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Abstract 

Due to the sizeable dimensions, in cases of failure, tailings dams represent high-risk not only to the mining 

operations but also to surrounding communities and the environment.  The recent catastrophic failures of 

Mount Polley (Canada), Fundão (Brazil) and Brumadinho (Brazil) Tailings Storage Facilities (TSF’s) between 

2014 and 2019, due to static liquefaction caused by the loss of containment of mine tailings, have placed the 

worldwide mining industry under even greater pressure to ensure that risks associated with TSF’s in their 

global portfolios are assessed according to industry best practice and sound engineering frameworks. 

Internationally detailed assessments of the in-situ state of tailings and staged construction are common in 

design and construction stages as well as post-construction monitoring of these facilities.  Recent failures of 

TSF’s globally have prompted mining companies to review their TSF risk evaluation approach and design 

standards in terms of their current and future assets in their portfolios.  Therefore, the need for more specialised 

studies is likely to gather pace and may possibly become a more frequent requirement in South African TSF 

design, operation and monitoring studies. 

This research covers an array of multifaceted aspects such as material (tailings) behaviour, in-situ and 

laboratory testing and numerical simulations.  The main objectives of the research were to determine the static 

liquefaction potential of tailings by characterising its in-situ state using in-situ and laboratory test data available 

for the tailings dam and to perform a staged construction of a tailings dam under static loading conditions by 

using an appropriate soil constitutive model. 

This research describes the application of the Shuttle and Jefferies (2016) methodology to estimate the state 

parameter for silt-like materials.  A comparison with more conventional approaches (developed for sand-like 

materials) namely, Robertson (2010) as well as Jefferies and Been (2016) was performed.  The state 

parameters spatial distribution was determined by assessing each CPTu along its respective monitoring line. 

The following pertinent findings were observed: 

 The state parameter using Shuttle and Jefferies (2016) procedure is systematically higher than the

Robertson (2010) and Jefferies and Been (2016) methodologies.

 The Shuttle and Jefferies (2016) methodology shows that underflow tailings display predominantly dilative

(strain-hardening) behaviour at most of the CPTu.  Only a few CPTu show minor contractive layers within

some portions of the underflow tailings.

 The Shuttle and Jefferies (2016) methodology shows that overflow tailings show contractive (strain-

softening) behaviour with interbedding of dilative layers in some portions of the overflow tailings.

 Good correlations were found between SBTn classifications and interpretation of state parameter using

Shuttle and Jefferies (2016) methodology in that similar behavioural responses of the underflow (i.e.

dilative) and overflow (i.e. contractive) were noted.

In summary, the Shuttle and Jefferies (2016) methodology is based on a more fundamental understanding of 

the physics involved in cone penetration and uses a constitutive model built around the concept of state 

parameter, making it more reliable for silt-like tailings than empirically-based procedures (Sottile, et al., 2019). 
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The staged construction of the tailings dam was numerically modelled using the commercial FEM package 

RS2.  The software was used to generate a 2-D FEM model that involves defining type of materials and 

associated input parameters, phreatic surface and boundary conditions.  Also, the software was used to 

calibrate the Softening-Hardening soil constitutive model with drained and undrained triaxial test data.  As part 

of this research the pore pressure distribution, drainage conditions and location of phreatic surface were 

assessed at varying rates of rise using hydraulic gradients representative of hydrostatic and sub-hydrostatic 

pore pressure conditions.  The following pertinent findings were observed: 

 The RoR has a more noticeable impact on the location of the phreatic surface than the pore pressure

regime.  With an increasing rate of rise, there is a corresponding rise of the phreatic surface.

 The largest pore pressures are developed in the overflow zone that has the lowest permeability.  Underflow

tailings are unsaturated following construction due to its higher permeability.

 Phreatic surface and pore pressure trends observed in the analyses are comparable to the literature.

Maximum bulbs/zones of pore water pressure form at the overflow-foundation interface.

 For RoR of 3.0 m/yr and 6.0 m/yr using hydraulic gradients representative of sub-hydrostatic pore pressure

conditions, the lower portion of the overflow tailings demonstrate a drained-like behaviour during staged

construction.  This is reflected by the continuous increases in effective confining pressure (p’) that are

notably higher than their corresponding pore pressure (pp).  It can also be observed that drainage

conditions become poorer into the TSF-A basin as the differences between p’ and pp progressively

decrease from Points 1 to 4 (Figure 6-14).

 For RoR of 3.0 m/yr and 6.0 m/yr using hydraulic gradients representative of hydrostatic pore pressure

conditions, the lower portion of the overflow tailings from Points 1 to 3 demonstrate a drained-like

behaviour during staged construction.  On the other hand, Point 4 demonstrates undrained-like behaviour.

This is reflected by the continuous increases in pp that are notably higher than their corresponding p’

(Figure 6-15).

The staged construction using fully coupled transient FEM analyses was found to be a valuable tool to 

understanding the pore pressure distribution, drainage conditions and location of phreatic surface within a 

tailings dam. 
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Opsomming 

Vanweë die aansienlike groote, in die geval van faaling, hou slikdamme 'n hoë risiko vir nie net 

mynbedrywighede nie, maar ook vir die omliggende gemeenskappe en die omgewing. Die onlangse 

katastrofiese faalings van Mount Polley (Kanada), Fundão (Brasilië) en Brumadinho (Brasilië) se 

opbergingsfasiliteite tussen 2014 en 2019, weens statiese vervloeiing wat veroorsaak word deur die verlies 

aan behoud van mynafval, het die mynboubedryf wêreldwyd onder nog grooter druk geplaas om te verseker 

dat die risiko's verbonde aan slikdamme in hul wêreldwye portefeuljes, volgens beste praktyke en vertoubare 

ingenieursraamwerke beoordeel word. 

Internasionale geditalleerde assesserings van die in-situ toestand van die slikdamme en gefaseerde 

konstruksie van ‘n numeriese model is algemeen in ontwerp en konstruksie fases. Dit word ook toegepas op 

post-konstruksie monitering van hierdie fasiliteite. Onlangse faalings van slikdamme wêreldwyd het 

mynmaatskappye aangespoor om hul slikdam-risikoevalueringsbenadering en ontwerpstandaarde in terme 

van hul huidige en toekomstige bates in hul portefeuljes te hersien. Dus, die behoefte aan meer 

gespesialiseerde studies is dus geneig om meer in aanvraag te wees, en kan moontlik 'n vereiste in die Suid-

Afrikaanse slikdamontwerp bedryf en moniteringsstudies wees. 

Hierdie navorsing dek 'n verskeidenheid van aspektes aan soos materiaal (slik) gedrag, in-situ en 

laboratoriumtoetsing, en numeriese simulasies.  Die belangrikste doelwite van die navorsing was om eerstens, 

die statiese vervloeiing potensiaal van slik te bepaal deur die eienskappe van die in-situ toestand van die 

slikdam te gebruik. Dit word met behulp van in-situ en laboratoriumtoetsdata wat beskikbaar is vir die slikdam 

bepaal. Tweedens om 'n gefaseerde numeriese model konstruksie van n slikdam te analiseer onder statiese 

lading toestande. Die numeriese analise was gedoen met behulp van 'n toepaslike grondkonstitutiewe model 

gebruik te maak. 

Hierdie navorsing beskryf die toepassing van Shuttle en Jefferies (2016) se metodologie deur die 

staatparameter vir slik-agtige materiaal te beraam.  'n Vergelyking was ook getrek deur van meer 

konvensionele benaderings (ontwikkel vir sand-agtige materiaal) gebruik te maak naamlik, Robertson (2010) 

asook Jefferies en Been (2016).  Die staatsparameters se ruimtelike verspreiding is bepaal deur elke CPTu 

langs die onderskeidelikke moniteringslyn te assesseer.  Die volgende bevindinge is waargeneem: 

 Die staatsparameter wat bepaal is deur behulp van Shuttle en Jefferies (2016) se prosedure, is hoër as

die wat bepaal word deur Robertson (2010), en Jefferies en Been (2016) se prosedures.

 Die Shuttle en Jefferies (2016) metode toon dat ondervloeislik oorwegend dilatiewe (spanning-verharding)

gedrag toon by meeste van die CPTu .  Slegs 'n paar CPTu vertoon klein kontrakktiewe lae binne sommige

gedeeltes van die ondervloeislik.

 Die Shuttle en Jefferies (2016) metode toon dat die oorloopslik kontrakktiewe (spanning-versagting)

gedrag toon, met dilatiewe interbedingslae in sommige gedeeltes van die oorloopslik.

 Goeie korrelasies is gevind tussen SBTn klassifikasies en die interpretasie van Shuttle en Jefferies (2016)

se prosedure van die staatsparameter, deurdat soortgelyke gedrag met betreking tot die ondervloeislik

(dilatiewe) en oorloopslik (d.w.s. kontrakktiewe), gevind is.
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In opsomming, die Shuttle en Jefferies (2016) metodologie is gebaseer op 'n meer fundamentele begrip van 

die Fisika wat betrokke is by kegel penetrasie, en gebruik 'n konstitutiewe model, gebou rondom die konsep 

van die staat parameter. Dit maak dit meer betroubaar vir silt-agtige slik as empiries-gebaseerde prosedures 

(Sottile, et al., 2019). 

Die fase numeriese model konstruksie van die slikdam is gemodelleer met behulp van die kommersiële 

sagteware pakket FEM-pakket RS2.  Die sagteware is gebruik om 'n 2-D FEM model op te stel deur die tipe 

materiale te definieer asook gepaardgaande inset parameters, watertafel vlak, en grenstoestande. Die 

sagteware is ook gebruik om die versagting-verharding grond konstitutiewe model te Kalibreer met behulp van  

gedreineerde en ongedreineerde triaksiale toets data. As deel van hierdie navorsing word die 

porieëdrukverspreiding, dreineringstoestande en ligging van die watertafel vlak teen wisselende tempo van 

verhooging (RoR) geaseseer. Die assessering was uitgevoer deur middel van die hidrouliese gradiënte wat 

hidrostatiese en sub-hidrostatiese porieëdruktoestande verteenwoordig te gebruik.  Die volgende tersaaklike 

bevindinge is waargeneem: 

 Die “RoR” het 'n meer merkbare impak op die ligging van die watertafervlak as wat die porieëdrukregime 

het. Soos wat die “RoR” toeneem is daar 'n ooreenstemmende toeneeming van die watertafel vlak. 

 Die grootste porieëdruk word ontwikkel in die oorloopsliksone wat die laagste deurlaatbaarheid het.  

Ondervloeislik is onversadig na konstruksie as gevolg van die hoër deurlaatbaarheid. 

 Die Watertafel vlak en porieëddruk tendense wat waargeneem is in die ontledings, is vergelykbaar met 

die literatuur. Maksimum sones van porieëwaterdruk vorm tussen die oorloopslik en fondasievlak. 

 Die onderste gedeelte van die oorloopslik toon 'n gedreineerdagtige gedrag tydens die fasekonstruksie 

van die numeriese model. Dit vertoon spesifiek by ‘n tempo van verhooging van 3,0 m/jaar en 6,0 m/jaar 

deur gebruik te maak van hidrouliese gradiënte verteenwoordigend is van sub-hidrostatiese 

porieëddruktoestande. Dit word weerspieël deur die deurlopende verhoging in effektiewe beperkende druk 

wat veral hoër is as die ooreenstemmende porieëdruk. Swakker  dreineringstoestande is waargeneem in 

slikdam A as gevolg van die verskille tussen beperkendedruk en porieëdruk wat progressief afneem van 

punte 1 tot 4 (Figuur 6-14). 

 Vir RoR, van 3,0 m/jaar en 6,0 m/jaar met behulp van hidrouliese gradiënte verteenwoordiger van 

hidrostatiese porieëdruk toestande, word die volgende waargeneem: Die onderste gedeelte van die 

oorloopslik,  van punt 1 tot 3, toon 'n gedreineerd-agtige gedrag tydens die fase konstruksie van die 

numeriese model; punt 4 toon ongedreineerde-agtige gedrag. Dit word weerspieël deur die deurlopende 

styging in porieëdruk wat veral hoër is as hul ooreenstemmende behoudendedruk (Figuur 6-15). 

Die fasekonstruksie van n numeriese model wat ten volle gekoppel is aan “transient” FEM-ontledings, is 'n 

waardevolle hulpmiddel om die porieëdrukverspreiding, dreineringstoestande en-ligging van die watertafelvlak 

binne 'n slikdam te verstaan. 
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 : Introduction 

Major mining operations have increased their production by an order of magnitude every 30 years, for the past 

120 years (Robertson, 2012).  This has resulted in a significant rise in tailings production over time, which in 

turn has led to a significant increase in volume, area and height of tailings dams.  Robertson (2012) referred 

to these structures as “giants of the landscape” that must remain stable long after monitoring and maintenance 

have ceased.  The largest tailings dams are by volume the largest manmade structures ever created 

(Morgenstern and Kupper 1988; Aubertin and Chapuis 1991).  In the event of a breach, a large volume of 

tailings could potentially undergo flow liquefaction causing serious damage to downstream environments, 

infrastructure and populations (WISE, 2018). 

Tailings are residual materials that is the by-product of mineral extraction from mined ores.  In southern Africa, 

they usually are non-cohesive, sandy silt to silt-sized particles that show complex behaviour depending on the 

pore pressure regime to which they are exposed (Martin, 1999).  Tailings are usually pumped in the form of a 

slurry via a delivery pipeline to the tailings dam.  They are hydraulically deposited via several methods, namely: 

subaerial discharge (with spigots and hydrocyclones), subaqueous discharge (slurry is injected below the 

water surface), thickened discharge (slurry with low water content) and open-end discharge behind a 

mechanically formed containment wall (McPhail and Wagner, 1989; Jewell, 1998).  Tailings dams constructed 

by mechanical means involve the construction of containment walls using imported materials (McPhail and 

Wagner, 1989).  Tailings dams are generally constructed using the upstream, downstream or centreline 

methods that involve staged construction over the operational life of the facility with compacted in-situ material, 

tailings and/or waste rock (Vick, 1990).   

Tailings dams constructed using the upstream method require low volumes of mechanically placed fill material 

for initial starter wall construction.  Subsequently, hydraulic deposition is used to raise the tailings dam in the 

upstream slope direction.  This leads to the upstream construction method being the most economical and as 

a result the most adopted in the mining industry (Vick, 1983; Vick, 1990; Martin and McRoberts, 1999; 

WISE, 2004; Saad and Mitri, 2010).  However, whilst this method is economically favourable, it involves several 

dam stability related risks associated with high Rates of Rise (RoR), rapid rise in phreatic surface, hydraulic 

fracturing and internal erosion (piping), static and seismic liquefaction as well as excessive settlements and 

horizontal deformations resulting from foundation instability (WISE, 2004).  It should be noted that these risks 

need to be assessed and continuously monitored from the design stage right through to post-closure of the 

facility. 

 Problem Definition 

Due to the sizeable dimensions (area, height and storage volume) of these so-called “giants of the landscape”, 

in cases of failure, tailings dams represent high-risk not only to the mining operations but also to surrounding 

communities and the environment.  The recent catastrophic failures of Mount Polley (Canada), Fundão (Brazil) 

and Brumadinho (Brazil) Tailings Storage Facilities (TSF’s) between 2014 and 2019, due to static liquefaction 

caused by the loss of containment of mine tailings, have placed the worldwide mining industry under even 

greater pressure to ensure that risks associated with TSF’s in their global portfolios are assessed according 

to industry best practice and sound engineering frameworks.   
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Internationally detailed assessments of the in-situ state of tailings and staged construction are common in 

design and construction stages as well as post-construction monitoring of these facilities.  As mentioned above, 

recent failures of TSF’s globally have prompted mining companies to review their TSF risk evaluation approach 

and design standards in terms of their current and future assets in their portfolios.  Therefore, the need for 

more specialised studies is likely to gather pace and may possibly become a more frequent requirement in 

South African TSF design, operation and monitoring studies.   

 Scope and Objectives 

Taking cognisance of the complexity surrounding numerical assessments of TSF’s, research covers an array 

of multifaceted aspects such as material (tailings) behaviour, in-situ and laboratory testing and numerical 

simulations. 

The main objectives of the research presented in this thesis are: 

 To review available information with focus placed on studies related to in-situ state and static liquefaction 

potential of tailings, static liquefaction failures, hydromechanical behaviour of tailings during staged 

construction as well as tailings dam monitoring and surveillance;  

 To determine the static liquefaction potential of a tailings dam by characterising its in-situ state using in-

situ and laboratory test data available for the tailings dam; 

 To perform a staged construction of a tailings dam under static loading conditions by using an appropriate 

soil constitutive model. 

 Approach 

In order to accomplish the above-mentioned objectives, the following approach was adopted: 

 A literature review was conducted on in-situ state and static liquefaction potential of tailings, static 

liquefaction failures, hydromechanical behaviour of tailings during staged construction as well as tailings 

dam monitoring and surveillance; 

 The data from the literature review was used to highlight the presence/absence of published tailings dam 

static liquefaction and staged construction studies in South Africa; 

 In-situ state parameters (Ψ) were determined for platinum tailings using the methodology proposed by 

Shuttle and Jefferies (2016) that focuses on silt-like materials; 

 Contractive and dilative behaviour of tailings (based on Ψ) were used to infer layering (material 

boundaries) within the tailings dam; 

 A commercial Finite Element Modelling (FEM) package was selected as a numerical tool for modelling 

staged construction of the tailings dam.  The software was used to generate a 2-D FEM model that involves 

defining type of materials and associated input parameters, phreatic surface and boundary conditions.  

