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Abstract 

A mineral concentrate drying process consisting of a hot gas generator, a flash dryer and 

a feeding section is found to be the bottleneck in the platinum concentrate smelting 

process. This operation is used as a case study for system identification and model-

based control of dryers. Based on the availability of a month‟s worth of dryer data 

obtained from a historian, a third party modelling and control software vendor is 

interested in the use of this data for data driven model construction and options for dryer 

control. The aimed contribution of this research is to use only data driven techniques and 

attempt an SID experiment and use of this model in a controller found in literature to be 

applicable to the dryer process. No first principle model was available for simulation or 

interpretation of results. Data were obtained for the operation from the plant historian, 

reduced, cleaned and investigated for deterministic information through surrogate data 

comparison – resulting in usable timeseries from the plant data. The best datasets were 

used for modelling of the flash dryer and hot gas generator operations individually, with 

the hot gas generator providing usable results.  

The dynamic, nonlinear autoregressive models with exogenous inputs were identified by 

means of a genetic programming with orthogonal least squares toolbox. The timeseries 

were reconstructed as a latent variable set, or “pseudo-embedding”, using the delay 

parameters as identified by average mutual information, autocorrelation and false 

nearest neighbours. The latent variable reconstruction resulted in a large solution space, 

which need to be investigated for an unknown model structure. Genetic Programming is 

capable of identifying unknown structures. Freerun prediction stability and sensitivity 

analysis were used to assess the identified best models for use in model based control. 

The best two models for the hot gas generator were used in a basic model predictive 

controller in an attempt to only track set point changes.  

One step ahead modelling of the flash dryer outlet air temperature was unsuccessful with 

the best model obtaining a validation R2 = 43%. The lack of process information 
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contained in the available process variables are to blame for the poor model 

identification. One-step ahead prediction of the hot gas generator resulted in a top model 

with validation R2 = 77.1%. 

The best two hot gas generator models were implemented in a model predictive 

controller constructed in a real time plant data flow simulation. This controller‟s 

performance was measured against set point tracking ability. The MPC implementation 

was unsuccessful due to the poor freerun prediction ability of the models. The controller 

was found to be unable to optimise the control moves using the model. This is assigned 

to poor model freerun prediction ability in one of the models and a too complex freerun 

model structure required. It is expected that the number of degrees of freedom in the 

freerun model is too much for the optimiser to handle. A successful real time simulation 

architecture for the plant dataflow could however be constructed in the supplied software. 

It is recommended that further process measurements, specifically feed moisture 

content, feed temperature and air humidity, be included for the flash dryer; closed loop 

system identification be investigated for the hot gas generator; and a simpler model 

structure with smaller reconstructed latent variable regressor set be used for the model 

predictive controller. 
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Opsomming 

„n Drogings proses vir mineraal konsentraat bestaan uit drie eenhede: „n lug verwarmer-, 

„n blitsdroeër- en konsentraat toevoer eenheid. Hierdie droeër is geïdentifiseer as die 

bottelnek in die platinum konsentraat smeltingsproses. Die droeër word gebruik as „n 

gevallestudie vir sisteem identifikasie asook model-gebasseerder beheer van droeërs.  „n 

Maand se data verkry vanaf die proses databasis, het gelei tot „n derde party industriële 

sagteware en beheerstelsel maatskappy se belangstelling in data gedrewe modelering 

en beheer opsies vir die drogings proses. Die doelwit van hierdie studie is om data 

gedrewe modeleringstegnieke te gebruik en die model in „n droeër-literatuur relevante 

beheerder te gebruik. Geen eerste beginsel model is beskikbaar vir simulasie of 

interpretasie van resultate nie. Die verkrygde data is gereduseer, skoon gemaak en 

bestudeer om te identifiseer of die tydreeks deterministiese inligting bevat. Dit is gedoen 

deur die tydreeks met stochastiese surrogaat data te vergelyk.  Die mees gepaste 

datastelle is gebruik vir modellering van die blitsdroeër en lugverwarmer afsonderlik.  

Die nie-liniêre, dinamiese nie-linieêre outeregressie modelle met eksogene insette was 

deur „n genetiese programmering algoritme, met ortogonale minimum kwadrate, 

identifiseer. Die betrokke tydreeks is omskep in „n hulp-veranderlike stel deur gebruik te 

maak van vertragings-parameters wat deur gemiddelde gemeenskaplike inligting, 

outokorrelasie en vals naaste buurman metodes verkry is. Die GP algoritme is daartoe in 

staat om the groot oplossings ruimte wat deur hierdie hulp-veranderlike rekonstruksie 

geskep word, te bestudeer vir „n onbekende model struktuur. Die vrye vooruitskattings 

vermoë, asook die model sensitiwiteit is inag geneem tydens die analiese van die 

resultate. Die beste modelle se gepastheid tot model voorspellende beheer is gemeet 

deur die uitkomste van „n sensitiwiteits analise, asook „n vrylopende voorspelling, in 

oënskou te neem. 

Die een-stap vooruit voorspellende model van die droeër was onsusksesvol met die 

beste model wat slegs „n validasie R2 = 43% kon behaal. Die gebrekkige meet 
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instrumente in die droeër is te blameer vir die swak resultate. Die een-stap vooruit 

voorspellende model van die lug verwarmer wat die beste gevaar het, het „n validasie   

R2 = 77.1% gehad. 

„n Basiese model voorspellende beheerder is gebou deur die 2 beste modelle van slegs 

die lugverwarmer te gebruik in „n intydse simulasie van die raffinadery data vloei 

struktuur. Hierdie beheerder se vermoë om toepaslike beheer uit te oefen, is gemeet 

deur die slegs die stelpunt te verander. Die beheerder was egter nie daartoe in staat om 

die insette te optimeer, en so die stelpunt te volg nie. Hierdie onvermoë is as gevolg van 

die kompleks vrylopende model struktuur wat oor die voorspellingsvenster optimeer moet 

word, asook die onstabiele vryvooruitspellings vermoë van die modelle. Die vermoede is 

dat die loslopende voorspelling te veel vryheids grade het om die insette maklik genoeg 

te optimeer. Die intydse simulasie van die raffinadery se datavloei struktuur was egter 

suksesvol. 

Beter meting van noodsaaklike veranderlikes vir die droër, o.a. voginhoud van die voer, 

voer temperatuur, asook lug humiditeit; geslotelus sisteem identifikasie vir die 

lugverwarmer; asook meer eenvoudige model struktuur vir gebruik in voorspellende 

beheer moontlik vermag deur „n kleiner hulp veranderlike rekonstruksie te gebruik. 
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Glossary 

Concentrate PGM mineral containing substance received from the concentrator 

process where the PGM rich substance is separated from the non PGM 

containing ore. This separation is generally done by a flotation process. 

The feed from the concentrators to the smelting furnace is known as 

concentrate. 

Advanced 
Process Control 

APC is s term with a loose definition defined by exclusion rather than 

definition. APC refers to any control strategy, or applied algorithm or 

computer logic, which is not seen as standard PID feedback control. 

Historian A data repository used to store and allow access to historic data. 

Commonly it is a server on a network with specific software installed to 

manage data collection, storage and retrieval over a network. 

Latent Variable A variable constructed from the process variables for use by the system 

identification algorithm. The latent variables assist with the identification 

of which process delays to be included in the model structures. A set of 

latent variables are constructed for each process variables, with each 

latent variable being a different process delay. 

Matte Metal as obtained from the smelting process resulting from the 

separation of the metal (matte) and slag during smelting. It has a PGM 

concentration higher than concentrate. 

OPC Ole DB for Process Control. A communication standard used to 

communicate data between devices in the control network of an 

operation. 

SCADA Supervisory Control and Data Acquisition. It specifically refers to the 

computer hardware and software architecture required for collecting 

measurement data online and controlling processes according to 

predetermined logic based on these measurements. 

Six Sigma A methodology followed to identifying areas of high variation and the 

causes of these. Ultimately it encompasses an entire philosophy followed 

in an attempt to drive continuous improvement. 
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Abbreviations 

AMI   Average Mutual Information 

APC   Advanced Process Control 

DCS   Distributed Control System 

DMC   Dynamic Matrix Control 

FD   Flash Dryer 

FDFeed   Concentrate Feed to the Flash Dryer (used in emp 

FDTemp   Flash Dryer Air Outlet Air Temperature 

FNN   False Nearest Neighbours 

GA   Genetic Algorithm 

GP   Genetic Programming 

GPOls   Genetic Programming with Orthoginal Least Squares 

HGG   Hot Gas Generator 

HGGTemp   Hot Gas Generator Outlet Air Temperature 

IMC   Internal Model Controller 

MPC   Model-based Predictive Control / Model Predictive Control 

MSE   Mean Square Error 

NARX   Nonlinear Autoregressive Model with eXogenous inputs 

NN   Neural Network 

OLS   Orthogonal Least Squares 

OPC   OLE DB for Process Control 

PGM   Platinum Group Metals 

PLC   Programmable Logic Controller 

RMS   Root Mean Square 

SCADA   Supervisory Control and Data Acquisition 

SID   System Identification 

SISO   Single-Input Single-Output 

SP   Set Point 

SSE   Sum Square Error 

SST   Total Sum of Squares 

VSD Variable Speed Drive 
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Chapter 1 Introduction 

1.1 Background 

The South African economy was built on mining through the past century and has become a 

leading role player in the world with regards to metal and mineral production. This position 

developed from the gold rush in the Transvaal in the late 1800‟s to the situation today where 

South Africa not only directly supplies a major constituency of platinum, coal, gold and steel 

to the market, but also produces 304 mining engineers per annum compared to the 130 from 

Australia, 127 from Canada and 35 from the United States (Landelahni, 2010). The 

dependence of the South African people and economy on the minerals and mining sectors 

accentuates the need to keep these industries alive and running at optimum throughput 

producing world class products. This will help ensure South Africa‟s future in a market 

threatened by the rise of market share by the BRIC countries (Brazil, Russia, India and 

China). 

The minerals and mining industry contributed 7.7% of the South African gross domestic 

product (GDP) in 2007 at R223.9 billion in sales. (South African Department of Minerals and 

Energy, 2007). This amount is mainly divided between platinum group metals – PGM‟s - 

(35%), coal (19%) and gold (17%) for 2007 of which the market has shifted to be largely 

dependent on PGM‟s. The growth in PGM sales is evident in Figure 1 and Figure 2.  
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Figure 1: Contribution of PGM's, Gold and Coal to the mining segment of the South African GDP (after South 
African Department of Minerals and Energy, 2007). 

 

Figure 2: Growth in demand and sales of platinum group metals for the period 1986-2007 (after South African 
Department of Minerals and Energy, 2007). 

The contribution gold made to the minerals and mining portion of the South African GDP has 

decreased to the point that it is equivalent to the contribution of coal in sales value. PGM 

demand has however overtaken both coal and gold as the single major contributor to the 
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minerals and mining sector. The shift is largely contributed to the steep increase in PGM 

prices since 2004 as is visible in Figure 2.  

The South African gold economy has thus been upgraded to platinum. 

South Africa produces 57% of the world‟s PGM‟s but holds 87.7% of the estimate global 

PGM reserves (South African Department of Minerals and Energy, 2008). This, together with 

the trends discussed earlier, places PGM producers, and South Africa, in an extremely 

favourable position for the future. The focus of this research will be on one of the major 

platinum producers in South Africa. 

The value chain for the PGM extraction process under study is included in Figure 3 below. 

The focus of this research is on the smelting operations of the PGM value chain. 

 

Figure 3: The PGM value chain and corresponding operations. The focus of this research is on the Smelter 
Operations. 
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Figure 4: Smelting Operations at the Base Metals Refinery (BMR) complex under study. The focus of this 
study is on the Flash Dryer Operations. 

The main steps in the smelting operations are portrayed in Figure 4. The concentrate blend 

consisting of a low, medium and high chromite content blend is fed to the drying operations. 

The flash dryer operations feed only the main furnace, a 28 MW arc furnace. The spray 

dryer operations feed the remaining three pyrometallurgical furnaces and the Merensky 

furnace. The slag produced by the five furnaces is recycled through the slag mill and fed 

into the concentrate blend. The matte is fed to the convertor, whereafter it is granulated and 

sent to the base metal refining operations. The focus of this research will be on the flash 

dryer operations preceding the main furnace. 

As depicted earlier, the second highest contributor to South African minerals and mining is 

coal. South African domestic coal prices were 3 times lower than export prices. However 

domestic sales, and thus use, was 3 times as high as exports (South African Department of 

Minerals and Energy, 2007). The abundance of cheap coal as energy source does not help 

the drive toward reduced emissions and optimised use of energy resources. However, with 
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carbon penalties in the future, the drive to use fuel more efficiently will acquire more 

attention. 

1.2 Problem Statement 

As a third party solution vendor, CSense Systems was responsible for scoping and delivering 

a control solution for the flash dryer operations. The industry interest in the dryer market 

triggered the exploration of modelling and control options for dryers, resulting in this specific 

research focussing on model predictive control of this dryer setup. 

The problem statement is: 

Investigate the control method preferred in literature for dryers; identify a system 

identification strategy which handles the challenges in dryer modelling, use flash dryer 

operation data available in a historian for system identification with the aim of developing 

a controller for the operation. 

The area of research is  

 system identification of a dynamic dryer model from historic plant data; and 

 Investigation of applying a model predictive controller by making use of the 

nonlinear model found in the system identification step, together with the required 

data preparation in a real time plant data flow environment. 

The aim of this research is to: 

 Identify from literature the preferred control technique for dryer operations; 

 Identify challenges in system identification of dryer models and address these 

shortcomings by making use of a SID methodology and algorithm able to handle the 

challenges; 

 Investigate the applicability of a data preparation and system identification 

methodology in a real life case study and recommend any alterations to the 

methodology for the problem investigated;  
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 Measure the system identification technique against similar techniques, or more 

basic model structures to identify if the technique is comparable; 

 Investigate alternate SID parameters and additions to the technique used; 

 Review the process measurements available against process variables used in 

literature, stating the additional measurements required and recommended for 

research in future dryer studies; 

 Identify the section of the filter cake drying circuit most suitable for system 

identification and control given the available plant measurements;  

 Compare the controller recommended from literature to the current plant controller, 

to see whether the recommended control is able to track the set point better, and 

with a tighter variation. 

 Investigate the application of the identified model for the required controller in the 

CSense software package in a simulation of plant data flow; 

1.3 Thesis Structure 

This thesis is divided into the background- , the methodology- and the results sections. The 

background section is incorporated into chapters 2 and 3. Chapters 4, 5 and 6 set out the 

methodology used and background surrounding it, with the results included in chapters 7, 8 

and 9. Chapter 10 ties down the thesis with the conclusions and recommendations resulting 

from the case study. 

The thesis structure is set out below. 
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Figure 5: The Thesis Structure is divided into 3 main sections for the Background, Methodology and Results, 
with the Introduction and Conclusions section before and after the main body. 

Chapter 2 provides details with regards to drying dynamics and operations. The business 

case for control is introduced with a discussion surrounding control strategies investigated 

in literature. Chapter 3 shifts the general dryer focus to the specific dryer operation being 

investigated. The dryer is put into context of the PGM smelting operation and the problem 

statement is set out. Control is introduced as an answer to these problems. 

Chapter 4 introduces the researches methodology structure and then shifts the focus to the 

control strategy with the data preparation required. Data preparation makes up a large part 

of this case study as the plant historian data posed various challenges. The choice of 

dataset to use and the latent variable reconstruction of the timeseries end off the chapter.  
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The GP algorithm and adjustable parameters are discussed in chapter 5. Various additions 

to the experimentation technique are mentioned with the chapter concluding with the GP-

based SID approach followed for the specific case study. Chapter 6 discusses model-based 

predictive control and the experimental setup created for the MPC experiments. The various 

choices in MPC design parameters are set out in the chapter. 

The results section starts of in Chapter 7 by looking at the choice of GP parameters and 

toolbox additions and how each of these influenced the experiment results. The specific 

GPOls algorithm is compared to another commercially available GP toolbox, Discipulus ®. 

The choice of GP approach as SID method is also compared against linear modelling 

results for the process.  

The system identification results, in chapter 8, are discussed for each of the flash dryer and 

hot gas generator. The choice of timeseries and data preparation results also make out a 

large portion of this chapter, seeing as this step was crucial to using the historian data. 

Chapter 9 investigates the applicability of the models for MPC and compares the control to 

a random choice in manipulated variable. This is only investigated for the hot gas generator 

seeing as no model could be identified for the flash dryer. 

The concluding remarks, main findings and recommendations are included in chapter 10.  
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Chapter 2 Literature Survey of the Control of Drying Processes 

2.1 The Drying Process 

2.1.1 Introduction to Drying Operations 

Dryers in industry have their origin in mechanical design based on process needs and 

experience, with little regard to theoretical knowledge. The bridge between practice and 

research have caused a lot of process knowledge to be locked in practice and not 

accessible to researchers, as manufacturers seldom disclose specifics. This separation of 

knowledge and specific designs according to specific needs have caused dryer operations 

to evolve into a thicket of types, setups, control methods and approaches (Mujumdar, 

1995). This inaccessibility of information, high variety of speciality drying setups and low 

regard of modelling research by the dryer industry through the decades have caused 

theoretical knowledge and modelling to be unattended by researchers. There has however 

been a collection of research in the past 2 decades allowing better understanding of dryers, 

although the link between these hard, rugged machines and the theory and research remain 

somewhat separated (Wang et al., 2007). 

2.1.2 Drying Process Dynamics 

The drying process is the removal of a liquid, either bound in the microstructure or pores of 

the solid or located on the solid surface. Moisture is removed from a solid by means of 

evaporation or vaporisation through heat exchange heating the liquid and mass flow to 

remove the vapour. The humidity, temperature and pressure of the air used for drying; the 

enthalpy and vapour pressure of the moisture in the solid; as well as the solid 

characteristics and temperature all influence the drying dynamics.  

Seeing as a dryer will remove moisture up to the point of equilibrium, it is a self regulating 

process. This equilibrium point is however dependant on the air humidity and temperature 

of both the air and the solid. The efficiency of the dryer is also largely dependent on the 

residence time of the particles in the dryer with longer residence times equalling drier 
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products due to more time for heat transfer and moisture removal. The following diagram 

illustrates the profile and how the conditions change through the profile of a generic dryer 

with a horizontal material and air flow in a direct concurrent drying process. 

 

 

Figure 6: Dryer dynamics along the profile of a direct, co-current dryer 

As the heated air moves through the dryer, it cools down and its humidity increases. The 

solid particles heat up and lose moisture. It is clear that the residence time, together with 

the air heat and humidity as well as solids moisture, will determine the if the point of 

equilibrium will be reached. 

Through the process of drying, as the states change and liquid is removed, the composition 

of the feed changes and the surface exposure of water, to heat and air flow, is reduced. 

This causes a drop in the moisture removal rate. The drying rate changes from a constant 

moisture removal rate, generally referred to as stage 1, to a decreased rate, stage 2. A 

second drop occurs when the surface of the solid is dry, thus isolating heat from the 

moisture and decreasing the liquid removal rate during the 3rd drying stage. This is 

illustrated in the rate-of-drying curve under constant drying conditions (Mujumdar, 1995). 
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Figure 7: Typical rate of drying curve for a solid condition inserted on a graph of typical feed moisture 
content and feed temperature indicates conceptually that the most moisture is removed with the least effort 
(after Mujumdar, 1995). More moisture removal requries an exponential increase in temperature and energy 

admitted. 

The typical residence time of feedstock in a dryer depends on the material under 

discussion, the dryer operation and the amount of moisture removal required. As indicated 

in Figure 7 the unbound surface moisture is removed quickly during stage 1, but longer 

drying times are needed to remove increased amounts of the bound moisture. During these 

longer drying times the product temperature increases, which may influence the end 

material composition and product quality in the case of heat sensitive products. This trade 

off between residence time, product moisture, and product temperature depends on the 

feed characteristics, product requirements and influence of high temperatures on the 

feedstock. This influences the choice of which dryer to use. 
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2.1.3 Dynamics of the Flash Dryer 

Dryers are classified according to the method of heat admission, the characteristics of the 

solids bed, the methods of material handling and the direction of air flow. The decision in 

each of these depends on material types and the required residence time of the feedstock 

in the dryer. 

Seeing as a dryer will remove moisture up to the point of equilibrium, drying is a self 

regulating process. This equilibrium point is however dependant on the air humidity and 

temperature of both the air and the solid. The efficiency of the dryer is also largely 

dependent on the residence time of the particles in the dryer with longer residence times 

resulting in a dryer product as is apparent from Figure 7. The following table indicates the 

time material is exposed to heat conditions with regards to the type of dryer being used.  

Table 1: Heat Exposure Times of Solids (after Mujumdar, 1995) 

  Typical Residence Time in Dryer 

 Dryers 0-10 sec 10-30 sec 10-60 min 1-6 h 

C
o

n
v
e

c
ti
o
n
 

Belt Conveyor     

Flash     

Fluid Bed     

Rotary     

Spray     

Tray (Batch)     

Tray (Continuous)     

C
o

n
d
u

c
ti
o

n
 

Drum     

Steam Jacket 
Rotary 

    

Steam Tube Rotary     

Tray (Batch)     

Tray (Continuous)     

 

In the filter cake drying process the mineral concentrate only needs to be exposed to the 

drying air for a short period as only the unbound surface moisture needs to be removed and 

the throughput needs to be high, hence the choice of a flash dryer.  

Flash dryers fall in the category of suspended bed dryers together with fluid bed and spray 

dryers and are the simplest form of pneumatic dryers. Pneumatic dryers comprise all dryers 

where the drying air also serves for conveying the feed from points A to B (Korn, 2001). As 
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in fluid bed dryers, this is enabled by an air flow greater than the terminal velocity of the 

particles causing the particles to be lifted and eventually transported by the airflow. 

Wet feed is introduced into the dryer by a screw feeder or conveyor at the bottom of a 

vertical tube. The heated air is introduced as a swirling airflow accelerating the wet particles 

upward. As these particles travel with the heated air, they are heated and moisture is 

removed. At the top of the tube the dry product is separated from the air flow by means of 

cyclones and normally a filter before the air is emitted into the atmosphere.  A flash dryer 

generally consists of a feed section, a vertical dryer section and a particle separator section. 

A further section could include the air heating section, but this can also be part of another 

process or a separate burner. The diagram below, Figure 8, is a basic depiction of how a 

flash dryer operates.  
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Figure 8: Diagrammatic depiction of a flash (pneumatic) dryer (after Korn, 2001) 

Flash dryers are focused on removing the unbound surface moisture of the solid with some 

initial removal of bound moisture possible, but not always incorporated. There are fluid bed 

dryers which can remove bound moisture, but the residence time and the solid temperature 

increases drastically with the decreasing drying rate as indicated earlier in Figure 7. The 

residence time of the feed in a flash dryer is round 1 to 3 seconds, hence the name flash. 

This short residence time, relatively cheap capital costs and efficient design, makes it a very 

popular dryer technically and economically.  
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Advantages of flash drying include effective solids mixing, ensuring a uniform temperature 

and moisture spread among the various particles. The aeration of the solid bed allows a 

large surface area to be exposed to heated air, same as in the fluid bed dryer 

(Korn, 2001; Perry & Green, 1997). 

2.2 Drying Process Control 

The focus of dryer control research has shifted from regulatory PID control (Dufour, 2006) to 

model based control approaches with the ability to predict and optimise control outputs 

(Dufour et al., 2003; De Temmerman et al., 2009; Didriksen, 2002; Liu & Bakker-Arkema, 

2001; Abudkhalifeh et al., 2005). The need for predictive ability and optimal control is 

prominent in dryer processes as the contribution made by a small optimisation based on 

disturbances will result in significant changes in energy consumption and product quality 

(Dufour, 2006). PID control may be enough for regulatory control in drying, but the influence of 

external disturbances has such a great effect on drying process outputs, together with the 

dominant time delays and nonlinearities of the process that closed loop, optimising predictive 

control strategies are needed to ensure product quality. 

2.2.1 Classification of Process Variables Applied in Dryer Control 

In this section it is important to differentiate between the dryer and heat source control. The 

heat source controller controls a burner, or other type of heat generation unit, by typically 

manipulating fuel source; whereas the dryer controller controls product moisture by 

manipulating feed and the required heat. This may vary in different dryer setups and under 

different control strategies. 

2.2.1.1 Measured Variables and Sensors Available 

Effective drying control is defined as having the ability to dry a product to desired moisture 

within a limited variance despite changes in the feed moisture and feed mass flow rate, 

together with a variation in inlet air humidity and inlet air temperature (Abdel-Jabbar et al., 

2002). To measure and control according to this goal, five real time values are needed. 

There is however a level of concern in dryer control as the anecdote “you cannot control 
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what you cannot measure” rings true. Sensors are the main shortfall of drying process 

control. The problem here lies in both the cost and availability of the needed sensors 

together with the harsh conditions in which these sensors should operate (Arjona et al., 

2005; Young, 2008).  

The following table lists the most common variables in the drying process and a view on the 

ease of measurement of each variable based on the flash dryer studied in this research. 

The distinction between the control, manipulated and load variables are developed based 

on common literature, but may vary according to the dryer setup and control strategy 

developed.  

Table 2: Common manipulated, control and disturbance variables and the ease of measurement of each. 

Variable Readily 
Measured 

Control 
Variable 

Manipulated 
Variable 

Disturbance 

Solid Feed Inflow 
Moisture 

NO    
Solid Feed Inlet Feed 
rate 

YES    
Air Inflow Humidity NO    
Air Inflow 
Temperature 

YES    
Air Inflow Flow rate YES    
Fuel 
Consumption/Heating 
Rate 

YES    

Solid Feed Outflow 
Moisture 

NO 
   

Solid Feed Outlet 
Temperature 

NO 
   

Air Outflow Humidity NO 
   

Air Outflow 
Temperature 

YES 
   

 

The difficulty of measuring solids moisture and air humidity in real time hampers 

controllability of the drying process (Arjona et al., 2005). Solid product moisture is the main 

product quality measurement and thus the ultimate control variable; whereas measurement 

of feed moisture and inlet air humidity can serve as measuring the disturbances and 

promote better control. 
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Air humidity can be measured by means of wet and dry bulb temperatures (Arjona et al., 

2005; Holmberg & Athila, 2006), but the sensors used for this are either inaccurate or have 

a short life span due to the harsh conditions present in a dryer. Capacitive measurement of 

product moisture is used in a corn drying process (Trelea et al., 1997), but this 

measurement generates around 13.3% noise variance around the real value. Air humidity is 

rarely measured in real time. 

Various researchers have simulated the control of a first principle dryer model with the 

assumption that solids moisture or air humidity variables can be used in control (Abdel-

Jabbar et al., 2002; Abudkhalifeh et al., 2005; De Temmerman et al., 2009; Duchesne et al., 

1997; Holmberg & Athila, 2006; Liu & Bakker-Arkema, 2001). The research makes no 

mention of the fact that these variables are difficult to measure (Arjona et al., 2005). 

It is common in industry (Arjona et al., 2005), and also in literature (Hjalmarsson et al., 

1996), to use the dryer outlet air temperature as an indication of drying efficiency and thus 

product moisture. Although this link is stated as highly nonlinear and dependant on many 

variables, it is the only feasible path to follow currently and is adopted by this research case 

study as well.  

The drying process will be modelled using the available data streams with the knowledge 

that there will be lost dynamics due to some fundamental measurements being unavailable. 

2.2.1.2 Control, Manipulated and Load Variables 

Various different drying processes make use of different heat sources, different drying 

mechanisms and thus have different process variables. The common process variables for 

a continuous dryer process making use of direct heating of the feed, by a separately heated 

secondary air flow, are depicted in Table 2. The classification of each variable as a 

manipulated, control or load variable is also indicated in the table.  

2.2.2 The Importance and Benefits of Dryer Control 

The aim of any industrial drying operation is to produce product at a desired quality at 

maximum throughput, but at minimum cost (Holmberg & Athila, 2006). The main expenses 
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linked to drying processes is not so much in the initial capital costs but rather in the daily 

running of the process (Dufour, 2006), it is thus important to manage both the energy 

usage, product quality and overall efficiency to increase yield and lower costs. 

Drying operations are responsible for 10-25% of energy usage in the developed world and 

dryer energy efficiency ranging between, a dismal 10%, to an average 60% (Dufour, 2006). 

These figures, together with the greener processes required by society and enforced by 

stricter emission regulations (Mujumdar & Huang, 2007), indicate that a drying process, 

amongst other processes, should make every energy unit count and every emission 

worthwhile. This means increased throughput and increased energy efficiency. The energy 

intensity of the drying process is repeatedly stated as a good enough reason for improving 

the control methods of dryers. Instead of heating to maximum temperatures to ensure 

maximum drying, steady control will cut energy costs and environmental impacts 

(Abudkhalifeh et al., 2005; Mujumdar, 2004). 

Dufour (2006) assigns savings in energy consumption, maintenance costs and increased 

yield, due to less off spec product and faster drying times, to better control. In four separate 

cases - two grain dryers, a beet sugar dryer and a rotary dryer - optimised control strategies 

have decreased energy consumption by between 1.2% - 15% and cost by average 1.3% , 

and increased product throughput in two of the reported cases by 0.86% and 1.4%. 

Furthermore, in the case of the beet dryer, the off spec product decreased from 11% to 4% 

and downstream energy costs decreased by £14000/annum. The return on investment of a 

model based predictive controller in the sugar beet dryer and a PI controller in the rotary 

dryer case was 17 and 9 months respectively. Dufour further states that the expected 

payback time for a complex control system implementation including, first principle 

modelling and software development and roll out, at a dryer complex is around 18 months. 

The cost of implementing a control system is mainly situated in SCADA development and 

creating a trusted distributed control system (DCS) network. The cost of developing and 

implementing advanced control and online optimisation techniques is usually small in 

comparison to this DCS capital expense (Perry & Green, 1997). 
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A further motivation for dryer control implementation rests on the fact that a dryer process 

unit has a significantly long lifetime and most physical dryer innovations discovered from 

research recently cannot be introduced unless a whole new dryer setup is commissioned 

(Mujumdar & Huang, 2007). The innovations in control however can be implemented more 

readily on the existing dryer setup than a physical change. 

2.2.3 Current Control Solutions Used 

Seeing as drying is a self regulating process it is convenient to manually control the process 

according to the philosophy “run-until-dry”. With increased conscience surrounding energy 

efficiency and stricter demands on product specifications, from especially the food industry, 

the interest in dryer control has entered the research spotlight the past 20 years. The 

largest portion of research in drying processes is still mainly involved in the comprehension 

and modelling of the drying process (Dufour, 2006; Mujumdar, 2004). As far as control 

research goes, classic PID based controllers are the most researched dryer control method 

the decade before 2006 (Dufour, 2006). Feed forward control was introduced to drying 

processes to overcome the long time delays in the process and was found to be superior to 

traditional feedback control in this aspect (Duchesne et al., 1997). The tuning of such 

controllers, both feedback and feed forward, was however difficult due to the drying process 

nonlinearity and the saturation of the actuators (Arjona et al., 2005). The ability of model 

based control strategies to handle these nonlinearities and long time delays introduces a 

new era in dryer control philosophy (Abudkhalifeh et al., 2005). 

Model predictive control (MPC) is the most recent and promising control method researched 

in dryer processes (Dufour et al., 2003; De Temmerman et al., 2009; Didriksen, 2002; Liu & 

Bakker-Arkema, 2001; Abudkhalifeh et al., 2005). This is mainly due to the ability of the 

control strategy to handle multivariable as well as nonlinear processes with long delay 

times. Other favouring traits of MPC are  

 the ability of optimising the model online by means of an online optimiser; 

 the ability of adjusting the model;  
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 changing the control strategy online; and  

 use of constraints on variables.  

(Dufour et al., 2003; Liu & Bakker-Arkema, 2001)  

The increase in energy and raw material costs, together with advancements in low cost 

computers, has moved the focus of control philosophies toward more efficient multivariable 

and nonlinear model based controllers (Abdel-Jabbar et al., 2002). 

2.2.4 Models Applied in Model Based Dryer Control 

A 2006 review of trends in dryer control (Dufour, 2006) states that half of all dryer models in 

literature are based on first principles, the other half is split into 40% black box models 

(these are undefined in the literature under discussion) and 10% based on neural networks, 

fuzzy logic or no model at all. In an overview study on physical drying process modelling 

done by Wang et al. (2007), it is stated that the first principle mathematical models for the 

drying process can only be used to solve specific problems, as there is still a large 

knowledge gap in the understanding of the fundamentals of the process as well as a lack of 

accurate measurements. The inner workings and dryer modelling is microscopic, whilst the 

overall performance is macroscopic accentuating the lack of a proper link between these 

two views (Huang & Mujumdar, 1992).  The model based controllers researched by De 

Temmerman et al. (2009), Didriksen (2002), Dufour et al. (2003), Abukhalifeh et al. (2005), 

Holmberg and Athila (2006) and Liu and Bakker-Arkema (2001) are all based on partial 

differential equation models of the mass, energy and momentum conservation principles. All 

these research pieces were successful in controlling either experimental setups or 

simulations of the process. 

The nonlinearity in dryer models allows model linearisation, to make well known and 

powerful linear control tools accessible control options (Trelea et al., 1997) (Abudkhalifeh et 

al., 2005). Nonlinear models can also be accommodated by making use of advanced 

control methods, able to handle process nonlinearities, such as MPC. The use of nonlinear 

models do however slow down the optimisation process as the calculation load is too much 
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to execute effectively. Dufour et al.(2003) made use of offline linearisation of a nonlinear 

model, thus using a time varying linear model for the online predictive and optimisation 

algorithms.  

With the increased separation between specialised control algorithms and specific 

processes the control engineer does not necessarily have the first principle process 

knowledge to model a process. In the case of drying where first principles are still being 

investigated and where every dryer setup and material type differs, the modelling problem is 

even more involved. In such cases input-output process data and a robust stochastic 

system identification method comes in handy. Stochastic mathematical models in drying are 

mainly used for control and process optimisation.  

Mathematical modelling is viewed as a relatively easy method to innovate the drying 

process to enable not only more cost efficient and better understood drying technologies, 

but more ecologically friendly and better controlled dryers. The modelling of dryers from 

fundamental principles to understand the phenomena involved in drying is however 

necessary, but for control purposes the data driven mathematical modelling can suffice in 

the regions the model was built for. 

Duchesne et al. (1997) compared steady state neural network, dynamic neural network and 

hybrid neural network (PI – NN) control schemes for the reason of including dryer 

nonlinearities in the control scheme. Huang and Mujumdar (1992)  made use of nonlinear 

steady state neural networks for dryer modelling. These nonlinear models enable the 

inclusion of process nonlinearities in the control strategy. The neural network is however a 

black box model in the true sense of the word that, unless an expert investigates the model 

internally, only the model inputs and model outputs are visible. Abdel-Jabbar et al. (2002), 

Trelea et al. (1997) and Arjona et al. (2005) also applied models identified from data by 

means of system identification methods to various control strategies. It should be noted that 

the models are normally in discrete form to enable digital control (Abudkhalifeh et al., 2005). 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 23 
 

The use of system identified models in advanced control is justified, but the decision of 

which identification method to use remains a preference based on the needs of the 

identification problem at hand. 

2.2.5 Dryer Control in the Industry 

Dryer control research has a very uneven focus among industries. 66% of literature 

discussing dryer control is focused on the food industry with the first publication dating back 

to 1983. Painting (8.5%), pharmaceuticals (6.8%), paper (6.8%) and wood (5.1%) industries 

enjoy the middle tier of attention with the first publications just before and around the turn of 

the millennium. The mineral and textile industries are at the bottom of the spread with 1.7% 

of process control research attention going to each (Dufour, 2006). 

Duchesne et al. (1997) made use of a feed forward PI controller in a virtual ore drying 

process simulation study. A decentralised PID controller was developed and implemented in 

the food industry at a live olive waste dryer plant (Arjona et al., 2005). 

Model based controllers have been applied to virtual dryers modelled in the food industry, 

specifically in the grain drying (Liu & Bakker-Arkema, 2001), pasta drying (De Temmerman 

et al., 2009) and sugar beet drying (Didriksen, 2002). Furthermore model based controllers 

are found to be used in an experimental setup of a water based solvent extraction in a paint 

drying process (Dufour et al., 2003) and is discussed as a possible solution for the bio fuel 

(tree bark) drying control in the paper and pulp industry (Holmberg & Athila, 2006). 

Below is a summary of all the research found for dryer modelling and control, as mentioned 

in the literature review. 
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Table 3: Summary of dryer modelling and control as found in literature and discussed in this section. 

Process Control Strategy Model Used Reference 

Infrared Drying 
of Paint 

Model Predictive 
Control 

Time Varying Linear Model 
based on Partial Differential 

Equations 

Dufour et al., 
2003 

Pasta Dryer Model Predictive 
Control 

First Principle Differential 
Equations 

De 
Temmerman 
et al., 2009 

Sugar Beet 
Drying 

Model Predictive 
Control 

First Principle Differential 
Equations 

Didriksen, 
2002 

Grain Dryer Model Predictive 
Control 

First Principle Differential 
Equations 

Liu & 
Bakker-
Arkema, 

2001 

Electric Infrared 
Dryer for Fibre 
Sheet Drying 

Model Predictive 
Control 

Linearised 
First Principle Differential 

Equations 

Abudkhalifeh 
et al., 2005 

Bio Fuel (tree 
bark) dryer in the 
paper and pulp 

industry 

Model Based Control First Principle Differential 
Equations 

Holmberg & 
Athila, 2006 

Mixed Flow Corn 
Dryer 

PI and LQG Control 
(Linear-Quadratic 

Gaussian) 

Linearised Model identified 
from input-output data 

Trelea et al., 
1997 

Rotary Dryer for 
Ore drying 

Feed forward PI 
control 

Steady state-, dynamic and 
hybrid neural networks 

Duchesne et 
al., 1997 

NA NA Steady state nonlinear 
neural network 

(Huang & 
Mujumdar, 

1992) 

Continuous 
Fluidised Bed 

Dryers 

Internal Model 
Control; 

Model Predictive 
Control 

Data Driven Modelling; 
Linear State Space and 

Transfer Function Models 

Abdel-
Jabbar et al., 

2002 

Olive Waste 
Dryer 

Decentralised PID Data Driven Modelling Arjona et al., 
2005 

 

2.3 Conclusions Drawn from the Literature Review 

From the literature review it is clear that a number of phenomena is involved in the drying 

process increasing the effort required for modelling the dryer process. This required first 

principle knowledge and understanding, together with the variations in dryer setups, results 

in a much involved modelling process. It is stated that the combination of input-output data, 

together with a robust system identification technique overcomes some of these issues. That 

said, it was also found that not all the process variables in drying are readily measured, 

possibly influencing the success of such a data driven system identification approach. 
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The business case for dryer control is largely built on energy efficiency and limiting 

emissions, with product moisture playing a larger role in the regulated industries such as the 

food industry. Product quality is measured as the moisture content in the exit product. This 

moisture is not measured online, but it is common to make use of exit air temperature as an 

indication of drying efficiency. This approach is adopted in this research as well.  

