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ABSTRACT

The aim of this thesis is the semi-classical implementation of Wegner’s flow equations

and comparison with the well-established Wentzel-Kramers-Brillouin method. We do this

by converting operators, in particular the Hamiltonian, into scalar functions, while an

isomorphism with the operator product is maintained by the introduction of the Moyal

product. A flow equation in terms of these scalar functions is set up and then approximated

by expanding it to first order in ~. We apply this method to two potentials, namely the

quartic anharmonic oscillator and the symmetric double-well potential. Results obtained

via the flow equations are then compared with those obtained from the WKB method.

OPSOMMING

Die doel van hierdie tesis is die semi-klassieke implementering van Wegner se vloei-

vergelykings en vergelyking met die welbekende Wentzel-Kramers-Brillouin metode. Ons

doen dit deur operatore, en spesifiek die Hamilton operator, met skalare funksies te ver-

vang, terwyl ’n isomorfisme met die operator produk behou word deur die invoering van

die Moyal produk. ’n Vloei-vergelyking in terme van hierdie skalare funksies word opgestel

en dan benader deur dit uit te brei tot eerste order in ~. Ons pas hierdie metode toe op

twee potensiale, naamlik die kwarties nie-harmoniese ossillator en die simmetriese dubbel-

put potensiaal. Resultate wat ons verkry vanaf die vloei-vergelykings word dan vergelyk

met dié verkry vanaf die WKB metode.
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Introduction

Flow equations, in the form used in this work, were introduced fairly recently by Wegner

[1] and separately by Glazek and Wilson [2]. This (exact) approach offers us a powerful

new tool in the analysis of quantum systems. In this thesis, we combine the flow equations

with the Moyal product [3], which enables a semi-classical approximation to the exact flow

equations. We make this non-perturbative approximation, because perturbation theory

fails in many interesting cases, such as the symmetric double-well potential (which we

discuss in chapter 4). While other semi-classical approximations exist (e.g. the WKB

method), it is often difficult to implement them or find higher order terms in their expan-

sion. In the semi-classical formulation used in this thesis, the double commutators one has

in the flow equation are replaced with so-called Moyal brackets. These Moyal brackets are

very easy to expand to any order of ~ that one would like, therefore making the calculation

of successive terms in the expansion a straight-forward task.

To verify the validity of our semi-classical approximation, we compare our results with

those of one of the oldest and most well-established techniques, namely the Wentzel-

Kramers-Brillouin or WKB method.

In the first chapter we provide a short overview of the WKB method. We start by

looking at its basic assumption for validity, whereafter we move on to discuss aspects

such as the classically allowed and forbidden regions and the connection formulas between

the two. Finally we apply the WKB method to the symmetric double-well potential.

Numerical results were generated for comparison with the Moyal bracket method’s results

of chapter 4.

The second chapter deals with the Moyal product and flow equation techniques we use

throughout the rest of the work. The chapter ends by showing how to combine the two to

form our semi-classical approximation.

Chapters three and four are applications of the Moyal bracket method to first the quartic

anharmonic oscillator and then the more complicated symmetric double-well potential. In

each chapter a comparison is given between the results obtained via the Moyal bracket

method and the WKB approach. The results from the Moyal bracket approach are new and

clearly show their worth in being able to obtain good results for the symmetric double-well
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potential, a potential which cannot be treated perturbatively with any accuracy.

viii



CHAPTER 1

The WKB Method

The Wentzel-Kramers-Brillouin method is one of the cornerstone methods of semi-classical

approximation and any new approach should be tested against it. With this said, we will

now give an overview of the WKB approximation [4, 5, 6].

1.1 Overview

In essence, the WKB method gives us approximate solutions to the Schrödinger equa-

tion. To see the idea behind this approximation, let us consider the following situation in

one dimension: A particle with energy E is moving in a region where the potential V (x) is

constant. Then, if E > V , we can satisfy the Schrödinger equation with a wave function

of the form

ψ(x) = Ae±ikx, with k ≡ 1

~

√
2m(E − V ). (1.1)

This is a plane wave traveling in the direction indicated by the plus (to the right) or the

minus (to the left). It also has a constant wavelength λ = 2π
k

and a constant amplitude

A. This ideal case of a constant potential is, however, not very realistic in general. On

the other hand, one might not be able to solve for an arbitrary potential V (x). This is

were the WKB approximation comes in: If V (x) is not constant, but varies very slowly

in comparison to λ, then we may say that the potential is still essentially constant and

the wave function will still be sinusoidal for all intents and purposes. The wavelength and

amplitude, however, now become slowly varying functions of x.

In the case where E < V (V constant) a similar argument may be followed, except that

the wave function ψ is now exponential:

ψ(x) = Ae±κx, with κ ≡ 1

~

√
2m(V − E). (1.2)

Then if V (x) is not constant, but once again changes slowly in comparison to 1
κ
, ψ remains

in essence exponential, where A and κ now change slowly with x.

There is one thing we have not yet touched upon, namely when E ≈ V . In the region of

these classical turning points we find that both 1
k

(and hence the wavelength) and 1
κ

tend

1



1. The WKB Method 2

to infinity. We can therefore not assert that V (x) changes slowly by comparison to the

length scale on which the wave function varies, in this region. In the actual application of

the WKB method, great care should then be taken to correctly handle these points.

1.1.1 The E > V (x) region

Let us now turn to the so-called classical region, where E > V (x), and find a mathe-

matical expression for our approximate wave function in the WKB framework. First let

us rewrite the Schrödinger equation in a different form:

− ~
2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

d2ψ

dx2
= −p(x)2

~2
ψ(x), (1.3)

where p(x) =
√

2m(E − V (x)) is of course the classical momentum for a particle with

energy E and potential energy V (x).

We can, in general, write the wave function of a particle in a form using an amplitude

and a phase:

ψ(x) = A(x)eiφ(x), (1.4)

where both A(x) and φ(x) are real functions. Let us now substitute this into the second

form of the Schrödinger equation, (1.3):

dψ

dx
= (A′(x) + iA(x)φ′(x))eiφ(x)

d2ψ

dx2
= (A′′ + 2iA′φ′ + iAφ′′ − A(φ′)2)eiφ

A′′ + 2iA′φ′ + iAφ′′ − A(φ′)2 = −p2

~2
A. (1.5)

Here we have used primes to indicate derivatives to x. Equation (1.5) is actually two

equations in disguise. One for the real part and one for the imaginary part. Separating

them gives us

A′′ − A(φ′)2 = −A
p2

~2
(1.6)

2A′φ′ + Aφ′′ = 0. (1.7)
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We can write both of these equations in forms which make it clearer how to solve them:

A′′ = A

(
(φ′)2 − p2

~2

)
(1.8)

(A2φ′)′ = 0. (1.9)

A(x) is not the zero function, since we are not interested in trivial solutions of the

Schrödinger equation. The second equation (eq. 1.9) can now be easily solved:

A2φ′ = C2 or alternatively A =
C√
φ′ . (1.10)

Here we take only the positive solution, since A(x) is an amplitude. The first equation (eq.

1.8), however, cannot be solved in general. Here, therefore, is where the approximation,

upon which the WKB method rests, comes in: We will assume that the amplitude, A,

varies very slowly, so that the ratio A′′

A
becomes negligible in comparison to both (φ′)2 and

p2

~2 . This reduces the left hand side of (1.8) to zero, so that we obtain:

(φ′)2 =
p2

~2
⇒ φ′ = ±p

~
. (1.11)

We can then integrate to find for φ(x)

φ(x) = ±1

~

∫
p(x)dx, (1.12)

which then gives us

ψ(x) =
C√
p(x)

e±
i
~

∫
p(x)dx. (1.13)

The general form of ψ(x) is of course a linear combination of the terms with different

signs:

ψ(x) =
1√
p(x)

(
αe

i
~

∫
p(x)dx + βe−

i
~

∫
p(x)dx

)
, (1.14)

where we have absorbed the constant C into both α and β.
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1.1.2 The E < V (x) region

While we have taken E > V (x) in the above discussion, it can easily be seen that when

E < V (x), such as when a particle enters a potential barrier, we find that p(x) becomes

imaginary. This simply turns p(x) into i|p(x)| so that we obtain for the wave function,

ψ(x) =
C√
|p(x)|

e±
1

~

∫
|p(x)|dx. (1.15)

The general solution is of course once again a linear combination of the two terms, one

with a plus sign and one with a minus sign. However, in this case the coefficient of the

exponentially growing term must be small, and indeed zero for a barrier of infinite width,

in order to ensure quadratic integrability of the wave function.

1.1.3 Connection Formulas

We now have formulas for the wave function in the case where the particle’s total energy

is greater than the potential, as well as for the case where the particle’s energy is less. We

will now turn our discussion to the region where the WKB method breaks down and how

to deal with this problem.

The WKB method starts to fail once we are close enough to a classical turning point,

i.e. when E ≈ V (x), since then p(x) → 0 and the wave function goes to infinity. What we

need, therefore, is some kind of wave function that works in this area and that can bridge

the small gap between the wave functions on either side (above and below) of the potential.

For the sake of the following discussion, we assume that the point where E = V (x) occurs

at x = a. Close to this point we can approximate V (x) by a straight line,

V (x) ∼= V (a) + V ′(a)(x − a) = E + V ′(a)(x − a). (1.16)

We now need to find the wave function for this linearised potential, so we need to solve

the Schrödinger equation,

− ~
2

2m

d2ξ

dx2
+ (E + V ′(a)(x − a))ξ = Eξ. (1.17)
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This can be written as

d2ξ

dx2
= κ3(x − a)ξ, where κ =

(
2mV ′(a)

~2

) 1

3

. (1.18)

By additionally setting z = κ(x − a), we obtain Airy’s equation,

d2ξ

dz2
= zξ, (1.19)

with solutions Ai(z) and Bi(z) (since the Airy equation is a second order linear differential

equation). Once again the general solution for ξ is a linear combination of Ai(z) and Bi(z):

ξ(x) = c Ai(κ(x − a)) + dBi(κ(x − a)), (1.20)

with c and d appropriately chosen. We have assumed here that V ′(a) is positive (upward-

sloping turning point), so that κ is real. However, if V ′(a) is negative (downward-sloping

turning point) we can simply define κ = −
(

2m|V ′(a)|
~2

) 1

3

without altering the above discus-

sion.

The following is a list of the asymptotic forms of the two Airy functions. We shall be

using them in order to connect the wave functions together.

For z ≫ 0:

Ai(z) ∼ 1

2
√

πz1/4
e−

2

3
z3/2

(1.21)

Bi(z) ∼ 1√
πz1/4

e
2

3
z3/2

. (1.22)

For z ≪ 0:

Ai(z) ∼ 1√
π(−z)1/4

sin

[
2

3
(−z)

3

2 +
π

4

]
(1.23)

Bi(z) ∼ 1√
π(−z)1/4

cos

[
2

3
(−z)

3

2 +
π

4

]
. (1.24)

We now need to match the WKB solutions on either side of x = a to the wave function

ξ(x). This needs to be done in a region where the following conditions hold: The linearised

potential E +V ′(a)(x−a) needs to remain accurate enough such that ξ(x) remains a good
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approximation and it needs to extend far enough from x = a so that the WKB wave

functions remain reliable.

