

Design and Implementation of a Digital Video Recorder, with Live Video
Streaming to Cellphone, over Mobile Broadband

Johann Stegmann

Thesis presented in partial fulfilment of the requirements for the degree
Master of Science in Electronic Engineering

at the University of Stellenbosch

Supervisor: Dr. R.Wolhuter
March 2007

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my

own original work and that I have not previously in its entirety or in part submitted

it at any university for a degree.

Signature:

J.P. Stegmann

Date:

Opsomming

Die inhoud van hierdie Tesis handel oor die toenemende vermoë van die mobiele Internet

die moontlike gebruik van selfone om video monitering stelsels aan te vul. Die klem van

hierdie Tesis val op die intydse lewering van video beelde na selfone.

Die eienskappe, vermoëns en beperkings van die netwerke en selfone word ondersoek,

asook die moontlike metodes om intydse video beelde na selfone te lewer. Die ontwerp

en implementering van ’n digitale video monitering stelsel word aangebied. Twee

weergawes van die video lewering is ontwerp en gebruik in twee sagteware weergawes

vir selfone.

Die evaluasie en toets van die stelsel word aangebied en moontlike toekomstige

navorsing en verbeterings word voorgestel.

 iii

Abstract

The work presented in this Thesis relates to the increased capabilities of the mobile

Internet and the possible use of cellphones as an enhancement to video surveillance

systems. The focus of the Thesis is on the delivery of live video content to Java enabled

cellphones.

The various characteristics, capabilities and limitations of the mobile networks- and

phones are investigated. Various options for streaming video content to cellphones are

also explored. The design and implementation of a digital surveillance system with the

ability to stream live video to a cellphone is presented. Two versions of the streaming

protocol are developed and implemented in cellphone applications, with which the video

stream can be viewed.

An evaluation and real-life testing of the applications are presented. Recommendations

regarding further enhancements are provided.

 iv

Acknowledgements

Many thanks to my supervisor, Dr. Riaan Wolhuter, for his encouragement and expert

advice.

More thanks; to Tania, Wayne, all my friends and family who have supported and

encouraged me, especially in the last couple of months.

Very special thanks to my parents for their encouragement and everlasting dedication and

love over the years.

 v

CONTENTS

DECLARATION .. II
OPSOMMING...III
ABSTRACT .. IV
ACKNOWLEDGEMENTS ..V
CONTENTS .. VI
LIST OF FIGURES ...VIII
LIST OF TABLES.. IX
TERMINOLOGY ..X
1 INTRODUCTION AND THESIS OBJECTIVES ... 1

1.1 THESIS OBJECTIVES ... 2
1.2 THESIS OVERVIEW ... 2

2 BACKGROUND AND RESEARCH... 4
2.1 NETWORK MODELS.. 4

2.1.1 Open Systems Interconnection (OSI) Reference Model .. 5
2.1.2 Internet Protocol Suite (Internet Reference Model) ... 6

2.2 MOBILE DATA NETWORK CONSIDERATIONS.. 8
2.2.1 GSM Data Technologies... 9
2.2.2 Network Performance... 10

2.3 DATA TRANSPORT PROTOCOLS.. 15
2.3.1 User Datagram Protocol (UDP) .. 15
2.3.2 Transmission Control Protocol (TCP) ... 17

2.4 APPLICATION LAYER PROTOCOLS.. 18
2.4.1 Real-Time Transfer Protocol (RTP) ... 19
2.4.2 Hypertext Transfer Protocol (HTTP) ... 21

2.5 VIDEO STREAMING... 22
2.5.1 Video Streaming – an Overview ... 22
2.5.2 Video Compression... 24
2.5.3 Video Streaming to Mobile Phones .. 24

2.6 CELLULAR PHONE APPLICATION DEVELOPMENT... 28
2.6.1 Java Platform ... 28
2.6.2 Java 2 Platform, Micro Edition (J2ME)... 29
2.6.3 Connected Device Configuration (CDC).. 30
2.6.4 Connected Limited Device Configuration (CLDC) .. 30
2.6.5 Mobile Information Device Profile (MIDP) ... 31
2.6.6 MIDP Application Programming Interface .. 32
2.6.7 Deployment of the MIDP Application .. 33

2.7 VIDEO SERVER CONSIDERATIONS .. 34
2.8 SUMMARY.. 35

3 THEORETICAL DESIGN... 36
3.1 NETWORK MODEL.. 36

3.1.1 Mobile Channel .. 38
3.1.2 Network Layer .. 38
3.1.3 Transport Layer.. 39
3.1.4 Application Layer ... 39
3.1.5 Revised Network Model .. 40
3.1.6 Video Streaming Transport Considerations ... 41

 vi

3.1.7 DVR Network Model... 43
3.2 STREAMING PROTOCOL:... 45

3.2.1 Video Streaming Requirements... 45
3.2.2 Designing the Streaming Video Protocol ... 46

3.3 DESIGNING THE MIDLET.. 48
3.4 DESIGN OF THE DVR WITH VIDEO SERVER FOR MIDLET ACCESS ... 50

3.4.1 Application Development Environment and Programming Language 50
3.4.2 DVR High-level Design .. 51

3.5 SUMMARY.. 55
4 IMPLEMENTATION .. 56

4.1 MIDLET IMPLEMENTATION .. 56
4.1.1 Dual-threaded MIDlet Implementation .. 56
4.1.2 HTTP MIDlet.. 58
4.1.3 TCP MIDlet .. 66
4.1.4 MIDlet Screenshots and Testing ... 70

4.2 DVR IMPLEMENTATION ... 71
4.2.1 Graphical User Interface (GUI) ... 71
4.2.2 Implementing the Camera Component- and Window... 72
4.2.3 Implementing the Communications Component and Video Streaming................................. 76
4.2.4 Implementing Video Streaming... 80
4.2.5 Implementing the Review Window.. 84
4.2.6 Email Alarm Notifications .. 84
4.2.7 Additional DVR Functions.. 84

4.3 IMPLEMENTATION SUMMARY .. 85
5 EVALUATION AND RESULTS... 86

5.1 MIDLET EVALUATION ... 86
5.1.1 Simulated Results.. 86
5.1.2 Results on Real-life Cellphones .. 88

5.2 DVR EVALUATION .. 91
5.3 EVALUATION SUMMARY .. 94

6 CONTRIBUTIONS, CONCLUSIONS AND FUTURE WORK... 96
REFERENCES ... 99

 vii

LIST OF FIGURES

FIGURE 2.1-1: LAYERS OF THE OSI NETWORK MODEL 6
FIGURE 2.1-2: LAYERS AND PROTOCOLS OF THE INTERNET REFERENCE MODEL 7
FIGURE 2.3-1: UDP PACKET STRUCTURE 16
FIGURE 2.3-2: TCP PACKET STRUCTURE 18
FIGURE 2.4-1: RTP PACKET STRUCTURE 20
FIGURE 2.4-2: RTP-BASED VIDEO STREAMING PROTOCOL STACK 21
FIGURE 2.5-1: 3GP PROTOCOL STACK 25
FIGURE 2.6-1: JAVA PLATFORM 29
FIGURE 2.6-2: RELATIONSHIP BETWEEN J2SE, CDC AND CLDC 30
FIGURE 2.6-3: MIDP APPLICATION ENVIRONMENT 31
FIGURE 3.1-1: NETWORK MODEL FOR STREAMING APPLICATION - ALL INCLUSIVE 37
FIGURE 3.1-2: REVISED NETWORK MODEL 40
FIGURE 3.1-3: FLOW DIAGRAM FOR CELLPHONE APPLICATION 42
FIGURE 3.1-4: FLOW DIAGRAM FOR DVR 43
FIGURE 3.1-5: DVR NETWORK MODEL 44
FIGURE 3.1-6: COMMUNICATIONS MODEL & PROTOCOL STACK 44
FIGURE 3.3-1: HIGH-LEVEL MIDLET PROGRAM FLOW 49
FIGURE 3.4-1: MAIN THREAD 53
FIGURE 3.4-2: CONNECTION THREAD 54
FIGURE 3.4-3: CAMERA THREAD 54
FIGURE 4.1-1: MAIN THREAD AND INTERFACE IMPLEMENTATION 57
FIGURE 4.1-2: HTTP MESSAGE SEQUENCE CHART 60
FIGURE 4.1-3: HTTP LOGIN FLOW DIAGRAM 61
FIGURE 4.1-4: HTTP STREAMING PROGRAM FLOW 63
FIGURE 4.1-5: SCREENSHOTS - EMULATOR A 65
FIGURE 4.1-6: SCREENSHOTS - EMULATOR B 65
FIGURE 4.1-7: GCF HIERARCHY 66
FIGURE 4.1-8: TCP MESSAGE SEQUENCE CHART 67
FIGURE 4.1-9: TCP LOGIN FLOW DIAGRAM 68
FIGURE 4.1-10: TCP STREAMING FLOW DIAGRAM 69
FIGURE 4.1-11: SETTINGS FIGURE 4.1-12: SELECT CAMERA 70
FIGURE 4.1-13: VIDEO STREAMING 71
FIGURE 4.2-1: CAMERA SETTINGS FLOW DIAGRAM 74
FIGURE 4.2-2: MOTION DETECTION FLOW DIAGRAM 75
FIGURE 4.2-3: START MONITORING FLOW DIAGRAM 76
FIGURE 4.2-4: CLIENT CONNECTION FLOW DIAGRAM 79
FIGURE 4.2-5: CLIENT LOGIN FLOW DIAGRAM 80
FIGURE 4.2-6: START VIDEO STREAMING FLOW DIAGRAM 82
FIGURE 4.2-7: VIDEO STREAMING FLOW DIAGRAM 83
FIGURE 5.1-1: MIDLET VIDEO STREAMING SCREENSHOT 88
FIGURE 5.1-2: VIDEO STREAMING ON MIDP 1.0 CELLPHONE 90
FIGURE 5.1-3: VIDEO STREAMING ON MIDP 2.0 CELLPHONE 91
FIGURE 5.2-1: DVR MONITORING 92
FIGURE 5.2-2: DVR SETTINGS WINDOW 93
FIGURE 5.2-3: MOTION ALARM IMAGES 94

 viii

LIST OF TABLES

TABLE 2.2-1 COMPARISON OF GSM FAMILY OF DATA SERVICES 15
TABLE 2.4-1: TYPICAL APPLICATIONS FOR UDP AND TCP TRANSPORT LAYER 19
TABLE 2.5-1: 3GPP STREAMING MEDIA TECHNOLOGY PROVIDERS 26
TABLE 2.6-1: SUMMARY OF APPLICABLE MIDP REQUIREMENTS 33
TABLE 4.1-1: COMMUNICATIONTHREADINTERFACE 64
TABLE 5.1-1: EMULATION RESULTS 87

 ix

TERMINOLOGY

effB Effective throughput of the communications channel

xt Frame transmission time

it Inter-frame interval
3GPP 3rd Generation Partner Project
API Application programming interfaces
CDC Connected Device Configuration
CIF Common Intermediate Format
CLDC Connected Limited Device Configuration
DNS Domain Name Service
DVR Digital video recorder
EDGE Enhanced Data Rates for GSM Evolution
fps Frames per second (framerate)
GPRS General Packet Radio Service
GSM Global System for Mobile communication
GUI Graphical User Interface
H.263 Low-bitrate video codec
HSDPA High Speed Download Packet Access
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IGMP Internet Group Management Protocol
IP Internet Protocol
ISO International Standards Organization
ITU International Telecommunications Union
J2EE Java Enterprise Edition
J2ME Java Micro Edition
J2SE Java Standard Edition
JAM Java Application Manager
JAR Java Archive File
JPEG Joint Photographic Experts Group
JVM Java Virtual Machine
kbps kilobits per second
MDI Multiple Document Interface
MIDlet Main class of an MIDP application
MIDP Mobile Information Device Profile
MJPEG Motion JPEG
MMAPI Mobile Media API
MPEG Moving Picture Experts Group
ms milliseconds
OSI Open Systems Interconnection
PC Personal computer
PNG Portable Network Graphics
QoS Quality of Service
RAM Random Access Memory
ROM Read-Only Memory
RTCP Real -time Control protocol
RTP Real-Time Transfer Protocol
RTSP Real-time Streaming protocol
SMS Short Message Service
SNMP Simple Network Management Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol

 x

UMTS Universal Mobile Telecommunications System
VCL Visual Component Library
VoIP Voice over IP

 xi

Introduction and Thesis Objectives

1 Introduction and Thesis Objectives

The recent surge in the amount of internet- and Java enabled cellphones on the market

has opened up numerous possibilities, in which cellphones can be used, to enhance the

quality of life for the average individual. These devices can access basically any type of

content on the internet. The mobile Internet has evolved from providing meager text-

based web pages, to being a resource, rich with multimedia content.

As the capabilities of cellphones improved, so did the mobile connection capabilities of

both the phones and the mobile carriers, up to a point where cellphone networks can be

used for video and audio streaming, instant messaging services, voice over IP, games and

more. The improvements in the processing power and capabilities of cellphones also

improved to such an extent that almost limitless possibilities for new applications are

available.

The high crime rates and increased tendency of people to want to feel secure and to

protect their belongings and interests have brought an increase in the amount of video

surveillance systems used. A very large number of businesses- and an ever increasing

number of private properties are nowadays protected by video surveillance systems.

These systems can be greatly enhanced, if it can be monitored from anywhere, any time

the business- or home owner wishes to. This is an area where the cellphone has

particular potential.

Currently, the ability to stream video to cellphones is mostly limited to newer handsets

and the video content is mostly provided by content providers who want to make a profit,

from delivering the content. Private- and small scale video streaming to cellphones is

however still in its infancy and very few applications exist which can stream video from

an ordinary PC to a large variety of Java enabled cellphones.

This thesis presents the considerations-, design- and implementation of a digital video

recorder (DVR), which can stream live video images to Java enabled cellphones.

 1

Introduction and Thesis Objectives

1.1 Thesis Objectives

This thesis presents an exploration of the mobile Internet environment, as well as the

application development environment of cellular phones. The various characteristics,

capabilities and limitations of the mobile networks- and devices are investigated. The

various options for streaming video content to cellphones are also explored. The

information is ultimately used in the design- and implementation of a digital video

recorder (DVR), which can stream live video images to Java enabled cellphones.

The main objectives of this thesis are therefore:

• To research the characteristics, limitations and capabilities of the mobile

networks- and devices.

• To research the options available for implementing video streaming to cellphones

• To use the knowledge in the design of a digital video recorder with the ability to

stream live video to as great a range of cellphones as possible. The DVR

application must be able to run on an ordinary Windows PC, with cameras

connected to the PC. The DVR must provide a user friendly interface and allow a

certain measure of security against access from unauthorized cellphones. The

DVR must be able to do video motion detection and to send a notification when

motion is detected.

These objectives were successfully met and demonstrated.

1.2 Thesis Overview

Chapter 2 provides information and research, regarding the capabilities and limitations of

modern java-enabled cellphones and mobile networks. The basic principles of digital

networks, network models, data transport protocols, video streaming methods and

application development environments are presented. The relevance of each item to the

thesis objective is highlighted.

Chapter 3 presents the theoretical design of the DVR, cellphone application and

streaming video protocol. A communications model is first derived, followed by the

 2

Introduction and Thesis Objectives

theoretical design of the video streaming protocol. The high-level flow diagrams of the

DVR- and cellphone applications are then presented.

Chapter 4 presents the implementation of the designs, derived in Chapter 3. Two versions

of the cellphone application are implemented. The issues encountered in the

implementation stage are noted and the workarounds used discussed.

Chapter 5 presents the evaluation of the project, against the Thesis goals. Screenshots of

the DVR and cellphone application are provided, along with the results of testing the

mobile application on different handsets.

Chapter 6 concludes the Thesis by giving a summary of the contributions made by the

thesis, results and presenting suggestions for future work.

