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Abstract 

In this study, commercially pure titanium (CPTi) parts were gel-cast.  Gel-casting 

is a ceramic forming technology developed in the early 1990’s.  Titanium is popular 

in the aerospace and biomedical industries for its excellent corrosion resistance, 

high mechanical strength, high strength-to-weight ratio and excellent 

biocompatibility. 

A novel process for titanium slurry gel-casting was developed, studying the 

sedimentation behaviour of a methacrylamide (MAM)/methylene bisacrylamide 

(MBAM) and an Isobam® polymer binder system, respectively.  Factors influencing 

the sedimentation behaviour of titanium particles in a binder are the monomer 

content, monomer:cross-linker ratio, dispersant content, slurry mixing time and 

solid loading of the slurry.  An optimum slurry was developed with 20 wt% 

monomers, at a 6:1 MAM:MBAM ratio, with dispersant content of 0.8 wt% 

ammonium hydroxide (NH4OH).  CPTi powder with a particles size distribution of 

15-45 µm was used at a solid loading of 55 vol%.  Stokes Law was used to

successfully suspend the powder particles in the cast slurry to obtain an evenly

dense microstructure.

The slurry was cast into a resin 3D printed rectangular bar-shape mould, 

polymerized at 60 ˚C for 2 hours and dried in air at room temperature for 12 hours.  

Thermal gravimetric analysis (TGA) was conducted on the dried samples to 

determine the temperatures where the various binder constituents debind.  Binder 

burnout was achieved by heating the dried parts to 400 ˚C at 1 ˚C/min and holding 

for 30 min, before presintering the parts at 650 ˚C for 30 min to obtain handling 

strength.  The parts were vacuum sintered at 1200 ˚C for 2 hours at a heating rate 

of 10 ˚C/min.  The shrinkage measured from cast to sinter, was 10.4 % and 9.03 % 

in the length and width of the rectangular bars, respectively.   

Optical microscopy was used to study the sintered microstructure of the gel-cast 

parts, finding an evenly dense microstructure.  Scanning electron microscopy 

(SEM) was used to study the fracture surfaces of the tensile test specimens, 

confirming that only intermediate sintering has taken place.  Energy dispersive 

spectroscopy (EDS) was used to determine the elemental composition of the 

sintered microstructure, observing that carbon and oxygen contamination has taken 

place.  Finally, the mechanical properties were evaluated: a yield- and ultimate 

tensile strength of 323 MPa and 378 MPa, respectively, and a hardness value of 60 

HRBW, which is 86 % of wrought.  
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Uittreksel 

In hierdie studie is kommersiële suiwer titaan parte geproduseer deur jelgieting.  

Jelgieting is ‘n produseringstegniek vir keramiek wat in die vroeë 1990’s ontwikkel 

was.  Titaan is gewild in die lugvaart- en biomedese bedryf vir die sy uitstekende 

weerstand teen korrosie, hoë meganiese sterkte, hoë sterkte-tot-gewig verhouding 

en uitmuntende verenigbaarheid met menslike been as biomateriaal. 

‘n Nuwe proses vir titaanmengsel jelgieting was ontwikke deur die sedimentasie 

gedrag van ‘n meta-akrielamied (MAM)/metileen-bisakrielamied (MBAM) en ‘n 

Isobam® polimeer bindmiddel te bestudeer.  Faktore wat die sedimentasie gedrag 

van die titaanpartikels in the bindmiddel beïnvloed is die monomeer inhoud, 

monomeer:kruis-verbinder verhouding, dispergeermiddel inhoud, die 

titaanmengsel mengtyd en die soliede belading van die mengsel.  ‘n Optimum 

mengsel was ontwikkel met 20 wt% monomere, teen ‘n 6:1 MAM:MBAM 

verhouding, met dispergeermiddel inhoud van 0.8 wt% ammoniumhidroksied 

(NH4OH).  Titaan poeier met ‘n deeltjiegrootteverspreiding van 15-45 µm was 

gebruik teen ‘n soliede belading van 55 vol%.  Stoke se Wet was gebruik om die 

poeier partikels suksesvol in suspensie te hou in die gegiete mengsel om ‘n 

mikrostruktuur met eweredige digtheid te verkry.   

Die mengsel was gegiet in ‘n  reghoekige staafvormige gietvorm wat drie-

dimensioneel gedruk is van harsmateriaal, gepolimeriseerd teen 60 ˚C vir 2 ure en 

gedroog in lug teen kamertemperatuur vir 12 ure.  Termiese gravimetriese analise 

(TGA) was uitgevoer op die gedroogde jelgegiete monsters om die temperature 

waarteen die verskillende komponente van die bindmiddel uitbrand, te bepaal.  Die 

uitbranding van die bindingsmiddel was bereik deur die gedroogte stafies te verhit 

tot 400 ˚C teen 1 ˚C/min en dit daar te hou vir 30 min.  Die stafies was dan verder 

verhit tot 650 ˚C vir 30 min om hanteringskrag te verkry deur oorspronklike 

sintering.  Die stafies was gesinter in ‘n vakuum teen 1200 ˚C vir 2 ure teen ‘n 

verhittingstempo van 10 ˚C/min.  Van giet tot sinter was ‘n inkrimping van 10.4 % 

en 9.03 % in die lengte en breedte van die stafies, onderskeidelik, gemeet.   

Optiese ligmikroskopie was gebruik om die gesinterde mikrostruktuur van die 

jelgegiete stafies te bestudeer.  ‘n Eweredige digtheid in die mikrostruktuur was 

waargeneem.  Skanderings-elektron-mikroskopie (SEM) was gebruik om die 

fraktuur oppervlaktes van die trektoets spesimens te bestudeer, bevestigend dat 

slegs intermediêre sintering plaasgevind het.  Energie-verstrooings-spektroskopie 

(EVS) was gebruik om die elementele komposisie van die gesintreerde 

mikrostruktuur te bepaal.  Hierdeur was waargeneem dat koolstof en suurstof 

kontaminasie plaasgevind het.  Ten slotte was die meganiese eienskappe 

geevalueer: ‘n swig- en trekkrag van 323 MPa en 378 MPa, onderskeidelik, en ‘n 

hardheidswaarde van 60 HRBW, wat 86 % van gesmede eienskappe is.     
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1 Introduction 

The subject of this study is the development of the gel-casting procedure for 

commercially pure titanium.  In this section, the background and motivation for this 

study is presented, followed by the research objectives, limitation and scope of the 

study and the chapter outline for this dissertation. 

1.1 Background and Motivation 

The need for complex near-net-shape titanium parts is becoming more prevalent, 

especially in the biomedical industry where individually customized implants and 

bone replacements are required.  This need requires the development of near-net-

shape manufacturing methods.  Powder metallurgy (PM) has been successfully used 

to produce near-net-shape titanium parts and has the advantage of controlling 

material porosity which contributes to implant fixation by bone ingrowth into the 

porous structure (Bottino et al., 2009; Li et al., 2008).  PM processes that produce 

near-net-shape metal parts include press-and-sinter, hot isostatic pressing, powder 

injection moulding (PIM) and additive manufacturing (AM) technologies (Froes, 

2012; Froes et al., 2004; Qian and Sam Froes, 2015).  While the number of 

presentations on AM, mostly by Laser Powder Bed Fusion (LPBF), at the fifth 

biennial conference on the Powder Metallurgy and Additive Manufacturing of 

Titanium (PMTi2019) was high, indicating a large interest in this field, more mature 

technologies, such as metal injection moulding (MIM), remain more competitive at 

present (Ebel, 2019).  The opportunity for novel PM technology research is seen in 

the ‘MIM-like’ AM technology, Binder Jetting (BJT), that is being developed into 

a production technology with complete production systems, including an AM 

machine, debinding unit and sintering furnace (Ebel, 2019).  

At the PMTi2019, Praxis Technology, USA, presented on the ongoing development 

of a black titanium alloy suitable for MIM processing.  A strong motivation for the 

use of black titanium is its significantly higher wear resistance, compared to Ti-

6Al-4V, thus ideally suitable as biomaterial in knee- and hip replacement 

applications.  The current limitations of black titanium are high costs, low strength 

and the potential for poor properties when PM processed, heat treated, then 

blackened (Ebel, 2019).  

AM technologies, such as selective laser melting (SLM), are currently widely 

researched for their ability to produce customized complex porous implants 

(Taniguchi et al., 2016).  Other benefits of AM include optimization of material 

use, which reduces weight while maintaining structural stability and thus allows a 

high degree of design freedom.  Unfortunately, AM is limited by the build envelope 

(the size of the required part) and high production cost due to costly equipment.  
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Other challenges of AM currently identified in this research field include 

reproducibility, distortion, porosity and process control (Ebel, 2019).    

Considering these limitations, there is need to consider alternative manufacturing 

processes, that still incorporate the net-shape and material utilization benefits of 

AM.  To this purpose, in this study, gel-casting of titanium powder was evaluated 

as an alternative net-shape, powder-base manufacturing process.  Gel-casting of 

ceramics is a well-defined near-net-shape powder-base manufacturing process, 

developed by the Oak Ridge National Laboratory in the early 1990’s (Omatete et 

al., 1997).  It involves mixing ceramic powder with a water-based gel binder to 

form a slurry that can be cast. The slurry forms a green part once the binder goes 

through a gelation reaction. The green part can then be sintered to form a coherent 

ceramic part.  However, to date, gel-casting has only been commercially employed 

for ceramics and gel-casting using metal powders is an active research field.  

Preceding research undertaken by the author investigated the feasibility of gel-

casting titanium as an undergraduate research project (Piek, 2017).  The outcome 

of that study was that the slurry formulation and gel-casting process used for 

ceramic powders does not work well for titanium powder and additional 

development of the process is required.  Erasmus (2018) and Riekert (2019) also 

contributed to this research by investigating whether vibration of the slurry during 

casting improved the quality of the final material.  

Metal powder gel-casting is a novel approach and still in the research phase, where 

this dissertation forms part of that research.  Nevertheless, gel-casting holds the 

potential for creating cost-effective complex near-net-shape titanium parts such as 

may be employed for biomedical implants. 

1.2 Research Objectives 

The aim of this research is to design a mould for gel-casting a titanium powder 

slurry that will render a net-shape sintered product with dimensional accuracy of 

0.3 mm and mechanical properties at least 90 % of wrought.  These parameters are 

similar to design criteria for metal injection moulding (Black and Kohser, 2008).   

Therefore, the objectives of this research are: 

i. Evaluating and developing the slurry formulation and mixing process to 

achieve the highest solids loading with a low enough viscosity, suitable for 

casting.  

ii. Evaluating the microstructure and mechanical properties of the final 

sintered titanium part produced from the improved slurry formulation and 

gel-casting process. 

iii. Reverse engineer the design procedure by shrinkage characterization of 

simple shapes, considering dimensional changes during the gel-casting 

process. 
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1.3 Scope and Limitations 

This research project, which Mr J Piek conducted as part of his masters studies in 

the Mechanical and Mechatronic Engineering Department at the University of 

Stellenbosch, originates from a proposal by Prof DC Blaine and forms part of a 

bigger study regarding the mechanical behaviour of gel-cast products in 

collaboration with NRF Centre of Excellence for Strong Materials at the University 

of the Witwatersrand.  The project is funded by the NRF Centre of Excellence for 

Strong Materials. 

The specific aspect of the project that is undertaken by the University of 

Stellenbosch involves developing the slurry formulation and gel-casting process for 

commercially pure titanium powder only.  Reverse engineering the design 

procedure through shrinkage characterization as well as evaluating the mechanical 

properties of the final sintered gel-cast part is limited to the gel-casting slurry and 

process developed for titanium in this project. 

1.4 Thesis Outline 

Chapter 2 presents the literature study conducted in titanium processing, titanium 

powder production, the gel-casting process and material characterization 

techniques. 

Chapter 3 presents the design of experiments and procedures followed in order to 

achieve the objectives of this study. 

Chapter 4 presents the results of the experiments as described in chapter 3, and a 

discussion of the findings from these results.  

Chapter 6 presents the conclusions drawn from this study and recommendations for 

future work. 
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2 Literature Review 

The literature study conducted for this research project is presented in this section.  

Firstly, motivation for this study, as supported by published literature, is presented 

in the overview.  Thereafter, a review of literature relating to general titanium 

manufacturing processes, powder slurries, the gel-casting process, and material 

characterization techniques follows. 

2.1 Overview 

Complex near-net-shape parts are becoming more prevalent, especially in the 

biomedical industry where customised shapes are required for implants and bone 

replacement.  The total number of hip replacement surgeries are expected to 

increase by 137 % (from 208 600 to 572 000) and knee replacement surgeries by 

607 % (from 450 000 to 3.48 million) between 2005 and 2030 in the United States 

of America (Kurtz et al., 2007).   

Ti-6Al-4V, a titanium alloy originally used in the aerospace industry, has been used 

as biomaterial since the 1950’s (Semlitsch et al., 1992).  Titanium alloys have been 

preferred over other standard orthopaedic materials, including stainless steels and 

cobalt-based alloys, because of their lower elastic modulus (Long and Rack, 1998).  

Titanium alloys are also preferred to the other metallic biomaterials, because of 

their excellent corrosion resistance, high mechanical strength, high strength to 

weight ratio, fatigue strength, formability, machinability and excellent 

biocompatibility due to the passive oxide surface layer that forms spontaneously 

(Cui et al., 2011; Long and Rack, 1998).  In the early 1990’s, new titanium alloy 

compositions were developed specifically for biomedical applications as a response 

to concerns about the cytotoxicity of vanadium (Long and Rack, 1998), such as Ti-

6Al-7Nb (Semlitsch et al., 1992).  Since then, the biocompatibility of titanium 

alloys has improved, focussing on lower elastic modulus alloys closer to the 

modulus of human bone (10-30 GPa).  Ti-27Nb-13Zr produced by powder 

metallurgy is an example of such an alloy with elastic modulus in the range of 60-

70 GPa (Mendes et al., 2016).   

One of the most common applications for titanium and its alloys in the biomedical 

industry is artificial hip joints that consist of an articulating bearing (femoral head 

and cup) and stem as shown in Figure 1 (Cui et al., 2011).  Costly additive 

manufacturing (AM) techniques, such as direct laser metal sintering (DLMS), use 

titanium powders to directly produce complex net-shape implants of customised 

shapes.  AM can be used to create parts that are porous, with a structure close to 

that of human bone (Taniguchi et al., 2016; Traini et al., 2008).   

With a yield strength for pure titanium of about 210 MPa, that can be significantly 

increased by alloying and heat treatment, and good mechanical property retention 

up to temperatures of 535 ˚C, titanium is often used as a high-temperature 
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engineering material (Black and Kohser, 2008).  These qualities make titanium a 

popular material in various other industries, including the aerospace and military 

environment.   

 

Figure 1: Schematic diagram of artificial hip joint (Cui et al., 2011). 

In the aerospace industry titanium alloys are employed in airframes and gas turbine 

engine components of aircraft to produce parts such as fan- and compressor blades, 

fan- and compressor disks, the fuselage, fasteners and landing gear by various 

manufacturing processes including AM (Cui et al., 2011).  Boeing released their 

commercial market outlook in June 2019, forecasting the market for commercial 

aircraft over the next 20 years (“Boeing Company - Boeing Forecasts $8.7 Trillion 

Aerospace and Defense Market through 2028,” n.d.).  According to the report, 

growing passenger volumes and increasing airplane retirements will drive the need 

for over 44 000 new jets, valued at $6.8 trillion through 2038.  Forecasters plan that 

just over 40 % would go to replacing aging airplanes while the rest will 

accommodate traffic growth.  Taking the planes that will remain in service into 

account, the projected global fleet reaches 50 000 for the first time. 

The advantages of AM manufacturing, relevant to the biomedical and aerospace 

industries, include creating highly complex structures, minimal material waste and 

a high degree of design freedom.  However, the process is expensive due to costly 

equipment and costly powder production processes.  Gel-casting, as an alternative 

manufacturing process to AM, holds the potential to produce titanium parts with 

similar advantages as AM, but more cost-efficiently.  This potential is demonstrated 

in a study by Yang et al., presenting gel-casting as a technique for preparing porous 

titanium alloy implants (Yang et al., 2011).  Considering that gel-casting has only 

been commercially employed for ceramics, gel-casting of metal powders is still a 

novel approach, and in the research and development phase. 
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2.2 Manufacturing Processes for Titanium Parts  

Due to titanium’s high melting point and high chemical reactivity, mainstream 

casting process, such as die- or permanent mould casting, are not suitable for this 

metal or its alloys (Black and Kohser, 2008).  Complex-shaped products of high 

melting point metals are generally fabricated by more costly processes, such as 

forming processes, machining, investment casting and powder metallurgy (Black 

and Kohser, 2008).   

