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Abstract

Objective

To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa.

Methods

The SITVIT2 global repository and PUBMED were searched for spoligotype and published

genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa

were described and compared across regions and with those from 7 European and 6 South-

Asian countries. Further analysis of the major lineages and sub-lineages using Principal

Component analysis (PCA) and hierarchical cluster analysis were done to describe cluster-

ing by geographical regions. Evolutionary relationships were assessed using phylogenetic

tree analysis.

Results

A total of 14727 isolates from 35 African countries were included in the analysis and of these

13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were

differences in geographical distribution of major lineages and their sub-lineages with

regional clustering. Southern African countries were grouped based on high prevalence of

LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African

countries was due to the high percentage of LAM9 strains, which have an origin in the
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Eastern Mediterranean region. East African countries were grouped based on Central Asian

(CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with

Asia, while West African Countries were grouped based on Cameroon lineage of unknown

origin. A high percentage of the Haarlem lineage isolates were observed in the Central Afri-

can Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close

clustering.

Conclusions

This study highlighted that the TB epidemic in Africa is driven by regional epidemics charac-

terized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions

may have been introduced from either Europe or Asia and has spread through pastoralism,

mining and war. The vast array of genotypes and their associated phenotypes should be

considered when designing future vaccines, diagnostics and anti-TB drugs.

Introduction

The development and application of genotyping tools for Mycobacterium tuberculosis has

greatly enhanced our understanding of the epidemiology of tuberculosis (TB) on a local [1]

and global scale [2–5]. Three internationally standardized genotyping methods, IS6110 DNA

fingerprinting [6], Mycobacterial Interspersed Repetitive Unit-Variable Number of Tandem

Repeat (MIRU-VNTR) typing [7] and spoligotyping [8] have been used extensively to quantify

transmission [9], describe genetic diversity [3], determine the epidemiology of drug resistance

[10–12] and identify mixed infections [13,14]. Spoligotyping data represents the largest body

of genotyping data which has been formally organized into a global repository termed SpolDB

[2–4,15]. This database has been through a number of reiterations and has recently been

expanded to include MIRU-VNTR data, and is now called SITVIT [16]. Within this database

clinical isolates have been grouped into distinct lineages such as Beijing, Central Asian (CAS),

East-African Indian (EAI), Cameroon, Haarlem (H), Latin American Mediterranean (LAM),

T, S, and X according to defined spoligotype signatures [17,18].

In 2002, Filliol et al used spoligotype data from SpolDB to present the first view of the global

phylogeny of M. tuberculosis [2]. Subsequent studies described the population structure of M.

tuberculosis complex (MTBC) on the different continents [4,19]. Findings from these studies

are largely concordant with those from studies using the Long Sequence Polymorphism (LSP)

to describe the global phylogeny of the 6 LSP lineages [5,20]. In Africa, the Euro-American

lineage was found to be dominant. The CAS and EAI lineages were confined to East Africa

[21], the East Asian lineage (i.e. Beijing) was predominantly found in Southern Africa and the

M. africanum lineages were limited to West Africa and show significant geographical variation

[22]. In 2013, isolates representing a seventh lineage were identified in Ethiopia [23]. Phyloge-

netic analysis of whole genome sequence data from clinical isolates representative of the 7 dif-

ferent LSP lineages using Bayesian and Maximum Parsimony methods predicted that the

common ancestor of MTBC originated in Africa [24]. That study also showed co-evolution

between host and pathogen and suggested that the pathogen was carried out of Africa by

hunter-gatherers. Similar hypotheses have been proposed by others [20,25,26].

Recent studies have proposed the “back to Africa” hypothesis whereby M. tuberculosis was

reintroduced into Africa as a consequence of trade and colonization [19,20]. The consequence

MTB genotypes in Africa
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of this reintroduction on the phylogeographical population structure of M. tuberculosis
remains unknown. This study aimed to comprehensively describe the population structure of

M. tuberculosis isolates in Africa using data from the SITVIT2 database and literature to

explore geospatial strain diversity and expand our limited knowledge on regional differences.