 3

Background and Research

2 Background and Research

The first step in designing the mobile streaming surveillance solution is to understand and

compare the various video streaming algorithms and related network protocols. This

chapter describes the basic principles of digital networks, network models, data transport

protocols, video streaming methods and application development environments. Since

various permutations of video streaming methods, data networks and transport protocols

exist, the most common streaming techniques are described and compared, with

relevance to the structure and abilities of a typical cellphone network- and user device.

The relevance of the various underlying protocols and techniques to the design of the

streaming video application is also discussed.

The chapter kicks off by describing the models for a digital communications network,

with insight into how the different building blocks of the networks fit together. An

overview is then given of each of the building blocks, starting at the lowest level moving

up to the highest level, which is the end-user application.

2.1 Network Models

Any communication between two different devices need to use some kind of

communications medium, as well as a method (protocol) to exchange information

between the devices. In order to define the communication between different devices

more clearly, a network model is used. This section gives an overview of the two most

common network models used in modern communications systems, and the relevance to

GSM type networks.

The two common models, on which most modern networks are based, are the ISO OSI

Model and the Internet Protocol Suite. These networks models and the relevance of the

implementations thereof, to this project, are discussed in the following paragraphs.

 4

Background and Research

2.1.1 Open Systems Interconnection (OSI) Reference Model

The OSI reference model was developed in 1984, by a working group under the

International Standards Organization (ISO). The reference model was developed to

provide a standard reference framework, for the way in which different information

devices communicate.

The OSI model defines different stages, in a data communications network, through

which data must pass through to get from one device to another. The stages are defined

by seven OSI Communication Layers. [1] Each layer is dependant on the functions of

the layer below it and only provides functions to the layer above it. In other words, each

layer receives data from the layer below it and prepares the data for use by the layer

above it.

Each layer provides a specific function in the transmission of data between two devices in

the link. Each layer in turn communicates with the same layer on the other end of the

network connection, with a common protocol for each layer. The OSI model provides a

set of guidelines to implement the protocols of each layer, to ensure compatibility

between different networked devices, provided that the devices adhere to the OSI

guidelines.

Figure 2.1-1 illustrates the interaction of the layers of the OSI model.

 5

Background and Research

Figure 2.1-1: Layers of the OSI Network Model

A more detailed description of each of the layers in the illustration can be found in the

ISO standard document, ISO/IEC 7498-1:1994

Although the standard aims to ensure interoperability between all networked devices,

from different vendors, the full functionality of the standard was never fully implemented

in the Internet, although various subsets of the model are utilized. [2] The standard that

better defines the way the Internet works is more commonly known as the Internet

Protocol Suite, or Internet Reference Model.

2.1.2 Internet Protocol Suite (Internet Reference Model)

The Internet protocols were first developed by the Defense Advanced Research Projects

Agency, for communication between dissimilar computer systems, at research facilities.

Initially, the Internet Reference Model was defined to have 4 layers, but this model has

evolved to a five-layer model, according to more recent documents and text books. No

formal publication or documentation exists which specifically define the model as a

 6

Background and Research

Standard, however. The more recent, 5-layer model, is discussed in the subsequent

paragraphs.

The Internet Protocol Suite has less rigidly defined layers than the OSI Model and is thus

more suited to real-world applications but, although the layers of the Internet model have

somewhat different definitions from the OSI model, it spans the complete range of OSI

layers. It is therefore in a way similar but also dissimilar to the OSI model.

With the inclusion of TCP/IP and also more common applications, for example Email

and file-transfer in the Internet Suite definitions, the Internet Protocols have become the

foundation on which the World Wide Web (Internet) is based. [3] The Internet

Protocols are widely used in communication systems and is implemented by the majority

of modern networked communication devices.

Figure 2.1-2 illustrates the layers and relevant protocols of the Internet Model, as well as

how it typically compares with the OSI model.

Figure 2.1-2: Layers and protocols of the Internet Reference Model

 7

Background and Research

The Internet protocols, indicated in the above illustration, are discussed in more detail

elsewhere in this chapter.

Since the Internet Model is not as well defined as the OSI model, variations are found in

different publications with regards the lower three layers of the model. There are also

various shortcomings in both network models. A typical example, IGMP (used for

handling multicasting traffic), operates on top of IP (Network Layer), but does not

support the data transports, TCP and UDP, as supposed by the models, according to the

layered model. This case is not supported by any of the two models and is usually treated

with a different approach.

Despite the grey areas and shortcomings in the two models, however, it is still useful in

most instances to use at least one of the models, or elements of the models, to define

certain elements of computer networks and related applications. Typical examples are

hardware descriptions, for example network switch classifications, directly related to OSI

Layers (Layer 1 Switch, Layer 2 Switch, etc.), or application programming interfaces

(APIs), usually related to the Internet Model, providing access directly to the Transport

Layer (Inter-application communication utilizing TCP or UDP). [2] [4]

The network model, or elements, best suited to the relevant application and protocols

utilized should therefore be used in the project definition. The relevance of the models to

the development of the mobile streaming application becomes clearer when considering

the relevant protocol issues discussed in subsequent paragraphs.

2.2 Mobile Data Network Considerations

Initially, Cellphones were primarily used for voice communication and the networks were

designed with this in mind. In recent times however, Cellular communication networks

are becoming more and more oriented towards the delivery of high-speed packet data,

especially enabling the delivery of Internet content to mobile phones. As the quality of

 8

Background and Research

the data services available on the networks improve, so does the range of applications

that it can be used for.

Although the latest GSM family of data networks supports almost all functions of

computer networks, there are some limitations that must be considered. Some of the

major limitations include limitations of the device that accesses the Internet via the data

network, as well as the performance and reliability of the networks.

Mobile phones have advanced in such a way that most of the services provided in the

Internet can be accessed, but there are limitations in what the devices can do with the

available services. High speed data transfer on the phones is very battery intensive,

limiting the time that can be spent online. Similarly, the processing power and embedded

software support on the phones limit the extent to which content can be accessed,

processed or displayed to the user. These considerations play a major role in the design

of the mobile streaming application, described in this document. The relevant issues,

regarding the software capabilities of mobile phones, are discussed in more detail in

Section 2.6.

2.2.1 GSM Data Technologies

Initially data on the cellular networks was primarily used to send network service

messages between devices and Short Message Service (SMS) messages between mobile

users. In more recent times, cellular operators’ data networks are capable of delivering

almost all services available on the Internet, including file transfers, email, browsing and

multimedia streaming applications. The ability of the cellular data networks to enable

this relies on the fact that the networks are based on the Internet Protocol (IP), which was

briefly discussed in the previous chapter. [5] [6]

The cellular networks available in South Africa are all based on the Global System for

Mobile (GSM) Communications standard. The GSM family of communication

technologies includes voice- and various data services. The data services are provided

seamlessly to the end-user, by utilizing the IP protocol and therefore the underlying

 9

Background and Research

network structure is not of critical importance to the user, since the user will often be

unaware which type of communication is used, or when the type of service is changed,

even while accessing the data network. The quality of the service, measured by

performance and reliability does play a big role, however, especially when considered in

the design of applications that are dependant on the data networks.

The most common GSM data technologies that have evolved, are the following [5]:

• General Packet Radio Service (GPRS)

• Enhanced Data Rates for GSM Evolution (EDGE)

• Universal Mobile Telecommunications System (UMTS)

• High Speed Download Packet Access (HSDPA)

All of the abovementioned services offer IP-based connections with access to almost all

content on the Internet. Therefore, the basic measurement criteria as used for normal IP

networks can also be used to define the performance of each of the technologies. Since

the technologies are seamlessly deployed, with overlapping coverage areas, it is

important that the mobile streaming application can operate successfully on all of the

abovementioned services and that the difference in performance of the networks be taken

into account, if an acceptable user experience is to be achieved.

The following paragraphs give an overview of the performance of the mentioned data

networks.

2.2.2 Network Performance

When using an IP communications network, the performance parameters described in the

following section, directly influence the user experience. In the design of the streaming

application, these parameters must be taken into account to ensure that the user

experience is acceptable across the whole array of available GSM networks.

 10

Background and Research

The parameters can briefly be described as follows:

2.2.2.1 Latency

Network latency can be defined as the time required for the transfer of an empty message,

from one device, to another device on the network. Network latency is typically

measured in milliseconds (ms).

In video streaming applications, the Total latency is defined by the time it takes for the

video image to enter a video capture device, to convert and encode the image, transfer it

over the communications network and to receive, decode and display the image on the

receiving side. Therefore the Total latency includes the Network latency, as well as any

additional latency due to processing, buffering or latency of the output device.

2.2.2.2 Bandwidth

The bandwidth of a network is usually one of the most important performance parameters

to influence the user experience. The bandwidth of a network determines the amount of

data that can be transmitted / downloaded over the network within a given amount of

time. The higher the bandwidth, the better the user experience. The bandwidth of GSM

data networks is usually measured in kilobits per second (kbps).

The effect of bandwidth and relevance to the design, are discussed in more detail in

Section 2.5.

2.2.2.3 Availability

The availability of a network can be defined as the ability of the network to provide a

permanent connection, or as the ability of the network to provide the necessary network

link, when a connection is required.

The GSM family of data networks does provide an always-on type of capability, but as

stated before, the limitations of the cellphones, in terms of battery life, limits the use of

 11

Background and Research

this ability to more fixed installations, to a great extent. Other issues, for example signal

coverage and contention ratios also play a role in the availability of the cellular data

network.

The available GSM/IP-based data networks are compared, in terms of the above

performance parameters, as follows:

2.2.2.4 GPRS

GPRS is the most common of the GSM family and deployed by the most Cellular

operators worldwide. The coverage of the GPRS network is very similar to the coverage

of the related GSM voice services. It is therefore usually assumed that at least GPRS

data services are available, where GSM voice networks are available. This assumption

holds true for the two major South African Cellular service providers.

The GPRS services share timeslots on the GSM network, with the voice service. The

voice service receives a greater priority in the network and therefore the data service is a

non-guaranteed service. This implies that, when a GSM base station is busy, the GPRS

data throughput will drop significantly, or even be temporarily unavailable. Although a

theoretical download speed of 115 kbps is possible, this limit is seldom reached and a

figure in the 30 kbps range is more common. In peak times, however, even lower

throughput is sometimes experienced, with intermitted periods of no throughput

whatsoever.

The latency of GPRS networks is typically in the 600 ms to 1000 ms range. Since the

service level and availability is not guaranteed, the user experience with bandwidth

intensive applications, for example streaming media, is usually very poor when using the

GPRS service. [5] [6]

 12

Background and Research

2.2.2.5 EDGE

EDGE is based on GPRS, but features an enhanced radio interface and transmission

techniques, to ensure better radio spectrum utilization. Although the throughput of an

EDGE connection declines more rapidly with distance from the base station, than is the

case with GPRS, it outperforms GPRS in terms of average throughput.

The theoretical maximum throughput of EDGE is 473.6 kbps. The peak download rates

of most EDGE-enabled devices, is 200 kbps, but typical average download speeds of

around 100 kbps are mentioned in various technical evaluations. File download tests

however suggest that 80 kbps region is more realistic.

The latency of the EDGE enabled network is in the 600 ms region. The enhanced radio

communications interface provides for a more reliable connection than GPRS, but the

level of service is still not guaranteed. The service can provide relatively good low-

bandwith streaming, but in peak times and when not close to the base station, the user

experience is comparable to that of GPRS. [5] [8]

2.2.2.6 3G (UMTS)

UMTS is a 3rd generation network, which provides better spectral efficiency, to enable

simultaneous voice and data transfer. The UMTS network is based on a sophisticated

Quality of Service (QoS) architecture, which makes it very suitable for the transmission

of Voice over IP (VoIP), music streaming and video streaming applications.

The speed of a 3G network is also far superior to that of the older GSM networks,

allowing theoretical limits of more than 2 Mbps. Most cellular handsets have a 354 kbps

maximum limit however, with approximately 220 kbps to 320 kbps average throughput.

 13

Background and Research

The latency of the 3G network is also relatively low, at about 100 ms. Despite the fact

that the 3G networks are based on a QoS architecture, the availability of the data service

is not guaranteed and the coverage areas are limited, compared to GPRS and EDGE.

The user experience with streaming media, especially audio is relatively good. The 3G

networks are however not suited for high resolution video streaming applications. [5] [7]

2.2.2.7 HSDPA

A common view is that HSDPA is for UMTS, what EDGE is for GPRS. This is true in a

sense, in that various techniques, similar to the methods used to improve the performance

of EDGE over GPRS, are used in HSDPA, to achieve higher performance than UMTS.

The performance of HSDPA is significantly higher than that of UMTS and theoretical

download speeds of up to 14 Mbps can be achieved. The first HSDPA supporting

devices in South Africa are limited to approximately 1.8 Mbps.

With HSDPA, typical average download speeds of 550 kbps to 1100 kbps are achieved.

The network latency is in the 100 ms range.

With the high average throughput and low latency, HSDPA is suited for various

applications, especially for streaming- and downloading video and audio content to

mobile phones, or even PC’s connected to the HSDPA device. There are only a few

HSDPA supporting handsets currently available.

 14

Background and Research

Table 2.2-1 summarizes the performance and abilities of the data networks discussed.

Type Peak Download Speed Average Throughput Latency Availability Typical Applications

GPRS 115 kbps 30 kbps 600 – 1000 ms Bursty, intermitted
Extended coverage area

Internet Browsing,
Email, Telemetry

EDGE 473 kbps, usually limited to
200 kbps by the device 80 kbps - 100 kbps 600 ms

Not guaranteed
 Extended coverage

area

Browsing, Email,
Limited multimedia

UMTS 2 Mbps, often limited to 354
kbps by the device 220 kbps - 320 kbps 100 ms Not guaranteed

Limited coverage area

Browsing, Email,
Limited media

streaming

HSDPA 14 Mbps, currently available
in 1.8 Mbps 550 kbps - 1100 kbps 100 ms Not guaranteed

Limited coverage area

Browsing, Email,
Video & audio
streaming,file

downloads

Table 2.2-1 Comparison of GSM family of data services

The impact and considerations, regarding the performance and capabilities of the

available data technologies discussed, on the design of the mobile streaming application,

are discussed in more detail in Chapter 3, Theoretical Design.

2.3 Data Transport Protocols

This section gives an overview of some of the IP protocols commonly used for the

transmission of data on the Internet, as well as illustration of how the protocols interact in

a video streaming setup.

2.3.1 User Datagram Protocol (UDP)

UDP is one of the core protocols of the Internet Protocol Suite. It is a very basic

transport protocol, which provides applications a method of sending messages to other

applications, using a minimum of protocol mechanism. UDP operates on top of IP

(Network Layer) and functions as an interface between the Application layer and the

Network layer.

The UDP protocol adds very little overhead to packets that are transmitted between

networked entities. The protocol applies a small amount of error correction on

 15

Background and Research

transmitted data packets and adds IP address-related (port) information to the packets. It

does not guarantee delivery of the packets, or ensure that the packets are received in the

same order that it was sent, however. It is also known as a connectionless protocol, since

no handshaking1 is done between the sending- and receiving end. Each packet is treated

independently.

Figure 2.3-1 illustrates the format of a UDP packet [9]
Bits Description

0
Source Port

(0 – 15)

Destination Port

(16 – 31)

32

Length of data

(32 - 47

Checksum

(48 – 63)

64

.

.

.

Data (up to 64 kB, total packet size)

Figure 2.3-1: UDP Packet Structure

Due to the fact that there is no handshaking in UDP communications and the small packet

size, as well as the fact that no packet delivery is confirmed, UDP communication

happens almost instantaneously. It is therefore the underlying protocol for DNS, by

which domain names are translated into IP addresses. This process needs to happen

almost instantaneously, when a DNS lookup is required, therefore UDP is used.

