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Abstract

There are many applications where a Gaussian leessen is not ideal, for
example, in areas such as medicine, data storaigace, manufacturing and so
on, and yet in the vast majority of laser systehis is the fundamental output
mode. Clearly this is a limitation, and is oftenemsome by adapting the
application in mind to the available beam. A moesichble approach would be
to create a laser beam as the output that is ¢dilfor the application in mind —
so called intra-cavity laser beam shaping. Thenngaial of intra-cavity beam
shaping is the designing of laser cavities so dinatcan produce beams directly
as the output of the cavity with the required phasd intensity distribution.
Shaping the beam inside the cavity is more desrttan reshaping outside the
cavity due to the introduction of additional exi@riosses and adjustment
problems. More elements are required outside thatycavhich leads to
additional costs and larger physical systems.

In this thesis we present new methods for phask amplitude intra—
cavity beam shaping. To illustrate the methods we foth an analytical and
numerical analysis of different resonator systentsckv are able to produce
customised phase and intensity distributions.

In the introduction of this thesis, a detailed ovew of the key concepts
of optical resonators is presented.

In Chapter 2 we consider the well-known integratation algorithm for
intra—cavity field simulation, namely the Fox—Ligalithm and a new method
(matrix method), which is based on the Fox—Li altpon and can decrease the
computation time of both the Fox-Li algorithm andyaintegral iteration
algorithms. The method can be used for any classnt#gral iteration
algorithms which has the same calculation integralth changing integrants.
The given method appreciably decreases the conputdime of these
algorithms and approaches that of a single itanatio

In Chapter 3 a new approach to modeling the dpatensity profile from
Porro prism resonators is proposed based on rgtaiss screens to mimic the

apex losses of the prisms. A numerical model basedthis approach is



presented which correctly predicts the output trarse field distribution found
experimentally from such resonators.

In Chapter 4 we present a combination of both aogd and phase
shaping inside a cavity, namely the deployment stitéable amplitude filter at
the Fourier plane of a conventional resonator gométion with only spherical
curvature optical elements, for the generation es¥l-Gauss beams as the
output.

In Chapter 5 we present the analytical and nurakanalyse®f two new
resonator systems for generating flat—top—like tseddoth approaches lead to
closed form expressions for the required cavityaspbut differ substantially in
the design technique, with the first based on mav@ropagation of a flattened
Gaussian beam, and the second a metamorphosi§&atissian into a flat—top
beam. We show that both have good convergenceegireq and result in the
desired stable mode.

In Chapter 6 we outline a resonator design tHatval for the selection of
a Gaussian mode by diffractive optical elementss T9imade possible by the
metamorphosis of a Gaussian beam into a flat—t@mbduring propagation
from one end of the resonator to the other. Bgiptathe gain medium at the

flat—top beam end, it is possible to extract higargy in a low—loss cavity.



Samevatting

Daar is verskeie toepassings waaGaussiese laser bundel nie ideaal is
nie, in gebiede soos mediese veld, stoor van gataaardiging en so meer, en
tog word die meeste laser sisteme in die fundarteem®de bedryf. Dit is
duidelik 'n beperking, en word meestal oorkom deanpassing van die
toepassing tot die beskikbare bundel. 'n Beter Benag sou wees om laser
bundel te maak wat afgestem is op die toepasssogenaamde intra-resonator
bundel vorming. Die hoofdoel van intra-resonatomdel vorming is om
resonators te ontwerp wat direk as uitset kan lemadr die gewenste fase en
intensiteits-distribusie vertoon. Vorming van diandel in die resonator is
voordeliger omdat die vorming buite die resonabbraddisionele verliese asook
verstellings probleme bydra. Meer elemente wordodenbuite die resonator
wat bydra tot hoér koste en groter sisteme.

In hierdie tesis word nuwe fase en amplitude inésDnator
bundelvormings metodes voorgestel. Om hierdie neeteddemonstreer word
analitiese en numeriese analises vir verskillendsomator sisteme wat
aangepaste fase en intensiteit distribusies predulsespreek.

In die inleiding van die tesis word detailleer oorsig oor die sleutel
konsepte van optiese resonators voorgelé.

In hoofstuk 2 word die bekende integraal iterasigoritme vir intra-
resonator veld simulasie, naamlik die Fox-Li algog, en’n nuwe metode
(matriks metode), wat gebaseer is op die Fox-Liowitige, en die
berekeningstyd van beide die Fox-Li algoritme elgemnder integraal iterasie
algoritme verminder. Die metode kan gebruik word @mge klas van integraal
iterasie algoritmes wat dieselfde berekenings naleghet, met veranderde
integrante (waar die integrand die veld van diegladf is in die geval van die
Fox-Li algoritme, IFTA, en die skerm metode. Dieougestelde metode
verminder die berekeningstyd aansienlik, en is Berthdie varn enkel iterasie
berekening.

In hoofstuk 3 wordn nuwe benadering om die modellering van die
ruimtelike intensiteitsprofiel van Porro prismaaeators, gebaseer op roterende

verliese skerms om die apeks-verliese van die jaissta benader, voorgestel.



Numeriese model gebaseer op hierdie benadering dieatuitset van die
transversale veld distribusie in eksperimentelemasrs korrek voorspel, word
voorgestel.

In hoofstuk 4 worch tegniek vir die generering van Bessel-Gauss bsndel
deur die gebruik varn kombinasie van amplitude en fase vorming in die
resonator efn geskikte amplitude filter in die Fourier vlak varkonvensionele
resonator konfigurasie met optiese elemente wagsséeriese krommings het,
voorgestel.

In hoofstuk 5 word die analitiese en numeriesdisem van twee nuwe
resonator sisteme vir die generering van sogenaaffide-top” bundels
voorgestel. Beide benaderings lei ima geslote vorm uitdrukking vir die
resonator optika wat benodig word, maar verskil nmeeswaardig in die
ontwerptegniek. Die eerste is baseer op die teragrtplanting van plat
Gaussiese bundel, en die tweede op metamorfoseGaaussiese “flat-top”
bundel. Ons toon aan dat beide tegnieke goeie kgemsie het, en in die
gevraagde stabiele modus lewer.

In hoofstuk 6 skets ons die resonator ontwerp diatselektering vam
Gaussiese modus deur diffraktiewe optiese elememnthk maak. Dit word
moontlik deur die metamorfose van 'n Gaussiese &umaé n “flat-top”
gedurende die voortplanting van die een kant vanresonator na die ander.
Deur die wins medium aan die “flat—top” kant vae 8undel te plaas word dit

moontlik om hoé energie te onttrekirlae verlies resonator.
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1. INTRODUCTION

Chapter 1

Introduction

In this Section, a detailed overview of the keyaapts of optical resonators is
presented. We have tried to begin from the badiagesmnator theory, namely
electromagnetic boundary conditions which corredglpton most characteristic
electromagnetic field behaviors inside the cavtgtually, the interaction of the
electromagnetic field with a conductive surfaca isource of characteristic for
cavity states of the electromagnetic field whicts le different property in
comparison with free space fields, namely the iggi of a wave oscillating
with exclusively discrete values of wave vectorsd ariurthermore
electromagnetic field amplitudes in a cavity (modesharacteristic oscillations
of the cavity). It is one of the prominent featueasensively used for producing
monochromatic beams having a small divergence. dawedse the number of
characteristic oscillations inside the cavity andnsequently raise the
monochromatic property and decrease the divergehdke output, the open
cavity was proposed.

For the convenience of the reader, we presentlettderivations and
definitions of some useful parameters which areensially used and are able to
give relatively good representation of the behawvibthe electromagnetic wave

inside the cavity, namely the Fresnel number andycatability.
1.1 Electromagnetic boundary conditions

We assume that the reader has previously encodniéa&well’s equations, at
least briefly, and understands that they provide tmost fundamental
description of electric and magnetic fields. Faegiew of this field the reader
is referred to standard texts on the subject [1Tle integral forms of
Maxwell’s equations describe the behavior of etoignetic field quantities in

all geometric configurations. The differential faarof Maxwell’'s equations are
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only valid in regions where the parameters of thedia are constant or vary
smoothly i.e. in regions wheegx, vy, z, t)u(X, vy, z, tlanda(X, vy, z, t)(dielectric
constant, magnetic permeability and conductivitythed medium respectively)
do not change abruptly. In order for a differentiatm to exist, the partial
derivatives must exist, and this requirement bredéwn at the boundaries
between different materials. For the special cdg®wmts along boundaries, we
must derive the relationship between field quagiimmediately on either side
of the boundary from the integral forms (as wasedfor the differential forms
under differentiable conditions). Later, we shalpply these boundary
conditions to examine the behavior of EM wavestdrfaces between different

materials.
1.1.1 Boundary conditions for the electric field

Consider how the electric field may change on either side of a boundary
between two different media, as illustrated in FEigy.

/\ Medium 1
:E1 / Enl

Medium 2

Fig. 1.1. The changing electric field at the bougdaetween two different media.

The vectorE; refers to the electric field in medium 1, a@&glin medium 2.
One can further decompose vectisandE, into normal (perpendicular to the
interface) and tangential (in the plane of the rfiatlee) components. These
components labelds,;, E;; andE,,, E lie in the plane of vectois; andE-.
To derive the boundary conditions f&r we must examine two of Maxwell’s

equations:
- B~ 1.1
fEM@I =~ % s 1)
s ot
and
§I3Ed§:jvpdv, (1.2)
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which will allow us to relate the tangential andrmal components oE on

either side of the boundary.
1.1.2 Normal component oD

The boundary condition for the normal componenthef electric field can be

obtained by applying Gauss’s flux law
§D mézjvpdv (1.3)
to a small ‘pill-box’, positioned such that the Inolary sits between its ‘upper’

and ‘lower’ surfaces as shown in the illustratiead Fig.1.2).

Medium 1 A

Surface charge SeelllL i— -7
Ps

Medium 2 &5, 1o, 09

Fig. 1.2. Gauss'’s flux law for the derivation oéthormal components of the electric field on
the boundary.

If we shrink the length of side walh to zero, but in such a way that all
of the electric flux enters or leaves the pill-btiwough the top and bottom
surfaces, then

§D @S ~ B, MAS+ D, {-M)AS = D,AS-D,,AS, (1.4)
where D,1 and D, are the normal components of the flux density mect
immediately on either side of the boundary in mediul and 2, andsS is the
elemental surface area.

The amount of charge enclosedMms—~0 depends on whether there exists

a layer of charge on the surface (i.e. an infimtedly thin layer of charge). If a

surface charge layer exists then
Lpdv = p.AS, (1.5)

and thus
D,AS-D,,AS=p.AS. (1.6)

From which we conclude
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D, —-D,, =p0s. (1.7)
For the case wheye, = ,0
D,=D,,; (1.8)
or in terms of the electric field,

&E,=&E,,. (1.9)
1.1.3 Tangential component oE
We can derive the tangential componentoby applying Faraday’s law to a

small rectangular loop positioned in across thendauny, and in the plane &

andE,, as illustrated in the diagram below (see Fig).1.3

. a
b Al % Medium 1

€15 M1, 01

&2, U2, 02

Medium 2

E,

Fig. 1.3. Faraday’s law for the derivation of thagential components of the electric field on

the boundary.
Consider the limiting case where the sides peripatat to the boundary
are allowed shrink to zero. In the limit A—0, the magnetic flux threading

the loop shrinks to zero, and thus

b
fEM@I - [E@I +[Edl =0= E (I +E,(-al) =0. (1.10)

O 0

Writing the tangential components Bf andE, along the contour &S
andEp, we have
E,Al -E,Al =0. (1.11)
From which we conclude that on either side of tbheraary,
E,-E,=0 (1.12)
i.e. the tangential components immediately on eitide of a boundary are

equal.
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1.1.4 Dielectric — Perfect Conductor

If one of the media is dielectric (say medium Jaig, and the other medium
(medium 2) is a perfect conductes — o, thenE,, = 0 andE;,; = 0 inside the
perfect conductor.
SinceD  -D,, = p,, We conclude thay = p.
SinceEy = Ep andEp = 0, we conclude thd;; = 0, i.e. there exists no
tangential component in the dielectric.
In vector form we state the boundary conditionstier field in the dielectric as
D, @i = p, (1.13)
and
AxD=0 (1.14)
The E field lines always meet a perfect conductor pedpmiar to the
surface, and magnetic field lines parallel to th&fage as is illustrated in the

figure below (see Fig.1.4):

Enl =p
. dielectric e.g. air
nx H, =Jg
B B 0 Medium 1
nl =
Ell =0 B €1, 41,01
E,=0

? By=0 €9, lig, Oy = inf

(AC fields) Medium 2

Perfect conductor

Fig. 1.4. The behavior of electric and magnetitdfieon the boundary of a dielectric - perfect

conductor.

For AC fields, no magnetic field exists in a petfeonductor - why?
Recall that OxE =-9B/dt and sinceE = 0 in a perfect conductor,
OxE =0and hencéB/dt =0. In other words, no changing magnetic field can
exist in a perfect conductor, and hefge = B,1 = 0. A surface current can still
exist, implying a tangential component Bf can exist. These two conditions

can be expressed in vector form as

El[ﬁ:O' (1.15)

!

fixH, =J; (1.16)
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These boundary conditions are useful for establgshfor example, the
charge density or current distribution on the stefaf a conductor, when the
field in the dielectric is known or specified.

These boundary conditions will be applied whenlyamag the reflection

of an electromagnetic plane wave off the surface pérfect conductor.
1.2 Modes of rectangular closed cavity
We will outline the property of the electromagndieid in a rectangular closed

cavity using the approach of Ref [1.2]. For a nautlielectric medium (one

with no free charges) Maxwell’'s equations are

0m =0, (1.17)
Om=0, (1.18)
ixE:—a%t, (1.19)
OxH :aDat’ (1.20)
We will be interested only in nonmagnetic medaa,Vihich
B = yoH (1.21)

where y, = 4rrx107' N/A? and the electric displacemebt is defined as
D=¢gE+P (1.22)
where 1/47&, = 9.9874x10°Nm?/c* and the polarizationP is the electric

dipole moment per unit volume of the mediuB.is the only term in Maxwell
equations relating directly to the medium.

Applying the curl operation to both sides of Ef2@), we obtain
- - = _4> aé __ - —
(x(0xE)=-0x9B/ =-9/ ((1xB). (1.23)
Now we use the general identity
0% (T E) = 001 (E) - 026 (1.24)
of vector calculus. Together with Eq. (1.21) andxMall's Eq. (1.20), to write

001 (E) - 0126 = -4, 9°D (1.25)

ot?”

Finally we use the definition (1.22) @ and rearrange the terms
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0(01 ) - 012E -

(1.26)

Here we have used the fact that
Eokly = ¥z (1.27)

wherec = 2.998x10° ms* is the velocity of light in a vacuum.
Eq. (1.26) is a partial differential equation witldlependent variables vy,
z, andt in Cartesian coordinates. It tells us how the eleéield depends on the

electric dipole moment densitf of the medium. We will be particularly
interested intransversefields (sometimes calledolenoidor radiation fields).
Such fields satisfy

OCE =0. (1.28)
Transverse fields therefore satisfy the inhomogesewve equation

p_ 1 _0°E_ 1 0°P

c® o> g, ot

(1.29)

This is the fundamental electromagnetic field emunator our purpose. In order
to make any use of it we must somehow specify tiarjzation P . This cannot
be done solely within the framework of the Maxweduations, forP is a

property of the material medium in which the fididpropagates.

However, we will finish this Section with a discims of the solution to
the homogeneous (free-space) wave equation, wigphea when there is no
polarization present. In general, the laser resrtheory is based on the free—
space wave equation and free—space solution. Suatioss are useful; even
through lasers do not operate in a vacuum, becaus# laser media are
optically homogeneous. In a homogeneous linear &atiopic dielectric

medium, the polarization is aligned with and pradjooral to the electric field

E=aP. In this case Eq. (1.29) will have an equivalentnf to the wave
equation in free space (see Eq. (1.30)) but witledint constant before second
time derivative namely 17c—a/c?.