These processes involve material removal from the starting metal stock so that what 

remains is the final desired part.  The three principal machining processes are 

drilling, milling and turning wherein a sharp cutting tool is used to mechanically 

cut material away to form the part (Groover, 2013).   A finished aerospace wing 

spar may contain as little as 4 % of the original billet with 96 % being lost as 

material waste in the forging and subsequent machining operations (Black and 

Kohser, 2008).   

In investment casting, the desired shape is formed from wax and then coated by the 

investment material to form a mould.  The mould is then heated to remove the wax 

from the mould and molten metal poured into the mould to produce the desired 

product.  Investment casting has been used in ancient China and Egypt, but recently 

it has been used in the dental and jewellery industries (Black and Kohser, 2008).  In 

a study of Atwood et al. (2007), the modelling of a titanium crown is investigated 

for dental investment casting.  Investment casting greatly reduces or even eliminate 

the need for machining, but it is rather expensive compared to other casting 

methods.   

PM processes offer great methods for producing complex near-net-shape metal 

parts.  Common powder metallurgy (PM) processes for titanium parts include press-

and-sinter of blended elemental (BE) powders,  hot isostatic pressing (HIP) of 

prealloyed (PA) powders, powder injection moulding (PIM) and AM technologies 

(Froes, 2012; Froes et al., 2004; Qian and Sam Froes, 2015).  In conventional press-

and-sinter, BE powders are compacted under high pressure into the desired shape 

and then sintered to increase strength and hardness (Groover, 2013).  Using 

hydrogenated titanium powder rather than normal fines has led to a significant 

improvement in BE material, resulting in an increase in the as-sintered density 

(Froes et al., 2004).  Figure 2 shows complex parts that has been produced via BE 

press-and-sinter.   

HIP for titanium parts, using a metal can, was developed in the 1970’s by companies 

such as Crucible Research in the USA or Tecphy in France, which had produced 

parts for jet and rocket engines (Qian and Sam Froes, 2015).  The process has been 

further developed between 1992 and 2000 by the Laboratory of New Technologies 

(LNT) on the basis of computer modelling of the HIP process for complex near-

net-shapes.  This enhanced process has been used by Synertech PM to produce a 

variety of titanium parts for gas compressors, rocket engines and airframes 
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(“Synertech - Powder metal parts manufacturer,” n.d.).  The benefits of the HIP 

process is that it can produce larger complex near-net-shape parts with HIP furnaces 

of larger sizes than other PM technologies, while saving cost, using relatively low 

cost materials, avoids costly melt processes and results in relatively low material 

loss during processing (Froes, 2013). 

 

Figure 2: Ti-6Al-4V parts produced via BE press-and-sinter and titanium 

hydride: (1) connecting rod, (2) saddles of inlet and exhaust valves, (3) plate 

of valve spring, (4) driving pulley of distributing shaft, (5) roller of strap 

tension gear, (6) screw nut, (7) embedding filter, fuel pump, and (8) 

embedding filter (Froes et al., 2004). 

PIM is another PM process developed to produce small, complex net-shape parts 

from high melting point metals.  It is a process that combines the shape-forming 

capability of plastics, the precision of die casting and the materials flexibility of PM 

(Black and Kohser, 2008).  The PIM process is similar to that of gel-casting in that 

the fine spherical-shaped metal powder is mixed with a flowable medium, the 

feedstock binder, which is then used to create a near-net shape part from the 

powder-binder mixture.  In the case of PIM, the powder is typically mixed with a 

molten thermoplastic polymer-wax binder in order to form the powder feedstock. 

The powder-binder feedstock is produced in the form of pallets or granules, which 

is fed via a hopper into a heated injection moulding machine, similar to the plastic 

injection moulding process.  PIM is a popular method for producing biomedical 

implants.  One of the leading companies in PIM, Praxis Technology, has developed 

the only biomedical qualified Ti PIM process in the world, manufacturing over 

250 000 implants up to date (“Praxis Technology Inc,” n.d.).  Recent advances in 

PIM include the use of Niobium (Nb), as β-stabilizing biocompatible material, 

alloyed with Ti to produce material with lower elastic modulus, closer to that of 

human bone (Zhao et al., 2013).  Figure 3 shows an example of a PIM produced 

orthopaedic implant with porous ingrowth features.        
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Figure 3: Ti-6Al-4V orthopaedic implant with porous ingrowth features 

(Piemme, 2018). 

Finally, the current most popular manufacturing process for producing complex 

near-net-shape metal parts is AM, where parts are being built up layer-by-layer.  

Direct laser metal sintering (DLMS) and electron beam melting (EBM) is widely 

researched for creating porous titanium alloys with enhanced biocompatibility 

(Harrysson et al., 2008; Ivanov et al., 2018; Taniguchi et al., 2016; Traini et al., 

2008).  The big advantage of AM is its ability to produce customized complex parts, 

but it is still an expensive fabrication method due to costly equipment and processes, 

often requiring additional machining, and slow process times.  At the 34th ITA 

(International Titanium Association) General Meeting held in October 2018, Norsk 

Titanium received the 2018 Titanium Application Development Award.  This 

Norwegian company started delivering structural AM aerospace parts to Boeing in 

2017.  Figure 4 shows an example of a final commercial aerostructure titanium part 

manufactured by Norsk Titanium.  They use a wire-fed process, Rapid Plasma 

Deposition (RPD), that produces parts weighing over 45 kg, 50 to100 times faster 

than powder-based AM and that uses 25 to 50 percent less material than forging 

(“Titanium USA 2018,” 2018).  It was also reported at the 2018 ITA General 

Meeting that the aerospace industry would account for 30 percent of the metal AM 

market over the next decade, focussing on the production of complex parts.         

 

Figure 4: Completed commercial aerostructure titanium part next to its 

near-net RPD™ form (“Norsk Titanium | Media,” n.d.). 
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2.2.1 Titanium Powder Production 

The characteristics of the powder used in PM has a great influence on the properties 

of the final PM produced part.  Different powder production processes result in 

powders with different characteristics, such as size and shape (spherical or 

irregular) (German, 2005).  The following fabrication processes are two of the most 

common used to produce commercially pure titanium (CPTi) powder: 

hydrogenation-dehydrogenation (HDH) and gas atomization. A unique titanium 

powder production process is plasma atomization.  As the powder used in this study 

was sourced from the patent holders for this process, AP&C, a description of this 

process is also included.  HDH titanium sponge fines and plasma atomized powders 

are readily available commercially at companies like Reading Alloys® and 

AP&C® respectively.  HDH titanium sponge powder costs $44 - $66 per kg while 

plasma atomized titanium powder costs $215 per kg (“GE Additive Powders | GE 

Additive,” n.d., “Titanium Powders | CP Ti and Ti 6A/4V | Reading Alloys,” n.d.).  

While HDH sponge fines are typically less expensive than plasma atomized 

powders, plasma atomized powder is more suitable for gel-casting due to its 

sphericity.   

The cost of titanium powder is directly related to the cost of titanium metal 

production and the energy and labour intensity of post-processing.  The 

development of electrochemical and in-situ electrolysis, currently researched, may 

be promising as more cost-efficient production processes than commercialised 

thermo-chemical processes such as Kroll and Hunter (Mutombo, 2018).  The Kroll 

process, invented in the 1940’s, reduces titanium tetrachloride with magnesium to 

produce titanium sponge.  Its post-processing steps including multiple re-melting 

and product fabrications make it a labour and energy intensive process.  Upgrading 

ilmenite (40-65 % of FeO.TiO2) to synthetic rutile is becoming important in the 

production of titanium metal due to the depletion of rutile (95 % of TiO2).  

According to Mutombo (2018), electrochemical processes such as direct 

hydrometallurgical lixiviation is advantageous in processing abundant ilmenite 

ores, since low energy consumption is expected, and sufficiently high quality of 

synthetic rutile is produced.  The Department of Science and Technology through 

the Titanium Centre of Competence (TiCoC), are currently underway to develop 

complementary technologies to help South Africa add value to its titanium ores 

(Machio et al., n.d.).  South Africa has the world’s fourth largest deposits of ilmenite 

and rutile after Australia, China and India. 

2.2.1.1 Hydrogenation-dehydrogenation (HDH) Process 

The hydrogenation-dehydrogenation (HDH) process starts with titanium in the form 

of metal scrap or titanium sponge. The titanium is subjected to a hydrogenation 

process where hydrogen atoms diffuse into interstitial sites in the titanium crystal 

structure, at elevated temperatures between 350 ̊ C and 700 ̊ C (Neikov et al., 2009).  

The hydrogen reacts with the titanium to form titanium hydride (TiH2) which 

promotes the embrittlement of the metal for the next process step: mechanical 

grinding.  Mechanical grinding, such as ball milling, jet milling and wet milling, is 
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typically used to produce milled powders with a large variation in particle size, 

depending on the technique used. The brittle TiH2 easily fractures during milling, 

creating TiH2 powder.  Thereafter, the TiH2 powder is dehydrogenised (interstitial 

hydrogen is removed from the TiH2) by heating it under a vacuum to 700-800 ˚C 

for 1-2 hours, finally producing a fine titanium powder (Neikov et al., 2009).  An 

overview of the process is shown in Figure 5.  Some advantages of the HDH process 

is that it is  low-cost, good control of oxygen content in sintered samples and the 

hydrogen emitted from the hydrogenated powders might become a protective 

atmosphere during sintering (Mendes et al., 2016).   

 

Figure 5: Flow diagram of HDH process for titanium powder production 

from sponge (adapted from Goso and Kale, 2010) 

2.2.1.2 Plasma Atomization Process 

Plasma atomization technology enables the production of fine spherical titanium 

powder from titanium wire.  In this process, the metal wire feedstock is melted by 

the plasma torches.  Atomization of the particles takes place in the cooling stage, in 

argon atmosphere, that rapidly solidifies the melt into highly spherical particles.  A 

high purity product is ensured, and contamination is prevented by keeping the 

melting wire from coming into contact with any solid surface.  Spherical titanium 

powder and Ti-6AL-4V alloy powder with particle size from 5 to 250 µm and 

oxygen content between 0.1 and 0.3 wt% are commercially produced by this 

process (Neikov et al., 2009).  Plasma atomized powder has exceptional flowability 

and packing properties, which is critical in gel-casting and which make it popular 

for AM.   

Current methods of producing AM Ti-based feedstock spherical powder originate 

with Ti-based feedstock bars/billets or wires, made by the ingot metallurgy 

technique of vacuum arc re-melting (VAR), adding significant cost to the powders.  

A study by the Council for Scientific and Industrial Research (CSIR) investigated 

the production of spherical Ti-based powders from PM produced bars/billets, which 

is cheaper than wrought bars/billets(Machio et al., n.d.).  This study showed that 

the electrode inert gas atomization (EIGA) of PM bars/billets produced powder with 

similar characteristics to those from commercial bars/billets.   In March 2019, a 

world leader in the design, development, manufacture and commercialization of 

advanced plasma processes and products, PyroGenesis Canada Inc., announced that 

they have  developed a NexGen™ plasma atomization system that produces metal 

powder at over 25 kg/h (“Titanium Powder Produced with the NexGenTM Plasma 

Atomization System; Significant CAPEX and OPEX Reductions TSX Venture 
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Exchange:PYR,” n.d.).  This system results in large cost savings, opening the door 

to the use of plasma atomized powder for a wide range of applications. 

2.3 Powder Slurries 

Slurry casting is well-established and a primary manufacturing technique for 

ceramics, but not metals (Omatete et al., 1997).  A chemical polymer gel consists 

of a covalently cross-linked network of polymers and is used in gel-casting to form 

powder slurries.  A polymer gel is well defined by Rogovina as: 

An elastic solid composed of at least two components, one of which 

(polymer) forms a physically or chemically bonded three-dimensional 

network that occurs in a medium of another component, a liquid, wherein 

the amount of the liquid is sufficient for ensuring the elastic properties of 

the gel (although it may be ten times or hundreds of times above that of the 

polymeric component) (Rogovina et al., 2008). 

The primary constituent of a gel-based binder is the monomer that connects the 

powder particles together, giving the green part structural strength.  Additional 

binder constituents include the solvent, dispersant, defoamer, initiator and catalyst.  

It is important that the powder used to create the slurry remains dispersed within 

the gel-binder during casting in order to produce a green part with an even 

distribution of powder particles. The premix solution of the slurry is formed when 

the monomers, cross-linker and dispersant are dissolved in the solvent. 

The zeta potential of a slurry, relates to the surface charge of the particles, and gives 

an indication whether a slurry has sufficient electrostatic repulsion to maintain 

dispersed (Particle Sciences, 2012).  Zeta-potential measures the potential of a 

particle in an ionic solution at the boundary between the Stern layer and diffuse 

layer, as seen in Figure 6 (Cai et al., 2006).  Larger positive values of zeta-potential 

at a fixed pH indicate a positively charged surface that attracts anions while lower 

values of zeta-potential at a fixed pH indicate a negatively charged surface that will 

attract cations. 

Electrostatic repulsion of powder particles in a slurry is achieved by the particles 

absorbing the dissolved dispersant until it reaches a point of saturation.  Up to the 

point of saturation, the powder particles in the slurry form a repulsive force, 

decreasing the viscosity.  After saturation, the concentration of free ions would 

increase, leading to an increase in the viscosity (Duan et al., 2014).   

It is important to consider the differences between metal- and ceramic powder 

surfaces for developing a well dispersed metal powder slurry.  Metal surfaces have 

high values of density, reactivity, surface tension, polarizability, absorptivity and 

electrical conductivity (Nelson, 1988).  High polarizability causes metal particles 

to attract one another to form strong agglomerates, but also to attract dispersants 

strongly.  In metal slurries, density often plays a more significant role in the 
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dispersion of the particles than the surface charge of the particles (Ohkawa et al., 

2004). 

 

Figure 6: Schematic diagram of the electric double layer in zeta-potential 

measurement (Cai et al., 2006) 

Studies have reported that the suitable viscosity of slurries for gel-casting is below 

1 Pa s at a shear rate of 20 s-1 to ensure better filling of the mould without the use 

of outside force (Li et al., 2008; Yang et al., 2011).  These viscosity characteristics 

are reported by the very few published studies on metallic gel-casting and were 

taken as design criteria for this study.  There are a few factors that influences the 

viscosity of the slurry, including the solid loading, monomer content and dispersant 

content.   

Li et al. (2008) reported that the viscosity of a 37 vol% Ti slurry decreases with the 

increase of ball milling time which was attributed to the disjoining of powder 

agglomerate by ball milling.  In this study of gel-cast titanium implants, the effect 

of two different dispersants were investigated: ammonium citrate and NH4OH (Li 

et al., 2008), where acrylamide was used as monomer.  Li found that the viscosity 

of the titanium slurry was below 1 Pa s (between 0.9 and 0.85) for dispersant 

contents of 0.4, 0.6 and 0.8 wt% (based on the premixed solution) using NH4OH as 

dispersant.  The viscosity of the slurry stays greater than 1 Pa s using ammonium 

citrate as dispersant, at the same content amounts.  It was concluded that NH4OH 

favours the dispersion of Ti particles and ammonium citrate the dispersion of 

ceramic particles in an acrylamide-based monomer system. 

Increasing the monomer content and a higher monomer:cross-linker ratio, increases 

the green strength of a part (Li et al., 2008; Pollinger et al., 2016).  Furthermore, 

higher monomer content also improve the fluidity of a slurry, because of better 
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dispersion of the powder particles in a higher concentrated solution (Yang et al., 

2011).  An increase in solid loading on the other hand causes an increase in the 

viscosity as well as an increase in the final sintered density of the part (Duan et al., 

2014). 

2.4 Gel-casting 

Gel-casting to date has only been successfully employed in a commercial 

environment for ceramics.  Metal powder gel-casting is a novel approach and still 

in the research phase. 

Gel-casting is a near net-shape process developed for ceramic fabrication in the 

early 1990’s by Janney and Omatate of the Oak Ridge National laboratory based 

on the free-radical polymerization of acrylamide (Omatete et al., 1997).  The 

original gel-casting system had capabilities for short forming time, high green 

strength, uniform powder packing densities and easy binder burnout (also called 

pyrolysis). 

