
Obstacle Avoidance with a Multicopter in a
Dynamic Two-Dimensional Environment

by

Jacobus Stephanus Coetzee

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Mechatronic) in the

Faculty of Engineering at Stellenbosch University

Supervisor: Dr. WJ. Smit

March 2017

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date:March 2017.

Copyright © 2017 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Obstacle Avoidance with a Multicopter in a Dynamic
Two-Dimensional Environment

JS. Coetzee
Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mechatronic)
March 2017

In order to allow a multicopter to fly autonomously in a dynamic two-dimensional
environment, a prototype obstacle avoidance system was developed. Included
in this prototype avoidance system was the development of a two-dimensional
proximity sensor. A combination of obstacle avoidance algorithms (D* Lite
and the VFF) were coded in MATLAB and verified through various simula-
tions. Pose and measurement uncertainties were also investigated and incor-
porated into the simulations’ map building technique. In the end, the obstacle
avoidance algorithm was successfully implemented in various outdoor test en-
vironments, managing to safely navigate the multicopter to its end destination
in each case.

ii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Hindernis Vermyding met ’n Hommeltuig in ’n
Dinamiese Twee-Dimensionele Omgewing

(”Obstacle Avoidance with a Multicopter in a Dynamic Two-Dimensional
Environment”)

JS. Coetzee
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Megatronies)
Maart 2017

Ten einde hindernis vermyding met ’n hommeltuig toe te pas in ’n twee-
dimensionele vlak, is ’n prototipe hindernis vermydings sisteem ontwerp. In-
gesluit by die prototipe vermydings sisteem was die ontwerp van ’n twee-
dimensionele afstand sensor. ’n Kombinasie van hindernis-vermydings algo-
ritmes (D* Lite en die VFF) was geprogrameer en geverifieer in MATLAB
deur verskeie simulasies te doen. Posisie asook meting onsekerheid was on-
dersoek en in ag geneem in die simulasie se kaart bou tegniek. Daarna was
die hindernis-vermyding sisteem suksesvol geimplimenteer in verskeie buite-
muurse toets omstandighede waar dit altyd die hommeltuig veilig by sy eind
bestemming kon uitbring.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and organ-
isations:

• My supervisor, Dr. W.J. Smit for his guidance and support with regards
to my research.

• The NRF for granting me a bursary.

• My family and friends for their ongoing support.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Objectives . 3
1.2 Scope . 3
1.3 Overview of Project Layout . 4

2 Literature Review 5
2.1 Map Building Techniques . 5

2.1.1 Uniform Occupancy Grids 6
2.1.2 Adaptive Occupancy Grids - Quadtrees 8

2.2 Existing Obstacle Avoidance Algorithms 9
2.2.1 Virtual Force Field . 10
2.2.2 A* . 11
2.2.3 Lifelong Planning A* . 12
2.2.4 D* Lite . 13

2.3 Conclusion . 15

3 Measurement and Pose Uncertainty 16
3.1 Overview: Measurement Uncertainty 16
3.2 Assumptions: Measurement Uncertainty 16

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

3.3 Inverse Sensor Model Derivation 17
3.3.1 Ideal Inverse Sensor Model 17
3.3.2 Inverse Sensor Model with Gaussian Noise 18

3.4 Overview: Pose Uncertainty . 21
3.5 Assumptions: Pose Uncertainty 22
3.6 Pose Uncertainty Derivation . 22
3.7 Simulation . 24

3.7.1 Setup . 24
3.7.2 Results . 25

3.8 Conclusion . 28

4 Hardware and Software Integration 30
4.1 Hardware Integration . 30

4.1.1 Pixhawk Flight Controller 30
4.1.2 Intel Edison . 31
4.1.3 Proximity Sensor Design 33

4.2 Software Integration . 34
4.2.1 Robot Operating System 35
4.2.2 MATLAB . 36
4.2.3 Python . 36
4.2.4 Proximity Sensor Design 37
4.2.5 Hardware in the Loop 38

4.3 Conclusion . 39

5 Proximity Sensor 41
5.1 Test Results . 41
5.2 Conclusion . 46

6 Obstacle Avoidance Implementation 47
6.1 Algorithm Integration . 47
6.2 MATLAB Simulation Setup . 48

6.2.1 D* Lite . 48
6.2.2 Virtual Force Field . 50

6.3 MATLAB Simulation Results 52
6.4 Conclusion . 54

7 Flight Tests 57
7.1 Assumptions . 58
7.2 Outdoor Test Setup . 58
7.3 Flight Test Results . 60
7.4 Conclusion . 69

8 Conclusion and Recommendations 71
8.1 Conclusion . 71

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vii

8.2 Recommendations . 72

List of References 74

Appendices 76

A Pseudo Code For Obstacle Avoidance Algorithms 77
A.1 A* . 77
A.2 LPA* . 78
A.3 D* Lite . 80

B Datasheets 82
B.1 Pixhawk Flight Controller . 82
B.2 Intel Edison . 85
B.3 Arduino Mega . 88
B.4 PulsedLight Lidar . 94
B.5 Pickup Sensor . 100
B.6 Piksi RTK . 107

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 Ivanpah solar power plant in California 2

2.1 Quadtree map building example . 8
2.2 Graph representation . 9
2.3 Virtual Force Field vector diagram 10
2.4 Virtual Force Field gradient diagram 11

3.1 Ideal inverse sensor model . 18
3.2 Probability density function (PDF) 19
3.3 Gaussian inverse sensor model . 21
3.4 Incorporating measurement uncertainty into the map building process 21
3.5 Cumulative distribution function (CDF) 23
3.6 Incorporating pose uncertainty into the map building process 24
3.7 CDF position approximation . 27
3.8 Simulated map outputs . 27
3.9 Sensor model comparison . 28

4.1 Overview of hardware and software integration 31
4.2 Pixhawk flight controller . 32
4.3 Intel Edison breakout board with Arduino expansion board 32
4.4 Arduino Mega . 33
4.5 Pulse width modulation (PWM) wiring setup for LIDAR 34
4.6 Flow diagram of the proximity sensor code 39
4.7 jMAVSim hardware in the loop (HITL) interface 40

5.1 Sensor Setup . 42
5.2 Test results: First scanned environment 43
5.3 Test results: Second scanned environment 44
5.4 Test results: Third scanned environment 45

6.1 Cost and heuristic function illustration 50
6.2 Combined avoidance algorithm flow chart 51
6.3 MATLAB simulations of static and dynamic environments 53
6.4 D* Lite MATLAB simulation of cluttered static environment 54
6.5 D* Lite execution time . 55

viii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES ix

6.6 D* Lite execution time using different obstacle configurations . . . 56

7.1 Multicopter test setup . 59
7.2 Flight test obstacle placement . 59
7.3 Test results: First flight . 63
7.4 Test results: Second flight . 64
7.5 Test results: Third flight . 65
7.6 Test results: Fourth flight . 66
7.7 Test results: Fifth flight . 68

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 Correspondences between probabilities and log odds ratios 18
3.2 PDF distribution data obtained from Pixhawk position estimation

error . 26

4.1 ROS LaserScan Message type: Message data and definitions 38

6.1 Octile distance heuristic function inequality test 49

7.1 Summary of flight test results . 62
7.2 PDF distribution data obtained from Pixhawk position estimation

error during flight tests . 62

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Variables
c∗(s, s′) Cost of the shortest path
d Distance
E Error
F Force
g(s) Exact cost
h(s, s′) Heuristic cost
km Key modifier
k(s) Key
L Length
m Matrix
M Number of measurements
r Distance between cells
rhs(s) Exact cost
s Vertex
S Graph
x Pose estimate
z Distance measurement
λ Log-odds map update value
µ Average error
σ Standard deviation

Subscripts
att Attraction
i Cell / Matrix index
j Cell / Matrix index
last Last vertex a path was recalculated at
m Modifier
max Maximum

xi

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xii

rep Repulsion
safe Safety distance
start Current vertex a path should be calculated to
t Current Time
total Total
x x-direction
y y-direction

Superscripts
c Compliment

Acronyms
A* A-star
CDF Cumulative Distribution Function
CPU Central Processing Unit
CSP Concentrated Solar Power
DC Direct Current
D* Lite D-star Lite
ENU East, North, Up
GPS Global Positioning system
HITL Hardware in the Loop
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
LPA* Lifelong Planning A-star
LPDDR Low Power Double Data Rate
MATLAB Matrix Laboratory
MAVLINK Micro Air Vehicle Communication Protocol
MAVROS MAVLINK extendible communication node for ROS
NED North, East, Down
PDF Probability Density Function
PWM Pulse Width Modulation
STERG Solar Thermal Energy Research Group
UART Universal Asynchronous Receiver/Transmitter
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
PV Photovoltaic
ROS Robot Operating System

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xiii

RTK Real Time Kinematic
SD Secure Digital
VFF Virtual Force Field

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

In recent years, the use of multicopters have become popular for both research
and recreational activities. Currently, two active research fields are search-
and-rescue and swarming (the use of multiple drones to complete a single
task). Recreational activities, on the other hand, can include anything from
drone racing, photography, surveying or even first person view flying. The use
of these devices are increasing despite the fact that they carry inherent risk.
For this reason additional safety measures are constantly being investigated;
including autonomous obstacle avoidance capabilities.

Vehicles with autonomous capabilities are being researched and imple-
mented around the world by multiple companies such as Google, Tesla, Otto,
Ford and many more. Other companies like Honda are working on advance-
ments in robotics with humanoid-like capabilities. Whereas Amazon and DHL
are focusing their research on package delivery with the help of unmanned
aerial vehicles (UAVs). However, for these vehicles and robots to be deemed
safe while moving about autonomously, obstacle avoidance is required.

At Stellenbosch University, the Solar Thermal Energy Research Group
(STERG) is currently investigating multiple different ways of reducing the
costs surrounding the manual inspection and calibration of heliostats in a
concentrated solar power (CSP) plant. One way of doing this is to increase
routine inspections as it can have a significant impact on the maintenance costs
throughout a plant’s operating period, if problematic areas are identified be-
forehand. However, solar power plants usually cover a great area and contain
a tremendous amount of equipment. One example of such a solar plant is the
Topaz solar farm in California. This plant contains 9 million solar photovoltaic
(PV) modules and spans over an area of 25.6 km2. Another example is the
Ivanpah CSP plant in California, as seen in Figure 1.1. This plant consists of
more than 300 thousand mirrors and spans over an area of 14.2 km2.

To maintain both the efficiency of the plant and the plant itself, mirrors
as well as solar PV modules have to be kept clean and replaced when broken.
Usually, these manual inspections require a considerable amount of time and
labour. Therefore, the high complexity, size and remote locations of these

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

plants provide quite a few challenges namely: dangerous or difficult to access
work areas, tight schedules and a large number of inspection points.

Figure 1.1: Ivanpah solar power plant in the Mojave Desert, California (Bright-
Source Energy Inc, 2016). This plant uses around 173 500 software operated
heliostats to follow the sun’s trajectory with more than 300 000 mirrors, span-
ning over 14.2 km2.

Recently, multicopters flown by pilots have been used for inspection pur-
poses on solar farms. Equipped with infrared sensors, these multicopters are
flown to all the inspection points to check for damage and heat anomalies
across the plant. This method, led to a decrease of up to 40 % in the plant’s
maintenance costs while taking less than 30 % of the time it would have taken
if manual inspections were done (UAS, 2016).

If a fully automated inspection system can be implemented, it will be able
to further increase the efficiency of the maintenance work, reduce the operating
and maintenance costs as well as improve the safety and working conditions of
the service technicians. Therefore, the proposed solution is to use autonomous
UAVs, specifically multicopters, for regular inspections around CSP plants.
However, for the system to be able to fly autonomously, obstacle avoidance
is required. This study will therefore be aimed at the design, implementation
and testing of a system that enables a multicopter to fly autonomously in a
dynamic two dimensional (2D) environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

To outline the steps followed on how the proposed solution was investigated,
both the objectives and scope of the project are given in Section 1.1 and
Section 1.2 respectively. The layout of this thesis then follows in Section 1.3.

1.1 Objectives
This study is aimed at designing, building and testing an obstacle avoidance
system for a multicopter in a dynamic 2D environment. In order to reach these
objectives, the following methodology was set:

• Examine literature regarding different map building and obstacle avoid-
ance techniques.

• Select, code and simulate a suitable map building technique.

• Determine what effect pose and measurement uncertainty have on the
map building technique.

• Select, code and simulate an obstacle avoidance algorithm along with the
map building technique.

• Integrate the necessary hardware and software to get a working prototype
of the obstacle avoidance system.

• Implement the prototype obstacle avoidance system on a multicopter in
a test environment.

• Evaluate test results and give relevant feedback.

1.2 Scope
The scope of this project is aimed at designing, building and testing an ob-
stacle avoidance system. This includes the proximity sensor design, algorithm
development, simulations, component integration and testing. In essence, the
obstacle avoidance capabilities will be a separate system that can be connected
with the flight controller, enabling it to fly autonomously.

The scope of this project, however, does not include the design or modifi-
cation of the flight controller itself. This means that the flight controller was
used with its own flight stack i.e. no controller design was done. The controller
was, however, tuned to improve flight stability and performance.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.3 Overview of Project Layout
In Chapter 2, a literature review regarding the relevant path planning and
map building techniques for this project is given. The effects that uncertainty
in pose and proximity sensor measurements can have on the map building
technique are then investigated in Chapter 3. This is followed by the hardware
and software integration in Chapter 4, illustrating how a working prototype
of the obstacle avoidance system can be obtained by correctly integrating the
necessary components. Chapter 5 gives an overview of the proximity sensor
test results obtained using the sensor setup as described in Chapter 4. The
chosen combination of obstacle avoidance algorithms are then explained in
Chapter 6 followed by the simulated results. Final flight test results as well as
a discussion regarding these results can be found in Chapter 7. The conclusion
and recommendations regarding this project are then given in Chapter 8.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

Obstacle avoidance can be broadly classified under two categories: global- and
local path planning. Global path planning is mainly done offline (beforehand),
whereas local path planning must be fast, reactive and is usually carried out
online (while in motion) to ensure the safety of the vehicle by reacting to un-
foreseen obstacles (Mujumdar and Padhi, 2011). The key distinction between
the two categories of obstacle avoidance is the amount of information available
regarding the vehicle’s immediate environment. If all the information regard-
ing the obstacles is available, global path planning will be the best approach.
On the other hand, if the information regarding the environment is imper-
fect, local information based on proximity sensor data will have to be used to
navigate (Hoy et al., 2015).

Many techniques for both local and global obstacle avoidance have been
proposed in the recent literature (Goerzen et al., 2010; Mujumdar and Padhi,
2011; Hoy et al., 2015), all with varying levels of efficiency and comprehen-
sivity. By identifying and compensating for the weaknesses within some of
these techniques, it is possible to generate alternative methods for obstacle
avoidance (Chapter 6).

In Section 2.1, two different map building techniques are discussed: uniform
and adaptive occupancy grids. This is followed by an investigation regarding
different path planning techniques in Section 2.2. These techniques include
the Virtual Force Field (VFF) method, A*, LPA* and D* Lite.

2.1 Map Building Techniques
In this section, two occupancy grid methods are investigated. Uniform grids
are introduced in Section 2.1.1 whereafter a probability update formula is
derived for this map building technique. This is followed by an explanation
of quadtrees, an adaptive occupancy grid method in Section 2.1.2 along with
some of the advantages this method holds over uniform occupancy grids.

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 6

2.1.1 Uniform Occupancy Grids

The occupancy grid algorithm was first introduced by Moravec and Elfes
(Moravec, 1988), where two grids of the same environment is generated by
discretizing it into smaller cells. One grid contains the probability that a cell
is occupied whereas the other contains the probability that a cell is free. From
these two maps a final map is generated by choosing the state with the highest
confidence for each cell. To be able to update a map of the environment, the
input parameters to the system must first be identified. For any map updating
device, this will be its pose estimate (x1:t) as well as the sensor measurement
data (z1:t) given from the first time-step up until time t (Joubert, 2012).

In an ideal world, hard assignment regarding the occupancy of a grid cell
(one for occupied and zero for empty) can be used as the devices are per-
fect. However, sensor measurements are noisy, which implies that the posi-
tion estimate as well as the proximity sensor measurements are not accurate.
Therefore, it would be more realistic to assign a probability value to each
grid cell, where the value represents the probability of the cell being occupied.
If mi is the outcome of cell i being occupied given the current pose and dis-
tance measurement from the multicopter and sensor respectively, the posterior
probability distribution can be determined as follows (Joubert, 2012):

p(m1,m2, ...,mN|z1:t, x1:t) (2.1)

where N represent the number of cells in the grid. The problem with Equa-
tion 2.1 is that it requires a large amount of computational power as it updates
the entire grid for each new measurement that is taken. To overcome this prob-
lem, the state of each individual cell can be estimated by using Equation 2.2
(Joubert, 2012). This states that the probability of cell i being occupied can
be calculated if both the pose estimate as well as the distance measurements
received from the proximity sensor are available.

p(mi|z1:t, x1:t) (2.2)

If conditional independence is assumed (Joubert, 2012), the state of each cell
can be multiplied, as seen in Equation 2.3, to calculate the posterior probability
distribution as given in Equation 2.1.

p(m1,m2, ...,mN|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (2.3)

By incorporating the measurements into a global coordinate system, the pose
information is included in the measurements themselves since measurements
are given relative to the proximity sensors’ current pose. Therefore, the pose
information x1:t may be omitted as it does not supply any additional informa-
tion regarding the environment (Joubert, 2012).

p(mi|z1:t, x1:t) = p(mi|z1:t) (2.4)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 7

By following Bayes’ theorem and assuming independence between the different
measurements, Equation 2.4 can be written as

p(mi|z1:t) =
p(zt|mi, z1:t-1)p(mi|z1:t-1)

p(zt|z1:t-1)

=
p(zt|mi)p(mi|z1:t-1)

p(zt|z1:t-1)

(2.5)

From Bayes’ theorem, it therefore follows that

p(zt|mi) =
p(mi|zt)p(zt)

p(mi)
(2.6)

Substituting Equation 2.6 into Equation 2.5 gives

p(mi|z1:t) =
p(mi|zt)p(zt)p(mi|z1:t-1)

p(mi)p(zt|z1:t-1)
(2.7)

Similarly, if mc
i is the compliment of mi, therefore, the event that cell i is

empty, the following is also true

p(mc
i |z1:t) =

p(mc
i |zt)p(zt)p(m

c
i |z1:t-1)

p(mc
i)p(zt|z1:t-1)

(2.8)

Factors that could prove difficult to compute are eliminated by dividing Equa-
tion 2.7 with Equation 2.8, leaving

p(mi|z1:t)

p(mc
i |z1:t)

=
p(mi|zt)

p(mc
i |zt)

p(mi|z1:t-1)

p(mc
i |z1:t-1)

p(mc
i)

p(mi)
(2.9)

By taking the natural logarithm on both sides, a log-likelihood ratio is ob-
tained. This is mainly done to avoid truncation errors as well as the multipli-
cation of probabilities.

log

(
p(mi|z1:t)

p(mc
i |z1:t)

)
= log

(
p(mi|zt)

p(mc
i |zt)

)
+ log

(
p(mi|z1:t-1)

p(mc
i |z1:t-1)

)
− log

(
p(mi)

p(mc
i)

) (2.10)

The last term in Equation 2.10, also given in Equation 2.11, is known as the
prior probability log-odds ratio of a cell (Joubert, 2012). In the absence of any
prior knowledge regarding the environment, this term is set to zero.

log

(
p(mi)

1− p(mi)

)
(2.11)

The second term on the right hand side of Equation 2.10 is the probability of
cell i being occupied. This value takes into account all previous measurements

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 8

of cell i, whereas the first term on the right hand side of Equation 2.10 is
known as the inverse sensor model (Section 3.3). This term contains only
new information gathered at time t, enabling Equation 2.10 to integrate new
measurements into the grid though addition.

To convert the log-odds ratio, given on the left hand side of Equation 2.10,
back to a probability value, Equation 2.12 and 2.13 can be used (Joubert,
2012). This enables each cell to be updated by using all the previous sensor
measurements, the current sensor measurements as well as prior knowledge
regarding obstacles.

λ = log

(
p(mi|z1:t)

1− p(mi|z1:t)

)
(2.12)

p(mi|z1:t) =
eλ

1 + eλ
(2.13)

2.1.2 Adaptive Occupancy Grids - Quadtrees

Unlike the uniform occupancy grid described in Section 2.1.1, the environment
is not completely discretized into smaller cells, but divided into more manage-
able regions. In essence the quadtree algorithm is initialized with a single
node and as objects are added to this node it will be split into four regions
to better isolate the objects. The process of dividing the different nodes into
four sections will continue till the object is completely isolated in the smallest
grid size possible. Any object that does not fully fit inside a node’s boundary
will be placed in the parent node as illustrated in Figure 2.1.

(a) Uniform grid. (b) Corresponding quadtree grid.

