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Abstract 

 

 There are many applications where a Gaussian laser beam is not ideal, for 

example, in areas such as medicine, data storage, science, manufacturing and so 

on, and yet in the vast majority of laser systems this is the fundamental output 

mode. Clearly this is a limitation, and is often overcome by adapting the 

application in mind to the available beam. A more desirable approach would be 

to create a laser beam as the output that is tailored for the application in mind – 

so called intra-cavity laser beam shaping.  The main goal of intra-cavity beam 

shaping is the designing of laser cavities so that one can produce beams directly 

as the output of the cavity with the required phase and intensity distribution.  

Shaping the beam inside the cavity is more desirable than reshaping outside the 

cavity due to the introduction of additional external losses and adjustment 

problems. More elements are required outside the cavity which leads to 

additional costs and larger physical systems. 

 In this thesis we present new methods for phase and amplitude intra–

cavity beam shaping. To illustrate the methods we give both an analytical and 

numerical analysis of different resonator systems which are able to produce 

customised phase and intensity distributions. 

 In the introduction of this thesis, a detailed overview of the key concepts 

of optical resonators is presented.  

 In Chapter 2 we consider the well–known integral iteration algorithm for 

intra–cavity field simulation, namely the Fox–Li algorithm and a new method 

(matrix method), which is based on the Fox–Li algorithm and can decrease the 

computation time of both the Fox–Li algorithm and any integral iteration 

algorithms. The method can be used for any class of integral iteration 

algorithms which has the same calculation integrals, with changing integrants. 

The given method appreciably decreases the computation time of these 

algorithms and approaches that of a single iteration. 

 In Chapter 3 a new approach to modeling the spatial intensity profile from 

Porro prism resonators is proposed based on rotating loss screens to mimic the 

apex losses of the prisms. A numerical model based on this approach is 
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presented which correctly predicts the output transverse field distribution found 

experimentally from such resonators. 

 In Chapter 4 we present a combination of both amplitude and phase 

shaping inside a cavity, namely the deployment of a suitable amplitude filter at 

the Fourier plane of a conventional resonator configuration with only spherical 

curvature optical elements, for the generation of Bessel–Gauss beams as the 

output.  

 In Chapter 5 we present the analytical and numerical analyses of two new 

resonator systems for generating flat–top–like beams. Both approaches lead to 

closed form expressions for the required cavity optics, but differ substantially in 

the design technique, with the first based on reverse propagation of a flattened 

Gaussian beam, and the second a metamorphosis of a Gaussian into a flat–top 

beam.  We show that both have good convergence properties, and result in the 

desired stable mode. 

 In Chapter 6 we outline a resonator design that allows for the selection of 

a Gaussian mode by diffractive optical elements. This is made possible by the 

metamorphosis of a Gaussian beam into a flat–top beam during propagation 

from one end of the resonator to the other.  By placing the gain medium at the 

flat–top beam end, it is possible to extract high energy in a low–loss cavity.  
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Samevatting 

 

 Daar is verskeie toepassings waar ŉ Gaussiese laser bundel nie ideaal is 

nie, in gebiede soos mediese veld, stoor van data, vervaardiging en so meer, en 

tog word die meeste laser sisteme in die fundamentele mode bedryf. Dit is 

duidelik ’n beperking, en word meestal oorkom deur aanpassing van die 

toepassing tot die beskikbare bundel. ’n Beter benadering sou wees om ŉ laser 

bundel te maak wat afgestem is op die toepassing - sogenaamde intra-resonator 

bundel vorming. Die hoofdoel van intra-resonator bundel vorming is om 

resonators te ontwerp wat direk as uitset kan lewer wat die gewenste fase en 

intensiteits-distribusie vertoon. Vorming van die bundel in die resonator is 

voordeliger omdat die vorming buite die resonator tot addisionele verliese asook 

verstellings probleme bydra. Meer elemente word benodig buite die resonator 

wat bydra tot hoër koste en groter sisteme. 

 In hierdie tesis word nuwe fase en amplitude intra-resonator 

bundelvormings metodes voorgestel. Om hierdie metode te demonstreer word 

analitiese en numeriese analises vir verskillende resonator sisteme wat 

aangepaste fase en intensiteit distribusies produseer, bespreek. 

 In die inleiding van die tesis word ŉ detailleer oorsig oor die sleutel 

konsepte van optiese resonators voorgelê.  

 In hoofstuk 2 word die bekende integraal iterasie algoritme vir intra-

resonator veld simulasie, naamlik die Fox-Li algoritme, en ŉ nuwe metode 

(matriks metode), wat gebaseer is op die Fox-Li algoritme, en die 

berekeningstyd van beide die Fox-Li algoritme en enige ander integraal iterasie 

algoritme verminder. Die metode kan gebruik word om enige klas van integraal 

iterasie algoritmes wat dieselfde berekenings integrale het, met veranderde 

integrante (waar die integrand die veld van die lig golf is in die geval van die 

Fox-Li algoritme, IFTA, en die skerm metode. Die voorgestelde metode 

verminder die berekeningstyd aansienlik, en is benaderd die van ŉ enkel iterasie 

berekening. 

 In hoofstuk 3 word ŉ nuwe benadering om die modellering van die 

ruimtelike intensiteitsprofiel van Porro prisma resonators, gebaseer op roterende 

verliese skerms om die apeks-verliese van die prismas te benader, voorgestel. ŉ 
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Numeriese model gebaseer op hierdie benadering wat die uitset van die 

transversale veld distribusie in eksperimentele resonators korrek voorspel, word 

voorgestel. 

 In hoofstuk 4 word ŉ tegniek vir die generering van Bessel-Gauss bundels 

deur die gebruik van ŉ kombinasie van amplitude en fase vorming in die 

resonator en ŉ geskikte amplitude filter in die Fourier vlak van ŉ konvensionele 

resonator konfigurasie met optiese elemente wat slegs sferiese krommings het, 

voorgestel.  

 In hoofstuk 5 word die analitiese en numeriese analises van twee nuwe 

resonator sisteme vir die generering van sogenaamde “flat–top” bundels 

voorgestel. Beide benaderings lei na ŉ geslote vorm uitdrukking vir die 

resonator optika wat benodig word, maar verskil noemenswaardig in die 

ontwerptegniek. Die eerste is baseer op die terug voortplanting van plat 

Gaussiese bundel, en die tweede op metamorfose van Gaussiese “flat-top” 

bundel. Ons toon aan dat beide tegnieke goeie konvergensie het, en in die 

gevraagde stabiele modus lewer. 

 In hoofstuk 6 skets ons die resonator ontwerp wat die selektering van ŉ 

Gaussiese modus deur diffraktiewe optiese element moontlik maak. Dit word 

moontlik deur die metamorfose van ’n Gaussiese bundel na ŉ “flat-top” 

gedurende die voortplanting van die een kant van die resonator na die ander. 

Deur die wins medium aan die “flat–top” kant van die bundel te plaas word dit 

moontlik om hoë energie te onttrek in ŉ lae verlies resonator. 
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 1

Chapter 1 

 

Introduction 
 

In this Section, a detailed overview of the key concepts of optical resonators is 

presented. We have tried to begin from the basics of resonator theory, namely 

electromagnetic boundary conditions which correspond to most characteristic 

electromagnetic field behaviors inside the cavity. Actually, the interaction of the 

electromagnetic field with a conductive surface is a source of characteristic for 

cavity states of the electromagnetic field which has a different property in 

comparison with free space fields, namely the possibility of a wave oscillating 

with exclusively discrete values of wave vectors and furthermore 

electromagnetic field amplitudes in a cavity (modes or characteristic oscillations 

of the cavity). It is one of the prominent features extensively used for producing 

monochromatic beams having a small divergence. To decrease the number of 

characteristic oscillations inside the cavity and consequently raise the 

monochromatic property and decrease the divergence of the output, the open 

cavity was proposed. 

 For the convenience of the reader, we present detailed derivations and 

definitions of some useful parameters which are universally used and are able to 

give relatively good representation of the behavior of the electromagnetic wave 

inside the cavity, namely the Fresnel number and cavity stability. 

 

1.1 Electromagnetic boundary conditions 

 

We assume that the reader has previously encountered Maxwell’s equations, at 

least briefly, and understands that they provide the most fundamental 

description of electric and magnetic fields. For a review of this field the reader 

is referred to standard texts on the subject [1.1]. The integral forms of 

Maxwell’s equations describe the behavior of electromagnetic field quantities in 

all geometric configurations. The differential forms of Maxwell’s equations are 
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only valid in regions where the parameters of the media are constant or vary 

smoothly i.e. in regions where ε(x, y, z, t), µ(x, y, z, t) and σ(x, y, z, t) (dielectric 

constant, magnetic permeability and conductivity of the medium respectively) 

do not change abruptly. In order for a differential form to exist, the partial 

derivatives must exist, and this requirement breaks down at the boundaries 

between different materials. For the special case of points along boundaries, we 

must derive the relationship between field quantities immediately on either side 

of the boundary from the integral forms (as was done for the differential forms 

under differentiable conditions). Later, we shall apply these boundary 

conditions to examine the behavior of EM waves at interfaces between different 

materials. 

 

1.1.1 Boundary conditions for the electric field 

 

Consider how the electric field E may change on either side of a boundary 

between two different media, as illustrated in Fig.1.1. 

 
Fig. 1.1. The changing electric field at the boundary between two different media. 

 The vector E1 refers to the electric field in medium 1, and E2 in medium 2. 

One can further decompose vectors E1 and E2 into normal (perpendicular to the 

interface) and tangential (in the plane of the interface) components. These 

components labeled En1, Et1 and En2, Et2 lie in the plane of vectors E1 and E2. 

To derive the boundary conditions for E, we must examine two of Maxwell’s 

equations: 

Sd
t

B
ldE

S

r
r

rr
⋅

∂
∂−=⋅ ∫∫

 

(1.1) 

and 

VdSdD
V∫∫ =⋅ ρ

rr
, (1.2) 
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which will allow us to relate the tangential and normal components of E on 

either side of the boundary. 

 

1.1.2 Normal component of D 

 

The boundary condition for the normal component of the electric field can be 

obtained by applying Gauss’s flux law 

VdSdD
V∫∫ =⋅ ρ

rr

 
(1.3) 

to a small ‘pill-box’, positioned such that the boundary sits between its ‘upper’ 

and ‘lower’ surfaces as shown in the illustration (see Fig.1.2). 

 
Fig. 1.2. Gauss’s flux law for the derivation of the normal components of the electric field on 

the boundary. 

 If we shrink the length of side wall ∆h to zero, but in such a way that all 

of the electric flux enters or leaves the pill-box through the top and bottom 

surfaces, then 

SDSDSnDSnDSdD nn ∆−∆=∆−⋅+∆⋅→⋅∫ 2121 )(
rrrrrr

, (1.4) 

where Dn1 and Dn2 are the normal components of the flux density vector 

immediately on either side of the boundary in mediums 1 and 2, and ∆S is the 

elemental surface area.  

 The amount of charge enclosed as ∆h→0 depends on whether there exists 

a layer of charge on the surface (i.e. an infinitesimally thin layer of charge). If a 

surface charge layer exists then 

SdV sV
∆=∫ ρρ , (1.5) 

and thus 

SSDSD snn ∆=∆−∆ ρ21 . (1.6) 

From which we conclude 
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snn DD ρ=− 21 . (1.7) 

For the case where 0=sρ , 

21 nn DD = ; (1.8) 

or in terms of the electric field E, 

2211 nn EE εε = . (1.9) 

 

1.1.3 Tangential component of E 

 

We can derive the tangential component of E by applying Faraday’s law to a 

small rectangular loop positioned in across the boundary, and in the plane of E1 

and E2, as illustrated in the diagram below (see Fig .1.3). 

 
Fig. 1.3. Faraday’s law for the derivation of the tangential components of the electric field on 

the boundary. 

 Consider the limiting case where the sides perpendicular to the boundary 

are allowed shrink to zero. In the limit as ∆h→0, the magnetic flux threading 

the loop shrinks to zero, and thus 

0)(0 212 =∆−+∆⋅⇒=+⋅→⋅ ∫∫∫ lElEldEldEldE
d

c

b

a

rrrrrrrrrr
. (1.10) 

 Writing the tangential components of E1 and E2 along the contour as Et1 

and Et2, we have 

021 =∆−∆ lElE tt . (1.11) 

From which we conclude that on either side of the boundary, 

021 =− tt EE  
(1.12) 

i.e. the tangential components immediately on either side of a boundary are 

equal. 
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1.1.4 Dielectric – Perfect Conductor 

 

If one of the media is dielectric (say medium 1 is air), and the other medium 

(medium 2) is a perfect conductor σ2 → ∞, then En2 = 0 and Et2 = 0 inside the 

perfect conductor. 

 Since
snn DD ρ=− 21
, we conclude that

snD ρ=1  

 Since Et1 = Et2 and Et2 = 0, we conclude that Et1 = 0, i.e. there exists no 

tangential component in the dielectric. 

In vector form we state the boundary conditions for the field in the dielectric as 

snD ρ=⋅ r
r

1  (1.13) 

and 

0=× Dn
rr

. (1.14) 

 The E field lines always meet a perfect conductor perpendicular to the 

surface, and magnetic field lines parallel to the surface as is illustrated in the 

figure below (see Fig.1.4): 

 
Fig. 1.4. The behavior of electric and magnetic fields on the boundary of a dielectric - perfect 

conductor. 

 For AC fields, no magnetic field exists in a perfect conductor - why? 

Recall that tBE ∂−∂=×∇ /
rr

 and since E = 0 in a perfect conductor, 

0=×∇ E
r

and hence 0/ =∂∂ tB
r

. In other words, no changing magnetic field can 

exist in a perfect conductor, and hence Bn2 = Bn1 = 0. A surface current can still 

exist, implying a tangential component of B1 can exist. These two conditions 

can be expressed in vector form as 

01 =⋅ nB
rr

, (1.15) 

sJHn
rrr =× 1 . (1.16) 
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 These boundary conditions are useful for establishing, for example, the 

charge density or current distribution on the surface of a conductor, when the 

field in the dielectric is known or specified. 

 These boundary conditions will be applied when analyzing the reflection 

of an electromagnetic plane wave off the surface of a perfect conductor. 

 

1.2 Modes of rectangular closed cavity 

 

We will outline the property of the electromagnetic field in a rectangular closed 

cavity using the approach of Ref [1.2]. For a neutral dielectric medium (one 

with no free charges) Maxwell’s equations are  

0=⋅∇ D
rr

, (1.17) 

0=⋅∇ B
rr

, (1.18) 

t
BE ∂

∂−=×∇
rrr

, (1.19) 

t
DH ∂

∂=×∇
rrr

, (1.20) 

 We will be interested only in nonmagnetic media, for which 

HB
rr

0µ=  (1.21) 

where 7
0 104 −×= πµ N/A2 and the electric displacement D

r
 is defined as 

PED
rrr

+= 0ε  (1.22) 

where 9
0 109874.94/1 ×=πε Nm2/c2 and the polarization P

r
 is the electric 

dipole moment per unit volume of the medium. P
r

 is the only term in Maxwell 

equations relating directly to the medium. 

 Applying the curl operation to both sides of Eq. (1.23), we obtain 

( )Btt
BE

rrrrrrr
×∇∂

∂−=∂
∂×∇−=×∇×∇ )( . (1.23) 

 Now we use the general identity  

( ) EEE
rrrrrrrr

2)( ∇−⋅∇∇=×∇×∇  (1.24) 

of vector calculus. Together with Eq. (1.21) and Maxwell’s Eq. (1.20), to write  

( ) 2

2

0
2

t
DEE ∂

∂−=∇−⋅∇∇
rrrrrr

µ . (1.25) 

 Finally we use the definition (1.22) of D
r

 and rearrange the terms 
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( )
2

2

2
0

2

2

2
2 11

t

P

ct

E

c
EE

∂
∂=

∂
∂−∇−⋅∇∇

rr
rrrrr

ε
. (1.26) 

Here we have used the fact that 

200
1
c

=µε , (1.27) 

where 810998.2 ×=c ms-1 is the velocity of light in a vacuum. 