The gel-casting process is illustrated in Figure 7.  Powder of the material required 

for the final product is mixed with a liquid binder system to form a slurry.  The 

binder system contains various chemicals that allow even dispersion of the powder 

in the slurry, flowability of the slurry during the casting process and eventually 

forms a gel in which the powder particles are evenly suspended in the cast part and 

undergoes in situ polymerization (Omatete et al., 1997).  After most of the solvent 

is removed by drying, the polymers in the gel remain, gluing the powder particles 

together in the gel-cast part, now called a green part.  Thereafter the part is fired, 

during which the remaining binder polymers burn off and the powder particles 

sinter together into a solid part. 

The advantage of gel-casting is the ability to produce complex near-net-shape parts, 

such as turbine wheels, with a high green strength using inexpensive moulds from 

metals, wax, glass and plastic (Omatete et al., 1997).  The complexity of the gel-

cast product is only limited by the ability to create the mould.  Because of the high 

green strength of gel-cast parts, green machining is possible to create even more 

complex features. 
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Figure 7: Steps involved in the gel-casting process (Tallon and Franks, 2011) 

2.4.1 Suitability of PIM Binder Systems for Gel-casting 

Powder injection moulding (PIM), like gel-casting, makes use of a binder system 

to create a polymeric structure for the powder particles to be dispersed in (German, 

2003; Sidambe et al., 2012).  This is called the feedstock that is then injection 

moulded under pressure.  Because the slurry is injected with pressure, a more 

viscous slurry than for gel-casting is suitable (Sidambe et al., 2012). 

In a study by Barreiros (2008), investigating the preparation of PIM feedstocks for 

bio-applications, an agar-based binder is used.  The reported benefits of this 

aqueous-based binder system are environmental friendliness, low injection pressure 

needed, high green strength and good performance with a low binder content of 14 

wt% and solids loading of 60 vol% (Barreiros et al., 2008).  Wang (2009) and his 

colleagues used an agar-based binder in the casting of 316L stainless steel as an 

alternative to the toxic conventional polymers used in gel-casting, such as 

acrylamide.  This agar-based binder system polymerizes during cooling, requires 

heating during the mixing process and is injection moulded under low pressure. 

The problem with PIM binder systems applied to gel-casting, is that it requires 

heating to ensure suitable fluidity for moulding of the slurry and also make use of 

heat transfer for polymerization of the slurry.  For the agar-based binder system 

mentioned, the feedstock is produced by mixing the mixture in a sigma blender and 

then shredding the mixture into pellets.  The feedstock is then injection moulded 

around 85 ˚C, where the feedstock is relatively fluid, and an injection pressure in 

the range of 10 to 55 bar into a net-shape part (Barreiros et al., 2008; Labropoulos 

et al., 2002).  The heating and pressure filling requirement for this system poses a 

problem for the gel-casting process, where casting of the mixture takes place 
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without it passing through a screw or nozzle that can heat the mixture to obtain 

suitable fluidity for casting.      

2.4.2 Gel-casting Binder Systems 

Titanium powder is very reactive.  Thus, selection of gel systems is important in 

order to avoid contamination of the microstructure, which in turn degrades the 

mechanical properties.   

The originally developed binder system for ceramics fabrication consisted of 

acrylamide (AM), a monofunctional monomer, methylene bisacrylamide (MBAM), 

a difunctional monomer cross-linker, and the free radical initiator, ammonium 

persulfate (APS) (Omatete et al., 1997).  To break down the APS and speed up the 

cross-linking, tetramethylethylenediamine (TEMED) was typically used as 

catalyst.  

Two factors limited the industrial use of AM as monomer in the gel-casting system: 

AM is a neurotoxin and it forms carbon-nitrogen bonds during polymerization 

which are difficult to break, requiring pyrolysis in air above 600 ˚C (Pollinger et 

al., 2016).  The development of low-toxicity organic monomers was pursued 

investigating monomers such as methacrylamide (MAM) and 2-Hydoxyethyl 

methacrylate (HEMA) (Janney et al., 1998).  In this study by Janney, MAM was 

shown to be an effective replacement of AM, also using MBAM as cross-linker, 

APS as initiator and TEMED as catalyst (1998).   MAM has a polymeric structure 

of a single double bond and MBAM at least two double bonds.  When polymerized 

together in a certain ratio, the initial linear polymer is strengthened.  A silicon 

nitride turbine rotor (Figure 8) of around 18 cm in diameter has been successfully 

produced with the low-toxicity MAM binder system (Janney et al., 1998). 

 

Figure 8: Silicon nitride turbine rotor manufactured using gel-casting with 

the MAM/MBAM system (Janney et al., 1998) 

Recently, a non-toxic water-soluble copolymer of isobutylene and maleic anhydride 

(Isobam®) binder system was developed acting as both dispersant and gelling agent 

(Yang et al., 2013).  The benefits of this binder system are its favourable rheological 
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properties, environmental friendliness and complete burnout at low temperatures 

(Jee et al., 2006). 

2.4.3 Mould Design and Casting Process  

The mould material and fabrication method are critical to manufacturing complex 

near-net-shape titanium gel-cast parts.  The complexity of the gel-cast part is 

controlled by the ability to create a mould for the part.  Moulds for gel-casting has 

been made from metals, glass, wax and plastics (Omatete et al., 1997).     

Multiple-use moulds are usually used in die-casting and made from metals that can 

withstand wear (Black and Kohser, 2008).  These moulds are often expensive to 

fabricate due to machining or other methods needed to create the complex 

geometries desired.  Single-use moulds, from sand or wax, are usually used for 

higher-melting-temperature materials in processes such as sand casting or injection 

moulding (Black and Kohser, 2008).  Single-use moulds are generally heated and 

burnt off to remove the cast part.  Using wax moulds for gel-casting could cause 

warping and cracking of the cast part during mould burn off as it will influence the 

drying of the part.   

Stereolithography (SLA), an AM technology, is the selective polymerization of an 

oligomer to fabricate controlled 3D structures layer-by-layer.  SLA has the potential 

to fabricate cost-efficient complex near-net-shape moulds for gel-casting as 

compared to expensive metal moulds employed in die-casting.  SLA moulds have 

proven some success by successfully manufacturing, using gel-casting, porous 

glass-ceramic tissue scaffolds with controlled internal architecture and dimensions 

(Chopra et al., 2012).  In another study SLA has been used to fabricate complex 

moulds for gel-casting zirconia-based all-ceramic teeth (Liu et al., 2018).  SLA is 

becoming popular in the gel-casting process for mould production because of its 

ability to create complex structures with a short manufacturing cycle at low cost.  

Other advantages of SLA include dimensional accuracy within 0.1 % of the 3D 

printed part, good surface finish and quick modification to the design of the part 

through 3D modelling software, resulting in more cost savings (Liu et al., 2018).   

2.4.4 Binder Burnout and Pre-sintering 

The binder’s major role is in moulding; to keep the particles together.  Binder 

burnout is an important step before sintering.  Most of the binder, discussed in 

section 2.4.2, is removed before sintering to prevent distortion, cracking and 

contamination of the component.       

The burn-off stage involves the combustion of any trapped air in the part and the 

removal of lubricant or binder.  Polymer burnout occurs when the part undergoes 

heating through the temperature range where the polymer decomposes and 

evaporates.  A low heating rate is required for this stage to prevent fracture of the 

part.  A rapid heating rate will cause high internal pressure from air or binder 

entrapped in closed pores.  Oxygen accelerates the burnout of polymers, but a 
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neutral atmosphere, like argon, requires that all decomposition products form from 

the polymer, which can cause sooting or carbon contamination (German, 2005).  

Thermal debinding of a binder under inert gas atmosphere is called pyrolysis.  

According to a study by German and Bose (1997), the key to rapid binder burnout 

is to use a multiple component binder system where a backbone polymer remains 

after initial component burnout to hold shape and provide strength. The backbone 

polymer is decomposed during pre-sintering.  Parts containing an appreciable 

amount of binder, causes additional porosity in the shape upon removal.  This 

feature is an advantage to gel-casting to prepare porous biomedical implants, 

contributing to the biocompatibility of the part (Li et al., 2008).    

Saturation is described as the relative degree of pore space filled by a fluid from 

fully saturated pores (unity) to empty pores (zero).  Partially saturated pores exhibit 

a pendular structure with a saturation below 0.2 (German and Bose, 1997).  As 

binder is removed through the surface connected pores, a ring of binder exists at the 

point of contacts between particles and form pendular bonds.  Figure 9 illustrates 

the states of the pores, from saturation to pendular, as binder is removed.  The 

capillary attractive forces of these bonds provide part strength.  Burnout or 

evaporation is the only way to remove binder in the pendular state. 

 

Figure 9: Structures for differing levels of pore saturation showing liquid 

(binder) and vapor location in pores between particles: a) saturated state, 

funicular state, and c) pendular state (German and Bose, 1997). 

In a study investigating the thermal decomposition behaviour of the Isobam® 

system, mentioned in section 2.4.2, complete mass loss was achieved at 400 ̊ C (Jee 

et al., 2006).  Complete pyrolysis for the MAM/MBAM system happens at 

temperatures above 600 ˚C, due to strong carbon-nitrogen bonds (Pollinger et al., 

2016).  Complete pyrolysis of silicon nitride parts prepared with the MAM/MBAM 

binder system were reported below 550 ˚C, while complete pyrolysis of the neat 

MAM/MBAM system in air is only reached at 620 ˚C (Janney et al., 1998).  Figure 

10 shows the Thermal Gravimetric Analysis (TGA) curves for silicon nitride 

samples in nitrogen and air, showing the mass loss as binder burns of at different 

events.  Binder burnout in an inert atmosphere results in carbon contamination, 

because there is no oxygen for combustion of the decomposing polymer (Janney et 

al., 1998). 
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Figure 10: Pyrolysis of gelled MAM/MBAM silicon nitride samples in air and 

nitrogen (Janney et al., 1998). 

2.4.5 Sintering of Titanium Powder 

Sintering is a conventional process that goes hand-in-hand with pressing.  After 

powder has been compacted into a green part, the part lacks strength and hardness 

(Groover, 2013).  Sintering is a heat treatment performed on the compacted green 

body, or in the case of gel-casting on the cast green body, to bond its metallic 

particles and thereby increasing its strength and hardness.  Sintering causes a 

change in the mechanical properties of the part, as well as the microstructure.  Black 

and Kohser (2008) explain that metallurgical bonds form between powder particles 

as a result of solid-state atomic diffusion, and strength, ductility, toughness, and 

electrical and thermal conductivities increase.  Atomic diffusion usually takes place 

between 0.7 and 0.9 of the metal’s melting point temperature, and therefore the term 

solid-state sintering is normally used to refer to this conventional process (Groover, 

2013).   

Before diffusion can take place, the green body needs to be preheated in order to 

burn of any lubricants of binders.  This process is called debinding, or binder 

burnout, and will be covered in section 2.4.4.  Diffusion is the mechanism by which 

mass transfer occurs to form necks between particles and transform them into grain 

boundaries.  The driving force behind sintering is the reduction of surface energy. 

Figure 11 illustrates the sintering stages on a microscopic level.  The green part 

consists of many distinct particles.  Each particle has several neighbouring particles, 

providing for multiple grain boundaries to form, with irregular and angular shaped 

pores between the particles.  With prolonged time at a temperature close to, but 

below, the melting temperature of the material, grain growth takes place.  Grain 

growth accelerates as full density is approached since there is less of a pore 
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hindrance to grain boundary motion (German, 2005).  Shrinkage occurs during 

sintering as a result of pore size reduction due to grain growth. 

 

Figure 11: Schematic diagrams of the pore structure changes during 

sintering, starting with particles in point contact. The pore volume decreases, 

and the pores become smoother. As pore spheroidization occurs, the pores 

are replaced by grain boundaries (German, 1996). 

After keeping the part for a prolonged time at the sintering temperature, the part is 

cooled to room temperature again.  It is critical for the sintering process to be 

conducted in a vacuum or inert gas atmosphere to prevent oxidation, which will 

significantly affect the mechanical properties and quality of the part.  Vacuum 

sintering is frequently used for stainless steel, titanium and the refractory metals 

(Black and Kohser, 2008). 

2.5 Material Characterization Techniques 

2.5.1 Particle Size Distribution (PSD) 

Particle size distribution (PSD) is determined by light scattering and can be tested 

according to the ASTM B822-10 or ISO 13320-1 standards (ASTM International, 

2010).  The ISO 13320-1 describes the general principles of laser diffraction 

methods for particle size analysis.  A prepared sample of powder dispersed in water, 

or a suitable organic liquid, is circulated through the path of a light beam.  The light 

beam is scattered by the particles, collected by photodetector arrays and converted 

to electrical signals that are then processed and analysed (Figure 12).  The PSD 

information of supplied powder is also found on the information sheet of the 

supplied powder. 
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Figure 12: Light scattering principle used in PSD analysis (Delft, n.d.) 

2.5.2 Optical microscopy 

Optical microscopy is the primary material characterization technique to study the 

morphology (size, shape and structure) of a microstructure by forming an image of 

the surface of a specimen (Brandon and Kaplan, 2008).  It is also useful to study 

the macrostructure of a sample.  Depending on the nature of the sample, there are 

two forms of optical microscopy: reflected-light microscopy or transmitted-light 

microscopy.  Reflected-light microscopy is used to study the microstructure of 

opaque samples, while transmission microscopy is used on transparent samples.  

Since titanium is a metal, and metallographic samples are opaque, reflection 

microscopy is relevant for this study. 

The reflected-light microscope consists out of three main systems: the illumination 

system, the specimen stage and imaging system.  Figure 13 illustrate the working 

principles of reflected-light microscopy.  The condenser lens focusses a beam of 

light waves from the light source onto a small area of the specimen, condensing the 

area of interference on the objective lens, causing a higher resolution.  Visible light 

(350 -700 nm) will determine the resolution limits (Fahlman, 2010).  Incident 

parallel light waves is refracted through the objective lens to a focal point, forming 

a magnified image of the object.   

Sample preparation include cutting, mounting, grinding and polishing, and 

chemical etching (Taylor and Weidmann, 2016).  Grinding flattens the surface of 

the specimen and mechanical polishing removes the damage of the prior preparation 

stages.  Etching selectively removes material from the surface to reveal certain 

surface features of the microstructure such as grain boundaries.   

Optical microscopy it not widely used in the research field of gel-casting.  Most 

research studies use scanning electron microscopy (SEM) for morphological 

analysis.  However, it was found that optical microscopy is useful for studying pores 

in the microstructure of sintered specimens (Chang and Zhao, 2013).   
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Figure 13: The principle components of a reflected-light microscope (Brandon 

and Kaplan, 2008). 

In the development of the gel-casting process of titanium alloys, optical microscopy 

will be useful to study external casting defects, internal porosity at different stages 

in the gel-casting process, morphology and microstructural analysis. 

2.5.3 Scanning Electron Microscopy (SEM) 

SEM makes use of an electron beam to scan the surface of a specimen and 

characterize its microstructure through different signals being generated from it, as 

seen in Figure 14.  The information gathered from generated signals depend on the 

interaction of the incident beam with the sample.  Topographical and atomic 

number information are obtained from backscattered electrons.  Information on 

surface topography and surface films are obtained from secondary electrons.  

Microanalysis and distribution of elements are obtained through X-rays emitted by 

the sample, by a method called energy dispersive spectroscopy (EDS). (Smithells 

et al., 2004)    

As seen in Figure 15, the main components of the scanning electron microscope 

consist of the electron gun system, lens system and detector.  Electrons are 

generated and accelerated by the electron gun system.  The lens system consists of 

electromagnets that are used as lenses to focus the electron beam on the sample and 

scan it.  The detector collects the backscattered electron, secondary electron and X-

ray signals generated from the incident beam on the specimen.   
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Figure 14: Signals generated from the incident scanning electron beam 

(Brandon and Kaplan, 2008). 

There are three types of electron guns as illustrated in Figure 15 (B).  Beams of 

electrons are produced with energies typically in the range of less than 1 keV to 

more than 30 keV (Smithells et al., 2004).  The thermionic emission (TE) gun 

generates electrons with energies in the range of eV by heating either a tungsten 

filament or a single crystal of lanthanum hexaboride (LaB6).  A large emission 

current can be generated from the Schottky emission gun, using a single tungsten 

crystal coated with zirconium oxide (ZrO) as the cathode.  The field emission gun 

produces a high electric field by using a single tungsten crystal, sharpened to a tip 

radius of about 100 nm. (Inagaki and Kang, 2016) 

The three types of objective lenses, shown in Figure 15 (C), have a significant effect 

on the aberration and thus on the resolution of a SEM.  The out-lens objective lens 

is a fixed distance from the specimen with high aberration and relatively low 

resolution in comparison to the snorkel objective lens.  Because the magnetic field 

is generated below the snorkel objective lens, aberration is reduced, and resolution 

is improved.  With the in-lens objective lens, the specimen is set in the lens, 

reducing the aberration, but limiting the specimen size to about 5 mm in diameter. 