UDP is also very well suited to streaming multimedia applications. This is firstly due to

the fact that there is no packet re-sends, by the protocol itself. If a video frame packet is

lost, for example, it is not re-sent and therefore the connected device can simply receive

and display the following packet, without having a big effect on the user experience, if

only one or two packets are lost. UDP is therefore a more efficient transport for

applications that do not rely on all packets to be delivered, but rather on the most up-to-

date packets to be received.

1 Handshaking - establishing a connection between the two devices, before data is being transmitted

 16

Background and Research

Another reason for using UDP in some streaming applications is the ability of UDP to

simultaneously send the same data packet to multiple devices. This is called multicasting

and is often used when multiple users want to access the same media stream. By using

multicasting, multiple instances of the same media stream can be prevented, in order to

save bandwidth on the network. For full multicasting to work, however, the underlying

network must support the multicasting protocol. The detail of multicasting is beyond the

scope of this thesis and thus not discussed in this document. [9] [10] [12]

2.3.2 Transmission Control Protocol (TCP)

TCP is the most frequently used of the core Internet protocols. Most of the popular

Internet applications, for example email, secure communication and HTTP, rely on TCP.

TCP provides a virtual, reliable ‘pipe-like’ connection between two applications, unlike

UDP, which is connectionless. Therefore, when the TCP connection is established, there

is a handshake between the two devices, before data is transmitted. The applications stay

connected via the TCP link, for a predetermined amount of time, or until the link is

broken by the application.

Below the TCP layer, there is almost no assurance for reliability of data transmitted

across the network. TCP provides the application layer with a very reliable protocol

layer that assures the transmitting application, that packets sent over the TCP link will be

received by the receiving application, in the same order that it was sent.

Apart from providing a reliable connection, the TCP protocol provides some levels of

security, as well as congestion control. The further details of these functions can be

found in RFC: 793 – Transmission Control Protocol

In order to provide the type of reliability and security, the TCP protocol adds

significantly more overhead to the data packets, than UDP. The handshake also results in

a longer time to connect, than is the case with UDP, where the packets are immediately

transmitted. For each TCP data packet that is transmitted, there is also an

 17

Background and Research

acknowledgement from the receiving side, adding to additional traffic on the network.

The TCP packet structure is as follows: [11]

Bits 0–3 4–9 10–15 16–31

0 Source Port
Destination

Port

32 Sequence Number

64 Acknowledgment Number

96
Data

Offset
Reserved

Control

Bits
Window

128 Checksum
Urgent

Pointer

160 Options (optional)

160/192… Data

Figure 2.3-2: TCP Packet Structure

Unlike UDP, TCP is usually not used for streaming applications, mostly because of the

congestion control mechanism implemented by the TCP protocol. When packets are lost,

the window size of the TCP stack is reduced and depending on the network response to

the reduced window size, the data throughput is reduced. This can cause interruptions in

the video stream, especially when high bandwidth streaming is required. [11] [12]

2.4 Application Layer Protocols

This section gives an overview of some of the Application Layer protocols that are

related to the development of the streaming video application.

The application layer protocols are a direct interface between the user application and the

Transport layer, or it can be incorporated in the application itself, directly making use of

the underlying Transport Layer.

 18

Background and Research

Table 2.4-1 shows the typical uses for TCP and UDP: [12]

Application
Application-layer
protocol

Underlying Transport
Protocol

Electronic mail SMTP TCP
Remote terminal
access Telnet TCP
Web HTTP TCP
File transfer FTP TCP
Remote file server NFS typically UDP
Streaming multimedia Proprietary/ RTP/ RTSP typically UDP
Internet telephony Proprietary typically UDP
Network Management SNMP typically UDP
Routing Protocol RIP typically UDP
Name Translation DNS typically UDP

Table 2.4-1: Typical applications for UDP and TCP transport layer

2.4.1 Real-Time Transfer Protocol (RTP)

RTP was developed for the real-time streaming of audio and video data over an IP

network. Most modern streaming applications are built on top of RTP, since RTP

provides a real-time interface with the Transport network layer. The protocol also

supports multicasting, which makes it the protocol of choice, when streaming to multiple

destinations.

RTP can be viewed as a derivative of UDP, since it is normally used on top of UDP,

adding functionality related to real-time streaming applications. In the most basic

implementation of RTP, a timestamp and sequence number is added to the UDP packet

header. It does not make sense to use RTP on top of TCP, since TCP already handles

time stamping and sequencing.

 19

Background and Research

An RTP packet is constructed as follows:

Bits 0 1 2 3 4-7 8 9 - 15 16 - 31

0 V P X CC M PT Sequence Number
32 Timestamp
64 Synchronization Source Identifier
96

128
Contributing Source Identifiers

…

 160
.
.

Payload Data

 Padding

Figure 2.4-1: RTP Packet Structure

The details of the different fields in the RTP packet can be fount in the RFC 1889: Real-

time Transport Protocol.

Although RTP provides a facility to the layers above it, to assist in organizing packets

that are received out of order, and to optimize quality of service, RTP does not provide

these functions by itself. The layers above RTP must use the sequence numbers provided

by RTP, in order to reconstruct a packet sequence, or to determine the position of a

packet in a sequence. RTP is therefore sometimes described as an incomplete protocol

framework.

In many cases, RTP is not implemented as a separate layer, but rather incorporated into

the application. Therefore, the application can decide if packets need to be re-

transmitted, restrict the sequence, when packets are received out of sequence and perform

quality adjustments on the streaming media, according to the performance of the network.

RTP is usually used in conjunction with the Real-time Streaming protocol (RTSP), as

well as the Real-time Control protocol (RTCP). The reader is referred to the RFC 2326

and RFC 3605 for further reading regarding the details of the complementary protocols.

 20

Background and Research

When different protocols are used together in a network setup to perform a certain

application, the collection of protocols is called a protocol stack. The protocol stack for a

typical streaming application built on RTP, can be illustrated as in Figure 2.4-2: [13] [14]

Figure 2.4-2: RTP-based video streaming protocol stack

2.4.2 Hypertext Transfer Protocol (HTTP)

HTTP is the protocol that is most often used on the Internet, to view data, initiate file

transfers, start media sessions, etc. In many cases where another protocol is used, for

example video streaming over RTP, the first connection that the user makes with the

media provider is via HTTP. Although HTTP is a very simple protocol to interpret, it is a

very powerful protocol with almost unlimited possibilities.

HTTP is usually used on top the TCP layer. Therefore, sequencing, delivery and

performance issues are handled by the TCP layer and HTTP focuses on the delivery of

requests to the content provider and the provision of the received responses to the

application / user. The HTTP protocol is therefore based on a Request – Response

principle.

The chunks of data that are transferred by the HTTP protocol are called resources, which

can be identified by a URL (Uniform Resource Locator). The URL contains information

on the address, TCP port and sometimes an identifier, by which the resource is located.

The address can take the form of a domain name, or an IP address.

 21

Background and Research

Basically any type of data can be transferred across a network, using the HTTP protocol,

but since the protocol is based on TCP and a request-response principle, there are some

limitations in terms of performance. The performance of the HTTP protocol is similar to

that of TCP, but with additional packet overhead. Furthermore, the way in which the

HTTP protocol is implemented on most mobile phones, requires a new connection to be

made for each HTTP request-response cycle. Therefore, additional latency is introduced

for each HTTP communications cycle. [15]

2.5 Video Streaming

This section gives an overview of the basics of video compression and video streaming,

as well as an overview of some of the more common video streaming algorithms,

compatible with cellphones.

2.5.1 Video Streaming – an Overview

Video streaming can be defined as the transmission of video images from one location on

a data network, called the video server, to another location, called the client, without

transmitting a single video file. Thus, the video frames can be viewed at the client as it

arrives, before all the data has been transmitted. In the case of real-time streaming, for

example a web camera, a steady stream is sent from the server to the client in real time,

as long as a connection exists between the server and client.

In order for real-time video streaming to work properly, it is essential that the throughput

of the data network, which connects the video server and client, is sufficient to transmit

all frames at a chosen frame rate, without dropping frames. Frames are dropped when the

inter-frame interval (frame period) is shorter than the time it takes for one frame to be

transmitted to- and displayed on the client side.

The inter-frame interval equals: it

framerate
ti

1
=

 22

Background and Research

The time that it takes for one frame to be transmitted from the server to the client, can

be expressed as:

xt

eff
x B

framesizet = ,

where equals the effective throughput of the communications channel. effB

Therefore, if , ix tt <

framerateframesizeBeff ×>

A typical resolution of a modern cellular phone screen is 352 x 416 pixels. Therefore, a

CIF (352 x 288 pixels) video frame can be displayed on the screen, without requiring

stretching or shrinking of the frame. The total framesize, in bits, of an uncompressed, 24-

bit depth color, CIF resolution image can be calculated as follows:

 Bytesbitsframesize 304128243302428835224 ==××=

Therefore, at 25 frames per second, the required throughput is:

 MbpskbpsbpsBeff 585940060825600243302425 ≈==×>

Thus, the required throughput is approximately 58 Mbps, which is clearly out of range of

a normal GPRS, EDGE or 3G internet connection, as well as the amount of RAM

available on the majority of cellphones. Even at 1 frame per second, more than 2 Mpbs

throughput is required.

In order to transmit the captured frames from the server to the client (cellular phone) over

the cellular network, the frames must be compressed, in order to sufficiently reduce the

size.

 23

Background and Research

2.5.2 Video Compression

In order to compress the video frames, redundant data is removed from the frames, in

such a way as to minimize the visual effect of removing the redundant data. If the

redundant data is removed in such a way that there is no reduction in the visual quality of

the frames, it is called lossless compression. Although lossless compression does reduce

frame sizes, it is normally not enough to transmit the video over a low bandwidth

network.

In most cases, lossy compression techniques are used. There are various ways of

implementing lossy compression without much loss in the perceived quality of the video

stream. These techniques can utilize different image compression algorithms, adaptive

compression ratios, reduced framerates, or a combination of various techniques.

The video compression is performed by a video encoder. In order to view compressed

video, a decoder is needed. The encoder and decoder must use the same video

compression scheme, in order to work. The combination of encoder/decoder within a

compression scheme is called a codec, derived from the combination of encoder/decoder.

There are several thousands of codecs available on the internet.

Unfortunately, only some codecs are readily available on cellphones compatible with

multimedia. Furthermore, not all video codecs support streaming of the encoded content.

Therefore, it is necessary to choose carefully when selecting a codec used to stream video

to a cellphone. [16]

2.5.3 Video Streaming to Mobile Phones

This section gives an overview of the most common video streaming algorithms. The

different algorithms have different advantages and disadvantages in terms of the specific

network configuration and applications that it can be used for, as well as compatibilities

with certain devices.

 24

Background and Research

The 3rd Generation Partner Project (3GPP) specification covers all the GSM related

specifications and protocols and also defines a certain format for streaming media to

cellphones. The 3GPP streaming format for mobile phones specifies the following

protocol stack (Figure 2.5-1):

Figure 2.5-1: 3GP Protocol stack

From the protocol stack illustration, the various network- and protocol related issues

discussed thus far, become clearer and it can be seen how the basic network model and

protocols function in the protocol stack.

In order for a cellphone to be able to decode and view a video stream, it must support the

encoding format of the video. There are only few standards widely supported by

cellphones, although several others claim to support the 3GPP streaming format.

 25

Background and Research

The following table (Table 2.5-1) shows a list of streaming video technology vendors, as

well as supported cellphone manufacturers: [17] [18]

Provider: Apple Microsoft PacketVideo RealNetworks
Server Operating
System OS X, Unix Windows Server Unix Unix, Windows

Encoder Quicktime Windows Media
Encoder PVAuthor RealProducer

Player Operating
System not defined

Smartphone OS,
Windows Mobile

2nd Ed.

Smartphone
OS, Symbian

Symbian, PPC
Phone Ed.

Streaming Video MPEG-4,
H.263 WMV MPEG-4,

H.263
RealVideo,

MPEG-4, H.263

Phone vendor
partners .. Samsung, HTC,

Motorola Sony-Ericsson Nokia, Siemens,
Sony-Ericsson

Table 2.5-1: 3GPP Streaming media technology providers

From the table, it can be seen that the two major supported streaming formats, for mobile

phones, are MPEG-4 and H.263. The following paragraphs give an overview of the

streaming formats.

2.5.3.1 MPEG-4

The Moving Picture Experts Group (MPEG) is an ISO / IEC working group, which was

established to define standards for digital video and audio formats. Various versions of

MPEG were developed, each with a different bit-rate or application in mind. [16]

MPEG-4 was developed to enable the encoding of rich multimedia content, extending

beyond video and audio and also includes vector graphics and similar content. MPEG-4

is based on object-based compression, in which individual objects in a scene are tracked

separately and compressed together, to result in very efficient compression. Data rates

supported by MPEG-4 range from 10 kbps to 1,000,000 kbps, which makes it ideal for

almost any type of video application. [19] [20]

 26

Background and Research

Although the standard is included in the 3GPP specification, it is an optional standard and

thus a 3GPP streaming enabled phone is not required to include support for MPEG-4.

MPEG-4 is a proprietary patented technology, which means that a license fee should be

paid to patent holders, if the technology is used in software. There is unfortunately no

easy way to find out which patents are applicable to a certain application using MPEG-4.

Since there are some outstanding issues regarding licensing and the fact that it is not a

required 3GPP codec, the use of MPEG-4 should not be considered the first choice in the

development of a mobile streaming application. [21]

2.5.3.2 H.263

The International Telecommunications Union (ITU) developed the H.263 standard with

low bit rate applications, especially video conferencing, in mind. Other uses of the H.263

standard typically include desktop and room-based conferencing, video over the Internet

and over telephone lines, surveillance and monitoring, telemedicine (medical consultation

and diagnosis at a distance) and computer-based training and education.

Apart from the above uses, H.263 is also required for 3GPP. Thus, all 3GPP supported

mobile phones must support the H.263 standard. The standard describes the requirements

for the encoder and decoder, to conform, but does not describe the coders itself. The

standard includes methods for bandwidth control and synchronization of audio and video,

which makes it ideal for real-time applications, with low delay.

H.263 is very processor intensive. H.263 integrated circuits are available to use in

conjunction with normal hardware in devices, in order to take the burden of the decoding

/ encoding from the main processor.

Like MPEG-4, there is also a license fee applicable to H.263, but the fact that it is a

required standard for 3GPP, makes it more attractive than MPEG-4. [19] [22]

 27

Background and Research

2.6 Cellular Phone Application Development

Despite the fact that codecs are readily available for use by cellphones, the

implementation of a streaming application, with a user-friendly interface requires the

development of a suitable user application, compatible with the majority of cellphones.

This section gives an overview of the application development environment available for

mobile phones, as well as related issues to consider regarding the development of the

streaming video application. Since the majority of mobile phones that do allow 3rd party

applications to be installed and used, use the Java technology, the rest of this discussion

focuses on the application environment that is provided by the Java framework.

2.6.1 Java Platform

There are currently three major Java Editions in the Java Platform, namely Java Standard

Edition (J2SE), Java Enterprise Edition (J2EE) and Java Micro Edition (J2ME). The first

two editions are aimed at desktop computers and servers, respectively. The third, the

J2ME technology, was developed by Sun Microsystems to provide an environment, in

which applications can be created for small devices, with limited memory, display size

and processing power.

Figure 2.6-1 gives an overview of the Java Platform structure [24]. The various elements

are described in subsequent paragraphs, as related to mobile phones.

J2ME is the Java edition used by Java-enabled cellphones, as can be seen in Figure 2.6-1.

The rest of this discussion focuses on the J2ME framework and related frameworks, as

applicable to mobile phones.

 28

Background and Research

Figure 2.6-1: Java Platform

2.6.2 Java 2 Platform, Micro Edition (J2ME)

J2ME is the most widely supported language for mobile phones, with more than 267

million phones worldwide that are J2ME compatible, in 2004. This figure increased

drastically since 2004, since most new phones support Java.