The case for MPC is strengthened in literature by the number of research pieces in the field, 

and the statements that MPC is capable of handling the time delays and nonlinearities 

contained in drying dynamics. Most of these MPC however make use of linear or linearised 

models for prediction and control move optimisation. It will be the aim of this research to 

investigate implementation of a nonlinear model in a basic MPC algorithm to find possible 

shortcomings or future research requirements. This will approach will require rigorous system 

identification. 
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Chapter 3 Characteristics of the Drying Operation Investigated 

This section sets out the make-up of the specific drying process investigated. Furthermore it 

provides insight into the behaviour of the process concluding with the reason for focussing on 

control as a solution and the control strategy currently followed. 

3.1 Concentrate Dryer and Smelting Operations 

The focus of research is on a dryer process included in the smelting leg of the PGM value 

chain as discussed previously (‎Chapter 1). The smelter process uses wet feed from the 

concentrators and supplies matte to the base metals refinery, increasing the PGM 

concentration fifteen fold from about 300 grams per ton of concentrate to an estimated 5000 

grams per ton of matte. The drying plant is a sub operation of the smelting plant. It is 

responsible for drying concentrate, received from the concentrator plant, before it is fed to 

the smelters. The drying plant consists of 3 filter presses responsible for primary removal of 

water and 2 dryers responsible for final drying of concentrate. Two of the filters operate at 

24t/hr and the other one at 18t/hr. Operations between the filters are alternated (CSense Pty 

Ltd, 2007). The dryers entail a spray dryer, used for feed going to the Pyromettalurgical 

furnaces or Merensky furnace, and a flash dryer for feed going to the 28MW main furnace. 

The focus of this study will be on the flash dryer section of the drying plant depicted in Figure 

9. The location of variable measurements and operating points are also included in the 

diagram. 
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The following variables are important for further reference and are marked in Figure 9: 

a. Coal Conveyor Feed Rate 

b. Fluidising Damper Valve 

c. Hot Gas Generator Secondary Air Temperature 

d. Filter Cake Feeder Rate 

e. Flash Dryer Output Air Temperature 

 

Figure 9: The flash dryer drying plant consisting of the (1) HGG, (2) Feeder, (3) Flash Dryer and (4) the bag 
house filters. Control points (OP) and measured variables (P-pressure, W-weight, T-temperature and F-flow 

rate) are indicated. (CSense Pty Ltd, 2007) (Included with permission) 

The flash dryer dries moist concentrate obtained from the filters to around 10% moisture 

before feeding it to the main furnace. A 10 ton concentrate filter cake bin is situated between 

the flash dryer and the filters serving as a process buffer. There is no official buffer between 

the flash dryer and the furnace; also there is no communication between the filters and the 

flash dryer, neither is there any communication between the flash dryer and the furnace. The 

drying plant consists of the following, numbered correspondingly in Figure 9: 

1. hot gas generator;  

2. filter cake feeder;  

3. flash dryer with cyclone separators; and  
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4. filtering stage in the bag house before the heated air is released into the atmosphere.  

(CSense Pty Ltd, 2007) 

These sections will now be discussed in detail individually. 

3.1.1 Hot Gas Generator (HGG) 

The HGG fuel source is coal which is fed into the burner. Combustion air is added to the 

burner and the emission stack of the burner is damped. Secondary (heating) air is taken 

from the atmosphere and heated indirectly in the burner. Secondary airflow into the HGG is 

controlled by the fluidising damper valve situated before the HGG. It is called the fluidising 

damper as this airflow influences the fluidisation of particles in the flash dryer further down 

in the process. The coal feeder conveyor is controlled by a PID feedback loop based on the 

outlet air following a set point determined by the operator. This PID controller can only set 

the conveyor as on or off, resulting in what is known as bang-bang control. Outlet 

secondary air is fed to the flash dryer for the drying process. 

3.1.2 Flash Dryer Feeder (FD Feeder) 

The FD feeder consists of a conveyor feeding moist filter cake from the filter cake bin to the 

bottom of the flash dryer where it is mixed with the heated secondary air from the HGG. 

There is no communication between the filters, upstream from the buffer bin, and the flash 

dryer feed. 

The feeder is stopped on 2 occasions: 

1. When the flash dryer exit air temperature drops below the efficient drying 

temperature boundary of 94°C; and 

2. When the buffer bin runs empty. 

3.1.3 Flash Dryer (FD) 

The flash dryer consists of a vertical cylinder in which the heated air and moist concentrate 

is mixed and transported upwards to a cyclone separator. It is during this transportation and 
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aeration where the concentrate is dried. The cyclones separate the concentrate from the air 

and drop it into a concentrate silo. The air is sent to the bag house for filtering. 

3.1.4 Bag House 

The bag house filters the air before emitting it into the atmosphere. A damper valve is 

situated after the bag house which can control the air flow. The exit air flow rate is 

measured at the stack before releasing the cleaned air to the atmosphere.  

The operation of the bag house is assumed as not important for this research. 

3.2 Problem Statement for the Dryer Control Solution 

Through an ongoing Six Sigma initiative, it was found that the drying plant is a bottleneck in 

the production operations. The throughput was being limited by: 

 Large oscillations in the HGG output temperature causing  FD downtime and feed 

stoppages, as well as temperature spikes to above 200°C causing equipment 

damage; and 

 Lack of synchronisation between the filter plant and flash dryer feeder causing the 

feed bin to run empty and a resulting concertina effect in concentrate availability and 

operations; 

Feed Stoppages are firstly due to the temperature interlock which shuts off concentrate feed 

when the flash dryer output temperature goes below 94°C. Secondly stoppages are caused 

by the feed bin running empty. 

3.2.1 Feed Stoppages due to Temperature Interlocks 

The following trend, Figure 10, indicates the problem which arises when the temperature 

interlock is activated. The interlock activates at points indicated „A‟, „B‟ and „C‟ in the figure. 

The flash dryer output temperature recovers quickly, but within 5 minutes from when the 

interlock is activated, the output temperature spikes above 200°C. This is above the 

recommended operating temperature for the drying equipment, especially the bag house 

filters and can thus shorten the equipment life span. At the same time the hot gas generator 
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output temperature is not synchronised with the activation of the interlock as there is no 

communication. Not only can this assist in the temperature spike in the flash dryer, but coal 

is being fed and wasted when the operations are essentially off. 

 

Figure 10: The interlock stops the concentrate feed and causes the temperature to spike to above 200°C 
damaging the equipment, especially the bag house. The hot gas generator operation is not linked to this 

interlock becoming active. 

3.2.2 Feed Stoppages due to Bin Empties 

A secondary influence on concentrate feed stoppages is the availability of concentrate. 

There is, at the time of this project, no communication between the filters forgoing the flash 

dryer in the process, and the flash dryer operations. The communication exists only when 

the operator finds the concentrate bin is running empty and contacts the filter operators to 

find why this is happening. In Figure 11 it can be seen where the operator stops the feed 

and waits for the bin to receive more filter cake concentrate. 
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Figure 11: Lack of communication between the filter section and the flash dryer operation is causing feed 
stoppages due to filter cake shortage. 

3.2.3 Hot Gas Generator Oscillations 

Oscillations in the hot gas generator output temperature is experienced every 25 to 30 

minutes. This is due to the current on-off control strategy followed in controlling the coal 

feeder as can be seen in the trend, Figure 12. These oscillations are passed on to the flash 

dryer and it is expected that these contribute to variation in the flash dryer operations.   

 

Figure 12: The on-off ("bang-bang") control approach followed for the hot gas generator is causing 
oscillations in the output temperature. These oscillations are passed on to the flash dryer operations. 
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A closer look at the dynamics of the coal feed and the output temperature in Figure 13, 

indicates that the process output continues to decrease and then, around 8 minutes after 

the step change in the coal feed, the output turns around and starts to increase. This 

transition in the output temperature during this delay period is smooth compared to the coal 

feed‟s sudden change. 

 

Figure 13: A closer look at the on-off ("bang-bang") control approach indicates large process lags, with 
smooth transitions in the ouput temperature, compared to the stepped input. 

3.3 Control Strategy as a Problem Solution 

These aforementioned phenomena were assigned to poor regulatory control (SAIMC, 2008; 

CSense Pty Ltd, 2007). It is thus an obvious choice to consider a different, or complimenting, 

control strategy. The aim of such a solution will be, based on the specific problems identified 

in the previous section: 

 Prevent flash dryer outlet temperature spikes through synchronisation between hot 

gas generator output and flash dryer operations; 

 Maximise output of filter cake by preventing feed stoppages by pre-emptive actions to 

signs of the feed bin running empty, as well as keeping the flash dryer temperature 

above the interlock temperature; and 
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 Smooth the hot gas generator output temperature, decreasing oscillations, by 

replacing the “bang-bang” control approach. 

Note that an advanced process control strategy has been designed and commissioned for 

the flash dryer operation in April 2007. This implementation sparked industry interest in dryer 

control alternatives as well as identification of possible hurdles to control, and resulted in this 

research piece investigating model predictive control as an alternative control strategy. It is 

necessary to understand the implemented APC for the dataset filtering steps, seeing as data 

for system identification in this project was collected when these APC‟s were running; as well 

as to interpret the comparison between the existing APC and the proposed MPC at the end 

of this investigation.  

It is the objective of this study to further investigate possible modelling and control strategies 

from literature which can be applied by process control specialists to the abovementioned 

drying plant. The focus will not be on streamlining material flow between the filter section and 

the drying section. This problem will be omitted from the research and assumed as not 

hampering operations. 

The advanced process controller currently active on the plant, and also active during data 

collection, is divided into 3 sections.  

1. HGG IMC: The first is an internal model controller (IMC) implemented at the HGG to 

control the outlet air temperature by manipulating the coal feed.  

2. FD PI controller: The second is a feedback-feed forward PI controller controlling the 

feed bin weight by adjusting the feed set point.  

3. Fluid Damper Rules Based controller: The third controls the fluidising damper and 

thus the inlet air flow rate by means of if-then rule sets. This controller also controls 

the maximum and minimum allotted ranges for the feed rate set point and thus limits 

the FF PI controller. 

(CSense Pty Ltd, 2007) 

The dataflow for the solution is depicted in Figure 14. 
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Figure 14: Data Flow of the Current Live Drying Operation APC  

This APC is situated on top of the process control network and provides set points to the 

regulatory control layer. The PLC layer of control for both the coal and concentrate feed is a 

weak controller. Influences of these closed loop controllers will be neglected during system 

identification (Van Schalkwyk, 2009).  

3.4 Conclusion 

The current control strategy is running and is controlling the process according to plant 

opinion. This will be briefly investigated later when comparing the MPC results to the current 

live plant control. Given the success of the current controller, it is proven that this dryer can 

be controlled. It is thus a good base for investigating system identification of a nonlinear 

model for the various drying operations and attempting a MPC with the best models. 
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Chapter 4 Data Preparation and Analysis as per the Dryer 
Control Strategy Requirements 

4.1 Methodology Overview 

This research entails two main sections: 

1. System identification (SID) of drying circuit models by means of genetic programming 

(GP); and 

2. Model based predictive control (MPC) of the drying circuit and identification of best 

control possibilities. 

Before the discussion surrounding dataset preparation and modelling commences, it is 

necessary to understand the opted control strategy and the required models. This will put the 

handling of the data before and during system identification into context. After this the section 

continues with the data preparation and analysis; choice of timeseries to use by means of 

surrogate data comparison; and ending off with the construction of the latent variable set. 

The genetic programming system identification discussion and method followed for 

constructing and simulating the model based predictive control is handled in the next two 

chapters individually. 

The following diagram of the detailed steps followed in the methodology, used for this case 

study, is included as a guide throughout the rest of this section. 
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Figure 15: Data Preparation, System Identification Methodology Steps followed to allow the planned Model-
Based Controller Strategy to be constructed and tested for the Flash Dryer operations. 
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4.2 Proposed Control Solution 

4.2.1 Control Philosophy 

Obtaining desired moisture levels is difficult to monitor in real time due to lack of sensors. 

The aim will be to control the flash dryer output temperature to follow a desired set point 

and be within a specified control band. The assumption, used in literature (Hjalmarsson et 

al., 1996) and practice (Arjona et al., 2005), is that the moisture content in the solid follows 

the outlet air temperature. Although it is stated in the same literature that the correlation 

could be very nonlinear and dependant on multiple variables, a strong correlation is 

assumed for the rest of this research. The flash dryer control philosophy will focus on 

controlling the air temperature without any focus on moisture levels of either the exit air or 

the material feed in and out.  

In the case of secondary air heating, i.e. drying air, it is common to decouple the control of 

the heat generator from the operations of the flash dryer.  This approach is also assumed 

applicable, as the controllers investigated for both these two sections of the drying 

operations, are decoupled in this research. 

4.2.2 Control Strategy 

The flash dryer (FD) exit air temperature, hence product moisture, is influenced by both the 

inlet air temperature, received from the hot gas generator (HGG), and the conditions in the 

flash dryer. Both of these processes need to be considered in a dryer control strategy. Two 

possible control strategies, in this research, are indicated in the following table. 

Table 4: Two possible control strategies for the concentrate drying process 

Control Strategy Manipulated 
Variables 

Control Variables 

Flash Dryer  Concentrate Feed 

HGG Outlet Air 
temperature 

FD Outlet Air 
Temperature 

Hot Gas Generator Coal Feed 

Fluid Damper % 

HGG Outlet Air 
Temperature 
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It should be noted that the investigation will assume that the HGG outlet air temperature can 

be manipulated by a flash dryer controller. In practice this will be done by means of a set 

point change for the hot gas generator controller. The lag of the HGG controller is neglected 

with the aim of investigating the impact of the HGG outlet air temperature as manipulated 

variable.  

Some specifics regarding these two strategies will briefly be discussed in the same order as 

in the table. 

4.2.2.1 Flash Dryer Controller 

The FD controller will consist of a model with concentrate feed and HGG outlet air 

temperature as input variables and the FD outlet air temperature as output variable. The FD 

outlet air temperature set point is managed manually and will be assumed to stay at 140°C. 

The area of focus is depicted in the following figure. 

 

The controller implemented will be a model predictive controller. 

Assumption for the FD controller: 

 The controller will not take into account the bin level. The source of wet concentrate 

feed is assumed inexhaustible for this research; 
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Figure 16: Flash dryer feed controller focus area as part of the whole process 
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4.2.2.2 Hot Gas Generator Control 

Seeing as the focus point of the current APC solution is to control the HGG outlet air 

temperature, it is decided to investigate control of the same section of the drying plant by 

means of MPC. The HGG outlet air temperature set point is managed by an external 

source, either an operator or another controller. The process inputs include the secondary 

airflow rate influenced by the fluidising damper, as well as the burning coal feed rate. The 

focus area of this controller is illustrated in the diagram. 

 

A MPC will be developed for this controller based on the identified model. The secondary air 

flow variable is found from theory to have minimal effect on the outlet air temperature. The 

decision to include or omit this variable will however be left to the genetic programming 

system identification procedure. The following assumption is made regarding the hot gas 

generator controller: 

 The coal source is not constrained; 

4.3 Dataset Preparation and Analysis 

It is logical that the data preparation exercise for raw data obtained from the historian will 

need a great amount of attention, pre-processing and analysis. This section explains the 

methodology followed to separate the data into subsets according to the models which need 

to be generated. Furthermore, it explains how the best dataset, of the various created 

subsets, is chosen for system identification through an analysis of the dynamic information 
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Figure 17: Hot gas generator (HGG) controller focus area as part of the whole process 
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available in the dataset, by means of surrogate data analysis. The construction of a latent 

variable input regressor set from the timeseries, concludes the section. 

4.3.1 Dataset Background 

Seeing as it was not possible to do step testing on the plant and there is no model available 

to simulate step tests on, the available plant datasets, located on the plant historian, were 

used for system identification and process simulation.  

It is clear that the datasets obtained in such a manner need to be audited and reviewed to 

ensure process data validity and to remove parts of the timeseries where process 

anomalies and seemingly out-of-the-ordinary process events occurred. Such events are 

common on a plant and this “plant misbehaviour” information will be stored in the historian 

dataset. 

To further complicate the data preparation, datasets from the plant are only available from 

after the implemented advanced process control (APC) strategy, as discussed in ‎3.3 - 

Control Strategy as a Problem Solution. This complicates the process dynamics in an 

captured in the data and requires these APC influenced sections be removed. 

The dataset obtained ranges from 16-May-2009 00:00:00 to 08-June-2009 00:00:00 with 5 

second intervals, i.e. 17280 data points per day. This data range was randomly selected 

and supplied by the industry partner. Although there is no information regarding the good 

operation of the process, or insuring the presence of expected dryer disturbances and 

dynamics, this was the data received which had to be used. All other influences of process 

drift, unconventional feeds, different types of ore or maintenance issues were assumed 

negligible until proven otherwise. This data is thus unaltered and is gathered from the 

CSense APC historian. This historian holds both the process variables and the APC on/off 

status. These on/off states are used to filter out the data when the APC solution was on, 

excluding the influence of the current APC solution.  
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It is assumed that the historian data collection settings, data compression, averaging, 

sample-and-hold, etc, under which the data are collected and stored in the historian during 

collection, have no effect on the dataset‟s relevance for the research. 

All data manipulation was done in Matlab. The data were supplied in 24 .csv files per day 

for the 24 days in the time range and were imported into Matlab. Only the major variables 

identified as having an influence (see Classification of Process Variables Applied in Dryer 

Control discussed earlier) were imported. Further discussion of the reduction of the datasets 

is included next.  

4.3.2 Data Reduction 

Data reduction entails reducing the dataset by either  

 decreasing the number of records by increasing the sampling time; or  

 by reducing the number of process variables included. 

The following process variables were identified as important for system identification from the 

earlier discussion regarding process variables in the dryer process (see ‎2.2.1). All other 

variables were removed from the datasets.  

Table 5: Process Variables used in the system identification with units of measure and plant tag names 

Process Variable Unit of Measure Tag Name 

Concentrate Feed Bin Weight tons Bin_Weight 

HGG Coal Feeder Rate tons/hour CoalFeeder_OP 

Flash Dryer Concentrate Feed Rate tons/hour FlashDryerFeed_PV 

Flash Dryer Outlet Air Temperature °C FlashDryer_Temp  

Secondary (heated) Air Flow Valve 
Opening 

% of maximum opening FluidisingDamper_OP 

HGG Outlet Air Temperature (same 
as Flash Dryer Inlet Air Temperature) 

°C HGG_Temp 

 

4.3.3 Data Cleaning 

The current APC was deployed in April 2007. The active controllers create a problem for 

system identification as process variable correlations are altered by the collective process 

and advanced controller dynamics. Modelling from a dataset such as this could capture the 

dynamics of the process under advanced control and not of the process alone. If the model 
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predictive controller was going to be applied on top of these controllers, the dynamics of the 

controllers could be included in the model, but seeing as the MPC is aimed at replacing 

these controllers, datasets incorporating these dynamics need to be either removed, or 

avoided. There are instances where these controllers are switched off, and the problematic 

combined dynamics can be avoided by only using these “controller-off” sections for SID. The 

“controller-on” states are marked by the following the Boolean historian tags individually: 

Table 6: Live Flash Dryer APC solution and the tags which indicate if the specified controller is on or off 

Controller Tag Name 

HGG internal model controller ControllerOn_HGG 

Flash Dryer Feed Set Point PI controller ControllerOn_FDryerFeedSP 

Fluidising Damper If-Then controller ControllerOn_FluidDamper 

 

The following figures illustrate the 24 day dataset obtained and the influence of the 

controllers on the process. Figure 18 illustrates the various APC statuses. From visual 

inspection it is clear that the HGG Coal Feed APC and Fluidising Damper APC are linked. 

These two controllers are in the same status 95.5% of the time of this dataset. For further 

discussion in this section they are assumed to be the same. 

 

Figure 18: On (1), Off (0) or No Data (-1) Status of the Current APC Controllers. The HGG and Fluidising 
Damper controllers correspond 95% of the time. 
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Comparisons of the flash dryer and hot gas generator variables with the controller states 

are included in Figure 19 and Figure 20. In both figures there are two sections where no 

data were recorded. These are indicated by the combined drop of all variables to zero. 

These sections are removed from further investigation. 

In Figure 19 very little can be deduced visually from the correlation between the flash dryer 

dynamics and the controller state. The largest controller-off states are indicated by the 

orange shaded areas. The controller active state will however be removed from the 

timeseries for safety. 

 

Figure 19: Flash Dryer Process Variables compared to the Feed APC. The Feed APC “off” statuses are 
highlighted. No real difference from the rest of the process is visually discernable. 

The coal feed APC has a significant influence on the hot gas generator output temperature 

as can be seen in Figure 20. Orange shaded areas indicate major sections where the 

controller was off. Every time the controller is off a “bang-bang” controller assumes control 

of the coal feed; whilst the fluidising damper defaults to a value and is adjusted manually by 
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the operator. The hot gas generator drops from the 900°C to an average of 840°C. This is 

probably due to the drop in coal feed. The influence of the APC is apparent. Both the 

sections where the controller is off and the whole dataset will be investigated for system 

identification. 

No plant input was supplied to whether the coal feeder motor is equipped with a variable 

speed drive (VSD). From the smoother action seen during the controller-on states indicate 

that the drive is not only on and off, but makes use of a VSD. Throughout this research it is 

assumed that the coal feeder motor can be manipulated as a VSD. 

 

Figure 20: Hot Gas Generator Process Variables compared to the HGG APC. The HGG APC “off” statuses are 
highlighted. A clear difference can be seen when the controller is on and off. 

The goal is to identify a nonlinear dynamic model using a latent variable reconstruction. For 

this a continuous timeseries is required. The sections where the controllers are off are 

however breaks this continuous timeseries. The sections will thus have to be isolated and 
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subdivided into smaller datasets. Each dataset will then be evaluated for individual SID 

purposes.  

The decision of which controller to link to which variable is based on the understanding of 

the prior APC solution and drying circuit. The following table sets out the states each of the 

current APC controllers must be in to enable the modelling of the models discussed earlier. 

Table 7: Dependencies of process sections on the current APC solution viewed to clarify the required dataset 
manipulation 

Control Strategy HGG internal 
model controller 

Flash Dryer Feed 
Set Point PI 
controller 

Fluidising Damper 
If-Then controller 

Flash Dryer NA Off NA 

Hot Gas Generator Off NA Off 

 

The assumption is made that the influence of the controllers on the timeseries can be 

neglected at the point where the controller is switched off. All further delayed influences 

from the point where the controller is switched off are thus neglected. 

The remaining subsets are initially evaluated for usability by looking at timeseries length, 

and visual inspection of the dynamics of the data. Advanced analysis is done by means of 

surrogate data comparison discussed later in ‎Chapter 8. 

Seeing as process knowledge and plant input to this project is limited, provision for specific 

process states and consequent dynamics are not made beforehand but will be handled as 

they are found. 

4.3.4 Data Normalisation and Induced Bias 

Although this is a general step in system identification, the discussion of data normalisation 

needs to be included seeing as it is such an important step in system identification. 

Normalisation of data refers to scaling of the variables to similar orders of magnitude to 

allow them to be compared. The normalisation step needs to be included in the GP 

algorithm or any of the modelling steps. The following formula is used: 

𝑥𝑛 𝑖 =
(𝑥𝑖 − 𝜇)

𝜎
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The mean (μ) of a timeseries for a period is subtracted from all the data points (xi) one at a 

time. The result is then divided by the standard deviation (σ) of the timeseries for the same 

time period. The result (xni) is a timeseries with zero average and standard deviation of 1. 

The normalised validation sets are constructed using the statistics of the training dataset. 

Furthermore, in some cases in this research, the normalised timeseries is shifted, or biased, 

by centering the timeseries at a value larger than zero. This is done so all values are 

positive. This offset is uniform across all the variables in the timeseries, and is introduced in 

cases where a square root in the functional set requires closure - all variables should 

preferably be positive to prevent imaginary numbers resulting from the root of a negative 

value. The specific application will be discussed at a later stage. At this point it should be 

noted that the bias is determined by the largest negative value across all the already 

standardised and centered variables. The bias is equal to the absolute of the determined 

value and rounded up to the nearest integer. This chosen bias value will be adopted by the 

controller for the model used as the model parameters is be determined based on this bias. 

Means and standard deviations used for normalisation are included in ‎Appendix A . 

4.3.5 Nature of Process Dynamics in the Timeseries: Surrogate Data Comparison 

The process information stored in process data can be extracted in the form of a model by 

means of system identification methods. Poor extraction of this information may be 

indicative of timeseries which do not contain the dynamics of the process or from which the 

dynamics cannot be determined. A good SID method can fail due to misunderstood process 

dynamics or structures. It is, however, aimless to test a method on a dataset, and specified 

variables, if one is not sure that the dataset does not contain deterministic process 

dynamics. Evaluation of data discussed thus far has been mainly heuristic and based on 

visual inspection.  

Barnard and Aldrich (2001) developed a nonlinear SID methodology that enables 

identification of nonlinear process dynamics from a one-dimensional or multi dimensional 
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timeseries. This methodology makes use of a culmination of various methods of timeseries 

analysis to explain the nonlinear dynamics collected in the timeseries.  

The use of the above mentioned methodology, contained in a Matlab® based toolbox, and 

the results of this analysis will be included here as it confirms if a timeseries is apt for 

modelling and further assists with the choice of datasets. 

4.3.5.1 Overview of the Nonlinear System Identification Methodology 

The methodology developed by Barnard and Aldrich (2001) is used to determine the 

amount of information, or dynamics, captured in the timeseries. For each of the models 

which needs to be generated, the output variable dynamics will be analysed. In each of the 

models, the output variable only includes a single variable timeseries making the analysis 

simpler than in the case of multiple outputs.  

The methodology followed in this research using the developed toolbox, as well as the 

outputs aimed at, is displayed in the diagram in Figure 21 below. 

 

Figure 21: Process flow followed in the use of the methodology used to ascertain whether the process 
dynamics can be obtained from the timeseries 
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The techniques used in this research and included in this toolbox are: 

 Coordinate Delay Embedding constructing the a state space; 

 Autocorrelation or AMI (average mutual information) to obtain the time delay per 

variable;  

 False Nearest Neighbours to determine the embedding dimension; and 

 Surrogate data used for classification of data as deterministic or stochastic. 

For better understanding of the use of the formulation of the toolbox and the various 

techniques the reader is referred to Barnard and Aldrich (2001). 

4.3.5.2 Analysis of Surrogate Data 

The surrogate data comparison indicates whether the process dynamics present in the 

timeseries could possibly contain deterministic dynamics. This a priori knowledge of 

dynamics present in the system data are used in this research to in selecting the 

appropriate subdivided time series. The result is not necessarily that the deterministic 

dynamics in the timeseries can be extracted by the SID technique, but rather assists in 

filtering the large number of datasets for a better timeseries to use for modelling. It is thus a 

contributing section included in this case study‟s SID methodology. 

Stochastic data is compared to the time series being investigated. Calculated statistics of 

both datasets are compared visually. The degree of separation between the surrogate data 

and real data, allows a conclusion to be drawn regarding if the timeseries contains 

stochastic or a deterministic dynamics. The larger the separation, the better is the chances 

of identifying deterministic dynamics and ease of modelling the process. The extraction of 

the deterministic information is still dependant on the SID algorithm used. The results does 

not ensure deterministic dynamics in the timeseries, but rather strengthens the probability 

that the timeseries contains deterministic dynamics.  

The visual comparison could be a weakness of the method, but is not a major factor in this 

research as this method is used to select between various subdivided timeseries. In the 
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absence of process knowledge and various inexplicable occurrences in the flash dryer 

output timeseries, this method allows possible better selection of the timeseries to use. 

4.3.6 Construction of Latent Input-Output Variables for Dynamic Model Structures 

Identification 

For a dynamic model the system identification procedure needs access to the process 

history. The drying process has no internal process states which are being measured, 

however a variation on this theme is possible by creating a state space, where the states 

consist of the previous output variable values. A variation on the theme is used in this 

research, seeing as the state space is reconstructed, but the process inputs are delayed 

and supplied to the GP algorithm for model structure selection. Based on the method of 

dynamic modelling used by Madar et al. (2005) using a GP algorithm to identify model 

structure both the delayed influence of process input and output variables are investigated. 

It is noted that this is not a theoretically correct coordinate delay embedding, as the input 

variables are also “embedded” in a sense. The logic behind this approach lies in the ability 

of the GP to identify a model structure from various possible solutions, allowing non-

contributing variables to be rejected by not including these in the model structure. 

In genetic programming it is common to make use of a time shift operator to select dynamic 

inputs and delayed versions of variables (Hinchliffe & Willis, 2003). The GPOls toolbox is 

not constructed in this way, and requires various latent variables to be constructed 

representing the delayed versions of the variables. The selection procedure will thus not 

include time shift operators but rather choose between a large number of variables, in this 

case constructed similar to the coordinate delay embedding approach as presented by 

Barnard and Aldrich (2001). This pseudo-embedding includes the process outputs, 

effectively the reconstructed state space, as well as various delays of the process input for 

selection by the GPOls algorithm.  

4.3.6.1 Overview of Latent Variable Construction 

The latent variable construction was used in a genetic programming dynamic modelling 

exercise by Madar, Abonyi and Szeifert (2005). Madar et al. included all the lagged versions 
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of each variable in the latent variable construction. In so doing a whole new collection of 

variables was created. As far as the GP algorithm is concerned, these variables are all 

independent of each other and can be viewed separately as contributing to the process 

outputs. The independence of these variables is ensured during the identification of the delay 

parameters.  

The construction allows both investigation of the unknown process delays, as well as 

construction of a dynamic model. The GP is capable to reject delays which do not contribute. 

4.3.6.2 Determining the Latent Variable Delays and Parameters 

The construction of the latent variable matrix as well as the identification of the delays and 

dimensions used are discussed in this section. To start off with it is helpful to portray each 

column of the latent variable matrix (each represents a latent variable) as 

𝑥(𝑡 − 𝑚𝑘) 

where k is the time delay and m the number of delayed versions of the variable. Each 

column will thus be a „new‟ variable or delayed version of a variable. 

These parameters k and m need to be determined to ensure that the latent variables are 

statistically independent.  

Barnard and Aldrich (2002) states that k is determined by either using  

 Autocorrelation; or 

 Average mutual information (AMI); 

and m is determined by means of 

 a False Nearest Neighbourhood algorithm following on the identification of k. 

These three methods are all included in the toolbox developed by Barnard and Aldrich 

(2001). These parameters will thus be obtained by making use of this specific functionality 

in the mentioned toolbox and will assist in construction of independent latent variables. 
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Note that although in theory the GP algorithm is capable of selecting between a sequence 

of single time interval lagged variables, the correlation between these variables puts strain 

on the GP algorithm to differentiate between these single lagged variables. In this research 

the GP is assisted by predetermining which delays will contribute the most process 

information to the model.  

4.3.6.3 Constructing the Latent Variable Matrix 

The construction results in an interpretable matrix of variables where the values of the lagged 

data can be clearly identified with the process, if they are not normalised. The matrix size, 

per one dimensional timeseries, is (n-k) by m. The construction for each one 

dimension/variable is done independently and then each construction is concatenated with 

the rest. The varying values of k for each variable will cause varying matrix dimensions. The 

sections at the bottom of the latent variable reconstruction are deleted resulting in an overall 

matrix of size (n-K) by M where  

𝐾 = max 𝑘1, 𝑘2 , 𝑘3, … , 𝑘𝑖  

𝑀 =   𝑚𝑖

𝑖

1

 

𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

The resulting matrix for 2-input-single-output process, with inputs u1 and u2 and output y, 

will look as shown below. Delays for all the example variables are 2 and number of latent 

variables for all are 2. Note that the current value of the process output is not included in the 

latent variable reconstruction, as it only results in selecting the previous process output as 

the one-step ahead prediction. 

Time u1(t-2) u1(t) u2(t-2) u2(t) y(t-2) 
 One step 

ahead y(t+1) 

t-6 1 3 90 92 50  53 

t-5 2 4 91 93 51  54 

t-4 3 5 92 94 52  55 

t-2 4 6 93 95 53  56 

t-1 5 7 94 96 54  57 

t 6 8 95 97 55  58 

Figure 22: Latent variable matrix used for identification of a one-step ahead prediction model 
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The GP algorithm is expected to extract the information for the one step ahead prediction at 

each time step according to the values in that row of the matrix as included above. At time t 

the expected output is 58 and the available input values to include in the model structure 

are 6, 8, 95, 97 and 55. The GP is capable of nonlinearly combining whichever of these 

values to obtain the model output for a one-step ahead prediction. This is further discussed 

in the next section. 

This discussed approach is followed in this research by means of the created function 

gpols_gen_dataset. This additional function is discussed in Appendix ‎E.4.5. 

4.3.6.4 Use of the Latent Variable Matrix by the SID Algorithm 

This latent variables construction step foregoes system identification. The resulting matrix 

columns, consisting of these delayed process variables, are then used as a multivariate input 

to the GP algorithm. Each matrix column is viewed as a separate variable which could 

possibly influence the process outputs. The GP algorithm tests the variables to find the best 

suited combination of delays and variables. The selection of model structure and degree is 

left to the GP algorithm. Practically the GP sees many variables, as depicted in the 

conceptual diagram below. The input, x, enters the latent variable construction and results in 

k latent variables, x(t-kd). The GP uses each of these as a model input and identifies the 

relationship with the expected output. The result is a model in terms of all the x(t-kd) values. 

 

Figure 23: A single process input is re-constructed as a latent variable set, creating k latent variables, all 
seen by the GP based SID method as a separate variable used for system identification. 

Note that for this drying circuit it was decided to omit the first instance, k=0, of the process 

output variable as a process output variable lagged one time step will only result in the 
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previous process output chosen as model input. This high correlation exists due to the 

relatively slow variation in the process outputs every 5 seconds. Such a self feeding model, 

using only the previous output, will not be helpful for prediction or control. 

The delay parameters for selected datasets are included in ‎Appendix D and discussed 

further in ‎Chapter 7. These parameters will be used for the latent variable construction for the 

training of the model. Only the training dataset delay parameters will be used, and will be 

adopted by the validation timeseries, irrespective of which dataset is used for validation. The 

parameters trained with will be adopted by the controller during online data preparation, as 

this reconstruction of latent variables is required by the identified model structure. 

4.4 Summary of the Data Preparation Methodology 

The control strategy for the HGG and FD sections were established and the data reduced 

accordingly. The data were filtered for times where the APC controllers were active during 

data collection. These areas were removed from the modelling datasets. The data bias was 

introduced as a requirement for the square root function used during system identification. 

The remaining subdivided timeseries were investigated for deterministic information by 

means of the surrogate data comparison. Finally the construction and use of the latent 

variable input regressor set was explained. 
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Chapter 5 System Identification with Genetic Programming 

The nonlinear system identification procedure used for identification of the drying circuit 

dynamics is Genetic Programming with orthogonal least squares (GPOls). The toolbox 

developed by Madar et al. (2005) was analysed and found to follow trusted GP principles. The 

same approach was used by Coelho and Pessôa (2009) for nonlinear identification of a 

mechanical experimental setup. 

This section starts off with the use of GP as SID technique and moves onto the specific GP 

algorithm, GPOls toolbox, used. The GPOls parameters and fitness function are discussed. 

The GPOls toolbox is compared to Discipulus ® as a benchmarking exercise. The 

adjustments and additions to the toolbox and experimentation process are set out. This 

section ends off with the specific experimentation logic and approach followed for identification 

of FD and HGG models. 

5.1 Genetic Programming as System Identification Technique 

A nonlinear autoregressive with exogenous inputs (NARX) model makes use of past process 

outputs and the process inputs in a nonlinear empirical structure to represent the process. 

The nonlinearity suits the point raised previously that dryer dynamics are nonlinear. The use 

of process history in terms of past process inputs and outputs allows for the delays in the 

drying process. This is also the structure which will be investigated in this research. The 

NARX model structure is discussed in Appendix ‎E.1.  

Coelho (2009) identifies six steps in the procedure for identifying a NARX model by means of 

genetic programming. These six steps coincide with other more general discussions in 

literature. (Ljung, 1999).. These steps are depicted in the diagram below. 
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Figure 24: General System Identification Steps. Steps 3 and 4 are dealt with by the GP. 

Steps 1 and 2 have been discussed in the previous sections (see Dataset Preparation and 

Analysis). During the next section steps 3, 4 and 5 will be covered by the discussion of the 

GP algorithm which will be used. 

The power of GP lies in handling step 3 with its ability to choose a model structure. Most 

modelling approaches, even GP, require inputs determining or stating the model structure. 

