satellite to cause the orbital plane to experience precession in a westerly 
direction. This effect results in a secular variation in n and is called the 
regression of the nodes. For an orbit with i < 90° (direct orbit) the 
value of n decreases (regresses), but for i > 90° (retrograde orbit) the value 
of n increases (advances). The regression of the nodes come in very handy 
when orbits for remote sensing satellites are developed. It is possible to place 
the satellite in such an orbit-typically i = 98.7° and a mean altitude of 833 
km-that n advances with 0.9856° per day. This is the exact same value of 
the daily movement of the mean position of the Sun as observed from Earth 
and results in the satellite experiencing the same lighting conditions every 
time it passes over a particular site on the surface of the Earth. 

2Image taken from Vallado [35]. 
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Figure D.2: Nodal regression. 

Another important effect that is caused by the nonspherical shape of 
the Earth is the rotation of the apsides. This effect is illustrated in 
figure3 D.3. The added gravitational attraction of the equatorial bulge on 
the satellite increases the satellite's angular velocity. This cause the satellite 
to curve more strongly in its motion around the Earth and has the effect that 
the position of the apogee and perigee-connected by the line of apsides­
will be shifted in the direction of motion with every orbital rotation of the 
satellite. For direct orbits this will result in an increase in wand for retrograde 
orbits w will decrease. 

Table D.1 shows two TLE files for SUNSAT. The format of the data is 
explained in appendix G. The first set of data was generated on 22 August 
1999 at 19:56:59 UTC and the second set was generated on 18 September 
1999 at 16:54:48 UTC. 

The value for the right ascension of the ascending node-the fourth value 
in the bottom row of each set- is 146.4131 for the first set and 166.8279 

3Image taken from Vallado [35] . 
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Apogee (Start) 

Apogee (End) 

Figure D.3: Apsidal rotation. 

SUNSAT 
1 25636U 99008C 99234.83124324 . 00000350 00000-0 10255-3 0 919 
2 25636 96.4835 146 . 4131 0155017 45.1154 316.2490 14.40913668 25978 

SUNSAT 
1 25636U 99008C 99261.70472423 .00000371 00000-0 10947-3 0 1025 
2 25636 96 .4775 166.8279 0152478 320 .7002 38 .3229 14 . 40946227 29841 

Table D.l: Two examples of real orbital data for SUNSAT. 

for the second set of data. The interval between the two measurements was 
approximately 27 days which indicate a value for the regression of the nodes 
of 0.76° per day. The value is positive which indicate that the node is in fact 
advancing. This was to be expected as SUNSAT is in a retrograde orbit . 

The value for the argument of perigee-the fourth value in the bottom 
row of each set-is 45. 1154 for the first set and 320.7002 for the second set of 
data. As the interval between the two measurements was approximately 27 
days, the value for the rotation of the apsides is - 3.126° per day. The value 
is negative as SUNSAT is in a retrograde orbit . The period of a complete 
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rotation of the position of the perigee through the orbit plane is 115 days. 

D.1.2 Aerodynamic Drag 

Aerodynamic or atmospheric drag is a retarding force applied to the 
motion of the satellite due to friction against the Earth's upper atmospheric. 
For elliptical orbits, the atmosphere is the densest at perigee resulting in the 
largest force being applied at this position in the orbit. This force is non­
conservative and it acts in a similar way as an in-plane velocity reduction 
manoeuvre to decrease the total energy of the satellite. For all satellites 
below 1000 km altitude this effect becomes important and for very low-orbit 
satellites-such as manned missions with orbits below 300 km-it is the 
dominating perturbative effect which can even dominate the basic laws of 
two-body motion in some cases. The atmospheric drag slows the satellite 
at each perigee passage resulting in a secular decrease in the apogee height, 
semimajor axis and eccentricity as indicated in figure4 D.4. The apogee 

- - - --

Perigee Apogee 

Start 

//~ 
- - -- Unperturbed orbit 

Figure D.4: The decay of an orbit under the influence of drag. 

height will decrease until it is equal to the perigee height and the shape of 
the orbit becomes circular. The process of reduction in the energy of the 
satellite and the decrease in the apogee height is known as orbital decay. 
When the orbit has decayed from elliptical to circular, it will continue to 
decay until it enters the densest part of the atmosphere where it will either 
burn up or fall to the surface of the Earth. The decrease in the size of 
the orbit increases the velocity of the satellite. This is known as the drag 

4Image taken from Vallado [35]. 
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paradox because the satellite is sped up by atmospheric friction as it spirals 
inward toward its final decay. The explanation for the drag paradox can be 
found in Kepler's third law, which states that 

(D.2) 

and it can be seen that a decrease in the semimajor axis, a, will lead to an 
increase in the mean motion, n. 

The time from launch until the final orbital decay of the satellite is known 
as its orbital lifetime. Wertz [36] provides a graph which can be used as an 
indication of the lifetime of a satellite, but this is only an approximate value. 
To truly predict the lifetime of a satellite, a complete model of the upper 
atmosphere is required. This is a very complex task since accurate models 
include the day-night variation in the atmospheric density over different parts 
of the Earth, the exponential variation in atmospheric density with height, 
the influence of the variations in the intensity of the Sun, the position and 
orientation of the satellite over the Earth and the influence of the magnetic 
field. The shape, attitude and weight of the satellite have a dominant effect 
on its motion under the influence of aerodynamic drag and it needs to be 
taken into consideration when the satellite's motion is determined to a high 
accuracy. In recent years, the influence of drag has been used as a means 
to save propellant during orbit-transfer manoeuvres. In order to lower the 
apogee, the drag force at perigee is increased. This is done by using the 
attitude control system to increase the cross-sectional area of the satellite 
with the solar panels which increases the drag force and gradually lowers the 
apogee. By orienting the satellite in such a way that the solar panels create a 
lifting force, energy can be added to the satellite and the perigee and apogee 
heights can be increased. The use of atmospheric drag as a control-force is 
illustrated by Du Toit [14]. 

To indicate the problems that can be experienced with atmospheric drag, 
Vallado [35] refers to a problem of highly eccentric orbits in which atmo­
spheric drag couples with third-body effects. Long-periodic variations in the 
position and height of perigee due to third-body effects can shift the perigee 
to new positions where the atmospheric conditions differ completely from 
the conditions at its initial position. The result is that the initial position of 
the Sun, Moon an.d the position of the satellite's orbit can either lower the 
perigee height to such a degree that the satellite can re-enter much earlier 
than expected or it can increase the perigee height which cause an increase in 
the lifetime of the satellite. Such unexpected events can be avoided with the 
use of a simulation package that incorporates a high-accuracy atmospheric 
model in combination with precise planetary ephemerides. 
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D.1.3 Third-Body Attractions 

The perturbative effects caused by the oblate Earth decrease with increasing 
distance from the Earth. As the distance increases, perturbations from the 
gravitational forces of the Sun and the Moon-called luni-solar perturbations­
become more important. Above 700 km altitude, these third-body attrac­
tions need to be taken into consideration for accurate orbit predictions. At 
a distance of 8000 km the influence of the oblate Earth has decreased and 
the forces of the Sun and Moon increased to such a measure, that the con­
tributions of the two types of perturbations to the orbit are the same. For 
interplanetary flights third-body attractions are dominating and the space­
craft would altogether miss their target-planets were it not for the influence 
of the other planets in the solar system. Wertz [36] presents a method­
originally introduced by Laplace (Battin [5])-called the spheres of influence 
to determine when simple two-body motion is valid and when the attraction 
of a third body needs to be taken into consideration for simulating an orbit. 