We will consider only the case of a rectangulasitpaWe also assume we
have perfectly reflecting walls; then the composeoftthe electric field parallel
to the walls must vanish on the walls. The electratd inside the cavity

satisfies the wave equation
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10°E
c® ot?

For a monochromatic field of angular frequency 27&v, we use the

0%E - =0. (1.30)

complex-field representation (where the electradfiis understood to be the

real part of the right-hand side):

E(F,t) = E,(F)exp—iat) (1.31)
and Eq. (1.30) becomes
O%E,(F) + k?E,(F) =0, k=a/c. (1.32)
That is,
(0% +K?)E,, (7) =0 (1.33)

and likewise for thgg andz components.
To solve Eqg. (1.33), it is convenient to use thethod of separation of

variables, written as:
Eo (X% Y:2) = F(X)G(Y)H (2) (1.34)
and then substitute into Eq. (1.33). After carryiogt the differentiations

i 2-0° 0’ 0’ ivi
required by [ Axﬁ Ayﬁ Azz’ we divide through by the product
FGH and obtain

10°F  10°G . 10°H
Tt Tt +k” =0. 1.35
Fox* Goy*> H oz (1.35)

Since each of the first three terms on the lefie ss a function of a
different independent variable, Eq. (1.35) can dydytrue for allx, y, andz if

each term is separately constant, i.e.,

2
% ‘3; =2, (1.36a)
1 d2G
= =-kZ, 1.36b
G dy? Y ( )
2
% ddzlj = k2, (1.36¢)
with
ki +ki +k? =k®. (1.37)

The boundary condition that the tangential compowé the electric field

vanishes on the cavity walls means that
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Eo(xy=02) =Ey,(x y=L,,2) =0, (1.38a)
En(XY,2=0)=E, (X, y,z=L,)=0 (1.38hb)

or
G(0) =G(L,) =0, (1.393)
H(©) =H(L,)=0. (1.39b)

A solution of Eg. (1.36b) satisfying the boundaoydition G(0) =0 is
G(y) =sink,y) . (1.40)
In order to satisfyG(L,) = Cas well, we must haveink,L )= ,@r in
other words
k,L, =mm, m=0, 1, 2,... (1.41a)

In exactly the same way we find that solution€Eqf (1.36¢) satisfy EQ.
(1.39b) are only possible if
k,L,=nm,n=0,1, 2,... (1.41b)
Finally, consideration of the equation for tlgeand z components of

Eo(f), together with the appropriate boundary conditiastows that allowed
solutions forEo(f) must satisfy Eqgs. (1.41a), (1.41b) and
kL, =1m,1=0,1,2,.. (1.41c)

The solution for the components oE(F,t 3atisfying Maxwell's

equations and the boundary conditions inside thiggycare

E (X Y,zt) = A exp-i ax)co{ll_ﬁjsin{rz—szin(r:_—m] , (1.42a)
E,(x,y,zt) = A exd— [ wt)sin(ll_ﬂj co{?]sin{i—mj : (1.42b)
E,(x,y,2t) = A exd-i ax)sin(ll_ﬁjsin{%] co{”L—’zJ . (1.42¢)

Where the coefficient8y, A, andA, must satisfy the condition
I m n
—A+—A +—A =0,
L A N A L A (1.43)

implied by the Maxwell equatidd [(E = 0, valid in the empty cavity.
From Egs. (1.37) and (1.41) we have
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2 m?* n?
kzzn{—+—+— . (1.44)
2 2 2 :
2 L2 L

The possible modes of the rectangular closed cédnatye allowed frequencies

i a/ =2,/ -
determined by Eq. (1.44) akd A = A

1/2
v=v,. =%(:_—22 +r['—,§2 +E—§J . (1.45)
The number of modes available in a cavity is itdin This is clear
because in Eg. (1.45), for example, an infinite hamof values are permitted
for any of the three mode indicksm andn. However, the number of modes
whose frequency lies in the neighborhabdof a given value is finite. This
number is related to the number of modes whoseaiémeey is less than and it
is this number we will determine first.

The number of modes we want is the number of témrtise triple sum:
N = IZZZ , (1.46)
m n

where the upper limits on the sums are determinethd maximum frequency
to be included. The simplest approach to this mmwbls to stipulate that the
cavity length is much larger than a typical wavgtenand consequently the
mode spacing is negligible (obviously true for i&t&d cavities and optical
wavelengths). Then the discrete nature of the sunot important and we can

rewrite the sum as a triple integral:
N = [dI[dm[dn. (1.47)

In addition, for a large cavity the shape is naryv important in
determining the number of modes (although critidalr the spatial
characteristics of the modes, of course). So forppesent purpose we can just
as well assume the simplest shape — a cube wids €qual td.. For a cubical

cavity Eq. (1.45) becomes

2
(éj Z=12+m? +n?. (1.48)
C

It is a useful trick to regard the tripldt m, n)as the components of a

fictitious vectorG:

—

G=il+jm+kn (1.49a)

10
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with magnitude
G’ =g’ =1>+m’ +n’. (1.49b)

Then the triple integral can be denoted as

N=[[[d%. (1.50)
Eq. (1.48) indicates that depends only on the length, but not the
orientation, of the vecto. Thus we rewrite the mode integral in spherical

coordinates:

N = [ [ [a*dgsin(@,)d6,dg, (1.51)
and carry out the integrations to obtain:
A4 , 4 o
N=—/|qg°dg=——. 1.52
o arda=—" (1.52)

Here the factodr is the result of the angular integration andf&is due
to the restriction on the original integdrsn, nto be positive, so that only the
vectors g in the positive octant of the integration Eq. (.Should be counted
as corresponding to the physical modes.

In Eq. (1.49b)q is the length of the vectof compatible with the given

frequencw. From Eq. (1.48) it is clear that= (2L/c)|/, so we finally get

N, = E(QJSW = 4;7"—33v , (1.53)
6\ C 3c
whereV = L2 is the cavity volume.
Since our derivation of Eq. (1.53) did not takeoinaccount the
polarization of the cavity modes, we are still fteechoose any two independent

polarizations. Thus we have

N, =5V (1.54)

for the number of possible cavity modes with a fitry less tham, counting
all polarizations.
The number of possible field modes in the frequeintgrval fromv to

v+dv is therefore

2
dN :8771/

v C3

Vdv (1.55a)

and in the wavelength range, the number is

11
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V \dA

1.3 The modes of an open cavity

It is useful for later discussions to specify thality factor of the cavity [1.3].
The most general definition is

EnergyStoed

Q=2 — .
EnergyDisgpatedPerGcle

(1.56)

Physically speakingQ is 2z times the ratio of the total energy stored,
divided by the energy lost in a single cycle, ouieglently the ratio of the
stored energy to the energy dissipated per onamafithe oscillation.

We can determine the quality factor by general rggneprinciples.
Assume that the distribution of electromagnetitdBeinside the cavity is close
to that of standing waves and the reflection coedfit of mirrorsR. The
standing wave equals the two waves with similagnsity and propagating in
opposite directions. Let's assume that the poweeaoh standing wave B.
Consequently after reflection from two similar rons, these waves will los2P
(1-R) of their starting powelP. At the same time the stored energy in the cavity

is 2Pl/c. Therefore from Eq. (1.56) we can find the qualaygtor:
Q=—"7—=, (1.57)

whereR<1.
Consequently in accordance with the Beer—Lamlaavi the influence of
the reflecting surfaces is tantamount to an in@eégsopagation distance of a

plane wavenside the cavity by a factdr(1-R)

Fig. 1.5. The open resonator consisting of two Ifgnalane discs.

Let’'s consider an open resonator consisting of pacallel plane discs

with radiusa and distance between thén{see Fig. 1.5). In this case the effect

12
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of increasing the propagation distance of a plaageaemwside the cavity byl/(1-
R) can be considered astimes an attenuation of the given wave ati-R)
reflections.

In addition to waves that propagate exactly nortaahe mirror surfaces
we may expect some waves that propagate almostahdonthe surfaceslIf a
plane wave propagates with some angle to the camity and maked/(1-R)
reflections before leaving the cavity, then regagdEq. (1.56) the resonance
corresponding to this oscillation has a qualitytdacapproximately half than
that for normal propagation. Therefore we can deitee the angle

=2a(l-R)/I, (1.58)

which limits the direction of oscillation of the weas with a high quality factor.
Consequently, from all possible oscillations of tieen resonator those with the
largest quality factor have oscillations with aedtion of propagation inside a
solid angle ofQ = 769°.

The product ofQ /47 and Eq. (1.55a) is the number of oscillations waith

high quality factor in the frequency intervab .

_D\2
N, = 32%%% , (1.59)

where A = c/v is the wavelength.

! The number of normal and non—normal waves availabh cavity is infinite (see Eq.
1.49). However, the number of waves whose frequdiesyin the neighborhoodv of a given
valuev is finite (see Eqg. 1.63)All normal or non-normal propagating waves musts§athe
boundary conditions due to this factor in a cawiin oscillate an integer number of waves
which propagate normally to the mirrors surface andinteger number of waves which can
propagate non-normally to the surface. These wawvescall characteristic oscillations or
resonance oscillations or modes of the resonatoe. et of characteristic oscillations which
propagate normally to the mirrors of a cavity aaler] the longitudinal modes of the resonator
and the set of modes which has non-normal direaifopropagation are radial modes of the
resonator.

The boundary condition can allow the existence fdracteristic oscillations which
have angular rotation bgzn times inside the resonator (the angular modes®frésonator).
Due to the form of the boundary conditions, the emgdropagate with no rotation and watn
angle rotation are similar. Depending on the nunabeotations relative to the axe of the cavity,
the mode has ordexr For example if during the propagation inside¢heity from one mirror to
another the mode rotates the phasesbyThis mode has d'%angular order. A similar situation
and with a radial mode order, th& drder of the radial mode means this mode hasrttadlest
non-normal angle of propagation in the cavity.

Generally all cavity modes (for cylindrical coordir systems which are the most
suitable for open resonators with our geometry (Sge 1.5)) have longitudinal, radial and
angular orders at the same time and can be presentéaree integer numbens, n | (similarly
to Cartesian coordinates (see Eq. 1.45 (a-c))) Baahber is presenting the spatial order of the
mode in a suitable coordinate system.

13
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The comparison of Eq. (1.59) and Eq. (1.55a) letmlsa dramatic
12/(a?(1- RJ?)>>1 times decrease in the number of characteristitlatizns in
the case of an open resonator. The source of émawvior is due to the absence
of side walls in the open resonator.

We are now able to define some useful relatiorssthpt may be derived
from Eq. (1.59). These are listed as follows:

The frequency interval corresponding to only threrence oscillation:

Av _ Ay
N, 327a*@d-R)*

(1.60)

The frequency width of only the resonance oscdlatvill be defined by
the quality factor:

_Av-R)

AVk :K
Q 37t

(1.61)

The resonance curves of different oscillationsena@ overlap according
to Eq. (1.60) and Eq. (1.61):

Av,
Av/N,

=167N? (1- R)* <1, (1.62)

where N, =a?/IA.

We can see from Eq. (1.62) that for mirrors ofogen resonator with a
high reflectivity and accordingly high quality factor, it is possilite reach
sufficient decimation of the spectrum of charastérioscillations, even though

the Fresnel number is high.
1.4 The stability of an open cavity

Lets consider a waveguide consisting of a set of lgnses with equal focal
lengths, width and distances between them (sed.B)g[1.3]. Because of the
reflection from the resonator mirror, in principls, identical to transmitting
through a lens of similar focal length and widthe Wan suppose that this

scheme is equivalent to the open cavity.

14
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AN AN AN
[~ Oyl
p.q -
n Tn+l
Fn-1
! )
n-1 n v n+l v

Fig. 1.6. The representation of an open cavity byeguides consisting of a set of thin lenses.

Assume that the trace of the rays through thisegyobeys the paraxial
approximation; consequently we may make use of wmedl-known lens
equation:

1a, +1/a, =1/F, (1.63)
wherea; — the object distance, — the image distance akd— the focal length
of the lens.

We can rewrite this equation in paraxial approxiorafor r<<ai, &
namely:

a,-a,=rlF, (1.64)
wherer is the distance from the optical axis to the paihere the ray intersects
the lens, and;anda; are the incident and refracted angles respectisely Fig.
1.7).

ar az

a az

v
Fig. 1.7. The angles of the light ray before artdrgbassing through the thin lens.

Lets consider the three neighboring lenses, labelenandn+1. Then:
a,-a.,=r,/F. (1.65)
At the same time the distance from the ray upédéns axis is

rn—l = rn + anl ’ rn = rn—1 + an—ll . (166)

15
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Subtracting the first equation from the secondldeto the following
recurrence formula:
rt(/F=2)r, +r,_ =0, (1.67)
which allows one to determine the position of thg on any lens in the system
if the positions on the two previous lenses areAkmolrhe method of sequential
passes of the ray inside the resonator, correspgridithe recurrence formula
(1.67), is similar to the well known Fox-Li meth{12].
It is possible to solve Eq. (1.67) analyticallydssuming a solution of the form:
r, = Aexp(né), (1.68)
whereA is a constant. Substituting Eq. (1.68) into Hg6T), and requiring that
both the imaginary and real parts must be of thatisas, yields:
cos@) =1-1/2F. (1.69)
The last equation is the partial solution of Eig67). By considering this
partial solution we can conclude that the waveg(sde Fig. 1.7) is stablerif
oscillates within the limitgA, whereA is the initial position of the ray in the
waveguide.

Consequently the continuing oscillations exist whes real orcos@) is

within the limits £1 and the variation of the admissible region I6F is
determined by following inequality:
-1<1-1/2F <1. (1.70)
By following the same steps, we can easily desivalar inequalities, but
for waveguides which have two types of lenses wiififierent focal lengths
following each other
0<@-1/2F)@A-1/2F,)<1. (1.71)
Eq. (1.71) is the more general case of the stplibndition of an open
cavity with different focal lengths of the lensasd is equivalent to Eq. (1.70)
when the lenses are identical.
By introducing two new parameters defined gas1-1/2F; and g,=1—
I/2F,, the boundary of the accepted valued fandF must satisfy:
0,9, =1 (1.72a)
9,9, =0 (1.72b)

16
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Egs. (1.72) allow the simple graphical represemabf the stability
region of an open cavity (see Fig. 1.8). Areas lednby the liney; g, = 1 as
well as the axes are stable.

&

hemispherical

[0.1]

plane-parallel

[11]

0 t
tfocal [ ]’ 0] g2

concave-convex

-l

concentric

Fig. 1.8. The stability region of an open cavity.

1.5 The Fresnel number of a cavity

Since the above analysis did not include diffragtib is not possible to discuss
diffraction losses [1.3]. To do so one requires ititroduction of propagating
plane waves. In accordance with Young's represientathe diffraction due to
the edge of a screen can be described as transyewgdude diffusion. At a
distancd from the screen, the diffusion region is arov/hdl. Consequently, the

beam with a field close to a plane wave, afterflecgon from the left mirror,

having a radius, increases the beam radius\by << a.

VIA << a

Fig. 1.9. Young’s representation of the diffractmma round screen.

The radiation, associated with a ring of ama/1] , leaves the resonator

[see Fig. 1.9]. Since the plane waves have a constaplitude, we may

17
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estimate this loss &5/11/a. After squaring this value, we are able to make an

estimate of the energy loss after one pass:
Ao = 4'%2 =4/ Ng, (1.73)

whereN_ =a?/I) is the Fresnel number of the resonator. Conselyulanger

Fresnel number resonators will have smaller diffoaclosses.

The aforementioned estimate of diffraction losgesorrect for large
Fresnel numbers, but because the field distributiva real resonator is not
uniform and drops rapidly at the edges, the adfiffdaction loss is in reality
less than predicted by Eq. (1.73). Consequently/etimate of the tendency of
dependency of the diffraction losses from the Feesomber is more correct.