Figure 2.1: Quadtree map building example. From this image it can be seen
how the environment is continuously split into four regions to better isolate
obstacles. If a uniform grid (a) was used for the same obstacle configuration,
64 cells would have been required as opposed to the 21 required to represent
the quadtree map (b).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 9

One of the main advantages of quadtrees is the decreased amount of storage
space required to save the same data as an uniform grid (Mujumdar and Padhi,
2011). In the case of the illustration in Figure 2.1, the quadtree representation
only occupies 21 cells where the uniform grid would have occupied 64 cells for
the same map, saving around 65% of storage space. If, however, a map is being
built of a large cluttered environment, this method becomes computationally
expensive as nodes have to be split until all the objects are isolated. This
means that for some configurations of objects, it is possible for the quadtree
map to split into the same amount of cells used for the uniform grids. In such
a case, this method would give exactly the same results as a uniform grid, but
would be more computationally intensive.

2.2 Existing Obstacle Avoidance Algorithms
In this section, four existing obstacle avoidance algorithms are discussed. Firstly,
the Virtual Force Field (VFF) method is introduced in Section 2.2.1. This is
followed by three global path planning algorithms: A* (Section 2.2.2), Lifelong
Planning A* (Section 2.2.3) and D* Lite (Section 2.2.4).

Figure 2.2: Graph representation. This is a visual representation of the infor-
mation needed to calculate the most cost effective path between two vertices.

To better understand the discussions regarding the global path planning
algorithms, some of the terminology used, first has to be clarified. The illus-
tration shown in Figure 2.2 is referred to as a graph (S). A graph usually
contains all the information needed to plan a path from one point to the next.
Normally a graph consists of two components: vertices and cost. A vertex (s),
also referred to as a node, is the meeting point of two or more lines to form
an angle as seen in Figure 2.2. To make the transition from one vertex to the
next, a value is introduced to represent the amount of effort needed to com-
plete this task i.e. cost. Usually the cost is linked to the distance the vehicle

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 10

must travel as well as the task that has to be completed for instance changing
direction or altitude. This value is normally calculated with a predetermined
formula and may change as the graph is updated with new proximity sensor
measurements. The exact cost of a path from the search algorithms’ starting
point to any vertex, s, is given by g(s) or rhs(s) and is respectively referred
to as the g-value or the right hand side value. The estimated heuristic cost
from any vertex, s, to another vertex, s′, is given by h(s, s′) and is sometimes
referred to as the h-value.

2.2.1 Virtual Force Field

This method is known as a global path planning algorithm with local colli-
sion avoidance capabilities. It was mainly used in ground robots and only
recently found use in aerial vehicles. One of the most significant benefits of
this method is the fact that no knowledge of the vehicle model is needed to
obtain results (Paul et al., 2008).

Figure 2.3: VFF vector diagram. By giving the goal position an attraction
force and all the obstacles a repulsion force, it is possible to calculate a resultant
force as well as a resultant direction as indicated (Coetzee and Smit, 2016).

The potential function usually consists of two forces. An attraction force
that pulls the vehicle to the goal and a repulsion force to ensure that the vehicle
does not collide with obstacles (Mujumdar and Padhi, 2011). The vehicle
can therefore be seen as an electrical agent with a positive charge. If all the
obstacles are given a positive charge as well, there will be a repulsion force on
the vehicle. On the other hand, if the goal is given a negative charge, there will
be an attraction force on the vehicle (De Filippis et al., 2012). This method
therefore calculates the resultant force along with the resultant direction by
summing up all the known forces to plan its next position as seen in Figure 2.3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

An alternative way of implementing this method is by taking the gradient of the
combined forces to plan the next position. This can be visualised as a marble
on the floor. If the floor is slanted in a certain direction, the marble will start
rolling until it reaches the bottom (De Filippis et al., 2012), as illustrated in
Figure 2.4.

Figure 2.4: VFF gradient diagram. The triangle and the diamond respectively
represents the start and goal position of the robot. The first image represents
the attractive force around the goal position, while the second image represents
the repulsive force from each obstacle. The last image represents the sum of
these forces (Coetzee and Smit, 2016).

The VFF method, however, does not explicitly avoid moving obstacles and
has a tendency to get caught in local minima. Therefore, the vehicle can
get caught in a cluttered environment before reaching its goal (Mujumdar
and Padhi, 2011). These issues can, however, be addressed with the proper
implementation of a global path planning algorithm (Mujumdar and Padhi,
2011; Droeschel et al., 2016).

2.2.2 A*

The A* global path planning algorithm is still one of the most popular incre-
mental heuristic search methods that exists since it is fairly easy to understand
and flexible to use in a wide range of scenarios (Choset, 2005). When the al-
gorithm is initialized, the start vertex is added to a priority queue. After the
algorithm has been initialized, the search for the shortest path is initiated.
This is done by expanding the vertices in the priority queue. Since the start
vertex is the only value in the priority queue at this point, the algorithm will
start there. This vertex is then removed from the priority queue and all its
neighbouring vertices are evaluated. The g and h-values for these vertices are
then determined along with f(s) given by Equation 2.14 (Choset, 2005). These

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

newly evaluated vertices are then all placed in the priority queue and reordered
in a non-descending order with regards to f(s). The vertex with the smallest
f(s) value is then removed from the priority queue and all its neighbours are
evaluated. This process continues until the the goal vertex has a smaller f(s)
value than any of the other vertices in the priority queue or until the queue is
empty.

f(s) = g(s) + h(s, sgoal) (2.14)

To find the shortest path after the algorithm is executed, each vertex has
to keep track of its predecessor. This allows the the algorithm to give the
shortest path by retracing its steps from the goal back to the start vertex. This
algorithm can, however, not reuse any of its calculated data to recalculate the
shortest path if necessary and therefore always have to plan from scratch. For
more information regarding this search algorithm, refer to the pseudo code
given in Appendix A.1.

2.2.3 Lifelong Planning A*

Lifelong Planning A* (LPA*) is a incremental heuristic search method that
repeatedly calculates the shortest path between any two vertices in a dynamic
environment (Koenig and Likhachev, 2002a). When the algorithm is initial-
ized, the g-values as well as the right-hand side (rhs) values of all the vertices
are set to ∞. The rhs-value of the start vertex (the current position of the
robot) is then set to zero, making the vertex locally inconsistent i.e. g 6= rhs.
If g = rhs, the vertex can be seen as locally consistent. When a vertex is
locally inconsistent, it is inserted into a priority queue.

After the algorithm has been initialized, the search for the shortest path
is initiated. This is done by expanding the vertices in the priority queue.
Since the start vertex is the only value in the priority queue at this point, the
algorithm will start there. This vertex is then removed from the priority queue
and its neighbouring vertices are evaluated. The rhs-values of these vertices
are then updated according to the cost formula. By updating the rhs-value,
these vertices are made locally inconsistent, and are therefore also added to
the priority queue. The queue is then re-ordered in a non-decreasing order of
their keys. The key, k(s), of a vertex is a vector with two components:

k(s) = [k1(s); k2(s)] (2.15)

where

k1(s) = min(g(s), rhs(s)) + h(s, sgoal)

k2(s) = min(g(s), rhs(s))
(2.16)

The rhs(s)-value represents the cost from the current vertex to the start vertex
whereas h(s, sgoal) can be seen as the estimated heuristic cost from the current

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

vertex to the goal position. The smallest distance from the current vertex to
the start vertex is calculated by k2(s). If multiple vertices with the same value
for k1 are calculated, the vertex with the smallest k2 value will be evaluated
first. Therefore, by using this key, the vertices are expanded in an order that
tries to focus the search in the direction of the goal position. This continues
until the goal vertex is locally consistent and the key value of the vertex to
expand next is not smaller than the goal vertex. If g(sgoal) is still ∞ after the
search, there is no valid path available (Koenig and Likhachev, 2002a).

During the vertex expansion, a locally inconsistent vertex s is called locally
over-consistent if g(s) > rhs(s). In this case the g-value will be set to
the rhs(s) value, making the vertex locally consistent while expanding to its
neighbours. Locally inconsistent nodes are called under-consistent in the case
where g(s) < rhs(s). The g-value will then be set to ∞, making the vertex
either locally consistent or over-consistent, causing the node to be added to
the priority queue again (Koenig and Likhachev, 2002a).

If g(sgoal) does not equal ∞, the shortest path can be calculated by start-
ing from the goal vertex and moving to any preceding vertex that minimizes
the cost until the start vertex is reached. In other words, starting at the
goal vertex, each of the neighbouring vertices are checked for the smallest g-
value. When that vertex is identified, its neighbouring vertices are investigated
and the procedure is repeated until the start vertex is reached (Koenig and
Likhachev, 2002a).

At first glance, LPA* will give the same results as A* since the first search
will yield exactly the same results. However, the subsequent searches will reuse
some of the previously calculated data in LPA*, whereas A* will have to plan
from scratch, leading to faster execution time. For more information regarding
this search algorithm, refer to the pseudo code given in Appendix A.2.

2.2.4 D* Lite

This algorithm is based on the same algorithmic progression as LPA* and
therefore has the same properties (Koenig and Likhachev, 2002b). The first
version of D* Lite that is explained, can therefore be seen as an extended
version of LPA*. The only difference between the two algorithms is the fact
that the vertices are expanded from the goal position to the start position,
changing the components of Equation 2.15 to:

k1(s) = min(g(s), rhs(s)) + h(s, sstart)

k2(s) = min(g(s), rhs(s))
(2.17)

For Equation 2.17 to work, the heuristic function has to be non-negative
and backwards consistent i.e. obey h(sstart, sstart) = 0 and h(sstart, s) =
h(sstart, s

′) + c(s′, s) for s ∈ S and s′ ∈ pred(s). If g(sstart) = ∞ after the
search, there is no valid path available. The shortest path, however, can then

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 14

be calculated in a similar way to the method used in LPA* by working from
the start vertex to the goal vertex. Unfortunately, there is a problem with
implementing the code in the manner described above. Every time the robot
or vehicle moves, the key values of the vertices in the priority queue will have
to be updated as the heuristic values of the vertices change when the robot
moves. This only affects the key values of the vertices in the priority queue
and not which vertices are locally consistent and thus in the queue. It can,
however, get computationally expensive as the priority queue often contains a
large number of vertices that have to be recalculated after every move (Koenig
and Likhachev, 2002b).

Since the vertices are evaluated from the goal position to the start position
and the heuristic function is aimed at minimizing the distance to the start
position, the keys are evaluated in a descending order unlike LPA*. After
the robot moves a certain distance along the calculated path, it may detect
an obstacle. Now, if the vertex the robot is currently on is re-evaluated, the
first component of the key will have decreased by, at most, h(s, s′). The
second component of the key does not depend on the heuristic function and
will therefore not be influenced. To maintain lower bounds, h(s, s′) needs to
be subtracted from all the key values. But if h(s, s′) is subtracted, the order
of the keys will not change. However, if the subtraction is not done, the new
key values calculated will be smaller than the rest by h(s, s′). Therefore, the
key modifier (km) term is introduced in the key function to compensate for
this (Koenig and Likhachev, 2002b).

k1(s) = min(g(s), rhs(s)) + h(s, sstart) + km

k2(s) = min(g(s), rhs(s))
(2.18)

where
km = km + h(slast, sstart) (2.19)

and slast represents the vertex the path was last recalculated at while sstart

represents the current vertex of the vehicle the new path should be calculated
to. Now if the robot moves and it detects changes in the environment again,
the km value will have to be increased accordingly. In other words, the order
of the vertices in the priority queue will not change or have to be recalculated
any more when the robot moves, saving computational power.

For these changes to be valid, the heuristic function has to be forward-
backward consistent. This implies that the heuristic function has to obey
h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all s, s′, s′′ ∈ S. The vertices also need to
be acceptable no matter where the goal vertex is, therefore, they have to obey
h(s, s′) ≤ c∗(s, s′) for all s, s′ ∈ S where c∗(s, s′) is the cost of the shortest
path from s to s′ (Koenig and Likhachev, 2002b).

D* Lite is therefore able to re-plan faster than starting from scratch each
time as it modifies previous search results when needed. In other words, it
is more efficient in recalculating the shortest path from the current vertex to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 15

the goal vertex, because it only recalculates the necessary vertices that have
changed or have not been calculated before. For more information regarding
this search algorithm, refer to the pseudo code given in Appendix A.3.

2.3 Conclusion
This chapter focuses on two map building techniques as well as a few existing
obstacle avoidance algorithms. In Section 2.1 a discussion is given regarding
two different map building techniques: uniform and adaptive occupancy grids.
A probability map update formula was then derived for uniform occupancy
grids and was found to be (Joubert, 2012):

log

(
p(mi|z1:t)

p(mc
i |z1:t)

)
= log

(
p(mi|zt)

p(mc
i |zt)

)
+ log

(
p(mi|z1:t-1)

p(mc
i |z1:t-1)

)
− log

(
p(mi)

p(mc
i)

) (2.10)

To be able to plan a path from a given map, different obstacle avoidance
techniques are briefly investigated in Section 2.2. The discussed algorithms
include the Virtual Force Field in Section 2.2.1, A* in Section 2.2.2 as well as
an expansion of A*: Lifelong Planning A* (LPA*) in Section 2.2.3. LPA* is
then further expanded to D* Lite in Section 2.2.4.

To be able to implement D* Lite correctly, the heuristic function has to
adhere to h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all s, s′, s′′ ∈ S. The vertices
also need to be acceptable no matter where the goal vertex is, therefore, they
have to obey h(s, s′) ≤ c∗(s, s′) for all s, s′ ∈ S where c∗(s, s′) is the cost of
the shortest path from s to s′. The key, k(s), used to determine what vertex
should be expanded next, is defined as (Koenig and Likhachev, 2002a)

k(s) = [k1(s); k2(s)] (2.15)

where

k1(s) = min(g(s), rhs(s)) + h(s, sstart) + km

k2(s) = min(g(s), rhs(s))
(2.18)

and
km = km + h(slast, sstart) (2.19)

where slast represents the vertex the path was last recalculated at while sstart

represents the current vertex of the vehicle the new path should be calculated
to.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Measurement and Pose
Uncertainty

In this chapter, pose as well as measurement uncertainty in the map building
procedure is investigated. This is done to more accurately simulate how the
map building algorithm will be affected in a dynamic environment. The focus
is therefore placed on the effect that these uncertainties have on the map
building algorithms’ output and whether the same results can be obtained by
using simplified assumptions.

3.1 Overview: Measurement Uncertainty
From Equation 2.10 it was found that each occupancy grid cell must be as-
signed a probability value based on a given sensor measurement at time t.
Each sensor measurement taken consists of an angle as well as the distance
to the first observed obstacle along that line. To update the occupancy grid
correctly, each of the cells intersected by the measurement line must be up-
dated accordingly. Equation 2.10, therefore requires the inverse sensor model,
p(mi|zt). It is referred to as the inverse sensor model as it is the state of cell i
that affects the measurement and not the measurement that affects the state
(Joubert, 2012).

In Section 3.2 the relevant assumptions made regarding the measurement
uncertainty is highlighted. This is followed by a discussion of the ideal inverse
sensor model, whereafter measurement uncertainty is incorporated into the
model for a more realistic representation of actual sensor measurements in
Section 3.3.

3.2 Assumptions: Measurement Uncertainty
Before the inverse sensor model is derived in Section 3.3, the relevant assump-
tions regarding measurement uncertainty must be clarified. Firstly, as the

16

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 17

sensor used is a LIDAR (refer to Chapter 4 and 5 for more information) the
data will be received in the form (θ, r), where θ is the angle of the ray and r
is the distance to the first observed obstacle along that ray. A LIDAR can be
classified as a narrow beam sensor as the beam spans less than 1◦. Therefore,
the angle uncertainty in the beam itself is negligible compared to the distance
uncertainty along the measurement line. By using this assumption, it is possi-
ble to create a one-dimensional inverse sensor model that is a function of the
measurement distance r. Secondly, measurement independence, as mentioned
in the map update formula derivation in Section 2.1.1, is assumed. This enables
the update process to be handled separately for each measurement (Joubert,
2012).

3.3 Inverse Sensor Model Derivation
In this section an ideal inverse sensor model is initially derived under the
assumption of noise free measurements. This is then followed by a derivation
of an inverse sensor model corrupted with Gaussian noise. To see what effect
sensor noise will have on the chosen map building algorithms’ output, the
sensor model was incorporated into a simulation. The simulation results as
well as the conclusions reached are discussed in Section 3.7.

3.3.1 Ideal Inverse Sensor Model

When a new measurement is taken at time t, the ideal inverse sensor model
is used to calculate a log likelihood value for each of the cells intercepted by
the measurement ray. This log likelihood value, along with all the previous
measurements, is then incorporated into Equation 2.10 to get an updated
probability value for each cell. If a distance of Z is measured at time t, the
ideal sensor model should return p(mi|zt) = 0 for all the cells in front of an
obstacle, p(mi|zt) = 1 for the cells containing the obstacle and p(mi|zt) = 0.5
for all the cells behind an obstacle as seen in Table 3.1. Therefore, the function
representing an ideal sensor model can be seen in Figure 3.1 and is defined as
(Joubert, 2012):

g(r) =


0 if r ∈

(
−∞, Z − L

2

)
1 if r ∈

[
Z − L

2
, Z + L

2

)
0.5 if r ∈

[
Z + L

2
,∞
) (3.1)

where r represents the distance from the current position of the laser range
finder to the cell being updated and Z represents the actual measurement
given by the sensor. Since the center of the occupancy grid cells are used
to calculate the distance to the sensor, the peak at Z can be missed if the
calculated distance, r, has a slight offset from the measured distance. To
compensate for this, another parameter, L, is introduced, signifying a band of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 18

r values that will all receive the same probability, ensuring that the peak is
not missed and all the cells are updated correctly.

Table 3.1: Correspondences between the probabilities and the log odds ratios
along with their respected interpretations (Joubert, 2012).

p(mi|zt) log

(
p(mi|zt)

1−p(mi|zt)

)
Interpretation

0 −∞ definitely free
0.5 0 unknown
1 ∞ definitely occupied

Figure 3.1: Ideal inverse sensor model (Equation 3.1) with L = 1. Both
the upper and lower bounds are also indicated as a value of 0 or 1 would be
mapped to −∞ or∞ (Table 3.1), implying that no new measurements can be
added to a cell any more.

The inverse sensor model is, however, not used as shown in Figure 3.1. This
is due to the fact that either a value of 0 or 1 will be mapped to −∞ or ∞
respectively, implying that new measurements will not be able to change the
value of the cell any more. To avoid this problem, the sensor model is given
both an upper and a lower bound value (Joubert, 2012).

3.3.2 Inverse Sensor Model with Gaussian Noise

To be able to replicate actual sensor measurements more accurately in a simu-
lated environment, normally distributed noise around the measured distance,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 19

Z, was assumed with a standard deviation of σ. The probability density func-
tion (PDF) of this Gaussian is therefore (Joubert, 2012):

f(r;Z, σ2) =
1√
2πσ

e−
(r−Z)2

2σ2 (3.2)

and can be seen in Figure 3.2 where σ indicates the certainty of an obstacle

Figure 3.2: Probability Density Function (Equation 3.2) of a measurement at
Z = 2 m corrupted by Gaussian noise with a standard deviation of σ = 0.4.

being located at a distance Z. A large σ will increase uncertainty since the
peak will be wider whereas a small σ will give a narrow peak, decreasing
uncertainty. To combine the ideal sensor model with the Gaussian noise, a
convolution between the functions given in Equation 3.1 and 3.2 has to be
preformed and is defined as (Joubert, 2012):

(f ∗ g)(r) =

∫ ∞
−∞

g(τ)f(r − τ)dτ (3.3)

Equation 3.1 is defined as g(r) = 0 for r ≤ 0, even though the sensor can not
take measurements behind itself, to help with the convolution. Due to the fact
that the ideal sensor model is piece-wise defined, the convolution will also be
defined in the same manner. However, when the final formula is used to update
a cell, r will always have to be larger than 0. For the sake of convenience, the
following formula is defined to simplify further work (Joubert, 2012).

F (a, b) =
1√
2πσ

∫ b

a

e−
(r−τ−Z)2

2σ2 dτ (3.4)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 20

Using Equation (3.4), Equation (3.3) can be rewritten as

(f ∗ g)(r) = kF (a, b) (3.5)

where k ∈ [0, 0.5, 1], depending on which interval r is defined in. By letting

u =
r − τ − Z√

2σ
(3.6)

Equation (3.4) can be simplified to

F (a, b) =
−1√
π

∫ r−b−Z√
2σ

r−a−Z√
2σ

e−u
2

du (3.7)

When introducing the error function, defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.8)

Equation (3.7) can further be simplified to

F (a, b) = −1

2
erf
(
r − b− Z√

2σ

)
+

1

2
erf
(
r − a− Z√

2σ

)
(3.9)

After convolution, the following piecewise defined function was generated (Jou-
bert et al., 2015).

(f ∗ g)(r) =



0 if r ∈
(
−∞, Z − L

2

)
−1

2
erf
(
−Z√
2σ

)
+ 1

2
erf
(
r−2Z+L

2√
2σ

)
if r ∈

[
Z − L

2
, Z + L

2

)
−1

4
erf
(
r−2Z−L

2√
2σ

)
+ 1

2
erf
(
r−2Z+L

2√
2σ

)
−1

4
erf
(
−Z√
2σ

)
if r ∈

[
Z + L

2
,∞
)
(3.10)

Figure 3.3 and 3.4 illustrates how an inverse sensor model, like the one given
in Equation 3.10, works alongside the grid update equation. Note that the
cells in front of the obstacle experienced a probability decreased while the
cells containing the obstacle experienced an increase in probability and the
cells behind the obstacle stayed unaffected as would be expected.

