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Abstract

An Explicit Finite Di�erence Method for Analyzing Hazardous

Rock Mass

Applied Mathematics Division, Department of Mathematical Sciences

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc Applied Mathematics

December 2011

FLAC3D is a three-dimensional explicit �nite di�erence program for solving a variety of

solid mechanics problems, both linear and non-linear. The development of the algorithm

and its initial implementation were performed by Itasca Consulting Group Inc. The main

idea of the algorithm is to discritise the domain of interest into a Lagrangian grid where

each cell represents an element of the material. Each cell can then deform according to a

prescribed stress/strain law together with the equations of motion. An in-depth study of

the algorithm was performed and implemented in Java. During the implementation, it was

observed that the type of boundary conditions typically used has a major in�uence on the

accuracy of the results, especially when boundaries are close to regions with large stress

variations, such as in mining excavations. To improve the accuracy of the algorithm, a

new type of boundary condition was developed where the FLAC3D domain is embedded

in a linear elastic material, named the Boundary Node Shell (BNS). Using the BNS

shows a signi�cant improvement in results close to excavations. The FLAC algorithm is

also quite amendable to paralellization and a multi-threaded version that makes use of
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ABSTRACT iii

multiple Central Processing Unit (CPU) cores was developed to optimize the speed of the

algorithm. The �nal outcome is new non-commercial Java source code (JFLAC) which

includes the Boundary Node Shell (BNS) and shared memory parallelism over and above

the basic FLAC3D algorithm.
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Uittreksel

An Explicit Finite Di�erence Method for Analyzing Hazardous

Rock Mass

Applied Mathematics Division, Department of Mathematical Sciences

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Tesis: MSc Applied Mathematics

Desember 2011

FLAC3D is 'n eksplisiete �eindige verskil� program wat 'n verskeidenheid liniêre en nie-

liniêre soliede meganika probleme kan oplos. Die oorspronklike algoritme en die impli-

mentasies daarvan was deur Itasca Consulting Group Inc. toegepas. Die hoo�dee van die

algoritme is om 'n gebied te diskritiseer deur gebruik te maak van 'n Lagrangese rooster,

waar elke sel van die rooster 'n element van die rooster materiaal beskryf. Elke sel kan

dan vervorm volgens 'n sekere spannings/vervormings wet. 'n Indiepte ondersoek van

die algoritme was uitgevoer en in Java geïmplimenteer. Tydens die implementering was

dit waargeneem dat die grense van die rooster 'n groot invloed het op die akkuraatheid

van die resultate. Dit het veral voorgekom in areas waar stress konsentrasies hoog is,

gewoonlik naby areas waar myn uitgrawings gemaak is. Dit het die ontwikkelling van 'n

nuwe tipe rand kondisie tot gevolg gehad, sodat die akkuraatheid van die resultate kon

verbeter. Die nuwe rand kondisie, genaamd die Grens Node Omhulsel (GNO), aanvaar

dat die gebied omring is deur 'n elastiese materiaal, wat veroorsaak dat die grense van die

gebied 'n elastiese reaksie het op die stress binne die gebied. Die GNO het 'n aansienlike

iv
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verbetering in die resultate getoon, veral in areas naby myn uitgrawings. Daar was ook

waargeneem dat die FLAC algoritme parralleliseerbaar is en het gelei tot die implentering

van 'n multi-SVE weergawe van die sagteware om die spoed van die algoritme te opti-

meer. Die �nale uitkomste is 'n nuwe nie-kommersiële Java weergawe van die algoritme

(JFLAC), wat die implimentering van die nuwe GNO randwaardekondisie insluit, asook

toelaat vir die gebruik van multi- Sentrale Verwerkings Eenheid (SVE) as 'n verbetering

op die basiese FLAC3D algoritme.
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Chapter 1

Introduction

1.1 Background

Earthquakes remain one of the most dangerous natural disasters, claiming many lives

through history. An earthquake, also known as a tremor or seismic event, is an event

of sudden failure of a part of the earth's lithosphere that radiates seismic waves. Most

earthquakes result from slip along existing faults under tectonic stress. Faults are planar

discontinuities along which parts of the rockmass have slipped past each other. A dyke is

another type of geological discontinuity along which earthquakes may originate. A dyke

can be thought of as a steeply dipping fault with in�lling igneous rock, having been the

conduit of molten rock en route towards the earth's surface, where it may have �owed

out as lava. Where the country rock is weaker than the igneous in�lling, the dyke can

become a stress concentrator when the rock mass is deformed.

The amplitudes and frequencies of seismic waves radiated by an earthquake are mea-

sured by various instruments that measure ground acceleration, velocity or displacement.

From the strength of the recorded ground motions and knowledge of distance from the

source, the strength of the earthquake can be estimated, usually represented by the Rich-

ter magnitude [16]. The Richter magnitude is based on the logarithm of the maximum

amplitde of ground motion and can range from negative values to the maximum ever

recorded being 9.5.

1
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CHAPTER 1. INTRODUCTION 2

Small magnitude earthquakes occur regularly around the globe, but every few months

a large magnitude earthquake occurs somewhere in the world. The San Andreas fault

zone in central California is well known for causing large earthquakes. A considerable

amount of research has been done on this fault zone to allow improved insight into all

aspects of the earthquake phenomenon. The scienti�c literature on earthquakes is vast.

Earthquakes also occur in the mining environment. When rock masses are removed from

an ore body, stresses can accumulate on the surrounding geological structures. Once the

stress levels become too high to sustain, the structure slips and seismic waves are emitted.

The ground motions caused by these seismic events, can loosen already fractured rocks

and fatal accidents can result.

Several methods have been developed to estimate the hazard of rock mass in underground

mines. Information provided by historical seismic events is used to measure the state of

the rock mass; location, moment and the radiated energy of these seismic events are used

to calculate parameters such as Energy Index [22], Schmidt Number[14], Apparent Stress

Level or Cumulative Seismic Displacement [13]. These parameters are analyzed on a daily

basis and if one of these parameters exceeds a given threshold, it could indicate the pos-

sibility of a large seismic event. A sudden increase in the frequency of seismic activity in

a concentrated area could also be an indication of a larger seismic event. The above men-

tioned techniques are all examples of useful early warning systems, but the major issue

of the exact date and time of the next major seismic event still remains unpredictable.

1.2 Aim

This investigation attempts to aid scientists in determining the potential hazard of a

volume of rock in the mining environment. The approach selected for this study is to

develop a computer generated stress model for a particular mining con�guration. In situ

stresses that are physically measured underground, are used together with the current

mining con�guration as input to the simulation. The �nal result is an estimation of the
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stresses inside the rock mass. In most cases the stresses under which certain rock types

fail are known from laboratory strength testing. If the stress model indicates that the

investigated rock mass has stresses close to these failure strengths, then it is possible that

these highly stressed areas could fail. It is important to note that this technique is not

a prediction system for seismic events but rather a tool for better understanding of the

environment and possibly indicating hazardous areas.

Several methods exist to model complex underground excavations. The Boundary Ele-

ment Method (BEM) [2] is well-known for its ability so simulate stress levels for large

mining con�gurations. Several domain methods, such as the Finite Element Method

(FEM) [20] can also accomplish this task. The Material Point Method (MPM) [21] is an

extension of the Particle-In-Cell (PIC) Method [8], commonly used in computational �uid

dynamics, to solid dynamics and is capable of simulating stresses inside the domain as

well as to identify possible material failure regions in the domain. In the MPM, the do-

main is discritised into Lagrangian point masses, or material points, that moves through

a Eulerian background mesh.

The above techniques, and others, have both advantages and disadvantages. The BEM

has the advantage of solving large scale models in a reasonable time frame. Its disadvan-

tage is that it is limited to an isotropic elastic medium that assumes that no failure can

occur in the body. FEM has been applied successfully to a wide range of problems with

good results. However, three-dimensional objects can be di�cult and time consuming

to implement in body �xed FEM meshes. Furthermore, solution accuracy is compromi-

sed when large deformations are present in FEM simulations. The deformations lead to

mesh distortion and usually requires re-meshing the domain, which again may be time

consuming. The MPM is capable of simulating large deformations, without remeshing

the domain. However, its is computationally more expensive than FEM in terms of sto-

rage, since information about material points and the background has to be stored. Also,

particles may oscillate if it crosses boundaries of the background mesh.

The modeling and simulation method that will be focused on in this study was deve-
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loped by Itasca Consulting Group Inc. and is known as Fast Lagrangian Analysis of

Continua, (FLAC). FLAC is an explicit �nite di�erence algorithm for solving a variety

of solid mechanics problems. This method uses basic constitutive equations to de�ne

the material, and the algorithm uses a set of partial di�erential equations derived from

general principles to relate the mechanical (stress) and kinematic (strain rate, velocity)

variables. The principles include the de�nition of strain and laws of motion. These di�e-

rential equations are solved for a particular geometry where the user de�nes the material

properties and initial conditions.

FLAC is not restricted to underground geometry, but for the use of this study, it will

only be applied to the mining environment. This method of modelling rock mass is not

necessarily better than FEM codes, but is much simpler to implement and does not in-

volve solving the complex FEM equations. However, as in FEM, the problem of remeshing

arise when large deformations become evident in the domain. Also, modelling complex

geometries may be a di�cult and time consuming task. Although FLAC has these di-

sadvantages, it still remains one of the most popular modelling tool in the mining industry.

Two-dimensional and three-dimensional versions of FLAC exist. For the purpose of this

study, the 3D version will be discussed in detail and all references to FLAC refers to this.

The documentation that describes the basic FLAC algorithm [10], that is supplied with a

copy of the FLAC software, was used as the basis for the development of a FLAC version

in Java. For future reference, this Java Code will be referred to as JFLAC.

During the implementation of the algorithm, it was observed that the type of boun-

dary conditions typically used in FLAC, have a signi�cant in�uence on the accuracy of

the simulated results. This became more evident as boundaries were placed closer to areas

where results were analyzed. This led to the implementation of a new type of boundary

condition, called the Boundary Node Shell (BNS), which is an addition to FLAC. The

BNS assumes that the entire domain is placed in a linear elastic material and the boun-

daries of the modelled domain responded elastically to the contained body forces. This

showed a signi�cant improvement in simulation accuracy. An additional contribution was
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made by creating a multi- Central Processing Unit (CPU) version of the basic algorithm.

The �nal outcome is new non-commercial Java source code (JFLAC) which includes the

Boundary Node Shell (BNS) and shared memory parallelism over and above the basic

FLAC algorithm.

1.3 Layout of this document

Chapter 1: Introduction

This chapter introduces the reader to the problem and gives a motivation behind the work

that is focused on in this study. A brief background on seismic hazard in rock mass is

given and it mentions di�erent tools that can be used to measure the hazard. The aim

of the study is given and a motivation for choosing FLAC as a modelling hazard analysis

tool is also discussed. Lastly, a few improvements to the original FLAC algorithm that

were developed and implemented is addressed.

Chapter 2: Governing equations

This chapter discusses the basic governing equations, such as stress, strain and the equa-

tions of motion, used in the JFLAC algorithm. A general discussion on the inelastic

response in soil, by means of the Mohr-Coulomb condition, is also given.

Chapter 3: The JFLAC algorithm

The nodal formulations of the governing equations are derived. A detailed description

of the JFLAC grid is given and it is explained how the domain of interest is discritised

into a Lagrangian grid. Consequently the derivations of the basic algorithm and its

implementation are described.

Chapter 4: Contributions to JFLAC

This chapter describes the contributions the author of this study made to the basic FLAC

algorithm. The implementation of the new type of boundary condition, the Boundary
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CHAPTER 1. INTRODUCTION 6

Node Shell (BNS), is described. The development of a multi-threaded version of the

JFLAC algorithm is also discussed.

Chapter 5: Results and discussion

JFLAC is tested against a well known analytical solution. It is also compared with the

results obtained by FLAC3D for the same problem. A case study is then performed on a

South-African mine in the Bushveld Complex. The performance of the BNS is also tested.

Chapter 6: Summary and conclusion

This chapter summarizes the work and achievements of the study and provides several

conclusions.

Chapter 7: Possible improvements

Possible improvements to the JFLAC algorithm are given here.
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Chapter 2

Governing equations

This chapter reviews the basic governing equations that are used in JFLAC. These equa-

tions include the basic elements of stress and strain as well as some fundamentals of

elasticity. It also presents a general discussion of inelastic response in soil by means of the

Mohr-Coulomb condition and provides a brief explanation of inelastic �ow. This chapter

is fundamental to the following chapters and follows Davis and Selvadurai [5].

2.1 Deformation and strain

An important aspect of a solid body is the description of its deformations. The term

�deformation� refers to the motion of any particular particle in the body as well as the

overall motion of the body and is usually the result of external forces that act on the body.

To better illustrate this, consider the elastic body A in Fig. (2.1) that has a reference

con�guration A0. In this con�guration the body is free from any load. If a set of external

forces is applied to the body in its reference con�guration, it will change to its deformed

con�guration, denoted by At, where the subscript t refers to time. A displacement vector

ut can be introduced that connects the position of a particular particle from its reference

con�guration to its deformed con�guration. If a displacement vector is drawn for every

particle in A from A0 to At, a vector �eld may be formed and can be written as

u = u(r, t), (2.1)

7
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CHAPTER 2. GOVERNING EQUATIONS 8

where r is the position vector of all the particles in A0. In linear elasticity theory it is

assumed that deformations are small, such that the position of a particle in its reference

con�guration and deformed con�guration are for all practical purposes, identical.

Figure 2.1: The reference con�guration A0 and deformed con�guration At for a generic elastic
body.

While deformations often lead to strains within a body, it is important to note that

not all deformations will lead to strain. The deformations that do not strain a body

consist of either rigid translations or rigid rotations. A rigid translation is any deforma-

tion that does not depend on r. This implies that if u is the same for every r, the body

is undergoing a rigid translation. If the body is rotated around a �xed axis, then it is

undergoing a rigid rotation. The major di�erence between straining and the two rigid

motions described is that only strains change the shape and/or length of the body.

Strain may be de�ned as the change in length (4L) of a deformed body, normalized

with respect to the original undeformed length (L), and is mathematically expressed as

ε =
4L
L
. (2.2)

This form of strain is known as extensional strain.

Only strains will result in stresses within a body. To characterize these stresses, the
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CHAPTER 2. GOVERNING EQUATIONS 9

strains must �rst be determined, which can only be achieved after all rigid body motions

are eliminated. Firstly, a distinction between rigid translations and strains can be made

by analyzing the variation of the vector �eld u around a single point in a body. The par-

tial derivative of u is taken for this point in a rectangular Cartesian coordinate system.

This is known as the displacement gradient matrix and is expressed as

∇u =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 . (2.3)

The partial derivatives in Eq. (2.3) will not be a�ected by rigid translations, since all the

derivatives will be zero. This might suggest that Eq. (2.3) can be used as a measure of

strain. However, rigid rotations would, in some cases, lead to non-zero derivatives. To

make distinction between rigid rotations and strains,∇u is further re�ned by decomposing

it into two matrices, one being symmetric and the other skew-symmetric. The symmetric

matrix is called the strain matrix, E, and is de�ned by

E =
1

2
(∇u +∇uT ), (2.4)

where T denotes the transpose of the matrix. The skew-symmetric matrix is called the

rotation matrix, W, and is de�ned by

W =
1

2
(∇u−∇uT ). (2.5)

To follow the convention used throughout this study, Eqs. (2.4) and (2.5) are used in

their tensor forms. This is done by adding an indicial notation to present the dependent

and independent variables in Eq. (2.1). The position vector r can be denoted by ri where

i can take on the values 1, 2, 3. Consequently Eq. (2.1) can be expressed as

ui = ui(ri, t). (2.6)

Following the tensor notation of Flügge [7], the displacement gradient matrix then be-
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CHAPTER 2. GOVERNING EQUATIONS 10

comes:

ui,j =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 (2.7)

where indices i and j follow the Cartesian tensor notation. Consequently Eqs. (2.4) and

(2.5) become

εij =
1

2
(ui,j + uj,i) (2.8)

and

ωij =
1

2
(ui,j − uj,i), (2.9)

respectively. Further, by di�erentiating Eqs. (2.8) and (2.9) with respect to time yields

ε̇ij =
1

2
(vi,j + vj,i) (2.10)

and

ω̇ij =
1

2
(vi,j − vj,i) (2.11)

for the strain-rate- and rotation-rate tensors respectively, where vi are velocity compone-

nets.