18
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Chapter 2

Fox—Li mode development analysis and a

matrix method

In this Chapter we will consider the well-knownteigral iteration
algorithm for intra—cavity field simulation, namellge Fox—Li algorithm [2.1,
2.2] and a new method (matrix method), which iseda®n the Fox—Li
algorithm and can decrease the computation tintsotf the Fox—Li algorithm
and any integral iteration algorithms.

In general, the time taken for the calculatiorthe weakest part of the
integral iteration algorithms. Consequently, thevedepment of mathematical
methods is an important task which will decreagedbmputation time and can
strongly simplify the solution. In this Chapter wal present a novel method
which can considerably decrease the computatioa tifrthe integral iteration
algorithms, without loss of precision.

The method which we will describe below can bedule any class of
integral iteration algorithms which have the sanmaécuwdation integrals, with
changing integrants (where the integrant is thiel fi¢ the light wave in the case
of the Fox-Li algorithm (see Sec. 2.1), IFTA (se.S2.2), and screen method
(see Sec. 2.3)). The given method appreciably deesthe computation time
of these algorithms and approaches that of a sitegktion computation.

2.1 Fox—Li algorithm

The Fox-Li algorithm is used for computing the atavity field. For that we
have to calculate the field on one of the mirrdnotigh the Fresnel integral,
with a random field (the simulation of random prexzef mode development by
spontaneous emission in the active medium of a)lasethe opposite mirror
(see first part of Eq. (2.1) withy(X) —random function), and then we have to

calculate the field on the opposite mirror takingpiaccount the previous field
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using the same Fresnel integral and so on, uilrttra-cavity field approaches

a steady state (see Fig. 2.1).
uy(&,L)= \/ﬂl:fu,,(n) xp(—r (1~ £’ )

u, (17) u,(£)

N iterations

uy (7,1) = \/%jug(f) oxp(— (5 1))

Fig. 2.1. The illustration of Fox—Li method.

The number of iterations of the Fox-—Li algorithmpdads on the Fresnel
number [see Sec. 1.5]. In the case of small Fresmaber for a given resonator,
we will need less computation iterations to apphotie steady state and vice

versa.
2.2 Matrix method

The central idea to the so—called Matrix Methodrapph is to note that only
the integrand of the two propagation integrals (doe each direction) is
changing on each pass of the resonator, and ndtetime| itself. Therefore, if
the transformation of a field on passing througle ttesonator could be
expressed as the product of two matrices — oneesepting the starting field
and the other the transformation of that field +ydhe former would have to be

calculated on each pass, and not the latter.

u(x)

Fig. 2.2. lllustration to the matrix method devmiwent.
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To illustrate the method, consider sub-dividingwd mirrors intoN parts
each with sizé\x=2X,/N for mirror M, and,Ax=2X3/N for mirror M;, whereXis
the radius of the respective mirrors.Ak is small enough, then the fieldx)
across that segment of the mirror may be assumbd tmnstant (see Fig. 2.2).
We can now divide the Fresnel integral into a sumntegrals over each
segment of mirror. As each segment has constanlitad® (albeit a different
constant), this term may be removed from the itegrhich in the case of

propagating from mirroM, to M1 becomes [2.3]:

w0 = [uten ~L b -2 ) o

N Xo-(+Dax = -
=) Uy(X, —ilx) I — exp{—— (xl2 — 2% %, + xzz)jdxz.
& it VAL

Since the integrant in Eqg. (2.1) does not changle the changing field,

2.1)

we may express Eq. (2.1) in matrix form as

where
Uy (Xy)
U = | uy(Xy—ndx) |, (2.3)
Uy (—Xy)
Uy (X3)
U, =| Uy(X, —n4x) |, (2.4)
Uy (=X5)
Ty T o Ty
T21 T22 :
T= . e (2.5)
TNl . . . TNN
and

X, ()M [— .
T = 2 } L ex —ﬂ(xz—Zxx +x2) dx (2.6)
ij AL AL 1 172 2 2 . .

X, —ndx
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This approach dramatically decreases the compatdtme, since the
elements of the transfer matrik, need be calculated only once. If the mirror

segments are sufficiently small we may further pedthe Riemann integrals in

. i i 77
T = lim T = /xex;{—x(xf—2xlx2+x§)jdx, (2.7)

and thus decreasing the computational time furthEor a non—symmetrical

Tas

cavity, as is the case in this study, one is reguto calculate the forward and
reverse propagation matrices separately. The matigdalso be extended to
multi—element resonators by application of a slatabollins integral [2.4] in
Eqg. (2.1).

For the first step of the matrix method (see Ej6)) the complex
amplitude of the optical field is taken to be apqmuately constant, but for the
second step (see Eq. (2.7)) this consideratiomaidaquate. The integrands of all
Fresnel integrals of matrik need to be constant. In most cases, this willllysua
lead to an increase in the matrix sizes. Consetyyentorder to decide which
representation we have to choose we must analyseébe¢havior of all the
integrands and the amplitude functions. For examfdesimulate the field
behavior in an open resonator with mirror diametgrd cm and a distance
between the mirrors of 0.3 m at a wavelength 064.am we have to divide a
mirror into 10 parts. This will give us a good description oftkiystem by the
Fresnel matrix (see Eq. (2.6)) which will consi$tl6° elements. At the same
time, to describe the same system by the integeal Fresnel matrix (see EQ.
(2.7)) we must have f@livisions at least and consequently &@ments.

All calculations of the Fresnel integral employithg Fox-Li method, have been
presented as a multiplication of two matrices atgl the computation time of
the field distribution inside the resonator decesagnd takes approximately the
same calculation time as the Fresnel integraafsingle pass.

If we write the matrices for the forward and backivaropagation directions
inside the resonator & and T, respectively, then the characteristic integral
equation for any resonator system can be presemtdte terms of the matrix

method as:

Al, =T,T, i, . (2.8)
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Eq. (2.8) has solutions if the determinantl T, T, is zero; consequently all
eigenvectors ofT;T, represent the possible resonator modes, while all
eigenvalues represent the losses with phase shifiése corresponding modes.
The method was applied to the computation of a &@&sauss, Flat-Top and
Gaussian cavity and it decreases computation tirheFax-Li method
considerably [4.13, 5.13, 5.15 and 5.17].

2.3 Other applications

Generally the matrix method can be adapted to rigral iteration algorithms.
In this Chapter we will consider two well known raéon algorithms: the
popular iterative Fourier transform algorithm (IF)TAor diffraction optical

elements (DOE) shape calculations [2.5] and thesephscreen method for
generation of turbulence transformation of the agitifield based on Noll's

representation of near field Kolmogorov phase modliion [2.6].

2.3.1 Iterative Fourier transform algorithm

The given algorithm was applied to a well known wlap method of

computation of surface profile (phase pattern) @BEDknown as the iterative
Fourier transform algorithm (IFTA). The general cigstion of IFTA algorithm

follows. The intensity distribution, which can basian or otherwise, formed
from the incident beams and the initial random aefprofile of the DOE are
first determined. After the beams have propagate tgiven point (image
plane) using forward Fourier transformation (FFT)e amplitude only is

replaced by the amplitude of an ideal intensityrdiation. The beams are then
propagated in the reverse direction using reveaegi€r transformation (RFT),
the altered surface profile is left as is, and @neplitude is replaced by the

amplitude of a Gaussian intensity distribution andn [2.5, 2.7] (see Fig. 2.3).
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DOE side Image plane side

Amplitude

Propagation

f Replacement
Replacement
by the incident distribution
amplitude
distribution ’

Back propagation

by the target
@ amplitude !

.
&
E

Fig. 2.3 The Iterative Fourier transform algorithm.

As we can see in the given case we have to cédctdavard and inverse
Fourier transformation every pass of the itera@gorithm. Consequently we
can apply the matrix method, described above, btite given case we have to
find two integral matrices: one matrix is for fomsdlatransformation and the
other is for inverse Fourier transformation.Intégraatrices for the one
dimensional case for forward and inverse Fourgmdformation which take into
account the approximation of a practically constartegrand (see above
method) will be:

[FRETI F P FRRTY
a
™21 1722
B-=| . ) L ) (2.9a)
| "N Y
where
a exp@kf)
5 =——>exX x )AX

Or for inverse Fourier transform:
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2 _ exp(kf)

g1l \/W

Kk
| expi Ixj X )AX. (2.9¢)

2.3.2 The simulation of turbulence transformation éthe optical field

To illustrate the method we can consider one motegral iteration
algorithm for the simulation of the atmosphericbtuence. This is the phase
screen method for the generation of turbulencestemmation of an optical
field. The phase screens will be calculated by ogmsing the phase function,
where the phase function represents the nearKielishogorov turbulence phase
transformation. It is decomposed into a series efnike polynomials by
following the Noll representation of Zernike coeiéints for the Kolmogorov
view of the statistic structure function [2.6]. Tgenerate the phase and
amplitude transformation of the optical field owecertain propagation distance
we will use a phase screen technique which is basethe division of beam
paths into parts for which we can consider theatem of optical field as a near
field transformation. Consequently, to producedptcal field modification we
can apply the Fresnel transformation as well astiptichtion of the initial
optical field by the Noll representation of turbute phase change on every part
of the division.

From the above discussion we can now see thatafdn part of the optical
path we have to calculate the same Fresnel intdgualonly change the
integrand, namely the optical field, by multiplyinmy the turbulence phase
change. We are now able to use the matrix methsdritbed above. We can
simulate the Fresnel matrix once and all the fieldifications during
propagation will be represented by the multiplicatof three matrices, namely
the constant Fresnel matrix and two varying madritke phase transformation

turbulence matrix and the amplitude matrix:

A, = ATB, (2.10)
wheret is the number of phase screefiss the complex amplitude matrix, is
the phase transformation turbulence matrix Brid the Fresnel transformation

matrix.
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2.4 Conclusion

In this Chapter a method was presented which deeseeomputation time of
integral iteration algorithms by the examples afhblBox—Li method and IFTA.
This method was applied successfully by the authoalculating Bessel-Gauss,
Flat Top, Gaussian and Bessel-like beam cavitie43[45.13, 5.15 and
5.17].The speed of calculation of this method apphes the speed of
calculation of a single pass of the integral iteratalgorithm. For the case of
Fox—Li algorithm the method is able both to redtive calculation time and
able to show the transverse field distributionlbpassible resonator modes and
the losses with phase shift for these correspondiiodes as well (see Eq. 2.8).
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Chapter 3

Petal-like modes in Porro prism resonator

To overcome misalignment problems and to raiselgabf resonator systems,
Porro prisms can be used instead of resonator reirftie employment of Porro
prisms leads to unique behavior of the output bgaofile. For this type of
cavity the influences of losses on the apexes efRtbrro prisms and the angle
between them have a dominant influence on the \tesiss intensity profile of
the output beam. Consequently we have one of teescaf amplitude intra—
cavity beam shaping. In this Chapter a new apprdaanodeling the spatial
intensity profile from Porro prism resonators ispused based on rotating loss
screens to mimic the apex losses of the prismaurAanical model based on this
approach is presented which correctly predicts dligout transverse field

distribution found experimentally from such resamsat
3.1 Introduction

Right angle prisms, often referred to as Porronmsishave the useful property
that all incident rays on the prism are reflecteatko parallel to the initial
propagation direction, independent of the anglenoidence. Thus an initial
planar wave front remains planar after reflectiofhis property was initially
exploited in Michelson interferometers to relax thkerances on misalignment,
and then proposed in 1962 by Gowdt al [3.1] as a means to overcome
misalignment problems in optical resonators emplgy+abry—Perot cavities by
replacing the end face mirrors with crossed roams. Lasers based on this
principle have been developed over the years [362-8ith a review of the
basic concepts and literature for Porro prismsifipalty found in [3.7]. Much
of the theoretical work to date has focused on ggnmmethods to model the
inverting properties of such resonators [3.2—-3m] polarization considerations

to account for internal phase shifts and outpuapmdtion states [3.6,3.7]. In
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[3.2] the prism was modeled as a ray deviator Ipjagng an imaginary mirror
some distance behind the prism. The model coyrexitounted for the beam
direction, but did not account for the complex diedistribution found
experimentally from the laser.

In [3.4] the relative change of the beam pointilimgction for a misaligned
Porro prism resonator is analyzed. A concept obwllation axis for the Porro
prism resonator is introduced to find the beamatioa. Expressions for the
beam tilting angles are deduced. They predict tt@tangular misalignment in
the horizontal direction will lead to beam tilting both the horizontal and
vertical directions.

An electro-optically Q-switched Nd:YAG laser restor that uses two
end prisms placed orthogonally perpendicular tdheastber has been designed
in [3.6]. This configuration improves the stabiliy the resonator and does not
alter the characteristics of the electro-opticasv@tch. The out—coupling ratio
of the cavity is optimized by a change in the azlmlu angle of a phase-
matched Porro prism placed at one end of the cavhg prism placed at the
other end of the cavity is designed so that itodtices a phase change of P,
regardless of its orientation and index of refi@ttiresulting in a more efficient
and stable cavity.

The physical optics models fail to account for thee field pattern found
from such resonators [3.3, 3.8]. In [3.3] for exden the kernel of the Fresnel-
Kirchoff diffraction integral contains only the ogdl path length experienced
by the beam, thus treating the prism as thoughettewacting like a perfect
mirror, with an identical ABCD matrix representatialbeit incorporating the
inverting properties of the prisms. This approagipears to be the preferred
model for prisms, even though it does not explaan ¢complex transverse field
patterns found in Porro prism resonators. Thisa igcurring problem in the
literature, with only a hint at a solution offergd[3.8] and [3.9], where it was
proposed to treat the field patterns as a resutliffactive coupling between a
linear combination of sub-resonators. Anan’ev [3.8) considering the
theoretical properties of resonators with cornebecyrisms, specifically
mentioned the influence of bevels of finite width the prism edges as a

possible explanation for a tendency for distincigitudinal sectors to oscillate

28



3. PETAL-LIKE MODES IN PORRO PRISM RESONATOR

independently, but did not go on to develop the&aidhto a model which could
be used to explain experimental results.

In this Chapter we outline a new method for madgthe transverse field
patterns observed from crossed Porro prism resand®11]. The model
departs from earlier attempts in that the prisnesnaodeled as rotating elements
with amplitude and phase distortions, and incongsréoth physical optics and
geometrical optics concepts. The model is develapeSection (3.2) and its
properties discussed, and then applied in Sect®B) (to the case of a
marginally stable crossed Porro prism resonatoh w&ifpolarizer as an output

coupler.

3.2 Porro resonator concept

A typical Porro prism resonator is shown in Figl.3Consider for the moment
only the two Porro prisms and how they impact oa fhropagating field.
Imagine viewing the resonator along its length frome prism (elemenih)
looking towards the other (elemeaj. On encountering a prism, the field
inverts itself around the prism apex, and reveltegpropagation direction,
traveling back towards the opposite prism. Theesamersion and reversing of
propagation direction takes place again, and #gience repeats on each pass.
The prisms would essentially be treated as pem®ctors but with a field

inverting property.

Fig. 3.1. A typical Porro prism based Nd:YAG laseith passive Q-switch, showing the
following optical elements: Porro prisms (elemeatand h); intra—cavity lenses (elements b
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and g); a beamsplitter cube (element c); a quavtere plate (element d), and a passive Q-
switch (element e).