(Inagaki and Kang, 2016) 
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Figure 15: The principle components of SEM instrumentation (A) and types 

of electron guns (B) and objective lenses (C) (Inagaki and Kang, 2016) 

During sample preparation for SEM, it is highly important to avoid electrostatic 

charging of the surface of the specimen.  Electrostatic charging of the surface effects 

the resolution and image stability due to unstable secondary emission (Brandon and 

Kaplan, 2008).  Non-conducting specimens should be coated with a thin layer of 

electrically conducting film. 

Emitted X-rays comes from a volume element, defined by the envelope of electron 

energy that exceed the energy required to excite characteristic radiation of a 

chemical constituent (Brandon and Kaplan, 2008).  L, M and K radiation 

(characteristic X-ray radiation) is excited when the energy of the incident electron 

beam exceeds that of the threshold energy for the characteristic radiation.  The 

innermost shell (K shell) require a higher energy excitation to release characteristic 

X-rays.  With an X-ray line-scan, the X-ray signal is recorded in the form of energy 

dispersive spectroscopy (EDS) spectrum at each point along the line of a selected 

region.  The peaks at a point in the line scan are characteristics of a specific chemical 

constituent.   

In a study where TiAl-based composites were prepared by gel-casting, SEM was 

used to study the morphology of the powders (Lu et al., 2015).  SEM was also used 

to study the morphology of the samples at different stages through the gel-casting 
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process.  EDS analysis, Error! Reference source not found., shows residual 

carbon in the sample after decomposition of the monomer.   

 

Figure 16: Energy dispersive spectrum analysis of debinded samples showing 

presence of carbon (Lu et al., 2015). 

SEM will be useful to study the morphology and microstructure of the Ti-alloy 

specimens through the gel-casting process.  It is also beneficial for powder 

characterization.  EDS can be used to determine chemical constituents in the 

samples after binder burnout and sintering to determine whether contamination of 

the part has taken place. 

2.5.4 Mechanical testing  

Various testing standards are useful for obtaining mechanical properties of a 

specimen.  The SANS 6892-1:2010 standard is for tensile testing of metallic 

materials at room temperature.  The test involves straining the test specimen by 

tensile force to fracture, for the determination of one or more of the mechanical 

properties mentioned in clause 3 of the standard.  Mechanical properties such as 

tensile strength, proof strength, yield strength and modulus of elasticity can be 

obtained from this test.  It is preferred that test pieces have a relationship between 

the original gauge length (L0) and the original cross-sectional area (S0) of the 

specimen governed by the equation: 

 𝐿0 = 𝑘√𝑆0 , (2.5.1) 

where k is a coefficient of proportionality with an internationally adopted value of 

5.65.  The gauge length is not to be less than 15 mm.  Test pieces can also be 
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fabricated according to an equivalent standard for metallic tensile testing, like the 

ASTM E8M.  Table 1 shows the tensile property requirements for grade 1 CPTi 

according to the standard specification for powder metallurgy (PM) titanium and 

titanium alloy structural components, ASTM B988. 

Table 1: Tensile requirements for Grade 1 CPTi according to ASTM B988 

Classification Yield Strength 

(0.2 % offset), 

MPa 

Tensile 

Strength, MPa  

Elongation 

in 25 mm, %  

Reduction 

in Area, % 

Grade 1 PM100 1 138 240 24 30 

Grade 1 PM90 124 216 22 27 

The SANS 6508-1:2009 standard describes the test methods for obtaining the 

Rockwell Hardness (HR) of metallic materials.  The Rockwell hardness is a 

measure of the depth (h) of an indentation made by an indenter of specific size, 

material and shape.  Grade 1 commercially pure titanium powder is tested on the 

Rockwell B scale, with a hard metal ball indenter, and has a reported hardness of 

70 HRBW (“ASM Material Data Sheet,” n.d.).  

2.5.5 Density and solid loading (powders, slurry, green, sintered) 

In the gel-casting process it is important to take the following densities into account: 

apparent density of the powder, slurry density, green density and the sintered 

density.  

The apparent density of a powder is an important property as it directly relates to 

the maximum solid loading of a slurry.  Solid loading refers to the fraction of 

powder, by volume percent, of the total slurry.  Apparent density is measured by 

permitting a volume of powder to flow into a container with definite volume under 

controlled conditions.  The mass of the powder per unit volume is determined and 

reported as apparent density according to the ASTM B212-12 specification. 

According to German and Bose, the slurry mixture density (ρslurry) is determined by 

a law of mixtures as (German and Bose, 1997):  

 𝜌𝑠𝑙𝑢𝑟𝑟𝑦 =  𝜑𝜌𝑃 + (1 − 𝜑)𝜌𝐵 , (2.5.2) 

 

 
1 PM100 denotes equivalence to Specification ASTM B348 tensile properties, and PM90 90 % of 

B348 tensile properties. 

Stellenbosch University https://scholar.sun.ac.za



 

26 

 

where ρP is the theoretical density of the powder, ρB is the density of the binder and 

φ is the solid loading.  The green density, calculated as the density of the slurry 

mixture, is the primary characteristic of the part prior to sintering and plays a major 

role in the shrinkage required of the part to reach full sintered density.  The green 

density could be explained as the ratio of metal powder volume to the external 

volume of the cast. 

The sintered density of powder metallurgy products can be determined using 

Archimedes Principle according to the standard test method ASTM B962 or by 

pycnometry.  The sintered density gives an indication of the final gel-cast part 

porosity.  
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3 Experimental Procedure 

This chapter presents the experimental procedures followed in this study.  The 

purpose of the experimental study is to develop the gel-casting process for pure 

titanium and then to evaluate the mechanical properties of the sintered gel-cast part.  

An overview of the experimental plans is shown in Figure 17. 

 

Figure 17: Experimental plan overview 

3.1 Raw Materials 

The raw materials selected for the production of the gel-cast titanium parts in this 

study are discussed here.  The raw materials and their functions are listed in Table 

2.   
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Table 2: Raw materials for titanium gel-slurry preparation 

Item Function Material Name Formula 

1 Powder Commercially Pure Titanium 

(CPTi) 

- 

2 Monomer Methacrylamide (MAM) C4H7NO 

3 Cross-linker N,N’-Methylenebisacrylamide 

(MBAM) 

C7H10N2O2 

4 Solvent Deionized Water  H2O 

5 Dispersant Ammonium hydroxide NH4OH 

6 Initiator Ammonium Persulfate (APS) H8N2O8S2 

7 Catalyst N, N, N’, N’-

Tetramethylethylenediamine 

(TEMED)  

C6H16N2 

8 Monomer Isobam® (C4H2O3.C4H8)x 

3.1.1 Commercially Pure Titanium Powder (CPTi) 

The powder that was used in this study is spherical commercially pure titanium 

powder (CPTi), produced by Advanced Powders and Coatings® (AP&C®) 

according to the plasma atomization process.  The powder complies with the ASTM 

B348 grade 1 standard, as reported on the material specification certificate, with a 

reported particle size of 15-45 µm.  The material specification certificate is given 

in Appendix A.1.     

3.1.2 Binder Material 

The binder components are discussed in section 3.3.1.  The binder materials were 

supplied by Sigma Aldrich®, except for the solvent, deionized water, that was 

supplied by Kimix Chemicals & Lab Supplies cc.  The slurry composition and 

contribution of each binder material are given in section 3.3.2, where the slurry 

preparation procedure is discussed. 

3.2 Powder Characterization 

This section describes the characterization of the CPTi grade 1 powder, chosen for 

this study, in terms of apparent density, particle size distribution (PSD) and 

morphology. 

3.2.1 Apparent Density 

The apparent density of the CPTi powder was determined according to the ASTM 

B212 or the ISO 3923-1:2008 standard using a Hall flowmeter funnel.  This test 

method gives a measurement of the loose powder density, determined by weighing 

the mass of free-flowing powder that fills a known volume using the following 

equation: 
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 𝜌𝐴 =
𝑚𝑝𝑜𝑤𝑑𝑒𝑟 

𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
  , (3.2.1) 

where ρA is the apparent density, mpowder is the mass of the powder and Vcylinder is the 

known volume of the Hall flowmeter cylinder. 

3.2.2 Particle Size Distribution (PSD) and Morphology 

The reported particle size distribution (PSD) of the as-supplied CPTi grade 1 

powder is 15-45 µm, as indicated on the material certificate found in Appendix A.1.  

The PSD of the powder was evaluated using a Saturn DigiSizer 5200 Particle Size 

Analyzer, Micrometrics Instrument Company, to verify the reported data.  The 

facility at the Process Engineering Department of Stellenbosch University was used 

for this test.  A prepared sample of the CPTi powder was dispersed in isopropanol 

and circulated through the path of a light beam.  The light beam was scattered by 

the particles, collected by photodetector arrays and converted to electrical signals 

that were then processed and analysed. 

Scanning electron microscopy (SEM) was used to analyse the morphology of the 

powder and to verify the particle size range of the CPTi powder.  A Phenom 

Desktop SEM microscope, produced by Thermo Fisher Scientific®, was used. 

3.3 Gel-casting Process 

Each process step for gel-casting of titanium powder was studied and developed to 

create a final titanium gel-cast part with favourable mechanical properties.  In this 

section, the numerous factors that were considered to develop a successful gel-

casting process for CPTi are presented.  The gel-casting process is illustrated in 

Figure 7, section 2.4.   

3.3.1 Binder System 

Titanium powder is very reactive, so selection of gel systems is important in order 

to avoid contamination of the microstructure, which in turn degrades the 

mechanical properties.  Previous research has investigated the 2-Hydoxyethyl 

methacrylate (HEMA)/ MBAM gel system for gel-casting of titanium, however the 

slurry could not disperse the powder successfully, resulting in uneven settling (Piek, 

2017).  The primary constituent of a gel-based binder is the monomer that connects 

the powder particles together, giving the green part structural strength.  Additional 

binder constituents include the solvent, dispersant, defoamer, initiator and catalyst.   

Two binder systems were chosen for evaluation, based on their primary monomer: 

Binder 1 uses methacrylamide (MAM), chosen  for its low-toxicity (Janney et al., 

1998), and Binder 2 uses Isobam®, chosen for its favourable rheological properties 

and complete decomposition at low temperatures (Jee et al., 2006; Pollinger et al., 

2016).  Isobam® act both as gelling agent and dispersant (Yang et al., 2013).  The 
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constituents of Binder 1 are listed as items 2 to 7 in Table 2 in section 3.1 and Binder 

2 consists only of item 8, Isobam®. 

The relative performance of the two binder systems was determined by evaluating: 

i. the gel slurry formulation and mixing process,  

ii. the quality and ease of the gel-casting process, and 

iii. the microstructure and properties the final gel-cast material. 

3.3.2 Slurry Evaluation 

Recommended gel-slurry design criteria are to achieve the highest solids loading 

with a viscosity below 1 Pa.s at a shear rate of 20 s-1 (Li et al., 2008).  Factors that 

influence the viscosity of the slurry are monomer content, monomer:cross-linker 

ratio, dispersant content, solid loading and mixing time.  It is important that the 

CPTi powder remains dispersed within the gel-binder during casting in order to 

produce a green part with an even distribution of powder particles.  The slurry was 

developed in two stages: first, sedimentation tests were used to determine the 

dispersive quality of the binder systems varying the parameters of the premix 

solution and secondly, the rheological behaviour and quality of the slurry was 

studied with varying solid loadings, powder morphology and slurry mixing times. 

3.3.2.1 Sedimentation Tests 

Sedimentation tests were designed to investigate the settling time of CPTi powder 

in a prepared premix solution, varying premix content parameters, to evaluate the 

dispersive quality of the system.  Different premix solutions were prepared, varying 

the monomer content, monomer:cross-linker ratio and dispersant content.  The 

different parameters used to evaluate the MAM/MBAM binder system are given in 

Table 3.   

Table 3: Varied parameters of the MAM/MBAM binder system  

Monomer content [wt%] 20, 30 

Monomer:cross-linker ratio 6:1, 90:1 

Dispersant content [wt%] 0, 0.4, 0.8 

Rheology tests are only possible for a well-dispersed suspension of particles.  

Kennedy and Lin (2011) used sedimentation tests to evaluate the degree of 

dispersion of 316L stainless steel particles in a polymer binder for gel-casting.  A 

similar approach was followed to determine the suitability of the binder systems, 

chosen for this study, for CPTi powder. 

20 ml of various premix solutions were prepared with a DLab OS40-Pro overhead 

stirrer.  The premix solutions for the MAM/MBAM system were prepared by first 

dissolving the monomer and cross-linker in the solvent for 2 hours at room 

temperature at a speed of 450 rpm.  The dispersant was then added, and the solution 
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mixed for another hour at the same speed as before.  For the Isobam® binder system, 

0.3 wt% (based on powder weight) of Isobam® was dissolved in the solvent for         

1 hour at room temperature to form a premix solution, using the same equipment 

and mixing speed as for the other system. 

For each sedimentation test, 1 g of CPTi powder was added into approximately       

20 ml of premix solution.  The sedimentation behaviour of the powder slurry was 

studied by logging the position of the interface between the sediment and the liquid 

above, in a transparent measuring cylinder.   The time was measured for the 

interface boundary to move 10 ml down as the powder particles settle due to the 

gravitational force.   

3.3.2.2 Higher Solid Loading Slurry Quality 

The premix solutions with the best determined dispersive quality were further used 

to develop the optimal slurry.  Table 4 summarizes the different solid loadings and 

slurry mixing times investigated. 

Table 4: Varied parameters for higher solid loading tests 

Solid loading [vol%] 45, 55 

Slurry mixing time [hrs] 4, 8, 12 

The suitable solid loading values for making a usable slurry are defined by the 

apparent and tap densities of a powder (Kennedy and Lin, 2011).  It is unlikely that 

a closer packing of the solid particles in the slurry will be achieved than the apparent 

density of the powder.  The reported apparent density of the CPTi powder used in 

this study is 2.6 g/cm3, which is 57 % of the theoretical density (4.51 g/cm3) of the 

powder.  This means that a maximum theoretical solid loading of 57 % is possible, 

setting the upper limit for this study at 55 vol%.  The values chosen are also in line 

with literature.  The typical solid loading value for PIM feedstock is between 55 

and 60 vol% (Barreiros et al., 2008; German, 2003).  Various studies on the gel-

casting of metal powders have found the optimal solid loading of a metal powder 

slurry to be in the range of 40 to 60 vol% (Duan et al., 2014; Pollinger et al., 2016; 

Wang et al., 2009).   

Most slurries for gel-casting have been prepared using the traditional ball-milling 

process, mixing for extended periods of time (up to 24 hours), which provide 

effective mixing of the powders by breaking up the agglomerates to achieve stable 

slurry dispersions (Guo et al., n.d.; Pollinger et al., 2016; Yang et al., 2011).  The 

mixing times of 4, 8 and 12 hours were chosen for this study to investigate whether 

the mixing time, using an overhead mixer, has a similar effect on the quality of the 

slurry than using a ball-milling machine.   

The slurries were prepared by first preparing the premix solution as described in 

section 3.3.2.1.  The powder was then added at the various solid loadings and mixed 
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at the various mixing times listed in Table 4.  The spherical powder that was used, 

is the CPTi powder mentioned in section 3.1.1.  

The slurry quality was observed by how well the slurry kept the powder particles 

dispersed when mixing was stopped, and the slurry was cast.  The ease of casting 

the slurry by drawing the slurry into a 60 ml syringe and injecting the slurry into 

the mould was another indicator of the quality of the slurry.  A successful slurry 

keeps the powder suspended while casting and ensures a suitable fluidity for the 

slurry to flow into all the empty spaces of the mould. 

3.3.3 Slurry Preparation 

A well dispersed slurry with optimal solid loading, monomer- and dispersant 

content and monomer:cross-linker ratio is required to achieve a suitable sintered 

density with minimum shrinkage.  These factors were studied in the previous 

section, 3.3.2, to obtain the optimum parameters for slurry preparation, discussed 

in this section.   