Materials and method

Data collection and access on SITVIT

Spoligotyping data for isolates originating from African countries were extracted from the SIT-

VIT2 database [27,28]. In addition, spoligotype data for isolates from Europe and Western,

South and South Eastern Asia were extracted from SITVITWEB (www.pasteur-guadeloupe.

fr:8081/SITVIT_ONLINE/). Isolates were excluded if they were from non-human hosts, were

atypical mycobacteria or members of the MTBC other than M. tuberculosis. All spoligotyping

signatures that were not yet associated to a well-defined genotypic lineage in the SITVIT2 data-

base were designated as “Unknown”.

Data collection from literature

PubMed was searched using the terms “Tuberculosis AND Spoligo� AND country name” to

identify manuscripts reporting spoligotype data for 11 African countries which have not sub-

mitted data to SITVIT2 [22,29–39]. To avoid duplication, data from countries which had

deposited their spoligotyping data in SITVIT was not included. Only spoligotype data for M.

tuberculosis sensu stricto isolates were extracted.

Ethics statement

The data included in this study is anonymized and freely available from SITVITWEB and the

cited literature.

Geographical distribution

To gain a broad overview of the African M. tuberculosis population structure, isolates were

assigned to major lineages. The distribution of genotypes was described by country of origin.

A map of Africa was prepared showing the proportion of isolates belonging to the respective

spoligotype lineages for the respective countries (3 letter country codes according to http://en.

wikipedia.org/wiki/ISO_3166-1_alpha-3). Country specific spoligotyping data was included in

the analysis if spoligotype data for� 100 isolates was available. Isolates belonging to the Tur-

key and Ural (U) lineages were excluded owing to their limited frequency in Africa. In addi-

tion, maps were prepared to show the proportion of M. tuberculosis isolates belonging to the

different sub-lineages of the respective major spoligotype lineages if the major lineage

constituted� 15% of the M. tuberculosis isolates for that country.

Principal component analysis

Given the complex nature of the data, a principal component analysis (PCA) is an appropriate

mathematical tool to reveal underlying patterns within the data. This analysis was completed

using R (version 3.2.0) [40] and visualized using the ggbiplot R package [41]. PCA analysis of

the geographical distribution of the major lineages in countries belonging to Africa, Europe

and Western, South and South East Asia was done using the proportions of the different line-

ages and not the spoligotype itself. This analysis included spoligotyping data for the Beijing,

Cameroon, CAS, EAI, H, LAM, Manu, and S lineages. Spoligotype data for the T lineage was

excluded from the PCA analysis, since these isolates were present in most countries included

MTB genotypes in Africa
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in the analysis. In addition, data for the X lineage (based on the small proportion of strains in

this group) and isolates with unassigned spoligotypes were excluded. Independent PCA analy-

ses were done to determine the distribution of the isolates belonging to the respective sub-line-

ages of the major lineages LAM and T. PCA analysis was not done for the Beijing, EAI, Manu,

S, and X lineages owing to the limited number of countries where these strains were present in

sufficient proportion.

Hierarchical cluster analysis

To confirm the clustering, we used R function pvclust [42], which performs hierarchical clus-

ter analysis via function hclust and automatically computes p-values for all clusters contained

in the clustering of original data. The AU p-value represents the "approximately unbiased" p-

value, which is calculated by multiscale bootstrap resampling and is a value between 0 and 1.

The clusters (edges labeled in grey) with high AU values (e.g. 95%) can be considered as

strongly supported by data. As the estimation of the AU p-values also has uncertainty, 100,000

bootstraps were run in order to decrease the standard error. The clusters with AU greater than

95% are highlighted with red rectangles.

In order to determine whether a relationship in the proportion of major lineage existed

between the African, European and Asian countries, PCA and pvclust data for European and

Western, South and South East Asian countries were analysed.

Phylogenetic tree analysis

BioNumerics software version 6.6 (Applied Maths, Sint-Martens-Latem, Belgium; available at

the following link: http://www.applied-maths.com/bionumerics) was used to highlight evolu-

tionary relationships between main spoligotypes present in Africa. Minimum spanning trees

were drawn based on spoligotyping patterns having a SIT number, and belonging to the fol-

lowing lineages: LAM, T, H, Beijing, CAS, X, Cameroon, EAI, S, and Manu. Minimum Span-

ning Trees are undirected graphs in which all samples are connected together with the fewest

possible connections between nearest neighbors.