Our approach to modeling a resonator containingaPaisms is to describe the
prisms as standard mirror elements, but with aasediamplitude and phase
screens, as illustrated in Fig. 3.2. These scraenh®sn the incoming field by
modifying both its amplitude and phase by meana siitable optical transfer
functiont(x,y):

Uout (X Y) =Ujn (X WX, Y) = U5, (X Y) A(X, y) exp (X, ), (3.1)
where A(x,y) describes the amplitude effects a@(k,y) describes the phase
effects of the prism respectively. In the casead?orro prism, the amplitude
screen introduces losses not only at the edgeshefetement (transverse
confinement), but also at the small but significkatvel along the apex where
the prism surfaces meet. The phase screen allawthdooptical path length to
vary as a function of the input position on thespriface, for example, to model
errors in the prism angle or fabrication errorstio@ prism surfaces. With this
approach, the diffractive effects of the prisms taleen into account, and the
screens can be treated as intra—cavity elemerttsithage the eigenmodes of a
standard mirror—mirror resonator. Here we emploly ahe amplitude screen
approach to model perfect prisms with high losskere the prism edges meet.
The transfer function for the new prism model thestudes only the amplitude
effects,t(x,y) = A(x,y), and describes a high loss region along the apdke

prism, with 100% losses, and no losses elsewhetenwine clear aperture of

the element.
Amplitude Phase
screen screen
. Final
Initial .
field field

Fig. 3.2. lllustration of the effect of phase antknsity screens on an incident field.
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A geometric approach is useful in understandingsgmemetry and repeatability
of the resonator modes: consider a propagatingieayed along the optical axis
and assume, without any loss of generality, thatRbrro prism (PP) closest to
the observer has its apex in the horizontal plarele the opposite PP has its
apex rotated at some angte from the horizontal, which we will refer to
henceforth as thBorro angle By way of example, we consider the caseref
60°, as illustrated in Fig. 3.3 (a—e). In the gs@l to follow the pertinent
information is the location of the prism apexesjchitwe illustrate as solid lines

1 and 2 in Fig. 3a, corresponding to eleménamda in Fig. 3.1 respectively.

(5}

N N ® \ ® \ ® \ ®
\\ a ® ® N ® 1 ) ® ® N ® 1
\ ! \a ! 1
\ \ \ ©/ \ N O
\ \ @ ® ®
a b c d e

/OX 20 L OX N LQ

£ ®), S W ®), N} ONIST®)
Y S \\%\\ //:\2/\\ & //:\%\\G
J JN® SgS X058

Fig. 3.3. (a) — (e): Evolution of a ray as it ifl@eted back and forth in the resonator, for starti
Porro anglex = 60°. After 3 round trips the pattern is complét) and starts to repeat. (f) — (j):

Equivalent case but witkr = 30°, and now taking 6 round trips for completion

We havea priori knowledge of how the mode will develop, and hertag svith

a ray located as shown in Fig. 3.3 (a), travelimgyafrom the viewer towards
PP 2. We have chosen this location based on thergdion of high loss along
the apexes, thus avoiding the apex zones. At #f Pay is inverted about the
prism apex, and travels back towards the vieweallghrto the optical axis as
indicated in Fig. 3.3 (b). At PP 1, the ray isened about the prism axis, and
travels back towards PP 2 (see Fig. 3.3 (c)). Phixess continues until the
complete pattern is created (see Fig. 3.3 (e)), tardray has returned to its
starting position. This happens after three roumpst Clearly subsequent
reflections simply duplicate the pattern. A secemdmple is shown in Fig. 3.3
(N — (), where we illustrate the case a@f= 30°. The same propagation rules
apply so that eventually, after six complete roun@s the pattern starts
repeating itself. Clearly this approach correcthedicts the observed petal
pattern formation often observed from such ladeus,this is based oa prior
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knowledge and not physical reasoning. Also, tipipraach is only useful for
limited Porro angles.

An alternative approach, which is more useful indelmmg such a resonator, is
to consider that since losses are introduced dmdield from each prism apex,
and the field is then inverted, one can view theasion as the amplitude screen
being inverted after each prism reflection. Frdme wiewpoint of the field
traveling inside the resonator, the equivalent yoeetis that of the field
remaining inversion free, while the prisms themsshnvert after each pass,
essentially appearing to rotate by an amount degpgnuh the Porro angle, and
hence the main area of losses (the apex edges)aplsear to rotate. An

example of this rotation is shown in Fig. 3.4.

Fig. 3.4. The apexes of two Porro prisms at anglesid¢. Initially the apex of PP 1 is in the
horizontal plane (a), but after successive refbetiabout the inverting edges of the two prisms
the apex will appear to be rotating about the eirfl) 1 pass, (c) 2 passes and (d) 3 passes.
In order to develop a physical optics model basethes approach, we need to
have expressions for the equivalent picture ofrtitating prism apexes (high
loss areas). Consider the rotation of the firstapBx, which we shall denote
with the subscript 1, whose position on the ciiol&ig. 3.4 we describe by the
vectorvy = (xg,y1) with angular displacement given lgy. The region of high
loss is then simply a line passing through theiongth slopeyi/x;. Without
any loss of generality we will assume the resoniaterewed such that the first
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PP has an edge parallel to the horizontal axi$ thié second PP rotated at the
Porro angle, as illustrated in Fig. 3.1. It isyeas show that aften reflections

this vector has rotated through an an@l@) given by:
6,(n)=(-)"2na, (3.2)
where a is the Porro angle. The angular position of théctor aftern

reflections can be found from:
A => 80 = 2h- (" aran]. (3.3)
i=0

Prior to any reflections the apex of the first priss at@(0) = 0, so that if we
imagine the apexes rotating about the unit ciritlen the vectowi(n) may be

expressed as:

(3.4)

V() = (cosqal(n) —sin qq(n)}(lj |

sing (n) cosg(n)
Similar expressions can be derived for the secdh@pex, which we state here
for the convenience of the reader:

6,(n)=(-)"2na, (3.5)

p()=a-2h- (e an), (3.6)
_(cosg,(n) -—sing(n))1

VZ(n)_(sinqzz(n) cosg, (n) J[ j (3.7)

Note that the notation has been selected so tkaiitial positions of the two

apexes are given by:

v, (0) = @ (3.8a)
cosa
v, (0) = [sina} (3.8b)

with corresponding initial apex loss regions alogag= 0 andy, = (tam) X;
respectively.

A consequence of this model is that only at sorserdte starting angles, will

the rotating edges repeat on themselves. At theglesthe field is finitely sub—
divided by the prisms losses, and it takes a gertamber of passes for the sub—
division of the field to be complete. The resultifigld is then made up of a
circular pattern of spots which we refer to as Iseta as a petal pattern. At
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other angles, the edges never repeat on themséhessinfinitely sub—dividing
the field. With this formalism we are able to fitlte anglesa at which these
repeating patterns manifest themselves, as wehe@sumber of sub—divisions
(or equivalent, number of petals) that will be alved. Consider for example
the first Porro prism apex. It will return on itisevhen vi(n) = v;(0), which

leads from Eq. (4) to the relation:

cosg(n) -—sing(n)) (1 O
(sinqpl(n) cosg (n) j_(o lj' (3.9)
This will be true when
@ (n) = %[1— -D" @+ 2n)] =i2m, (3.10)

for any integei. By selecting only the positive solutions f@rone can derive a
simple expression for the initial anglesthat will lead to a finitely sub—divided
field (or repeating pattern from the geometric i@mt):
i 71

a= o (3.11)
for any positive integers and m. The same result can be derived by starting
from vectorv,. The implication is that only at these specifiglas a will the
field be finitely sub—divided, thus leading to somegions with low loss for
lasing. In addition, since the position of thesb-glivisions remains stable (i.e.,
they repeat on themselves) after a certain numbeownd trips, the modal
pattern that oscillates inside such a resonatdmuié rise to a petal patteonly
at those angles given by Eq. (3.11). At other Pamgles the high loss apexes
will continuously rotate to new positions, thusuitisg in high losses across the
entire field. We can now go on to calculate hownynpetals will be observed
for a given Porro angle. The number of petals will be equal to the nundfer
sub—divisions of the field, but the field may na tompletely sub—divided in
one complete rotation of the vector; it may takeesal complete rotations for
this to happen. We note that the sub—divisions nat necessarily be equal to
the Porro angle; when several rotations of arourel dircle are needed to
complete the sub—divisions, it is likely that threabetween the initial apexes
will be sub—divided further. In general, write tfedlowing expression relating

the Porro angle to the total number of sub—divisifpetals) of the field:
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a _2n

T = N (3.12)
The validity of this is evident from the followingeuristic argument: The
complete circle (2) divided by the total number of sub—divisiddsnust return
the angle of each sub—division. If the sub—divis@completed in one rotation,
then the sub—division angle will equal but if more complete rotations are
needed, then this will result i itself being sub—divided by integer amount,
Thus both the left and rand hand sides of Eq. [3d@resent the same quantity
— the final angle of each sub—division. A simmarrangement of this equation
then yields:

j2rr

N :’7, (3.13)
Since each reflection may only increase the nuniifersub—divisions in
multiples of two, we deduce th& must be an even number. The positive
integerj now appears to take on the meaning of the numbeoraplete cycles
required to return the apexes back onto one anothiepresent we cannot offer
a simple analytical method of determining but can offer the following
conditions: (i)j is the lowest positive integer such thais even, and (ii) < i.
Egs. (3.11) and (3.13) are predictions as to wimdial anglesa will result in
stable petal pattern output, and how many petdlsdo@iobserved in the pattern
respectively. A plot of the allowed angles forglgiattern formation together
with the number of petals that will be observedhiswn in Fig. 3.5.

Since the sub—divisions divide the circle filyifehe angle subtended by each

sub—division is given by:

_2n_a

[/ij'

(3.14)

Thus the more complete rotations needed to comphetgattern, the smaller
the angle of each sub—division. The simplest aséheni = 1; thenj = 1 and
the circle is divided into divisions af. For highelj values the lossless regions
between the high loss sub—division lines becomdlsntaus although there is
an infinite number of solutions fo that lead to finite sub—divisions of the
field, if the number of divisions is too large, fdifction will blur the spot

structure and no petal pattern will be observed.
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Fig. 3.5. Plot of the discrete set of anglethat give rise to a petal pattern, with the
corresponding number of petals to be observeda Baltulated for nil [1,100] and i [1,50].

Taking this into account, and considering the ddfron of a field propagating

between areas of high losses, it is reasonablegpase that the approach and
theory presented here is the explanation for theemfed (and sometimes not
observed) petal patterns from Porro prism resosat®he governing equations
for the onset of petal patterns and the numberetdlp observed are given by

Eqg. (3.11) and Eq. (3.13) respectively.
3.3 Test resonator

The Porro prism resonator investigated in this wtigdshown schematically in
Fig. 3.1, and was based on a flash lamp pumped A@:Mser with passive Q—
switching. The active medium was a 50 mm long Md5Yrod of radius 3 mm.
Two Porro prisms at either end of the laser forntesl resonator, replacing
traditional mirrors. The stability of the resonatwas determined by the two
intra—cavity lenses near the prisms, but in oureexpent as well as in the
numerical model no intracavity lenses were useelding a marginally stable
resonator. The resonator was confined in the texssvdirection by the clear
aperture of the optical elements, such as lensessng and gain rod, but also by
inserted apertures not shown in the figure. Theerlavas pulsed using a
Cr*":YAG passive Q—switch. A quarter—wave plate togethith a polarizing
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beamsplitter cube ensured variable output couplimgm the laser by

polarization control (by rotation of the waveplateby rotation of the prisms).

3.3.1 Experimental set-up

The assembled laser used in our experiments isrsiowig. 3.6. The spatial
intensity profile of the laser output was measweshg a CCD camera (model
COHU 4812). The temporal characteristics were aete with a silicon
detector coupled to a 5@ impedance, and displayed on a two channel
oscilloscope (Tektronic TDS 360).

Fig. 3.6. Photograph of assembled laser. The b@étas cube and one of the Porro prisms can

be made out on the left of the assembly.

3.3.2 Numerical modeling

The laser was modeled as the complete resonaterasgngain, using the Prony
method [3.10]. A beam array size of 182824 was used, and the modal
build—up modeled until the losses per round trgbsized to within 0.5%. The
Porro prism resonator was modeled by successiveepdhrough a folded—out
resonator using the approach described in SecBo?).( Each prism was
assumed to be equivalent to a perfect mirror sogmsed on a rotating loss
line (see Fig. 3.2), with the rotation of the l@egion for prism 1 given by Eq.
(3.3) and that for prism 2 by Eq. (3.6).
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3.4 Results and discussion

Using Egs. (3.11) and (3.13), the finite sub—dosisof the field is predicted at
anglesa = 67.5 and a = 77.14, with associated petal numbers of 10 and 14
respectively. No finite sub—division is expectédna= 79.0. These cases are
shown in Figs. 3.7 (a) — (c) respectively, wheeeltdtations of the prism apexes
are shown around the unit circle after several heshdotations. In insets (a)
and (b) the apexes are clearly repeating on themselesulting in a stable
pattern, whereas in (c) the field does not resukliny lossless regions because
of the non—repeating apex positions. This laiteaton prohibits the formation
of a stable mode since all regions have high logsle the former scenarios
could potentially support lasing in the lower losgions of the field.

The numerical model of the resonator confirms {see Figs. 3.7 (d) — (1)),
showing a stable mode pattern for= 67.5 anda = 77.14, with the correct
number of petals (10 and 14 respectively) as prediby the theory. Atr =
79.0° the output mode never stabilizes and results iandom field with high
losses. Experimental results verify these findivgsh petal patterns occurring
when they shouldd = 67.5 anda = 77.14), and with the correct number of
petals: 10 and 14 respectively (see Fig. 3.7 (d)@y. Ata = 79.0 no petal
pattern was observed experimentally, in agreemeith whe theory and
numerical model, with the camera image showingtiime averaged intensity
from the laser. Thus the theoretical, numerical experimental results are all

in very good agreement.
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Fig. 3.7. The analytical model depiction of finitedub—divided fields in (a) and (b), and an
infinitely sub—divided field in (c). Numericallyis results in a pattern with (d) 10 petals, (e) 14
petals and (f) no petals. The corresponding erpanrially observed output is shown in (g) — (i).
The anglesr for which an output beam existed for the testdagere limited to
between 63 and 87. The absence of output below°68as due to increased
misalignment between the Porro prisms with decngaangle away from 90
(the crossed case). It should be noted that this avparticular artifact of the
resonator under study, and is not a general prpmérPorro resonators. The
absence of output above “8Was due to two effects: (i) the output coupling
method of the given cavity: at 9(crossed Porro prisms) no output existed
because cavity losses were 100% due to the pdi@anzbased output coupling
method; and (ii) near 9Ghe number of predicted petals increases verydhapi
with Porro angle. Since this reduces the availddle loss area for the each
petal, either no petals are observed due to theremtly high losses, or the close
proximity of the petals leads to blurring due térdiction.

The available experimental data at selected angissshown in Table 3.1, and

is in excellent agreement with the theoretical ancherical predictions.
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Experiment Theory

a N a N
68° + 0.5 16 67.5000 16
72°+0.5 10 72.0000 10
77°+0.5 14 77.1429 14
80°+0.% 18 80.0000 18

Table 3.1. Petal pattern observations: theory apémment

In addition to the experimentally verified petdlse numerical model was used
for extensive tests on the analytical predictiohSection (2). Fig. 3.9 shows
examples of some results, with the analytical mtesh of the stabilized sub—
division of the field shown in the top row, withreesponding petal patterns
calculated numerically shown below. The top row Fif). 3.8 shows the

calculated apex positions after rotation by Eqs4)(@and (3.7), after a stable
pattern has emerged. The model correctly predittbe salient features of the

petal pattern.

Fig. 3.8. Analytically calculated sub—division diet field using Egs. (3.4) and (3.7) (top row),

with corresponding petal patterns calculated nuradyi using this model.

Associated with an increase in the sub—divisiotheffield is an increase in the

loss per round trip inside the laser cavity.
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Fig. 3.9. Plot of the round-trip loss as a functiéthe number of petals as predicted by the
numerical model.
Fig. 3.9 shows that the stabilized round—trip legserease nearly linearly with
the number of petals in the petal pattern over ridagion that one might
reasonably expect to observe petals. This is altieet ever decreasing low loss
area as the sub—divisions become closer togeffes. places restrictions on the

allowed Porro angles can actually be observed expetally from such lasers.