However, genetic programming can search a whole solution space, or part thereof, for best 

fits. This solution space may include various model structures, functions, variables, 

combinations of variables and orders/delays. 

As stated earlier, it was found that the dynamics of drying consist of highly nonlinear and 

sometimes misunderstood combinations of phenomena (Mujumdar & Zhonghua, 2008). The 

GP allows, through the computer processing power, a stochastically driven search method 

for exploring the solution space defined by the user. It is thus able to explore various model 

structures and the influences and combinations of these variables on the process output.  

The trade off is time and cost of finding a solution, where cost is equal to computing power 

required. Seeing as computers and software are very powerful and easily accessible, this 
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cost is not a large price to pay for offline modelling. This however depends on the size of the 

search space defined by the user. The GP allows the dryer dynamics to be explored without 

predetermining or defining solution structures and preconceived ideas, which was stated in 

literature as the main problem in the modelling of dryer dynamics.  

Note that in some of the experiments previous solutions were loaded into the population. 

This allowed evolution to commence from previous best solutions found in other 

experiments, or to force the experiment to search in a particular direction. This is seen as 

guidance to searching the solution space, rather than limiting it. 

5.2 Genetic Programming with Orthogonal Least Squares Toolbox 

As genetic programming (GP) is similar in operation to a genetic algorithm (GA), an 

algorithm generally well known; a thorough generalised discussion of GP is not discussed 

here, but only included in ‎Appendix E – Genetic Programming. The reader is referred to this 

appendix for more detail regarding GP. The general workflow of genetic programming is 

presented in Appendix ‎E.2.2. The GPOls toolbox follows the same basic process flow 

except for the following 

 Tree pruning by means of orthogonal least squares; 

 Direct Reproduction by means of a Generation Gap; and 

 No early termination of the run when a pre-established fitness level has been 

reached. 

The following diagram displays the high level logic of the GPOls toolbox. The three bullets 

above are portrayed in this diagram, as well as extra information regarding “parameter 

calculation” and “displaying the answer”. This aspect are included seeing as adjustments 

were made to the display of the results. 

A more comprehensive discussion of the algorithm and the pseudo code are included in 

Appendix ‎E.3 GPOls Toolbox. 
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Figure 25: Genetic Programming with Orthogonal Least Squares Algorithm Workflow 
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Madar et al. (2005) developed a freeware GPOls toolbox in Matlab. This toolbox consists of 

a number of loose files located in the same directory and is available for download at 

www.fmt.veim.hu/softcomp. It however does not include any user manual or precise 

description of how this toolbox works, except for the inclusion of two demonstrations which 

can be run. It is thus necessary to spend time in working through the code and the workflow 

to harness the functionality of the toolbox. 

Some features of the toolbox used will be briefly discussed here with further information 

available in ‎Appendix E. 

5.2.1 Orthogonal Least Squares and Over Fitting 

Over fitting occurs when an individual‟s tree structure becomes too specific to the training 

dataset and the ability to fit unseen data from the process is compromised. Too many 

degrees of freedom are added into the model, causing it to lose its ability to generalise. 

Three methods in literature are noted as a possible measure and solution for over fitting in 

GP‟s. 

1. Penalise an individual in the fitness function based on tree length.  Grosman and 

Lewin (2002), McKay (1997) and Madar (2005) make use of the same method by 

means of a sigmoidal penalty function based on the tree size. 

2. During the training run each individual through the “unseen” validation data as well 

to measure its fitness. At a point the validation fit reaches a minimum. Further 

development of a solution results in over fitting (Willis et al., 1997). 

3. Madar et al(2005) introduces a tree pruning algorithm based on orthogonal least 

squares to establish the contribution of each tree to the variance in the output, 

calculating the “energy” of each term and measuring this quantified “energy” against 

a threshold value. 

The 1st and 3rd measures are followed in this research, where the 3rd measure, tree pruning, 

is discussed here. The 1st measure, penalising overly complex models, is discussed in the 

next section. The OLS algorithm is discussed here. 

http://www.fmt.veim.hu/softcomp
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The OLS algorithm enables the selection of the most significant subset of regressors from 

the original set based on the contribution of each regressor to the end goal. This 

contribution, or energy, is measured against a minimum threshold value to select the subset 

from the original regressor set. The aim is to create more parsimonious solutions and 

prevent overfitting. OLS has been compared to support vector machine techniques and 

found to create more concise accurate solutions (Chen, 2006). The theory of OLS is 

included in ‎Appendix E - ‎E.3.5 Orthogonal Least Squares Theory. 

In some cases it is necessary to makes use of a very low OLS threshold to assist evolution 

in the population to start, and later to increase the threshold as evolution continued to 

prevent over fitting. For this reason an adjustable OLS threshold was implemented. As the 

fitness increases the OLS threshold will increase. This was only implemented where 

evolution struggled to occur and is noted in  

5.2.2 Fitness Function 

The fitness function provides a value measuring each individual‟s ability to solve the 

problem at hand, or model fit. There are various definitions for how to calculate the fitness. 

For a system identification exercise this will more often than not be based on a goodness-

of-fit type calculation. A discussion on the evolution of fitness functions and also the use of 

variations used in literature is included in ‎Appendix E - ‎E.2.4 Fitness. 

In this research it was decided to stay with the definition used by Madar et al. in the original 

toolbox. This definition coincides with popular belief in literature that the correlation 

coefficient between the model output and the training dataset is a better measurement for 

system identification (McKay, 1997; Madar et al., 2005; Willis et al., 1997). It is also popular 

in literature to incorporate a penalty function in the fitness calculation. This penalty function 

reduces the fitness based on the length of the solution above a pre defined limit. A 

weighting for this penalty is also included. The penalty ensures that the more basic solution 

will be rated above a more complex one, unless the latter is a much better model fit. 
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The fitness function used by McKay(1997) and  Madar et al. (2005) following sigmoidal 

penalty fitness function is used, with one alteration. A penalty is included setting the fitness 

to zero if any imaginary numbers are produced by the identified solution. The altered fitness 

function is: 

𝑓𝑖 =  
𝛼3𝑟𝑖

1 + 𝑒 𝛼1(𝐿𝑖−𝛼2) 
 

Where fi is the individual‟s fitness; ri is the correlation coefficient between the model output 

and the process output; Li is the length of the tree in number of nodes; α1 is the penalty 

weighting; α2 is the maximum tree length at which the penalty is activated; and α3 is a factor 

set to zero during the run if any imaginary answer is produced by the solution. It is defaulted 

to 1 otherwise. 

This fitness value is calculated for each individual and ranking of individuals take place in 

terms of this value.  

Note that although the mean square error (MSE) and R2 values are calculated during the 

experiments they are not used during the search for a solution but rather as a universal 

indication of goodness-of-fit in the post-identification analysis of the solution.  

5.2.3 GPOls Toolbox Parameters 

GP in general has a number of generic parameters which can be adjusted. Changing these 

will alter the way the search space is investigated, the computational intensity and time 

required, the solution found and, eventually, the usefulness of the GP run results. The 

parameters adjusted may and will differ for various GP algorithms seeing as various 

different techniques are incorporated. Furthermore, different combinations of these 

parameters will result in different sections of the search space to be investigated for 

solutions. In the GPOls toolbox the parameters required by the toolbox are tabulated in 

Table 8 below. A discussion around each of these parameters, and their function, is 

included in ‎Appendix E - ‎E.3.3 GPOls Parameters.  

Madar et al. (2005) provide a default combination of these parameters which are found to 

be the best general starting point. Various combinations will be attempted in identification 
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experiments and documented. These will be discussed on a per experiment basis. The 

default settings used for the initial evolution of solutions are also included in the table. 

Table 8: GP parameters for the GPOls toolbox and their recommended default values 

GP Adjustable 
Parameter 

Abbreviated Name 
in Code 

Value Range Recommended 
Default Value 

Generation Gap GenGap {0,1} 0.8 

Probability for 
Crossover 

PC {0,1} 0.7 

Probability for 
Mutation 

PM {0,1} 0.3 

Selection Type SelTyp [0,1,2...Population size]  2 

One or Two Point 
Crossover 

CrossOver [1,2] 2 

Tree Size Penalty: 
Weighting 

TreePen {0,1} 0.2 

Tree Size Penalty: 
Location 

TreePenLoc [0,1,2...Max Tree Size] 25 

Orthogonal Least 
Squares Tree Pruning 

Threshold 

OLSThres {0,1} 0.7 

Polynomial Evaluation 
on/off 

PolyEval [0,1] 1 (on) 

Evaluate all or only 
new individuals 

EvalInd 0=new; 1=all 0 (new only) 

 

The population size, number of generations and maximum tree depth are also adjustable 

parameters in the GPOls toolbox, but are handled differently by the GPOls algorithms. They 

are thus separated from the table above. Default values have not been supplied for these 

either. These three parameters are however also adjusted in the first section of the 

experiment logic and discussed, together with all the GPOls parameters in the 

aforementioned appendix, ‎Appendix E - ‎E.3.3 GPOls Parameters. 

It should be noted that the choice of functional and terminal sets can also be seen as 

parameters to the GP algorithm, although they do not explicitly influence the GP logic and 

operations. The terminal set contains the list of all the variables which can be used in 

evolution of a solution. The functional set contains all the mathematical operators which can 

be used and will alter the size of the search space. These sets are included in ‎Appendix E -

 ‎E.3.4. 
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5.2.4 Dryer Experiment Parameters 

Aside from the GPOls parameters there are a number of parameters specific to the dryer 

SID experiments developed for this study. These include the experiment name, process to 

model and subdivided timeseries to use, among others. A full list of these parameters and 

the meaning of each is included and discussed in ‎Appendix E ‎E.3.2 Drying Experiment 

Parameters. 

These parameters do not influence the GP algorithm as such, but rather the administration 

of the experiment and the specifics regarding dataset details and validation methods. 

5.2.5 Benchmarking of the GPOls Toolbox 

The GPOls toolbox is used and referred to in literature (Madar et al., 2005). Coelho and 

Pessoa (2009) used the same method. The toolbox is also adapted by the Matlab 

Community. Nonetheless, it was felt necessary to measure the efficiency and ability of the 

GPOls toolbox measured against proven GP software. The comparison will be done on 

model fit ability for the flash dryer data. Discipulus Lite ® was used as alternative GP 

software. Furthermore a linear ARMA model was also fitted to the timeseries and compared 

to the GPOls results. 

Discipulus ® is a Linear Genetic Programming software tool for creating programmes based 

on datasets and a fitness function. In this research it will be used to measure the accuracy 

of the GPOls toolbox being used. Discipulus ® is programmed to run directly on machine 

code, making it superior in execution speed. It has been found to be between 60-200 times 

faster than other interpreting systems(Francone, 2001). Discipulus ® makes use of the 

standard GP method as discussed previously. It uses the standard mean square error 

(MSE) value as a fitness measurement during training and validation. The software used is 

Discipulus Lite ® and the resulting solutions are provided in C/C++ or assembler code. The 

result from Discipulus ® will not be used. 

The linear ARMA models is fit using the CSense Linear Model. This is a basic linear MISO 

model fit. 
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Four experiments are attempted per benchmark modelling technique: one for the flash dryer 

and one for the hot gas generator. Identification of models for these two processes is 

completed using both the average mutual information (AMI) and autocorrelation methods of 

determining delay parameters. This results in four experiments. The delay parameters 

mentioned are discussed at a later stage.  

This comparison is based on the validation set MSE and R2 values of the best identified 

model. 

5.3 Additions and Adjustments to the GPOls Toolbox 

The GPOls toolbox was investigated for possible required upgrades or changes to the logic. 

The toolbox was found to follow the normal GP workflow and that no major adjustments in 

the workflow and logic is required. Three smaller areas were located where the toolbox was 

adjusted. Any other work was additions to the toolbox and did not influence the engine of 

the GPOls algorithm but rather the investigation of the resulting individuals and preparation 

of the dataset. 

5.3.1 Adjustments 

Three changes to the GPOls engine were made. The first was the removal of the weighting 

matrix, which weights the importance of each data point in the training dataset. This matrix 

was found to be too memory intensive. This functionality was not needed and the piece of 

code was removed from gpols_evaluate.m. 

The second adjustment entails incorrect reference to the calculation of mean square error. It 

was found that the toolbox was actually calculating the squared sum of errors and not the 

mean. This basic error was alleviated by dividing the SSE by the number of data points and 

calculating the MSE. 

The third adjustment entails the alteration of the fitness function to include a penalty if any 

imaginary number is produced by the solution. 

The toolbox structures were also manipulated for the following: 

 the calculation of R2 during experimentation; 
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 extraction of a formula executable in Matlab® if the latent variable reconstruction is 

available;  

 self adjusting OLS threshold; and 

 the use of predefined populations. 

These are not adjustments, neither are they additions to the toolbox, but rather additional 

functionality external from the toolbox based on the toolbox results. 

5.3.2 Additions 

The functionality added to the GPOls toolbox and the Matlab® files where the functions are 

located, are included in the following table, Table 9. 

Table 9: Functionality added to the GPOls toolbox and the names of the functions created. 

Functionality Matlab® Function System 
Identification 

Function 

Re-Usable in 
other GPOls 
Experiments 

Obtain the executable 
formula string for a 
specific individual for the 
population index ix. 

gpols_any_result.m 
Analyse GP 

Output 
Yes 

Display the fitness, MSE 
and formula for a specific 
individual for the 
population index ix. 

gpols_any_result.m 
Analyse GP 

Output 
Yes 

Display the fitness, MSE 
and symbolic formula for 
the n best results 

gpols_best_results.m 
Analyse GP 

Output 
Yes 

Obtain the symbolic and 
executable formulas, 
MSE, fitness and 
population index of the n 

best individuals 

gpols_best_result.m 
Analyse GP 

Output 
Yes 

In some cases 
predefined populations 
were used as a starting 
point for a GP run. In 
such cases it is 
necessary to evaluate if 
the population coincides 
with the chosen terminal 
and functional sets. This 
function tests the 
population and provides 
a solution if it is incorrect. 
 
 

gpols_testpopulation.m 
Data 

Preparation 
Yes 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 66 
 

Functionality Matlab® Function System 
Identification 

Function 

Re-Usable in 
other GPOls 
Experiments 

Track the evolution of the 
population through all the 
generations. A 
landscape of the fitness 
and MSE values are 
plotted for the whole 
population for each GP 
run. 

gpols_trackevo.m 
Analyse GP 

Output 
Yes 

Calculate the validation 
MSE, fitness and 
residuals for the chosen 
individual. These results 
are plotted to compare to 
the training dataset. 

gpols_validate.m 
Analyse GP 

Output 
Yes 

Select the delay 
parameters relevant to 
the chosen training 
dataset. 

gpols_embedparameters.m 
Data 

Preparation 
No 

Create the latent variable 
set, with corresponding 
symbols for an n-step 

prediction model. 

gpols_gendataset.m 
Data 

Preparation 

Yes, provided 
that a latent 

variable set is 
constructed. 

 

These functions can be divided into the functions used for data preparation and analysis of 

the outputs of the GP runs. The functionality included, divided into Data Preparation and GP 

Output Analysis, is discussed below. A complete explanation of the functions in Table 9, 

and how it works, is included in ‎Appendix E- ‎E.4 GPOls Additions. 

5.3.3 Data Preparation: Latent Variable Reconstruction 

The dataset was pseudo-embedded as discussed previously. As this latent variable 

reconstruction procedure can be a long section of code, it was separated from the main GP 

experiment logic by creating a separate function. The separate function gpols_gendataset 

was included to enable cleaner experiment code and allow the function to be used again for 

embedding of the validation dataset. 

The delay parameters, determined according to the discussion in ‎0‎4.3.6.2, differ depending 

on the training dataset being used. To allow easier transition between training datasets, a 

function was created which serve as a database for the delay parameters. This function, 

gpols_embedparameters, is called before the latent variable set is constructed. 
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5.3.4 Analysis of Experiment Outputs 

In the process of choosing the best model obtained it is necessary to investigate the 

residual analysis, mean square error (MSE), R2, fitness and trends of the original dataset 

versus the model outputs. To enable this it is first necessary to obtain the formula from the 

GPOls programme memory. The GPOls memory structure needs to be compiled to an 

interpretable string executable for both the latent variables training as well as the validation 

sets. This executable string of either a specific, or the best individual is then used to 

calculate the training and validation residuals, as well as the validation MSE, R2 and fitness. 

This string is constructed and extracted by any of the two procedures gpols_any_result or 

gpols_best_result. 

During the search for the best solution the population could get stuck in a local optimum. A 

three dimensional plot of the population landscape over all the generations provides a 

visualisation tool to evaluate the evolution over time. This plot trends the fitness or MSE per 

individual for each generation. A slow evolving run, too random evolution or a very narrow 

search can be recognised from this landscape. This assists in guiding the setup of GP 

parameters for consequent experiments. This is a visual aid to analysis. 

A further requirement is validation of the data with alternate datasets during post analysis. A 

stored experiment output, created during the experiment, is accessed, the best model 

obtained and the validation statistics and graphs are provided for the given dataset. This 

provides a better view into the solution obtained and better comparison between results. 

The presentation and analysis of data are discussed further and in more detail in ‎5.4.2 

Analysis and Presentation of Results. 

5.4 Genetic Programming System Identification Experiments 

5.4.1 Dryer SID Experiment Logic 

The GPOls toolbox provides the functionality and the engine to enable the GP system 

identification exercise. The toolbox does however not have a graphical user interface of 

sorts, but relies on the user to access the GPOls functionality and control the GP run by 
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means of experiment logic set out in a Matlab® *.m file. The drying circuit GP experiment 

logic, or system identification logic, is located in a single Matlab® file. This logic is 

developed specifically for this filter cake drying circuit, but it provides a reusable backbone 

for any future use of this toolbox. There are also various experiment parameters specific to 

this case which can be adjusted in the code, as well as the inclusion of a function used to 

reconstruct the timeseries as a set of latent variables. These, and other details to the GPOls 

toolbox, are discussed in ‎E.3 GPOls Toolbox.  

For every experiment, the SID experiment as well as GPOls parameters are adjusted. A 

copy of the logic file, the dataset used and results are all stored in a folder according to the 

experiment name, which is defined in the experiment parameters. The experiment logic is 

set up to control the following: 

 The process to be modelled (flash dryer or hot gas generator); 

 The dataset to use; 

 Validation Type (as discussed in ‎5.4.2 Analysis and Presentation of Results); 

 Logic of latent variable reconstruction of the timeseries; 

 Defining the functional and terminal sets, Population size, Generation size; 

 Loading a predefined population or randomly generating a new population (See 

Section ‎7.3.1, as well as‎Appendix E - ‎E.2.3 Initial Population); 

 Setting up the GPOls parameters; 

 Displaying and saving the results during and after each GP experiment; 

 Repeating the GP experiment and storing the results with a unique experiment 

name in a specified file; and 

 Constructing a report of the experiments to enable easy post run comparison of 

various experiments. 
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Seeing as a GP is a stochastic modelling technique, it will result in different outcomes each 

time, requiring repetition of an experiment. It should be noted that the logic was written to 

allow various repetitions of the same experiment to be run. To enable efficiency in the 

experimentation step of research, this repetition functionality was included in the logic. The 

results of each repetition were stored separately for possible analysis at a later stage. The 

best individual, as well as the training and validation statistics were stored in a report. This 

report would contain the information for all the repetitions of a single experiment. Each 

repetition is independent. 

The experiment logic is discussed in further detail in Appendix ‎E.3.1 GP Experiment Logic. 

5.4.2 Analysis and Presentation of Results 

The experiments, and number of repetitions, brings about the task of analysing a large 

amount of results in search of a best solution. To assist in this task various methods have 

been employed in the experiment and in the additions to the toolbox. The methods 

developed, or adopted, and employed are: 

 Trend of Population Evolution across the Generations; 

 Comparison Goodness-of-Fit Statistics for each Run; 

 Trends of the Model Output; 

 Residual Analysis; and 

 Interpretation of the Model Empirical Formula. 

These methods are discussed in more detail in ‎Appendix E - ‎E.5 Methods for Analysis and 

Presentation of System Identification Results. 

5.4.3 Dryer SID Experimentation Approach 

The experimentation process started with the default parameters from literature, and then 

commenced to other parameters based on the experiment outcomes. However, as in any 

experimentation process a step-wise adjustment is required to ensure valid comparisons 

between results.  
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Apart from adjusting the GPOls parameters, the inclusion of the following were also found to 

influence modelling efficiency and accuracy: 

 Choice between AMI or autocorrelation delay and number of latent variables, i.e. 

defining the terminal set; 

 Dataset used for training and validation; 

 Considering the inclusion of process anomalies in the data sets; and 

 Functional set to use. 

A number of modelling experiments will be done with the aim of both finding the best model 

for control, but also commenting on the best choice, or combination thereof, for the topics 

listed above. The findings for each of these are discussed in the results sections. 

5.5 Summary of the GP Methodology 

The GP approach is preferred due to the unknown model structure of the models required. 

The latent variable reconstruction results in a large solution space to be explored for model 

structures and models, which the GP is capable of exploring.  

The GPOls toolbox is applied, after some adjustments and additions. Two sets of parameters 

are highlighted:  

 GPOls parameters, and  

 Dryer SID experiment parameters.  

The GPOls parameters adjust the search, whereas the experiment parameters indicate 

dataset to use and location to store results, amongst others. 

The GP approach is benchmarked against linear ARMA models identified. The GPOls 

algorithm is benchmarked against the commercial GP package Discipulus ®. 
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Chapter 6 Model Based Predictive Control 

The aim is not to build a fully functioning controller, but rather to investigate the suitability of 

the models identified, together with required online data preparation, for a basic predictive 

control approach. For this, the best models found will be investigated for use in control. A 

controller will be developed accordingly. 

A general discussion surrounding the MPC theory and terminology is included in ‎Appendix H. 

The reader is referred to this section for a background on MPC. 

6.1 MPC Solution Architecture and Dataflow 

The controller solutions will be developed and tested using CSense 4.3 Architect and 

CSense Server Manager. This software allows direct communication with the OPC (OLE-

DB for Process Control) and enables real time simulations similar to which will be 

experienced on site. This also allows easy integration into the existing site software 

architecture, although this is not the aim of this research. The Architect is the development 

environment and the Server Manager is the real time solution deployment environment. 

The simulations of the controller are run in real time. A modular approach, same as would 

be experienced on a plant site, is created using the following stand-alone entities: 

 OPC, or process state memory; 

 Process simulation to calculate process reactions to control steps; 

 Latent Variable Reconstruction; 

 Model Predictive Controller; and 

 Process initialisation 

The solution data flow between these entities is depicted in the following diagram: 
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Figure 26: Dataflow for Simulation of Controller. Each entity stands alone with data flowing between the 
entities, with the plant memory (OPC) being the mutual read and write memory link 

The logic behind this dataflow is the modular representation of the plant and controller, with 

the OPC, or SCADA, being the point of connection. The plant in the diagram is a simulation 

of the process. The simulation makes use of the process model identified during the system 

identification exercise. Various process models were investigated for use as the plant 

representation, but it was decided to use the same model as used by the controller. The 

lack of model mismatch is noted, but not seen as a problem as the aim is not to create a 

100% usable controller, but rather investigate the possibilities of building such a controller 

based on existing process data and identified models. Once this is proven as efficient, the 
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next step would be to investigate robustness under model mismatch. This is not done in this 

research. 

The initialisation, i.e. historic values for the latent variable construction, is handled by the 

data source. The training dataset was used for initialisation to ensure that valid process 

states are stored in the history of the process. The initialisation entails storing all the 

relevant past process inputs and outputs in the latent variable construction for use in the 

model. The plant and controller models each require initialisation. The plant model‟s 

initialisation is handled in the same module as the plant. The latent variable construction 

used by the controller is located in a separate module due to the different execution rates 

required for latent variable construction and optimisation. The latent variable reconstruction 

is done every time interval, or 5 seconds in this case. The optimisation requires more time, 

due to model nonlinearity and, and needs to be separated from the construction of the latent 

variables set. 

Three information variables are included in the data flow to establish when the models, in 

each of the controller and plant modules, have initialised as well as when the optimisation is 

complete and the calculated control moves should be implemented. These information 

variables are passed between the modules through the OPC module. These information 

variables are manipulated in the modules which they represent. 

Once the models have been initialised, a freerun state commences with the data source 

only used for identifying set point changes, or noise additions to either the process inputs or 

output. The process output from this point onwards is obtained from the plant model and the 

control moves, obtained from the controller. 

The data streams being passed through the “OPC” module are included and explained in 

the table below: 
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Table 10: Explanation of variables passed between the various modules used in the control simulation. The 
OPC module (plant memory) is the linking module. 

Variable Description Origin and Use of Variable 

Control Moves Optimised by the Controller module every 
optimisation step.  
Implemented for the control window by the 
Process Initialisation and Management 
Module.  

Input Variable Current Process Input 

Output Variable Current Process Output as calculated by the 
Process/Plant Module 

Latent Input Variables Normalised latent variable reconstruction of 
Input variable history. This is used by the 
controller during each optimisation step. 

Latent Output Variables Normalised latent variable reconstruction of 
Output variable history. This is used by the 
controller during each optimisation step. 

Output Set Point Produced by the external .csv file and 
introduced to the controller. 

Additional Input and Output Noise Included as an option. Input variable noise is 
added before it is implemented in the 
Process/Plant module. Output noise is 
implemented after the real output is 
calculated by Process/Plant module. 

Plant Model Initialised Information variable indicating when the 
Process module‟s plant model latent variable 
reconstruction is complete and the model is 
ready for simulation. 

Controller Model Initialised Information variable indicating when the 
Controller module‟s plant model latent 
variable reconstruction is complete and the 
model is ready for simulation. 

Control Moves Optimiser Complete Information variable indicating each time the 
optimiser has calculated new control moves. 
The control variables are implemented from 
the first until the last control move in the 
MPC control window. Hereafter the optimiser 
would have completed the next set of 
optimised control moves. 

 

6.2 Data Preparation and Constraints 

The input and process output data introduced at each time step need to be normalised and 

biased, if required. The data also need to be included in the latent variable reconstruction 

for use by the model. These data preparation steps are executed for each run of each 

module. The latent variable construction is initialised by an external input. The information 

variables are used to indicate when the latent variable reconstruction is complete and when 
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the simulation can start. Insufficient data in the latent variables will result in bad quality 

model outputs. The delay parameters correspond with the model used. 

Note that independent latent variable reconstruction and normalisation steps are required 

for the Process/Plant module model and the Controller plant-model to cater for any further 

studies which allow model mismatch. 

Limiting the plant model inputs and outputs is handled indirectly by the constraints 

implemented in the optimisation step of the control moves. Control moves constraints are 

implemented to be within the data range used for training. The plant model outputs are 

however not limited in any way. No control move size penalties, as noted in literature, are 

included in the goal function for the controller either. 

6.3 Process Prediction and Control Move Optimisation 

The choice of prediction window size (Np) is dependent on the process dynamics, whereas 

the number of control moves implemented (Nc) was decided to fill the time between 

optimisations. This is decided due to the long optimisation time required. 

The models identified are one-step ahead prediction models. The option is thus to allow a 

prediction window of 1 time step (Np=1) and then optimise a control window of 1 time step 

(Nc=1). The slow dryer process dynamics mentioned in literature however require a longer 

prediction window and thus freerun prediction. This produces a larger window to optimise 

control moves over, but requires more computing time. Consequently a larger control 

window is required to fill the gaps between the optimisation steps. 

The prediction window was chosen based on: 

 Longest lagged process variable included in the model; 

 Time required for the process to settle, based on the outcome of the sensitivity 

analysis trend in section ‎9.2 Model Sensitivity Analysis; and 

 The freerun prediction stability of the identified process. 

The control window was chosen based on: 
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 The time required for the optimiser to complete an optimisation batch run. 

Prediction entailed a recursive freerun prediction using the previous reconstructed latent 

process variables, previous predicted outputs from the current prediction step and variables 

which need to be optimised. The optimised variables were initialised prior to optimisation 

and comprised of the input variables, and possible control moves, across the prediction 

window. The following figure explains the information flow of the recursive prediction. 

Figure 27: Recursive prediction implemented in the model based controller. 

The predicted process outputs are used for calculation of the optimisation goal function. The 

goal function used is the sum square of errors between the predicted process outputs and 

the set point calculated across the prediction window.  

𝑔𝑜𝑎𝑙 =  (𝑆𝑒𝑡 𝑃𝑜𝑖𝑛𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡(𝑛))2

𝑁𝑝

𝑛=1

 

All the inputs for the whole prediction window are optimised, but only Nc control moves of 

these are implemented. As the process actually commenced from time k to k+Nc, the control 

moves from time k+Nc+1 to k+2Nc are implemented. This assumes that the freerun 

prediction is stable for the whole prediction window. 
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The optimiser used is a commercially used genetic algorithm (GA) of which the parameters 

are included in Table 11. The GA implemented is a straightforward GA as is well known in 

practice. The parameters are fixed and not accessible or adjustable by the user. The GA re-

initialises for every execution of the MPC, and keeps no memory of the previous MPC 

results. 

Table 11: Genetic Algorithm optimiser parameters 

GA Parameter Parameter Value 

Population Size 1000 

Number of Generations 1000 

Mutation Probability 0.1 

Crossover Probability 0.7 

Selection Strategy Tournament Selection 

Termination Either 1000 generations or 
when the whole population 
consists of the same 
individual 

 

It is assumed that this optimiser is able to optimise well enough. It will be compared against 

a controller which selects only random versions of the control variable as well as the current 

live plant control solution. The outputs will then be compared. 

6.4 Experiments Investigated and Models Used 

It was found that only the hot gas generator could be identified successfully. This resulted in 

only a hot gas generator model predictive controller being investigated. Only the best 

process model, as found in system identification, was used for the controller. This same 

model was used to represent the process. This assumes that a perfect model was 

identified. This is further discussed in the results of the system identification step. The 

precise experiments are tabulated in ‎Appendix I and discussed in the results section. 

The choice of models used will be discussed in ‎Chapter 9 Results: Model Based Control. 

6.5 Summary of MPC Approach 

A real time simulation environment is constructed using a modular approach for the 

controller, plant, model initialisation, process memory and external data input.  
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The MPC approach is adjusted from convention due to the long time required for 

optimisation. The optimisation is executed offline and then all control moves are implemented 

from this optimised batch until the next optimisation is complete. The MPC optimisation 

makes use of a Genetic Algorithm based optimiser.  

The latent variable set is constructed using historic values, and thereafter values produced 

by the plant model and controller.  
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Chapter 7 Results: Genetic Programming with Orthogonal 
Least Squares Algorithm 

This section sets out the evolution of the choice in GP parameters and functional sets. The 

successful use of additions to the GPOls SID strategy is discussed. The GPOls tool 

benchmarked against Discipulus ® Lite GP toolbox, and linear ARMA models end off the 

section. 

The aim with this section is not to prescribe fixed parameters, seeing as the exploration of 

parameters and functional sets was not the main purpose, but rather to explain the logic 

followed during evolution of the experimentation process. 

7.1 Algorithm Parameters 

Initial parameters were chosen using defaults provided by Madar et al(2005). Parameters as 

identified by Coelho and Pessôa (2009) were also explored. These parameters were 

explored during identification of the FD model and adopted by the HGG system identification. 

The default GP parameters, as proposed by Madar et al(2005) resulted in 2 solutions. The 

results are presented below: 

Table 12: Results for the Flash Dryer System Identification Exercise using the default GPOls parameters 
prescribed by Madar et al. (2005) 

Model Train MSE Train R2 

1 0.650 35% 

2 0.822 17.9% 

 

From the limited and relatively poor result it is clear that a wider search is required and also a 

larger number of repetitions of each experiment. Note that the validation statistics are not 

presented, as a dataset not comparable to the training set was attempted as validation. 

Exploration of alternative GPOls parameter settings resulted in a more complex individual 

being permitted, by setting softer tree size penalty parameters. This, together with a 

sequential increase in mutation, population size and generation gap, to allow wider 
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exploration of the solution space, resulted in single versions of a lagged flash dryer feed - the 

same as Model 2 in Table 12 above.  

Eventually a decrease in OLS threshold, a tree pruning parameter, as well as change in 

selection from random selection to tournament selection (tournament size = 2) resulted in the 

inclusion of more branches to the trees. Although this could result in overfitting due to more 

complex and longer model structures, the decreased OLS threshold and softer tree size 

penalties seem like the only adjustment available to allow further exploration of the solution 

space. The best parameter set identified and used as base for all SID experiments are 

tabulated below: 

Table 13: GPOls parameters identified by experimentation and used as base set for all SID experiments for 
the flash dryer model. 

GPOls Parameter Value 

Generation Gap 0.95 

Probability for Crossover 0.3 

Probability for Mutation 0.7 

Selection Type 2 

One or Two Point Crossover 2 

Tree Size Penalty: Weighting 0.1 

Tree Size Penalty: Location 100 

Orthogonal Least Squares Tree 
Pruning Threshold 

0.5 

Polynomial Evaluation on/off 0 

Evaluate all or only new 
individuals 

0 

Population Size 100 

Maximum Tree Depth 8 

Number of Generations 120 

Functional Set +,*,/ 

 

The experiments, using these parameter sets to explore the solution space, were run for both 

AMI and autocorrelation delay parameters and resulted in the following solutions – the top 

solution per experiment is presented: 
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Table 14: Results using the GPOls search parameters as defined in Table 13. 

Model Latent Variable 
Delay 

Parameters 

Train 
MSE 

Train 
R2 

3 AMI 0.589 33.4% 

4 Autocorrelation 0.600 40.3% 

 

The AMI model resulted in a more basic model, comparable to model 1 in Table 12 with a 

lower R2 of 33.4% versus 35%, but a better MSE of 0.589 versus 0.650. The autocorrelation 

delay model resulted in a slightly nonlinear combination of flash dryer process inputs, 

concentrate feed and inlet air temperature, as well as a lagged version of the process output. 

Compared to the model identified from the AMI delay parameters, this model is an 

improvement based on training R2. The slight increase in R2 obtained for this model in the 

training set to 40% is not significant enough to accept the model as representative of the 

process dynamics. 

Note that at this stage of experimentation the focus was partially, as mentioned earlier, to 

explore various validation sets as well, however, the validation sets used in these specific 

experiments were found to differ too much from the training set. Validation statistics are thus 

omitted at this early stage of the SID experiments. This is not seen as a problem as the later, 

more final experiments, are compared based solely on validation data. 

The main adjustments to the initial parameters allowed more complex individuals by shifting 

the fitness criteria, OLS threshold, and also increasing the mutation rate to allow a wider 

search. Further experiments were based on these parameter sets with adjustments in 

population size, mutation rates, OLS thresholds and tournament selection size adjusted on a 

per experiment basis. A global optimum was attempted by doing a wide search by means of 

higher mutation rates, but still enough crossover to allow the current population to develop. 

7.2 Functional Set 

The choice of functional set contributes to the size of the solution space. A smaller functional 

set will cause a smaller solution space and accordingly easier exploration of the solution 

space by the algorithm, but with the risk of limiting the search. Additionally, more complex 
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functions will result in a more complex solution space, requiring a more robust search 

algorithm and experiment parameter set combination. This said, the most basic functional set 

consists of addition (+) resulting in a linear ARMA model. The literature states that the dryer 

dynamics are expected to be nonlinear, thus necessitating the use of a functional set 

consisting of nonlinear functions. The inclusion of basic nonlinear functions multiplication (*) 

and division (/) and more extreme nonlinear functions such an exponent (ex) and square root 

(√x) functions were also investigated. 

7.2.1 Functional Sets: Flash Dryer 

The most basic functional set experimented with includes only the linear functions plus and 

minus [+,-]. This functional set together with the most complex functional set [+, *, /, -, *ex, 

*√x]  produced the best results as can be seen in the table below. 

Comparative 
Grouping  

Latent 
Variable 

Delay 
Parameters 

Functional 
Set 

Validation 
MSE 

Validation 
R2 

A Autocorrelation 
[+,-] 

0.674 38.20% 

A AMI 0.701 35.46% 

B Autocorrelation 
[+,*,/,*-,/-] 

0.868 20.43% 

B AMI 0.715 34.14% 

C Autocorrelation 
[+,-,*,/,*-,/-] 

0.728 33.30% 

C AMI 0.727 32.97% 

D Autocorrelation [+, *, /, -, 
*ex, *√|x|]  

0.951 12.83% 

D AMI 0.784 27.79% 

E Autocorrelation [+, *, /, -, 
*ex, *√x] 
with bias 

0.697 36.10% 

E AMI 0.668 38.48% 

Table 15: Comparison of experiments based on the functional set used for FD modelling. Comparable 
experiments are grouped accordingly 

The inclusion of more nonlinear functions [*,/,*-,/-] did not contribute to the statistic and 

seems to have largely overcomplicated the solution space, causing the GPOls algorithm to 

struggle to identify a better model.  

The inclusion of advanced nonlinear functions includes the use of both the exponent and 

square root functions. Only the square root function is noted in literature to have been used 

with the GPOls toolbox. The problem with these functions is that they only have one input 
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and not two. The GPOls toolbox is however built that each functional node has 2 terminal 

nodes. The function will thus not have closure as an unused branch will be left, which the 

GPOls toolbox does not know how to handle. It was decided to make use of a function 

which will have closure by adding a multiplication sign in front of both these functions 

resulting in the following: 

∗ 𝑠𝑞𝑟𝑡 

∗ 𝑒𝑥𝑝 

Although this approach may be limiting and the decision of which function to put in front 

each of these may be more complex, the decision was made to use only the multiplication 

function. This method is specified in the website discussing the toolbox (Madar, 2005). 