Results

Overview of M. tuberculosis genotypes in Africa

A total of 112,683 mycobacterial isolates in the SITVIT2 database were screened for eligibility.

All isolates from non-African countries (n = 99,196), non-human hosts (n = 965), members of

the MTBC other than M. tuberculosis (n = 598), and atypical mycobacteria (n = 41) were

excluded, leaving 11,883 M. tuberculosis isolates. These isolates represented spoligotype data

from individual patients in 25 countries in the Africa region (S1 Table). Review of the litera-

ture added isolates from an additional 11 countries resulting in a total of 15522 M. tuberculosis
isolates with spoligotype data in Africa (S1 Table). African countries not represented included

Botswana, Burundi, Cabo Verde, Chad, Congo, Republic of the Congo, Equatorial Guinea, Eri-

trea, Gabon, Lesotho, Liberia, Mauritania, Niger, Sao Tome and Principe, Seychelles, Somalia,

South Sudan, Swaziland, and Togo.

A further eleven countries, namely Angola, Benin, Comoros, Kenya, Libya, Mali, Mauritius,

Namibia, Reunion, Senegal, and Sierra Leone were excluded because each country contributed

�100 M. tuberculosis isolates (n = 685) (S1 and S2 Tables). In addition, 38 isolates from the

Turkey lineage previously designated as LAM 7, and 72 isolates from the U lineage were also

excluded. A total of 14727 isolates were included in the analyses.

MTB genotypes in Africa
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Major M. tuberculosis genotypes identified in regions of Africa

13607 isolates (92.4%) were assigned to one of 10 major spoligotype lineages, while the remain-

ing 1120 (7.6%) isolates could not be assigned to a lineage and were grouped as “Unknown”.

The six most frequent lineages were T (24.8%), LAM (19.3%), Cameroon (11.4%), H (9.0%),

Beijing (7.4%), and CAS (6.4%). These six lineages accounted for 78.3% of all isolates from the

Africa region (S1 Table).

Phylogeographical clustering of major M. tuberculosis lineages in African

countries

We assessed the intra-country lineage proportions in 25 African countries for which data for

>100 isolates was available. Fig 1 shows the proportion of isolates representative of the 10 dif-

ferent M. tuberculosis lineages in these 25 countries. PCA and hierarchical cluster analysis

using data from the 8 dominant lineages; Beijing, Cameroon, CAS, EAI, H, LAM, Manu, and

S, showed a strong correlation with the groupings of countries by geographical location (Fig

2A and 2B). From the PCA analysis, principal component 1, which explained 31.7% of the var-

iance in the data separated out countries based on either Cameroon/CAS versus LAM domi-

nance. Principal component 2, which explained a further 27.3% of the variance in the data,

further divided countries by Cameroon lineage compared to CAS dominance. Pvclust analysis

showed similar results which largely correspond to the clustering identified in the PCA analy-

sis. Southern African countries (South Africa, Mozambique, Zimbabwe, Zambia, and Malawi)

grouped loosely together with Northern and Western African countries (Algeria, Morocco

and Guinea Bissau) (AU value 86%) based on the high percentage of LAM in these regions.

East African countries (Ethiopia, Sudan, Djibouti, Uganda, and Tanzania) (AU value 94%)

showed a grouping based on the prevalence of isolates belonging to the CAS lineage. A domi-

nance of the Cameroon lineage was seen in Central Africa with Nigeria, Cameroon, Ghana,

Bukia Faso, and Cote Ivoire grouping together (AU value >95%). Countries which had a high

Fig 1. Geospatial distribution of M. tuberculosis lineages in Africa. Each pie chart segment reflects the relative

proportion of M. tuberculosis isolates belonging to respective major lineages for each country (see colour chart for the

respective major lineages). Each country has been shaded according to the number of isolates contributed to the

analysis (see colour intensity chart). Country codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

https://doi.org/10.1371/journal.pone.0200632.g001

MTB genotypes in Africa
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percentage of isolates classified as belonging to the H lineage (Central African Republic,

Guinea, Gambia, and Tunisia) showed a loose grouping together, however these countries gen-

erally showed a mixed distribution of lineages, with an influence of LAM lineages preventing a

close clustering. Egypt showed a uniquely dominant Manu lineage and therefore did not clus-

ter closely with other Northern African countries. Similarly, Madagascar showed a higher

proportion of EAI than other African countries and therefore did not belong to a cluster.