For the derivation of the connection formulas we will confine our discussion to a

upwards-sloping turning point as the derivation for a downward-sloping turning point

is very similar. From our discussion of the WKB solutions in sections 1.1.1 and 1.1.2 we

obtain as our WKB wave functions:

ψ
WKB

(x) =





1√
p(x)

[
α e

i
~

∫ a
x p(x′)dx′

+ β e−
i
~

∫ a
x p(x′)dx′

]
, x < a

1√
|p(x)|

[
γ e

1

~

∫ x
a |p(x′)|dx′

+ δ e−
1

~

∫ x
a |p(x′)|dx′

]
, x > a

(1.25)

If we take E < V (x) for all x > a, then we must take γ = 0. Futhermore, in this

overlapping region we may use the approximate potential (1.16) to calculate ψ
WKB

(x):

p(x) ≈
√

2m[E − E − V ′(a)(x − a)] =
√

−2mV ′(a)(x − a) = ~ κ
3

2

√
−(x − a). (1.26)

Therefore in the x > a region we find,

∫ x

a

|p(x′)|dx′ ≈ ~ κ
3

2

∫ x

a

√
−(x′ − a)dx′ =

2

3
~κ

3

2 (x − a)
3

2 , (1.27)

so that

ψ
WKB

(x) ≈ δ√
~κ3/4(x − a)1/4

e−
2

3
[κ(x−a)]3/2

. (1.28)

Now, using the asymptotic form of the Airy functions (x ≫ a ⇒ z ≫ 0), we obtain for ξ:

ξ(x) ≈ c

2
√

π[κ(x − a)]1/4
e−

2

3
[κ(x−a)]3/2

+
d√

π[κ(x − a)]1/4
e

2

3
[κ(x−a)]3/2

. (1.29)

Comparing (1.28) and (1.29) we see that

c = 2

√
π

~κ
δ (1.30)

d = 0. (1.31)
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We can now repeat this procedure for the region where x < a:

∫ a

x

p(x′)dx′ ≈ ~ κ
3

2 ≈
∫ a

x

√
−(x′ − a)dx′ =

2

3
~[−κ(x − a)]

3

2 . (1.32)

ψ
WKB

(x) ≈ 1√
~κ3/4(−(x − a))1/4

[
α ei 2

3
[−κ(x−a)]

3
2 + β e−i 2

3
[−κ(x−a)]

3
2

]
(1.33)

Once again we use the Airy functions’ asymptotic form (x ≪ a ⇒ z ≪ 0) to write for

ξ(x),

ξ(x) ≈ c√
π[−κ(x − a)]1/4

sin

[
2

3
[−κ(x − a)]2/3 +

π

4

]

=
1

2i

c√
π[−κ(x − a)]1/4

[
eiπ/4ei 2

3
[−κ(x−a)]2/3 − e−iπ/4e−i 2

3
[−κ(x−a)]2/3

]
, (1.34)

(remember d = 0).

Comparing (1.33) and (1.34) this time and using (1.30) gives us

c

2i
√

π
eiπ/4 =

2
√

π
~κ

δ

2i
√

π
eiπ/4 =

δ

i
√

~κ
eiπ/4 =

α√
~κ

⇒ α = −ieiπ/4δ (1.35)

−c

2i
√

π
e−iπ/4 =

−2
√

π
~κ

δ

2i
√

π
e−iπ/4 =

−δ

i
√

~κ
e−iπ/4 =

β√
~κ

⇒ β = ie−iπ/4δ. (1.36)

The above are the so-called connection formulas which allow a smooth transition from one

side of the turning point to the other. We can now express the WKB wave function in

terms of a single normalization constant δ:

ψ
WKB

(x) =





2δ√
p(x)

sin
[

1
~

∫ a

x
p(x′)dx′ + π

4

]
, x < a

δ√
|p(x)|

[
e−

1

~

∫ x
a |p(x′)|dx′

]
, x > a

(1.37)

1.2 Example: The Symmetric Double-Well Potential

In this section we will apply the WKB method to a symmetric double-well potential.

We will use the results obtained this way as a comparison to our findings in a later chapter.
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-x1-x2 x1 x2

x

E

VHxL

Figure 1.1: The general form of the symmetric double-well potential

1.2.1 The WKB wave function

The form of the potential we shall be looking at is the following (see Figure 1.1)

V (x) = −ax2 + bx4 +
a2

4b
(1.38)

=
(a − 2bx2)2

4b
, (1.39)

where a, b > 0.

Since this potential is symmetric we need only concern ourselves with even and odd wave

functions. In particular, we will obtain the wave functions for when E < V (0). First

we write down the general forms of the WKB wave functions in the regions 0 < x < x1,

x1 < x < x2 and x > x2:

ψ
WKB

(x) =





1√
|p(x)|

[
δ e

− 1

~

∫ x
x2

|p(x′)|dx′

]
, x > x2

1√
p(x)

[
α e

i
~

∫ x2
x p(x′)dx′

+ β e−
i
~

∫ x2
x p(x′)dx′

]
, x1 < x < x2

1√
|p(x)|

[
η e

1

~

∫ x1
x |p(x′)|dx′

+ ρ e−
1

~

∫ x1
x |p(x′)|dx′

]
, 0 < x < x1.

(1.40)
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We cannot assume that η is zero, since our barrier is not infinitely wide. We have already

done most of the work for the turning point x2 in section 1.1.3, so we will simply write:

ψ
WKB

(x) =





1√
|p(x)|

[
δ e

− 1

~

∫ x
x2

|p(x′)|dx′

]
, x > x2

2δ√
p(x)

sin
[

1
~

∫ x2

x
p(x′)dx′ + π

4

]
, x1 < x < x2

(1.41)

Now we need to obtain the connection formulas for the wave functions at x1. Analysis

proceeds just as in section 1.1.3. There are, of course, some small changes to be made.

With a = x1, κ =
[

2m
~2 |V ′(x1)|

]1/3
and z = −κ(x − x1) we can once again use the Airy

functions just as before to write the bridging wave function as

ξ(x) = c Ai(−κ(x − x1)) + dBi(−κ(x − x1)). (1.42)

Once again we have that

p(x) ≈
√

2m[E − E − V ′(x1)(x − x1)] =
√
−2mV ′(x1)(x − x1), (1.43)

however, since V ′(x1) is negative, we have that −V ′(x1) = |V ′(x1)| so that

p(x) ≈ ~ κ
3

2

√
(x − x1). (1.44)

Left of the turning point x1 (i.e. region 0 < x < x1) this leads to

∫ x1

x

|p(x′)|dx′ = ~κ3/2

∫ x1

x

(x1 − x′)1/2dx′ (1.45)

=
2

3
~κ3/2

[
−(x1 − x′)3/2

]x1

x
(1.46)

=
2

3
~(−κ(x − x1))

3/2. (1.47)

We can then write ψ
WKB

(x) approximately as

ψ
WKB

(x) ≈ 1√
~κ3/4(x1 − x)1/4

[
η e

2

3
(−κ(x−x1))3/2

+ ρ e−
2

3
(−κ(x−x1)

]
. (1.48)

If x − x1 ≪ 0 ⇒ z ≫ 0, so that, using the asymptotic forms of the Airy functions, we
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have for the bridging wave function ξ:

ξ(x) ≈ c

2
√

π(κ(x1 − x))1/4
e−

2

3
(−κ(x−x1)3/2

+
d√

π(κ(x1 − x))1/4
e

2

3
(−κ(x−x1))3/2

. (1.49)

Comparing (1.48) and (1.49) we solve for c and d as such

c =
2
√

π√
~κ

ρ and d =

√
π√
~κ

η. (1.50)

Next, for the region x1 < x < x2 we integrate p(x) and find

∫ x

x1

p(x′)dx′ =
2

3
~(κ(x − x1))

3/2. (1.51)

The WKB approximation becomes

ψ
WKB

(x) ≈ 1√
~κ3/4(x − x1)1/4

[
α e

2

3
(κ(x−x1))3/2

+ β e−
2

3
(κ(x−x1)

]
(1.52)

and the bridging function ξ (using the z ≪ 0 asymptotic forms of the Airy functions)

becomes

ξ(x) ≈ c√
π(κ(x − x1))1/4

sin

[
2

3
(κ(x − x1))

3/2 +
π

4

]

+
d√

π(κ(x − x1))1/4
cos

[
2

3
(κ(x − x1))

3/2 +
π

4

]
(1.53)

=
1√

π(κ(x − x1))1/4

[(
d

2
+

c

2i

)
ei π

4 eiχ +

(
d

2
− c

2i

)
e−i π

4 e−iχ

]
, (1.54)

where χ = 2
3
(κ(x− x1))

3/2, so that comparing (1.52) and (1.54) we can solve for α and β:

α =

(
1

2
η − iρ

)
ei π

4 and β =

(
1

2
η + iρ

)
e−i π

4 . (1.55)

Therefore

ψ
WKB

(x) ≈ 1√
p(x)

[(
1

2
η − iρ

)
ei π

4 e
i
~

∫ x
x1

p(x′)dx′

+

(
1

2
η + iρ

)
e−i π

4 e
− i

~

∫ x
x1

p(x′)dx′

]
. (1.56)

Now we have two forms for the wave function in the region x1 < x < x2: one just

derived and one from the connection formulas at x2. We will now write the second line of
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(1.41) in a more suggestive form to ease comparison:

ψ
WKB

(x) =
−iδ√
p(x)

[
ei π

4 e
i
~

∫ x2
x p(x′)dx′ − e−i π

4 e−
i
~

∫ x2
x p(x′)dx′

]
(1.57)

=
−iδ√
p(x)

[
ei π

4 e
i
~

∫ x2
x1

p(x′)dx′

e
− i

~

∫ x
x1

p(x′)dx′

−e−i π
4 e

− i
~

∫ x2
x1

p(x′)dx′

e
i
~

∫ x
x1

p(x′)dx′

]
. (1.58)

We can now easily compare (1.56) and (1.58) to obtain the following expressions:

iδ e−i π
2 e−iθ =

1

2
η − iρ (1.59)

−iδ ei π
2 eiθ =

1

2
η + iρ, (1.60)

where

θ ≡ 1

~

∫ x2

x1

p(x′)dx′. (1.61)

Adding (1.59) and (1.60) we find

η =
2δ

2i

(
eiθ+π

2 − e−(iθ+π
2 )

)
= 2δ cos θ. (1.62)

Subtracting (1.59) from (1.60) we find in a similar fashion that

ρ = δ sin θ. (1.63)

After putting everything together we can write ψ
WKB

(x) in terms of a single normalization

constant δ:

ψ
WKB

(x) =





δ√
|p(x)|

e
− 1

~

∫ x
x2

|p(x′)|dx′

, x > x2

2δ√
p(x)

sin
[

1
~

∫ x2

x
p(x′)dx′ + π

4

]
, x1 <x<x2

δ√
|p(x)|

[
2 cos(θ) e

1

~

∫ x1
x |p(x′)|dx′

+ sin(θ) e−
1

~

∫ x1
x |p(x′)|dx′

]
, 0 < x < x1

(1.64)
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1.2.2 Eigenvalues

We now use the fact that the wave functions are either even or odd. In the former case

we must have that ψ′(0) = 0 and in the latter, ψ(0) = 0. In terms of the WKB wave

function, this means that for the odd case

0 = ψ
WKB

(0) =
δ√
|p(0)|

[
2 cos θ e

1

~

∫ x1
0

|p(x′)|dx′

+ sin θ e−
1

~

∫ x1
0

|p(x′)|dx′

]
(1.65)

⇒ tan θ = −2e
2

~

∫ x1
0

|p(x′)|dx′

= −2e
1

~

∫ x1
−x1

|p(x′)|dx′

= −2eφ (1.66)

φ ≡ 1

~

∫ x1

−x1

|p(x′)|dx′, (1.67)

where we have made use of the symmetry of |p(x)| around zero in the second step of the

second equation and have assumed that E < V (0).