3.5 Conclusion

We have presented a new approach to modeling Roism resonators that
combines geometrical and physical optical aspete have shown why such
resonators must sometimes generate petal-like rpstteand given the
generating equation for the prism angles at whicé will happen. The results
are confirmed experimentally on a test resonatarialble output coupling
based on rotating the prisms is often employedabutas been shown here, this
will have a significant impact on the output modani the laser, affecting laser

beam propagation, far field laser intensity ané@iddsightness.
Appendix (Double pulse)
By serendipity we noticed that in some experimentecond pulse of energy

delayed in time was observed, occurring roughlyp®5after the first pulse.

Further investigation revealed that the occurreatdéhe second pulse was
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always associated with a change in the spatialn&ite pattern from the

resonator. It was found that the observation ofsieond pulse was a function
of the gain of the laser: below a threshold pumyelleio double pulse was
observed, while above the threshold two pulses wensistently evident. The
single pulse intensity profile fits well with thefal model previously described,
while the two—pulse time averaged intensity proilesimilar to that predicted,

but with an additional ring—like structure in thentre of the pattern (see Fig.
3.10).

Fig. 3.10. The transverse field distribution, wig) two and (b) one pulse. The angle between
the Porro prisms is 13 degrees (giving 14 spots).

We suggest that this additional feature in the tlttulse intensity profile can
be explained by the fact that the first petal-lkdse leaves a region of excess
gain in the centre of the Nd:YAG rod, allowing lagito continue for modes
with much higher losses, hence the delay in outfdiite continuous band may
be due to diffractive smearing of the very closéalse It also hints at the
possibility of perhaps more complex modes that oanillate inside such

resonators.
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Chapter 4

Bessel-Gauss resonator with internal

amplitude filter

In this Chapter we present a combination of botlplaode and phase beam
shaping inside a cavity, namely the deployment sifiitgable amplitude filter at
the Fourier plane of a conventional resonator gométion with only spherical
curvature optical elements, for the generation efdel-Gauss beams as the
output. For this type of resonator, both the cdrestection of amplitude filter
size and radius of curvature of the mirror affdoe tresulting output beam
profile. We analyse the loss behavior of the oddl @en modes, and show that

the lowest order Bessel-Gauss mode does not neibebsae the lowest loss.
4.1 Introduction

Bessel beams (BBs) represent a class of so—caliedction free solutions to
the Helmholtz equation, and have been studied sitely since the seminal
work of Durninet al in the late 1980s [4.1-4.3]. Of more practicdévance
are Bessel-Gauss beams (BGBs), which are spatidllyte BBs confined by
a Gaussian envelope in the transverse spatial ,plaag&ing them spatially
finite. These beams are easily generated extemmathé laser cavity by
illuminating an axicon with a Gaussian beam, aridrad good approximation to
the properties of true BBs. A recent review of BBxl BGBs as well as their
applications and reconstruction properties carobed in [4.4, 4.5].

Intra—cavity generation of BGBs has been succlgséhhown through
various techniques using non—conventional elemémn{d4.6] a new method was
proposed for BB generation by means of a confoesbmator with an annular
active medium, and an estimation of the size of‘thi#raction—free” zone was

presented. A proposal is made to apply a Besseh lteaaccelerate a beam of
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charged particles. Based on the simple interpoetatf Bessel beam as a
transverse standing wave formed in the interfereegeon between incoming
and outgoing conical waves, was proposed in [4t7]optical resonator that
supports modes that are approximations to Bessaksdaeams. Axicon—based
resonators were independently proposed by Rogelz&ait al [4.7] and Khilo
et al [4.8]. The axicon—based resonator supporting @asedes in [4.8] was
composed of two plane mirrors with an axicon plackede to one of them, and
it was shown that if the axicon adjacent mirror wascave, then BGBs were
produced. Analytical expressions relating paramsetd the resonator and
characteristics of its modes were obtained andyaedl The resonator scheme
was implemented in an experiment to confirm thesiility of the generation
of zero—order Bessel beams. In [4.9] the propedfes Bessel-Gauss resonator
design which was proposed in [4.7] was examined, explained the bell-
shaped modulation imposed on its lowest-order moderms of an equivalent
linear cavity. An unstable cavity was proposed limieate this effect, and
obtain modes whose intensities resemble a true eBdaaction along the
diameter of the defining aperture of the resonaftbe use of intra—cavity phase
conjugating mirrors for BGB generation was showr[4rl0]. More recently
axicon—based BGB resonators with concave outpupleosi were considered
[4.11] using both geometrical and wave optics apphes, while unstable
axicon—based BB resonators with convex output @uplas presented in
[4.12]. In both cases special attention was dickdtethe dependence of the
output transverse profiles, the losses, and theamoequency changes on the
curvature of the output coupler and the cavity tend\ simple and compact
laser source that directly produces a Bessel-Glae@s was demonstrated in
[4.13]. The laser resonator consists of a diodefmmdped Nd:YAG crystal, a
planar mirror, and a diffractive mirror designed gbase-conjugate only the
lowest-order Bessel-Gauss beam.

We present a conventional (i.e., not axicon—baseafocal resonator
configuration for the generation of BGBs [4.14].eTmirror parameters are
selected so as to form a Fourier transforming pafren combined with an
internal amplitude filter in the form of an annulaperture, the resonator is
capable of supporting BGBs of various orders. Ilchsa resonator the Gaussian

field enveloping the Bessel field determines théialamodes, while the Bessel
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field determines the angular modes. These twotime together give rise to
the potential for mode selection based on variapkrtures inside the cavity. In
Section 4.2 we introduce the resonator concept, @ider an analytical
approach to understanding the mode behavior irtsideesonator. In Section
4.3 we analyze the resonator using the round togriBr transform, and then
confirm the findings rigorously using the Fox—Li tned in Section 4.4. We

comment on the practicality of implementing thisicept in Section 4.5.
4.2 Bessel-Gauss Resonator Concept
4.2.1 Bessel-Gauss Beams

An ideal BB of orden can be described by [4.4]:
UBB(r1 Z, ¢) = AO expakzz)‘]n(kr r) equn¢)1 (41)
whereJ, is Bessel's function of order, k, andk; are the longitudinal and radial

wavevectors with k =k +k? =277/1, with A the wavelength of the

electromagnetic field, and z, and ¢ are the radial, azimuthal and longitudinal
co—ordinates respectively. In practice a BB rezpiian infinite amount of
energy to generate, and so Bessel-Gauss Beams (B&Bsused as an
approximation to study the properties of BB ovéinde extent.

A BGB is a BB described by Eq. (4.1) but modulateamplitude by a
Gaussian function, and can be expressed at its plaise as:

Ugge(r.@) = %Jn(krr)exr{ Jexpdncb) , (4.2)

Wo
wherew is the Gaussian &7 radius at the waist. After propagating this fiald

distancez one can easily show that:

_ Wy krr _ r2
Upce(, 2, ¢) = Ag w(2) J”[1+iz/zRJeXF{ WZ(Z)]

xexp{—{w%(z)— 2FI:ZZ) :|(|’ 2 + krzzz /kz)} expﬂn(b) eXpQ(ﬂ(Z)-)

4.3)

where
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@(2) =k z-arctang/ z,) and R(2) = z[1+(z,/2)? ] is the radius of curvature

of the Gaussian wavefront. The Gaussiaff b&mam radius at the distanzés

described byw(z) = w,/1+(z/z)” .

The constantr represents the Rayleigh range of the Gaussiath Beld is

an indication of the distance over which the figldy be considered collimated,

given by:
g

y -

R

Eq. (4.3) is valid when the starting BGB has a waig =0, i.e., the wavefront
is initially flat. It is equally valid to definehe propagation of the BGB with a

starting wavefront that has some curvatRyéor example by replacing Eq. (4.2)

by

Upgga(r. @) = Ayd, (k. r)ex —i exping) ex ik ® (4.4)
BGB\'» n\%™r W, 2R . .

We point this out since the field described by Eg4) will be shown to
be one of the modes of the resonator describedhi;m €hapter and its
propagation in the resonator will be studied iradet

4.2.2. Fourier Transforming Resonator

——
Q
(op

M1 R M2

Fig. 4.1. lllustration of the Bessel-Gauss resanafiirror M, is obscured by a disk of radias
thereby forming an annular lossless zone in theoreg < r < b. Each mirror has a radius of
curvature of 2and they are separated by a distancd.of 2

When the geometric parameters of a resonator avsechappropriately, the
spherical curvature mirrors act as a Fourier ti@msing pair. In particular, if a

stable resonator arrangement is employed with tawocave mirrors having
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radius of curvature equal to the resonator lengeh the oscillating field will be
Fourier transformed after each pass, so that aftercomplete round trip (two
passes) the field is reproduced. The resonator rmgope for this purpose has
identical end mirrors, each of radius of curvatdre 2f, and separated along the
optical axis by a distande= . A schematic of this resonator is shown in Fig.
4.1. Both mirrorsM; and M, are of radiusb, with M; having an additional
obscuration in the form of a disk of radiascreating an annular lossless zone
between the disk edge and the mirror edge. Thelanmhossless zone is a
significant factor in this resonator, and deseffuether discussion. It has been
shown previously [4.10] that when an intra—cavégd is inserted into a planar—
planar resonator such that the opposite mirrorseparated by one focal length
from the lens (with the lens in the centre of theity), then a Fourier-transform
relationship between the modal fields at the m&rm established. Such a
resonator was found to support Bessel-Gauss madtdess pointed out that the
modal discrimination of the resonator would be etge to be poor unless an
annular aperture is employed at one of the mirrdree resonator proposed in
this study is analogous to such a cavity, but wpherical mirrors forming a
Fourier—transforming pair. We will show in the 8exs to follow that the
annular aperture size)(and the mirror sizebj can be used as a mode selector
where higher order Bessel fields have lower logkas lower order Bessel
fields.

The field at mirroM; is uniquely defined by the lossless annular apertu
which if sufficiently narrow I — a — 0), will Fourier transform to a Bessel
field. Since mirrorM; is this Fourier transforming plane, the field disition
at M, would be the Bessel field. However the resonater propose also
supports Gaussian modes (we assume the dimendgiansar M, are such that
higher order Hermite—Gauss modes are eliminateatesihe mirror curvatures
match the curvatureR(2)) of the oscillating Gaussian field. So long &as t
Gaussian beam width encloses sufficiently many @&easros, a well-defined
annulus with an approximately Gaussian radial isitgndistribution can be
expected at mirroMs, in keeping with the concept of Bessel-Gauss dialsl a
superposition of conventional Gaussian beams wghcal axes distributed

uniformly on the surface of a cone [4.2]. Notettti®e resonator parameters

47



4. BESSEL-GAUSS RESONATOR WITH INTERNAL AMPLITUDBHIETER

(such as length and mirror curvatures) determiree @aussian mode that
oscillates, defining the radial modes of the resamavhile the apertures inside
the resonator determine the angular modes thataiscias will be shown later.

Both these modes play an important role in theyaisato follow.
4.2.3 Resonant Modes

While the above description also serves as a hmudasgument for BGBs as
modes of our resonator, it is instructive to shdhis more rigorously. We do
So in two ways: firstly, we have shown numericaligt BGBs of various orders
are eigenmodes of this resonator. We pre-empdiggeission later by pointing
out that a Fox—Li analysis of this resonator, stgrfrom a random noise field,

converges to various BGB orders, depending on déin@npeters o& andb.

® O)
a b i d e

Fig. 4.2. The BGB is formed in the shaded regiothefresonator, and changes in intensity as it
propagates through this volume. Five intensitytplare shown corresponding to planes (a)

through (e) within the resonator for the zeroth #&snode if = 0). The starting mode was
calculated using the Fox—Li algorithm with ten rdurips, Fresnel numbét = 6 anda = %b,

and then propagated using Eq. (4.6).

Fig. 4.2 shows intensity plota{e) of the zeroth order BGB during propagation
through the resonator after the mode has reaclstdaaly—state. The shaded
area in the resonator drawing indicates the regirere the BGB is in
existence, with its largest spatial extent at mileg (positione), finally creating

an annular ring at the opposite mirror (posit&)n This propagation is what is
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expected if the mode is a BGB. From the Fox—Lcgkations one can also
extract the phase of the BGB at the mirror (sayanivl, for example). This is
shown in Fig. 4.3, where the numerically calculgpddise matches that of the
mirror's curvature exactly, as expected. Thus wae conclude that the field at
mirror M is indeed a BGB, with a wavefront matching thevature of the

mirror, i.e.,R= 2.

15

10

phase

0 0.5 1.0 1.5
b [mm]

Fig. 4.3. Mirror phase as calculated from Eq. (4s0)id curve) as compared to the numerically

calculated phase using the Fox—Li algorithm (daiatg).

Secondly, we follow the approach detailed in [4.20 test more
rigorously if a BGB with a spherical wavefront is:1 a&igenmode of this

resonator. We start with a field just prior to eefiion off mirrorM:
Uy (r,@) = Agdn (k. r)ex —ﬁ exping)ex ﬁ (4.5)
2\ n\fy W% Af ) .

wherews, is the beam size on mirrdd, and is given byw, =37 % If the z

axis is defined to be = 0 at mirrorM,, and positive to the left (in the direction

of mirror M;) then the Gaussian mode will propagate symmelyiaout a
waist centered aty = f withw, :3%\/?. We can determine the complete

propagation of the field, by using the Fresnel diffraction integral in tloenh
[4.13]:

u(p, 2) = —i""(k/ 2)expikz) exp{K pzﬁuz(r)Jn(ﬂj
2z 5 V4

x ex £r2 ex —ir2 rdr,
2z 2f

(4.6)
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where we have assumed that since the resonatotaisonally symmetric the
modes are separable, and where we have made tise wkll known integral
representation of the Bessel functions:

2r

J.equxcosqﬁ) exp(ng)dg =i"273,(x).
0

The kernel of the integral includes phase modualily mirrorM,, which
we treat as a thin lens of focal lendthfollowed by free space propagation
through a distance The field at mirroiM; will then be given by (0) = u(po,
2f), thus

u (o) =- ”+l,0b(k/2f)exp(2kf)ex;{4 jjexp( (r/wz) )Jn (k. r)J, [k,ofrj

xex £r2 ex £r2 ex —ir2 rdr
4f 4f 2f

”+1A0(k/2f)exp(2kf)ex{4 jjexp( (r/wz) ), (k. r)d, [Z’Ofrjrdr.

By making use of the well known relation:

Texp(—azxz)Jp(aX)Jp(ﬂx)xsz%ex ? +f} ( ﬁj
: 20 4o 20

one can easily show that the field at mifvbris given by:

> 2.2
Uy (0) = —iAg Y—?eXpQZKf)ex;{—%Wg{kf + k“p :U

412
ikk W2 ik
x J 2 5 lexgd — p? |,
”( 4f p} {41‘/)}

Now we note that the required transfer functionrforror M, to support

4.7)

this mode can be found from:

where we have ignored constant phase terms. RBuistiprecisely the phase of
a spherical mirror of radius of curvature= Z, thus indicating again that the
various orders of BGBs are modes of this resonator.

It is worth pointing out here an interesting aspet this resonator.

Conventionally one would consider the Fourier tfama plane to be at = f
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and notz = 2f when using a mirror of focal length(or curvature of B.
However, the incoming field already has curvatwee(Eg. (4.5)), and thus the
effective focal length of the mirror to a planaiagk BGB field appears at 2

) 2 ikr 2 _ikr?
u(r) = Aodn (k1) ext ’{TfH 2_fJ

-

w3
BGB lens (f)
2 Loy 2
r ikr
=AJ, (k. r)exp —— |exp - .
planarBGB lens (2f)

It is for this reason that the resonator mirraies separated by a distance
of 2f .

The intensity profile at mirro¥; is thus an annular beam modulated by a
Gaussian envelope, while the intensity at miivbris the reconstructed BGB
(Fourier transform of the annular field). If mirrdvl, is made partially
transmitting, the resonator will emit various oslerf Bessel-Gauss modes.
Suitable collimating optics may be employed to ectrithe phase of the output

beam if so desired.