To understand the long-term influence of a third body on the orbit of 
a satellite, first consider the influence of the Sun. For this explanation the 
orbit of the satellite will be represented by an elliptic ring located in its 
orbital plane and the orbit of the Sun by such a ring located in the ecliptic. 
The mutual gravitational attractions will create a torque about the line of 
nodes that will tend to turn the satellite's orbital plane into the ecliptic. 
The gyroscopic effect of the torque on the spinning satellite ring will induce 
a gyroscopic precession of the orbit plane about the pole of the ecliptic. This 
precession will result in a regression of the nodes and apsidal rotation similar 
to that caused by the oblate Earth. The Moon will cause a similar effect 
about the axis normal to the Moon's orbit plane-the Moon's orbit plane 
has a 5° inclination to the ecliptic. The combined effect of the Moon and the 
Sun is that the orbit plane will experience the regression about some mean 
pole lying between the Earth's pole and the ecliptic pole. The amplitude 
of the precession depends on the inclination and size of the orbit and is 
quite often so small that the effect is obscured by more pronounced effects 
from other perturbations. Analysing the effect of a third body on the orbit 
is difficult because the period of the variations in the orbital elements are 
usually very long and it requires the use of very accurate ephemerides to 
locate the third body. 

The luni-solar perturbations effect the orbit and the description of the 
orbit by means of the classical elements, in the same way as the oblateness of 
the Earth. Since the perturbative force is conservative, the value of the semi­
major axis stays constant. Secular variations appear in the right ascension 
of the ascending node, 0, and the argument of perigee, W, with long-periodic 
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variations experienced by the eccentricity, the inclination, nand w. 
An important operation resulting from third-body perturbations involves 

the station-keeping of geostationary satellites at an altitude of approximately 
36000 km. At this altitude, the influence of the Sun and the Moon result 
in the most dominant perturbations to the orbit. For a satellite with an 
initial inclination of 0°, third-body effects will increase the inclination with 
10 per year for the first 10 years and 17 years after launch it would have in­
creased to 15°. After this the inclination decreases to 0° in another 27 years. 
This drifting in the inclination is not desired and would usually require huge 
amounts of fuel for the purpose of stationkeeping. The option that is exer­
cised whenever it is possible, is to choose the orbit such that the inclination 
first reduces to zero and then starts to increase. The initial inclination is 
sometimes selected as 3.50 with a negative drift in its value. After 3.5 years 
the inclination reaches a value of 00 at which time it starts to increase and 
again reaches a value of 3.5° at 7.7 years after launch. This means that the 
fuel load needed for stationkeeping due to third-body interaction is reduced 
by a significant amount since, for a position accuracy of 3.5°, stationkeeping 
is required for the first time 7.7 years after launch. 

D.1.4 Solar Radiation Pressure 

The impact of light-energy (photons) from the Sun induces a significant per­
turbing force on the motion of a satellite. For altitudes above 900 km, it 
may exceed the effect of atmospheric drag. The magnitude of the perturb­
ing force is proportional to the effective surface area of the satellite and the 
optical reflectivity of the satellite's surface. When the satellite moves toward 
the Sun, the impact of the photons will reduce its total energy and decrease 
the value of the semimajor axis. When the satellite moves away form the 
Sun the energy of the satellite and the value of the semimajor axis will be 
increased. It should be clear that for a satellite that is in the sunlight for the 
whole duration of its orbit, the net effect of solar radiation pressure would 
reduce to zero. However, when the satellite passes through the shadow of 
the Earth during its orbit, the solar radiation pressure has the effect of a 
non-conservative force. This is the case for the majority of low-Earth orbits. 
The effect that the force has on the orbit can, however, be controlled with at­
titude manoeuvres that involves the orientation of the solar panels to reduce 
or increase the effect of the pressure. 

Long-term periodic variations appear in all classical elements with the 
most pronounced variations being those to the semimajor axis and the ec­
centricity. The periodic variations can have a period of up to a year due to 
the motion of the Earth around the Sun. Accurate analyses of the effect of 
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solar radiation pressure on the orbit are difficult as it requires accurate mod­
elling and prediction of the solar cycles and variations. Periods of intense 
solar activity can greatly affect the orbit. The variations in the intensity of 
the solar radiation force can couple with aerodynamic drag and the influence 
of third bodies to create a very complex motion. This combined effect of 
the perturbative forces can, as in the case of aerodynamic drag, significantly 
change the orbital lifetime of a satellite if it is not taken into consideration 
during the mission planning phase. 

D.2 Mathematical Foundations of Perturba­
tions 

The basic two-body equation of motion as derived in appendix C.2.2 states 
that 

d2f f 
dt2 = -Jl r3 (D.3) 

where f is the position vector of the satellite in the Earth Centred Inertial co­
ordinate system and Jl is the product of the universal gravitational constant 
and the mass of the central body. Equation D.3 was derived with the as­
sumption that the only force experienced by the satellite is the gravitational 
force of a perfectly spherical Earth with symmetrical mass distribution. Be­
cause of the presence of perturbing forces, the assumption that was made 
with the derivation of equation D.3 is not valid for an accurate description 
of the orbit. The presence of perturbing forces require equation D.3 to be 
written in the following, more general, form 

d2 .... .... 
r r .... 

dt2 = - Jl r3 + ap (D.4) 

where iip is the sum of all the perturbing accelerations which cause the orbit 
to deviate from a true Keplerian orbit as described by equation D.3. 

It is customary to distinguish between two classes of solutions to equation 
D.4- general perturbations and special perturbations. General perturba­
tions consists of methods of describing the effect of perturbations on the 
two-body motion in terms of closed-form analytic solutions. It is not always 
possible to obtain a closed-form solution and for this reason the perturbations 
are usually described by infinite trigonometric series expansions which are in­
tegrated term by term. Special perturbations consist of all the numerical 
methods used to describe the motion of the satellite by direct numerical 
integration of equation D.4. 
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D.2.1 General Perturbations 

Variation of Parameters 

When no perturbations are considered in the description of the motion of a 
satellite, the classical elements stay constant and the state of the satellite 
at any time can be computed from a single set of classical elements. When 
the perturbations are taken into consideration, the classical elements are no 
longer constants. The variation of parameters, VOP, is a method used 
to describe the influence of perturbative forces as variations in the classical 
elements. It is done in such a way that the position and velocity at any time 
can be computed from a single set of elements as if there were no perturbative 
forces involved. 

Louis LaGrange (1736-1813) used the VOP method to develop his solu­
tions to the perturbed motion problem from his interest in the disturbances 
in the orbits of the planets. Since the disturbances are caused by the grav­
itational fields of the Sun and other planets, his solutions are only valid for 
conservative perturbative forces. All the conservative forces can be described 
as the gradient to a potential function and this lead LaGrange to the partic­
ular formulation of his solution. LaGrange's method of VOP is sometimes 
called the perturbing function approach and it is the solution to 

d2f f BR 
dt2 = - J1 r3 + Bf (D.5) 

where R is called the perturbing or disturbing function which is a func­
tion of the position of the satellite. R represents the force causing the devia­
tion from Keplerian motion. LaGrange found a solution for equation D.5 in 
terms of the classical elements and the disturbing function that is described 
by 

da 
dt 

de 

dt 

dM 

dt 

do' 

2 BR 
naBM 

x 2 BR x BR 

x 2 8R 2 8R 
n- ---- - ---

na2e Be na Ba 

1 BR 
dt na2x sin i Bi 

dw 

dt 
x2 BR cos'/, BR 
---- - -::----

na2e Be na2x sin i Bi 
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(D.6) 

where x = \"'1- e2 . These equations are known as LaGrange's planetary 
equations. To use these equations for the description of the variations in 
the classical elements, the particular force need to be described in terms of 
a perturbing function, R, and substituted into equation D.6. The derivation 
of equation D.6 does not fall in the scope of this study, but is presented in 
full by Battin [5] and Vallado [35]. 