Similarly for the even case

0 = ψ′
WKB

(0) =
δ√
|p(0)|

[
2 cos θ

−1

~
|p(0)|e 1

~

∫ x1
0

|p(x′)|dx′

+ sin θ
1

~
|p(0)|e− 1

~

∫ x1
0

|p(x′)|dx′

]
(1.68)

⇒ tan θ = 2e
2

~

∫ x1
0

|p(x′)|dx′

= 2eφ, (1.69)

where we have use the facts that d|p(x)|
dx

∣∣∣
0

= 0 and d
dx

∫ x1

x
|p(x′)|dx′ = −|p(x)|.

Equations (1.66) and (1.69) give us the allowed energies, since both θ and φ are functions

of energy E (x1 and x2 also depend on E).

In order to solve either (1.66) or (1.69) we will have to evaluate the integrals θ and φ.

This is done most easily by numerical means since both θ and φ have elliptic integrals in

their solution [7]. We can then (also numerically) find the values of E for which either

(1.66) or (1.69) hold. These values are then the approximate energy eigenvalues of our

Hamiltonian as given by the WKB method.

Table 1.1 gives us the first 10 eigenvalues as obtained in the WKB approximation. The

’exact’ eigenvalues were obtained (numerically) by directly diagonalizing the matrix of the

Hamiltonian, where we have truncated the matrix at a thousand by a thousand. The size

of the matrix was then increased till the last significant digit of the eigenvalues (accross the

region we are interested in) no longer changed. As one can see from the errors provided,

the WKB approximation does very well. Accuracy also increases as the energy increases,
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Exact WKB Absolute Error Relative Error
E0 3.0553629439623435 3.062225635921198 0.0068626920 0.0022461135
E1 3.055362943962443 3.062225635921198 0.0068626920 0.0022461135
E2 9.054511016723644 9.062042116729279 0.0075311000 0.0008317512
E3 9.054511016723914 9.062042116729753 0.0075311000 0.0008317512
E4 14.875217917755847 14.88361048127084 0.0083925635 0.0005641977
E5 14.875217917849273 14.883610481363226 0.0083925635 0.0005641976
E6 20.499573023765766 20.509125531696096 0.0095525079 0.0004659857
E7 20.499573034635606 20.509125542498584 0.0095525079 0.0004659857
E8 25.904042009809086 25.915255556389386 0.0112135466 0.0004328879
E9 25.904042852808853 25.91525639741849 0.0112135446 0.0004328878

Table 1.1: First ten energy eigenvalues of the symmetric double well potential
(a = 9.5, b = 0.5)

Exact WKB Absolute Error Relative Error
E14 40.34023869794828 40.371377784456584 0.0311390865 0.0007719113
E15 40.382244854701284 40.41429520571597 0.0320503510 0.0007936743
E16 43.95668645193638 44.02130535482928 0.0646189029 0.0014700586
E17 44.47492694456559 44.6081815391117 0.1332545945 0.0029961734

Table 1.2: Energy eigenvalues near hump of symmetric double well potential
(a = 9.5, b = 0.5)

as one would expect from a semi-classical approximation, and as is explained in more detail

below. However, this increase in accuracy does not continue throughout the spectrum.

When one nears the top of the hump in the centre of the potential the approximation

starts to do worse (Table 1.2). Once the hump is cleared accuracy improves once again.

The reason for the general trend in the WKB method that one does better for higher

energies, stems, of course, from our assumptions about when it is valid in the first place. In

section 1.1 we said that the WKB method may be applied if the potential varies sufficiently

slowly in comparison to the wave length of the wave function. In other words, we want λ
l

to be small, where λ is the wave length and l is the length on which the potential varies

significantly. At higher energies the wave length decreases. This improves λ
l

and thereby

also our approximation. Furthermore, as λ → 0 for higher energies, we can get closer to

the turning point before the WKB wave function breaks down as an approximation. This

means we need to linearise over smaller intervals, which increases accuracy even more.

Additionally, our linearisation of the potential also becomes a better approximation for
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x0 = 5 x0 = 100

x |V (x)−(V (x0)+V ′(x0)(x−x0))|
V (x)

x |V (x)−(V (x0)+V ′(x0)(x−x0))|
V (x)

4 1 99 0.0006209878749853483
4.8 0.016720665090142334 99.8 0.000024180962419714326
4.85 0.008986181751460822 99.85 0.000013579081396532828
4.9 0.003818970662745555 99.9 6.025076706858759 × 10−6

4.95 0.0009136546034606218 99.95 1.5037571998365037 × 10−6

5 0 100 0
5.05 0.0008385967604778388 100.05 1.498750187834707 × 10−6

5.1 0.0032171167556709875 100.1 5.985020484314078 × 10−6

5.15 0.006947066406272719 100.15 0.000013443890934778242
5.2 0.011860962249794903 100.2 0.000023860508596030646
6 0.16753381893860564 101 0.0005809149689237281

Table 1.3: Relative errors of linearisation of V (x) (a = 10, b = 1)

steeper gradients. Consider, for example, equation (1.38) with a = 10 and b = 1. If one

compares the relative error one makes by linearisation at x = 5 with x = 100 one obtains

Table 1.3. It is clear that we make less of an error by linearising the potential the higher

up in energy we go for V (x). This is a general observation for the parts of potentials that

have steeper gradients. The extreme case is of course the square well potential, where we

need not linearise at all.

1.2.3 Level splitting

If one thinks of the symmetric double well potential classically, one realizes that if a

particle in the potential has less energy than the top of the hump, it cannot leave the well

and spends its time in either the left or the right well, depending on where it started. We

therefore have in effect two completely separate wells, with degenerate energy eigenvalues

(since the form of both wells is the same). Quantum mechanics teaches us, however, that

the particle may tunnel through the barrier with an exponentially decaying probability.

This tunneling lifts the denegeracy and creates two states with energies very close to each

other. Once again, the WKB method provides us with a fairly good approximation to this

splitting, at least for higher energies.

As one can see from Table 1.4 the WKB approximation, as we have implemented it,

does not succeed in giving us the splitting in the ground state energy. However, it rapidly

improves as the energy increases and starts to fail once more when the energy reaches a
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Exact WKB Relative Error
E1 − E0 9.9475983006414 × 10−14 0 1
E3 − E2 2.70006239588838 × 10−13 4.7073456244106 × 10−13 0.7434210526
E5 − E4 9.3425711611416 × 10−11 9.2388319217207 × 10−11 0.0111039282
E7 − E6 1.08698401390938 × 10−8 1.08024877931711 × 10−8 0.0061962591
E9 − E8 8.4299976776947 × 10−7 8.4102910236083 × 10−7 0.0023376820

E11 − E10 0.000045397951858205 0.0000454631468720378 0.0014360783
E13 − E12 0.00170014617764024 0.0017117430785518195 0.0068211199
E15 − E14 0.04200615675300412 0.04291742125938924 0.0216935939
E17 − E16 0.5182404926292108 0.5868761842824171 0.1324398472

Table 1.4: ∆E of nearly degenerate energy eigenvalues (a = 9.5, b = 0.5)

value close to that of the top of the hump.

All in all the WKB method does very well. The hardest part seems to be the calculation

of the integrals over the momentum, p(x). However, in cases where analytical solutions

to the integrals cannot be found, numerical integration may be used. Since numerical

integration can be performed with great accuracy, the only penalty we incur is the loss of

insight a general solution may have brought.



CHAPTER 2

Flow Equations and Moyal Products

2.1 Overview

The idea behind flow equations [1, 2, 8, 9] for a Hamiltonian is the following. We have

some Hamiltonian, H, of which we want to find the eigenvalues. This is done by mapping

the original Hamiltonian onto another Hamiltonian with the same spectrum, but which has

different eigenvectors. We can achieve this by applying an infinite number of infinitesimal

unitary transformations to H in succession. The original Hamiltonian then eventually

becomes diagonal (or block diagonal) with respect to the basis which is specified by the

new eigenvectors. What is referred to as the flow of the Hamiltonian is the continuous

change of H under these transformations.

We therefore have the following situation: H is flowing under an unitary transformation

U(ℓ) such that for each ℓ,

H(ℓ) = U †(ℓ)HU(ℓ) and H(0) = H (2.1)

where ℓ is the flow parameter and 0 ≤ ℓ < ∞. These transformations are brought about

by the anti-hermitian generator η(ℓ), where η(ℓ) is defined by

dU(ℓ)

dℓ
= −U(ℓ)η(ℓ). (2.2)

The flow equation to be solved then arises by taking the derivative of H(ℓ) with respect

16
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to ℓ:

dH(ℓ)

dℓ
=

d

dℓ

(
U †(ℓ)HU(ℓ)

)

=
dU †(ℓ)

dℓ
HU(ℓ) + U †(ℓ)H

dU(ℓ)

dℓ

=
dU †(ℓ)

dℓ
U(ℓ)U †(ℓ)HU(ℓ) + U †(ℓ)HU(ℓ)U †(ℓ)

dU(ℓ)

dℓ

=
dU †(ℓ)

dℓ
U(ℓ)H(ℓ) + H(ℓ)U †(ℓ)

dU(ℓ)

dℓ

= η(ℓ)H(ℓ) − H(ℓ)η(ℓ)

= [η(ℓ), H(ℓ)]. (2.3)

In order to obtain results that are consistent, we need to apply the same transformations

to the relevant observables and eigenstates. An eigenstate |λ〉, for example, transforms

according to

|λ, ℓ〉 = U †(ℓ) |λ〉 , (2.4)

while in general an observable A will change in the following fashion:

A(ℓ) = U †(ℓ)AU(ℓ). (2.5)

In the same way as H, its flow equation is given by

dA(ℓ)

dℓ
= [η(ℓ), A(ℓ)]. (2.6)

We can also write down the expectation values of A in term of the transformed observable:

〈λ|A |λ〉 = 〈λ|U(ℓ)U †(ℓ)AU(ℓ)U † |λ〉 = 〈λ, ℓ|A(ℓ) |λ, ℓ〉 . (2.7)

For H itself, this means that

En = 〈En|H |En〉 = 〈En, ℓ|H(ℓ) |En, ℓ〉 . (2.8)

We shall use this in Chapters 3 and 4 to find the eigenvalues of H once we have determined
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H(∞).

2.2 Choice of generator

2.2.1 Wegner’s original generator

In the original work by Wegner [1], the two elements in the commutator that com-

prised the generator were the diagonal part of the flowing Hamiltonian and the flowing

Hamiltonian, H(ℓ) itself. In other words,

η(ℓ) = [Hd(ℓ), H(ℓ)], (2.9)

where Hd(ℓ) is diagonal in the basis determined by its eigenvectors.

Wegner goes on to show that H(ℓ) converges, in the limit of ℓ → ∞, to a form that

commutes with Hd(∞), i.e.:

[Hd(∞), H(∞)] = 0. (2.10)

However, later on we use two different generators, whose details we discuss next.

2.2.2 A different choice of generator

A slightly different generator, and one we shall be using later in this work, has the form,

η(ℓ) = [H0, H(ℓ)], (2.11)

where H0 is independent of ℓ. We are essentially free to choose H0 as we wish, provided

it is hermitian. It is relatively simple to show that H(ℓ) flows to a form which commutes

with H0 as ℓ → ∞. To do this, we make use of the fact that the trace norm is larger than

or equal to zero, while it vanishes if and only if its argument vanishes (see Appendix A),

as well as the following inequality,

d

dℓ
tr[(H(ℓ) − H0)

2] = −2tr[[H0, H(ℓ)]†[H0, H(ℓ)]] < 0. (2.12)

This implies that tr[(H(ℓ) − H0)
2] is a monotonically decreasing function of ℓ, which is

bounded below by zero. Its derivative must therefore vanish in the ℓ → ∞ limit. We
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have therefore that tr[[H0, H(ℓ)]†[H0, H(ℓ)]] must also vanish as ℓ goes to infinity. This

is however the trace norm of η(ℓ), which implies [H0, H(∞)] = 0, so that H0 and H(∞)

commute. For a few more mathematical details see Appendix A.