4.3 Fourier Optics Analysis

We wish to consider the diffraction losses for eB&B order by applying the
Hankel transform in Eq. (4.6) to propagate thedfiegbm mirror M, to M, but
with the limits of integration adjusted to [0]. The energy of the initial field is
normalized such that the diffraction losses for B@B of ordern may be
written asy = 1 —E, wherekE, is the energy at mirrdvl, after one pass. This
single pass loss is representative of the steaatg sliffraction loss since the
initial field chosen is already close to the stablede under investigation.
Because the field on mirrdvl; is annular—like for all mode numbers, showing
very little discrimination between the modes, imgiag or decreasing the
diaphragm radiua (or the mirror radius itself) will result in eithercreasing or
decreasing losses for every BB order in a concarnitaanner. Conversely, the
BGB on mirrorM, varies greatly with the Bessel function order. aNlthe size
of mirror M, is chosen so thdit coincides with an intensity trough of the BGB,

the diffractions losses will be minimized. In cadt, wherb coincides with an
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intensity peak of the BGB, the diffractions lossa#f be maximized. This is
easily noted if one considers that wh&m is large, Eq. (4.1) may be

approximated as:

ugg(r, @) = %1/7; CO{krr —ZnTﬂﬂjexpanm, (4.8)

where we have dropped the piston phase term i{@gp( From this asymptotic

approximation we observe that the amplitude offtblel will oscillate with a
cosine function for even orders mfand as a sine function for odd orderspf
thus the even and odd orders are out of phases rébults in the diffraction
losses of the modes on this mirror having an agoilyy character. One can also
derive from Eqg. (4.8) simple expressions for th@iusb at which a particular
order will have high or low losses:

1 ;)
_ﬂ(m+2n+4

b SR (4.9a)
T
m+in+3
bLL :ﬂ(k—24), (49b)
I

whereby. andb,, are the values di for high and low losses respectivety,is

an integer ana is the order of the BGB. For example, assume dhaihteger

m = my is chosen such that tlg function has high losses. Selecting an integer
my = mp — 1 will then ensure that th® function has lower losses than the
function. In general, if the integers in Egs. (4.8ad (4.9b) are chosen such that
mp — M, = %2 + 1), then the losses in tldg will be larger than that of thé,.
Moreover, the decreasing losses for the even minagly increasing losses for
the odd modes, and vice versa. In the limit tha é&mveloping Gaussian
becomes much smaller than the mirror radiyswe expect this oscillatory
behaviour to be suppressed by the zero asymptdtedbaussian function, and
at this point the radial modes completely deterntivgeresonator behaviour.

In the analysis to follow the resonator parametsed for all calculations
are:f = 0.35 m,A = 532 nm, and = 0.%. Where other values have been used
in calculations, it is clearly indicated so in #acompanying text.

The oscillatory nature of the diffraction losses both odd and even
modes, as described qualitatively earlier, is shquantitatively in Fig. 4.4. The
convergence of the losses for all orders of oddeu®h modes when>>w, is
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the norm in Fabry—Perot type cavities. The unugestiure of Fig. 4.4 (a), that
the losses increase with increasimgs due to the fact that is also increasing
according toa = 0.%. Since an increase in obscuration at miivarincreases
losses for all modes, the net effect is to increéhseoverall loss for each mode.
Increasingb with a fixed in value, as is shown in Fig. 4.4 (c), résuh an
expected convergence to low loss for all modes. rékalts in Figs. 4.4 (a) and
(c) have been confirmed with a full Fox—Li analysi§ig. 4.4 (b) shows a
zoomed—in section of Fig. 4.4 (a), with the secgbown as vertical markers on
Fig. 4.4 (a). The vertical cross—section A in Hgl (b) indicates a mirror radius
at which some odd modes have higher losses thae swen modes, while
cross—section B shows the opposite. It is evideat &t some values &f the
lowest order BGB does not have the lowest lossegieneral when the even

modes have high losses, the odd modes have logszdo

0.4

S

0.38

diffraction losse.
diffraction losses

0.36

0.4 1.0

© ’ b [mm]

Fig. 4.4. The dependence of diffraction lossesaatiusb for the various orders of BGBs (even
modes as solid curve, odd modes as dashed cuayeshgws a general trend for the zeroth and
first order mode of decreasing oscillation strengiith increasing mirror radius due to the
Gaussian envelope dominance wher> w,. In this plota = 0.%, and thus the losses increase
with b. A zoomed in area (between the vertical soliddjrie shown in (b), with the out of phase

oscillations of the odd and even modes evidentstiows plot (a) but with fixed in value.

This fact is illustrated in Fig. 4.5 where it igident that the BGB of zero
order has higher losses than BGBs of order 1,&8b7. By judicious selection

of b one can again ensure that the zeroth order BGBHheakwest losses, as
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shown in Fig. 4.6, where even orders from 0 toeeHawer losses than the first
order BGB.

diffraction losses
(=} o o
4 o ~

(=]
LN

5 10 15 20 25
mode number

Fig. 4.5. The diffraction losses, as calculatedh®yFourier approach, showing the zeroth order
mode (0) with higher losses than some odd orderesm@shown starting at 1, dashed curve).

Calculations done dt= 1.465 mm corresponding to cross—section A of &ig (b).

diffraction losses

5 10 15 20 25
mode number

Fig. 4.6. The zero order mode (0) now has the lbviesses, with a clear out—of-phase
oscillation in the loss for odd (starting at 1, lded curve) and even (starting at 0, solid curve)
modes. Calculations donelat 1.50 mm corresponding to cross—section B of ).

We also note from Fig. 4.5 that the oscillatoryuna of the mode losses is
suppressed at high mode numbers (e.g., beyondH€)s due to the nature of
the oscillations in the Bessel functions themselwesere the approximation

(see Eg. (4.8)) becomes valid at radii that inaesith the Bessel order.

4.4 Fox—Li Analysis

To confirm the results of Figs. 4.5 and 4.6, we sider a full wave optics
analysis using the Fox-Li method [2.2, 5.17]. Tlacuwlation was performed
with b = 1.50 mm and the results are shown in Fig. 4omgarison of Figs. 4.6
and 4.7 clearly shows that the approach of theigusvSection is in good

agreement with the full wave optics analysis. Theltatory nature of the losses
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for the odd and even orders is evident in both dsershowing excellent
qualitative agreement, while there is very closamiative agreement in the

calculated losses.

.75 -7

o

diffraction losses

5 10 15 20 25
mode number

Fig. 4.7. The dependence of the diffraction losges round trip on the mode number, as
calculated using the Fox—Li method. Odd modessamevn starting at 1 in the dashed curve,
while even modes are shown starting at O in thel soirve. The results are in very good
agreement with those shown in Fig. 4.6.

The propagation of the zeroth order BGB is shawhig. 4.2, while some
examples of the resulting steady state fields dedar tFourier transforms are
shown in Fig. 4.8. The propagation characteristas well as the Fourier
transform of the fields confirms that these areegdi BGBs. The fact that the
losses for various orders may be to some extentraltad in this resonator

opens the way for selection of higher order BGBs.

O O

a* b* c*

Fig. 4.8. Examples of the calculated BGBs withrtloerresponding Fourier transforms: {a)

(b) Js and (c)Js Bessel orders.
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4.5 Conclusion

We have analysed a Fourier transforming type resotiaat generates BGBs of
various orders as an output. The losses of thes#gesnhave revealed an
oscillatory nature, which suggests that the lowesier BGB may not
necessarily have the lowest loss. This can beratwte in terms of odd and
even modes by using the asymptotic approximatiahédBessel function. The
analytical theory indicates that specific resonatorditions would be necessary
to ensure that the lowest loss can be obtainethenidwest order mode. The
general rule for Fabry—Perot type resonators, wlagplains that the lower
order modes have lower loss is not necessarilyecorm this particular
resonator. The simplified Fourier approach wasde#éd by a more rigorous
Fox—Li analysis which confirmed the findings.

We also wish to point out some practical impliocas in generating BGBs
from such a resonator. Firstly, since the resonaiasists of only conventional
optical elements (spherical curvature mirrors aincutar apertures) no special
alignment techniques are required. Secondly, dileetdact that the order of the
BGB of lowest loss is determined only by the diagnetf mirrorM,, a simple
variable aperture (iris) at the position of mirdde should suffice as a mode
selector in much the same way that the various Her@Gauss modes may be
selected by suitable aperture choice. This papsr dealt mostly with loss
aspects of the modes, but the issue of optical geguires a mention. As
illustrated in Fig. 4.2, the BGB does not fill tlemtire cavity, and is most
pronounced near mirrdvl,. This suggests that the gain medium in a prdctica
system would have to be placed near miky and have a larger cross—
sectional area and a comparatively short lengibr. ekample, if the laser had a
solid state gain medium, there would be benefituging a disk—like gain
medium rather than a rod in order to maximize tlelenvolume inside the gain
region. It would also be possible to amplify theld near mirrorM;, but this
would require an annular gain region, which whit¢ impossible, may not be
easily implemented in practice.

Finally, the typical aperture dimensions foundtlis study would not

deter practical implementation of such a resonatocept.
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Chapter 5

Intra—cavity flat—top beam generation

In this Chapter we present the analytical and nigakeanalysesof two new

resonator systems for generating flat—top—like eeaim both cases we have
used phase only intra—cavity beam shaping techsigqaenely determination
(both analytically and numerically) of phase onfgnisformation element(s)
which installed into flat-flat mirrors resonator (are) able to modify the
transversal intensity distribution of the fundanaémhode into a flat—top with

the required propagation properties. Both appraadead to closed form
expressions for the required cavity optics, butediSubstantially in the design
technique, with the first based on reverse propagaif a flattened Gaussian
beam, and the second a metamorphosis of a Gaustiaa flat—top beam. We
show that both have good convergence propertied,rasult in the desired

stable mode.

5.1 Introduction

There are many applications where a laser beamanitintensity profile that is
as flat as possible is desirable, particularlydser materials processing. The
methods of producing such flat—-top beams (FTBs) lsandivided into two
classes, namely extra— and intra—cavity beam sbafirtra—cavity (external)
beam shaping can be achieved by manipulating thgubbbeam from a laser
with suitably chosen amplitude and/or phase elesyamid has been extensively
reviewed to date [5.1]. Unfortunately amplitude ieahaping results in
unavoidable losses, while reshaping the beam bggmaly elements suffers
from sensitivity to environmental perturbationsdas very dependent on the
incoming field parameters. The second method afdgcing such beam
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intensity profiles, intra—cavity beam shaping, msé&d on generating a FTB
directly as the cavity output mode. There are obsiadvantages to this, not the
least of which is the potential for higher energyra&ction from the laser due to
a larger mode volume, as well as an output field dan be changed in size by
conventional imaging without the need for speciatics in the delivery path.
Unfortunately such laser beams are not solutiortkeéceigenmode equations of
laser resonators with spherical curvature mirrarg] thus cannot be achieved
(at least not as a single mode) from conventioesbmator designs.

The key problem is how to calculate the required—+spherical curvature
mirrors of the resonator in order to obtain a dabwutput field. One method to
do this is to reverse propagate the desired fietthleoutput coupler side of the
resonator to the opposite mirror, and then caleudasuitable mirror surface that
will create a conjugate field to propagate backsWill ensure that the desired
field is resonant. This method was first proposgdBelanger and Pare [5.2—
5.4], and we will refer to it as theverse propagation techniqui was shown
that the intra—cavity element could be defined stitit a particular field
distribution would be the lowest loss mode, operting way to intra—cavity
beam shaping by so—called graded—phase mirror&.3h a simple algorithm
for designing a stable grade — phase mirror resonaéas derived. First, the
desired output beam profile of the fundamental mmsderopagated into the
laser medium. The wavefront is then extracted aerdes to determine the
appropriate phase profile of the mirror. The diffran analysis of the resonator
using this grade — phase mirror indicates a vewy lmss for the fundamental
mode with a very large discrimination of higher rasd Practical design
parameters such as the geometric factor, the Hreangers, and phase profile
perturbations are discussed. The authors conchatdhis type of resonator can
significantly increase the mode volume and faviner gingle — mode operation
of laser systems relying on stable resonator gagmehis principle has been
applied to solid state lasers [5.5] namely a difisee laser cavity is described
that can customize the amplitude and phase ofes tasde. The design of this
diffractive element is shown for a square, flabpged fundamental mode. The
laser cavity has a theoretical fundamental mods &s0.08 % and a second
order mode loss of 48.2%, resulting in high modaciimination. The

fabricated mirror is tested in Nd:YAG laser systdm[5.6] the result of [5.5]
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was extended by inclusion of an additional intenpla@se plate for improving
the discrimination of undesired higher order moddéswever, in general this
approach does not lead to closed form solutionghirequired mirror phases.

In this Chapter we report on two resonator systEmgroducing flat—top
beams, and show that in both cases closed formessipns may be found for
the mirror surfaces [5.15]. We outline a new metlfmdgenerating a flat—top
beam as the output mode of an optical resonategdban an adaption of well—
known external laser beam shaping techniques. iBhike first time such
technigues have been employed inside a laser neson& major advantage of
this approach is that simple expressions can baraut for the mirror surfaces.
This approach is compared to the reverse propagtchnique for calculating
suitable graded—phase mirrors, and is shown to fester convergence to the
fundamental flat—top beam mode, albeit with higbsses. Moreover, we show
that by employing an approximation to flat—top beamthe form of Flattened
Gaussian Beams (defined later), a closed form isolwtan be obtained for the
mirror surface profiles even in the reverse profiagaechnique.

Throughout this Chapter a concept resonator witle following
parameters is used to illustrate the two approatbefiat—top generation:
wavelength ofl = 1064 nm; optical path length between the mirodris = 300
mm and an output flat—top beam of widthrg = 1 mm. These parameters have
been chosen by way of example only, but can beidered realistic for
experimental verification. The round trip modalilduup and losses were
studied numerically using the Fox—Li approach [28] applying a fast matrix
method (see sec. 2) to simplify the calculationd amprove accuracy for an

allowable computation time.

59



5. INTRA-CAVITY FLAT-TOP BEAM GENERATION

Dpor, Dpor,

= 21

M, M,

Fig. 5.1. A schematic of the resonator to be matelth output coupling aM,. Mirrors M,
andM, can either be considered as elements with nonfispheurvature, or as depicted above,
as flat mirrors with an appropriate transmissionEDfdaced immediately in front of each.

The theory outlined in this Chapter, as well as tamerical simulations
thereof, are restricted to the problem of one dsi@ral laser beam shaping,
simply to keep the mathematical analysis as singdepossible. The two
dimensional beam shaping problem has the same patebase, and all the

results here may readily be extended to additidimaénsions.

5.2 Reverse propagation technique

For the benefit of the reader we briefly outlinee theverse propagation
technique, first proposed by Belanger and Pare 53, since it will be used as
a point of comparison for a new method proposeszt latthis paper.