Friedrich Gauss (1777-1855)was also investigating the influence of pertur­
bations on the orbits of the planets. He used exactly the same formulation 
as presented in equation D.4 to define the problem. This approach is espe­
cially useful for some applications as the rate of change in the elements are 
expressed in terms of the disturbing forces. For this reason Gauss' approach 
is often called the force component approach. Another advantage of 
his approach is that it can be used to describe both conservative and non­
conservative perturbation forces. Gauss divided the force which cause the 
perturbing accelerations into three components. The three components of 
the force are Fr, Fs and Fw. Fr defines the components of the force along 
the position vector, f, Fs is the component along the vector 900 from fin the 
velocity increasing direction and Fw is the component normal to the orbit 
plane. His solution to the problem in terms of the six classical elements is 
defined as 

da 

dt 

de 
dt 

di 

dt 

dn 
dt 

dw 
dt 

dM 

dt 
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Equation D.7 can be used to determine the influence of perturbations of 
the orbital elements by expressing the perturbing force in its three compo­
nents, Fr, Fs and Fw , and substituting it into the equation. The derivations 
of these equations are supplied in the works of Battin [5] and Vallado [35]. 

Perturbative Forces Descriptions 

The VOP techniques developed by Gauss and LaGrange can be used to de­
scribe the influence of perturbations on the orbital elements. LaGrange's so­
lution to the problem requires the perturbing force to be expressed in terms 
of the disturbing function , which is the gradient of the potential function 
describing the force. Gauss' formulation requires the force to be expressed 
in terms of its three orthogonal components. Both these solutions require 
the perturbation to be described by means of an analytical expression. Ac­
curate analytical expressions for describing the perturbative forces are very 
complex. The effect of the non-spherical Earth and atmospheric drag can be 
described with a series expansion and approximate values, respectively, but 
high-accuracy analytical expressions for solar radiation pressure and third­
body effects are not very common. Analytical theories describing all the rel­
evant perturbations to a high degree of accuracy do exist, but since they are 
not easy to use, it is often easier to revert to numerical techniques when high 
precision propagation is required. The accuracy of the analytical techniques 
are also reduced as only a limited amount of terms from the infinite series 
expansions of the forces can be included into the solutions. The following 
discussion will attempt to provide some of the more common descriptions of 
the perturbative forces for use in the VOP solutions of LaGrange and Gauss. 

Central-Body analysis The gravitational force of the Earth is a conser­
vative force that can be described very accurately with a potential function. 
LaGrange's planetary equations were developed for the description of a con­
servative disturbing force in terms of its potential function. The R-function 
used by him represents the deviation in the potential function from that of 
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a spherical Earth 

R = U - U2-body (D.8) 

where U is the potential function for the non-spherical Earth and U2-body = 

/-Lir is the potential function for a spherical Earth. The potential function, 
U, is a series expansion of the form 

where 
Jnm harmonic coefficients 

JC~m +S~m 
coefficients to be determined from observations 

(D.9) 

Cnm , Snm 
I n 

Pn(cos ¢) 
JnO = the coefficient of the nth zonal gravitational harmonic 
the Legendre functions 

¢ 
A 

the geocentric co-latitude 
- geodetic longitude 

equilibrium longitude for Jnm 

_ tan-1 ( S;m~C~m ) 
mean equatorial radius of the Earth 

Equation D.9 describes the mass distribution of the Earth in terms of 
zonal, sectorial and tesseral harmonics. The zonal harmonics are pre­
sented by the first line of equation D.9 and describes the mass distribution of 
the Earth as symmetrical about the polar axis. These harmonics represents 
the major deviation from a spherical Earth and is quite often considered as 
an adequate description of the Earth's gravitational field. It is denoted by 
the values h = 0.0010826269, J3 = -0.0000025323, J4 = -0.0000016204, 
etc. It can be seen that J2 is approximately 400 times larger than hand 
for this reason it is often the only gravity harmonic taken into consideration 
in calculating the oblateness effect of the Earth. Since the contributions of 
the sectorial and tesseral harmonics are omissible compared to the zonal har­
monics, they are generally not used in simple calculations. The sectorial 
and tesseral harmonics are described by the second line in equation D.9. 
The sectorial harmonics describe the mass distribution in terms of alternat­
ing "orange sliced" sectors of positive and negative mass contributions which 
align with the meridians of longitude of the Earth. The tesseral harmonics 
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divide the Earth into a checkerboard of squares in which each square has 
different mass properties. 

The procedure that is usually followed when analytical theories are de­
rived is to divide the expressions into secular, short periodic and long periodic 
variations. This is done by deriving separate expressions for the different ef­
fects which is then combined into a complete theory. Following the method 
of Kozai which is presented by Escobal [16], the secular variations in the 
elements from an oblate Earth will now be calculated. 

From equations D.8 and D.9 the disturbing function is determined to the 
order of 12 as 

3 J1. (ae ) 2 ( . 2 ( ' ) , 2 ( ) 1) R = - '2 -:;: 12 -:;: sm z sm w + ZI - 3 (D.10) 

When the secular effects are required, all the periodic effects are ignored. The 
impact of this step on the disturbance function is that all terms which are 
coefficients of ZI and w are considered as periodic terms and may be ignored 
and the radial distance, r, of the satellite vary over each orbital revolution and 
need to be averaged. The average value of the radial distance is determined 
by integrating the expression for these values over one revolution of the mean 
anomaly. The result of this whole process is that an averaged disturbing 
function of the following form is found 

3 2 2 ( 1 ) (sin
2 
i 1) 

Ravg = -'2n ae 12 (1 _ e2)3/2 -2- - 3 (D.11) 

When this expression is substituted into the equation D.6, the following 
expressions are found 

n = - = - 1 + - -- 1 - - sm z (1 - e ) 2 - dM /?i [ 3 12a; ( 3. 2 ') 2 1] 
dt a5 2 p2 2 

(D.12) 

dO 3 J2a; _ . 
- = ---- ncosz 
dt 2 p2 

(D.13) 

(D.14) 

These equations represent the secular variations due to first order gravita­
tional harmonics. 

When the secular perturbations are required to a higher order of accuracy, 
the disturbing function, equation D.lO, needs to be derived from equation 
D.9 with more of the J-terms included in the expression for R. This would 
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then lead to the higher order harmonics appearing in the expression for Ravg 

and consequently also in the expressions for the secular variations in the 
elements. 

When the periodic terms is required in the expressions for the perturba­
tions, the terms which are coefficients of wand 1/ in equation D.10 should not 
be ignored. Referring to equation D.1 again, the terms in w represent the 
long-periodics, the terms in 1/ represent the short-periodics and combination­
terms of 1/ and w represent mixed periodics. 

Drag Analysis The accurate analytical description of the effects that at­
mospheric drag has on the orbit of a satellite is an almost impossible task. 
The following description will attempt to provide some insight into the pro­
cess of deriving analytical expressions for drag-effects, but since it is an ap­
proximate process, high accuracy results can only be obtained via a numeri­
cal technique. The secular influence of drag on the classical elements will be 
considered. 

The acceleration experienced by the satellite under conditions of atmo­
spheric drag can be presented by the equation 

where 

-+ 1 cDA 2 Vrel 
adrag = --2--PVrel-

m Vrel 

CD the dimensionless coefficient of drag which depends on 
the shape of the satellite-often designated a value of 2 

(D.15) 

A the effective area of the satellite normal to the velocity vector 
m the mass of the satellite 
P atmospheric density 
Vrel velocity vector of the satellite relative to the moving atmosphere 
Vrel magnitude of the velocity vector 

For the analytical process, the atmospheric density can be approximated 
as an exponential decrease in density with an increase in height. The density 
can be calculated from 

( 
h - ho) 

p = poexp H (D.16) 

where Po is the atmospheric density at the perigee height, ho, h is the altitude 
of the satellite and H is the density scale height of the atmosphere at perigee5 . 