Also, the software was used to calibrate the selected soil constitutive model with drained and undrained 

triaxial laboratory test data. 
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 Limitations of the Study 

The limitations of this thesis are: 

 Apparent biases/uncertainties regarding the triaxial testing performed in a commercial laboratory, seem to 

have influenced the results.  The author balanced these various sources of uncertainty to produce a 

reasonable and credible set of calibration parameters presented in this study. 

 The study is limited to aspects specifically related to determining the in-situ state of the platinum tailings 

and staged construction of the TSF.  The CPTu results used in determining the tailings in-situ state, were 

limited to tailings beneath the TSF slopes.  This is primarily due to safety and access constraints 

associated with probing within the TSF basin.  The purpose of the staged construction was not to perform 

a static trigger analyses that goes beyond the scope of this study. 

 Routine slope stability analyses and associated factors of safety were considered in this study. 

 Thesis Structure 

This thesis consists of the following chapters: 

Chapter 1 outlines TSF’s in mining operations.  The background, problem definition, scope and objectives of 

the thesis are described. 

Chapter 2 presents a literature review focussed on studies related to a Critical State Soil Mechanics (CSSM) 

framework to characterise the in-situ state and static liquefaction potential of tailings, static liquefaction failures, 

hydromechanical behaviour of tailings during staged construction as well as tailings dam monitoring and 

surveillance. 

Chapter 3 presents an overview of the tailings dam considered in this study as well as a summary of the in-

situ and laboratory test data that will be used in this thesis. 

Chapter 4 presents the analyses performed to estimate the state parameter on tailings following Shuttle and 

Jefferies (2016) methodology, which combines the use of CPTu data and numerical element tests using the 

NorSand constitutive model. 

Chapter 5 presents the calibration process and the performance in element tests of the selected soil 

constitutive model used for numerically modelling the staged construction of the tailings dam.  

Chapter 6 presents an assessment of the staged construction using numerical modelling techniques. 

Chapter 7 presents the conclusions of the dissertation and recommendations for future research.  The 

proceeding sections include the list of the references and appendices. 
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 : Literature Review 

The chapter starts with a review of tailings dam failures related to static liquefaction.  The second part of the 

chapter provides an overview of theoretical considerations for liquefaction of tailings.  The third part reviews 

the characterisation of tailings behaviour within the CSSM framework.  The fourth part provides a brief overview 

of staged construction and a review of some recent staged construction studies related to tailings dams.  The 

fifth part provides a brief overview of the mechanical and dynamic properties of tailings and how they are 

determined.  The final two parts of the chapter respectively review the tailings dam monitoring and surveillance 

practices as well as conclusions of the literature review. 

It was initially planned to primarily focus the literature review on South African tailing dam studies.  However, 

upon investigation and review of the available literature, South African related studies with regards to the topics 

mentioned above, were limited.  Therefore, the literature review was expanded to include international tailings 

dam studies of which extensive literature is available.  

 Tailings Dam Failures 

The improvement of mineral extraction technology has allowed reserves with even lower grade ore to be 

exploited, resulting in significant increases in tailing dams volumes which is more than likely to be the cause 

of more frequent, severe and very serious tailings dam failures (Davies 2002; Psarropoulos and 

Tsompanakis, 2008; Rico et al., 2008; Azam and Li, 2010; Ferdosi et al., 2015a, 2015b; Bowker and 

Chambers, 2015; Wanderley et al., 2016).  The US National Committee on Large Dams (1994) defines "failure" 

as "any breach in the embankment leading to a release of the impounded tailings".  Of concern is the rate of 

failure of tailings dams being notably greater than that of water retention dams even though improvements in 

design, construction and monitoring methods of tailings dams are continuously being improved (ICOLD 2001; 

Aubertin et al., 2002a, 2002b; Davies, 2002; Hardy and Engels, 2007; Azam and Li, 2010). 

There are several sources that aim to summarise the worldwide tailings dam failure incidents in databases that 

are continuously updated (Davies et al., 2000).  The most popular database referenced in the literature seems 

to be the WISE Internet site (https://www.wise-uranium.org/mdaf.html).  An example of the information that the 

WISE database captures is presented in Table 2-1. 

Table 2-1: Example of Information Captured in WISE Database. 

Date Location 
Parent 

Company 

Ore 

Type 

Type of 

Incident 
Release Impacts 

10 July 

2019 

Cobriza mine, San Pedro de Coris 

district, Churcampa province, 

Huancavelica Region, Peru 

Doe Run 

Perú 

S.R.L 

Copper 
Tailings 

dam failure 

67 488 m3 

of tailings 

Tailings covered an area of 

41 574 m2 and reached 

Mantaro River 

A review and evaluation of these tailings dam failure databases in terms of their geographical location, 

mechanisms of failure, relation to mining activity and dam construction methods have been conducted by 

several authors (USEPA, 1997; Davies, et al., 2002; Blight and Fourie, 2003; Rico, et al., 2008; Rodriguez et 

al., 2009) with the causes (triggers) and trends noted as follows: 
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 Triggers: 

o Overtopping caused by a loss of freeboard;   

o Excess pore water pressure generation due to high RoR or rapid rise in phreatic surface, resulting 

in static liquefaction;   

o Excess pore water pressure generation due to cyclic loading, resulting in seismic liquefaction; 

o Foundation, seepage and structural issues, which include foundation shear or piping failure, piping 

through the dam wall, erosion of tailings dam toe and inward collapse of a penstock tower or outfall 

pipeline. 

 Trends: 

o Operational tailings dams are more susceptible to failure;  

o In non-operational tailings dams, overtopping is the primary trigger in nearly half the failures; 

o Upstream tailings dams present most of the failures and are responsible for all major static 

liquefaction failures; 

o Slope instability accounts for two-thirds of all upstream tailings dam failures; 

o The main failure modes for non-upstream tailings dams are related to foundation, seepage and 

structural issues; 

o Earthquakes have little effect on most non-upstream tailings dams. 

Tailings dams constructed using the upstream, centreline or downstream methods typically comprise 

engineered starter walls or impoundment dykes to retain tailings and supernatant water.  They also 

occasionally retain stormwater during heavy rainfall events, where insufficient decanting of stormwater in the 

TSF basin may occur (for example due to a blocked penstock intake).  It should be noted that to minimise the 

cost of TSF construction, starter walls or impoundment dykes do not typically extend to the full height of the 

tailings dam.  This results in the TSF being constructed solely from tailings above the height of the starter walls 

or impoundment dykes, with the coarser fraction of the tailings stream being used to form an outer wedge that 

acts to retain the finer fraction of the tailings stream deposited in the TSF basin.  If the outer impoundment 

(comprised of engineered fill or tailings) is breached there is a high possibility that impounded tailings within 

the TSF will be released.   

Failures of this nature are typically associated with tailings dams constructed using the upstream method, as 

low volumes of engineered fill material are required for initial starter wall construction, with the remainder of 

the TSF constructed using tailings.  This upstream method of tailings dam construction is the most economical 

resulting in them being the most adopted in the mining industry (Vick, 1983; Vick, 1990; 

Martin and McRoberts, 1999; WISE, 2004; Saad and Mitri, 2010).  However, tailings are typically poorly 

consolidated (Mittal and Morgenstern, 1975; Martin and McRoberts 1999), which creates an environment for 

large excess pore pressures and low shear strengths to develop, thereby increasing the risk of static or seismic 

liquefaction to occur. 

It should be noted that liquefaction is a phenomenon most often linked with seismicity.  However, more static 

liquefaction related failures have occurred in tailings dams than seismic liquefaction related failures (Davies, 

et al., 2002; da Fonseca, 2012; Been, 2016).  It should be borne in mind that several static liquefaction failures 

are amongst the most destructive tailings dam failures in history.  In order to contextualise and visualise the 
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impacts of these failures, several case histories are outlined in Table 2-2 and graphically shown in Figure 2-1 

and Figure 2-2. 

Table 2-2: Cases and Causes of Static Liquefaction Failures. 

Case Reason for Failure 

Aberfan (1968, UK) 
Triggered by excess pore pressures from heavy rainfall.  Resulted in the death of 

144 people; tailings travelled 600 m downstream. 

Bafokeng (1974, South Africa) 
Dam wall breach from concentrated seepage and piping through cracks.  12 deaths 

due to flooding of a mine shaft with tailings; tailings flowed 45 km downstream. 

Merriespruit (1994, South Africa) 
Dam wall breach following heavy rainfall; 17 deaths with widespread damage to 

housing; tailings travelled 4 km downstream. 

Aznalcollar (1998, Spain) Foundation failure causing loss of containment and contamination of farmland. 

Kingston (2008, USA) Loss of containment resulting in substantial environmental damage. 

Mt Polley (2014, Canada) Foundation failure causing loss of containment and environmental damage. 

Fundao (2015, Brazil) 
Static liquefaction flow slide caused by insufficient drainage, which resulted in the 

death of at least 17 people and with billions of dollars in damage. 

Brumadinho (2019, Brazil) 

Investigations still underway to determine cause but initial reports suggest dam wall 

breach due to foundation failure, resulting in flow liquefaction of tailings.  Resulted 

in the death of at least 300 people and with billions of dollars in damage. 

In summary, tailings dams, especially those constructed using the upstream construction method, are 

extremely susceptible to failure as a result of static liquefaction as well as seismic liquefaction, which can result 

from a single or a combination of triggers. 

Furthermore, a noteworthy lesson from the case histories presented in Table 2-2, together with the findings of 

Poulsen, et al. (2014), is the importance of analysing the stability of both tailings and founding material, 

especially sites where cohesive soils are present.  From the few case histories presented it can be seen that 

the onset of tailings liquefaction was triggered by loss of containment due to instability of the outer tailings dam 

wall.  

Stellenbosch University https://scholar.sun.ac.za



7 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-1: (a) Kingston TSF Failure (b) Mount Polley TSF Failure (c) Fundao TSF Failure (d) Brumadinho TSF Failure (Skytruth, 2016; TheStar, 2006; The Guardian, 2019; Wikipedia, 2019) 
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(a) 

 

(b) 

 

(c) 

Figure 2-2: (a) Merriespruit TSF Failure Showing the Path of the Destructive Mudflow That Occurred (b) Bafokeng TSF Failure (c) Two of the Three Failures That Occurred at the Saaiplaas TSF (Boulanger and Duncan, n.d.; Fourie, et al., 2001). 
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 Theoretical Considerations for Liquefaction of Tailings 

Liquefaction is associated with a reduction in shear strength of saturated, cohesionless soil/tailings material, 

that experiences significant deformation under load (James, et al., 2003).  Most tailings dam failures are 

attributed to increases in pore water pressure and resulting liquefaction of retained tailings due to loss of 

containment (Dobry et al., 1967; Ishihara, 1984; Finn, 1980; Finn, 1996; ICOLD, 2001; Aubertin et al., 2002a; 

Azam and Li 2010; GEER, 2010; Chambers and Higman 2011; WISE, 2014). 

Soils that display sand-like behaviour, i.e. shear strength being largely governed by the friction angle of particle 

to particle contacts, can be more prone to liquefaction (Torres-Cruz, 2011).  It should be noted that this sort of 

behaviour is characteristic of tailings, as the finer fraction in tailings is typically cohesionless (Ishihara, 1993). 

The fundamental concept of liquefaction is to understand whether a soil will display contractive (strain-

softening) or dilative (strain-hardening) behaviour when sheared.  According to Casagrande (1936), a low-

density loose sand will contract and a high-density dense sand will dilate when sheared until reaching the 

same critical void ratio (ec).  If the void ratio (e) is greater than ec the sand will contract and if the e is less than 

ec the sand will dilate.  In other words, the critical void ratio is basically the density of material that will mitigate 

against the rapid change from drained (no excess pore pressure) to undrained (generation of excess pore 

pressure) loading conditions resulting in static liquefaction.  The relationship between critical void ratio and 

mean effective stress (p’) is denoted as the Critical State Locus (CSL) (Been, 2016).  The CSL can usually be 

treated as semi-logarithmic for all soils and is expressed mathematically using Equation 1. 

 Γ 	 . ln ′  (1) 

where λln is the slope of the CSL and Г is the value of ec when p’ = 1 kPa.  Caution should be taken with cited 

values of λ, as both log base 10 (λ10) and natural logarithms (λln) are used.  λln is more suitable for constitutive 

modelling, whereas λ10 is derived from plotting laboratory test data.  Distinguishing between λln and λ10 can be 

accomplished by using the notation 2.303 .  

Figure 2-3 shows the principle of flow liquefaction susceptibility based on state parameter concept.  Soils that 

plot above their respective CSL will display contractive behaviour that will be susceptible to liquefaction, while 

soils that plot below their respective CSL are dilative and thus not susceptible to liquefaction.  Furthermore, a 

soil plotting slightly (Ψ ≤ 0.05) above the CSL will initially contract at smaller strains and will then dilate at larger 

strains (Been, 2016).  

Casagrande also observed that a soil will undergo larger contraction or dilation with increasing deviation of a 

soils current void ratio above or below the CSL, respectively.  Consequently, Been and Jefferies (1985) 

introduced the state parameter (ψ) to characterise a soils contractive and or dilative behaviour.  The ψ is a 

measure of the e relative to ec at the same p’ (Equation 2). 

 	 (2) 

According to Been and Jefferies (1985), soils with a ψ > 0 are contractive and when ψ < 0 are dilative. 
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Figure 2-3: CSL and the Meaning of Parameters Г, λln, and ψ (Torres-Cruz, 2011). 

Although Casagrande (1936), as well as Been and Jefferies (1985) studies, were conducted on sand, the 

same principles apply to cohesionless sandy silts, silts and silt-like tailings.  This was shown by Davies, et al. 

(2002) that concisely describes the concept of liquefaction with emphasis placed on static liquefaction by 

reviewing several tailings dam static liquefaction case histories and their associated failure mechanisms.  An 

important concept from this paper is that tailings could possibly have one of four characteristics upon shear 

loading: 

 Brittle strain softening (complete liquefaction with the potential for unlimited deformation) – contractive 

behaviour upon shear up to the steady-state condition; 

 Limited strain softening (limited liquefaction with limited deformation) – some initial contraction followed by 

dilation of tailings; 

 Ductile behaviour with undrained shearing but no significant degree of strain-softening (no liquefaction); 

 Strain hardening (no appreciable liquefaction or deformation) – only dilation. 

Figure 2-4 illustrates the strain-softening response to both monotonic and cyclic shear loading conditions. 
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Figure 2-4: Ideal Behaviour of Loose, Saturated Cohesionless Tailings Under Monotonic and Cyclic Loading 

(Davies, et al., 2002) 

According to Cruz (2011), in addition to the presence of pore water, for brittle strain-softening flow liquefaction 

failures to occur in tailings dams three conditions need to exist:  

 Tailings must display contractive behaviour, which will allow for excess pore water pressures to develop 

and as a result cause a significant reduction in effective stress and shear strength;  

 A triggering condition (as discussed in Section 2.1) that invokes a big enough shearing stress for 

contraction to occur (Poulos et al., 1985; Ishihara et al., 1990; Olson and Stark 2003; Blight, 2010);   

 Post-liquefaction, a load inducing shear stress greater than the residual shear strength of the tailings must 

exist.  If this situation develops for tailings dams located on sloping ground, large flow failures can occur 

(Ishihara et al. 1990; Olson 2001).   

Based on the information discussed in this section it becomes apparent that understanding the behaviour and 

state of tailings materials are of vital importance to assess/predict liquefaction potential of tailings dams.  The 

characterisation of tailings dam behaviour and the framework used to accomplish this is described in further 

detail in Section 2.3. 
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 Characterisation of Tailings Behaviour 

Tailings are typically transported to a tailings dam as a slurry that comprises coarser (sands) and predominantly 

finer tailings (sandy silts and silts) that are either hydraulically segregated via spigoting or mechanically 

separated using hydrocyclones.  Figure 2-5 illustrates some examples of dominance of the silt fraction in 

tailings particle size distributions.  The coarser fractions settle near the discharge points while the finer silt 

fractions settle out along the beach and comprise a significant volume of tailings dams, which is typical of 

tailings dams in southern Africa (Martin, 1999; Shuttle and Cunning, 2007; Shuttle and Jeffries, 2016). 

 

Figure 2-5: Tailing Gradations Illustrating Dominance of Silt Fraction (Shuttle and Jefferies, 2016) 

This means that to effectively assess the geotechnical performance of such tailing’s dams, tailings need to be 

characterised in terms of silt behaviour.  However, this poses a challenge as almost all the understanding 

found in the literature relates to either the mechanical behaviour of sands or clays.  It should be noted that the 

reasons for this bias towards sand and clay behaviour is discussed in detail by Shuttle and Jeffries (2016); 

however, some main reasons are described.  For sands, CPTu calibration chamber studies have allowed 

development of mappings between void ratio, confining stress and penetration resistance.  Also, there is a 

considerable amount of engineering data for sands in the literature.  For clays, undisturbed samples can be 

tested using ‘element’ tests, such as triaxial compression or simple shear.  Clay behaviour can also be 

investigated by remoulding samples across a range of void ratios.  Furthermore, clays are agreeable to in-situ 

tests that use few assumptions and are readily compared to laboratory data. 

The evaluation of tailings behaviour during construction and operational conditions is of vital importance to 

validate design assumptions, with attention paid to upstream and thickened tailings dams comprised of mainly 
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silts (Been, 2016; Shuttle and Jeffries, 2016).  Silts and sandy silts can be sampled using a thin-wall unswaged 

(uniform diameter) Shelby tube.  However, sample transportation and laboratory preparation results in 

considerable densification (Been, 2016; Shuttle and Jeffries, 2016).  This is apparent when comparing the as-

recovered void ratio and the as-tested void ratios (Figure 2-6) for natural silts (Mohajeri and Ghafghazi, 2012).  