2.2 Stress

2.2.1 Elasticity

Stresses will develop in a material if a body is strained. The concept of stress can be

understood as the force acting on some surface area in the body. For example, if a cross-

section is made perpendicular to a rope that is under tension, then the traction vector,

t, can be de�ned as the force in the rope divided by the cross-sectional area of the rope.

Mathematically this is expressed as

t =
force vector

area
. (2.12)
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Although the described concept is easy to understand, it is not as straightforward to de�ne

t for cross-sections that are not perpendicular to the rope. It necessitates comprehensively

describing the stress in the rope. Cauchy overcame the challenge by showing how to �nd

the traction on any surface through the rope, by looking at tractions on three speci�c

surfaces. To illustrate this, consider a 3D generic body as shown in Fig. (2.2) [5].

Figure 2.2: 3D generic shaped �gure for describing the traction vector.

A cross-section is made through the body and the area element, da, will be analyzed.

Let df be the force that acts on da. The traction vector can be de�ned by the limit:

t = lim
da→0

df

da
. (2.13)

Next de�ne n as the unit vector that is normal to da. Cauchy showed that the traction

vector can be determined by taking the product of a 3x3 matrix with the normal vector
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n, expressed as

t =T · n (2.14)

where T is known as the stress matrix. This matrix contains all the information needed

to �nd the traction on any surface that passes through the body. The expression in Eq.

(2.14) gives the components of t in three coordinate directions. However, in some cases

it is useful to look at the components of t that acts normal and tangential to a surface.

The vector component that is perpendicular to the surface is referred to as the normal

stress, σn, and can be calculated by

σn = t · n. (2.15)

The tangential component, referred to as the shear stress τ , can be calculated by [5]

τ =
√

t · t− σ2
n. (2.16)

A familiar way to obtain a graphical representation of the stress state at a point in terms

of τ and σn in a stressed medium, is the Mohr diagram [9]. If τ and σn are analyzed for any

point in the body, and every possible orientation of surface that passes through the point

is considered, it is found that all values for τ and σn lie within a well-de�ned region. This

region is shown in Fig. (2.3). Di�erent stress states will have di�erent Mohr diagrams

with circles of di�erent sizes. Often the outer most points where the circle intersects the

normal stress axis are of interest. These points of intersection are known as the principal

stresses and are the surfaces that intersects the points where t is parallel to the normal

vector n, i.e.

t = λn, (2.17)

where λ is a scalar value.

The principal stresses can be determined by substituting Eq. (2.17) into Eq. (2.14),

yielding:

λn = Tn. (2.18)
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Eq. (2.18) can be rearranged to become

(T− λI)n = 0, (2.19)

where I denotes the identity matrix. Eq. (2.19) is identi�ed as an eigenvalue problem.

The eigenvalues and eigenvectors can be determined by solving [5]

det(T− λI) = 0. (2.20)

The eigenvalues for Eq. (2.20) are known as the principal stresses and are denoted by σ1,

σ2 and σ3 respectively. The corresponding eigenvectors de�ne the three principal surfaces.

For convenience, the principal stresses are usually numbered such that σ1 ≥ σ2 ≥ σ3.

Figure 2.3: The Mohr-circle for visualizing principal stresses.

Now that the concepts of strain and stress are de�ned, there should exist a relation
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between the strain at a point in a deformed body to the stress of this particular point.

Hooke's law provides this relation and is the cornerstone in the theory of elasticity. This

linear relationship between stress and strain is expressed as [5]

T = CE (2.21)

where C is a matrix containing properties of the material. Since strain is a dimensionless

quantity, C should have the same dimensions of stress.

A familiar quantity in linear elasticity is a material property called Young's modulus,

represented as E. A second familiar quantity of elasticity is the Poisson's ratio, ν. To get

a better understanding of these quantities, consider an elastic cylindrical bar that is sub-

ject to tension. The extension of the cylinder can be described in terms of the principal

strain, ε1, and Young's modulus provides the relationship to calculate the stress, σ1. The

cylinder also su�ers a lateral contraction, ε2 , as a result of the longitudinal extension.

The ratio of lateral contraction as a result of longitudinal extension is known as Poisson's

ratio, and is dimensionless. Mathematically, Poisson's ratio is expressed as

ν =
ε2
ε1
. (2.22)

If a shear load τ is applied to the cylinder, the material will experience a shearing strain

which is directly proportional to the applied stress and a shear modulus, G. Like Young's

modulus, G also has a dimension of stress and a relation can be expressed as [5]

G =
E

2(1 + ν)
. (2.23)

Another modulus that gives the relationship between elastic volume change and stress is

called the Bulk modulus, K, and contains information about the compressibility of the

material. An expression for K is

K = λL +
2

3
G, (2.24)
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where λL is known as the Lamé material constant and is also expressed as

λL =
νE

(1 + ν)(1− 2ν)
. (2.25)

The Possion ratio can also be expressed in terms of the Lamé constant by

ν =
λL

2(λL +G)
. (2.26)

2.2.2 Plasticity

In the theory of elasticity, total reversibility in the state of deformation is assumed for any

elastic material. This implies that the material can obtain an in�nitely large load without

experiencing any damage, and once the load is removed from the material, it will return

to its original state. However, in reality, this is not physical. All materials will reach a

point where reversibility is lost and becomes permanently deformed, or even breaks, if a

large enough load is applied. Fig. (2.4) shows a universal stress-strain curve [17] that

highlights the relation between a material's elastic region and the plastic region, where

the reversibility of the material is lost.
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Figure 2.4: The stress-strain curve of a material.

Consider a cylindrical bar that is under no strain. Since the cylinder is unstrained,

the stress-strain relation inside the cylinder can be placed at origin point, O, on the

stress-strain curve in Fig. (2.4). Let a slowly increasing uni-axial load be applied to the

cylinder. As the load increases, the stress-strain relation of the cylinder falls within the

elastic region, and the stress-strain relation obeys Hooke's law. As the load increases,

the stress-strain relation reaches a point known as the material's yield strength. At this

point the material falls within the plastic range and the material becomes permanently

deformed. This implies, that if the load is suddenly removed from the cylinder, the stress-

strain relation of the material will not return back to the origin point O on the curve,

but will return to a di�erent state that does not lie on the curve. If the load continues to

increase, it will reach a point, known as the material's tensile strength, where the material

breaks.

A material is seen as plastic if it behaves elastically when stresses in the material are
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below a yield strength, but when the applied stress is higher than the critical level, it

�ows continuously without rupture and becomes permanently deformed. Many attempts

have been made to determine a common yield stress for all materials, but it was discovered

that there are as in�nitely many yield strengths as there are materials. Two conditions

used for the mathematical handling of yield strength of metals are those of H. Tresca and

R. von Mises [9]. The Mohr-Coulomb condition is well known when dealing with soils

and rocks.

Coulomb [9] found that the strength of materials could be derived from its cohesion,

i.e. the ability of particles in the material to stick together, represented as C0, and its

angle of internal friction φ, i.e. the critical angle at which a load must be applied to a

material to fail under shear. His observations revealed that failure in soils could usually

be associated with a surface of rupture. Restricting his attention to the surface, he wrote

the failure criterion as:

τ = C0 + σn tanφ. (2.27)

The shear stress limit in Eq. (2.27) provides the yield limit at which a material starts to

behave plastically. The trend of Eq. (2.27) is a straight line and can be plotted on the

Mohr diagram of a two-dimensional stress state in τ −σ space as illustrated in Fig. (2.5).

If, for a given stress state, failure occurs, the combination of principal stresses must be

tangent to this line. Therefore values of τ and σ can be related to the principal stresses

σ1 and σ3. From Fig. (2.5) it can be shown that the shear stress value at which failure

occurs is

τ =
1

2
(σ1 − σ3) cosφ (2.28)

and the corresponding normal stress is calculated from

σn =
1

2
(σ1 + σ3)−

1

2
(σ1 − σ3) sinφ. (2.29)

By substituting Eq. (2.29) into Eq. (2.27), the Mohr-Coulomb condition can also be

expressed as

τ =
1

2
(σ1 + σ3) sinφ+ C0 cosφ. (2.30)
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Figure 2.5: Mohr-Coulomb failure criterion on a τ − σ axis.

The Mohr-Coulomb condition assumes that a material only fails under shear. However

a tension cuto�, σt, can be introduced into this model. Fig. (2.5) shows a tension cut-o�

before the straight line of Eq. (2.27) intersects the σ axis. If the tension exceeds this limit

the material is assumed to fail under tension.

The Mohr-Coulomb failure envelope can also be shown in principal stress space (σ1 − σ3
space) as illustrated in Fig. (2.6). It can also be shown that by mathematical manipula-

tion of Eqs. (2.27), (2.28) and (2.29), the linear relation found in Eq. (2.27), translates

into

σ1 = σc +Nφσ3, (2.31)

where

Nφ =
1 + sinφ

1− sinφ
(2.32)

and the Uniaxial Compressive Strength (UCS - the capacity of a material or structure to

withstand axially directed compressing forces) given by

σc = 2C0

√
Nφ (2.33)
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Figure 2.6: Coulomb failure criterion on a σ1 − σ3 axis.

The Mohr-Coulomb condition can also be expressed as a function of the stress by

substituting Eqs. (2.28) and (2.29) into (2.27) [9], yielding

F (σ1, σ3) =
σ1 + σ3

2
sinφ− σ1 − σ3

2
− C0 cosφ. (2.34)

This form of the Mohr-Coulomb failure criterion is applicable to failure on a plane parallel

to the σ2 plane. If Eq. (2.34) is extended to three-dimensions, then the resulting surface

is a cone with a hexagonal cross section as illustrated in Fig. (2.7).

The stress state of any point inside a material can be analyzed by the surface in Fig.

(2.7). If the principal stress values for this stress state is such that F (σ1, σ3) < 0, then

the material is in its elastic range. If the values of these principle stresses are such that

F (σ1, σ3) = 0, then the material is considered to be in the elastic-plastic range. Values

for the principle stresses that causes F (σ1, σ3) > 0 are not allowed and a correction must

be made to return it to the surface of the cone. This is usually done by applying a �ow rule.

Details of the �ow rules that are applied in JFLAC are described in Section (3.4). In

brief, two types of �ow rules exist, namely associated �ow and non-associated �ow. When
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a material's friction angle is the same as its dilation angle (deformation angle, ψ), an as-

sociated �ow can be applied to return the material back to the surface of the cones. This

means that if a material is deformed by a stress, it will return to its original undeformed

state if the stress is removed. However, if the dilation angle di�ers from the friction angle,

the material will not completely return to its original state if the stress is removed, but

will have some form of resulting deformation. In this case, a non-associated �ow rule

applies.

Figure 2.7: Mohr-Coulomb yield surface in σ1 : σ2 : σ3 space.

2.3 The equilibrium equations

All forces on a body can be classi�ed into two categories: namely contact forces and body

forces. Contact forces are associated with surfaces and generally they lead to tractions

as discussed in Section (2.2). Body forces are associated with volumes inside the body.

Examples of body forces are gravitational and magnetic forces.

In Fig. (2.8) the stresses acting on an in�nitesimal small cubular element, taken from a
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stressed body in static equilibrium, are shown. Following [5], if the forces are in equili-

brium, then it follows from Fig. (2.8) [5], in the x direction, that

(σxx +
∂σxx
∂x

dx)dydz − σxxdydz + (2.35)

(σxy +
∂σxy
∂y

dy)dxdz − σxydxdz + (2.36)

(σxz +
∂σxz
∂y

dz)dxdy − σxzdxdy + (2.37)

ρfxdxdydz = 0. (2.38)

In Eqs. (2.35) to (2.38) dxdydz is the volume of the element and ρfxdxdydz is the total

body force in the x-direction, where ρ is known as the material density. Quantities dydz

and dxdz are the areas of the cube faces. By combining these quantities Eqs. (2.35) to

(2.38) becomes
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρfx = 0. (2.39)

Components for the y- and z directions are similarly computed.
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Figure 2.8: Stresses acting on a volume element [5].

The following three equations, that involve partial derivatives of the stress components,

describe the concept of static equilibrium:

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

+ ρfx = 0, (2.40)

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

+ ρfy = 0 (2.41)

and
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρfz = 0 (2.42)

where fx, fy and fz are the components of the body force. These equations must hold for

every point in the body as long as its remains in static equilibrium. Equations (2.40) to
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(2.42) can be expressed in tensor form as

σij,j + ρbi = 0, (2.43)

and gives the condition of equilibrium for the forces acting on a volume element, where

σij is known as the stress tensor. If the body from which the volume element was taken

had some initial motion, it implies that the body is in dynamic equilibrium. The dynamic

equation of motion, also known as Cauchy's equation of motion, for the volume element

[6] is then expressed as

σij,j + ρbi = ρ
dvi
dt
, (2.44)

where the term on the right hand side is introduced to represent the initial motion of

the body. In the computational simulation of dynamic problems (bodies moving through

space), a reference system, also known as a grid, is adopted through which this body

moves. This reference system must then obey one of the following formulations:

1. In the Lagrangian formulation (adopted in JFLAC) coordinates of the reference

system are attached to the individual points of the body. These coordinates are

allowed to move and deform together with the body. Using this formulation, the

constitutive equations are used to determine what happens to a speci�c point of the

body.

2. The Eulerian formulation uses a �xed, rigid coordinate system with the body moving

relative to points of this �xed coordinate system. In this formulation the constitutive

equations are used to determine what happens to a speci�c point in space.

For small motions of a solid, both of the above formulations coincide.

2.4 Summary

The basic theory behind the governing equations used in JFLAC were discussed. A

description of deformation and strain were given. The relation between stress and strain

in the form of Hooke's law were described, and the Mohr-Coulomb condition was used as

a means to describe failure in a solid. The basic equations of motion were also covered.
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Chapter 3

The JFLAC algorithm

This chapter describes the derivation of the governing equations used in JFLAC. The

formulations derived in Chapter 2 are used as a basis to derive the nodal formulations of

the governing equations that JFLAC inherited from FLAC. Any contributions that were

added to the JFLAC algorithm are described in Chapter 4. This chapter follows some of

the derivations contained in the FLAC veri�cation manual [10].

3.1 De�ning the grid

A 3D geometric model in JFLAC is by default discritised into hexahedral zones, called

cells. The vertices of each cell, also known as nodes, form a Lagrangian grid that de-

forms with the material. Each cell is then internally discritised into sets of tetrahedron

elements. The elements can deform according to prescribed stress/strain laws together

with the equations of motion. Hexahedron elements are not used internally because of the

possibility of hour-glassing: a common problem that occurs when hexahedrons deform in

such a way that their corner vertices get close to opposite faces. The hexahedron looses

its square shape and may collapse under high stresses.

JFLAC can also use a �tetrahedron only� model as input, but this model has to be

well de�ned since tetrahedrons that have unusually sharp edges, can cause problems. An

24
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example of such a problem is when a node of the tetrahedron penetrates its opposite face.

This results into the tetrahedron obtaining a negative volume.

FLAC uses FISH (a programing language compiled by ITASCA) to generate models.