It is important to note that choosing a non-degenerate H0 will lead to a complete

diagonalization of H(∞). A degenerate H0 will leave H(∞) in a block diagonal form. It

can also be shown [10] that the eigenvalues of H(∞) will appear in the same order as

those of H0. This is very useful, since it allows us to find the ground state (or any other

excited state for that matter) energy immediately after we have calculated H(∞) without

needing to search through all the eigenvalues (which may be problematic in a numerical

calculation where only a few eigenvalues are computed at one time).

2.2.3 Form preserving generator

We now look at a third kind of generator. Whereas Wegner’s generator used the di-

agonal part of the flowing Hamiltonian and the generator described in section 2.2.2 used

a fixed operator in the commutator that determines it, the next generator is slightly dif-

ferent. Its purpose is to leave the form of the initial Hamiltonian invariant at any finite

ℓ. Where using an η of the form [H0, H(ℓ)] allowed us to control the final point, H(∞),

to which the Hamiltonian would flow, it left us largely in the dark as to the structure of

H(ℓ) for finite ℓ. It is entirely possible that elements of the matrix of the flowing Hamil-

tonian become non-zero during the flow [11], even if they are zero in both the initial and

final forms. Thus, preserving the structure of the initial Hamiltonian is not only compu-

tationally favourable (since fewer new elements are generated), but also intuitively more

appealing and allows for a cleaner physical interpretation of what happens during the flow.

In order to construct our form preserving generator, we first introduce a counting

operator Q. This operator has integer eigenvalues qi (generically degenerate) which we

will use to label the different subspaces corresponding to different qi’s. If our Hamiltonian

has a band block diagonal structure with respect to Q (which is the case we shall be looking

at), then the matrix elements 〈i|H |j〉 vanish whenever | qi − qj| > N (for some integer

N) for every state |i〉 and |j〉 from the subspaces corresponding to qi and qj, respectively.

Using this definition we see that H does not connect Q-sectors differing by more than N ,

implying an upper limit on how much H can change Q. Let us assume we can split the

Hamiltonian into three parts: a part that leaves Q unchanged and two more which either
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increase or decrease Q. We may then write H as

H = T0 +
N∑

n=1

Tn +
N∑

n=1

T−n (2.13)

= T0 + T+ + T−, where T+ ≡
N∑

n=1

Tn and T− ≡
N∑

n=1

T−n (2.14)

where Tn is such that it increases Q by n. This is formally written as [Q, Tn] = nTn.

We would like the flow equations to bring H into a form that commutes with Q, that

is [H(∞), Q] = 0. This was done in the previous section with the generator [Q,H(ℓ)].

However, we now require further that the form (2.13) be preserved at each finite ℓ. We

therefore require that H(ℓ) looks like

H(ℓ) = T0(ℓ) +
N∑

n=1

Tn(ℓ) +
N∑

n=1

T−n(ℓ), (2.15)

where T+(ℓ) =
∑N

n=1 Tn(ℓ) and T−(ℓ) =
∑N

n=1 T−n(ℓ).

It soon becomes apparent though that the generator η(ℓ) = [Q,H(ℓ)] cannot achieve

this. To see this, let us consider this generator at ℓ = 0:

η(0) = [Q,H] (2.16)

= [Q, T0] +
N∑

n=1

[Q, Tn] +
N∑

n=1

[Q, T−n] (2.17)

=
N∑

n=1

nTn −
N∑

n=1

nT−n. (2.18)

If we define T̃+ ≡ ∑N
n=1 nTn and T̃− ≡ ∑N

n=1 nT−n, the flow equations would then read

(also at ℓ = 0)

∂H(ℓ)

∂ℓ

∣∣∣∣
0

= [T̃+ − T̃−, T0 + T+ + T−] (2.19)

= [T̃+ − T̃−, T0] + [T̃+, T+ + T−] − [T̃−, T+ + T−]. (2.20)

Since T̃+ (T̃−) does not commute with T+ (T−) we generate terms which can connect Q-

sectors up to 2N − 1 apart, destroying the structure of the initial Hamiltonian. Now it
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is clear that η(ℓ) = [Q,H(ℓ)] will not work if our aim is a flowing Hamiltonian with the

form of (2.15). However, it is now obvious how η(ℓ) should be chosen. If we take

η(ℓ) = T+(ℓ) − T−(ℓ), (2.21)

then the flow equation becomes

∂H(ℓ)

∂ℓ
= [T+(ℓ) − T−(ℓ), T0(ℓ)] + 2[T+(ℓ), T−(ℓ)]. (2.22)

With η(ℓ) chosen this way, we see that all the terms which could couple Q-sectors that

differ by more than N drop out. It can be shown [12] that choosing the generator this

way still produces a final Hamiltonian that conserves Q.

One interesting thing to note is that we could have obtained (2.21) by taking all the

coefficients in T̃+ and T̃− to be equal to one or, more accurately, by keeping only the

overall sign. This is how it is done in [13] and this may be more viable if H cannot easily

be written in the form of (2.15).

2.3 Moyal formalism

The second half of this work looks at applications of the flow equation in a Moyal

representation [3]. Therefore, in this section we shall look at a few of the details concerning

this procedure.

2.3.1 Overview

2.3.1.1 Finite-dimensional case

Let us first consider a finite dimensional Hilbert space and take its dimension to be N .

It is possible to define two unitary operators g and h that act irreducibly on the Hilbert

space [14, 15]. These operators have the following exchange relation,

gh = eiθhg. (2.23)
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Consider now an eigenstate of g. Since g is unitary, its eigenvalue is a phase, say eiφ. Let

us see what happens when we let gh act on this eigenstate, |φ〉:

gh |φ〉 = eiθhg |φ〉 = ei(φ+θ)h |φ〉 . (2.24)

We see that h |φ〉 is therefore also an eigenstate of g. Similarly, so is h† |φ〉:

gh† |φ〉 = h†hgh† |φ〉 = e−iθh†g |φ〉 = ei(φ−θ)h† |φ〉 . (2.25)

We deduce that h and h† act as ladder operators, raising and lowering φ by θ at each

application. Furthermore, since g and h act irreducibly, we can reach all the eigenstates

of g in the Hilbert space by repeated applications of h or h†.

If we define

hn |φ〉 = |φ + nθ〉 ≡ |n〉 , (2.26)

then

g |φ + nθ〉 = g |n〉 = ei(φ+nθ) |n〉 . (2.27)

We may set the arbitrarily chosen φ to zero without loss of generality.

To find the values that θ may take, we note that h†gh = eiθg. We can now take the

trace of this equation to obtain

tr(h†gh) = tr(eiθg) (2.28)

⇒ tr(ghh†) = eiθtr(g) (2.29)

⇒ tr(g) =
N−1∑

n=0

einθ = 0, for eiθ 6= 1. (2.30)

Since

N−1∑

n=0

einθ =
1 − eiNθ

1 − eiθ
, (2.31)
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we see that for a non-trivial θ,

eiNθ = 1, (2.32)

must hold. From (2.32) we determine that θ must be an integer multiple of 2π/N . It is

convenient to choose θ = 2π/N , since then the eigenvalues of g are non-degenerate. With

this choice, we can define the operators O(n,m) ≡ gnhm, with n,m = 0, 1, 2, . . . N − 1.

These operators form a basis on the space of operators on the Hilbert space. To see why

this is so, let us take the usual trace inner product of two such operators:

(O(n,m), O(n′,m′)) = tr[(gnhm)†gn′

hm′

] = tr[h−mg−ngn′

hm′

] (2.33)

= tr[g−ngn′

hm′

h−m] = δm′,mtr[gn′−n] (2.34)

= δm′,m

N−1∑

k=0

eik(n′−n)θ (2.35)

= Nδm′,mδn′,n. (2.36)

It is now clear from the above that the operators O(n,m) are linearly independent. Futher-

more, noting that there are N2 of these operators provides simple dimensional grounds to

complete the argument for why O(n,m) provides a basis.

We can now write any operator acting on the Hilbert space in terms of this basis in the

following way,

A =
N−1∑

n,m=0

cn,mO(n,m) =
N−1∑

n,m=0

cn,mgnhm, where cn,m = (O(n,m), A)/N. (2.37)

Now consider the product of two such operators:

AB =
N−1∑

n,m=0

N−1∑

n′,m′=0

cn,mdn′,m′gnhmgn′

hm′

(2.38)

=
N−1∑

n,m=0

N−1∑

n′,m′=0

cn,mdn′,m′e−imn′θgn+n′

hm+m′

. (2.39)

We notice that it appears exactly the same as the product of sums of ordinary scalars,

except for the extra phase factor, e−imn′θ. This phase arises due to the way we have chosen
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to order our operators g and h. Now for the crux of the matter: We can treat g and h as

normal scalars, provided that we incorporate the abovementioned phase when we multiply

them. This leads us to write g and h in the following way

g → eiα, h → eiβ, (2.40)

where g and h are now treated as scalars. Substituting (2.40) into (2.37) we see that it

becomes

A(α, β) =
N−1∑

n,m=0

cn,meinαeimβ. (2.41)

Our new product rule is

A(α, β) ∗ B(α, β) = A(α, β)eiθ
←

∂β

→

∂αB(α, β), (2.42)

where
←
∂β implies differentiation with respect to β to the left and

→
∂α implies differentiation

with respect to α to the right. The *-operation is the so-called Moyal product. It can

easily be checked that the Moyal product is associative.

2.3.1.2 Infinite-dimensional case

In the case of an infinite dimensional quantum system, we may follow a similar procedure

as the one described in the preceding section. We consider for our discussion one particle

in one dimension. In this case we start with the following exchange relation,

eitp̂eisx̂ = ei~tseisx̂eitp̂, (2.43)

where t and s are continuous variables [14, 15]. The operators x̂ and p̂ are the usual

position and momentum operators that obey the canonical commutation relation,

[x̂, p̂] = i~. (2.44)

We define O(t, s) [16] (similar to O(n,m) above) as O(t, s) = ei~tp̂ei~sx̂. Once again, we

would like to use the O(t, s) operators as a basis. To show this, we take the trace inner
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product:

(O(t, s), O(t′, s′)) = tr[O(t, s)†O(t′, s′)] (2.45)

=

∫ ∞

−∞
dx 〈x| e−isx̂e−itp̂eit′p̂eis′x̂ |x〉 (2.46)

=

∫ ∞

−∞
dx dp eix(s′−s)eip(t′−t) eixp/~

(2π~)1/2

e−ixp/~

(2π~)1/2
(2.47)

=
2π

~
δ(t′ − t)δ(s′ − s). (2.48)

The expansion of a general operator then reads

A(x̂, p̂) =

∫ ∞

−∞
dt ds a(t, s)eitp̂eisx̂, where a(t, s) =

~

2π
(O(t, s), A(x̂, p̂)). (2.49)

If we were now to form the product of two operators, A and B say, we obtain

A(x̂, p̂)B(x̂, p̂) =

∫ ∞

−∞
dt ds dt′ ds′ a(t, s)b(t′, s′)eitp̂eisx̂eit′p̂eis′x̂ (2.50)

=

∫ ∞

−∞
dt ds dt′ ds′ a(t, s)b(t′, s′)eitp̂eit′p̂eisx̂eis′x̂e−i~t′s (2.51)

=

∫ ∞

−∞
dt ds dt′ ds′ a(t, s)b(t′, s′)O(t + t′, s + s′)e−i~t′s. (2.52)

Apart form the factor e−i~t′s this is what we would expect to obtain if we had been

considering the product of scalar functions. We can therefore conclude that, as above, we

may treat A and B as scalar functions under the condition that we introduce a modified

product rule which produces the phase e−i~t′s correctly. This modified product, the Moyal

product, reads,

A(x, p) ∗ B(x, p) = A(x, p)ei~
←

∂x

→

∂pB(x, p). (2.53)

Here, as before, A(x, p) and B(x, p) are now scalar functions instead of operators. The

non-commutativity of the operators A(x̂, p̂) and B(x̂, p̂) is entirely encapsulated by the

Moyal product.