 Eq. (1.26) is a partial differential equation with independent variables x, y, 

z, and t in Cartesian coordinates. It tells us how the electric field depends on the 

electric dipole moment density P
r

 of the medium. We will be particularly 

interested in transverse fields (sometimes called solenoid or radiation fields). 

Such fields satisfy 

0=⋅∇ E
rr

. (1.28) 

Transverse fields therefore satisfy the inhomogeneous wave equation 

2

2

2
0

2

2

2
2 11

t

P

ct

E

c
E

∂
∂=

∂
∂−−∇

rr
r

ε
. (1.29) 

This is the fundamental electromagnetic field equation for our purpose. In order 

to make any use of it we must somehow specify the polarization P
r

. This cannot 

be done solely within the framework of the Maxwell equations, for P
r

 is a 

property of the material medium in which the field E
r

 propagates. 

However, we will finish this Section with a discussion of the solution to 

the homogeneous (free-space) wave equation, which applies when there is no 

polarization present. In general, the laser resonator theory is based on the free–

space wave equation and free–space solution. Such solutions are useful; even 

through lasers do not operate in a vacuum, because most laser media are 

optically homogeneous. In a homogeneous linear and isotropic dielectric 

medium, the polarization is aligned with and proportional to the electric field 

PE
rr

α= . In this case Eq. (1.29) will have an equivalent form to the wave 

equation in free space (see Eq. (1.30)) but with different constant before second 

time derivative namely 1/c2 →α/c2. 

 We will consider only the case of a rectangular cavity. We also assume we 

have perfectly reflecting walls; then the components of the electric field parallel 

to the walls must vanish on the walls. The electric field inside the cavity 

satisfies the wave equation 



 
1. INTRODUCTION 
 

 8

0
1

2

2

2
2 =

∂
∂−∇

t

E

c
E

r
rr

. (1.30) 

 For a monochromatic field of angular frequency πνω 2= , we use the 

complex-field representation (where the electric field is understood to be the 

real part of the right-hand side): 

( )tirEtrE ω−= exp)(),( 0

rvrr
 (1.31) 

and Eq. (1.30) becomes 

0)()( 0
2

0
2 =+∇ rEkrE

rrrr
, ck /ω≡ . (1.32) 

That is, 

( ) 0)(0
22 =+∇ rEk x

r
 (1.33) 

and likewise for the y and z components. 

 To solve Eq. (1.33), it is convenient to use the method of separation of 

variables, written as: 

)()()(),,(0 zHyGxFzyxE x =  (1.34) 

and then substitute into Eq. (1.33). After carrying out the differentiations 

required by 2

2

2

2

2

22

zyx ∂
∂+∂

∂+∂
∂=∇ , we divide through by the product 

FGH and obtain 

0
111 2

2

2

2

2

2

2

=+
∂
∂+

∂
∂+

∂
∂

k
z

H

Hy

G

Gx

F

F
. (1.35) 

 Since each of the first three terms on the left side is a function of a 

different independent variable, Eq. (1.35) can only be true for all x, y, and z if 

each term is separately constant, i.e., 

2
2

21
xk

dx

Fd

F
−= , (1.36a) 

2
2

21
yk

dy

Gd

G
−= , (1.36b) 

2
2

21
zk

dz

Hd

H
−= , (1.36c) 

with 

2222 kkkk zyx =++ . (1.37) 

 The boundary condition that the tangential component of the electric field 

vanishes on the cavity walls means that 
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0),,(),0,( 00 ==== zLyxEzyxE yxx , (1.38a) 

0),,()0,,( 00 ==== zxx LzyxEzyxE  (1.38b) 

or 

0)()0( == yLGG , (1.39a) 

0)()0( == zLHH . (1.39b) 

A solution of Eq. (1.36b) satisfying the boundary condition 0)0( =G  is 

)sin()( ykyG y= . (1.40) 

 In order to satisfy 0)( =yLG  as well, we must have 0)sin( =yyLk , or in 

other words 

πmLk yy = , m=0, 1, 2,… (1.41a) 

 In exactly the same way we find that solutions of Eq. (1.36c) satisfy Eq. 

(1.39b) are only possible if  

πnLk zz = , n=0, 1, 2,… (1.41b) 

 Finally, consideration of the equation for the y and z components of 

)(0 rE
rr

, together with the appropriate boundary conditions, shows that allowed 

solutions for )(0 rE
rr

 must satisfy Eqs. (1.41a), (1.41b) and  

πlLk xx = , l=0, 1, 2,… (1.41c) 

 The solution for the components of ),( trE
rr

 satisfying Maxwell’s 

equations and the boundary conditions inside the cavity are  

( ) 




























−=

zyx
xx L

zn

L

ym

L

xl
tiAtzyxE

πππω sinsincosexp),,,( , (1.42a) 

( ) 




























−=

zyx
yy L

zn

L

ym

L

xl
tiAtzyxE

πππω sincossinexp),,,( , (1.42b) 

( ) 




























−=

zyx
zz L

zn

L

ym

L

xl
tiAtzyxE

πππω cossinsinexp),,,( . (1.42c) 

Where the coefficients Ax, Ay and Az must satisfy the condition 

0=++ z
z

y
y

x
x

A
L

n
A

L

m
A

L

l
, (1.43) 

implied by the Maxwell equation 0=⋅∇ E
rr

, valid in the empty cavity. 

 From Eqs. (1.37) and (1.41) we have 



 
1. INTRODUCTION 
 

 10














++=

2

2

2

2

2

2
22

zyx L

n

L

m

L

l
k π . (1.44) 

The possible modes of the rectangular closed cavity have allowed frequencies 

determined by Eq. (1.44) and cck πνω 2== : 

2/1

2

2

2

2

2

2

2 












++==

zyx
lmn L

n

L

m

L

lcνν . (1.45) 

 The number of modes available in a cavity is infinite. This is clear 

because in Eq. (1.45), for example, an infinite number of values are permitted 

for any of the three mode indices l, m and n. However, the number of modes 

whose frequency lies in the neighborhood dν of a given value ν is finite. This 

number is related to the number of modes whose frequency is less than ν, and it 

is this number we will determine first. 

 The number of modes we want is the number of terms in the triple sum: 

∑∑∑=
l m n

N , (1.46) 

where the upper limits on the sums are determined by the maximum frequency 

to be included. The simplest approach to this problem is to stipulate that the 

cavity length is much larger than a typical wavelength and consequently the 

mode spacing is negligible (obviously true for realistic cavities and optical 

wavelengths). Then the discrete nature of the sum is not important and we can 

rewrite the sum as a triple integral: 

∫ ∫ ∫= dndmdlN . (1.47) 

 In addition, for a large cavity the shape is not very important in 

determining the number of modes (although critical for the spatial 

characteristics of the modes, of course). So for our present purpose we can just 

as well assume the simplest shape – a cube with sides equal to L. For a cubical 

cavity Eq. (1.45) becomes  

2222
2

2
nml

c

L ++=






 ν . (1.48) 

 It is a useful trick to regard the triplet (l, m, n) as the components of a 

fictitious vectorq
r

: 

nkmjliq
rrrr ++=  (1.49a) 
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with magnitude  

22222 nmlqq ++==r
. (1.49b) 

Then the triple integral can be denoted as 

qdN ∫ ∫ ∫= 3 . (1.50) 

 Eq. (1.48) indicates that ν depends only on the length, but not the 

orientation, of the vector q
r

. Thus we rewrite the mode integral in spherical 

coordinates: 

qqq ddqdqN φθθ )sin(2
∫ ∫ ∫=  (1.51) 

and carry out the integrations to obtain: 

38
4

8
4 3

2 q
dqqN

ππ == ∫ . (1.52) 

 Here the factor 4π is the result of the angular integration and the 1/8 is due 

to the restriction on the original integers l, m, n to be positive, so that only the 

vectors q
r

 in the positive octant of the integration Eq. (1.50) should be counted 

as corresponding to the physical modes. 

In Eq. (1.49b) q is the length of the vector q
r

 compatible with the given 

frequency ν. From Eq. (1.48) it is clear that ( )νcLq /2= , so we finally get 

V
cc

L
N

3

3
3

3

3
4

2
6

νπνπ
ν =







= , (1.53) 

where 3LV =  is the cavity volume. 

 Since our derivation of Eq. (1.53) did not take into account the 

polarization of the cavity modes, we are still free to choose any two independent 

polarizations. Thus we have 

V
c

N
3

2

3

8πν
ν = , (1.54) 

for the number of possible cavity modes with a frequency less than ν, counting 

all polarizations. 

 The number of possible field modes in the frequency interval from ν to 

ν+dν is therefore 

νπν
ν Vd

c
dN 3

28=  (1.55a) 

and in the wavelength range dλ, the number is  
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λ
λ

λ
πλ

dV
dN 







= 38 . (1.55b) 

 

1.3 The modes of an open cavity 

 

It is useful for later discussions to specify the quality factor of the cavity [1.3]. 

The most general definition is 

ycleipatedPerCEnergyDiss

edEnergyStor
Q π2= . (1.56) 

 Physically speaking, Q is 2π times the ratio of the total energy stored, 

divided by the energy lost in a single cycle, or equivalently the ratio of the 

stored energy to the energy dissipated per one radian of the oscillation. 

 We can determine the quality factor by general energy principles.  

Assume that the distribution of electromagnetic fields inside the cavity is close 

to that of standing waves and the reflection coefficient of mirrors R. The 

standing wave equals the two waves with similar intensity and propagating in 

opposite directions. Let’s assume that the power in each standing wave is P. 

Consequently after reflection from two similar mirrors, these waves will lose 2P 

(1-R) of their starting power P. At the same time the stored energy in the cavity 

is 2Pl/c. Therefore from Eq. (1.56) we can find the quality factor: 

R

l
Q

−
=

1
12

λ
π

, (1.57) 

where 1≤R . 

 Consequently in accordance with the Beer–Lambert law, the influence of 

the reflecting surfaces is tantamount to an increased propagation distance of a 

plane wave inside the cavity by a factor 1/(1-R). 

 
Fig. 1.5. The open resonator consisting of two parallel plane discs. 

 Let’s consider an open resonator consisting of two parallel plane discs 

with radius a and distance between them l (see Fig. 1.5). In this case the effect 
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of increasing the propagation distance of a plane wave inside the cavity by 1/(1-

R) can be considered as e times an attenuation of the given wave after 1/(1-R) 

reflections. 

 In addition to waves that propagate exactly normal to the mirror surfaces 

we may expect some waves that propagate almost normal to the surfaces.1 If a 

plane wave propagates with some angle to the cavity axis and makes 1/(1-R) 

reflections before leaving the cavity, then regarding Eq. (1.56) the resonance 

corresponding to this oscillation has a quality factor approximately half than 

that for normal propagation. Therefore we can determine the angle 

lRa /)1(2 −=θ , (1.58) 

which limits the direction of oscillation of the waves with a high quality factor. 

Consequently, from all possible oscillations of the open resonator those with the 

largest quality factor have oscillations with a direction of propagation inside a 

solid angle of 2πθ=Ω . 

 The product of π4/Ω  and Eq. (1.55a) is the number of oscillations with a 

high quality factor in the frequency intervalν∆ . 

ν
ν

λ
π ∆−=

l

R
N

3

2
2

0

)1(
32 , (1.59) 

where νλ /c= is the wavelength. 

                                                 
1 The number of normal and non–normal waves available in a cavity is infinite (see Eq. 

1.49). However, the number of waves whose frequency lies in the neighborhood dν of a given 
value ν is finite (see Eq. 1.63). All normal or non-normal propagating waves must satisfy the 
boundary conditions due to this factor in a cavity can oscillate an integer number of waves 
which propagate normally to the mirrors surface and an integer number of waves which can 
propagate non-normally to the surface. These waves we call characteristic oscillations or 
resonance oscillations or modes of the resonator. The set of characteristic oscillations which 
propagate normally to the mirrors of a cavity are called the longitudinal modes of the resonator 
and the set of modes which has non-normal direction of propagation are radial modes of the 
resonator. 

The boundary condition can allow the existence of characteristic oscillations which 
have angular rotation by 2πn times inside the resonator (the angular modes of the resonator). 
Due to the form of the boundary conditions, the modes propagate with no rotation and with 2πn 
angle rotation are similar. Depending on the number of rotations relative to the axe of the cavity, 
the mode has order n. For example if during the propagation inside the cavity from one mirror to 
another the mode rotates the phase by 4π. This mode has a 2nd angular order. A similar situation 
and with a radial mode order, the 1st order of the radial mode means this mode has the smallest 
non-normal angle of propagation in the cavity.  

Generally all cavity modes (for cylindrical coordinate systems which are the most 
suitable for open resonators with our geometry (see Fig. 1.5)) have longitudinal, radial and 
angular orders at the same time and can be presented by three integer numbers m, n ,l. (similarly 
to Cartesian coordinates (see Eq. 1.45 (a-c))) Each number is presenting the spatial order of the 
mode in a suitable coordinate system. 
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 The comparison of Eq. (1.59) and Eq. (1.55a) leads to a dramatic 

( )( ) 11/ 222 >>− Ral  times decrease in the number of characteristic oscillations in 

the case of an open resonator. The source of this behavior is due to the absence 

of side walls in the open resonator. 

 We are now able to define some useful relationships that may be derived 

from Eq. (1.59). These are listed as follows: 

The frequency interval corresponding to only the resonance oscillation: 

242

3

0 )1(32 Ra

l

N −
=∆

π
νλν

. (1.60) 

The frequency width of only the resonance oscillation will be defined by 

the quality factor: 

l

R

Qk π
λννν

3
)1( −==∆ . (1.61) 

 The resonance curves of different oscillations have no overlap according 

to Eq. (1.60) and Eq. (1.61): 

1)1(16 32

0

<−=
∆

∆
RN

N F
k π

ν
ν

, (1.62) 

where λlaNF
2= . 

 We can see from Eq. (1.62) that for mirrors of an open resonator with a 

high reflectivity and accordingly high quality factor, it is possible to reach 

sufficient decimation of the spectrum of characteristic oscillations, even though 

the Fresnel number is high. 

 

1.4 The stability of an open cavity 

 

Lets consider a waveguide consisting of a set of thin lenses with equal focal 

lengths, width and distances between them (see Fig.1.6) [1.3]. Because of the 

reflection from the resonator mirror, in principle, is identical to transmitting 

through a lens of similar focal length and width. We can suppose that this 

scheme is equivalent to the open cavity. 
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Fig. 1.6. The representation of an open cavity by waveguides consisting of a set of thin lenses. 

 Assume that the trace of the rays through this system obeys the paraxial 

approximation; consequently we may make use of the well-known lens 

equation: 

Faa 111 21 =+ , (1.63) 

where a1 – the object distance, a2 – the image distance and F – the focal length 

of the lens.  

 We can rewrite this equation in paraxial approximation for r<<a 1, a2 

namely: 

Fr /21 =−αα , (1.64) 

where r is the distance from the optical axis to the point where the ray intersects 

the lens, and α1and α2 are the incident and refracted angles respectively (see Fig. 

1.7). 

 

Fig. 1.7. The angles of the light ray before and after passing through the thin lens. 

 Lets consider the three neighboring lenses, labeled n-1,n and n+1. Then: 

Frnnn /1 =− −αα . (1.65) 

 At the same time the distance from the ray up to the lens axis is  

lrr nnn α+=−1  , lrr nnn 11 −− += α . (1.66) 
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 Subtracting the first equation from the second leads to the following 

recurrence formula: 

0)2/( 11 =+−+ −− nnn rrFlr , (1.67) 

which allows one to determine the position of the ray on any lens in the system 

if the positions on the two previous lenses are known. The method of sequential 

passes of the ray inside the resonator, corresponding to the recurrence formula 

(1.67), is similar to the well known Fox-Li method [2.2]. 