Sample densification will result in non-conservative results because the sample will be in stronger state when 

tested in the laboratory than in-situ. 

 

Figure 2-6: Measured Silt Densification from In-Situ to As-Tested Conditions (Shuttle and Jefferies, 2016). 

To address this issue Been (2016) as well as Shuttle and Jeffries (2016), proposed two alternative methods 

that can be used for characterising tailings in terms of silt behaviour: 

 Correct strengths measured in the laboratory for the measured densification from ‘as-recovered’ (in-situ) 

to ‘as-tested’ void ratios; 

 Adopting a similar approach to sand-like materials for silt tailings, by measuring the in-situ Ψ to calculate 

in-situ strengths from measured soil properties by using reconstituted samples. 

It should be noted that this thesis addresses the second approach and proceeding sections describe the 

framework in which the in-situ state of silt tailings is characterised.  Briefly, the framework implements Critical 

State Soil Mechanics (CSSM) to characterise how silt behaviour changes with void ratio by using CPTu data 

and numerical element tests in conjunction with the NorSand soil constitutive model (Been, 2016). 
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2.3.1. Critical State Soil Mechanics 

Soils occur over a range of void ratios with the in-situ void ratio (or density) having a major effect on soils 

constitutive behaviour.  A good soil constitutive model must effectively capture changes in soil behaviour (most 

notably strength and stiffness) as a result of changes in density.  This density dependence is incorporated in 

CSSM with the Cam Clay (Schofield and Wroth, 1968) and Modified Cam Clay (Roscoe and Burland, 1968) 

models.  These are possibly the most common soil constitutive models in commercial software packages.  It 

should be noted that two schools of thought exist with regards to Cam Clay.  The one school sees Cam Clay 

as one of the most fundamental contributions to soil mechanics in the 20th century while the other school sees 

it as being completely unsuitable to capture real soil behaviour (Been, 2016).   

An axiom of CSSM is the concept of critical void ratio, CSL and state parameter that have been described in 

Section 2.2, which have led to the development of state-based models.  Important features of state-based 

models are: (a) the yield surface; (b) the ‘flow rule’ giving relative plastic strain increments which invokes stress 

dilatancy and (c) the hardening law which controls how the yield surface responds to plastic strain (Shuttle and 

Jefferies, 2016).   

The trends in sand and silt behaviour described by Been and Jefferies (1985) as well as Jefferies and 

Been (2015) showed that yield surfaces (the limits of elastic behaviour) evolve to the CSL with shear strain 

(Figure 2-7).  Based on these findings, two types of constitutive models were developed namely the 

Drucker et al. (1957) framework and Manzari and Dafalias, (1997) bounding surface plasticity model.  

Currently, there are several good soil constitutive models that have common features such as a CSL; a critical 

friction ratio (or angle); dilation and strength controlled by Ψ; plastic hardening that partly scales with the slope 

of the CSL and isotropic elasticity with stress-level dependence (Been, 2016).  These soil constitutive models 

are very similar with small differences between them and it typically depends on user preference as to which 

is implemented. 

 

Figure 2-7: Instability Limit in Relation to Limiting Stress Ratio from Drained Tests on Dense Samples (Been, 2016). 
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Additionally, from Figure 2-7 it was found that best-fit trend lines for drained and undrained test data were 

parallel and offset by ΔΨ = 0.06.  Taking this into consideration, Been (2016) described an instability principle 

that states if Ψ < -0.06 the material will display dilative or strain-hardening behaviour.  If Ψ > -0.06 the material 

will display contractive or strain-softening behaviour. 

As described above, CSSM models such as Cam Clay and Modified Cam Clay can capture the effect of void 

ratio on soil behaviour to a certain degree.  However, these models cannot accurately capture the dilative 

behaviour of dense soils (which form a major part of engineered construction).  Also, these original CSSM 

models do not accurately predict the liquefaction behaviour of loose sands (Shuttle and Jefferies, 2010).  

Furthermore, a recurring assessment of CSSM is that the CSL displays non-uniqueness and changes with 

stress path to reach CSL (Been, 2016).  This is where the capabilities of NorSand make up for the deficiencies 

of other soil constitutive models in terms of effectively capturing the constitutive behaviour of soils.  NorSand 

will be described in greater detail in Section 2.3.2. 

It should be noted that the book written by Jefferies and Been (2016) is an excellent reference that combines 

substantial amounts of data on soil liquefaction and CSSM and contextualises this topic within an integrated 

and simple framework that can also be applied to tailings.  This book cuts through much of the empiricism in 

standard liquefaction procedures enabling civil and geotechnical engineers to gain a solid understanding of 

concepts of CSSM and liquefaction. 

2.3.2. NorSand Constitutive Model 

The aim of selecting an appropriate constitutive soil model to characterise sand and silt is to capture 

behavioural changes over a spectrum of void ratios and confining stress levels.  There are several state 

parameter-based models that can do this.  NorSand (Jefferies 1993; Jefferies and Shuttle 2002, 2005) was 

the original CSSM (state parameter-based) model developed for sands.  Although the model name contains 

‘sand’, this was done to distinguish NorSand from Cam Clay.  In fact, NorSand is applicable to any soil (such 

as clayey silt, silt and sand) in which particle interactions are controlled by frictional forces rather than bonds 

(Shuttle and Jefferies, 2010).  It should be noted that when modelling and assigning material parameters for 

silt, typical values for sand may not be applicable (Shuttle and Jefferies, 2010). 

NorSand can be applied to several applications and is typically used for conditions that require accurate 

representation of volume changes as a result of large strain, confinement, or excess pore pressure generation.  

So, naturally, the use of NorSand would gravitate towards engineering scenarios focussed on improving soil 

density, static and cyclic liquefaction as well as soil-structure interaction  (Shuttle and Jefferies, 2010). 

An advantage of NorSand is that it can be implemented as easily and effortlessly as the basic Mohr-Coulomb 

constitutive model because similarly, NorSand requires a few input parameters that can easily be determined 

(Shuttle and Jefferies, 2010).   

2.3.2.1. Model Description 

NorSand is a critical state model and is based on four simple features that build upon the CSSM framework 

discussed in Section 2.3.1.  Shuttle and Cunning  (2007) describe these features as follows:  
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 NorSand can recognise an infinity of normal compression loci (NCL) / yield surfaces in	 	 ln  space.  

The infinity of NCL allow ψ and overconsolidation ratio (R) to characterise the state of a soil.  The ψ is a 

measure of the location of an individual NCL in 	 ln 	space and R represents the proximity of a state 

point to its yield surface (Figure 2-8); 

 The ψ tends to zero as shear strain accumulates i.e. the yield surface intersects the CSL; 

 Dilation that occurs at peak strength is linearly related to ψ; 

 Softening (shrinking) of the yield surface will always occur with principal stress rotation and loading beyond 

the internal cap and principal stress rotation. 

 

Figure 2-8: Definition of Ψ and R (Jefferies and Shuttle 2002). 

NorSand is like other soil plasticity models in that it has a yield surface; a flow rule and a hardening law.  

NorSand generates yield surfaces (Figure 2-9) that can accurately capture the full range of soil behaviour i.e. 

dilation and contraction of dense to very loose soils respectively (Shuttle and Jefferies, 2016), whilst displaying 

a unique CSL that effectively captures the range of soil behaviour used to assert non uniqueness (Jefferies 

and Shuttle, 2005). 

NorSand differs from standard critical state models by two features.  Firstly, an internal cap that changes with 

the changing state parameter allows NorSand to predict accurate dilatancy.  Secondly, the yield surface 

diverges from the critical state (i.e. does not typically intersect).  This feature forms the basis of the hardening 
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law, which functions to shift the yield surface towards the critical state under plastic shear strain.  In doing so, 

it directly captures the core of critical state principles (Shuttle and Cunning, 2007).  Strain hardening or 

softening of the yield surface depends on the current state parameter and on the direction of loading. 

 

Figure 2-9: NorSand Yield Surfaces and Limiting Stress Ratios. (a) Very Loose Soil; (b) Very Dense Soil (Jefferies and 

Shuttle 2005). 
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2.3.2.2. Properties of NorSand 

The soil properties used in NorSand are for the most part not exclusive to NorSand (i.e. they can be 

implemented in other CSSM constitutive models) and capture the fundamental behaviour of any particulate 

material (Been, 2016).  Using a semi-log CSL there are five soil properties (Γ, λ10, M, N and χ) that can be 

determined by plotting isotropically consolidated drained (CIDC) and undrained triaxial (CIUC) compression 

tests, with the equations of NorSand facilitating the generalisation to three-dimensional (3D) stress conditions 

(Jefferies and Shuttle, 2002; Been, 2016).  The properties used in NorSand are presented in Table 2-3 below. 

Table 2-3: Summary of NorSand Soil Properties (Shuttle and Jefferies, 2010). 

Model Property Description 

CSL 

Γ Void ratio at critical state, for a p0’ of 1 kPa, assuming a linear CSL in the semi-log plot. 

λ10 Intrinsic soil compressibility representing the slope of the CSL in  −log ′ space. 

Mtc Intrinsic soil friction and defines the CSL in ′−  space (*) 

Plasticity 

N Defines the stress-dilatancy rule: 	 / 1  (**) 

χ Defines the lower bound for dilation based on the state parameter:  

H0 Defines plastic hardening 

HΨ Incorporates the effect of  on the plastic hardening modulus: ∙  

Elasticity 

Ir Rigidity Index 

b Exponent for the pressure dependence of the shear stiffness 

ν Poisson’s ratio 

(*) ′ ′ ′ ′ /3; 	 	 	   (**) / ′  	 /  

The soil properties Γ, λ10, M, N, χ (all associated with soil behaviour) are familiar and simply defined (Shuttle 

and Jeffries, 2016).  These properties are independent of any constitutive model (i.e. no constitutive model is 

used) and can be determined from plotting triaxial test data in several ways (Been, 2016; Shuttle and 

Jeffries, 2016). 

Once more, undisturbed samples of silt do not accurately capture in-situ behaviour due to densification of the 

sample (Figure 2-6), therefore reconstituted samples can be used to determine soil properties of silts.  

Representative samples need to be retrieved from different material zones determined from CPTu and particle 

size distributions.  Table 2-4 provides a schedule of laboratory tests that can be used to characterise the static 

and cyclic behaviour of tailings and indicates which tests provide which properties. 

Table 2-4: Recommended Laboratory Tests for Tailings (Been, 2016). 

Test Type No of Tests Purpose 

Particle Size Distribution 20 Define heterogeneity of material, identify representative materials. 

Specific Gravity 2 Basic property to calculate void ratio. 

Max. and Min. Density 2 Not part of CSL framework, helpful for sample preparation. 

Triaxial CIUC 5 – 8 Define CSL, undrained strength, brittleness (Γ, λ, M). 

Triaxial CIDC 5 – 8 
Define CSL, stress-dilatancy, state-dilatancy (M, N, χ) as well as basic 

stress-strain data for calibrating constitutive model. 

Oedometer/Rowe Cell 3 – 5 Consolidation behaviour (Cc, cv) 

Bender Element Tests 2 set of 8 
Measure Gmax as a function of stress level at two initial void ratios. 

Measure consolidation curves. 
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Test Type No of Tests Purpose 

Cyclic Simple Shear Tests 8 
Two sets of four tests. Each set at same ψ. Include post-liquefaction 

settlement if possible. 

Resonant column testing 2 Optional, but avoids reliance on published curves for G and Dr 

The oedometer or Rowe Cell tests are conducted to gain an understanding of the tailing’s consolidation 

behaviour.  Understanding this behaviour is important because consolidation affects the storage capacity of 

the TSF and because life of mine is typically 25 years, it is expected that the strength of the tailings will increase 

with time (Been, 2016).   

It is also important to determine the small strain shear stiffness (Gmax) which allows for more precise 

assessments of Ψ from CPTu and seismic response (Been, 2016).  The use of triaxial apparatus with bender 

elements is preferred over the in-situ measurement of Gmax because the relationship between Gmax, void ratio 

and stress level is better understood in the laboratory (Been, 2016).  It also allows for further understanding of 

the consolidation behaviour of the tailings to be determined. 

There are several useful constitutive soil models that can capture a soil’s static strength and stiffness behaviour 

with the parameters determined from the standard laboratory tests.  However, to assess strain-softening 

behaviour triggered by dynamic loading, cyclic simple shear tests are required for seismic slope stability and 

ground response work on tailings dams (Been, 2016). 

The method to accurately determine void ratio involves closing drainage and pore pressure measurement lines 

immediately after the shearing phase.  The triaxial cell is then depressurised and placed in a freezer for a 

couple of hours which is enough to remove the sample without water loss.  The moisture content of the whole 

sample is then converted to void ratio using the measured Gmax (Been, 2016). 

There are a few ways to determine plastic modulus with each constitutive model having its own approach 

(Been, 2016; Shuttle and Jeffries, 2016).  The approach used by Been (2016) as well as Shuttle and 

Jeffries (2016) to determine plastic shear modulus from triaxial testing is Iterative Forward Modelling (IFM), 

which will be discussed in the proceeding section. 

2.3.2.3. Calibration of NorSand 

Procedures for calibration of sand properties in NorSand are outlined in Shuttle and Jefferies (2010) with a 

more detailed explanation presented in Jefferies and Been (2016).  Calibration of silt properties requires more 

effort, as current laboratory procedures are incapable of reconstituting silt samples that are representative of 

in-situ void ratios (Shuttle and Jefferies, 2016). 

IFM is a procedure where all properties are estimated (initial void ratio and test confining stress are known) 

and the stress-strain behaviour calculated.  The modelled behaviour is compared to the laboratory test 

behaviour.  The properties are adjusted and the procedure is repeated (iterated) until best-fit curves of 

modelled behaviour to laboratory test behaviour are obtained (Figure 2-10).  IFM requires a criterion covering 

what is an acceptable fit of the model to laboratory data because not all parts of a stress-strain curve are of 

equal importance.  A good fit of the modelled and laboratory test behaviour to the volumetric strain or the stress 

path for undrained tests is important (Shuttle and Jefferies, 2016).  According to Shuttle and Jefferies (2016) 
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engineering judgement to determine an acceptable fit of modelled to laboratory data is preferred over statistical 

best-fit criteria.  

To efficiently conduct IFM, the number of iterated properties should be reduced by focussing on properties that 

have a notable effect on the modelled behaviour (Shuttle and Jefferies, 2016).  Properties Γ, λ and M should 

be determined directly from test data with the values of H, χ and N determined by iteration (Shuttle and 

Jefferies, 2016).  IFM allows for optimisation of soil properties and the use of the same property values across 

the whole data set.  This is because properties do not change with void ratio or confining stress when using 

sound modelling approaches, such as IFM (Shuttle and Jefferies, 2016).  According to 

Shuttle and Jefferies (2016), IFM shows how well a selected constitutive model (in this case NorSand) 

replicates the whole data set (Figure 2-10). 

 

Figure 2-10: Comparison of NorSand With Reconstituted Silt Behaviour In (a) Drained and (b) Undrained Triaxial 

Compression (Shuttle and Jefferies, 2016). 

2.3.3. Measuring In-Situ State of Tailings 

There are several parameters that can be used to characterise the in-situ state of tailings, such as void ratio; 

relative density; dilatancy index and gamma-ray absorption from downhole logging, to name a few.  However, 

it must be recognised that determining these parameters requires a great deal of technical input and precise 
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calibration to in-situ conditions (Been, 2016).  Instead, Been (2016) recommends that the in-situ ψ should be 

measured using a CPTu, for the following reasons: 

 Undisturbed samples of tailings are difficult to retrieve.  However, the CPTu allows for a continuous 

accurate profile of a tailings dam to be determined;  

 The ψ is the major control on contractive and dilative behaviour of soils and this applies to the CPTu 

resistance, friction angle and cyclic stress;  

 Even if void ratio or density could accurately be determined, there is still an issue with relating the void 

ratio to ψ and engineering behaviour because a soil will display a range of CSLs in-situ. 

Been (2016) highlights some important studies that have contributed to the interpretation of ψ from CPTu over 

the past thirty years.  These studies are summarised in Table 2-5. 

Table 2-5: Summary of Important Literature Related to Interpretation of ψ (Been, 2016). 

Literature Comment 

Been et al. (1987) 
Methods are applicable if good calibration chamber testing data is available. However, 

this rare. 

Plewes et al. (1992) 
Established a screening level procedure to determine the in-situ state of tailings, whereby 

λ is related to the CPTu friction ratio (F%). 

Shuttle and Jefferies (1998) Developed a basic method to determine in-situ ψ. 

Been (2016) 

Outlined a CSSM based procedure that can be applied irrespective of fines content.  

Similarly, the procedure requires in-situ CPTu and laboratory testing as well as calibrated 

spherical cavity expansion implemented in NorSand for assessing the in-situ state of silt 

tailings.  It also requires the characterisation of the static and seismic CSSM properties 

over a range of in-situ state parameters in terms of CSL and Cyclic Resistance Ratio 

(CRR), respectively. 

Shuttle and Cunning (2007) 

Developed a CSSM framework that combines in-situ CPTu and laboratory testing as well 

as calibrated spherical cavity expansion implemented in the NorSand constitutive model 

(i.e. a critical state soil model) for assessing the in-situ state of silt tailings.  It also 

identified the contractive/dilatant boundary for all soils, i.e. Ψ = - 0.05 (Figure 2-11) i.e. 

almost equal to the ΔΨ = 0.06 between drained and undrained behaviour (Figure 2-7). 

