
Application of Smirnov Words to

Waiting Time Distributions of Runs

Uta Freiberg∗

Institut für Stochastik und Anwendungen
Universität Stuttgart
Stuttgart, Germany

uta.freiberg@mathematik.uni-stuttgart.de

Clemens Heuberger†

Institut für Mathematik
Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria

clemens.heuberger@aau.at

Helmut Prodinger‡

Department of Mathematical Sciences
Stellenbosch University

Stellenbosch, South Africa

hproding@sun.ac.za

Submitted: Dec 2, 2015; Accepted: Aug 31, 2017; Published: Sep 8, 2017

Mathematics Subject Classifications: 05A05, 05A15, 60C05, 60G40

Abstract

Consider infinite random words over a finite alphabet where the letters occur
as an i.i.d. sequence according to some arbitrary distribution on the alphabet. The
expectation and the variance of the waiting time for the first completed h-run of
any letter (i.e., first occurrence of h subsequential equal letters) is computed.

The expected waiting time for the completion of h-runs of j arbitrary distinct
letters is also given.

Keywords: Waiting time distribution; run; Smirnov word; generating function

1 Introduction

In [7], Székely presented the following paradox: In measuring the regularity of a die one
may use waiting times for sequences of the same side of certain lengths. For example,
if ones throws a regular six-sided die, it takes 7 throws on average to get a number

∗Parts of the article were written while Uta Freiberg was a visitor at Stellenbosch University.
†Clemens Heuberger is supported by the Austrian Science Fund (FWF): P 24644-N26. Parts of the

article were written while Clemens Heuberger was a visitor at Stellenbosch University.
‡Helmut Prodinger is supported by an incentive grant of the NRF of South Africa.

the electronic journal of combinatorics 24(3) (2017), #P3.55 1

subsequently twice and 43 throws to get a number three times in succession. Heuristically,
one would expect that a smaller number of throws is needed to get such sequences with
a biased die. This leads to the definition to call one die more regular than another die
if more throws are needed to get sequences of one side of a certain length. Now the
paradox is that there exist dice—say A and B—where the mean waiting time for two
numbers/digits in a row is longer for die A while the mean waiting time for three digits
in a row is longer for die B (an example has been given by Móri, see [7, p. 62]). The
consequence of this paradox is that one cannot use the mean waiting times for such runs
as a (sufficient) criterion for the definition of regularity of a die (or whatever random
sequence of digits from a finite alphabet).

This paradox gave motivation to compute first and second moments of such waiting
times for so called h-runs in this article. In particular, the formula for the first moment
of the waiting time for the first completed h-run of any digit—which was already given in
[7]—is proved without using the strong law of large numbers or any other limit theorem
(see Theorem 1). Moreover, the variance of the waiting time for the first completed h-run
is presented in the same theorem. We then compute the waiting time for the completion
of h-runs of j different letters in Theorem 2. In particular, for j = r (the number of
possible letters), we get results about the waiting time for a full collection of runs.

Our fundamental technique is the calculation of generating functions of such waiting
times; our main trick is the combination of two very useful observations: Firstly, we make
use of the very simple but crucial identity (1) (see [1]) which already has been a power-
ful tool in the treatment of the coupon collector problem and/or the birthday paradox.
Secondly, we use the generating function of Smirnov words (see [2]) to count words with
a limited number of repetitions of single letters using an appropriate substitution.

In Section 5, we give an algorithmic approach for specific situations. In Section 6, we
come back to the original paradox and give numerical values.

2 Preliminaries

We consider infinite words X1X2 . . . over the alphabet A = {1, . . . , r} for some r > 2
where the random variables Xi are i.i.d. with P{Xi = k} = pk > 0 for some p1, . . . , pr.

We say that a letter ` ∈ A has an h-run in X1 . . . Xn if there are h consecutive letters
` in the word X1 . . . Xn, or in other words, if the word `h = `` . . . ` (with h repetitions) is
a factor of the word X1 . . . Xn.

We consider the random variable Bj giving the first position n such that there exist
j of the r letters having an h-run in X1 . . . Xn. This is a random variable on the infinite
product space consisting of all infinite words endowed with the product measure.

On the other hand, we consider the random variable Yn counting the number of letters
which had an h-run in X1 . . . Xn. This is a random variable on the finite product space
consisting of all words of length n, again with its product measure.