5Refer to Wertz [36] p.820 for a table of values for H and PO . Jordaan [20] p.19 presents 
an example of the calculation. 
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The force that creates the acceleration in equation D .15 is a non-conservative 
force and for that reason Gauss' form of the VOP equations are used. The 
result obtained from the VOP equations present the variation of the classical 
elements as functions of time. The solution for a is presented by Vallado [35] 
as 

and the solution for e is presented by Battin [5] as 

de = -2p cDApna cos E VI + e cos E 
dt m r VI - e cos E 

(D.17) 

(D.18) 

As the secular variations of the elements are under consideration here, the 
expressions for the variations in the elements need to be written as a func­
tion of the eccentric or mean anomalies. Escobal [16] presents the secular 
variations in a, e and i as a function of the eccentric anomaly. These expres­
sions are then integrated over one revolution of the eccentric anomaly that 
provides the variation in the orbital elements over one orbital revolution. 
Vallado [35J presents the variations in the elements due to atmospheric drag 
by using modified Bessel functions of the first kind. He also uses a more com­
plex representation of the atmosphere where the influence of the rotation of 
the Earth on the atmosphere is taken into consideration. His representations 
consist of the following equations 

il.a,.,. = - 27r6a2 Po [Eo + 2eE, + 3:
2 

(Eo + E2)+ 

: (3E, + E3 )] exp-' 

il.e,," - 27r6a2 Po [E' + ~ (Eo + E2 ) - ~ (5E, + E3)-

;: (5Bo + 4B2 - B4 )] exp-c 

7rawe6po [ 
b.irev - 2nVQ sin(i) Bo - 2eB1 + 

(B2 - 2eB1)cos(2W)] exp-c 

(D.19) 

(D.20) 

(D.21) 
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where 
C 

Q 

6.wrev = - 6.nrev cos ( i) 

ae 
H 

QA CD 
m 

1 
2we(1- e)3/2 (.) 

- ~ cos~ 
ny1 +e 

factor which includes the rotation of the atmosphere 
(0.9::; Q 2: 1.1) 

We 0.0000729211586 rad/sec = angular rate of Earth 

121 

(D.22) 

(D.23) 

Bs modified Bessel functions of the first kind of order s, in all cases 
having the argument C and denoted with a B instead of the usual 
J to avoid confusion with the gravitational harmonics. 

Escobal [16] presents a semianalytic approach to the derivation of the 
equivalent of equations D.19 to D.23. The significance of his approach is that 
it provides some insight into the use of these equations. Escobal interprets 
the change in the elements over one orbital revolution as the mean change 
in the classical elements for the orbit defined by a particular set of classical 
elements. Dividing this mean change by 27r provide a mean angular change 
in the elements. This mean angular change can be used to update the initial 
set of elements during an orbital revolution or at a particular instance in 
every revolution to get an updated classical element set with corrections for 
atmospheric drag. Although this method is not of very high accuracy, it 
gives an indication of the change in the orbit due to drag. 

Third-Body Analysis The analytical description of the perturbations due 
to the gravitational forces of the Sun and the Moon are complex, due to the 
continual change in the orientation of the third bodies. Analytical expressions 
for these perturbations usually consist of lengthy series expressions which are 
difficult to analyse and implement. Vallado [35] provides a few analytical 
expressions for the perturbations due to the attraction of the Sun and the 
Moon, but he does not present the derivations. Chao [10] does present the 
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derivations of his formulations of the perturbations and it will be presented 
here to provide some insight into the problem. 

Chao developed his theory for use in the design of a station-keeping strat­
egy of the Global Positioning System satellites. These satellites with their 12 
hour orbital periods experience considerable disturbances from the influence 
of the Sun and the Moon. Chao considered the orbits of the Sun and the 
Moon as circular orbits. His approach is based on the use of a single aver­
aged disturbing function to determine the variations in the classical orbital 
elements. 

He starts with the disturbing function due to third-body perturbations 
in the ECI coordinate system in the form 

R3 =!:!... [(1+ (~) 2 _ 2r coss)-! _ rcoss] 
r3 r3 r3 r3 

(D.24) 

where 
r3 distance from the center of the Earth to the third body 
r distance from the center of the Earth to the satellite 
S angle between rand r"3 

For Sun-Moon perturbations it is found that r /r3 « 1. Chao then presents 
equation D.24 in the simplified form 

where 
A 
B 
P,Q 
U3 

R3 ~ a;l (;:)' {[~ (A' + B') -1](1 + 3;') 

P'U3 
Q'U3 

+~ (A' - B') sn 
two of the axis in the PQW coordinate system 
unit position vector of the third body 

(D.25) 

Equation D.25 is substituted into the LaGrange planetary equations to 
obtain analytical expressions for the variations in the classical elements. The 
terms (A2 + B2) and (A2 - B2) are expanded into series-expressions. It is 
found that the major secular variations occurs in D and in w. The simplified 
expressions for the secular variations are 

. 3 n2 (1 + (3/2)e2
) 

D = __ 2 cosi(3cos2i -1) (D.26) 
sec 8 n VI _ e2 3 

W = ~ n~ (1 - (3/2) sin
2 

i3) (2 _ ~ sin2 i + e2
) 

sec 4 n VI - e2 2 2 
(D.27) 
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where nand i are the mean motion and inclination, respectively, of the 
satellite, and n3 and i3 are the mean motion and inclination, respectively, of 
the third body. Equations D.26 and D.27 can be used exactly as presented 
for the perturbative effect due to the Sun, but for the Moon both equations 
need to be divided by the Earth-Moon mass ratio of 81.3. 

Chao combined the secular and periodic effects of the third body attrac­
tions with the J2 to J4 terms for the oblate Earth to create an analytical 
general perturbation theory. He compared the results with the results of nu­
merical integration and found it accurate for a period of approximately 800 
days for low-eccentricity orbits. 

Solar Radiation Pressure Analysis Vallado [35] and Chobotov [11] 
present an analytical technique, developed by G.E. Cook in 1962, to de­
scribe the variations in the orbital elements due to solar radiation pressure. 
The force on the satellite due to solar radiation pressure is described by the 
expression 

(D.28) 

where 
PSR the solar pressure force per unit area 

4.51 X 1O-6N.m-2 

CR - the reflectivity of the satellite 
A area of the satellite exposed to the Sun 

The reflectivity of the satellite varies between a value of 0.0 and 2.0 where 
a value of 0.0 indicates that the satellite is transparent to solar radiation, 
1.0 indicates the absorption of all solar radiation and 2.0 indicates that the 
satellite acts like a mirror as it reflects all the solar radiation. The reflectivity 
is a parameter similar to the drag coefficient that is difficult to determine. 
It is usually only accurately determined through a process of differential cor­
rection6

. 

The force in equation D.28 can be expressed in terms of its different 
components for substitution into equation D.7. The components Fr and Fs 
can be presented by 

Fr = FSR {[cos2 (~) cos(w + n - A0 ) 

+ sin2 (~) cos(w + n + A0 )] cos2 (~) 
[cos2 (~) cos(w - n + A0 ) 

6Refer to Vallado [35] or Escobal [16] for a discussion of differential correction. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. ORBITAL PERTURBATIONS 

+ sin2 (~) cos(w - n - A0)] sin2 (~) 

+~[cos(w - A0) - cos(w + A0)] sin(i) sin(E)} 

-FSR {[cos
2 (~) sin(w + n - A0) 

+ sin
2 (~) sin(w + n + A0)] cos

2 (~) 

[cos2 (~) sin(w - n + A0) 

+ sin 
2 (~) sin (w - n - A0)] sin 2 (~) 

-~[sin(w - A0) - sin(w + A0)] sin(i) sin(E)} 

124 

(D.29) 

(D.30) 

In these two equations E refer to the obliquity of the ecliptic and A0 is 
the ecliptic longitude of the Sun. 