It is possible to solve Eq. (1.67) analytically by assuming a solution of the form: 

)exp( θinArn = , (1.68) 

where A is a constant.  Substituting Eq. (1.68) into Eq. (1.67), and requiring that 

both the imaginary and real parts must be of the solutions, yields: 

Fl 21)cos( −=θ . (1.69) 

  The last equation is the partial solution of Eq. (1.67). By considering this 

partial solution we can conclude that the waveguide (see Fig. 1.7) is stable if rn 

oscillates within the limits ±A, where A is the initial position of the ray in the 

waveguide. 

 Consequently the continuing oscillations exist when θ is real or )cos(θ  is 

within the limits ±1 and the variation of the admissible region of l/F is 

determined by following inequality: 

12/11 ≤−≤− Fl . (1.70) 

 By following the same steps, we can easily derive similar inequalities, but 

for waveguides which have two types of lenses with different focal lengths 

following each other 

1)2/1)(2/1(0 21 ≤−−≤ FlFl . (1.71) 

 Eq. (1.71) is the more general case of the stability condition of an open 

cavity with different focal lengths of the lenses, and is equivalent to Eq. (1.70) 

when the lenses are identical. 

 By introducing two new parameters defined as g1=1–l/2F1 and g2=1–

l/2F2, the boundary of the accepted values for l and F must satisfy: 

0

1

21

21

=
=

gg

gg
. 

(1.72a) 

(1.72b) 
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 Eqs. (1.72) allow the simple graphical representation of the stability 

region of an open cavity (see Fig. 1.8). Areas bounded by the line g1 g2 = 1 as 

well as the axes are stable. 

 
Fig. 1.8. The stability region of an open cavity. 

 

1.5 The Fresnel number of a cavity 

 

Since the above analysis did not include diffraction, it is not possible to discuss 

diffraction losses [1.3].  To do so one requires the introduction of propagating 

plane waves.  In accordance with Young’s representation, the diffraction due to 

the edge of a screen can be described as transverse amplitude diffusion. At a 

distance l from the screen, the diffusion region is aroundλl . Consequently, the 

beam with a field close to a plane wave, after a reflection from the left mirror, 

having a radius a, increases the beam radius by al <<λ . 

 
Fig. 1.9. Young’s representation of the diffraction on a round screen. 

 The radiation, associated with a ring of area λπ la2 , leaves the resonator 

[see Fig. 1.9]. Since the plane waves have a constant amplitude, we may 
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estimate this loss as al /2 λ . After squaring this value, we are able to make an 

estimate of the energy loss after one pass: 

FDiff N
a

lA /44
2 == λ , (1.73) 

where λlaNF
2≡   is the Fresnel number of the resonator. Consequently larger 

Fresnel number resonators will have smaller diffraction losses. 

 The aforementioned estimate of diffraction losses is correct for large 

Fresnel numbers, but because the field distribution in a real resonator is not 

uniform and drops rapidly at the edges, the actual diffraction loss is in reality 

less than predicted by Eq. (1.73). Consequently, the estimate of the tendency of 

dependency of the diffraction losses from the Fresnel number is more correct. 
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Chapter 2 

 

Fox–Li mode development analysis and a 

matrix method 
 

 In this Chapter we will consider the well–known integral iteration 

algorithm for intra–cavity field simulation, namely the Fox–Li algorithm [2.1, 

2.2] and a new method (matrix method), which is based on the Fox–Li 

algorithm and can decrease the computation time of both the Fox–Li algorithm 

and any integral iteration algorithms. 

 In general, the time taken for the calculation is the weakest part of the 

integral iteration algorithms. Consequently, the development of mathematical 

methods is an important task which will decrease the computation time and can 

strongly simplify the solution. In this Chapter we will present a novel method 

which can considerably decrease the computation time of the integral iteration 

algorithms, without loss of precision. 

 The method which we will describe below can be used for any class of 

integral iteration algorithms which have the same calculation integrals, with 

changing integrants (where the integrant is the field of the light wave in the case 

of the Fox-Li algorithm (see Sec. 2.1), IFTA (see Sec. 2.2), and screen method 

(see Sec. 2.3)). The given method appreciably decreases the computation time 

of these algorithms and approaches that of a single iteration computation. 

 

2.1 Fox–Li algorithm 

 

The Fox-Li algorithm is used for computing the intra-cavity field. For that we 

have to calculate the field on one of the mirrors through the Fresnel integral, 

with a random field (the simulation of random process of mode development by 

spontaneous emission in the active medium of a laser) on the opposite mirror 

(see first part of Eq. (2.1) with u2(x) –random function), and then we have to 

calculate the field on the opposite mirror taking into account the previous field 
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using the same Fresnel integral and so on, until the intra-cavity field approaches 

a steady state (see Fig. 2.1). 

 
Fig. 2.1. The illustration of Fox–Li method. 

The number of iterations of the Fox–Li algorithm depends on the Fresnel 

number [see Sec. 1.5]. In the case of small Fresnel number for a given resonator, 

we will need less computation iterations to approach the steady state and vice 

versa. 

 

2.2 Matrix method 

 

The central idea to the so–called Matrix Method approach is to note that only 

the integrand of the two propagation integrals (one for each direction) is 

changing on each pass of the resonator, and not the kernel itself.  Therefore, if 

the transformation of a field on passing through the resonator could be 

expressed as the product of two matrices – one representing the starting field 

and the other the transformation of that field – only the former would have to be 

calculated on each pass, and not the latter. 

 
Fig. 2.2. Illustration to the  matrix method development.  
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 To illustrate the method, consider sub-dividing of two mirrors into N parts 

each with size ∆x=2X2/N for mirror M2 and, ∆x=2X1/N for mirror M1, where X is 

the radius of the respective mirrors. If ∆x is small enough, then the field u(x) 

across that segment of the mirror may be assumed to be constant (see Fig. 2.2). 

We can now divide the Fresnel integral into a sum of integrals over each 

segment of mirror. As each segment has constant amplitude (albeit a different 

constant), this term may be removed from the integral, which in the case of 

propagating from mirror M2 to M1 becomes [2.3]: 

( )

( ) .2exp)(

2exp)(),(

0

)1(

2
2
221

2
122

2
2
221

2
12211

2

2

∑ ∫

∫

=

∆+−

∆−

∞

∞−








 +−−∆−=








 +−−=

N

i

xiX

xiX

dxxxxx
L

i

L

i
xiXu

dxxxxx
L

i
xu

L

i
Lxu

λ
π

λ

λ
π

λ

 (2.1) 

 Since the integrant in Eq. (2.1) does not change with the changing field, 

we may express Eq. (2.1) in matrix form as 
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 This approach dramatically decreases the computation time, since the 

elements of the transfer matrix, T, need be calculated only once.  If the mirror 

segments are sufficiently small we may further reduce the Riemann integrals in 

T as 
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and thus decreasing the computational time further.  For a non–symmetrical 

cavity, as is the case in this study, one is required to calculate the forward and 

reverse propagation matrices separately. The method may also be extended to 

multi–element resonators by application of a suitable Collins integral [2.4] in 

Eq. (2.1). 

 For the first step of the matrix method (see Eq. (2.6)) the complex 

amplitude of the optical field is taken to be approximately constant, but for the 

second step (see Eq. (2.7)) this consideration is inadequate. The integrands of all 

Fresnel integrals of matrix T need to be constant. In most cases, this will usually 

lead to an increase in the matrix sizes. Consequently, in order to decide which 

representation we have to choose we must analyse the behavior of all the 

integrands and the amplitude functions. For example, to simulate the field 

behavior in an open resonator with mirror diameters of 1 cm and a distance 

between the mirrors of 0.3 m at a wavelength of 1.064 µm we have to divide a 

mirror into 103 parts. This will give us a good description of this system by the 

Fresnel matrix (see Eq. (2.6)) which will consist of 106 elements. At the same 

time, to describe the same system by the integral free Fresnel matrix (see Eq. 

(2.7)) we must have 104 divisions at least and consequently 108 elements. 

All calculations of the Fresnel integral employing the Fox-Li method, have been 

presented as a multiplication of two matrices only and the computation time of 

the field distribution inside the resonator decreases and takes approximately the 

same calculation time as  the Fresnel integral for a single pass. 

If we write the matrices for the forward and backward propagation directions 

inside the resonator as T1 and T2 respectively, then the characteristic integral 

equation for any resonator system can be presented in the terms of the matrix 

method as: 

1211 uTTu
rr =λ . (2.8) 
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Eq. (2.8) has solutions if the determinant of Iλ–T1T2 is zero; consequently all 

eigenvectors of T1T2 represent the possible resonator modes, while all 

eigenvalues represent the losses with phase shift for these corresponding modes. 

The method was applied to the computation of a Bessel-Gauss, Flat–Top and 

Gaussian cavity and it decreases computation time of Fox-Li method 

considerably [4.13, 5.13, 5.15 and 5.17]. 

 

2.3 Other applications 

 

Generally the matrix method can be adapted to any integral iteration algorithms. 

In this Chapter we will consider two well known iteration algorithms: the 

popular iterative Fourier transform algorithm (IFTA) for diffraction optical 

elements (DOE) shape calculations [2.5] and the phase screen method for 

generation of turbulence transformation of the optical field based on Noll’s 

representation of near field Kolmogorov phase modification [2.6]. 

 

2.3.1 Iterative Fourier transform algorithm 

 

The given algorithm was applied to a well known popular method of 

computation of surface profile (phase pattern) of DOE known as the iterative 

Fourier transform algorithm (IFTA). The general description of IFTA algorithm 

follows. The intensity distribution, which can be Gaussian or otherwise, formed 

from the incident beams and the initial random surface profile of the DOE are 

first determined. After the beams have propagated to a given point (image 

plane) using forward Fourier transformation (FFT), the amplitude only is 

replaced by the amplitude of an ideal intensity distribution. The beams are then 

propagated in the reverse direction using reverse Fourier transformation (RFT), 

the altered surface profile is left as is, and the amplitude is replaced by the 

amplitude of a Gaussian intensity distribution and so on [2.5, 2.7] (see Fig. 2.3). 
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Fig. 2.3 The Iterative Fourier transform algorithm. 

 As we can see in the given case we have to calculate forward and inverse 

Fourier transformation every pass of the iteration algorithm. Consequently we 

can apply the matrix method, described above, but in the given case we have to 

find two integral matrices: one matrix is for forward transformation and the 

other is for inverse Fourier transformation.Integral matrices for the one 

dimensional case for forward and inverse Fourier transformation which take into 

account the approximation of a practically constant integrand (see above 

method) will be: 
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Or for inverse Fourier transform: 
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2.3.2 The simulation of turbulence transformation of the optical field 

 

 To illustrate the method we can consider one more integral iteration 

algorithm for the simulation of the atmospheric turbulence. This is the phase 

screen method for the generation of turbulence transformation of an optical 

field. The phase screens will be calculated by decomposing the phase function, 

where the phase function represents the near field Kolmogorov turbulence phase 

transformation. It is decomposed into a series of Zernike polynomials by 

following the Noll representation of Zernike coefficients for the Kolmogorov 

view of the statistic structure function [2.6]. To generate the phase and 

amplitude transformation of the optical field over a certain propagation distance 

we will use a phase screen technique which is based on the division of beam 

paths into parts for which we can consider the variation of optical field as a near 

field transformation.  Consequently, to produce the optical field modification we 

can apply the Fresnel transformation as well as multiplication of the initial 

optical field by the Noll representation of turbulence phase change on every part 

of the division. 

 From the above discussion we can now see that for each part of the optical 

path we have to calculate the same Fresnel integral but only change the 

integrand, namely the optical field, by multiplying by the turbulence phase 

change. We are now able to use the matrix method described above. We can 

simulate the Fresnel matrix once and all the field modifications during 

propagation will be represented by the multiplication of three matrices, namely 

the constant Fresnel matrix and two varying matrices: the phase transformation 

turbulence matrix and the amplitude matrix: 

BTAA ttt =+1 , (2.10) 

where t is the number of phase screens, A is the complex amplitude matrix,  T is 

the phase transformation turbulence matrix and B is the Fresnel transformation 

matrix. 
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2.4 Conclusion 

 

In this Chapter a method was presented which decreases computation time of 

integral iteration algorithms by the examples of both Fox–Li method and IFTA. 

This method was applied successfully by the author in calculating Bessel-Gauss, 

Flat Top, Gaussian and Bessel–like beam cavities [4.13, 5.13, 5.15 and 

5.17].The speed of calculation of this method approaches the speed of 

calculation of a single pass of the integral iteration algorithm.  For the case of 

Fox–Li algorithm the method is able both to reduce the calculation time and 

able to show the transverse field distribution of all possible resonator modes and 

the losses with phase shift for these corresponding modes as well (see Eq. 2.8).  
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Chapter 3 

 

Petal–like modes in Porro prism resonator 
 

To overcome misalignment problems and to raise stability of resonator systems, 

Porro prisms can be used instead of resonator mirrors. The employment of Porro 

prisms leads to unique behavior of the output beam profile. For this type of 

cavity the influences of losses on the apexes of the Porro prisms and the angle 

between them have a dominant influence on the transverse intensity profile of 

the output beam. Consequently we have one of the cases of amplitude intra–

cavity beam shaping.  In this Chapter a new approach to modeling the spatial 

intensity profile from Porro prism resonators is proposed based on rotating loss 

screens to mimic the apex losses of the prisms. A numerical model based on this 

approach is presented which correctly predicts the output transverse field 

distribution found experimentally from such resonators. 

 

3.1 Introduction  

 

Right angle prisms, often referred to as Porro prisms, have the useful property 

that all incident rays on the prism are reflected back parallel to the initial 

propagation direction, independent of the angle of incidence.  Thus an initial 

planar wave front remains planar after reflection.  This property was initially 

exploited in Michelson interferometers to relax the tolerances on misalignment, 

and then proposed in 1962 by Gould et al [3.1] as a means to overcome 

misalignment problems in optical resonators employing Fabry–Perot cavities by 

replacing the end face mirrors with crossed roof prisms.  Lasers based on this 

principle have been developed over the years [3.2–3.6] with a review of the 

basic concepts and literature for Porro prisms specifically found in [3.7].  Much 

of the theoretical work to date has focused on geometric methods to model the 

inverting properties of such resonators [3.2–3.4] and polarization considerations 

to account for internal phase shifts and output polarization states [3.6,3.7].  In 
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[3.2] the prism was modeled as a ray deviator by replacing an imaginary mirror 

some distance behind the prism.  The model correctly accounted for the beam 

direction, but did not account for the complex field distribution found 

experimentally from the laser. 

 In [3.4] the relative change of the beam pointing direction for a misaligned 

Porro prism resonator is analyzed. A concept of the oscillation axis for the Porro 

prism resonator is introduced to find the beam direction. Expressions for the 

beam tilting angles are deduced. They predict that the angular misalignment in 

the horizontal direction will lead to beam tilting in both the horizontal and 

vertical directions. 

 An electro-optically Q-switched Nd:YAG laser resonator that uses two 

end prisms placed orthogonally perpendicular to each other has been designed 

in [3.6]. This configuration improves the stability of the resonator and does not 

alter the characteristics of the electro-optical Q switch. The out–coupling ratio 

of the cavity is optimized by a change in the azimuthal angle of a phase-

matched Porro prism placed at one end of the cavity. The prism placed at the 

other end of the cavity is designed so that it introduces a phase change of P, 

regardless of its orientation and index of refraction, resulting in a more efficient 

and stable cavity. 

 The physical optics models fail to account for the true field pattern found 

from such resonators [3.3, 3.8].  In [3.3] for example, the kernel of the Fresnel–

Kirchoff diffraction integral contains only the optical path length experienced 

by the beam, thus treating the prism as though it were acting like a perfect 

mirror, with an identical ABCD matrix representation albeit incorporating the 

inverting properties of the prisms.  This approach appears to be the preferred 

model for prisms, even though it does not explain the complex transverse field 

patterns found in Porro prism resonators.  This is a recurring problem in the 

literature, with only a hint at a solution offered in [3.8] and [3.9], where it was 

proposed to treat the field patterns as a result of diffractive coupling between a 

linear combination of sub-resonators. Anan’ev [3.9], in considering the 

theoretical properties of resonators with corner cube prisms, specifically 

mentioned the influence of bevels of finite width at the prism edges as a 

possible explanation for a tendency for distinct longitudinal sectors  to oscillate 
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independently, but did not go on to develop this idea into a model which could 

be used to explain experimental results. 