The use of these complex functions in the functional set resulted in models with imaginary 

outputs. This is ascribed to the handling of negative numbers by the square root. The 

imaginary outputs resulted in imaginary correlation coefficients and eventually fitness 

values. The toolbox was not created to handle these, and the algorithm could not order the 

solutions and evolve in a direction of higher fitness. This is visible in a 3 dimensional plot of 

the fitness values per individual per generation noted during the run of one such 

experiment. 
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Figure 28: The landscape of the fitness values for all individuals across all the generations indicate a flat 
stretch, circled in red, where the fittest individuals are supposed to be situated. These individuals are 
incorrectly rated as fit due to large imaginary number contingents increasing the absolute value of the 

individual’s fitness. 

The flat strip on the left in the population throughout the generations results from direct 

reproduction of the fittest individuals. The algorithm sorts in terms of the absolute value of 

the imaginary and real numbers and copied individuals with higher imaginary values over as 

the fittest solutions. The GPOls algorithm was accordingly adjusted to sort according to the 

real values only. 

Two possible solutions were investigated: 

i. Take the absolute value of the input (√|x|); or 

ii. Shift the whole normalised timeseries with a positive bias larger than the largest 

negative in all variables in the timeseries (√(x+bias)). 

It was found that a positive bias shift in the timeseries will not ensure real value closure for 

the square root function, as the GP is allowed freedom with regards to model structure and 

can subtract values from each other inside the square root function, resulting in a negative. 

This was handled by altering the fitness function to include a penalty when an imaginary 
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number is produced by an individual. This penalty function adjustment was mentioned in 

section ‎5.3 Additions and Adjustments to the GPOls Toolbox. Results are of these 

adjustments are discussed in section ‎7.3 Successful Use of Additions to the GPOls 

Approach. 

For the flash dryer it is concluded from results thus far that  

 the choice of functional set can overcomplicate the solution space and cause the 

search to struggle to initialise; 

 the more complex functional set did not necessarily enhance the models identified for 

the flash dryer; 

 the use of the positive bias offset in conjunction with the square root function is 

preferred to the use of the square root of an absolute value; 

7.2.2 Functional Sets: Hot Gas Generator 

The hot gas generator SID experiments indicates a slight improvement with the use of the 

advanced mathematical functions. This is indicated in the following table. 

Table 16: Comparison of experiments based on the functional set used for HGG modelling. Comparable 
experiments are grouped accordingly 

Comparative 
Grouping  

Latent 
Variable 

Delay 
Parameters 

Functional 
Set 

Validation 
MSE 

Validation 
R2 

A Autocorrelation 
[+,*,/,*-,-,/-] 

0.133 77.1% 

A AMI 0.241 58.5% 

B Autocorrelation [+, *, /, -, 
*ex, *√|x|] 

0.181 68.9% 

B AMI 0.192 66.8% 

C Autocorrelation [+, *, /, -, 
*ex, *√x] 
with bias 

0.133 77.1% 

C AMI 0.167 71.2% 

 

For use of the basic mathematical functions, a large difference between the performance of 

the autocorrelation delay parameters outperforming the AMI delay parameters. Other than 

this, the improvements in validation statistics improve as the functional set complexity 

increases. 
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The inclusion of ex and √|x| improves the model performance for both delay parameter sets  

for experiment grouping B. The use of the bias together with the square root function (no 

absolute value) provides the best solution. This result correlates with the same finding for 

the flash dryer SID exercise. The bias with the advanced functional set is thus noted as the 

most successful functional set. 

7.3 Successful Use of Additions to the GPOls Approach 

Additions and adjustments made to the GPOls approach and toolbox are noted in the 

methodology section ‎5.3 Additions and Adjustments to the GPOls Toolbox. The contributions 

of these will be briefly highlighted for inclusion in future research. 

The contribution of the automatic calculation of the R2, correct calculation of MSE, automatic 

calculation of the validation statistics, repetition of the experimental setup and the summary 

report is self explanatory as these save time and improve experimentation efficiency. The 

result however remains untouched. The introduction of the latent variable reconstruction still 

needs to be discussed and will be handled at a later stage. The focus now will be in the use 

of a predefined population, adjustments in the fitness function and the use of the trend of 

fitness values for the evolution of an answer. 

7.3.1 Predefined Population 

The first adjustment worth noting is the use of a predefined population. As seen with the 

exploration of the functional set [+,*,/,*-,/-] in the previous section, section ‎7.2, the search 

was unable to initialise a successful search in a specific direction. This was also noted 

during the exploration of the functional set including √|x|. Both these experiments included 

the same functions as previous experiments, but could not find even those solutions.  

The possibility of predefining a population provides a jumpstart for a solution. It also allows 

a search to be initiated where it stopped last time, using new search parameters or an 

expanded functional set. It is noted that this might nudge the search into a suboptimal 

direction. This is however a risk worth taking, although the modeller should be aware of this. 
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As an example, when comparing the AMI delay solution noted in Table 17 to the solution 

using the same functional set, but starting with the predefined solution noted in Table 14 for 

AMI delay (repeated here in the table below), the benefit is clear. 

Table 17: The use of a predefined population (listed first) resulting in an improved solution (listed second) 

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

AMI 0.623 43.73% 0.715 34.14% 

AMI 0.430 47.56% 0.622 42.74% 

 

The solution from the population with no predefined population is listed first in Table 17, 

whereas the second solution listed results from a predefined population. The predefined 

population supplied an advanced point to initiate various searches from, whereas each 

repetition of the experiment starting from a random population possibly seldom found a 

more advanced point to search from. This resulted in fewer searches breaking through to a 

point where an improved model could be identified. 

As mentioned, this functionality supplied the possibility of using various different functional 

sets and GP parameters in a series of experiments. This was done when exploring the use 

of the square root and exponent functions, as well as negative division and multiplication. 

7.3.2 Fitness Function Adjusted 

The square root function could produce imaginary numbers, resulting in an unstable model. 

Although the sorting algorithm for the GPOls toolbox was adjusted to only look at the real 

outputs of the model when sorting, it is still possible for a high real output to have an 

imaginary number contingent, and so be included in the next generation. This needs to be 

handled by removing such individuals.  

The fitness function was adjusted by adding a parameter penalising the fitness if it 

contained an imaginary number. The result can be seen indirectly in a 3 dimensional trend, 

Figure 29, of the MSE values for each individual across all generations. The white spots are 
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where the model output contained imaginary numbers. The spikes in MSE values are due to 

unstable model output brought about by the nonlinear functions. 

 

Figure 29: MSE values across the evolution to illustrate the handling of individuals with imaginary outputs by 
the adjusted penalty function. 

As can be seen from the disappearance of white areas, individuals with imaginary number 

outputs are removed. It can only be due to the penalty function. It is thus concluded that the 

penalty function works. Without this successful penalty function, the population could evolve 

into a set of models producing non-real outputs, which would not assist in the modelling of 

the dryer. 

7.3.3 Trend of Fitness Landscape Evolution 

The trend of the fitness landscape assists in visualisation of the workings of the GP. It 

provides a view in how wide the search was as is illustrated when comparing the 2 trends in 

Figure 30 and Figure 31.  
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Figure 30: Fitness landscape of an experiment found to search too narrow. 

 

Figure 31: Fitness landscape of a population showing gradual increase in the general fitness as well as a 
relatively wide search. 

This trend also provides a view into how early or late an increase in fitness occurred. Early 

increase in fitness followed by a flat plateau of fitness values through the generations, could 
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signify that the population got stuck in a local optimum, requiring alternate search 

parameters. Late identification of a model could indicate that more time could have 

produced a better solution in the newly identified direction in the solution space. An example 

of a late peak in evolution of the solution is depicted in Figure 32 below. By using the 

predefined population functionality, this population can be explored further. This trend was 

used to navigate the experimentation process, especially for the FD SID experiments. 

 

Figure 32: Fitness landscape for an experiment where the algorithm found a more successful direction in the 
solution space shortly before terminating the run. 

7.4 GPOls Algorithm Benchmarking 

Performance of the GPOls toolbox against another GP algorithm is measured. The choice of 

using the GP SID method is also reviewed by comparison to linear ARMA models identified. 

Both methods make use of the reconstructed latent variable timeseries. 

7.4.1 Benchmark against Discipulus ® GP 

The accuracy and ability of the GPOls toolbox was proved in previous research (Madar et 

al., 2005) and is also accepted and used by the Matlab® community . The same approach 

was used successfully by Coelho and Pessôa (2009). Nonetheless the toolbox performance 

is measured against Discipulus ® GP software as a benchmark. Discipulus ® is a 
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commercially available GP SID package and thus seen as a good tool to benchmark 

against.  

The pre-processing of the dataset is the same as in the GPOls experiments in that the 

same latent variable reconstruction was used. This was done for both the hot gas generator 

and the flash dryer units, for both AMI and autocorrelation delay parameters. Four 

experiments, one for each process and each latent variable set, were completed with 

Discipulus. Each experiment was repeated 40 times due to the stochastic behaviour of a 

GP. The default Discipulus ® GP parameters were used. The experiments and the 

outcomes of the best models, chosen according to the validation MSE, are presented in 

Table 18 below. The best models found by the GPOls algorithm, discussed in the next 

chapter, are included for comparison.  

Process Latent 
Variable Delay 

Parameters 

Discipulus 
Validation 

MSE 

Discipulus 
Validation 

R2 

GPOls 
Validation 

MSE 

GPOls 
Validation 

R2 

Flash 
Dryer 

AMI 0.617 49.2% 0.620 42.3% 

Autocorrelation 0.640 47.3% 0.622 43.6% 

Hot Gas 
Generator 

AMI 0.078 86.6% 0.151 81.7% 

Autocorrelation 0.052 91.0% 0.133 76.7% 

Table 18: Discipulus Lite ® GP modelling results compared to GPOls algorithm results as a benchmark of the 
GPOls algorithm performance 

Direct comparison of the MSE values in the table above, indicate that the Discipulus ® 

software performance is better than the GPOls algorithms, for the HGG unit, for both AMI 

and autocorrelation delays. Analyses of the validation MSE values obtained across all the 

repetitions of the experiments indicate weaker performance of the GPOls algorithm, with a 

weaker best model, as well as a wider variation of poorer performing models across all the 

repetitions of the experiments for the HGG. This is indicated in Figure 33 below. 
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Figure 33: Comparison of Discipulus ® and GPOls GP algorithm performance for the Hot Gas Generator 
according to the validation MSE. The GPOls algorithm performed weaker according to solution spread over 

the experiments, as well as best model identified. 

The flash dryer indicates a larger degree of overlapping performance, with the lowest MSE 

values being close together and obtained by either one of the algorithms. The wider range 

of MSE values for the GPOls algorithm indicates a less efficient algorithm finding fewer 

good solutions than Discipulus ® . This is indicated by the wider spread of the 2nd and 3rd 

quartiles, as well as the larger range of values obtained by the GPOls algorithm in Figure 34 

below. The poor overall performance by both algorithms for flash dryer models 

identification, indicate possible missing process information. 
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Figure 34:Comparison of Discipulus ® and GPOls GP algorithm performance for the Flash Dryer according to 
the validation MSE. The GPOls algorithm indicates a larger variation in performance of solution obtained 

than the narrow spread of the Discipulus ® results. 

The conclusion is made that the GPOls algorithm found solutions for the HGG operation, 

comparative to the solutions found by Discipulus®. The spread of solutions identified by 

Discipulus is tighter, but the best models identified by GPOls is comparative to the 

Discipulus results.  

The poor performance of both algorithms in identifying the flash dryer model, indicates that 

there is some information missing in the model inputs space. This could be either due to 

incorrect latent variable construction, or missing process variables. From literature, the latter 

is expected to be the reason. 

7.4.2 Benchmark against Linear (ARMA) Models 

One of the cheapest models to construct is a linear model. It is thus a good benchmark to 

measure if the intensive calculations required for any SID experiment are worth the effort 

given the modelling results and information extracted from the timeseries. Linear multiple 

input single output (MISO) models were constructed for both the FD and HGG units using 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 95 
 

both the AMI and autocorrelation delay parameters. The validation statistics are included in 

Table 19. 

Table 19: The GPOls identified models are s better, according to validation statistics, when compared to the 
identified ARMA models. 

Process Latent Variable 
Delay 

Parameters 

ARMA 
Validation 

MSE 

ARMA 
Validation 

R2 

GPOls 
Validation 

MSE 

GPOls 
Validation 

R2 

Flash Dryer 
AMI 0.781 22.0% 0.620 42.3% 

Autocorrelation 0.625 37.8% 0.622 43.6% 

Hot Gas 
Generator 

AMI 0.153 74.9% 0.151 81.7% 

Autocorrelation 0.183 69.9% 0.133 76.7% 

 

The models identified by the GPOls algorithms are superior to all the linear models 

identified. This difference is clear when looking at the FD model identified with AMI delay, 

as well as the HGG model identified with autocorrelation delays. In these cases both the 

MSE and R2 values indicate the advantage of using the GP method. The difference is 

however small when looking at the FD model with autocorrelation delays and the HGG 

model with AMI delays. The MSE values slow a very small improvement. The R2 values 

however indicate a larger improvement.  

It is concluded that the GP algorithm, and resulting search in the nonlinear solution space of 

unknown model structures, is preferred as it results in better models according to validation 

MSE and R2 values. 

The coefficients and variables, used in each of the ARMA models fitted, are included 

in ‎Appendix F. 

7.4.3 Benchmarking Conclusion 

Although Discipulus ® performance is better for the FD operations and similar for the HGG, 

it was decided to continue with the models identified by this toolbox, seeing as the models 

in Discipulus® Lite is not easily accessible and cannot be incorporated into the current 

CSense simulation environment. Closer inspection as to why Discipulus ® performs better 

was not done because the focus is on the concentrate drying process on not the GP 

modelling toolbox and technique. It is recommended that this comparison be done in future 
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research to contribute to upgrading of the GPOls approach resulting in more successful 

modelling of both processes.  

The results from GPOls outperformed the ARMA models identified. The comparison 

indicates clearly that the GPOls results are better in two of the four cases. The other two 

cases are much closer, but with the GP approach still in performing better. It is however 

expected that the benefit will be much more clear cut when using a nonlinear approach with 

adaptive model structure, given the expected nonlinearities expected in the drying 

processes. 

Preliminary conclusion can be made with regards to the datasets available. The poor 

performance of both GP algorithms and the ARMA modelling, for the flash dryer modelling 

exercises indicate possible lack of information in the flash dryer datasets to successfully 

model the process, whereas the hot gas generator modelling results indicate more 

representative datasets and results. This conclusion will be discussed further in the next 

chapter. 

7.5 Section Conclusions 

The following conclusions were made for this section: 

 The default parameters supplied in literature resulted in very poor models. An 

adjusted set of specific GP parameters, resulting in the best initial solutions, were 

identified and used as the base for all experiments; 

 The square root function with bias is preferred over square root of an absolute value 

based on model fit results; 

 Despite the fact that the most basic functional set [+,-] resulted in one of the best 

models for the HGG, the more complex functional sets resulted in improved models 

for the HGG and FD; 

 No functional set could find a valid flash dryer model.  
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 The addition of defining the predefined population was crucial for investigating the 

flash dryer operations. The predefined population was also crucial to the success of 

the HGG model, but to a lesser degree; 

 The adjusted fitness function enabled the use of the square root operator with bias;, 

and was successful; 

 The landscape of population fitness values assisted in identifying the limits in GP 

experiments by providing a visual tool for assessing the GP run; 

 The GPOls results are better than the identified linear ARMA models, indicating that 

using the GP approach will result in added model accuracy. This comparison does 

not take into account the effort required in terms of time, or the size of the 

improvement in model accuracy;  

 The GPOls toolbox performed poorer than the Discipulus ® GP tool. It was however 

decided that the difference is acceptable and that the results from the GPOls toolbox 

can be used for the remainder of this research. Investigation into reasons for the 

Discipulus algorithm to perform better, was not done; although the functional set used 

inspired inclusion of advanced functions into the GPOls functional sets. 

 A possible lack of process information in the flash dryer timeseries is identified seeing 

as both linear ARMA and Discipulus resulted in poor flash dryer models, together with 

the initial GPOls. This is a preliminary conclusion which should be verified. 
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Chapter 8 Results: Modelling of a Filter Cake Drying Process 
with Genetic Programming 

Two modelling exercises were initiated, one for each of the two process units, in an attempt to 

find the process section best suited to modelling and control. As experiments continued and 

the nature of the datasets were exposed by the system identification results experimentation 

parameters were adjusted, validation and training data changed and various further 

experiments were attempted in order to obtain a model or set of models which can be 

investigated for use in MPC. The results of the data preparation and SID steps are discussed 

in this section. At the end of this section it will be clear if a model could be identified from 

historic process data using the GPOls algorithm together with the identified delay parameters. 

It will also be clear which section of the process is better suited for modelling and, hence, 

control. 

Note that during this discussion the fitness values are not used to compare solutions from 

different experiments, seeing as it is GPOls specific. The R2 and MSE values are included for 

discussion. 

8.1 Flash Dryer 

This section will specifically discuss the results for the modelling exercises for the flash dryer 

unit. The logical progression of how the investigation of the datasets developed is set ou in 

this section. 

8.1.1 Dataset Analysis 

From the collection of subdivided datasets, resulting from the data cleanup and reduction 

exercise, three were chosen for the FD model identification. The three datasets are named 

“dataset 1”, “dataset 2” and “dataset 3”. The numbering was arbitrarily assigned during data 

preparation according to the length of the datasets, with dataset 1 being the longest. The 

choice and discussion regarding the filtering of all the datasets, and eventual choice of 

these three datasets, is discussed in Appendix ‎B.1. The choice between these three 
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remaining datasets are discussed in this section, focussed on surrogate data comparison 

results. 

The flash dryer dataset also indicated various process states in the data. These were 

isolated and investigated. Results are included in this section. 

8.1.1.1 Process States Identified 

From the trends of the data and initial flash dryer modelling results, three process states 

could be identified. These were named, for purposes of this study, as the following: 

i. Idle state; 

ii. Anomaly state; and 

iii. Normal Operation state 

Although the anomaly-state might be confusing seeing as an anomaly is normally an 

unforeseen and unrepeated occurrence, it was named such through this study from the start 

and then it was decided to keep the naming used initially. 

These states are present in FD dataset 2 and displayed in the following trend. 

 

Figure 35: The 3 Identified Process States in Flash Dryer Data, Dataset 2, from left to right: Idle state, Normal 
Operations and Anomaly states. 

Idle Normal Operation Anomaly 
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It is clear that the idle-state consists of a gradual, smooth decline in the process output. This 

drop, first noted in Figure 19, seems suspicious and could be ascribed to a moving average 

not receiving inputs, or another unforeseen data collection issue. No clarity on the situation 

is available and it will henceforth be seen as a process idle state.  

The normal process is, from process knowledge, supposed to run around the 120°C set 

point. It can be seen, in Figure 35, that the output is running above this most of the time, but 

contains many process spikes and drops, indicating on dynamics which could possibly be 

captured in a model. 

The anomaly-state is recognised by the steep spike and gradual, but semi stepwise decline 

in outlet temperature. The process does not seem to be out of control, but the reason for the 

spike should be recognised for the model and controller to be able to predict it. The 

anomaly state was distinguished during initial system identification exercises where the 

model output indicated inability to track this section, compared to the rest of the timeseries. 

The following table indicates the presence of these states in each of the three chosen 

datasets. 

Table 20: Occurrences of identified flash dryer process states 

Flash Dryer Dataset Idle State Anomaly State Normal Operation 

Dataset 1  x x 

Dataset 2 x x x 

Dataset 3 x  x 

 

Experiments for the identification of the FD model will commence with the inclusion and 

exclusion of these process states in the training data. The attempt is made to see if these 

states add to model dynamics. 

8.1.1.2 Visual Inspection of dataset 

Datasets 1 and 3 for the flash dryer are investigated visually. These two datasets were used 

during system identification. 
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Figure 36 below contains the two input, one process output and two controller state 

variables for dataset 1 of the flash dryer. Prominent in this dataset is the lack of variation in 

hot gas generator outlet air temperature. This is due to the HGG outlet air temperature 

being under IMC control, limiting the variation available, the system identification effort 

continues, due to lack of alternative data. It is understood that the model will only be valid 

for this area. In the fact that a model is identified, this model should be able to be used for 

control, as long as the IMC for the HGG is operational and within the same operating set 

point. The lack of variation in the HGG outlet air temperature also the ability to extract 

information. except during the two occasions, highlighted, when the current HGG APC 

controller is off. During these times the HGG outlet air temperature starts to oscillate. It is 

also during these regions where the anomaly state occurs. However, closer inspection to 

the case marked Anomaly 1, shaded yellow, in the figure, indicates that the increase in the 

flash dryer outlet air temperature is before the controller is switched off, and coincides 

closer with the stoppage in concentrate feed than with the change in controller status. This 

is the same in the case marked Anomaly 2, yellow shaded area on the right of the figure. It 

is preconceived that the controller state does not cause this anomaly, but rather the drop in 

the concentrate feed to zero. It is unclear if the coal feed caused the anomaly, or if the 

anomaly occurred due to an unmeasured variable or external input and the operator 

stopped the coal feed accordingly.  

Due to lack of any physical on-site process input, the investigation will continue assuming 

that there is enough information in the input variables to predict these dynamics. This will 

however have to be investigated by the GP procedure. 
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Figure 36: Trends of variables for flash dryer dataset 1. The Anomaly states are indicated with the yellow 
shaded areas. It is unclear what is causing this spike in flash dryer outlet air temperature. 

Dataset 3, in Figure 37 below, contains the largest normal operating conditions with feed 

stoppages. The HGG outlet air temperature contains larger variation as well. Prominent in 

dataset 3, is the presence of an idle state, shaded in the figure. The idle state is recognised 

by the declining outlet air temperature. During this time, the flash dryer feed is zero and 

some increased activity in the HGG outlet air temperature is visible.  

This visual inspection indicates a possible problem with including the idle state in the 

system identification data: The feed shows no variation, and the inlet air temperature shows 

Anomaly #1 Anomaly #2 
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highly oscillating behaviour. Visually these inputs do not seem viable for a gradual 

decreasing model output. It is possible that the system identification procedure might only 

choose the previous process out as input. Including the idle state in system identification 

might thus be a superfluous exercise. These sections of idle and normal process states 

from this dataset should however be investigated by the GP system identification 

procedure. 

 

Figure 37: Trends of variables for flash dryer dataset 3. The shaded area identifies the process idle state. No 
clear reason for the idle state can be recognised and seems more like a controller state or data collection 

rule. 

Idle 
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The next section will distinguish between the datasets based on the nature of the 

information available in the dataset. The aim is to identify the dataset best suited for 

modelling. 

8.1.1.3 Choosing the Most Representative Dataset by Means of Surrogate Data Comparison 

The surrogate data analysis indicated that only dataset 3 displayed the presence of 

deterministic information which could be easily extracted by a SID procedure. The 

investigation indicates similar separation from the surrogate data for the flash dryer outlet 

air temperature for dataset 3 using delay parameters identified by AMI and autocorrelation. 

This is seen in Figure 38 and Figure 39. This is done with the process idle-states present in 

the dataset. 

 

Figure 38: Surrogate Data Classification of the FD outlet air temperature for , with IDLE state present, for 
delay parameters identified by autocorrelation- 168x5 (delay x embedding dimension) 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 105 
 

 

Figure 39: Surrogate Data Classification of the FD outlet air temperature in dataset 3, with IDLE state present, 
for delay parameters identified by AMI - 65x5 (delay x embedding dimension) 

The inclusion of the idle state in modelling could however be superfluous resulting from the 

discussion in the previous section – the idle-state might not be modelled accurately due to 

possible lack in process information. Inclusion of the idle-state in modelling will thus only 

result in stronger inclusion of the least lagged version of the process outlet variable, as 

indicated in the previous discussion. Dataset 3 with the idle-states removed from the 

timeseries, and new delay parameters calculated accordingly, indicate weaker separation 

from the surrogate data, although the separation is still strong enough to distinguish 

deterministic information from the timeseries as seen in Figure 40 and Figure 41 below. 

Both the included and excluded idle state datasets should be investigated for system 

identification based on the clear surrogate data separation. 
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Figure 40: Surrogate Data Classification of the FD outlet air temperature in dataset 3, with IDLE states 
removed, for delay parameters identified by autocorrelation - 109x5 (delay x embedding dimension) 

 

Figure 41: Surrogate Data Classification of the FD outlet air temperature with IDLE states removed for delay 
parameters identified by AMI - 65x5 (delay x embedding dimension) 
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Datasets 1 and 2 indicated poor separation from the surrogate data. (See ‎Appendix C – 

Process Output Timeseries Analysis for a detailed discussion.) The use of these datasets 

for training would probably not result in good models. Seeing as datasets 1 and 2 contain 

the anomaly state, and are found to contain only stochastic information, it could be deduced 

that the presence of the anomaly state is causing this inability to differentiate between the 

stochastic and deterministic information in the dataset. However, a surrogate data analysis 

done on dataset 2 with the idle and anomaly-states removed indicates that this is not true 

and that even with only the normal process state isolated in dataset 2, it still contains mainly 

stochastic information.  

 

Figure 42: Surrogate Data Classification of the FD outlet air temperature for delay parameters 42x4 
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Figure 43: Surrogate Data Classification of the FD outlet air temperature for delay parameters 273x3 

It is thus clear that only dataset 3 is suited for process modelling, although the presence of 

the idle-state is favoured for modelling, which is contrary to what is expected. The need to 

include the prediction of the anomaly state in the model necessitates the use of datasets 1 

and 2, although it is expected, from the surrogate data comparison, that no result will be 

found from these datasets.  

These findings, of including and excluding the anomaly states and using datasets 1 and 2 

will be confirmed by the GPOls algorithm. 

8.1.1.4 Correlation with the Least Lagged Process Output 

Correlation with the least lagged process output is an indication of how easily the system 

identification technique will be able to supply a model better than the least lagged process 

output. This resulting model would thus contain a combination of process inputs and 

outputs, with inputs required for a control model. The dataset with the weakest correlation to 

the least lagged process output should obtain a model easier than with the other datasets, 

depending on the information available in the data. 
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The following table sets out the datasets, lags per latent variable reconstruction, and the 

correlation of the one-step ahead process output with the least lagged process output 

present in the latent variable regressor set. 

Table 21: Correlation coefficients of closest lagged process output. Obtained models are expected to have 
better correlation figures than these, otherwise the least lagged process output will be the best model. 

Process Dataset 
Number 

Output Lag 
as per AMI 

(5sec 
increments) 

Correlation 
Coefficient 

(AMI) 

Output Lag as 
per 

Autocorrelation 
(5sec 

increments) 

Correlation 
Coefficient 

(Autocorrelation) 

Flash 
Dryer - 
Idle States 
Present 

1 82 0.735 623 0.347 

2 41 0.943 405 0.608 

3 65 0.352 168 0.153 

Flash 
Dryer – 
Idle States 
Removed 

1 82 0.735 623 0.347 

2 56 0.779 365 0.059 

3 65 0.1102 109 0.049 
 

 

Dataset 3 with the Idle state present, as well as with the idle state removed shows the 

weakest correlation between the process output and least lagged process output. This is 

the case for both AMI and autocorrelation delay parameters. 

The correlation of 5.9% for dataset 2 with idle-state removed could be ascribed to the high 

delay of 365 time increments (30minutes and 25seconds) and is misleading as a previous 

output loses relevance as time goes by. 

Comparing the correlation coefficients determined for delays identified by AMI and 

autocorrelation, indicate that the delays identified by autocorrelation should result in easier 

identification of models. The longer delays might however be synthetic and not make 

practical sense, which could be misleading. The choice of delay parameters will be 

discussed in the next section ‎8.1.2 Delay Parameters. 

From the visual inspection of the datasets it was mentioned that the inclusion of the idle-

state will result in stronger influence of the least lagged process output, seeing as the input 

variables do not have any visual resemblance to the idle-state, leaving the process output to 

be the only with values which could predict the idle-state output. This comment is reinforced 
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by the higher correlation between the least lagged output variable and the process output 

for idle-state present datasets. This holds true for datasets 2 with 94.3% < 77.9% and 

dataset 3 with 35.2% < 11%. It is thus expected that the idle-state will be modelled with 

inclusion of the least lagged variable when included in the SID training set. This will not 

contribute to a model suited for control.  

These qualitative conclusions will however need to be investigated by the GP during 

modelling. 

8.1.1.5 Conclusion 

The following conclusions are drawn from the analysis of the datasets for flash dryer system 

identification: 

 Three process states could be distinguished visually and will be investigated during 

system identification; 

 The idle and the anomaly-state indicate similar input variable dynamics, but different 

process output reaction, possibly indicating a lack of process measurements to 

distinguish the states; 

 Dataset 3 is the best suited for modelling purposes as it indicates best separation 

from the stochastic surrogate data and lowest correlation to the least lagged process 

output; 

 Although the presence of the idle-state increases the deterministic information, the 

idle-state might favour inclusion of the least lagged process output over manipulated 

process inputs. This will however need to be proven during system identification 

using a timeseries with the idle-state present as training dataset; and 

 Removal of the anomaly-state from datasets 1 and 2 does not contribute to better 

separation between deterministic and stochastic timeseries. Modelling with these 

datasets with the anomaly-state removed will not be investigated. 
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8.1.2 Delay Parameters used for Latent  

This section sets out the most important delay parameters used in the study and indicates 

the preference between AMI and autocorrelation delay parameters for FD modelling. No 

real distinction could be drawn, due to the poor SID results for the flash dryer. 

8.1.2.1 Delay Parameters Identified 

The delay parameters identified for dataset 3, with the idle-state removed, are included and 

discussed below. This is found to be the best dataset for training and trained the best 

models, thus it is chosen for discussion over the other datasets. Delay parameters for the 

other datasets are included in ‎Appendix D. 

The delays, identified by autocorrelation, are much higher for the flash dryer outlet air 

temperature as well as the hot gas generator outlet air temperature.  

Flash Dryer Dataset 3 – IDLE states removed: 

Table 22: Delay parameters for process variables for Flash Dryer Dataset 3 with IDLE states removed 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Filter Cake Feed 
Rate 

AMI 16 10 

Autocorrelation 16 10 

Hot Gas Generator 
Output Temperature 

AMI 56 6 

Autocorrelation 363 5 

Flash Dryer Outlet 
Air Temperature 

AMI 65 5 

Autocorrelation 109 5 

 

The choice of which m and k, as identified by AMI or by autocorrelation, to use, is not clear. 

The distinction between the various identified parameters and the inclusion of these 

variables is investigated by the GP and will be discussed next. 

8.1.2.2 AMI vs. Autocorrelation as Identified by the GP 

The choice of which set of delay parameters to use was investigated by the GPOls 

algorithm in the experiments are grouped (Alphabetically) and compared in Figure 44. 
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Figure 44: Comparison of Validation R
2
 values for comparable experiments with different delay parameters. 

AMI delay parameters result in more consistent results, with autocorrelation results visibly underperforming 
on three occasions. 

Throughout the trend the AMI and autocorrelation system identification results are similar. 

There are however three occasions where the autocorrelation parameters visibly 

underperformed. Deciding which parameter identification method to use for the flash dryer 

is not clear cut, although the more consistent AMI parameter set performance favours this 

method. Delays from both methods will be investigated further. 

The comparison results for the figure above are tabulated in Appendix ‎G.1.1 

8.1.3 Handling of Anomalies and Idle States 

The inclusion of all process states in the identified flash dryer model requires the trained 

models to be exposed to such states. Furthermore it is necessary to validate the solutions 

against data containing the same process states. A brief discussion regarding the idle state 

is included in this section. Apart from that section the idle state is omitted from any future 

discussions or modelling. Only the normal process state and anomaly-state is investigated.  

The three strategies followed, for investigating these two states, are: 

1. Train models on normal process dynamics and investigate the ability of the model to 

extrapolate to the anomaly-state; 
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2. Train models on a timeseries which includes both the normal and anomaly-states to 

be modelled; and 

3. Train models on the normal process dynamics and then retrain the identified models 

on a second timeseries which includes the “anomaly” process state. In so doing the 

models are exposed to all dynamics. 

The specific datasets used for each of these strategies are set out in Table 23 below. 

Table 23: Training strategies, and corresponding datasets, used in an attempt to include the identified 
process state dynamics in the models 

Strategy 
number 

Training Dataset Validation Dataset Strategy 

1 Dataset 3 (idle-state 
removed) 

Dataset 1 Measure of models 
identified can 
extrapolate to include 
the anomalies 

2 Dataset 1 Dataset 3 (idle-state 
removed) 

Train with the 
anomalies; see if a 
model can be 
identified and 
measure if this model 
represents normal 
process operations 

3 Dataset 3 (idle-state 
removed); and then 
Dataset 1 in a 
second GP 
experiment 

Dataset 1; and then 
Dataset 3 (idle-state 
removed) in a second 
GP Experiment 

Models are trained on 
normal process 
dynamics. The 
identified population is 
then used as a 
predefined population 
for a second, 
narrower identification 
exercise where 
dataset 1 is used for 
further training. 

 

It was found that none of the approaches was able to include the process dynamics for both 

the process states. The results for the three approaches are briefly discussed below in the 

same order as mentioned above.  

The fourth subsection below investigates if the inclusion of the process idle-state 

contributes to the representative process dynamics included in the identified model. 
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8.1.3.1 Extrapolate Normal Process State Model to the Anomaly State 

11 experiments were done using dataset 3 as training set, with validation against dataset 1, 

as a measure of how well the model can extrapolate to include the unseen anomaly state. 

The statistics for the experiments, in degrading order of fit according to validation R2 and 

MSE, are: 

Table 24: Fit statistics for models trained on dataset 3 and extrapolated to validation on dataset 1 as measure 
of representing the anomaly-state 

Model 
Number  

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 Autocorrelation 0.673 32.9% 2.149 40.6% 

2 AMI 0.650 35.0% 2.204 40.4% 

3 AMI 0.666 33.4% 2.215 40.0% 

4 Autocorrelation 0.784 21.9% 2.269 37.3% 

5 AMI 0.630 37.1% 2.350 36.4% 

6 Autocorrelation 0.637 36.5% 2.744 24.2% 

7 Autocorrelation 0.697 46.2% 3.203 11.5% 

8 AMI 0.822 17.9% 3.492 5.4% 

9 AMI 0.822 17.9% 3.492 5.4% 

10 Autocorrelation 0.600 40.3% 3.878 -7.1% 

11 AMI 0.573 42.8% 4.101 -1107.0% 

 

The 3 main findings are discussed by looking at models 1, 4 and 7 in Table 24 above. 

Model 1, portrayed in Figure 45, indicates that the anomalies are estimated by a flat lined 

increase in outlet air temperature. This flat line corresponds to the concentrate feed 

stationary at zero during this period. The poor fit statistics for training together with the very 

high MSE value for the validation set indicates that this model is not properly representative 

of the process.  
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Figure 45: The extrapolation ability of the model trained on dataset 3 to represent the anomaly state results 
in a flat lines estimation of the process anomaly. 

Model 4, Figure 46, represents the anomalies in the process very well, but does not indicate 

any presence of normal process operating conditions. The lack of representing the normal 

process conditions is indicated by the poor training R2 for this model. 

 

Figure 46: The shape of the anomaly is well represented, largely due to the presence of the historic process 
output variables. The normal process operating conditions are poorly represented. 
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Model 7, Figure 47 below, indicates some variation of the output in the anomaly state. This 

variation is assigned to a stronger presence of the HGG outlet air temperature. The 

deviation of the HGG outlet air temperature was identified in the visual inspection, in 

section ‎8.1.1.2, as another possible cause of the anomaly. The inclusion of this variation 

due to the HGG outlet air temperature presence results in a very poor R2 of 11.5%, making 

the rejection of this model obvious. 

 

Figure 47: The stronger presence of the hot gas generator outlet air temperature, does not contribute to a 
more accurate representation of the anomaly. 

It is concluded that the anomalies are identified by the sudden drop in concentrate feed, 

although the drop in feed might be due to the operator‟s process experience and awareness 

of the anomaly. The presence of the HGG outlet air temperature does not contribute to the 

model fit.  

The normal process conditions, given the available measurements, is not able to 

extrapolate to the anomaly state. 

8.1.3.2 Train on All Process States 

Two experiments were done on dataset 1 as a training set despite the surrogate data 

comparison indicating a lack of deterministic dynamics. Both experiments resulted in 

choosing the least lagged process output as model, indicating that the surrogate data 
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comparison was correct. This approach and resulting models are not discussed further as a 

least lagged process output model cannot be used as a predictive model used for 

optimisation of future process inputs. 

8.1.3.3 Sequential Training on Different Dynamics 

These experiments used models identified from training on dataset 3 as the initial 

population for the new GP experiment. The new experiment used these populations and 

exposed them to the anomaly state contained in dataset 1; as depicted in the following 

diagram: 

 

Figure 48: Sequential training method used. The population from the one experiment is used as initial 
population for the next experiment, where a different dataset is used with the anomaly state dynamics. 

Less mutation was allowed, as well as a small tournament selection strategy in an attempt 

to allow only small adjustments to the population. This was done to prevent the population 

from evolving into a least lagged process output model or being over fitted on dataset 1 

dynamics, losing the dynamics instilled during the training on dataset 3.  
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The best solutions from the populations resulting from step 1 of the sequential training were: 

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

Autocorrelation 0.637 36.5% 2.744 24.2% 

AMI 0.666 33.4% 2.215 40% 

Table 25: Models from the initial populations for the second GP system identification exercise. 

Although the fit statistics for the predefined population are poor, it was decided to continue 

with the next step in the sequential training to gauge the possibility of using this method. 

The models were trained on dataset 1 and validated using dataset 3. This is done to see 

how much information the population has lost in the second training. The results were: 

Model 
Number 

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

3 Autocorrelation 0.310 54.4% 0.314 -14.8% 

4 AMI 0.395 60.7% 0.418 -53.5% 

Table 26: A sequence of training on normal process dynamics and then process anomalies resulted in 
similar results for both the AMI and autocorrelation delay parameters 

The final models in Table 26 indicate that both parameter sets result in similar results 

according to training and validation statistics. Investigation of the model structure however 

indicates that model 4, for AMI delay parameters, resulted in the least lagged process 

output. This result was obtained across all 40 repetitions of the experiment. The negative R2 

is ascribed to the parameter estimation step which overfits the model to the training data. 