As with the ideal inverse sensor model in Section 3.3.1, the Gaussian inverse
sensor model cannot be used as shown in Figure 3.3 since a value of 0 will be
mapped to −∞. This implies that new measurements will not be able to
change the value of the cell any more (Joubert, 2012). To avoid this problem,
the sensor model is given both an upper and a lower bound value. Simulation
results regarding the inverse sensor model and its effects on the proposed
algorithms’ map building capabilities are discussed in Section 3.7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 21

Figure 3.3: Gaussian Inverse Sensor Model (Equation 3.10) with L = 1 m and
σ2 = 0.16. Both the upper and lower bounds are also indicated as a value
of 0 or 1 would be mapped to −∞ or ∞ (Table 3.1), implying that no new
measurements can be added to a cell any more.

Figure 3.4: Map being updated by using previous map information along with
new measurement information (Equation 2.10). White cells are unchanged,
whereas the gray cells got a probability decreased and the red cell got a prob-
ability increase.

3.4 Overview: Pose Uncertainty
Until now, the occupancy gird update equation (Equation 2.10) defined in
Section 2.1.1 was used under the assumption that the exact pose of the robot
is always known. Unfortunately, this is not the case as sensor drift along with
sensor integration can cause faulty pose estimations. This in turn can lead to a
flawed map of the environment as small variations in the position of the robot

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 22

can have a significant effect on the position of distant objects when updating
the map.

In Section 3.5 the relevant assumptions regarding the pose uncertainty are
highlighted. This is followed by a derivation of a new map update formula in
Section 3.6 that incorporates pose uncertainty directly into the update process.
To see what effect the pose uncertainty will have of the chosen algorithms’
map building capabilities, the new map update formula was incorporated into
a simulation. The simulation results and the conclusion reached are discussed
in Section 3.7.

3.5 Assumptions: Pose Uncertainty
As obstacle avoidance will only be implemented in a two dimensional envi-
ronment, there are certain assumptions that need to be made. Firstly, the
orientation of the robot will stay constant for the entire flight period. There-
fore, the yaw angle of the multicopter is assumed to be constant for the entire
flight and will not affect the measurements received from the distance sensor.
Secondly, it can be assumed that the multicopter will fly to a specified height
and remain at that height until the goal position is reached. Included in this
assumption, is the fact that there are no obstacles at either the liftoff or the
landing site. Thirdly, since the orientation and the height of the multicopter is
assumed to be constant throughout the entire flight, only the horizontal uncer-
tainty of the multicopter will be taken into account. Lastly, it is assumed that
the uncertainty in the robots’ pose is always available in PDF form (Joubert
et al., 2015). Therefore, µ and σ can be generated at any given moment.

3.6 Pose Uncertainty Derivation
To incorporate pose uncertainty into the grid update equation, the cumulative
distribution function (CDF) first has to be calculated. Given a PDF with
mean µ and variance σ2, the CDF, as seen in Figure 3.5, can be generated
with (Joubert et al., 2015):

Fx(x;µ, σ2) =
1

2
+

1

2
erf
(
x− µ√

2σ

)
(3.11)

To sample from a known one-dimensional PDF, a uniform random number
between 0 and 1 must first be generated. This number can then be used to
calculate the inverse of the CDF, also known as the inverse transform method
(Rubinstein, 2008):

x =
√

2σerf−1(2u− 1) + µ (3.12)

where u represents a uniform random number, erf−1 represents the inverse
error function and µ as well as σ can be generated from the PDF.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 23

Figure 3.5: This cumulative distribution function (Equation 3.11) shown can
be used to determine alternative positions for a vehicle (Equation 3.12) with
an average error (µ) of 0 and a variance (σ2) of 0.16.

To use the sampled values to update the map, it is assumed that the
same measurement can be made from any of the positions generated by Equa-
tion 3.12. Since the values were randomly sampled from a normal distribution,
it makes sense to give an equal weight to each of them that sums to 1. To find
the total value a cell will be updated with, each of the weighted probabilities
affecting that cell have to be added together; refer to Figure 3.6 for a visual
representation. Taking into account pose uncertainty, Equation 2.10 can be
re-written as follows (Joubert et al., 2015):

log

(
p(mi|z1:t)

p(mc
i |z1:t)

)
=

M∑
j=1

w
[j]
t log

(
p(mi|z[j]

t)

p(mc
i |z

[j]
t)

)
+ log

(
p(mi|z1:t-1)

p(mc
i |z1:t-1)

)
− log

(
p(mi)

p(mc
i)

)
(3.13)

where M represents the number of measurements taken and w represents the
weight of a given measurement. To accurately represent the PDF describing
the multicopter’s pose uncertainty, the number of samples needed from the
CDF has to be calculated. With Equation 3.14 it is possible to calculate how
many samples have to be generated from the CDF to get a maximum error,
Emax, between the sampled mean and the actual PDF mean of the data. This
equation, however, has an accuracy of 95 % (Joubert, 2012). In other words,
if σ = 0.16 and Emax = 0.1, 11 pose samples would have to be generated to
be 95% sure that the mean of the sampled values is within a range of 0.1 from
the actual PDF mean. Simulation results regarding the pose uncertainty of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 24

the multicopter and its effects on the map building capability of the proposed
algorithms are discussed in Section 3.7.

M =

[
4

(
σ

Emax

)2]
(3.14)

Figure 3.6: Illustration of how the map will be updated with pose uncertainty
(Equation 3.13). It is assumed that the same measurement was taken from
each of the generated positions (Equation 3.12), updating the map as shown.

3.7 Simulation
In the previous sections, analytical formulas for the uncertainty in both the
proximity sensor (Section 3.1 - 3.3) as well as the pose estimation (Section 3.4 -
3.6) of the multicopter are derived. This section is aimed at simulating these
analytical formulas to determine what effect they will have on the map building
process and whether or not simplified methods can be used to generate similar
results.

The simulation setup, as well as the data required for the simulations,
are discussed in Section 3.7.1. This is followed by the simulation results in
Section 3.7.2 as well as the conclusions and a discussion on alternative methods
that can be used to obtain similar results in Section 3.8.

3.7.1 Setup

For an simulation to accurately represent what happens in the case of pose
as well as proximity sensor uncertainties, these uncertainties first had to be
quantified. In the case of pose uncertainty, it had to be determined how

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 25

accurate the flight controller estimates the position of the multicopter at any
given time. In the case of the proximity sensor, two values had to be identified,
namely the accuracy of a given distance along the measurement line, and how
many measurements can be taken in a given time.

To get a better understanding of the error the flight controller makes in its
pose estimation, tests were done using the flight controller alongside a Real
Time Kinematic (RTK) GPS (Global Positioning System). The data from
these two components were then compared using the RTK GPS as the ground
truth measurement since it has a horizontal accuracy of 2 cm in clear skies
(Appendix B.6). From the data comparison, the flight controllers’ approximate
position error was determined. Normal distributions were then fit to the data
of which the results can be seen in Table 3.2. It should be noted that the
data given in Table 3.2 represent the average error, µ, as well as the standard
deviation, σ, at the end of each individual test. With the data available to
calculate both the average error and the standard deviation at each point
during a flight, Equation 3.12 can be used to generate more accurate position
estimates for the multicopter during simulation.

3.7.2 Results

Using the pose uncertainty setup as described in Section 3.7.1, Table 3.2 was
generated. In this table the average error, µ, the controller was making at the
end of each flight is given in both the Northern and Eastern direction. The
standard deviation, σ, illustrates how the controller deviated from the average
error at that point in time. Unfortunately, the pose uncertainty update formula
could only be used during simulation as the PDF of the error information is
not known while flying the multicopter and can only be generated afterwards.

Since the PDF is not known, the effect of the error in the position estima-
tion of the flight controller on the map building technique was investigated.
It was found that the map being built by the multicopter will be in constant
flux due to the error continuously changing. However, the map will still be
traversable as the objects placed in the map will be correct relative to the po-
sition estimation of the multicopter at any given time. Therefore, if the error
made by the position estimator is not 0 or completely constant, the effects will
always be seen in the map building process as seen in Figure 3.8.

If the multicopter, however, has to fly in a known environment without
a proximity sensor or any other obstacle detection capabilities, the position
estimation error the multicopter is making will have to be taken into account.
This is due to the fact that the error may change direction (Table 3.2) for
each flight or size while flying. In other words, every time the multicopter is
used it may think it is at the correct position, but can be making an average
error of up to almost 2 m in any direction as seen in Table 3.2. Hence the pose
uncertainty has to be taken into account by means of an extra safety boundary
if a known map of the environment is used and the multicopter has no means

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 26

Table 3.2: PDF distribution values obtained through testing for both the
Northern and Eastern error (Given in North, East and Down (NED) coordinate
system). These values represent the average error, µ, as well as the standard
deviation, σ, at the end of each individual test.

Test # North East
µ [m] σ [m] µ [m] σ [m]

1 -0.3813 0.2571 -0.1819 0.1864
2 0.5838 0.2951 -0.0847 0.0913
3 -0.6745 0.3395 0.5166 0.2779
4 -1.2974 0.3270 0.7304 0.3291
5 -1.7180 0.3713 -0.7105 0.4214
6 -0.2432 0.3578 -0.5450 0.2203
7 -0.4115 0.2894 0.6085 0.3592
8 0.2373 0.2820 -0.7810 0.2988
9 0.2327 0.3164 0.4611 0.2579
10 -0.9194 0.5784 -0.0911 0.1626
11 -0.2555 0.3311 0.6684 0.2082
12 -0.7241 0.3316 0.0481 0.3072

of obstacle detection. If it was possible to obtain the PDF while flying, the
uncertainty would be directly incorporated into the map building process thus
enabling the map to be reused as needed without adding additional safety
boundaries as described above. Therefore, if the PDF is known while flying,
Equation 3.12 will try to approximate the RTK position given the Pixhawks’
position estimation as shown in Figure 3.7.

Using the sensor setup as described in Chapter 4, it was found that the
measurements given by the LIDAR are time dependant. Therefore, the amount
of measurements may vary depending on the distance of the obstacles. In other
words, because it takes longer for the LIDAR to measure objects that are
further away, more measurements will be generated in a specified amount of
time if obstacles are close by. According to the PulsedLight LIDAR datasheet
(Appendix B.4), the measurements given by the sensor have an accuracy of
± 2.5 cm. Since the grid size in the map building process can be adapted
(default 0.5 m), the uncertainty in the LIDAR measurement does not have a
significant effect unless the grid size is greatly decreased. This in turn will
increase the computational time of the global path planner and decrease the
step sizes taken i.e. how far the multicopter will move at a time.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 27

Figure 3.7: CDF position approximation. From this figure, it can be seen
how the CDF approximates the RTK position of the multicopter given the
Pixhawks’ position estimation.

(a) (b) (c)

Figure 3.8: Simulated map outputs of Figure 3.7. Figure (a) represents what
the map output should look like if the correct position is known while flying.
Figure (b) represents the map output generated with the faulty position esti-
mation data. Whereas Figure (c) represent the map that would be built if the
position was approximated with the position error data.

Due to the small measurement uncertainty, an ideal-like inverse sensor
model would give similar results to Equation 3.10 as seen in Figure 3.9. The
upper and lower bounds should, however, still be implemented to ensure that
new measurements can be incorporated into the map building process. Equa-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 28

tion 3.10 was derived for a LIDAR , but can be updated for stereo vision
or sonar if the derivation of the equation is revisited. For more information
regarding the hardware and software used in the sensor setup as well as the
map building results obtained from the sensor, please refer to Chapter 4 and 5
respectively.

Figure 3.9: Sensor model comparison. When implementing the Gaussian in-
verse sensor model with a standard deviation of σ = 0.025 (since the LIDAR
has an accuracy of ± 2.5 cm) and L = 1 m, the results obtained from the
Gaussian inverse sensor model is almost identical to that of the ideal inverse
sensor model. Both the upper and lower bonds are also indicated as a value
of 0 or 1 would be mapped to −∞ or ∞ (Table 3.1), implying that no new
measurements can be added to a cell any more.

3.8 Conclusion
In this chapter analytical formulas for both the proximity sensor (Equation 3.10)
as well as the pose uncertainty (Equation 3.13) of the multicopter are derived.
These formulas are then simulated and the results evaluated to determine what
effect they have on the map building process and whether or not simplified
methods can be used to generate similar results.

For pose uncertainty it would be ideal if the PDF is known while the multi-
copter is flying. This would enable it to construct a more accurate map of the
environment that can be reused without adding additional safety boundaries.
The Monte Carlo method used, however, can get computationally intensive
as each new proximity sensor reading requires a significant amount of sam-
ples from the CDF to accurately represent the PDF of the multicopters’ pose
uncertainty.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MEASUREMENT AND POSE UNCERTAINTY 29

Unfortunately, as the PDF is not known while flying, the effects of the pose
uncertainty were investigated. It was found that the map being built by the
multicopter will be in constant flux due to the error continuously changing.
However, the map will still be traversable as the objects placed in the map will
be correct relative to the position estimation of the multicopter at any given
time.

Using a LIDAR as the measurement instrument, it was found that the
ideal sensor model would give similar results to the Gaussian inverse sensor
model if the same upper and lower bounds were implemented on it. The
Gaussian inverse sensor model can also easily be derived for other sensors like
stereo vision and sonar if some of the assumptions made are revisited (Joubert,
2012). An ideal-like inverse sensor model can therefore be used alongside the
LIDAR for all intents and purposes.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Hardware and Software
Integration

The aim of this chapter is to give the reader an overview of the hardware and
software used to integrate different components and build a working prototype
of the obstacle avoidance system. In Figure 4.1, all of the components, software
and communication methods used can be seen. In Section 4.1 an overview is
given regarding all the hardware used. This is followed by an overview of the
software used in Section 4.2.

4.1 Hardware Integration
In this section, the hardware used for the setup, as can be seen in Figure 4.1, is
discussed. This includes the Pixhawk flight controller (Section 4.1.1), the Intel
Edison (Section 4.1.2) as well as the Arduino Mega and PulsedLight LIDAR
used in the proximity sensor design (Section 4.1.3).

4.1.1 Pixhawk Flight Controller

As set out in the scope of this project (Section 1.2), no work was done on
the Pixhawk flight controller itself as the focus of the project was on combin-
ing existing components to create a system that enables multicopters to fly
autonomously. The flight controller, as seen in Figure 4.2, uses a micro air
vehicle communication protocol called MAVLINK. Using the MAVLINK pro-
tocol, it is possible to send and receive information from the flight controller
with an external computer, usually called a companion computer. The flight
controller also comes with an offboard mode enabling the flight controller to
be controlled by the companion computer via a serial connection. However,
one of the offboard mode safety features is that for the multicopter to stay
in offboard mode, it must receive position or velocity commands at least evey
0.5 s. If this is not done, the controller reverts back to the mode it was in

30

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 31

Figure 4.1: Overview of hardware and software integration. Using WiFi it is
possible to communicate between the Intel Edison and the Computer. PuTTy
can be used as the lowest level of communication i.e. to connect directly to the
operating system on the Intel Edison. Or, if Robot Operating System (ROS)
is running on the Intel Edison, it is also possible to connect MATLAB directly
to it. The Pixhawk flight controller and the Arduino Mega both communi-
cate with the Intel Edison using serial connections as indicated. The flight
controller was also connected to Qgrouncontrol (the groundcontrol software)
via a telemetry connection. Whereas the rotating Lidar was connected to the
Arduino Mega with a PWM connection.

before it was switched to offboard control. For this reason, position control
was always chosen before the multicopter was switched to offboard control
during flight tests. This enabled the multicopter to keep its position whenever
communication was lost, preventing it from crashing. For more information
regarding the controllers’ capabilities, refer to Appendix B.1.

4.1.2 Intel Edison

The Intel Edison, as seen in Figure 4.3, is an open source software develop-
ment environment with a high performance dual-core CPU (Central Processing
Unit) as well as a single core micro-controller. It is also integrated with both
WiFi and Bluetooth while having 1 GB of LPDDR3 RAM (Low Power Dou-
ble Data Rate Random Access Memory) and 4 GB of flash storage. The Intel
Edison breakout board can be connected with multiple expansion boards, al-
lowing seamless integration with other components like Arduino shields for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 32

Figure 4.2: Pixhawk flight controller (Pix, 2015).

quick and easy prototyping. For this reason an Arduino expansion board was
chosen to allow for maximum flexibility as it contains 20 digital input/output
pins. These 20 pins include 4 pins that can be used as PWM (Pulse Width
Modulation) outputs as well as 6 pins that can be used as analog inputs. It
also contains 1 UART (Universal Asynchronous Receiver/Transmitter), 1 I2C
(Inter-Integrated Circuit), a micro USB (Universal Serial Bus) device connec-
tor, a micro USB to connect to the UART, a standard size USB host type-A
connector and a SD (Secure Digital) card connector. This entire setup can be
powered by a 7-15 V DC (Direct Current) power supply.

Figure 4.3: Intel Edison breakout board with Arduino expansion board (Int,
2016).

While running Ubilinux, a Linux image based on Debian, as its operating
system, the Intel Edison was mainly used as a data relay between all the
different components. By combining it with ROS (Robot Operating System),
the Intel Edison was able to use MAVROS, a MAVLINK package for ROS, to
create a serial connection with the flight controller, enabling it to be used as a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 33

companion computer. By initiating a rosserial server node, a serial connection
was established with the proximity sensor (Section 4.1.3 and Section 4.2.4) by
means of a USB cable. A WiFi connection was established to send all the
information received from both the flight controller and the proximity sensor
to the ground station computer. This enabled the Intel Edison to send all the
ROS data to the ground station computer where it was processed and displayed
in MATLAB (Section 4.2.2). For more information regarding ROS and the
companion computer’s capabilities, refer to Section 4.2.1 and Appendix B.2
respectively.

4.1.3 Proximity Sensor Design

To design a sensor capable of working as its own unit the Arduino Mega (Fig-
ure 4.4), an open source electronic prototyping platform, was used. By com-
bining the Mega with rosserial, it was possible to enable a ROS (Section 4.2.1)
communication protocol over the Arduino’s UART. This enabled the Arduino
to be connected to any ROS system, allowing it to be a ROS node capable of
publishing and subscribing to different topics while having access to the ROS
system time.

Figure 4.4: Arduino Mega (Ard, 2014).

To get a working 2 dimensional LIDAR system an Arduino Mega, Pulsed-
Light LIDAR, continuous servo, pickup sensor and a button had to be inte-
grated. By using a PWM (Pulse Width Modulation) setup, it was possible to
connect the PulsedLight LIDAR to the Arduino board. For this type of con-
nection, only 3 cables have to be used. One for power (5 V), one for ground
and one for the LIDAR mode pin that has to be connected to both a mon-
itor and a trigger pin on the Arduino board via a 1 kΩ resistor, as seen in
Figure 4.5. The power of the LIDAR sensor also needed to be connected to a
capacitor since the distance measurements are taken at high speeds, causing
fluctuation in the power supply. The capacitor was therefore used to ensure a
more stable power supply.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 34

The trigger pin on the Arduino Mega was set to low (∼ 0 V) in the software
(Section 4.2.4). This, in turn, gave the monitor pin a low input with the help
of the 1 kΩ pull-down resistor. Since the PWM setup was used, the LIDAR
was continuously sending out signals to obtain distance measurements. When
a signal is sent and the LIDAR is waiting for the signal to return, the mode pin
is given a 5 V output. This in turn makes the monitor pin high (∼ 5 V) on the
Arduino board. The time this pin is high is then measured by the Arduino.
As soon as the signal is received by the LIDAR, the pin is pulled low again and
the Arduino stops timing. The time measured can then be translated back to
a distance as 10 µs is 1 cm (Appendix B.4).

Figure 4.5: PWM wiring setup for PulsedLight LIDAR B.4.

By adding a continuous servo as well as a pickup, it was possible to create
a rotating LIDAR sensor capable of taking continuous measurements. With
both the distance and the angle known, it is possible to reconstruct the en-
vironment being scanned by the LIDAR. The continuous servo only requires
3 connections, one for power, one for ground and the last for a PWM signal.
The servo can take a PWM input of 900-2100 µs, where 2100 µs and 900 µs
ensures a top speed in both the clockwise and counter-clockwise directions
respectively. From the data sheet of the pickup (Appendix B.5), it can be
seen that the current to the emitter has to be limited to 12 mA. To ensure
this limit is never exceeded, a 220 Ω resistor had to be connected. To enable
the entire sensor to only be activated when the user is ready, an extra button
was also added. For more information regarding the Aruino Mega, refer toe
Appendix B.3.

4.2 Software Integration
In this section, the software used for the setup, as can be seen in Figure 4.1,
is discussed. This includes the use of Robot Operating System (Section 4.2.1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 35

in MATLAB (Section 4.2.2), Python (Section 4.2.3), C++ and Arduino (Sec-
tion 4.2.4). In Section 4.2.5 Hardware in the Loop (HITL) software is also
investigated to see how it can be used to simulate multicopter flight.