Shuttle and Jeffries (2016) 

Developed a procedure for determining silt state from CPTu and expands upon the 

Shuttle and Cunning (2007) framework.  It considers undrained CPTu soundings required 

for silts as well as scaling factors used in spherical cavity expansion. 

Robertson (2009, 2010, 

2012, 2016) 

Published several papers on what he considers to be best practice.  Robertson (2016) 

provided an updated soil behaviour type (SBTn) classification chart from using textural-

based descriptions, such as sand and clay, to using behaviour-based descriptions such 

as Clay-like-contractive or Clay-like-dilative (Figure 2-12).  
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Figure 2-11: Example of Soil Behaviour Identified by CPTu on Soil Classification Chart (Been, 2016). 

 

Figure 2-12: Updated SBTn Chart Showing Behaviour Based Descriptions (Robertson, 2016). 
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For sands, the relationship between ψ and the CPTu resistance was first determined from calibration chamber 

tests (Been, 2016).  Although sands are found in tailings, nearly all tailings dams will comprise silts and may 

be dominated by silts (Martin, 1999; Shuttle and Cunning, 2007; Shuttle and Jeffries, 2016).  However, no 

correctly executed calibration chamber investigations for the CPTu in silt exist (Been, 2016). 

According to Been (2016), CPTu in silts occur under undrained conditions that result in large excess pore 

pressures (Figure 2-13).  With respect to clays, undrained CPTu are assessed based on total stress by 

calibrating the undrained shear strength determined from the CPTu to undrained shear strength determined in 

the laboratory triaxial tests (Been, 2016).  Now the issue with silts arises when trying to calibrate CPTu derived 

undrained strength to a reference laboratory strength because sample densification (discussed above) results 

in non-conservative undrained shear strengths (Been, 2016). 

 

Figure 2-13: CPTu Profile in Massive Silt Tailings Deposit (Shuttle and Jefferies, 2016). 

Instead, certain CSSM models can compute the drained and undrained stress-strain behaviour of silts with 

Been (2016) suggesting that the Ψ must be the basis for characterising silts and predominantly silty soils.  

Subsequently, the basis for assessing CPTu in undrained conditions should be according to Equation 3 

(Been et al, 1988). 

 ln ⁄ ⁄  (3) 

where 1 1 with k, m being the soil-specific coefficients for undrained conditions.  

Shuttle and Cunning (2007) used Shuttle and Jefferies (1998) cavity expansion method to determine kʹ, mʹ for 

undrained conditions.  This suggests that pore pressure should be measured at the u1 location because 

desaturation of the pore pressure sensor at the u2 location can occur in highly stratified or heavily 

overconsolidated soils from suction pressures generated in dilative soils (Peuchen et al., 2010).  If pore water 

pressure is measured at the u1 location, an equation developed by Peuchen et al., (2010) allows pore water 
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pressure at the u2 location to be calculated.  The locations on the CPTu where the pore pressure is measured 

are shown in Figure 2-14. 

 

Figure 2-14: Pore Pressure Measured at u1 and u2 Locations on a CPTu (Robertson, 2013). 

Typically, the piezometric regime of a tailings dam is governed by the degree to which tailings have 

consolidated and the drainage conditions (Been, 2016).  The degree of consolidation and the drainage 

conditions can be determined in-situ from a CPTu by conducting dissipation tests (usually at 1 m intervals) 

measuring the horizontal coefficient of consolidation (ch) and the current pore pressure (uo), respectively 

(Been, 2016). 

It should be noted that CPTu analyses can be augmented by using in-situ Gmax from Seismic Cone Penetration 

Tests (SCPT).  Ideally, the in-situ testing programme should include 1 SCPTu for every 5 CPTu scheduled.  

Furthermore, a Gmax profile is the basis for any earthquake ground response analysis (Been, 2016). 

Representative samples of both sand and silt-sized tailings were tested as part of the (Been, 2016) study.  The 

properties of CSL’s show an interesting relationship, with λ10 = 0.115 for sand tailings (with 22% fines) and 

λ10 = 0.086 for silty tailings (51% fines).  The λ10 (slope of CSL) can be directly compared with the compression 

index (Cc) used with clays (Been, 2016).  On this basis, it is shown that silt tailings with a higher fines content 

are less compressible than the sand tailings.  This is a result of additional fines occupying voids that will, in 

turn, reduce the amount of shear-induced movement (Been, 2016).  These findings show that caution must be 

taken when using fines content to represent compressibility in the interpretation of CPTu results (Been, 2016). 

Once the in-situ Ψ is measured, the soil behaviour at that state must be characterised using laboratory test 

data in conjunction with a suitable constitutive soil model to capture the drained and undrained behaviour of 

silts (Been, 2016). 

u2 

u1 
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2.3.4. Note on Characterisation of Tailings Behaviour and CSSM 

As discussed in this section there seems to be a satisfactory framework in place to characterise the behaviour 

(state) of tailings.  However, there have been four recent tailings dam failures that resulted in huge 

environmental damage and loss of life.  According to Been (2016), the problem is not the mining companies 

or shareholders, “It is the lack of teaching of critical state concepts to geotechnical engineers and the 

application of rigorous mechanical approaches that has caused this problem”. 

The continued use of “fines content corrections” in tailings dam design is completely incorrect, as most tailings 

dams will have higher fines content than those published in the literature for sands and many tailings dams 

may comprise entirely of fines.  This leads to engineering parameters being non-representative of actual site 

conditions as entirely corrected data is used instead of actual data (Been, 2016). 

As shown by Been (2016) and described above, the mechanical properties of tailings do not correlate well with 

“fines content”.  To alleviate these issues the CSSM framework should be used to capture tailings behaviour 

and will provide good engineering practice because: 1) CSL’s allow constitutive models with the CSSM 

framework to capture the effect of void ratio and confining stress on soil behaviour for all stress paths and 

loadings; 2) Few dimensionless and constant soil properties are required; 3) Stress-strain behaviour can be 

modelled in a spreadsheet; 4) In-situ Ψ can be reliably calculated from CPTu data. 

 Staged Construction of Tailings Dams 

Three main stages characterise the lifecycle of most large tailing’s dams. The first stage involves the starter 

wall construction.  The second stage involves the construction of the rest of the tailings dam until termination 

(closure) elevation.  The third stage involves closure of the tailings dam (Energy, Mines and Resources 

Canada, 1977; Aubertin and Chapuis, 1991). 

The construction stage of a tailings dam is critical for dam stability.  During construction of an embankment, 

positive excess pore water pressure may develop in the tailings or in the foundation soil.  When a tailings dam 

is raised in height, the weight of the newly deposited tailings may generate excess pore pressures.  Although 

some portion of excess pore pressures may dissipate, complete pore pressure dissipation will not occur and 

some residual pore pressures will remain.  The residual pore pressures will accumulate over time with 

increasing height of the tailings dam until termination (closure) elevation is reached (Zardari, 2011).  For 

example, Martin (1999) observed a large upstream tailings dam that developed high excess pore pressures 

and had a rate of rise as low as 2.1 m/year. 

Martin (1999) provides a detailed discussion on the characterisation of pore pressure conditions that commonly 

exist in upstream tailings dams.  He identified six idealised pore pressure regimes that are described in Table 

2-6 and illustrated in Figure 2-15.  He also mentions that hydrostatic pore pressure conditions are typically 

assumed within upstream tailings dams for convenience in slope stability analysis due to lack of piezometric 

monitoring network or misinterpretation of piezometric data.  In this thesis, pore pressure conditions will be 

varied during staged construction to assess the impacts on pore pressures and level of phreatic surface. 

Staged construction analyses (that includes seepage and stability analyses) are typically conducted for 

upstream tailings dams and should be conducted at a suitable rate of rise to allow pore pressure dissipation, 
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consolidation and strength gain of tailings.  This is very important when constructing upstream tailings dams 

with monitoring of phreatic surface and pore pressures to determine drained or undrained conditions 

(Been, 2016).  Priscu (1999) demonstrated the importance of such analyses by studying the effects that normal 

and increased rates of rise at various stages of construction have on the structural behaviour of an upstream 

gold tailings dam, located in South Africa.  In doing so the author found that suitable rates of rise could be 

forecast for different types of mining operations. 

Staged construction analyses can be conducted as either uncoupled or coupled under steady-state or transient 

seepage flow conditions.  Uncoupled analyses do not allow changes in pore pressure to effect deformation 

and vice versa.  Whereas, fully coupled analyses allows changes in pore pressure to effect deformation and 

deformation to affect pore pressure.  The main difference between steady-state and transient flow is the 

hydraulic head (and possibly the permeability coefficient) changes with respect to time (Fredlund et al., 2012). 

The number of tailings dam failures that occur every year (Davies 2002; Hamade and Mitri, 2013; Bowker and 

Chambers, 2015) indicates that conventional uncoupled staged construction analyses may not fully capture 

the complex behaviour of tailings dams (Naeini and Akhtarpour, 2018).  Therefore, it is suggested that fully 

coupled (hydromechanical) analyses be used to more accurately capture tailings behaviour during staged 

construction (Saad and Mitri, 2010). 

According to Naeini and Akhtarpour (2018), there are three types of numerical analyses conducted for tailings 

dams.  The first type comprises seepage analyses used to locate the position of the phreatic surface, which in 

turn can be used in stability analyses (Rykaart et. al., 2001; Yuan and Lei, 2015).  The second type comprises 

numerical or limit equilibrium stability analyses to determine static and/or pseudo-static factors of safety 

(Zardari, 2011; Rout, et al., 2013; Ozcan et. Al., 2013; Rout, et al., 2013; Xu and Wang, 2015; Wei et. al., 2016 

and Zhang et. al., 2016).  The third type is hydromechanical analyses that involves transient coupled non-

linear analyses.  It should be noted that this thesis focusses on the first and third type of numerical analyses.  

To gain an understanding of what seepage and hydromechanical analyses entails, the proceeding paragraphs 

briefly describe the findings and outcomes of more recent seepage and hydromechanical studies that have 

been conducted.  

According to Saad and Mitri (2010), the traditional steady-state seepage analyses give no consideration to 

transient flow conditions caused by continuous self-weight consolidation during construction and operation of 

a TSF.  This means that for a steady-state seepage analysis, the flow of fluid in the TSF is not affected by its 

mechanical response, which does not represent porous media behaviour at all (Biot, 1941).  On this basis, the 

authors used transient coupled non-linear analyses in the ABAQUS code to study the hydromechanical 

behaviour of three upstream tailings dams during staged construction.  The analyses incorporated transient 

partially saturated flow within the tailings, consolidation, nonlinear material response and staged construction 

rates of rise of the tailings.  The results of the numerical analyses showed comparable hydromechanical 

behaviour to upstream tailings dams in the literature. 

A more recent staged construction study was also conducted by Naeini and Akhtarpour (2018) of high 

centreline tailings dams using coupled stress-pore pressure analyses in SIGMA/W.  The effect of foundation 

permeability, rate of rise, tailings anisotropic permeability and variations of starter wall geometry on the 

structural response were studied.  It was found that foundation permeability and anisotropic permeability of 
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tailings have a major impact on pore pressure development whilst varying the geometry of the starter walls 

results in substantial displacements.  Similarly, Hamade, et al. (2011) conducted numerical modelling in FLAC 

using the Mohr-Coulomb constitutive model as well as transient coupled stress-pore pressure and stochastic 

analyses to evaluate the static slope stability of a tailings dam during its staged construction.  Ormann et. al. 

(2013) evaluated the increase in strength during the consolidation process by using a fully coupled analysis.  

Hu et. al. (2015) further supported the use of coupled hydromechanical analysis to more accurately capture 

the long-term behaviour of a tailings dam.  Additional examples of coupled hydromechanical analyses with 

respect to tailings dams can be found in Tanriseven (2012); Holmqvist (2014); Zardari, et al. (2014) and 

Barrero, et al. (2015). 

Using RS2 (Rocscience Inc., 2018), Xu (2019) as part of his thesis performed FEM transient uncoupled staged 

construction analyses of an upstream tailings dam to investigate different methods of phreatic surface control.  

Several factors such as beach width, permeability anisotropy, rate of rise and slope inclination were varied to 

assess their influence on the phreatic surface.  It should be noted that the main theoretical considerations of 

modelling and assessing seepage flow through tailings dams has not been described in this thesis.  This is 

covered in detail under Chapter 3 of Xu (2019) and should be referred to for further information. 
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Table 2-6: Summary of Pore Pressures Regimes (Martin, 1999). 

Regime 
Fig 

Ref. 

Foundation Conditions Plasticity of Tailings 

Slimes 
Rate of Rise Beach Width Comments 

Hydrogeology K (foundation) 

Hydrostatic 1a 
Natural groundwater table at or near 

the ground surface. 
≤ k (tailings) None to low plasticity Slow (< 6-8 m/year) 

Sufficiently wide such that 

slimes do not underlie slope. 

Indicative of essentially horizontal seepage 

flow within deposit due to lack of 

underdrainage at the base. 

Over Hydrostatic 1b 

Groundwater discharge area or 

groundwater table near ground surface, 

and/or compressible foundation soils. 

Usually ≤ k (tailings) Low to high plasticity Rapid (> 8 m/year) 
Narrow with slimes 

underlying slope. 

Under-consolidated conditions within portion of 

the deposit and its foundation, with lack of 

underdrainage at base. 

Over Hydrostatic with Bottom Drainage 1c Groundwater recharge area. > k (tailings) by factor of 10 to 100 Low to high plasticity Rapid (> 8 m/year) 
Narrow with slimes 

underlying slope. 

Under-consolidated conditions within portion of 

the deposit but foundation is fully consolidated 

and provides for double drainage conditions. 

Positive Pore Pressure Below  1d Low groundwater table (recharge area). > k (tailings) by factor of 10 to 100 Low to moderate plasticity Intermediate 
Narrow with slimes 

underlying slope. 

Can indicate an underconsolidated condition 

where seepage is entirely vertical, or fully 

consolidated condition where flow has 

horizontal and vertical components. 

Pore Pressures Near Zero 1e Low groundwater table (recharge area). > k (tailings) by factor of 10 to 100 Non-plastic Slow (<6-8 m/year)  
Wide beach, with slimes not 

underlying slope. 

Indicates a fully consolidated condition with 

downward seepage due to good 

underdrainage at base. 

Unsaturated 1f Low groundwater table, arid climate. > k (tailings) by factor of 10 to 100 Non-plastic Slow (<<6-8 m/year) 
Wide beach, with slimes not 

underlying slope. 

A condition that can probably only be achieved 

in operating impoundments in arid climates, 

with wide tailings beaches and systematic 

discharge and drying cycles. 
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Figure 2-15: Graphical Representation of Pore Pressure Regimes (Martin, 1999). 
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 Static and Dynamic Tailings Parameters  

Assessing the geotechnical parameters of tailings through in-situ and laboratory testing is vitally important to 

safely design and construct tailings dams. These parameters are highly dependent on the static and cyclic 

behaviour of the tailings as well as the geological and hydrogeological setting of the site. (Davies and 

Lighthall 2001; WISE 2014; Hu, et al., 2017).  It should be noted that tailings properties under unsaturated 

conditions require several unique, complex apparatus, which is associated with additional time and cost.  

Nevertheless, these tests if performed properly will produce reliable estimates of a tailing dam’s behaviour and 

stability (Bella, 2017). 

The static and cyclic characteristics of tailings have been evaluated from various studies with different findings 

based on the type of tailings that were tested (Jantzer et al. 2001; Qiu and Sego 2001; Bjelkevik 2005; 

Bjelkevik and Knutsson 2005; Wijewickreme et al. 2005; James et al. 2007; Shamsai et al. 2007; Guo and Su 

2007; Riemer et al. 2008; Wong et al. 2008; Khalili et al. 2010; Wijewickreme et al. 2010; James et al. 2011; 

Adamczyk, 2012; Geremew and Yanful 2012; Geremew and Yanful 2013; Bonin et al. 2014; Mukerjee, et al., 

2015; Zhang et al. 2015; Adajar and Zarco 2016; Bhanbhro, 2017; Xu, et al., 2017).  

 Tailings Dam Surveillance  

As mentioned previously, the failure of the Samarco and Córrego de Feijão tailings dams in Brazil have led 

the industry to review their tailings facility risk evaluation approach and standards in terms of design, 

construction, operation and closure (Boshoff, et al., 2018).  Construction and operation monitoring of tailings 

dams are vitally important as characteristics of deposited tailings may change during operation as a result of 

changes in ore and extraction processes (Caldwell, 2016).   

Martin and Davies (2000) and Vanden Berghe, et al. (2011) provide a detailed discussion on the important 

requirements of tailings dam surveillance.  Martin and Davies (2000) place emphasis on a method of risk 

management known as the observational method (Figure 2-16) that must be reinforced by a surveillance 

program and describe how this method is applied to tailings dam design and construction.   

The steps involved in detecting possible failure modes by implementation of a surveillance program schedule 

are shown in Figure 2-17.  It should be noted that every tailings dam must be considered on a site-specific 

basis in terms of adverse conditions, warning signs and surveillance measures (Martin and Davies, 2000).  

Skau, et al. (2013) reported on the benefits of combining numerical analyses with in-situ measurements and 

the observational method.  An example of a site-specific instrumentation and monitoring plan was prepared by 

Radue (2017) for Poly Met Mining, Incorporated. 
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Figure 2-16: Risk Management Via The Observational Method (Martin and Davies, 2000). 