J2ME contains a subset of J2SE, meaning that only some of the Java classes supported by

J2SE, are supported by J2ME. Furthermore, J2ME defines two different Configurations,

namely the Connected Device Configuration (CDC) and Connected Limited Device

Configuration (CLDC). A configuration defines the minimum Java class libraries and the

abilities of the Java Virtual Machine (JVM)2 that must be supported by a device which

implements the specific configuration. The Configuration to which a device belongs,

depends mostly on the memory size, processing power and network connectivity of the

device.

2 A Java virtual machine (JVM) is an implementation of the Java Virtual Machine Specification, which
interprets Java code for a device’s processor (or hardware platform) so that it can perform a Java program's
instructions. [26]

 29

Background and Research

2.6.3 Connected Device Configuration (CDC)

The connected device configuration is aimed at devices with at least the following

specification [25]:

• At least 512 kilobytes ROM (memory) available for the Java runtime environment
• At least 256 kilobytes RAM available (to hold and run applications)
• Network connectivity, possibly persistent and high bandwidth
• Support for the complete Java Virtual Machine specification

The CDC device profile suggests that it is aimed at personal digital assistants (PDAs) and

similar high performance personal devices. It does not include normal cellphones.

2.6.4 Connected Limited Device Configuration (CLDC)

The CLDC is a more limited configuration, aimed at devices with lower specification

level than CDC. CLDC is a complete subset of CDC. CDC is not a complete subset of

J2SE, but contains some of the classes of J2SE, as well as some additional classes. The

following illustration (Figure 2.6-2) shows the relationship between J2SE, CDC and

CLDC. The significance of this relationship will become clearer in later chapters.

Figure 2.6-2: Relationship between J2SE, CDC and CLDC

 30

Background and Research

CLDC requires the phone to comply with at least the following [25] [23]:

• At least 160 kilobytes ROM available for JVM and CLDC libraries
• At least 32 kilobytes RAM available for runtime memory allocation
• Restricted user interface
• Low power, typically battery powered
• Network connectivity, typically wireless, with high latency and low bandwidth

The phone’s operating system must allow the selection and launching of Java

applications, as well as the ability for the user to install or uninstall applications.

Cellphones fall into this category and therefore the rest of this discussion focuses on the

CLDC class of devices.

2.6.5 Mobile Information Device Profile (MIDP)

On top of the configurations, Sun specifies different profiles. A profile is an extension or

supplement to a Configuration, which provides an application programming interface

(API) with useful libraries, which a developer can use to develop applications for the

particular type of device.

Figure 2.6-3 shows the structure of the various components in a typical device:

MIDP Application

MIDP API

OEM Application Device
Applications

Operating System & Device Libraries

Java Virtual Machine and CLDC Libraries

Mobile Information Device Hardware

OEM
Libraries

Figure 2.6-3: MIDP Application Environment

 31

Background and Research

The top left block in Figure 2.6-3 indicates where third party MIDP applications fit into

the device, with both access to the MIDP- and CLDC Java libraries (packages).

2.6.6 MIDP Application Programming Interface

The minimum Java packages available to the application developer in the MIDP

environment are the following:

CLDC Core Packages (inherited from J2SE):
java.lang.*
java.io.*
java.util.*

MIDP Device Specific Packages (part of CLDC packages):
java.microedition.io
java.microedition.lcdui
java.microedition.midlet

In addition to the required packages, some phone vendors also support some of the

optional packages. Since platform independence is required, however, the optional

packages are not discussed in further detail. The reader is referred to [23], if more

information about the above- and optional packages is required.

In order to ascertain the potential of the MIDP API, for development of a streaming

application, it is necessary to be aware of all the restrictions placed on the applications.

The following table (Table 2.6-1) gives a summary of the supported functions and

requirements of the MIDP API.

 32

Background and Research

Description MIDP 1.0 MIDP 2.0

Display Size > 96 x 54 > 96 x 54
Display Depth 1 bit 1 bit
Display Aspect Ratio 1:1 1:1
Input Device Keyboard or touch

screen
Keyboard or touch

screen
Memory: Non-Volatile, in addition to CLDC
requirement 128 KB min 256 KB min
Memory: Non-Volatile for persistent data 8 KB min 8 KB min
Volatile for Java runtime 32 KB min 128 KB min
Networking: HTTP 1.1 Required Required
Networking: Secure HTTP connections Optional Required
Networking: TCP Sockets Optional Optional
Networking: UDP Datagram Optional Optional
Networking: Performance Two-way, wireless,

possibly
intermittend, limited

bandwidth

Two-way, wireless,
possibly

intermittend, limited
bandwidth

Image Format: PNG Support Required Required
Image Format: ISO JPEG Support Optional Required
Sound (Mobile Media API)

None
Play tones

Media optional
Video (Mobile Media API) None Optional

Table 2.6-1: Summary of applicable MIDP requirements

As is clear from the table, there are currently two versions of MIDP, namely MIDP 1.0

and MIDP 2.0. The majority of cellphones support at least MIDP 1.0, with CLDC 1.0 It

is important to note that MIDP 2.0 is backwards compatible with MIDP 1.0, which

enables MIDP 1.0 applications to run on MIDP 2.0 phones. Therefore it is safe to

assume that all Java enabled cellphones, compatible with the MIDP profiles, can support

applications written according to the MIDP 1.0 specification. It is important to note that

the only required network connection included in MIDP is the HTTP connection.

Another important point of note is the fact that Video support in the Mobile Media API is

not required for MIDP 2.0 and not supported by MIDP 1.0 The relevance of these issues

is discussed in more detail in Chapter 3. [27][28]

2.6.7 Deployment of the MIDP Application

The deployment of MIDP applications can be done over a wireless link, or via software

installed on a PC, if supported by the phone to be installed on. The phone has a pre-

 33

Background and Research

installed Java Application Manager (JAM), which controls the installation, or

uninstallation of Java applications on the phone. The JAM is a device-specific

application, of which the implementation can differ between different phone

manufacturers, or even between different models of the same manufacturer.

The main class of a MIDP application is called a MIDlet. A MIDlet Suite consists of

several MIDlets that are packaged together. Each MIDlet application can consist of

various Java classes, images and resources. All these files are compressed and packaged

into a single file, called a Java Archive File (JAR), before it can be loaded on the phone.

The JAM initiates the MIDlet suite, by using another file that accompanies the JAR,

namely a Java Application Descriptor file (JAD). The JAD contains information about

the application and allows the JAM to determine compatibility and space requirements,

before allowing the MIDlet suite to be initialized.

When initialized, the JAM can start the MIDlet application on the phone and allow it to

use all the available CLDC- and MIDP classes compatible with the phone. [27][28]

2.7 Video Server Considerations

Thus far, most of the background provided covers the phone application- and related

environments. In order for the application on the phone to be useful, the video content to

be used by the application must be provided by some means. The video server, or in the

case of this project, the Digital Video Recorder (DVR) is the content provider.

Since the project focuses on the development of a Microsoft Windows PC-based DVR, it

is assumed that the server application can be developed to adapt to the limitation of the

weakest link in the video streaming setup, namely the mobile application. It is therefore

assumed that sufficient processing power and memory is available at the DVR, as well as

a sufficient Internet connection, at least capable of providing content to the phone at local

ADSL access speeds. ADSL is assumed to be the server side Internet connection, since

 34

Background and Research

this is currently the connection that provides the best cost / performance ratio of the

available Internet connections in South Africa [29]. A more detailed discussion

regarding the DVR specification and requirements is given the subsequent chapters.

2.8 Summary

In this chapter, the various issues that govern the design and capabilities of the streaming

application were discussed. An overview was given of the different network models that

can be used to describe the communication channels, between the phone and DVR. The

capabilities and performance of the applicable GSM data connections were discussed,

including an overview of some of the communication- and streaming protocols supported

by the networks. Finally, the application environment, as well as capabilities and

limitations were highlighted. It was mentioned that the server application (DVR) will be

designed according to the (limited) capabilities of the phone application and underlying

network infrastructure.

All of the information discussed so far is required in order to determine a realistic

approach for designing the streaming application, deployable to the majority of Java-

enabled cellphones. The following chapter implements a combination of the

characteristics, features and limitations in the theoretical design of the DVR and mobile

phone application. Therefore the relevance, of the background and information provided

thus far, becomes clearer in the subsequent chapters.

 35

Theoretical Design

3 Theoretical Design

The objective of this project is to develop a DVR with a streaming video application,

which can be used on the majority of Java enabled cellphones. Chapter 2 discussed

various issues related to the performance and capabilities of cellphones and the GSM data

networks as well as resources available to the developer.

This chapter focuses on the theoretical, or block-diagram design of the DVR and

streaming video cellphone application. A high-level design implements the knowledge

from Chapter 2, to derive a suitable network model, application characteristics and high-

level specification for the DVR and streaming video application.

Firstly, a communications model is derived for the project. Since each respective layer of

the model is dependent on the layer below it, it is also limited by the layer(s) below.

Therefore, similar to Chapter 2, the discussions in this chapter start at the lowest layer /

level, the GSM data network and proceed to the highest level, the user interface.

The streaming video protocol to be used is then discussed and the DVR and cellphone

interaction designed up to block diagram level. The preliminary program-flow of the

DVR and mobile application is then derived. The sections in this chapter are concluded

with functional block diagrams of the DVR, underlying network infrastructure and the

streaming video application on the cellphone.

3.1 Network Model

This section describes the derivation of the communications model, on which the rest of

this project is based. The network model, available layers- and protocols determined, are

used throughout the rest of this document, since all the high-level development is based-

and dependent on the available protocols in the network model.

 36

Theoretical Design

The layers of the model are derived from the distinguishable layers and protocols, as

discussed in the previous chapter. These can be summarized as:

• GSM Data connection family – GPRS, EDGE, 3G, HSDPA

• IP Protocol, used on top of all of the above

• TCP and UDP, supported, but not required by MIDP / CLDC

• HTTP and RTSP on TCP and RTP and RTCP on top of UDP

• 3GP with MPEG-4 or H.263 on top or RTP and RTCP

• User application on top of HTTP, TCP, or MPEG-4 and H.263

The following model (Figure 3.1-1) can be used to represent the above summary:

Figure 3.1-1: Network Model for Streaming Application - All inclusive

This model is based on an environment, which includes all CLDC- and MIDP packages

and allows the Java application on the phone to have direct access to the Transport layer

(TCP and UDP). A real-life, portable application, which is able to run on all versions of

the J2ME platform, cannot be based on this model, however.

 37

Theoretical Design

The following paragraphs discuss the characteristics and phone compatibility of each of

the layers of the model, as well as the effect on the higher layers, in order to derive a

model that represents the majority of Java enabled phones.

3.1.1 Mobile Channel

The performance of the mobile channel depends on the type of connection that is used.

The minimum capability of a Java-enabled cellphone with Internet, is GPRS only. The

maximum local capability is currently HSDPA. Therefore, the upper layers must be able

to function on any of the GSM data technologies.

The average network throughput, at which the upper layers must be able to function,

therefore ranges from GPRS average throughput, namely 30 kbps, up to the HSDPA

average, of 550 kbps. As mentioned earlier, the GPRS connection is sometimes

intermitted, which the upper layers must also be able to handle.

Furthermore, when a mobile phone moves from an area with a faster type of connection

into an area with a slower type of connection (e.g. from HSDPA enabled location to a

GPRS-only location), there is an automatic switch of modes by the phone.

The MIDP specification requires the communications packages made available to the

application to handle this type of connection (Refer to Table 2.6-1). The layers, below

the User Application (Refer to Figure 3.1-1) are included in the specification and thus it

is only the implementation of the User Application that must take the above into account.

Since the developer does not have any control or direct access to this layer, it is included

in the model as is.

3.1.2 Network Layer

All network layer communication is IP-based. The developer does not have direct access

to the network layer. Therefore, the network layer can be used as is, in the model.

 38

Theoretical Design

3.1.3 Transport Layer

The transport layer supports TCP and UDP. However, direct access to the transport layer

(TCP sockets or UDP datagrams), is not a requirement of any of the versions of CLDC /

MIDP. It is up to the manufacturer to decide if sockets and datagrams are supported by a

particular phone model, although MIDP 2.0 recommends that it should be supported.

Many of the MIDP 1.0 phones do not give the MIDlet any direct access to the transport

layer.

Therefore, again to ensure that the streaming video application is portable to as great a

number of handsets as possible, the assumption is made that no direct access is given to

the transport layer. Since the majority of new handsets do support sockets and datagrams

the ideal setup would be to utilize it if it is available, but not to be dependent on it.

3.1.4 Application Layer

The application layer includes the video streaming protocols, as well as HTTP.

Access to HTTP is a requirement for both MIDP 1.0 and MIDP 2.0. It is therefore safe to

assume that an HTTP-based application will work on all Java enabled phones.

The video streaming protocols (MPEG-4, H.263, RTP, RTSP, RTCP) are included in an

optional MIDP package, namely the Mobile Media API (MMAPI). The MMAPI is not

included in MIDP 1.0. In MIDP 2.0, only the audio capabilities are required, while the

video capabilities are optional. [23]

By browsing the websites of the major phone manufacturers, it is clear that currently only

the high-end handsets support video streaming as a standard. In order to support video on

MIDP 1.0 and low-end MIDP 2.0 handsets, the streaming video functionality of the

MMAPI is not available and therefore an alternative video streaming method must be

 39

Theoretical Design

developed and implemented. Due to the limited support for the MMAPI, the protocols

related to the MMAPI are, therefore, not included in the network model.

3.1.5 Revised Network Model

The network model can now be refined, to include only the protocols that are available on

the majority of devices, spanning the MIDP 1.0 and MIDP 2.0 range of handsets. The

revised network model is shown in Figure 3.1-2.

Figure 3.1-2: Revised Network Model

The derived network model has resemblance of both the ISO- and Internet reference

models, in which the bottom two layers are combined in the form of the Mobile Channel.

The user application is included with the application layer and does not just use an

interface to the application layer, since the streaming protocols can be incorporated in the

user application. This is discussed in more detail later.

Thus far, the discussions only applied to the mobile application. As mentioned earlier,

the DVR design is more flexible and is adapted to comply with the MIDlet requirements.

To design the DVR network model, a decision must be taken on the network protocols

 40

Theoretical Design

that will be supported, as well as to how the video streaming will be accomplished, with

the limited available resources.

3.1.6 Video Streaming Transport Considerations

By applying the information from the previous section, it is clear that, in order for the

mobile application to communicate with the DVR, it can only assume the availability of

HTTP connections. This poses a great challenge in the design of the streaming

application. In Chapter 2 it was shown that, under normal circumstances, video

streaming makes use of UDP and RTP. UDP is not a requirement of MIDP and thus not

necessarily available on the phone, only HTTP connections are guaranteed to be

available. Support for HTTP connections is therefore mandatory on the DVR. The

streaming video application must, therefore, be developed on top of HTTP.

By studying the TCP and HTTP protocol specifications in detail, is becomes clear that it

is relatively easy to realize a custom implementation of HTTP, using TCP sockets. This

allows the support of both TCP and HTTP, simply by implementing HTTP on top of TCP

on the DVR. With both TCP and HTTP supported on the DVR, it makes logical sense

that the streaming protocol to be developed, should at least be able to work over HTTP,

and optionally also over TCP.

Both TCP Sockets and HTTP are based on the same reliable communication method of

communication, which ensures that data packets are received in the same order as it is

sent. It is, therefore, safe to assume that a streaming protocol developed for one of the

two, should be easily adaptable to work over the other as well, if cleverly designed. This

does not apply to UDP, however. It was already mentioned that UDP is better suited for

real-time applications and TCP and HTTP are not ideal. There are, however some real

issues to consider, before the decision could be taken to also implement UDP as an

additional option.