4.2.1 Robot Operating System

Robot Operating System (ROS) is a flexible framework for writing robot soft-
ware. It is becoming a widely used development medium as truly robust robot
software is not easy to program from scratch. Currently, ROS only runs on
Unix-based systems and that is why Ubilinux (an embedded Linux distribution
based on Debian) was used on the Intel Edison (Section 4.1.2).

ROS is an open-source, meta-operating system that provides the same ser-
vices expected from an operating system. These services include the freedom
to add hardware, device control on a lower-level, package management as well
as message distribution between different processes. It is also possible to write,
build and run code across multiple platforms (Arduino, Intel Edison and Desk-
top) while using one or a combination of different programming languages
(Arduino, Python, C++ and MATLAB).

ROS has several different ways of communicating between different pro-
grams and hardware. This includes a synchronous Remote Procedure Call
(RPC) communication method used to request services. Therefore, the RPC
can be used to enable a procedure or subroutine to execute, commonly on
another computer in a shared network. Another way of communicating is by
using topics where data streaming is done asynchronously, which decouples
the production of the information from its consumption. In general, the nodes
generating the information do not know where the information is going or who
they are communicating with. Instead, they publish the data to the relevant
topic and all the nodes that need this information can subscribe to the same
topic. Therefore, a node can be described as a process that performs calcu-
lations and communicates by means of topics. A robot control system would
usually consist out of multiple nodes where, for example, one node would con-
trol the laser range-finder, one node would perform localization while another
node performs path planning etc.

By using nodes, code complexity is reduced while fault finding can easily be
done as crashes are isolated to individual nodes. The implementation details
are also hidden from the rest of the nodes/topics as they only have access to
the data that is published. Each topic has a message type that is used to
publish or subscribe to it. Therefore, if the subscriber message type does not
correspond with the publisher message type, a communication bridge between
the two topics will not be established.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 36

4.2.2 MATLAB

After the necessary ROS messages (Section 4.2.1) were added to MATLAB, it
was possible to connect to the Intel Edison via a ROS communication protocol.
A WiFi link was established by MATLAB, enabling it to create an obstacle
avoidance node on the Intel Edison. This node was then able to publish and
subscribe to the necessary topics created by the Pixhawk, allowing MATLAB
to plan a collision free path for the multicopter.

The MATLAB node was subscribed to two topics. The first was the local
position of the multicopter. This topic provides the position and orientation
of the multicopter at any given moment. The second was the LIDAR topic.
This node and topic was generated by the proximity sensor and contained the
data necessary to reconstruct the environment. The avoidance algorithm was
interrupted every time new data was received, enabling it to immediately be
integrated into a map. This in turn enabled the multicopter to react on new
obstacles as fast as possible.

A publisher was created in MATLAB to publish new setpoints generated
by the avoidance algorithm. The python script (Section 4.2.3) running on
the Intel Edison was subscribed to this publisher, enabling it to receive the
new data and continuously resend it to the multicopter to keep it in offboard
control (Section 4.1.1).

The main reason MATLAB was chosen to program the avoidance algo-
rithm is it debugging capabilities. With the setup shown in Figure 4.1 it is
possible to easily make changes to the algorithm as well as see a live feed of
the map building process and the planned path. Errors that were not present
in the HITL simulations (Section 4.2.5) could therefore easily be isolated and
corrected during the outdoor flight tests. If the same avoidance algorithm was
programmed on the Intel Edison, it would not have been possible to isolate
errors so easily as a visual representation of the all the variables, planned path
and environment would not have been available. For more information regard-
ing the avoidance algorithm programmed in MATLAB, refer to Chapter 6.

4.2.3 Python

As mentioned in Section 4.1.1, setpoints have to be sent at least every 0.5 s to
keep the flight controller in offboard control. Therefore, the python script was
programmed to send the setpoints at a frequency of 5 Hz ensuring that offboard
control is maintained. The main reason the continuous setpoint publisher was
chosen to be on the Intel Edison is because WiFi was used as a communication
medium. It is therefore possible to create the same publisher using a MATLAB
script, but this can cause the flight controller to go into a failsafe mode as soon
as the connection between MATLAB and the Intel Edison is broken. However,
if the multicopter goes out of WiFi range while using the python script it is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 37

able to stay at the same position until control is retaken by the pilot or the
WiFi connection is regained.

The failsafe mode was created by Pixhawk to give control of the multicopter
back to the pilot. This is done by switching from offboard control back to the
mode the remote is in as soon as the setpoints are not received fast enough.
That is why the remote was always set to position control before offboard
control was initiated. This served as a second backup system to ensure that
the multicopter did not crash if communication was somehow broken between
the controller and the companion computer. In this case, position control
ensured that the mulitcopter stayed at its current position until the pilot was
able to manually take over or change the position setpoint with the remote.

4.2.4 Proximity Sensor Design

After the necessary ROS packages (Section 4.2.1) were extracted from the
ROS system on the Intel Edison, it was incorporated into the Arduino IDE
(Integrated Development Environment). This enabled the Arduino Mega (Sec-
tion 4.1.3) to connect with the Intel Edison (Section 4.1.2) using a ROS com-
munication protocol. These packages also allowed the Arduino to create its
own node on a ROS system. The proximity sensor can therefore be connected
to any ROS system, allowing that system access to the data generated.

Since a ROS communication protocol was established, a ROS LaserScan
message had to be used to transfer the data. From Table 4.1 it can be seen
that this message requires an array of distance measurements as well as the
angle increment between these measurements. The angle increment is however
not a matrix, but only one value. Therefore, the measurements taken would
have to be evenly divided around the entire measurement area (360◦). This,
however, posed a problem as an mostly open environment would cause the
measurements to be distributed incorrectly. With this in mind, the rotational
setup (Figure 5.1 in Chapter 5) was used to break the environment into 18
sections. Each section corresponding to a gear tooth. The measurements
taken in each section were then evenly distributed in that section as the exact
angle of the measurement was not known. After each section, the new values
are stored in the LaserScan message and sent to the LIDAR topic. A flow
diagram of the program can be seen in Figure 4.6.

It should be noted that nearby objects will produce more measurements
in a given time and therefore give a better representation of the environment.
This is due to the measurements distance being time dependant (Section 4.1.3).
Therefore, if objects are located far away, fewer measurements will be taken.
To compensate for this, the maximum time the sensor was allowed to wait for
a measurement was set to 10 ms i.e. a maximum distance of 10 m. Since the
sensor was designed to do a full rotation in 1 s, each section takes about 56 ms
to measure. With the programmed time restraint, a theoretical minimum of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 38

Table 4.1: ROS LaserScan Message type: Message data and definitions. All the
data in this message was continuously collected and published by the proximity
sensor setup described in Section 4.1.3 and Section 4.2.4.

Message Data Data Definition

Header Time stamp
Frame ID

Min Angle [rad] Start angle of the scan
Max Angle [rad] End angle of the scan
Angle Increment [rad] Angle between measurements
Time Increment [s] Time between measurements
Scan Time [s] Time between scans
Min Range [m] Minimum distance sensor can scan
Max Range [m] Maximum distance sensor can scan
Ranges [m] Distance Measurements
Intensities Device specific units, if not provided, leave empty

five measurements can be taken in one section if all the measurements are
taken at a maximum distance of 10 m.

To start and stop the sensor at will, a button was added to the system. The
sensor, however, always had to be manually readjusted to the correct starting
position before it was enabled. This was done to ensure that the correct
minimum and maximum angles (Table 4.1) were given as these angles are
essential to the map building process. These angles were calculated relative to
the starting section and had to be recalculated for each new section. Therefore,
the correct starting position for the sensor was imperative.

4.2.5 Hardware in the Loop

Hardware in the loop (HITL) simulators replace the vehicle and the environ-
ment with a simulation. These simulations have high precision dynamic models
of the vehicles while the environment can mimic wind, turbulence and obsta-
cles. Therefore, the sensor data perceived by the flight controller is generated
by the simulation and sent to the controller. The control outputs are then
sent back to the simulation and displayed, giving an accurate representation
of how the vehicle would react in certain scenarios. jMAVSim, a lightweight
multirotor simulator (Figure 4.7) was used to extensively test all the connec-
tions and avoidance algorithms before actual flights were completed. This was
mainly done to prevent unnecessary crashes and to ensure that the multicopter
reacted accordingly.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 39

Start

Initiate ROS
node and pins

Start

Initiate servo

While not
stop button Stop

Get sensor
measurements
for one section

Calculate and
store LaserScan
data (Table 4.1)

Send Laser-
Scan data to
Lidar topic No

Yes

Figure 4.6: Flow diagram of the proximity sensor code.

4.3 Conclusion
In this chapter the hardware and software used to obtain a system capable of
making a multicopter fly autonomously are investigated. An overview of the
entire system can be seen in Figure 4.1. To get a working obstacle avoidance
system, the Pixhawk flight controller (Section 4.1.1) had to be connected to a
companion computer (Section 4.1.2). The companion computer (Intel Edison)
acted as both a companion computer and a data relay between the ground
station and all the other components connected to it, including the proximity
sensor (Section 4.1.3 and Section 4.2.4). Test results regarding this sensor can
be found in Chapter 5.

To communicate between all the different devices (Arduino, Intel Edison,
Pixhawk and desktop) and programming languages (MATLAB (Section 4.2.2),
Python (Section 4.2.3) and Arduino), Robot Operating System (Section 4.2.1)
was used. This open-source, meta-operating system allowed seamless integra-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE AND SOFTWARE INTEGRATION 40

Figure 4.7: jMAVSim HITL interface (jMA, 2015).

tion between all the mentioned components and allowed MATLAB to fully
control the multicopter. All the new code and connections were extensively
tested with hardware in the loop (HITL) software (Section 4.2.5) before flight
test were done to minimize crashes and to ensure the code as well as the
multicopter reacted properly.

Since WiFi was used to relay all the data, two extra safety precautions were
introduced to ensure the safety of the multicopter (Section 4.2.3). To ensure
the multicopter does not switch to failsafe mode as soon as the WiFi connection
is broken, a python script was added to the companion computer. This enabled
the controller to stay in one position till the pilot took over. To compensate for
the failsafe mode (i.e. when the connection between the companion computer
and controller was broken), the remote should always be switched to position
control before offboard control is enabled. Therefore, when the connection
is broken, the controller will switch back to communicating with the remote,
enabling position control and ensuring the safety of the multicopter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Proximity Sensor

In Figure 5.1, the sensor setup used for the flight tests can be seen. This sensor
was designed to be able to work as its own unit. Therefore, corresponding
with the modular design of the entire system (Chapter 4). When connected
to a ROS system, the sensor is able to create its own node and publish data,
granting the system access to the information generated (Section 4.2.4). The
way the sensor is designed enables it to send measurements 18 times per second.
The amount of measurement taken in this time, however, depends on the
distance to the objects. Objects that are placed far away will receive less
measurements than object in close proximity as the measurements are time
dependant (Section 4.1.3). In Section 5.1 test results regarding the sensor
is discussed. This is followed by an conclusion regarding the test results in
Section 5.2.

5.1 Test Results
For the first test, a small environment was chosen as can be seen in Figure 5.2.
From the results it can be seen that it is possible to reproduce the environment
from the data received by the sensor. In Figure 5.2b a uniform map of the en-
vironment is given, illustrating that the small uncertainty in the measurement
distance does not significantly affect the map building process.

For the second test, a bigger room was scanned as can be seen in Figure 5.3.
With the information received from the proximity sensor, it was again possible
to reconstruct the environment fairly accurately. In Figure 5.3b a uniform
map of the environment is given, illustrating that the uncertainty in larger
measurements still does not significantly affect the map building process. By
comparing this test with the previous one, it is possible to see that the data
is more spread out as would be expected since the distance measurements are
time dependant.

For the last test (Figure 5.4) an even bigger room was scanned to determine
what effect it will have on the map building techniques output (Figure 5.4b).

41

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PROXIMITY SENSOR 42

Figure 5.1: Sensor Setup

As would be expected, obstacles close to the sensor are represented better
compared to obstacles farther away. However, even though the data is more
scattered than the previous test results, it still builds a fairly accurate repre-
sentation of the environment (Figure 5.4b).

One thing that can be seen from all the tests is that there are some mea-
surement points standing out from the rest. These points are generated from
an assumption made during the design process of the sensor. If Figure 5.2
is carefully investigated, it can be seen that these points creates 18 sectors.
Therefore, because it was assumed that the measurements are equally spaced
in each section, some of the measurements are placed on the edges. The reason
these measurements are not in line with the others is because the ROS message
has to be generated and published at the end of each section. During this time,
no measurements are taken, however, the sensor is still rotating. Therefore,
when it starts measuring again, it is not at the beginning of the section any-
more. When the new message has to be generated, the scanned measurements
are spread across the entire section. Because the first measurement would have
to rotate back the most from its actual measured angle, it is easily noticeable.
To explain why the measurements appear scattered in straight lines, the same
reasoning can be used as above. In other words, since the actual measurement
angles may vary each time, the angle the data is rotated by is also affected,
causing the data to appear scattered in a straight line.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PROXIMITY SENSOR 43

(a)

(b)

Figure 5.2: First scanned environment. In (a) the actual environment as well
as the scanned environment can be seen. In (b) it is illustrated how the scanned
environment would be represented by the uniform map build technique (gray).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PROXIMITY SENSOR 44

(a)

(b)

Figure 5.3: Second scanned environment. In (a) the actual environment as
well as the scanned environment can be seen. In (b) it is illustrated how the
scanned environment would be represented by the uniform map build technique
(gray).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PROXIMITY SENSOR 45

(a)

(b)

Figure 5.4: Third scanned environment. In (a) the actual environment as well
as the scanned environment can be seen. In (b) it is illustrated how the scanned
environment would be represented by the uniform map build technique (gray).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PROXIMITY SENSOR 46

5.2 Conclusion
From the test results in Section 5.1 it is possible to see how the designed
proximity sensor would react in different environments. It was found that
even though the amount of data points may vary for each scanning section,
depending on the distance of the obstacle in that section, it is still possible
to reconstruct a fairly accurate map of the environment using uniform grids.
Therefore, with regards to the results obtained from these test and others, the
designed proximity sensor was deemed acceptable for implementation alongside
the designed obstacle avoidance system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Obstacle Avoidance
Implementation

In Chapter 2, the background of different map building techniques and obsta-
cle avoidance algorithms are discussed. From this investigation, a combination
of three different techniques were used to obtain a working obstacle avoidance
algorithm. These techniques: the uniform occupancy grid, the Virtual Force
Field (VFF) and D* Lite were algorithmically integrated as described in Sec-
tion 6.1. With this combined obstacle avoidance algorithm in place, extensive
simulations were done in MATLAB (Section 6.2). The aim of these simula-
tions was to ensure that the algorithm reacted as intended and to debug any
unforeseen errors in the code. The results of these simulations can be found
in Section 6.3. After the code was extensively tested on MATLAB, Hardware
in the Loop (HITL, Section 4.2.5) simulations were done to ensure the multi-
copter reacted appropriately to the commands received from MATLAB. Real
time flight tests were done with a multicopter only after these simulations were
successfully completed. The test setup and the results for these flights can be
found in Chapter 7.

6.1 Algorithm Integration
To be able to fly autonomously in a partially known (or unknown) environment,
it was decided to use a combination of three different techniques discussed in
Chapter 2. These techniques are the uniform occupancy grid map building
algorithm (Section 2.1.1), D* Lite (Section 2.2.4) and the VFF (Section 2.2.1)
method.

To obtain a map of the environment, the probability map building tech-
nique (Equation 2.10) was used alongside the ideal-like inverse sensor model
(Equation 3.1) derived in Section 3.3. With a constantly updating map of the
environment available, D* Lite could be used as a global path planner. In a
static environment, this algorithm will only have to compute the path once.

47

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 48

However, in a dynamic or unknown environment, this algorithm will have to
be executed continuously until the goal position is reached. Even though the
path may stay the same, the algorithm must still check whether the addition
or removal of obstacles affects the previously planned path before every move.
This continuous re-checking and planning can get computationally intensive.
One way of limiting this is by only re-checking and planning every few steps.
However, if an obstacle is scanned that blocks the planned path to the goal
while D* Lite is not active, the multicopter will fly straight into it. For this
reason it was decided to combine D* Lite with the VFF method.

By combining these two algorithms, D* Lite only has to be executed every
few steps since the VFF ensures the safety of the multicopter while D* Lite is
not active. In other words, D* Lite plans a path from the multicopters’ current
position to the goal position. The multicopter will then move along the calcu-
lated path and update the map as usual. If an unexpected obstacle appears
on this path, the map will be updated accordingly while the VFF ensures the
safety of the multicopter by maintaining the necessary safety distance. The
multicopter is then kept at that distance until D* Lite is initiated again to
plan a new path.

When combining the VFF and D* Lite as discribed above, the VFF method
can still get stuck in local minima. This is due to D* Lite being able to
plan through denser packed obstacles than the VFF can move through. To
compensate for this, a safety distance was added to the D* Lite algorithm.
This enabled the algorithm to ignore vertices that are too close to known
obstacles. To ensure that local minima is not a problem anymore, the safety
sphere for both the VFF and D* Lite have to be the same size at all times.

6.2 MATLAB Simulation Setup
Before the combined algorithm discussed in Section 6.1 is simulated (Sec-
tion 6.2), the heuristic and cost functions used in D* Lite are investigated
(Section 6.2.1). This is done to ensure they adhere to the conditions set out
in Chapter 2. The algorithmic formulation and implementation of the VFF
alongside D* Lite is also investigated (Section 6.2.2).

6.2.1 D* Lite

As mentioned in Chapter 2, the heuristic function for D* Lite must adhere
to the forward-backward consistent condition. That is, it has to adhere to
h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all s, s′, s′′ ∈ S. The octile distance heuristic

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 49

function was therefore chosen, and is given by:

function heuristic(vertex1, vertex2) =

dx = abs(vertex1.x− vertex2.x)

dy = abs(vertex1.y − vertex2.y)

return D1 ∗ (dx + dy) + (D2 − 2 ∗D) ∗min(dx, dy)

(6.1)

where D1 = 1 and D2 =
√

2. To test if the function adheres to the condition
set out above, a small 5 by 5 matrix is tested in Table 6.1. The second term
in the inequality, h(s, s′), is represented in the left hand table. This represents
the heuristic value from the start vertex (s), indicated in green, to any of
the given vertices (s′). The third term in the inequality, h(s′, s′′), represented
in the middle table, gives the heuristic value from any of the vertices (s′)
in the grid to the end vertex (s′′), indicated in red. The first term in the
inequality, h(s, s′′), is the heuristic value from the start vertex (s) to the end
vertex (s′′). This value is 5.7, as seen in the left hand table. The sum of
the first two tables can be found in the right hand table. The values in this
table represent the heuristic value if the robot went from the start vertex
(green) to any of the other vertices and then to the end vertex (red). From
this it can be seen that the octile distance heuristic function always adheres
to h(s, s′′) ≤ h(s, s′) + h(s′, s′′).

Table 6.1: Octile distance heuristic function inequality test. In the left had
table, the heuristic value is given from the start vertex (green) to any of the
other vertices. In the middle table, the heuristic value is given from any of the
vertices in to the goal vertex (red). In the right hand side table, the heuristic
value is given if the vehicle moves from the start vertex (green) to any of the
other vertices and then to the end vertex (red). From these tables it can be
seen that the octile distance heuristic function adheres to the given inequality.

h(s, s′)
0 1 2 3 4
1 1.4 2.4 3.4 4.4
2 2.4 2.8 3.8 4.8
3 3.4 3.8 4.2 5.2
4 4.4 4.8 5.2 5.7

h(s′, s′′)
5.7 5.2 4.8 4.4 4
5.2 4.2 3.8 3.4 3
4.8 3.8 2.8 2.4 2
4.4 3.4 2.4 1.4 1
4 3 2 1 0

h(s, s′) + h(s′, s′′)
5.7 6.2 6.8 7.4 8
6.2 5.7 6.2 6.8 7.4
6.8 6.2 5.7 6.2 6.8
7.4 6.8 6.2 5.7 6.2
8 7.4 6.8 6.2 5.7

As mentioned in Chapter 2, the vertices also need to be acceptable no
matter where the goal vertex is. In other words, they have to obey h(s, s′) ≤
c∗(s, s′) for all s, s′ ∈ S; where c∗(s, s′) is the cost of the shortest path from
s to s′. If, however, the cost is calculated in the same manner as the heuristic
function, it will always adhere to h(s, s′) ≤ c ∗ (s, s′). Therefore, the cost
and the heuristic function can easily be demonstrated with Figure 6.1. This
illustrates the cost that will be added, depending on the chosen route. In this
case, the added cost equals the distance the robot would have travelled if all

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 50

the gird cells had a size of 1. To move forward, backward or sideways would
therefore have an added cost of 1. However, to move diagonally, the added
cost will be

√
2.

Figure 6.1: Cost and heuristic function illustration. When the multicopter
moves forwards, backwards or sideways the added cost will be 1. Whereas if
it moves diagonally, the added cost will be

√
2. In other words, this diagram

is used to calculate the rhs(s) values of D* Lite. However, the octile dis-
tance heuristic function also uses a similar method of calculating the distance
between vertices.