In our application of Moyal products and flow equations in the last two chapters, we

will find operators that are functions of either x̂ or p̂ alone. It is therefore instructive to

look at the Moyal representation of such operators. Consider A(x̂) and its scalar function
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counterpart

A(x, p) =

∫ ∞

−∞
dt ds a(t, s)eitpeisx. (2.54)

To obtain the representation we first need to calculate a(t, s), which is given by

a(t, s) =
~

2π
(O(t, s), A(x̂)) =

~

2π
tr[e−isx̂e−itp̂A(x̂)] (2.55)

=
~

2π

∫ ∞

−∞
dx 〈x| e−isx̂e−itp̂A(x̂) |x〉 (2.56)

=
1

(2π)2

∫ ∞

−∞
dx dp e−isxe−itpA(x) (2.57)

=
1

2π
δ(t)

∫ ∞

−∞
dx e−isxA(x). (2.58)

If we substitute (2.58) into (2.54) we find

A(x, p) =

∫ ∞

−∞
dt ds dx′ 1

2π
δ(t)eitpe−isx′

eisxA(x′) (2.59)

= eip0

∫ ∞

−∞
dx′ δ(x − x′)A(x′) (2.60)

= A(x), (2.61)

so that the representation of A(x̂) is A(x). In other words, if we have an operator that

depends only on x̂, its Moyal counterpart will be the function where every instance of x̂

has been replaced with the number x. In can be shown in a similar fashion that the same

holds true for an operator depending only on p̂, so that the representation of A(p̂) is A(p).

2.3.2 Moyal Bracket Method

We can now combine the functionality of both the Moyal product and flow equations

into one. To do this one must first obtain the scalar representations of both the generator

and the Hamiltonian (or any other observable one wishes to study). Then any products

must be replaced by the Moyal product. In particular the flow equation becomes

∂H(ℓ, x̂, p̂)

∂ℓ
= [η(ℓ, x̂, p̂), H(ℓ, x̂, p̂)] → ∂H(ℓ, x, p)

∂ℓ
= [η(ℓ, x, p), H(ℓ, x, p)]∗, (2.62)
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where [, ]∗ signifies the commutator with respect to the Moyal product,

[A,B]∗ = A ∗ B − B ∗ A. (2.63)

[, ]∗ is called the Moyal bracket [17].

In general, however, the Moyal product of two operators is very difficult to calculate,

since it involves the exponent of differential operators. One can significantly simplify this

by making an approximation to first order in ~ (see (2.53)):

A ∗ B ≈ AB + i~
∂A

∂x

∂B

∂p
. (2.64)

The corresponding Moyal bracket would be

[A,B]∗ ≈ i~ (AxBp − BxAp), (2.65)

where subscripts denote partial derivatives. This is a semi-classical approximation, since

it is controlled by ~. This approximation should work well provided that none of the

derivatives one has discarded go like powers of 1/~.

In the case of a generator chosen as in section 2.2.2, one finds the double Moyal bracket

involved in the flow equation to be

dH(ℓ, x, p)

dℓ
= [[H0, H(ℓ, x, p)]∗, H(ℓ, x, p)]∗

≈ i~[H0xHp − HxH0p , H]∗

≈ −~
2[(H0xxHp + H0xHxp − H0xpHx − H0pHxx)Hp

−(H0pxHp + H0xHpp − H0ppHx − H0pHpx)Hx], (2.66)

where Axp ≡ ∂2A
∂x∂p

. Further corrections can also easily be calculated by keeping successive

terms in the Moyal product.

2.4 Quadratic Potentials

In the case of the WKB approximation or a path integral formulation, one finds that

one can solve for quadractic potentials exactly. The reason for this is that for these

potentials there are no higher order fluctuations in ~ that are not already included in
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the approximation. For example, in the path integral, a quadratic potential leads to a

guassian integral of which we know the solution. We now show that the Moyal bracket

approach has the same property.

If we take our flowing Hamiltonian to have the form,

H(ℓ, p, x) = α(ℓ)p2 + β(ℓ)x2, (2.67)

with

α(0) = 1 (2.68)

β(0) = ǫ > 0, (2.69)

and if we take H0 to be p2 + x2, then (2.66) (with ~ = 1) becomes a coupled set of two

ordinary differential equations:

dα

dℓ
= −α(ℓ)[α(ℓ) − β(ℓ)] (2.70)

dβ

dℓ
= β(ℓ)[α(ℓ) − β(ℓ)]. (2.71)

The general solutions for α and β are (found using Mathematica’s DSolve)

α(ℓ) =
√

c1 tanh(ℓ
√

c1 − c2

√
c1) (2.72)

β(ℓ) =
√

c1 coth(ℓ
√

c1 − c2

√
c1), (2.73)

where c1 and c2 are constants of integration.

With initial conditions as specified in (2.68) and (2.69), we find that

c1 = ǫ (2.74)

c2 = − 1√
ǫ

tanh−1(
1√
ǫ
). (2.75)

(2.76)

In virtually all cases the exact value of c2 is irrelevant, however, since we are interested in

the ℓ → ∞ limit, in which case the tanh and coth terms are both simply 1. We therefore
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find that H(∞) is

H(∞) =
√

ǫ(p2 + x2), (2.77)

and we see that the flow equation simply renormalized the coefficients of H.

There is one case where one must be slightly careful, namely when H(0) = H0. In this

case ǫ = 1 and c2 = −∞. Therefore, α(ℓ) and β(ℓ) remain constant for all ℓ and no flow

actually takes place, as is obvious from the flow equation (2.3) with (2.11) as generator.

However, this is not really a special case, since, for the harmonic oscillator, (2.77) still

holds with ǫ = 1.

We see that the Moyal bracket method, truncated at first order in ~, also includes the

necessary fluctuations to describe quadratic potentials exactly, as is the case for the WKB

approximation. This result is of course not very surprising if one notices that (2.66) is

exact to all orders in ~ for quadratic Hamiltonians.



CHAPTER 3

The Quartic Oscillator

3.1 The Model

As our first application of the Moyal bracket method for flow equations, we will look

at a harmonic oscillator with an additional quartic interaction in one dimension. This so-

called quartic oscillator is often used as a testbed for quantum mechanical approximation.

Our Hamiltonian is therefore,

H(p̂, x̂) = ap̂2 + bx̂2 + λx̂4, (3.1)

where a = 1
2m

, b = mω2

2
, λ controls the strength of the anharmonic interaction and x̂ and

p̂ are the usual position and momentum operators. For this example, we shall only look

at cases where λ > 0. We write H in dimensionless form by scaling x̂ → 4

√
~2

m2ω2 x̂ and

p̂ → ~
4

√
m2ω2

~2 p̂, which gives us

H(p̂, x̂) = p̂2 + x̂2 + λ′x̂4, (3.2)

after setting ~, ω = 1.

3.2 Flow equations via Moyal brackets

We are interested in finding the eigenvalues of our Hamiltonian. In order to do this

with the Moyal bracket approach, we first need to do two things. We need to choose an

appropriate generator for the flow equation and we need to convert the generator and the

Hamiltonian into their equivalent Moyal formalism representations.

We choose our generator to be in the form discussed in section 2.2.2, where H0 has

been chosen to be the (non-dimensionalized) harmonic oscillator,

H0(p̂, x̂) = p̂2 + x̂2. (3.3)

The eigenstates of H0 are of course the usual harmonic oscillator states (|n〉, n = 0, 1, 2 . . .),

30
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and the eigenvalues are given by H0 |n〉 = 2(n + 1
2
) |n〉. Since the spectrum of H0 is non-

degenerate, we expect H(∞) to be completely diagonal in the harmonic oscillator basis.

In addition, the eigenvalues of H will appear in the same order as those of the harmonic

oscillator.

We are in the fortunate position that neither H nor H0 contains terms involving both

x̂ and p̂. We can therefore apply the results of the end of section 2.3.1.2. The respective

Moyal representations of these operators will simply be the functions of x and p (as scalars),

where x̂ has been replaced with x and p̂ with p.

With our choice of H0 we can simplify (2.66) to write down the flow equation in Moyal

form (to first order in ~):

∂H(ℓ, p, x)

∂ℓ
= [[H0, H(ℓ, p, x)]∗, H(ℓ, p, x)]∗ (3.4)

≈ −2[Hx(ℓ)(−xHpp(ℓ) + pHxp(ℓ) + Hx(ℓ))

+Hp(ℓ)(xHxp(ℓ) − pHxx(ℓ) + Hp(ℓ))]. (3.5)

The approximate flow equation can be drastically simplified by a change of variables,

namely

x =
√

q cos(θ) (3.6)

p =
√

q sin(θ). (3.7)

With these new variables, the flow equation becomes

dH(ℓ, q, θ)

dℓ
≈ 4[Hq(ℓ)Hθθ(ℓ) − Hθ(ℓ)Hqθ(ℓ)]. (3.8)

It is important to note that this change of variables occurs after we have made the tran-

sition to the Moyal representation, where x and p are now simply numbers. Trying to

perform this step on the operator level would, if possible, be significantly more compli-

cated. Issues of how the operators should be ordered would have to be taken into account,

as well as requiring more complicated Moyal products to be calculated.

One will notice that H0(p, x) = p2 + x2 = q. This means that H0 is independent of θ.

Since H(ℓ) is flowing to a form that will commute with H0, we realize that H(∞) must

also be independent of θ and depend only on q. Indeed, (3.8) clearly shows that when
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H(ℓ) is independent of θ the flow stops and a fixed point has been reached. In a numerical

calculation, we may then stop the flow when this convenient condition is satisfied (since

integrating all the way to infinity is neither practical nor necessary). One may simply stop

when ∂H(ℓ)
∂θ

has become sufficiently small.

3.3 Solving the flow equation

To solve the flow equation we need to provide an initial condition, as is the case for any

differential equation. In this case, as already mentioned, H(0, p, x) has the simple form

H(0, p, x) = p2 + x2 + λ′x4. (3.9)

Once again, this is due to the associativity of the Moyal product and the fact that every

term in H(p̂, x̂) depends only on either p̂ or x̂ but not both.

Translating to q and θ gives us

H(0, q, θ) = q + λ′ q2 cos4(θ) (3.10)

= q + λ′ q2

8
(3 + 4 cos(2θ) + cos(4θ)). (3.11)

The differential equation (3.8) together with the initial condition (3.11) may now be solved.

This gives us H(ℓ, q, θ), where, strictly speaking, we need to use the ℓ → ∞ limit in

calculating eigenvalues. However, in a numerical calculation we cannot integrate all the

way to infinity. Therefore integrating until ∂H(ℓ)
∂θ

falls below a chosen tolerance or simply

choosing a large enough ℓ to stop at is usually more than sufficient to obtain accurate

results.