By construction, we have

P{Yn > j} = P{Bj 6 n}, (1)

the electronic journal of combinatorics 24(3) (2017), #P3.55 2

cf. [1, Eqn. (6)]. As a consequence, we obtain (cf. [1, Eqn. (7)])

E(Bj) =
∑
n>0

P{Bj > n} =
∑
n>0

P{Yn < j} =

j−1∑
q=0

∑
n>0

P{Yn = q}. (2)

With the generating function

Gj(z) =
∑
n>0

P{Yn < j}zn, (3)

this amounts to
E(Bj) = Gj(1).

To compute the variance, we note the simple fact that

E(B2
j) =

∑
n>0

n2P{Bj = n} =
∑
n>0

n2(P{Bj > n− 1} − P{Bj > n})

=
∑
n>0

(2n+ 1)P{Bj > n} =
∑
n>0

(2n+ 1)P{Yn < j}

= 2G′j(1) +Gj(1)

where we used (1) and the definition of Gj(z) given in (3). We conclude that

V(Bj) = E(B2
j)− E(Bj)

2 = 2G′j(1) +Gj(1)−Gj(1)2. (4)

A Smirnov word is defined to be any word which has no consecutive equal letters. The
ordinary generating function of Smirnov words over the alphabet A is

S(v1, . . . , vr) =
1

1−
r∑

i=1

vi
1 + vi

(5)

where vi counts the number of occurrences of the letter i, cf. Flajolet and Sedgewick [2,
Example III.24].

3 Moments of the first h-run

In this section, we study the first occurrence of any h-run. In the framework of Section 2,
this corresponds to the case j = 1 and the random variable B1.

We prove the following result on the expectation of B1:

Theorem 1. The expectation and the variance of the first occurrence of an h-run are

E(B1) =
1

r∑
i=1

1

p−1i + · · ·+ p−hi

(6)

the electronic journal of combinatorics 24(3) (2017), #P3.55 3

and

V(B1) =

r∑
i=1

(
pi + phi
1− phi

− 2h
phi (1− pi)
(1− phi)2

)
(r∑

i=1

1

p−1i + · · ·+ p−hi

)2
. (7)

The result (6) on the expectation also appears (without proof) in [7, p. 62]. Each
summand of the numerator of (7) is indeed non-negative, because non-negativity of the
ith summand is equivalent to

pi + phi
2

· 1 + pi + · · ·+ ph−1i

h
> phi ,

which is true by the inequality between the arithmetic and the geometric mean, applied
to both factors.

Proof of Theorem 1. In the case j = 1, (2) reads

E(B1) =
∑
n>0

P{Yn = 0}. (8)

Thus we have to determine the probability that a word of length n does not have any
h-run. Such words arise from a Smirnov word by replacing single letters by runs of length
in {1, . . . , h− 1} of the same letter.

In terms of generating function, this corresponds to replacing each vi by

piz + · · ·+ (piz)h−1 =
piz − (piz)h

1− piz
.

Here, z marks the length of the word. We obtain

G1(z) =
∑
n>0

P{Yn = 0}zn = S

(
p1z − (p1z)h

1− p1z
, . . . ,

prz − (prz)h

1− prz

)
=

1

1−
r∑

i=1

piz−(piz)h
1−piz

1 + piz−(piz)h
1−piz

=
1

1−
r∑

i=1

piz − (piz)h

1− (piz)h

. (9)

By (8), we are only interested in z = 1:

E(B1) =
∑
n>0

P{Yn = 0} = G1(1) =
1

1−
∑r

i=1
pi−phi
1−phi

.

the electronic journal of combinatorics 24(3) (2017), #P3.55 4

Replacing the summand 1 in the denominator by p1 + · · ·+ pr yields

E(B1) =
1

r∑
i=1

(
pi −

pi − phi
1− phi

) =
1

r∑
i=1

pi − ph+1
i − pi + phi
1− phi

=
1

r∑
i=1

phi (1− pi)
1− phi

=
1

r∑
i=1

1

p−1i + · · ·+ p−hi

.

For the variance, we use (9) to compute G′1(1) as

G′1(1) = E(B1)
2

r∑
i=1

(pi − hphi)(1− phi) + (pi − phi)hphi
(1− phi)2

= E(B1)
2

r∑
i=1

pi − hphi − ph+1
i + hp2hi + hph+1

i − hp2hi
(1− phi)2

= E(B1)
2

r∑
i=1

pi(1− phi)− hphi (1− pi)
(1− phi)2

= E(B1)
2

(r∑
i=1

pi
1− phi

− h
r∑

i=1

phi (1− pi)
(1− phi)2

)
.