Countries Tunisia, South Africa, Egypt, and Madagascar have the highest lineage diversity and

were therefore positioned towards the center of the PCA plot.

Fig 2. Clustering of countries according the proportion of M. tuberculosis isolates present in a specific lineage.

Only data from the Beijing, Cameroon, CAS, EAI, H, LAM, Manu, and S lineages was included. Country codes

according to (http://www.worldatlas.com/aatlas/ctycodes.htm). (A) Principle component analysis: African countries in

the PCA plot are coloured based on their most dominant lineage: CAS (red), Cameroon (green), H (purple), LAM

(brown), Manu (blue), and EAI (yellow). European and Asian countries are shown in black. Overlapping country codes

in the PCA plot indicate a similar distribution of M. tuberculosis lineages in the respective countries. (B) pvclust

analysis: The clusters edges are numbered in grey and the AU p-values are shown in black. Strongly supported clusters

with AU greater than 95% are highlighted with a dotted line.

https://doi.org/10.1371/journal.pone.0200632.g002

MTB genotypes in Africa
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Phylogeographical clustering of major M. tuberculosis sub-lineages in

African countries

In order to describe the M. tuberculosis population structure in finer detail, the proportion of

isolates representing the sub-lineages of each major lineage (CAS, EAI, LAM, H and T) were

plotted onto their country of origin if they contributed� 15% of the isolates causing disease in

the respective country, as assessed by the present dataset (Figs 3, 4, 5 and 6 and S1–S6 Figs,

and S2 Table).

LAM sub-lineages. Fig 3 shows the distribution of M. tuberculosis isolates with the LAM

genotype in African countries. A PCA analysis was done in order to determine the influence of

LAM sub-lineage on geographical clustering. Principal component 1 of the PCR analysis (Fig

4A) explains the majority of the variance in the data (72.2%), and separates countries based on

either a high LAM11-ZWE or LAM9 influence, which in turn reflects their geographical loca-

tion (Fig 3). The pvclust analysis corresponds to the clustering identified in the PCA analysis

(Fig 4B). Zambia, Zimbabwe, and Tanzania grouped together based on the high percentage of

LAM11-ZWE in these countries and low percentage of other LAM subtypes (AU value

>95%). Malawi was separated away from the main LAM11-ZWE cluster due to the high per-

centage of LAM1 isolates, despite the presence of a large proportion of LAM11-ZWE isolates.

Guinea Bissau, Tunisia, Algeria, and Morocco grouped together based on the high percentage

of LAM9 isolates in these countries and low percentage of other subtypes (AU value >95%).

Gambia was separated from this grouping due to the high percentage of LAM1 and LAM4 (Fig

4A and 4B). Similarly, South Africa did not group with any of the other countries because of

the high proportion of LAM3 isolates. Fig 4A and 4B also includes LAM sub-lineage data from

Portugal, Spain, Belgium and Italy. Spain, Belgium, and Italy are all dominated by LAM9, and

cluster closer with Northern African countries (such as Algeria, Morocco, Tunisia, and Guinea

Fig 3. Geospatial distribution of M. tuberculosis isolates belonging to the LAM sub-lineage. Country specific

spoligotype data was only included if the country had>100 M. tuberculosis isolates and�15% of these isolates were

from the LAM lineage. The sizes of the pie chart segments depict the proportion of isolates belonging to the different

LAM sub-lineages (see colour chart for the respective sub-lineages). Each country has been shaded according to the

proportion of LAM lineages isolates present in that country (see colour intensity chart). Country codes (http://www.

worldatlas.com/aatlas/ctycodes.htm).

https://doi.org/10.1371/journal.pone.0200632.g003

MTB genotypes in Africa
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Bissau), while Portugal and Gambia have a larger percentage of the LAM1 component and

therefore separates away from the LAM9 cluster (AU value >95%).