 

Figure 2-17: Failure Modes, Warning Signs and Surveillance Measures (Martin and Davies, 2000). 

Additionally, Caldwell (2016) presented several guidelines in tailings facility design and construction that may 

reduce the risk profile and failure rate of these facilities.  These guidelines have been summarised and are 

presented in the Table 2 6. 
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Table 2-7: Proposed Guidelines in Tailings Facility Design and Construction (Caldwell, 2016).  

Guidelines Description 

Design FoS Appropriate application of design FoS. 

Human Habitation No tailings facilities upstream of human settlements or sensitive environments. 

Upstream Tailings Dams Avoid upstream construction, use only if construction can be safely established 

Cascading Dams No cascading tailings dams. 

Clay Foundations Limit or avoid clay in the foundations. 

Dam Height  Try limiting height to less than 100m. 

Water in Basin No or very small pool or pool distance from crest = 5 x embankment height. 

Flat Embankments Tailings embankments slopes of 5H:1V. 

Penstocks No penstocks through tailings or adjacent abutments. 

Perimeter Slimes No slimes near the perimeter or in the zone of potential slope failure. 

Independent Review An independent peer review of tailings dam design is highly recommended. 

Educated Regulators 

Governments in charge of review and approval of tailings dams to have above-average 

training and experience related to the facilities that they permit and to recognize when 

advice from an external specialist may be required. 

Tailings Professionals 
Qualified and competent tailings engineer is required for the design, construction and 

monitoring of tailings facilities. 

Management Systems 
A tailings management plan, adequate financial resources and processes to oversee 

design, operation, maintenance and closure. 

Hu and Liu (2011) highlighted the change in tailings dam monitoring from being predominantly manual (labour 

intensive) to more automated real-time monitoring systems with the evolution of computer technology and 

instrumentation.  This has led to the development and implementation of multi-user real-time monitoring 

networks that provide the client with real-time monitoring data that can be used to assess the safety of a tailings 

dam at any given time (Wang, et al., 2018).  Similarly, Du Toit (2015) described commonly utilised geotechnical 

and survey instrumentation and their associated outputs (Table 2-8) currently being utilised for monitoring 

various aspects of slope stability. 

Table 2-8: Instrumentation and Associated Outputs for Monitoring Slope Stability (Du Toit, 2015). 

Sensor Output 

Vibrating Wire Piezometers 
Pore water pressure can be measured within soil and rock at 

various depths allowing for flow gradient to be determined. 

Inclinometers and Extensometers Lateral movement and deformation 

Settlement Cells and Horizontal Inclinometers Vertical movement and deformation  

Levelling  Vertical movement and deformation 

Weather Stations 

Rainfall could potentially be related to pore water pressure 

readings and barometric pressure is used to correct 

measurements for certain sensors. 

Prism-Based Monitoring using Total Stations Three-dimensional movement of prisms measured on a slope.  

GPS or GNSS using Total Stations 
Three-dimensional movement of reference beacons measured on 

a slope. 

Satellite and Terrestrial Radar  

Measures and characterises ground deformation using dense 

point clouds of deformation measurements together with a history 

of movement over time. 

Stellenbosch University https://scholar.sun.ac.za



33 

Examples of some of these monitoring systems being practically implemented to monitor various aspects of a 

tailings facility are discussed in the proceeding paragraphs. 

Martin (1999) discussed the importance of correctly characterising pore pressure regimes in upstream tailings 

dams by implementing piezometer monitoring networks appropriate for various pore pressure regimes.  

Abancó, et al. (2016) and Boshoff, et al. (2018) demonstrated the effectiveness of implementing vibrating wire 

piezometer networks to monitor the real-time pore water pressures and temperatures for tailings dam in Spain 

and South Africa, respectively.  

Several authors (Campbell and Fitterman, 2000; Fonseca, 2012; Vargas, et al., 2014; Mainali, et al., 2015; 

Quiroz, et al., 2016; Yaya et al., 2017; de Wit and Olivier, 2018) showed the effectiveness of using geophysical 

methods to monitor tailings dams in terms of locating phreatic surfaces and potential zones of seepage as well 

as characterising multi-layered subsurface profiles of the tailings dam and foundation soils. 

Again several authors (Leica Geosystems AG, 2008; Wei and Wang, 2011; Chetty, 2013; Thomas, et al., 2019; 

Navarro, et al., 2019) showed how Lidar and satellite technology are used to monitor tailings dam deformation, 

monitoring of supernatant water volumes (operating pool) and potential seepage emanating from embankment 

slopes. 

Fibre Optic Cable (FOC) systems can enable near real-time monitoring of strain, deformation and seepage of 

tailings dams.   As part of a research and development initiative by an international mining company, an FOC 

system has been installed at a new tailings dam in South Africa.  The FOC system has been installed above 

and beneath the geomembrane HDPE liner to monitor strain and temperature as well as the performance of 

the liner (Inaudi, et al. 2013; SMARTEC, n.d.; Todd Roberts, n.d.).  This initiative aims to assess the 

effectiveness of the FOC system for lined tailings dams.  This will be done by focussing on the liner tailings 

interface in terms of dam stability and seepage conditions and to incorporate the FOC monitoring data into the 

planned surveillance monitoring for the facility.  The benefits and lessons learned from the FOC system are 

planned to be implemented within the mining companies portfolio for future lined tailings dam applications 

 Conclusion 

After carefully reviewing all available literature, determining the in-situ state and static liquefaction potential of 

tailings dams are typically assessed using one of several methodologies within the framework of CSSM that 

involves the use of in-situ and laboratory testing in conjunction with numerical analyses.  Also, the literature 

review highlights the importance of performing staged construction to determine the seepage and 

hydromechanical behaviour of tailings dams.  From the literature review, it can be concluded that there is a 

lack of available literature and studies related to determining the in-situ state and static liquefaction potential 

as well as staged construction of tailings dams from a South African perspective. 
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 : Overview of TSF-A and Testing Data 

This chapter presents an overview of an existing tailings dam, located in Limpopo, South Africa as well as a 

summary of in-situ and laboratory test data considered in this study.  The tailings dam case study used in this 

thesis will henceforth be referred to as TSF-A.  The mining company responsible for TSF-A will henceforth be 

referred to as Mining Company A. 

 TSF-A 

The major TSF failure (Fundão TSF) that occurred at the Samarco Mine in Brazil on November 2015, prompted 

the mining industry to review their TSF risk evaluation as well as design and monitoring standards.  

Subsequently, renewed focus was placed on TSF slope stability, mainly in terms of undrained loading 

conditions where tailings are highly susceptible to static liquefaction.  As a result, the evaluation of risk 

exposure in this regard was set in motion.  Mining Company A engaged with its various operations and 

consulting teams globally to initiate risk screening of all tailings dams in their portfolios, specifically those being 

constructed using the upstream method.   

The risk screening evaluated existing monitoring data to rank each TSF based on a defined risk profile, which 

considered the likelihood of typical liquefaction triggers such as high RoR, rapid rise in phreatic surface, build-

up of excess pore water pressure, foundation materials prone to deformation etc.  Subsequently, stability 

assessments on high-risk tailings dams identified where more data would be required to assess the liquefaction 

potential of deposited tailings in-situ state i.e. contractive and or dilative behaviour.  The risk screening 

identified TSF-A, which is an upstream platinum tailings dam located in Limpopo Province, South Africa as a 

high-risk facility that required further detailed investigations, which involved comprehensive laboratory and in-

situ testing.  The results of these investigations are used in this thesis to assess the in-situ state and conduct 

a staged construction of TSF-A. 

TSF-A was commissioned in October 2006 and has a final elevation of 1145 metres above mean sea level 

(mamsl) measured at the penstock, that is intended to be reached during 2020.  TSF-A is designed to receive 

200 000 tons per month (tpm) of dry tailings that are pumped and distributed via a steel spigot ring-feed to 

hydro-cyclones for deposition.  The hydro-cyclones split the combined tailings feed into coarse (underflow) 

and fine (overflow) fractions.  The underflow is used to construct the outer wedge that impounds overflow 

tailings deposited in the basin (Figure 3-1). 

 

Figure 3-1: Schematic of Upstream TSF-A Showing Underflow Wedge and Impounded Overflow. 
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 Laboratory Data 

The following routine classification tests were conducted on forty (40) reconstituted tailings samples retrieved 

using either Shelby or Mostap sampling techniques: natural moisture content; specific gravity; bulk density; 

dry density; particle size distribution and Atterberg limits.   

Using the Unified Soil Classification System (USCS), the tailings predominantly classify as low plasticity silts 

(ML) and silty sands (SM).  The silt content ranges from 60 % to 85 % and the clay content from 1 % to 10 %, 

depending on whether the material corresponds to underflow (i.e. coarser silty sand) or overflow (i.e. finer silt) 

tailings.  The results of the Atterberg limits showed the tailings to be non-plastic to slightly plastic with a low 

expansive potential and a linear shrinkage between 0 – 1 %.  The specific gravity and void ratio ranged 

between 3.44 to 3.75 and 0.45 to 1.09, respectively. 

Isotopically-consolidated undrained and drained triaxial compression tests (CIUC and CIDC, respectively) 

were performed on reconstituted samples representative of the overflow and underflow tailings.  These tests 

are summarised in Table 3-1. 

Table 3-1: Summary of CIUC and CIDC Triaxial Tests Conducted on Overflow and Underflow Tailings. 

Tailings Triaxial Quantity p0’ (kPa) e0 – Test 1 e0 – Test 2 e0 – Test 3 e0 – Test 4 

Overflow 
CIUC 3 400 0.771 0.884 0.940 - 

CIDC 1 200 0.736 - - - 

Underflow 
CIUC 4 400 0.657 0.761 0.804 0.903 

CIDC 1 200 0.760 - - - 

It should be noted that apparent biases on the commercial laboratory testing procedures seem to have 

influenced the results.  For example, some results show non-concave stress paths that may indicate seating 

errors/non-uniform loading, void ratios measured before saturation as well as consolidation and shearing 

conducted at different triaxial frames. 

 In-Situ Data 

A total of sixty (60) CPTu with dissipation tests at 1 m intervals were conducted at various downstream 

monitoring lines located around the perimeter of TSF-A between 2017 and 2019.  The CPTu reached final 

depths between 7.30 m and 39.80 m below ground level.  Figure 3-2 is a schematic plan of TSF-A that shows 

the layout of monitoring lines where CPTu were conducted. 

It should be noted that the laboratory and in-situ data are presented and interpreted in Section 4 to determine 

the in-situ state parameters of the tailings. 
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Figure 3-2: Schematic Drawing of TSF-A Monitoring Line Layout Plan.
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 : Determination of In-Situ State Parameters 

This chapter presents analyses conducted to determine the in-situ state of TSF-A tailings following the 

Robertson (2010), Jefferies and Been (2016) as well as Shuttle and Jefferies (2016) methodologies.  Results 

are contrasted and the differences between these methodologies are evaluated and discussed. 

As described in Section 2.3 and according to Sottile et al. (2019), sand-like tailings have been well-defined by 

the CSSM framework (e. g. Bedin et al 2012, Been 2016, Jefferies and Been 2016).  Using this framework, 

the 	proposed by Been and Jefferies (1985), has been extensively used to determine a granular (coarse-

grained) materials contractive or dilative behaviour based on the distance of the current p’− e state above or 

below the CSL (refer to Section 2.2, Figure 2-3). 

The classification tests described in Section 3.2 above, show that TSF-A tailings are predominantly silt-like.  

According to Sottile et al. (2019) these types of tailings combine aspects from clay-like and sand-like materials 

in that: 1) they behave like clay in terms of low hydraulic conductivity; 2) they behave like sand in terms of 

having their strength controlled by frictional forces; 3) display dilative and or contractive behaviour depending 

on the state parameter; 4) densification caused by handling and transportation can result in a significant 

change in the material response (refer to Section 2.3, Figure 2-6). 

The near-impossible task of retrieving good quality undisturbed samples has led to correlations and methods 

to estimate  of tailings from CPTu data.  Robertson (2010) and Jefferies and Been (2016) methodologies 

have been widely used to determine the in-situ distribution of the state parameters from CPTu data (Sottile, et 

al., 2019).  Nevertheless, they were developed for sand-like materials; hence, a difference is expected when 

dealing with silt-like tailings.  This difference can be seen by the red circles in Figure 4-1.  The red circles 

indicate silt-like tailings outliers when compared to sand-like tailings using the Jefferies and Been (2016) 

method.  It should be noted that some empirical correlations have been developed specifically for tailings (e.g. 

Been et al 2012, Dienstmann et al 2018); however, these correlations require extensive calibration on a site 

by site basis. 

 

Figure 4-1: Correlations of λ10	with k and m (Jefferies and Been, 2016). 

Shuttle and Jefferies (2016) chose a more fundamental approach where cavity expansion theory is recalled 

establishing a correlation between the tip resistance of CPTu and the state parameter.  The methodology 
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combines the use of CPTu data and numerical element tests using NorSand.  According to the authors, this 

method is considered to accurately capture calibration data and allows determination of the in-situ state 

parameter in silt-like tailings from CPTu data.   

Firstly, NorSand was calibrated for overflow and underflow tailings, using CIUC and CIDC triaxial compression 

tests on reconstituted tailings samples.  The calibrated NorSand parameters were then used to determine 

coefficients  and 	for underflow and overflow tailings undergoing drained and undrained cavity expansion.  

Cavity expansion effective limit pressures were computed for different confining pressures, state parameters 

and rigidity indexes (Figure 4-2).  Finally, the state parameters were calculated using CPTu data as well as  

and  coefficients in Equation 3 from Chapter 2. 

 

Figure 4-2: Scheme to Compute the Cavity Expansion Limit Effective Pressure (p’lim) Using NorSand and a Large Strain 

1D FEM Code (Shuttle and Jefferies, 2016). 

Although this procedure is more complex than the Robertson (2010) and Jefferies and Been (2016) methods, 

it results in more reliable and user-independent approximation of the state parameter, thus avoiding the direct 

use of many correlations available in the literature for natural sands and clays (Sottile, et al., 2019). 
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 Calibration of NorSand Constitutive Model 

NorSand was calibrated for overflow and underflow tailings using the CIUC and CIDC triaxial test data.  The 

aim is to determine parameters to be used for drained and undrained cavity expansion analyses required to 

extract the state parameter from CPTu data, as proposed by Shuttle and Jefferies (2016).  NorSand has ten 

parameters, which have been presented in Table 2-3 above.  The various sources of uncertainty in the 

laboratory results (Section 3.2) were balanced to produce a reasonable set of calibration parameters used in 

this study. 

4.1.1. Overflow Tailings Calibration 

Figure 4-3 shows the comparison of the NorSand calibration with three CIUC tests and the one CIDC test for 

the overflow tailings.  A notable agreement is obtained between the CIUC results and the NorSand calibration 

especially in the ′−  and −  space.  The CIDC (CD1) test show less agreement.  This is primarily due to 

calibrating one set of parameters by using both CIUC and CIDC tests as well as focussing the calibration on 

capturing undrained contractive behaviour shown by the CIUC tests.  The calibrated parameters for the 

overflow are shown in Table 4-1. 

Table 4-1: Calibrated NorSand Parameters for Overflow Tailings. 

Γ λ10 Mtc N χ H0 HΨ Ir b ν 

1.10 0.205 1.47 0.27 3.5 80 200 90 0.70 0.20 

4.1.2. Underflow Tailings Calibration 

Figure 4-4 shows the comparison of the NorSand calibration with four CIUC tests and the CIDC test for 

underflow tailings.  A good agreement in terms of ′−  and −  is obtained for two CIUC tests (i.e. CU1 and 

CU2, red and yellow curves) and a poor match is obtained for the other two CIUC tests (i.e. CU3 and CU4, 

green and purple curves).  For the CU3 test, a mean effective stress of around 300 kPa was measured at 

critical state, while NorSand prediction is approximately 40 kPa.  In addition, the measured deviatoric stress 

at critical state is around 400 kPa, while NorSand entails about 50 kPa.  On the other hand, CU4 data shows 

post-peak softening, while NorSand predicts a considerable post-peak hardening due to an initial negative 

value of the state parameter 	≅	−0.10.  The laboratory data for CU3 and CU4 show an initial increase of mean 

effective pressure, which is inconsistent with a CIUC test on a normally consolidated sample.  As a result, the 

calibration for this set of data focused on achieving a closer fit with better quality laboratory data (i.e. CU1, 

CU2 and CD1).  The calibrated parameters for the underflow material are shown in Table 4-2.  A relatively 

good match is obtained between the NorSand calibration and the CIDC test result when compared to the 

overflow CIDC calibration. 

Table 4-2: Calibrated NorSand Parameters for Underflow Tailings. 

Γ λ10 Mtc N χ H0 HΨ Ir b ν 

0.867 0.089 1.36 0.27 2.00 150 200 90 0.70 0.20 
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Figure 4-3: Comparison Between CIUC|CIDC Test Data and NorSand Calibration for Overflow.  
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Figure 4-4: Comparison Between CIUC|CIDC Test Data and NorSand Calibration for Underflow. 
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 Calibration of  and 	Coefficients 

Shuttle and Jefferies (2007), as well as Shuttle and Jefferies (2016), assume that the CPT dimensionless tip 

resistance ( ) can be expressed as Equation 4. 

  (4) 

where p  is the spherical cavity expansion and  is a mapping factor that basically relates the sphere with 

the cone geometry.  p  depends on the soil properties, initial mean effective pressure and state parameter.  