By (4), we obtain

V(B1) = 2G′1(1) +G1(1)−G1(1)2

= E(B1)
2

(
−1 + 2

r∑
i=1

pi
1− phi

− 2h
r∑

i=1

phi (1− pi)
(1− phi)2

+
r∑

i=1

phi (1− pi)
1− phi

)
= E(B1)

2

(r∑
i=1

pi + phi
1− phi

− 2h
r∑

i=1

phi (1− pi)
(1− phi)2

)
.

Together with (6), we obtain (7).

4 Expectation of the first occurrence of h-runs of j letters

In this section, we consider the first position where j of the letters 1, . . . , r had an h-run.
In the terminology of Section 2, this corresponds to the random variable Bj.

We prove the following theorem on the expectation of Bj.

the electronic journal of combinatorics 24(3) (2017), #P3.55 5

Theorem 2. For i ∈ A, let

αi :=
pi − phi
1− pi

, γi :=
pi

1− pi
(10)

and let Ai and Γi be the substitution operators mapping the variable vi to αi and γi,
respectively.

Then the expectation of the first occurrence of h-runs of exactly j letters is

E(Bj) =

(j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai)

)
S(v1, . . . , vr), (11)

where S(v1, . . . , vr) is defined in (5). As usual, [yq] is the operator extracting the coefficient
of yq.

For j = r, i.e., the first occurrence of h-runs of all letters, (11) can be simplified:

Corollary 3. The expectation of the first occurrence of all h-runs is

E(Br) =

(r∏
i=1

Γi −
r∏

i=1

(Γi − Ai)

)
S(v1, . . . , vr), (12)

where Γi, Ai and S(v1, . . . , vr) are defined in Theorem 2 and (5), respectively.

In the case of equidistributed letters, i.e., pi = 1/r for all i, we get the following simple
expression.

Corollary 4. If p1 = · · · = pr = 1/r, then the expectation of the first occurrence of all
h-runs is

E(Br) =
r(rh − 1)

r − 1
Hr,

where Hr denotes the rth harmonic number.

Proof of Theorem 2. As in Section 2, Yn is the number of letters that have at least one
run of length > h within X1 . . . Xn.

Arbitrary words arise from Smirnov words by replacing single letters by runs of length
at least 1 of the same letter. In terms of generating functions, this corresponds to substi-
tuting vi by

piz + · · ·+ (piz)h−1 + ui((piz)h + (piz)h+1 + · · ·)

=
piz − (piz)h + ui(piz)h

1− piz
=
piz + (ui − 1)(piz)h

1− piz
=: βi(ui, z).

As previously, z counts the length of the word. The variable ui counts the number of
occurrences of (non-extensible) m-runs of the letter i with m > h.

the electronic journal of combinatorics 24(3) (2017), #P3.55 6

We now consider the probability generating function

F (u1, . . . , ur; z) = S(β1(u1, z), . . . , βr(ur, z)).

of all words.
For M ⊆ A, let En,M be the event that exactly the letters in M have an h-run in

X1 . . . Xn. By definition, we have

{Yn = q} =
⊎

M⊆A
|M |=q

En,M (13)

for q ∈ {0, . . . , r}.
We now compute P(En,M) for some M = {i1, . . . , iq} of cardinality q. We denote the

letters not contained in M by A\M = {s1, . . . , sn−q}. By construction of the generating
function, we have

P(En,M) = [zn][u0s1] . . . [u
0
sn−q

]
∑

mi1
,...,miq>1

[u
mi1
i1

] . . . [u
miq

iq
]F (u1, . . . , ur; z). (14)

For any power series H(u), we have∑
m>1

[um]H(u) = H(1)−H(0).

We therefore define the operators ∆i and Zi by ∆iH(ui) = H(1)−H(0) and ZiH(ui) =
H(0). With these notations, (14) reads

P(En,M) = [zn]

(∏
i∈M

∆i

∏
i/∈M

Zi

)
F (u1, . . . , ur; z). (15)

Inserting this and (13) in (2) yields

E(Bj) =
∑
n>0

[zn]
∑
M⊆A
|M |<j

(∏
i∈M

∆i

∏
i/∈M

Zi

)
F (u1, . . . , ur; z). (16)

Summing over all n > 0 amounts to setting z = 1 as long as all summands are non-
singular at z = 1. As |M | < j, at least one of the ui is zero, w.l.o.g. u1 = 0. This implies
that [zn]F (u1, . . . , ur; z) 6 [zn]F (0, 1, . . . , 1; z) < ρn for a suitable 0 < ρ < 1 as the word
1h is forbidden as a factor. Thus F (u1, . . . , ur; z) is regular at z = 1.