The autocorrelation parameter set resulted in model 3 - a model structure other than only 

the least lagged process variable. This model did however produce a negative validation R2 

on the normal process state represented by dataset 3. Dataset 2 was used as an unseen 

validation dataset. The fit R2 is lower than the training statistics, but the MSE value is much 

better.  
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Table 27: MSE and R
2
 values for validation of model 3 with dataset 2. The R

2
 is weaker, but the MSE values 

are better than the training data. 

MSE R2 

0.274 36.8% 

Although the anomaly state is followed (greyed out area in Figure 49) it is noted that the 

overall fit is still not good enough to represent the normal process dynamics. Furthermore, it 

is important that the freerun prediction of the anomaly-state be investigated. The model 

identified contained various lags of the concentrate feed and a lagged version of the flash 

dryer outlet air temperature. Due to the feeds being zero during the anomaly-state, it is 

possible that the model structure evolved in such a way that only the lagged process output 

is taken into account for the anomaly-state, and no accurate prediction during this state will 

be possible. This is not investigated in this research, as these models are not representative 

enough for the purpose of a control model. 

 

Figure 49: Validation on dataset 2 indicates comparable handling anomaly process dynamics (in the greyed 
area), but still indicates poor tracking of the normal process dynamics foregoing the anomaly. 

8.1.3.4 Idle State 

The hypothesis that the idle-state includes process dynamics which could contribute to the 

model fit, was tested by training on a dataset which includes the idle-state and testing 

model validity on normal process operation.  
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Dataset 3 with idle-state included is used for both training and validation, with the first 60% 

of the timeseries, which includes the idle-state, used for training. This is done for each of 

the AMI and autocorrelation delay parameters. The resulting model fits for 2 such 

experiments are: 

Table 28: Models, identified when including the idle-state dynamics in the training dataset, does not result in 
models able to represent the process well enough. 

Model 
Number  

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 AMI 0.456 54.3% 0.897 13.0% 

2 Autocorrelation 0.351 44.5% 0.839 22.7% 

 

From a comparison of the validation and training R2 values, it is clear that the dynamics 

identified from the idle process state together with the normal process state does not 

represent the normal process dynamics well.  

The conclusion is that the idle-state does not contribute to the dynamics of the model in 

representing normal process dynamics. It is recommended that the occurrence of the idle-

state should be investigated in terms of causes of the idle-state, unmeasured process 

variables and data collection procedures used. 

8.1.3.5 Conclusion 

It is clear that training on dataset 1 only, provided no usable results. This corresponds with 

the findings of the surrogate data comparison hypothesis earlier. 

The models trained on normal process dynamics are able to extrapolate and identify the 

anomalies, although the anomaly is not tracked very well. It is also unclear if the 

concentrate feed drop causes the anomaly or is caused by an operator due to the 

occurrence of the anomaly, as the same input variable dynamics are seen during the 

process idle-state. More information regarding the occurrence of both these states, as well 

as additional measurements, is required to accurately include these states in a model. 
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The strategy of sequential training: first on dataset 3, then using the resulting population to 

train further on dataset 1 provided no usable results, although the training did represent the 

anomaly and process dynamics at accuracies similar to other models found. Two problems 

are however raised, although not further investigated: 

1. The anomaly-state might only be represented by the least lagged process output; 

and 

2. The normal states for the various datasets differ by a certain bias. 

From these it can be seen that some process information is missing, which could include 

some unmeasured process disturbances. Further investigation into identification of missing 

information and possible disturbances for the flash dryer is required and recommended. 

This could be enabled through inferential sensors („soft sensors‟) predicting process 

measurements in the absence of measurement instrumentation, or by inclusion of missing 

measurement instrumentation. 

8.1.4 The Best Model Obtained: Flash Dryer 

Contrasted to the strategies discussed in the previous section is the one displayed in Table 

29 below, where only the normal process dynamics are being investigated. This follows the 

findings that no representative model could be obtained for inclusion of the anomaly-state; 

as well as the inability of the idle-state to contribute to model accuracy.  

Table 29: Training strategy for models not including the Idle or Anomaly process states 

Training Dataset Validation Dataset Strategy 

Dataset 3 (first 60%) Dataset 3 (last 40%) Models for normal process 
dynamics are identified and 
validated using separate 
sections of dataset  

 

This exercise resulted in the best models based on fit statistics for both the training and 

validation sets.  

The assumption is made that the process states can be identified and the use of a controller 

can rely on only the modelling and identification of the normal process conditions. Control 
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strategies during the process states other than normal operation are thus ignored for further 

research, and the focus is only on modelling and controlling the normal process dynamics.  

The top 4 models trained on the first 60%, and validated on the second 40%, are discussed 

further. All these models contain nonlinear model structures. The models are selected 

based on validation MSE values. The reader is referred to ‎Appendix G - – System 

Identification Experiment Outputs for the model structures and all the results. The fit 

statistics are reproduced in Table 30 below. 

Table 30: Results for the top 4 models using only dataset 3 as training and validation sets 

Model 
Number  

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 AMI 0.403 49% 0.620 42.9% 

2 AMI 0.430 47.5% 0.622 42.7% 

3 Autocorrelation 0.468 37.4% 0.622 43% 

4 AMI 0.391 52.3% 0.633 41.7% 

 

Across all four models the validation statistics are similar, with varying training statistics. It is 

however clear that the statistics are still too weak to confidently say that a representative 

model has been found as only 40-50% of the variation in the process can be explained with 

the models identified. Model 1 was investigated in an effort to identify any possible 

shortcomings or any clue to why the modelling failed. 

Investigation of the residuals for model 1 indicates that there is no strong correlation 

between the residuals and any variable in the terminal set. There is thus limited linear 

information to be extracted from the possible model inputs, and no clear indication of 

overfitting. The nonlinear combinations are not investigated explicitly and it is assumed that 

the most relevant of these combinations would be included by the GP search algorithm. 
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Table 31: Correlation coefficients between the terminal set and the residuals as a measure of the information 
remaining in the terminal set 

Latent Variable 
Correlation with 

Residuals 

FDFeed(k-0) -11% 

FDFeed(k-16) 0% 

FDFeed(k-32) -9% 

FDFeed(k-48) -14% 

FDFeed(k-64) -9% 

FDFeed(k-80) 2% 

FDFeed(k-96) -6% 

FDFeed(k-112) 1% 

FDFeed(k-128) -1% 

FDFeed(k-144) -10% 

FDFeed(k-160) -7% 

HGGTemp(k-0) 2% 

HGGTemp(k-56) 0% 

HGGTemp(k-112) 5% 

HGGTemp(k-168) 5% 

HGGTemp(k-224) 7% 

HGGTemp(k-280) 8% 

HGGTemp(k-336) 4% 

FDTemp(k-65) -2% 

FDTemp(k-130) -2% 

FDTemp(k-195) -1% 

FDTemp(k-260) -10% 

FDTemp(k-325) -1% 

 

Visual analysis of the trend of this model indicates some dynamics are missed. From 

understanding of drying dynamics, the stoppages in the flash dryer feed would result in the 

temperature spikes, which can be clearly seen in the trend. Examples of these are marked 

on the trend as “1”. The model follows the general trend of the flash dryer outlet 

temperature, but some drops in outlet temperature is missed, as indicated on the trend by 

“2”. It is possible that these could be dynamics introduced by unmeasured disturbance 

variables, such a feed moisture variation which would introduce drops in the outlet air 

temperature. These drops could also be introduced by peaks in air humidity, although it is 

unlikely that air humidity would change so rapidly. Change in air humidity is expected to 

rather introduce a slower dynamic such as a process drift. Inlet air temperature is expected 

to have a similar influence. Inlet product temperature may be a higher frequency 
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disturbance, such as inlet moisture, and may be worth investigating as a cause for the 

drops in the flash dryer outlet air temperature. 

 

Figure 50: Model flash dryer outlet air temperature compared to the expected process values. Peaks in outlet 
temperature due to feed stoppages are identified well (1), whereas some drops in the outlet air temperature is 
missed (1). This could possibly due to lack of feed moisture and temperature measurements. 

The system identification of the flash dryer, given the measured variables and rigorous data 

preparation, was not successful. 

8.1.5 Summary: Flash Dryer System Identification 

Three process states were identified based on visual inspection of the data: idle-, anomaly- 

and normal process states. These process states and the possible different dynamics were 

taken into account during the SID exercise. The idle and anomaly states could not be 

modelled successfully. 

Surrogate data comparison indicated that only dataset 3 is suited for system identification. 

This was confirmed by the system identification results which could not identify models 

using dataset 1, but could find better models using dataset 3.  

The correlation to the least lagged process variable indicated that dataset 3 should obtain a 

model other than the least lagged process variable easier than the other datasets. 
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The decision between which parameter set to use was unclear, although AMI provided flash 

dryer model results more consistently than the autocorrelation delay parameters. 

The best model identified for the flash dryer was based on the normal process state only. 

This model was however very weak, and it was decided that no model could be found. This 

failure to identify a model was not due to over fitting, neither could any indication be found 

that there are any process information still available in the residuals which are located in the 

model inputs. Only the linear correlation was inspected. 

The inability to obtain a model is possibly due to unmeasured disturbance variables, such 

as feed moisture and temperature, as well as inlet air humidity and temperature. The 

product moisture and outlet air humidity could also supply a more truthful view of the 

process efficiency and process model accuracy. The size of influence of these variables 

need to be researched further to establish which sensors are the most beneficial for 

inclusion in dryer operations. 

8.2 Hot Gas Generator 

This section will specifically look at the datasets, delay parameters and system identification 

experiments focussed on the hot gas generator. The reason for investigating the hot gas 

generator is twofold:  

 this is the focus process unit for the control strategy currently implemented on site; 

and  

 the lack of a flash dryer process model necessitates investigation of other sections as 

possible areas to focus modelling and control on. 

The same discussion structure as for the flash dryer is used, although this discussion is 

much shorter, due to more definite results. 

8.2.1 Dataset Analysis 

The datasets for the hot gas generator are visually much less complicated than the dataset 

obtained for the flash dryer. This is largely due to the presence of only two inputs and one 
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output variable, as well as the “bang-bang” control philosophy followed by the hot gas 

generator.  

From the collection of subdivided datasets, resulting from the data cleanup and reduction 

exercise, the longest timeseries was chosen for further investigation. This dataset is 

arbitrarily named “dataset 1” based on the length of the dataset compared to the remaining 

subdivided HGG datasets. The discussion surrounding the choice of this dataset is included 

in Appendix ‎B.2. 

8.2.1.1 Process States Identified 

No process states were identified for the hot gas generator process. The removal of the 
controller on-off states, as discussed in ‎0  

Data Cleaning, removed the only visual difference in the process states. The cleaned 

datasets where the controllers were “off, are thus investigated further without any expected 

variation in process states. 

8.2.1.2 Visual Inspection of the Dataset 

As mentioned, the reduced and cleaned datasets for the HGG are visually much less 

complex than the flash dryer datasets. This is seen in the second and third trends in Figure 

51 below where the coal feed shows a stepped control and the outlet air temperature 

follows the oscillations of the input.  

The fluidising damper shows zero variation, as seen in the first trend of the figure. This is 

the case in all the feasible datasets investigated. This variable is removed from further 

research due to this lack of variation.  

The data cleaning exercise removed the active controller states as is confirmed by the last 

two trends in the figure below. 
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Figure 51: Trends of variables for hot gas generator dataset 1. The fluidising damper shows no variation; 
controllers are all off; and the coal feed and outlet temperature is clearly linked based on the oscillations. 

This dataset will thus be used for system identification without any alterations or recognition 

of process states. Only the coal feed and outlet air temperatures will be used as input and 

output to a dynamic, nonlinear single-input-single-output (SISO) model. 

8.2.1.3 Correlation with the Least Lagged Process Output 

From the similar discussion for the flash dryer in ‎8.1.1.4, the table of correlation of the least 

lagged variable and the one-step-ahead model output is included below. It can be seen that 
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a poor correlation between the one-step ahead predicted output and the least lagged output 

exists for both delays identified by AMI and autocorrelation. The population of solutions only 

needs to overcome these relatively low correlations to enable identification of a model other 

than a least lagged process output. From the weak correlations, the system identification is 

expected to be successful in identifying a model other than the least lagged process output. 

Table 32: Correlation coefficients between closest lagged process output and 1-step ahead value. Obtained 
models are expected to have better correlation figures than the least lagged output, otherwise the least 

lagged process output will be the best model. 

Process Dataset 
Number 

Output Lag 
as per AMI 

(5sec 
increments) 

Correlation 
Coefficient 

(AMI) 

Output Lag as 
per 

Autocorrelation 
(5sec 

increments) 

Correlation 
Coefficient 

(Autocorrelation) 

Hot Gas 
Generator 

1 65 0.128 76 0.081 

 

8.2.1.4 Choosing the Most Representative Dataset  

The surrogate data analysis indicated that dataset 1 contains sufficient deterministic 

information to separate it from the surrogate data. This holds true for both parameter sets 

identified by AMI and autocorrelation. The trends for the surrogate data comparison are 

visually very similar for both parameter sets. The result from AMI is displayed below. 
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Figure 52: Surrogate Data Classification of the HGG outlet air temperature for the AMI delay parameters. This 
comparison shows clear separation, indicating that the process dynamics are deterministic. 

The complete set of analyses are included in Appendix ‎C.9 Analysis 9: Hot Gas Generator 

Dataset 1. 

8.2.1.5 Conclusion 

The following conclusions are drawn from the analysis of the datasets for the hot gas 

generator system identification: 

 No process states could be identified from the reduced and cleaned subdivided 

datasets; and 

 Dataset 1 is well suited for modelling purposes as it indicates good separation from 

the stochastic surrogate data and low correlation compared to the least lagged 

process output 

8.2.2 Delay parameters 

The delay parameters for dataset 1 are displayed and discussed in an attempt to identify if 

either of AMI or autocorrelation methods of identifying the parameters are preferred by the 

HGG timeseries used. 
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8.2.2.1 Delay parameters Identified 

The delay parameters identified for dataset 1 show very similar delays identified for both 

AMI and autocorrelation methods. As seen in Table 33 below, the autocorrelation delays for 

the outlet air temperature is 11 time intervals (55 seconds) larger than AMI; and coal feed 

delay is only 1 time interval difference. 

Hot Gas Generator Dataset 1: 

Table 33: Delay parameters for process variables for Hot Gas Generator Dataset 1. The fluidising damper 
data has no variation and is henceforth omitted from the study. 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Coal Feed Rate AMI 44 10 

Autocorrelation 45 10 

Fluidising Damper AMI Zero variation Zero variation 

Autocorrelation Zero variation Zero variation 

Hot Gas Generator 
Output Temperature 

AMI 65 4 

Autocorrelation 76 4 

 

The choice of which parameter set to use is not clear and will be investigated by the GP. 

8.2.2.2 AMI vs. Autocorrelation as Identified by the GP 

The validation R2 values in Figure 53 indicate that for each set of comparable experiments, 

i.e. experiments using the same experiment parameters, the autocorrelation delay 

parameters outperformed the parameters identified by the AMI. The modelling differences 

for experiment set A are noticeably favoured to the autocorrelation delay parameters with 

an 18.6% difference in validation R2. The rest of the experiments indicate only slight, an 

almost negligible differences in performance.  
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Figure 53: Comparison of Validation R
2
 values for comparable experiments with different delay parameters. 

The results are similar, but autocorrelation seems to consistently perform better than AMI 

The difference is not significant enough to warrant further investigation of just one 

parameter set; hence both AMI and autocorrelation models will be investigated further. 

The comparison results for the figure above are tabulated in Appendix 238‎G.1.2. 

8.2.3 The Best Model Obtained: Hot Gas Generator 

As mentioned previously, a smaller number of SID experiments were required for the hot 

gas generator than for the flash dryer exercise. This can be largely ascribed to the less 

complex timeseries being investigated as well as the stronger availability of deterministic 

information. Due to the success of this system identification exercise, these models are 

carried over to the MPC experiments. Some time will thus be spent in this section to 

compare the models and fully understand the results obtained. 

The top 4 models chosen for further investigation are included in Table 34. 
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Table 34: Top 4 Hot Gas Generator system identification results according to validation MSE. 

Model 
Number  

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 Autocorrelation 0.165 72.8% 0.133 77.1% 

2 AMI 0.103 83.1% 0.167 71.2% 

3 Autocorrelation 0.093 84.7% 0.133 77.1% 

4 Autocorrelation 0.094 84.6% 0.151 74.1% 

 

Model 1 is the best model obtained with the most basic functional set used. A model of 

corresponding simplicity was obtained with validation statistics comparable to the other 

models.  

Model 2 uses the advanced functional set with the timeseries biased after normalisation to 

assist with closure on the square root function. These experiments provided the weakest 

result according to validation statistics, but the strongest model for AMI delay parameters.  

The models 3 and 4 were both obtained from  the same experiment. This experiment uses 

the same method as for model 2, but only using autocorrelation delay parameters. Model 3 

shows the best validation and training statistics. Model 4 is however investigated due to the 

unstable freerun prediction of model 3. This is discussed in ‎Chapter 9. All three of models 2, 

3 and 4 make use of the bias induced in the timeseries after normalisation. Comparison and 

discussion of these four models are now discussed further. 

The validation data output for Model 1 shows spikes on the model output at the lower 

extremes of the oscillations. There are also step wise increases, with unexpected 

decreases in outlet air temperature, compared to the smoother temperature increases of the 

expected temperature.  
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Figure 54: Model output plot for model 1, validation data, indicates some spikes at the dips in the output and 
spikes after the dips. 

Model 2, Figure 55, performed better than model 1 at the lower ends of the temperature 

oscillations, but with some high frequency noise at the lower extremes of the model output. 

The output at the lower temperature outputs are also more lagged for the model output, 

shifting the output to the right of the expected values. Furthermore the peaks are predicted 

lower and flatter than expected. When used in control this model ,might result in more coal 

being fed to the process than necessary, as the model indicates a lower temperature than 

the actual process. 

No clear distinction can be made visually between models 1 and 2. 
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Figure 55: Model output plot for model 2, for the validation data,  indicates noise in the dips of the data and 
flat peaks lower than expected. 

Model 3 is the best fit model identified for both the training and validation datasets. The 

output for the validation set, Figure 56, indicates similar findings to model 2, with the 

exception that the model output at the lower ends contains more noise. Comparison to 

model 2 visually is difficult and left to the fit statistics, which indicate model 3 performs 

better. 

Model 3 is thus preferred over model 2. Model 1 shows the same fit statistics, thus no 

distinction can be made between models 1 and 3. 

900 1000 1100 1200 1300 1400 1500 1600 1700 1800

3

3.5

4

4.5

5

5.5

Validation: Process Output versus Model Output

 

 
Y

expected

Y
model



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 135 
 

 

Figure 56: Model output plot for model 3, for the validation data. The peaks are predicted lower than 
expected, with some large noise oscillations in the dips of the oscillations. 

Model 4 compared to model 2 indicate better estimation of the peaks, but lower estimation 

of the outlet temperature lows. The fit statistics indicate that model 4 is better than model 2. 

The decision between model 1, 3 and 4 is left to the fit statistics, which indicate models 1 

and 3 are the better representations of the process as seen in Table 34. 

 

Figure 57: Model output plot for model 4, for the validation data. The dips are predicted lower than expected 
with some delayed dips to the right of the original dip. 

100 200 300 400 500 600 700 800 900

3

3.5

4

4.5

5

5.5

Validation: Process Output versus Model Output

 

 
Y

expected

Y
model

100 200 300 400 500 600 700 800 900 1000

3

3.5

4

4.5

5

5.5

Validation: Process Output versus Model Output

 

 
Y

expected

Y
model



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 136 
 

Models 1 and 3 are the preferred models based on the fit statistics. Model 1 is noted to be 

less complex due to the more basic functional set and simpler model structure, which could 

assist in easier optimisation of the control moves by the MPC algorithm. During the 

sensitivity analysis in the next chapter it will be shown that model 1 is rejected. Model 2 will 

be investigated as a representative of the AMI delay parameters used. The inclusion of 

model 4 is discussed ‎9.1 Model Freerun Prediction Ability, where becomes clear that model 

3 is not stable enough for application to a MPC solution. 

8.2.4 Summary 

The longest hot gas generator dataset was selected as the dataset to use. The surrogate 

data comparison indicated sufficient deterministic information in the data. The fluidising 

damper was removed from the research seeing as it contained no variation in the available 

subdivided datasets. 

The delay parameters indicated that autocorrelation consistently outperformed the AMI 

parameter set. This contradicts the findings in the flash dryer, possibly indicating that neither 

delay parameter identification method can be favoured. 

Models were identified for the hot gas generator with less effort than for the flash dryer, and 

four of these were investigated further. The models identified will be investigated for freerun 

prediction ability; sensitivity and reaction to stepped process inputs; and the remaining best 

models then applied in a MPC solution. This is discussed in the next section. 

8.3 System Identification Summary and Conclusions 

The major conclusion made is that the flash dryer is not suited for modelling, and hence not 

suited for model based control either.  

The hot gas generator however is much better suited for modelling and control. 

Despite the rigorous data preparation and pre-modelling data analyses, no representative 

model could be identified for the flash dryer. The flash dryer is thus removed from further 

MPC research for this study. 

The following conclusions were drawn from the flash dryer system identification: 
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 Three process states were identified from the data, but neither one could be modelled 

successfully, or add information for successful modelling of the normal process state; 

 Surrogate data comparison results were confirmed by the system identification 

exercises. Better models were created using dataset 3, compared to dataset 1, as was 

predicted by the surrogate data comparison;  

 AMI delay parameters resulted in more consistent results than the autocorrelation delay 

parameters; 

 There is missing information in the flash dryer inputs. Feed moisture, airflow humidity 

and feed temperatures could add this missing disturbance information. Analysis of the 

best flash dryer model indicated no strong correlation between the residuals and the 

model inputs, indicating no clear information overlap due to poor model fitting. 

Models were identified for the hot gas generator. These are seen as representative and used 

in further MPC studies in this research. 

The following concluding remarks need attention with regards to the hot gas generator: 

 No prevalent process states can be identified from the subdivided timeseries after data 

reduction and cleaning; 

 The fluidising damper is removed from the modelling and control strategy due to the lack 

of variation in the process variable in the timeseries; 

 As found by the surrogate data comparison, dataset 1 for the hot gas generator contains 

sufficient deterministic dynamics for system identification; 

 Delay parameters as identified by autocorrelation allows for better model identification 

than the AMI delay parameters for the timeseries studied; and 

 The best 4 models identified will all be investigated further for application in an MPC 

solution. 
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Chapter 9 Results: Model Based Control 

A MPC solution is developed using the nonlinear HGG models identified and constructing a 

freerun prediction over an established prediction window and optimising the control moves. 

Resulting from the latent variable construction used in the system identification methodology, 

a real time latent variable construction is built into the algorithm. This latent variable 

construction is extended by the freerun prediction, which requires predicted values and 

optimised control moves to be incorporated in a real time latent variable construction. This 

amalgamation of methods for control using this nonlinear model is tested in an attempt to 

answer the following questions: 

 Can the current CSense Architect development environment be used, as-is, for MPC 

development? 

 Can the data preparation strategy, specifically the latent variable construction, be used 

in the environment for an online solution? 

 Is the nonlinear model developed suited for freerun prediction? 

 Can a freerun prediction be constructed in the CSense development environment? 

 Is the freerun prediction of the nonlinear model developed optimisable using the given 

CSense optimisation tools? 

 Can a model based predictive controller be used to control the dryer setup investigated, 

given the specifics of the system identification methodology and the software 

environment available? 

The aim is thus not to create a fully functioning model based predictive controller (MPC), but 

rather to investigate the questions stated. 

The flow of the chapter follows the MPC development methodology used and is summarised 

in the following diagram. 
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Figure 58: Flow of the MPC experimentation process with the aim of finding i) Are the models identified 
suited for MPC and control? ii) Is the available software environment able to host the control strategy and 

algorithm? and iii) How do the results compare with current control? 

The HGG models identified are analysed looking at the sensitivity to the manipulated variable 

(coal feed) and stability over a freerun prediction. The MPC is developed and results obtained. 

Results are compared against current control. Conclusion are then drawn regarding the 

models used, software requirements foreseen and MPC as a dryer solution. 

The conceptual investigation is focussed only on the hot gas generator as no accurate model 

could be identified for the flash dryer section. 

9.1 Model Freerun Prediction Ability 

The freerun ability of the identified models is investigated for two reasons: 

i. As a measurement of the prediction ability of the model; and 

ii. To ensure that the model is stable in predicting the required time window necessary 

for predictive control modelling. 

The table of the top 4 HGG models investigated is repeated here from section ‎8.2.3. 
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Table 35: Hot Gas Generator models investigated for use in a MPC solution 

Model 
Number  

Latent 
Variable 

Delay 
Parameters 

Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 Autocorrelation 0.165 72.8% 0.133 77.1% 

2 AMI 0.103 83.1% 0.167 71.2% 

3 Autocorrelation 0.093 84.7% 0.133 77.1% 

4 Autocorrelation 0.094 84.6% 0.151 74.1% 

 

The best model identified, as discussed earlier, is model 3. This model however becomes 

unstable during freerun prediction as can be seen in Figure 59 below. After 77 time intervals 

the freerun prediction suddenly deviates from the expected value. The model output 

oscillates and crosses the expected output twice after the first deviation, but then steers off 

and does not return to the expected value for the remainder of the freerun prediction. 

 

Figure 59: Freerun prediction ability of the model 3 shows poor freerun prediction ability with the prediction 
growing exponentially and ultimately leaving the expected values completely.. 

For this reason the next best model for autocorrelation from the same experiment, model 4 in 

the foregoing table. The freerun prediction of this model shows a visual good fit to the 

oscillations in the data, although the highs and lows are over and under estimated, as can be 

seen in Figure 60 below. The model shows considerable stability in identifying the 

oscillations in a timely manner. 
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Figure 60: Freerun prediction ability of the model 4 shows stability  and good identification of the process 
oscillations. 

Closer investigation of the initial stages of the freerun prediction indicates that the process 

output is less smooth than expected. The sudden drops and rises in the model output could 

not be traced to a specific model input at the specific time step. This trend does not supply a 

thorough view on the freerun prediction ability of the model. 
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Figure 61: Closer view of the freerun prediction ability of the model 4 indicating sudden deviations in model 
output 

A plot of the development of the mean square error and R2 values per prediction step was 

introduced, included in Figure 62 below. This figure indicates that the model freerun 

prediction performance peaks at 153 time intervals. This corresponds with the model output 

in Figure 61. From 153 time intervals onwards, the model statistics in the freerun prediction 

indicate increasingly poor model performance for the remainder of the prediction with the R2 

value becoming negative. Small oscillations on the R2 and MSE fit statistics in Figure 62 

correspond with the oscillations of the model output, providing evidence that the poorer 

model output at the extremities are causing the poor fit. Furthermore the freerun prediction 

loses accuracy as the prediction window increases. This might hamper accuracy of the 

controller depending on the prediction window required. 
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Figure 62: MSE and R
2
 values per prediction step, compared to real process data, for the freerun prediction 

of the model 4. The freerun prediction loses accuracy after 153 time steps and keeps losing accuracy, 
quickly ending with an R

2
 below zero. 

The third model investigated is model 2. This model has the worst fitness statistics of the 

three models investigated thus far, but indicates more stable freerun predictability than the 

previous two models with less deviation at the highs and lows. From visual inspection it is 

hard to see why the model has poorer fit statistics than the previous models. The initial 

stages of the model output deviates from the expected value in the area between the lows 

and highs. The model output however loses that instability after four oscillations and seems 

to stabilise. 
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Figure 63: Freerun prediction ability of the model 2 indicates good tracking of highs, lows and oscillations. 

The growth of the R2 and MSE values during the freerun prediction indicate that there is a 

decrease in fit after 133 time intervals of freerun prediction. However, the R2 and MSE values 

recover and move closer to the statistics identified during the SID step. This is seen in Figure 

64, where the black line represents the fit statistic found during SID and the blue line is the 

evolution of the statistic during the progression of the freerun prediction. Despite the worse fit 

statistics this model seems the best combination of process representation and freerun 

stability. The long range freerun stability could assist in the accuracy of the controller. 
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Figure 64: MSE and R
2
 values per prediction step, compared to real process data, for the freerun prediction 

of model 2 indicate that the freerun prediction loses accuracy after 131 time steps, but then recovers after 
703 time steps. On the long run it strives to the accuracy of the initial model fitting. 

Based on the freerun prediction ability the last model discussed, model 2, should be used 

due to better freerun stability. However, the better validation fit statistics of the model 4 

indicates possibly better capturing of the process dynamics, although the freerun prediction 

seems more unstable. Both these models should be investigated further. It is however 

expected that model 4 is too unstable on the freerun prediction. 

Due to the poor results from the sensitivity analysis of model 1 the freerun prediction of 

model 1 is not investigated. These results are investigated next. 

9.2 Model Sensitivity Analysis 

The same model numbers as set out in Table 34 in the previous section are kept for 

discussion in this section. 

The reaction of the identified models to steps in the input variables was determined for the 

following reasons: 
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i. To see if the output reacts as expected and the process settles at the expected 

output; 

ii. To estimate the settling time, and thus prediction time window required for model 

predictive control 

Three of the identified models are investigated. These are model 1, model 2 and model 4 as 

indicated and discussed in the previous section and set out in Table 35. Model 3 is removed 

according to the finding that it is too unstable during freerun prediction. 

For this sensitivity analysis, the model latent variable construction is initialised using the 

initial timeseries used for training. Hereafter the model is left to freerun prediction and the 

stepped input, in Figure 65 to the SISO model. The stepped input is selected as the 

minimum, midrange and maximum points of the coal feed time series used for training. 

These steps were selected 13, 20 and 26 tons/hour. These minimum and maximum values 

were also applied as the input constraints in the MPC, discussed in the next chapter. 

 

Figure 65: Coal Feed input used for sensitivity analysis of models. The section on the left, as indicated, is for 
process valid initialisation of the latent variable construction. The steps on the right are to test the sensitivity 

to the model to the coal feed. 

Initialisation Step Tests 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 147 
 

Model 1, in Figure 66 below, is included in the discussion although the process did not settle 

on a higher or lower state as would be expected. The model was stable across the whole 

sensitivity analysis and reacted to the steps in input as indicated in the figure. Interestingly, 

the coal feed increase initially indicates a drop in output temperature, then a small increase 

after a few time intervals, followed by a few oscillations before it comes to rest at the same 

temperature as before the step input. Investigation of the model structure indicates that only 

one lagged version of the process output is included in the model structure, thus having a 

very weak influence on the model output. The lack of being able to change the output 

permanently deems this model useless. It is removed from further investigation. 

 

Figure 66: Sensitivity Analysis output for the model 1 shows that the model cannot shift the process 
permanently according to the feed. 

The sensitivity output from the model 4, in Figure 67 below, indicated much better reaction to 

the stepped input. Once again the outlet temperature drops with the initial step input in coal, 

followed by the slight increase. However, the process settles at a lower temperature. This is 

not dynamics expected from any burner and indicates that the model is incorrect. It is in 

actual fact inverted. A few of the weaker fitted models, from the same experiments as where 
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these models originate, were analysed as well and indicated either unstable behaviour or the 

similar dynamics, despite comparable fit statistics. 

The “settling time” was visually estimated to a point where the remainder of the process is 

not oscillating far from the settling temperature. The number of time intervals for model 4 are 

410, 453, 457 and 452 from the point of the coal feed step and the point where it “settles”. 

This “settling time” will be used in the prediction window for the MPC. 

 

Figure 67: Sensitivity Analysis output for the model 4 with data labels to estimate time lags. The process 
output shifts, but not in the direction expected. 

Model 2, in Figure 68 below, indicates the same macro reaction by settling at a lower 

process state instead of higher state. This model‟s output is also much more basic than the 

previous model, with less noise and a much lower overshoot in outlet temperature after the 

step was initiated. The more basic output might allow easier optimisation. This will be 

investigated later by the MPC experiments. 

The “settling time”, in number of time intervals for model 2, are 440, 520, 527 and 390 from 

the point of the coal feed step and the point where it “settles”. The “settling time” is much 

more varying than for model 4. A single time will be selected for the MPC in the next section. 

0 1000 2000 3000 4000 5000 6000 7000
2.5

3

3.5

4

4.5

5

5.5

X: 5858

Y: 4.695

Time Intervals in 5 seconds per Interval

N
o
rm

a
lis

e
d
 a

n
 B

ia
s
e
d
 H

o
t 

G
a
s
 G

e
n
e
ra

to
r 

O
u
tl
e
t 

T
e
m

p
e
ra

tu
re

Model 4 Sensitivity Analysis

X: 5416

Y: 5.122

X: 3951

Y: 4.133

X: 4408

Y: 3.852

X: 1046

Y: 4.708

X: 1456

Y: 3.833

X: 2451

Y: 3.829

X: 2904

Y: 3.094



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 149 
 

 

Figure 68: Sensitivity Analysis output for the model 2 with data labels to estimate time lags. The same 
process shift reaction than model 4 is identified. 

The reason for inverted dynamics might be due to incorrect delays incorporated in the model 

structure. The visual investigation of the dataset included earlier in section ‎3.2.3 Hot Gas 

Generator Oscillations and Figure 13, the coal feed delays included in the models are briefly 

investigated. The visual inspection in section ‎3.2.3 indicated an expected delay of between 7 

– 9 minutes from when the coal feed is increased, until the outlet air temperature starts to 

rise. The delays included in the model structure for model 2 are: 

Table 36: Coal feed delays included in the model structure for model 2 

Coal feed delays included in 
model 2 structure (minutes) 

0 

7.3 

14.7 

18.3 

22 

25.7 

29.3 

33 
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Looking at model 4, it is found that this structure as well included more than one delay for the 

coal feed. 

Table 37: Coal feed delays included in the model structure for model 4 

Coal feed delays included in 
model 4 structure (minutes) 

0 

3.75 

7.5 

15 

30 

33.75 

 

Both models included a coal feed delay of just over 7 minutes, corresponding with the visual 

inspection of the data. The other delays could however be included by the GP algorithm 

based on some events in the output corresponding to steps in these latent variable inputs. 

The contributions of these additions could possibly be artificial and not a true representation 

of the process. It is concluded that the inclusion of more delays then initially estimated in the 

model structure could have caused the inverse reaction of the model, although this cannot be 

proven as fact. It is recommended that the influence of the various coal feed delays be 

investigated further in future research. 

Although these last two models, models 2 and 4, are inverted in terms of expected burner 

dynamics, it was decided to use these models to investigate the ability of applying one step-

ahead prediction models, resulting from the identification methodology followed, in a model 

based predictive controller. The investigation will focus on  

 The complexity required to construct the controller from such a long time delay 

dynamic model using a real time latent variable construction; and  

 Ability to optimise the control moves using the dynamic model and latent variable 

construction.  

The aim will not be to construct a usable controller, seeing as a representative model of the 

process could not be identified, although the fitness statistics indicate a relatively good fit. 
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The inverted actions may be assigned to closed loop data dynamics. This needs to be 

confirmed in future studies. 

9.3 Model Predictive Controller Outputs 

The methodology discussed in ‎Chapter 6 was implemented without any feedback in the 

control strategy. Models 2 and 4 were used. From the results of the sensitivity analyses and 

the freerun prediction, it was decided that there will be no mismatch between the plant model 

and the controller model used for the controller simulations, thus only investigating the 

usability of the complex latent variable construction required for freerun prediction; as well as 

the nonlinear model structure for freerun stability and optimisation of manipulated variable 

control moves. 

Two experiments for each of the two models were investigated. The aim is measuring the 

ability of using the culmination of the identified nonlinear model, real time latent variable 

construction, model predictive control strategy, identified prediction and control windows and 

an industry used genetic algorithm optimiser. The reader is referred back to the diagram in 

Figure 26, and the corresponding discussion, for review of this approach. 

The two experiments (runs 1 and 2) include the developed model predictive controllers with 

prediction and control windows. The prediction window is selected from visual analysis of the 

settling time during the sensitivity analysis, as discussed previously in section ‎9.2 Model 

Sensitivity Analysis. It is noted that these prediction windows are larger than the freerun 

prediction stability of model 2 and model 4. These were however selected as an initial 

starting point for prediction window selection. Selecting a shorter prediction window will result 

in skewed optimisation due to the overshoot spikes in the model output. This might require 

an altered goal function catering for overshoot and oscillations in the output. Alternate goal 

functions and prediction window selection is not investigated in this research and it is 

recommended that these be investigated in a follow up research focussing solely on MPC. 

The control window is selected based on the time required for optimisation of the prediction 

window. This is discussed in the methodology, section ‎6.3 Process Prediction and Control 

Move Optimisation. 
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Table 38: Controller Setups investigated for the control of the hot gas generator 

Simulation 
Number 

Model 
Prediction 
Window 

(Np) 

Control 
Window 

(Nc) 

Set Point 
Change 

Goal Function 

Run 1 
Model 

2 
440 96 Yes 

Optimised 
across 440 
prediction 

steps 

Run 2 
Model 

4 
450 96 Yes 

Optimised 
across 450 
prediction 

steps 

 

It should be noted for the research conclusions that setting up a real time freerun prediction 

in the CSense Architect development environment is not efficient. The whole sequence of 

freerun prediction model formulas were hardcoded repeatedly using various variables for 

each freerun prediction step. This could have influenced optimisation efficiency. 