The methodology uses NorSand to compute limit cavity expansion pressure based on different combinations 

of initial confining pressures, state parameters and rigidity indexes.  This is done by a large-strain finite element 

analysis code called CPTWidget that is freely available from the authors, Shuttle and Jefferies.  The spherical 

limit pressures are mapped into the cone normalized resistance 1 1.  Finally, the coefficients  and 

 are determined and the state parameter is computed from CPTu data. 

The NorSand calibration for overflow tailings was combined with drained and undrained cavity expansion 

analyses using CPTWidget.  For drained analyses, a total of thirty-six combinations of different rigidity indexes 

r = 50|100|150, initial mean effective pressures ′=100|500	kPa and initial state parameters 	= −0.05| 0.00| 

0.05| 0.10| 0.15| 0.20 were chosen.  For undrained analyses, a total of twenty-four combinations were 

modelled, using the same initial mean effective stresses and state parameters as for drained simulations, but 

only analysing rigidity indexes Ir = 50|150 because the limit pressure for undrained cavity expansion is ideally 

independent of soil stiffness. 

Figure 4-5 shows results for overflow tailings drained analyses.  It is shown that the rigidity index determines 

different calibration coefficients for 	= 50, 	= 28.5 and 	= 6.10; for r = 100, 	= 30.5 and 	= 6.40; and for 

	= 150, 	= 32.5 and 	= 6.70.  Figure 4-6 shows results of overflow tailings undrained analyses which are 

almost independent of the rigidity index; thus, a unique line is fitted using 	= 11.5 and 	= 9.50. 

The same procedure was applied to underflow tailings data and Figure 4-7 shows results of drained analyses.  

It is shown that the rigidity index determines different calibration coefficients for 	= 50, 	= 29.5 and 	= 5.10; 

for 	= 100, 	= 33.1 and 	= 5.40; and for r	= 150, 	= 36.7 and 	= 5.70. 

Figure 4-8 shows results for undrained analyses of underflow tailings and it shows that the relationship cannot 

be accurately represented by a single line.  Therefore, two combinations of  and  are proposed, based on 

the normalized tip resistance when 1 1 4, 	= 10.5 and 	= 19.0; when 1 1 4, 

	= 5.5 and 	= 6.0.  It must be noted that CPTu penetrating under undrained conditions in underflow tailings 

has a low chance of occurring in-situ since the underflow tailings zone is likely to be unsaturated and 

predominantly located above the phreatic surface. 
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Figure 4-5: CPTWidget Results for Drained Analyses on the Overflow Tailings. 

 
Figure 4-6: CPTWidget Results for Undrained Analyses on the Overflow Tailings. 
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Figure 4-7: CPTWidget Results for Drained Analyses on the Underflow Tailings. 

 
Figure 4-8: CPTWidget Results for Undrained Analyses on the Underflow Tailings.  
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A summary of coefficients  and , determined from drained and undrained analyses for overflow and 

underflow tailings, are presented in Table 4-3. 

Table 4-3: Summary of Calibrated k and m Coefficients for Overflow and Underflow Tailings. 

Analysis Type Overflow Underflow 

Drained 

 = 50,  = 28.5 |  = 6.10  = 50,  = 29.5 |  = 5.10 

 = 100,  = 30.5 |  = 6.40  = 100,  = 33.1 |  = 5.40 

 = 150,  = 32.5 |  = 6.70  = 150,  = 36.7 |  = 5.70 

Undrained  = 11.5 |  = 9.50 
1 1 4  = 10.5 |  = 19.0 

1 1 4  = 5.5 |  = 6.00 

 Interpretation of The State Parameter from CPTu Data 

State parameter profiles were interpreted for all 60 CPTu positions by using an Excel spreadsheet developed 

by Oelofse and Kruger (2019).  For the sake of simplicity, the results of CPTu PC1 are presented below with 

the rest of the CPTu interpretations presented in Appendix A to Appendix K.  Figure 4-9 shows the following: 

 Corrected tip resistance ( c).  Pore pressure ratio ( ). 

 Pore pressure measurement ( 0).  Interpreted state parameter along depth of CPTu (Ψ). 

 Friction ratio ( ).  Dilative (Ψ < -0.06) and Contractive (Ψ > -0.06) zones. 

 Soil behaviour type (Ic).  Robertson (2010) SBTn analysis. 

The state parameter is determined based on the type of tailings (i.e. underflow or overflow) and whether the 

cone penetration occurs under drained or undrained conditions.  The distinction between overflow and 

underflow tailings is made based on the Ic.	value proposed by Jefferies and Been (2016).  Drained and 

undrained penetration are distinguished based on the absolute value of	 	also proposed by Jefferies and 

Been (2016).  Subsequently, coefficients 	and 	are obtained from Table 4-3 and state parameters are 

calculated based on which of the four cases apply (Table 4-4).  It must be noted that in the absence of small 

strain stiffness (G0) in-situ measurements, average rigidity indexes values are adopted for drained cases. 

Table 4-4: Criterion to Define k and m Coefficients Used to Interpret Ψ (Jefferies and Been, 2016). 

Case Ic Absolute Bq Tailings Drainage 

1 < 2.00 < 0.02 Underflow Drained 

2 < 2.00 > 0.02 Underflow Undrained 

3 >2.00 < 0.02 Overflow Drained 

4 >2.00 > 0.02 Overflow Undrained 

From Figure 4-9  a distinction is observed between the underflow and overflow tailings from the 	value of 

approximately 2.00.  The underflow tailings display Ic	values between 1.25 and 2.00 i.e. clean to silty sands to 

sandy silt.  The overflow tailings are predominantly characterised by Ic	values greater than 2.00 and typically 

display Ic	values between 2.40 and	3.22 i.e. sandy silt to silty clay.  In addition, there is good agreement 

between state parameters interpreted using the Jefferies and Been (2016) and Shuttle and Jefferies (2016) 

methodologies.  However, it should be noted that the Shuttle and Jefferies (2016) calibrations entail a wider 

dispersion (distribution range) and a generally higher mean value (Figure 4-10).  On the other hand, the 

Robertson (2010) method entails a narrower dispersion and a lower mean value, which shows a relatively poor 
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agreement with the Jefferies and Been (2016) methodology and even lesser agreement with the Shuttle and 

Jefferies (2016) methodology. 

To assess the state parameter variation between the Shuttle and Jefferies (2016) methodology versus the 

Robertson (2010) and Jefferies and Been (2016) methodologies, Equation 5 and 6 are defined as: 

 &  (5) 

 

 & &  (6) 

where  is the difference between the state parameters;  & ,  and	 &  are the state parameters 

determined using Shuttle and Jefferies (2016), Robertson (2010) and Jefferies and Been (2016) 

methodologies, respectively. 

The  for each CPTu are interpreted and plotted as box and whisker plots (Figure 4-11).  From these plots, 

the following is observed:  

 The state parameter derived using the Shuttle and Jefferies (2016) method, is systematically higher than 

the state parameters derived using Robertson (2010) and Jefferies and Been (2016) methods; 

 The	  median and mean values are all positive;  

 The largest  is observed between the Shuttle and Jefferies (2016) and Robertson (2010) methods;  

 The maximum  can be up to 0.35 and 0.49 when comparing the Shuttle and Jefferies (2016) method to 

the Jefferies and Been (2016) and Robertson (2010) methods, respectively.   

A similar study was conducted by Sottile, et al. (2019) that compared the state parameters for silt-like tailings 

determined using the Shuttle and Jefferies (2016) and Jefferies and Been (2016) methods.  The observations 

described above are comparable to those of Sottile, et al. (2019).  According to Sottile, et al. (2019), large 

differences in state parameters (in this case Δ 	 = 0.35 and 0.49) observed between the Shuttle and 

Jefferies (2016) method and the empirically-based methods will have serious impacts on tailings dam design.  

For example, if one of the empirically based methods developed for sand-like tailings were used to characterise 

the in-situ state of a tailings dam comprised of silt-like tailings, this may lead to a less robust (non-conservative) 

design being adopted due to the tailings being characterised as less contractive or even dilative. 

According to Sottile, et al. (2019), the Shuttle and Jefferies (2016) methodology has two important features.  

Firstly, the methodology does a good job at capturing the physics involved in a CPTu and secondly, the 

methodology has a calibration procedure dependent on a state-parameter based constitutive model.  On this 

basis, the Shuttle and Jefferies (2016) methodology is more reliable for silt-like tailings than empirically-based 

procedures like Robertson (2010) as well as Jefferies and Been (2016).  However, this statement must be 

used carefully on a project-specific basis that involves analysis of tailings in undrained shear (Sottile, 

et al., 2019). 

 

Stellenbosch University https://scholar.sun.ac.za



47 

 

Figure 4-9: Cone Resistance, Friction Ratio, Soil Behaviour Type ( ), Pore Pressure Ratio (Bq) Interpreted State Parameter Along Depth ( ), Contractive and Dilative Zones with Depth for Shuttle and Jefferies (2016), Jefferies and Been (2016) and (Robertson 2010) 

Methodologies, Robertson (2010) SBTn Analysis for CPTu PC1.  
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Figure 4-10: Frequency of Shuttle and Jefferies (2016), Jefferies and Been (2016) and Robertson (2010) Derived State Parameters Along Depth of CPTu PC1. 

DILATIVE CONTRACTIVE 
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Figure 4-11: Difference of State Parameter Between Shuttle and Jefferies (2016) and Jefferies and Been (2016) as well as Shuttle and Jefferies (2016) and Robertson (2010) for CPTu PC1.
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 State Parameter Variability and Spatial Distribution 

This part of the chapter studies the spatial distribution of the state parameter at eleven monitoring lines at TSF-

A and the variability along each section was then studied.  The data from CPTu was also used to estimate the 

soil behaviour type based on Robertson (2010) SBTn chart.  The SBTn chart divides soil behaviour into nine 

groups based on whether the material is: 

1. Sensitive, fine-grained 2. Organic 3. Clay 

4. Silt-mixtures 5. Sand-mixtures 6. Sand 

7. Gravelly sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine-grained 

According to the Robertson (2010) SBTn chart, all the above groups could display contractive or dilative 

behaviour except for groups 7 to 9 that will just display dilative behaviour.  State parameter and SBTn 

interpretations for each monitoring line are presented in Table 4-5 and Table 4-6, respectively. 
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Table 4-5: State Parameter Interpretation Across the Various Monitoring Lines. 

Monitoring 

Line 

State Parameter Interpretation 
Comment 

Underflow Overflow 

A Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

B Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. CPTu PC18 shows a highly interbedded overflow is predominantly dilative. 

C Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

D Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations 
Some minor interbedded dilative/contractive layers are observed within the overflow.  

Upper 3 m of the overflow in CPTu PC13 shows predominantly dilative behaviour. 

E Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. 
Some minor interbedded dilative/contractive layers are observed within the overflow. 

Upper 4 m of the overflow at CPTu PC11 and PC11 Q3 show high interbedding of contractive and dilative layers 

F Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. 
Some minor interbedded dilative/contractive layers are observed within the overflow at most CPTu locations except for CPTu PC8 

and PC8 Q3.  These locations show a greater degree of interbedded dilative layers within the predominantly contractive overflow. 

G Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. 
Some minor interbedded dilative/contractive layers are observed within the overflow at most CPTu locations except for CPTu PC5.  

This location shows a greater degree of interbedded dilative layers within the predominantly contractive overflow. 

H Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

I Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

O Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

P Mainly dilative behaviour across all CPTu locations. Mainly contractive behaviour across all CPTu locations. Some minor interbedded dilative/contractive layers are observed within the overflow. 

Table 4-6: SBTn Interpretation Across the Various Monitoring Lines. 

Monitoring 

Line 

SBTn Interpretation 
Comment 

Underflow Overflow 

A Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

B Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. CPTu PC19 also displays sand-mixture contractive behaviour within the overflow. 

C Dominant sand-mixture and silt-mixture like dilative.  Dominant silt-mixture and clay-like contractive.   
CPTu PC17 predominantly displays a dilative sand-like behaviour within the underflow. 

CPTu PC17 also displays sand-mixture contractive behaviour within the overflow. 

D Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. CPTu PC13 and PC29-Q3 also displays dominant sand-mixture contractive behaviour within the overflow. 

E Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

F Dominant sand-mixture and silt-mixture like dilative. Dominant sand-mixture, silt-mixture and clay-like contractive. - 

G Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

H Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

I Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

O Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 

P Dominant sand-mixture and silt-mixture like dilative. Dominant silt-mixture and clay-like contractive. - 
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 Summary of State Parameter Assessment At TSF-A 

Characterisation of the state parameter of silt-like tailings can be performed in the framework of CSSM.  Shuttle 

and Jefferies (2016) used cavity expansion theory to establish a correlation between the tip resistance of CPTu 

and the state parameter.  The methodology is briefly explained and results are compared with more empirical 

approaches Robertson (2010) as well as Jefferies and Been (2016). 

It is observed that the state parameter using Shuttle and Jefferies (2016) procedure is systematically higher 

than the Robertson (2010) and Jefferies and Been (2016) methodologies.  The Shuttle and Jefferies (2016) 

methodology shows that underflow tailings display predominantly dilative (strain-hardening) behaviour at most 

of the CPTu soundings.  Only a few soundings show minor contractive layers within some portion of the 

underflow tailings.  The overflow tailings show contractive (strain-softening) behaviour with interbedding of 

dilative layers in some portions of the overflow tailings. 

Data from CPTu were also used to estimate the soil behaviour type along soundings, based on 

Robertson (2010) SBTn charts.  Good correlations were found between SBTn classifications and interpretation 

of state parameter using Shuttle and Jefferies (2016) methodology in that similar behavioural responses of the 

underflow (i.e. dilative) and overflow (i.e. contractive) were noted. 

In Summary, the Shuttle and Jefferies (2016) methodology is based on a more fundamental understanding of 

the physics involved in cone penetration and uses a constitutive model built around the concept of state 

parameter, making it more reliable for silt-like tailings than empirically-based procedures (Sottile, et al., 2019). 
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 : Soil Constitutive Model for Staged Construction 

This chapter presents the calibration process of the soil constitutive model used to perform the staged 

construction of TSF-A.  The Softening-Hardening (S-H) soil constitutive model was selected to reproduce the 

dam behaviour during staged construction phases.  The model was calibrated for overflow and underflow 

tailings using isotopically CIUC and CIDC triaxial compression tests on reconstituted overflow and underflow 

samples. 

 Softening Hardening Soil Constitutive Model 

It is well documented in the literature that experimental data shows plastic deformation in soils occurs from 

initial stages of loading.  To capture such behaviour, the typical elasto-perfect plastic constitutive models are 

not suitable.  Therefore, constitutive models such as S-H soil constitutive model in Rocscience, Rock and Soil 

2-D (RS2) analysis program that utilises a hardening law after initial yielding is required (Rocscience Inc B, 

n.d.).  Based on the formulations of this constitutive model, there are three different mechanisms/yield surfaces 

that include: (1) deviatoric (shear); (2) volumetric (cap) and (3) tension cut off, which are illustrated in Figure 

5-1 along with the hardening characteristics of this model in p-q space.  Figure 5-2 and 5-3 show the yield 

surfaces in 3D stress space.  The model is very flexible with several options and formulations.  It should be 

noted that by activating several different functions, the model can be analogous to either the Mohr-Coulomb; 

Duncan-Chang, ChSoil, Hardening Soil, Double yield and CySoil constitutive models (Rocscience Inc B, n.d.).  

These models are briefly defined as follows:  

 Mohr-Coulomb model – typically used to characterise shear failure in soils and rocks and can be applied 

to slope stability and underground excavation (ITASCA Consulting Group. Inc., 2019). 

 Duncan-Chang model – developed to address nonlinear mechanical behaviour of soils and is based on 

stress-strain curves from drained triaxial tests on clays and sands (Rocscience zInc C, n.d.). 

 Chsoil model – is a basic version of the CySoil model.  This model has a friction-hardening law that uses 

hyperbolic model parameters as direct input and a Mohr-Coulomb failure envelope with two built-in dilation 

laws (ITASCA Consulting Group. Inc., 2019). 

 Hardening Soil model – is an effective stress hardening plasticity model, able to represent the behaviour 

of materials undergoing plastic compression, consolidation and monotonic shear.  The model can be used 

for soil-structure interaction problems, excavations, tunnelling and settlements analysis, etc (ITASCA 

Consulting Group. Inc., 2019). 

 Double-yield model – simulates materials were substantial permanent compaction and shear yielding 

occurs, such as hydraulically placed backfill or lightly cemented granular material (ITASCA Consulting 

Group. Inc., 2019). 

 Cysoil model – the model is used to represent the nonlinear behaviour of soils and provides a better 

representation of the loading/unloading response of soils.  The model comprises strain-hardening and 

softening shear behaviour, an elliptic volumetric cap with strain-hardening behaviour and an elastic 

modulus function of plastic volumetric strain (ITASCA Consulting Group. Inc., 2019). 
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Figure 5-1: The Yield Surfaces of the S-H model; a) Deviatoric Yield Surface (red) and the Vertical Cap (green); b) 

Deviatoric Yield Surface (red) and Elliptical Cap (blue) (Rocscience Inc B, n.d.). 

 

Figure 5-2: Yield Surface of S-H Model With Vertical Cap In 3D Stress Space (Rocscience Inc B, n.d.). 
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Figure 5-3: Yield Surface of S-H Model With Elliptical Cap in 3D Stress Space (Rocscience Inc B, n.d.). 