We note that βi(1, 1) = γi and βi(0, 1) = αi where γi and αi are defined in (10).
Therefore, for z = 1, the operator ∆i in (16) can be written as Γi − Ai. Similarly, Zi

corresponds to Ai.
We have ∑

M⊆A
|M |<j

∏
i∈M

(Γi − Ai)
∏
i/∈M

Ai =

j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai).

Combining this with (16) yields (11).

the electronic journal of combinatorics 24(3) (2017), #P3.55 7

Proof of Corollary 3. In the setting of this corollary, we have j = r. The polynomial∏r
i=1(yΓi + (1− y)Ai) has degree r in the variable y. Thus extracting all coefficients but

the coefficient of yr amounts to substituting y = 1 and subtracting the coefficient of yr,
i.e.,

j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai) =
r∏

i=1

Γi −
r∏

i=1

(Γi − Ai).

Inserting this into (11) yields (12).

Proof of Corollary 4. Setting pi = 1/r yields

γi =
1
r

1− 1
r

=
1

r − 1
, αi =

1
r
− (1

r
)h

1− 1
r

=
1− 1

rh−1

r − 1
,

γi
1 + γi

=
1

r
,

αi

1 + αi

=
rh−1 − 1

rh − 1
.

Inserting this in (12) and collecting terms with k occurrences of Ai yields

E(Br) =
r∑

k=1

(
r

k

)
(−1)k+1 1

1− r−k
r
− k rh−1−1

rh−1

=
r(rh − 1)

r − 1

r∑
k=1

(
r

k

)
(−1)k+1 1

k
=
r(rh − 1)

r − 1
Hr,

where we used the well-known identity

Hr =
r∑

k=1

(
r

k

)
(−1)k+1

k
,

cf. for example [5].

Remark 5. Let run lengths h1, . . . , hr be given and consider occurrences of hi-runs for
the letter i. If Bj is the first position n such that there are exactly j letters which had
“their” run in X1 . . . Xn, the results of Theorems 1 and 2 as well as Corollary 3 remain
valid when all phi are replaced by phi

i .

5 Algorithmic Aspects

For fixed h, the occurrence of an h-run of the variable Xi can easily be detected by a
transducer automaton reading the occurrence probabilities pi and outputting 1 whenever
the letter i completes an h run, see Figure 1 for the case r = 2, A = {1, 2}, h = 3 and
i = 2.

The same can be done for the occurrences of any h-run, see Figure 2 for r = 2,
A = {1, 2} and h = 3.

the electronic journal of combinatorics 24(3) (2017), #P3.55 8

2

22

p 2
|0

p1 | 0

p 2
|1

p 1
| 0

p2 | 0
p 1
|0

Figure 1: Transducer detecting 3-runs of the letter 1.

21

22

11

p2 | 0

p 1
| 0

p1 | 0

p 2
| 0

p
2 | 0

p1 | 1

p
1 | 0

p2 | 1

p1
| 0 p

2 | 0

Figure 2: Transducer detecting 3-runs of any letter.

the electronic journal of combinatorics 24(3) (2017), #P3.55 9

The first occurrence of j runs of length h could also be modelled by a transducer.
Using the finite state machine package [4] of the SageMath Mathematics Software [6],

such transducers can easily be constructed.
Accompanying this article, in [3], an extension of SageMath to compute the expecta-

tion and the variance of the first occurrence of a 1 in the output of a transducer has been
included into SageMath.

Using this extension, the expectation and the variance of B1 can be computed for fixed
r and h as shown in Table 1.

from sage.combinat import finite_state_machine as FSM

Construct the polynomial ring and set up q

R.<p> = QQ[]

q = 1 - p

Construct the Transducers detecting runs of single

letters. [p, p, p] is the block to detect, [p, q]

the alphabet

p_runs = transducers.CountSubblockOccurrences(

[p, p, p], [p, q])

q_runs = transducers.CountSubblockOccurrences(

[q, q, q], [p, q])

In order to detect runs of both letters, build the

cartesian product ...

both_runs = p_runs.cartesian_product(q_runs)

... and add up the output by concatenating with

the predefined "add" transducer on the alphabet

[0, 1] We use the Python convention that any

non-zero integer evaluates to True in boolean

context.

first_run = transducers.add([0, 1])(both_runs)

Declare it as a Markov chain

first_run.on_duplicate_transition = \

FSM.duplicate_transition_add_input

print first_run.moments_waiting_time()

Table 1: Computation of the moments for B1 with r = 2 and h = 3 in SageMath.