6.2.2 Virtual Force Field

By using the gradient method alongside the VFF (as described in Chapter 2),
a path can be generated by checking the neighbouring values at each cell and
continuously moving to the cell with the lowest Ftotal value. Where Ftotal is
given by:

Ftotal[i, j] = Fatt[i, j] + Frep[i, j] (6.2)

where
Fatt[i, j] =

√
(x− xgoal)2 + (y − ygoal)2 (6.3)

and

Frep[i, j] =

{
0 if r ≥ rsafe

2(rsafe−r) if r < rsafe
(6.4)

In Equation 6.4, the distance of a node to the nearest obstacle is given by
r, where rsafe is the size of the safety boundary generated by the VFF. In
Equation 6.3, both x and y represent the position of the node being investigated
whereas xgoal and ygoal is the temporary attraction point generated by D* Lite.
The matrix indices i and j, given in Equation 6.2, represent the map position
being investigated to determine its resultant force value.

This algorithm was implemented by only calculating the resultant force of
the multicopters’ current node along with its immediate surrounding nodes (3
by 3 area). Since the proximity sensor is able to detect objects at a distance of
up to 10 m (Section 4.2.4), the distance to the nearest obstacle (r) can easily
be determined for all these nodes. This value is then compared to the safety

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 51

Start

Continuously
updating

probability map

Proximity sen-
sor informationPlan path

- D* Lite
Calculate next
position - VFF

Move to
next position

End destination
reached?

Stop

Should D* Lite
execute again?

Yes

NoYes

No

Figure 6.2: Combined avoidance algorithm flow chart.

boundary (rsafe) generated by the VFF to calculate a corresponding repulsive
force (Equation 6.4) for each node. As the position (x, y) of each node is
also known, along with the temporary attraction points, the attractive force
(Equation 6.3) for each node can be calculated. With both the attractive and
repulsive forces known, the resultant force (Equation 6.2) can be calculated.
From the resultant force, the next position the multicopter should fly to can
be determined by finding the node with the smallest Ftotal value. This process
is continuously executed alongside D* Lite, as indicated in the flow chart seen
in Figure 6.2, until the end destination is reached.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 52

6.3 MATLAB Simulation Results
With the three algorithms combined as illustrated in Figure 6.2, it was possible
to simulate the avoidance algorithm in different conditions. Both static and
dynamic environments were simulated to see whether the avoidance algorithm
reacted accordingly. Different map sizes were also simulated to determine what
effect the size of a map will have on the computational time of both D* Lite
and the VFF.

Figure 6.3a illustrates a dynamic simulated environment. From this figure
it can be seen how obstacles were both added and removed from the envi-
ronment. Each time a new path was calculated, temporary attraction points
were made along the path enabling the VFF to pull the multicopter to the
goal position. The nodes evaluated to find the path are given in gray. Each
time a new path was calculated, only some of the nodes had to be recalculated
as D* Lite reuses all the nodes’ information that was not affected by the new
obstacles. Different static environments (Figure 6.3b and Figure 6.4) were also
investigated to determine how the path planning algorithm (D* Lite) reacts
to different environments.

After conducting a thorough testing process simulating a wide variety of
test conditions for both D* Lite and the combined algorithm (of which Fig-
ure 6.3 and Figure 6.4 show only a few), it was found that the programmed
algorithms reacted as intended. D* Lite was therefore always able to calculate
or re-calculate a path in both a static and dynamic environment, unless none
existed. With the known path, the multicopter was pulled to the goal position
by the VFF while it ensured the safety of the vehicle until the path could be
re-evaluated by D* Lite. As expected, the safety boundary added to D* Lite
ensured that the VFF could not get stuck in local minima anymore.

To determine what effect the different map sizes have on the time it takes
to calculate a path, D* Lite was simulated under different conditions. It was
decided to calculate a path diagonally across a map. Secondly, each map size
and random arrangement of obstacles were tested 200 times. Therefore, one
map size was simulated 200 times with a given obstacle density, for example
1 %. However, for each run, a different random arrangement of obstacles was
used. For an example of a 750 by 750 map with an obstacle density of 5 %
(28125 obstacles), refer to Figure 6.4.

The simulations were done in MATLAB R2016a on a computer with a
2.4GHz Intel Core i7 processor and 16GB of memory and the results can be
seen in Figure 6.5. This figure illustrates the average time it took to success-
fully calculate a path from the starting position to the goal position. As would
be expected, the average time increased exponentially with the size of the map.
The time also increases with the obstacle density, as it is usually more difficult
to plan a path with more obstacles present, depending on how they are placed.
Figure 6.6 illustrates how scattered the timing data was for the 200 D* Lite
simulations done on the 750 by 750 map with an obstacle density of 5 %. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 53

(a)

(b)

Figure 6.3: MATLAB simulations of static (b) and dynamic (a) environments.
Red indicates the calculated path whereas gray indicates the nodes evaluated to
obtain the path. The green and blue dots indicate the position of the robot and
the goal position respectively. Figure (a) illustrates how a combined algorithm
would move and plan in a dynamic environment (left to right, top to bottom).
Whereas Figure (b) illustrates the path planned by D* Lite for three different
static environments.

shows that the obstacle positioning also has an effect on the time taken. In
short, these results indicate that the time it takes to plan a path depends on
the map size, obstacle placement and the obstacle density if the start and goal
positions stay unchanged.

After a path is planned, the VFF always takes less than 4 ms to execute i.e.
plan the next position for the multicopter. This time stays relatively constant
as only 9 resultant forces have to be calculated each time the algorithm is
initiated. The obstacle density and placement also doesn’t have a significant

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 54

(a) (b)

Figure 6.4: D* Lite path planning simulation of a 750 by 750 map (static
environment) with a 5 % obstacle density. All the obstacles are given in black
and D* Lite was executed with a safety distance of 2. In Figure (a) the planned
path can be seen. In Figure (b) the same planned path is shown along with
the vertices evaluated to plan the path given in gray.

effect as the distance to the nearest obstacle (r) can easily be obtained by only
investigating the nodes in range of the proximity sensor. Therefore, a constant
window size around the multicopter is investigated for obstacles each time the
algorithm is initiated (Default cell size: 0.5 m, Proximity sensor range: 10 m).

6.4 Conclusion
In this chapter, the algorithmic combination of the occupancy grid map build-
ing technique, D* Lite and the Virtual Force Field (VFF) method is explained
(Section 6.1). This is followed by an investigation of the heuristic and cost
function used for D* Lite (Section 6.2.1), as well as the formulation and algo-
rithmic implementation of the VFF (Section 6.2.2). Simulation results of both
static and dynamic environments are then illustrated and discussed along with
the computational time of D* Lite and the VFF method (Section 6.3).

By combining the three algorithms mentioned above, it was possible to
obtain an algorithm capable of planning a global path while still being able
to react to local disturbances (Figure 6.2). To achieve this, however, a safety
boundary had to be added to the D* Lite algorithm. This boundary enables the
algorithm to ignore vertices that are too close to known obstacles. Therefore,
to ensure local minima are not a problem, the two safety boundaries should
always be the same. By combining the VFF and D* Lite, temporary goal
positions are set along the planned path while the multicopter moves, pulling

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 55

Figure 6.5: D* Lite execution time.

it to the end destination and allowing the VFF to navigate the environment
without getting stuck in local minima. This also enables D* Lite to be less
computationally intensive as it only has to re-evaluate the path every few steps.

To ensure D* Lite adheres to both conditions set out in Chapter 2, the
heuristic and cost function used in the algorithm was investigated. For the
heuristic function it was found that the octile distance heuristic function
(Equation 6.1) adheres to the forward-backward consistent condition as proven
in Section 6.2.1. To ensure the cost function adhered to its condition, it has
to be calculated in the same manner as the heuristic function to calculate the
added cost of moving from one node to the next. The concept of the added
cost is also illustrated in Figure 6.1.

By combining the VFF formulas given in Equations 6.2, 6.3 and 6.4 with
the gradient method described in Chapter 2, it is possible to calculate the
multicopters’ next position by only evaluating its current node along with the
immediate surrounding nodes i.e. a 3 by 3 area. The next position will then
be the node with the smallest resultant force given by Equations 6.2.

By simulating the D*Lite and the combined algorithm for both static and
dynamic environments, it was found that the algorithms executed as intended.
D* Lite was therefore always able to calculate and re-calculate a path in both
a static and dynamic environment, unless none existed. While moving along
the path, the VFF was able to ensure the safety of the multicopter when
D* Lite was not active. Different map sizes, obstacle placement and obstacle

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. OBSTACLE AVOIDANCE IMPLEMENTATION 56

Figure 6.6: D* Lite execution time in 750 by 750 map with different obstacle
configurations each time. Obstacle density stayed constant at 5%.

densities were then tested to see the effect they have on the simulation time.
It was found that the average execution time of the D* Lite algorithm grew
exponentially with the map size (Figure 6.5). Added obstacles also increased
the execution time, as would be expected. From Figure 6.6 it was however
found that the execution time mainly depended on the map size, obstacle
placement as well as the obstacle density if the start and goal positions stay
unchanged. The time to execute the VFF was found to be less than 4 ms each
time. This stayed relatively constant as the same amount of nodes had to be
investigated each time to determine the multicopters’ next position.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Flight Tests

In Chapter 3, pose and measurement uncertainties are investigated. This
was incorporated into simulations and it was found that the measurement
uncertainty does not affect the map building procedure as the uncertainty in
the measurement is ±2.5 cm where the default grid size that has to be updated
is 0.5 m. Therefore, an ideal-like sensor model was incorporated alongside the
probability map building formula as indicated in Chapter 6.

It was also found that the pose uncertainty could only be taken into ac-
count if it is readily available in PDF (Probability Density Function) form.
Unfortunately, this data is not available while flying the multicopter, but can
be generated afterwards if a Real Time Kinematic (RTK) GPS is added to the
flight setup. The data generated by this GPS can then be used as a ground
truth measurement to determine the error made by the flight controllers posi-
tion estimation. However, since the data is not available while flying, the effect
of the pose uncertainty on the map building process was investigated through
simulation. It was found that the map being built will be in constant flux as
the error made by the position estimation of the flight controller is constantly
changing. But since the map is being built relative to the multicopters’ current
position estimate, it can be assumed safe to travel.

To enable the multicopter to fly autonomously with the help of MATLAB,
a combination of different hardware and software were integrated as discussed
in Chapter 4. This included the proximity sensor (Chapter 5) used to obtain
the data needed to build a map of the environment. To plan a collision free
path though different environments, however, three algorithms were combined
(Chapter 6). These include the uniform occupancy grid map building tech-
nique, the VFF (Virtual Force Field) method and D* Lite. Before flight tests
were done with this algorithm, extensive simulation tests were done in both
MATLAB (Section 6.3) as well as jMAVSim (Section 4.2.5).

The relevant assumptions made for the flight tests are evaluated in Sec-
tion 7.1. This is followed by the flight test setup in Setion 7.2 as well as the
results and a discussion in Section 7.3. Section 7.4 then concludes this chapter
with a summary of the results and a conclusion.

57

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 58

7.1 Assumptions
As obstacle avoidance will only be implemented in a two dimensional envi-
ronment, there are certain assumptions that need to be made. Firstly, the
orientation of the multicopter will stay constant for the entire flight period.
Therefore, the yaw angle of the multicopter can be assumed to be constant the
entire flight and will not affect the measurements received from the proximity
sensor. Secondly, it is assumed that the sensor is mounted correctly on the
flight setup, resulting in no additional angle uncertainty. Thirdly, when flying,
the multicopter stays horizontal. Therefore, the pitch angle does not affect
the sensor measurements. Fourthly, it is assumed that the multicopter will
fly to a specified height and remain at that height until the goal position is
reached. Included in this assumption, is the fact that there are no obstacles at
either the liftoff or the landing site to obstruct the multicopters’ movements.
Lastly, since the orientation and the height of the multicopter is assumed to be
constant throughout the entire flight, only the horizontal position of the multi-
copter will be measured. The data from the RTK GPS is therefore assumed to
be the actual position of the multicopter and will be compared to the position
estimation of the multicopters’ controller to determine the position error.

7.2 Outdoor Test Setup
In Figure 7.1, the multicopter used for the outdoor flight tests is shown. To
prove the multicopter is able to fly autonomously, two scenarios had to be
proven:

1. That the multicopter is capable of planning a path and then navigating
it around an obstacle (Figure 7.2b).

2. That the multicopter is capable of planning a path and then navigating
it in between two obstacles (Figure 7.2a).

Therefore, if these scenarios can be proven, it will show that the multicopter
is capable of safely navigating on its own in an unknown two dimensional
environment. By extension, it will also be able to traverse more complicated
environments as all two dimensional environments will require the multicopter
to navigate either in between or around obstacles.

At the start of each test, the yaw angle of the multicopter was locked.
This enabled the avoidance algorithm to align its axis system with that of
the multicopter. By doing this, it was possible to calculate the coordinates
the multicopter should move to in the ENU (East, North, Up) coordinate
system. It also forced the flight controller to try and keep the orientation of
the multicopter constant.

The flight test had to be done during windless days as the wind significantly
affected the hight estimation of the multicopter. This is because the hight

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 59

Figure 7.1: Multicopter test setup used to obtain the flight test results seen in
Section 7.3.

(a) Obstacles with a gap in between them (b) Solid obstacles

Figure 7.2: Flight test obstacle placements used to verify the multicopters’
obstacle avoidance capabilities.

estimation is done with a barometer. To counter the wind, the multicopter
also had to tilt itself to fly against it, affecting the map building process.
In other words, since the tests were done at a hight of 1.5 m, the ground
was scanned and added as an obstacle in the map if the multicopter tilted
to much. During windless days the multicopter, however, stayed horizontal
for the proximity sensor measurements, but still struggled to maintain the set

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 60

hight at all times. Like with the xy-setpoints (Section 7.3), the hight was also
continuously checked to see if it is within 0.3 m of the given setpoint. However,
due to the nature of the obstacle course (no obstacles in rage except the given
obstacles) and the sensor measurement implementation (Chapter 5), the map
was not influenced if, for a few seconds, the proximity sensor scanned above
the obstacles.

Before flight test were started, several safety features were included in the
design to ensure that the multicopter would not fly off and endanger anyone
in the vicinity of the test area. These safety features were that:

1. The pilot was always able to regain manual control with the remote when
needed.

2. A python script on the Intel Edison continuously sent setpoints at a
speed of 5 Hz to ensure the controller stayed in offboard mode, even if
WiFi communication was lost (Section 4.2.3).

3. The multicopter was always armed and disarmed by the pilot and never
with the use of the avoidance algorithm. Before it could be armed by the
pilot, however, a safety switch on the multicopter had to be engaged.

4. After the multicopter was armed, it was switched to position control
and then to offboard control. This enabled the multicopter to stay at
its position if communication between the companion computer and the
flight controller was broken during the flight (Section 4.1.1).

5. If an obstacle was detected on the goal position i.e. there is no valid
path available, the multicopter was programmed to land.

6. When the path planning algorithm was initialised, a discretized map
of the environment was generated. An additional safety boundary was
then added around this map, representing obstacles. This ensured that
no path can be planned outside a given area. This safety boundary could
also not be affected by sensor measurement i.e. it cannot disappear over
time.

7.3 Flight Test Results
In this section, multiple flight tests results are discussed. For each test, 4 data
images are shown. The first image of each test represents the flight trajectory
of the multicopter. This data is oriented relative to the axis system of the
multicopter, where forward is in the positive x-direction and left is in the
positive y-direction. Therefore, all the obstacles (black) indicated on the maps
are given relative to the controllers’ position estimation (blue). Also displayed
on the test result are the setpoints (yellow) generated by MATLAB. These

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 61

setpoints are surrounded with an setpoint area (red). When the multicopter
got within this area while flying, it was assumed that the setpoint was reached.
The next setpoint was then generated by the avoidance algorithm and sent
to the companion computer. The position estimation from the RTK GPS
(orange), however, indicates the actual position of the multicopter during the
flight time. This data is overlaid across the Pixhawk position estimation to
see the error the controller was making. Lastly, the start and end point of the
algorithm is indicated with a green circle and a red cross respectively.

The second and third image indicates the position data in the Northern and
Eastern direction respectively. This data was generated by both the Pixhawk
flight controller and the RTK GPS. From this data it is possible to determine
the error the controller was making as seen in the last image. Therefore, it
can be seen how the error in both the Northern and Eastern direction changed
over time.

It should be noted that the first image of each test represent the position
and obstacle data collected by MATLAB during the flight. However, the last
three images for each test were generated afterwards as the Pixhawk saves all
its flight data on a SD card at a higher rate than MATLAB received it. In
other words, more data points were available for the position error analyses.

At the starting point of these tests, it can sometimes be seen that the
multicopter "struggled" before it started moving towards the goal positions.
This was due to the multicopter sometimes struggling to take off and reach its
set hight. For each test a different safety sphere size was used as indicated. D*
Lite, however, was always initiated to check the global path after six setpoints
were generated by the VFF. Therefore, with a default grid size of 0.5 m,
the maximum distance the multicopter could have moved before D* Lite was
initiated again is 3 m. For a summary of the test results as well as the position
error data for each flight, refer to Table 7.1 and Table 7.2 respectively.

For the first test (Figure 7.3), no obstacles were added to the test environ-
ment. The avoidance algorithm, however, was still able to successful navigate
the multicopter from the start position to the goal position as seen in Fig-
ure 7.3a. The entire test took 338 s (5 min and 38 s) to fly 14.5 m in the
forward direction. Therefore, the average speed of the multicopter in the for-
ward direction for this flight test was 0.043 m/s. From the position error data
it can be seen that the Northern and Eastern error changed with time. How-
ever, after about one minutes, the error started to stabilize as the remainder
of the data is more cluttered together.

In the second test (Figure 7.4), one obstacle was placed in front of the
multicopter. The safety distance used for this test was 2 m. From Figure 7.4a
it can be seen that the avoidance algorithm successfully planned and navigated
the multicopter around the obstacle. The entire test took 274 s (4 min and
34 s) to fly 13.5 m in the forward direction. Therefore, the average speed of the
multicopter in the forward direction for this flight test was 0.05 m/s. From
the position error data it can be seen that the Northern and Eastern error

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 62

Table 7.1: Summary of flight test results.

Test #
Test Safety Forward Time Average
Status distance [m] distance [s] forward

travelled [m] speed [m/s]

1 Successful - 14.5 338 0.043
2 Successful 2 13.5 274 0.05
3 Successful 1.5 16.5 339 0.05
4 Successful 2 14 151 0.09
5 Successful 1 18.5 119 0.16

Table 7.2: PDF distribution values obtained through testing for both the
Northern and Eastern error (Given in North, East and Down (NED) coordinate
system). These values represent the average error, µ, as well as the standard
deviation, σ, at the end of each individual test.

Test # North East
µ [m] σ [m] µ [m] σ [m]

1 1.1687 0.4841 1.0238 0.4891
2 1.3718 0.5264 0.2925 0.2603
3 -0.9442 0.3036 0.2953 0.3010
4 0.5507 0.2592 0.3424 0.1434
5 0.0308 0.2832 -0.2193 0.1532

changed with time. However, again after about one minutes, the error started
to stabilize as the remainder of the data is more cluttered together.

For both the third and the fourth flight test (Figure 7.5 and Figure 7.6 re-
spectively) two obstacles were placed at a distance of 5 m from each other. For
the third flight test (Figure 7.5a), a safety distance of 1.5 m was used. Whereas
a safety distance of 2 m was used for the fourth flight test (Figure 7.6a). In
both cases, the avoidance algorithm was able to successfully plan and navigate
the multicopter from the start position, in between two obstacles to the goal
position.