When equations D.29 and D.30 are substituted into equation D.7, it is 
found that the most significant effect is on the eccentricity and the perigee 
height, rp. These variations are described by 

1 
a - [reevFs + a{ cos(Eent) - cos(Eexit)}Fr] 

7rna 

nFr [2v' 2 1 a 2] e - 27rJ.-L 3a 1 - e Tee - 2e reev2 + 2e (1 - 4e )reev 

nFr [ a(l - e
2

) 1 { 2 
--4 r ee2 + 2 ree + - rent cos(lIent) 

7rJ.-L e e 

-r;xit cOS(lIexit) }] 
n 

rp 27r [(1 - e)a - ae] 

where 

_ -1 (V1- e2tan(~)) -1 (V1-e
2
tan(¥)) 

Tee - tan - tan 
l+e l+e 

ree = r ent - r exit 
2 2 

r ee2 = r ent - r exit 

(D.31) 

(D.32) 

(D.33) 
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and lIent is the true anomaly when the satellite enters the shadow of the 
Earth and lIexit is the true anomaly when the satellite exits the shadow of 
the Earth. When the satellite is in the sunlight for the duration of an entire 
orbit, lIent = lIexit + 3600 and r ent = r exit which lead to simplified expressions 
for the perturbations. Vallado [35] presents the equations for the variations 
in all the other classical elements. 

D.2.2 Special Perturbations 

In special perturbations, there are two basic methods used to solve the prob­
lem of the perturbed motion of the satellite. The two methods are Cowell's 
method and Encke's method. The two methods differ in their approach to 
the numerical integration of the perturbed equation of motion. 

Cowell's Method 

The approach of Phillip Herbert Cowell (1870-1949) was to formulate the 
perturbed equation of motion in the form presented in equation D.4. For 
this reason, this equation is known as Cowell's formulation. He reduced 
equation D.4 to a first order differential equation of the form 

{ 

f = v 
~ j..t.....,....., v = -?r+ap 

(D.34) 

where o'p is the vector sum of all the perturbing accelerations to be included 
in the integration. Cowell's formulation of the problem does not require that 
the magnitude of o'p should be small, which makes it a very useful and general 
formulation of the problem. 

Numerically calculated orbit predictions are found from the direct inte­
gration of equation D.34. The step size of the integration process should be 
chosen small enough to ensure that the truncation and round-off errors are 
smaller than the desired prediction accuracy. This is one of the disadvantages 
of Cowell's method in that , for high accuracy predictions, a small integration 
step size is required that increases the computer time required to make the 
predictions. The increased computational power of modern computers tends 
to nullify this disadvantage. 

Encke's Method 

The formulation to the perturbed motion problem presented by Johann Franz 
Encke (1791-1865) starts with an osculating or reference orbit. This orbit is 
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defined as the orbit at a particular instant in time when the influence of all 
the perturbative forces on the orbit is ignored. This reference orbit is defined 
as 

'':'' f.-£ ..... 
p= --p 

p3 (D.35) 

where p denote the position vector in the reference orbit. The difference 
vector between the true orbit and the reference orbit is defined as 

~...... ~ ..... up = r - p (D.36) 

where f'is the true position vector of the satellite in the perturbed orbit. The 
difference in motion between the two orbits are then defined as 

.. (if f') 6f'= f.-£ - - - - a p3 r3 p 
(D.37) 

The advantage of this formulation is that only the difference between 
the two orbits needs to be integrated. The value of 6f' is much smaller 
than that of f' and it has a slow rate of change. Encke's method of orbit 
prediction is computationally more efficient compared to Cowell's method 
since the required numerical precision in calculations is reduced and larger 
integration step sizes can be used. The disadvantage of this method is that 
the magnitude of 6f'increases with time and the accuracy of the predictions 
will degrade with time. A new reference orbit then needs to be initialised 
through a process known as rectification. This adds some complexity to this 
method of prediction. 

Disturbing Forces 

In order to numerically integrate either Cowell's or Encke's formulation of the 
perturbed orbit, representations for each one of the perturbative accelerations 
are required. These representations can be analytical expressions such as 
those discussed in the section under general perturbations, or it may be 
tables of values. This section will provide an overview of the expressions for 
the perturbative accelerations required for numerical integration. 

Central-Body Effect The perturbative acceleration created by the non­
spherical Earth can be determined by taking the gradient of the potential 
defined in equation D. 9 in spherical coordinates from 

..... = au (ar)T au (ac/»T au (a>.)T 
a ar af' + ac/> af' + a>. af' (D.38) 
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It can be expressed in the Eel coordinate system as 

(D.39) 

(D.40) 

(D.41) 

The accuracy of the modelled acceleration will depend on the number of 
gravitational harmonics modelled in equation D.9. For maximum accuracy 
all the available Cnm and Snm coefficients should be used in the calculation 
of the gravitational potential. These coefficients are obtained from terrestrial 
based and satellite based observations and is defined in a gravitational model. 
Some of the models in use are the Joint Gravitational Model (JGM-2) which 
is of size 70 x 70, the World Geodetic Survey (WGS-84), a 41 x 41 model 
which is periodically updated and the 50 x 50 Goddard Earth Model (GEM) . 

Atmospheric Drag The acceleration of the satellite due to atmospheric 
drag is described by equation D.15. The important parameter that needs to 
be determined in this equation is the value of the atmospheric density. This 
parameter can be determined from a variety of available models of varying 
complexity. Vallado [35] discusses some of the atmospheric density models 
currently in use. One of the most commonly used models is the J acchia­
Roberts model, which is described in detail by Vallado. This model is very 
accurate, but very complex. The rule, which can be followed, is that, when­
ever the atmospheric density needs to be modelled, the lowest complexity 
model that provides a satisfactory accuracy should be used. The reason be­
ing that the complexity of the model and consequently the complexity of the 
calculations increase with increased accuracy. Du Toit [14] indicates the va­
lidity of this statement. He needed a limited complexity atmospheric model 
that included the major variations in atmospheric density. These included 
variations with change in altitude, the day-night variations and the influence 
of the solar flares. He used the exponential model provided by equation D.16 
with some adjustments made to the calculation of the atmospheric density 
at perigee. 
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Third-Body Attractions Battin [5] provides an expression for the accel­
eration resulting from the gravitational attraction of a third body as 

ap = - ~; [f + f(q)f3] (D.42) 

where d is the distance between the satellite and the third body, J.i-3 is the 
gravitational parameter of the third body and r3 is the position vector of the 
third body in the Eel coordinate system. The value f(q) is introduced into 
the expression to avoid numerical instability which may introduce errors into 
the calculations. It is defined as 

3 + 3q + q2 
f(q) = q 1 + (1 + q)3/2 

with q defined as 

r· (r- 2r3) 
q = ........ 

r3 . r3 

(D.43) 

(D.44) 

The orbit of the third body needs to be modelled with a separate algo­
rithm. The position of the third body is included in equation D.42 as the 
position vector f3. Methods for accurate modelling of the position of the Sun 
and the Moon are provided in Meeus [22] . 

Solar Radiation Pressure The perturbing force experienced by the satel­
lite due to solar radiation pressure is presented by the expression in equation 
D.28. The assumption is sometimes made that the area of the satellite ex­
posed to the Sun stays constant and that the reflectivity of the satellite does 
not change. Under these assumptions the perturbing acceleration can be 
expressed with the use of Newton's second law as 

(D.45) 

where T0 sat is the vector from the satellite to the Sun. 
Equation D.45 provides the expression for the acceleration experienced 

by the satellite due to solar radiation pressure, but almost all satellites expe­
rience periodic eclipses behind the Earth during which the expression for the 
acceleration is not valid. For this reason, a strategy is required to determine 
when the perturbing acceleration from solar radiation should be included in 
the propagation and when it should be ignored. Escobal [16] presents a solu­
tion to this problem with an expression which relates the angular separation 
angle of the satellite to the Sun as a function of the orbital elements. This 
solution indicates when the satellite is eclipsed and whether it enters or exits 
the shadow of the Earth. 
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IGRF Magnetic Field 
Modelling 

The algorithm for the determination of the magnetic field vector at a partic­
ular location is provided by Wertz [36]. A summary of the most important 
expressions in the IGRF algorithm will be presented in this chapter. 