UDP does not ensure correct sequencing of received packets, or provide the data traffic

congestion control mechanisms implemented by TCP. Sequencing and bandwidth

 41

Theoretical Design

control is normally handled by a combination of the streaming protocols that operate on

top of UDP, namely RTP, RTCP and the video codecs. Although these protocols are

supported by the MMAPI, it is also optional. Even when UDP is supported by the

handset, there is still no guarantee that the full MMAPI is supported by the handset.

These layers can be implemented on top of UDP for phones that do not support it, but this

will mean that two parallel streaming mechanisms will have to be developed and

implemented, to ensure support for HTTP and optional support for UDP and TCP.

The different scenarios discussed above are better explained by the following flow-

diagrams. Figure 3.1-3, represents the cellphone application and Figure 3.1-4, the DVR:

Figure 3.1-3: Flow Diagram for Cellphone Application

 42

Theoretical Design

Figure 3.1-4: Flow Diagram for DVR

By studying the flow diagrams, it is clear that in order to make provision to support the

possibility that UDP and/or H.263 or MPEG-4 is available on the phone, a lot of

additional complexity is added to both the phone application and the DVR. Since only a

small number of phones can use this, it makes sense to regard the support for these

protocols, on the DVR, also as optional.

It is also clear that TCP can be accommodated in the design, without adding much

complexity. Therefore, the rest of this design is based on the development of the DVR,

phone application and streaming video protocol with support only for TCP and HTTP

connections.

3.1.7 DVR Network Model

By implementing the above decision and Figure 3.1-4, the DVR network model (Figure

3.1-5) is derived.

 43

Theoretical Design

Figure 3.1-5: DVR Network Model

By comparing Figure 3.1-2 and Figure 2.1-1, a functional communications model and

protocol stack is derived for this project. This model is shown in Figure 3.1-6.

Figure 3.1-6: Communications Model & Protocol Stack

The communications model can now be used as the basis for the design of the DVR-to-

cellphone streaming video protocol.

 44

Theoretical Design

3.2 Streaming Protocol:

This section describes the development of a video streaming protocol, between the DVR

and cellphone, based on the knowledge from Chapter 2 and the communications model

derived in the previous section.

3.2.1 Video Streaming Requirements

The first step in designing the protocol, is to determine a set of video streaming

requirements. This set of requirements is based on the project objective, communications

model, as well as other considerations discussed thus far.

• The most basic requirement is for high quality video images, to be independent of

the data network used. The streaming protocols supported by most cellphones

provide video streaming that is suitable for watching a video or for video

conferencing. The quality of these protocols, at low bitrates, is however, not good

enough to be able to distinguish detail in the background. Some protocols, for

example, provide low quality video at low bitrates, in which different objects, for

example a person speaking and moving in the video image, can be discerned

(sometime called ‘Talking Heads’ video streaming), but with blurry image

quality. This is perfectly acceptable for video conferencing, or watching a

downloaded video clip, but not for surveillance. With the majority of video

streaming protocols, the video image quality decreases, as the bandwidth

decreases. [30]

• For surveillance, a different approach is required. A constant video image quality

can be maintained, by reducing the framerate, instead of dropping the quality of

the video when the bandwidth decreases. By sending all video frames, encoded at

the same high quality, to the cellphone and dynamically adjusting the framerate,

an optimal video image quality can be maintained, regardless of the network

 45

Theoretical Design

throughput. Such a video streaming protocol would be more suitable for

surveillance applications.

• Another requirement for the streaming protocol, is that it must support the ability

to switch between cameras, therefore halting the streaming of a particular camera

and starting the streaming of another camera. In a conventional video streaming

system, this functionality is normally provided by RTSP. Since the assumption is

made that it is not available, this must therefore be implemented in the protocol.

• The streaming protocol must also be able to support TCP and HTTP connections,

as discussed in the previous sections.

• Another important requirement of the protocol is that the video decoder, which

will be implemented fully in software, must be light on processing resources.

Most cellphones have limited processing power. The decoder must therefore be

designed to use as few processor intensive algorithms as possible, to ensure

compatibility with the limited processing power, especially of older phones.

3.2.2 Designing the Streaming Video Protocol

This section describes the design of streaming video protocol, designed according to the

requirements discussed in Section 3.2.1.

In order to derive a simple, processor-friendly video streaming algorithm, it is best to

start with a very basic approach. Full motion video is a sequence of images, presented at

a high enough rate to appear like fluid motion. Digital video can present the images in a

number of formats, providing different levels of quality and video compression. Video

streaming algorithms, typically compress individual frames as well as implement

algorithms between frame sequences, in order to optimize the ratio of compression. This

obviously requires more processing power, especially if implemented in software. More

 46

Theoretical Design

memory is also required. More than one image is typically required to decode the video

stream, because of the fact that inter-frame compression is used. This requires more

memory, to buffer images. Implementing such a memory- and processor intensive

algorithm is therefore not ideal, especially for older MIDP 1.0 handsets.

A simpler type of streaming is to only compress each frame, without any compression

between different frames. This is typically achieved, by streaming a sequence of

compressed JPEG (Joint Photographic Experts Group) images. This method of streaming

is called Motion JPEG, or MJPEG. No formal standard for MJPEG exists and therefore

there are several flavors of MJPEG used for different applications.

MJPEG usually have a lower compression ratio than other video streaming algorithms,

but due to the fact that each frame is individually compressed, the image quality is very

good, even at very low frame rates. This quality makes it especially attractive for low

frame rate applications.

Most modern IP cameras support MJPEG streaming over HTTP. This allows access to

the cameras and full motion video to be viewed using a standard web browser. [21]

Although the above seems like the ideal type of video streaming to meet the requirements

set out in the previous section, a quick look at Table 2.6-1 reveals that JPEG support is

not required for MIDP 1.0 devices, but only for MIDP 2.0. Portable Network Graphics

(PNG) are supported by both, however. PNG images utilize lossless compression and

therefore do not have very high compression ratios. Since this is the only image format

required to be supported by both MIDP 1.0 and MIDP 2.0, it can be used in similar

fashion to MJPEG, in order to stream a sequence of frames (in this case PNG images)

from the DVR to the cellphone. JPEG is then supported as an alternative.

Although further algorithms can be used to improve the compression ratio, it was decided

that, in order to keep the load on the phone’s processor as low as possible, the streaming

 47

Theoretical Design

algorithm used in this project will be based on sending a sequence of PNG, or JPEG

images from the DVR, to the cellphone application.

The details of the video streaming, including the method for switching cameras while

streaming, are discussed further in the relevant sections of Chapter 4.

3.3 Designing the MIDlet

This section describes the theoretical design of the cellphone application. It is assumed

that the reader is familiar with normal software programming terminology and the Java3

programming language.

The MIDlet design requires two distinct components, in order to stream video and control

the DVR. The first is the user interface, including graphical user interface (GUI), with

the various options for the user to send commands to the DVR, request or terminate video

streams, display video and input configuration data, related to the DVR. The second

component is the networking component, which is used to communicate with the DVR,

to package and transmit commands, or to receive and decode video frames received via

the network.

As for any user friendly application, it is essential that the GUI must be usable at all

times. This means that all controls of the user interface can be used at all times, without

locking. In order to realize this, the MIDlet must be a multi-threaded application, with

the main thread handling the GUI and user input, while a second thread handles the

communication- and video streaming protocol.

The initial MIDlet design allows the user to input and store the DVR IP address and

authentication information, as well as to select-, stop- or start a camera. The high-level

program flow diagram of the MIDlet is shown in Figure 3.3-1. The implementation of

the two threads to be used is also indicated in the figure.

3 More information about Java and the Java language syntax can be found at www.sun.com

 48

Theoretical Design

Figure 3.3-1: High-level MIDlet Program Flow

The flow diagram shows that the main thread allows the user firstly to set the username,

password and address of the DVR and then to connect to the DVR. When successfully

connected, the list of cameras available for viewing is displayed. The user can then select

a camera for viewing, or exit the application.

The connection thread handles the connection to the DVR, as well as the video streaming.

The frames received by the connection thread are handed to- and displayed by the main

thread.

The further program design and MIDlet flow diagrams are discussed in more detail, in

Chapter 4.

 49

Theoretical Design

3.4 Design of the DVR with Video Server for MIDlet Access

This section describes the theoretical design considerations of the DVR with the video

server. It is assumed that the reader is familiar with software programming terms and

definitions.

3.4.1 Application Development Environment and Programming Language

The first step in the DVR design is to decide on the programming language- and

environment to be used. Unlike the case with the phone application, numerous

programming languages- and environments are available to develop Windows

applications. The various languages have different advantages and disadvantages for

different applications. A language suited to the development of the DVR is therefore

selected by evaluating the requirements of the DVR application.

The requirements are summarized as follows:

• It is essential that the programming language gives access to devices in the

Windows environment, in order to stop-, start- or control camera devices.

• Development time must be short and preferably various third party components

must be available to reduce the amount of low-level programming required.

• The language must be well suited to the development of networked applications.

• A simple Integrated Development Environment (IDE) must be available, which

enables rapid GUI development, compiling and debugging.

• The end-user application (DVR) must be easy to deploy.

Various programming languages can fulfill the above list of basic requirements, for

example Delphi, Java or C++. C++ is a very powerful language, but development time

is usually very long, due to the involvedness of the language. Java can be used, with the

available media libraries, to develop a media application in a short time, but the

capabilities of the media libraries and the performance of Java applications are not

adequate to fulfill the above requirements in full.

 50

Theoretical Design

The language that most closely fits the requirements is Borland Delphi. Delphi was

developed by Borland, initially aimed at enabling the rapid production of desktop- and

enterprise database applications. It is, however, suited to almost any type of application

development.

Various free- and commercial third party components are available for Delphi, to reduce

development time and to minimize the amount of low-level programming required.

Delphi includes a compiler, full IDE, debugger, compiles very efficiently and the

developed applications are easily deployable. Several free third-party components,

including networking components, are included Delphi installations, to further reduce

development time. [31]

For this project, the availability of a Delphi installation and knowledge of the language

also count in favour. Delphi is therefore chosen as the programming language for the

DVR, although several other languages could possibly also be used.

3.4.2 DVR High-level Design

In order to do the high-level design of the DVR, the requirements and functions of the

DVR are broken up into more manageable elements. The first set of elements consists of

the basic operations and functions of the DVR, including the user interface and related

functions. The second set of elements consists of the underlying architecture of the

software, which enables it to operate and execute the various operations in separate

threads and communicate with mobile phone applications.

The following paragraphs highlight the main DVR requirements and required threading

architecture, in order to derive the high-level design.

Primary GUI

The first element is the primary DVR GUI, which is the main interface between the user

and the software. The primary GUI consists of the following:

• Conventional main program menus, with access to all user input functions

 51

Theoretical Design

• Video display windows, to enable the user to operate and view cameras, or

change camera device- and related settings

• Status window to display DVR operations, information and messages

Secondary GUI:

The secondary GUI consists of windows that are indirect interfaces between the user and

the software. The secondary GUI’s are accessed via the primary GUI and consist of the

following:

• Settings windows for configuring Camera devices, monitoring options, mobile

users, alarming options, etc

• Event log, which records or displays a list of all events and messages, with time-

and date stamp

• Video review window, to enable the user to view recorded video material

Streaming Video Server:

The video server must enable mobile phones to connect, authenticate and request video

streams. The video server must also manage connected mobile devices and stop or start

cameras as required for streaming to the mobile phones.

Camera component:

Each camera used by the DVR must have independent settings and a separate viewable

screen.

The user must be able to stop / start recording or motion detection for individual cameras.

The camera component must provide the video server with video images, when required.

When motion is detected, the DVR must take appropriate action, by sending an alarm

notification, as required by the user.

The DVR underlying architecture consists of the following elements:

• Main program and GUI

• Camera component(s)

• Communication component(s)

 52

Theoretical Design

Each of the abovementioned components must be able to function simultaneously with

the other components. Furthermore, there is possibly more than one instance of the

camera component, in the case where more than one camera is used. Similarly, there can

be more than one client communicating with the DVR at any given time. All these

operations must be able to run simultaneously, without the one blocking one of the

others. In order for each camera to do motion detection, recording, or streaming without

affecting the operation of other cameras, each camera component must run in a separate

thread. Similarly, a separate thread is required for each user connected to the DVR. The

realization of the multithreaded DVR architecture is described in more detail in Chapter

4.

The above requirements are used to derive the following flow diagrams for the main-

(Figure 3.4-1), connection- (Figure 3.4-2) and camera (Figure 3.4-3) threads.

Display Primary GUI:
Menus
Camera Windows
Status Window

DVR Operations:
User Input
Mobile Connections
Alarming Functions

Terminate
Application

Display Secondary GUI:
Settings
Event Log
Video Review Window

Save Settings

Close Secondary
Window

New
Settings

True

False

Start Application

User
Input

CameraGUI

Exit

Start Camera

Figure 3.4-1: Main Thread

 53

Theoretical Design

Figure 3.4-2: Connection Thread

Figure 3.4-3: Camera Thread

 54

Theoretical Design

3.5 Summary

In this chapter, the network models, theoretical streaming protocol and high level designs

of the mobile application and DVR were discussed. The next chapter implements and

refines the designs and presents more detailed breakdowns of the components highlighted

in this chapter.

 55

Implementation

4 Implementation

This chapter focuses on the implementation of the theoretical models and background

presented in Chapters 2 and 3.

Firstly, the MIDlet implementation is discussed. The DVR implementation is then

presented. Detailed program flow diagrams are presented and issues encountered in the

implementation, as well as workarounds used are discussed where applicable in the

implementations.

4.1 MIDlet implementation

The knowledge and theoretical designs presented in the previous chapters are combined

in this section, to develop the application to enable video streaming on the mobile phone.

Due to its intuitive user interface, the NetBeans IDE is used for the mobile application

development, in conjunction with the J2ME Wireless Toolkit 2.2 from Sun

Microsystems.

In Chapter 3, the decision was taken to support both HTTP- and TCP compatible phones.

It is theoretically possible for the application to determine if TCP is supported in addition

to HTTP, but with the limited memory available on older phones, it is preferable to

minimize the amount of redundant code installed on the phone. For the development of

the application, two separate applications are developed, to minimize the footprint (size)

of the application and to simplify debugging. Therefore, phones that are only HTTP

compatible will use the HTTP version of the software and TCP compatible phones, the

TCP version. Both versions of the mobile phone application are based on a dual-threaded

architecture, as discussed in Section 3.3.

4.1.1 Dual-threaded MIDlet Implementation

This section briefly describes how the required dual threads are implemented.

The MIDlet flow diagram, Figure 3.3-1, is used as the basis for the implementation. In

order to implement the dual-threaded application, care is taken, however, to make sure

 56

Implementation

that no resources are accessed by the same thread at any given time. When both threads

try, for example, to access the portion of the screen where the video frame is displayed,

possible thread interlocking can occur and cause the application to hang. In order to

prevent interlocking, an interface is used in combination with synchronized methods.

Therefore the application consists of a main class, which implements the interface, as

well as a communications class, in a separate thread, which makes callbacks via the

interface, to communicate with the main thread.

The following figure illustrates the implementation of the main thread and interface:

Figure 4.1-1: Main Thread and Interface Implementation

It is important to note from the figure that, after a communications-related request was

sent to the DVR via the communications thread, the main thread calls the synchronized

method, but does not wait for the communication thread, before it continues to wait for

input – both from the user or the communications thread. This enables the user to

continue using the GUI, even while the communications thread is communicating with

the DVR in the background.

 57

Implementation

The main thread, in both the TCP and HTTP MIDlet versions, is the same, but the

communications threads differ slightly in the two versions. It is therefore discussed

separately, in the subsequent sections.