T lineages. The geospatial distribution of the T2 sub-lineages and the corresponding PCA

and pvclust analyses are shown in Fig 6. Principal component 1 explains the majority of the

variance in the data (72.3%), and separates countries that are predominantly T1 dominated

from countries with high percentages of T2, T2-Uganda, or T3-Ethiopia (Fig 6A). The T1 sub-

type is dominant in 14 out of the 20 (70%) African countries and exhibit a strong clustering in

the PCA and pvclust analyses (AU value >95%) (Fig 6A and 6B). Cameroon and Central

Fig 4. Clustering oof countries according the proportion of M. tuberculosis isolates belonging to different LAM

sub-lineages. (A) Principle component analysis: African countries in the PCA plot are coloured based on their most

dominant LAM sub-lineage: LAM1 (blue), LAM3 (blown), LAM9 (purple), LAM11-ZIM (red). PCA plot axes have

been labelled with an “L” to indicate LAM followed by the sub-lineage number. European and Asian countries are

shown in black. Overlapping country codes in the PCA plot (Morocco and Italy, Tunisia and France) indicate a similar

distribution of LAM sub-lineages in the respective countries. (B) pvclust analysis: The clusters edges are numbered in

grey and the AU p-values are shown in black. Strongly supported clusters with AU greater than 95% are highlighted

with a dotted line. Country codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

https://doi.org/10.1371/journal.pone.0200632.g004

MTB genotypes in Africa
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African Republic which have a high percentage of T2 formed a separate cluster with Rwanda

(AU value >95%). As expected, Uganda has a high proportion of T2-Uganda. Djibouti and

Ethiopia have high proportions of T3-Ethiopia. The European (France, Great Britain, Ger-

many, Belgium and Italy) and South Asian countries (Iran and Saudi Arabia) cluster with

other T1 dominated African countries.

CAS lineage. Isolates belonging to the CAS lineage were observed in Eastern Africa. The

geospatial distribution of CAS sub-lineages is shown in S1 Fig (representing countries having

>15% CAS isolates). Pvclust grouped Saudi Arabia, Pakistan, India, Sudan, Ethiopia (AU

value >95%) (S2 Fig).

EAI lineages. S3 Fig shows the distribution of EAI sub-lineages for countries that

have> 15% EAI isolates. Members of the EAI lineage were largely restricted to the East Afri-

can countries Sudan (17.6%), Djibouti (16.6%), Malawi (21.6%), Madagascar (17.9%), and

Mozambique (30.3%). The data showed three strong groupings; Djibouti and Madagascar (AU

>95%), Malaysia, Sudan and Thailand (AU >95%) and Great Britain and India (AU>95%)

(S4 Fig).

H lineage. S5 Fig shows the distribution of H sub-lineages in Africa, with the most pre-

dominant sub-lineages in Africa being H1 and H3. A small proportion of sub-lineage H2 iso-

lates were identified in Northern Africa. Pvclust analysis strongly supported grouping Gambia

and Central African Republic, Cameroon and Iran, Tunisia, Spain and Belgium, and Morocco,

Italy, France and Germany (S6 Fig)

Beijing lineage. Members of the Beijing lineage were found to be over-represented in

South Africa accounting for 19.2% of all TB cases (Fig 1). Isolates belonging to this lineage

were seen to a lesser extent in other countries: Mozambique (6.9%), Madagascar (5.5%) and

Tanzania (6.4%) from the Southern African region; Guinea (5.3%) and Gambia (5.2%) from

the West African region; and Tunisia (7.7%) in North Africa.

Fig 5. Geospatial distribution of M. tuberculosis isolates belonging to the T sub-lineages. Country specific

spoligotype data was only included if the country had>100 M. tuberculosis isolates and�15% of these isolates were

from the T lineage. The sizes of the pie chart segments depict the proportion of isolates belonging to the different T

sub-lineages (see colour chart for the respective sub-lineages). Each country has been shaded according to the

proportion of T sub-lineages isolates present in that country (see colour intensity chart). Country codes (http://www.

worldatlas.com/aatlas/ctycodes.htm).

https://doi.org/10.1371/journal.pone.0200632.g005

MTB genotypes in Africa
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MANU lineage. Members of the ancient Manu lineage were over-represented in Egypt

(19.1%) and Sudan (9.4%) relative to other countries in Africa.