When FISH is used to generate a model, internal algorithms are used to reduce the pro-

bability of obtaining irregular shaped elements. For the purpose of this study, all the

models were generated using custom Java code that was developed during the implemen-

tation of JFLAC.

The grid generation procedure is explained in this section. Furthermore, the term te-

trahedron used in this document refers to a tetrahedron element of the JFLAC domain.

Similarly, the term hexahedron refers to a hexahedron element, or zone, of the JFLAC

domain.

3.1.1 Discretising the domain

Consider a cube, also known as a hexahedron zone in JFLAC, with 8 vertices as illustrated

in Fig. (3.1). A model consists of a number of these zones that are all connected. The

zones do not need to be the same size, and side lengths can vary along the x, y and z

axes in a Cartesian coordinate system. Generally, the zones are discritised �nely in areas

where high levels of accuracy are needed (normally close to an excavation in the mining

environment) and more coarsely when the grid is a suitable distance away from these

areas. Ideally a user would like to discritise the entire volume into very small zones, but

due to computational limits, the number of zones needs to be carefully managed as the

model can easily become very large and requires lots of computer resources to execute.

Even with the current technology available, it might still be impossible to run in some

cases. Hence keeping the number of zones at an optimal level is very important, for

accuracy, as well as for the time needed to execute such a simulation.
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Figure 3.1: 8 Vertices of a cube.

The numbering of the nodes in Fig. (3.1) is according to the right hand rule of

numbering, to ensure that the normal of each face of the zone always points in an outward

direction away from the center of the zone. Once the user has generated a set of zones

to simulate the model, it is used as input to the JFLAC algorithm. Each of these zones

are then internally split in one of two ways into a set of �ve tetrahedrons. The two ways,

or overlays, of zone Discritisation into tetrahedrons are shown in Fig. (3.2). Overlay 1

in Fig. (3.2a) illustrates one way to split the zone into a set of 5 tetrahedrons. The

connectivity of the 5 tetrahedrons using Overlay 1 is as follows:

1. Tetrahedron (a) - {4,6,7,1}

2. Tetrahedron (b) - {6,7,8,5}

3. Tetrahedron (c) - {1,7,2,5}

4. Tetrahedron (d) - {1,6,5,3}

5. Tetrahedron (e) - {1,6,5,7}
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A zone can similarly be split into a set of tetrahedrons using Overlay 2, as shown in Fig.

(3.2b).

(a) Splitting a hexahedron zone into tetrahe-

drons using Overlay 1.

(b) Splitting a hexahedron zone into tetrahe-

drons using Overlay 2.

Figure 3.2: Splitting a hexahedron zone into tetrahedrons.

Each tetrahedron has four nodes and four faces. Once a set of tetrahedrons is obtained

using either of the overlays, then the faces of each tetrahedron need to be identi�ed and
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a normal unit vector (that points in an outwardly direction, i.e. away from the tetrahe-

dron centroid) is generated for each face. This makes it easy to identify the inside of the

tetrahedron.

3.1.2 The steps involved in creating a JFLAC model

Generating a model that can be used as input in a JFLAC simulation can be a complex

process. A simple two-dimensional rectangular mining excavation will be used as an

illustration to the steps involved in the creation of this model. In 2D, hexahedrons reduce

to quadrilaterals and tetrahedrons to triangles. This will make visualization of the process

easier and more understandable.

Figure 3.3: 2D rectangular mining excavation.

Consider the excavation as illustrated in Fig. (3.3). The �rst step involved in ge-

nerating the model is to discritise the domain in Fig. (3.3) into quadrilateral cells. As

previously mentioned, the size of these cells play a vital role in the simulation accuracy

of the model as well as the computational power required to execute the simulation. To

illustrate this, the domain will be discritised into a set of larger cells and smaller cells as
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shown in Fig. (3.4a) and Fig. (3.4b) respectively. For now it will be assumed that the

boundaries of the domain are a su�cient distance away from the excavation such that

boundary e�ects do not become evident in the results. Boundary value problems that can

occur in the JFLAC simulation are discussed in Section (3.2).
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(a) JFLAC domain discritised into larger cells.

(b) JFLAC domain discritised into smaller cells.

Figure 3.4: JFLAC domain discritisation into cells.
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Once the domain has been discritised into quadrilateral cells, then each cell is discriti-

sed into a set of two triangles as shown in Fig. (3.5). The choice of triangular discritisation

is done randomly to avoid introducing arti�cial anisotropy.

(a) Random discritising of larger cells into triangles.

(b) Random discritising smaller cells into triangles.

Figure 3.5: Discritising cells into triangles.
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Lastly, triangles that fall within the excavation in Fig. (3.5) are removed from the

model to give the �nal model output shown in Fig. (3.6).

(a) Removal of triangles that fall within the excavation of the larger

cells.

(b) Removal of triangles that fall within the excavation of the smaller

cells.

Figure 3.6: Removal of triangles that fall within the excavation.
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Figure 3.7: Example con�guration of cells that is not allowed in a JFLAC simulation.

Note that the number of triangles shown in Fig. (3.6a) is signi�cantly less than the

number of triangles in Fig. (3.6b). This will lead to much faster simulation time, but

since the excavation is overestimated, accuracy of the results can be disputed. The model

containing smaller cells in Fig. (3.6b), gives a more accurate representation of the domain.

The results will also be more accurate. However, simulation time can increase signi�cantly.

Constant cell sizes, as used in this illustration, are not a prerequisite for a JFLAC model.

Cells varying in size may also be used as input as long as each vertex, also known as a grid

node, of a cell is connected to the vertices of its neighboring cells. Fig. (3.7) illustrates

a con�guration of cells that is not allowed, i.e. where for example vertices of Cell 2 and

Cell 3 connect on the face of Cell 1.

Variable size meshes are generally more complicated to create and since it is not the

focus of this study, regular grids were used in all of the simulations. There are more

advanced mesh generation tools available that can be used to keep the number of cells in

the model to a minimum as well as to increase model accuracy.
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3.1.2.1 Duel Grid Discritization

Duel Grid Discritization (DGD) is the process where all the zones in a JFLAC domain

are discritised into tetrahedrons by using both of the overlays in Fig. (3.2). Usually all

zones are internally discritised into tetrahedrons by using only one of the overlays. But

when the user speci�es that DGD must be applied to the zones, the program internally

discritise the zones into tetrahedrons using both overlays. Each zone then contains 10

tetrahedrons instead of 5.

The overlapping tetrahedrons do not cause a problem in the simulation, since tetrahe-

drons are only used to store the mechanical state of the system for each time step. The

equations of motion are solved at the grid nodes for each time step and these results are

used to determine whether the system is in an equilibrium state.

DGD is usually applied to a zone if high stress gradients exist between the tetrahedrons

inside the zone. As mentioned earlier, hour-glassing is a problem that can occur in hexa-

hedrons. This problem can be overcome by discritising the hexahedron into tetrahedrons

using either of the overlays. But this does not always solve the problem. Tetrahedrons

do not contain enough modes of deformation to fully allow for all the possible deforma-

tions the hexahedron can have. During the testing phase of JFLAC, it was found that

zones that are close to excavated parts in the domain still deformed in such a way that the

tetrahedrons became irregularly shaped. This problem was solved by implementing DGD.

It appears that by discritising a zone using only one overlay, anisotropy is introduced

into the system. And if all the zones of the domain are discritised by using only one

overlay, this problem becomes worse. When a zone is discritised using both overlays,

anisotropy is avoided and the system is more stable.

Although DGD creates stability in the system, is has one major drawback. The total

number of tetrahedrons in the system is double the number if only one overlay is used.

This leads to almost double the amount of computational memory needed to solve this

system. This can also increase simulation time signi�cantly. It is possible to apply DGD
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to only speci�ed zones in the system, but a special algorithm is needed to identify these

zones. This is however not implemented in JFLAC.

3.2 Boundary conditions

Boundary conditions play a vital role in simulation accuracy. De�ning the correct boun-

dary conditions is a �ne art and it could take some time to �nd the best placement of the

boundaries to obtain the best results. Having a simulation model with boundaries that are

very close to an area where results with high accuracy is needed, cannot be trusted. Boun-

dary e�ects can become noticeable in the results. However if the boundary is far from the

excavation, the simulation model becomes large and it might increase the simulation time.

Following on the previous section, Section (3.1), the vertices, or nodes, of all the tetra-

hedrons that de�ne the grid, are identi�ed. Nodes that lie inside the domain are labeled

as internal nodes whereas nodes that lie on the boundary of the domain are labeled as

boundary nodes. A boundary condition is placed on all nodes. Internal nodes usually

receive a free boundary condition, meaning the nodes can move and deform freely. The

boundary nodes can also be free, but as least some boundary nodes must have a condition

other than free. If all boundary nodes were assumed to be free, the simulation model will

relax such that the contained body forces become zero.

There are three types of boundary conditions used in FLAC. The �rst being the free

boundary as already discussed. The other two boundaries are known as displacement

boundaries and stress boundaries. A fourth type of boundary condition known as the

�Boundary Node Shell� (BNS) boundary condition, was introduced in JFLAC. This boun-

dary condition is described in detail in Chapter 4. The di�erent boundary conditions are

illustrated in Fig. (3.8).
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Figure 3.8: Boundary conditions used in FLAC.

Consider the square 2D solid model as illustrated in Fig. (3.8). Boundary A is conside-

red to be a free boundary. This means that grid nodes placed on this boundary can move

and deform freely. Boundary B indicates a displacement boundary condition. Nodes that

are placed on this boundary are free to move on the surface of the boundary plane, but

movement is prohibited normal to this plane. This means that the boundary nodes are

not allowed to move over this boundary. Boundary C indicates a stress boundary where

a constant external force is applied over the surface of this boundary throughout the si-

mulation. These forces are usually calculated from the initial stress state that is speci�ed

at the start of the simulation (usually the virgin stress). Since the stress is applied over

an area, Eqs. (2.12) and (2.15) can be used to calculate the external force vector on each

of the boundary nodes. The grid nodes that lie on this boundary are free to deform in

any direction but they are constantly restricted to this external force vector. Boundary

D indicates that the BNS boundary condition is used.
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The above mentioned boundary conditions all have respective advantages and disadvan-

tages. Displacement boundary conditions are easy to implement, but since no displace-

ment is allowed over the boundaries, the system might have an over-sti� behavior. Stress

boundary conditions are also easy to implement and in most cases they give more accurate

representations of stress values close to the boundary, but if high concentrations of stress

are present in the domain, this type of boundary might under-respond and the domain

will relax.

Care must be taken in de�ning and planning the boundaries for a particular problem,

as the boundaries, to a large extent, de�ne the solution of the problem. Therefore, for

each problem an analysis should be done of the e�ect of a particular set of boundary

conditions, that include the type and position of the boundaries, on the results of the

simulation.

3.3 Elemental formulation of the strain tensor

This section assumes a JFLAC domain has been discritised into tetrahedrons as explained

in Section (3.1) and that the simulation is in the process of solving for the equilibrium

solution. The de�nition of equilibrium solution is explained in Section (3.6). During each

time step calculation in the JFLAC algorithm, for each of the four nodes of a tetrahedron,

a new position due to certain body forces acting on the domain is obtained. The position

for a node at time step t may di�er from the position it had at time step t − 4t. This

implies that the tetrahedron deformed from its reference con�guration at time step t−4t,
to its deformed con�guration at time step t and due to this deformation, the tetrahedron

experiences a strain. This section describes how strain is calculated for a tetrahedron by

using the relations in Section (2.1).

Consider a single tetrahedron taken from a stressed JFLAC domain that is not in equili-

brium, as illustrated in Fig. (3.9). The tetrahedron nodes are locally labeled N l where l

can take the values 1, 2, 3 or 4. The surface (face) directly opposite N l is labeled Al, but
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for the purpose of the derivation, expression Al will be referred to as Ak, where k = l.

Figure 3.9: Tetrahedron.

Gauss's divergence theorem [1], may be expressed as∫
V

(∇ · v)dV =

∫
S

v · n dS, (3.1)

where v is a continuous vector function, S is a closed surface and n is the normal vector

applicable to a particular surface. Eq. (3.1) can be reformulated to �t the tetrahedron in

Fig. (3.9). This yields ∫
V

vi,jdV =

∫
S

vA
k

i nA
k

j dS (3.2)

where the integrals are taken over the volume and the surfaces of the tetrahedron. A

linear velocity �eld is generated in the tetrahedron, since each of the four nodes of the

tetrahedron in Fig. (3.9) contains its own velocity. This implies that the tetrahedron

contains a constant strain-rate. The normal vector over each face of the tetrahedron, nA
k
,

will also be constant, because of the planar nature of triangles. Hence, Eq. (3.2) becomes:

University of Stellenbosch http://scholar.sun.ac.za



CHAPTER 3. THE JFLAC ALGORITHM 39

V vi,j =
4∑

k=1

v̄i
AknA

k

j SA
k

(3.3)

after integration. Here v̄A
k

i is the average velocity of face Ak. For a linear velocity

variation, v̄A
k

i is equal to

v̄A
k

i =
1

3

4∑
l=1,l 6=k

vN
l

i , (3.4)

where vN
l

i is the velocity of node N l. Substitution of Eq. (3.4) into Eq. (3.3), and by

reorganizing the terms by node contributions, yields

V vi,j =
4∑

k=1

[[
1

3

4∑
l=1,l 6=k

vN
l

i

]
nA

k

j SA
k

]
. (3.5)

Reorganizing the terms in Eq. (3.5) gives

V vi,j =
1

3

4∑
l=1

vN
l

i

[
4∑

k=1,k 6=l

nA
k

j SA
k

]
. (3.6)

If vi in Eq. (3.2) is replaced with 1, it becomes:

4∑
k=1

nA
k

j SA
k

= 0. (3.7)

Substituting Eq. (3.7) into Eq. (3.6), dividing by V and replacing expressions nA
k

j and

SA
k
with expressions nA

l

j and SA
l
respectively (since k = l), yields

vi,j = − 1

3V

4∑
l=1

vN
l

i nA
l

j S
Al (3.8)

By substituting the relation for the velocity in Eq. (3.8) into Eq. (2.10) the Euler strain-

rate tensor becomes
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ε̇ij = − 1

6V

4∑
l=1

(
vN

l

i nA
l

j + vN
l

j nA
l

i

)
SA

l

. (3.9)

Using Eq. (3.8) together with Eq. (2.11) yields

ω̇ij = − 1

6V

4∑
l=1

(vN
l

i nA
l

j − vN
l

j nA
l

i )SA
l

(3.10)

for the rate of rotation tensor. For small displacements and displacement gradients during

4t, the strain increment can be written as

4εij = ε̇ij4t. (3.11)

3.4 The constitutive laws of JFLAC

Assume that for time t, the strain increment, 4εij, is known from Eq. (3.11) for a par-

ticular tetrahedron in the system. The next step is to calculate the stress increment,

4σij, in the tetrahedron due to 4εij. Hooke's law in Eq. (2.21) is used to calculate the

elastic stress increment for this time step. The stress increment is then added to the total

accumulated stress, σTij, that was calculated in previous time steps, for this tetrahedron.

From this, principal stresses can be calculated, and if the principal stresses are lower than

limits set by the Mohr-Coulomb constitutive law, i.e. if F (σ1, σ3) in Eq. (2.34) is less

than zero (stresses fall within the yield surface of Fig. (2.7)), then the tetrahedron is

considered to be in the elastic region. However, if the calculated principal stresses exceed

the Mohr-Coulomb limits, then a correction is made to the total stress by applying a

plastic �ow rule. This returns the total stress back to the yield surface in Fig. (2.7), and

the tetrahedron has failed. It is important to note that when a tetrahedron fails, it is not

removed from the system. The stress inside this tetrahedron has simply decreased. It is

possible for this tetrahedron to again accumulate stress and fail more than once.