The output of run 1, Figure 69, indicates that the constructed MPC could not control the 

process for the setpoint (red line) at set points of 830°C and 820°C. The goal function output, 

at the bottom of same figure, indicates that the optimiser could not optimise the model for 

both setpoints. This is especially visible for set point 820°C. At the set point of 840°C the 

model could be better optimised and the model was better controlled than the other operating 

sections of 820°C and 830°C. Although the set point of 840°C was not tracked 100%, the 

MPC application shows some ability to optimise the model in this region.  

The noise in the model output indicates a weakness of the model used, as the process will 

not able to jump up and down so quickly in practice. It is expected that the various lags used 

in the latent variable construction would contribute to the inclusion of a transient response 

component, together with the various lags introduced by the latent variable construction.  

From the results it is however clear that there is no smooth transient response component 

included in the model. Inclusion of such a component should be investigated. 
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Figure 69: MPC output for run 1 indicate poor control of the process for the lower output, but better control 
at the higher set point. 

Run 2, Figure 70,  indicates similar step results for the goal function output compared to the 

change in set point. However the value of the goal function is visually higher than run 1 in all 

cases, indicating worse optimiser performance for the recursive model script used. This 

could be due to the unstable freerun prediction, which is to be expected. The current 

prediction window is 450 time steps. From the freerun prediction stability analysis in 
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section ‎9.1, the model freerun prediction started to deteriorate at 153 time steps. The model 

freerun prediction ability is thus too unstable for MPC, as can be seen from the MPC results. 

 Once again the lack of a transient response component is notable from the sudden peaks 

and drops in the outlet air temperature. 

 

Figure 70: MPC output for run 2 indicates poor ability to control the process and higher goal function 
outputs. 

Comparison of the average outlet air temperature for each set point across all the runs, 

Figure 71, indicate that both runs 1 and 2 could not control the process at the set points 820° 
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and 830°C. Run 2 was not able to optimise the process at the 840°C set point either. The 

figure however indicates that run 1 was able to control the process at the set point for 840°C.  

 

Figure 71: Average outlet air temperature for each set point across all the runs 

A selection of random control moves were generated for the constructions of runs 1 and 2. 

These were named run 3 and run 4, with the first being a replication of run 1, and the latter, 

of run 2. The randomly generated control moves indicate that the model in run 1 and 3 has a 

lower normal output than the model used for runs 2 and 4. This could indicate that the model 

in run 2 could not be optimised at the lower set points due to the models natural inclination to 

predict higher values. The same argument could explain why the run 1 could optimise good 

at 840°C as the model‟s natural inclination is to settle at 840°C. Figure 72 below shows that 

the standard deviation for the section best controlled, run 1 at 840°C, has the lowest 

standard deviation. The poor controller performance for run 2 is further indicated by the high 

standard deviation of the outlet air temperature for all the set points investigated.  
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Figure 72: Standard deviation of the outlet air temperature for each set point across all the runs 

It is concluded that the recursive nonlinear model structure is too complex with too many 

degrees of freedom to optimise and the optimiser used is too weak to optimise the given 

problem. Another optimiser should be investigated. This requires the MPC architecture and 

solution used to be reconstructed on another platform. 

The lack of a smooth transient response component also makes the HGG process 

representation by the models questionable. The models are anyway rendered obsolete due 

to the inverse process output actions identified during the sensitivity analysis. The inclusion 

of a transient response component should be investigated.  

9.4 Comparison to Current Plant Controller 

The current live plant controller is the IMC setup discussed earlier. The controller is expected 

to follow a set point constantly at 900°C. The mean and standard deviation of the best 

performing section of the MPC simulation above is compared to the results from the IMC. 

MPC Run1 controlled at 840°C is compared to the live IMC on site. It is clear from the 

comparison of the mean values and standard deviations, in Figure 73, that the current live 

IMC outperforms the best of the MPC simulations. 
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Figure 73: The current IMC controller for the HGG operation live on site, performs better than the best control 
found during the MPC simulations. 

Table 39: Comparison of means and standard deviations indicate that the current live IMC outperforms the 
best of the MPC simulations. 

Controller Set Point Mean Standard 
Deviation 

Live IMC 900 899.98 1.005 

MPC Simulation Run1 840 840.56 3.536 

 

9.5 MPC Conclusions 

The hot gas generator resulted in promising models from the SID exercise. These models 

were investigated for stable freerun prediction, sensitivity reaction to stepped inputs and the 

final chosen models were developed into an MPC solution. 

The following conclusions are made regarding the MPC approach: 

 Sensitivity Analysis is crucial to identification of the models for MPC. The sensitivity 

analysis indicated model 1‟s inability to adjust the process settling temperature, 

despite having the best model fit statistics; 

 The models identified contained inverted process dynamics. This could be due to the 

inclusion of various delayed versions of the coal feed or lack of closed loop 

identification methods in the approach used; 
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 Testing of model freerun prediction ability is crucial in choosing a model for MPC. 

Model 3 was rejected based on freerun prediction analysis. The freerun prediction 

performance possibly also identifies why model 4 could not be optimised, as it was 

unstable after 153 time intervals into the freerun prediction, but was applied in a MPC 

with a prediction window of 450 time intervals; 

 The use of the latent variable construction was easily configurable and is found 

appropriate for real time implementation. Future modelling using latent variable 

construction can definitely be considered; 

 No true conclusion can be made with regards to using the GA in the controller, seeing 

as the model freerun ability is questionable. It is noted that the complex model 

structure together with the long prediction windows might have contributed to the 

controllers inability to optimise the more stable model 2; 

 The CSense development environment does not allow efficient freerun prediction for 

the model structure used. This should be investigated for future real time 

implementations if MPC is considered with such a formula based model. 

(It is noted that a solution can be constructed in various coding languages for the 

software. The user friendliness for any process engineer is the trade off in such a 

case); 

 The current IMC controller performs better than the developed MPC; 

The solution is thus found infeasible and overly complex for a real time solution. It is 

recommended that linear models, or piece-wise linearisation of models be investigated for 

the models identified. It is also recommended that open loop step test data be used to insure 

the data are valid for system identification.  
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Chapter 10 Conclusion 

The aim of this research was to investigate a concentrate dryer operation for possible control 

strategies. This investigation entailed research of current dryer literature to identify suitable 

control strategies, as well as a system identification methodology. This SID methodology was 

used to extract information from the historic dryer operation data in an attempt to identify a 

nonlinear dynamic model to be used in an advanced process control strategy, specifically a 

model predictive controller.  

The contribution of this study is thus aimed at system identification of the unknown model 

structures for dryers using a conglomeration of system identification techniques, to identify a 

process model for the flash dryer operations. The resulting model indicates which area of the 

dryer is best suited for modelling and control. This model is also used in developing, 

constructing and testing the use of this model in an advanced control strategy. 

The main conclusion based on the problem statement is: 

The historian data could not be used for system identification of the flash dryer model. 

The hot gas generator could not be modelled, despite the fact the R2 model fit was 

above 70%. Inverted dynamics were recognised rendering the HGG model inaccurate. 

The lack of a model hampered proper testing of an MPC controller, although the data 

preparation and use the empirical NARX model in an MPC application for a 

implementation in CSense could be tested. This approach was found to be limited by the 

optimisability of the unstable freerun prediction ability of the model by the supplied GP. 

The main case study results with regards to the dryer study include the following: 

1. Model based control is the preferred dryer control strategy 

Model based control, and specifically MPC, is identified from literature as being the 

control strategy best suited to the dryer operation‟s nonlinear behaviour and long dead 

times. MPC is also capable in handling multivariate problems common in dryer 

operations. 
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2. Dryer dynamics are complex and misunderstood, requiring a SID strategy and 

algorithm capable of identifying unknown model structures 

GP is a possible solution, amongst others, capable of identifying both model structures 

and parameters if the correct data are provided, and is a favoured approach for 

unknown model structures. This technique was combined with a latent variable 

construction method, allowing investigation of unknown process lags and construction 

of a nonlinear dynamic model to be identified. 

3. Process measurements investigated in literature are not available in practice 

The lack of process instrumentation in practice for accurately measuring concentrate 

temperature and moisture, in and out of the dryer, as well as the drying air humidity, 

hampers both the accuracy of the system identification results, as well as the controller 

efficiency. Absence of these variables result in lack of influential dynamics as well as 

the construction of a noise model. 

4. Latent variable construction of the subdivided timeseries allowed identification 

of dynamic models 

The creation of various lagged variables using delay parameters identified, allowed the 

time delays in dryer dynamics to be included in the model. The structured identification 

of the delay parameters allowed weak inter-correlated lagged variables to be 

investigated for process dynamics. Poor selection of these embedded variables would 

have resulted in possible strongly correlated input variables to compete for the same 

position, wasting algorithm energy. The latent variable construction is also easily 

implemented in a real time solution in the CSense development environment. 

5. No representative flash dryer model could be identified from the data 

The GPOls method, with latent variable construction of the input and output variables, 

could not identify a model with good enough fit statistics to represent the flash dryer 

process. Temperature spikes due to feed stoppages could be identified, however the 

other dynamics were predominantly missed. 
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6. Models for the hot gas generator could be identified and validated well, but were 

found to lack the proper dynamics during the sensitivity analysis 

SISO models, due to lack of variation in the fluidised damper variable, were identified 

successfully for the hot gas generator. These models validated well against the historic 

data and showed stable freerun prediction. However, inverse reactions to coal feed 

occurred with outlet air settling at a lower temperature when coal was fed; and vice 

verse. The models could thus not be accepted to represent the process. Suitability of 

these models for use in a MPC strategy was however investigated, despite the 

misrepresentation of the process. 

7. GA optimiser could not optimise the freerun HGG model 

GA optimiser could not optimise over the prediction window seeing as the freerun 

prediction stability was poor. The long prediction window required to include settling 

time was longer than the freerun prediction ability of the model. This proved 

detrimental in that the model could not be optimised. The more stable freerun model, 

model #2, indicated some ability to be optimised in a specific region, but the complex 

model structure is expected to have hampered the optimisation. 

As system identification entails the largest part of this study, with efforts and adjustments to 

the approach occurring frequently in an attempt to identify flash dryer models, some of the 

conclusions with regards to the system identification approach are presented here: 

1. The GPOls toolbox obtains results comparable with Discipulus Lite® 

The benchmarking exercise between the GPOls algorithm and the commercially 

available Discipulus Lite®, indicates comparable results with Discipulus Lite® 

outperforming according to fit statistics. The GPOls results are however still within a 

comparable order of magnitude, and can thus be used with confidence. 

2. The GPOls toolbox outperformed the Linear ARMA Model 

The GP approach performed better than linear ARMA models constructed based on 

the latent variable reconstruction. These models are cheaper, but performed worse 
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than the GP approach, indicating the nonlinear system identification methods required 

for dryer modelling. 

3. The advanced nonlinear functional set is favoured for SID with the GP 

The advanced functional set, which contain the square root and exponent functions, 

proved to be favoured over the more basic functional set. This is ascribed to the 

expected nonlinearities present in the dynamics of the dryer.  

4. The induced bias is preferred over the square root of the absolute value given a 

fitness function adjustment 

The biased dataset, in an attempt to prevent non-real numbers, produced models with 

better fit statistics when used with the square root, than the absolute value. It was 

found imperative to still adjust the fitness function to penalise non-real numbers due to 

the square root of a conglomeration of functions. This combination of bias and 

adjusted penalty function proved to work well with the GPOls algorithm. 

5. The use of a predefined population contributed to system identification 

The use of previous populations as a base to start a search from allowed the search to 

be both directed and make use of earlier breakthroughs by previous GP experiments. 

The GP algorithm was not consistently able to reach a global optimum, but departure 

of the search from this “heightened” population allowed earlier breakthroughs to be 

harnessed. This functionality was only used during system identification of the flash 

dryer model, seeing as it provided difficult dynamics to identify.  
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Chapter 11 Recommendations 

Based on the conclusion discussed previously as well as the inability of the system 

identification step to identify a representative model, according to both validation fit statistics 

and expected response, the following recommendations are made for future experiments for 

dryer modelling and control. 

1. Investigate the SID and MPC methodology on a known model 

The methodology, application of the method of latent variable construction with GP, should 

be tested against a known nonlinear model. The result should be implemented as is done 

in this study to establish the validity of the method.  

2. Investigate better process measurements through either instrumentation or the use 

of “soft sensors” 

The lack of feed and product temperatures and moistures hamper modelling and accurate 

control. The measurements of air humidity should also be investigated. The inclusion of 

measurement could be investigated by comparison to a fundamental dryer model for the 

specific dryer and comparing the results of the data and system identification from the 

data. Literature indicates these sensors are unable to handle the harsh dryer conditions, 

thus implying the investigation of air humidity model based (“soft”) sensors as an option. 

3. Investigate the inexplicable Flash Dryer dynamics noted in this research 

Investigate the occurrences of the misunderstood sections of dynamics, named “idle” and 

“anomaly” in this research, in an attempt to understand what caused these dynamics in the 

data. 

4. Investigate whether closed loop system identification would result in NON-inverted 

models 

The identified models showed inverse process dynamics. It could possibly be ascribed to 

the data being collected under closed loop control. The incorporation of closed loop SID 

techniques should be investigated for inclusion in identification of the HGG process model.  
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5. Investigate inclusion of a transient response component 

The steps in the model outputs are very sudden for the empirical model identified by the 

GP. The incorporation of a transient response component for the output should be 

investigated as it might better represent the steps in the process. 

6. Investigate the use of the ARMA linear models for use in a MPC 

The linear ARMA models identified should be investigated for use in a MPC, as it does not 

carry the baggage of complex optimisations, but still allow representation of the model. 

This should also result in a more basic freerun prediction structure in the software 

environment used. 

7. Investigate a GP fitness function which measures the freerun ability of the identified 

model 

Investigate an alternate fitness function for the GP which includes the freerun prediction 

ability of an individual. This would allow identification of a model best fit for freerun 

prediction and can be penalised based on the length of freerun required. This would 

however require longer modelling times, but might be beneficial if a representative model 

could be identified able of stable freerun prediction. 
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Appendix A  – Normalisation Parameters 

The means and standard deviations used for normalisation of each dataset is included in this 

appendix: 

B.1. Flash Dryer 

Idle States Removed 

Flash Dryer Variable Dataset Number Mean Standard Deviation 

Concentrate Feed 
(ton/hour) 

1 28.932 15.359 

2 23.146 10.958 

3 36.659 10.257 

Flash Dryer Inlet 
Temperature (°C) 

1 894.408 41.233 

2 900.564 11.480 

3 901.551 5.806 

Flash Dryer Outlet 
Temperature (°C) 

1 129.979 25.795 

2 137.467 17.380 

3 110.503 13.457 

 

Idle States Present 

Flash Dryer Variable Dataset Number Mean Standard Deviation 

Concentrate Feed 
(ton/hour) 

1 28.932 15.359 

3 28.848 16.929 

Flash Dryer Inlet 
Temperature (°C) 

1 894.408 41.233 

3 894.888 14.183 

Flash Dryer Outlet 
Temperature (°C) 

1 129.979 25.795 

3 111.625 21.775 

 

B.2. Hot Gas Generator 

No distinction was made regarding states 

Hot Gas Generator 
Variable 

Dataset Number Mean Standard Deviation 

Coal Feed (ton/hour) 1 23.515 5.194 

Hot Gas Generator 
Outlet Temperature 
(°C) 

1 827.430 15.634 
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Appendix B – Dataset Reduction 

This addendum contains the detailed procedure and results for dataset reduction. 

The basis on which datasets will be filtered will initially be by visual inspection. This is humanly 

possible due to the few variables involved and knowledge of the expected dynamics. To 

accomplish this the shortest timeseries need to be deleted and the remaining timeseries 

should be displayed visually. 3000 data points was the cut off for hot gas generator timeseries 

and 7000 data points was the cut off for flash dryer timeseries. These values were selected 

based on visual inspection of the available subdivided dataset lengths. 

If the visual inspection could not distinguish the best timeseries, then the nonlinear system 

identification methodology will be used. Distinguishing between usable datasets can be done 

on the grounds of these findings. 

Two data preparation approaches result in two different divisions of the timeseries. As 

discussed in the previous section the one approach divides the timeseries according to the 

APC status and the data gaps. The second approach only takes the data gaps into account, 

assuming the controllers will not significantly alter the process dynamics. 

B.1. Flash Dryer Datasets 

B.1.1. Timeseries Subdivided According to APC Status and Data Gaps 

After initial inspection of the sub-datasets it was decided to only use datasets with more 

than 1000 data points. The remaining datasets will be analysed visually. This was found to 

be sufficient as, what is perceived by the researcher as a manageable amount of datasets, 

were left over. For the FD model 6 datasets remained. The resulting datasets are included 

in Figure 74 below.  
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Figure 74: Flash Dryer datasets identified for modelling based on APC status and timeseries length 

The flash dryer datasets chosen for possible modelling includes six timeseries datasets, but 

with less consistent and determinable dynamics than the hot gas generator datasets. The 

number of data points per dataset is: 

Table 40: Length of subdivided timeseries datasets for the flash dryer; measured in number of data points 

Dataset 
Number 

Number of 
Data Points 

1 29628 

2 17055 

3 16728 

4 9589 

5 7479 

6 7071 

 

There is thus a dramatic drop in the length of continuous timeseries when looking at the 

subdivided datasets. It is apparent that the first three, and longest, datasets will be chosen 

based on length. Further visual inspection of the process dynamics in Figure 74 indicate 
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that datasets 4, 5 and 6 have periods where the flash dryer temperature gradually degrades 

and contains very little oscillating dynamics as is seen in datasets 1, 2 and 3. From visual 

inspection of the trend of the full flash dryer dataset, Section 4.3.3 - Figure 19, combined 

with the trends above, it is clear that these sections of gradual degradation occur when the 

hot gas generator APC was switched off and when the process was in idle. At this time the 

filter cake feed was also off. Although this information of slow temperature drop during idling 

might contribute to the process model, it is of no use only modelling this, as will be done if 

dataset 4, 5 and 6 are used. Furthermore dataset 2 starts off with a idle state. This situation 

will need definite starting conditions which cannot be assumed to exist at the start of the 

dataset. The conclusion is made that datasets 1 and 3 will be used for modelling. 

Note that these gradual degradation sections were found to hamper the model fitting to 

general drying circuit operations. This is discussed next in section ‎B.1.2. 

B.1.2. Timeseries Without Dryer Process IDLE state 

The flash dryer timeseries identified in the previous section include sections where the flash 

dryer outlet air temperature decreases gradually. During this time the hot gas generator 

operation is stepped down, but still operational. The flash dryer feed is also stopped. Initially 

it was expected that including these degradation dynamics will assist in creating a more 

representative model. During system identification it was however found that separating this 

idle state allows better modelling for both the active and the idle state.  

The resulting datasets for the active dynamics, only looking at datasets 1, 2 and 3 as 

illustrated in Figure 74, are portrayed in the following figure, Figure 75. Only datasets 2 and 

3 were reduced by deleting the first 5500 and 4700 data points, identified visually, 

respectively. 
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Figure 75: Flash Dryer datasets identified for modelling based on APC status, Process Idle States and 
timeseries length 

The dataset lengths have been reduced as indicated below. 

Table 41: Number of data points per dataset for flash dryer datasets with the process idle states removed 

Dataset 
Number 

Number of 
Data Points 

1 29628 

2 11556 

3 12029 

 

With the gradual degradation of the flash dryer outlet air temperature during the idle states 

removed, dataset 2 can also be investigated for use in system identification. 
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B.2. Hot Gas Generator Datasets 

B.2.1. Timeseries Subdivided According to APC Status and Data Gaps 

After initial inspection of the subdivided datasets it was decided to only use datasets with 

more than 1000 data points. The remaining datasets will be analysed visually. This was 

found to be sufficient as, what is perceived by the researcher as a manageable amount of 

datasets, were left over. For the HGG model 8 datasets remained. The resulting datasets 

are included in Figure 76 below.  

 

Figure 76: Hot Gas Generator datasets identified for modelling based on APC status and timeseries length 
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The chosen eight hot gas generator datasets clearly indicate the “bang-bang” control 

approach used when the APC is off. This should allow easy system identification seeing as 

it represents data similar to what is expected during step testing. The number of data points 

included in each timeseries dataset is: 

Table 42: Length of subdivided timeseries datasets for the hot gas generator; measured in number of data 
points 

Dataset 
Number 

Number of 
Data Points 

1 8752 

2 7335 

3 6492 

4 6010 

5 5579 

6 4666 

7 4470 

8 3492 

 

The average operating range is however very limited. The hot gas generator outlet 

temperature range is between 800 and 880°C with the exception of dataset 7 which 

contains a section ranging between 890 and 940°C, but then drops to the same dynamics 

as the other datasets for the remainder of the time. The operating range for the fluidising 

damper is however problematic, as it was constant throughout all the datasets. 

The conclusion is made that any of the datasets can be used for modelling purposes, but 

the fluidising damper will need to be omitted from modelling. The longest dataset will thus 

be used: Dataset 1. 

Further analyses would commence on these remaining datasets alone. Note that the 

datasets will be tested for availability of process information and dynamics by means of the 

surrogate data comparison. This will provide an analysis of the possibility of identifying a 

model from the datasets. 
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Appendix C – Process Output Timeseries Analysis 

The complete surrogate data comparison results for all the datasets specified is included in 

this section. The meaning and discussion of these trends are included in sections ‎8.1.1.3 for 

the flash dryer and ‎0 for the hot as generator. 

The analysis was done to obtain a priori information regarding the dynamics available in the 

timeseries by only looking at the output dataset. This was done by viewing the dynamic 

attractor in the phase space as well as the surrogate data plot against the real timeseries to 

determine if the process dynamics are deterministic or stochastic. This was done for each 

chosen dataset for the flash dryer and the hot gas generator setups separately.  

C.1. Analysis 1: Flash Dryer Dataset 1 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 82 5 

Autocorrelation 623 4 

 

Trend of the dataset under study: 

 

Figure 77: Flash Dryer Outlet Temperature for Dataset 1 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 176 
 

Both sets of delay parameter pairs were analysed separately.  

Trend of the surrogate data comparison: 

 

Figure 78: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 82x4 

 

Figure 79: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 623x4 
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The delay parameter set 623x4 is better separated from the surrogate data, although better 

separation should be required. 

C.2. Analysis 2: Flash Dryer Dataset 1 Pre Anomaly Data 

The timeseries before the anomaly is investigated separately. This is a section of dataset 1 

ranging from data point 1922 to data point 10830. This interval is established visually. 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 47 4 

Autocorrelation 273 Too few data points 
in dataset to 
calculate this 

dimension 

 

Trend of the dataset under study: (Boxed area is investigated) 

 

Figure 80: Flash Dryer Outlet Temperature for Dataset 1 before anomaly 1 

Only the set of delay parameters identified by AMI and FNN were analysed. 

Trend of the surrogate data comparison: 
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Figure 81: Surrogate Data Classification of the FD outlet air temperature for delay parameters 82x4 

The surrogate data analysis indicates that the timeseries could not be differentiated from 

stochastically driven data and is thus not best suited for system identification. 

C.3. Analysis 3: Flash Dryer Dataset 1 Post Anomaly Data 

The timeseries before the anomaly is investigated separately. This is a section of dataset 1 

ranging from data point 14290 to data point 22950. This interval is established visually. 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 52 4 

Autocorrelation 368 Too few data points 
in dataset to 
calculate this 

dimension 

 

Trend of the dataset under study: (Boxed area is investigated) 
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Figure 82: Flash Dryer Outlet Temperature for Dataset 1 after anomaly 1 

Only the set of delay parameters identified by AMI and FNN were analysed. 

Trend of the surrogate data comparison: 

 

Figure 83: Surrogate Data Classification of the FD outlet air temperature for delay parameters 52x4 

The surrogate data analysis could identify some deterministic data in the datasets. 
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C.4. Analysis 4: Flash Dryer Dataset 2 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 41 4 

Autocorrelation 405 3 

 

Trend of the dataset under study: 

 

Figure 84: Flash Dryer Outlet Temperature for Dataset 2 

Both sets of delay parameter pairs were analysed separately. Results are 

Trend of the surrogate data comparison: 
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Figure 85: Surrogate Data Classification of the FD outlet air temperature for delay parameters 41x4 

 

Figure 86: Surrogate Data Classification of the FD outlet air temperature for delay parameters 405x3 

Both surrogate data classifications indicate very good separation from the surrogate data. 
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C.5. Analysis 6: Flash Dryer Dataset 2 Idle State Removed 

The idle process state was removed for this analysis. 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 58 4 

Autocorrelation 365 3 

 

Trend of the dataset under study: 

 

Figure 87: Flash Dryer Outlet Temperature for Dataset 2 with IDLE states removed 

Both sets of delay parameter pairs were analysed separately. Results are 

Trend of the surrogate data comparison: 
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Figure 88: Surrogate Data Classification of the FD outlet air temperature with IDLE states removed for delay 
parameters 65x5 

 

Figure 89: Surrogate Data Classification of the FD outlet air temperature with IDLE states removed for delay 
parameters 365x3 
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Both surrogate data classifications indicate that the process dynamics are not very strongly 

deterministic and might be difficult to model. The removal of the idle-state decreased the 

deterministic information in the timeseries. 

C.6. Analysis 7: Flash Dryer Dataset 2 Anomaly and Idle Data Removed 

The timeseries before the anomaly is investigated separately. This is a section of dataset 1 

ranging from data point 1 to data point 9617. This interval is established visually. 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 42 4 

Autocorrelation 273 3 

 

Trend of the dataset under study: (Boxed area is investigated) 

 

Figure 90: Flash Dryer Outlet Temperature for Dataset 2 before Anomaly with IDLE state removed 

Trend of the surrogate data comparison: 
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Figure 91: Surrogate Data Classification of the FD outlet air temperature for delay parameters 42x4 

 

Figure 92: Surrogate Data Classification of the FD outlet air temperature for delay parameters 273x3 

The surrogate data indicates poor separation from the stochastic data. 
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C.7. Analysis 7: Flash Dryer Dataset 3 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 65 5 

Autocorrelation 168 5 

 

Trend of the dataset under study: 

 

Figure 93: Flash Dryer Outlet Temperature for Dataset 3 

Both sets of delay parameter dimension pairs were analysed separately. Results are 

Trend of the surrogate data comparison: 
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Figure 94: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 65x5 

 

Figure 95: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 168x5 

Both surrogate data classifications indicate that the process dynamics are deterministic, and 

thus suitable for system identification. 
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C.8. Analysis 8: Flash Dryer Dataset 3 Idle State Removed 

The idle process state was removed for this analysis. 

Variable under investigation: Flash Dryer Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 65 5 

Autocorrelation 109 5 

 

Trend of the dataset under study: 

 

Figure 96: Flash Dryer Outlet Temperature for Dataset 3 with IDLE states removed 

Both sets of delay parameter pairs were analysed separately. Results are 

Trend of the surrogate data comparison: 
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Figure 97: Surrogate Data Classification of the FD outlet air temperature with IDLE states removed for delay 
parameters 65x5 

 

Figure 98: Surrogate Data Classification of the FD outlet air temperature with IDLE states removed for delay 
parameters 109x5 
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The surrogate data analysis indicates more stochastic behaviour than when the idle states 

were included. The removal of these easily modelled areas may explain the less deterministic 

behaviour of the surrogate data classification. 

C.9. Analysis 9: Hot Gas Generator Dataset 1 

Variable under investigation: Hot Gas Generator Outlet Air Temperature 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Flash Dryer Outlet 
Air Temperature 

AMI 65 4 

Autocorrelation 76 4 

 

Trend of the dataset under study: 

 

Figure 99: Hot Gas Generator Outlet Temperature for Dataset 1 

Both sets of delay parameter pairs were analysed separately. Results are 

Trend of the surrogate data comparison: 
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Figure 100: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 65x4 

 

Figure 101: Surrogate Data Classification of the HGG outlet air temperature for delay parameters 76x4 

The dynamic attractors indicate very strong cyclic behaviour with practically no noise in the 

dynamics. The surrogate data comparison indicates good separation from the stochastic data. 
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C.10. Conclusions 

It is apparent that the removal of the idle states in the flash dryer datasets has caused the 

dynamics to be less deterministic. The inclusion of the idle state is however not preferred as it 

is not fully understood in terms of dynamics and method of data collection. It is possible that 

this is caused by a data collection error. There is no information to back this assumption. 

The hot gas generator dataset surrogate data analysis indicates that the process is largely 

deterministic and thus the dynamic behaviour should be more easily extracted by the system 

identification parameters. 
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Appendix D – Delay parameters 

The delay parameters, as identified in the methodology, make use of both the AMI as well 

as autocorrelation methods to determine delay. From this the number of delayed variables 

is determined. The following parameters were obtained for the flash dryer datasets 1 and 3 

and hot gas generator dataset 1. Flash dryer dataset 3 is presented with and without the 

presence of the process idle-state. The removal of anomalies for the flash dryer datasets is 

not investigated. 

Flash Dryer Dataset 1: 

Table 43: Delay parameters for process variables for Flash Dryer Dataset 1 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Filter Cake Feed 
Rate 

AMI 62 8 

Autocorrelation 315 10 

Hot Gas Generator 
Output Temperature 

AMI 74 6 

Autocorrelation 260 6 

Flash Dryer Outlet 
Air Temperature 

AMI 82 5 

Autocorrelation 623 4 

 

Flash Dryer Dataset 3: 

Table 44: Delay parameters for process variables for Flash Dryer Dataset 3 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Filter Cake Feed 
Rate 

AMI 17 10 

Autocorrelation 16 10 

Hot Gas Generator 
Output Temperature 

AMI 80 6 

Autocorrelation 338 5 

Flash Dryer Outlet 
Air Temperature 

AMI 65 5 

Autocorrelation 168 5 
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Flash Dryer Dataset 3 – IDLE states removed: 

Table 45: Delay parameters for process variables for Flash Dryer Dataset 3 with IDLE states removed 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Filter Cake Feed 
Rate 

AMI 16 10 

Autocorrelation 16 10 

Hot Gas Generator 
Output Temperature 

AMI 56 6 

Autocorrelation 363 5 

Flash Dryer Outlet 
Air Temperature 

AMI 65 5 

Autocorrelation 109 5 

 

Hot Gas Generator Dataset 1: 

Table 46: Delay parameters for process variables for Hot Gas Generator Dataset 1 

Process Variables Method to 
Determine Delay k 

Delay (k) Number of Delayed 
Variables (m) 

Coal Feed AMI 44 10 

Autocorrelation 45 4 

Hot Gas Generator 
Output Temperature 

AMI 65 10 

Autocorrelation 76 4 
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Appendix E – Genetic Programming 

This section is an overview of system identification, genetic programming in general, the 

GPOls toolbox used and all additions and adjustments incorporated for data preparation or 

analysis of results. 

E.1. System Identification Overview 

The understanding of any process, system, dynamic or chemistry rests on the availability of 

information and knowledge. The usefulness of this information depends on the problem 

which needs to be solved and the format the information, or knowledge, is available in. 

Engineering and science, mathematics and mathematical models are embedded with large 

amounts of information and knowledge, thus enabling one to harness these mathematical 

equations and methods to further the understanding of the subject under study. (McKay et 

al., 1997) Mathematical models allow better supervision, fault detection, prediction, 

estimation of immeasurable variables, optimisation and model based control. (Coelho & 

Pessôa, 2009) 

In control theory, the model of a process or system, essentially contains the knowledge of the 

relationship between inputs and outputs in a mathematical format. This allows harnessing 

mathematical based control, via computer, to attain the desired process outcomes. The 

benefit from better controlling a process is self explanatory. 

The model is only a created window into the workings of the process and not the process 

itself. It is a fact that the process or system will continue existing or operating whether there 

is a model or not one at all. Nature is not truly susceptible to mathematical modelling, thus 

the focus should shift from obtaining model perfectly representing the whole process to 

obtaining a useful model.(Ljung, 1999)  

The need is thus to find a best representative model for the process concerned, an accurate 

representation in the range of operating conditions, created under valid assumptions and in a 

useful format for the problem at hand. In this case the problem is finding a model useful for 

control be it from first principles or based on data.  
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System identification entails locating a representative model G(x) for a given input-output 

dataset containing the values for the chosen regressor set x. The basic idea is finding this 

unknown model G(xk) that the model‟s outputs are as close as possible to the expected 

output value y(k) for the given input value. 

𝑦 𝑘 = 𝐺 𝑥𝑘 + 𝑒(𝑘) 

e(k) represents the model error; k denotes the current time of the data point. 

The model can be nonlinear or linear and may be parametric or nonparametric depending on 

the system identification method applied. The main questions during system identification 

include  

 choosing the regressor set; 

 finding the model structure;  

 establishing model parameters; and  

 deciding on the best model generated.  

The theoretical background of choice of regressor set and model structure will be discussed 

below. The identification of parameters is left to the used toolbox. Choice of the best model is 

discussed during the methodology discussion. 

E.1.1. Regressor Set and Model Fundamentals 

In a single-input single-output (SISO) system a set of input data u and output data y have 

been observed over the time t. 

𝑢𝑡 =  𝑢 1 𝑢 2 … . 𝑢 𝑡   

𝑦𝑡 = [𝑦 1 𝑦 2 … . 𝑦 𝑡 ]  

System identification entails identifying the relationship between these input and output 

datasets. Assume the real process is represented by a transfer function in past input and 

output values plus all noise and disturbances: 

𝑦 𝑡 = 𝐺(𝑞)𝑢 𝑡 +  𝑣(𝑡) 
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Where u(t) is the input at time t, y(t) is the output at time t, G is the transfer function from u 

to y and v(t) is the noise at time t; q is the discrete time shift operator. The time shift 

operator enables historic values to be incorporated to create a dynamic model. The noise is 

assumed as a Gaussian white noise distribution of e(t) as follows: 

𝑣 𝑡 = 𝐻(𝑞)𝑒 𝑡  

Where H is the filter transfer function used for the white noise input and e(t) is the white 

noise at time t. {e(t)} is assumed to be Gaussian - a sequence of independent random 

variables with a zero mean and a variation λ. 

Ljung (1999) states that in control theory the noise may be excluded from the model to 

create a deterministic model. The resulting “noise-free” model will then be: 

𝑦 𝑡 = 𝐺(𝑞)𝑢 𝑡  

This noise-free solution can be obtained practically by means of a low pass filter in control 

with the assumption that the white noise is a high frequency disturbance. The e(t) term can 

however also be interpreted as model error  or unknown disturbance. (Morari & Zafiriou, 

1989) In such cases the e(t) term is modelled separately and introduced to the control 

structure separately. It is thus important to evaluate whether the error term should be 

included in the control structure, and consequently modelled, or if it can be assumed as 

negligible. The resulting process, the error assumed as significant to the control problem, 

can be diagrammatically portrayed as seen in Figure 102. 
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Figure 102: Input-Output system with disturbances/white noise 

From process knowledge it is apparent that a current system state may be influenced by 

historic values. This was until now represented in the formulas in text by the discrete time 

shift operator q. The time shift operator will be brought back into the syntax when the 

genetic programming algorithm is discussed, but for the time being the historic values will 

be represented as below.  

𝑦 𝑡 = 𝐺 𝑢𝑡−1 , 𝑦𝑡−1 + 𝑣𝑡   

u(t-1) and y(t-1) are called the regressors of the model and are included in the model during 

the model structure selection process. These are defined as: 

𝑢𝑡−1 =  𝑢 1 𝑢 2 … . 𝑢 𝑡 − 1   

𝑦𝑡−1 =  𝑦 1 𝑦 2 … . 𝑦 𝑡 − 1   

If φ(t) is the regressor set included in the model structure, a family of models have been 

defined as G(φ). The resulting model output ŷ is defined as  

ŷ 𝑡 = 𝐺 𝜑  

The model G, as written above, contains the structure but as yet no parameters. Assume 

the chosen model parameters are defined by θ, the model output given the parameters 

selected is: 

ŷ(𝑡│𝜃) = 𝐺(𝜑(𝑡), 𝜃) 
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The model G generated by the chosen modelling technique is thus a function of the chosen 

regressors from u(t) and y(t) combined with the „best‟ parameters θ. Parameter estimation is 

normally either a batch or recursive optimisation process comparing the model outputs ŷ to 

the expected y. (Ljung, 2006) The parameter estimation methods that have been used in 

literature include Batch Least Squares (Willis et al., 1997) , Orthogonal Least Squares 

(Coelho & Pessôa, 2009) and Recursive Least Squares. 

E.1.2. Model structure 

The choice of model structure influences both the quality and price of the model thus 

influencing the usefulness of the model. Quality refers to the accuracy of the model outputs 

normally measured as a mean square error. The price of the model amounts to the effort 

required in obtaining the useable model algorithm and method complexity versus the 

intended use of the model. It is thus clear that some form of experience and involvement is 

required to measure this subjective criterion. 

The general model structure in system identification is given as 

𝐴 𝑞 𝑦 𝑡 =
𝐵 𝑞 

𝐹 𝑞 
𝑢 𝑡 +

𝐶 𝑞 

𝐷 𝑞 
𝑒 𝑡  

The models possible, by combining the polynomials A(q) to F(q), are described in the 

following table. 