X lineages. Isolates belonging to the X family were over represented in South Africa

(15.3%) as well as Ghana (7.7%)

S lineage. Isolates belonging to the S lineage were most frequently observed in Algeria

(29.7%) and to a lesser extent in South Africa (5.8%), Madagascar (5.1%) and Egypt (5.5%).

Clustering of M. tuberculosis lineages cultured in Africa, Europe and Asia. From Fig

2A and 2B it is evident that Spain and Portugal grouped with countries with LAM dominance.

Fig 6. Clustering of countries according the proportion of M. tuberculosis isolates belonging to the T sub-lineages.

(A) Principle component analysis: African countries in the PCA plot are coloured based on their most dominant T sub-

lineage: T1 (green), T2 (red), T2-Uganda (purple), T3-Ethiopia (turquoise). European and Asian countries are shown in

black. Overlapping country codes in the PCA plot (South Africa and Madagascar, Gambia and Guinea Bissau, Egypt and

Guinea) indicate a similar distribution of T sub-lineages in the respective countries. (B) pvclust analysis: The clusters

edges are numbered in grey and the AU p-values are shown in black. Strongly supported clusters with AU greater than

95% are highlighted with a dotted line. Country codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

https://doi.org/10.1371/journal.pone.0200632.g006
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France, Germany, Italy, and Belgium fell into the loosely grouped H dominant cluster. The

unique distribution of EAI, X and CAS in the Great Britain caused a separation from other

European countries and grouped most closely Madagascar where the EAI lineage was domi-

nant. Asian countries were dominated by CAS, EAI, H and Beijing strains. Pakistan, India and

Saudi Arabia cluster most closely with the CAS dominant Eastern African countries (AU value

94%). India and Saudi Arabia however have quite a mixed distribution with a large influence

of the EAI strain. Although Iran (Iran) also shows a large proportion of CAS, it is dominated

by the H strain and clustered with Central African Republic and Germany (AU value 98%).

Iran does not cluster with any of the other African nor Asian countries. Malaysia and Thailand

both have a high distribution of both EAI and Beijing forming a close cluster (AU value

>95%).

Minimum spanning tree analysis. The Minimum Spanning Tree based on all available

spoligotype international types (SITs) (S7 Fig) highlighted evolutionary relationships and dis-

tance between SITs belonging to LAM, T, H, Beijing, CAS, X, Cameroon, EAI, S, and Manu.

All represented lineages were well organized with isolates belonging to T lineage appearing at

the central position and isolates belonging to T3-Ethiopia sub-lineage (particularly SIT149),

were distinguishable from other T lineage isolates. Isolates belonging to the Cameroon lineage

(particularly defined by SIT61) were located between T (represented by SIT44/T5) and LAM

(represented by SIT42/LAM9) lineages, but closer to T patterns, suggesting the unique feature

of the Cameroon group. Isolates belonging to Manu lineage (better represented by SIT54/

Manu2) were concentrated between T (represented by SIT53/T1) and EAI (represented by

SIT48/EAI1-SOM). Isolates belonging to EAI lineage were distributed partially between Manu

and CAS lineages, with CAS being located in the upper position of the Minimum Spanning

Tree. Isolates belonging to Beijing lineage were visible on the lower part of the tree.

Minimum Spanning Trees drawn focusing on LAM S8A Fig and T (S8B Fig) lineages

showed a more accurate view of organization of sub-lineages and SITs belonging to these line-

ages. The Minimum Spanning Tree based on LAM lineage spoligotypes (S8A Fig) displayed

patterns belonging to LAM3 sub-lineage, essentially represented by SIT33, at the upper part of

the tree, whereas isolates belonging to LAM11-ZWE sub-lineage (mainly represented by

SIT59) were located at the lower position. The latter sub-lineage was differentiated from

SIT42/LAM9 by the spoligotype pattern SIT64/LAM6 and another SIT less represented.