The dominant characteristics of the magnetic field of the Earth, B, can 
be modelled as the gradient of a scalar potential function, V, with 

B=-\7V (E.1) 

V can be represented by a series of spherical harmonics as 

k (a )n+1 n 
V(r, (), ¢) =ae ]; r

e 
'fo(g;::cosm¢+hr;:sinm¢)P:(()) (E.2) 

where gr; and hr;: are the Gaussian IGRF coefficients!, ae = 6378.135 km is 
the mean equatorial radius of the Earth, P;:"(()) are the Schmidt normalised 
Legendre functions and r, () and ¢ are the geocentric distance, co elevation 
and longitude, respectively. 

The computational time for the algorithm can be significantly reduced 
when the Legendre functions are calculated recursively. To do this, the 
Schmidt normalised Legendre functions, P:, are converted to Gauss nor­
malised functions, pn,m, through the relationship 

pm = S pn,m n . n,m (E.3) 

where 

Sn m ~ [(2 - J~)(n - m)!] 1/ 2 (2n - I)!! 
, (n+m)! (n-m)! 

(E.4) 

1 These coefficients can be obtained via the Internet from 
ftp://nssdc.gsfc. nasa. gov /models / geomagnetic/igrf;' 
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with 6J = 1 if i = j and 0 otherwise. 
Using the Sn,m functions with the Gaussian coefficients is computationally 

more efficient and in order to take advantage of this property, the Gaussian 
coefficients should be defined as 

gn,m = S gm n,m n 
(E.5) 

The advantage of the Sn,m functions is that it must only be determined once 
during a simulation. The functions can be computed recursively from 

Soo 1 , 

[
2n - 1] 

Sn-l,O n n 2:: 1 

Snm = , 
S (n - m + 1) (6in + 1) 

n,m-l + n m 
(E.6) 

In a similar way the pn,m coefficients can be determined from 

po,o 1 

pn,n sin epn-l,n-l 
pn,m cosopn-l ,m _ K n,mpn-2,m (E.7) 

where 

o n = 1 
(n - 1)2 - m2 

(2n - 1)(2n - 3) 
n>l (E.8) 

From equation E.l it is seen that the gradient must be determined which 
requires the partial derivatives of pn,m. The recursive expressions for the 
partial derivatives are 

Bpo,o 

Be 
Bpn,n 

Be 
Bpn,m 

Be 

o 
Bpn-l,n-l 

(sinO) + (coso)pn-l ,n- l n 2:: 1 
BO 

Bpn-l ,m 8pn-2,m 
(cos e) - (sinO)pn- l,m - Kn,m __ _ 

Be Be 
(E.g) 

The value of sin m </> and cos m</> can be determined from a recursion re­
lation as 

cosm</> 

sin m</> 

cos ( (m - 1) </» cos </> - sin ( (m - 1) </» sin </> 

sin ( (m - 1) </» cos </> + cos ( (m - 1) </» sin </> (E.I0) 
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From these expressions the field, jj, can be calculated as 

av 
ar 

131 

k (a )n+2 n E re (n+1) 'fo(gn,mcosmc/J+hn,mSinmc/J)pn,m(e) 

-laV 
r ae 

k (a )n+2 n apn,m(e) 
- L ~ L (gn ,m cos mc/J + h n,m sin mc/J ) ---::-:-~ 

n=l r m=O ae 
-1 av 

r sine &¢ 

-1 k (a )n+2 n -.-L ~ Lm(-9n,msinmc/J+hn,mcosmc/J)pn,m(e) 
sme n=l r m=O 

(E.11) 

where Br is the radial component (outward positive) , Bo is the co elevation 
component (south positive) and Bcf> is the azimuth component (east positive). 
These components can be converted to the ECEF coordinate system through 
the transformation 

Bx 
By 

Bx 

-

-

(Br cos b + Bo sin b) cos a - Bcf> sin a 

(Br cos b + Bo sin b) sin a + Bcf> cos a 

(Br sin b - Bo cos b) 

where b = 90° - e is the geocentric latitude. 

(E.12) 
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The SGP4 model 

This chapter is a shortened version of the "Spacetrack Report no.3" [103]. 
Only the SGP4 propagation model is included without the FORTRAN code. 

The NORAD mean element sets can be used for prediction with SGP4. 
All symbols not defined below are defined in the list of symbols at the end 
of this chapter. 

F.1 The SGP4 model 

The original mean motion (n~) and semimajor axis (a~) are first determined 
from the input elements by the equations 

61 = ~ k2 (3 cos
2

io -31) 
2 a1

2 (1 - e 0
2) "2 

" no n =--
o 1 + 60 

" ao 
ao = 1 - 6

0
' 
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For perigee between 98 kilometers and 156 kilometers, the value of the con­
stant 8 used in SGP4 is changed to 

For perigee below 98 kilometers, the value of 8 is changed to 

8* = 20/XKMPER + aE. 

If the value of 8 is changed, then the value of (qo - 8)4 must be replaced by 

(qo - 8*)4 = [[(qo - 8)4]i + 8 - 8*t. 

Then calculate the constants (using the appropriate values of 8 and (qo - 8)4) 

() = cosio 

e = 1 
a" - 8 o 

( 2) 1 /30 = 1 - eo 2 

C2 = (qo - 8)4e4n~(1-7]2tt [a~ (1 + ~7]2 + 4eo7] + eo7]3) 

+L ~~2) H + ~82) (8+ 24ry2 + 3ry') 1 

C4 = 2n~(qo - 8)4~4a~/302(1-7]2tt ([27](1 + eo7]) + ~eo + ~7]3] - a~(~k~e7]2) x 

[3(1 - 3()2) (1 + ~7]2 - 2eo7] - ~eo7]3) + ~ (1 - (P) (27]2 - eo7] - eo7]3 ) cos 2Wo]) 

Cs = 2(qo - 8)4ea~/302(1-7]2tt [1 + ~17](7] + eo) + eo7]3 ] 
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D = ~aIlC2(17all + S)C 3 
3 3 0<" 0 1 

The secular effects of atmospheric drag and gravitation are included 
through the equations 

M - M [1 3k2( -1 + 3{}2) 3k22(13 - 78{}2 + 137(}4)]"( _ ) 
DF - 0 + + 2 112/3 3 + 16 114/3 7 no t to ao 0 ao 0 

bw = B*C3(COSWo)(t - to) 

bM = --3
2 

(qo - s)4B*~4 aE [(1 + 'fJ cos MDF)3 - (1 + 'fJ cos Mo)3] 
eo'fJ 

Mp = MDF+bw+bM 

w = WDF - bw - bM 

e = eo - B*C4(t - to) - B*C5(sinMp - sinMo) 

a = a~[l - C1(t - to) - D2(t - to)2 - D3(t - to)3 - D4(t - to)4]2 

IL = Mp + w + n + n~ [~Cl(t - to? + (D2 + 2C12)(t - to)3 

+~(3D3 + 12C1D2 + 10C1
3)(t - to)4 

+~(3D4 + 12C1D3 + 6D22 + 30C1
2D2 + 15C14)(t - to)5] 
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where (t-to) is time since epoch. It should be noted that when epoch perigee 
height is less than 220 kilometers, the equations for a and IL are truncated 
after the 0 1 term, and the terms involving 0 5 , ow, and oM are dropped. 

Add the long-period periodic terms 

axN = ecosw 

IL _ A3,o sin io ( ) (3 + 58) 
L - 8k

2
a(32 e cosw 1 + 8 

ILT = IL + ILL 

ayN = e sinw + ayNL' 

Solve Kepler's equation for (E + w) by defining 

U=ILT-O 

and using the iteration equation 

with 

and 

~(E + W)i = U - ayN cos(E + W)i + axN sin(E + W)i - (E + W)i 

-ayN sin(E + W)i - axN cos(E + W)i + 1 

(E+W)1 = U. 