Consider some arbitrary field that may be writtethe form:

u(x) = (x) exd—ikg(x)] | (5.1)

wherek = 2171 is the wavenumbey] is the wavelength, ang(x) and ¢x) are

the amplitude and phase of the electric field respely. The action of a DOE
in the form of a phase—only mirror (graded—phaseaniis to transform the
phasegn(x) of an incoming field to a new phagg,(x) of an outgoing field

according to:

(oout(x) =@, (X) - Z%OE(X) ) (5-2)
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The salient point here is that this transformatimkes place in a lossless
manner, i.e., the amplitude is unchanggd(x) = ¢u(X). In particular, one can
show [5.2] that if the phase mirror is not sphdrit@en the change in the mean
radius of curvature of the wavefront also dependstle incoming field
distribution, ¢4.(x). Thus it is expected that such a phase—onlyomiwvill
discriminate against those modes that do not Havedrrect distributiog,(X).
By invoking the requirement that the mode mustadpce itself after one round
trip, and considering the impact of the graded—ehmasror on the curvature of
the wavefront, it has been shown that the resuttstriction on the phase of the

DOE mirror is given by [5.2]:

T amn 2 _°° a¢DOE 2
jx{ > ]%(x)dx- j x( S i (9dx (5.3)

from which we conclude that the phase of the resoreagenmode is the same

as the phase of the DOE mirror, apart from a cofistan
Booe (¥) =@, (¥) - ¢, 0) . (5.4)
Combining Egs. (5.2) and (5.4), and ignoring thestant phase offset, we
see that
o (X) ==, (X) . (5.5)
Therefore the reflected beamn(X) is the phase—conjugate of the
incoming beam,uou(X) = Uin (X). In this resonator only a particular beam
distribution is phase conjugated by the DOE mirgar,that the eigenmode of
the resonator satisfies the criteria that its waorgf matches the phase of each
mirror in the cavity.
If we describe the desired field at the outputpteuend (mirroiM,) asus,
then reverse propagating the field to the DOE mi(kdy) using the Huygen’s

integral in the Kirchhoff—Fresnel approximationlgethe field at mirroM; as

u,(x,L) = \/%Tuz(xz) ex;{—;—f(xf — 2%, X, + X5 )jdx2 : (5.6)

wherelL is the optical path length of the resonator. fiérarefection off mirror
M the fieldu; is to reproducel, at the output coupler, then the required phase

for the DOE at mirroM; must be given by
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ook, = Arg[u, (x, L)] . (5.7)

One can also argue heuristically and reach the samgusion as follows:
one of the main properties of a fundamental modaptital resonator is that the
path of propagation both in the forward and inreerse direction must repeat
on one another. Consequently, in order to obtafon@amental mode of a
desired intensity profile we have to find a wayftoce the electromagnetic
wave to follow exactly the same path in the forwand the reverse propagation
directions. The conjugate of an incoming wave withduce an outgoing wave

with exactly this property. Consequently we requat:

expi @, (X)) = exptig, (X)) = expti2g,oe (X)) expl g, (X)), (5.8a)
and hence

Booe (X) =@, (X) (5.8b)
which is consistent with Egs. (5.4) and (5.5). sTisithe basis by which custom
resonators may be designed. In the following $actve outline how this
method may be applied to the generation of flat-likp beams.

5.3 Flattened Gaussian Beam resonator

The limitation in the approach outlined above &t tie required mirror surface,
as given by Eqg. (5.7), is the solution to an inkégroblem Eq. (5.6) for which
there is often not a closed form expression. Heee outline a suitable
approximation to flat—top beams that leads to aslydical expression for the

mirror surface.

5.3.1Flattened Gaussian Beams

The exact definition of a flat—top beam (FTB) iseowith constant field
amplitude in some well defined region, and zero léoge elsewhere:

Uy, [X<w

0 Maw (5.9)

Uerg (X) = {
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wherew is the radial width of the beam, aoglis a constant. Such a field does
not result in a closed form solution to the problehmow the field appears after
propagation through some distarrceHowever, there are many classes of flat—
top-like beams that exhibit very similar propagatgroperties to true flat—top
beams, where the rate of divergence (and profilepshchange) may be
controlled by a scale parameter closely couplethéosteepness of the edges
and the flatness of the intensity profile at thatoe of the beam [5.7]. Such
classes of beams have been extensive studied Hutretical and
experimentally [5.7-5.10]. One such class is tecalled Flattened Gaussian
Beam (FGB), with a field distribution given by [B]1

Urea(%,2) = \F ;{ 'kz} ’{‘%}ex _A(N(E{ikj

w2 2z
(5.10)
- kx
N m N —
O |Cry .
=0 w? w 2z ) N+1 ik
22

whereH:, is the Hermite polynomial of orden® and all other terms have their
usual meaning. Such a field represents a suitablghted linear combination
of Hermite modes, such that the resulting intensipproximates a flat—top
beam. The linear combination of fields with knopwopagation properties in
turn allows the resulting field’s propagation claeaistics to be known
analytically too, such as Rayleigh range, beamityuaictor etc. The advantage
of this profile as an approximation to a flat—tagan over that of others is that
Eq. (5.10) offers an analytical expression for ptefile at any propagation
distancez. The ‘scale parameter associated with the figtken by the
summation indeX, allows the approximation to true flat—top beambe exact
when N- . In general as the scale parameter increaseshes@ffective
Rayleigh range decreases and the beam qualityrfamteases, resulting in a
rapidly changing profile during free space propagat

To design a resonator for such a beam, one sifofigws the procedure

outlined in Section 2:
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=

Select the desired field at the output couplamasurss(X,0);

2. Reverse propagate this field using Eq. (5.10)rtd the field at the
opposite mirror,u; = Urga(X, L);

3. The desired phase of the DOE at mivbyris then given by

hoe, =Arglu;] .
This approach may be used to calculate a suitaltla—icavity DOE that
generates a FGB approximation to a flat—top beathe@sesonant mode of the
cavity. Following this procedure, we calculate@ ttequired mirror surface,
shown in Fig. 5.2, to generate Hn= 20 FGB, withwrgg = 1 mm, as the output
mode of the cavity. Since we wish the wavefronb&planar at the output

coupler side, mirroM; has a planar surface.

120

~
S
S

phase [rad]
S &8 8 8

S

7 12 0 172 r
radial coordinate

Fig. 5.2. Calculated phase profile required for E®E at mirrorM;. The requirement for the

DOE atM, is that it is a planar surface.

The resulting analysis of such a resonator is shawne next Section.

5.3.2 Simulation results

The calculated beam intensities at each mirrorafd¥ = 20 FGB, withwrgg =

1 mm, are shown in Fig. 5.3 (a), together with pase of the field at each
mirror in Fig. 5.3 (b). The simulated results es@nted the field after stability
using the Fox—Li approach, starting from randonseoi The choice dfl = 20
ensures a good quality flat—top beam, with reasern@hyleigh length —i.e., the
field does not change shape appreciably on projpagacross the resonator
lengthL = 300 mm (Fresnel number of ~50).
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Fig. 5.3. The simulated field at mirrdd; (red) andM, (blue): (a) intensity, showing a near
perfect flat—top beam &f,, with slight change in flatness after propagatiagoss the resonator
to My, (b) phase of the field, with a flat wavefront\g as anticipated from the design.

It is clear that the approach outlined above @thygproduces the desired

FGB as the output mode of the resonator.

Fig. 5.4. The simulated field as it propagates setihe resonator after stabilization, friui
(left) to M, (right). The perfect flat—-top beam develops soimensity ‘structure’ as it
propagates away frof,. This is in accordance with the propagation prige of such fields,
and may be minimized by suitable choice of Rayleayige of the field.

A cross-section through the resonator of the ksabli field is shown in
Fig. 5.4, together with density plots of the fightensity at various planes in the
resonator. The advantage of this order of FGB as tihe beam is very close to
an ideal flat—top, but with little change in theab®s cross-sectional intensity

during propagation (in the absence of gain) acttessesonator.
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5.4 Flat—top resonator

Here we outline a new method for generating flgg—b®ams inside a laser
resonator, based on an external lossless beamnghtguhnique converting a
Gaussian input field to a flat-top output field1%, 5.12]. To the best of our
knowledge these techniques have not been previadspted or exploited for

intra—cavity laser beam shaping.

5.4.1 Theory

Since we havea prior knowledge of how this resonator will be realised,
consider a Gaussian field at mirfdy of the formuy(x) = exp(—(dwg)z), where
Wy is the radius of the field atd6f its peak value. If the DOE at mirrbf; is
made up of a Fourier transforming lens and a trassaon phase-only element,
@R and the resonator length is selected to matcHota length of the Fourier

transforming lensl(=f), then the resulting field at mirrdd, will be given by:

Uy (%, 1) = \F J ul(xl>exx{ [coSF(m— og H
xexr{—%( T~ 2% Xy + X5 )jdxl.

We may apply the method of stationary phase td f@m analytical

(5.11)

solution for the phase functiogsr such that the fields, is a perfect flat—top

beam, of widthwerg. It has been shown that this may be expressesl BE|{

s (X) =B \/_\/_X [\/_Xj ;€ F{_lz%:l ]_% , (5.12)

g g 9

where a dimensionless paramefdras been introduced, defined as

278N W,
gY'FTB
= 5.13
V4 Py (5.13)

This parameter has particular significance: at highlues [>30) the
geometrical approximations hold valid, and a perfitat—top beam may be

produced with relative ease. At very low valugs<10), the geometrical
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approximations fail and the quality of the flat—tbpam becomes less perfect.
There is a fundamental lower limit f@at which the beam shaping problem is
intractable [5.11].A full discussion of how this parameter affects tesonator
mode is beyond the scope of this paper, and isrr@efdo another occasion
[5.13]. Since the flat—top beam is generated onthe Fourier plane of the lens,
the effective phase profile of the DOE at mirkdy mimicking both the lens and
this element is given by:

k¢

quOEl (X) = Usr (X) - 2f )

(5.14)

where the second term is the required Fourier toamsng lens. In addition to
an exact function for the first DOE’s phase, we migg the stationary phase

method to extract a closed form solution for thagehof the DOE at mirrdvl,

as
Pooe, (¥) =—{2fo2 +1 Bexl- f%x))] (5.15a)
where
2X
= fl ——— |¢.
&(X) Inv{er {WFTB\/TT]} (5.15b)

Here Inv{}l is the inverse function. Such a mirror will regiuce our
Gaussian field at mirra¥ly, as desired. The two required mirrors to geneaate
flat—top beam of widthverg = 1 mm are shown in Fig. 5.5.
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Fig. 5.5. The calculated required phases of the MakEs, DOE in blue and DOEin red, to
achieve the flat—top output mode.
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An important aspect of the field in this resona®rits metamorphosis
from a Gaussian beam at mirrbh, into a flat—top beam at mirrdvl,; thus
while we present the resonator concept here ingdefithe generation of a flat—
top beam, there are obvious advantages in exmoitie same concept for the

phase—only selection of a Gaussian output mod&]5.1

5.4.2 Simulation results

The calculated beam intensities at each mirrongu8i~ 21 withwgrg = 1 mm
andwg = 1 mm, are shown in Fig. 5.6 (a), together with phase of the field at
each mirror in Fig. 5.6 (b). The simulated resudipresented the field after
stability using the Fox—Li approach, starting froamdom noise. In this case a
Gaussian beam is producedvatand a flat—top beam &,. The Gaussian field
(ust in front of M;) has a planar wavefront, while the flat—top begust(in

front of M) does not.

10| (q) 140 (p)
? 120)
2 =~
S, F100
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40
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0 0
7 772 - - 772 7 7 772 - - 772 7
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Fig. 5.6. The simulated field at mirrdd; (red) andM, (blue): (a) intensity, showing a near
perfect flat—top beam d¥,, changing into a perfect Gaussian after propagatioross the
resonator toM;, (b) phase of the field, with a flat wavefront Mt as anticipated from the
design.

A cross-section through the resonator of the ksabli field is shown in
Fig. 5.7, together with density plots of the fighitensity at various planes in the

resonator.
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Fig. 5.7. The simulated field as it propagates setihe resonator after stabilization, friui
(left) to M, (right). The perfect Gaussian beam (a) gradugttignges into a perfect flat—top
beam (e) on one pass through the resonator. $ndisign the field also decreases in size, as
noted from the size of the grey scale images.

Because of the transformation during propagatromfa Gaussian to a
flat—top beam, the region of constant intensitynsted to near mirroM,. This
impacts on energy that may be extracted from sumsanator since the gain
volume would be somewhere between a single modessgau and a single
mode flat—-top beam. The phase of the fiellatrequires that a suitable DOE
external to the cavity be used to convert the pludidbe flat—top beam into a

planar wavefront, should this be required.

5.5 Discussion

It is pertinent at this point to draw comparisoregween the two approaches
outlined. The first difference lies in the dynamiaf the round trip losses, as
shown in Figs. 5.8 (a) and (b). Clearly the losses higher after mode
stabilization in our approach (henceforth labella as compared to the
Belanger and Pare approach (henceforth labé)edbut this in turn results in

faster convergence to the fundamental mode ofréssnator. In our resonator
concept A) the mode stabilizes in less than half the nundderound trips

required for stabilization in the comparative caygting resonatorB). The
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higher losses of resonatAmay be explained by the fact that the Gaussida fie
on mirrorMs in designA has necessarily higher losses than is the caseneér
flat—top beam on the same mirror in desdgyn

It is evident in both resonators that the losssrpund trip oscillate prior
to stabilizing. This has been noted previouslyother resonator types, and
explained in terms of the stability parameters leé tesonator [5.14]. The
oscillating modes corresponding to the loss odmles are shown in Fig. 5.8 as
insets. Here the field changes from a concavettigt through a perfect flat—
top, to a convex flat—top.
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Fig. 5.8. The simulated losses as a starting fifldandom noise is propagated through the
resonator, shown as a function of the number ofdduips taken, for: (a) resonatArand (b)
resonatoB. The losses stabilize in both resonators, and sledhv a characteristic oscillation in
the losses as the field converges to the stableroblbwest loss.

Both resonators generate the same size flat—taym la¢ the output coupler
end, but resonatoB by its nature maintains almost the same field ilgrof
throughout its length. This would not be the céske optical path length was
much greater than the Rayleigh length of the fibld, then it has already been
pointed out that this resonator concept does nokwab such distance as all
modes have nearly spherical wavefronts, making naiderimination weak
[5.3]. In contrast, by design our resonatdj ¢hanges the mode very rapidly
from one mirror to the other, and thus does ndesdfom this draw back. The
price to pay is in the mode volume: resonadras a larger mode volume, and
potentially would be able to extract more energgnirthe gain region.
Furthermore, in the case of resondoif the gain medium is to be placed such
that only a flat—top beam passes through it, themust be restricted in size and
placed near the output coupler.
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5. INTRA-CAVITY FLAT-TOP BEAM GENERATION

Both designs have restrictions on the size antitgud flat—top beam that
may be generated. While in theory the design ntkfbo resonatoB would
allow any size and quality FGB to be generatedhd&f Rayleigh range is not
large compared to the resonator length, and thenEf@aumber of the resonator
is not large enough, then losses will increase thedquality of the flat—top
profile will deteriorate in a concomitant manndrhere is thus a lower limit for
the Rayleigh range to ensure a quality flat—topnbed&esonatoA is restricted
to beam sizes such thatis large [ = 30), since for smalB the quality of the
flat—top becomes poor, with large skirt regions aodnded central regions,
while below a threshold value (typically < 4) the method breaks down
completely and can no longer be applied. Thusrailjre is a lower limit, this
time for S, so ensure a quality flat—top beain addition, the Fresnel number of
the resonator in both options must be suitablydangorder to avoid diffractive
losses and associated profile distortions, andttiagoo places a limit on what
may be achieved. Thus one must be judicious irchiogce of the dimensions of
the resonator in relation to the desired fielder é&xample, alN = 100 field will
ensure an excellent flat—top beam, but this wijuiee a short resonator length
and/or large mirrors in order to ensure both thglétgh range of the field and
the Fresnel number of the resonator are both syilatge.

A final point of departure is the cost and compierf implementing the
resonator concepts. ResonaBorequires only one DOE, and creates a planar
wavefront top—hat-like beam at the planar outputpter side. In contrast,
resonatorA has DOEs at both ends of the resonator, and doepraduce a
planar wavefront at the flat—top beam end. Thusast one additional DOE is
required external to the cavity to create the sheb@ in phase as in resonatdr
However the major advantage of resona&as the ability to generate a planar
wavefront Gaussian field as an output by low Idsase—only mode selection.