4.1.2 HTTP MIDlet

In order to implement streaming over the HTTP protocol on the cellphone, an

understanding, of how the HTTP protocol is implemented on the phones, is required.

Ideally, the phone should make an HTTP connection to the DVR by means of the MIDP

HttpConnection object. The phone should then be able to send requests and receive

responses, without ever closing the connection between request-response cycles. This

would ensure that the latency between transmissions is minimized, by cutting out the

connection time between transmissions and enable the phone to send commands and

receive video streams, by re-using the same connection. The HTTP 2.0 specification,

which is a requirement of MIDP 2.0, allows for the re-use of a connection and can

theoretically be used by setting the HTTP header ‘Connection: keep-alive’. Such an

HTTP connection is called a persistent HTTP connection. By browsing the manufacturer

discussion forums, however, it becomes evident that it is not possible to reuse an

HttpConnection instance in MIDP. The HTTP instance changes state, from connecting -

to connected - to sending - to receiving, but it cannot return to a previous state. The

instance is valid only for one HTTP request-response round-trip and cannot be used

again. [32]

4.1.2.1 Connecting to the DVR

In order to communicate with the DVR, the phone must create a new connection with the

DVR, every time it wants to send a new command or receive new data. The first

implication of this is that the client’s (mobile application) authentication state at the DVR

is not automatically maintained, because of the fact that the connection is closed. In

other words, when the phone sends a connection request, with the correct username and

password to the DVR, the DVR sends a response to the phone, which includes

 58

Implementation

confirmation that it is authenticated. After the confirmation is sent, the connection

instance cannot be used again and must be closed. Now, when the mobile user selects a

camera, a new connection must be made to the phone. The DVR must now ‘remember’

that the specific phone is already logged in, despite the closed connection.

This can be easily achieved, by sending a unique session ID, in the HTTP header of the

initial DVR authentication confirmation response. This session ID is then kept valid by

the DVR for a predetermined time. If the phone does not communicate with the DVR

again during this time, the session expires and the phone is logged out. The phone

application includes the session ID in each subsequent request header, which

automatically allows the DVR to recognize it. The session expiration timer is reset every

time the phone makes a new request.

4.1.2.2 Receiving the Video Stream

When a video stream is requested by the user, there are two options that can be taken to

achieve live streaming. The first is to create a request-response for every frame that is

required. This has the obvious disadvantage that the framerate is adversely affected by

the connect/disconnect times introduced between frames. The second option is for the

server to send a response to the phone, without specifying the content-length header.

This is also known as server-push communication. The server can send (push) images to

the client, until the client closes the connection. This causes an exception to be thrown,

but is easy to handle, since it is a controlled exception. Since the second option only

introduces the connect/disconnect delays between requests and not between frames, this

option is taken.

4.1.2.3 Streamlining the Communication with the DVR

In order to minimize the amount of requests to be sent between the application and the

DVR, the list of available cameras is included in the authentication response, by the

DVR. When the client exits the mobile application, a disconnect request is sent to the

DVR, to terminate the session and minimize the amount of open sessions at the DVR.

 59

Implementation

4.1.2.4 HTTP Message Sequence Chart

The following message sequence charts illustrate the communication between the mobile

application and the DVR, as described in the previous paragraphs:

Figure 4.1-2: HTTP Message Sequence Chart

4.1.2.5 Implementing the HTTP Communication Thread

The HTTP communication thread is implemented in a separate class, given the name

ConnectionHTTP. An instance of this class is created by the main thread when the MIDlet

is started and the communication thread is then created in the ConnectionHTTP instance.

The thread remains in idle mode, until a request is received from the main thread. The

main thread sends all requests, by calling the sendRequestToHost method of the

ConnectionHTTP instance. The sendRequestToHost arguments include the DVR IP

 60

Implementation

address, the request message to be sent to the DVR and a reference to the main thread

interface.

Authentication

When a login request is received from the main thread, the login details are included with

the request message. The communications instance now wakes up the communication

thread, which opens an HTTP connection to the server address, included in the

arguments, transmits the request message with login details and then waits for a response

from the DVR. If a successful response is received, the response, with camera list, is sent

to the main thread to process, by means of the interface received with the request. In the

case of successful authentication, the Session ID is stripped from the HTTP response

header and stored by the connection instance. In case an error occurs or no connection or

authentication is made, an error message is sent to the main thread.

The flow diagram for the login to the DVR, described above, is shown in Figure 4.1-3:

Start Thread

Send login request
message to DVR

Wait for login
request from main

thread

Receive Response
from DVR and

close connection

Interface

Response

Connect to server

Login request, with
authentication

details, interface
reference and
server address

Status

Save Session ID

Send message to
main thread

Error

Error

Connected

Login OK

Main Thread

Communications Thread

Key:
Main

Thread

Figure 4.1-3: HTTP Login Flow Diagram

 61

Implementation

Video Streaming

When a stream request is received from the main thread, the communication thread is

awoken and forwards the camera number, of which the video stream is requested, to the

DVR. The saved session ID is included in the request header. A loop is then entered and

images received from the DVR. The DVR sends the size of each image, before each

image. This enables the communication thread to only read the correct amount of data

from the connection, before creating an image instance with the received data and

forwarding the image to the main thread, via the interface, to display. Before the next

image is received, the interface’s callback, isNewFrameRequired, is called to confirm if

streaming is still required. If not required, the connection is closed and the thread returns

to the idle state.

The video streaming program flow is shown in Figure 4.1-4

 62

Implementation

Figure 4.1-4: HTTP Streaming Program Flow

Although no error handling is shown in the flow diagram, all errors are handled by the

communication thread and reported via the interface, to the main thread.

Interface

In order to enable the required communication between the two threads, the interface is

defined with the callbacks as per Table 4.1-1, for use by the communications thread:

 63

Implementation

Table 4.1-1: CommunicationThreadInterface

interface CommunicationThreadInterface

void handleImage(Image newImage); Used for sending image to main thread

void handleResponseMessage(String
hostResponse);

Used for sending DVR response message to main
thread

void handleErrorMessage(String errorMessage); Used for error handling

boolean isNewFrameRequired (); Used to check if new frame is required

Returns boolean

4.1.2.6 User Interface

The Graphical User Interface (GUI) is implemented by displaying different forms,

according to the application’s requirements. The library, javax.microedition.lcdui.*, is used

to implement the forms. The camera list is, for example, displayed on a form, by using

javax.microedition.lcdui.list. When the list of cameras is received, the list is updated and

then displayed.

Various commands can be added to each screen, to enable user input. A Command

instance is declared for each command. When a command is selected by the user, the

system calls the commandAction method. The action related to the specific command is

then executed.

For streaming video, a Canvas object is used to display the video images. A canvas

provides smoother update of the display and is typically used by games- and video

MIDlets, to reduce flickering when graphics are drawn on the display. A video canvas,

developed by Wayne Forrest [33], is used to display the images received from the

connection thread. The settings form, which saves the login information and server

address in the phone’s memory, by the same developer, is also used in the MIDlet.

Due to the way different manufacturers implement the javax.microedition.lcdui library,

the GUI looks different on different phones. This is illustrated (Figure 4.1-5 and Figure

4.1-6) using different emulators, to select the ‘Menu’ command, using the same MIDlet.

 64

Implementation

Although this limits the ability of the developer to customize a GUI in MIDP

applications, cellphone users are generally used to different interfaces on different phones

and should therefore be able to adapt quickly, when using the application on different

phones.

Figure 4.1-5: Screenshots - Emulator A

Figure 4.1-6: Screenshots - Emulator B

The user interface is therefore designed just to provide the user with the basic options, for

example to exit the application, change settings and to view or stop a video stream.

 65

Implementation

4.1.3 TCP MIDlet

The TCP MIDlet is implemented in similar fashion to the HTTP MIDlet. Again, the way

that TCP is implemented on the phones, must be understood before implementing it in

the application.

As already discussed, TCP sockets are not supported by MIDP 1.0, but optionally

supported in MIDP 2.0. A MIDP 2.0 application would typically use the

SocketConnection class of the javax.microedition.io library, to implement and use sockets.

In MIDP 1.0, this class is not available, however. Therefore, if SocketConnection is used,

no MIDP 1.0 phones, including phones that do support sockets, can use the application.

Another approach is therefore taken, to ensure compatibility with as wide a range of

phones as possible. The J2ME Generic Connection Framework (GCF) defines the

connection interfaces in an inheritance hierarchy, as shown in Figure 4.1-7 [23] All

connection interfaces in the hierarchy can be created, by using the open method, of the

Connector class.

Figure 4.1-7: GCF Hierarchy

The StreamConnection interface is available in both MIDP 1.0 and MIDP 2.0 and can be

used with the Connector.open class, to make a socket connection; if the underlying support

 66

Implementation

in the phone’s Java implementation is available. Since StreamConnection is lower in the

hierarchy than SocketConnection, not all the methods and features of the SocketConnection

are available and are, therefore, implemented manually. The feasibility of this approach

is easily tested by implementing it on a MIDP 1.0 phone, in this case a Nokia 6820.

Although the fact that it works on the test MIDP 1.0 phone model does not necessarily

ensure that it will work on all MIDP 1.0 phones, it does prove the concept.

Since a persistent connection is now available in the TCP MIDlet, the approach of using

sessions, as in the HTTP case, is not required. Once the TCP connection is made with

the server, requests, messages and image data can be sent in both directions over the

connection, without having to close the connection before the user logs off. This

simplifies the MIDlet implementation significantly, compared to the HTTP version.

4.1.3.1 TCP Message Sequence Chart

The message sequence chart (Figure 4.1-8) illustrates the use of the persistent TCP
connection.

Figure 4.1-8: TCP Message Sequence Chart

 67

Implementation

4.1.3.2 Implementing the TCP Communication Thread

Like the HTTP communication thread, the TCP communication thread is implemented in

a separate class, which uses the CommunicationThreadInterface (Table 4.1-1) to

communicate with the main thread. The basic operation principle used with the HTTP

thread is also followed, but with minor adjustments, to take advantage of the persistent

connection.

Authentication

When the communication thread receives the login request message, interface and DVR

address from the main thread, the thread wakes from idle mode and creates the socket

connection with the DVR. The login details are then sent to the DVR, the result read

from the socket connection and forwarded via the interface to the main thread. The

connection is not closed then, as is the case with the HTTP communication thread, but

kept open when the thread returns to idle mode.

The flow diagram for the login process is shown in Figure 4.1-9

Figure 4.1-9: TCP Login Flow Diagram

 68

Implementation

Video Streaming

The video streaming implementation for the TCP MIDlet is again very similar to the

streaming of the HTTP MIDlet. The connection is already open when the request is sent.

The connection thread sends a stop streaming request to the DVR, when no more frames

are required, instead of closing the connection, as illustrated in Figure 4.1-10

Thread Idle

Send camera
request message

to DVR

Wait for camera
request from main

thread

Receive frame
size- and data

from DVR

Interface

Required

Camera request, with
camera number,

interface reference
and server address

Main Thread

Communications Thread

Key:

Convert data to
image and send to

main thread to
display

Check if more
frames are
required

True

False
Send Stop Stream

Request

Figure 4.1-10: TCP Streaming Flow Diagram

User Interface

The user interface for the TCP MIDlet is the same as used and described in Section

4.1.2.6, for the HTTP MIDlet.

 69

Implementation

4.1.4 MIDlet Screenshots and Testing

The initial testing and evaluation of the MIDlets are done by using the Sun Microsystems

Wireless Toolkit’s DefaultColourPhone cellphone emulator, in conjunction with the

DVR. In the initial tests, both the HTTP and TCP MIDlets give the same results. Since

both are tested on the local machine, the connection times between requests, applicable to

the HTTP, are negligible. The following screenshots show the user interface and a

snapshot of the video streaming on the emulator. Since the screenshots for the HTTP-

and TCP MIDlets look exactly alike, only one set is shown.

Figure 4.1-11: Settings Figure 4.1-12: Select Camera

 70

Implementation

Figure 4.1-13: Video Streaming

The further testing, evaluation and comparison of the MIDlets are discussed in more

detail in Chapter 5.

4.2 DVR Implementation

This section describes the implementation of the DVR. The theoretical design, discussed

in Chapter 3 is the basis of the DVR program flow. The underlying design of the

application is, however, described in more detail in this section. The section starts off by

giving a general overview of the DVR user interface and components and then proceeds

to a more detailed discussion around the streaming video implementation. Since the

focus is on the implementation of the video streaming, not all elements of the DVR

implementation are discussed in detail in this report and only the basic implementation

principles are discussed.

4.2.1 Graphical User Interface (GUI)

The Delphi IDE, used for the implementation of the DVR, encourages the developer to

start the implementation of the application, by starting with the layout and design of the

GUI and to then proceed by implementing the underlying functions and technologies of

 71

Implementation

the application. The main DVR GUI consists of the main application window, with a

typical Windows application menu, a shortcut toolbar, message window and an area

designated for the display of the cameras.

This is easily realized by using the Multiple Document Interface (MDI) application

format, provided by the IDE. An MDI application consists of a main (Parent) window

and an undefined number of sub-windows (Children), inside the main window. In the

DVR implementation, each MDI Child is a separate window inside the main GUI, used to

display and control a specific camera. Each Child window can be controlled either from

the Parent window, or individually. The MDI application has built-in functions to size,

show, hide, arrange or control the windows inside the main application.

This implies that, for every camera set up on the DVR, a separate Child (camera window)

is created inside the MDI application. Each camera window can now have its own

control interface, devices settings- and preferences as well as the camera component,

running in its own thread, as described earlier.

The message window is implemented in a separate panel in the main window. The panel

is provided with tabs, to switch between camera shortcuts, camera control, or message-

and status view. A button is added to the shortcut toolbar, to show or hide the panel.

4.2.2 Implementing the Camera Component- and Window

The camera window consists of a camera display area and a panel with buttons to control

the camera functions- and settings. The camera display is an integral part of the camera

thread component described earlier, in order to display video frames in the window,

without affecting the functioning of the main application, or other camera windows.

In order to minimize the amount of low-level programming required to interface with

camera input devices connected to the DVR, a third-party Visual Component Library

(VCL) component is used. The component selected in this case, is the TVideoGrabber

object. This component gives the developer access to the camera device drivers installed

 72

Implementation

on the machine. It also gives the ability to start- or stop a camera, use installed codecs to

record video, access driver settings and display video on the screen. Each component

runs in a separate thread, which means that the threading issue is automatically solved by

using this component. The component has built-in video motion detection with the

ability to notify the application when motion is detected. Individual video frames can be

accessed by using the component. By using this component, the task of implementing the

camera component is reduced to implementing the camera window GUI, a camera

settings GUI and to use the functions of the component to detect motion and extract video

frames to implement video streaming to the cellphone.

Camera Settings

When a user adds a camera to the DVR, the camera settings must first be selected and

configured. The application uses the TVideoGrabber component to get a list of available

video devices, from which the user can select a device. Then the application retrieves the

device-specific settings (framerate, resolution, contrast, etc.) for the selected camera and

displays the settings interface. A list of available recording settings is presented to the

user, in which the recording framerate, compression ratio and related settings can be

adjusted. Once these settings are done, the application creates a camera window, which

includes a TVideoGrabber component and a record of all settings. The record is saved on

the hard drive, to enable the application to automatically load the camera settings when

the application is restarted.

Figure 4.2-1 illustrates how the component is used in the application.

 73

Implementation

Figure 4.2-1: Camera Settings Flow Diagram

Motion Detection

The user is given the option to activate- or disable motion detection, or to set a motion

detection interval. A timer is used to implement the motion detection interval of each

respective camera. Once motion is detected, the timer is activated by the application and

any subsequent motion detections ignored, until the timer is reset at the end of the preset

time. The user is also given the option to only record video when motion is detected.