Formulas for preparing powder injection moulding (PIM) feedstock were used to 

determine the powder-binder ratios in this study (German and Bose, 1997).  The 

preparation of a PIM feedstock is similar to gel-casting slurry preparation in that it 

involves the preparation of a homogeneous powder-binder mixture that is capable 

of flowing.  However, for PIM the solid loading and viscosity of the mixture are 

much higher than for gel-casting and requires pressure to inject the heated 

feedstock.  Nevertheless, the same mathematical relationships apply for gel-casting 

slurries as do for PIM feedstock.   

The solid loading (φ) of the slurry is the ratio of the volume of powder (𝑉𝑝𝑜𝑤𝑑𝑒𝑟) to 

the total volume of the slurry (𝑉𝑇𝑜𝑡𝑎𝑙) and can be expressed as: 

 𝜑 =
𝑉𝑝𝑜𝑤𝑑𝑒𝑟

𝑉𝑇𝑜𝑡𝑎𝑙
 . (3.3.1) 

The total volume of the slurry consists of the volume of the powder and the volume 

of the binder.  The relationship between volume (V), mass (m) and density (𝜌) is: 

 𝑉 =
𝑚

𝜌
 , (3.3.2) 

and the weight fraction of a single component in the slurry was calculated as: 

 𝑊𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  
𝑚𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑚𝑡𝑜𝑡𝑎𝑙
 . (3.3.3) 

Substituting equations 3.3.2 and 3.3.3 into equation 3.3.1, the equation for solid 

loading becomes: 

 𝜑 =
𝑊𝑃

𝜌𝑃
⁄

𝑊𝑃
𝜌𝑃

⁄ +
𝑊𝐵

𝜌𝐵
⁄

 , (3.3.4) 

Stellenbosch University https://scholar.sun.ac.za



 

33 

 

where 𝑊𝑃 and 𝑊𝐵 are the weight fractions of the powder and binder, respectively, 

and 𝜌𝑃 and 𝜌𝐵 are the theoretical full densities of the powder and binder, 

respectively.  Furthermore, the density of the slurry (𝜌𝑠𝑙𝑢𝑟𝑟𝑦) was found by a law of 

mixtures as: 

 𝜌𝑠𝑙𝑢𝑟𝑟𝑦 = 𝜑𝜌𝑃 + (1 − 𝜑)𝜌𝐵 . (3.3.5) 

Formulation on a weight basis was used to mix the slurry.  The weight fraction of 

the powder was derived from equation 3.3.4 by linking the relation between volume 

and weight by substituting equation 3.3.5 into equation 3.3.4.  The weight fraction 

of the powder (WP) was then calculated as: 

 𝑊𝑃 =
𝜑𝜌𝑃

𝜑𝜌𝑃+(1−𝜑)𝜌𝑏
 . (3.3.6) 

Figure 18 and Figure 20 use flow diagrams to illustrate the slurry preparation of the 

MAM/MBAM and Isobam® systems, respectively.  An OS40-Pro overhead stirrer 

(supplier: United Scientific) was used for preparing the slurry. 

3.3.3.1 MAM/MBAM System (Binder 1) 

The amounts of additives were calculated as a weight percent (wt%) of either the 

premix solution or the monomers, as indicated in Figure 18.  The powder was 

calculated as a volume percent (vol%) of the total slurry volume.  20 wt% monomer, 

at a 6:1 ratio, was dissolved in deionized water for 1 hour at a mixing speed of      

450 rpm and room temperature to form the premix solution.  The dispersant content, 

0.8 wt% of the premix content, were added to the premix solution and mixed for   

30 minutes at 450 rpm.  After the dispersant had mixed through the premix solution, 

55 vol% CPTi powder was added, and the mixture was mixed for 90 minutes at  

650 rpm.  After adding the initiator and catalyst, the slurry was mixed at 350 rpm 

for 6.5 minutes, allowing the polymerization reaction to start, and then cast with 

sufficient flowability.  The additives were added through a port in the lid of the 

glass mixing vessel.  The slurry mixing setup is shown in Figure 19.   
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Figure 18: Slurry preparation using MAM/MBAM system 

 

Figure 19: Slurry mixing setup with overhead stirrer 
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3.3.3.2 Isobam® System (Binder 2) 

The calculated amount of Isobam® as a weight percent (wt%) of the CPTi powder, 

was dissolved in deionized water for 1 hour at 450 rpm and room temperature.  After 

dissolving, 55 vol% of CPTi powder was added to the mixture and mixed for           

90 minutes at 650 rpm before casting.  The same slurry mixing setup as for the 

MAM/MBAM system was used.  

 

Figure 20: Slurry preparation using Isobam® system 

3.3.4 Mould Design 

A rectangular bar mould was manufactured using a FormLabs Form 2 3D printer 

based on stereolithography (Figure 21).  A stereolithography (SLA) 3D printer uses 

a laser to cure solid isotropic parts, layer-by-layer, from a liquid photopolymer 

resin.  This technology creates products with high resolution, leading to a very 

smooth surface finish.  It is thus ideal for creating moulds, relatively inexpensive, 

that render near-net-shape gel-cast parts with a good surface finish, minimizing the 

need for post-processing such as machining.  The dimensional changes that the gel-

cast part experiences throughout the process of drying, binder burnout and sintering, 

must be accounted for in the design of moulds.  Noting that titanium powder mass 

is conserved through all the process steps, the solids loading can be used to predict 

the isotropic shrinkage of a gel-cast part by assuming that it will be sintered to          

90 % of the theoretical density of titanium in the last process step. This value of 

shrinkage is used to reverse engineer the casting mould in order to achieve a sintered 

rectangular bar of 75.3 x 14.9 x 13.6 mm.  By monitoring the dimensional changes 

during processing, the assumption of isotropic shrinkage can be evaluated.  
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The following equation can be used to predict the isotropic shrinkage, Y, of a gel-

cast part: 

 𝜌0

𝜌𝑓
= (1 − 𝑌)3,    𝑤ℎ𝑒𝑟𝑒 𝑌 =

∆𝐿

𝐿0
 . (3.3.7) 

Y refers to the isotropic shrinkage that a part experiences as it densifies from the 

original green density (ρ0) to the final sintered density (ρf).  The mould was 3D 

printed from resin using a FormLabs Form 2 3D printer.  The settings used for the 

printer is shown in Table 5.  AutoCAD® drawings of the mould, from which the .stl 

files are created for the print, are found in Appendix D.1.  The mould cavity was 

designed with dimensions of 88.7 x 17.6 x 16 mm, using the equation above to 

account for isotropic shrinkage of a 55 vol% φ slurry and assuming a final sintered 

density of 90 %.  The bottom part of the mould is designed to detach from the mould 

for easy demoulding of the rectangular bars, as shown by the blown up view of the 

mould in Figure 21.  The 8 mm diameter hole in the bottom part of the mould is to 

allow for injection of the slurry from the bottom, using a syringe, ensuring that the 

slurry displaces the air in the mould as it is cast and minimising trapped air in the 

casting. 

Table 5: FormLabs Form 2 3D printer settings 

Material Clear Resin 

Layer thickness [mm] 0.05 

Supports Yes 

 

Figure 21: Schematic of rectangular bar mould 

 

Stellenbosch University https://scholar.sun.ac.za



 

37 

 

3.3.5 Casting and Polymerization 

The slurry is cast into resin 3D printed moulds, after adding the initiator and catalyst 

to the slurry, while it still has a sufficient fluidity.  Good fluidity of the slurry 

ensures that all the empty spaces in the mould are evenly filled by injecting the 

slurry with a 60 ml syringe.  Radical polymerization takes place between 8 and 13 

min after adding the initiator and catalyst to the slurry at room temperature. 

After the slurry was cast into the mould, it was de-aired under vacuum to evacuate 

all air from the cast slurry.  Trapped air in the cast slurry can lead to strength limiting 

defects in the gelled part, such as big pores that create stress concentration regions 

in the microstructure allowing for cracks to form.  A Buehler Cast ‘n Vac 1000 

castable vacuum system with a Neuberger vacuum pump, with a maximum pressure 

rating of 4 bar, was used for de-airing.  After de-airing, the cast slurry was held at 

60 ̊ C for 2 hours in a Gallenkamp Hot Box Oven to ensure complete polymerization 

and the formation of the green body.  It should be noted that at this point, there is 

still a significant amount of water contained in the gelled part. 

3.3.6 Drying 

After polymerization in the oven, the green body was demoulded and dried in a 

vacuum at room temperature for 12 hours.  Drying is the first step of debinding, 

during which most of the solvent in the green body, still present after gelation, is 

removed.  Though most of the solvent evaporates, the backbone polymers remain 

to provide strength to the green body and retain the shape during this initial 

debinding stage (German and Bose, 1997).  The backbone polymers, MAM and 

MBAM, burn off during binder burnout. 

3.3.7 Thermal Gravimetric Analysis  

Thermal gravimetric analysis (TGA) was performed on the gel-cast green body to 

determine the temperature range where the binder burns off and to compare the 

results to published data, as presented in section 2.4.4.  A TA Instruments TGA-

5500 was used to determine the mass loss profile of the sample through a 

temperature range of 50-850 ˚C at a heating rate of 5 ˚C/min in a high purity argon 

atmosphere with a gas flow rate of 50 ml/min. 

3.3.8 Binder Burnout and Presintering 

Pyrolysis involves the thermal decomposition of materials at elevated temperatures 

in an inert atmosphere.  The binder of the dried green body samples was removed 

by pyrolysis, during the binder burnout step before sintering.  A binder burnout 

heating profile was designed based on the study by Janney et al. (1998), mentioned 

in section 2.4.4, and the TGA results obtained from the analysis described in section 

3.3.7. 
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The dried green samples were heated in a quartz tube to 220 ˚C at a heating rate of 

10 ˚C/min and then further heated at 1 ˚C/min to 400 ˚C, where they were kept for 

2 hours to achieve complete burnout of the binder system.  The sample was then 

heated to 650 ˚C at 5 ˚C/min and kept there for 30 min to pre-sinter the sample, 

allowing some degree of sinter bond neck growth between the particles by which 

the sample obtains handling strength.  The samples were then cooled back to room 

temperature before removing them from the quartz tube.  The entire heat treatment 

was conducted in an argon atmosphere with a gas flow rate of 200 ml/min.  High 

purity argon gas, supplied by Afrox, was used for this purpose.  Yttria stabilised 

zirconia substrates (YSZ) were chosen instead of alumina substrates to place the 

CPTi specimens on in the tube.  Titanium reacts with oxygen from both the zirconia 

(ZrO2) and the alumina (Al2O3) substrates to form a thin TiO layer.  However, no 

interfacial reaction product occurs between YSZ and the formed TiO coating, since 

ZrO2 can be partially reduced without decomposition at elevated temperatures, but 

not so for Al2O3 and fused silica substrates (Brust et al., 2016). Oxygen reacts with 

titanium at elevated temperatures to form titanium oxide and causes the 

microstructure to become brittle, thus is an unwanted effect. 

 

Figure 22: Binder burnout setup 

An Elite™ TSH 15/25/180 horizontal tube furnace with an Eurotherm controller 

was used for the binder burnout process.  Figure 22 presents an illustration of the 

furnace setup for the binder burnout process.  A description of the numbered 

components in the figure is listed below: 

1. Swagelok™ pressure-reducing regulator 

2. Bubble flowmeter 

3. T-valve 

4. Quartz tube 

5. Alumina tube 

6. Activated carbon column 

7. Water bubbler 
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A bubble flowmeter was used to measure the gas flow with a pressure-reducing 

regulator to control the flow.  A glass column containing activated carbon (AC) was 

used at the outlet side of the tube to adsorb the nitrogen oxide (NOx) gasses 

produced during binder burnout.  A water bubbler was used in-line after the AC 

column to further purify the emissions.  The step-by-step experimental procedure 

for the binder burnout process, including experiment setup, running the furnace, 

removing the samples and cleaning the quartz tube and zirconia substrates, is given 

in Appendix B.1.   

3.3.9 Sintering 

After binder burnout and presintering of the samples, they were sintered in an 

Elite™ TSH 15/25/180 horizontal tube furnace with an Eurotherm controller to 

obtain near-full sintered density.  This is the same furnace used for binder burnout, 

however the quartz tube was removed, and the furnace’s alumina tube was used.  It 

is important that all binder is burnt off before sintering, as any residual binder will 

damage the turbo pump used in the setup.  The samples were sintered under high 

vacuum.  Before sintering, a low vacuum of 10-2 mbar was pulled in the tube, using 

an Adixen 2015 SD Pascal rotary vane pump.  The system was then flushed with 

high purity argon, supplied by Afrox, to further assist with removing oxygen from 

the system before a high vacuum of 10-6 mbar is pulled, using a Varian Turbo-V 81 

M turbo pump.  A MKS 970-DS Cold Cathode Transducer was used to monitor the 

pressure in the system.  The vacuum system is shown in Figure 23b, and supplied 

by Vacutec (Pty) Ltd.  The heating cycle was started after reaching a vacuum of at 

least 10-5 mbar to ensure that the titanium samples do not react with any oxygen.  

The samples were heated at a rate of 10 ˚C/min and sintered in yttria-stabilized 

zirconia crucibles at a temperature of 1200 ˚C for 2 hours.  After the 2-hour dwell, 

the cooling cycle was started, allowing the furnace to cool under vacuum until it 

reaches 300 ˚C.  Argon was then allowed to flow through the system to assist with 

further cooling of the samples and for cooling of the rotary pump.  Special care 

must be taken to follow the sintering procedure, as given in Appendix B.2, to 

prevent damage of the vacuum system.   

 

Figure 23: Sintering setup showing the (a) tube furnace and the (b) vacuum 

system 
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3.4 Characterization Techniques 

In this section, the experimental procedures are given for determining the density 

of the gel-cast part throughout the gel-casting process, evaluating the mechanical 

properties of the final sintered part and analysing the microstructure.  

3.4.1 Density 

The green density of a gel-cast part was calculated as the density of the slurry 

mixture according to equation 3.3.5.  The sintered density was determined 

according to the ASTM B962 standard, based on the Archimedes Principle.  The 

test pieces are vacuum impregnated with oil to seal the surface-connected pores.  

The sintered density (Ds) is calculated as: 

 𝐷𝑠 =
𝐴𝜌𝑤

𝐵−𝐹
 , (3.4.1) 

where: 

A = the mass of the test specimen in air, g, 

B = the mass of the oil-impregnated test specimen, g,  

F = the mass of the oil-impregnated test specimen in water with the mass of 

the specimen support tared, g, and 

ρw = the density of the water, g/cm3. 

The test specimens were weighed using a Kern ABT 120-5DM analytical balance 

with a resolution of 0.1 mg.  The dimensions of the gel-cast rectangular bars were 

measured after drying, binder burnout and sintering using a standard Vernier caliper 

with an accuracy of 0.01 mm.  The difference between the dimensions of the mould 

cavity and the sintered part produced from the mould was calculated and expressed 

as a percent shrinkage according to the ASTM B610 standard, using equation 3.3.7. 

3.4.2 Mechanical Behaviour 

3.4.2.1 Tensile Testing 

Round dog-bone-shape tensile specimens were prepared and used to test the 

mechanical behaviour according to the ASTM E8M standard.  This standard 

requires a 5:1 ratio between the gauge length and the diameter of the gauge length.  

The mechanical properties that were obtained from the test include yield strength, 

elasticity, ultimate tensile strength (UTS) and elongation at fracture.  An MTS 

Criterion Model 44 Universal Testing Machine (Figure 24) was used to perform the 

tensile tests, using TestWorks4 software to collect and process the load and 

crosshead displacement data.  The crosshead speed was 0.5 mm/min.     

The tensile specimens, showed in Figure 25, were 62 mm long with a gauge length 

of 28 mm and gauge length diameter of 5 mm.  Each specimen ends in a 12 mm 

M12 thread that allows the specimen to be screwed into the grips.  This means that, 

although the entire specimen is 62 mm long, it is only free to elongate over 38 mm 
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between the grips. Furthermore, the elongation of the R5 fillet radius from the M12 

thread to the 5 mm gauge length is negligible in comparison to the elongation over 

the gauge length.  Thus, strain (ɛ) was calculated as: 

 
𝜀 = 

∆𝑙𝑐𝑟𝑜𝑠𝑠ℎ𝑒𝑎𝑑

𝑙𝑔𝑎𝑢𝑔𝑒
 

(3.4.2) 

where lcrosshead is the crosshead displacement and lgauge is the gauge length of 28 mm.  

The stress was calculated, using the load data and the actual cross-sectional area of 

the specimen.  The measured gauge length diameter for the specimens varied 

between 4.92 mm and 5 mm.   