We end by indicating how the phase profiles defifeere may be
implemented in practice. If the desired phaséefROE is given byaog, then
this may either be implemented as an etched hsigitture in a transmission

element (of refractive indeRr), or a reflective mirror, with associated surface

A¢DOE and h = /1¢DOE

feature profiles given bhh=———
P J y 2m(n-1) 2n

respectively.
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5. INTRA-CAVITY FLAT-TOP BEAM GENERATION

5.5 Conclusion

We have presented two methods of creating flatbegms as the output mode
of a laser resonator where both approaches leadaiytical expressions for the
required mirror surfaces. The first approach wasige an approximation to
flat—top beams and apply phase conjugating miratrseither end of the

resonator. We showed that this leads to simple esgpons for the mirror

surfaces. In the second approach a suitable diffeaoptical element converts a
Gaussian beam into a flat—top beam at the Foulagrepof a lens. This method
shows fast convergence and relatively low roungl lwss for the fundamental

mode of the resonator.
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Chapter 6

Gaussian mode selection with intra—cavity

diffractive optics

In this Chapter we outline a resonator design #flaivs for the selection of a
Gaussian mode by diffractive optical elements (phasly intra—cavity beam
shaping). This is made possible by the metamorphadsa Gaussian beam into a
flat—top beam during propagation from one end efrésonator to the other. By
placing the gain medium at the flat—top beam eni, possible to extract high
energy in a low—loss cavity. A further featuretlos resonator is the ability to
select the field properties at either end of thatgaalmost independently, thus
opening the way to minimize the output divergenckilev simultaneously

maximizing the output energy.
6.1 Introduction

Traditionally laser beams are generated in FabmetRgpe resonators, where
the mirror surfaces are spherical. When the resonstchosen to be stable, a
low—loss fundamental mode may be forced to oseilla¢ suitable choice of

internal aperture. However, the power loss discration between the low

order modes is often poor, and the small beam wamilts in poor power

extraction. Conversely, if an unstable configunatis employed, the mode
volume is large and mode discrimination good, bid is at the expense of high
intrinsic loss for the oscillating modes, makinglsicavities suitable only for

lasers with high gain. A major advance to overcaueh problems was the
introduction of so—called graded—phase mirrors,[5.3]. It was shown that a

resonator with grade—phase mirrors could discritei@against undesired modes
by altering the generalized radius of curvaturgéhefincoming beam according
to [5.2]:
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[ 9% ),
_:[ox( dx jwl (X)dx

T X2z (X)dx

1 1
Ez—a (6.1)
whereR; andR; are the generalized radii of curvature just pand just after
the graded—phase mirrogg() respectively. Eq. (6.1) indicates that the real
radius of curvature of the beam is changed by Hase function of the graded—
phase mirror, and moreover, this change is depéndanthe incoming
amplitude of the fieldya(x). In other words, it is possible for such a gihee
phase mirror to discriminate against modes thatndd have the proper
distribution, ¢4(x). However, when the graded—phase mirror is spaleri
(assuming the paraxial limit), the change in cumatof the beam becomes
independent of the incoming amplitude of the figld(x), since the derivative
in the integrand becomes proportionaktoUnfortunately, for Gaussian beams
the required graded—phase mirror surface is smieticerefore annulling the
aforementioned discrimination process. To put #nsther way, the graded-
phase mirror approach cannot be used to selectebat@ny of the Hermite—
Gaussian (in resonators with rectangular symmedry)aguerre—Gaussian (in
resonators with circular symmetry) modes, and foeeeby definition not the
lowest order Gaussian mode either. The reasomiglysthat under free space
propagation all such fields have an identical radius of curvature, defined by
spherical wavefronts, and thus reverse propagaimh beams to find the
appropriate conjugate always returns a solutiont tleguires a spherical
curvature mirror. Note that the form of the gradathse mirror here might in
fact be a deformable mirror, a diffractive mirrasy approximated by a
transmission diffractive optical element or even iatra—cavity phase—only
spatial light modulator. The limitation is not irow the phase element is
implemented, but rather by the fundamental phygmgerning the propagation

of Gaussian beams.
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6.2 Gaussian mode selection

It is possible to overcome this problem by metarhoging a Gaussian beam
into another desired shape. Since the resultingggation will not follow that
of a Gaussian beam in free space, the resultingn ladter propagation may be
discriminated against in the usual manner. In tBection we propose a
resonator concept that produces a Gaussian modadg waiiifractive optical
elements by intra—cavity metamorphosis of a Gaosbeam at the output
coupler end, to a flat—top beam at the opposite anthe cavity. It is well
known that flat—top beams have been favored ovars&an beams in those
applications where high power extract is requifg®]} This is because flat—top
beams cover a larger mode volume for the same @auksam size, and they
overcome the poor saturation and energy extraciothe edge of Gaussian
beams. Such a resonator has the possibility ofddfraction loss, and high

energy extraction, while producing a low diverge@@ssian beam.

Fig. 6.1: Schematic of the resonator concept. MlLM& are flat mirrors@Ppog; and®pog; are
the effective phase profiles of the DO# mirrorM; and DOE at mirrorM; correspondingly.
We illustrate the concept graphically in Fig. 6alflat—flat resonator is
modified with suitable intra—cavity diffractive opal elements, where the sum
of the flat mirror and adjacent transmission DOEnms a graded—phase mirror.
Our task is to outline the functional form of theot DOEs. To do this, we
consider a circular Gaussian field at mirfdr of the formu,(0) = exp[—
(0wo)?], wherewy is the radius where the field is aebf its peak value. If the

DOE at mirrorM; is made up of a Fourier transforming lens and asptonly
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transmission elemenggr, and the resonator length is selected to matchotted
length of the Fourier transforming leris £ f), then the resulting field at mirror

M, will be given by:

ikr 2
2f

U, (r) = -i %expakf)ex;{ j [u,(0) explig (p)]J{”ijpdp. (6.2)

We may apply the method of stationary phase td f@m analytical
solution for the phase functiogsr such that the fields, is a perfect flat—top
beam, of widthwgrg [5.11]:

s () = ﬂg j V1-exp£*)de, (6.3)

where a dimensionless paramefdras been introduced, defined as

27Wo Werg

=4

(6.4)

Since the flat—top beam is generated only at theri€oplane of the lens, the
effective phase profile of the DOE at mirfgkh, mimicking both the lens and
this element is given by:

ko?
2f

quOEl (p) = 733 (p) - (6.5)

where the second term is the required Fourier foaméng lens. In addition to
an exact function for the first DOE’s phase, wdestaere (the proof is beyond
the scope of this discussion and will be publiskeésbwhere) that it is also
possible to use the stationary phase method taabdrclosed form solution for
the phase of the DOE at mirrsl; as:

Do, (1) = arg{ex;{i(% r? +gs (o(r)) ——ﬁi(\;,z H} , (6.6a)

where from the stationary phase conditigtw., =d¢.-/dpwe may find the

unknown function:

_ B B 2r ’
ALY =%, "{1 (J_nwm] ] (6.6b)
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Such a mirror will reproduce our Gaussian fieldhwat flat wavefront at mirror
Ms, as desired. Moreover, since the field at miivbris a flat—top beam, there
exists the possibility for uniform gain saturatiand high energy extraction if

the gain medium is placed at this end of the resomavity.

6.3 Numerical analysis and discussion

It is instructive to consider the flat-top beamaaglattened Gaussian Beam
(FGB) of ordemN [5.9]. The advantage of this profile over othisrthat it offers
a simple analytical expression for the beam prdtl@ny propagation distance
z, and furthermore, the Gaussian and flat—top m®efdre returned whevi = 1
andN - o respectively. It is well known that flat—top bemare able to fill a
larger mode volume without the adverse affectsitfadtion for similar sized
Gaussian beams, due to the fast drop in intensitjeaedges of the beam. In
fact, it has been pointed out [5.16] that evenlatikeely low order FGB fills
nearly four times more volume of a laser rod ofntterd = 3w, than a
Gaussian beam could, due to the smaller Gaussetoh fequired in order to
avoid hard edge clipping. In addition, the pealemsity of the FGB is smaller
than that of a Gaussian beam of the same width earetgy, reaching a
minimum of only half the peak intensity when thedewrN >> 1. This is
important when considering practical issues suclthasmally induced stress
fracture, and thermal aberrations, in solid sta®m gnaterials. However, the
disadvantage of such beams is the larger beamtyjtedtor, and hence shorter
Rayleigh range, thus reducing the useful lengtlthef gain medium that will
experience the uniform beam. The Rayleigh rangsuoh a beam is given by
Zz=/N where zz is the Rayleigh range of a Gaussian beam with #aes
parameters [5.10]. Clearly the price to be paidaqrerfect flat—top beanN(>
100) is a significantly reduced Rayleigh range.eSéhresults are important in
understanding the depth of field of the flat—toparpefor gain extraction
purposes.

In our design these points may be balanced thrabghuse of Eg. 6.5;
herein lie the salient parameters of the desireds&an beam size, the desired
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flat—top beam size, and the degree of flatnesh@fbeam itselfS, which is
proportional to the order of the FGB. If all thr@e to be chosen independently
for a particular wavelength, then the focal lengththe Fourier transforming
lens, and hence the length of the resonator, meuappropriately selected using
Eq. (6.5), while the phase functions of the DOEsnta&n the same functional
form, i.e., only the dimensionless paramefechanges in the equations. The
ease with which the DOEs may be calculated forousriparameters of the
desired mode is a unique feature of this resondésign. Essentially the
propagation of the Gaussian beam outside the resonzay be determined
almost independently of the flat—top mode inside giain volume. There are
obvious advantages to such a flexible design.

To expound on the concept, we consider the exarapla resonator
designed to produce a Gaussian beam with a widtty 6f 1 mm, from which
we deduced the required Gaussian beam half angéegéince ofd = A/ltwy =
0.34 mrad 4 = 1064 nm). With this fixed, we may now select awp of the
remaining three parameters: resonator length,tfiptbeam size, or degree of
flatness of our flat—top bean®)( If our gain medium is a rod of radius 3 mm
and length 100 mm, then we may wish to select tatbp beam ofwgrg = 2
mm, while 8 = 23 will ensure a high fidelity flat—top beam th@ropagates
throughout the gain length without significant ches of intensity profile. From
Eq. (6.5) we then deduce that the required resotength ( =f) is given by
~500 mm. Fig. 6.2 shows the results of a numersatulation of the
aforementioned resonator, starting with a fieldaafdom noise and propagated
following the Fox—Li approach [2.2] until stabiljtwith mirror radii of 4v. Fig.
6.2(a) shows the stable fields at either end of résonator — the expected
Gaussian and flat-top beams as per the design. &R(b) shows the
numerically determined phase of each DOE. Nearb#em edge there is a
slight discrepancy between the analytically cal@dgphase of the second DOE
and the numerically determined phase; this is duthé¢ use of the stationary
phase approximation in the analytical equationdie $ame design procedure
may be adopted to accommodate other constraintex@ample, the length of
the resonator or the complexity of the DOESs thewesel
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Fig. 6.2: Numerical results of the Fox—Li analyshowing (a) Gaussian and flat—top beams
after starting from random noise, and (b) calculaphase profile of each DOE, with the
analytical phase function for the second DOE shawdata points.

It is also instructive to extend the example abaweconsider the mode
discrimination of this resonator. Without any gagonsiderations, the
fundamental Gaussian/flat-top mode has the lovwesst (0.34%) with the next
lowest loss modes shown in Fig. 6.3. These thregesibave higher losses, by
factors of 1.06 (TEM), 1.18 (TEMy) and 1.47 (TEMy) respectively, but also
have significantly smaller mode volumes within thain region, decreased
relative to the fundamental mode by a factor o6Q’BEM,(), 0.29 (TEM,) and
0.33 (TEM,) respectively. Thus when gain is included (atftaetop end), the
significantly increased volume for our Gaussiamfftgp mode should aid mode
discrimination, whereas in conventional resonatsighs it is often the reverse:
the Gaussian mode would have a lower mode volurae tther competing
modes. In a practical system the discriminatioricttwe further enhanced by the

inclusion of suitable apertures on the Gaussianoéiige resonator.
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Fig. 6.3: Cross-sections of the first three higbeter competing modes, shown at mirkty.
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6.4 Conclusion

In conclusion, we have shown that it is possibledésign a resonator for a
Gaussian beam output but with the advantage oatatfip beam in the gain
region. The metamorphosis from one beam shapedth@mnis achieved through
phase—only optical elements. Such a configuratemdd itself to high energy
extraction with good competing mode discriminatiom low divergence output

mode.
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Conclusion

In this thesis we have presented new methods rfsa-icavity beam
shaping. To illustrate the methods we have provideth an analytical and
numerical analysis of novel resonator systems wldaoh able to produce
customised phase and intensity distributions.

Naturally, intra—cavity beam shaping can not basghor amplitude only
due to the limited radius and the defined curvatfréhe mirrors. Both these
parameters have the influence on the final outpatbprofile. That is why it is
difficult to divide the systems where we have ugpbdse or amplitude beam
transformations in the cavity only. In this thesi® have assumed that the
division between phase and amplitude intra—cavégnb shaping is connected
to a comparison of the geometry of our system wahventional resonators,
including parabolic mirrors and a ring apertureboth mirrors.

In Chapter 2 we have outlined a new approach (xnatethod), which is
based on the Fox—Li algorithm and can decreasedhgputation time of both
the Fox—Li algorithm and any integral iteration@ithms. The method can be
used for any class of integral iteration algorithméich has the same
calculation integrals, with changing integrants énéhthe integrant is the field
of the light wave in the case of the Fox-Li algamit, IFTA, and screen method.
The given method appreciably decreases the conmputdime of these
algorithms and approaches that of a single itanatio

In Chapter 3 a new approach to modeling the dpatensity profile from
Porro prism resonators was proposed based onngiass screens to mimic the
apex losses of the prisms. A numerical model basedhis approach was
presented which correctly predicted the output Svarse field distribution
found experimentally from such resonators. Thiskawas implications on how
such resonators are used in the field. Variabtpudicoupling based on rotating
the prisms is often employed, but as has been simo@hapter 3, this will have
a significant impact on the output mode from theefa affecting laser beam
propagation, far field laser intensity and laseghtiness.
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In Chapter 4 we have presented a new approaclerérgting Bessel—
Gauss beam as the output namely the deploymensoitable amplitude filter
at the Fourier plane of a conventional resonatamfigaration with only
spherical curvature optical elements. As we can, dbe approach is
combination of both amplitude and phase shapinigena cavity. We also wish
to point out some practical implications in geneigitof Bessel-Gauss beams
from such a resonator. Firstly, since the resonatosists of only conventional
optical elements (spherical curvature mirrors aincutar apertures) no special
alignment techniques are required. Secondly, dileetdact that the order of the
Bessel-Gauss beams of lowest loss is determingdbgrthe diameter of mirror
M, (see Fig. 4.1), a simple variable aperture (@itsjhe position of mirroM,
should suffice as a mode selector in much the sesae that the various
Hermite—Gauss modes may be selected by suitabteuegpehoice.

In Chapter 5 we have presented the analyticalrumderical analysesf
two new resonator systems for generating flat—igp-deams. Both approaches
lead to closed form expressions for the requireditgaoptics, but differ
substantially in the design technique, with thetfivased on reverse propagation
of a flattened Gaussian beam, and the second anogihosis of a Gaussian
into a flat—top beam. We showed that both have gmod/ergence properties,
and result in the desired stable mode. The firgir@ach was to use an
approximation to flat—top beams and apply phasgugaiting mirrors at either
end of the resonator. We showed that this leadsmple expressions for the
mirror surfaces. In the second approach a suitdiffeactive optical element
converts a Gaussian beam into a flat—top beameaFturier plane of a lens.
This method shows fast convergence and relativedyrbund trip loss for the
fundamental mode of the resonator.

In Chapter 6 we have outlined a resonator dedmgi &llows for the
selection of a Gaussian mode by diffractive optieEments. This is made
possible by the metamorphosis of a Gaussian bemmaiflat—top beam during
propagation from one end of the resonator to tierot By placing the gain
medium at the flat—top beam end, it is possiblexivact high energy in a low—

loss cavity.
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