The Mohr-Coulomb constitutive model was implemented in JFLAC since it is widely

used in rock mechanics. This model implements a shear yield function according to the
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Mohr-Coulomb criterion with a non-associated shear �ow rule. This means that a tetra-

hedron that fails under shear, is permanently deformed and it cannot return to its original

state. A tensile yield function (tension cuto�) with an associated �ow rule is introduced

to the Mohr-Coulomb model to also allow for a tetrahedron to fail under tension. A

detailed derivation of the tetrahedron stress calculation for time step t is given.

Assume that the strain increment4εij at a point for a tetrahedron taken from the JFLAC

system is calculated for time step t through Eq. (3.11). A number of relations must hold

such that a plastic �ow rule can be applied to the tetrahedron. These relations are:

1. The strain increment can then be decomposed into the sum of the elastic strain

increments, 4εeij, and plastic strain increments, 4εpij, such that

4εij = 4εeij +4εpij. (3.12)

2. A linear relation exists between the stress increment, 4σij and elastic strain incre-

ment, 4εeij expressed as

4σij = E(4εeij), (3.13)

where E is a function of the elastic stress increment.

3. The plastic strain increments in Eq. (3.12) are given by

4εpij = η
∂g

∂σij
, (3.14)

where η is a constant that may depend on space coordinates and g is a function

that describes a particular �ow rule.

4. Lastly, the newly calculated stress should also satisfy the yield function Eq. (2.34)

such that

F (σTij +4σij) = 0, (3.15)

and since F in Eq. (3.15) is a linear function of the components of σij, it can be

expressed as

F (σTij) + F (4σij) = 0. (3.16)
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Once the above relations are set, a new expression for the stress at time step t can be

derived. Start by substituting Eq. (3.12) into Eq. (3.13), yielding

4σij = E(4εij)− E(4εpij). (3.17)

Substitution of Eq. (3.14) into Eq. (3.17) gives

4σij = E(4εij)− ηE
(
∂g

∂σij

)
. (3.18)

De�ne the new stress component, σNij , and the elastic guess for the stress, σIij , as

σNij = σTij +4σij, (3.19)

σIij = σTij + E(4εij). (3.20)

Using the expression of the stress increment in Eq. (3.18) and by de�nition of the elastic

guess, the new stress in Eq. (3.19) becomes:

σNij = σIij − ηE
(
∂g

∂σij

)
(3.21)

after elimination of σTij in Eqs. (3.19) and (3.20). An expression for η will now be derived.

Eq. (3.16) becomes after substitution of Eq. (3.18)

F (σTij) + F

[
E(4εij)− ηE

(
∂g

∂σij

)]
= 0 (3.22)

and since F is a linear function of the stress components, Eq. (3.22) can be expressed as

F (σTij) + F [E(4εij)]− F
[
ηE

(
∂g

∂σij

)]
= 0. (3.23)

Since F is a homogeneous function, the following holds [19]:

F (βx) = βF (x). (3.24)
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Using this relation, Eq. (3.23) becomes:

F (σTij) + F [E(4εij)]− ηF
[
E

(
∂g

∂σij

)]
= 0. (3.25)

From Eq. (3.20), the �rst and second terms in Eq. (3.25) can be replaced with F (σIij),

and consequently an expression for η can then be expressed as

η =
F (σIij)

F
[
E
(

∂g
∂σij

)] . (3.26)

The above derived relation holds for any constitutive model applied in FLAC. The Mohr-

Coulomb condition, as explained in Section (2.2), will be used to describe the relations

discussed above in full and will de�ne functions for the �ow rules, g, used above in terms

of a shear �ow function, gs, and a tensile �ow function, gt.

Again consider a single tetrahedron element taken from the JFLAC domain for time

step t. The elastic guess for the stress (σIij) as described by Eq. (3.20), is calculated

and added to the total stress, σTij, for that element. Principal stresses are then calculated

and sorted such that σ1 ≤ σ2 ≤ σ3. Note that σ1 is always the largest principal stress,

but the≤ signs are used because of the compressive negative convention followed in FLAC.

Assume that the stress has been rotated into its principal coordinate system such that

σTij =

 σ1 0 0

0 σ2 0

0 0 σ3

 . (3.27)

By expanding Fig. (2.5) for a compressive negative sign convention, Fig. (3.10) is gene-

rated.
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Figure 3.10: Mohr-Coulomb failure envelope with compressive negative stress state.

Fig. (3.10) shows the Mohr-Coulomb criterion with a tension cut-o�, represented in

σ1 − σ3 space for a compressive negative stress state. The failure envelope, F (σ1, σ3) = 0

is de�ned within the interval A - B (F s = 0), following Mohr-Coulomb type behavior,

whereas the curve in section B - C (F t = 0) is characterized by a tensile failure condition

in which σ3 ≤ σc
tanφ

. Note that the maximum tensile strength of a material is given by [6]

σtmax =
σc

tanφ
. (3.28)
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The yield function is violated where values for σ1 and σ3 are found such that F (σ1, σ3) > 0,

i.e. lying above the line where σ3 − σ1 = 0, or if σt is exceeded.

The function for F s can be determined by referring to Eq. (2.31) in Section (2.2) where

the linear relation is given as

σ1 = σc +Nφσ3, (3.29)

with σc = −2C0

√
Nφ (Eq. (2.33)) for the compressive negative stress state. The function,

F s, then becomes

F s = σ1 − σ3Nφ + 2C0

√
Nφ, (3.30)

and corresponds to the Mohr-Coulomb failure criterion. For the tension cut-o�, point B

to point C in Fig. (3.10), a tension failure criterion is derived from Fig. (3.10), and is

given as

F t = σ3 − σt. (3.31)

Shear plastic �ow and tensile plastic �ow are described by two functions, gs and gt,

respectively. The function gs corresponds to a non-associated law and has the form

gs = σ1 − σ3Nψ, (3.32)

where ψ is the dilatency angle (angle of deformation). Nψ is given by

Nψ =
1 + sinψ

1− sinψ
. (3.33)

The function gt corresponds to an associated �ow rule and is written as

gt = −σ3, (3.34)

providing a relation for the magnitude of the plastic strain increment vector [6].

The plastic correction that applies to the shear �ow rule can be found by di�erentia-
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ting Eq. (3.32), [6] yielding

∂gs

∂σ1
= 1, (3.35)

∂gs

∂σ2
= 0, (3.36)

and
∂gs

∂σ3
= −Nψ. (3.37)

The incremental form of Hooke's law, expressed in terms of stress increments, strain

increments and material constants α1 and α2, has the form

4σ1 = α14εe1 + α2(4εe2 +4εe3), (3.38)

4σ2 = α14εe2 + α2(4εe1 +4εe3), (3.39)

4σ3 = α14εe3 + α2(4εe1 +4εe2). (3.40)

where

α1 = K +
4

3
G (3.41)

and

α2 = K − 2

3
G (3.42)

is Young's modulus and Poisson ratio respectively [5]. An expression for Eq. (3.13) in

terms of the principal stresses may be expressed as

4σi = Ei(4εej) i, j = 1, 2, 3. (3.43)

Note that Eq. (3.43) is not expressed in tensor form, but rather in terms of the principal

components. Rewriting Eqs. (3.38), (3.39) and (3.40) in the form of Eq. (3.43), gives

E1(4εe1,4εe2,4εe3) = α14εe1 + α2(4εe2 +4εe3), (3.44)

E2(4εe1,4εe2,4εe3) = α14εe2 + α2(4εe1 +4εe3), (3.45)

E3(4εe1,4εe2,4εe3) = α14εe3 + α2(4εe1 +4εe2). (3.46)
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Replacing expressions 4εe1, 4εe2 and 4εe3 in Eqs. (3.44), (3.45) and (3.46) with ∂gs

∂σ1
, ∂gs

∂σ2

and ∂gs

∂σ3
(from Eq. (3.14)) respectively, yields

E1(
∂gs

∂σ1
,
∂gs

∂σ2
,
∂gs

∂σ3
) = α1 − α2Nψ, (3.47)

E2(
∂gs

∂σ1
,
∂gs

∂σ2
,
∂gs

∂σ3
) = α2(1−Nψ), (3.48)

E3(
∂gs

∂σ1
,
∂gs

∂σ2
,
∂gs

∂σ3
) = −α1Nψ + α2. (3.49)

Expressions for the new stress can be found by substituting Eqs. (3.47), (3.48) and (3.49)

into Eq. (3.21), yielding

σN1 = σI1 − ηs(α1 − α2Nψ), (3.50)

σN2 = σI2 − ηsα2(1−Nψ), (3.51)

σN3 = σI3 − ηs(−α1Nψ + α2). (3.52)

By replacing the expression F with F s in Eq. (3.30), the denominator of Eq. (3.26)

becomes:

F s

[
E(

∂g

∂σij
)

]
= (α1 − α2Nψ)−Nφ(−α1Nψ + α2). (3.53)

Substitution of Eqs. (3.30) and (3.53) in Eq. (3.26) then gives

ηs =
σI1 − σI3Nφ + 2C0

√
Nφ,

(α1 − α2Nψ)−Nφ(−α1Nψ + α2)
. (3.54)

Tensile failure is derived in a similar fashion, and by di�erentiating Eq. (3.34), it follows

that

∂gt

∂σ1
= 0, (3.55)

∂gt

∂σ2
= 0, (3.56)

∂gt

∂σ3
= −1. (3.57)
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Replacing expressions 4εe1, 4εe2 and 4εe3 in Eqs. (3.44), (3.45) and (3.46) with ∂gt

∂σ1
, ∂gt

∂σ2

and ∂gt

∂σ3
(from Eq. (3.14)) respectively, yields

E1(
∂gt

∂σ1
,
∂gt

∂σ2
,
∂gt

∂σ3
) = −α2, (3.58)

E2(
∂gt

∂σ1
,
∂gt

∂σ2
,
∂gt

∂σ3
) = −α2, (3.59)

E3(
∂gt

∂σ1
,
∂gt

∂σ2
,
∂gt

∂σ3
) = −α1. (3.60)

Expressions for the new stress can be found by substituting Eqs. (3.58), (3.59) and (3.60)

into Eq. (3.21), yielding

σN1 = σI1 + ηtα2, (3.61)

σN2 = σI2 + ηtα2, (3.62)

σN3 = σI3 + ηtα1. (3.63)

By replacing the expression F with F t in Eq. (3.31), the denominator of Eq. (3.26)

becomes:

F t

[
E(

∂g

∂σij
)

]
= α1. (3.64)

Lastly, substitution of Eqs. (3.31) and (3.64) into Eq. (3.26), gives

ηt =
σI3 − σt
α1

. (3.65)

3.5 Mixed Discritization applied on strain-rate and

stress

Although tetrahedrons have the advantage of not forming hourglass deformations, a te-

trahedron still does not have enough modes of deformation. Tetrahedrons cannot deform

individually without a change in volume as required by constitutive laws. This is cal-

led volumetric locking. Numerical anomalies can occur in areas where high gradients of

stresses and deformations are expected. This often happens in the fully plastic range.
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Nagtegaal et al. [15] states that it is often found that materials in the plastic range exhi-

bit an over-sti� tangent behavior. The materials often exceed the limit load and in some

cases they contain no load at all. It was also shown that the cause of this inaccuracy is

the incremental deformation �elds of three-dimensional elements that are highly constrai-

ned at or near the limit load. The di�culty arises because, under the in-compressibility

condition, certain classes of meshes are over-constrained. One way to resolve this issue

is to increase the order of the element. However, a drawback of introducing additional

degrees of freedom can cause hour-glassing to occur, as described in Section (3.1).

Marti and Cundall [12] have proposed a procedure that reduces the probability of ob-

taining unwanted hourglass deformations in the system. The technique is called Mixed

Discritization (MD), and is applied to the strain- and stress rate of the 5 tetrahedrons

associated with each zone in the system. This is described below.

3.5.1 Mixed Discritization (MD) applied to the strain-rate

Consider a hexahedral zone corresponding to an assembly of 5 tetrahedrons. Once the

strain-rate tensor of Eq. (3.9) is calculated for all the tetrahedrons in the system, MD

can be applied to the tetrahedrons associated with that zone. The strain-rates for each

tetrahedron are decomposed into the volumetric and deviatoric components by applying

a simple tensor analysis technique, i.e.

ε̇T
h

ij = ζ̇T
h

ij +
ε̇T

h

3
δij (3.66)

where T h represents one tetrahedron of the hexahedral zone, with h = 1, ..., 5. In Eq.

(3.66) ζ̇T
h

ij is the deviatoric part of the strain-rate tensor for tetrahedron, T h, and ε̇T
h
is

the �rst strain-rate invariant of the tetrahedron, expressed as

ε̇T
h

= ε̇T
h

ii . (3.67)
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The �rst invariant for the zone is then calculated as the volumetric strain-rate average

over all the tetrahedrons in the zone

ε̇ =

∑5
h=1 ε̇

ThV Th∑5
h=1 V

Th
, (3.68)

where V Th is the volume of tetrahedron T h, and ε̇ is the volumetric strain average of all

the tetrahedrons in the zone. Finally, the volumetric strain-rate in Eq. (3.66) is replaced

by the average zone volumetric strain-rate ε in Eq. (3.68). This is expressed as

ε̇T
h

ij = ζ̇T
h

ij +
ε̇

3
δij. (3.69)

3.5.2 Mixed Discritization on stress

The application of MD to the stress inside a hexahedral zone is similar to the technique

described in Section (3.5.1). The stress estimate for each tetrahedron inside the zone is

decomposed into the deviatoric and volumetric parts by

σT
h

ij = χT
h

ij +
σT

h

3
δij (3.70)

where χT
h

ij is known as the deviatoric part of the stress tensor and σT
h

= σT
h

ii . The

volumetric average for all the tetrahedrons in the zone is calculated from

σ =

∑5
h=1 σ

ThV Th∑5
h=1 V

Th
. (3.71)

Finally the tetrahedron stress tensors for all the tetrahedrons in the zone are calculated

by substituting the volumetric average calculated in Eq. (3.71) into Eq. (3.70), yielding

σT
h

ij = χT
h

ij +
σ

3
δij. (3.72)
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3.5.3 Mixed Nodal Discritization applied to the strain-rate

When a tetrahedron-only model is used as input in FLAC, MD cannot be applied to the

tetrahedrons that share the same hexahedral zone since it may not be possible to identify

any hexahedral zones. Consequently the Mixed Nodal Discritization (MND) procedure

was developed that operates in a very similar fashion to MD. The basic calculation se-

quence is kept the same as when applying MD; however, an averaging process for the

strain-rates and stresses is performed for tetrahedrons that share the same node and not

the same zone. MND can also be applied to a model that contains hexahedron zones.

This procedure is explained below.

The strain-rate tensor, ε̇ij, is calculated from Eq. (3.9) for a particular time step, t,

and is decomposed into volumetric and deviatoric parts:

ε̇T
h

ij = ζ̇T
h

ij +
ε̇T

h

3
δij. (3.73)

The volumetric parts of all the tetrahedrons connected to a global node, N z from in the

system, are calculated by

ε̇
Nz

=

∑w
h=1 ε̇

ThV Th∑w
h=1 V

Th
, (3.74)

where w is the number of tetrahedrons that share the same node. Eq. (3.74) is known

as the nodal volumetric strain-rate. This is similar to the MD technique described in the

previous section. After nodal volumetric strain-rate values are obtained, a mean value for

the volumetric strain-rate is calculated by taking the average of the volumetric strain-rate

values of its four nodes. Mathematically this is expressed as

ε̇
Th

=
1

d

d∑
l=1

˙̄εN
l

. (3.75)

Finally, the tetrahedron strain-rate is rede�ned by superimposing the deviatoric part and

volumetric average in Eq. (3.75) to give

εij = η̇ij + ε̇δij. (3.76)
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3.5.4 Nodal Mixed Discritization on stress

Consider Hooke's law expressed in the form [10],

4σ = E(ε̇
Th −4εpT

h

), (3.77)

where 4σ is the stress increment and 4εpT
h

is the plastic volumetric strain increment.