The TVideoGrabber component allows different sensitivity levels to be set for different

areas in the camera screen. The user is presented with a snapshot of the camera view. A

grid is placed on the screen, with the sensitivity level indicated for each block in the grid.

When the camera is started and the TVideoGrabber component detects motion, an

OnMotionDetected event is triggered. The application then extracts video frames or

activate video recording by using the TVideoGrabber component. The individual frames

can be used to send with an email notification, to an email address preset by the user. A

 74

Implementation

timer is used to stop the recording after a preset time, when motion-activated recording is

used. The motion detection procedure is illustrated in Figure 4.2-2

Figure 4.2-2: Motion Detection Flow Diagram

Start Monitoring

When the user starts a camera, the application retrieves the settings of the selected

camera and forwards the device-, motion detection- and recording settings to the

TVideoGrabber component. Before recording is started, a filename is created by the

application and a directory created for the video file recorded by the camera component.

If motion activated recording is set for the device, recording is not started before motion

is detected, but the device started in view-only mode. If continuous recording is selected,

the video recording is started, encoded with the selected video codec, by using

TVideoGrabber. The monitoring program flow is shown in Figure 4.2-3

 75

Implementation

Figure 4.2-3: Start Monitoring Flow Diagram

4.2.3 Implementing the Communications Component and Video Streaming

The communication between the DVR and Cellphone requires the use of both sockets

and HTTP, as previously discussed. Therefore, both protocols are implemented on the

DVR. This section describes the implementation of the protocols and streaming video in

more detail.

4.2.3.1 Implementing TCP and HTTP on the DVR

The implementation of TCP and HTTP communications in a Delphi application is

simplified by using one of the various third-party components available. The open source

Indy communication library, which ships with Delphi, is selected to implement the DVR

communication component. The Indy components include TCP server components,

HTTP server components, Email-related components, as well as helper components to

make the developer’s task easier.

 76

Implementation

Although an Indy HTTP server component is available, the TCP- and HTTP

communication and streaming are both implemented by using a single TCP server

component. This is done in order to have more control over the functioning of the HTTP

implementation on the DVR, particularly to make it easier to implement the non-

conventional HTTP communication required by the HTTP MIDlet. A further advantage

is that only a single port needs to be opened to the Internet, instead of separate ports for

the TCP and HTTP communication.

Similar to the TVideoGrabber component, the Indy TCP Server component, TIdTCPServer,

also makes the task of multithreading easier. For each connection made to the

application, the server component creates a separate thread (TIdPeerThread). Although

the developer must still implement measures to ensure that thread interlocking does not

occur, the process is simplified by the use of events, generated by the server component,

to notify the main thread of any connection related actions.

Client Connect

When a client makes a connection to the DVR, an OnConnected event is triggered and a

reference to the applicable TIdPeerThread given to the application. This allows the DVR

to know when a client connects to the DVR and to proceed to receive further requests

from the client. For any subsequent action initiated by the client, an OnExecute event is

triggered, again with a reference to the applicable thread.

Once a client connects to the DVR, the DVR proceeds to read data from the connection.

This data is then evaluated in order to determine if the connection is made by an HTTP

MIDlet, TCP MIDlet, or another device.

The protocol defined for the login of a valid streaming client, requires a login request to

be sent, as the first communication between the MIDlet and the DVR, in the case of the

TCP MIDlet. An HTTP header, including a valid session ID in the HTTP header, or a

header followed by a login request, is required as first communication in the case of the

HTTP MIDlet. The DVR recognizes an HTTP request if the first line of data received,

starts with “GET”, or “POST” and then proceeds to parse the HTTP header. If any other

 77

Implementation

data is received after the connection is made, the client is not a valid streaming video

MIDlet and the connection terminated by the DVR.

In order to keep control of the threads and client states, the DVR keeps a list of all clients

and client states, connected to the DVR. A dynamic array of TClient records is used to

implement the list. Each TClient is a record of several variables and pointers, which holds

the information and streaming related data for the particular client. Since the

communication threads all need access to the list of TClient’s in the main thread, all

access to the list is serialized, to prevent thread interlocking. The TClient record is

implemented as follows in the Delphi code:
type
 TClient = record //holds client connection data..
 PeerIP : string[15]; { Client IP address }
 Connected : TDateTime; { Time of connect }
 LastAction : TTimeStamp; { Time of last activity }
 StreamCamNum : Integer; { Index of camera viewed }
 Authenticated : Boolean; { True if logged on }
 Thread : TIdPeerThread; { Pointer to thread }
 StartRqst : Boolean; { True if video stream requested }
 StopRqst : Boolean; { True if stop stream requested }
 DiscRqst : Boolean; { True if client logoff requested }
 ClientName : String; { Client name }
 ClientProtocol : Integer; { HTTP = 02; TCP = 01 }
 SessionID : String; { Session ID }
 ChunkedTransfer : Boolean; { HTTP Transfer type }
end;

Once a valid MIDlet login request is received, a TClient record is created and the TClient

fields initialized and updated as applicable. The TClient record is then added to the client

array. The index of the record in the array is stored in the communication thread, to

enable subsequent events from the same thread, to be able to find the correct TClient

record in the array of clients. The authentication of the client follows. If the login is

valid, a confirmation message with a list of available cameras is sent to the client, via the

connection thread. If the client is an HTTP MIDlet, a unique session ID is created and

sent in an HTTP header before the message. The HTTP client is disconnected after the

message.

If an HTTP MIDlet connects and the header contains a valid session ID, it means that the

client is already logged on to the DVR and a TClient record for the client is already in the

 78

Implementation

list. A new TClient record is, therefore, not created. A valid session ID is located by

searching for a matching session ID in the client list, which also returns the index of the

client in the array. The LastAction field is updated with the new connection time when the

index is found, after which the thread waits for further data to be received from the

connection.

The client connection and authentication flow diagrams are shown in Figure 4.2-4 and

Figure 4.2-5 respectively.

Figure 4.2-4: Client Connection Flow Diagram

 79

Implementation

Login

Read username
and password

from connection

Validate

Disconnect Socket

Update record

Client Protocol

Wait for further
data

Send Header and
Session ID

Send confirmation
and camera list

Client Protocol

Invalid Login

Valid Login

HTTP

TCP

HTTP

TCP

Update record

Figure 4.2-5: Client Login Flow Diagram

Client Logoff

When a TCP MIDlet logs off from the DVR, a logoff request is sent to the DVR, but a

socket disconnection is also regarded as the client being logged off. An HTTP client is

logged off only if the logoff request is received, or when the HTTP session expires. Once

a client is logged off, its connection thread is terminated and the TClient record removed

from the client array.

4.2.4 Implementing Video Streaming

Once a client is logged on to the DVR, a request for a video stream can be sent to the

DVR. The stream request is received from a connected and authenticated client, when

the OnExecute event is triggered. In the case of a TCP client, the stream is sent to the

client directly following the request. In the case of an HTTP client, an HTTP response

 80

Implementation

header precedes the video stream. The remainder of this section focuses on the activation

of the camera, processing of the video frame and transmission of the frames (images) to

the client, until the client requests the stream to stop (TCP client) or the socket is

disconnected (HTTP client), as described in Section 4.1

Camera Request

When the OnExecute event is triggered, the TClient record index is retrieved from the

Thread. The request is then read from the connection and the camera number parsed

from the request message, if a camera request is received. The TClient record is then

updated with the camera number and the StartRqst variable set to true, before a

Thread.synchronize(CheckRequests) call is made to the main thread, to check all pending

client requests. This approach is used for the start streaming-, stop streaming-, and logoff

requests, because of the fact that no parameters can be passed with the synchronize

method. When the synchronized procedure is called, the DVR loops through the TClient

records, executes the requests and resets the request flags. When a camera request is

received, the DVR retrieves the camera number of the requesting client record and sends

a request to start streaming, to the camera window.

The camera window keeps count of the amount of stream start- and stream stop requests

that is received. The camera starts, with the TVideoGrabber’s frame grabber enabled

whenever the number of clients is greater than zero and stops, whenever the number of

clients equals zero, unless recording is active.

The flow diagram for starting the video streaming, is shown in Figure 4.2-6

 81

Implementation

Figure 4.2-6: Start Video Streaming Flow Diagram

The TVideoGrabber triggers an OnFrameCaptureCompleted event for each video image

captured to memory and passes the reference to the application. The application then

processes and converts the image into a suitable format (JPEG or PNG, as set by the

user), for sending via the client connection thread. In the conversion process, the image

is sized to either a resolution preset by the user, or to make the image data size a certain

preset size. The user can select which option to use. The application first sends the size

of the image (integer, followed by carriage return character) and then the image data, to

the client. The DVR does not send a subsequent image to the client, before the

Thread.Connection.Writebuffer procedure, which is used to send the image data, is

completed for the last image sent. The image data is sent to each client that has the

relevant camera selected for streaming.

The video streaming flow diagram is illustrated in Figure 4.2-7

 82

Implementation

Figure 4.2-7: Video Streaming Flow Diagram

Managing the Client List and Connections

In testing the application over the cellular networks, in some instances the connection

thread does not trigger the OnDisconnect event when the TCP version cellphone

application is exited. Although this only happens on rare occasions, it results in TClient

records being kept in the client list, even when the actual client is not connected to the

DVR anymore. The cause of this is unknown and suspected to be related to the cellular

networks. Therefore, a ‘cleanup system’ is added to the DVR, to terminate threads that

are inactive for a certain time.

The cleanup is activated by using a timer, to check all threads in the client list, terminate

inactive threads and to remove the applicable TClient records from the array. This system

is also used to remove HTTP clients from the list, when the session timeout, described

earlier, is reached. The cleanup procedure is executed every 10 seconds, by the timer.

 83

Implementation

4.2.5 Implementing the Review Window

The video review unit is implemented in a separate form, by using a TVideoGrabber

component in the form, for playback. The GUI provides the user with the ability to select

the recorded video to be reviewed. Since the installed Windows codecs are used, no

export functionality is required for the review unit.

4.2.6 Email Alarm Notifications

When motion is detected and the user has selected that email notifications must be sent

when an alarm condition occurs, the Indy SMTP client component is used to compile and

send an email notification to the preset email address. A video clip, or video images,

captured by using the TVideoGrabber component, in combination with a timer, can be

attached to the email.

4.2.7 Additional DVR Functions

Various additional elements of the DVR are implemented in order to make the

application more user friendly, to provide accurate logging of all client connections, DVR

actions and alarms and to add mobile users with usernames and passwords. These

functions are implemented using standard programming- and database techniques. Since

the focus of this Thesis is oriented more towards the implementation of streaming in a

mobile environment, the details of these elements of the DVR are not discussed in further

detail in this document. The reader is referred to www.torry.net, for further information

about the Delphi language, the implementation of databases, GUI design and the use of

threads in the applications, as related to this project.

 84

Implementation

4.3 Implementation Summary

The implementation of the phone- and DVR applications were discussed in this chapter.

The program flow diagrams and descriptions of the major components of the software

were presented. It was described how two versions of the cellphone application have

been implemented for, respectively, TCP and HTTP compatible phones. The DVR is

implemented by using the Delphi IDE and utilizing several third party components.

The evaluation of the phone- and DVR applications, measured against the thesis

objectives, is discussed in the following chapter.

 85

Evaluation

5 Evaluation and Results

In this chapter, the designs and implementations derived in the previous chapters, are

evaluated against the thesis objectives, presented in Section 1.1. The chapter starts off by

evaluating the phone- applications, using emulators. The applications are then tested on

real phones, over a real cellphone network. Screenshots of the emulated results and

photos of the cellphone applications on real phones are provided.

The DVR application is then evaluated and screenshots provided. The email alarm

notification mechanism is also demonstrated.

5.1 MIDlet Evaluation

5.1.1 Simulated Results

The Sun Microsystems cellphone emulator is used to test the applications over a mobile

broadband network. A Nokia cellphone is used to connect the PC, on which the emulator

is run, to the Internet, using GPRS- and 3G connections. The DVR application is

installed on a PC connected to the Internet, via a 512 kbps ADSL connection. A

framerate (fps) counter, developed by Wayne Forrest [32], is included in the MIDlet and

used to calculate and display the streaming video framerate on the screen of the MIDlet.

Table 5.1-1 indicates the average times to connect to the DVR, measured from the

moment the connect button is pressed, until the connection is made with the DVR. The

table also indicates the average times measured, between selecting a command and the

command being received by the DVR. The maximum- and average framerates achieved

are also indicated. The values represent the average figures from five consecutive tests,

for each scenario.

 86

Evaluation

Table 5.1-1: Emulation Results

Description Average
HTTP MIDlet over 3G
Connection Time 1-3 s
Request Time 1 s
Maximum Framerate 9 fps
Average Framerate 7 fps

TCP MIDlet over 3G
Connection Time 1-2 s
Request Time <1 s
Maximum Framerate 8 fps
Average Framerate 7 fps

HTTP MIDlet over GPRS
Connection Time 4-7s
Request Time 3-5s
Maximum Framerate 3 fps
Average Framerate 1 fps

TCP MIDlet over GPRS
Connection Time 3-4s
Request Time 2-3s
Maximum Framerate 3 fps
Average Framerate 1 fps

Although the results in Table 5.1-1 are useful to demonstrate the difference in

performance between the different scenarios, it cannot be used as an accurate

measurement of the expected framerates and latencies. Due to the fact that the

underlying network characteristics, of both the cellular- and ADSL networks are

unknown, various variables are excluded from the result. Both ADSL and the cellular

networks are contended services and influenced by the amount of users using the network

at a given time, distance from the base station and signal strength of the cellphone

network. These figures also tend to fluctuate in different areas, at different times of the

day and week. Therefore, in order to compile more accurate statistics, multiple tests are

required, at different times of the day, different days of the week and at different

locations. This is, however, an investigation beyond the scope of this project and

therefore, not included in this Thesis.

 87

Evaluation

Due to the way the streaming is protocol implemented, the image quality of all frames

sent from the DVR is constant, irrespective of the framerate and network throughput.

The visual quality of the video displayed on the emulator is, therefore, the same for the

TCP- and HTTP MIDlet’s, as well as for using the GPRS- and 3G network connections.

The screenshot for one of the four emulations is, therefore, the same as for the others. An

example of the video streaming emulation is shown in the following screenshot (Figure

5.1-1).

Figure 5.1-1: MIDlet Video Streaming Screenshot

5.1.2 Results on Real-life Cellphones

The HTTP- and TCP MIDlet’s have been tested on MIDP 1.0 and MIDP 2.0 cellphones.

The phones used, are a Nokia 6820 (MIDP 1.0) and a Nokia 6630 (MIDP 2.0). The

 88

Evaluation

framerates and latencies measured, using the real phones are not tabled in detail, due to

the numerous unknowns in the network. The connection times of different phones differ,

as well as the network latencies of the cellphone networks, at a given time of day and at

different distances from the base stations. Furthermore, both the back-end connection

(ADSL) and the cellular phone network are subject to contention ratios, which are totally

unknown to the user. The real life tests are therefore limited to the perceived video

quality- and usability on the phones.

TCP MIDlet

The TCP MIDlet works on both cellphones, as expected. The connection time is

significantly longer, for both the 3G enabled Nokia 6630 and the EDGE/GPRS enabled

Nokia 6820, than perceived for the emulator. This can be attributed to either the network

conditions, at the time of testing, or the implementation of the connectivity in the Java

runtime environment on the phone. The time for camera requests is, however, similar to

the emulation results.

HTTP MIDlet

The HTTP MIDlet works on the Nokia 6630, as expected. However, on the MIDP 1.0

Nokia, it does not. A connection can be made to the DVR and a camera list received, but

no video stream is received when the camera is selected, even though the DVR indicates

that it is sending images to the cellphone. This is contrary to the expected result, which is

that at least the HTTP version should be able to work on MIDP 1.0- and MIDP 2.0

phones, while the TCP version should work on most MIDP 2.0- and some MIDP 1.0

phones.