A CAD drawing for manufacturing of the tensile specimens is given in Appendix 

D.2.  It should be noted that two specimens were incorrectly machined and were 

approximately 72 mm long with a 38 mm gauge length.  In these cases, the gauge 

length in equation 3.4.2 was replaced with 38 mm. 

 

Figure 24: MTS Criterion Model 44 universal testing machine 

 

Figure 25: Tensile specimens 
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3.4.2.2 Hardness Testing 

Hardness testing was performed on the sintered specimens according to the ASTM 

E18 standard, using a Zwick/Roelle Rockwell Hardness Tester.  A 1/16-inch 

carbide ball indenter was used with an applied force of 100 kgf to determine the 

hardness values on the Rockwell B scale.  A calibration block with a hardness value 

of 82.22 HRBW was used to calibrate the machine.   

3.4.3 Microstructural Analysis 

3.4.3.1 Optical Microscopy 

An Olympus GX51 microscope was used to study the characteristics of the 

microstructure and an Olympus SZX7 stereo microscope was used to study the 

surface defects.  Both microscopes use an Olympus SC30 CMOS colour camera 

and Stream Essentials 1.9.4 software for analysis.  Characteristics of the 

microstructure studied include porosity distribution, pore defects and the degree of 

sinter bonds formed.  The porosity distribution gave an indication of whether the 

titanium particles were distributed evenly during casting or whether settling 

occurred.  Sample preparation for microstructural analysis was adapted from the 

Struers® application notes, Metallographic preparation of titanium (Taylor and 

Weidmann, 2016), and the procedure followed is shown in Table 6.  A Micracut 

150 low speed precision cutter was used to cut the samples to size for hot mounting.  

A Buehler SimpliMet™ 3000 was used to mount the samples after cutting, and a 

Buehler Alpha™ & Vector Power Head was used for grinding and polishing of the 

samples. 

Table 6: Grinding and Polishing Method (adapted from Taylor and 

Weidmann, n.d.) 

 Grinding 1 Grinding 2 Polish 1 Polish 2 

Surface SiC-paper, 

800 grit 

SiC-paper, 

1000 grit 

MD Largo MD Chem 

Suspension - - DiaDuo-2, 9 

µm 

OP-S 

NonDry, 0.4 

µm 

Lubricant Water Water - - 

rpm 180 180 180 180 

Force (N) 25 25 25 25 

Time (min) 1.5 1.5 5 5 
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3.4.3.2 Scanning Electron Microscopy (SEM) 

A Zeiss Merlin GeminiSEM field emission scanning electron microscope at the 

Central Analytical Facility (CAF) of Stellenbosch University was used for 

topographical and elemental analysis of the sintered specimens.  The fractured 

surfaces of the tensile test specimens were also studied with SEM to determine 

whether microstructural defects, such as porosity or cracks, caused fracture.  Energy 

dispersive spectroscopy (EDS) was used to determine the distribution of elements 

in the sintered microstructure and in order to determine whether carbon and oxygen 

contamination occurred in the sintered part.  EDS maps and line-scans were used 

for elemental analysis. 
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4 Results and Discussion 

This chapter presents the results of this study, with relevant data collected as 

described in Chapter 3.  The chapter starts with the powder characterization results, 

reporting the apparent density and particle size distribution analysis.  The slurry 

optimization results of the sedimentation tests and slurry quality are presented and 

discussed, as well as the manufacturing of the mould for titanium gel-casting.  

Critical aspects of the gel-casting process, over all the process steps from casting to 

sintering, are highlighted and discussed. The microstructure and mechanical 

properties of the sintered specimens are presented, followed by a discussion 

regarding the insights gathered from the analysis.   

4.1 Powder Characterization 

4.1.1 Apparent Density 

The apparent density of the supplied CPTi powder was established according to the 

ISO 3923-1:2008 standard, using a Hall Flowmeter.  The orifice diameter of the 

funnel is 2.5 mm and the volume of the cylindrical cup is 25 cm3.  The arithmetic 

mean of the apparent density from three tests was calculated as 2.51 g/cm3 with a 

standard deviation of 0.01 g/cm3.  The calculated apparent density correlates well 

with the specified value of 2.60 g/cm3 of the supplied CPTi powder.  The apparent 

density of the powder is 56 % of the theoretical density (4.51 g/cm3).  Thus, the 

maximum solid loading of the slurry is 56 vol% as it is unlikely that closer packing 

than the tap density will be achieved in the binder.  The test data is given in 

Appendix C.1. 

4.1.2 Particle Size Distribution (PSD) 

The titanium powder sample for PSD analysis was suspended in isopropanol with 

a refractive index (RI) of 1.376.  The sample was sonicated for 60 s with an 

ultrasonic intensity of 60 %.  The samples were tested at a flow rate of 12 l/min and 

circulation time of 60 s.  The results correlate to the supplied data from AP&C®.  

The results are given in Table 7.     

Table 7: PSD for CPTi powder, as measured by laser diffraction  

Description Specified Measured 

𝑫𝟏𝟎 17 µm 16.5 µm 

𝑫𝟓𝟎 33 µm 30.9 µm 

𝑫𝟗𝟎 45 µm 43.7 µm 

< 𝟏𝟓 𝝁𝒎 6 vol.% 7.3 vol.% 

> 𝟒𝟓 𝝁𝒎  7.7 vol.% 

From Figure 26 it can be seen that the volume frequency percent graph has a long 

tail to the left.  This indicates that the powder has a wide range of fine powder 
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particles below the mean particle size of 30.4 µm.  It is recommended that these 

fines (powder particles in the size range of 5-30 µm) be removed in further studies.  

Finer powder particles have more surface area that require a higher concentration 

of dispersant to successfully disperse the particles in a binder.  The mode of the data 

was found to be at a particle diameter of 35.7 µm, and it can be seen from Figure 

26 that the highest volume frequency of particles is around this particle size.  

 

Figure 26: Volume Frequency vs. Diameter 

The SEM micrographs, Figure 27, of the powder verifies the PSD results and 

presents the findings, as mentioned above, well.  The SEM images show larger 

powder particles around 35 µm with a wide range of fine particles in between.  The 

micrographs also affirm the sphericity of the powder. 
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Figure 27: SEM micrographs or morphology and distribution of particle 

sizes 

4.2 Optimization of Slurry 

4.2.1 Sedimentation Tests 

Figure 28 shows a series of photos of the measuring cylinders, illustrating the 

progress in sedimentation, with increasing settling time from left to right.  The 

interface between the sediment and the liquid above is not so clear, because of finer 

powder particles that stay suspended for a longer time than the majority of the 

powder.  Nevertheless, the boundary becomes clear after an initial period as the 

sediment moves downward due to the effect of gravity.  The liquid above the 

sediment clarifies after a long time, as it contains a small fraction of fine particles.  

The arrows in Figure 28 indicate the boundary between the sediment and liquid 

above.  It is the downward movement of this boundary that is measured as a function 

of time. 

 

Figure 28: Progress of sedimentation, with arrows indicating the sediment 

boundary movement as sedimentation time increases from left to right 
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Figure 29 presents the sedimentation behaviour of 1 g CPTi powder in 

MAM/MBAM and Isobam® premix solutions.  The Isobam® premix solution was 

prepared using Isobam® content of 0.3 wt%.  The MAM/MBAM solutions was 

prepared with 20 wt% monomers content at a monomer:cross-linker ratio of 6:1 and 

with dispersant (NH4OH) contents of 0, 0.4 and 0.8 wt%, respectively.  The 

monomers would not dissolve in the premix solution for this system, increasing the 

monomer content to 30 wt% or the monomer:cross-linker ratio to 90:1.  Figure 29 

also illustrates that increasing the dispersant content from 0 to 0.8 wt%, increases 

the settling time of 1 g of CPTi powder and thus decreases sedimentation rate.  The 

graph illustrates the time it takes for the sediment boundary to cross various volume 

marks on the measuring cylinder.  The settling time increased by 105 % with 

dispersant content increasing from 0 to 0.4 wt%, but only with 7.3 % when 

increasing dispersant content from 0.4 to 0.8 wt%.  A total increase in settling time 

of 120 % was observed, using 0.8 wt% of dispersant against using no dispersant at 

all.     

 

Figure 29: Sedimentation behaviour for 1 g CPTi powder in different premix 

solutions 

It is clear that neither the MAM/MBAM nor the Isobam® binder system suspends 

the CPTi particles.  This can be explained through reviewing the physics involved 

in the dispersion of particles in a liquid.  Gel-casting was developed using ceramic 

particles, that typically have lower density and smaller particle size than metal 

particles.  Thus, the surface charge of a particle in a ceramic powder slurry has a 

greater effect on the dispersion of the particles than the particle density.  A novel 

approach of preparing a CPTi slurry was developed, as explained in section 3.3.3.1, 

taking the titanium particle weight into account and using Stokes Law to 

successfully suspend the powder particles in the slurry.  This novel approach is 

discussed further in section 4.4.  
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4.2.2 Slurry Quality 

The effect of different mixing times and solid loadings, as listed in Table 4, were 

investigated with a standard premix solution based on the results of the 

sedimentation tests.  A 20 wt% MAM/MBAM premix solution with a 

monomer:cross-linker ratio of 6:1 and dispersant content of 0.8 wt% showed the 

best behaviour, and was used.   

4.2.2.1 Mixing Time 

The effect of the mixing time after adding the powder to the premix solution was 

investigated, keeping the mixing speed constant at 450 rpm.  A solid loading of      

55 vol% was used to prepare the slurry.  A similar sedimentation test, as described 

in section 4.2.1, was done on the slurry after 4, 8 and 12 hours of mixing.  The 

results are illustrated in Figure 30.  It is seen from the graph that there is no 

significant difference in sedimentation behaviour of the slurry by varying the 

mixing time, using the overhead mixing system.  Ceramic gel-casting slurries have 

been prepared using the traditional ball milling process for mixing, which allows 

effective mixing of powders in the slurry and allows aging time for hydroxylation 

of particle surfaces to achieve a stable slurry dispersion (Pollinger et al., 2016).  It 

was observed that droplets form on the inside wall of the glass mixing vessel with 

the increase of mixing time due to evaporation of the solvent.  This may effectively 

result in a higher solid loading slurry than initially intended.   

 

Figure 30: Sedimentation behaviour for different mixing times 

4.2.2.2 Solids Loading 

Figure 31 illustrates that both 45 vol% and 55 vol% solid loading slurries fail to 

suspend the CPTi powder particles after mixing for 4 hours.  The monomer content 

was kept constant at 20 wt% with a monomer:cross-linker ratio of 6:1 and 
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dispersant content of 0.4 wt% for the 45 vol% φ slurry and 0.8 wt% for the 55 vol% 

φ slurry.  The dispersive quality of the 55 vol% φ slurry did not improve by 

increasing the mixing time to 8 hours, as seen in Figure 31c.  These results support 

the findings from section 4.2.1, that the particle weight of titanium powder has a 

more significant effect on the dispersion of a particle in the binder system than the 

surface charge of the particle, and a novel approach is needed to suspend the 

titanium particles in the slurry.   

 

Figure 31: Powder settling of (a) a 45 vol% φ slurry mixed for 4 hours, (b) a 

55 vol% φ slurry mixed for 4 hours and (c) a 55 vol% φ slurry mixed for 8 

hours 

4.3 SLA 3D Printed Rectangular Bar Mould 

The rectangular bar mould manufactured with a SLA 3D printer, with two 

polymerized green parts still in the mould, is shown in Figure 32.  The mould 

consists out of two parts: part 1 is the main body of the rectangular bar mould and 

part 2 is the removable bottom part of the mould with a 8 mm diameter hole for 

injecting the slurry from the bottom of the mould with a 60 ml syringe.  Injecting 

the flowable slurry from the bottom ensures minimum air trapped in the cast part.  

Part 2 of the mould was designed to detach from the main mould to ease the 

demoulding of the green part by pushing the part out, as illustrated in section 3.3.4.  

The mould wall between rectangular bars were chosen to be 5 mm thick for the 

purpose of shape retention during the polymerization process, during which the 

mould is heated.  The parts of the mould were produced with a layer thickness of 

0.05 mm to ensure structural stability and a smooth surface finish, which can be 

seen from Figure 32.  No mould release agent was necessary.  
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Figure 32: Resin 3D printed mould 

4.4 Gel-casting Process 

4.4.1 Casting, Gelation and Demoulding 

Based on the findings of the slurry optimization tests, discussed in section 4.2, a 

novel approach was followed to form a stable metal powder slurry, as explained in 

section 3.3.3.1, with the slurry formulation as given in Figure 18.  The reason for 

the improved quality of the slurry with the novel approach is that the stability of a 

metal powder slurry is affected more by the density of the particles than by electric 

charges on the surface of the metal powder particles (Ohkawa et al., 2004).  The 

zeta potential of a slurry, relates to the surface charge of the particles, and gives an 

indication whether a slurry has sufficient electrostatic repulsion to remain dispersed 

(Particle Sciences, 2012).  The zeta potential of metal slurries plays a lesser role in 

the dispersion of the particles than in ceramic slurries.  The principle of Stokes Law 

was thus useful in obtaining a stable titanium slurry.  The law explains the rate of 

sedimentation of a particle in a medium: 

 𝑆 =
𝐷2(𝜌1−𝜌2)𝑔

18𝜇
 , (4.4.1) 

where S is the rate of sedimentation, D the diameter of a powder particle, ρ1 and ρ2 

are the densities of the powder and medium respectively, μ is the viscosity of the 

medium and g is the gravitational constant.   

Because of the size difference between ceramic and metal powder particles, metal 

powder particles being typically larger than ceramic powder particles are heavier.  

The mass of an average titanium particle (40 µm) compared to that of an alumina 

particle (5 µm) is 0.151 µg and 0.259 pg, respectively.  Thus, the effect of 

gravitational forces is more significant on larger particles, increasing the 

sedimentation rate.  In order to decrease the rate of sedimentation, one can either 
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decrease the particle diameter or increase the viscosity of the medium.  It is a 

significant safety hazard to work with even finer titanium powder particles than 

specified in this study.  Finer titanium powder can more easily form dust clouds 

that can explode.  Therefore, the polymerization reaction was initiated, allowing the 

viscosity of the slurry to increase just enough to keep the powder particles 

suspended and still have a sufficient fluidity to cast the slurry.  Figure 33a shows a 

successfully cast titanium slurry using this approach.  In a previous study on 

titanium gel-casting a prominent liquid layer formed on top of the cast slurry 

indicating sedimentation of the powder particles (Piek, 2017).  No prominent liquid 

layer formed on this cast slurry, indicating that the powder stayed dispersed in the 

slurry after casting.  Even distribution of the powder particles is confirmed by 

optical micrographs of the microstructure of the sintered parts in section 4.4.4.   

After casting the slurry, the slurry was de-aired using a Buehler Cast ‘n Vac 1000 

vacuum system with a Neuberger vacuum pump.  The vacuum pump has a 

maximum pressure rating of 4 bar. After de-airing, the mould was placed in an oven 

at 60 ˚C to allow complete polymerization of the part (Figure 33b)  after which the 

green parts were demoulded with ease and without the use of a demoulding agent 

(Figure 33c).  The demoulded parts showed a smooth surface finish. 

 

Figure 33: The novel approach of CPTi gel-casting illustrated showing the a) 

cast slurry, b) the slurry after gelation and c) the demoulded green parts. 

4.4.2 Drying 

After the green parts were demoulded, they were dried at room temperature and at 

atmospheric pressure for 12 hours.  During drying up to 90% of the solvent, 

deionized water, is evaporated while the backbone polymers remain in the green 

part to hold the shape and provide strength to the green body during this initial 

debinding stage.  According to German and Bose (1997), when most of the solvent 

is removed, the binder in the green body exists mostly in the pendular state (binder 

saturation below 0.2).  This is when particles are held together by lens-shaped rings 

of liquid and there is mainly air between the particles, as illustrated by Figure 34.  

The capillary attractive forces from these pendular bonds provides considerable 

strength (German and Bose, 1997).  The backbone polymers burn off during binder 

burnout. 
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Figure 34: Phases of solid-binder interactions according to the degree of 

binder (adapted from Sakr et al., 2012) 

Figure 35 illustrates the warping of a green body after drying as well as a crack that 

formed during drying, indicated by the arrow.  Warping and cracking are a result of 

rapid drying of the green part.  It is clear that drying is a critical step in the gel-

casting process and needs to be controlled to achieve a near-net-shape part that is 

not distorted or cracked.  The drying process can be controlled by drying the green 

bodies in a drying chamber with controlled atmosphere, controlling the temperature 

and humidity, which controls the rate of evaporation. 