 In this Chapter we outline a new method for modeling the transverse field 

patterns observed from crossed Porro prism resonators [3.11]. The model 

departs from earlier attempts in that the prisms are modeled as rotating elements 

with amplitude and phase distortions, and incorporates both physical optics and 

geometrical optics concepts.  The model is developed in Section (3.2) and its 

properties discussed, and then applied in Section (3.3) to the case of a 

marginally stable crossed Porro prism resonator with a polarizer as an output 

coupler.  

 

3.2 Porro resonator concept 

 

A typical Porro prism resonator is shown in Fig. 3.1.  Consider for the moment 

only the two Porro prisms and how they impact on the propagating field.  

Imagine viewing the resonator along its length from one prism (element h) 

looking towards the other (element a).  On encountering a prism, the field 

inverts itself around the prism apex, and reverses its propagation direction, 

traveling back towards the opposite prism.  The same inversion and reversing of 

propagation direction takes place again, and this sequence repeats on each pass.  

The prisms would essentially be treated as perfect mirrors but with a field 

inverting property. 

 

  

Fig. 3.1. A typical Porro prism based Nd:YAG laser with passive Q–switch, showing the 

following optical elements: Porro prisms (elements a and h);  intra–cavity lenses (elements b 
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and g); a beamsplitter cube (element c); a quarter wave plate (element d), and a passive Q–

switch (element e). 

Our approach to modeling a resonator containing Porro prisms is to describe the 

prisms as standard mirror elements, but with associated amplitude and phase 

screens, as illustrated in Fig. 3.2.  These screens act on the incoming field by 

modifying both its amplitude and phase by means of a suitable optical transfer 

function t(x,y): 

)),,(exp(),(),(),(),(),( yxiyxAyxUyxtyxUyxU ininout ϕ==  (3.1) 

where A(x,y) describes the amplitude effects and ϕ(x,y) describes the phase 

effects of the prism respectively.  In the case of a Porro prism, the amplitude 

screen introduces losses not only at the edges of the element (transverse 

confinement), but also at the small but significant bevel along the apex where 

the prism surfaces meet. The phase screen allows for the optical path length to 

vary as a function of the input position on the prism face, for example, to model 

errors in the prism angle or fabrication errors on the prism surfaces.  With this 

approach, the diffractive effects of the prisms are taken into account, and the 

screens can be treated as intra–cavity elements that change the eigenmodes of a 

standard mirror–mirror resonator. Here we employ only the amplitude screen 

approach to model perfect prisms with high losses where the prism edges meet.  

The transfer function for the new prism model then includes only the amplitude 

effects, t(x,y) = A(x,y), and describes a high loss region along the apex of the 

prism, with 100% losses, and no losses elsewhere within the clear aperture of 

the element. 

 
Fig. 3.2. Illustration of the effect of phase and intensity screens on an incident field. 
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A geometric approach is useful in understanding the symmetry and repeatability 

of the resonator modes: consider a propagating ray viewed along the optical axis 

and assume, without any loss of generality, that the Porro prism (PP) closest to 

the observer has its apex in the horizontal plane, while the opposite PP has its 

apex rotated at some angle α from the horizontal, which we will refer to 

henceforth as the Porro angle.  By way of example, we consider the case of α = 

60°, as illustrated in Fig. 3.3 (a–e).  In the analysis to follow the pertinent 

information is the location of the prism apexes, which we illustrate as solid lines 

1 and 2 in Fig. 3a, corresponding to elements h and a in Fig. 3.1 respectively. 

 
Fig. 3.3. (a) – (e): Evolution of a ray as it is reflected back and forth in the resonator, for starting 

Porro angle α = 60°.  After 3 round trips the pattern is complete (e) and starts to repeat.  (f) – (j): 

Equivalent case but with α = 30°, and now taking 6 round trips for completion. 

We have a priori knowledge of how the mode will develop, and hence start with 

a ray located as shown in Fig. 3.3 (a), traveling away from the viewer towards 

PP 2.  We have chosen this location based on the assumption of high loss along 

the apexes, thus avoiding the apex zones.  At PP 2 the ray is inverted about the 

prism apex, and travels back towards the viewer parallel to the optical axis as 

indicated in Fig. 3.3 (b).  At PP 1, the ray is inverted about the prism axis, and 

travels back towards PP 2 (see Fig. 3.3 (c)).  This process continues until the 

complete pattern is created (see Fig. 3.3 (e)), and the ray has returned to its 

starting position. This happens after three round trips.  Clearly subsequent 

reflections simply duplicate the pattern.  A second example is shown in Fig. 3.3 

(f) – (j), where we illustrate the case of α = 30°.  The same propagation rules 

apply so that eventually, after six complete round trips the pattern starts 

repeating itself. Clearly this approach correctly predicts the observed petal 

pattern formation often observed from such lasers, but this is based on a prior 
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knowledge and not physical reasoning.  Also, this approach is only useful for 

limited Porro angles. 

An alternative approach, which is more useful in modeling such a resonator, is 

to consider that since losses are introduced onto the field from each prism apex, 

and the field is then inverted, one can view the situation as the amplitude screen 

being inverted after each prism reflection.  From the viewpoint of the field 

traveling inside the resonator, the equivalent picture is that of the field 

remaining inversion free, while the prisms themselves invert after each pass, 

essentially appearing to rotate by an amount dependent on the Porro angle, and 

hence the main area of losses (the apex edges) also appear to rotate.  An 

example of this rotation is shown in Fig. 3.4. 

 

Fig. 3.4. The apexes of two Porro prisms at angles φ1 and φ2.  Initially the apex of PP 1 is in the 

horizontal plane (a), but after successive reflections about the inverting edges of the two prisms 

the apex will appear to be rotating about the circle: (b) 1 pass, (c) 2 passes and (d) 3 passes. 

In order to develop a physical optics model based on this approach, we need to 

have expressions for the equivalent picture of the rotating prism apexes (high 

loss areas).  Consider the rotation of the first PP apex, which we shall denote 

with the subscript 1, whose position on the circle in Fig. 3.4 we describe by the 

vector v1 = (x1,y1) with angular displacement given by φ1.  The region of high 

loss is then simply a line passing through the origin with slope y1/x1.  Without 

any loss of generality we will assume the resonator is viewed such that the first 
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PP has an edge parallel to the horizontal axis, with the second PP rotated at the 

Porro angle, as illustrated in Fig. 3.1.  It is easy to show that after n reflections 

this vector has rotated through an angle θ1(n) given by: 

αθ nn n 2)1()( 1
1

+−= , (3.2) 

where α is the Porro angle.  The angular position of this vector after n 

reflections can be found from: 
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Prior to any reflections the apex of the first prism is at φ1(0) = 0, so that if we 

imagine the apexes rotating about the unit circle, then the vector v1(n) may be 

expressed as: 
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Similar expressions can be derived for the second PP apex, which we state here 

for the convenience of the reader: 
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Note that the notation has been selected so that the initial positions of the two 

apexes are given by: 
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with corresponding initial apex loss regions along y1 = 0 and y2 = (tanα) x2 

respectively. 

A consequence of this model is that only at some discrete starting angles, α, will 

the rotating edges repeat on themselves. At these angles the field is finitely sub–

divided by the prisms losses, and it takes a certain number of passes for the sub–

division of the field to be complete. The resulting field is then made up of a 

circular pattern of spots which we refer to as petals or as a petal pattern. At 
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other angles, the edges never repeat on themselves, thus infinitely sub–dividing 

the field. With this formalism we are able to find the angles α at which these 

repeating patterns manifest themselves, as well as the number of sub–divisions 

(or equivalent, number of petals) that will be observed.  Consider for example 

the first Porro prism apex.  It will return on itself when v1(n) = v1(0), which 

leads from Eq. (4) to the relation: 
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This will be true when  

[ ] ,2)21()1(1
2

)(1 παφ inn n =+−−=  (3.10) 

for any integer i. By selecting only the positive solutions for α, one can derive a 

simple expression for the initial angles α, that will lead to a finitely sub–divided 

field (or repeating pattern from the geometric viewpoint): 

m

iπα = , (3.11) 

for any positive integers i and m. The same result can be derived by starting 

from vector v2. The implication is that only at these specific angles α will the 

field be finitely sub–divided, thus leading to some regions with low loss for 

lasing.  In addition, since the position of these sub–divisions remains stable (i.e., 

they repeat on themselves) after a certain number of round trips, the modal 

pattern that oscillates inside such a resonator will give rise to a petal pattern only 

at those angles given by Eq. (3.11). At other Porro angles the high loss apexes 

will continuously rotate to new positions, thus resulting in high losses across the 

entire field.  We can now go on to calculate how many petals will be observed 

for a given Porro angle α. The number of petals will be equal to the number of 

sub–divisions of the field, but the field may not be completely sub–divided in 

one complete rotation of the vector; it may take several complete rotations for 

this to happen.  We note that the sub–divisions will not necessarily be equal to 

the Porro angle; when several rotations of around the circle are needed to 

complete the sub–divisions, it is likely that the area between the initial apexes 

will be sub–divided further.  In general, write the following expression relating 

the Porro angle to the total number of sub–divisions (petals) of the field: 
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Nj

πα 2= . (3.12) 

The validity of this is evident from the following heuristic argument: The 

complete circle (2π) divided by the total number of sub–divisions N must return 

the angle of each sub–division.  If the sub–division is completed in one rotation, 

then the sub–division angle will equal α, but if more complete rotations are 

needed, then this will result in α itself being sub–divided by integer amount, j.  

Thus both the left and rand hand sides of Eq. (3.12) represent the same quantity 

– the final angle of each sub–division.  A simple rearrangement of this equation 

then yields: 

α
π2j

N = . (3.13) 

Since each reflection may only increase the number of sub–divisions in 

multiples of two, we deduce that N must be an even number. The positive 

integer j now appears to take on the meaning of the number of complete cycles 

required to return the apexes back onto one another.  At present we cannot offer 

a simple analytical method of determining j, but can offer the following 

conditions: (i) j is the lowest positive integer such that N is even, and (ii) j ≤  i.   

Eqs. (3.11) and (3.13) are predictions as to which initial angles α will result in 

stable petal pattern output, and how many petals will be observed in the pattern 

respectively.  A plot of the allowed angles for petal pattern formation together 

with the number of petals that will be observed is shown in Fig. 3.5. 

   Since the sub–divisions divide the circle finitely, the angle subtended by each 

sub–division is given by: 

jN

απψ == 2
. (3.14) 

Thus the more complete rotations needed to complete the pattern, the smaller 

the angle of each sub–division.  The simplest case is when i = 1; then j = 1 and 

the circle is divided into divisions of α.  For higher j values the lossless regions 

between the high loss sub–division lines become small.  Thus although there is 

an infinite number of solutions for α that lead to finite sub–divisions of the 

field, if the number of divisions is too large, diffraction will blur the spot 

structure and no petal pattern will be observed. 
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Fig. 3.5. Plot of the discrete set of angles α that give rise to a petal pattern, with the 

corresponding number of petals to be observed.  Data calculated for m ∈ [1,100] and i ∈ [1,50]. 

Taking this into account, and considering the diffraction of a field propagating 

between areas of high losses, it is reasonable to suppose that the approach and 

theory presented here is the explanation for the observed (and sometimes not 

observed) petal patterns from Porro prism resonators.  The governing equations 

for the onset of petal patterns and the number of petals observed are given by 

Eq. (3.11) and Eq. (3.13) respectively. 

 

3.3 Test resonator 

 

The Porro prism resonator investigated in this study is shown schematically in 

Fig. 3.1, and was based on a flash lamp pumped Nd:YAG laser with passive Q–

switching.  The active medium was a 50 mm long Nd:YAG rod of radius 3 mm. 

Two Porro prisms at either end of the laser formed the resonator, replacing 

traditional mirrors. The stability of the resonator was determined by the two 

intra–cavity lenses near the prisms, but in our experiment as well as in the 

numerical model no intracavity lenses were used, yielding a marginally stable 

resonator. The resonator was confined in the transverse direction by the clear 

aperture of the optical elements, such as lenses, prisms and gain rod, but also by 

inserted apertures not shown in the figure.  The laser was pulsed using a 

Cr4+:YAG passive Q–switch.  A quarter–wave plate together with a polarizing 
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beamsplitter cube ensured variable output coupling from the laser by 

polarization control (by rotation of the waveplate or by rotation of the prisms). 

 

3.3.1 Experimental set-up 

 

The assembled laser used in our experiments is shown in Fig. 3.6.  The spatial 

intensity profile of the laser output was measured using a CCD camera (model 

COHU 4812).  The temporal characteristics were detected with a silicon 

detector coupled to a 50 Ω impedance, and displayed on a two channel 

oscilloscope (Tektronic TDS 360).   

 
Fig. 3.6. Photograph of assembled laser.  The beamsplitter cube and one of the Porro prisms can 

be made out on the left of the assembly. 

 

3.3.2 Numerical modeling 

 

The laser was modeled as the complete resonator sans any gain, using the Prony 

method [3.10].  A beam array size of 1024×1024 was used, and the modal 

build–up modeled until the losses per round trip stabilized to within 0.5%.  The 

Porro prism resonator was modeled by successive passes through a folded–out 

resonator using the approach described in Section (3.2).  Each prism was 

assumed to be equivalent to a perfect mirror superimposed on a rotating loss 

line (see Fig. 3.2), with the rotation of the loss region for prism 1 given by Eq. 

(3.3) and that for prism 2 by Eq. (3.6). 
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3.4 Results and discussion 

Using Eqs. (3.11) and (3.13), the finite sub–division of the field is predicted at 

angles α = 67.5° and α = 77.14°, with associated petal numbers of 10 and 14 

respectively.  No finite sub–division is expected at α = 79.0°.  These cases are 

shown in Figs. 3.7 (a) – (c) respectively, where the locations of the prism apexes 

are shown around the unit circle after several hundred rotations.  In insets (a) 

and (b) the apexes are clearly repeating on themselves, resulting in a stable 

pattern, whereas in (c) the field does not result in any lossless regions because 

of the non–repeating apex positions.  This latter situation prohibits the formation 

of a stable mode since all regions have high loss, while the former scenarios 

could potentially support lasing in the lower loss regions of the field.   

The numerical model of the resonator confirms this (see Figs. 3.7 (d) – (f)), 

showing a stable mode pattern for α = 67.5° and α = 77.14°, with the correct 

number of petals (10 and 14 respectively) as predicted by the theory.  At α = 

79.0° the output mode never stabilizes and results in a random field with high 

losses.  Experimental results verify these findings, with petal patterns occurring 

when they should (α = 67.5° and α = 77.14°), and with the correct number of 

petals: 10 and 14 respectively (see Fig. 3.7 (g) and (h)).  At α = 79.0° no petal 

pattern was observed experimentally, in agreement with the theory and 

numerical model, with the camera image showing the time averaged intensity 

from the laser.  Thus the theoretical, numerical and experimental results are all 

in very good agreement. 
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Fig. 3.7. The analytical model depiction of finitely sub–divided fields in (a) and (b), and an 

infinitely sub–divided field in (c).  Numerically this results in a pattern with (d) 10 petals, (e) 14 

petals and (f) no petals.  The corresponding experimentally observed output is shown in (g) – (i). 

The angles α  for which an output beam existed for the test laser were limited to 

between 63° and 87°. The absence of output below 63° was due to increased 

misalignment between the Porro prisms with decreasing angle away from 90° 

(the crossed case).  It should be noted that this was a particular artifact of the 

resonator under study, and is not a general property of Porro resonators. The 

absence of output above 87° was due to two effects: (i) the output coupling 

method of the given cavity: at 90° (crossed Porro prisms) no output existed 

because cavity losses were 100% due to the polarization based output coupling 

method; and (ii) near 90° the number of predicted petals increases very rapidly 

with Porro angle.  Since this reduces the available low loss area for the each 

petal, either no petals are observed due to the inherently high losses, or the close 

proximity of the petals leads to blurring due to diffraction. 