The third test took 339 s (5 min and 39 s) to fly 16.5 m in the forward
direction. Therefore, the average speed of the multicopter in the forward
direction for this flight test was 0.05 m/s. From the position error data it can
be seen that the Northern and Eastern error changed with time. However,
after about 40 s, the error started to stabilize as the rest of the data is more
cluttered together.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 63

(a) Multicopter trajectory

(b) Position and error data

Figure 7.3: First flights’ test results. No obstacles were introduced to the test
environment. a) Represents the trajectory followed by the multicopter during
the flight test. It also contains the setpoints generated by MATLAB and the
RTK (actual) position of the multicopter during the flight. b) Represents
the position and error data of the multicopter in the Northern and Eastern
direction for the duration of the flight. From the data it can be seen that the
avoidance algorithm was able to successfully navigate the multicopter from the
start position to the goal position in 338 s (5 min and 38 s).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 64

(a) Multicopter trajectory

(b) Position and error data

Figure 7.4: Second flights’ test results. One obstacles was added to the test
environment. a) Represents the trajectory followed by the multicopter during
the flight test. It also contains the setpoints generated by MATLAB and the
RTK (actual) position of the multicopter during the flight. b) Represents
the position and error data of the multicopter in the Northern and Eastern
direction for the duration of the flight. From the data it can be seen that the
avoidance algorithm was able to safely navigate the multicopter from the start
position, around the obstacle to the goal position. The test was completed in
274 s (4 min and 34 s) while using a safety sphere with a radius of 2 m.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 65

(a) Multicopter trajectory

(b) Position and error data

Figure 7.5: Third flights’ test results. Two obstacles were added to the test
environment, 5 m appart from each other. a) Represents the trajectory fol-
lowed by the multicopter during the flight test. It also contains the setpoints
generated by MATLAB and the RTK (actual) position of the multicopter dur-
ing the flight. b) Represents the position and error data of the multicopter in
the Northern and Eastern direction for the duration of the flight. From the
data it can be seen that the avoidance algorithm was able to safely navigate
the multicopter from the start position, in between the two obstacles to the
goal position. The test was completed in 339 s (5 min and 39 s) while using a
safety sphere with a radius of 1.5 m.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 66

(a) Multicopter trajectory

(b) Position and error data

Figure 7.6: Fourth flights’ test results. Two obstacles were added to the test
environment, 5 m appart from each other. a) Represents the trajectory fol-
lowed by the multicopter during the flight test. It also contains the setpoints
generated by MATLAB and the RTK (actual) position of the multicopter dur-
ing the flight. b) Represents the position and error data of the multicopter in
the Northern and Eastern direction for the duration of the flight. From the
data it can be seen that the avoidance algorithm was able to safely navigate
the multicopter from the start position, in between the two obstacles to the
goal position. The test was completed in 151 s (2 min and 31 s) while using a
safety sphere with a radius of 2 m.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 67

The fourth flight test on the other hand, took 151 s (2 min and 31 s) to fly a
distance of 14 m in the forward direction. Therefore, the average speed of the
multicopter in the forward direction for this flight test was 0.09 m/s. From the
position error data it can be seen that the Northern and Eastern error changed
with time. However, after about 20 s, the error started to stabilize as the rest
of the data is more cluttered together.

For the fifth test (Figure 7.7), two obstacles were added to the test envi-
ronment with a distance of 4 m between them. The safety distance used for
this test setup was 1 m. From Figure 7.7a, it can be seen that the multicopter
should have gone through the opening between the two obstacles, however, a
false positive was received from the proximity sensor causing the path to be re-
planned. As can be seen from the figure, the multicopter moved approximately
6 m and then changed direction i.e. D* Lite was initiated to plan a new path.
However, because a new path was generated, the multicopter was pulled along
that path while it was correcting the map. When it was time to recalculate
the path, the shortest path was to continue in the current direction and not
turn around to try and move through the obstacles again. Even though the
multicopter did not go in between the two obstacles, the avoidance algorithm
was still able to safely navigate the multicopter from the start position to the
goal position.

The fifth test took 119 (1 min and 59 s) to fly 18.5 m in the forward
direction. Therefore, the average speed of the multicopter in the forward
direction for this flight test was 0.16 m/s. From the position error data it can
be seen that the Northern and Eastern error changed with time. Unlike all the
other flight tests, the error stayed relatively constant from the start.

In the first three tests the forward speed of the multicopter was well below
0.1 m/s (Table 7.1). Only after the controller was tuned, the multiopter was
able to fly faster as can be seen in the last two tests. For the fourth and fifth
test the average speed in the forward direction increased by a factor of 2 and
3 respectively compared to the first three tests. As seen in Section 6.3, both
D* Lite as well as the VFF method excecute at high speeds for small maps,
therefore, most of the time flying was spent on getting to the given setpoint.
This can also be seen in the multicopters’ trajectory plots. For the first three
tests, the pixhawks’ position estimation is more densely packed than that of
the last two tests. Therefore, from the plots it can also be seen that the
multicopter moved slowly to the goal position.

Along with the speed increase, the tuned controller also had a significant
decrease in both the average error and the standard deviation in the Northern
direction. The size of the average error made in the Eastern direction, how-
ever, stayed relatively unchanged, but the standard deviation also decreased
(Table 7.2). Therefore the error data for the last two flight tests are more
compact than that of the first three tests.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 68

(a) Multicopter trajectory

(b) Position and error data

Figure 7.7: Fifth flights’ test results. Two obstacles were added to the test
environment, 4 m apart from each other. a) Represents the trajectory followed
by the multicopter during the flight test. It also contains the setpoints gen-
erated by MATLAB and the RTK (actual) position of the multicopter during
the flight. b) Represents the position and error data of the multicopter in
the Northern and Eastern direction for the duration of the flight. From the
data it can be seen that the avoidance algorithm was able to safely navigate
the multicopter from the start position, around the obstacles to the goal po-
sition. A safety sphere with a radius of 1 m was used for this test and it was
completed in 119 s (1 min and 59 s). The algorithm was suppose to navigate
the multicopter in between the two obstacles. However, a false positive prox-
imity measurement regarding the environment caused the algorithm to rather
navigate around the obstacles.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 69

If it was possible to have access to the PDF while flying, the error could
have been directly incorporated into the map building process. However, since
it is not known while flying, the map is in constant flux due to the error
in the position estimation made by the controller. For this reason, most of
the obstacles in the occupancy grid appear deformed. However, the map is
still traversable as it always adds the given obstacles correctly relative to its
position estimation at any given time. From the error data shown in the test
results, it could be seen that all the errors started to stabilize after a while.
However, if the error is not 0 or entirely constant while the multicopter is
flying, the effects will always be seen in the map building process.

7.4 Conclusion
In Section 7.1, the assumptions made regarding the test setup are given. The
flight test setup used is then explained in Section 7.2, along with all the safety
precautions taken to ensure that the risk of accidents were minimised. Final
flight test results and a discussion regarding these results are then given in
Section 7.3.

By using the combined algorithm as described in Chapter 6 in conjunction
with the hardware and software setup described in Chapter 4, a working pro-
totype of the obstacle avoidance system was obtained. This setup enabled the
multicopter to safely navigate multiple unknown environments as illustrated in
the test results (Section 7.3). For a summary of the test results as well as the
position error data for each flight, refer to Table 7.1 and Table 7.2 respectively.

The flight test had to be done during windless days as the wind significantly
affected the hight estimation of the multicopter. This is because the hight
estimation is done with a barometer. To counter the wind, the multicopter
also had to tilt itself to fly against it, affecting the map building process.
In other words, since the tests were done at a hight of 1.5 m, the ground
was scanned and added as an obstacle in the map if the multicopter tilted
to much. During windless days the multicopter, however, stayed horizontal
for the proximity sensor measurements, but still struggled to maintain the set
hight at all times. Like with the xy-setpoints (Section 7.3), the hight was also
continuously checked to see if it is within 0.3 m of the given setpoint.

Since the yaw angle was algorithmically locked before each flight, the as-
sumption regarding the multicopter orientation staying constant was correct.
Along with only doing flight tests on windless days, a maximum pitch angle
was also given to the multicopter, constricting the tilt angle when moving.
The obstacle placement was also done in such a way that the obstacle course
looked identical 0.3 m above and below the give flight hight. However, due
to the nature of the obstacle course (no obstacles in rage except the given
obstacles) and the sensor measurement implementation (Chapter 5), the map
was not influenced if, for a few seconds, the proximity sensor scanned above

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. FLIGHT TESTS 70

the obstacles. Therefore, in the setup used for the flight tests, the assump-
tions regarding the tilt angle and the hight of the multicopter can be assumed
correct.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Conclusion and Recommendations

This study was aimed at designing, building and testing a system that enables
a multicopter to fly autonomously in a dynamic 2D environment. This included
the proximity sensor design, algorithm development, simulations, component
integration and testing. In the end, a modular system was developed and
successfully integrated, enabling the multicopter to fly autonomously in a dy-
namic 2D environment. In Section 8.1, a brief overview of the work is given
alongside concluding remarks. This is followed by recommendations regarding
future work in Section 8.2.

8.1 Conclusion
In Chapter 2 a literature review regarding two different map building tech-
niques (uniform and adaptive occupancy grids) is given. This is followed by a
review of several obstacle avoidance algorithms, including: The Virtual Force
Field (VFF) method, A*, LPA* and D* Lite. From the investigated algorithms
a combination of three (Uniform occupancy gird map building technique, the
VFF method and D* Lite) were chosen for the path planning algorithm. To be
able to use the uniform occupancy grid map building technique, a probability
update formula was derived.

One of the requirements for the probability update formula is an inverse
sensor model. Therefore, an analytical formula for the proximity sensor, cor-
rupted by Gaussian noise, is derived in Chapter 3. An analytical formula for
the pose uncertainty of the multicopter is also derived. This enabled the prob-
ability update formula to incorporate both measurement and pose uncertainty
straight into the map building process. Both of these formulas were then sim-
ulated and the results evaluated to determine what effect they have on the
map building process and whether or not simplified methods can be used to
generate similar results.

In Chapter 4, an overview is given of the different hardware and software
that had to be integrated to allow MATLAB to fully control the Pixhawk flight

71

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION AND RECOMMENDATIONS 72

controller. The modular design used in the system integration also allows indi-
vidual components to be changed, rather than re-designing the entire system
every time. In other words, problems are isolated. If there is a problem with
the avoidance algorithm, changes can easily be made without affecting other
parts of the system like the flight controller. Also included in this chapter
is the proximity sensor design. Test results regarding the designed proximity
sensors’ performance can be found in Chapter 5.

In Chapter 6, the algorithmic combination of the occupancy grid map build-
ing technique, D* Lite and the VFF is explained. This is followed by an in-
vestigation regarding the heuristic and cost function used for D* Lite, as well
as the formulation and algorithmic implementation of the VFF. Simulation
results regarding both static and dynamic environments are then illustrated
and discussed along with the computational time of D* Lite and the VFF.

The final system was then implemented on the multicopter and tested in an
outdoor test environment as shown in Chapter 7. From the results, it can be
seen that the obstacle avoidance system was able to successfully navigate the
multicopter though different obstacle arrangements. Therefore, the aims of the
project were reached as a system enabling the multicopter to fly autonomously
in a dynamic 2D environment was successfully implemented.

8.2 Recommendations
The problem of autonomous flight still remains an active research area and,
with the proposed system taken into account, offers many directions for further
development and improvement. Here follows some proposed areas of improve-
ment.

To further increase the speed of the multicopter, the Pixhawk flight con-
troller can be better tuned. As seen from Section 7.3, the speed of the mul-
ticopter can be greatly increased if the controller is properly tuned. Another
method would be to send velocity commands to the controller (Section 4.1.1)
and not setpoints as has been done for this project. However, if the speed
of the multicopter is dramatically increased, the pitch of the multicopter will
have to be taken into account as it will have an effect on the proximity sensor
measurements. To counter this, a gimbal can be added to keep the proximity
sensor horizontal at all times. This was however not necessary for this project
as the low speeds essentially kept the multicopter horizontal.

For the controller to better estimate its position, the sensor fusion between
the GPS and the onboard IMU (Inertial Measurement Unit) can be improved.
Another method would be to integrate the RTK GPS directly alongside the
Pixhawk flight controller. However, if this is used, an additional ground sta-
tion unit would have to be present at all times. The RTK GPS also only has
an accuracy of 2 cm horizontally in clear skies if it has an RTK lock which can
take up to 20 min to obtain each time. With a RTK GPS available, the hight

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CONCLUSION AND RECOMMENDATIONS 73

estimation of the multicopter can also be greatly improved. This can be done
by either using the hight given by the RTK GPS or doing sensor fusion between
both the RTK and the barometer. Another way to increase the hight stabil-
ity of the multicopter would be to have a range finder measuring the hight.
However, the pitch angle of the multicopter can affect these measurements.
Therefore, a gimbal would also be advised.

All of the above mentioned solutions can help improve the stability and
accuracy of the multicopter while flying, however, the weight the multicopter
can carry should always be taken into account. If this gets to heavy, the time
the multicopter can fly will be significantly reduces as the power usage of the
rotors will increase.

To improve the path planning algorithm, the quadtree map building algo-
rithm can be added alongside D* Lite and the VFF method. For this project
it was not a viable solution as the map was constantly changing, during flight
tests, due to the error in die position estimation. However, if the position esti-
mation is significantly improved, quadtrees would be a better two-dimensional
map building technique. If the code is extended to a three-dimensional envi-
ronment, uniform grids would be advised at first, however, an octree (three-
dimentional version of a quadtree) map building algorithm can also be used.
ROS recently developed its own octree mapping algorithm than can seam-
lessly be integrated with the current system. If the quadtree or octree map
building technique is, however, chosen and implemented, the current avoidance
algorithm would also have to be adapted accordingly.

To decrease the size of the system, the Arduino sensor setup can be elim-
inated, connecting the distance sensor directly to the Intel Edison as it has
the similar pin setup to the Arduino Mega. It is also possible to eliminate the
ground station computer by re-writing all the avoidance algorithm in C, C++
or Python and then executing it on the Intel Edison. However, if this is done,
the modular design of the system is lost. The way it is set up at the moment
(Figure 4.1), any avoidance algorithm programmed in MATLAB can be tested
alongside the Pixhawk flight controller, if programmed correctly. The distance
sensor can also easily be swapped out for a better one.

To ensure better safety of the vehicle and the people in the surrounding
areas, more safety features can be added to the design. For instance, enabling
the multicopter to automatically land if the battery gets to low or if commu-
nication is lost between the flight controller with the remote.

Stellenbosch University https://scholar.sun.ac.za

List of References

(2014). Arduino Mega 2560 Pinout.
Available at: http://www.electroschematics.com/7963/arduino-mega-2560-
pinout/

(2015). jMAVSim - Pixhawk Flight Controller Hardware Project.
Available at: https://pixhawk.org/dev/hil/jmavsim

(2015). Pixhawk Flight Controller.
Available at: http://www.sishobby.com/358-thickbox_default/3dr-pixhawk-
flight-controller-ublox-gps-module.jpg

(2016). Drones Cut Cost of Thermographic PV Panel Inspections - UAS VISION.
Available at: http://www.uasvision.com/2016/09/15/drones-cut-cost-of-
thermographic-pv-panel-inspections/

(2016). Intel Edison.
Available at: http://www.mouser.com/images/microsites/Intel_
EDI1ARDUINALK.jpg

Choset, H. (2005). Principles of robot motion : theory, algorithms, and implemen-
tation. MIT Press, Cambridge, Mass.

Coetzee, J. and Smit, W. (2016). Simulation of an Obstacle Avoidance Algorithm in
a Dynamic 2D Environment. In: PENG, P.Z. and LIN, D.F. (eds.), International
Micro Air Vechicle Competition and Conference 2016, pp. 256–263. Beijing, PR
of China.

De Filippis, L., Guglieri, G. and Quagliotti, F. (2012). Path Planning Strategies for
UAVS in 3D Environments. Journal of Intelligent & Robotic Systems, vol. 65, no.
1-4, pp. 247–264.

Droeschel, D., Nieuwenhuisen, M., Beul, M., Holz, D., Stückler, J. and Behnke,
S. (2016). Multilayered Mapping and Navigation for Autonomous Micro Aerial
Vehicles. Journal of Field Robotics, vol. 33, no. 4, pp. 451–475.

Goerzen, C., Kong, Z. and Mettler, B. (2010). A Survey of Motion Planning Algo-
rithms from the Perspective of Autonomous UAV Guidance. Journal of Intelligent
and Robotic Systems, vol. 57, no. 1-4, pp. 65–100.

74

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 75

Hoy, M., Matveev, A.S. and Savkin, A.V. (2015). Algorithms for collision-free nav-
igation of mobile robots in complex cluttered environments: a survey. Robotica,
vol. 33, no. 03, pp. 463–497.

Joubert, D. (2012). Adaptive occupancy grid mapping with measurement and pose
uncertainty. Master of Science in Applied Maths. University of Stellenbosch.
Stellenbosch, South Africa.

Joubert, D., Brink, W. and Herbst, B. (2015). Pose Uncertainty in Occupancy Grids
through Monte Carlo Integration. J Intell Robot Syst Journal of Intelligent &
Robotic Systems : with a special section on Unmanned Systems, vol. 77, no. 1, pp.
5–16.

Koenig, S. and Likhachev, M. (2002a). D* Lite. Proceedings of the Eighteenth
National Conference on Artificial Intelligence, pp. 476–483.

Koenig, S. and Likhachev, M. (2002b). Improved fast replanning for robot naviga-
tion in unknown terrain. In: Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No.02CH37292), vol. 1, pp. 968–975. IEEE.

Moravec, H.P. (1988). Sensor Fusion in Certainty Grids for Mobile Robots. AI
Magazine, vol. 9, no. 2, pp. 61–74.

Mujumdar, A. and Padhi, R. (2011). Evolving Philosophies on Autonomous Ob-
stacle/Collision Avoidance of Unmanned Aerial Vehicles. Journal of Aerospace
Computing, Information, and Communication, vol. 8, no. 2, pp. 17–41.

Paul, T., Krogstad, T.R. and Gravdahl, J.T. (2008). Modelling of UAV formation
flight using 3D potential field. Simulation Modelling Practice and Theory, vol. 16,
no. 9, pp. 1453–1462.

Rubinstein, R. (2008). Simulation and the monte carlo method. John Wiley & Sons,
Hoboken, N.J.

Stellenbosch University https://scholar.sun.ac.za

Appendices

76

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Pseudo Code For Obstacle
Avoidance Algorithms

A.1 A*

Data: Start vertex, Goal vertex, Graph
Result: Shortest path between given vertices (if one exists)
Procedure Main():

while priority queue is not empty do
Pick nbest from O such that f(nbest) ≤ f(n), ∀n ∈ O;
Remove nbest from O and add to C;
if nbest = qgoal then

Exit
end
for all x ∈ Star(nbest) not in C do

Expand nbest

end
if x 3 O then

add x to O
else if g(nbest) + c(nbest, x) < g(x) then

update x’s backpointer to point to nbest

end
end

end
Algorithm 1: A* algorithmic progression adapted from (Choset, 2005)

77

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. PSEUDO CODE FOR OBSTACLE AVOIDANCE
ALGORITHMS 78

A.2 LPA*

Data: Start vertex, Goal vertex, Graph
Result: Shortest path between given vertices (if one exists)
Procedure Main():

Initialize();
while 1 do

ComputeShortestPath();
Wait for changes in edge cost;
for all directed edges (u, v) with changed edge costs do

Update the edge cost c(u, v);
UpdateVertex(v);

end
end

end
Procedure Initialize():

U = ∅;
for all s ∈ S do

rhs(s) = g(s) =∞;
end
rhs(sstart = 0);
U.Insert(sstart, CalculateKey(sstart));

end
Procedure CalculateKey(s):

return [min(g(s), rhs(s)) + h(s, sgoal); min(g(s), rhs(s))]
end
Procedure UpdateVertex(u):

if u 6= sstart then
rhs(u) = mins′∈Pred(u)(g(s′) + c(s′, u))

end
if u ∈ U then

U.Remove(u)
end
if g(u) 6= rhs(u) then

U.Insert(u, CalculateKey(u))
end

end
Algorithm 2: LPA* algorithmic progression adapted from (Koenig and
Likhachev, 2002a) part 1

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. PSEUDO CODE FOR OBSTACLE AVOIDANCE
ALGORITHMS 79

Procedure ComputeShortestPath():
while (U.TopKey() < CalculateKey(sgoal) ‖ rhs(sgoal 6= g(sgoal)) do

u = U.Pop();
if (g(u)>rhs(u)) then

g(u)=rhs(u);
for all s ∈ Succ(u) do

UpdateV ertex(s)
end

else
g(u) = ∞;
for all s ∈ Succ(u) ∪ {u} do

UpdateV ertex(s)
end

end
end

end
Algorithm 3: LPA* algorithmic progression adapted from (Koenig and
Likhachev, 2002a) part 2

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. PSEUDO CODE FOR OBSTACLE AVOIDANCE
ALGORITHMS 80

A.3 D* Lite

Data: Start vertex, Goal vertex, Graph
Result: Shortest path between given vertices (if one exists)
Procedure Main():

slast = sstart;
Initialize();
ComputeShortestPath();
while sstart 6= sgoal do

sstart = arg mins′∈Succ(sstart)(c(sstart, s
′) + g(s′));

Move to sstart;
Scan graph for changes in edge cost;
if any costs changed then

km = km + h(slast, sstart);
slast = sstart;
for all directed edges (u, v) with changed edge costs do

Update the edge cost c(u, v);
UpdateVertex(u);

end
ComputeShortestPath();

end
end

end
Procedure Initialize():

U = ∅;
km = 0;
for all s ∈ S do

rhs(s) = g(s) =∞;
end
rhs(sgoal = 0);
U.Insert(sgoal, CalculateKey(sgoal));

end
Procedure CalculateKey(s):

return [min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))]
end

Algorithm 4: D* Lite algorithmic progression adapted from (Koenig and
Likhachev, 2002a) part 1

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. PSEUDO CODE FOR OBSTACLE AVOIDANCE
ALGORITHMS 81

Procedure UpdateVertex(u):
if u 6= sgoal then

rhs(u) = mins′∈Succ(u)(c(u, s)′ + g(s′))
end
if u ∈ U then

U.Remove(u)
end
if g(u) 6= rhs(u) then

U.Insert(u, CalculateKey(u))
end

end
Procedure ComputeShortestPath():

while (U.TopKey() < CalculateKey(sstart) ‖ rhs(sstart 6= g(sstart))
do
kold = U.TopKey();
u = U.Pop();
if kold < CalculateKey(u) then