The results coincide with those obtained in Theorem 1. For more examples, see the

the electronic journal of combinatorics 24(3) (2017), #P3.55 10

h = 2 fair first list second list

j = 1 7 5.41 5.47
j = 2 15.4 12.94 13.33
j = 3 25.9 25.15 27.12
j = 4 39.9 51.64 57.56
j = 5 60.9 575.56 332.67
j = 6 102.9 1716.77 975.50

h = 3 fair first list second list

j = 1 43 22.96 22.82
j = 2 94.6 56.83 58.67
j = 3 159.1 120.95 144.99
j = 4 245.1 277.55 361.72
j = 5 374.1 19093.72 8149.83
j = 6 632.1 57272.24 24412.70

Table 2: Expectation E(Bj) for p = (1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
) (“fair”), p = (0.3, 0.3, 0.19, 0.19,

0.28, 0.28) (“first list”) and p = (0.4, 0.4, 0.17, 0.17, 0.29, 0.29) (“second list”), respectively.

documentation1 of the method moments waiting time.
For j > 1, we did not compute V(Bj) in general. For fixed r and h, it can be computed

by this algorithmic approach.
Obviously, the SageMath method can be used for computing first occurrences of ev-

erything which is recognisable by a transducer. On the other hand, explicit results for
general r and h such as our Theorems 1 and 2 cannot be obtained by that method.

6 Numerical Results

In this section, we come back to the paradox mentioned in the introduction. Using Theo-
rem 2, we obtain E(Bj) shown in Table 2 for p = (1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
), p = (0.3, 0.3, 0.19, 0.19,

0.28, 0.28) and p = (0.4, 0.4, 0.17, 0.17, 0.29, 0.29), respectively. Note that the values 22.96
and 22.82 correct the values 22.54 and 22.35 erroneously given in [7]. For the last two
unfair dice, we print the maximum of the E(Bj) in boldface to highlight the more regular
die with respect to the chosen pair (h, j). As indicated in the paradox, none of the two
dice is more regular than the other with respect to these expectations.

Using Theorem 1, we also compute the variance E(B1) for the same vectors p in
Table 3.

1http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_

machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.moments_waiting_

time

the electronic journal of combinatorics 24(3) (2017), #P3.55 11

http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.moments_waiting_time
http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.moments_waiting_time
http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_machine.html#sage.combinat.finite_state_machine.FiniteStateMachine.moments_waiting_time

fair first list second list

h = 2 30.0 15.16 15.69
h = 3 1650.0 425.69 420.70

Table 3: Variance E(B1) for p = (1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
) (“fair”), p =

(0.3, 0.3, 0.19, 0.19, 0.28, 0.28) (“first list”) and p = (0.4, 0.4, 0.17, 0.17, 0.29, 0.29)
(“second list”), respectively.

References

[1] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier, Birthday paradox, coupon col-
lectors, caching algorithms and self-organizing search, Discrete Appl. Math. 39 (1992),
no. 3, 207–229.

[2] Philippe Flajolet and Robert Sedgewick, Analytic combinatorics , Cambridge Univer-
sity Press, Cambridge, 2009.

[3] Clemens Heuberger, FiniteStateMachine: Moments of waiting time, http://trac.

sagemath.org/ticket/18070, 2015, merged in SageMath 6.9.beta4.

[4] Clemens Heuberger, Daniel Krenn, and Sara Kropf, Automata in SageMath—
combinatorics meets theoretical computer science, Discrete Math. Theor. Comput.
Sci. 18 (2016), no. 3.

[5] Peter J. Larcombe, Eric J. Fennessey, Wolfram A. Koepf, and David R. French, On
Gould’s identity No. 1.45, Util. Math. 64 (2003), 19–24.

[6] The SageMath Developers, SageMath Mathematics Software (Version 8.0), 2017,
http://www.sagemath.org.

[7] Gábor J. Székely, Paradoxes in probability theory and mathematical statistics, Mathe-
matics and its Applications (East European Series), vol. 15, D. Reidel Publishing Co.,
Dordrecht, 1986, Translated from the Hungarian by Márta Alpár and Éva Unger.

the electronic journal of combinatorics 24(3) (2017), #P3.55 12

http://dx.doi.org/10.1016/0166-218X(92)90177-C
http://dx.doi.org/10.1016/0166-218X(92)90177-C
http://dx.doi.org/10.1017/CBO9780511801655
http://trac.sagemath.org/ticket/18070
http://trac.sagemath.org/ticket/18070
http://dmtcs.episciences.org/1475
http://dmtcs.episciences.org/1475
http://www.sagemath.org

	Introduction
	Preliminaries
	Moments of the first h-run
	Expectation of the first occurrence of h-runs of j letters
	Algorithmic Aspects
	Numerical Results