The available experimental data at selected angles α is shown in Table 3.1, and 

is in excellent agreement with the theoretical and numerical predictions. 
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Experiment  Theory 

α N  α N 

68° ± 0.5° 16  67.5000° 16 

72° ± 0.5° 10  72.0000° 10 

77° ± 0.5° 14  77.1429° 14 

80° ± 0.5° 18  80.0000° 18 

Table 3.1. Petal pattern observations: theory and experiment 

In addition to the experimentally verified petals, the numerical model was used 

for extensive tests on the analytical predictions of Section (2).  Fig. 3.9 shows 

examples of some results, with the analytical prediction of the stabilized sub–

division of the field shown in the top row, with corresponding petal patterns 

calculated numerically shown below.  The top row of Fig. 3.8 shows the 

calculated apex positions after rotation by Eqs. (3.4) and (3.7), after a stable 

pattern has emerged.  The model correctly predicts all the salient features of the 

petal pattern. 

     

     

Fig. 3.8. Analytically calculated sub–division of the field using Eqs. (3.4) and (3.7) (top row), 

with corresponding petal patterns calculated numerically using this model. 

Associated with an increase in the sub–division of the field is an increase in the 

loss per round trip inside the laser cavity. 
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Fig. 3.9. Plot of the round–trip loss as a function of the number of petals as predicted by the 

numerical model. 

Fig. 3.9 shows that the stabilized round–trip losses increase nearly linearly with 

the number of petals in the petal pattern over the region that one might 

reasonably expect to observe petals.  This is due to the ever decreasing low loss 

area as the sub–divisions become closer together.  This places restrictions on the 

allowed Porro angles can actually be observed experimentally from such lasers.  

 

3.5 Conclusion 

 

We have presented a new approach to modeling Porro prism resonators that 

combines geometrical and physical optical aspects.  We have shown why such 

resonators must sometimes generate petal–like patterns, and given the 

generating equation for the prism angles at which this will happen.  The results 

are confirmed experimentally on a test resonator. Variable output coupling 

based on rotating the prisms is often employed, but as has been shown here, this 

will have a significant impact on the output mode from the laser, affecting laser 

beam propagation, far field laser intensity and laser brightness.   

 

Appendix (Double pulse) 

 

By serendipity we noticed that in some experiments a second pulse of energy 

delayed in time was observed, occurring roughly 25 µs after the first pulse.  

Further investigation revealed that the occurrence of the second pulse was 
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always associated with a change in the spatial intensity pattern from the 

resonator. It was found that the observation of the second pulse was a function 

of the gain of the laser: below a threshold pump level no double pulse was 

observed, while above the threshold two pulses were consistently evident.  The 

single pulse intensity profile fits well with the petal model previously described, 

while the two–pulse time averaged intensity profile is similar to that predicted, 

but with an additional ring–like structure in the centre of the pattern (see Fig. 

3.10). 

 

 
Fig. 3.10. The transverse field distribution, with (a) two and (b) one pulse. The angle between 

the Porro prisms is 13 degrees (giving 14 spots). 

We suggest that this additional feature in the double–pulse intensity profile can 

be explained by the fact that the first petal–like pulse leaves a region of excess 

gain in the centre of the Nd:YAG rod, allowing lasing to continue for modes 

with much higher losses, hence the delay in output.  The continuous band may 

be due to diffractive smearing of the very close petals.  It also hints at the 

possibility of perhaps more complex modes that can oscillate inside such 

resonators. 
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Chapter 4 

 

Bessel–Gauss resonator with internal 

amplitude filter 

 
In this Chapter we present a combination of both amplitude and phase beam 

shaping inside a cavity, namely the deployment of a suitable amplitude filter at 

the Fourier plane of a conventional resonator configuration with only spherical 

curvature optical elements, for the generation of Bessel–Gauss beams as the 

output. For this type of resonator, both the correct selection of amplitude filter 

size and radius of curvature of the mirror affect the resulting output beam 

profile. We analyse the loss behavior of the odd and even modes, and show that 

the lowest order Bessel–Gauss mode does not necessarily have the lowest loss. 

 

4.1 Introduction 

 

Bessel beams (BBs) represent a class of so–called diffraction free solutions to 

the Helmholtz equation, and have been studied extensively since the seminal 

work of Durnin et al. in the late 1980s [4.1–4.3]. Of more practical relevance 

are Bessel–Gauss beams (BGBs), which are spatially–infinite BBs confined by 

a Gaussian envelope in the transverse spatial plane, making them spatially 

finite. These beams are easily generated external to the laser cavity by 

illuminating an axicon with a Gaussian beam, and offer a good approximation to 

the properties of true BBs. A recent review of BBs and BGBs as well as their 

applications and reconstruction properties can be found in [4.4, 4.5]. 

 Intra–cavity generation of BGBs has been successfully shown through 

various techniques using non–conventional elements. In [4.6] a new method was 

proposed for BB generation by means of a confocal resonator with an annular 

active medium, and an estimation of the size of the “diffraction–free” zone was 

presented. A proposal is made to apply a Bessel beam to accelerate a beam of 
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charged particles. Based on the simple interpretation of Bessel beam as a 

transverse standing wave formed in the interference region between incoming 

and outgoing conical waves, was proposed in [4.7] an optical resonator that 

supports modes that are approximations to Bessel–Gauss beams. Axicon–based 

resonators were independently proposed by Rogel–Salazar et al. [4.7] and Khilo 

et al. [4.8]. The axicon–based resonator supporting Bessel modes in [4.8] was 

composed of two plane mirrors with an axicon placed close to one of them, and 

it was shown that if the axicon adjacent mirror was concave, then BGBs were 

produced.  Analytical expressions relating parameters of the resonator and 

characteristics of its modes were obtained and analyzed. The resonator scheme 

was implemented in an experiment to confirm the possibility of the generation 

of zero–order Bessel beams. In [4.9] the properties of a Bessel–Gauss resonator 

design which was proposed in [4.7] was examined, and explained the bell-

shaped modulation imposed on its lowest-order mode in terms of an equivalent 

linear cavity. An unstable cavity was proposed to eliminate this effect, and 

obtain modes whose intensities resemble a true Bessel function along the 

diameter of the defining aperture of the resonator. The use of intra–cavity phase 

conjugating mirrors for BGB generation was shown in [4.10].  More recently 

axicon–based BGB resonators with concave output couplers were considered 

[4.11] using both geometrical and wave optics approaches, while unstable 

axicon–based BB resonators with convex output coupler was presented in 

[4.12]. In both cases special attention was directed to the dependence of the 

output transverse profiles, the losses, and the modal frequency changes on the 

curvature of the output coupler and the cavity length. A simple and compact 

laser source that directly produces a Bessel–Gauss beam was demonstrated in 

[4.13]. The laser resonator consists of a diode-end-pumped Nd:YAG crystal, a 

planar mirror, and a diffractive mirror designed to phase-conjugate only the 

lowest-order Bessel–Gauss beam. 

 We present a conventional (i.e., not axicon–based) confocal resonator 

configuration for the generation of BGBs [4.14]. The mirror parameters are 

selected so as to form a Fourier transforming pair; when combined with an 

internal amplitude filter in the form of an annular aperture, the resonator is 

capable of supporting BGBs of various orders. In such a resonator the Gaussian 

field enveloping the Bessel field determines the radial modes, while the Bessel 
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field determines the angular modes.  These two functions together give rise to 

the potential for mode selection based on variable apertures inside the cavity.  In 

Section 4.2 we introduce the resonator concept, and consider an analytical 

approach to understanding the mode behavior inside the resonator. In Section 

4.3 we analyze the resonator using the round trip Fourier transform, and then 

confirm the findings rigorously using the Fox–Li method in Section 4.4. We 

comment on the practicality of implementing this concept in Section 4.5. 

 

4.2 Bessel–Gauss Resonator Concept 

 

4.2.1 Bessel–Gauss Beams 

 

An ideal BB of order n can be described by [4.4]: 

),exp()()exp(),,( 0 ϕϕ inrkJzikAzru rnzBB =  (4.1) 

where Jn is Bessel’s function of order n, kz and kr are the longitudinal and radial 

wavevectors with λπ /222 =+= zr kkk , with λ the wavelength of the 

electromagnetic field, and r, z, and ϕ are the radial, azimuthal and longitudinal 

co–ordinates respectively.  In practice a BB requires an infinite amount of 

energy to generate, and so Bessel–Gauss Beams (BGBs) are used as an 

approximation to study the properties of BB over a finite extent. 

 A BGB is a BB described by Eq. (4.1) but modulated in amplitude by a 

Gaussian function, and can be expressed at its waist plane as: 
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)/arctan()( Rr zzzkz −=φ  and ])/(1[)( 2zzzzR R+=  is the radius of curvature 

of the Gaussian wavefront. The Gaussian 1/e2 beam radius at the distance z is 

described by 2
0 )/(1)( Rzzwzw += . 

 The constant zR represents the Rayleigh range of the Gaussian field, and is 

an indication of the distance over which the field may be considered collimated, 

given by: 

λ
π 2

0w
zR = . 

Eq. (4.3) is valid when the starting BGB has a waist at z = 0, i.e., the wavefront 

is initially flat.  It is equally valid to define the propagation of the BGB with a 

starting wavefront that has some curvature R, for example by replacing Eq. (4.2) 

by 
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 We point this out since the field described by Eq. (4.4) will be shown to 

be one of the modes of the resonator described in this Chapter and its 

propagation in the resonator will be studied in detail. 

 

4.2.2. Fourier Transforming Resonator 

 

 
Fig. 4.1. Illustration of the Bessel–Gauss resonator. Mirror M1 is obscured by a disk of radius a, 

thereby forming an annular lossless zone in the region a < r < b.  Each mirror has a radius of 

curvature of 2f and they are separated by a distance of 2f. 

When the geometric parameters of a resonator are chosen appropriately, the 

spherical curvature mirrors act as a Fourier transforming pair. In particular, if a 

stable resonator arrangement is employed with two concave mirrors having 
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radius of curvature equal to the resonator length then the oscillating field will be 

Fourier transformed after each pass, so that after one complete round trip (two 

passes) the field is reproduced. The resonator we propose for this purpose has 

identical end mirrors, each of radius of curvature R = 2f, and separated along the 

optical axis by a distance L = 2f. A schematic of this resonator is shown in Fig. 

4.1. Both mirrors M1 and M2 are of radius b, with M1 having an additional 

obscuration in the form of a disk of radius a, creating an annular lossless zone 

between the disk edge and the mirror edge. The annular lossless zone is a 

significant factor in this resonator, and deserves further discussion.  It has been 

shown previously [4.10] that when an intra–cavity lens is inserted into a planar–

planar resonator such that the opposite mirrors are separated by one focal length 

from the lens (with the lens in the centre of the cavity), then a Fourier-transform 

relationship between the modal fields at the mirrors is established.  Such a 

resonator was found to support Bessel–Gauss modes.  It was pointed out that the 

modal discrimination of the resonator would be expected to be poor unless an 

annular aperture is employed at one of the mirrors.  The resonator proposed in 

this study is analogous to such a cavity, but with spherical mirrors forming a 

Fourier–transforming pair.  We will show in the Sections to follow that the 

annular aperture size (a) and the mirror size (b) can be used as a mode selector 

where higher order Bessel fields have lower losses than lower order Bessel 

fields. 

 The field at mirror M1 is uniquely defined by the lossless annular aperture, 

which if sufficiently narrow (b – a → 0), will Fourier transform to a Bessel 

field.  Since mirror M2 is this Fourier transforming plane, the field distribution 

at M2 would be the Bessel field.  However the resonator we propose also 

supports Gaussian modes (we assume the dimensions of mirror M2 are such that 

higher order Hermite–Gauss modes are eliminated) since the mirror curvatures 

match the curvature (R(z)) of the oscillating Gaussian field.  So long as the 

Gaussian beam width encloses sufficiently many Bessel zeros, a well-defined 

annulus with an approximately Gaussian radial intensity distribution can be 

expected at mirror M1, in keeping with the concept of Bessel–Gauss fields as a 

superposition of conventional Gaussian beams with optical axes distributed 

uniformly on the surface of a cone [4.2].  Note that the resonator parameters 
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(such as length and mirror curvatures) determine the Gaussian mode that 

oscillates, defining the radial modes of the resonator, while the apertures inside 

the resonator determine the angular modes that oscillate, as will be shown later.  

Both these modes play an important role in the analysis to follow. 

 

4.2.3 Resonant Modes 

 

While the above description also serves as a heuristic argument for BGBs as 

modes of our resonator, it is instructive to shown this more rigorously.  We do 

so in two ways: firstly, we have shown numerically that BGBs of various orders 

are eigenmodes of this resonator.  We pre-empt the discussion later by pointing 

out that a Fox–Li analysis of this resonator, starting from a random noise field, 

converges to various BGB orders, depending on the parameters of a and b. 

 
Fig. 4.2. The BGB is formed in the shaded region of the resonator, and changes in intensity as it 

propagates through this volume.  Five intensity plots are shown corresponding to planes (a) 

through (e) within the resonator for the zeroth Bessel mode (n = 0).  The starting mode was 

calculated using the Fox–Li algorithm with ten round trips, Fresnel number N = 6 and ba 6
5= , 

and then propagated using Eq. (4.6). 

Fig. 4.2 shows intensity plots (a–e) of the zeroth order BGB during propagation 

through the resonator after the mode has reached a steady–state.  The shaded 

area in the resonator drawing indicates the region where the BGB is in 

existence, with its largest spatial extent at mirror M2 (position e), finally creating 

an annular ring at the opposite mirror (position a).  This propagation is what is 



 
4. BESSEL–GAUSS RESONATOR WITH INTERNAL AMPLITUDE FILTER   
 
 

 49

expected if the mode is a BGB.  From the Fox–Li calculations one can also 

extract the phase of the BGB at the mirror (say mirror M2 for example).  This is 

shown in Fig. 4.3, where the numerically calculated phase matches that of the 

mirror’s curvature exactly, as expected.  Thus we can conclude that the field at 

mirror M2 is indeed a BGB, with a wavefront matching the curvature of the 

mirror, i.e., R = 2f. 

 
Fig. 4.3. Mirror phase as calculated from Eq. (4.7) (solid curve) as compared to the numerically 

calculated phase using the Fox–Li algorithm (data points). 

 Secondly, we follow the approach detailed in [4.10] to test more 

rigorously if a BGB with a spherical wavefront is an eigenmode of this 

resonator. We start with a field just prior to reflection off mirror M2: 
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where w2 is the beam size on mirror M2 and is given by k
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axis is defined to be z = 0 at mirror M2, and positive to the left (in the direction 

of mirror M1) then the Gaussian mode will propagate symmetrically about a 

waist centered at fz =0  with k
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3= .  We can determine the complete 

propagation of the field u2 by using the Fresnel diffraction integral in the form 
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where we have assumed that since the resonator is rotationally symmetric the 

modes are separable, and where we have made use of the well known integral 

representation of the Bessel functions: 

∫ =
π

πϕϕϕ
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0

)(2)exp()cosexp( xJidinix n
n .  

 The kernel of the integral includes phase modulation by mirror M2, which 

we treat as a thin lens of focal length f, followed by free space propagation 

through a distance z. The field at mirror M1 will then be given by u1(ρ) = u(ρ, 

2f), thus 
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one can easily show that the field at mirror M1 is given by: 
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 Now we note that the required transfer function for mirror M1 to support 

this mode can be found from: 
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where we have ignored constant phase terms.  But this is precisely the phase of 

a spherical mirror of radius of curvature R = 2f, thus indicating again that the 

various orders of BGBs are modes of this resonator. 

 It is worth pointing out here an interesting aspect of this resonator.  

Conventionally one would consider the Fourier transform plane to be at z = f 
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and not z = 2f when using a mirror of focal length f (or curvature of 2f). 

However, the incoming field already has curvature (see Eq. (4.5)), and thus the 

effective focal length of the mirror to a planar phase BGB field appears as 2f: 
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 It is for this reason that the resonator mirrors are separated by a distance 

of 2f . 