Table 47: Common Model Structures 

Polynomials Used Name of Model Structure 

B(q) Finite Impulse Response 

A(q), B(q) Auto-Regressive with 
External/Exogenous Inputs 

A(q), B(q), C(q) Auto-Regressive Moving 
Average with External Input 

B(q), F(q) Output Error 

B(q), C(q), D(q), F(q) Box-Jenkins 

 

These linear model types can be expanded to nonlinear models by expanding the 

polynomials.  
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The choice of regressors included in the model structure will vary depending on the process 

dynamics being modelled and the resulting model structure required. There are essentially 

four sets of regressors which are used in the modelling techniques mentioned: 

 Process Inputs u(t-k); 

 Process Outputs y(t-k); 

 Simulated Model Outputs ŷs(t-k|θ); and 

 Predicted Model Outputs ŷp(t-k|θ) 

The different nonlinear model structures, with the regressors used in each, include (Sjöberg 

et al., 1995), (Ljung, 2006): 

 Nonlinear Finite Impulse Response (NFIR) – u(t-k) as regressor 

 Nonlinear Autoregressive Model with eXogenous inputs (NARX) – u(t-k) and y(t-k) as 

regressors 

 Nonlinear Output Error (NOE) – u(t-k) and ŷ(t-k|θ) as regressors 

 Nonlinear Auto-Regressive Moving Average with eXogeneous input (NARMAX)  – u(t-

k), ŷ(t-k|θ) and ε(t-k|θ) as regressors 

 Nonlinear Box Jenkins (NBJ) - u(t-k), ŷ(t-k|θ), ε(t-k|θ) and εu(t-k|θ) as regressors 

The NARX model structure is defined as: 

𝑦 𝑘 = 𝑓  𝑦 𝑘 − 1 , … , 𝑦 𝑘 − 𝑛𝑦 , 𝑢 𝑘 − 𝑡𝑑 − 1 , 𝑢 𝑘 − 𝑡𝑑 − 2 , … , 𝑢 𝑘 − 𝑡𝑑 − 𝑛𝑢  + 𝑒 𝑘  

(Coelho & Pessôa, 2009) 

Where y(k) is the output at time k; td is the process dead time or time-delay; ny and nu are 

the output and maximum time shifts.  

The reason for choosing the NARX model structure includes: 

 It enables previous process outputs (interpreted as current process states) to have 

an influence on the current process output; 
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 The model structure has been explored succesfully by both Madar et al. (2005) and 

Coelho et al(2009) using the GP algorithm applied in this research; 

 Furthermore, this structure has been used in model based predictive control 

algorithms, although these applications were all neural network NARX structures. 

(Zulkeflee & Aziz, 2009; Ramesh, 2009); 

 The structure easily expands from the linear ARX structure to the nonlinear NARX 

model under discussion; and 

 The linear-in-parameters formulation of the NARX model allows analytical parameter 

estimation methods to be used. 

Rossiter (2003) supplies a practical view on the use of CARIMA models in Model Based 

Predictive Control. The use of NARX models will be similar in approach. NARX modelling 

has recently been used for an experimental mechanical control setup (Coelho & Pessôa, 

2009). This NARX model was generated by means of a genetic programming algorithm. A 

Matlab® toolbox for the creation of NARX models (Madar et al., 2005) by means of genetic 

programming, which is the focus of this study, has been created. 

E.2. Genetic Programming Information 

This section of the appendix provides general GP background for the reader unfamiliar with 

genetic programming. Except for the second GPOls workflow, which is specific to the GPOls 

toolbox, the rest of this section of ‎Appendix E - ‎E.2 focuses on a general discussion 

surrounding genetic programming. 

E.2.1. Genetic Programming Overview 

Evolutionary algorithms (EA‟s) are a family of stochastically driven computation methods 

which aim at finding a solution to a problem by making use of the Darwinian principle of 

evolution commonly stated as “survival of the fittest”. (Grosman & Lewin, 2004) A population 

of possible solutions, in whichever format, will randomly be compared according to certain 

fitness criteria and the “fittest” individual will survive and reproduce, creating a stronger 

population of possible solutions. The algorithm will thus strive at finding a near optimal 
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solution. As it is not a mathematical, step-wise solution to a problem, but rather a stochastic 

optimisation process (Madar et al., 2005), numerous runs of the algorithm to find a solution 

will not provide the same answer every time. It can be expected that the average solution to 

the runs will be similar in nature.  

There are various methods in this family of algorithms: 

 Genetic Algorithms 

 Evolutionary Strategies 

 Genetic Programming 

 Evolutionary Programming 

(Willis et al., 1997) 

These methods have seen growing application in the modelling of nonlinear systems. 

(Hussain et al., 2000; Coelho & Pessôa, 2009). EA‟s have been used to build rule based 

models (De Falco et al., 2000), empirical models (Coelho & Pessôa, 2009; McKay, 1997), 

parameter estimation (Hussain et al., 2000) to name a few applications. 

The main reason for using such algorithms is to simplify the modelling process. The aim is to 

find simpler model structures using less time and less money to create these models. It also 

allows modelling without expert knowledge of the first principles of the process. (Hussain et 

al., 2000).  

Genetic programming (GP) is a popular evolutionary algorithm method first accredited to JR 

Koza (McKay et al., 1997) who, in 1992, made use of evolutionary principles to evolve tree 

structures to generate computer programmes. In GP based system identification a population 

of individual possible solutions is created, compared and the population evolved in the 

direction of increasing fitness to establish an empirical formula that best represents the input-

output relationship in the datasets. This relationship is captured in the hierarchical tree 

structure representing an empirical formula. The evolution process is enabled by 
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reproduction methods, each with its own aim, increasing the fitness while still trying to search 

as large part of the search space as possible. 

GP is chosen as the system identification procedure in this research due to its capability with 

regards to the following: 

 Identifying the model structure from the family of possible model structures with 

limited prior process knowledge; 

 Producing a linear-in-parameters NARX model proved to be usable in model based 

control; 

 Adjustable goal function to decide between possible solutions to the modelling 

problem. 

GP has been used to identify a model for control a food extrusion process (Elsey et al., 

1997); closed loop identification of an experimental floating ball setup (Coelho & Pessôa, 

2009); identification of a nonlinear model for model based control in mixing tank setup and a 

liquid-liquid extraction process (Grosman & Lewin, 2002); and steady state modelling of a 

vacuum distillation column and a stirring tank reactor operation. (McKay et al., 1997) 

E.2.2. Workflow of Genetic Programming 

Genetic programming is a recursive optimisation process starting with an initial population 

of possible solutions each with its own fitness. These fitness values are compared and 

individuals compete against each other, by means of a selection procedure, to reproduce. 

The offspring are expected to have similar or higher fitness values than their parents. These 

offspring are then added back to the population replacing the parents to form the next 

generation of the population. There is no assurance that a global optimum is reached, apart 

from thorough exploration by adjusting the mutation, crossover and direct reproduction 

parameters. Higher mutation rates assists the GP to not get stuck in a local optimum. 

The following diagram sets out the generalised workflow to explain the concept followed by 

evolutionary algorithms. (McKay et al., 1997) (Coelho & Pessôa, 2009) 
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Figure 103: Genetic Programming Algorithm Workflow 
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E.2.3. Initial Population 

The initial population of individual solutions can be generated in various ways. Three of the 

most common methods are: 

 Random generation; 

 Pre-Selected Function; and 

 Previous solution functions 

A GP is normally set up to execute a definite number of runs. In the last population 

generating method above, the solutions from previous runs are included in the population. 

It should be noted that the initial population can be built up from all three these methods to 

increase the model search space. Sjöberg et al. (1995) states that prior knowledge of the 

process and physical insight should be incorporated into limiting the search space for the 

model structure. This makes sense when taking into account that a finite sample of process 

data will not contain all the knowledge about the mechanics and internal workings of the 

process and some guidance can be provided. (McKay et al., 1997) it is however clear that 

limiting the structure of the programmes prematurely eliminates various possible model 

structures from the model space, so this should be done wilfully and cautiously.  

In this experiment, the choice exists to load an existing, or predefined population as 

generation 1, instead of randomly generating a population. This predefined population is 

either the result of a previous experiment or the user‟s manually defined population. 

Defining such a population is not discussed, unless it makes out a very important part of a 

specific experiment. In such a case the source of the predefined population will be 

discussed. 

E.2.4. Fitness Functions 

This section discusses the various fitness functions and the decision surrounding the 

parameters of the fitness function used in this study. 
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The fitness of an individual in a GP is a numeric value and a function of the desired model 

outcome, which is focussed on accuracy. Accuracy, or fitness, is normally measured by 

making use of error based criteria such as least square errors (LSE), with lowest error 

indicating the fittest individual (Greeff & Aldrich, 1998). In some cases correlation 

coefficients of the target output value compared to the model predicted value are used as 

model fitness value. (McKay et al., 1997) Whichever method is chosen, or combination of 

methods constructed to represent fitness, the fitness value is used by the algorithm during 

the search for a solution. Any other statistics calculated, not contributing to the fitness 

function, do not attribute to the search for a solution, unless incorporated elsewhere into the 

algorithm. Such statistics can be used for choosing the optimal model in post analysis work. 

The fitness may be altered depending on the required outcome of the model. In MIMO 

modelling the fitness function is built up by means of weighted values per output variable. 

Another MIMO fitness method makes use of the Pareto fitness. (Hinchliffe & Willis, 2003) 

The fitness function can also be harnessed to penalise an individual for complexity, over 

fitting and severity (Grosman & Lewin, 2002; McKay, 1997; Madar et al., 2005). Madar et al. 

(2005) tried the same penalty function, but also presented a parsimonious tree pruning 

algorithm incorporated in the parameter estimation step. Willis et al. (1997) combines the 

use of root mean square (RMS) fitness with the correlation coefficient by weighting the 

importance of each criterion. Discipulus ® software makes use of minimising the average of 

the square of raw errors over the dataset (Francone, 2001). Winkler et al. (2004) and Greef 

et al. (1998) propose the same approach can be used for nonlinear model structures. The 

point at hand being that the fitness function is very flexible depending on the software being 

used. 

The following fitness functions discussed above were proposed: 

 R2 values are used by Coelho & Pessôa (2009).  

 Greeff (1998) – Sum squared error function (note that the error is minimised). This is 

the base method of measuring fitness in literature.(Winkler et al., 2004) 
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𝑆𝑆𝐸 =  (𝑦𝑖 − ŷ𝑖)
2

𝑁

𝑖=1

 

 Francone (2001) makes use of a standard mean square error with a separated 

algorithm for enforcing parsimony to ensure simpler solutions prevail. 

𝑀𝑆𝐸 =
1

𝑁
  ŷ𝑖 − 𝑦𝑖  

2

𝑁

𝑖=1

 

 Grosman (2004) and Grosman (2002) – Using the standard deviation of the data 

(SSY) as well as the standard deviation of the sum square errors between predicted 

and expected output values (SSE); combined with a penalty for the tree complexity: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝛼𝐹𝑀 + (1 − 𝛼)𝐹𝑃

1 + exp⁡(𝛾1 𝑛𝑏 −  𝛾2 + 𝛽  )
 

𝐹𝑀 , 𝐹𝑃 =
𝑆𝑆𝑌

𝑆𝑆𝑌 + 𝑆𝑆𝐸
 

α applies the importance of the validation set in the fitness formula, implying the 

measure to which over fitting should be taken into account; γ1 is the severity to 

which a complex tree structure should be penalised and γ2 is the level of branches of 

the best solution thus far; β increases the search space. This fitness formula is a 

trade off between model complexity and fitness. 

 McKay (1997) and Madar et al. (2005) – Combination of correlation of output values, 

instead of minimum error methods, combined with a penalty for the complexity of the 

solutions. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑟(𝑖)

1 + exp⁡(𝑎1(𝑆𝐿 − 𝑎2))
 

a1 and a2 are parameters adjusting the softness with which the complexity rule is 

enforced; SL is the size of the tree under investigation expressed as string length; r(i) 

is the correlation coefficient measuring the variation between the predicted and 

expected values. 
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𝑟 𝑖 =  
  

𝑦𝑃(𝑖, 𝑗)𝑦𝑇

𝑅  −   
𝑦𝑃(𝑖, 𝑗)

𝑅    
𝑦𝑇

𝑅
 

𝜎𝑃(𝑖)𝜎𝑇
  

i denotes the individual tree under inspection; j denotes a specific data record; R is 

the number of data records; σP and σT is the standard deviation of the predicted and 

target values; yP(i,j) refers to the predicted value for record j by tree i; yT is the 

expected target value. 

Madar et al. included a orthogonal least squares tree pruning algorithm to enforce 

parsimony. 

 Willis et al. (1997) – A multiple objective fitness function built up by the linear sum 

combination of a RMS error and correlation measure. The correlation is worked in to 

incorporate non-correlated function generation.: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝑓 +  1 − 𝛼  1 − 𝛾  

𝑓 =
𝐸{𝑦}

𝐸 𝑦 + 𝑅𝑀𝑆
 

α is a weighting parameter setting the importance of the RMS and correlation fitness 

measurements; γ is the average of the standard correlation coefficient between 

functional groups; E{.} is the expectation operator. 

The following table compares the fitness functions presented: 

Table 48: Comparison of fitness functions from literature. The sections indicate what the focus of each 
function is. 

Source Prediction Error Correlation Tree complexity 

Francone 
(2001) and 
Greeff (1998) 

   

Grosman 
(2004) and 
Grosman 
(2002) 

   

McKay (1997)    
Willis et al. 
(1997) 

   
Madar et al. 
(2005) 

   
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E.3. GPOls Toolbox 

The GPOls toolbox is built up of 16 *.m files. 7 of these are main function files and the other 9 

are called on to manipulate the tree structures. Within some of the *.m files smaller sub 

function are written for the main purpose of cleaner code. These 16 Matlab® f iles, together 

with the main GP user file, will be discussed.  

The general structure in calling the function, explanation of inputs and outputs, a brief 

description of its workings and where it fits in the larger GP algorithm will be included. The 

user file is discussed first and the GPOLS toolbox files are handled thereafter in alphabetical 

order. 

Note that this discussion does not include the latent variable reconstruction used to construct 

the terminal set. The latent variable reconstruction is discussed separately from the normal 

GPOls algorithm. 

E.3.1. GP Experiment Logic 

The discussion of the logic needed to manage and run the GP will be introduced and 

presented in increases levels of complexity and involvement: 

i. General pseudo code for using the GPOls toolbox; 

ii. Pseudo code for the drying circuit GP experiment; and 

General pseudo code for using the GPOls toolbox: 

Load/define input (X) and output (Y) variables 
Adjust Dataset to expected time shifts and time delays 
Define the functional** and terminal sets.  
Set the population size 
Set the maximum tree size 
Initialise the population using gpols_init function 
Set the GP Parameters/Options 
Evaluate the population using the gpols_evaluate function 
Start the GP loop for a defined number of generations – termination criteria being the number of 
generations. 
 Evaluate and manipulate the population using the gpols_mainloop function 
 Display the result per loop iteration 
End the loop 
Display the best result based on fitness 
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**The Functional Set MUST be defined with a „+‟ first and a „*‟ second in the functional set 

array. This is due to the hardcoded search for terms in the polynomial generating and tree 

pruning functions. 

The pseudo code for using the drying circuit experiment: 

Set up the Matlab® Environment for the experiment by closing all current trends and clearing the 
workspace 
Load the GP Experiment Parameters, including the experiment name, process to model and 
dataset to use 
Load the GPOls parameters, including the terminal set and number of repetitions of the 
experiment required 
Set up the experiment directory and experiment results report 
Load the prepared and normalised dataset into the workspace from a specified directory 
Load the process information for the process being modelled, including the delay parameters 
Set up the validation dataset according to the validation type specified 
Normalise and construct latent variable set for the validation dataset 
Construct latent variable set for the training dataset and define the functional set 
Save the latent variable construction of the training dataset in csv format 
Start the loop of the predefined number of experiments (n=1 to number of experiments) 
 Initialise population or load an existing population 
 Load the GPOls parameters 
 Evaluate the first generation of the population 
 Display the first generations best solution 
 Populate the fitness and MSE values for the first generation for evolution tracking 

Start the loop of Generations with the number of generations as the termination rule 
 

Evaluate and manipulate the population using the gpols_mainloop function 
Display the result per loop iteration 
Populate the fitness and MSE values for the first generation for evolution tracking 
End the generation Loop 

 
Plot the landscape of the evolution of the population for the MSE and fitness values 
Save the landscape to the experiment directory 
Display the best result of the experiment  
Extract an executable version of the result from the population by using the function 
gpols_best_results. 
Calculate the model output by means of the executable model 
Trend the training data versus the model output 
Calculate and display the residuals of the training set 
Calculate the MSE, fitness, model output and residuals of the validation set 
Display the model output and residuals of the validation set 
Populate the Experiment report 
Save the experiment result and report in the experiment directory 
Repeat the Experiment Loop until the number of experiments are reached 
 

Display the experiment report to compare all the experiments 
End the GP run 
 

E.3.2. Drying Experiment Parameters 

The GP logic discussed has various parameters of its own. These parameters are specific 

to the drying circuit GP run and indicate variations in the experiment, such as dataset to use 
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and process to model. The following parameters, with the parameter variable name in italic 

brackets, are worth mentioning: 

Training Dataset Contains Process Idle States (“Idle”): This indicates if the dataset used 

for training contains process idle states. Idle=1 means the dataset does contain idle states 

and Idle=0 means there are no idle states present. The need to distinguish is due to 

distinguish between the dataset to import and the delay parameters to load. 

Identification Method for Delay Parameters Preferred (“AMI”): Delay parameters were 

calculated using both the AMI or Autocorrelation methods. AMI=1 indicates that the delay 

parameters generated by AMI should be used. AMI=0 indicates the use of delay parameters 

generated by means of Autocorrelation. Both methods use the false nearest neighbour 

method to identify the number of latent variables. 

Experiment Name (“ExpName”): The experiment name is used when saving the results. 

Each repetition of the experiment is saved in the same directory under the specified name 

with the number of the specific repetition concatenated to the name. This parameter is a 

string. 

Process to Control (“Controller”): This could be either the flash dryer process or the hot 

gas generator process. This parameter is a number “1” or” 2”, where “1” refers to the hot 

gas generator and “2” refers to the flash dryer. 

Dataset to load (“datasetNumber”): The number of the dataset to be used for training. 

The datasets are stored with numbers in a Matlab® structure. Retrieving the correct data 

requires pointing to the correct dataset number. This parameter is determined by studying 

the datasets to determine the best option. 

Prediction Step Size (“nstep”): The step size of prediction steps required for the 

predictive model is set. By default this is set to one, unless specifically chosen otherwise. 

Validation Type (“type_val”): Specifies if a second dataset will be used for validation (1) 

or a percentage of the training dataset be moved to the validation set (2). This parameter is 

either “1”, or “2”. 
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Validation Dataset or Percentage (“valdatasetNumber” and “Val_percentage”): The 

use of these parameters depends on the choice of the validation type.  

The validation dataset number is used in the same way as the training dataset number 

discussed above. 

The validation percentage indicates the percentage of the training dataset which should be 

used for validation rather than training. This is a fraction between 0 and 1. 

Number of Experiment Repetitions (“NumRuns”): The number of repetitions of 

independent system identification experiments required. The result of every loop is saved 

separately and the collective results are included in the experiment report. 

Generating a new or using a predetermined population (“New_Pop”): This indicates if 

the GP run should randomly generate a new population from the functional and terminal set 

(New_Pop=1). The alternative is to load an old, previously generated population making use 

of population already evolved in a specific direction (New_Pop=0). See ‎Appendix E - ‎E.2.3 

Initial Population. 

E.3.3. GPOls Parameters 

The GPOls parameters are displayed in section ‎5.2.3 in Table 8. These parameters are 

repeated and discussed here. 

Generation Gap refers to the size of the previous population which should be replaced in 

the new population. This is a fraction between 0 and 1 where 0 places the old population 

as-is into the new population, and 1 replaces all of the old population. The remainder of the 

population either undergoes direct reproduction, crossover or mutation. Replacing all of the 

population will result in a very dynamic evolution of the population, but with much less 

consistency. 

Crossover probability controls the chance of an individual being submitted to crossover. It 

is a fraction between 0 and 1, where 0 will result in less crossover and 1 will result in all the 

individuals being submitted to crossover.  
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Probability of mutation controls the chance of an individual being submitted to mutation. It 

is a fraction between 0 and 1, where 0 will result in less mutation and 1 will result in all the 

individuals being submitted to mutation.  

Note: The crossover probability plus mutation probability must be equal or less than 1. The 

remainder less than 1 is calculated and represents the direct reproduction probability. The 

probability for direct reproduction is not explicitly chosen, but calculated as 1-(probability for 

crossover + probability for mutation) 

Selection Type refers to the method by which individuals are chosen for reproduction. 

Reproduction refers to either direct reproduction, crossover or mutation. There are three 

methods of selection, random selection, roulette and tournament selection. 0 indicates 

random selection; 1 indicates roulette selection; and 2 or greater than 2 refer to tournament 

selection. In the case of tournament selection the number greater than or equal to 2 

indicates the number of individuals involved in the tournament.  

One- or two-point crossover indicates the type of crossover. 1 indicates one-point – 2, 

two-point cross over. 

Tree size penalty weighting is a fraction between 0 and 1 indicating the severity of the 

tree size penalty. A lower fraction results in a softer penalty. See ‎E.2.4 Fitness Functions for 

a detailed discussion on choosing this parameter. 

Tree size penalty location is a number indicating the maximum number of nodes which 

may be present in an individual tree before the penalty starts taking effect. The more nodes 

the individual tree contains above the tree size penalty location number, the harsher the 

penalty will be. 

OLS threshold is a value between0 and 1 indicating the minimum energy contribution of a 

branch before it should be pruned. A higher fraction will result in more branches being 

pruned and a lower fraction (e.g. 0.05) will allow branches with a small contribution to be 

preserved. 
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Polynomial evaluation is either switched “on” (1) or “off” (0). If switched on, all individuals 

are interpreted as polynomials, in which case all plus signs („+‟) are replaced by 

multiplication signs („*‟). For this researched this was always chosen as “off”. 

Evaluation of individuals can either occur by evaluating all individuals (EvalInd = 1) during 

every generation loop, or only evaluating all new individuals (EvalInd = 0) at the end of each 

generation loop. This is only to stop unnecessary computation and makes the algorithm 

faster. 

The following 4 parameters are also GP parameters, although they are handled separately from 

the other parameters by the GPOls algorithm. 

Terminal set is discussed in ‎E.3.4. 

Population size defines the number of individuals in the population. This number stays 

fixed throughout the GP run. 

Maximum tree depth indicates the maximum number of nodes which an individual may 

consist of. The value defined is the power of 2, i.e. 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 =  2𝑚𝑎𝑥𝑡𝑟𝑒𝑒𝑑𝑒𝑝𝑡 𝑕  

The individual lengths are determined by the node type and may be shorter in length. The 

tree stops when the leave ends of the tree are all of the functional set and no more 

mathematical operators are available to expand the tree. 

Number of Generations: The length of the GP run is defined as the number of generations 

which should be completely evolved before the run terminates. The number of generations 

is the only termination criterion in the GPOls toolbox. 

These parameters are all set at the beginning of the experiment logic. 

E.3.4. GP Functional and Terminal Sets 

The functional set contains the mathematical operators which can be used in the tree nodes 

of the individuals. Tree nodes containing these operators are also referred to as functional 
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nodes. In the GPOls algorithm this set is defined in the main experiment logic by the user. 

The operators included varied between experiments, but could be any of the following: 

 Addition (+); 

 Subtraction (-); 

 Division (/); 

 Multiplication (*);  

 Negative Division (./-); 

 Negative Multiplication (.*-); and 

 Square Root (√)  

Note that the square root function is tested with both the absolute value or without, when 

data is biased. 

The terminal set is the list of process variables which would make up the terminal nodes of 

the individual trees, or the variables in the equation. The terminal set is the result of 

interpreting the process knowledge and preparing the data for system identification. In the 

GPOls toolbox this set is the columns of X, where X denotes the matrix of the constructed 

latent variable set - each column representing a variable, or lagged version of a variable. 

The size of the terminal set corresponds to the number delayed versions of each variable 

included in the latent variable contruction.  

This terminal set is built up during generation of the dataset by the Matlab function built for 

this experiment specifically. This is discussed in more detail in the discussion of the function 

gpols_gendataset.  
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E.3.5. Orthogonal Least Squares Theory 

Given the linear-in-parameters model 

𝑦 𝑘 = ŷ 𝑘 + 𝑒 𝑘 =  𝜃𝑖𝐹𝑖 𝑘 + 𝑒(𝑘)

𝑀;𝑁

𝑖=1

 

𝐹 =  
𝐹1 𝑥1 … 𝐹𝑀 𝑥1 

… … …
𝐹1 𝑥1𝑁 … 𝐹𝑀 𝑥𝑁 

  

Where y is the expected output vector; ŷ is the predicted ouput; e is the white noise; F is the 

regressor matrix; θ is the parameter vector, or model weights, for the terms identified in the 

linear-in-parameters model for M regressors and N data points. This regression model can 

be rewritten in matrix format as 

𝒚 = 𝑭𝜽 + 𝒆 

The orthogonal decomposition of the regression matrix F is 

𝑭 = 𝑾𝑨 

Where A is a MxM upper triangular matrix and W is a NxM matrix with orthogonal columns 

such that  

𝑊𝑇𝑊 = 𝐷 

Where D is a diagonal matrix. 

The output variance is explained by 

𝑦𝑇𝑦 =  𝑔𝑖
2𝑤𝑖

𝑇

𝑀

𝑖=1

𝑤𝑖 + 𝑒𝑇𝑒 

Where g is auxiliary parameter vector given by 

𝑔 = 𝐷−1𝑊𝑇𝑦 

The err term indicating the relative variance contribution of each term, Fi, to the output value 

is given by 

[𝑒𝑟𝑟]𝑖 =
𝑔𝑖

2𝑤𝑖
𝑇𝑤𝑖

𝑦𝑇𝑦
 

(Chen, 2006)(Madar et al., 2005) 
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The OLS algorithm transforms the regression matrix F into a set of orthogonal basis 

vectors. This allows the influence of each term Fi to be investigated. Thus it investigates the 

influence of each term on the model output.  

E.3.6. Adjusting OLS threshold 

For the GPOls toolbox an adjusting OLS threshold was implemented. This was 

implemented where the evolution could not start. The OLS threshold begins low too include 

branches with small contributions, thus possibly over fitting the model. However, as fitness 

increased the OLS threshold is increased according to the size of the jump in the fitness 

value.  

An upper and lower OLS threshold is defined in the experiment. The lower bound is used as 

initial OLS threshold. The OLs threshold is then increased according to the following 

implemented formula: 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑂𝐿𝑆 𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑

= ∆𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∗ (𝑈𝑝𝑝𝑒𝑟 𝑂𝐿𝑆 𝑏𝑜𝑢𝑛𝑑

− 𝑎𝑐𝑡𝑖𝑣𝑒 𝑂𝐿𝑆 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑) 

If no changing OLS threshold is required, the upper and lower limits are chosen to be equal 

during experimentation setup. 

E.4. GPOls Additions 

The extra functions included in the toolbox include the following functions, including a brief 

discussion of how the function works and the detailed code. The table in the original text is 

repeated here. Each of these added functions are discussed after the table. 

Table 49: Functionality added to the GPOls toolbox and the names of the functions created. 

Functionality Matlab® Function System 
Identification 

Function 

Obtain the executable 
formula string for a specific 
individual for the population 

index ix. 

 

gpols_any_result.m Analyse GP Output 
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Functionality Matlab® Function System 
Identification 

Function 

Display the fitness, MSE and 
formula for a specific 

individual for the population 
index ix. 

gpols_any_result.m Analyse GP Output 

Calculates the validation 
statistics of the best 
individual in a given 

population according for any 
dataset. Also constructs the 
graphs for model output and 

residual analysis. 

gpols_alternative_val.m Analyse GP Output 

Display the fitness, MSE and 
symbolic formula for the n 

best results 

gpols_best_results.m Analyse GP Output 

Obtain the symbolic and 
executable formulas, MSE, 
fitness and population index 

of the n best individuals 

gpols_best_result.m Analyse GP Output 

In some cases predefined 
populations were used as a 

starting point for a GP run. In 
such cases it is necessary to 

evaluate if the population 
coincides with the chosen 

terminal and functional sets. 
This function tests the 

population and provides a 
solution if it is incorrect. 

gpols_testpopulation.m Data Preparation 

Track the evolution of the 
population through all the 

generations. A landscape of 
the fitness and MSE values 

are plotted for the whole 
population for each GP run. 

gpols_trackevo.m Analyse GP Output 

Calculate the validation 
MSE, fitness and residuals 
for the chosen individual. 

These results are plotted to 
compare to the training 

dataset. 

gpols_validate.m Analyse GP Output 

Select the delay parameters 
relevant to the chosen 

training dataset. 

gpols_embedparameters.m Data Preparation 

Create the latent variable 
reconstruction, with 

corresponding symbols for 
an n-step prediction model. 

gpols_gendataset.m Data Preparation 
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E.4.1. GPOLS_ANY_RESULT 

This function is used to find the details for any individual in the population after the GP 

experiment is complete. Once a desired saved population is loaded into the workspace, the 

executable formula, fitness and MSE of an individual can be obtained and displayed. Only 

the executable formula is returned as an output. The latent varible regressor set, population 

and specific location, or index, of the individual is required. The “display” variable indicates if 

the results should be displayed in Matlab. 

This function assists with post-experiment evaluation of individuals. It is developed solely to 

assist the user. 

This function may be used with any experiment using the current version of the GPOls 

toolbox. 

E.4.2. GPOLS_ALTERNATIVE_VAL 

This function uses a given saved experiment output and calculates the MSE and fitness of 

the model according to any given dataset. The dataset is signified by the dataset number as 

established during data preparation. This function requires insight into the dataset used for 

training as well as if AMI or autocorrelation settings were used to calculate the delay 

parameters. The latent variable set is constructed and the residuals calculated according to 

the executable model string. 

E.4.3. GPOLS_BEST_RESULTS 

This function identifies the top “x” individuals in terms of fitness and returns their executable 

function, interpretable function, MSE and fitness values as well as their position in the 

population as outputs. An option is included to display the results in Matlab. 

This function is used during the experiment in the validation step. In this case only the top 

individual is identified. The user may also use choose to analyse more than one individual, 

in which case this function will assist. 

This function may be used with any experiment using the current version of the GPOls 

toolbox. 
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E.4.4. GPOLS_EMBEDPARAMETERS 

The delay parameters for each dataset which may be used in the drying experiment, are 

stored in and obtained from this function. These parameters are used in the gpols_gen 

dataset function. It serves as a database for the experiment, and assists in making the 

experiment parameters less complex to adjust. The delay parameters are chosen and 

returned when the dataset number, process being modelled, process idle state inclusion 

and preferred method of obtaining the process orders are provided. 

This function is designed specifically for the drying circuit experiment and should be 

adjusted if it is to be used in future applications of the GPOls toolbox 

E.4.5. GPOLS_GEN_DATASET 

This function makes use of the delay parameters obtained by the user and constructs the 

latent variable set for an n-step prediction model. It also constructs the terminal set for the 

GP algorithm. The terminal set is used to display an interpretable version of the solutions. 

See ‎E.3.5. The results from this function entail: 

 The latent variable regressor set;  

 An n-step time shifted version of the output regressor; and  

 The collection of names of the terminal set. 

The inputs required by this function are the  

 input timeseries, with a variable per column;  

 output timeseries, single variable; 

 process delays per variable in a column array; 

 number of delayed versions per variable in a column array; 

 number of time steps to shift the output variable (n-step prediction); 

 input variable names with a name per cell (optional); and 

 output variable name in a cell (optional). 
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If the variable names are omitted the function only constructs and returns the latent variable 

reconstruction. 

This function may be used with any experiment using the current version of the GPOls 

toolbox. The delay parameters should be defined elsewhere. 

E.4.6. GPOLS_TESTPOPULATION 

As discussed in ‎Appendix E - ‎E.2.3 Initial Population, it is possible to load a predefined 

population as the first generation of a GP run. This population should relate to the terminal 

and functional sets. Furthermore, the population size should be tested to see if it 

corresponds to the GP run parameter „popusize‟. This function does all three tests and 

adjusts, or stops, the experiment accordingly. 

If the functional or terminal sets differ in any way, the function will prompt the user and end 

the experiment. The experiment needs to be adjusted before it can commence. 

If the population size of the predefined population differs from the population size defined 

for the current GP run, then the population size of the predefined population is adopted. The 

user is prompted that the population size for the experiment was adjusted. 

E.4.7. GPOLS_TRACKEVO 

This function creates a three dimensional plot of the landscape of the evolution. This assists 

in identifying the search getting stuck in a local optimum; visually investigating the evolution 

of individuals and comparing various results from different GPOls parameters. 

The population, the number of generations, current generation counter and historic fitness 

and MSE values are required as inputs. An array of historic and current fitness and MSE 

values are supplied as outputs. These arrays are used as inputs in the next loop, until the 

final generation is reached. 

This function may be used with any experiment using the current version of the GPOls 

toolbox. It should be included inside the generation loop, to allow it to obtain every 

generation‟s population fitness and MSE. Note that the first generation‟s fitness and MSE 

should be populated outside of this function. 
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E.4.8. GPOLS_VALIDATE 

The residuals, fitness and MSE of the validation set, for a specific individual, are all 

calculated by this function. The latent variable regressors of the validation dataset is 

required as inputs. Furthermore the executable model string, GPOls parameters, population 

and index of the chosen individual needs to be supplied. 

This function may be used with any experiment using the current version of the GPOls 

toolbox, provided that the gpols_best_results function is used to obtain an executable 

model. 

E.5. Methods for Analysis and Presentation of System Identification 
Results 

E.5.1. Trend of Population Evolution 

The search for a solution runs the risk of getting stuck in a local optimum. The only way to 

adjust this is by either repeating the experiment, or adjusting the evolution parameters, such 

as mutation and cross over probabilities. Identifying whether the population is stuck in a 

local optimum requires a view of the whole population for each generation. 

This was accomplished by making use of a 3D plot of the fitness and MSE, separately, for 

each individuals and generation. The result is a landscape of the aptitude of each individual 

in the population over all the generations. Investigation of this landscape assists in 

qualitatively identifying when individuals all became the same (local optima) or the 

influences of variations in parameters on the evolution of the population. 

The function and discussion included in ‎Appendix E - ‎E.4.6 describes the procedure 

followed to obtain and store these trends. 

E.5.2. Comparison to the Least Lag Outputs 

If not enough information is available in the timeseries, then the previous process output 

value will be the best prediction for the next process output. It is expected that the GP 

algorithm will test this possibility by including such a model in the search space and 

removing it once a better model is generated. Nonetheless, as the GP is a stochastic 
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method and not certain to test this, any model identified should be compared to a model 

consisting of the least lagged process output. This is done by comparing the fitness of a 

model (calculated from the correlation between model output and expected output) to the 

correlation coefficient between the process output and the least lagged process output. The 

delay parameters and correlation coefficient of the training set is used.  

This approach is followed for every latent variable reconstruction, as the correlation 

coefficient will differ depending on the lag chosen. The following correlation coefficients are 

used as comparison for the models identified according to the training set used. The 

correlation coefficients for lags identified by both the AMI and autocorrelation methods need 

to be assessed. 

Table 50: Correlation coefficients of closest lagged process output. Obtained models are expected to have 
better correlation figures than these; otherwise the least lagged process output will be the best model. 

Process Dataset 
Number 

Output Lag 
as per AMI 

(5sec 
increments) 

Correlation 
Coefficient 

(AMI) 

Output Lag as 
per 

Autocorrelation 
(5sec 

increments) 

Correlation 
Coefficient 

(Autocorrelation) 

Hot Gas 
Generator 

1 65 0.085 76 0.306 

Flash 
Dryer - 
Idle States 
Present 

1 82 0.735 623 0.347 

2 41 0.943 405 0.608 

3 65 0.352 168 0.153 

Flash 
Dryer – 
Idle States 
Removed 

1 82 0.735 623 0.347 

2 56 0.779 365 0.059 

3 65 0.1102 109 0.049 
 

 

Note that the fitness values of models are compared to these values. Although the fitness 

values are adjusted correlation coefficients, they will be used for comparison seeing as the 

fitness will never increase to above the correlation coefficients in the table above. 

E.5.3. Comparison of Experiment Run Fit Statistics 

An amount of repetitions of the GP experiments are required as GP is a stochastic system 

identification process. Coelho et al. (2009) used 50 repetitions for each of the GP 

experiments. In some cases in this research 40 repetitions were used. 
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For each repetition of a run the best model, according to training fitness, is saved during the 

SID run for further analysis, resulting in a collection of 40 to 50 individual solutions which 

need comparison and analysis to find the most representative model and population.  The 

various solutions are compared based on the validation R2 and thereafter the validation 

MSE values. 

The comparison of various experiments requires information to be extracted from each 

population with regards to training and validation fitness and MSE‟s. This is done by 

building an experiment report which is consulted after the experiment is complete. 

The report consists to the following headers and contains the information for every run of 

the specific experiment: 

 Loop Number: the experiment repetition; 

 Process Formula: interpretable process model; 

 Executable Formula: Matlab® executable model; 

 Train MSE; 

 Train Fitness; 

 Training R2; 

 Validation MSE; 

 Validation Fitness; 

 Validation R2; and 

 GP Options: Array of GPOls parameters. 

This comparison allows  

 identification of the best solution in this experimental setup;  

 evaluation of the variables constituting this solution;  

 variations to the solution;  
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 degree of convergence to a single solution for this experimental setup; and 

 access to the model in executable and interpretable form. 

From this knowledge it is possible to delve deeper into a specific experimental run‟s 

population. The experiment report is populated in the main experiment logic discussed 

in ‎Appendix E - ‎E.3.1 GP Experiment Logic. 

E.5.4. R2 and Nonlinear Modelling – Negative R2 

R2 is a goodness of fit measurement, commonly referred to as the coefficient of 

determination and calculated as the square of the correlation coefficient between the model 

output and the desired output. In modelling in general R2 is not the best measure of fit for 

the evolution of models, as it will increase as the decrease of freedom of the error decrease, 

i.e. when another variable is added to the model. R2 will thus not be used for nonlinear 

goodness of fit measurement. 

However, there is another use for R2 which could assist in nonlinear modelling. R2 is also 

calculated as one minus the square sum of errors (SSE) divided by the total corrected sum 

of squares (SST). This formulas are standard in statistics and ANOVA and are presented 

here: 

𝑆𝑆𝑇 =   𝑦𝑖 − 𝑦  2

𝑛

𝑖=1

 

𝑆𝑆𝐸 =   𝑦𝑖 − 𝑦  2

𝑛

𝑖=1

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

The benefit of this calculation of R2 is in the fact that it will indicate whether the model is 

doing better than the mean. If the R2 is negative, then the mean is a better model than the 

model used. The confusion that might exist is in the fact that a square of something can be 

negative, but from the equation it is apparent that this is possible. It results in the conclusion 
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that R2 is not necessarily the square of the correlation coefficient, unless the variables 

correlated are jointly distributed random variables.  