Further research reveals that various developers have encountered this problem, with

some of the Nokia phone models, where an HTTP response is only received by the

phone, once the response is fully sent by the DVR and the connection closed. This can

be attributed either to a proxy being present between the application and the DVR, or the

way that Nokia implements the HTTP protocol on some of the handsets. Further research

and testing of different handsets is required in order to get a clearer understanding of this

 89

Evaluation

behavior. It is however relatively safe to assume that, since the TCP MIDlet works on

the MIDP 1.0 Nokia phone, it should work on most of the newer Nokia phones as well.

Whether this holds true for other phone manufacturers as well, is uncertain and can again

only be established by testing the application on a variety of phones. This is, however, a

significant practical undertaking that will not really contribute to the fundamental design

principles of the project as is, as such, beyond the scope of this thesis.

Visual Results

Photos of the streaming on the MIDP 1.0 and 2.0 cellphones are shown in Figure 5.1-2

and Figure 5.1-3. Although the quality of the photos do not do justice to the actual

quality perceived on the handsets, it gives an idea of the streaming appearance on the

phones.

Figure 5.1-2: Video Streaming on MIDP 1.0 Cellphone

 90

Evaluation

Figure 5.1-3: Video Streaming on MIDP 2.0 Cellphone

5.2 DVR Evaluation

The evaluation of the DVR is relatively simple, if compared to the Thesis goals, but also

complex, because of the fact that a user friendly application is perceived differently by

different users. The basic functions required by the Thesis objectives are included in the

implementation, and streaming to both MIDP 1.0 and MIDP 2.0 phones is successfully

demonstrated. The vast variety of phones on the market makes it extremely difficult,

however, to know for certain if the application will work on most phones, or not. The

basic principles and careful implementation of the video streaming protocol as devised

should, however, ensure that most phones are compatible. The newer the phone, the

more likely it is that the Java implementation on the phone supports TCP and thus will be

able to use the TCP MIDlet. Since the MIDlet is implemented, using TCP sockets in the

most basic way possible, it should theoretically be able to work on most phones on which

sockets can be used. This can only be proven by testing the application on all available

phone models, which is clearly an impossible task.

 91

Evaluation

Visual Results

The following screenshot shows the GUI of the DVR, when monitoring three cameras

(Figure 5.2-1).

Figure 5.2-1: DVR Monitoring

The following screenshot shows the settings GUI, when selecting a camera device

(Figure 5.2-2).

 92

Evaluation

Figure 5.2-2: DVR Settings Window

The alarm notification email, sent by the DVR, contains 5 images of the motion detected,

each taken 1 second apart. The email body contains general information about the alarm

and the camera that detected the alarm. The following shows the email contents and

photos of an alarm notification, as received on the cellphone:

 From: "DVR" <email@email.co.za>

 Subject: Alarm!

 To: email@email.co.za

 Motion was detected by camera Camera 1, Office Camera

 at 07:36:54 PM on 2007/01/08

 Please see attached pictures of detected motion

 93

Evaluation

Figure 5.2-3: Motion Alarm Images

5.3 Evaluation Summary

The implementation of the DVR and MIDlet can be considered successful, since full,

stable functionality is proved. As a result, the thesis objectives are also met. Although

the HTTP MIDlet does not work on the Nokia 6820, streaming is achieved to the phone

by using the TCP MIDlet. Therefore, streaming to both MIDP 1.0 and MIDP 2.0 phones,

is achieved and since these are currently the only specifications of J2ME, it is safe to

assume that the applications should work on all phones, if all phone manufacturers

implement the MIDP 1.0 and MIDP 2.0 specifications correctly. Since this is not

 94

Evaluation

necessarily the case due to undocumented deviations by manufacturers, absolute certainty

can only be obtained by testing all phones. A possible solution, for phones which do not

support the HTTP- or TCP streaming implementations, could be to let the phone

application download small sequences of video clips or images, by using a repeated

sequence of requests to the DVR. If such an implementation could still be regarded as

live video streaming is, however, debatable.

In summary, it is clear that the evaluation seems to satisfy the initial design approach

taken.

 95

Contributions, Conclusions and Future Work

6 Contributions, Conclusions and Future Work

The rapid way in which the mobile phone environment is advancing and the improving

capabilities of cellphones and mobile networks, combined with the increased need for

remotely accessible video surveillance systems, has presented the realistic possibility of

utilizing cellphones as an additional monitoring element. To this end, this project has

made the following contributions:

6.1 Contributions

• In this Thesis, the various characteristics, capabilities and limitations of mobile

networks- and devices, as well as the various options for streaming video content

to cellphones were investigated in depth. This knowledge was used to present the

design- and implementation of a digital video surveillance system, with the ability

to stream live video to cellphones.

• A finely balanced design approach was followed to attempt maximum

compatibility between hardware and network capabilities and to reconcile

sometimes contradictory requirements.

• A constant image quality, variable framerate video streaming protocol was

successfully developed and demonstrated.

• A comprehensive DVR was also developed and implemented to host the on-site

surveillance software.

• A third party movement detection algorithm was adapted and for this specific

implementation and integrated into the DVR software suite.

• A client database was implemented on the DVR to provide full practical

functionality.

• Full streaming functionality to both MIDP 1.0 and MIDP 2.0 enabled phones has

been achieved and demonstrated.

 96

Contributions, Conclusions and Future Work

6.2 Conclusions

Manufacturers’ idiosyncrasies, marketing policies and extremely rapid development of

cellphone hardware and software, presented a virtual labyrinth of protocol options,

implementations, partial implementations and undocumented traps for the unwary. A

careful path had to be followed through this landscape to ensure as seamless an

operational system as possible. A major obstacle was to obtain exact details regarding

embedded phone software. This is generally not forthcoming from manufacturers.

It was shown that although only two J2ME specifications exist, the implementation

thereof, on different phones, is not guaranteed to follow the specifications 100%. The

video streaming protocol is implemented in such a way, however, to try to maximize the

amount of phones that will be compatible. In some instances, some minor changes to the

application might be needed, which could possibly imply that there should be various

different versions of the phone application for different phones. The last-resort solution,

mentioned at the end of Chapter 5 is to send multiple video sequences to the phone,

instead of a video stream. Although this would probably not qualify as live video

streaming per definition, it could still provide the user with the same functionality.

Interesting, unsuspected and unacknowledged bugs also came to the fore from the mobile

networks themselves. In spite of these, it is felt that satisfactory functionality was

achieved without unacceptable compromises and by implementing workarounds where at

all possible.

The project was challenging, but very interesting and its successful completion up to this

point, would seem to present subsequent commercial possibilities.

6.3 Future Work

Although the DVR and cellphone applications can be used as a workable video

surveillance solution, as is, various enhancements can be added and the streaming video

protocol refined.

 97

Contributions, Conclusions and Future Work

The following improvements can be considered

• The DVR can be improved to provide analogue inputs and outputs and be used in

conjunction with the cellphone as a home automation solution, apart from

security.

• By adding Bluetooth functionality to the DVR and the cellphone application,

Bluetooth enabled cellphones could automatically use Bluetooth for

communication between the phone and the DVR, when in range of the DVR’s

Bluetooth device. This can also provide added functionality to a home

automation setup, to control automatic gates, lights and even multimedia devices

in the home.

• The security of the DVR can be further improved, by using advanced encryption

algorithms for the authentication process.

• The setup process when adding new cameras to the DVR can be automated. The

setup of the cellphone application can also be automated, by providing a central

Internet database, from which the cellphone can retrieve its DVR address and

authentication settings. This requires the DVR to periodically upload new

settings to the database.

• A database of compatible cellphones should be compiled, as cellphones are tested

with the applications.

Apart from the general improvements mentioned, the biggest challenge is to stay in line

with new technologies that are introduced. There is currently a rapid increase in the

amount of multimedia enabled handsets and a decrease in the amount of older phones in

use. The capabilities of the newer handsets open up various new possibilities to improve

the video streaming and even to implement conventional RTP-based streaming in

addition to the streaming developed in this Thesis. By doing this, the chance of losing

functionality and quality, in order to support older technology, is reduced.

As in any software development project, the amount of future work and improvements

that can be undertaken is endless.

 98

REFERENCES

[1] Howstuffworks.com information resource, founded by North Carolina State

University, since 1998
 www.howstuffworks.com

[2] Wikipedia free Encyclopedia, WikiMedia Foundation, Since 2001, WikiPedia OSI

Model
 www.wikipedia.org

[3] Cisco Systems, Inc, Internetworking Technology Overview, June 1999
 www.cisco.com

[4] Carlo Fonda, Marco Zennaro, The International Centre for Theoretical Physics,

Networking Basics,

[5] Petery Rysavy, Rysavy Research, Data Capabilities, GPRS to HSDPA, Sept 2004

[6] Usha Communications Technology, General Packet Radio Service, 2000

[7] Petery Rysavy, Rysavy Research, Mobile Broadband, September 2006

[8] Malek Sraj, Masters Degree Project, EDGE Downlink Throughput Performance,

2006

[9] Internet RFC/STD/FYI/BCP Archives, RFC 768 – User Datagram Protocol
 www.rfc-archive.org

[10] Yaniv Pessach, Microsoft Corporation, The pros and cons of TCP and UDP

[11] Internet RFC/STD/FYI/BCP Archives, RFC 793 – Transmission Control Protocol

www.rfc-archive.org

[12] Keith W. Ross, James F. Kurose, Connectionless Transport: UDP, 2000

[13] Internet RFC/STD/FYI/BCP Archives , RFC 1880 – Real-time Transfer Protocol,

www.rfc-archive.org

[14] Colin Perkins, USC Information Sciences Institute, RTP: Multimedia Streaming

over IP

[15] Internet RFC/STD/FYI/BCP Archives , RFC 2616 – Hypertext Transfer Protocol

www.rfc-archive.org

[16] The WAVE report, Video Compression Technology
 www.wave-report.com

 99

http://www.howstuffworks.com/
http://www.wikipedia.org/
http://www.cisco.com/

[17] Nokia Mobiles Phones, Multimedia Streaming White Paper

[18] Juka Helin, MediaLab, Mobile Device Developments, Streaming and

Broadcasting Services for Mobile Handsets, Sept 2004

[19] TeliaSonera GPRS Content Conference, Insights into Lessons Learned with Video

Services over GPRS Networks, Oct 2003

[20] Rob Koenen, Intertrust Technologies,Apple Worldwide Development

Conference, MPEG-4 Demystified, Jun 2003

[21] Wikipedia free Encyclopedia, WikiMedia Foundation, Since 2001, WikiPedia –

MPEG-4
 www.wikipedia.org

[22] Riley and Richardson, Artech House, Digital Video Communications

[23] Sun Microsystems
 http://java.sun.com/

[24] Srikanth Raju, Sun Microsystems, Developing Wireless Applications in Java

using Java Micro Edition (J2ME)

[25] Ferdinand Alimadhi, Wireless Access to Web-based Interfaces of Legacy

Simulations, 2002

[26] SearchWeb Services
 www.searchwebservices.com

[27] JSR 118 Expert Group, Mobile Information Device Profile for Java 2 Micro

Edition, version 2.1

[28] Sun Microsystems, Mobile Information Device Profile, JCP Specification, Java 2

Micro Edition, 1.0a

[29] MyADSL

www.mybroadband.co.za

[30] Zhen Wen, Zicheng Liu, Michael Cohen, Jin Le, Ke Zheng, Tomas Huang, Low

Bit-rate Video Streaming for Face-to-face Teleconference

[31] Wikipedia free Encyclopedia, WikiMedia Foundation, Since 2001, WikiPedia -

Delphi

[32] Nokia Developer’s Discussion Forum

 100

http://www.wikipedia.org/
http://java.sun.com/
http://www.searchwebservices.com/
http://www.mybroadband.co.za/

 http://discussion.forum.nokia.com

[33] Wayne Forrest, Stich Technologies

[34] Torry’s Delphi Pages
 www.torry.net

 101

http://discussion.forum.nokia.com/
http://www.torry.net/

	Declaration
	 Opsomming
	 Abstract
	Acknowledgements
	 CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 TERMINOLOGY
	1 Introduction and Thesis Objectives
	1.1 Thesis Objectives
	1.2 Thesis Overview
	2 Background and Research
	2.1 Network Models
	2.1.1 Open Systems Interconnection (OSI) Reference Model
	2.1.2 Internet Protocol Suite (Internet Reference Model)

	2.2 Mobile Data Network Considerations
	2.2.1 GSM Data Technologies
	2.2.2 Network Performance
	2.2.2.1 Latency
	2.2.2.2 Bandwidth
	2.2.2.3 Availability
	2.2.2.4 GPRS
	2.2.2.5 EDGE
	2.2.2.6 3G (UMTS)
	2.2.2.7 HSDPA

	2.3 Data Transport Protocols
	2.3.1 User Datagram Protocol (UDP)
	2.3.2 Transmission Control Protocol (TCP)

	2.4 Application Layer Protocols
	2.4.1 Real-Time Transfer Protocol (RTP)
	2.4.2 Hypertext Transfer Protocol (HTTP)

	2.5 Video Streaming
	2.5.1 Video Streaming – an Overview
	2.5.2 Video Compression
	2.5.3 Video Streaming to Mobile Phones
	2.5.3.1 MPEG-4
	2.5.3.2 H.263

	2.6 Cellular Phone Application Development
	2.6.1 Java Platform
	2.6.2 Java 2 Platform, Micro Edition (J2ME)
	2.6.3 Connected Device Configuration (CDC)
	2.6.4 Connected Limited Device Configuration (CLDC)
	2.6.5 Mobile Information Device Profile (MIDP)
	2.6.6 MIDP Application Programming Interface
	2.6.7 Deployment of the MIDP Application

	2.7 Video Server Considerations
	2.8 Summary

	3 Theoretical Design
	3.1 Network Model
	3.1.1 Mobile Channel
	3.1.2 Network Layer
	3.1.3 Transport Layer
	3.1.4 Application Layer
	3.1.5 Revised Network Model
	3.1.6 Video Streaming Transport Considerations
	3.1.7 DVR Network Model

	3.2 Streaming Protocol:
	3.2.1 Video Streaming Requirements
	3.2.2 Designing the Streaming Video Protocol

	3.3 Designing the MIDlet
	3.4 Design of the DVR with Video Server for MIDlet Access
	3.4.1 Application Development Environment and Programming Language
	3.4.2 DVR High-level Design

	3.5 Summary

	4 Implementation
	4.1 MIDlet implementation
	4.1.1 Dual-threaded MIDlet Implementation
	4.1.2 HTTP MIDlet
	4.1.2.1 Connecting to the DVR
	4.1.2.2 Receiving the Video Stream
	4.1.2.3 Streamlining the Communication with the DVR
	4.1.2.4 HTTP Message Sequence Chart
	4.1.2.5 Implementing the HTTP Communication Thread
	4.1.2.6 User Interface

	4.1.3 TCP MIDlet
	4.1.3.1 TCP Message Sequence Chart
	4.1.3.2 Implementing the TCP Communication Thread

	4.1.4 MIDlet Screenshots and Testing

	4.2 DVR Implementation
	4.2.1 Graphical User Interface (GUI)
	4.2.2 Implementing the Camera Component- and Window
	4.2.3 Implementing the Communications Component and Video Streaming
	4.2.3.1 Implementing TCP and HTTP on the DVR

	4.2.4 Implementing Video Streaming
	4.2.5 Implementing the Review Window
	4.2.6 Email Alarm Notifications
	4.2.7 Additional DVR Functions

	4.3 Implementation Summary

	5 Evaluation and Results
	5.1 MIDlet Evaluation
	5.1.1 Simulated Results
	5.1.2 Results on Real-life Cellphones

	5.2 DVR Evaluation
	5.3 Evaluation Summary

	6 Contributions, Conclusions and Future Work
	REFERENCES