 The intensity profile at mirror M1 is thus an annular beam modulated by a 

Gaussian envelope, while the intensity at mirror M2 is the reconstructed BGB 

(Fourier transform of the annular field). If mirror M2 is made partially 

transmitting, the resonator will emit various orders of Bessel–Gauss modes. 

Suitable collimating optics may be employed to correct the phase of the output 

beam if so desired. 

 

4.3 Fourier Optics Analysis 

 

We wish to consider the diffraction losses for each BGB order by applying the 

Hankel transform in Eq. (4.6) to propagate the field from mirror M2 to M1, but 

with the limits of integration adjusted to [0, b]. The energy of the initial field is 

normalized such that the diffraction losses for the BGB of order n may be 

written as γ = 1 – En where En is the energy at mirror M1 after one pass.  This 

single pass loss is representative of the steady state diffraction loss since the 

initial field chosen is already close to the stable mode under investigation.  

Because the field on mirror M1 is annular–like for all mode numbers, showing 

very little discrimination between the modes, increasing or decreasing the 

diaphragm radius a (or the mirror radius itself) will result in either increasing or 

decreasing losses for every BB order in a concomitant manner. Conversely, the 

BGB on mirror M2 varies greatly with the Bessel function order.  When the size 

of mirror M2 is chosen so that b coincides with an intensity trough of the BGB, 

the diffractions losses will be minimized. In contrast, when b coincides with an 
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intensity peak of the BGB, the diffractions losses will be maximized.  This is 

easily noted if one considers that when krr is large, Eq. (4.1) may be 

approximated as: 
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where we have dropped the piston phase term (exp(ikzz)). From this asymptotic 

approximation we observe that the amplitude of the field will oscillate with a 

cosine function for even orders of n, and as a sine function for odd orders of n, 

thus the even and odd orders are out of phase.  This results in the diffraction 

losses of the modes on this mirror having an oscillatory character. One can also 

derive from Eq. (4.8) simple expressions for the radius b at which a particular 

order will have high or low losses: 

( )
r

HL k

nm
b 4

1
2
1 ++
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b 4
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2
1 ++

=
π

, (4.9b) 

where bHL and bLL are the values of b for high and low losses respectively, m is 

an integer and n is the order of the BGB. For example, assume that an integer  

m = m0 is chosen such that the J0 function has high losses.  Selecting an integer  

m1 = m0 – 1 will then ensure that the J1 function has lower losses than the J0 

function. In general, if the integers in Eqs. (4.9a) and (4.9b) are chosen such that 

m0 – mn = ½(n + 1), then the losses in the J0 will be larger than that of the Jn. 

Moreover, the decreasing losses for the even modes imply increasing losses for 

the odd modes, and vice versa. In the limit that the enveloping Gaussian 

becomes much smaller than the mirror radius b, we expect this oscillatory 

behaviour to be suppressed by the zero asymptote of the Gaussian function, and 

at this point the radial modes completely determine the resonator behaviour. 

 In the analysis to follow the resonator parameters used for all calculations 

are: f = 0.35 m, λ = 532 nm, and a = 0.9b. Where other values have been used 

in calculations, it is clearly indicated so in the accompanying text. 

 The oscillatory nature of the diffraction losses for both odd and even 

modes, as described qualitatively earlier, is shown quantitatively in Fig. 4.4. The 

convergence of the losses for all orders of odd and even modes when b >> w2 is 
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the norm in Fabry–Perot type cavities. The unusual feature of Fig. 4.4 (a), that 

the losses increase with increasing b, is due to the fact that a is also increasing 

according to a = 0.9b. Since an increase in obscuration at mirror M1 increases 

losses for all modes, the net effect is to increase the overall loss for each mode. 

Increasing b with a fixed in value, as is shown in Fig. 4.4 (c), results in an 

expected convergence to low loss for all modes. The results in Figs. 4.4 (a) and 

(c) have been confirmed with a full Fox–Li analysis.  Fig. 4.4 (b) shows a 

zoomed–in section of Fig. 4.4 (a), with the section shown as vertical markers on 

Fig. 4.4 (a). The vertical cross–section A in Fig. 4.4 (b) indicates a mirror radius 

at which some odd modes have higher losses than some even modes, while 

cross–section B shows the opposite. It is evident that at some values of b the 

lowest order BGB does not have the lowest losses; in general when the even 

modes have high losses, the odd modes have lower losses. 

 
Fig. 4.4. The dependence of diffraction losses on radius b for the various orders of BGBs (even 

modes as solid curve, odd modes as dashed curve): (a) shows a general trend for the zeroth and 

first order mode of decreasing oscillation strength with increasing mirror radius due to the 

Gaussian envelope dominance when b >> w2. In this plot a = 0.9b, and thus the losses increase 

with b. A zoomed in area (between the vertical solid lines) is shown in (b), with the out of phase 

oscillations of the odd and even modes evident; (c) shows plot (a) but with a fixed in value. 

 This fact is illustrated in Fig. 4.5 where it is evident that the BGB of zero 

order has higher losses than BGBs of order 1, 3, 5 and 7. By judicious selection 

of b one can again ensure that the zeroth order BGB has the lowest losses, as 
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shown in Fig. 4.6, where even orders from 0 to 6 have lower losses than the first 

order BGB.  

 
Fig. 4.5. The diffraction losses, as calculated by the Fourier approach, showing the zeroth order 

mode (0) with higher losses than some odd order modes (shown starting at 1, dashed curve). 

Calculations done at b = 1.465 mm corresponding to cross–section A of Fig. 4.4 (b). 

 
Fig. 4.6. The zero order mode (0) now has the lowest losses, with a clear out–of–phase 

oscillation in the loss for odd (starting at 1, dashed curve) and even (starting at 0, solid curve) 

modes. Calculations done at b = 1.50 mm corresponding to cross–section B of Fig. 4(b). 

 We also note from Fig. 4.5 that the oscillatory nature of the mode losses is 

suppressed at high mode numbers (e.g., beyond 20); this is due to the nature of 

the oscillations in the Bessel functions themselves, where the approximation 

(see Eq. (4.8)) becomes valid at radii that increase with the Bessel order. 

 

4.4 Fox–Li Analysis 

 

To confirm the results of Figs. 4.5 and 4.6, we consider a full wave optics 

analysis using the Fox–Li method [2.2, 5.17]. The calculation was performed 

with b = 1.50 mm and the results are shown in Fig. 4.7. Comparison of Figs. 4.6 

and 4.7 clearly shows that the approach of the previous Section is in good 

agreement with the full wave optics analysis. The oscillatory nature of the losses 
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for the odd and even orders is evident in both trends, showing excellent 

qualitative agreement, while there is very close quantitative agreement in the 

calculated losses. 

 
Fig. 4.7. The dependence of the diffraction losses per round trip on the mode number, as 

calculated using the Fox–Li method.  Odd modes are shown starting at 1 in the dashed curve, 

while even modes are shown starting at 0 in the solid curve.  The results are in very good 

agreement with those shown in Fig. 4.6. 

 The propagation of the zeroth order BGB is shown in Fig. 4.2, while some 

examples of the resulting steady state fields and their Fourier transforms are 

shown in Fig. 4.8.  The propagation characteristics, as well as the Fourier 

transform of the fields confirms that these are indeed BGBs.  The fact that the 

losses for various orders may be to some extent controlled in this resonator 

opens the way for selection of higher order BGBs.  

 
Fig. 4.8. Examples of the calculated BGBs with their corresponding Fourier transforms: (a) J1, 

(b) J5 and (c) J6 Bessel orders. 
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4.5 Conclusion 

 

We have analysed a Fourier transforming type resonator that generates BGBs of 

various orders as an output.  The losses of these modes have revealed an 

oscillatory nature, which suggests that the lowest order BGB may not 

necessarily have the lowest loss.  This can be understood in terms of odd and 

even modes by using the asymptotic approximation to the Bessel function.  The 

analytical theory indicates that specific resonator conditions would be necessary 

to ensure that the lowest loss can be obtained in the lowest order mode. The 

general rule for Fabry–Perot type resonators, which explains that the lower 

order modes have lower loss is not necessarily correct in this particular 

resonator.  The simplified Fourier approach was validated by a more rigorous 

Fox–Li analysis which confirmed the findings. 

 We also wish to point out some practical implications in generating BGBs 

from such a resonator.  Firstly, since the resonator consists of only conventional 

optical elements (spherical curvature mirrors and circular apertures) no special 

alignment techniques are required. Secondly, due to the fact that the order of the 

BGB of lowest loss is determined only by the diameter of mirror M2, a simple 

variable aperture (iris) at the position of mirror M2 should suffice as a mode 

selector in much the same way that the various Hermite–Gauss modes may be 

selected by suitable aperture choice.  This paper has dealt mostly with loss 

aspects of the modes, but the issue of optical gain requires a mention.  As 

illustrated in Fig. 4.2, the BGB does not fill the entire cavity, and is most 

pronounced near mirror M2.  This suggests that the gain medium in a practical 

system would have to be placed near mirror M2 and have a larger cross–

sectional area and a comparatively short length.  For example, if the laser had a 

solid state gain medium, there would be benefit in using a disk–like gain 

medium rather than a rod in order to maximize the mode volume inside the gain 

region.  It would also be possible to amplify the field near mirror M1, but this 

would require an annular gain region, which while not impossible, may not be 

easily implemented in practice. 

 Finally, the typical aperture dimensions found in this study would not 

deter practical implementation of such a resonator concept. 
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Chapter 5 

 

Intra–cavity flat–top beam generation 

 

In this Chapter we present the analytical and numerical analyses of two new 

resonator systems for generating flat–top–like beams. In both cases we have 

used phase only intra–cavity beam shaping techniques namely determination 

(both analytically and numerically) of phase only transformation element(s) 

which installed into flat-flat mirrors resonator is (are) able to modify the 

transversal intensity distribution of the fundamental mode into a flat–top with 

the required propagation properties. Both approaches lead to closed form 

expressions for the required cavity optics, but differ substantially in the design 

technique, with the first based on reverse propagation of a flattened Gaussian 

beam, and the second a metamorphosis of a Gaussian into a flat–top beam.  We 

show that both have good convergence properties, and result in the desired 

stable mode. 

 

5.1 Introduction 

 

There are many applications where a laser beam with an intensity profile that is 

as flat as possible is desirable, particularly in laser materials processing. The 

methods of producing such flat–top beams (FTBs) can be divided into two 

classes, namely extra– and intra–cavity beam shaping. Extra–cavity (external) 

beam shaping can be achieved by manipulating the output beam from a laser 

with suitably chosen amplitude and/or phase elements, and has been extensively 

reviewed to date [5.1]. Unfortunately amplitude beam shaping results in 

unavoidable losses, while reshaping the beam by phase–only elements suffers 

from sensitivity to environmental perturbations, and is very dependent on the 

incoming field parameters.  The second method of producing such beam 
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intensity profiles, intra–cavity beam shaping, is based on generating a FTB 

directly as the cavity output mode.  There are obvious advantages to this, not the 

least of which is the potential for higher energy extraction from the laser due to 

a larger mode volume, as well as an output field that can be changed in size by 

conventional imaging without the need for special optics in the delivery path. 

Unfortunately such laser beams are not solutions to the eigenmode equations of 

laser resonators with spherical curvature mirrors, and thus cannot be achieved 

(at least not as a single mode) from conventional resonator designs. 

 The key problem is how to calculate the required non–spherical curvature 

mirrors of the resonator in order to obtain a desired output field. One method to 

do this is to reverse propagate the desired field at the output coupler side of the 

resonator to the opposite mirror, and then calculate a suitable mirror surface that 

will create a conjugate field to propagate back. This will ensure that the desired 

field is resonant. This method was first proposed by Belanger and Pare [5.2–

5.4], and we will refer to it as the reverse propagation technique. It was shown 

that the intra–cavity element could be defined such that a particular field 

distribution would be the lowest loss mode, opening the way to intra–cavity 

beam shaping by so–called graded–phase mirrors. In [5.3] a simple algorithm 

for designing a stable grade – phase mirror resonator was derived. First, the 

desired output beam profile of the fundamental mode is propagated into the 

laser medium. The wavefront is then extracted and serves to determine the 

appropriate phase profile of the mirror. The diffraction analysis of the resonator 

using this grade – phase mirror indicates a very low loss for the fundamental 

mode with a very large discrimination of higher modes. Practical design 

parameters such as the geometric factor, the Fresnel numbers, and phase profile 

perturbations are discussed. The authors conclude that this type of resonator can 

significantly increase the mode volume and favour the single – mode operation 

of laser systems relying on stable resonator geometry. This principle has been 

applied to solid state lasers [5.5] namely a diffractive laser cavity is described 

that can customize the amplitude and phase of a laser mode. The design of this 

diffractive element is shown for a square, flat – topped fundamental mode. The 

laser cavity has a theoretical fundamental mode loss of 0.08 % and a second 

order mode loss of 48.2%, resulting in high modal discrimination. The 

fabricated mirror is tested in Nd:YAG laser system. In [5.6] the result of [5.5] 
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was extended by inclusion of an additional internal phase plate for improving 

the discrimination of undesired higher order modes. However, in general this 

approach does not lead to closed form solutions for the required mirror phases. 

 In this Chapter we report on two resonator systems for producing flat–top 

beams, and show that in both cases closed form expressions may be found for 

the mirror surfaces [5.15]. We outline a new method for generating a flat–top 

beam as the output mode of an optical resonator, based on an adaption of well–

known external laser beam shaping techniques.  This is the first time such 

techniques have been employed inside a laser resonator.  A major advantage of 

this approach is that simple expressions can be obtained for the mirror surfaces.  

This approach is compared to the reverse propagating technique for calculating 

suitable graded–phase mirrors, and is shown to have faster convergence to the 

fundamental flat–top beam mode, albeit with higher losses.  Moreover, we show 

that by employing an approximation to flat–top beams in the form of Flattened 

Gaussian Beams (defined later), a closed form solution can be obtained for the 

mirror surface profiles even in the reverse propagating technique. 

 Throughout this Chapter a concept resonator with the following 

parameters is used to illustrate the two approaches to flat–top generation: 

wavelength of λ = 1064 nm; optical path length between the mirrors of L = 300 

mm and an output flat–top beam of width wFTB = 1 mm.  These parameters have 

been chosen by way of example only, but can be considered realistic for 

experimental verification.  The round trip modal build up and losses were 

studied numerically using the Fox–Li approach [2.2], by applying a fast matrix 

method (see sec. 2) to simplify the calculations and improve accuracy for an 

allowable computation time. 
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Fig. 5.1. A schematic of the resonator to be modeled: with output coupling at M2.  Mirrors M1 

and M2 can either be considered as elements with non–spherical curvature, or as depicted above, 

as flat mirrors with an appropriate transmission DOE placed immediately in front of each.  

 The theory outlined in this Chapter, as well as the numerical simulations 

thereof, are restricted to the problem of one dimensional laser beam shaping, 

simply to keep the mathematical analysis as simple as possible. The two 

dimensional beam shaping problem has the same conceptual base, and all the 

results here may readily be extended to additional dimensions.  

 

5.2 Reverse propagation technique 

 
For the benefit of the reader we briefly outline the reverse propagation 

technique, first proposed by Belanger and Pare [5.2, 5.3], since it will be used as 

a point of comparison for a new method proposed later in this paper. 

 Consider some arbitrary field that may be written in the form: 

[ ])(exp)()( xikxxu φψ −= , (5.1) 

where k = 2π/λ is the wavenumber, λ is the wavelength, and ψ(x) and φ(x) are 

the amplitude and phase of the electric field respectively.  The action of a DOE 

in the form of a phase–only mirror (graded–phase mirror) is to transform the 

phase φin(x) of an incoming field to a new phase φout(x) of an outgoing field 

according to: 

)(2)()( xxx DOEinout φφφ −= , (5.2) 
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 The salient point here is that this transformation takes place in a lossless 

manner, i.e., the amplitude is unchanged, ψin(x) = ψout(x).  In particular, one can 

show [5.2] that if the phase mirror is not spherical, then the change in the mean 

radius of curvature of the wavefront also depends on the incoming field 

distribution, ψin(x).  Thus it is expected that such a phase–only mirror will 

discriminate against those modes that do not have the correct distribution ψin(x).  