3.4 Determining the spectrum

To find the eigenvalues of H we turn to equation (2.8). We will, however, need to

specifiy |En,∞〉 in some way. This is done by remembering that the eigenvalues of H(∞)

are ordered in the same way as that of H0, meaning the n’th excited state of H(∞)

corresponds to the n’th excited state of H0. This implies that |En,∞〉 = |n〉, since H(∞)



3. The Quartic Oscillator 33

(a) (b)

Figure 3.1: (a) First fifty exact eigenvalues for the quartic potential (λ′ = 0.1)
together with the flow equation approximation. (b) Derivative of the flowing
Hamiltonian, H(ℓ), with respect to θ, taken at ℓ = 900 and θ = 0.

is diagonal in the basis of H0. Therefore, from (2.8),

En = 〈En|H |En〉 = 〈En,∞|H(∞) |En,∞〉

= 〈n|H(∞) |n〉 . (3.12)

As pointed out earlier, as ℓ → ∞ and H(ℓ) becomes diagonal in the basis in which H0 is,

it also becomes a function of q, and thus H0, only. We can find En then by

En = 〈n|H(∞, H0) |n〉 = H(∞, 2n + 1), where n = 0, 1, 2 . . . . (3.13)

In other words, we have replaced each instance of H0 by its eigenvalue.

3.5 Numerical results

In this section we turn our attention to some numerical results that were obtained for

the quartic potential. The reader will notice that most of the graphs are in terms of

r (=
√

q) and not q. This is because, although the description of the flow equations is

slightly simpler in terms of q, one needs to solve the differential equations on a larger

domain when using q. For example, to find the first fifty eigenvalues, one needs to have q

span the range [0, 2(49) + 1 = 99], whereas one can find the same number of eigenvalues

using r on the range [0,
√

2(49) + 1 ≈ 10]. This allows one to use a finer grid on the

space of r and θ (for the same amount of memory), usually leading to an improvement in
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(a) (b)

(c) (d)

Figure 3.2: (a) First fifty exact eigenvalues for the quartic potential (λ′ = 1)
together with the flow equation approximation. (b) Derivative of the flowing
Hamiltonian (λ′ = 1), H(ℓ), with respect to θ, taken at ℓ = 900 and θ = 0. (c)
Same as (a) except λ′ = 10. (d) Same as in (b) with λ′ = 10.

accuracy. All numerical work was done using Mathematica’s built-in numerical differential

equation solver, NDSolve.

3.5.1 Numerical eigenvalues

To start off with, we look at the case where λ′ is quite small. To be specific, we chose

λ′ = 0.1 in our first numerical application of the flow equations to the quartic potential.

As one can see in Figure 3.1(a), the flow equation approximation does very well. A

relative error of about 2.83% is obtained for the ground state and the error drops to about

0.000481% for the last (50th) eigenvalue shown in this figure. The average (relative) error

was 0.0894%, meaning that, on average, we obtain three correct significant digits for each

eigenvalue.

As we noted in section 3.3, one may stop integration once ∂H(ℓ)
∂θ

becomes sufficiently
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Relative Error (%)
Exact WKB Flow Equations WKB Flow Eq

E0 1.065285510 1.035155662 1.035098939 2.83 2.83
E1 3.306872013 3.285483080 3.285517078 0.647 0.644

λ′=0.1 E2 5.747959269 5.730954235 5.731013951 0.296 0.295
E48 198.2846571 198.2819353 198.2837052 0.00137 0.0000178
E49 203.4980353 203.4953503 203.4970574 0.00132 0.0000356

E0 1.392351642 1.250768760 1.250057196 10.2 10.2
E1 4.648812704 4.592560473 4.592609691 1.21 1.21

λ′=1 E2 8.655049958 8.613057729 8.613165445 0.485 0.484
E48 395.4169465 395.4111175 395.4378920 0.00147 0.00530
E49 406.2009974 406.1952475 406.2222788 0.00142 0.00524

E0 2.449174072 2.061139563 2.063524463 15.8 15.7
E1 8.599003455 8.489468733 8.492548519 1.27 1.23

λ′=10 E2 16.63592149 16.54582360 16.54047811 0.542 0.574
E48 836.8115578 836.7990299 836.0909037 0.00150 0.0861
E49 859.8370953 859.8247368 858.9498280 0.00144 0.103

Table 3.1: A comparison between the energy eigenvalues obtained via the
WKB and flow equations methods

small at some ℓ. The plot 3.1(a) was made by integrating up to ℓ = 1000. The graph

in 3.1(b) shows the derivative ∂H(ℓ)
∂θ

∣∣∣
ℓ=900

. Figure 3.1(b) is a representative plot of the

the θ-derivative of H(ℓ), showing that it is very small already at ℓ = 900. Indeed, it is

identically zero (to within machine tolerance) at ℓ = 1000.

Figures 3.2(a) and 3.2(c) show the results obtained for a slightly larger (λ′ = 1) and

much larger (λ′ = 10) value of λ′. As one can see, the flow equations do almost equally

well in all three cases (average relative errors: λ′ = 1: 0.258%, λ′ = 10: 0.395%), no

matter the strength of the coupling constant λ′. This is a property that a perturbative

approximation does not share.

3.5.1.1 Comparison with the WKB method

To end this chapter, we shall make a brief comparison between the energy eigenval-

ues obtained from the WKB approximation and the flow equations. Table 3.1 lists the

first, second, third, 49th and 50th energy eigenvalues obtained numerically by direct di-

agonalization (Exact) (see section 1.2.2), the WKB approximation (WKB) and the flow

equations for the three values of λ′ we have mentioned before, namely λ′ = 0.1, 1, 10.
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For all these values of λ′ we see that the flow equations achieve comparable or marginally

better accuracy in the ground state and first excited state. For the smallest value of λ′

the flow equations do better across all the eigenvalues. For larger λ′, they start to do

slightly worse until for λ′ = 10 the flow equations lose to the WKB method by two orders

of magnitude in the accuracy of the 50th eigenvalue. However, this is at least partly due

to finite size and edge effects which almost always plague numerical solutions of PDEs.

We can summarize by saying, that from what we have seen so far, the Moyal bracket

method compares favourably indeed with the WKB approximation.



CHAPTER 4

The Symmetric Double-Well Potential

4.1 The Model

In the previous chapter we applied our method of flow equations in the context of

Moyal products and brackets to the quartic oscillator. In this chapter we shall keep the

quartic term, but add an additional quadratic term with a negative sign, to give us the

symmetric double-well (SDW) potential. One of the interesting things about this potential

is the fact that tunneling can now occur between the two wells, lifting the degeneracy one

expects classically (since the wells have the same shape). This shift in energy is very small

at the ground state, but increases towards the top of the centre hump in the potential.

It is of particular interest to be able to calculate this level splitting, since it is a truly

non-perturbative effect. We consider a potential as in section 1.2, in other words,

H(p̂, x̂) = p̂2 + (1 + ǫ)x̂2 + λx̂4. (4.1)

We consider only positive λ and negative ǫ (in fact ǫ < −1 is of course required to form

two wells) and have written H(p̂, x̂) in dimensionless form already.

4.2 Flow Equations

To set up the flow equations for the symmetric double-well potential, we would like to

proceed just as in section 3.2 and have H flow to a form that commutes with the harmonic

oscillator

H0(p̂, x̂) = p̂2 + x̂2, (4.2)

with eigenstates and -values just as described in section 3.2.

We would like to, once again, construct the Moyal representations of the various opera-

tors (which is still trivial, considering that no operator contains terms which have mixtures

of x̂ and p̂) and transform the resulting operator and flow equation to functions of q and

θ as we did in section 3.2, by using (3.6) and (3.7).

37
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Figure 4.1: First hundred exact eigenvalues for the SDW potential with ǫ = −10
and λ = 0.1

However, if one were to look at a plot (Figure 4.1) of the actual eigenvalues (obtained

by direct diagonalization of the matrix of H truncated at 1000× 1000) of this potential as

a function of q, one immediately sees a problem. The function H(∞, q) one would have

to obtain to produce accurate results would have to contain a series of steps to produce

the correct eigenvalues in the part where the eigenvalues are negative. This, however,

implies that derivatives of H(ℓ) would start to be of the order of 1/~ which would render

our first order expansion invalid. A more mathematical argument would be that the

energy splitting is exponentially small and has a e−1/~ behaviour from which one can

immediately see that the derivatives become of order 1/~ [4, 18, 19]. We are somewhat

fortunate, therefore, that we can circumvent this problem. To see how this is possible, let

us look at the Hamiltonian when written in terms of creation and annihilation operators

laddering between the eigenstates of H0:

H(a†, a) = (2n̂ + 1) +
ǫ

2
(aa + a†a† + 2n̂ + 1)

+
λ

4
[aaaa + a†a†a†a† + 2(2n̂ + 3)aa + 2a†a†(2n̂ + 3)

+(n̂ + 2)(n̂ + 1) + n̂(n̂ − 1) + (2n̂ + 1)2]. (4.3)
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Here we have used the following substitutions,

x̂ =
1√
2
(a + a†) (4.4)

p̂ =
1

i
√

2
(a − a†) (4.5)

n̂ = a†a (4.6)

to transform (4.1) into (4.3). It is clear from (4.3) that, when H is applied to the harmonic

oscillator basis states, we create new states with quantum number n that only differ from

the original state by zero, two or four. This implies that we can subdivide the states into

an even and an odd subspace, where H never mixes the two together. This allows us

to construct flow equations on the even and odd sectors separately, each with different

initial conditions. To ensure that we do not create, during the flow, a Hamiltonian that

does mix the different sectors, we shall be using a generator that preserves the form of

the Hamiltonian at each finite ℓ, as described in section 2.2.3. In this case, our harmonic

oscillator H0 will play the role of the counting operator Q. This allows us to construct

a flow equation that preserves the form of H and will eventually lead to a H(∞) which

commutes with H0 at the same time.

In order to determine the flow equations, we need to know the form of the initial

Hamiltonian in each subspace. This is what we will derive next.

4.3 Initial conditions

In order to find the initial conditions, we first construct a mapping from the harmonic

oscillator states of H0, as defined in (4.2), to the basis states of a new harmonic oscillator.

To make this statement more explicit, we want to map

old basis





even: |2n〉
odd: |2n + 1〉

→ |n) new basis, n = 0, 1, 2, 3, . . . (4.7)
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Together with these new states, we introduce new operators B and B† which act on the

|n) in the usual way,

B† |n) =
√

n + 1 |n + 1) (4.8)

B |n) =
√

n |n − 1) . (4.9)

In order to write H in term of these new operators, we need to find how B and B† depend

on a and a†.

We start by noting that if B† raises n by one in the new basis, the original basis state

will need to be raised by two in order to keep the subspaces separate. We first look at the

even sector. We need an operator that raises |2n〉 by two. This operator will obviously

need to contain a factor of a†a† in it. However, this is not enough on its own, since

a†a† |2n〉 =
√

2n + 1
√

2n + 2 |2n + 2〉 =
√

2n + 1
√

2n + 2 |n + 1) (4.10)

6= B† |n) =
√

n + 1 |n + 1) . (4.11)

We therefore need to add a factor to a†a† that will correct the prefactors. If we therefore

take this new operator to be 1√
2n̂−2

a†a†, we see that

1√
2n̂ − 2

a†a† |2n〉 =

√
2n + 1

√
2n + 2√

2(2n + 2) − 2
|2n〉 =

√
n + 1 |2n + 2〉 (4.12)

=
√

n + 1 |n + 1) = B† |n) , (4.13)

so that we need to associate

B† =
1√

2n̂ − 2
a†a† (4.14)

B = aa
1√

2n̂ − 2
(4.15)

N̂ = B†B =
n̂

2
, (4.16)

where n̂ = a†a. These new operators also obey the standard commutator for creation and
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annihilation operators:

[B,B†] = aaf(n̂)2a†a† − f(n̂)a†a†aaf(n̂)

= (n̂ + 1)(n̂ + 2)f(n̂ + 2)2 − n̂(n̂ − 1)f(n̂)2

=
(n̂ + 1)(n̂ + 2)

2(n̂ + 1)
− n̂(n̂ − 1)

2(n̂ − 1)

= 1, (4.17)

where f(n̂) = 1/
√

2n̂ − 2.