 

Figure 35: Warping of dried green bodies with the arrow indicating a drying 

crack 

4.4.3 Thermal Gravimetric Analysis (TGA)  

TGA in argon atmosphere was performed on two samples.  The first sample was a 

gel-cast titanium part that has undergone binder burnout under argon atmosphere, 

heating to 380 ˚C at 5 ˚C/min, and holding for 30 min, before heating further to    

650 ˚C at the same heating rate and holding for another 30 min.  The purpose of 

TGA on this sample was to investigate whether complete burnout of the binder has 

taken place.  The second sample that was sent for TGA was a dried gel-cast titanium 

part with a MAM/MBAM binder system. The purpose of this TGA test was to 
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determine the mass loss profile over temperature for the binder remaining in the 

part after drying.  

A 2.18 % mass loss was observed for the first sample in the temperature range 

between 104 and 193 ˚C, as seen in Figure 36.  This does not correlate to the 

decomposition temperature of any of the binder constituents and deserves further 

investigation.  It is recommended that C, O and N analysis be performed on the 

debound samples for future studies.  This was not investigated within the scope of 

this study, as the analysis equipment was not available.  The mass gain after 500 ˚C 

occurred for both the thermally debound and dried samples.  This could be due to 

the titanium reacting with the debound products at higher temperatures.  EDS of the 

microstructures was conducted in order to check for evidence of C or O in the 

microstructures. 

The TGA curve for the dried sample (Figure 37) correlates well with literature as 

given in Figure 10, section 2.4.4.  Four events of mass loss are observed from this 

curve.  A summary of each event is given in Table 8, presenting the onset- and end 

temperature, mass loss, mass loss as a percentage and the material that burns off. 

 

Figure 36: TGA profile of thermally debound CPTi gel-cast part in argon  
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Figure 37: TGA profile of dried CPTi gel-cast part in argon 

Table 8: TGA events of dried CPTi gel-cast specimen in argon 

Event Onset 

Temperature 

[˚C] 

End 

Temperature 

[˚C] 

Mass Loss Material 

[mg] [%] 

1 47.5 52.4 0.298 0.96 NH4OH 

2 222.3 270.2 0.185 0.596 MAM 

3 313.9 392.3 0.625 2.016 MAM & MBAM 

4 525.3 618.9 0.147 0.473 no correlation to 

binder formulation 

It is observed from the data that most of the binder is burnt off when 400 ˚C is 

reached.  Based on the TGA results, a temperature profile for the binder burnout 

and pre-sintering of the green parts were developed, as illustrated in Figure 38, 

highlighting the regions where products debind.  The purpose of the TGA was to 

determine the temperatures where the binder burns off completely.  Some of the 

results did not correlate to the binder formulation and presented areas for further 

research.   
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Figure 38: Binder burnout and pre-sintering profile 

4.4.4 Binder Burnout and Pre-sintering 

Figure 39 shows the samples in the quartz tube on zirconia boats before (left) and 

after (right) binder burnout.  There was only space for two bars in the heating zone 

of 180 mm.  It is also seen from Figure 39 that soot forms on the quartz tube as a 

result of incomplete burnout of the polymers in the argon atmosphere.  A special 

gas mix of 95 % argon and 5 % hydrogen was tested as the burnout atmosphere.  

Hydrogen is often used to aid decomposition of polymers during thermal debinding 

(German, 2003).  During this test, the ends of the quartz tube, where the glass 

connectors connect to the tube, heated to above 60 ˚C; this was not observed when 

using pure argon.  This caused the vacuum tape that was used to seal the connection 

to melt, compromising the controlled atmosphere required for the process.   

The reason for the tube heating up at the ends could be because of steam, which has 

a high heat capacity, that forms from the hydrogen of the gas that bonds with oxygen 

from the polymers.  Another explanation, and maybe the most obvious one, is that 

the parts have not been sufficiently dried before binder burnout.  The remaining 

solvent is then removed from the part as it is heated and forms steam in the tube, 

causing the tube to heat up and the vacuum tape to melt, introducing a leak.  This 

explanation is supported by the fact that this event happened at a temperature just 

below 200 ˚C, below the temperature where any binder burns off.  Clear liquid was 

found in the tube at this stage and the temperature of the tube at the ends dropped 

after removing the liquid.  This also gives a viable explanation for why some of the 

samples cracked during binder burnout.  Solvent removal by heating causes rapid 
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evaporation, leading to cracking of the gel-cast part.  Figure 40 shows such a crack 

that formed during binder burnout. 

 

Figure 39: Quartz tube before (left) and after (right) binder burnout 

Nitrogen oxide (NOx) gasses were released as a product of MAM and MBAM 

during polymer burnout.  These poisonous gasses were adsorbed by connecting a 

column with activated carbon (AC) at the outlet of the quartz tube (Figure 41).  

Glass wool was used to keep the AC in place in the column.  The glass wool clogged 

as it adsorbed the gasses, hindering the argon flow through the system and leading 

to a build-up in pressure in the tube, which in turn caused the glass connectors of 

the quartz tube to eject.  If pressure is starting to build up in the tube because of 

clogging, valves on both sides of the tube must be closed (to maintain the argon 

atmosphere and protect the samples from oxidation) and the glass wool needs to be 

replaced before opening the valves again. 

 

Figure 40: Cracking due to binder burnout stress 
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Figure 41: Activated carbon column for NOx gas adsorption 

4.4.5 Sintering 

Six titanium gel-cast specimens with a solid loading of 55 vol%, prepared as 

described in section 3.3.3.1, and which has undergone binder burnout, as described 

in section 3.3.8, were sintered.  The specimens were vacuum sintered at a pressure 

below 10-4 Pa after flushing the system with argon.  The same furnace and vacuum 

system that were used for binder burnout were also used for sintering, but with a 

different setup, as described in section 3.3.9.  The sintering cycle entailed heating 

to a temperature of 1200 ̊ C at a heating rate of 10 ˚C/min.  After holding for 2 hours 

at 1200 ˚C, the specimens were allowed to furnace cool back to room temperature.  

Argon was allowed to flow through the system once the furnace temperature 

reached 300 ˚C on the cooling cycle to help with faster cooling of the specimens, 

as well as cooling of the rotary pump.  A maximum of four specimens could be 

sintered at a time in the alumina tube because of the hot zone of the tube furnace 

being 180 mm.  With an inside tube diameter of 50 mm, two specimens could be 

fitted in the radial direction and two in the longitudinal direction, thus four 

specimens in total.  The specimens were sintered on zirconia substrates in the tube. 

The final sintered specimens (Figure 42a) had no major internal defects visible with 

the naked eye, indicating a successful casting process.  Warping, caused by fast 

evaporation of solvent during the binder burnout process, was observed of the final 

sintered specimens (Figure 42b).  The specimens showed a good surface finish 

without any surface pores, which is a significant improvement from a previous 

study of titanium gel-casting, where the sintered specimens had notable surface 

pores (Piek, 2017).  

The colour observed from the oxide layer, Figure 43, is based on the thickness of 

the TiO2 layer.  A blue appearance relates to a very thin TiO2 layer of approximately 

40 nm (Pérez Del Pino et al., 2004). 
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Figure 42: 55 vol% solid loading sintered specimens illustrating (a) cut 

surfaces and (b) warping 

 

Figure 43: Sintered specimen showing a thin oxide layer 

4.4.5.1 Microstructural Analysis 

The metallographic preparation of all samples for microstructural analysis of the 

sintered specimens was conducted according to the method described in section 

3.4.3.  A uniform distribution of small spherical pores is observed for the 55 vol% 

solid loading sintered specimens throughout the sample, except for an area very 

close to the upper edge of the specimen, as seen in Figure 44a.  Figure 44 shows the 

microstructure close to the upper (a) and bottom (b) edge of a sintered specimen.  

Particles close to the upper edge were not fully sintered due to an uneven 

distribution of particles.  More binder moved towards the surface of the cast slurry 

as some particles settled towards the bottom, leaving more binder between the 

particles close to the upper edge during the casting and polymerization process.  As 

a result, the microstructure is more porous at the upper edge after binder burnout 

and sintering.  Figure 44b and Figure 45a show an evenly dense microstructure 

close to the bottom edge and of the middle section of the specimen, respectively.  

This illustrates an evenly dense microstructure with well sintered solid material.   
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Figure 44: Optical light micrographs (5x) showing the microstructure at (a) 

the upper edge and (b) near the lower edge of the specimen. 

Figure 45a shows a microstructure with an even density, but quite porous, with 

some internal defects.  Figure 45b is a higher magnification micrograph of the 

middle section, highlighting the internal defects by circling and numbering them.  

Three of the six sintered specimens showed cracks, which were already present after 

binder burnout.  The crack, indicated by defect 1 (brown), is due to high binder 

burnout stress.  Defect 2 (red) illustrates porosity due to poor packing and defect 3 

(blue) highlights porosity due to sintering, where small pores are found between 

grain boundaries of the particles.  Figure 46 shows sinter bonds between particles.  

Typically, any cracks that are present in the green or debound sample get worse 

with any further sintering heat treatment. The material to each side of the crack 

densifies and pulls any poorly bound particles into the denser, sintered material, 

thus widening the crack (German, 2003).  Darker spots were observed in the 

microstructure, as indicated in Figure 46, which were identified as having a 

different elemental composition (increased levels of C and O) by EDS analysis.       

 

Figure 45: SEM micrographs of the middle section of a specimen showing (a) 

an evenly dense microstructure and (b) a crack. 
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Figure 46: SEM micrograph of a crack showing sinter bonds and the 

presence of a different phase (increased C and O) than Ti. 

4.4.5.2 Elemental Composition Analysis 

EDS analysis was performed on a 55 vol% solid loading sintered specimen to 

determine all the different phases present in the microstructure of a sintered part.  A 

Zeiss Merlin GeminiSEM field emission scanning electron microscope was used to 

do the analysis.  An EDS map scan was done to see if there was any carbon 

contamination or oxides present in the microstructure.  Figure 47 illustrates all the 

phases present in the sintered microstructure.  It is seen that carbon contamination, 

as well as oxygen, is present in the microstructure.  It is further noticed that most of 

the carbon and oxygen phase occur on the edges of the pores, especially around the 

crack.  Carbon and oxygen react with titanium at elevated temperatures to form TiC 

and TiO2, respectively.  The presence of carbon and oxygen in the titanium 

microstructure lead to a brittle material, which is supported by the results of the 

tensile tests.  It is also possible that the presence of carbon around the pores is due 

to the pores trapping polishing slurry particles.    

Figure 48 and Figure 49 show EDS line scans of the sintered specimen close to the 

edge and in the middle of the specimen, respectively.  These graphs confirm that a 

higher concentration of carbon and oxygen is found around and in the crack.  The 

reason for this observation is that oxygen and carbon, as products from binder 

burnout, easily spread through the microstructure through surface connected pores.  

The contamination has most probably occurred in the binder burnout process 

already.  It is also seen from these two figures that a slightly purer titanium 

microstructure is found in the middle of the specimen than closer to the edge.  In 

the denser part of the microstructure, approximately 87 wt% Ti is seen closer to the 

edge and ~92 wt% Ti in the middle of the specimen. 
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Figure 47: EDS map of SEM image shown in Figure 45(b),  showing the 

elemental distribution of (b) titanium, (c) carbon and (d) oxygen 

 

Figure 48: EDS line scan close to the edge of a 55 vol% φ sintered specimen 
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Figure 49: EDS line scan in the middle of a 55 vol% φ sintered specimen 

4.5 Density 

4.5.1 Green- to Sintered Density 

The green density, sintered density, relative density and densification of the              

55 vol% solid loading gel-cast parts are given in Table 9.  The sintered density was 

calculated from Archimedes principle.  The specimens were impregnated with oil 

to fill the open pores before calculating the sintered density.  The test data for the 

sintered density is given in Appendix C.2.  The density of the water was taken as 

0.9986 g/cm3, based on a table in the ASTM B962 standard, according to the 

measured temperature of the water, which was 18 ˚C.  The reported value for 

sintered density is the arithmetic mean of the test data.  The green density was 

estimated according to equation 3.3.5, taking the theoretical density of CPTi as    

4.51 g/cm3 and the binder density as 1 g/cm3.  The relative sintered density is taken 

as the sintered density relative to the theoretical density of CPTi.  Densification, ψ, 

is a parameter that defines the change between the sintered- and green density due 

to sintering, divided by the change in density needed to obtain a pore-free solid.  

Densification, adapted from the Handbook of Mathematical Relations in 

Particulate Materials Processing (German, 2009), is calculated as: 

 𝜓 =
𝜌𝑠−𝜌𝑔

𝜌𝑡ℎ−𝜌𝑔
 . (4.5.1) 
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Table 9: Density of 55 vol% φ sintered specimen 

 [g/cm3] relative % 

Green density, ρg  2.93 65.0 2 

Sintered density, ρs  3.77 83.6 

Densification parameter, ψ 0.53  

The change in porosity from green density to sintered density is 45 vol% to           

16.4 vol%, assuming that all binder was burned out.  This is an improvement on the 

relative sintered density from a previous study, where a maximum relative sintered 

density of 78 % was reached with a 40 vol% φ CPTi gel-cast part (Piek, 2017).  A 

densification of 0.53 indicates that the sintered parts have only densified 53 % of 

its capacity from green density to full density, as illustrated in Figure 50.   

 

Figure 50: Schematic of densification of a 55 vol% φ part 

4.5.2 Shrinkage 

The dimensional change that occurred from the cast slurry to the final sintered part 

was determined by a method adapted from the ASTM B610 standard by taking the 

arithmetic difference between the dimensions of the mould cavity and the 

dimensions of the sintered specimen produced from the mould.  The dimensional 

change is expressed as a percent growth of shrinkage.  Dimensions were taken with 

a Vernier caliper with resolution of 0.01 mm.  The percent absolute dimensional 

change (DC) for the specimens were calculated as: 

 𝐷𝐶, % =
𝑥𝑠−𝑥𝑚

𝑥𝑚
× 100 , (4.5.2) 

where xs is the dimension of the sintered specimen, in mm, and xm is the dimension 

of the mould cavity, also in mm.  The dimensions for the mould cavity were           

88.7 mm in length and 17.6 mm in width.  The dimensional change of the length 

 

 
2 The green density includes the density of the binder that fills the pores in the green state and is thus 

higher than the solid loading value. 
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and width of the 55 vol% solid loading rectangular gel-cast bar after sintering were 

calculated and is presented in Table 10.  The test data is given in Appendix C.3.   

Table 10: Dimensional changes of 55 vol% φ sintered specimen 

DC, length -10.40 % 

DC, width -9.03 % 

Y, 90 -15.10 % 

Y, 83.6 -13.03 % 

The mould was designed on the assumption of isotropic shrinkage (Y), as calculated 

from the density using equation 3.3.7, assuming a final relative sintered density of 

90 %.  The isotropic shrinkage, calculated from the relative sintered density 

reported in section 4.5.1, is 13.03 %.  The real dimensional changes in the length 

and width of the rectangular bar were found to be a shrinkage of 10.40 % and        

9.03 %, respectively.  Thus, using the isotropic shrinkage relationship to account 

for shrinkage in mould design is a conservative initial guess, but not fully accurate.  

Some of the factors that influence the dimensional change is the grade of the 

powder, particle size distribution, green density, sintering time and temperature as 

well as heating- and cooling rate.  All of these factors were kept constant.  

4.6 Mechanical Behaviour 

4.6.1 Tensile Properties 

Three 55 vol% solid loading sintered titanium bars were machined into tensile 

specimens according to the drawing given in Appendix D.2.  The first two 

specimens were not machined according to the drawing specifications, resulting in 

a 10 mm longer gauge length section.       

Figure 51 shows the stress-strain curves for the three specimens tested.  Considering 

the results for specimens 1 and 2, it appears that the extended gauge length of these 

specimens influences the measurement.  However, a recent study on the effect of 

specimen geometry on tensile properties of titanium alloy metal sheet found that 

the change in gauge length or gauge area did not influence the yield strength and 

did not have a significant influence on the ultimate tensile strength (Masete et al., 

2018).  Both of these samples failed very close to yielding, indicating that a 

difference in the microstructure between the three specimens could explain the 

different curves.  The only reliable result that should therefore be considered is that 

of specimen 3.  The yield strength (offset = 0.2 %), ultimate tensile strength, 

modulus of elasticity and elongation at fracture of specimen 3 are given in Table 

11.  The strain was derived from the crosshead displacement and the original gauge 

length.  
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Figure 51: Stress-strain curves for the machined tensile test specimens 

Table 11: Tensile properties of specimen 3 

Tensile Property Measured 

ASTM B988, 

Grade 1 PM100 

Yield Strength, YS 323 MPa 138 MPa 

Ultimate Tensile Strength, 

UTS 378 MPa 240 MPa 

Modulus of Elasticity, E 18.8 GPa - 

Elongation at fracture, ɛf 4.76 % 24 % 

From Table 11 it is seen that the YS and UTS measured are higher than the values 

for PM products from the ASTM B988 standard.  The reason for this observation 

is the presence of C and O in the microstructure.  C and O contamination of the 

microstructure causes brittle fracture and thus explains the lower elongation at 

fracture measured, compared to the value specified in the standard.   