By invoking the requirement that the mode must reproduce itself after one round 

trip, and considering the impact of the graded–phase mirror on the curvature of 

the wavefront, it has been shown that the resulting restriction on the phase of the 

DOE mirror is given by [5.2]: 
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from which we conclude that the phase of the resonator eigenmode is the same 

as the phase of the DOE mirror, apart from a constant: 

)0()()( ininDOE xx φφφ −= . (5.4) 

 Combining Eqs. (5.2) and (5.4), and ignoring the constant phase offset, we 

see that 

)()( xx inout φφ −= . (5.5) 

 Therefore the reflected beam uout(x) is the phase–conjugate of the 

incoming beam, uout(x) = uin
*(x).  In this resonator only a particular beam 

distribution is phase conjugated by the DOE mirror, so that the eigenmode of 

the resonator satisfies the criteria that its wavefront matches the phase of each 

mirror in the cavity. 

 If we describe the desired field at the output coupler end (mirror M2) as u2, 

then reverse propagating the field to the DOE mirror (M1) using the Huygen’s 

integral in the Kirchhoff–Fresnel approximation yields the field at mirror M1 as 
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where L is the optical path length of the resonator.  If after refection off mirror 

M1 the field u1 is to reproduce u2 at the output coupler, then the required phase 

for the DOE at mirror M1 must be given by 
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)],([Arg *
11

LxuDOE =φ . (5.7) 

 One can also argue heuristically and reach the same conclusion as follows:  

one of the main properties of a fundamental mode of optical resonator is that the 

path of propagation both in the forward and in the reverse direction must repeat 

on one another.  Consequently, in order to obtain a fundamental mode of a 

desired intensity profile we have to find a way to force the electromagnetic 

wave to follow exactly the same path in the forward and the reverse propagation 

directions.  The conjugate of an incoming wave will produce an outgoing wave 

with exactly this property. Consequently we require that: 

))(exp())(2exp())(exp())(exp( xixixixi inDOEinout φφφφ −=−= , (5.8a) 

and hence 

)()( xx inDOE φφ = , (5.8b) 

which is consistent with Eqs. (5.4) and (5.5).  This is the basis by which custom 

resonators may be designed.  In the following Section we outline how this 

method may be applied to the generation of flat–top–like beams. 

 

5.3 Flattened Gaussian Beam resonator 

 

The limitation in the approach outlined above is that the required mirror surface, 

as given by Eq. (5.7), is the solution to an integral problem Eq. (5.6) for which 

there is often not a closed form expression.  Here we outline a suitable 

approximation to flat–top beams that leads to an analytical expression for the 

mirror surface. 

 

5.3.1 Flattened Gaussian Beams 

 

The exact definition of a flat–top beam (FTB) is one with constant field 

amplitude in some well defined region, and zero amplitude elsewhere: 
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where w is the radial width of the beam, and u0 is a constant.  Such a field does 

not result in a closed form solution to the problem of how the field appears after 

propagation through some distance z.  However, there are many classes of flat–

top–like beams that exhibit very similar propagation properties to true flat–top 

beams, where the rate of divergence (and profile shape change) may be 

controlled by a scale parameter closely coupled to the steepness of the edges 

and the flatness of the intensity profile at the centre of the beam [5.7]. Such 

classes of beams have been extensive studied both theoretical and 

experimentally [5.7–5.10].  One such class is the so–called Flattened Gaussian 

Beam (FGB), with a field distribution given by [5.10]: 
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(5.10) 

where H2m is the Hermite polynomial of order 2m, and all other terms have their 

usual meaning.  Such a field represents a suitably weighted linear combination 

of Hermite modes, such that the resulting intensity approximates a flat–top 

beam.  The linear combination of fields with known propagation properties in 

turn allows the resulting field’s propagation characteristics to be known 

analytically too, such as Rayleigh range, beam quality factor etc.  The advantage 

of this profile as an approximation to a flat–top beam over that of others is that 

Eq. (5.10) offers an analytical expression for its profile at any propagation 

distance z. The ‘scale parameter’ associated with the field, given by the 

summation index N, allows the approximation to true flat–top beams to be exact 

when N→∞.  In general as the scale parameter increases, so the effective 

Rayleigh range decreases and the beam quality factor increases, resulting in a 

rapidly changing profile during free space propagation.  

 To design a resonator for such a beam, one simply follows the procedure 

outlined in Section 2: 
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1. Select the desired field at the output coupler as u2 ≡ uFGB(x,0); 
2. Reverse propagate this field using Eq. (5.10) to find the field at the 

opposite mirror,  u1 = uFGB(x, L); 
3. The desired phase of the DOE at mirror M1 is then given by 

][Arg *
11

uDOE =φ . 

This approach may be used to calculate a suitable intra–cavity DOE that 

generates a FGB approximation to a flat–top beam as the resonant mode of the 

cavity.  Following this procedure, we calculated the required mirror surface, 

shown in Fig. 5.2, to generate an N = 20 FGB, with wFGB = 1 mm, as the output 

mode of the cavity.  Since we wish the wavefront to be planar at the output 

coupler side, mirror M1 has a planar surface.  

 

Fig. 5.2. Calculated phase profile required for the DOE at mirror M1. The requirement for the 

DOE at M2 is that it is a planar surface. 

The resulting analysis of such a resonator is shown in the next Section. 

 

5.3.2 Simulation results 
 

The calculated beam intensities at each mirror, for an N = 20 FGB, with wFGB = 

1 mm, are shown in Fig. 5.3 (a), together with the phase of the field at each 

mirror in Fig. 5.3 (b).  The simulated results represented the field after stability 

using the Fox–Li approach, starting from random noise.  The choice of N = 20 

ensures a good quality flat–top beam, with reasonable Rayleigh length – i.e., the 

field does not change shape appreciably on propagating across the resonator 

length L = 300 mm (Fresnel number of ~50). 
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Fig. 5.3. The simulated field at mirror M1 (red) and M2 (blue): (a) intensity, showing a near 

perfect flat–top beam at M2, with slight change in flatness after propagating across the resonator 

to M1, (b) phase of the field, with a flat wavefront at M2 as anticipated from the design.  

 It is clear that the approach outlined above correctly produces the desired 

FGB as the output mode of the resonator. 

 

Fig. 5.4. The simulated field as it propagates across the resonator after stabilization, from M1 

(left) to M2 (right).  The perfect flat–top beam develops some intensity ‘structure’ as it 

propagates away from M2.  This is in accordance with the propagation properties of such fields, 

and may be minimized by suitable choice of Rayleigh range of the field.  

 A cross-section through the resonator of the stabilised field is shown in 

Fig. 5.4, together with density plots of the field intensity at various planes in the 

resonator. The advantage of this order of FGB is that the beam is very close to 

an ideal flat–top, but with little change in the beam’s cross-sectional intensity 

during propagation (in the absence of gain) across the resonator. 
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5.4 Flat–top resonator 

 

Here we outline a new method for generating flat–top beams inside a laser 

resonator, based on an external lossless beam shaping technique converting a 

Gaussian input field to a flat-top output field [5.11, 5.12].  To the best of our 

knowledge these techniques have not been previously adapted or exploited for 

intra–cavity laser beam shaping. 

 

5.4.1 Theory 

 

Since we have a prior knowledge of how this resonator will be realised, 

consider a Gaussian field at mirror M1 of the form u1(x) = exp(–(x/wg)
2), where 

wg is the radius of the field at 1/e of its peak value.  If the DOE at mirror M1 is 

made up of a Fourier transforming lens and a transmission phase-only element, 

φSF, and the resonator length is selected to match the focal length of the Fourier 

transforming lens (L = f), then the resulting field at mirror M2 will be given by: 
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 We may apply the method of stationary phase to find an analytical 

solution for the phase function φSF, such that the field u2 is a perfect flat–top 

beam, of width wFTB. It has been shown that this may be expressed as [5.11]: 














−

























−+














= 2

1

2

2
1 2
exp

22

2
)(

ggg
SF w

x

w

x
erf

w

x
x

πβφ , (5.12) 

where a dimensionless parameter β has been introduced, defined as 

.
2

λ
π

β
f

ww FTBg=  (5.13) 

This parameter has particular significance: at high values (β>30) the 

geometrical approximations hold valid, and a perfect flat–top beam may be 

produced with relative ease.  At very low values (β <10), the geometrical 
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approximations fail and the quality of the flat–top beam becomes less perfect.  

There is a fundamental lower limit for β at which the beam shaping problem is 

intractable [5.11].  A full discussion of how this parameter affects the resonator 

mode is beyond the scope of this paper, and is deferred to another occasion 

[5.13]. Since the flat–top beam is generated only at the Fourier plane of the lens, 

the effective phase profile of the DOE at mirror M1 mimicking both the lens and 

this element is given by: 

f

kx
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where the second term is the required Fourier transforming lens.  In addition to 

an exact function for the first DOE’s phase, we may use the stationary phase 

method to extract a closed form solution for the phase of the DOE at mirror M2 

as 
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 Here Inv{⋅} is the inverse function.  Such a mirror will reproduce our 

Gaussian field at mirror M1, as desired.  The two required mirrors to generate a 

flat–top beam of width wFTB = 1 mm are shown in Fig. 5.5. 

 

Fig. 5.5. The calculated required phases of the two DOEs, DOE1 in blue and DOE2 in red, to 

achieve the flat–top output mode.  
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 An important aspect of the field in this resonator is its metamorphosis 

from a Gaussian beam at mirror M1, into a flat–top beam at mirror M2; thus 

while we present the resonator concept here in terms of the generation of a flat–

top beam, there are obvious advantages in exploiting the same concept for the 

phase–only selection of a Gaussian output mode [5.13]. 

 

5.4.2 Simulation results 

 

The calculated beam intensities at each mirror, using β ~ 21 with wFTB = 1 mm 

and wg = 1 mm, are shown in Fig. 5.6 (a), together with the phase of the field at 

each mirror in Fig. 5.6 (b).  The simulated results represented the field after 

stability using the Fox–Li approach, starting from random noise.  In this case a 

Gaussian beam is produced at M1 and a flat–top beam at M2.  The Gaussian field 

(just in front of M1) has a planar wavefront, while the flat–top beam (just in 

front of M2) does not. 

 

Fig. 5.6. The simulated field at mirror M1 (red) and M2 (blue): (a) intensity, showing a near 

perfect flat–top beam at M2, changing into a perfect Gaussian after propagating across the 

resonator to M1, (b) phase of the field, with a flat wavefront at M1 as anticipated from the 

design.  

 A cross-section through the resonator of the stabilised field is shown in 

Fig. 5.7, together with density plots of the field intensity at various planes in the 

resonator. 
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Fig. 5.7. The simulated field as it propagates across the resonator after stabilization, from M1 

(left) to M2 (right).  The perfect Gaussian beam (a) gradually changes into a perfect flat–top 

beam (e) on one pass through the resonator.  In this design the field also decreases in size, as 

noted from the size of the grey scale images.  

 Because of the transformation during propagation from a Gaussian to a 

flat–top beam, the region of constant intensity is limited to near mirror M2.  This 

impacts on energy that may be extracted from such a resonator since the gain 

volume would be somewhere between a single mode Gaussian and a single 

mode flat–top beam.  The phase of the field at M2 requires that a suitable DOE 

external to the cavity be used to convert the phase of the flat–top beam into a 

planar wavefront, should this be required. 

 

5.5 Discussion 

 

It is pertinent at this point to draw comparisons between the two approaches 

outlined.  The first difference lies in the dynamics of the round trip losses, as 

shown in Figs. 5.8 (a) and (b).  Clearly the losses are higher after mode 

stabilization in our approach (henceforth labelled A) as compared to the 

Belanger and Pare approach (henceforth labelled B), but this in turn results in 

faster convergence to the fundamental mode of this resonator.  In our resonator 

concept (A) the mode stabilizes in less than half the number of round trips 

required for stabilization in the comparative conjugating resonator (B).  The 
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higher losses of resonator A may be explained by the fact that the Gaussian field 

on mirror M1 in design A has necessarily higher losses than is the case of a near 

flat–top beam on the same mirror in design B. 

 It is evident in both resonators that the losses per round trip oscillate prior 

to stabilizing.  This has been noted previously in other resonator types, and 

explained in terms of the stability parameters of the resonator [5.14].  The 

oscillating modes corresponding to the loss oscillations are shown in Fig. 5.8 as 

insets.  Here the field changes from a concave flat–top, through a perfect flat–

top, to a convex flat–top. 

 

Fig. 5.8. The simulated losses as a starting field of random noise is propagated through the 

resonator, shown as a function of the number of round trips taken, for: (a) resonator A and (b) 

resonator B. The losses stabilize in both resonators, and both show a characteristic oscillation in 

the losses as the field converges to the stable mode of lowest loss. 

 Both resonators generate the same size flat–top beam at the output coupler 

end, but resonator B by its nature maintains almost the same field profile 

throughout its length.  This would not be the case if the optical path length was 

much greater than the Rayleigh length of the field, but then it has already been 

pointed out that this resonator concept does not work at such distance as all 

modes have nearly spherical wavefronts, making mode discrimination weak 

[5.3].  In contrast, by design our resonator (A) changes the mode very rapidly 

from one mirror to the other, and thus does not suffer from this draw back.  The 

price to pay is in the mode volume: resonator A has a larger mode volume, and 

potentially would be able to extract more energy from the gain region.  

Furthermore, in the case of resonator B, if the gain medium is to be placed such 

that only a flat–top beam passes through it, then it must be restricted in size and 

placed near the output coupler. 
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 Both designs have restrictions on the size and quality of flat–top beam that 

may be generated.  While in theory the design method for resonator B would 

allow any size and quality FGB to be generated, if the Rayleigh range is not 

large compared to the resonator length, and the Fresnel number of the resonator 

is not large enough, then losses will increase and the quality of the flat–top 

profile will deteriorate in a concomitant manner.  There is thus a lower limit for 

the Rayleigh range to ensure a quality flat–top beam.  Resonator A is restricted 

to beam sizes such that β is large (β  ≥ 30), since for small β the quality of the 

flat–top becomes poor, with large skirt regions and rounded central regions, 

while below a threshold value (typically β < 4) the method breaks down 

completely and can no longer be applied.  Thus again there is a lower limit, this 

time for β, so ensure a quality flat–top beam.  In addition, the Fresnel number of 

the resonator in both options must be suitably large in order to avoid diffractive 

losses and associated profile distortions, and thus this too places a limit on what 

may be achieved.  Thus one must be judicious in the choice of the dimensions of 

the resonator in relation to the desired fields.  For example, an N = 100 field will 

ensure an excellent flat–top beam, but this will require a short resonator length 

and/or large mirrors in order to ensure both the Rayleigh range of the field and 

the Fresnel number of the resonator are both suitably large. 

 A final point of departure is the cost and complexity of implementing the 

resonator concepts.  Resonator B requires only one DOE, and creates a planar 

wavefront top–hat–like beam at the planar output coupler side.  In contrast, 

resonator A has DOEs at both ends of the resonator, and does not produce a 

planar wavefront at the flat–top beam end.  Thus at least one additional DOE is 

required external to the cavity to create the same field in phase as in resonator B.  

However the major advantage of resonator A is the ability to generate a planar 

wavefront Gaussian field as an output by low loss phase–only mode selection.  