U.Insert(u,CalculateKey(u))
else if (g(u) > rhs(u)) then

g(u)=rhs(u);
for all s ∈ Pred(u) do

UpdateV ertex(s)
end

else
g(u) = ∞;
for all s ∈ Pred(u) ∪ {u} do

UpdateV ertex(s)
end

end
end

end
Algorithm 5: D* Lite algorithmic progression adapted from (Koenig and
Likhachev, 2002a) part 2

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Datasheets

B.1 Pixhawk Flight Controller

82

Stellenbosch University https://scholar.sun.ac.za

PX4FMU – Flight Management Unit
QUICK START – HARDWARE VERSION 1.7

Description Features

Connectors, Jumpers and Dimensions

Pinout and absolute maximum Ratings

PX4FMU is an onboard management unit
for micro air vehicles. It combines an
autopilot and inertial measurement unit
and enables the control of an aircraft using
a single-board solution. Additional I/O can
be easily connected via the 30-pin
expansion bus.

http://pixhawk.ethz.ch/px4/

● 168 Mhz Cortex-M4 CPU (196 KB RAM, 1 MB Flash)
● 250 mW typical power consumption
● Reverse polarity protection on all power inputs
● 3D gyro, accelerometer and magnetometer, pressure sensors
● I2C, 3x UART, PPM, analog, GPS, 2x 5V GPIO, 4x PWM / Servo
● MicroSD card slot
● Expansion bus: CAN, 2x I2C, SPI, 4x analog, 2x UART, GPIOs
● USB Serial Port (Virtual COM Port / VCP) and bootloader
● 50 x 36 x 6 mm (1.38x1.97x0.24“), 8g, 30x30 mm mounting holes
● 4.5-6 V wide supply input range (incl. USB power)
● Selectable 3.3 V or 5 V IO for UART2 and GPS ports

2 1

4 3

6
8

10
12

14
16

18
20

22
24

26
28

30

5
7

9
11

13
15

17
19

21
23

25
27

29

VDD_5V
GND
CAN2_TX
USART1_TX
I2C3_SCL
ADC123_IN10
UART6_TX
UART5_TX
I2C2_SCL
USART2_CTS
USART2_TX
PPM_INPUT
GPIO_EXT2
GND
ADC123_IN12

VDD_5V
GND

CAN2_RX
USART1_RX

I2C3_SDA
-

UART6_RX
UART5_RX
I2C2_SDA

USART2_RTS
USART2_RX
GPIO_EXT1

BUZZER
ADC123_IN11
ADC123_IN13

M
U

LT
I

GND
I2C1_SCL
I2C1_SDA

USART2_TX / SRV3 / AR.TX
USART2_CTS / SRV1 / AR.S4
USART2_RTS / SRV2 / AR.S3

UART2_RX / SRV4 / AR.RX
USART1_TX
USART1_RX

PPM_INPUT (3-5V)
BATTERY_MONITOR (3-18V)

GPIO_EXT2 / AR.S2
GPIO_EXT1 / AR.S1

VDD_3V3
VDD_5V

15 1

G
P

S
5 1

GND
NOT CONNECTED

USART6_RX
USART6_TX

VDD_GPS (5V default)

● Input: 4.3-6 V (VDD_5V), 20
mA onboard use, max. 800 mA
for max peripheral load.
Reverse-polarity protected.
● Output: 3.3 V (VDD_3V3),
fuse-limited 500 mA EXT, 3.3 V,
fuse-limited 200 mA GPS

GPS module
Connector
(UART and
power)

Reset Button

ARM Mini
JTAG (10 pos)

USB Micro-B
Virt. COM port
USB powered

Status Leds
Green: Power on
Blue: Activity
Amber: ErrorPeripherals,

Computer,
Radio,
and motors

PX4 Expansion
Bus System

M
U

LT
I

G
P

S
JTAG

USB
RST

36
 m

m

50 mm
9.5 mm

3
.0

 m
m

10.5 mm

Ø 3.1 mm (M3)

15 1

1

Mates housing: Hirose DF13 ''DF13-5S-1.25C'', contacts: ''DF13-2630SCF'', AWG 26-30 Mates 2 mm header: 3M ''951230-2520-AR-PR'' Mates housing: Hirose DF13 ''DF13-15S-1.25C'', contacts: ''DF13-2630SCF'', AWG 26-30

5 1

Telemetry
UART voltage
A: 3.3 V I/O (default)
(5V tolerant)
B: 5.0 V I/O

S
J1

SJ2

GPS supply voltage
selection
A: 5.0 V (default)
B: 3.3 V

z

y

x

Flight
Direction

Origin

2

34

5.0V
3.3V

3.3V
5.0V

Stellenbosch University https://scholar.sun.ac.za

Software Tools / Getting Started

Additional connectors (bottom side)

Please check the most recent user manual at https://pixhawk.ethz.ch/px4/users/

The footprints on the bottom side of the connector can be used by advanced users to interface additional
boards or sensors.

Upgrading Firmware / Developing Custom Code
Please check the most recent developer instructions at https://pixhawk.ethz.ch/px4/dev/

Open Hardware License
PX4FMU is an open hardware design, following the OSHW 1.1 defi nition licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. PX4FMU uses the BSD-licensed NuttX operating system
as base for the PX4 software stack (http://nuttx.sourceforge.net).

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK
AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER
OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO
YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

http://creativecommons.org/licenses/by-sa/3.0/

JTAG PADS

PX4 Expansion
Bus System

m
icroS

D
m

icroS
D

H
C

S
LO

T

BOOT0

12

34

PX4FMU v1.7

A
R

M

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DATASHEETS 85

B.2 Intel Edison

Stellenbosch University https://scholar.sun.ac.za

Product Brief
Intel® Edison

Introduction

The Intel® Edison development
platform is designed to lower the
barriers to entry for a range of
inventors, entrepreneurs, and
consumer product designers to
rapidly prototype and produce
“Internet of Things” (IoT) and
wearable computing products.

Intel® Edison Board for Arduino*

Supports Arduino Sketch, Linux,
Wi-Fi, and Bluetooth.

Board I/O: Compatible with
Arduino Uno (except 4 PWM
instead of 6 PWM):

• 20 digital input/output pins,
including 4 pins as PWM
outputs.

• 6 analog inputs.
• 1 UART (Rx/Tx).
• 1 I2C.
• 1 ICSP 6-pin header (SPI).
• Micro USB device connector OR

(via mechanical switch)
dedicated standard size USB
host Type-A connector.

• Micro USB device (connected to
UART).

• SD card connector.
• DC power jack (7 to15 VDC

input).

Intel® Edison Breakout Board

Slightly larger than the
Intel® Edison module, the
Intel® Edison Breakout Board has
a minimal set of features:

• Exposes native 1.8 V I/O of the
Edison module.

• 0.1 inch grid I/O array of
through-hole solder points.

• USB OTG with USB Micro
Type-AB connector.

• USB OTG power switch.
• Battery charger.
• USB to device UART bridge with

USB micro Type-B connector.
• DC power supply jack (7 to

15 VDC input).

Intel® IoT Analytics Platform

• Provides seamless Device-to-
Device and Device-to-Cloud
communication.

• Ability to run rules on your data
stream that trigger alerts based
on advanced analytics.

• Foundational tools for
collecting, storing, and
processing data in the cloud.

• Free for limited and
noncommercial use.

Intel® Edison
Development Platform

Stellenbosch University https://scholar.sun.ac.za

Intel® Edison Development Platform

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel’s website
at http://www.intel.com/design/literature.htm.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.
See http://www.intel.com/products/processor_number for details.
Intel, the Intel logo, Atom, Pentium, Quark, and Xeon are trademarks of Intel Corporation in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2014 Intel Corporation. All rights reserved. Please Recycle 331179-001

PHYSICAL
Form factor Board with 70-pin connector
Dimensions 35.5 × 25.0 × 3.9 mm (1.4 × 1.0 × 0.15 inches) max
C/M/F Blue PCB with shields / No enclosure
Connector Hirose DF40 Series (1.5, 2.0, or 3.0 mm stack height)
Operating temperature 32 to 104°F (0 to 40°C)

EXTERNAL INTERFACES
Total of 40 GPIOs, which can be configured as:
SD card 1 interface
UART 2 controllers (1 full flow control, 1 Rx/Tx)
I2C 2 controllers
SPI 1 controller with 2 chip selects
I2S 1 controller
GPIO Additional 12 (with 4 capable of PWM)
USB 2.0 1 OTG controller
Clock output 32 kHz, 19.2 MHz

MAJOR EDISON COMPONENTS
 SoC 22 nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500 MHz and a 32-bit

Intel® Quark™ microcontroller at 100 MHz
RAM 1 GB LPDDR3 POP memory

(2 channel 32bits @ 800MT/sec)
Flash storage 4 GB eMMC (v4.51 spec)
 WiFi Broadcom* 43340 802.11 a/b/g/n;

 Dual-band (2.4 and 5 GHz)
 Onboard antenna or external antenna (SKU configurations)

Bluetooth Bluetooth 4.0

POWER
Input 3.3 to 4.5 V
Output 100 ma @3.3 V and 100 ma @ 1.8 V
Power Standby (No radios): 13 mW

Standby (Bluetooth 4.0): 21.5 mW (BTLE in Q4-14)
Standby (Wi-Fi): 35 mW

FIRMWARE + SOFTWARE
CPU OS Yocto Linux* v1.6
Development environments Arduino* IDE

Eclipse supporting: C, C++, and Python
Intel XDK supporting: Node.JS and HTML5

MCU OS RTOS
Development environments MCU SDK and IDE

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DATASHEETS 88

B.3 Arduino Mega

Stellenbosch University https://scholar.sun.ac.za

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560
(datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs),
16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything
needed to support the microcontroller; simply connect it to a computer with a USB cable or
power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with
most shields designed for the Arduino Duemilanove or Diecimila.

Stellenbosch University https://scholar.sun.ac.za

EAGLE files: arduino-mega2560-reference-design.zip Schematic: arduino-mega2560-schematic.pdf

Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 54 (of which 14 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

Stellenbosch University https://scholar.sun.ac.za

The Arduino Mega2560 can be powered via the USB connection or with an external power supply. The power source is
selected automatically. External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The
adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery
can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may
supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat
and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it
features the Atmega8U2 programmed as a USB-to-serial converter.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts
from the USB connection or other regulated power source). You can supply voltage through this pin, or, if
supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the board. This
can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of
SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an
internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

• Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and
14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the
corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21
(interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a
change in value. See the attachInterrupt() function for details.

• PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication, which, although

provided by the underlying hardware, is not currently included in the Arduino language. The SPI pins are also
broken out on the ICSP header, which is physically compatible with the Duemilanove and Diecimila.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when
the pin is LOW, it's off.

• I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the
Wiring website). Note that these pins are not in the same location as the I2C pins on the Duemilanove.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default
they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and
analogReference() function.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which

block the one on the board.

Stellenbosch University https://scholar.sun.ac.za

The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino, or
other microcontrollers. The ATmega2560 provides four hardware UARTs for TTL (5V) serial communication.
An ATmega8U2 on the board channels one of these over USB and provides a virtual com port to software on
the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board
as a COM port automatically. The Arduino software includes a serial monitor which allows simple textual
data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being
transmitted via the ATmega8U2 chip and USB connection to the computer (but not for serial communication
on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega's digital pins.

The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation on the Wiring website for details. To use the SPI
communication, please see the ATmega2560 datasheet.

The Arduino Mega2560 can be programmed with the Arduino software (download). For details, see the
reference and tutorials.

The Atmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new
code to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

Stellenbosch University https://scholar.sun.ac.za

Rather then requiring a physical press of the reset button before an upload, the Arduino Mega2560 is
designed in a way that allows it to be reset by software running on a connected computer. One of the
hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega2560 via a
100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the
chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the
lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X
or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second
or so, the bootloader is running on the Mega2560. While it is programmed to ignore malformed data (i.e.
anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Mega contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Mega has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Mega PCB are 4 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

The Mega is designed to be compatible with most shields designed for the Diecimila or Duemilanove. Digital
pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the power header, and ICSP
header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and
1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega and Duemilanove / Diecimila. Please note that I2C is not located on the same pins on the
Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DATASHEETS 94

B.4 PulsedLight Lidar

Stellenbosch University https://scholar.sun.ac.za

 � 1

Lidar Lite v3 Operation Manual
and Technical Specifications

Laser Safety
 WARNING

This device requires no regular maintenance. In the event that the device
becomes damaged or is inoperable, repair or service must be handled by
authorized, factory-trained technicians only. Attempting to repair or service
the unit on your own can result in direct exposure to laser radiation and the
risk of permanent eye damage. For repair or service, contact your dealer or
Garmin® for more information. This device should not be modified or operated
without its housing or optics. Operating this device without a housing and
optics, or operating this device with modified housing or optics that expose the
laser source, may result in direct exposure to laser radiation and the risk of
permanent eye damage. Removal or modification of the diffuser in front of the
laser optic may result in the risk of permanent eye damage.

Use of controls or adjustments or performance of procedures other than those
specified in this documentation may result in hazardous radiation exposure.
Garmin is not responsible for injuries caused through the improper use or
operation of this product.

 CAUTION
This device emits laser radiation. This Laser Product is designated Class 1
during all procedures of operation. This designation means that the laser is
safe to look at with the unaided eye, however it is advisable to avoid looking
into the beam when operating the device and to turn off the module when not
in use.

Documentation Revision Information
Rev Date Changes
0A 09/2016 Initial release

Table of Contents
Lidar Lite v3 Operation Manual and Technical Specifications�������� 1
Laser Safety���1
Documentation Revision Information��1
Specifications�� 2
Physical��2
Electrical���2
Performance���2
Interface��2
Laser���2
Connections��� 2
Wiring Harness���2
Connector���2

Connector Port Identification��2
I2C Connection Diagrams��3

Standard I2C Wiring���3
Standard Arduino I2C Wiring��3
PWM Wiring��3
PWM Arduino Wiring��3

Operational Information�� 4
Technology���4
Theory of Operation��4
Interface��4

Initialization���4
Power Enable Pin���4
I2C Interface���4
Mode Control Pin��4
Settings���4

I2C Protocol Information��� 6
I2C Protocol Operation���7
Register Definitions��7

Control Register List���7
Detailed Control Register Definitions��8

Frequently Asked Questions�� 12
Must the device run on 5 Vdc? Can it run on 3.3 Vdc instead?������������������������12
What is the spread of the laser beam?���12
How do distance, target size, aspect, and reflectivity effect returned signal
strength?���12
How does the device work with reflective surfaces?��12

Diffuse Reflective Surfaces���12
Specular Surfaces��12

How does liquid affect the signal?��13

Stellenbosch University https://scholar.sun.ac.za

2�

Specifications

Physical
Specification Measurement
Size (LxWxH) 20 × 48 × 40 mm (0.8 × 1.9 × 1.6 in.)
Weight 22 g (0.78 oz.)
Operating temperature -20 to 60°C (-4 to 140°F)

Electrical
Specification Measurement
Power 5 Vdc nominal

4.5 Vdc min., 5.5 Vdc max.
Current consumption 105 mA idle

135 mA continuous operation

Performance
Specification Measurement
Range (70% reflective
target)

40 m (131 ft)

Resolution +/- 1 cm (0.4 in.)
Accuracy < 5 m ±2.5 cm (1 in.) typical*
Accuracy ≥ 5 m ±10 cm (3.9 in.) typical

Mean ±1% of distance maximum
Ripple ±1% of distance maximum

Update rate (70%
Reflective Target)

270 Hz typical
650 Hz fast mode**
>1000 Hz short range only

Repetition rate ~50 Hz default
500 Hz max

*Nonlinearity present below 1 m (39.4 in.)
**Reduced sensitivity

Interface
Specification Measurement
User interface I2C

PWM
External trigger

l2C interface Fast-mode (400 kbit/s)
Default 7-bit address 0x62
Internal register access & control

PWM interface External trigger input
PWM output proportional to distance at 10 μs/cm

Laser
Specification Measurement
Wavelength 905 nm (nominal)
Total laser power
(peak)

1.3 W

Mode of operation Pulsed (256 pulse max. pulse train)
Pulse width 0.5 μs (50% duty Cycle)
Pulse train repetition
frequency

10-20 KHz nominal

Energy per pulse <280 nJ
Beam diameter at
laser aperture

12 × 2 mm (0.47 × 0.08 in.)

Divergence 8 mRadian

Connections

Wiring Harness

Wire Color Function
Red 5 Vdc (+)
Orange Power enable (internal pull-up)
Yellow Mode control
Green I2C SCL
Blue I2C SDA
Black Ground (-)

There are two basic configurations for this device:
•	 I2C (Inter-Integrated Circuit)—a serial computer bus used to

communicate between this device and a microcontroller, such as an
Arduino board (“I2C Interface”, page 4).

•	 PWM (Pulse Width Modulation)—a bi-directional signal transfer method
that triggers acquisitions and returns distance measurements using the
mode-control pin (“Mode Control Pin”, page 4).

Connector
You can create your own wiring harness if needed for your project or
application. The needed components are readily available from many
suppliers.
Part Description Manufacturer Part Number
Connector
housing

6-position, rectangular housing,
latch-lock connector receptacle with
a 1.25 mm (0.049 in.) pitch.

JST GHR-06V-S

Connector
terminal

26-30 AWG crimp socket connector
terminal (up to 6)

JST SSHL-002T-P0.2

Wire UL 1061 26 AWG stranded copper N/A N/A

Connector Port Identification

➏

➊

Item Pin Function

➊ 1 5 Vdc (+)

2 Power enable (internal pull-up)
3 Mode control
4 I2C SCL
5 I2C SDA

➏ 6 Ground (-)

Stellenbosch University https://scholar.sun.ac.za

 � 3

I2C Connection Diagrams
Standard I2C Wiring

➋

➎

➌

➊

➍

Item Description Notes

➊ 680µF electrolytic capacitor You must observe the correct polarity when
installing the capacitor.

➋ Power ground (-) connection Black wire

➌ I2C SDA connection Blue wire

➍ I2C SCA connection Green wire

➎ 5 Vdc power (+) connection Red wire
The sensor operates at 4.75 through 5.5 Vdc,
with a max. of 6 Vdc.

Standard Arduino I2C Wiring

➋

➎

➌
➊

➍

Item Description Notes

➊ 680µF electrolytic capacitor You must observe the correct polarity when
installing the capacitor.

➋ I2C SCA connection Green wire

➌ I2C SDA connection Blue wire

➍ Power ground (-) connection Black wire

➎ 5 Vdc power (+) connection Red wire
The sensor operates at 4.75 through 5.5 Vdc,
with a max. of 6 Vdc.

PWM Wiring

➋

➏

➌
➊

➎
➍

Item Description Notes

➊ Trigger pin on microcontroller Connect the other side of the resistor to the
trigger pin on your microcontroller.

➋ Monitor pin on microcontroller Connect one side of the resistor to the mode-
control connection on the device, and to a
monitoring pin on your microcontroller.

➌ Power ground (-) connection Black Wire

➍ 1kΩ resistor

➎ Mode-control connection Yellow wire

➏ 5 Vdc power (+) connection Red wire
The sensor operates at 4.75 through 5.5 Vdc,
with a max. of 6 Vdc.

PWM Arduino Wiring

➋

➎

➌

➊

➍
➏

Item Description Notes

➊ 5 Vdc power (+) connection Red wire
The sensor operates at 4.75 through 5.5 Vdc,
with a max. of 6 Vdc.

➋ Power ground (-) connection Black Wire

➌ Mode-control connection Yellow wire

➍ Monitor pin on microcontroller Connect one side of the resistor to the mode-
control connection on the device, and to a
monitoring pin on your microcontroller.

➎ Trigger pin on microcontroller Connect the other side of the resistor to the
trigger pin on your microcontroller.

➏ 1kΩ resistor

Stellenbosch University https://scholar.sun.ac.za

4�

Operational Information

Technology
This device measures distance by calculating the time delay between the
transmission of a Near-Infrared laser signal and its reception after reflecting
off of a target. This translates into distance using the known speed of light.
Our unique signal processing approach transmits a coded signature and looks
for that signature in the return, which allows for highly effective detection with
eye-safe laser power levels. Proprietary signal processing techniques are
used to achieve high sensitivity, speed, and accuracy in a small, low-power,
and low-cost system

Theory of Operation
To take a measurement, this device first performs a receiver bias correction
routine, correcting for changing ambient light levels and allowing maximum
sensitivity.
Then the device sends a reference signal directly from the transmitter to
the receiver. It stores the transmit signature, sets the time delay for “zero”
distance, and recalculates this delay periodically after several measurements.
Next, the device initiates a measurement by performing a series of
acquisitions. Each acquisition is a transmission of the main laser signal while
recording the return signal at the receiver. If there is a signal match, the result
is stored in memory as a correlation record. The next acquisition is summed
with the previous result. When an object at a certain distance reflects the
laser signal back to the device, these repeated acquisitions cause a peak
to emerge, out of the noise, at the corresponding distance location in the
correlation record.
The device integrates acquisitions until the signal peak in the correlation
record reaches a maximum value. If the returned signal is not strong enough
for this to occur, the device stops at a predetermined maximum acquisition
count.
Signal strength is calculated from the magnitude of the signal record peak
and a valid signal threshold is calculated from the noise floor. If the peak is
above this threshold the measurement is considered valid and the device will
calculate the distance, otherwise it will report 1 cm. When beginning the next
measurement, the device clears the signal record and starts the sequence
again.