MND will be applied to the term E4εpT
h

. Let E4εpT
h

be known as the plastic stress

increment 4σpT
h

of the tetrahedron. Eq. (3.77) can now be expressed as

4σ = Eε̇
Th −4σpT

h

. (3.78)

The MND that is applied to 4σpT
h

is similar to the MND applied on strain in Sec-

tion (3.5.3). Nodal values for 4σpN
z

are calculated as the weighted average of all the

tetrahedrons that share node, N z. Mathematically this is expressed as

4σpN
z

=

∑w
h=14σp

Th

V Th∑w
h=1 V

Th
. (3.79)

Again, similar to strain MND, after the nodal values, 4σpN
z

, are obtained, a mean value

for the plastic stress inside a tetrahedron is calculated by taking the average of its four

nodal values by

4σpT
h

=
1

d

d∑
l=1

4σpN
l

. (3.80)

Lastly, the stress at each tetrahedron is corrected by substituting the average 4σpT
h

for

4σpT
h

in Eq. (3.78). This yields

σn
Th

ij = σo
Th

ij + [Eε̇
Th −4σpT

h

]δij (3.81)

where σn
Th

ij is the new stress of the tetrahedron and σo
Th

ij is the old stress of the tetrahedron

before MND is applied.

University of Stellenbosch http://scholar.sun.ac.za



CHAPTER 3. THE JFLAC ALGORITHM 53

3.6 Nodal formulation of the equilibrium equations

The equilibrium equations described in Section (2.3) must be applied to all the nodes

of the Lagrangian grid for each time step in the JFLAC simulation. For each time step

calculation in the algorithm, body forces of the tetrahedral elements are mapped to their

respective nodes. Once �nished, the out-of-balance force at every node is analyzed. The

node with the largest out-of-balance force is used to determine whether the system is in

a equilibrium state. If the out-of-balance force is larger than a user speci�ed threshold,

the sequence will repeat for another time step. However, if this force is below the given

threshold, the system is assumed to be in equilibrium. This section describes how the

out-of-balance force for a particular node in the system is calculated.

The principle of virtual work [3] is a convenient way to treat the laws of motion. From

Gauss's divergence theorem, as given in Eq. (3.1), it follows that the work performed on

a generic surface, is equivalent to the �ux of energy transferred from the environment into

the system, increasing its energy. However, a tetrahedron would rather absorb this energy

by deforming and releasing the energy internally by moving the nodes of the tetrahedron.

From Eq. (3.1) it follows that

W int =

∫
V

(∇ · v)dV (3.82)

and

W ext=

∫
S

v · n dS (3.83)

whereW ext denotes the external work applied to the system andW int denotes the internal

work of the system. It also follows that

W ext = W int. (3.84)

The di�erence approximation adopted in JFLAC assumes that the domain consists of an

assembly of constant-strain tetrahedrons that is subjected to body forces bi. The theorem

of virtual work will be used to derive the nodal forces, FN l

i , with l = 1, .., 4, that acts on

a single tetrahedron, T z, inside the global system that is in static equilibrium, from the

University of Stellenbosch http://scholar.sun.ac.za



CHAPTER 3. THE JFLAC ALGORITHM 54

tetrahedron stresses and body forces. If a virtual velocity, δvN
l

i , is applied over each of the

four tetrahedron nodes, it will generate a linear velocity �eld, δvi, inside the tetrahedron

with a constant strain-rate, δε̇ij. Consider the Cauchy equation of Eq.(2.44) given by

σij,j + ρbi = ρ
dvi
dt
. (3.85)

Eq. (3.85) can also be expressed as

σij,j +Bi = 0 (3.86)

where

Bi = ρ(bi −
dvi
dt

) (3.87)

For the tetrahedron mentioned above, the external work-rate, wext, is due to the forces

acting on the four nodes of the tetrahedron, FN l

i , and the total body force, Bi of the

tetrahedron. The internal work-rate, wint, is done by the stresses, σij, on the surfaces

of the tetrahedron. From Eq. (3.84) it follows that the external- and internal work

rates should be the same under δvN
l

i . The external- and internal work rates can then be

expressed as

wext =
4∑
l=1

δvN
l

i FN l

i +

∫
V

δviBidV (3.88)

and

wint =

∫
V

δε̇ijσijdV. (3.89)

By substitution of Eq. (3.9) for a constant strain-rate tetrahedron, Eq. (3.89) becomes

wint = −1

6

4∑
l=1

(
δvN

l

i σijn
Al

j + δvN
l

j σijn
Al

i

)
SA

l

. (3.90)

Since the stress tensor is symmetric, Eq. (3.90) can be simpli�ed to

wint = −1

3

4∑
l=1

δvN
l

i σijn
Al

j S
Al . (3.91)
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Figure 3.11: Local coordinate system at the tetrahedron centroid.

Also, substituting Eq. (3.87) into Eq. (3.88) gives

wext =
4∑
l=1

δvN
l

i FN l

i +

∫
V

δviρbidV −
∫
V

δviρ
dvi
dt
dV (3.92)

and by letting the second and third terms on the right hand side of Eq. (3.92) be equal

to

wext
b

=

∫
V

δviρbidV (3.93)

and

wint
I

= −
∫
V

δviρ
dvi
dt
dV (3.94)

where wext
b
is the external work rate contribution of body forces and wint

I
is the external

work rate contribution of internal forces, Eq. (3.92) becomes

wext =
4∑
l=1

δvN
l

i FN l

i + wext
b

+ wint
I

. (3.95)

Consider the centroid, or center of mass, y, of the tetrahedron as shown in Fig. (3.11).

The centroid of the tetrahedron can be determined by taking the average of the positions
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of the four nodes' coordinates. Mathematically the position of the centroid is expressed

as

y =
1

4

4∑
l=1

rN
l

(3.96)

where rN
l
represents the position vector of node N l. An expression for the velocity of the

tetrahedron at y can also be expressed as

δvyi =
1

4

4∑
l=1

δvN
l

i . (3.97)

By analyzing Eq. (3.93) in terms of the velocity at the centroid of the tetrahedron (Eq.

(3.97)), it becomes

wext
b

=

∫
V

1

4

4∑
l=1

δvN
l

i ρbidV. (3.98)

If the body force in Eq. (3.98) is constant, then it can be simpli�ed to

wext
b

=
ρbiV

4

4∑
l=1

δvN
l

i . (3.99)

Substitution of Eq. (3.97) into Eq. (3.94) also gives

wint
I

= −
∫
V

1

4

4∑
l=1

δvN
l

i ρ
dvi
dt
dV. (3.100)

Since ρ is constant inside the tetrahedron, and for small variations in the acceleration

�eld around the centroid of the tetrahedron, Eq. (3.100) can be reduced to

wint
I

= −ρV
4

4∑
l=1

δvN
l

i aN
l

i (3.101)
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where aN
l

i =
(
dvi
dt

)N l

. Combining Eqs. (3.100) and (3.101) with Eq. (3.92) yields

wext =
4∑
l=1

δvN
l

i FN l

i +
ρbiV

4

4∑
l=1

δvN
l

i −
ρV

4

4∑
l=1

δvN
l

i aN
l

i . (3.102)

By simplifying Eq. (3.102), the �nal solution for the external work-rate becomes:

wext =
4∑
l=1

δvN
l

i

[
FN l

i +
ρbiV

4
− ρV

4
aN

l

i

]
. (3.103)

Since Eq. (3.84) holds for the tetrahedron in static equilibrium, Eq. (3.103) can be

equated with Eq. (3.91) to give

4∑
l=1

δvN
l

i

[
FN l

i +
ρbiV

4
− ρV

4
aN

l

i

]
= −1

3

4∑
l=1

δvN
l

i σijn
Al

j S
Al , (3.104)

and since the external work-rate is equal to the internal work-rate for any virtual velocity,

δvN
l

i , in static equilibrium, it follows from Eq. (3.104) that

− FN l

i =
σijn

Al

j S
Al

3
+
ρbiV

4
− ρV

4
aN

l

i . (3.105)

Let the mass, ρV
4
, in the inertial term of Eq. (3.105) be replaced by a �ctitious nodal

mass mN l
to become

− FN l

i =
σijn

Al

j S
Al

3
+
ρbiV

4
−mN l

aN
l

i . (3.106)

For the system to be in static equilibrium, it must hold that Eq. (3.106) is equal to zero

for every node of the system. This implies that Eq. (3.106) becomes:

σijn
Al

j S
Al

3
+
ρbiV

4
−mN l

aN
l

i = 0 (3.107)
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Consider Newton's second law for a node taken from the global system (N z), expressed

as

FNz

i = MNz

aN
z

i . (3.108)

The mass term on right hand side of Eq. (3.108) may be expressed as

MNz

= [m]z (3.109)

where [.] represents the sum of the mass contributions of all the tetrahedrons connected

to N z. The out-of-balance force may also be expressed as

FNz

i = [
σijn

Al

j S
Al

3
+
ρbiV

4
]N

z

(3.110)

when analyzed in terms of contributions of all connecting tetrahedrons.

3.7 Explicit Finite Di�erence approximations to the

time derivatives

In the preceding sections a �nite volume approach was followed for the discritisation

process. However, for the time dependence of the algorithm, a �nite di�erence approxi-

mation (refer to Appendix (A)) will be used to calculate the equations of motion at the

grid nodes. It is also useful at this point to mention that explicit �nite di�erence equa-

tions will be used to derive the nodal velocities and displacements for a particular time

step. Explicit methods calculate the state of a system for a later time step from the state

of the system at the current time, whereas implicit methods �nd the solution by solving

an equation involving both the current state of the system and the later one. Explicit

methods mathematically expressed are

Y (t+4t) = F [Y (t)] (3.111)

where 4t is the di�erence between two consecutive time steps, Y is the current state of

the system and Y (t+4t) is the state at a later time.
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Implicit methods involve solving an equation of the form

H[Y (t), Y (t+4t)] = 0. (3.112)

It is clear from Eq. (3.112) that implicit methods are more di�cult to implement and it

requires more computational time to solve. The general use for implicit methods is when

a problem exhibit a sti� behavior. If an explicit method is used to solve such a problem,

it may require implementing an impractically small time step to calculate a reasonable

estimation to the problem. It may therefore take less computational time to rather use

an implicit method with larger time steps.

To illustrate the explicit nature of the algorithm, consider the nodal formulation of the

equation of motion, Eq. (3.108), expressed as a system of ordinary di�erential equations:(
4vi
4t

)Nz

=
1

MNz F
Nz

i (3.113)

where
(
4vi
4t

)Nz

= aN
z

i . Eq. (3.113) is explicitly solved by a �nite di�erence formulation

in time. The velocity of node, N z, is assumed to vary linearly over time interval, 4t,
and is evaluated using the central di�erence scheme as in Eq. (A.19). By evaluating the

derivative on the left hand side of Eq. (3.113) by half time steps, 4t
2
, with respect to

displacements and forces, the central di�erence scheme yields(
4vi
4t

)Nz

=
vN

z

i (t+ 4t
2

)

24t
2

−
vN

z

i (t− 4t
2

)

24t
2

=
1

MNz F
Nz

i . (3.114)

With further manipulation Eq. (3.114) becomes

vN
z

i (t+
4t
2

) = vN
z

i (t− 4t
2

) +
1

MNz F
Nz

i . (3.115)
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The nodal displacements are then updated by using [10]

uN
z

i (t+4t) = uN
z

i (t) +4tvNz

i (t+
4t
2

). (3.116)

3.8 Time step determination

The time interval, 4t, between two consecutive time steps has to be chosen carefully.

A time interval that is too small will increase simulation time. A time interval that is

too large might cause the system to become unstable, in which case re-meshing may be

required. The �nite di�erence approximations obtained in Eqs. (3.115) and (3.116) will

not provide valid answers unless the system is stable.

A widely used technique for choosing a time interval for explicit time marching �nite

di�erencing applications is known as the Courant�Friedrichs�Lewy (CFL) condition [4]

. The CFL condition is a necessary condition for stability while solving hyperbolic par-

tial di�erential equations numerically. This assumes that if a pressure wave is traveling

through a discrete grid, then the time interval must be less than the time required for the

wave to travel between two adjacent grid nodes. Mathematically, the CFL condition can

be expressed as

4t ≤ C
4x
vmax

(3.117)

where C is called the Courant number, 4x the smallest distance between two adjacent

grid nodes, and vmax the maximum pressure wave velocity in the medium. When

4t = C
dx

vmax
, (3.118)

it is known as the Courant limit and 4t is at its maximum possible value for the speci�c

simulation. The pressure wave velocity of a JFLAC simulation, vmax, usually depends

on material properties of the tetrahedrons in the domain. The Courant number C may

depend on the application. According to Madariaga [11] C is found to be 0.606 for 2D

problems and 0.494 for 3D problems. These values for C allow for 4t to be as close to the
Courant limit as possible. This improves the run-time, and it improves the accuracy of the
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simulation. In some cases where a domain undergoes large deformations for a particular

time step, it might be necessary to decrease 4t for the system to remain in a stable state.

One representation for vmax in terms of the Lamé constant λL, shear modulus G and

material density ρ may be given as

vmax =

√
λL + 2G

ρ
(3.119)

where the relationship between λL, Young's modulus and the Poisson ratio can be expres-

sed as 5

λL =
νE

(1 + ν)(1− 2ν)
. (3.120)

The CFL condition is adopted in FLAC. However, the authors chose an alternative ap-

proach to time step determination. Since the nodal formulations of Newton's second law,

given by

FNz

= MNz dvN
z

dt
, (3.121)

are always solved for the equilibrium solution, 4t is chosen �xed as 1. The nodal masses,

MNz
, are then scaled accordingly such that the right hand side of Eq. (3.121) still

holds. This speeds up the simulation and the system reaches its equilibrium solution

more e�ciently.

3.9 Nodal motion damping

Damping is any e�ect that tends to reduce the amplitude of oscillations in an harmonic

oscillatory system. In most cases when a JFLAC system is solved for the equilibrium

solution, the total simulation time needed to reach this equilibrium state, as well as how

the state is reached, are not considered too important. A user is only interested in the

�nal result. For this reason, the equations of motion at the node points can be damped

such that the system reaches the equilibrium solution faster. If the system is not damped,

one might �nd that the system oscillates, causing the system to take longer to reach an

equilibrium state.
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Several damping schemes may be applied at the grid nodes. Viscous damping is a physical

form of damping where a damping factor, such as friction, is introduced into the system.

This system might loose most of its energy through heat generation and the oscillatory

behavior of the system will quickly fade. However, the default damping scheme used in

JFLAC is a non-viscous damping scheme. This type of damping is an arti�cial form of

damping where a part of the system velocity is arti�cially removed from the system.

Assume that for a particular time step t for the system, the out-of-balance force, FNz

i ,

has been calculated from Eq. (3.110). Non-viscous damping is then applied to FNz

i by

adding a damping force term, F dN
z

i . The damping force term is expressed as

F dN
z

i = γssignF
Nz

i (3.122)

where

ssign =


+1, for vN

z

i > 0

−1. for vN
z

i < 0

0 for vN
z

i = 0

(3.123)

and γ is known as the damping constant. A good value for the constant γ found through

experimentation is 0.8.

3.10 Small-strain and large-strain mode in JFLAC

Suppose that a JFLAC system is in the process of solving for the equilibrium solution. If

the maximum of all the calculated tetrahedron strain rates of Eq. (3.9) is small for any

two sequential time steps, it could be assumed that the system is near equilibrium. Small

Strain Mode (SSM) is an optimization of the algorithm that can be applied to a system

close to equilibrium. Since the strain-rates are small, it implies that the deformations are

small and therefore nodal displacement increments are small. In this case, the grid node

positions for the Lagrangian grid do not need to be updated.