 Calibration of Softening-Hardening Constitutive Model 

The S-H soil constitutive model was used to simulate the staged construction of TSF-A.  The model can capture 

most of the observed behaviour of these materials including strain-softening and strain hardening, which were 

accounted for by varying the compaction-dilation angle and employing the non-linear isotropic stiffness function 

(Equation 7) in RS2. 

  (7) 

E0 is the elastic modulus at reference pressure (pref);  is a material parameter and p	 is the mean stress, 

assuming compression positive.  The parameters calibrated in the S-H soil constitutive model are: 

 Strength 

o φ’: Mohr-Coulomb effective friction angle. 

o c’: Mohr-Coulomb effective cohesion. 

 Stiffness 

o ν: Poisson’s Ratio 

o Ε0: Initial Young’s Modulus at reference pressure, pref. 

o pref: Reference Pressure 

o α: Material Parameter. 

 Hardening 

o A: Hardening Parameter (positive and constant) 

 Dilation 

o ψ:  Dilation Angle (can be set to compaction dilation or dilation). 
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 Calibration at Elemental Level 

To calibrate the S-H constitutive model, the CIUC and CIDC triaxial tests were modelled in RS2 by assigning 

the necessary boundary conditions (loads and displacements) to replicate drained and undrained behaviour.  

Numerous iterations were performed by varying the parameters listed above until the best fit possible between 

the model and laboratory results were achieved for each test.  For a detailed guide on modelling drained and 

undrained triaxial tests in RS2 using the S-H constitutive model, please refer to Rocscience Inc A (n.d.). 

5.3.1. Overflow Tailings 

The model was calibrated for three CIUC triaxial tests and one CIDC triaxial test completed on reconstituted 

overflow samples.  When tested, all CIUC tests were confined to an initial mean effective stress p0 = 400 kPa, 

but at different initial void ratios.  Therefore, the effective stress path for undrained shear differ among the 

tests.  To account for this and considering the model limitation of void ratio independence, the drained and 

undrained tests were calibrated using the non-linear isotropic stiffness function in RS2, which was used to 

match the different effective stress paths.  A summary of calibrated parameters is presented in Table 5-1. 

Table 5-1: Overflow Tailings Parameters Calibrated for S-H Constitutive Model. 

Parameter Unit CU1 CU2 CU3 CD1 

Φ’ ° 36.0 36.0 36.0 37.0 

c ° 0 0 0 0 

ν - 0.3 0.3 0.3 0.25 

E0 kPa 13 000 7 000 6 000 30 000 

pref kPa 100 100 100 100 

α - 0.7 1.35 1.0 0.2 

A - 0.0088 0.005 0.0035 0.005 

ψ ° 34.5 35.6 35.7 37.0 

Table 5-2 below presents pertinent observations made for undrained and drained test calibrations.  A 

comparison between the test data and the S-H soil constitutive model calibration for overflow tailings is 

presented in Figure 5-4.  The contrast is made in terms of mean effective stress (p'), deviatoric stress (q), axial 

strains (εa), volumetric strains (εv) and shear-induced pore pressures (pw) i.e. p' – q, q – εa, pw – ϵa and ϵv – ϵa.   
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Table 5-2: Pertinent Observations for Overflow Parameters Calibrated for S-H Constitutive Model. 

Calibrated 

Parameters 
CU1 (Red) CU2 (Orange) CU3 (Green) CD1 (Blue) 

p' – q 

There is a good match between the 

lab data and the calibration especially 

closer to the CSL. 

There is a good match between the 

lab data and the calibration, 

especially closer to the CSL. 

There is an excellent match between 

the laboratory data and the calibration 

There is an excellent match between 

the laboratory data and the calibration 

q – εa 

The peak strength and strain are 

slightly overpredicted at peak, but the 

strength for ϵa > 5 % is well calibrated. 

The peak strength and the strain are 

slightly overpredicted at peak, but the 

strength for ϵa > 1 % is well calibrated. 

There is an excellent match between 

the laboratory data and the calibration 

for ϵa > 2 % 

Overall, peak strength and stiffness 

are well-calibrated. 

pw – ϵa 

The modelled shear-induced pore 

pressures are under-predicted for 

ϵa < 5 %, but there is an excellent 

match for larger strains. 

The modelled shear-induced pore 

pressures agree with the laboratory 

data. 

The modelled shear-induced pore 

pressures are under-predicted for 

ϵa < 10 %, but there is an excellent 

match for larger strains. 

Zero excess pore pressure can 

develop during the shearing phase of 

a drained triaxial compression test. 

ϵv – ϵa 

Zero volumetric strain in undrained 

triaxial compression test, as sample 

volume kept constant during the 

shearing phase. 

Zero volumetric strain in undrained 

triaxial compression test, as sample 

volume kept constant during the 

shearing phase. 

Zero volumetric strain in undrained 

triaxial compression test, as sample 

volume kept constant during the 

shearing phase. 

The numerical model reaches a 

maximum of approximately ϵv = 4 %, 

while the measured laboratory value 

reaches a peak of ϵv = 6 %. 
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Figure 5-4: Comparison Between CIUC|CIDC Test Data and S-H Calibration for Overflow Tailings. 

 

CSL 
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The model was calibrated for four CIUC triaxial tests and one CIDC triaxial test completed on reconstituted 

underflow samples.  When tested, all CIUC tests were confined to an initial mean effective stress of 

σ3 = 400 kPa, but at different initial void ratios.  Therefore, the effective stress path for the undrained shear 

differ among the tests.  To account for this and considering the model limitation of void ratio independence, 

the drained and undrained tests were calibrated using the non-linear isotropic stiffness function in RS2, which 

was used to match the different effective stress paths.  A summary of the parameters is presented in Table 

5-3.  

Table 5-3: Underflow Tailings Parameters Calibrated for S-H Constitutive Model. 

Parameter Units CU1 CU2 CU3 CU4 CD1 

Φ’ ° 33.0 33.0 33.0 33.0 34.0 

c ° 0 0 0 0 0 

ν - 0.3 0.3 0.3 0.3 0.3 

E0 kPa 26 000 43 000 7 500 8 300 70 000 

pref kPa 100 100 100 100 100 

α - 0.65 0.25 0.15 0.60 0.20 

A - 0.0032 0.0015 0.0026 0.0010 0.0040 

ψ ° 32.8 33.0 33.0 33.0 34.0 

Table 5-3 below presents pertinent observations made for undrained and drained tests.  A comparison 

between the test data and the S-H soil constitutive model calibration for underflow tailings is presented in 

Figure 5-5.  The contrast is made in terms of p', q, εa, εv and pw i.e. p' – q, q – εa, pw – ϵa and ϵv – ϵa.  
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Table 5-4: Pertinent Observations for Overflow Parameters Calibrated for S-H Constitutive Model. 

Calibrated 

Parameters 
CU1 (Red) CU2 (Orange) CU3 (Green) CU4 (Green) CD1 (Blue) 

p' – q 
Good match between the lab 

data and the calibration. 

Relatively good match 

between the lab data and the 

calibration at lower strains. 

However, the stress path is 

under-predicted at larger 

strains. 

Poor match between the 

laboratory data and the 

calibration. 

Poor match between the 

laboratory data and the 

calibration 

There is an excellent match 

between the laboratory data 

and the calibration 

q – εa 

The peak strength and axial 

strain are slightly 

overpredicted at peak. 

However, there is an excellent 

match at larger strains. 

The peak strength is slightly 

under-predicted. Strengths are 

slightly over-predicted up to 

ϵa = 10%.  At larger strains ϵa 

> 10% strengths are slightly 

under-predicted.  

The peak strength is under-

predicted, but there is an 

excellent match for the 

strengths at larger strains 

The peak strength is under-

predicted, but there is an 

excellent match for the 

strengths at larger strains 

The model under-predicts the 

peak strength at the 

corresponding axial strain.  

Strength at axial strains 

ϵa > 10%, show much better 

agreement. 

pw – ϵa 

Good match between the lab 

data and the calibration.  The 

modelled shear-induced pore 

pressure is slightly under-

predicted for ϵa = 1% 

The measured shear-induced 

pore pressures are under-

predicted by the numerical 

model. 

The model shear-induced pore 

pressures are under-predicted 

for axial strains of up to 

ϵa = 10%, but there is a good 

match for large strains 

The model shear-induced pore 

pressures are under-predicted 

for axial strains of up to ϵa = 3 

%, but there is a good match 

for larger strains 

Zero excess pore pressure is 

allowed to develop during the 

shearing phase of a drained 

triaxial compression test. 

ϵv – ϵa 

Zero volumetric strain in 

undrained triaxial compression 

test, as sample volume kept 

constant during the shearing 

phase. 

Zero volumetric strain in 

undrained triaxial compression 

test, as sample volume kept 

constant during the shearing 

phase. 

Zero volumetric strain in 

undrained triaxial compression 

test, as sample volume kept 

constant during the shearing 

phase. 

Zero volumetric strain in 

undrained triaxial compression 

test, as sample volume kept 

constant during the shearing 

phase. 

The numerical model reaches 

a maximum of approximately ϵv 

= 2 %, while the measured 

laboratory value reaches a 

peak of ϵv = 6 % 
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Figure 5-5: Comparison Between CIUC|CIDC Test Data and S-H Calibration for Underflow Tailings. 

CSL 
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 : Staged Construction Numerical Modelling 

In this chapter, the staged construction of TSF-A is assessed using numerical modelling techniques.  These 

investigations are primarily conducted to predict the location of the phreatic surface as well as to assess pore 

pressure and drainage conditions within a tailings dam (Saad and Mitri, 2010). 

 Software 

RS2 Version 9.0 was used for the analyses.  RS2 is a program for 2-D finite element analysis of geotechnical 

structures for civil and mining applications.  RS2 can conduct a numerical groundwater seepage analysis for 

saturated and unsaturated soils using steady-state and transient groundwater seepage formulations through 

both homogeneous and heterogeneous earth and tailings dams (Xu, 2019). 

 Numerical Model Setup 

Figure 6-2 illustrates a 2-D cross-section on which the numerical analyses are conducted.  From previous 

studies conducted at TSF-A, Monitoring Line F is the highest most critical section and was chosen to conduct 

the numerical analyses. 

Fully coupled transient FEM was performed, which simulated full interaction between ground, construction 

materials and pore water to reproduce the behaviour of solid and fluid phases of various materials that form 

the tailings dam.  This approach allows the model to achieve a more accurate representation of consolidation 

and pore pressures distribution, which will result in a more realistic location of the phreatic surface during 

staged construction of the tailings dam (Saad and Mitri, 2010).  

A plane strain formulation (assumes deformations are zero in the longitudinal direction of the dam) was 

selected as the default type of analysis, which is typical for 2D analyses of dams, which have a constant 

(prismatic) cross-section (Xu, 2019).  Gaussian elimination was chosen as the default solution method and 

time units were set to months. 

6.2.1. Constitutive Models 

Constitutive models employed for staged construction were: 

 Linear Elastic (LE) for the rock foundation; 

 Mohr-Coulomb (MC) for starter wall and residual soils; 

 Softening-Hardening, for underflow and overflow tailings. 
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6.2.2. Material Parameters 

Identified Geotechnical Zones are as follows: 

 Underflow and Overflow Tailings; 

 Starter and Toe Wall; 

 Foundation – Residual Norite overlying Norite bedrock. 

Selected parameter sets used in the numerical modelling are based on the following considerations: 

 Although the overflow tailings are expected to be fully saturated below the phreatic surface and state 

parameter interpretations suggest that they are predominantly contractive.  The purpose of the model is 

not to perform trigger analyses during construction phases; therefore, TSF-A staged construction was 

conducted using drained overflow set of parameters (CD1, Table 5-1).  It should be noted that calibrated 

undrained overflow parameters would have been used if the model was developed specifically for static 

liquefaction trigger analyses, which go beyond the scope of this study. 

 Underflow tailings are expected to be located above the phreatic level and state parameter interpretations 

suggest that they are predominantly dilatant.  Thus, drained behaviour was assumed and S-H parameters 

calibrated from the drained test were used (CD1, Table 5-3 and Table 5-2). 

6.2.3. Hydraulic Parameters 

The hydraulic conductivity (permeability) for each material was determined by adjusting a sample function for 

silt from the Geoslope SEEP/W guide (GEO-SLOPE International Ltd., 2015).  An example of the function for 

overflow tailings is presented in Figure 6-1. 

 

Figure 6-1: Example of Hydraulic Conductivity Function for the Overflow Tailings. 
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The hydraulic conductivity parameters which were used in the numerical modelling are presented in Table 6-1. 

Table 6-1: Hydraulic Parameters Used in Numerical Modelling in RS2. 

Material Name Ksat Permeability (m/s) Anisotropy Ratio (K2 / K1) K1 Angle (°) 

Overflow 2.00E-08 10 90 

Underflow 2.00E-07 2 90 

Starter Wall 1.00E-07 1 0 

Toe Wall 1.00E-07 1 0 

Toe Drains 1.00E-05 1 0 

Residual Norite 2.00E-07 1 90 

Norite Bedrock 2.00E-07 1 0 

The analyses and interpretations for ksat for underflow and overflow tailings were determined through CPTu 

dissipation data performed across TSF-A.  The K2 / K1 factor specifies the relative permeability orthogonal to 

the K1 direction (Rocscience Inc D, n.d.).  It should be noted that the K1 permeability is the "primary" 

permeability defined by the saturated permeability (Ks) and the unsaturated permeability model 

(Rocscience Inc D, n.d.).  The K1 angle specifies the direction of the K1 permeability and is specified relative 

to the positive X (horizontal) direction (Rocscience Inc D, n.d.).   

Permeability in the overflow tailings zone is assumed anisotropic, with anisotropy ratio K2 / K1 of 10, whereas 

the permeability of the underflow tailings zone is assumed to be less anisotropic with anisotropy ratio of K2 / K1 

of 2 (Abadjiev, 1976; Vick, 1983; Witt, 2004).  According to Vick (1990), the anisotropy ratio generally ranges 

from 2 to 10 for coarse (underflow) and fine (overflow) tailings.  It should be noted that the permeability of 

overflow tailings is assumed one order of magnitude lower than the permeability of underflow tailings.   

6.2.4. Geometry and Mesh 

The configuration adopted for TSF-A numerical modelling is presented in Figure 6-2.  The finite element mesh 

is illustrated in Figure 6-3 and 6-4.  The geometry and mesh setup can be summarised as follows: 

 Underflow and Overflow Tailings; 

 Foundation at starter wall toe: 1082 mamsl; 

 Starter wall: 9.5m maximum height, external slope 1.5H:1.0V, internal slope 1.33H:1.0V; 

 Toe Wall: 2.0 m maximum height, external slope 2.0H:1.0V, internal slope 2.0H:1.0V; 

 Toe drains located on the inner and outer toe of the starter wall; 

 The model has a total width of 490 m and a maximum height of 54.20 m at the crest; 

 The finite element mesh comprises of 49075 triangular 6-node elements. 
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Figure 6-2: Monitoring Line F Showing Modelled Zones. 

 

Figure 6-3: Monitoring Line F Showing the Modelled 2-D Full Finite Element Mesh. 

 

Figure 6-4: Monitoring Line F Showing the Modelled 2-D Zoomed-In Finite Element Mesh. 
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6.2.5. Model Stages 

A total of ten stages (presented in Figure 6-5) were modelled and can be described as follows: 

 Stage 1 – computation of initial stress state at the foundation; 

 Stage 2 – construction of the starter and toe wall, as well as activation of inner and outer toe drains; 

 Stage 3 to Stage 10 – TSF-A Construction: 

o Modelling eight construction stages of TSF-A from 1098 to 1145 mamsl.  All stages were raised 

in 6.0 m increments; 

o The staged construction was run using several rates of rise i.e. 3.0 m/yr, 3.5 m/yr, 4.0 m/yr, 

4.5 m/yr, 5.0 m/yr, 5.5 m/yr and 6 m/yr to study the effect that increased rates of rise have on pore 

pressures and location of phreatic surface within TSF-A; 

o The staged construction at different rates of rise was conducted using hydraulic gradients 

representative of hydrostatic and sub-hydrostatic pore pressure conditions.  For hydrostatic 

conditions, a hydraulic gradient of 9.81 kPa/m was used.  For sub-hydrostatic conditions, an 

average hydraulic gradient estimated from CPTu along Monitoring Line F of 6.24 kPa/m was used;   

o Transient groundwater flow was computed at each phase and total pore pressures were computed 

based on construction times and material consolidation, stiffness and permeability properties. 

6.2.6. Boundary Conditions 

For the toe drains, zero-pressure nodes were applied where outflow occurs.  The permeability of the filter 

layers leading into the drains was adjusted to reduce the efficiency of the zero-pressure nodes to represent 

more realistic drains.  

The transient response of the system was assessed by performing a consolidation analysis with a new set of 

hydraulic and mechanical boundary conditions set for each stage of construction (Saad and Mitri, 2010).  A 

total head equal to the applicable construction stage elevation was applied to edges of the model to ensure 

accurate pore pressure distributions throughout the model. 

It should be noted that the top surfaces of the overflow and underflow tailings are fully drained.  Therefore, a 

boundary condition of p = 0 was applied to these boundaries for each construction stage (Saad and Mitri, 2010; 

Xu, 2019).  The remaining side of the model are impermeable and have zero flux.  For the mechanical boundary 

conditions, the model has a fixed base and the right vertical edge is fixed in the horizontal direction (i.e. zero 

horizontal displacement).  Figure 6-6 and Figure 6-7 illustrate the hydraulic and mechanical boundary 

conditions for the last construction stage, respectively. 

The self-weight of elements that comprise the finite element mesh is applied as a gravity force to each stage.  