Interface
Initialization
On power-up or reset, the device performs a self-test sequence and initializes
all registers with default values. After roughly 22 ms distance measurements
can be taken with the I2C interface or the Mode Control Pin.

Power Enable Pin
The enable pin uses an internal pullup resistor, and can be driven low to shut
off power to the device.

I2C Interface
This device has a 2-wire, I2C-compatible serial interface (refer to I2C-
Bus Specification, Version 2.1, January 2000, available from Philips
Semiconductor). It can be connected to an I2C bus as a slave device, under
the control of an I2C master device. It supports 400 kHz Fast Mode data
transfer.
The I2C bus operates internally at 3.3 Vdc. An internal level shifter allows the
bus to run at a maximum of 5 Vdc. Internal 3k ohm pullup resistors ensure this
functionality and allow for a simple connection to the I2C host.
The device has a 7-bit slave address with a default value of 0x62. The
effective 8-bit I2C address is 0xC4 write and 0xC5 read. The device will not
respond to a general call. Support is not provided for 10-bit addressing.

Setting the most significant bit of the I2C address byte to one triggers
automatic incrementing of the register address with successive reads or writes
within an I2C block transfer. This is commonly used to read the two bytes of a
16-bit value within one transfer and is used in the following example.
The simplest method of obtaining measurement results from the I2C interface
is as follows:
1	 Write 0x04 to register 0x00.
2	 Read register 0x01. Repeat until bit 0 (LSB) goes low.
3	 Read two bytes from 0x8f (High byte 0x0f then low byte 0x10) to obtain the

16-bit measured distance in centimeters.
A list of all available control resisters is available on page 7.
For more information about the I2C protocol, see I2C Protocol Operation
(page 7).

Mode Control Pin
The mode control pin provides a means to trigger acquisitions and return the
measured distance via Pulse Width Modulation (PWM) without having to use
the I2C interface.
The idle state of the mode control pin is high impedance (High-Z). Pulling
the mode control pin low will trigger a single measurement, and the device
will respond by driving the line high with a pulse width proportional to the
measured distance at 10 μs/cm. A 1k ohm termination resistance is required to
prevent bus contention.
The device drives the mode control pin high at 3.3 Vdc. Diode isolation allows
the pin to tolerate a maximum of 5 Vdc.
As shown in the diagram PWM Arduino Wiring (page 3), a simple
triggering method uses a 1k ohm resistor in series with a host output pin to
pull the mode control pin low to initiate a measurement, and a host input pin
connected directly to monitor the low-to-high output pulse width.
If the mode control pin is held low, the acquisition process will repeat
indefinitely, producing a variable frequency output proportional to distance.
The mode control pin behavior can be modified with the ACQ_CONFIG_REG
(0x04) I2C register as detailed in 0x04 (page 8).

Settings
The device can be configured with alternate parameters for the distance
measurement algorithm. This can be used to customize performance by
enabling configurations that allow choosing between speed, range and
sensitivity. Other useful features are also detailed in this section. See the full
register map (Control Register List (page 7) for additional settings not
mentioned here.

Receiver Bias Correction
Address Name Description Initial Value
0x00 ACQ_COMMAND Device command --

•	 Write 0x00: Reset device, all registers return to default values
•	 Write 0x03: Take distance measurement without receiver bias correction
•	 Write 0x04: Take distance measurement with receiver bias correction
Faster distance measurements can be performed by omitting the receiver
bias correction routine. Measurement accuracy and sensitivity are adversely
affected if conditions change (e.g. target distance, device temperature, and
optical noise). To achieve good performance at high measurement rates
receiver bias correction must be performed periodically. The recommended
method is to do so at the beginning of every 100 sequential measurement
commands.

Maximum Acquisition Count
Address Name Description Initial Value
0x02 SIG_COUNT_VAL Maximum acquisition count 0x80

The maximum acquisition count limits the number of times the device will
integrate acquisitions to find a correlation record peak (from a returned signal),
which occurs at long range or with low target reflectivity. This controls the
minimum measurement rate and maximum range. The unit-less relationship
is roughly as follows: rate = 1/n and range = n^(1/4), where n is the number of
acquisitions.

Stellenbosch University https://scholar.sun.ac.za

 � 5

Measurement Quick Termination Detection
Address Name Description Initial Value
0x04 ACQ_CONFIG_REG Acquisition mode control 0x08

You can enable quick-termination detection by clearing bit 3 in this register.
The device will terminate a distance measurement early if it anticipates that
the signal peak in the correlation record will reach maximum value. This allows
for faster and slightly less accurate operation at strong signal strengths without
sacrificing long range performance.

Detection Sensitivity
Address Name Description Initial Value
0x1c THRESHOLD_

BYPASS
Peak detection threshold bypass 0x00

The default valid measurement detection algorithm is based on the peak
value, signal strength, and noise in the correlation record. This can be
overridden to become a simple threshold criterion by setting a non-zero value.
Recommended non-default values are 0x20 for higher sensitivity with more
frequent erroneous measurements, and 0x60 for reduced sensitivity and fewer
erroneous measurements.

Burst Measurements and Free Running Mode
Address Name Description Initial Value
0x04 ACQ_CONFIG_REG Acquisition mode control 0x08
0x11 OUTER_LOOP_

COUNT
Burst measurement count control 0x00

0x45 MEASURE_DELAY Delay between automatic
measurements

0x14

The device can be configured to take multiple measurements for each
measurement command or repeat indefinitely for free running mode.
OUTER_LOOP_COUNT (0x11) controls the number of times the device will
retrigger itself. Values 0x00 or 0x01 result in the default one measurement per
command. Values 0x02 to 0xfe directly set the repetition count. Value 0xff will
enable free running mode after the host device sends an initial measurement
command.
The default delay between automatic measurements corresponds to a 10
Hz repetition rate. Set bit 5 in ACQ_CONFIG_REG (0x04) to use the delay
value in MEASURE_DELAY (0x45) instead. A delay value of 0x14 roughly
corresponds to 100Hz.
The delay is timed from the completion of each measurement. The means that
measurement duration, which varies with returned signal strength, will affect
the repetition rate. At low repetition rates (high delay) this effect is small, but
for lower delay values it is recommended to limit the maximum acquisition
count if consistent frequency is desired.

Velocity
Address Name Description Initial Value
0x09 VELOCITY Velocity measurement output --

The velocity measurement is the difference between the current measurement
and the previous one, resulting in a signed (2’s complement) 8-bit number in
cm. Positive velocity is away from the device. This can be combined with free
running mode for a constant measurement frequency. The default free running
frequency of 10 Hz therefore results in a velocity measurement in .1 m/s.

Configurable I2C Address
Address Name Description Initial Value
0x16 UNIT_ID_HIGH Serial number high byte Unique
0x17 UNIT_ID_LOW Serial number low byte Unique
0x18 I2C_ID_HIGH Write serial number high byte for

I2C address unlock
--

0x19 I2C_ID_LOW Write serial number low byte for
I2C address unlock

--

0x1a I2C_SEC_ADDR Write new I2C address after
unlock

--

0x1e I2C_CONFIG Default address response
control

0x00

The I2C address can be changed from its default value. Available addresses
are 7-bit values with a ‘0’ in the least significant bit (even hexadecimal
numbers).
To change the I2C address, the unique serial number of the unit must be read
then written back to the device before setting the new address. The process is
as follows:
1	 Read the two byte serial number from 0x96 (High byte 0x16 and low byte

0x17).
2	 Write the serial number high byte to 0x18.
3	 Write the serial number low byte to 0x19.
4	 Write the desired new I2C address to 0x1a.
5	 Write 0x08 to 0x1e to disable the default address.
This can be used to run multiple devices on a single bus, by enabling one,
changing its address, then enabling the next device and repeating the
process.
The I2C address will be restored to default after a power cycle.

Power Control
Address Name Description Initial Value
0x65 POWER_CONTROL Power state control 0x80

NOTE: The most effective way to control power usage is to utilize the enable
pin to deactivate the device when not in use.
Another option is to set bit 0 in this register which disables the receiver circuit,
saving roughly 40mA. After being re-enabled, the receiver circuit stabilizes by
the time a measurement can be performed. Setting bit 2 puts the device in
sleep mode until the next I2C transaction, saving 20mA. Since the wake-up
time is only around 2 m/s shorter than the full power-on time, and both
will reset all registers, it is recommended to use the enable pin instead.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DATASHEETS 100

B.5 Pickup Sensor

Stellenbosch University https://scholar.sun.ac.za

The OPB960/ 970/ 980/ 990 series of non-contact Photologic® slotted optical switches provides flexibility in meeting
application specific requirements for the design engineer.

Building from a standard housing with a 0.125” (3.18mm) wide slot, the user can specify output logic state, output driver
circuit, aperture width, aperture surface and mounting tab locations. Furthermore, an option of wire or PCB leads allows
electrical interface flexibility.

The device body is an opaque plastic which minimizes sensitivity to both visible and near-infrared external light sources
which may impact operation. Aperture width choices provide different optical resolution for motion sensing. A covered
aperture provides dust protection, while an open aperture provides maximum protection against external light sources.

Electrical operation is over a wide supply voltage range. LED emissions are near-infrared (850—940nm).
Detector digital output logic choices of buffer or inverter with totem-pole or open-collector driver circuit simplify interface
for various electrical requirements.

Custom electrical, wire and cabling services are available.
Contact your local representative or OPTEK for more information. Compliant to EU RoHS Directive 2002/95/EC

 Choice of logic and output driver circuits

 Choice of aperture size, covered or open

 Wire or PCB leads

 Choice of mounting features

 Direct TTL, LSTTL, CMOS Interface

RoHS

 Speed and direction
indication

 Rotary encoders

 Mechanical switch replacement

 Mechanical limit indication

 Printers - Top of form, End of travel, Home position.

 Sliding Door Automotive and Lift gate applications

OPTEK Assembly

Photologic
®

 Sensor Family

Slot Aperture Surface and Lead Options:
6 — Covered (apertures not visible), PCB leads
7 — Open (apertures visible), PCB leads
8 — Covered (apertures not visible), Wires
9 — Open (apertures visible), Wires

Logic and Output Driver Types:
0 — Buffer Totem-Pole
1 — Buffer Open-Collector
2 — Inverter Totem-Pole
3 — Inverter Open-Collector

Z = Wires only, None for PCB leads

Aperture Width Guide Options:
55, 51, 11 (See Aperture Width Guide)

Mounting Tab Location:
L — Emitter
N — None
P — Sensor
T — Both (two mounting tabs)

OPB 9XX X XX X

Logic Type
Input
LED

Output Log-
ic State

Buffer OFF LOW = 0

Inverter OFF HIGH = 1

Part Number Guide

Stellenbosch University https://scholar.sun.ac.za

TABLE 1

Lead No. Function

1 Anode

2 Cathode

3 Vcc

4 Output

5 Ground

APERTURE WIDTH GUIDE

CODE LED SENSOR

55 .050” [1.27mm] .050” [1.27mm]

51 .050” [1.27mm] .010” [0.25mm]

11 .010” [0.25mm] .010” [0.25mm]

 Lengths are .050” [1.27mm]

PACKAGE OUTLINE for OPB960 and OPB970 Series

Notes:
(1) RMA flux recommended. Duration can be extended to 10 seconds max.
(2) Feature controlled at body.
(3) Highly activated water soluble fluxes may attack plastic. Recommend trial to verify application.
(4) Maximum lead soldering temperature [1.6mm from case for 5 seconds with soldering iron] 260° C.
(5) Cathode lead may be shorter.
(6) Part number marking may be on any side.

Stellenbosch University https://scholar.sun.ac.za

TABLE 2

Wire Color Function

Red Anode

Black Cathode

White Vcc

Blue Output

Green Ground

Notes:
(7) Wire is 26AWG, UL Rated PVC insulation.
(8) Ideal torque for bolt or screw 0,45 to 0,68 Nm (4 to 6 Lb-in).
(9) When using a thread lock compound, ND Industries ”ND Vibra-Tite® Formula 3” will avoid stress cracking plastic.
(10) Plastic is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol are recommended as cleaning agents.

APERTURE WIDTH GUIDE

CODE LED SENSOR

55 .050” [1.27mm] .050” [1.27mm]

51 .050” [1.27mm] .010” [0.25mm]

11 .010” [0.25mm] .010” [0.25mm]

 Lengths are .050” [1.27mm]

PACKAGE OUTLINE for OPB980 and OPB990 Series

Stellenbosch University https://scholar.sun.ac.za

Storage Temperature Range -40°C to +85° C

Operating Temperature Range -40°C to +70° C

Input Diode (E)

Input Diode Power Dissipation 100 mW (11)

Input Diode Forward D.C. Current, TA = 25°C 40 mA(14)

Input Diode Reverse D.C. Voltage, TA = 25°C 2 V

Sensor (S)

Supply Voltage (VCC to Ground) 18 V (13)

Output Photologic® Power Dissipation 200 mW (12)

Voltage at Output Lead (Open-Collector Output), TA = 25°C 35V

Short Circuit Output Current to Ground (IOS) 1 sec Max. 30 mA

Notes:
(11) Derate linearly 2.22 mW / °C above 25° C.
(12) Derate linearly 4.44 mW / °C above 25° C.
(13) Prior to 2004 Vcc was limited to 5.5V maximum.
(14) Do not connect input diode directly to a voltage source without an external current limiting resistor.

Block Diagram

Buffer Totem-Pole
OPB960/ OPB970/ OPB980/ OPB990

Inverter Totem-Pole
OPB962/ OPB972/ OPB982/ OPB992

Buffer Open-Collector
OPB961/ OPB971/ OPB981/ OPB991

Inverter Open-Collector
OPB963/ OPB973/ OPB983/ OPB993

Stellenbosch University https://scholar.sun.ac.za

Input Diode (See OP140 / OP240 LED for additional information)

VF Forward Voltage - - 1.70 V IF = 20 mA, TA = 25° C

IR Reverse Current - - 100 µA VR = 2.0 V, TA = 25° C

Coupled (See OPL560 Detector for additional information)

VCC Operating D.C. Supply Voltage 4.5 - 16 V

ICC Supply Current - - 12 mA VCC = 4.5V to 16V

VOL

Low Level Output Voltage:
 Buffer Totem-Pole OPB960,OPB970
 OPB980,OPB990
 Buffer Open-Collector OPB961,OPB971
 OPB981,OPB991 - - 0.4 V

VCC = 4.5V, IOL = 12.8mA
IF = 0 mA (14)

Inverter Totem-Pole OPB962,OPB972
 OPB982,OPB992
Inverter Open-Collector OPB963,OPB973
 OPB983,OPB993

VCC = 4.5V, IOL = 12.8mA
IF = 15 mA

VOH

High Level Output Voltage:
 Buffer Totem-Pole OPB960,OPB970
 OPB980,OPB990 VCC -2.1 - - V

VCC = 4.5V to 16V, IOH = 800µA
IF = 15 mA

 Inverter Totem-Pole OPB962,OPB972
 OPB982,OPB992

VCC = 4.5V to 16V, IOH = 800µA
IF = 0 mA (14)

IOH

High Level Output Current:
 Buffer Open-Collector OPB961,OPB971
 OPB981,OPB991 - - 100

VCC = 4.5V to 16V, VOH = 30V
IF = 15 mA

µA

Inverter Open-Collector OPB963,OPB973
 OPB981,OPB991

VCC = 4.5V to 16V, VOH = 30V
IF = 0 mA (14)

IF(+) LED Positive-Going Threshold Current(16) - - 15 mA VCC = 5.0V, TA = 25° C

IF(+) / IF(-) Hysteresis Ratio - 1.5 - - VCC = 5.0V

tR, tF Output Rise Time, Output Fall Time - 70 - ns VCC = 5.0V, IF peak= 15 mA, TA = 25° C
100 kHz square wave, C = 10pF max.
RL = 360 Ω to GND (Totem-Pole)
RL = 1KΩ pull-up (Open-Collector)

tPLH, tPHL
Propagation Delay Time
Low to High, High to Low

- 5.0 - µs

Notes:
14) Normal application would be with light source blocked, simulated by IF = 0 mA.
15) All parameters are tested using pulse techniques.
16) An increasing current applied to the LED which causes the output logic state to change.

For proper application IF(+), LED current, should be more than the stated maximum.

Stellenbosch University https://scholar.sun.ac.za

Logic Output vs Left to Right Bocking Distance (X-Axis Blocked)

0.0

1.0

2.0

3.0

4.0

5.0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

Distance (inches)

L
o
g
ic

 O
u
tp

u
t

 (
V

)

Aperture Width 11

Aperture Width 51

Aperture Width 55

VCC = 5 Volts

IF = 20mA

Buffer Totem-Pole

Logic Output vs Top to Bottom Bocking Distance (Y-Axis Blocked)

0.0

1.0

2.0

3.0

4.0

5.0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

Distance (inches)

L
o
g
ic

 O
u
tp

u
t

(V

)

VCC = 5 Volts

IF = 20mA

Buffer Totem-Pole

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DATASHEETS 107

B.6 Piksi RTK

Stellenbosch University https://scholar.sun.ac.za

Piksi Datasheet
Flexible, high-performance GPS receiver

platform running open-source software

Features

� Centimeter-accurate relative positioning

(Carrier phase RTK)

� 10 Hz position/velocity/time solutions

� Open-source software and board design

� Low power consumption - 500mW typical

� Small form factor - 53x53mm

� USB and dual UART connectivity

� External antenna input

� Full-rate raw sample pass-through over USB

Applications

� Autonomous Vehicle Guidance

� GPS/GNSS Research

� Surveying Systems

� Precision Agriculture

� Unmanned Aerial Vehicles

� Robotics

� Space Applications

Overview

PiksiTM is a low-cost, high-performance GPS re-

ceiver with Real Time Kinematics (RTK) functionality for

centimeter-level relative positioning accuracy.

Its small form factor, fast position solution update rate

and low power consumption make Piksi ideal for integration

into autonomous vehicles and portable surveying equipment.

Piksi’s open source firmware allows it to be easily cus-

tomized to the particular demands of end users’ applica-

tions, easing system integration and reducing host system

overhead.

In addition, Piksi’s use of the same open source

GNSS libraries as Peregrine, Swift Navigation’s GNSS post-

processing software, make the combination of the two a pow-

erful toolset for GNSS research, experimentation and proto-

typing at every level from raw samples to position solutions.

Figure 1: Piksi front and back view

With these tools, developers can quickly move from pro-

totyping software on a desktop to running it standalone on

the Piksi hardware.

A high-performance DSP on-board and our flexible Swift-

NAP correlation accelerator provide Piksi with ample com-

puting resources with which advanced receiver techniques,

such as multipath mitigation, spoofing detection and carrier

phase tracking can be implemented.

Version 2.3.1, March 28, 2016 1

Stellenbosch University https://scholar.sun.ac.za

Swift Navigation, Inc. Piksi Datasheet

System Architecture

The Piksi receiver architecture consists of three main

components. The RF front-end downconverts and digitizes

the radio frequency signal from the antenna. The digitized

signal is passed into the SwiftNAP which performs basic fil-

tering and correlation operations on the signal stream. The

SwiftNAP is controlled by a microcontroller which programs

the correlation operations, collects the results and processes

them all the way to position/velocity/time (PVT) solutions.

Front-end

The RF front-end consists of a Maxim MAX2769 inte-

grated down-converter and 3-bit analog-to-digital converter

operating at 16.368 MS/s. This front-end is capable of cov-

ering the L1 GPS signal bands.

SwiftNAP

The SwiftNAP consists of a Xilinx Spartan-6 FPGA that

comes pre-programmed with Swift Navigation’s SwiftNAP

firmware. The SwiftNAP contains correlators specialized for

satellite signal tracking and acquisition. The correlators are

flexible and fully programmable via a high-speed SPI regis-

ter interface and are used as simple building blocks for im-

plementing tracking loops and acquisition algorithms on the

microcontroller.

While the SwiftNAP HDL is not open-source at this

time, the Piksi has no restrictions against loading one’s own

firmware onto the on-board Spartan-6 FPGA.

Microcontroller

The on-board microcontroller is a STM32F4 with an

ARM Cortex-M4 DSP core running at up to 168 MHz. This

powerful processor performs all functions above the correla-

tor level including tracking loop filters, acquisition manage-

ment and navigation processing and is able to calculate PVT

solutions at over 10 Hz in our default software configura-

tion. All software running on the microcontroller is supplied

open-source.

Front-end

(MAX2769)

SwiftNAP

(Spartan-6)

USB UART

(FT232H)

Config.

Flash

µC

(STM32F4)

Samples,

Clock High-speed

FIFO

GPIO

SPI1

UART

SPI2

USB

UARTs

A & B

External

Antenna

Figure 2: Piksi Block Diagram

Sample

RAM

Acquisition

channel

Master

Timer

Tracking

channel
Tracking

channel
Tracking

channels

Samples

SPI

Timing signal

Figure 3: SwiftNAP Block Diagram

Version 2.3.1, March 28, 2016 2

Stellenbosch University https://scholar.sun.ac.za