The following equations are used to calculate preliminary quantities needed 
for short-period periodics. 

ecos E = axN cos(E + w) + ayN sin(E + w) 

e sin E = axN sin (E + w) - ayN cos( E + w) 
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r = a(l- ecosE) 

. kVa·E r = e-esm 
r 

j·-k JPL r - e 
r 

a [ a N(esinE) 1 cos u = - cos (E + w) - axN + y V 2 
r 1 + 1- eL 

a [ axN ( e sin E) 1 sinu=- sin(E+w)-ayN- V 2 
r 1 + 1 - eL 

-1 (Sin u) u=tan --
cosu 

k2 2 b.r = -(1- () ) cos2u 
2PL 

k2 2 . b.u = ---2 (7() - 1) sm 2u 
4PL 

b.n 3k2() . 2 
= 2PL2 sm u 

. 3k2(). . 
b.1, = --2 sm 1,0 cos 2u 

2PL 

b.r = - k2n (1 - ()2) sin 2u 
PL 

. k2n [( 2 3 ( 2)] b.r j = - 1 - () ) cos 2u - - 1 - 3() 
PL 2 
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The short-period periodics are added to give the osculating quantities 
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rA=rj+!J.rj. 

Then unit orientation vectors are calculated by 

u = M sin Uk + N cos Uk 

v = MCOSUk - Nsinuk 

where 

Then position and velocity are given by 

and 

F.2 Users guide, constants and symbols 

The values of the physical and mathematical constants used in the program 
are given below. 

Variable name Definition Value 

CK2 1 2 
7)/2aE 5.413080E-4 

CK4 3 4 --J4aE 
8 

.62098875E-6 

E6A 10-6 1.0 E-6 

QOMS2T (qo-S)4 (er)4 1.88027916E-9 
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S s (er) 1.01222928 

TOTHRD 2/3 .66666667 

XJ3 J3 -.253881E-5 

XKE ke (~)~ .743669161E-1 
mm 

XKMPER kilometers/Earth radii 6378.135 

XMNPDA time units/day 1440.0 

AE distance units/Earth radii 1.0 

DE2RA radians/ degree .174532925E-1 

PI 7r 3.14159265 

PI02 7r /2 1.57079633 

TWOPI 27r 6.2831853 

X3PI02 37r/2 4.71238898 

where er = Earth radii. Following is a list of symbols commonly used in this 
mathematical model. 

no = the SGP type "mean" mean motion at epoch 

eo = the "mean" eccentricity at epoch 

io = the "mean" inclination at epoch 

Mo = the "mean" mean anomaly at epoch 

Wo = the "mean" argument of perigee at epoch 

no = the "mean" longitude of ascending node at epoch 

no = the time rate of change of "mean" mean motion at epoch 

no = the second time rate of change of "mean" mean motion at 
epoch 
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B* = the SGP4 type drag coefficient 

ke = JCM where C is Newton's universal gravitational constant 
and M is the mass of the Earth 

aE = the equatorial radius of the Earth 

J2 = the second gravitational zonal harmonic of the Earth 

J3 = the third gravitational zonal harmonic of the Earth 

J4 = the fourth gravitational zonal harmonic of the Earth 

(t - to) = time since epoch 

1 2 
k2 = "2/2aE 

3 4 
k4 = --J4aE 

8 

qo = parameter for the SGP4 density function 

s = parameter for the SGP4 density function 

1 A 
B = -CD - , the ballistic coefficient where CD is a dimensionless 

2 m 
drag coefficient and A is the average cross-sectional area of the 
satellite of mass m 
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Appendix G 

Orbital elements in practice 

This chapter describes the classical, the 2-line elements, and the methods that 
are available for presenting the different sets of data. There exists a lot of 
confusion concerning the use of these orbital elements, the propagational ac­
curacy which can be obtained and the propagational technique which should 
be used with each set of data. This chapter will attempt to remove some of 
the confusion summarizing the most important factors that have to be taken 
into account . Refer to appendix C for a detailed definition of the elements. 
The Celestrak website [104] and Vallado [35] have some useful hints on the 
correct use of orbital elements. 

G.l Orbital element formats 

There is no uniform representation of the classical orbital elements. These 
elements and the 2-line elements are both based on the same principle defined 
by Kepler in that both represent the position of the satellite in the orbit. 
Depending on the source from which these elements are obtained, it is called 
two-body , mean or osculating Keplerian elements . The three versions 
are often considered equivalent, but there are some subtle differences in the 
way they are obtained and the way that they are used. 

Two-body elements usually refer to those that are derived from and 
used with two-body equations of motion. When these elements are used 
to determine the position of a satellite, the propagation algorithm should 
be based on pure two-body orbital equations. It can be expected that this 
method will not deliver very high precision information about the position 
of the satellite. The initial position may be close to the true value of the 
satellite position, but because no perturbations are modelled, it will become 
inaccurate in a very short time. TS Kelso [104] made the following obser-
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vation: "When we combine all the effects in the SGP 4 model and compare 
it to a simple two-body propagator, we find a position error of 150 km after 
only six hours and almost 400 km by the end of the day.". This error of 400 
km after one day consists predominantly of an in-line error and results in an 
angular displacement of 34° from the true position of the satellite after only 
one day for a satellite at a height of 600 km. An UHF yagi antenna has a 
typical -3dB beamwidth of 29° and a VHF yagi antenna has a typical -3dB 
beamwidth of 39°. This means that the signal coming from any source which 
is on a line of more than 19.5° from the centreline of the VHF yagi, will be 
attenuated by -3dB. The general case is that, the higher the frequency, the 
narrower the beamwidth of the antenna. It is clear that this error is un­
acceptable for the purpose of tracking a satellite with an antenna since the 
antenna can be a parabolic dish with a beamwidth of only a few degrees l

. 

The two-body elements can be considered unsuitable for practical use. 
Osculating elements are the instantaneous elements for a satellite un­

der the influence of perturbations. It represents the true position of the 
satellite at a specific time. Osculating elements are usually provided along 
with the state vector since both represent the instantaneous position of the 
satellite, only in different formats. Satellite owners sometimes provide these 
sets of data together and launch companies provide the estimated initial 
condition of the satellite in this format. The osculating elements should 
be propagated with a propagation algorithm that requires osculating data 
as its input. Numerical integrators that are used to generate high-precision 
ephemeris data usually require osculating elements since algorithms with high 
precision output require high precision elements as inputs. A common use of 
the osculating elements is with NASA's Space Shuttle. It usually is the only 
near real-time ephemeris data available for the Space Shuttle directly after 
an orbit changing thruster burn. It usually takes a few hours (sometimes 
even days) for the new NO RAD elements to be released and by that time 
the orbital elements could already be outdated due to subsequent thruster 
firings by the Shuttle. By using the osculating elements, an ephemeris of the 
highest possible accuracy can be generated. 

Mean elements result from averaging the effect of perturbations over 
a specified interval of time. The averaging process results in an elimina­
tion of the short periodic effects of perturbations from the elsets. Where 
the osculating elements present the true position of the satellite, the mean 
elements have to be adjusted before the true position of the satellite can be 
found. This has to be done in an appropriate propagator. The U.S. Space 

1 For the SUNS AT groundstation a 4.5 m diameter parabolic dish with a S-band feed 
was used which resulted in a beamwidth of 10. 
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Command (NORAD) provides mean elements in the 2-line element format . 
Elements generated by NO RAD need to be propagated by means of one of 
the propagators in the SGP4 family of propagators (SGP, SGP4, SDP4) in 
order to reconstruct the short periodic variations which are needed for accu­
rate predictions. Mean elements are updated every 5 to 7 days by NORAD. 
Because TLE's for almost any satellite can be obtained from the Internet so 
easily, it is the most commonly used representation of the satellite orbital 
state used today. 