For the odd sector we can do similar calculations to arrive at the following associations:

B† =
1√
2n̂

a†a† (4.18)

B = aa
1√
2n̂

(4.19)

N̂ = B†B =
n̂ − 1

2
(4.20)

[B,B†] = 1. (4.21)

By reversing equations (4.14) to (4.16) and (4.18) to (4.20) we find the following rela-

tions for a†a† and aa in terms of B† and B:

Even:

a†a† =

√
4N̂ − 2 B† (4.22)

aa = B

√
4N̂ − 2 (4.23)

n̂ = 2N̂ , (4.24)

Odd :

a†a† =

√
4N̂ + 2 B† (4.25)

aa = B

√
4N̂ + 2 (4.26)

n̂ = 2N̂ + 1. (4.27)

Equations (4.22) to (4.24) and (4.25) to (4.27) may then be substituted into (4.3) to obtain
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the initial Hamiltonians for the even and odd subspaces respectively:

HE(B,B†) = (4N̂ + 1) +
ǫ

2

(
B

√
4N̂ − 2 +

√
4N̂ − 2 B† + 4N̂ + 1

)

+
λ

4

[
B

√
4N̂ − 2B

√
4N̂ − 2 +

√
4N̂ − 2 B†

√
4N̂ − 2 B†

+2B

√
4N̂ − 2 + 4B

√
4N̂ − 2N̂ + 4N̂B

√
4N̂ − 2

+2

√
4N̂ − 2 B† + 4

√
4N̂ − 2 B†N̂ + 4N̂

√
4N̂ − 2 B†

+ (2N̂ + 2)(2N̂ + 1) + 2N̂(2N̂ − 1) + (4N̂ + 1)2
]

(4.28)

HO(B,B†) = (4N̂ + 3) +
ǫ

2

(
B

√
4N̂ + 2 +

√
4N̂ + 2 B† + 4N̂ + 3

)

+
λ

4

[
B

√
4N̂ + 2B

√
4N̂ + 2 +

√
4N̂ + 2 B†

√
4N̂ + 2 B†

+2B

√
4N̂ + 2 + 2B

√
4N̂ + 2(2N̂ + 1) + 2(2N̂ + 1)B

√
4N̂ + 2

+2

√
4N̂ + 2 B† + 2

√
4N̂ + 2 B†(2N̂ + 1) + 2(2N̂ + 1)

√
4N̂ + 2 B†

+ (2N̂ + 3)(2N̂ + 2) + (2N̂ + 1)(2N̂) + (4N̂ + 3)2
]
, (4.29)

where HE and HO denote the initial Hamiltonians in the even sector and odd sector

respectively.

Our next step will be to find the Moyal representations of HE and HO (see Appendix

B for the exact initial conditions). This process is made quite complicated by having to

find the representations of the square roots which appear in both HE and HO. However,

we can find them to lowest order quite easily. First, we note that

B† =
1√
2
(X̂ − iP̂ ) (4.30)

B =
1√
2
(X̂ + iP̂ ) (4.31)

N̂ = B†B =
1

2
(P̂ 2 + X̂2 − 1). (4.32)

Each of these have Moyal representations where X̂ and P̂ are simply replaced by their cor-

responding number. It would therefore also be trivial to find the Moyal form of the square

of the square roots. Letting M(·) indicate the Moyal representation of some operator, we
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have that to lowest order in the Moyal product,

M(f 2) = M(f) ∗ M(f)
lowest order

= M(f)M(f) (4.33)

⇒ M(f) =
√

M(f 2). (4.34)

In this way we see that the Moyal representations of the square roots are

Even:

√
4N̂ − 2 →

√
2[(P 2 + X2) − 2] (4.35)

Odd:

√
4N̂ + 2 →

√
2[P 2 + X2]. (4.36)

We can now substitute (4.35) into (4.28) and (4.36) into (4.29), which, together with the

Moyal forms of B† and B, gives us the initial Hamiltonians in terms of X and P . After

some simplification and once again transforming to q and θ, we obtain the initial conditions

for the even and odd sectors respectively,

HE(q, θ) =
1

4
[−4 − 2ǫ + λ + 2(4 + 2ǫ − 4λ + 3λq)q

+4
(
(ǫ − λ)

√
(q − 2)q + 2λ

√
(q − 2)q q

)
cos(θ)

+2λ(q − 2)q cos(2θ)] (4.37)

HO(q, θ) =
1

4
[4 + 2ǫ + λ + 2(4 + 2ǫ + 2λ + 3λq)q

+4(ǫ + λ + 2λq)q cos(θ)

2λq2 cos(2θ)
]
. (4.38)

From (4.37) and (4.38) it is clear that in both the even and odd sectors, the initial Hamil-

tonian has the following structure,

H(0, q, θ) = n0(0, q) + n1(0, q) cos(θ) + n2(0, q) cos(2θ). (4.39)

However, we cannot easily use this form to get our generator, since both cos(θ) and cos(2θ)

contain terms that both increase and decrease q. To separate these parts, we first note
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that

B† → 1√
2
(X − iP ) =

√
q

2
e−iθ (4.40)

B → 1√
2
(X + iP ) =

√
q

2
eiθ, (4.41)

so that the e−iθ part in cos(θ) increases q and the eiθ part decreases it. Therefore,

H(ℓ, q, θ) = n0(ℓ, q) + n1(ℓ, q)

(
1

2
eiθ +

1

2
e−iθ

)
+ n2(ℓ, q)

(
1

2
e2iθ +

1

2
e−2iθ

)
(4.42)

= n0(ℓ, q)︸ ︷︷ ︸
T0(ℓ)

+

(
n1(ℓ, q)

1

2
e−iθ + n2(ℓ, q)

1

2
e−2iθ

)

︸ ︷︷ ︸
T+(ℓ)

+

(
n1(ℓ, q)

1

2
eiθ + n2(ℓ, q)

1

2
e2iθ

)

︸ ︷︷ ︸
T−(ℓ)

. (4.43)

According to what we learned in section 2.2.3, we should now take our generator to be

η(ℓ) = T+(ℓ) − T−(ℓ) = −i(n1(ℓ, q) sin(θ) + n2(ℓ, q) sin(2θ)). (4.44)

We can now finally find our flow equations (which is the same in both sectors) by using

(4.44) and (4.39) in our Moyal brackets to first order. After grouping terms we obtain

three equations. One for n0, n1 and n2 repectively,

∂n0

∂ℓ
= −1

2

∂n2
1

∂q
− ∂n2

2

∂q
(4.45)

∂n1

∂ℓ
= −n1(ℓ, q)

∂n0

∂q
− 2n2(ℓ, q)

∂n1

∂q
− n1(ℓ, q)

∂n2

∂q
(4.46)

∂n2

∂ℓ
= −2n2(ℓ, q)

∂n0

∂q
, (4.47)

with corresponding initial conditions:
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Even:

n0(0, q) =
1

4
(−4 − 2ǫ + λ + 2(4 + 2ǫ − 4λ + 3λq)q) (4.48)

n1(0, q) = (ǫ − λ)
√

(q − 2)q + 2λ
√

(q − 2)q q (4.49)

n2(0, q) =
1

2
λ(q − 2)q, (4.50)

Odd:

n0(0, q) =
1

4
(4 + 2ǫ + λ + 2(4 + 2ǫ + 2λ + 3λq)q) (4.51)

n1(0, q) = (ǫ + λ + 2λq)q (4.52)

n2(0, q) =
1

2
λq2. (4.53)

If one expands these initial conditions in orders of ~, one sees that they are the same

to lowest order. If one wishes to calculate the level splitting, for example, one needs to

calculate the first (and higher) order correction in each sector and subtract them from

each other.

4.4 Eigenvalues

As we saw in section 2.2.3, the flow equations derived above preserve the form of the

Hamiltonian, while still ensuring that H(ℓ) converges to a form that commutes with H0

in the ℓ → ∞ limit. For each sector H0 = 2N̂ + 1 (operator) or H0 = q (scalar). Since,

once again, H(∞) must be independent of θ, we have that n1(∞, q) = 0 = n2(∞, q). This

implies H(∞, q) = n0(∞, q), so that, similar to section 3.4, we can find the eigenvalues

En of H in the following way

En = H(∞, 2N + 1) = n0(∞, 2N + 1). (4.54)

Once we have calculated the energies in each sector, we can find the level splitting for the

nearly-degenerate eigenvalues by subtracting those in the even sector (the smaller of the

two) from those in the odd sector.
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(a)

(b) (c)

Figure 4.2: (a) First forty exact even eigenvalues for the SDW potential (ǫ =
−20, λ′ = 1) together with the flow equation approximation (n0(10000, q)). (b)
n1(10000, q). (c) n2(10000, q)

4.5 Numerical results and comparison with the WKB method

It proved to be quite difficult to obtain accurate numerical results for the SDW po-

tential. The flow equation for n0 was very sensitive to where the integration for q ended,

often veering sharply off-course near the middle of the q domain. However, despite these

difficulties, we still do quite well, though not as well as we have seen the WKB method

do in chapter 1.

4.5.1 Numerical spectrum

Figure 4.2 shows us a typical result when solving for the eigenvalues of the SDW po-

tential using the techniques and approximations described in this chapter. The relative

errors of eigenvalues below the hump are generally on the order of a few percent. Above

the hump we do much better, with errors dropping to below 1%. For the fortieth eigen-

value accuracy had improved to such an extent that the relative error was only 0.0186%.
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(a) (b)

Figure 4.3: (a) First thirty exact energy differences for the SDW potential
(ǫ = −20, λ′ = 1) together with the Moyal bracket approximation difference.
(b) Close up of the region q ∈ [0, 17.5]

Generally speaking, the accuracy is worse for the SDW potential than for the quadratic

potential. It is therefore ironic that we obtain the ground state energy of this SDW po-

tential with a relative error of 0.386%, which is almost an order of magnitude smaller than

even that of the quartic potential with λ′ = 0.1. Why this is so is not entirely clear at the

time of writing. Over the first forty eigenvalues, the flow equations give an average relative

error of 4%, whereas the WKB method achieves a slightly better 2.28%. One cannot help

but note the very sharp spike near q = 20 in the graphs of 4.2(b) and 4.2(c). This is where

the eigenvalues switch from negative to positive, or put a different way, where the total

energy of the particle in the potential goes from being smaller than that of the centre

hump to being larger. This phenomenon occurs for all values of ǫ and λ as long as there

is at least one eigenvalue smaller than the hump. This goes hand in hand with a very

significant decrease in accuracy, where the relative error typically rises to near or above

100%. This corresponds to an increase of about two orders of magnitude in the relative

error. Comparatively, the relative error made by the WKB method rises only about one

order of magnitude in the same region. Both methods recover once the hump is cleared.

4.5.2 Numerical level splitting

Unfortunately it was not possible at the time of writing to obtain sufficiently accurate

numerical results to show conclusively that the Moyal bracket method could (or could

not) calculate this level splitting. We see in Figure 4.3(a) that the Moyal bracket method
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exibits the desired general behaviour. However, from Figure 4.3(b), which shows a zoomed

in view of the region where the eigenvalues are almost degenerate, it is clear that the energy

splitting calculated this way is not reliable due to large numerical oscillations. The WKB

results for the level splitting can be seen in Table 1.4.

It is clear therefore that work needs to be done to improve accuracy, so that a conclusive

statement can be made either way as to whether we may use the Moyal bracket method

to calculate the split in energy.



Conclusion

From what we have seen about the semi-classical approximation to the flow equations, it

is clear that they measure up quite well when compared to the WKB method.

In the treatment of the quartic oscillator with the Moyal bracket method, we saw that

we could get marginally better results for the eigenvalues of the lowest states, though

it appears that accuracy improves somewhat slower than WKB method as the energy

increases.