 We end by indicating how the phase profiles defined here may be 

implemented in practice.  If the desired phase of the DOE is given by φDOE, then 

this may either be implemented as an etched height structure in a transmission 

element (of refractive index n), or a reflective mirror, with associated surface 

feature profiles given by 
)1(2 −

=
n

h DOE

π
λφ

 and 
π

λφ
2

DOEh =  respectively. 
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5.5 Conclusion 
 

We have presented two methods of creating flat–top beams as the output mode 

of a laser resonator where both approaches lead to analytical expressions for the 

required mirror surfaces.  The first approach was to use an approximation to 

flat–top beams and apply phase conjugating mirrors at either end of the 

resonator. We showed that this leads to simple expressions for the mirror 

surfaces. In the second approach a suitable diffractive optical element converts a 

Gaussian beam into a flat–top beam at the Fourier plane of a lens.  This method 

shows fast convergence and relatively low round trip loss for the fundamental 

mode of the resonator. 
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Chapter 6 

 

Gaussian mode selection with intra–cavity 

diffractive optics 
 

In this Chapter we outline a resonator design that allows for the selection of a 

Gaussian mode by diffractive optical elements (phase only intra–cavity beam 

shaping). This is made possible by the metamorphosis of a Gaussian beam into a 

flat–top beam during propagation from one end of the resonator to the other.  By 

placing the gain medium at the flat–top beam end, it is possible to extract high 

energy in a low–loss cavity.  A further feature of this resonator is the ability to 

select the field properties at either end of the cavity almost independently, thus 

opening the way to minimize the output divergence while simultaneously 

maximizing the output energy. 

 

6.1 Introduction 

 

 Traditionally laser beams are generated in Fabry–Perot type resonators, where 

the mirror surfaces are spherical. When the resonator is chosen to be stable, a 

low–loss fundamental mode may be forced to oscillate by suitable choice of 

internal aperture.  However, the power loss discrimination between the low 

order modes is often poor, and the small beam waist results in poor power 

extraction.  Conversely, if an unstable configuration is employed, the mode 

volume is large and mode discrimination good, but this is at the expense of high 

intrinsic loss for the oscillating modes, making such cavities suitable only for 

lasers with high gain.  A major advance to overcome such problems was the 

introduction of so–called graded–phase mirrors [5.2, 5.3]. It was shown that a 

resonator with grade–phase mirrors could discriminate against undesired modes 

by altering the generalized radius of curvature of the incoming beam according 

to [5.2]: 



 
6. GAUSSIAN MODE SELECTION WITH INTRA–CAVITY DIFFRACTIVE OPTICS  
 
 

 74

dxxx

dxx
dx

d
x

RR

M

)(

)(
11

2
1

2

2
1

12 ψ

ψφ

∫

∫
∞

∞−

∞

∞−










−= , (6.1) 

where R1 and R2 are the generalized radii of curvature just prior and just after 

the graded–phase mirror (φM) respectively.  Eq. (6.1) indicates that the real 

radius of curvature of the beam is changed by the phase function of the graded–

phase mirror, and moreover, this change is dependent on the incoming 

amplitude of the field, ψ1(x).  In other words, it is possible for such a graded–

phase mirror to discriminate against modes that do not have the proper 

distribution, ψ1(x).  However, when the graded–phase mirror is spherical 

(assuming the paraxial limit), the change in curvature of the beam becomes 

independent of the incoming amplitude of the field, ψ1(x), since the derivative 

in the integrand becomes proportional to x.  Unfortunately, for Gaussian beams 

the required graded–phase mirror surface is spherical, therefore annulling the 

aforementioned discrimination process.  To put this another way, the graded–

phase mirror approach cannot be used to select between any of the Hermite–

Gaussian (in resonators with rectangular symmetry) or Laguerre–Gaussian (in 

resonators with circular symmetry) modes, and therefore by definition not the 

lowest order Gaussian mode either.  The reason is simply that under free space 

propagation all such fields have an identical real radius of curvature, defined by 

spherical wavefronts, and thus reverse propagating such beams to find the 

appropriate conjugate always returns a solution that requires a spherical 

curvature mirror.  Note that the form of the graded–phase mirror here might in 

fact be a deformable mirror, a diffractive mirror, or approximated by a 

transmission diffractive optical element or even an intra–cavity phase–only 

spatial light modulator. The limitation is not in how the phase element is 

implemented, but rather by the fundamental physics governing the propagation 

of Gaussian beams. 
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6.2 Gaussian mode selection 

 

It is possible to overcome this problem by metamorphosing a Gaussian beam 

into another desired shape. Since the resulting propagation will not follow that 

of a Gaussian beam in free space, the resulting beam after propagation may be 

discriminated against in the usual manner.  In this Section we propose a 

resonator concept that produces a Gaussian mode using diffractive optical 

elements by intra–cavity metamorphosis of a Gaussian beam at the output 

coupler end, to a flat–top beam at the opposite end of the cavity.  It is well 

known that flat–top beams have been favored over Gaussian beams in those 

applications where high power extract is required [5.5]. This is because flat–top 

beams cover a larger mode volume for the same Gaussian beam size, and they 

overcome the poor saturation and energy extraction at the edge of Gaussian 

beams.  Such a resonator has the possibility of low diffraction loss, and high 

energy extraction, while producing a low divergence Gaussian beam. 

 

Fig. 6.1: Schematic of the resonator concept. M1 and M2 are flat mirrors, ΦDOE1 and ΦDOE1 are 

the effective phase profiles of the DOE1 at mirror M1 and DOE2 at mirror M2 correspondingly. 

 We illustrate the concept graphically in Fig. 6.1: a flat–flat resonator is 

modified with suitable intra–cavity diffractive optical elements, where the sum 

of the flat mirror and adjacent transmission DOE mimics a graded–phase mirror. 

Our task is to outline the functional form of the two DOEs.  To do this, we 

consider a circular Gaussian field at mirror M1 of the form u1(ρ) = exp[–

(ρ/w0)
2], where w0 is the radius where the field is at 1/e of its peak value.  If the 

DOE at mirror M1 is made up of a Fourier transforming lens and a phase only 



 
6. GAUSSIAN MODE SELECTION WITH INTRA–CAVITY DIFFRACTIVE OPTICS  
 
 

 76

transmission element, φSF, and the resonator length is selected to match the focal 

length of the Fourier transforming lens (L = f), then the resulting field at mirror 

M2 will be given by: 

∫
∞
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 We may apply the method of stationary phase to find an analytical 

solution for the phase function φSF, such that the field u2 is a perfect flat–top 

beam, of width wFTB [5.11]: 
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where a dimensionless parameter β has been introduced, defined as 

λ
π

β
f
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= . (6.4) 

Since the flat–top beam is generated only at the Fourier plane of the lens, the 

effective phase profile of the DOE at mirror M1 mimicking both the lens and 

this element is given by: 
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where the second term is the required Fourier transforming lens. In addition to 

an exact function for the first DOE’s phase, we state here (the proof is beyond 

the scope of this discussion and will be published elsewhere) that it is also 

possible to use the stationary phase method to extract a closed form solution for 

the phase of the DOE at mirror M2 as: 
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where from the stationary phase condition ρφ ∂∂= SFFTBwr we may find the 

unknown function: 
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Such a mirror will reproduce our Gaussian field with a flat wavefront at mirror 

M1, as desired. Moreover, since the field at mirror M2 is a flat–top beam, there 

exists the possibility for uniform gain saturation and high energy extraction if 

the gain medium is placed at this end of the resonator cavity. 

 

6.3 Numerical analysis and discussion 

 

It is instructive to consider the flat–top beam as a Flattened Gaussian Beam 

(FGB) of order N [5.9].  The advantage of this profile over others is that it offers 

a simple analytical expression for the beam profile at any propagation distance 

z, and furthermore, the Gaussian and flat–top profiles are returned when N = 1 

and N →∞ respectively.  It is well known that flat–top beams are able to fill a 

larger mode volume without the adverse affects of diffraction for similar sized 

Gaussian beams, due to the fast drop in intensity at the edges of the beam.  In 

fact, it has been pointed out [5.16] that even a relatively low order FGB fills 

nearly four times more volume of a laser rod of diameter d = 3w0 than a 

Gaussian beam could, due to the smaller Gaussian field required in order to 

avoid hard edge clipping. In addition, the peak intensity of the FGB is smaller 

than that of a Gaussian beam of the same width and energy, reaching a 

minimum of only half the peak intensity when the order N >> 1.  This is 

important when considering practical issues such as thermally induced stress 

fracture, and thermal aberrations, in solid state gain materials.  However, the 

disadvantage of such beams is the larger beam quality factor, and hence shorter 

Rayleigh range, thus reducing the useful length of the gain medium that will 

experience the uniform beam.  The Rayleigh range of such a beam is given by 

zR/N where zR is the Rayleigh range of a Gaussian beam with the same 

parameters [5.10]. Clearly the price to be paid for a perfect flat–top beam (N > 

100) is a significantly reduced Rayleigh range.  These results are important in 

understanding the depth of field of the flat–top beam for gain extraction 

purposes. 

 In our design these points may be balanced through the use of Eq. 6.5; 

herein lie the salient parameters of the desired Gaussian beam size, the desired 
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flat–top beam size, and the degree of flatness of the beam itself, β, which is 

proportional to the order of the FGB.  If all three are to be chosen independently 

for a particular wavelength, then the focal length of the Fourier transforming 

lens, and hence the length of the resonator, must be appropriately selected using 

Eq. (6.5), while the phase functions of the DOEs maintain the same functional 

form, i.e., only the dimensionless parameter β changes in the equations.  The 

ease with which the DOEs may be calculated for various parameters of the 

desired mode is a unique feature of this resonator design.  Essentially the 

propagation of the Gaussian beam outside the resonator may be determined 

almost independently of the flat–top mode inside the gain volume.  There are 

obvious advantages to such a flexible design.  

 To expound on the concept, we consider the example of a resonator 

designed to produce a Gaussian beam with a width of w0 = 1 mm, from which 

we deduced the required Gaussian beam half angle divergence of θ = λ/πw0 = 

0.34 mrad (λ = 1064 nm). With this fixed, we may now select any two of the 

remaining three parameters: resonator length, flat–top beam size, or degree of 

flatness of our flat–top beam (β). If our gain medium is a rod of radius 3 mm 

and length 100 mm, then we may wish to select a flat–top beam of wFTB = 2 

mm, while β = 23 will ensure a high fidelity flat–top beam that propagates 

throughout the gain length without significant changes of intensity profile. From 

Eq. (6.5) we then deduce that the required resonator length (L = f) is given by 

~500 mm. Fig. 6.2 shows the results of a numerical simulation of the 

aforementioned resonator, starting with a field of random noise and propagated 

following the Fox–Li approach [2.2] until stability, with mirror radii of 4w0. Fig. 

6.2(a) shows the stable fields at either end of the resonator – the expected 

Gaussian and flat–top beams as per the design. Fig. 6.2(b) shows the 

numerically determined phase of each DOE.  Near the beam edge there is a 

slight discrepancy between the analytically calculated phase of the second DOE 

and the numerically determined phase; this is due to the use of the stationary 

phase approximation in the analytical equations.  The same design procedure 

may be adopted to accommodate other constraints, for example, the length of 

the resonator or the complexity of the DOEs themselves. 
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Fig. 6.2: Numerical results of the Fox–Li analysis, showing (a) Gaussian and flat–top beams 

after starting from random noise, and (b) calculated phase profile of each DOE, with the 

analytical phase function for the second DOE shown as data points. 

It is also instructive to extend the example above to consider the mode 

discrimination of this resonator.  Without any gain considerations, the 

fundamental Gaussian/flat-top mode has the lowest loss (0.34%) with the next 

lowest loss modes shown in Fig. 6.3. These three modes have higher losses, by 

factors of 1.06 (TEM10), 1.18 (TEM01) and 1.47 (TEM11) respectively, but also 

have significantly smaller mode volumes within the gain region, decreased 

relative to the fundamental mode by a factor of 0.65 (TEM10), 0.29 (TEM01) and 

0.33 (TEM11) respectively.  Thus when gain is included (at the flat-top end), the 

significantly increased volume for our Gaussian/flat-top mode should aid mode 

discrimination, whereas in conventional resonator designs it is often the reverse: 

the Gaussian mode would have a lower mode volume than other competing 

modes. In a practical system the discrimination could be further enhanced by the 

inclusion of suitable apertures on the Gaussian end of the resonator. 

 

Fig. 6.3: Cross-sections of the first three higher-order competing modes, shown at mirror M2. 
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6.4 Conclusion 

 

In conclusion, we have shown that it is possible to design a resonator for a 

Gaussian beam output but with the advantage of a flat–top beam in the gain 

region. The metamorphosis from one beam shape to another is achieved through 

phase–only optical elements. Such a configuration lends itself to high energy 

extraction with good competing mode discrimination in a low divergence output 

mode. 
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Conclusion 

 

 In this thesis we have presented new methods for intra–cavity beam 

shaping. To illustrate the methods we have provided both an analytical and 

numerical analysis of novel resonator systems which are able to produce 

customised phase and intensity distributions. 

 Naturally, intra–cavity beam shaping can not be phase or amplitude only 

due to the limited radius and the defined curvature of the mirrors. Both these 

parameters have the influence on the final output beam profile. That is why it is 

difficult to divide the systems where we have used phase or amplitude beam 

transformations in the cavity only. In this thesis we have assumed that the 

division between phase and amplitude intra–cavity beam shaping is connected 

to a comparison of the geometry of our system with conventional resonators, 

including parabolic mirrors and a ring aperture on both mirrors.  

 In Chapter 2 we have outlined a new approach (matrix method), which is 

based on the Fox–Li algorithm and can decrease the computation time of both 

the Fox–Li algorithm and any integral iteration algorithms. The method can be 

used for any class of integral iteration algorithms which has the same 

calculation integrals, with changing integrants (where the integrant is the field 

of the light wave in the case of the Fox-Li algorithm, IFTA, and screen method. 

The given method appreciably decreases the computation time of these 

algorithms and approaches that of a single iteration. 

 In Chapter 3 a new approach to modeling the spatial intensity profile from 

Porro prism resonators was proposed based on rotating loss screens to mimic the 

apex losses of the prisms. A numerical model based on this approach was 

presented which correctly predicted the output transverse field distribution 

found experimentally from such resonators. This work has implications on how 

such resonators are used in the field.  Variable output coupling based on rotating 

the prisms is often employed, but as has been shown in Chapter 3, this will have 

a significant impact on the output mode from the laser, affecting laser beam 

propagation, far field laser intensity and laser brightness. 
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 In Chapter 4 we have presented a new approach of generating Bessel–

Gauss beam as the output namely the deployment of a suitable amplitude filter 

at the Fourier plane of a conventional resonator configuration with only 

spherical curvature optical elements. As we can see, the approach is 

combination of both amplitude and phase shaping inside a cavity. We also wish 

to point out some practical implications in generating of Bessel–Gauss beams 

from such a resonator. Firstly, since the resonator consists of only conventional 

optical elements (spherical curvature mirrors and circular apertures) no special 

alignment techniques are required. Secondly, due to the fact that the order of the 

Bessel–Gauss beams of lowest loss is determined only by the diameter of mirror 

M2 (see Fig. 4.1), a simple variable aperture (iris) at the position of mirror M2 

should suffice as a mode selector in much the same way that the various 

Hermite–Gauss modes may be selected by suitable aperture choice. 

 In Chapter 5 we have presented the analytical and numerical analyses of 

two new resonator systems for generating flat–top–like beams. Both approaches 

lead to closed form expressions for the required cavity optics, but differ 

substantially in the design technique, with the first based on reverse propagation 

of a flattened Gaussian beam, and the second a metamorphosis of a Gaussian 

into a flat–top beam. We showed that both have good convergence properties, 

and result in the desired stable mode. The first approach was to use an 

approximation to flat–top beams and apply phase conjugating mirrors at either 

end of the resonator. We showed that this leads to simple expressions for the 

mirror surfaces. In the second approach a suitable diffractive optical element 

converts a Gaussian beam into a flat–top beam at the Fourier plane of a lens.  

This method shows fast convergence and relatively low round trip loss for the 

fundamental mode of the resonator. 

 In Chapter 6 we have outlined a resonator design that allows for the 

selection of a Gaussian mode by diffractive optical elements. This is made 

possible by the metamorphosis of a Gaussian beam into a flat–top beam during 

propagation from one end of the resonator to the other.  By placing the gain 

medium at the flat–top beam end, it is possible to extract high energy in a low–

loss cavity. 
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