A microscopic observation of the fractured surface is that the material has not 

formed a densified structure and that distinct particles are still visible, as seen in 

Figure 52a.  The tensile properties tested is thus more related to the strength of the 

sinter bonds than the material properties.  Only intermediate sintering has taken 

place.  This is evidenced by the irregular shape of the pores and distinct particles 

seen in Figure 52b.  Sintering occurs in three stages, as illustrated in Figure 11, 

beginning with initial sinter bonds where no shrinkage takes place, then 

densification start to take place when intermediate sinter bonds form, resulting in 

irregularly shaped pores.  Final sintered bonds are characterized by spherical pores 
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between the grain boundaries as a result of densification.  It is recommended that 

the sintering temperature and holding time be increased for future studies. 

 

Figure 52: Optical (a) and SEM (b) micrographs of the fractured tensile 

specimen surface 

4.6.2 Hardness 

The results obtained from the Rockwell apparent hardness test is shown in Table 

12.  Three specimens were tested: two specimens with five indentations each on the 

xz-plane and one specimen with seven indentations on the xy-plane.  The locations 

of the indentations are illustrated in Figure 53.  

The machine was calibrated with a calibration block with hardness value of 82.22 

HRBW.  An average of 82.5 HRBW with a range of 0.5 was tested with three 

indentations on the calibration block and it was thus found that the machine is well 

within specification.  The hardness of wrought grade 1 CPTi is 70 HRBW.  An 

arithmetic mean hardness value of 60.1 HRBW was determined for the 55 vol% φ 

sintered specimens, which is a value 86 % of wrought.  For specimens 1 and 2, 

indentations 1 and 2 were made at the upper edge of the specimens, indentations 3 

and 4 at the bottom edge and indentation 5 in the middle of the specimen.  It is 

observed that the hardness value does not vary significantly throughout the 

thickness of the specimens from the upper to the lower edge, indicating an evenly 

dense microstructure and that no significant settling of the powder has taken place 

after casting the slurry.  For specimen 3, it is observed that the hardness values 

varied slightly with the y-direction.  
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Table 12:Rockwell Hardness Values 

Specimen 
HRBW Value  

1 2 3 4 5 6 7 Average 

1 61.6 63.9 61.3 61.5 62.2   62.1 

60.1 2 61 59.2 60.7 61.2 59.6   60.3 

3 56.2 60.6 59.3 56.4 57 57.3 57.2 57.7 

 

 

Figure 53: Locations of the indentations on the xz-plane (left) and the xy-

plane (right) 

x 

z 

x 

y 
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5 Conclusions and Recommendations 

The MAM/MBAM and Isobam® binder systems were evaluated by sedimentation 

tests, investigating the settling time of CPTi powder in various premix solutions. 

The monomer content, monomer:crosslinker ratios, dispersant content, slurry 

mixing time and solid loading were varied.  It was clear that neither the 

MAM/MBAM nor the Isobam® binder system suspends the CPTi powder particles.   

 A commercially pure titanium slurry, using the MAM/MBAM binder system, was 

successfully developed, using a novel approach to the conventional ceramic gel-

casting process.  It was found that for CPTi powder, the weight of the powder 

particles plays a more significant role than the surface charge of the particles in the 

dispersion of the particles in the suspension.  Stokes Law was used to control the 

rate of sedimentation of the particles, leading to a slurry with a solid loading of      

55 vol% that was successfully cast and polymerized, without settling of the powder 

particles during the process.  

A rectangular bar-shape mould was successfully resin printed, using 

stereolithography.  The mould rendered parts with a smooth surface finish that 

easily demoulded.  The mould cavity was designed, assuming isotropic shrinkage 

of 15.1 % (from green density to a relative sintered density of 90 %).  The shrinkage 

measured was 10.4 % and 9.03 % in the length and width of the sintered rectangular 

bars, respectively.  A dimensional accuracy of 0.3 mm from mould to final net-

shape part was thus not reached and would require further study on the 

characterization of shrinkage together with an iterative approach of mould design.  

Casting simulation software, such as Altair Inspire Cast, is recommended for use in 

further studies.  The objective of gel-casting a complex shape was not achieved and 

is also recommended for further study, using the simulation software 

recommended.       

Some of the green bodies warped and cracked due to rapid evaporation of the 

solvent during drying and the beginning of the binder burnout cycle.  It is 

recommended that a controlled atmosphere is used for solvent removal for further 

studies.  As a result of insufficient drying, a clear liquid was removed from the 

quartz tube during debinding that caused the ends of the tube to heat up as steam 

formed, melting the vacuum tape that sealed the connections and compromising the 

system.  TGA was done to determine the temperatures at which the binder 

constituents debind.  The binder was debound at 400 ˚C and the parts were 

presintered at 650 ˚C to obtain handling strength.  The debound and presintered 

parts were vacuum sintered at 1200 ˚C for 2 hours.  A relative sintered density of 

83.6 % was achieved.   

Optical micrographs of the sectioned sintered specimens showed an even 

distribution of pores, indicating a well-dispersed slurry during the casting and 

polymerization process.  SEM images of the fractured surface of a tensile test 

specimen showed distinct particles indicating that only intermediate sintering has 

Stellenbosch University https://scholar.sun.ac.za



 

69 

 

taken place.  A yield strength and ultimate tensile strength of 323 MPa and 378 

MPa, respectively, was measured.  This is much higher than the standard for PM100 

CPTi grade 1.  The elongation at fracture measured was also much lower than the 

standard.  The tensile properties were explained by C and O detected in the 

microstructure by EDS analysis.  Hardness values 86 % of wrought was measured.  
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Appendix A : Technical Data Sheets 

A.1 Commercially Pure Titanium 

 

Figure A.1: Commercially pure titanium material certificate 
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Appendix B : Step-by-Step Experimental 

Procedures 

B.1 Binder Burnout and Presintering 

The residual binder in the CPTi gel-cast green bodies, after drying, were 

decomposed by a heat treatment cycle under inert atmosphere that was designed 

from TGA results.  Table B.1 lists the apparatus, laboratory supplies and chemicals 

that were used. 

Table B.1: Apparatus, laboratory supplies and chemicals for binder burnout 

Apparatus Laboratory Supplies Chemicals 

• Quartz tube 

• Zirconia 

substrates 

• Tube furnace 

• Glass fittings 

• Bubble flowmeter 

• Glass column 

• Water bubbler 

• Plastic tubing 

• Parafilm 

vacuum tape 

• Vacuum 

grease 

 

• Activated carbon 

• Argon, high purity, 

99.998 % 

• Acetone, 99 % 

  The following step-by-step procedure for binder burnout was performed: 

Step 1: Experiment setup 

• The samples were placed in the quartz tube on zirconia boats in the 

heating zone of the tube furnace. 

• The quartz tube was placed in the tube furnace with the samples in the 

heating zone range. 

• The plastic tubing was connected to the glass fittings and sealed with 

parafilm vacuum tape. 

• The glass fittings were connected to the quartz tube and sealed with 

vacuum grease and parafilm. 

• A bubble flowmeter was connected to the system on the inlet side of the 

quartz tube. 

• The quartz tube on the outlet side was connected to a water bubbler and 

the bubbler to a glass column containing activated carbon. 

Step 2: Running the furnace 

• The tube furnace was heated to 220 ˚C at a heating rate of 10 ˚C/min, then 

further heated to 400 ˚C at a heating rate of 1 ˚C/min, dwelling for 30 min 

at the set temperature.   
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• The argon cylinder was opened, setting the line pressure to 50 kPa 

• When the furnace reached 220 ˚C, the argon flow rate was set to 200 

ml/min using the volumetric (bubble) flow meter to read the flow rate and 

the regulating valve at the inlet of the tube to regulate flow. The flow 

meter was parallel in the system on the gas inlet side. The quartz tube was 

bypassed when setting the argon flow rate.  

• After setting the argon flow rate, the flowmeter was bypassed, allowing 

argon gas to flow through the tube.  

• After dwelling at 400 ˚C, heating was continued to 650 ˚C at a rate of 5 

˚C/min, dwelling for 30 min at the set temperature. 

• The furnace element was switched off to start the cooling cycle. 

• When the furnace reached a temperature below 300 ˚C, the argon cylinder 

valve was closed. 

Step 3: Removing the samples 

• The furnace was allowed to cool to below 70 ˚C before removing the glass 

fittings.  

• The quartz tube was removed from the furnace. 

• The samples and the substrates were removed from the tube. 

Step 4: Cleaning the quartz tube and zirconia boats 

• Most residue on the quartz tube was cleaned with acetone. 

• The quartz tube was placed in the tube furnace with the zirconia substrates 

in the tube in the heating zone. 

• The furnace was heated to 800 ˚C at a rate of 10 ˚C/min and held for 2 

hours. 

• The furnace element was switched off. 

• The furnace was allowed to cool to below 70 ˚C before removing the 

quartz tube from the furnace and the substrates from the tube. 

B.2 Sintering 

Sintering was performed on the debound parts to densify them.  The following 

apparatus was used in the sintering procedure: 

A. Elite TSH 15/25/180 furnace with Eurotherm controller, coupled to 

B. Vacuum system: 

a. (low vacuum: LV) Adixen Pascal 2012 SD rotary vane pump, 

b. (high vacuum: HV) Varian Turbo-V 81-M turbo pump, and  

c. Adixen ACS 2000 vacuum controller with ACC 2009 

Pirani/Penning combination vacuum gauge. 
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C. UHP argon supply (Afrox High Purity, 99.998 %) 

The step-by-step procedure that was used for sintering is given in ### below: 

Table B.2: Step-by-step sintering procedure 

Phase System in use Instructions 

Dura-

tion 

S
ta

rt
-u

p
 &

 A
rg

o
n
 F

lu
sh

in
g
 

    Open doors and windows to ensure air ventilation 

  

 10 min 

  

  

  

  

  

  

  

A Furnace 
Place sample inside furnace tube, making sure it is 

positioned in the middle of the heating zone. Tighten 

end seals. 

A Furnace 

Plug in and switch on furnace, make sure the heat is 

switched off. 

B 

Vacuum 

(LV) 

Plug in vacuum system and switch on vacuum 

controller/gauges.  

Do NOT switch vacuum pumps on yet. 

C Argon Close argon inlet valve 

B 

Vacuum 

(LV) Switch on rotary pump 

C Argon Open argon cylinder valve (NOT the inlet valve). 

C Argon 

Set argon line pressure to 50 kPa at the regulator 

(attached to cylinder), then slowly open argon inlet 

valve allowing argon gas to flow through the system. 

C Argon 

The flow of argon will change the system pressure, so 

adjust the line pressure to 50 kPa at regulator. 

C Argon 

Close argon inlet valve but leave the cylinder valve 

open. 

B 

Vacuum 

(HV) Make sure turbo pump is switched off. 

 30 min 

  B 

Vacuum 

(LV) 

Switch the rotary pump on and let it run until the 

vacuum gauge reads <10-1Torr  

C Argon 

Slowly open argon inlet valve, at the same time 

monitoring the system pressure on the vacuum gauge. 

Stop when the vacuum gauge reads 4.7x10+0 mbar. 

 30 min 

  

  

C Argon Make sure the argon pressure regulator reads <50kPa. 

C Argon After half an hour close the argon inlet valve.  
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Phase 

System in 

use Instructions 

Dura-

tion 

S
in

te
ri

n
g

 C
y

cl
e 

B 

Vacuum 

(LV) 

Wait while the rotary pump evacuates the argon from 

furnace and draws sufficient vacuum for turbo pump 

(<5x10-2 mbar). 

10 min 

B 

Vacuum 

(HV) 

Once the vacuum gauge reading is <5x10-2 mbar, open 

valve to turbo, close valve to rotary pump (vacuum is 

now pulling through the turbo out of the rotary pump). 

Now switch on the turbo pump. 

The vacuum gauge controller automatically switches 

between the Pirani (LV) and Penning (HV) gauges 

around 10-4 mbar. 

A Furnace 

Program the furnace heating cycle on the Eurotherm 

controller while waiting for full vacuum to be drawn  

 

10 min 

  

A 

Furnace 

(Ramp) 

Set temperature to ramp at 10°C/min. Heat ramp from 

ambient temperature to 1200°C. 

A 

Furnace 

(Dwell) Isothermal temperature hold for 2 hours 

A 

Furnace 

(Stop) Set furnace to switch off at end of cycle. 

B 

Vacuum 

(HV) 

Once the vacuum gauge reads <10-4 mbar, the heating 

cycle can be initiated.   

A Furnace 

Switch on heat switch on furnace and press the run 

button to start sintering cycle. 
3-4 hr 

A Furnace 

When furnace has reached 300°C during the cooling 

cycle (after sintering), the sinter cycle is complete, and 

the furnace heat can be switched off. 

  90 

min  

B
ac

k
fi

ll
 &

 S
y
st

em
 S

h
u
td

o
w

n
 

B 

Vacuum 

(HV) Switch off turbo pump only, wait till it stops rotating.  30 min 

C Argon 

Slowly open argon inlet valve to backfill system (argon 

line pressure must not exceed 50 kPa) with the rotary 

pump still working (vacuum gauge must not read more 

than 4.7x10+0 mbar).  30 min  

B 

Vacuum 

(LV) 

The turbo pump needs to cool down, so let the rotary 

pump run, pulling the argon through the turbo, for half 

an hour. 

B 

Vacuum 

(LV) 

Switch off rotary pump and then switch off vacuum 

controller/gauge. 
  

  

 10 min 

  

  

C Argon Close argon inlet valve at furnace 

C Argon Close argon valve on argon cylinder. 

A Furnace Unplug electrical socket at the wall 

B Vacuum Unplug electrical socket at the wall 

A Furnace 

Remove sintered sample using heat resistant gloves and 

tongs. Leave furnace open to let in air  
    Close windows and doors   

   Estimate: Total time  7 hr 

 

Stellenbosch University https://scholar.sun.ac.za



 

81 

Appendix C : Test Data 

C.1 Apparent Density 

Table C.1: Hall Flowmeter Specifications 

Cylinder weight [g] 269.05 

Cylinder volume [cm3] 25 

Table C.2: Weight of the Powder and Cylinder 

Test Total weight [g] 

1 331.65 

2 331.94 

3 332.05 

Table C.3: Apparent density of the CPTi Powder 

Test Apparent Density [g/cm3] 

1 2.504 

2 2.516 

3 2.520 

Average (𝛘̅) 2.513 

Standard deviation (STD) 0.008 

 

C.2 Archimedes Sintered Density 

Table C.4: Archimedes sintered density of 55 vol% φ samples 

Sample 

Mass A, 

[g] 

Mass B, 

[g] 

Mass F, 

[g] 

Sintered 

Density, 

[g/cm3] 

Average 

sintered 

density, 

[g/cm3] 

1 12,686 12,695 9,309 3,741 
3,771 

2 7,412 7,425 5,465 3,777 

3 8,242 8,251 6,089 3,807 

4 13,671 13,696 10,064 3,759 
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C.3 Shrinkage 

Table C.5: Dimensional change of 55 vol% φ sintered rectangular bar 

specimens 

Specimen Lmould Wmould Lsintered Wsintered DClength DCwidth 

1 88,7 17,6 79,36 16,03 -0,105 -0,089 

2 88,7 17,6 79,88 16,07 -0,099 -0,087 

3 88,7 17,6 80,04 16,11 -0,098 -0,085 

4 88,7 17,6 79,04 16 -0,109 -0,091 

5 88,7 17,6 79,04 15,84 -0,109 -0,100 

Average [%]     -10,404 -9,034 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

83 

Appendix D : CAD Drawings 

D.1 Mould Design  

 

Figure D.1: CAD drawing of the bar cavity resin mould for 3D printing 
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Figure D.2: CAD drawing of the bottom part of the resin mould for 3D 

printing 
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D.2 Tensile Test Specimen 

 

Figure D.3: CAD drawing of tensile test specimen 
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