The symmetric double-well potential provided a much greater challenge to the flow

equations. In order to ensure that the initial conditions were smooth enough for our

expansion in ~ to work, we had to separate the even and the odd subspaces; a procedure

not without its own difficulties. The resulting PDEs were far less stable numerically and

it took some effort to produce reliable results. Furthermore, these results need to be

improved to enable the calculation of the level splitting, something which was not possible

at the writing of this thesis.

Despite these problems, the Moyal bracket method remains straight-forward to imple-

ment with the greatest challenge lying in finding initial conditions which are sufficiently

smooth for our approximation to remain valid. Furthermore, the non-perturbative nature

of our approximation enables us to apply it in situations where a perturbative expansion

would fail (as with the SDW potential). It therefore seems probable that the Moyal bracket

approach will find use in other situations where a semi-classical approximation would be

applicable.
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APPENDIX A

Diagonality or block diagonality of H(∞)

With our choice of generator as η(ℓ) = [H0, H(ℓ)], we obtain the following flow equation:

dH(ℓ)

dℓ
= [[H0, H(ℓ)], H(ℓ)]. (A.1)

We consider now the following derivative,

d

dℓ
tr[(H(ℓ) − H0)

2] =
d

dℓ
tr[H(ℓ)2 − H(ℓ)H0 − H0H(ℓ) + H2

0 ] (A.2)

= tr[
dH(ℓ)

dℓ
H(ℓ) − H(ℓ)

dH(ℓ)

dℓ
− dH(ℓ)

dℓ
H0 − H0

dH(ℓ)

dℓ
] (A.3)

= tr[2(H(ℓ) − H0)
dH(ℓ)

dℓ
] (A.4)

= 2tr[(H(ℓ) − H0)[[H0, H(ℓ)], H(ℓ)]] (A.5)

where we have used the cyclic permutability of operators in a trace in the second last line.

We now look at the two terms in (A.5) separately. Firstly,

tr(H(ℓ)[[H0, H(ℓ)], H(ℓ)]) = tr(H(ℓ)[[H0, H(ℓ)]H(ℓ) − H(ℓ)[H0, H(ℓ)]]) (A.6)

= tr(H(ℓ)2[H0, H(ℓ)] − H(ℓ)2[H0, H(ℓ)]) (A.7)

= 0. (A.8)

Secondly,

tr(H0[[H0, H(ℓ)], H(ℓ)]) = tr(H0[[H0, H(ℓ)]H(ℓ) − H(ℓ)[H0, H(ℓ)]]) (A.9)

= tr(H(ℓ)H0[H0, H(ℓ)] − H0H(ℓ)[H0, H(ℓ)]) (A.10)

= tr([H(ℓ), H0][H0, H(ℓ)]) (A.11)

= tr([H0, H(ℓ)]†[H0, H(ℓ)]). (A.12)

Substituting (A.8) and (A.12) back into (A.5) we find,

d

dℓ
tr[(H(ℓ) − H0)

2] = −2tr[[H0, H(ℓ)]†[H0, H(ℓ)]] < 0 (= 0 iff [H0, H(ℓ)] = 0). (A.13)
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Since tr[(H(ℓ)−H0)
2] > 0, we see that it is a monotomically decreasing function of ℓ which

is bounded below by zero. Therefore, its derivative must vanish in the limit of ℓ → ∞.

This implies that tr[[H0, H(ℓ)]†[H0, H(ℓ)]] must also vanish for ℓ → ∞. If one introduces

the concept of a trace norm defined by

Norm(A) = tr[A†A], (A.14)

one sees that tr[[H0, H(ℓ)]†[H0, H(ℓ)]] is exactly the trace norm of [H0, H(ℓ)]. It can easily

be shown that the trace norm satisfies the conditions for being a norm, such as positive

definiteness amongst others. This, together with tr[[H0, H(∞)]†[H0, H(∞)]] = 0, implies

that [H0, H(∞)] = 0.

Let |n〉 be an eigenstate of H0 with eigenvalue λn, then

0 = 〈n| [H0, H(∞)] |m〉 = 〈n|H0, H(∞) − H(∞)H0 |m〉 (A.15)

= (λn − λm) 〈n|H(∞) |m〉 . (A.16)

Therefore, if H0 is non-degenerate, we find that H(∞) is diagonal, and if H0 is degenerate

H(∞) has a block diagonal structure.



APPENDIX B

Exact initial conditions for the SDW potential

In section 4.3 we derived the flow equations and initial conditions for the SDW potential

that preserve the form of the Hamiltonian during flow for the even and odd subpaces of H

respectively. It was also done only to lowest order in the Moyal product. We now derive

the exact Moyal representation of the above to all orders of ~.

We start out with the operator equalities for a†a†, a†a†a†a†, n̂ and their hermitian

conjugates for the even and odd subspaces:

Even:

a†a† =

√
4N̂ − 2B† (B.1)

aa =

√
4N̂ + 2B (B.2)

a†a†a†a† =

√
4N̂ − 2

√
4N̂ − 6B†B† (B.3)

aaaa =

√
4N̂ + 2

√
4N̂ + 6BB (B.4)

n̂ = 2N̂ , (B.5)

Odd:

a†a† =

√
4N̂ + 2B† (B.6)

aa =

√
4N̂ + 6B (B.7)

a†a†a†a† =

√
4N̂ + 2

√
4N̂ − 2B†B† (B.8)

aaaa =

√
4N̂ + 6

√
4N̂ + 10BB (B.9)

n̂ = 2N̂ + 1. (B.10)

We now use the techniques shown in section 2.3 to write B† and B in terms of g and h:

B† =
√

gh (B.11)

B = h†√g, N̂ = B†B = g (B.12)
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where
√

g = −i ln(g)/θ (θ here, of course, refers to the θ found in the exchange relation

of g and h). In terms of scalars then (g = eiα; h = eiβ; g = α
θ
, A ∗ B = Aeiθ

←

∂β

→

∂αB):

B† =

√
α

θ
∗ eiβ =

√
N ∗ eiβ =

√
Neiβ (B.13)

B = e−iβ ∗
√

α

θ
=

√
N + 1 ∗ e−iβ =

√
N + 1e−iβ (B.14)

(in our case θ corresponds to ~).

In general

ekiβ ∗ f(N) = f(N − k) ∗ ekiβ = f(N − k)ekiβ (B.15)

e−kiβ = f(N + k) ∗ e−kiβ = f(N + k)e−kiβ. (B.16)

In terms of operators, our initial Hamiltonian would have the following form,

H(0, h, N̂) = n0(0, N̂) + hn1(0, N̂) + n1(0, N̂)h† + h2n2(0, N̂) + n1(0, N̂)h†2 , (B.17)

which translates too

H(0, β,N) = n0(0, N) + n1(0, N − 1)eiβ + n1(0, N)e−iβ

+n2(0, N − 2)e2iβ + n2(0, N)e−2iβ. (B.18)

We can use (2.21) and (B.18) to derive the flow equations. Firstly we see that

T+(ℓ) = n1(ℓ,N − 1)eiβ + n2(ℓ,N − 2)e2iβ (B.19)

T−(ℓ) = n1(ℓ,N)e−iβ + n2(ℓ,N)e−2iβ. (B.20)

(B.21)

Since η(ℓ) = T+(ℓ) − T−(ℓ), our flow equation becomes

∂H(ℓ)

∂ℓ
= [T+, n0]∗ − [T−, n0]∗ + 2[T+, T−]∗. (B.22)
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Next we work out the three Moyal brackets:

[T+, n0]∗ = (n0(N − 1) − n0(N))n1(N − 1)eiβ

+(n0(N − 2) − n0(N))n2(N − 2)e2iβ (B.23)

[T−, n0]∗ = (n0(N + 1) − n0(N))n1(N)e−iβ

+(n0(N + 2) − n0(N))n2(N)e−2iβ (B.24)

[T+, T−]∗ = n1(N − 1)2 − n1(N)2 + n2(N − 2)2 − n2(N)2 +

+n1(N − 1)n2(N − 1)e−iβ − n2(N)n1(N + 1)e−iβ

+n1(N − 2)n2(N − 2)eiβ − n1(N)n2(N − 1)eiβ. (B.25)

We can then obtain the flow equations by matching terms left and right with the same

factor of ekiβ, where k = −2,−1, 1, 2. Doing this gives us

∂n0

∂ℓ
= n1(ℓ,N − 1)2 − n1(ℓ,N)2 + n2(ℓ,N − 2)2 − n2(ℓ,N)2 (B.26)

∂n1

∂ℓ
= n1(ℓ,N)(n0(ℓ,N) − n0(ℓ,N + 1)) − 2n1(ℓ,N + 1)n2(ℓ,N)

+2n1(ℓ,N − 1)n2(ℓ,N − 1) (B.27)

∂n2

∂ℓ
= n2(ℓ,N)(n0(ℓ,N) − n0(ℓ,N + 2)) (B.28)

To find the initial conditions for n0, n1 and n2, we will make use of (4.3) together

with equations (B.1) to (B.10) and equations (B.13) to (B.16). After substitutions and

being very careful with the Moyal product (we want to keep all the factors with β to

the right, so that the Moyal products are exactly ordinary products), we arrive at the

initial Hamiltonians for the even and odd sectors in term of N and β. To find n1(0, N),

for example, we then match it to the function of N standing in front of e−iβ (since the

function infront of eiβ would give us n1(0, N −1)). After matching all the terms, we arrive

at
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Even:

n0(0, N) = ~(4N + 1) +
ǫ~

2
(4N + 1) +

λ~
2

4
(3 + 12N + 24N2) (B.29)

n1(0, N) =

(
ǫ~

2
+

λ~
2

4
(6 + 8N)

)√
N + 1

√
4N + 2 (B.30)

n2(0, N) =
λ~

2

4

√
N + 1

√
N + 2

√
4N + 2

√
4N + 6, (B.31)

Odd:

n0(0, N) = ~(4N + 3) +
ǫ~

2
(4N + 3) +

λ~
2

4
(15 + 36N + 24N2) (B.32)

n1(0, N) =

(
ǫ~

2
+

λ~
2

4
(10 + 8N)

)√
N + 1

√
4N + 6 (B.33)

n2(0, N) =
λ~

2

4

√
N + 1

√
N + 2

√
4N + 6

√
4N + 10, (B.34)

where we have re-inserted the factors of ~, since we shall be using them in a short while.

If we make the association N = q
~
, then we may write (B.26) to (B.28) as

∂n0

∂ℓ
= n1(ℓ, q − ~)2 − n1(ℓ, q)

2 + n2(ℓ, q − 2~)2 − n2(ℓ, q)
2 (B.35)

∂n1

∂ℓ
= n1(ℓ, q)(n0(ℓ, q) − n0(ℓ, q + ~)) − 2n1(ℓ, q + ~)n2(ℓ, q)

+2n1(ℓ, q − ~)n2(ℓ, q − ~) (B.36)

∂n2

∂ℓ
= n2(ℓ, q)(n0(ℓ, q) − n0(ℓ, q + 2~)). (B.37)

To first order in ~, these become

∂n0

∂ℓ
= −2~

(
∂n2

1

∂q
+ 2

∂n2
2

∂q

)
(B.38)

∂n1

∂ℓ
= −~

(
4n2(ℓ, q)

∂n1

∂q
+ n1(ℓ, q)

[
∂n0

∂q
+ 2

∂n2

∂q

])
(B.39)

∂n2

∂ℓ
= −2~ n2(ℓ, q)

∂n0

∂q
. (B.40)

These agree with (4.45), (4.46) and (4.47) except for certain factors of two. This comes

from the fact that we are essentially combining the parts that belong to eiβ and e−iβ into

a cos(θ) in equations (4.45) to (4.47), which is only possible to lowest order.
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