When the maximum system strain-rate is large, the system is assumed to be in Large
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Strain Mode (LLM) and it follows that grid node positions need updating.

3.11 Implementation of JFLAC

Before the calculation sequence of the JFLAC algorithm can be explained, the input pa-

rameters of the algorithm must �rst be de�ned. JFLAC requires three �les to operate, as

shown in Fig. (3.12). Examples of the input �les can be found in Appendix (B). These

�les are generated using custom Java interfaces and do not form part of the JFLAC pro-

gram. The �les have to �rst be created before the JFLAC program can function.

The �rst of the three �les contains the JFLAC model, called �Model.dat� (see Fig. (B.1)).

This �le contains the grid node coordinates, as well as the connectivity between the nodes

so that JFLAC can internally create the tetrahedron elements. It contains information

about the boundary conditions speci�ed for each grid node, and also speci�es the initial

stress state of each domain element.

The second �le, �Material.dat� (see Fig. (B.2)), contains properties of the materials that

are assigned to each domain element. These properties include material properties such

as Young's modulus, Poisson's ratio, density as well is other inelastic material properties.

At this stage it is important to note that each individual tetrahedron of the JFLAC do-

main can only represent one material, but two neighboring tetrahedrons can have di�erent

materials assigned to them. This allows the domain to represent the interaction between

di�erent materials.

The last �le, �Settings.dat� (see Fig. (B.3)), is a �le specifying the settings of the al-

gorithm. For example, it speci�es if the algorithm should solve the system by using only

elastic material properties, or if failure should be allowed by means of the Mohr-Coulomb

condition. It also speci�es if MD or if MND should be applied to the system. Other

settings that are not relevant to this section are also speci�ed.
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Figure 3.12: Input �les of the JFLAC algorithm.

The calculation sequence of the JFLAC algorithm can be divided into several inde-

pendent components. A �ow diagram of the calculation steps involved in the algorithm

is illustrated in Fig. (3.13).
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Figure 3.13: Flow diagram of FLAC algorithm.
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A basic description of the sequence is as follows:

• Step 1: Update Grid Geometry - Node positions are updated by adding the

displacement increments calculated in the previous time step. At the initial run

time this step can be skipped since displacement increments are assumed to be zero.

• Step 2: Calculate Nodal Mass - Tetrahedron masses are calculated and evenly

distributed to the four connected grid nodes at their vertices.

• Step 3: Calculate Nodal Out-of-balance Forces - Nodal force contributions

are calculated from the connected tetrahedron applied loads and body forces.

• Step 4: Update Nodal Motion - The equations of motion are invoked to derive

new nodal velocities and displacements.

• Step 5: Calculate Tetrahedron Strain-Rate - Tetrahedron strain-rates are de-

rived from nodal velocities. If the applied constitutive model allows failure to occur,

MD must be applied on the strain-rate if hexahedrons are used in the model or

MND must be applied on the strain-rate if only tetrahedrons are used in the model.

• Step 6: Update Tetrahedron Stress - New stresses are derived from strain-

rates, using a prescribed constitutive law. If the applied constitutive model allows

failure to occur, MD must be applied on the stresses if hexahedrons are used in the

model or MND must be applied on the stresses if only tetrahedrons are used in the

model.

• Step 7: Test Out-of-balance Forces for Equilibrium - The maximum out-

of-balance force for all the grid nodes in the system is tested against a prescribed

threshold. If it is lower than this threshold, the system is in an equilibrium state,

otherwise the sequence is restarted.
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Once the three input �les have been created, then JFLAC internally discritises hexahe-

dron zones into tetrahedrons. A material and initial stress state are prescribed to each

tetrahedron. A boundary condition is assigned to all the grid nodes, as speci�ed by the

�Model.dat� �le, and internal variables are initialized. The calculation sequence is star-

ted and the system is solved for its equilibrium solution. The nodal positions are stored

throughout the simulation. After each time step, the position for each node is updated

by adding the displacement obtained from the calculated strain-increment in the previous

time step.

The modal masses in Step 2 are then calculated by taking the average mass of the tetra-

hedrons connected to it, using Eq. (3.109). Note, that if no tetrahedrons are removed as

the simulation progresses, this step does not have to be repeated. The nodal mass values

only have to be calculated once and can be stored in memory. However, if tetrahedrons

are removed from the system as the simulation progresses, then the masses need to be

updated. Once the nodal mass of each grid node is known, Eqs. (3.110), (3.115) and

(3.116) are used to calculate the nodal forces, velocities and displacements respectively.

At this stage, nodal force damping is applied by means of Eq. (3.122). New tetrahedron

strain-rates can then be derived from Eq. (3.9). MD or MND can be applied to the

strain-rates if this was speci�ed by the user in the settings �le. The tetrahedron strain-

rates are used to calculate the elastic stress for all the tetrahedrons by applying Hooke's

law, shown in Eq. (3.13). If the user speci�ed that failure is allowed in the domain, the

Mohr-Coulomb condition is applied to �nd the new stress value for each tetrahedron by

means of Eq. (3.19), as explained in Section (3.4). MD or MND can also be applied

to the tetrahedron stress if it is speci�ed by the user. Finally, if the maximum out-of-

balance force of all the nodes in the system is smaller than a prescribed threshold in

the �Settings.dat� �le, then the system is in equilibrium. If this is not the case, and the

strain-rates are small, then the system is assumed to be in SSM and the sequence can be

restarted from the nodal mass calculation in Step 2. Otherwise, it is restarted from Step 1.

An important point to remember is that each step in the calculation sequence must �nish

before the next step can commence. For example, tetrahedron stresses cannot be calcula-
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ted if the strain-increments are unknown. This is signi�cant due to a further contribution

made to the algorithm by the author, described in Section (4.1).

3.12 Summary

The JFLAC grid and the discritisation thereof into a Lagrangian grid were discussed in

detail. The nodal formulations of the governing equations were derived and a detailed

description of the algorithm was given.
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Contributions to JFLAC

During the implementation of JFLAC, the author noticed that the algorithm is highly

computationally parallelizable. Therefore a second version of JFLAC was created that

allows for the use of multiple CPU processors. Later on, these two versions were merged

such that if the user speci�ed in the �Settings.dat� �le that only a single CPU thread was

allowed to perform the simulation, JFLAC would recognize this and perform a part of the

code using only a single thread. If however, the user speci�ed that more than one CPU

core could be used to perform the simulation, then JFLAC would use a totally di�erent

section of code to perform the simulation.

The boundary conditions, as described in Section (3.2), did not always supply the best

result accuracy for the simulations when JFLAC was in its testing phase. It was disco-

vered heuristically that the boundaries had to be placed far from areas where high result

accuracy was needed. This caused the model to become large and consequently it took

large amounts of time to execute. To overcome this, a new boundary condition type, the

BNS, was developed to allow for the boundaries to be placed closer to the result areas

and reduce the number of elements in the model.

The two contributions introduced above are described in this chapter.

69
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4.1 Multithreading of JFLAC

Applications created in the late 20th century were designed to operate on traditional single

CPU core machines. However, with the rapid rate of technology improvement, multi core

machines became available and software languages improved to meet these changes. Ap-

plications therefore have to be structured and designed to utilize the multiple CPU cores.

Multithreading is a powerful tool for enhancing the performance of applications, but the

design and code structure of multithreaded applications may be more complicated.

The original implementations of FLAC simulation models were developed for single core

machines but recently multithreaded versions became available. Theoretical documenta-

tion provided with a legal copy of FLAC gave a good understanding of the mathematics

and physics involved in the algorithm, but does not mention how to multithread the algo-

rithm. The author coded and implemented JFLAC from this theoretical documentation

and created a multithreaded version as an improvement.

4.1.1 Types of multithreading

Currently two types of multithreading exist. The �rst type is called Shared Memory mul-

tithreading as illustrated in Fig. (4.1a). With this type of multithreading, an algorithm

runs on a single multicore machine and utilizes the resources of only that machine. An

example of such a machine is a normal Dual Core laptop with more than one CPU core.

The second type of multithreading is called Server Farm multithreading as illustrated

in Fig. (4.1b). With this type of multithreading, an algorithm is executed on a speci�c

machine known as the job server machine. The job server scans a network for other client

machines in the same network that has available resources. It then assigns a speci�c job

to a particular machine via the network, and thereby utilizes the client's resources. After

its task is completed, the client sends the data back to the job server and combines infor-

mation from all the connected clients. The server then redistributes new tasks to clients

in the network. An example of a server farm is the Google Cluster.
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(a) Shared memory

multithreading.

(b) Server farm multithreading.

Figure 4.1: Shared memory multithreading.

For the purpose of this thesis JFLAC was implemented using shared memory multi-

threading on a machine with 8 CPU cores. Each core has a clock speed of 2.3 Giga Hertz

and the total memory of the machine is 32 Gigabytes.

4.1.2 Implementing multithreading of the JFLAC algorithm

As mentioned in Section (3.11), it is important to note that a speci�c step in the calcu-

lation sequence cannot be executed unless the previous step in the sequence has �nished.

For this reason, each individual step must be multithreaded on its own. This implies that

if a number of CPU threads is assigned to execute a speci�c step in the sequence, all the

threads have to �nish completing their assigned tasks before the next step can commence.
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This can cause a thread that performs its task quicker than others to wait until other

threads have �nished their tasks before it can continue with the next sequence. Although

this is not ideal, it was found from experimentation that a 70% speed-up in simulation

time was gained for each additional thread used.

Before the steps involved in the multithreading of each calculation step can be explai-

ned, a few fundamentals for multithreading the algorithm are discussed.

It is important to keep track of all the grid nodes in the simulated domain as well as

all the tetrahedron or hexahedron elements that are connected to the particular grid

nodes. At execution of the simulation, a list of all the grid nodes < Na > is stored in

memory, where <> represents a list, a ranges from 1, ...., n and n is the total number

of grid nodes. A second list that contains all the tetrahedron elements < T k > is also

stored in memory, where k ranges from 1, ...., z and z is the total number of tetrahedrons.

A connectivity map, map, that contains information about the connection between grid

nodes and tetrahedron elements is also stored. This is illustrated in Fig. (4.2).

Figure 4.2: Graphical representation of the connectivity between grid nodes and tetrahedrons.

If multiple threads are assigned to perform calculations on the list of grid nodes, the
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list is divided into parts equal to the number of threads. For example, consider the model

having 10 grid nodes as shown in Fig. (4.2) and two threads are assigned to perform

certain calculations on the list. The list < Na > is then divided into two segments

and calculations on this list are assigned independently to the two individual threads, as

illustrated in Fig. (4.3). Each thread performs calculations on its 5 assigned nodes.

Figure 4.3: List of grid nodes divided for multithreading.

If 8 threads are used to perform calculations on this list of 10 nodes, then the list will

be divided into 8 segments and two of those segments will contain an extra entry. In this

case, it becomes more evident that the threads containing lists with the least entries will

�nish their calculations faster than the threads delayed by larger lists. With the unders-

tanding of the multithreading scheme explained above, more detail is given on how each

part of the algorithm calculation sequence is performed.

It is assumed that g threads are assigned to the multithreading task. When a list is

divided into g segments, it implies that the list is divided into g parts and assigned to an

appropriate thread.
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4.1.2.1 Multithreading the nodal geometry update calculation

For this step in the sequence only the list < Na > is needed. The model geometry is

updated by moving the grid nodes to their new positions by adding the displacement

increments calculated in the previous time step and obtaining new positions. The list

< Na > is divided into k segments to perform the addition operation.

Note that if the algorithm is executed in SSM, the nodal geometry update task may

be skipped.

4.1.2.2 Multithreading and implementation of nodal mass calculation

Lists < Na > and < T k > are needed for this calculation process and the connectivity

map m is used to �nd node-element connectivity. The list < Na > is divided into g

segments. For a speci�c node in < Na > assigned to a thread, map is used to �nd the

connected elements in < T k >. For each connected element the internal mass is calculated

and stored.

This step in the sequence can be skipped if the simulation is in SSM.

4.1.2.3 Multithreading and implementation of nodal force calculation

Lists < Na >, < T k > and map are needed to perform this task. The list < Na > is

divided into g segments and for each node in < Na >, map is used to �nd the connected

elements in < T k >. For each node the out-of-balance force is calculated from Eq. (3.110).

Eqs. (3.115) and (3.116) are used to calculate the nodal velocities and displacements. This

task is the �rst computational expensive task in the algorithm and large performance

increases can be gained from multithreading.

4.1.2.4 Multithreading and implementation of the strain-rate calculation

Once the nodal velocities for all the nodes in < Na > are calculated, then it can be

used to calculate the strain-increments for each tetrahedron element using the di�erence

formulation in Eq. (3.9). List < T k > is divided into g segments and map is used to
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�nd the node-tetrahedron connectivity in < Na >. Once all the threads are �nished

calculating the tetrahedron strain-increments, then they are re-assigned to perform MD

or MND on < T k >, if the user speci�ed such in the �Settings.dat� �le.

4.1.2.5 Multithreading and implementation of the stress-rate calculation

Implementation of multithreading the stress-rate calculation is similar to the process

described in Section (4.1.2.4).

4.2 Implementation of the Boundary Node Shell

boundary condition

As mentioned earlier, FLAC is an example of a domain method for modelling the state

of deformation and stress in a solid. As a consequence, all domain methods model some

�nite body or a �nite part of some larger, perhaps in�nite, body. Whenever this is the

case, one needs to take into account the fact that at least a part of the model boundary

is not a real free surface, but a virtual separator between the modelled material and its

surroundings. The question arises whether one needs to take into account the interaction

between the material in the model domain and the surrounding material. If one chooses

to ignore these interactions, then the results for the stress and the deformation within the

modelled domain will be inaccurate. Yet, one may choose to ignore this problem if the

points where high result accuracy is needed, are su�ciently far from the virtual boundary.

Since the interaction between a body and its surroundings is conducted through the com-

mon boundary, the distortion in the elastic state owing to this interaction will decrease

su�ciently before reaching the points of interest. Unfortunately, making sure that the

virtual boundary is su�ciently far from the points of interest, is not always practical since

it leads to a signi�cant increase in the model size and can be very demanding on computer

resources. The alternative is to keep the model as small as possible and to account for

the fact that at least a part of the boundary is not real but virtual. This can be done by

computing additional forces which originate from the surrounding material and are the

reaction to the processes taking place inside the modelled domain. One possible way of
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doing this is by adding a Boundary Nodes Shell (BNS) to the model.

The BNS is a tool for computing the forces due to the response of the surrounding

material to any changes in the common boundary. These forces will be computed at

a set of points called sources. The sources are placed outside the modelled domain in an

assumed in�nite linear elastic material. At the same time, the virtual movements of a set

of reference points on the boundary are monitored. Fig. (4.4) illustrates the placement

of these points.

Figure 4.4: The placement of source points and target points to perform the BNS.

The idea of the BNS is to �nd a set of �ctitious forces acting at the sources that would

compensate the virtual movements of the reference points on the boundary. As a result

the boundary of the modelled domain will remain unchanged, but a set of new forces

will act on it simulating the reaction of the surrounding to any change of state inside the

domain.