The confusion with the use of orbital elements often arises because the 
osculating elements describe the perturbed problem and are defined for a 
specific moment in time, but they are often used with simplified (a two-body 
propagator or one requiring mean elements as input) propagation schemes. 
Using the elements in this way nullifies the assumptions inherent to the oscu­
lating elements. It is not impossible to use it in this way, but it will result in 
predictions of poor accuracy. Mean elements are used in the same erroneous 
way. It is often used in a numerical integrator or simplified perturbation 
algorithm that requires osculating elements as input, resulting again in poor 
prediction accuracy. Another reason for poor prediction accuracy is that the 
wrong time-system is used or that the calculation of the rotational position 
of the Earth (sidereal time) is inaccurate. No matter how accurate the prop­
agation technique, inaccurate calculation of sidereal time will always result 
in an inaccurate ephemeris2

. 

G.2 Explanation of Two-line Elements 

This section explains the format of the two-line elements (TLE's) that are 
commonly available on the Internet. The explanation presented here is a 
modified version of the explanation available on the website of the Radio 
Amateur Satellite Corporation (AMSAT)3. 

An example of a TLE--file is presented in table G.l. The file consists of 

SUNSAT 
1 25636U 99008C 99261 . 70472423 .00000371 00000-0 10947-3 0 1025 
2 25636 96.4775 166 .8279 0152478 320.7002 38.3229 14 . 40946227 29841 

Table G.1: An examples of a TLE-file for SUNSAT. 

2Refer to appendix B.2.3 for a discussion of the methods used to determine the sidereal 
time. 

3http://www.amsat.org 
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three lines of data. The first line contains the satellite's name with the next 
two lines containing the actual orbital data in the format required for use 
with the SGP and SGP4 propagation algorithms. The different variables are 
presented in fixed positions within the file. The position of spaces within the 
file is significant. The last digit on each line is a modulo-l0 check digit , which 
is used by most software to verify the validity of the data. The following key 
will explain the positions of the element-values within the TLE-file. 

1. Line 1 consists only of the name of the satellite. There is no checksum 
on this line. 

2. Line 2 is the first line of data. The format of the first line of data is 
presented in table G.2. The checksum is computed as follows: 

I Column I Description 
01-01 Line Number of Element Data 
03-07 Satellite Number 
10-11 International Designator (Last two digits of launch year) 
12-14 International Designator (Launch number of the year) 
15-17 International Designator (Piece of launch) 
19-20 Epoch Year (Last two digits of year) 
21-32 Epoch (Day number and fractional portion of the day) 
34-43 First Time Derivative of the Mean Motion divided by 2, 

or Ballistic Coefficient (depending on ephemeris type) 
45-52 Second Time Derivative of Mean Motion divided by 6, 

(Blank if NjA). 
54-61 B* drag term if SGP4 theory was used. 

Otherwise, radiation pressure coefficient. 
63-63 Ephemeris type 
65-68 Element number 
69-69 Check Sum (Modulo 10) 

Table G.2: The format of the second line of data in the two-line element file. 

(a) Start with zero. 

(b) For each digit in the line, add the value of the digit. 

( c) For each minus sign, add 1. 

(d) For each plus sign, add 2 (or maybe 0, depending on who created 
the element set and when) 

(e) For each letter, blank, or period, don't add anything. 
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(f) Take the last decimal digit of the result (that is, take the result 
modulo 10) as the check digit. 

All other columns are blank or fixed. Note that the International Des­
ignator fields are usually blank, as issued in the NASA Prediction Bul­
letins. 

3. Line 3 is the second line of data. The format of this line of data is 
presented in table G.3. The same checksum algorithm is used as for 
the second line of data. 

I Column I Description 
01-01 Line Number of Element Data 
03-07 Satellite Number 
09-16 Inclination (Degrees) 
18-25 Right Ascension of the Ascending Node (Degrees) 
27-33 Eccentricity (decimal point assumed) 
35-42 Argument of Perigee (Degrees) 
44-51 Mean Anomaly (Degrees) 
53-63 Mean Motion (Revolutions per day) 
64-68 Revolution number at epoch (Revolutions) 
69-69 Check Sum (Modulo 10) 

Table G.3: The format of the third line of data in the two-line element file. 

G.3 Initial conditions of Orbital Elements 

One of the most frequently asked questions related to orbital elements con­
cerns the initial accuracy of the elements. To discuss the accuracy of the 
initial conditions, the method used to generate the initial conditions should 
be explained. 

The initial conditions describing the updated orbital state of a satellite 
is determined through a process known as differential correction. The 
process is described in Vallado [35] and Escobal [16] and consists of a least­
squares approximation of the updated initial orbital state of the satellite by 
using current state vectors or element sets and measurements of the position 
of the satellite. 

Measurements are made with a variety of sensor networks which include 
among others the Space Surveillance Network (SSN) of the US Department 
of Defence, the Russian Space Surveillance System (RSSS), the Deep Space 
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Network (DSN) managed by the Jet Propulsion Laboratory and the Satellite 
Laser Ranging (SLR) sites managed by NASA. These sites are spread all over 
the world and measure the satellite's position with a combination of radar, 
optical and laser sensors. The position of the satellite is usually presented in 
terms of the topocentric horizon coordinate system. 

In order to calculate initial conditions for a particular epoch, measure­
ments are combined with predictions. The orbital state of the satellite for 
the exact instant at which a measurement was made is determined by using 
the most recent orbital state description for the satellite in combination with 
a suitable propagation algorithm. The measurements contain errors due to 
errors in the sensors and for this reason, it cannot be considered as an exact 
description of the position of the satellite. The errors in the measurements 
can be described in terms of the statistical properties of the sensors. The 
difference between a group of measurements and the relevant predictions is 
determined and by considering the statistical error characteristics of the sen­
sor systems, an updated initial position for the satellite at a new epoch is 
determined from a least squares approximation. 

Two factors influence the accuracy of the initial conditions: the accuracy 
of and confidence in the measurements and the accuracy of the propagation 
algorithm. Higher accuracy measurements can be obtained by using better 
sensors and the confidence in the accuracy of the least squares approximation 
can be increased by increasing the number on observations used in the ap­
proximation. However, the most important limitation on the accuracy of the 
initial conditions is the accuracy of the propagation algorithm used to predict 
the position of the satellite. When the TLE-files are generated by NORAD, 
the SGP4 propagation algorithm is used to predict the position of the satel­
lite. As the accuracy of this algorithm for a single step calculation is limited 
to approximately 1 km4, it will result in the accuracy of the updated TLE's 
also being no better than 1 km, irrespective of the fact that measurements 
of higher accuracy was used in generating the updated TLE. In order to ob­
tain high accuracy initial conditions for use in a propagational algorithm, a 
high accuracy propagation algorithm need to be combined with high accu­
racy measurements when the initial conditions are generated. When a high 
precision numerical propagator is combined with SLR or GPS measurements 
initial condition accuracies of a few metres are obtainable. Due to the influ­
ence that the propagator has on the accuracy of the initial conditions, these 
conditions are usually generated for use along with the particular propagator 
with which it was generated. 

Data form the tracking network used by NORAD to generate the TLE-

4Refer to the work of Knowles [21] which was reinterpreted by Vallado [35]. 
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files is not generally available to the public for generating orbital elements. 
The best substitute for the measurements made by the various tracking net­
works are GPS measurements made onboard a satellite. These measurements 
have a general accuracy of 50 m or better depending on the accuracy of the 
receiver, which can be improved by applying various correction techniques. 
According to Dawson [101] state vectors obtained from GPS measurements 
can be used as initial conditions for numerical propagation algorithms. It is 
preferable that the measurements should be used in a differential correction 
process to generate initial conditions for a particular propagator, but it can 
be used with reasonable success as initial conditions in any high accuracy 
numerical propagator. 
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