This allows pore pressures induced by the weight of the fluid in deposited tailings to be considered.  The load 

related with each stage is applied progressively over the period assigned to each stage.  This mitigates against 

the generation of undrained conditions that could occur due to instantaneous loading from a construction stage.  

It should be noted that in reality, semiradial flow of tailings deposited via hydrocyclones may lead to uneven 

rates of rise over time (Saad and Mitri, 2010). 
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STAGE 1 – 1097.7 mamsl 

STAGE 2 – 1097.7 mamsl 

STAGE 3 – 1103.7 mamsl 

STAGE 4 – 1109.7 mamsl 

STAGE 5 – 1115.7 mamsl 

STAGE 6 – 1121.7 mamsl 

STAGE 7 – 1127.7 mamsl 

STAGE 8 – 1133.7 mamsl 

STAGE 9 – 1139.7 mamsl 

STAGE 10 – 1145.0 mamsl 

Figure 6-5: Summary of TSF-A Construction Stages as Modelled in RS2.
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Figure 6-6: Hydraulic Boundary Conditions for Final Stage of Construction. 

 

Figure 6-7: Mechanical Boundary Conditions for Final Stage of Construction as well as Points 1 to 4 and Section A to D Used to Extract and Compare Data.

P =0 or Q = 0 

Total Head = 1079 m 

Total Head = 1145 m 

Total Head = 1145 m 

Zero Pressure Nodes 
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 Results and Discussion of Staged Construction 

The results show that the phreatic surface is delineated by the internal boundary of the underflow tailings that 

has a higher permeability than the overflow tailings, which is almost fully saturated.  The evolution of total head 

and the location of phreatic surface for a RoR of 3.0 m/yr and 6.0 m/yr, using hydraulic gradients representative 

of sub-hydrostatic and hydrostatic pressure conditions, are presented in Figure 6-8 and Figure 6-9, 

respectively.  From the figures, the RoR has a more noticeable impact on the location of the phreatic surface 

than the pore pressure regime (be it hydrostatic or sub-hydrostatic hydraulic gradients).  With an increasing 

RoR, there is a corresponding rise of the phreatic surface.   

Figure 6-10 to Figure 6-13 show the contours of the pore water pressure developed in the tailings dam at the 

end of construction, for rates of rise of 3.0 m/yr and 6.0 m/yr, using hydraulic gradients representative of sub-

hydrostatic and hydrostatic pore pressure conditions.  From the figures, the largest pore pressures are 

generated in the overflow tailings, as this zone has the lowest permeability.  Also, the figures show that 

underflow tailings are unsaturated following its construction due to its higher permeability.  According to 

Holmqvist (2014), negative pore pressures above the phreatic surface shown in the figures will have minimal 

impact on the seepage analysis. This is because low water content is expected in this material zone and would 

thereby result in low seepage.  

It should be noted that phreatic surface and pore pressure trends described above are comparable to the 

findings of Saad and Mitri (2010), Ormann et al (2013) and Zardari, et al. (2014) for upstream tailings dams.  

Notably, the largest pore pressures are developed in the lower third of the overflow (slime) zone, which are 

similar to the findings of Priscu (1999), Saad and Mitri (2010), Ormann et al (2013), Zardari, et al. (2014), 

Naeini and Akhtarpour (2018) and Xu (2019). 

Also, Figure 6-10 to Figure 6-13 show maximum pore water pressure zones at the overflow-foundation 

interface that extend over the bottom 20-25 % of the tailings dam foundation.  This was first observed by 

Gassner and Fourie (1998) that when tailings dams are constructed on a low permeability foundation, a high 

pore pressure ‘bulb’/zone typically forms near the base.  Subsequently, similar observations were made by 

Saad and Mitri (2010), Ormann et al (2013) and Naeini and Akhtarpour (2018) for upstream and centreline 

tailings dams with low permeability foundations.   

To carefully study drainage conditions in TSF-A, the time history of pore pressure (pp) is plotted against the 

time history of the effective confining pressure (p’) at Points 1, 2, 3, and 4 (Figure 6-7) for rates of rise of 

3.0 m/yr and 6.0 m/yr at hydraulic gradients representative of sub-hydrostatic and hydrostatic pressure 

conditions and are presented in Figure 6-14 and Figure 6-15, respectively. 

The following pertinent observations can be made from Figure 6-14 for rates of rise of 3.0 m/yr and 6.0 m/yr 

using hydraulic gradients representative of sub-hydrostatic pore pressure conditions: 

 Points 2 to 4 show a continuous increase in p’ at approximately the same rate during the staged 

construction.  At point 1 between Stage 3 and Stage 5, p’ increased at roughly the same rate as Points 2 

to 4.  However, much higher p’ values were observed due to greater heights of tailings placed over these 

stages.  Subsequently, with deposition progressing upstream and with loading moving further away from 
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Point 1, the increase in p’ gradually decreased and became relatively constant after Stage 7 with points 2 

to 4 reaching higher p’ between Stages 7 and 10; 

 p’ decreases into the TSF-A basin (i.e. moving from Point 1 to 4), which is due to the decreasing height of 

overlying tailings as TSF-A is constructed in the upstream direction.  In contrast, a continuous increase in 

pp and rates of increase can be observed moving into the TSF-A basin during the staged construction.  

This is likely due to the distance from the internal drainage, i.e. Point 1 located nearest to the toe drains, 

shows the lowest pp and rates of increase, while Point 4 located furthest away from the toe drains shows 

the highest pp and rates of increase; 

 Overall Points 1 to 4 indicate that the lower portion of the overflow tailings demonstrate a drained-like 

behaviour during staged construction.  This is reflected by the continuous increases in p’ that are notably 

higher than their corresponding pp.  It can also be observed that drainage conditions become poorer into 

the TSF-A basin as the difference between p’ and pp progressively decreases from Points 1 to 4. 

The following pertinent observations can be made from Figure 6-15 for rates of rise of 3.0 m/yr and 6.0 m/yr 

using hydraulic gradients representative of hydrostatic pore pressure conditions: 

 Points 2 to 4 show a continuous increase in p’ at approximately the same rate during the staged 

construction.  At Point 1 between Stage 3 and Stage 5, p’ increased at roughly the same rate as Points 2 

to 4.  However, much higher p’ values were observed due to greater heights of tailings placed over these 

stages.  Subsequently, with deposition progressing upstream and with loading moving further away from 

Point 1, the increase in p’ gradually decreased and became relatively constant after Stage 7 with Points 2 

and 3 reaching higher p’ between Stages 7 and 10; 

 p’ decreases into the TSF-A basin (i.e. moving from point 1 to 4), which is due to the decreasing height of 

overlying tailings as TSF-A is constructed in the upstream direction.  In contrast, a continuous increase in 

pp and rates of increase can be observed moving into the TSF-A basin during the staged construction, 

which is likely due to distance from the internal drainage, i.e. Point 1 located close to the toe drains shows 

the lowest pp and rates of increase, while Point 4 located furthest away from the toe drains shows the 

highest pp and rates of increase; 

 Points 1 and 2 indicate that lower portions of the overflow tailings, closer to the underflow tailings zone, 

demonstrate drained-like behaviour during staged construction, which is reflected by the continuous 

increases in p’ that are notably higher than their corresponding pp;  

 p’ and pp at Point 3 show relatively small differences in pressure when compared to Point 3 in Figure 6-14 

between Stages 3 and 6.  Nevertheless, drained-like conditions still prevail with the curves beginning to 

diverge (after Stage 6) with an increase in p’ and a decrease in pp;  

 At Point 4, p’ initially starts off higher than the pp but approximately halfway through Stage 3, up to the end 

of the staged construction, the pp generated and the rate of increase is greater than p’.  On this basis, it 

is inferred from the results that the lower portion of the overflow tailings in this zone experiences undrained-

like conditions. 

To gain a better understanding of pore pressures generated within the underflow and overflow tailings over 

the full height of TSF-A, pore pressures along Section Lines A to D (Figure 6-7) were analysed and plotted 

against the hydrostatic pore pressure at the end of construction and presented in Figure 6-16 to Figure 6-19. 
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It is observed from Figure 6-16 to Figure 6-19 that Section Lines A to D are indicative of sub-hydrostatic 

pressure conditions for both vertical hydraulic gradients of 6.24 kPa/m and 9.81 kPa/m with rates of rise ranging 

from 3.0 m/yr to 6.0 m/yr. 

As mentioned above, the rate of rise has a more noticeable impact on the location of the phreatic surface than 

vertical flow gradients representing sub-hydrostatic or hydrostatic pore pressure conditions.  With an increasing 

rate of rise, there is a corresponding rise of the phreatic surface.  This can be more clearly seen in Figure 6-16 

and Figure 6-17 (circled in red) where the changes from negative to positive pressures (indicating the depth 

of the phreatic surface) occur progressively higher in the section with increasing rate of rise. 

 Summary of Staged Construction At TSF-A 

The rate of rise has a more noticeable impact on the location of the phreatic surface than the pore pressure 

regime.  With an increasing rate of rise, there is a corresponding rise of the phreatic surface. 

The figures show that the largest pore pressures are developed in the overflow zone as this zone has the 

lowest permeability.  Underflow tailings is unsaturated following its construction due to its higher permeability.  

Phreatic surface and pore pressure trends observed in the analyses are comparable to the literature.  

Maximum bulbs/zones of pore water pressure form at the overflow-foundation interface.  

For rates of rise of 3.0 m/yr and 6.0 m/yr using hydraulic gradients representative of sub-hydrostatic pore 

pressure conditions, the lower portion of the overflow tailings demonstrate a drained-like behaviour during 

staged construction.  This is reflected by the continuous increases in p’ that are notably higher than their 

corresponding pp.  It can also be observed that drainage conditions become poorer into the TSF-A basin as 

the differences between p’ and pp progressively decrease from Points 1 to 4. 

For rates of rise of 3.0 m/yr and 6.0 m/yr using hydraulic gradients representative of hydrostatic pore pressure 

conditions, the lower portion of the overflow tailings from Points 1 to 3 demonstrate a drained-like behaviour 

during staged construction.  On the other hand, Point 4 demonstrates undrained-like behaviour. This is 

reflected by the continuous increases in pp that are notably higher than their corresponding p’.  Section Lines 

A to D are indicative of sub-hydrostatic pressure conditions for both hydraulic gradients of 6.24 kPa/m and 

9.81 kPa/m, with rates of rise ranging from 3.0 m/yr to 6.0 m/yr. 
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RoR = 3.0 m/yr, Hydraulic Gradient = 6.24 kPa/m RoR = 6.0 m/yr, Hydraulic Gradient = 6.24 kPa/m 
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Figure 6-8: The Evolution of Total Head and the Location of the Phreatic Surface for a Rate of Rise of 3.0 m/yr and 6.0 m/yr, Using a Sub-Hydrostatic Hydraulic Gradient.  
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RoR = 3.0 m/yr, Hydraulic Gradient = 9.81 kPa/m RoR = 6.0 m/yr, Hydraulic Gradient = 9.81 kPa/m 
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Figure 6-9: The Evolution of Total Head and the Location of the Phreatic Surface for a Rate of Rise of 3.0 m/yr and 6.0 m/yr, Using a Hydrostatic Hydraulic Gradient. 

  

Stage 7 

Stage 8 

Stage 9 

Stage 10 

Stage 8 

Stage 9 

Stage 10 

Stage 7 

Stellenbosch University https://scholar.sun.ac.za



76 

 

Figure 6-10: Contours of Pore Water Pressure at the End of Construction, for a Rate of Rise of 3.0 m/yr, Using a Sub-Hydrostatic Hydraulic Gradient. 

 

Figure 6-11: Contours of Pore Water Pressure at the End of Construction, for a Rate of Rise of 6.0 m/yr, Using a Sub-Hydrostatic Hydraulic Gradient.  

Maximum pore water pressure zone at the 

overflow-foundation interface 
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Figure 6-12: Contours of Pore Water Pressure Developed at the End of Construction, for a Rate of Rise of 3.0 m/yr, Using a Hydrostatic Hydraulic Gradient. 

 

Figure 6-13: Contours of Pore Water Pressure Developed at the End of Construction, for a Rate of Rise of 6.0 m/yr, Using a Hydrostatic Hydraulic Gradient. 
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Figure 6-14: Time History of Pore Pressure (PP) and Effective Confining Pressure (p’) at Points 1 to 4, Using a Sub-Hydrostatic Hydraulic Gradient. 
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Figure 6-15: Time History of Pore Pressure (PP) and Effective Confining Pressure (p’) at Points 1 to 4, Using a Hydrostatic Hydraulic Gradient. 
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Figure 6-16: Pore Pressures Along Section Line A at the End of Construction, Using Sub-Hydrostatic and Hydrostatic Hydraulic Gradients at Rates of Rise Ranging Between 3.0 m/yr and 6.0 m/yr. 
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Figure 6-17: Pore Pressures Along Section Line B at the End of Construction, Using Sub-Hydrostatic and Hydrostatic Hydraulic Gradients at Rates of Rise Ranging Between 3.0 m/yr and 6.0 m/yr. 
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Figure 6-18: Pore Pressures Along Section Line C at the End of Construction, Using Sub Hydrostatic and Hydrostatic Hydraulic Gradients at Rates of Rise Ranging Between 3.0 m/yr and 6.0 m/yr. 
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Figure 6-19: Pore Pressures Along Section Line D at the End of Construction, Using Sub-Hydrostatic and Hydrostatic Hydraulic Gradients at Rates of Rise Ranging Between 3.0 m/yr and 6.0 m/yr.
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 : Conclusions 

After carefully reviewing all available literature, determining the in-situ state and static liquefaction potential of 

tailings dams is typically assessed using one of several methodologies within the framework of CSSM that 

involves the use of in-situ and laboratory testing in conjunction with numerical analyses.  The review also 

highlights the importance of performing staged construction to determine the hydromechanical behaviour of 

tailings dams.  From the literature review, it can be concluded that there is a lack of available literature and 

studies related to determining the in-situ state and static liquefaction potential as well as staged construction 

of tailings dams from a South African perspective. 

Characterisation of the state parameter of silt-like tailings can be performed in the framework of CSSM.  The 

methodology is briefly explained and results are compared with more empirical approaches Robertson (2010) 

and Jefferies and Been (2016).  It is observed that the state parameter using Shuttle and Jefferies (2016) 

procedure is systematically higher than the Robertson (2010) and Jefferies and Been (2016) methods.  The 

Shuttle and Jefferies (2016) methodology shows that underflow tailings display predominantly dilative (strain-

hardening) behaviour at most of the CPTu soundings.  Only a few soundings show minor contractive layers 

within some portion of the underflow tailings.  The overflow tailings show contractive (strain-softening) 

behaviour with interbedding of dilative layers in some portions of the overflow tailings.  Data from CPTu was 

also used to estimate the soil behaviour type along soundings, based on Robertson (2010) SBTn charts.  Good 

correlations were found between SBTn classifications and interpretation of state parameter using Shuttle and 

Jefferies (2016) methodology in that similar behavioural responses of the underflow (i.e. dilative) and overflow 

(i.e. contractive) were noted.  In Summary, the Shuttle and Jefferies (2016) methodology is based on a more 

fundamental understanding of the physics involved in cone penetration and uses a constitutive model built 

around the concept of state parameter, making it more reliable for silt-like tailings than empirically-based 

procedures (Sottile, et al., 2019). 

Staged construction using fully coupled transient FEM analyses is a useful tool to understanding the pore 

pressure distribution, drainage conditions and location of phreatic surface within a tailings dam.  As part of this 

research these were assessed at varying rates of rise using hydraulic gradients representative of hydrostatic 

and sub-hydrostatic pore pressure conditions.  The rate of rise has a more noticeable impact on the location 

of the phreatic surface than the pore pressure regime.  With an increasing rate of rise, there is a corresponding 

rise of the phreatic surface.  It is observed that the largest pore pressures develop in the overflow tailings, as 

this zone has the lowest permeability.  Underflow tailings are unsaturated following its construction due to its 

higher permeability and phreatic surface located at the underflow-overflow contact boundary.  Phreatic surface 

and pore pressure trends observed in the analyses are comparable to the literature.  For rates of rise of 

3.0 m/yr and 6.0 m/yr, using hydraulic gradients representative of sub-hydrostatic pore pressure conditions, 

the lower portion of the overflow tailings demonstrate a drained-like behaviour during staged construction.  

Also, poorer drainage conditions are observed in the TSF-A basin.  For rates of rise of 3.0 m/yr and 6.0 m/yr, 

using hydraulic gradients representative of hydrostatic pore pressure conditions, the lower portion of the 

overflow tailings predominantly demonstrates a drained-like behaviour during staged construction.  

Section Lines A to D are indicative of sub-hydrostatic pressure conditions for both hydraulic gradients of 

6.24 kPa/m and 9.81 kPa/m, with rates of rise ranging from 3.0 m/yr to 6.0 m/yr. 
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 Future Research 

Future research, building on this work, should include the following: 

 Apply the Shuttle and Jefferies (2016) methodologies to characterise the in-situ state (contractive and or 

dilative behaviour) of tailings dams comprised of sand, silt and clay-sized tailings that have been deposited 

and constructed using different approaches; 

 Investigation of the effect of coupled seepage and stress analysis to perform static liquefaction trigger 

analyses and slope stability assessment in which a factor of safety can be established under different 

operating scenarios; 

 Investigation of the effect of coupled seepage and stress analysis to perform dynamic liquefaction trigger 

analyses and slope stability assessment in which a factor of safety can be established under different 

operating scenarios. 
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