To describe how the BNS works, assume that for any time step in the system which

is not in its equilibrium state, the stress is calculated. A set of reference points are pla-

ced between the modelled domain and the surrounding material area identi�ed as the

boundary nodes of the grid and labeled:
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p
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where nb is the total number of boundary nodes in the system. Source points, labeled

s
(k)
i = (y

(k)
1 , y

(k)
2 , y

(k)
3 ) , k = 1, 2, ...nb,

are placed in the outer material. In the simplest implementation of the BNS, the source

points are as many as the reference points, and, as a simple rule of thumb, are placed twice

as far away from the boundary as the size of the largest tetrahedron in the domain. One

might say that the displacement of the boundary nodes causes the outside elastic material

points (source points) to shift. Instead of shifting these points, one solves a system of

equations for the components of �ctitious forces acting at the sources and being capable

of causing exactly the opposite displacements as those proposed by the target points. If

a concentrated body force

B
(k)
i = (B

(k)
1 , B

(k)
2 , B

(k)
3 ) (4.1)

is acting at source s
(k)
i , the displacement, u

(k,m)
i , that will induce at reference point,

p(m), with m = 1, 2, ..., nb, will be

u
(k,m)
i =

3∑
j=1

Uij(s
(k), p(m))B

(k)
j (4.2)

where the kernel Uij(s
(k), p(m)) is the Kelvin solution for the displacement due to a unit

concentrated force [17]. The total displacement induced at a given reference point due to

the unknown forces, FB(k)

j , at all the source points will be the sum of expressions such as

the one in Eq. (4.2), in accordance with a superposition principle. Inserting the virtual

displacements at the reference points in the left-hand side of Eq. (4.2), one arrives at

a system of linear equations for the components of the �ctitious forces at the sources.

Once the system in Eq. (4.2) is solved and the �ctitious forces have been found, one can

compute the stress these �ctitious forces would induce at the reference points, p(k). The

next step is to use the found �ctitious forces to compute the corresponding tractions t
(k,m)
j

at the reference points. The traction on reference point p(m) induced by the �ctitious force

acting at source s(k) is given by:
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t
(k,m)
i =

3∑
j=1

Tij(s
(k), p(m),n(m))FB(k)

j (4.3)

[17] where Tij(s
(k), p(m);n(m)) is the traction kernel which is obtained by di�erentiating

the Kelvin solution and n(m) is the outward force normal to the boundary at the reference

point. These tractions are used to update the boundary conditions of the grid nodes on

the virtual boundary. As a result of this procedure the modelled domain retains its boun-

dary unchanged but updates the boundary conditions after each time step, thus taking

into account the reaction of the surrounding material.

The BNS boundary condition gives a more physically correct response than both the

displacement and stress boundaries described in Section (3.2). The major drawback is

it increases the simulation time. The system in Eq. (4.2) and Eq. (4.3) must be solved

for every time step which in itself is a time consuming process. Also, larger domains and

�ner discritisation of these domains, result in a signi�cant increase in the number of grid

nodes on the boundaries. This signi�cantly increases the number of reference points in

Eq. (4.2) and makes it considerably more di�cult to �nd a solution for the �ctitious forces.

As mentioned in Section (3.2), a combination of boundary conditions can be used in

the simulation. By choosing the BNS condition for boundaries that are close to an area

where high result accuracy is needed, in conjunction with displacement or stress boun-

dary conditions for the boundaries that are placed further away, can speed up the system

signi�cantly.

4.3 Summary

The author described the implementation a multithreaded version of JFLAC. This im-

plementation showed a signi�cant improvement (approximately 70%) in the simulation

time for each additional CPU core used to perform the simulation. The BNS boundary

condition and the implementation thereof were also given.
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Results and discussion

This chapter describes the three case studies that were performed with JFLAC during

its testing phase. First of all, as with most modelling software packages in development,

the reliability of JFLAC was tested against a well-known analytical solution. During the

analytic test, the results obtained by JFLAC were also compared against those obtained

by FLAC. Once a good comparison between JFLAC, FLAC and analytical solutions were

found, then JFLAC was used to conduct a case study for a platinum mine, located in the

Bushveld complex in South Africa. A �nal case study was investigated where the appli-

cation of the BNS boundary condition was compared to Salamon's analytic solution [17],

as well as the results obtained by using �xed displacement- or stress boundary conditions.

5.1 Analytical solution - cylindrical hole in an in�nite

Mohr-Coulomb material

The analytic solution for a cylindrical opening in an in�nite Mohr-Coulomb material is

known for a body under a hydrostatic stress �eld. It provides the exact solutions for the

stresses around the cylindrical opening inside a solid. This veri�cation example is also

contained in [10], and provides a good basis for comparing the results obtained by JFLAC

against FLAC. Some images of stress and displacement results obtained with FLAC, were

taken from the FLAC manual and used in this section.

79
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Imagine that a cylindrical opening is made in a Mohr-Coulomb material. For now, the

material properties are unimportant. Let the radius of the opening be denoted by R and

the radius of the fracture zone (yield zone radius) be denoted by Rf . Let the hydrosta-

tic stress at an in�nitely far distance from the opening be denoted by q. The analytic

solutions for the stress in polar coordinates, as given by Ryder and Jager [17] are

σr = s
′

c

( r
R

)Nφ−1
(5.1)

and

σθ = Nφs
′

c

( r
R

)Nφ−1
(5.2)

where [R < r < Rf ] inside the fracture zone and s
′
c is known as the e�ective support

resistance. This comprises of the actual support resistance sc and the UCS, σc, of the

rock and is given by

s
′

c = sc +
σc

Nφ − 1
. (5.3)

Parameters for Nφ and σc can be found from Eqs. (2.32) and (2.33) in Section (2.2) and

are again given:

Nφ =
1 + sinφ

1− sinφ
(5.4)

and

σc = 2C0

√
Nφ (5.5)

where C0 is the material cohesion and φ is the material friction angle. Outside the fracture

zone [r > Rf ] the solution for the stresses are expressed as

σr,θ = q ± (Nφ − 1)q + σc
Nφ + 1

(
Rf

r

)
. (5.6)

An exact value for the yield zone radius is also given as

Rf = R

[
2q − σc

(Nφ + 1)s′c

] 1
Nφ−1

. (5.7)
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5.1.1 The JFLAC model

The material properties and stress values as used in the FLAC veri�cation manual were

used in the JFLAC model. A constant hydrostatic stress of 30 MPa was assigned to a

solid model. A cylindrical opening, with a radius of 1 m, is made in the solid. The far

x, y and z boundaries were placed at a distance of �ve hole-diameters from the axis of

the hole and a constant force, F, calculated from the hydrostatic stress, was placed on

the boundary nodes of the grid. Fig. (5.1) shows a 2D picture of the JFLAC model that

was generated.

Figure 5.1: The 2D representation of the model used in this case study.

A material, with properties as listed in Table (5.1), is assigned to each tetrahedron in

the JFLAC domain.
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Table 5.1: Mohr-Coulomb material properties used to compare with the analytical solution.

Shear modulus (G) 2.8 GPa

Bulk modulus (K) 3.9 GPa
Cohesion (c) 3.45 MPa

Friction Angle (φ) 30o

Dilation Angle (ψ) 30o

5.1.2 Results found by FLAC

The results in Fig. (5.2) are taken directly from the FLAC Veri�cation manual. This

shows results obtained by FLAC for σr and σθ on any line of points going outward from

the excavation. The solid and dashed lines indicate the analytic σr and σθ respectively.

The • and + shows the results obtained by FLAC for σr and σθ respectively. Fig. (5.3)

shows contours of displacement near the hole.

Figure 5.2: Radial and tangential stress results obtained by FLAC, compared with analytical
values.
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Figure 5.3: Displacement contours obtained by FLAC near the hole.

5.1.3 Results obtained by JFLAC

The JFLAC model in Fig. (5.1) consisted of 3 600 hexahedron zones and since DGD was

applied to the model, such that it contained 36 000 tetrahedrons. MD was applied to

each hexahedron element.

Fig. (5.4) shows the displacement values for the grid nodes obtained at the equilibrium

solution (warmer colors indicate a larger displacement). Note the �ne discritisation of

nodes around the opening and how discritising the nodes get more sparse as the nodes

progress further away from the boundary. The maximum displacement is 0.028 m at the

edge of the opening. This result is similar to the maximum displacement in the FLAC

results of Fig. (5.3). Fig. (5.5) shows the direction of nodal displacement with vector

lengths the magnitude of the displacement.
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Figure 5.4: Displacement contours obtained by JFLAC.

Figure 5.5: Displacement vectors obtained from JFLAC on the grid nodes.
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Fig. (5.6) shows the areas around the opening where elements have failed (indicated

by smaller dots) according to the Mohr-Coulomb condition. This also gives an idea of

the length of the yield zone. The yield zone radius in this example is found to be 1.73 m,

which corresponds well to the theoretical value of 1.74 m (From Eq. (5.7)).

Figure 5.6: Failed elements indicating the yield zone radius.

Fig. (5.7) shows the comparison between JFLAC and the analytic solutions for σr and

σθ. The solid red line shows the analytic solution for σθ while the solid green line shows

the analytic solution for σr. A scatter plot of the σr and σθ stresses of all the tetrahedrons

is also shown. Blue + indicates σθ values and magenta × values indicates σr obtained

by JFLAC. A 2.03% average deviation (error) from the analytical solution was calculated

from the stress results obtained by JFLAC. This compares very closely to the 2.0% error

stated in the FLAC Veri�cation manual.
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Figure 5.7: JFLAC comparison to analytical solutions.

5.1.4 Summary

JFLAC produced good results and showed a good comparison with FLAC. Both methods

showed an approximate average deviation of 2% from the analytical solution. This case

study proves that JFLAC is stable and accurate enough to conduct further case studies.

5.2 Case Study 1 - stress in�uence of a large

underground excavation on nearby tunnels

This case study was conducted on a platinum mine in the Bushveld Complex (BC). A

basic background on the geology of the BC as described by Ryder and Jager [17] is given,

followed by a detailed discussion of the problem.
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The main body of the BC is the largest known layered intrusion in on earth and is

the result of a large magmatic event that occurred approximately 2 billion years ago. It

consists of basic igneous rock types that are intruded by granophyres and granites. The

extent and shape of the main platinum reef take the form of an ellipse which has a 350 km

major axis oriented East-West, and 150 km minor axis, oriented North-South. The BC

consists of four main zones: the Main zone, the Upper Critical zone, the Lower Critical

zone and the Lower zone. The upper and lower critical zones include the most important

mining horizons of the BC and two seams, or reefs, namely the Merensky reef and the

UG2 reef, have been exploited and have been mined almost exclusively in the western

lobe of the complex.

This case study was performed on a platinum mine in the BC. Both the Merensky- and

UG2 reefs are being mined extensively. Merensky mining was performed in the earlier

20th century while UG2 mining only started in the late 20th century. Both ore bodies

have an azimuth of 45 degrees and plunges by 20 degrees. In some cases the middling

(distance between the two reefs) is as little as 20 m and the depth at the deepest point

in the mine ranges over 2000 m. The small middling could lead to a potential problem

as excavations on both reefs could in�uence each other and cause these areas to be seis-

mically hazardous. Virgin stress levels at this depth ranges around 60 MPa. Fig. (5.8)

illustrates outlines of mining areas on both reefs - red areas indicate mined out areas on

the Merensky reef and green areas indicate mined out areas on the UG2 reef, below the

Merensky reef.
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Figure 5.8: Merenski and UG2 mined out areas.

The area of interest in this case study is at point A in Fig. (5.8). A large excavation

is to be constructed in this area. Fig. (5.9) is a zoomed in view of Fig. (5.8). Grey lines

indicate existing tunnels and blue areas indicate the the areas where the excavation is to

be constructed.
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Figure 5.9: Zoomed in view of the refrigeration plant area.

The main concern of excavating the rock mass for this region is the in�uence it will

have on the bullnose (BZ) in Fig. (5.9). A BZ is an area where excavations form a sharp

corner in the remaining solid rock mass. If stress levels in this area are high, the BZ could

easily get damaged and the surrounding areas can become hazardous. The main areas

that were investigated include:

1. Determining the stress level inside the BZ in Fig. (5.9) before excavation for the

refrigeration plant.

2. Determining the e�ect of the excavation at point A on the stress level inside the

BZ.

3. Determining if it would be more favorable to the BZ to place the excavation of the

plant at point B.
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5.2.1 Simulation input parameters

Three model domains were generated, each of which consisted of approximately 1.2 million

hexahedrons. Since Mixed Discritisation was applied to all the models, the total number

of tetrahedrons in the models was close to 12 million. The �rst model (Model A in

Fig.(5.10a)) describes the basic mined out geometry of the existing tunnels without the

refrigeration plant. The second model (Model B in Fig.(5.10b)) describes the current

excavations including the planned location of the refrigeration plant as illustrated at point

A of Fig. (5.9). The third model (Model C in Fig.(5.10c)) consists of current excavations

and includes the refrigeration plant located at point B in Fig. (5.9). Fig. (5.11) is given

to provide a better understanding of the model and the location of the excavations with

respect to the boundaries of the domain. Blue areas indicate the mined out excavations

and red dots indicate the boundaries of the JFLAC domain.
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(a) Plan view of Model A

(b) Plan view of Model B

(c) Plan view of Model C

Figure 5.10: JFLAC models for Case study 1.

Displacement boundary conditions were assumed for this model and each hexahedron

had a constant prescribed stress (in MPa), calculated from the virgin stress at 2000m

below surface, given by

σvirgin =

 31 0 0

0 31 0

0 0 62

 . (5.8)
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Figure 5.11: 3D view of Model A

Force boundary conditions, calculated from Eq. (5.8) on the surface of the boundary,

were placed at the boundary nodes at the start of the simulation. All simulations were

performed for a pure elastic material, as well as the Mohr-Coulomb constitutive model.

Material properties used for the simulations are listed in Table (5.2).

Table 5.2: Mohr-Coulomb material properties for Case study 1.

Shear modulus (G) 28 GPa

Bulk modulus (K) 46 GPa
Cohesion (c) 5 MPa

Material Density (ρ) 2700 kg/m3

Friction Angle (φ) 30o

Dilation Angle (ψ) 30o

5.2.2 Results

5.2.2.1 The stress level inside the BZ before excavation for the refrigeration

plant.

The major principal stress, σ1, was used as an estimate of the stress level inside the BZ.

The results were analyzed on a line that runs through the BZ in Model A as indicated by

Fig. (5.12).

University of Stellenbosch http://scholar.sun.ac.za



CHAPTER 5. RESULTS AND DISCUSSION 93

(a) Elastic stress results on line.

(b) Mohr-Coulomb stress results on line.

Figure 5.12: Model A stress results.

University of Stellenbosch http://scholar.sun.ac.za



CHAPTER 5. RESULTS AND DISCUSSION 94

Figure 5.13: Elastic material vs Mohr-Coulomb material results.

Stress values for the elastic material of Model A in Fig. (5.12) indicate values of ap-

proximately 88 MPa, while stress results for the Mohr-Coulomb material indicate values

of approximately 97 MPa. Fig. (5.13) shows a graphical comparison between the two

models. It can be concluded from the above results that a reasonable estimate for the

stress level inside the BZ is between 88 MPa and 97 MPa for the material properties in

Table (5.2).

Fig. (5.14) shows σ1 stresses on a cross-section that intersect the BZ. This indicates,

as to be expected, that stress levels above and below the mined out excavations are de-

stressed while areas on the sides of the excavations, especially the BZ area, are more

stressed. Fig. (5.15) shows the extent of the fracture zone around the excavations as

a result of the Mohr-Coulomb material. The BZ does not indicate extensive fracturing,

except in the sharp corner where the two tunnels meet, as to be expected.
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Figure 5.14: Stress on a cross section that intersects the bullnose.

Figure 5.15: Fracture zone around excavations.
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5.2.2.2 The e�ect of the excavation at point A on the stress level inside the

BZ

Fig. (5.16) shows a comparison in the stress level on the line inside the BZ between Model

A and Model B using a Mohr-Coulomb material.

Figure 5.16: Comparison in Stress Level between Model A and Model B.