Furthermore, the fact that R2 will increase with the addition of every term to the model limits 

the use of R2. Furthermore the fact that nonlinear modelling do not necessarily add terms, 

but rather create more complex ones, makes the R2
adjusted calculation commonly used in 

statistics possibly unusable. 

E.5.5. Residual and Model Output Trends 

The trend of the model output for both the training and validation phases allows visual 

inspection of the best solution of the experiment. This may assist in identifying anomalies in 

the data which are not being identified by the model, as well as an idea to whether the 

model may be useful given the operating ranges and the anomalies which are captured in 

the model. 

The normal plot of the residuals measures the amount of information still available in the 

residuals. Model error can be accounted as white noise if they are distributed normally. If 

not, then the error contains information, or is red noise. The usefulness of the model and 

success of the system identification experiment can be deduced from this. 

E.5.6. Residual Analysis 

The residual analysis includes the normal probability plot testing the hypothesis that the 

residual are white noise and thus normally distributed, if not the residuals still contain 

information.  

Correlation and autocorrelation test between residuals and process inputs are also 

recommended as a residual analysis method for nonlinear dynamic systems (Hinchliffe & 

Willis, 2003). The approaches adopted in this research are visual inspection of the normal 

probability plot of the residuals, as well as the correlation coefficient between residuals and 

all the lagged inputs. This calculation will only be used to determine which variable is most 

likely to contribute to the accuracy of the model, and not as a comparative number to 

distinguish between models. 
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All residual analyses are done after experimentation and are not part of the GP search 

algorithm. These were also used on an ad-hoc basis. 

E.5.7. Interpretation of the Model Empirical Formula 

The GPOls toolbox provides the empirical formula of the model. Throughout the latent 

variable reconstruction of the dataset, the symbols were adjusted as to include the various 

lags of process variables. Hence the influence of a precise lagged version of a process 

input can be interpreted partially from the empirical formula. “Partially”, because the models 

are usually too complex to precisely see the influence.  

For instance, large variation could be ascribed to the presence of a specific variable. 

Comparison between various solutions might identify that only one model contains this 

variable with high variation. Any unique behaviour could be due to this variables presence. 

This could guide further research or modelling exercises 
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Appendix F GPOls Toolbox Benchmarking 

The results of benchmarking the GPOls toolbox re included in this appendix. The GPOls 

algorithm was compared against  

i) a GP algorithm – Discipulus ®; and 

ii) linear ARMA models. 

F.1. Discipulus ® Benchmark Results 

The following tables include the training and validation results for each of the 40 repitions of 

each of the 4 experiments. 
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F.1.1. Flash Dryer AMI Latent Variable Reconstruction 

Table 51: Fit Statistics for each of the Discipulus ® GP Runs for Flash Dryer modelling with AMI Latent 
Variable Reconstruction 

Run 
Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 0.395 51.9% 0.675 44.4% 

2 0.400 51.2% 0.724 40.4% 

3 0.464 43.4% 0.803 33.9% 

4 0.433 47.2% 0.617 49.2% 

5 0.623 24.0% 0.831 31.6% 

6 0.568 30.7% 0.828 31.9% 

7 0.569 30.6% 0.785 35.4% 

8 0.391 52.3% 0.772 36.4% 

9 0.395 51.8% 0.711 41.4% 

10 0.322 60.7% 0.659 45.8% 

11 0.341 58.5% 0.677 44.2% 

12 0.477 41.9% 0.784 35.4% 

13 0.488 40.6% 0.733 39.6% 

14 0.517 37.0% 0.787 35.2% 

15 0.460 43.9% 0.799 34.2% 

16 0.521 36.4% 0.751 38.1% 

17 0.470 42.7% 0.726 40.2% 

18 0.504 38.5% 0.778 36.0% 

19 0.344 58.1% 0.680 44.0% 

20 0.409 50.2% 0.736 39.4% 

21 0.405 50.7% 0.731 39.8% 

22 0.399 51.3% 0.814 33.0% 

23 0.586 28.6% 0.806 33.6% 

24 0.489 40.4% 0.781 35.7% 

25 0.390 52.5% 0.683 43.8% 

26 0.430 47.5% 0.618 49.1% 

27 0.369 55.1% 0.688 43.4% 

28 0.585 28.7% 0.880 27.5% 

29 0.405 50.6% 0.734 39.6% 

30 0.395 51.9% 0.675 44.4% 

31 0.395 51.9% 0.675 44.4% 

32 0.400 51.2% 0.724 40.4% 

33 0.464 43.4% 0.803 33.9% 

34 0.433 47.2% 0.617 49.2% 

35 0.623 24.0% 0.831 31.6% 

36 0.568 30.7% 0.828 31.9% 

37 0.569 30.6% 0.785 35.4% 

38 0.391 52.3% 0.772 36.4% 

39 0.395 51.8% 0.711 41.4% 

40 0.322 60.7% 0.659 45.8% 
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F.1.2. Flash Dryer Autocorrelation Latent Variable Reconstruction 

Table 52: Fit Statistics for each of the Discipulus ® GP Runs for Flash Dryer modelling with Autocorrelation 
Latent Variable Reconstruction 

Run 
Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 0.486 36.2% 0.824 32.1% 

2 0.393 48.4% 0.735 39.5% 

3 0.371 51.3% 0.756 37.7% 

4 0.363 52.4% 0.691 43.1% 

5 0.392 48.5% 0.698 42.6% 

6 0.412 46.0% 0.674 44.5% 

7 0.378 50.4% 0.824 32.1% 

8 0.396 48.0% 0.720 40.7% 

9 0.382 49.9% 0.736 39.4% 

10 0.948 -24.3% 1.022 15.8% 

11 0.379 50.3% 0.728 40.1% 

12 0.424 44.4% 0.729 40.0% 

13 0.687 9.8% 0.929 23.5% 

14 0.343 55.0% 0.640 47.3% 

15 0.405 46.9% 0.778 36.0% 

16 0.414 45.6% 0.702 42.2% 

17 0.364 52.2% 0.679 44.1% 

18 0.355 53.4% 0.747 38.5% 

19 0.376 50.7% 0.724 40.4% 

20 0.393 48.5% 0.699 42.4% 

21 0.404 47.0% 0.743 38.8% 

22 0.466 38.8% 0.741 39.0% 

23 0.442 42.1% 0.693 42.9% 

24 0.443 41.9% 0.772 36.4% 

25 0.494 35.2% 0.850 30.0% 

26 0.444 41.8% 0.694 42.9% 

27 0.407 46.6% 0.676 44.3% 

28 0.409 46.4% 0.708 41.7% 

29 0.491 35.6% 0.706 41.8% 

30 0.419 45.0% 0.780 35.8% 

31 0.321 57.9% 0.675 44.4% 

32 0.416 45.4% 0.676 44.3% 

33 0.578 24.2% 0.740 39.1% 

34 0.428 43.9% 0.644 47.0% 

35 0.506 33.7% 0.749 38.4% 

36 0.370 51.4% 0.734 39.6% 

37 0.355 53.4% 0.651 46.4% 

38 0.380 50.2% 0.661 45.5% 

39 0.466 38.9% 0.892 26.5% 

40 0.410 46.2% 0.720 40.7% 
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F.1.3. Hot Gas Generator AMI Latent Variable Reconstruction 

Table 53: Fit Statistics for each of the Discipulus ® GP Runs for Hot Gas Generator modelling with AMI 
Latent Variable Reconstruction 

Run 
Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 0.313 48.5% 0.159 72.7% 

2 0.052 91.4% 0.105 81.9% 

3 0.430 29.4% 0.144 75.1% 

4 0.074 87.9% 0.163 72.0% 

5 0.445 26.9% 0.141 75.8% 

6 0.077 87.4% 0.188 67.6% 

7 0.215 64.8% 0.275 52.7% 

8 0.116 81.0% 0.117 79.8% 

9 0.147 75.9% 0.129 77.8% 

10 0.062 89.8% 0.166 71.5% 

11 0.079 87.1% 0.125 78.5% 

12 0.136 77.6% 0.207 64.3% 

13 0.397 34.7% 0.169 71.0% 

14 0.089 85.4% 0.124 78.7% 

15 0.329 46.0% 0.234 59.7% 

16 0.329 46.0% 0.234 59.7% 

17 0.329 46.0% 0.234 59.7% 

18 0.073 88.0% 0.168 71.1% 

19 0.240 60.5% 0.189 67.5% 

20 0.279 54.2% 0.164 71.8% 

21 0.090 85.1% 0.187 67.8% 

22 0.397 34.7% 0.357 38.6% 

23 0.138 77.3% 0.175 69.8% 

24 0.168 72.4% 0.164 71.8% 

25 0.053 91.3% 0.089 84.6% 

26 0.062 89.8% 0.153 73.7% 

27 0.253 58.4% 0.118 79.6% 

28 0.397 34.7% 0.169 71.0% 

29 0.064 89.5% 0.088 84.8% 

30 0.074 87.8% 0.201 65.4% 

31 0.293 51.8% 0.187 67.9% 

32 0.053 91.3% 0.162 72.1% 

33 0.099 83.8% 0.122 78.9% 

34 0.089 85.3% 0.265 54.4% 

35 0.128 79.0% 0.131 77.5% 

36 0.091 85.0% 0.078 86.6% 

37 0.143 76.4% 0.144 75.3% 

38 0.179 70.5% 0.203 65.0% 

39 0.052 91.5% 0.093 83.9% 

40 0.070 88.5% 0.087 85.1% 
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F.1.4. Hot Gas Generator Autocorrelation Latent Variable Reconstruction 

Table 54: Fit Statistics for each of the Discipulus ® GP Runs for Hot Gas Generator modelling with 
Autocorrelation Latent Variable Reconstruction 

Run 
Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

1 0.074 87.8% 0.061 89.5% 

2 0.096 84.2% 0.070 88.0% 

3 0.082 86.5% 0.076 86.8% 

4 0.110 81.8% 0.100 82.7% 

5 0.077 87.4% 0.059 89.8% 

6 0.124 79.6% 0.092 84.2% 

7 0.073 88.0% 0.112 80.8% 

8 0.186 69.4% 0.143 75.3% 

9 0.074 87.8% 0.088 84.8% 

10 0.179 70.5% 0.121 79.2% 

11 0.048 92.0% 0.053 90.9% 

12 0.164 73.0% 0.121 79.3% 

13 0.224 63.1% 0.138 76.2% 

14 0.112 81.5% 0.066 88.6% 

15 0.068 88.9% 0.061 89.6% 

16 0.129 78.8% 0.123 78.9% 

17 0.223 63.3% 0.111 81.0% 

18 0.255 58.0% 0.146 74.9% 

19 0.286 53.0% 0.077 86.8% 

20 0.183 69.9% 0.104 82.0% 

21 0.116 80.8% 0.063 89.1% 

22 0.187 69.2% 0.095 83.7% 

23 0.131 78.4% 0.112 80.8% 

24 0.160 73.7% 0.100 82.8% 

25 0.065 89.3% 0.052 91.0% 

26 0.075 87.7% 0.076 87.0% 

27 0.243 59.9% 0.114 80.4% 

28 0.056 90.7% 0.070 88.0% 

29 0.073 88.0% 0.067 88.5% 

30 0.127 79.0% 0.058 90.1% 

31 0.265 56.3% 0.128 78.0% 

32 0.089 85.4% 0.060 89.7% 

33 0.268 55.8% 0.086 85.2% 

34 0.247 59.4% 0.150 74.1% 

35 0.080 86.9% 0.055 90.5% 

36 0.102 83.2% 0.090 84.5% 

37 0.249 58.9% 0.127 78.2% 

38 0.136 77.5% 0.121 79.2% 

39 0.152 74.9% 0.090 84.6% 

40 0.091 85.1% 0.070 88.0% 
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F.2. ARMA Model Comparison 

The coefficients for each of the variables for the identified ARMA models are included in this 

appendix. This is included for each of the four experiments done. The CSense Linear Model 

Tool was used together with the latent variable reconstruction. 

The general model structure is as follows: 

𝑦 =  𝑐𝑖𝑥𝑖 +  𝐶 

The number of variables is equal to the number of reconstructed latent variables. 
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F.2.1. Flash Dryer AMI Latent Variable Reconstruction 

Table 55:Linear Model Coefficients for the Flash Dryer model using the AMI Latent Variable Reconstruction 

Latent Variable (xi) 
Coefficient 

(ci) 

FDFeed(k-0) -0.059 

FDFeed(k-16) -0.450 

FDFeed(k-32) -0.202 

FDFeed(k-48) -0.093 

FDFeed(k-64) -0.095 

FDFeed(k-80) -0.157 

FDFeed(k-96) -0.218 

FDFeed(k-112) -0.209 

FDFeed(k-128) -0.167 

FDFeed(k-144) -0.115 

FDFeed(k-160) -0.071 

HGGTemp(k-0) 0.243 

HGGTemp(k-56) -0.243 

HGGTemp(k-112) 0.135 

HGGTemp(k-168) -0.170 

HGGTemp(k-224) -0.002 

HGGTemp(k-280) -0.347 

HGGTemp(k-336) 0.202 

FDTemp(k-65) -0.001 

FDTemp(k-130) -0.026 

FDTemp(k-195) 0.074 

FDTemp(k-260) -0.043 

FDTemp(k-325) -0.131 

Constant (C) 0.122 
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F.2.2. Flash Dryer Autocorrelation Latent Variable Reconstruction 

Table 56:Linear Model Coefficients for the Flash Dryer model using the Autocorrelation Latent Variable 
Reconstruction 

Latent Variable (xi) 
Coefficient 

(ci) 

FDFeed(k-0) -0.059 

FDFeed(k-16) -0.433 

FDFeed(k-32) -0.203 

FDFeed(k-48) -0.128 

FDFeed(k-64) -0.131 

FDFeed(k-80) -0.193 

FDFeed(k-96) -0.265 

FDFeed(k-112) -0.262 

FDFeed(k-128) -0.217 

FDFeed(k-144) -0.145 

FDFeed(k-160) -0.091 

HGGTemp(k-0) -0.319 

HGGTemp(k-363) 0.000 

HGGTemp(k-726) 0.049 

HGGTemp(k-1089) 0.094 

HGGTemp(k-1452) -0.077 

HGGTemp(k-1815) -0.111 

FDTemp(k-109) -0.015 

FDTemp(k-218) 0.075 

FDTemp(k-327) -0.110 

FDTemp(k-436) 0.005 

FDTemp(k-545) -0.053 

Constant (C) 0.157 
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F.2.3. Hot Gas Generator AMI Latent Variable Reconstruction 

Table 57:Linear Model Coefficients for the Hot Gas Generator model using the AMI Latent Variable 
Reconstruction 

 

 

  

Latent Variable (xi) 
Coefficient 

(ci) 

CoalFeed(k-0) -0.225 

CoalFeed(k-44) 0.234 

CoalFeed(k-88) 0.280 

CoalFeed(k-132) -0.036 

CoalFeed(k-176) -0.044 

CoalFeed(k-220) -0.079 

CoalFeed(k-264) -0.053 

CoalFeed(k-308) -0.089 

CoalFeed(k-352) -0.059 

CoalFeed(k-396) -0.080 

CoalFeed(k-440) -0.067 

HGGTemp(k-65) 0.303 

HGGTemp(k-130) -0.439 

HGGTemp(k-195) -0.183 

HGGTemp(k-260) 0.176 

Constant (C) -0.170 
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F.2.4. Hot Gas Generator Autocorrelation Latent Variable Reconstruction 

Table 58:Linear Model Coefficients for the Hot Gas Generator model using the Autocorrelation Latent 
Variable Reconstruction 

Latent Variable (xi) 
Coefficient 

(ci) 

CoalFeed(k-0) -0.245 

CoalFeed(k-45) 0.203 

CoalFeed(k-90) 0.291 

CoalFeed(k-135) 0.035 

CoalFeed(k-180) -0.064 

CoalFeed(k-225) -0.096 

CoalFeed(k-270) -0.103 

CoalFeed(k-315) -0.042 

CoalFeed(k-360) -0.057 

CoalFeed(k-405) -0.073 

CoalFeed(k-450) -0.091 

HGGTemp(k-76) 0.099 

HGGTemp(k-152) -0.447 

HGGTemp(k-228) -0.027 

HGGTemp(k-304) 0.161 

Constant (C) -0.172 
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Appendix G – System Identification Experiment Outputs 

G.1. AMI versus Autocorrelation Latent Variable Reconstruction Results 

G.1.1. Flash Dryer 

For the Flash Dryer the following model fit statistics were obtained for the two delay 

parameter sets. The groups are compared. 

Table 59: List of experiments used to identify which of the AMI or Autocorrelation delay parameters result in 
the best model. Comparative experiments are grouped. 

Comparative 
Grouping 

Latent Variable 
Delay 

Parameters 
Train 
MSE 

Train 
R2 

Validation 
MSE 

Validation 
R2 

A AMI 0.666 33.4% NA NA 

A Autocorrelation 0.784 21.9% NA NA 

B AMI 0.623 43.7% 0.715 34.1% 

B Autocorrelation 0.656 13.9% 0.868 20.4% 

C AMI 0.526 35.9% 0.701 35.5% 

C Autocorrelation 0.512 32.9% 0.674 38.2% 

D AMI 0.451 45.1% 0.728 33.0% 

D Autocorrelation 0.447 41.3% 0.728 33.3% 

E AMI 0.450 45.2% 0.642 40.8% 

E Autocorrelation 0.485 36.4% 0.641 41.3% 

F AMI 0.529 35.5% 0.784 27.8% 

F Autocorrelation 0.665 12.7% 0.951 12.8% 

G AMI 0.488 40.5% 0.668 38.5% 

G Autocorrelation 0.500 34.4% 0.697 36.1% 

H AMI 0.422 51.7% 0.646 40.5% 

H Autocorrelation 0.468 38.6% 0.622 43.0% 

I AMI 0.403 50.9% 0.620 42.9% 

I Autocorrelation 0.481 36.9% 0.800 26.7% 

J AMI 0.488 40.5% 0.668 38.5% 

J Autocorrelation 0.500 34.4% 0.697 36.1% 

K AMI 0.468 43.0% 0.655 39.7% 

K Autocorrelation 0.434 43.1% 0.651 40.3% 
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G.1.2. Hot Gas Generator 

For the Hot Gas Generator the following model fit statistics were obtained for the two delay 

parameter sets. The groups are compared. 

Table 60: The HGG system identification experiments indicate that the delay parameters identified by 
autocorrelation are preferred. Comparative experiments are grouped. 

Comparative 
Grouping  

Latent 
Variable 

Delay 
Parameters 

Validation 
MSE 

Validation 
R2 

A Autocorrelation 0.052 91.0% 

A AMI 0.078 86.6% 

B Autocorrelation 0.133 77.1% 

B AMI 0.241 58.5% 

C Autocorrelation 0.181 68.9% 

C AMI 0.192 66.8% 

D Autocorrelation 0.133 77.1% 

D AMI 0.167 71.2% 

 

G.2. Flash Dryer 

45 different experiments were attempted to identify a flash dryer model. The tables below 

contains the experiments (1) ordered from lowest validation mean square error to highest 

and (2) numerical order.  The most important characteristics of each experiments is included, 

namely 

 Delay parameters used; 

 Presence of process idle state; 

 Training and validation datasets; 

 Training fitness, MSE and R2; and 

 Validation fitness, MSE and R2. 

Fitness values for only the GPOls tool is included, seeing as the MSE value was used by 

Discipulus®.  
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G.2.1. Ordered According to Descending MSE 

Table 61: All the flash dryer models identified per experiment. Results are ordered in descending order of 
validation MSE. 
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11 Autocorrelation NA 3 0.310 54.4% 68.6% 3 0.314 18.5% -14.8% 

12 AMI NA 3 0.395 55.9% 22.9% 3 0.418 1.1% -58.7% 

30 AMI NA 1 0.395 55.9% 60.7% 3 0.418 1.1% -53.5% 

D
is

c
ip

u
lu

s
 AMI NA 3 0.433 NA 47.2% 3 0.617 NA 49.2% 

40 AMI NA 3 0.403 49.0% 50.9% 3 0.620 42.3% 42.9% 

17 AMI NA 3 0.430 47.5% 47.6% 3 0.622 43.6% 42.7% 

39 Autocorrelation NA 3 0.468 37.4% 38.6% 3 0.622 42.9% 43.0% 

19 AMI NA 3 0.391 52.3% 52.3% 3 0.633 43.8% 41.7% 

D
is

c
ip

u
lu

s
 Autocorrelation NA 3 0.343  55.0% 3 0.640 NA 47.3% 

10 Autocorrelation NA 3 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

24 Autocorrelation NA 1 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

25 Autocorrelation NA 1 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

27 Autocorrelation NA 3 0.485 31.9% 36.4% 3 0.641 36.9% 41.3% 

26 AMI NA 3 0.450 39.5% 45.2% 3 0.642 37.2% 40.8% 

38 AMI NA 3 0.422 49.6% 51.7% 3 0.646 40.7% 40.5% 

45 Autocorrelation NA 3 0.434 41.1% 43.1% 3 0.651 39.0% 40.3% 

44 AMI NA 3 0.468 41.6% 43.0% 3 0.655 38.8% 39.7% 

16 AMI NA 3 0.491 40.1% 40.1% 3 0.662 39.4% 39.0% 

36 AMI NA 3 0.488 33.4% 40.5% 3 0.668 32.0% 38.5% 

42 AMI NA 3 0.488 39.8% 40.5% 3 0.668 38.2% 38.5% 
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20 AMI NA 3 0.512 25.8% 32.9% 3 0.674 30.5% 38.2% 

37 Autocorrelation Idle 3 0.500 29.3% 34.4% 3 0.697 31.5% 36.1% 

43 Autocorrelation Idle 3 0.500 29.3% 34.4% 3 0.697 31.5% 36.1% 

21 AMI NA 3 0.526 29.3% 35.9% 3 0.701 29.8% 35.5% 

15 AMI NA 3 0.623 43.7% 43.7% 3 0.715 38.1% 34.1% 

29 Autocorrelation NA 3 0.447 36.6% 41.3% 3 0.728 32.2% 33.3% 

28 AMI NA 3 0.451 40.8% 45.1% 3 0.728 31.5% 33.0% 

34 AMI NA 3 0.529 30.7% 35.5% 3 0.784 24.9% 27.8% 

41 Autocorrelation NA 3 0.481 36.3% 36.9% 3 0.800 29.3% 26.7% 

23 Autocorrelation NA 1 0.351 44.5% 44.5% 3 0.839 26.6% 22.7% 

18 Autocorrelation NA 3 0.656 20.7% 13.9% 3 0.868 21.8% 20.4% 

33 AMI NA 3 0.671 16.8% 18.2% 3 0.869 21.4% 20.0% 

22 AMI NA 3 0.456 54.3% 54.3% 3 0.897 14.8% 13.0% 

35 Autocorrelation NA 3 0.665 11.7% 12.7% 3 0.951 19.5% 12.8% 

3 AMI NA 3 0.463 53.9% 54.1% 3 1.413 9.1% -55.2% 

9 AMI NA 3 0.463 53.9% 54.0% 3 1.413 9.1% -55.2% 

13 Autocorrelation NA 3 0.673 21.6% 32.9% 1 2.149 32.4% 40.6% 

1 AMI NA 3 0.650 33.4% 35.0% 1 2.204 47.0% 40.4% 

6 AMI NA 3 0.666 33.4% 33.4% 1 2.215 49.2% 40.0% 

8 Autocorrelation NA 3 0.784 21.9% 21.9% 1 2.269 52.9% 37.3% 

2 AMI NA 3 0.630 29.1% 37.1% 1 2.350 37.9% 36.4% 

8 Autocorrelation NA 3 0.637 36.5% 36.5% 1 2.744 52.8% 24.2% 

14 Autocorrelation NA 3 0.697 45.0% 46.2% 1 3.203 42.2% 11.5% 

4 AMI NA 3 0.822 17.9% 17.9% 1 3.492 48.4% 5.4% 

5 AMI NA 3 0.822 17.9% 17.9% 1 3.492 48.4% 5.4% 
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G.2.1. Ordered According to Experiment Number 

Table 62:All the flash dryer models identified per experiment. Results are ordered in order of ascending 
experiment number. 
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1 AMI NA 3 0.650 33.4% 35.0% 1 2.204 47.0% 40.4% 

2 AMI NA 3 0.630 29.1% 37.1% 1 2.350 37.9% 36.4% 

3 AMI NA 1 0.463 53.9% 54.1% 3 1.413 9.1% -55.2% 

4 AMI NA 3 0.822 17.9% 17.9% 1 3.492 48.4% 5.4% 

5 AMI NA 3 0.822 17.9% 17.9% 1 3.492 48.4% 5.4% 

6 AMI NA 3 0.666 33.4% 33.4% 1 2.215 49.2% 40.0% 

7 AMI NA 3 0.573 42.7% 42.8% 1 4.101 21.0% -1107.0% 

8 Autocorrelation NA 3 0.784 21.9% 21.9% 1 2.269 52.9% 37.3% 

9 AMI NA 1 0.637 36.5% 36.5% 3 2.744 52.8% 24.2% 

10 Autocorrelation NA 3 0.600 40.2% 40.3% 3 3.878 39.1% -7.1% 

11 Autocorrelation NA 1 0.463 53.9% 54.0% 3 1.413 9.1% -55.2% 

12 AMI NA 1 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

13 Autocorrelation NA 3 0.310 54.4% 68.6% 1 0.314 18.5% -14.8% 

14 Autocorrelation NA 3 0.395 55.9% 22.9% 1 0.418 1.1% -58.7% 

15 AMI NA 3 0.673 21.6% 32.9% 3 2.149 32.4% 40.6% 

16 AMI NA 3 0.697 45.0% 46.2% 3 3.203 42.2% 11.5% 

17 AMI NA 3 0.623 43.7% 43.7% 3 0.715 38.1% 34.1% 

18 Autocorrelation NA 3 0.491 40.1% 40.1% 3 0.662 39.4% 39.0% 

19 AMI NA 3 0.430 47.5% 47.6% 3 0.622 43.6% 42.7% 

20 AMI NA 3 0.656 20.7% 13.9% 3 0.868 21.8% 20.4% 

21 AMI NA 3 0.391 52.3% 52.3% 3 0.633 43.8% 41.7% 

22 AMI Idl
e 

3 0.512 25.8% 32.9% 3 0.674 30.5% 38.2% 

23 Autocorrelation Idl
e 

3 0.526 29.3% 35.9% 3 0.701 29.8% 35.5% 
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24 Autocorrelation NA 3 0.456 54.3% 54.3% 3 0.897 14.8% 13.0% 

25 Autocorrelation NA 3 0.351 44.5% 44.5% 3 0.839 26.6% 22.7% 

26 AMI NA 3 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

27 Autocorrelation NA 3 0.485 22.2% 36.4% 3 0.641 25.7% 41.3% 

28 AMI NA 3 0.450 39.5% 45.2% 3 0.642 37.2% 40.8% 

29 Autocorrelation NA 3 0.485 31.9% 36.4% 3 0.641 36.9% 41.3% 

30 AMI NA 1 0.451 40.8% 45.1% 3 0.728 31.5% 33.0% 

33 AMI NA 3 0.447 36.6% 41.3% 3 0.728 32.2% 33.3% 

34 AMI NA 3 0.395 55.9% 60.7% 3 0.418 1.1% -53.5% 

35 Autocorrelation NA 3 0.671 16.8% 18.2% 3 0.869 21.4% 20.0% 

36 AMI NA 3 0.529 30.7% 35.5% 3 0.784 24.9% 27.8% 

37 Autocorrelation NA 3 0.665 11.7% 12.7% 3 0.951 19.5% 12.8% 

38 AMI NA 3 0.488 33.4% 40.5% 3 0.668 32.0% 38.5% 

39 Autocorrelation NA 3 0.500 29.3% 34.4% 3 0.697 31.5% 36.1% 

40 AMI NA 3 0.422 49.6% 51.7% 3 0.646 40.7% 40.5% 

41 Autocorrelation NA 3 0.468 37.4% 38.6% 3 0.622 42.9% 43.0% 

42 AMI NA 3 0.403 49.0% 50.9% 3 0.620 42.3% 42.9% 

43 Autocorrelation NA 3 0.481 36.3% 36.9% 3 0.800 29.3% 26.7% 

44 AMI NA 3 0.488 39.8% 40.5% 3 0.668 38.2% 38.5% 

45 Autocorrelation NA 3 0.500 29.3% 34.4% 3 0.697 31.5% 36.1% 

D
is

c
ip

u
lu

s
 AMI NA 3 0.468 41.6% 43.0% 3 0.655 38.8% 39.7% 

D
is

c
ip

u
lu

s
 Autocorrelation NA 3 0.434 41.1% 43.1% 3 0.651 39.0% 40.3% 
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G.3. Hot Gas Generator 

45 different experiments were attempted with the aim to identify a hot gas generator model. 

The tables below contain the experiments in 1) ordered from lowest validation mean square 

error to highest and 2) numerical order. The most important characteristics of each 

experiments is included, namely 

 Delay parameters used; 

 Presence of process idle state; 

 Training and validation datasets; 

 Training fitness, MSE and R2; and 

 Validation fitness, MSE and R2. 

Fitness values for only the GPOls tool is included, seeing as the MSE value was used by 

Discipulus®.  
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G.3.1. Ordered According to Descending MSE 

Table 63: All the hot gas generator models identified per experiment. Results are ordered in descending 
order of validation MSE. 
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s
 Autocorrelation NA 3 0.065 NA 89.3% 3 0.052 NA 91.0% 

D
is

c
ip

u
lu

s
 AMI NA 3 0.091 NA 85.0% 3 0.078 NA 86.6% 

32 Autocorrelation NA 1 0.165 52.5% 72.8% 3 0.133 61.8% 77.1% 

49 Autocorrelation NA 3 0.093 81.8% 84.7% 3 0.133 76.7% 77.1% 

48 AMI NA 3 0.103 80.8% 83.1% 3 0.167 71.5% 71.2% 

47 Autocorrelation NA 3 0.223 62.7% 63.2% 3 0.181 79.7% 68.9% 

46 AMI NA 3 0.245 59.3% 59.8% 3 0.192 80.5% 66.8% 

31 AMI NA 3 0.159 57.4% 73.9% 3 0.241 65.1% 58.5% 
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G.3.2. Ordered According to Experiment Number 

Table 64: All the hot gas generator models identified per experiment. Results are ordered according to 
experiment number. 
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31 AMI NA 1 0.159 57.4% 73.9% 1 0.241 65.1% 58.5% 

32 Autocorrelation NA 1 0.165 52.5% 72.8% 1 0.133 61.8% 77.1% 

46 AMI NA 1 0.245 59.3% 59.8% 1 0.192 80.5% 66.8% 

47 Autocorrelation NA 1 0.223 62.7% 63.2% 1 0.181 79.7% 68.9% 

48 AMI NA 1 0.103 80.8% 83.1% 1 0.167 71.5% 71.2% 

49 Autocorrelation NA 1 0.093 81.8% 84.7% 1 0.133 76.7% 77.1% 

D
is
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ip

u
lu

s
 AMI NA 1 0.091  85.0% 1 0.078  86.6% 

D
is

c
ip

u
lu

s
 Autocorrelation NA 1 0.065  89.3% 1 0.052  91.0% 
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Appendix H – Model-Based Predictive Control Theory 

This appendix provides an overview of basic MPC theory as found in literature. This is 

included for the reader not familiar with the technique. 

H.1. Model-based Predictive Control 

What is a APC? Advanced process control (APC) refers loosely to any control algorithm, 

which is not traditional PID based control. An APC algorithm can thus include predictive 

methods, conditions, rules, “what-if”-simulations or optimisation, operator guidance systems 

or any method that allows a decision or control move to be executed. There is thus no 

formal standard, although various methods have been formally researched and is 

recognised. One of these is model-based predictive control. 

Model-based Predictive Control (MPC) is one of various model based control strategies 

available. MPC was first coined by 2 separate industrial research groups in the late 1970‟s. 

Shell Oil developed their dynamic matrix control (DMC) method which focused on 

multivariate constrained control problems; and a French company, ADERSA, used their 

IDCOM method which was similar to the DMC method. The general MPC concept has 

evolved from these and is today widely used in especially the petrochemical industry. (De 

Temmerman et al., 2009)(Perry & Green, 1997) 

MPC is a preferred model based control strategy, and also preferred over classical control 

strategies due to its ability to: 

 Handle MIMO models; 

 Incorporate difficult dynamic behaviour such as time-delays; 

 Include input and output variable constraints; 

 Integrate with various optimisation schemes; 

 Update easily online; 

 Adaptable cost function which may include economic and energy considerations; 
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 Track a set point trajectory; 

(Dufour et al., 2003) (Perry & Green, 1997) 

There are however some disadvantages a control engineer should be weary of when 

developing or recommending a MPC strategy. 

 It is unfamiliar to plant personnel, whereas classic PID control is proven and trusted 

on site; 

 Demanding of computer resources due to the intense and reiterative optimisation 

procedures; 

 Model development may be time consuming and difficult; 

 Models may be limited in the process operating range they can represent; 

(Dufour et al., 2003) (Perry & Green, 1997) 

These issues can be answered by focussing on change management, computing power 

and algorithm efficiency for the first two disadvantages. The model limitations and 

development workload should be brought into consideration when planning the timelines of 

the project and using proven methods and experienced people. 

H.2. Workings of MPC 

The idea of MPC is to apply a dynamic model for predicting process output (control 

variable) values; comparing these predictions to the required set point value and then 

calculating and optimising the required manipulated variable adjustments needed to drive 

the control variable towards the required set point.  

Consider a process with an input variable set u; output variable set y; model G. MPC 

predicts the output values yj for a future discrete time window with a maximum prediction 

window Np discrete time events forward from current time k. From these predicted values 

the control algorithm generates the control moves ũ for a future control time window with a 

maximum control window Nc discrete time events forward from current time k. Only the first 
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control move for time k+1 is implemented. The following diagram illustrates the prediction, 

control move generation and implementation over a future timeline from current time k. 

 

 

The optimisation procedure solves an iterative open loop optimisation problem aimed at 

finding the best manipulated variable values. Often this needs to be executed within an 

allotted optimisation time. The goal function for the optimisation procedure is commonly 

made up of a set point tracking error together with a second penalty criteria for either too 

large control moves (Abudkhalifeh et al., 2005) (Abdel-Jabbar et al., 2002)(Perry & Green, 

1997) or for enforcing output constraints (Dufour et al., 2003) (De Temmerman et al., 2009). 

The goal function may be linear, quadratic or a higher order nonlinear depending on the 

criteria of the control output. The order of the goal function implies which optimisation 

procedure to use – linear programming (LP), quadratic programming (QP), or a nonlinear 

programming method. (Perry & Green, 1997) This optimisation procedure is repeated at 

every sample time. The goal function for set point tracking with penalties for too large 

control moves is  

𝑚𝑖𝑛𝐽 ũ =   𝛾 𝑖  𝑦𝑟𝑒𝑓  𝑘 + 𝑖 − 𝑦 𝑘 + 𝑖  
2
 

𝑁𝑝

𝑖=1

+   𝜆 𝑗  𝛥ũ 𝑘 + 𝑗 − 1  
2
 

𝑁𝑐

𝑗 =1

 

(Abdel-Jabbar et al., 2002) 

Figure 104: Illustration of MPC prediction and control move implementation at time k 

Current time  
k k+1 k+2 k+3 k+4 k+5 k+6 

Np = 6 

Nc = 3 

Output Values 
Predicted y yk+1 yk+2 yk+3 yk+4 yk+5 yk+6 

Optimised 
Control Moves ũ ũk+1 ũk+2 ũk+3 

Implimented 
Control Moves ũ ũk+1 
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Where γ and λ are weights for the square prediction errors for time i and control moves for 

time j. In the case of multiple manipulated variables, the off diagonals of the matrix λ 

indicate the independence of the manipulated variables. (Abudkhalifeh et al., 2005)  

Over and above control move size penalties, MPC can incorporate control variable 

constraints into the control algorithm. These constraints may be either on the variable size, 

velocity or acceleration and is denoted as follows: 

𝑢𝑚𝑖𝑛 ≤ ũ ≤ 𝑢𝑚𝑎𝑥  

𝑢 𝑚𝑖𝑛 ≤ ũ ≤ 𝑢 𝑚𝑎𝑥  

𝑢 𝑚𝑖𝑛 ≤ ũ ≤ 𝑢 𝑚𝑎𝑥   

(Dufour et al., 2003)(De Temmerman et al., 2009) 

MATLAB‟s Model Predictive Control toolbox follows the abovementioned procedure (Abdel-

Jabbar et al., 2002), but only supports linear optimisation. The fundamentals discussed here 

will be used to construct MPC logic and investigating its efficiency and effectiveness. 

 



System Identification and Model-Based Control of a Filter Cake Drying Process 

Page | 251 
 

Appendix I – Model Predictive Control Experiments 

The results for the randomly chosen control moves are included here. These trends are 

included for reference to the trends in ‎Chapter 9. 

I.1. Random Control Model 2 

The outlet air temperature tends to hit a ceiling and deviate downwards. This is seen as the 

natural reaction of the model. 

 

Figure 105: Outlet air temperature resulting from a random choice of coal feed – Run 3 

I.2. Random Control Model 4 

The model used results in an outlet air temperature oscillating around a more central area, 

indicating a more normal distribution in the actions. 
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Figure 106: Outlet air temperature resulting from a random choice of coal feed – Run 4 