The trends in Fig. (5.16) show a slight di�erence in the stress level in the BZ between

Model A and Model B. However, this is very small and is debatable whether the di�erence

is large enough to have a signi�cant impact. Fig. (5.17) shows the fracture zone of Model

B after constructing excavation. It shows that the BZ is more fractured than the fracture

zone of Model A in Fig. (5.15). The larger fracture zone around the excavation extends

well into the BZ and could indicate that Model B could be more hazardous than Model

A. In this case using the fracture zone instead of the stress level inside the BZ could be

a better estimate of the potential hazard of the BZ.
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Figure 5.17: Fracture zone of Model B.

5.2.2.3 Appraisal of point B for the refrigeration plant

Fig. (5.18) shows a comparison in the stress level on the line inside the BZ between Model

A, Model B and Model C. This shows that Model B causes the stress inside the BZ to

be slightly higher that that of Model A and Model C. The stress results of Model A and

Model C are practically similar, which means that the excavation has no impact on the

BZ. Fig. (5.19) shows the fracture zone of Model C. Although there is a larger fracture

zone around the excavation, it does not extend into the BZ area.
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Figure 5.18: Stress comparison between Model A, Model B and Model C.

Figure 5.19: Fracture zone of Model C.
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5.2.3 Summary

By using JFLAC it is possible to obtain a reasonable estimate of the stress level inside

the BZ. Model B shows a slightly higher stress level inside the BZ than those of Models

A and C. However, this di�erence is small and the impact of this di�erence might be

negligible. The fracture zone in Model B extends into the BZ and can indicate that it

could be a more hazardous con�guration than those of Models A and C. The results of

Model C show that it has no impact on the BZ. Stress levels are very similar to those

of the current state of Model A and the fracture zone of the refrigeration plant does not

extend into the BZ. In this case, it can be concluded that placing the refrigeration plant

at position B in Fig. (5.9) will be more favorable than the original position at point A.

5.3 Case Study 2 - an investigation into the Boundary

Node Shell

A tabular opening is formed when a thin layer of material is removed from a solid. In

the South African gold mining industry, mining takes place on a single planar ore body

and has a narrow opening, typically in the order of 1 m. These excavations can span

over large distances. Salamon [18] was able to derive the analytic solution for the ver-

tical stress in the plane of excavation as a result of the tabular opening. This solution

applies for a homogeneous isotropic elastic medium as well as transversely isotropic and

frictionless-laminated elastic strata. The solution for a homogeneous isotropic medium

is discussed here and the vertical stress, σzz, in the plane of the excavation will be analyzed.

Assume that a uniform virgin stress, σv, acts on a horizontal tabular excavation. The

excavation is assumed to be in�nitely thin and has a short side length of 2L, while the

long side can be in�nitely long. The vertical stress σzz at any point in the plane of the

excavation is expressed as [17]

σzz = σv

√
x2

x2 − L2
, (5.9)
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where x is the distance from the point to the excavation. This model is illustrated in Fig.

(5.20).

Figure 5.20: Model for Salamon's solution.

A simple JFLAC model, shown in Fig. (5.20), was constructed to compare the per-

formance of the BNS method against the analytical solution for this problem, and also to

compare it against the �xed displacement- and stress boundary conditions. The model

has a dimension of 100 m x 100 m x 100 m in a Cartesian coordinate system. An exca-

vation of dimensions 10 m x 90 m x 10 m was made in the center of the model. Three

simulations were performed for each of the boundary condition in question, and vertical

stress results were calculated for a line of points along x in Fig. (5.20).

Fig. (5.21) shows the results obtained by this numerical experiment for each of the

three simulations as well as the analytic results obtained from Eq. (5.9). The stress

obtained by using BNS boundary conditions lies between the results obtained using �xed

displacement- and stress boundary conditions. Also, as the distance from the excavations

increases, the BNS stress values tend to be closer to the analytical solution. Unfortuna-

tely, stress results for all the boundary conditions, close to the excavation, deviate quite
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signi�cantly from the analytical solutions. This is to be expected due to the excavation

that could not be made in�nitely thin in the JFLAC models.

Figure 5.21: Analytical vertical stress results on a line running from an excavation, compared
to solutions of the BNS-, displacement- and stress boundary conditions.

If the boundary nodes of the domain are placed close to the excavation in the above si-

mulation, boundary e�ects can become more evident in the results. By using displacement-

or stress boundary conditions, these e�ects can increase. The BNS boundary condition

was developed to minimize these e�ects and hence make it possible to place the boundaries

of the domain closer to the areas where high accuracy in the results need to be obtained.

An investigation was performed to determine whether the BNS could accomplish this task.

The boundary nodes in JFLAC simulations must have either �xed displacements over

the boundary plane, or a force that is calculated from a constant stress that acts on the

boundary (refer to Section(3.8) ). Both these boundary conditions have little e�ect on

the accuracy of the results if they are placed at a su�cient distance from the results area.

But placing boundaries far away from this area can cause the simulation model to become
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large. If it is placed too close, the boundary e�ects become evident in the results.

Fig. (5.22) illustrates the problems that may arise when placing displacement or stress

boundaries too close to an area of interest. Here a square excavation is made in an iso-

tropic homogeneous medium under a constant stress state and the boundary nodes of the

simulation model are placed close to the excavation. The closure �displacement� of the

boundary is analyzed when using the displacement or stress boundary condition.

Figure 5.22: Errors in displacement and stress boundary conditions.

If the nodes on the boundary have a �xed displacement over the boundary plane, the

walls of the excavation tend to show less closure than actually occurs. This is shown in

Fig. (5.22). The reason for this is that the nodes on the boundary prohibit the remaining

solid to move into the excavation. However, if a constant force, calculated from a constant

stress that acts on the boundary, acts on the boundary nodes, more closure is measured

than actually occurs. This is due to the stress on the boundary that does not decrease

as the walls of the excavation move. The more the walls move, the smaller the stress in

the surrounding solid becomes, which in turn should cause the stress on the boundary to
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decrease.

The performance of the BNS boundary condition was compared to the displacement and

�xed stress boundary conditions. A simple JFLAC model with dimensions 20 m x 20 m

x 20 m in a Cartesian coordinate system was used, discritised into 1 m hexahedron zones.

A 10 m x 10 m x 10 m excavation was made in the center of the model. To compare the

three boundary conditions, closure on any one of the six walls of the excavation can be

analyzed because of the symmetry of the problem.

Fig. (5.23) shows the closure pro�le that each of the three boundary conditions has

on the excavation.

Figure 5.23: Closure pro�les for the displacement, stress and BNS boundary conditions.

As expected the stress boundary condition causes the excavation walls to experience

more closure than it should where the displacement boundary condition causes the ex-
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cavation walls to have less closure. The BNS boundary condition allows the excavations

walls to behave more realistically. This is due to the forces on the boundary nodes that

are adapted to give a more realistic response as stress changes inside the domain.

If the boundaries of the domain are shifted further away from the excavation, one will

�nd that the closure pro�les of the excavation for the displacement- and stress boundary

conditions tend to move towards the pro�le given by the BNS boundary condition. This

means that if BNS boundary conditions are applied on the domain, the domain can be

made smaller and computer resources can be used optimally.

Summary

The three case studies that were conducted in this section were used to test the stability,

speed and accuracy of JFLAC. The �rst case study showed that JFLAC provided accu-

rate results when compared to the commercial FLAC software for a well known analytical

solution. This proved that JFLAC was stable and accurate enough to be used to conduct

further case studies.

In the second case study JFLAC was used to perform stress analysis on a platinum

mine in South Africa. The simulation models used in this study were computationally

large and JFLAC solved these system in a reasonable amount of time. The stress results

obtained by JFLAC produced good results and a reasonable conclusion could be made

with regards to the speci�c problem.

The BNS boundary condition was tested and compared against the displacement- and

stress boundary conditions, commonly used in FLAC. The respective boundary condi-

tions were �rst compared against the results of an analytical solution. The results obtai-

ned by the BNS showed to be the closest to the results of the analytical solution. The

boundary conditions were then compared by testing the convergence (closure) of a simple

rectangular shaped excavation where the boundaries of the domain are placed close to the

excavation.
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It was found in both cases that the BNS produces more accurate results when com-

pared to the other boundary conditions. It also allows for the boundaries of the simulated

domains to be placed closer to result areas which reduces the total number of tetrahedrons

in the model and saving computer resources.
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Summary and conclusion

6.1 Summary

The purpose of this study was to �nd a useful tool that can be used to asses the potential

hazard of stressed rock mass in the mining industry. A stress modelling tool, FLAC, pro-

ved capable of accomplishing this task. Theoretical documentation [10] that is supplied

with a copy of the FLAC software provided a good basis in understanding the mathema-

tics involved inside the algorithm. While studying the documentation, the author of this

study decided to reimplement the FLAC software in JAVA, and called it JFLAC. During

the implementation the author added several improvements to the original algorithm. A

new type of boundary condition, called the Boundary Node Shell (BNS) was designed to

improve result accuracy of the algorithm as well as to reduce the size of the domain that

was simulated. Also, since the use of multiple CPU cores in personal computers became

more widely available, the author developed a multi CPU version of the algorithm which

allowed for the use of more than one CPU core. This increased the performance of the

algorithm signi�cantly.

The basic governing equations used in the algorithm was covered in this document. Elas-

ticity and Hooke's law, as well as plastic deformation, by means of the Mohr-Coulomb

condition, were discussed. A detailed description of the simulated domain and it's discriti-

sation into a Lagrangian grid was given such that the nodal formulations of the governing
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equations could be derived. With all the necessary nodal equations derived, a description

of the algorithm was given, providing all the necessary steps involved in implementing

the algorithm. The author then described the implementation of the new BNS boundary

condition and the improvements it added to the algorithm. A description of a technique

for multi-threading the algorithm was also given.

Lastly, three case studies were performed to test the reliability of JFLAC. It was tes-

ted against a well-known analytical solution and was also compared against the results of

FLAC for the same problem. A good comparison was found between JFLAC and FLAC

and both methods showed an approximate average deviation of 2% from the analytical

solution. Once the reliability was established, it was used to conduct a case study on

a mine in South Africa. The results proved to be reasonable. The performance of the

BNS boundary condition was then tested against the displacement- and stress boundary

conditions that are implemented in FLAC. The BNS showed a signi�cant improvement

in the accuracy of the results, especially close to mining excavations.

6.2 Conclusions

JFLAC proved to be a versatile stress modelling tool that could be used to asses the

potential hazard of stressed rock mass. Since it makes use of multiple CPU cores, stresses

in a domain of interest can be simulated in a reasonable time frame. Highly stressed

areas, or areas that failed by application of the Mohr-Coulomb condition in the domain,

can be identi�ed as possible hazardous areas in the mine where the probability of seismic

events are more likely. Also, it might be used to simulate a planned mining sequence and

identify future mine areas where areas can be hazardous and possibly lead to a redesign

of the mined out area.

The development of the BNS boundary condition improved the accuracy of the simu-

lated results close to mining excavations and also allowed for the reduction in the domain

size, due to the elastic response of the domain boundaries.
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Chapter 7

Possible improvements

One of the problems that were encountered during the study was the problem of discriti-

sing the grid. A constant mesh size was used for all the simulations. In some cases this led

to unnecessary large models that reduced the performance of the algorithm. The deve-

lopment of a sophisticated mesh generation tool for JFLAC that discritised the modelled

domain �nely in areas where high accuracy in the results is needed, and more coarsely

far from these areas, could reduce the total number of tetrahedrons in the domain and

could improve the performance of the algorithm signi�cantly. A graphical user interface

for this tool could also reduce the amount of time needed to build the model, as this is

where most of the user's time is spent.

The BNS boundary condition caused, in some cases, a large increase in the simulation

time. This became more evident as the domain size increased. It is due to the large

number of sources required to simulate the response of the elastic boundary. It is however

possible to reduce the number of sources. This would cause the matrices of Eqs. (4.2)

and (4.3) to loose their square shape and advanced decomposition techniques would be

required to solve the linear system.

Lastly, for the advanced programmer it might be a nice challenge to develop a �Server

Farm� multithreaded version of the algorithm.
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Appendix A

Finite Di�erence Method

Finite di�erence methods are numerical approximations to the solution of di�erential

equations by a partial derivative with a suitable algebraic di�erence quotient (a �nite

di�erence). By de�nition, the �rst derivative of a function f(a) is given as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
. (A.1)

A reasonable approximation to Eq. (A.1) would be

f ′(a) ' lim
h→0

f(a+ h)− f(a)

h
. (A.2)

Most common �nite-di�erence representations of derivatives are based on Taylor's series

expansions and if the function can be derived for higher orders, then the Taylor series

expansion for this function is

f(x0 + h) = f(x0) +
f ′(xo)

1!
h+

f (2)(x0)

2!
h2 + ...+

f (n)(x0)

n!
hn +Rn(x) (A.3)

where Rn(x) is the remainder term. By analyzing the �rst derivative of f(a), then Eq.

(A.3) becomes

f(a+ h) = f(a) + f ′(a)h+R1(x) (A.4)

A�1
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and by rearranging the terms it can be shown that

f ′(a) =
f(a+ h)− f(a)

h
− R1(x)

h
. (A.5)

If R1 is su�ciently small, then is can be shown that Eq. (A.5) can be expressed as

f ′(a) ' lim
h→0

f(a+ h)− f(a)

h
. (A.6)

Only three forms of �nite di�erence methods are commonly considered, namely the for-

ward di�erence

δhf(x) = f(x+ h)− f(x), (A.7)

the backward di�erence

δhf(x) = f(x)− f(x− h), (A.8)

and the central di�erence

δhf(x)− f(x+
1

2
h)− f(x− 1

2
h). (A.9)

Figure A.1: An understanding of the �nite di�erence method.

Consider grid points in 1D on a line as represented in Fig. (A.1). Each grid point can

individually be represented as

xi = i4x (A.10)

where

4x =
X

N
(A.11)
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and N represents the mesh size. The �rst order derivative of a function u(x) can be

represented in terms of Eq. (A.1) as

∂u(x)

∂x
= lim

h→0

u(x+4x)− u(x)

4x
, (A.12)

(the forward di�erence) or similarly as

∂u(x)

∂x
= lim

h→0

u(x)− u(x−4x)

4x
(A.13)

(the backward di�erence). By adding Eq. (A.12) and Eq. (A.13) it can be shown that

the central di�erence is

∂u(x)

∂x
= lim

h→0

u(x+4x)− u(x−4x)

24x
. (A.14)

The Taylor series expansions for the �rst order derivatives of Eqs. (A.12), (A.13) and

(A.14) yields

ui+1 = ui +4x
(
∂u

∂x

)
i

(A.15)

for the forward di�erence and

ui−1 = ui −4x
(
∂u

∂x

)
i

(A.16)

for the backward di�erence. By rearranging the terms in Eq. (A.15) and Eq. (A.16),

they become (
∂u

∂x

)
i

=
ui+1 − ui
4x

(A.17)

and (
∂u

∂x

)
i

=
ui − ui−1
4x

(A.18)

respectively. By adding Eqs. (A.17) and (A.18) the central di�erence can be expressed as(
∂u

∂x

)
i

=
ui+1 − ui−1

24x
. (A.19)
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Appendix B

JFLAC input �les

Figure B.1: JFLAC model �le.

B�1
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Figure B.2: JFLAC material �le.

Figure B.3: JFLAC settings �le.

University of Stellenbosch http://scholar.sun.ac.za



APPENDIX B. JFLAC INPUT FILES B�3

In Fig. (B.1) the columns representing Vertex 1 to Vertex 4 represent the four nodes of the

tetrahedron, and the integer numbers represent the speci�c node number in the columns

above. The stress tensor as speci�ed in Fig. (B.1) will be assigned to the tetrahedron at

the simulation start and represents the virgin stress state of the tetrahedron.
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