The Minimum Spanning Tree based on T lineage spoligotypes (S8B Fig) also highlighted a

visible separation between SIT53/T1 (at the central position) and SIT149/T3-Ethiopia (appear-

ing at the lower position). Isolates belonging to T1 sub-lineage were rather scattered through-

out the tree. Also noticeable is the exclusion of patterns SIT1737/T-Tuscany and SIT254/

T5-RUS1 appearing on the right upper corner of the tree. As might be expected, patterns

belonging to T2-Uganda were following patterns belonging to T2 sub-lineage. However, a

group of T1 sub-lineage isolates (represented by SIT244) was also following the group of T2

sub-lineage isolates. Classification of this profile may be unclear.

Discussion

This is the first study to comprehensively describe the population structure of M. tuberculosis
on a country, regional and continental scale. All of the major spoligotype lineages were found

to be present in Africa. However, there were clear and distinct differences in the geographical

distribution of the major lineages with regional clustering. This may reflect a founder effect

where certain M. tuberculosis strains were initially introduced into defined areas as a result of

colonization and sea trade [19,20] and later became distributed over a larger area as a conse-

quence of movement of individuals. The introduction of CAS and EAI lineage strains into East
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Africa probably reflects the historic Indian Ocean trade route, which stretched between Mada-

gascar in the South, Egypt in the North, and Western, South and South East Asia. This is sup-

ported by the over-representation of the CAS-Delhi sub-lineage in Saudi Arabia, Iran,

Pakistan and India, and the EAI-5 sub-lineage in Saudi Arabia, India and Malaysia. The CAS--

Delhi and EAI-5 sub-lineages are the possible progenitor strains to CAS-Kili and EAI-Mada-

gascar and EAI-BDG, respectively, as they have the most intact direct repeat region. The

CAS-Kili sub-lineage appears to have evolved in Tanzania and subsequently spread to neigh-

boring countries, however, this lineage has not become dominant in those neighboring coun-

tries. It is not clear where the EAI-Madagascar sub-lineage evolved, although it is strongly

associated with TB in Djibouti and Madagascar, possibly reflecting movement of people

between these two countries, both of which were colonized by France.

The TB epidemic in Sothern Africa is dominated by the LAM11-ZWE sub-lineage which

evolved from the LAM9 (RD174/RDRio) strain through expansion of the ETRB variable num-

ber tandem repeat and loss of spacers 27 to 30 in the direct repeat region [43]. The progenitor

LAM9 (RD174/RDRio) strain is thought to have originated from Portugal, a country which

lead numerous expeditions to Southern Africa and traded extensively in this region thereby

explaining the introduction of this strain. The LAM11-ZWE strain is now distributed through-

out Southern Central Africa possibly reflecting trade within the historical Federation of Rho-

desia and Nyasaland and between neighboring Tanzania and Mozambique. The LAM9 strains

in North Africa (Tunisia, Algeria, and Morocco) differ from those identified in Portugal prob-

ably reflecting trade with the Eastern Mediterranean region as these countries formed part of

the Ottoman Empire. The LAM9 (RD174/RDRio) isolates from patients in Gambia differ

from those found in North Africa and are largely characterized by the presence of RD174/

RDRio, the predominant genotype identified in Portugal [43]. Portugal traded with Gambia

and neighboring Guinea Bissau from the 15th century and later colonized Guinea Bissau.

West Africa is dominated by the presence of the Cameroon lineage, present in Burkina

Faso, Ghana, Nigeria and Cameroon. The large geographic distribution of this lineage reflects

historic and continuing intra-regional movement which was further promoted with the estab-

lishment of the Economic Community of West African States in 1979. It is unknown whether

this Cameroon lineage evolved in West Africa or whether it or a precursor was introduced

during colonization. Interestingly, this lineage has been isolated in France and Belgium which

may reflect migration from West Africa to Europe.

The origin of the T lineage in Africa remains largely unknown as this ill-defined lineage is

present in high proportions in most African countries. Our analysis shows that the T2 sub-

lineage is spread across the central region of Africa. Strains from this lineage potentially

evolved into the T2-Uganda sub-lineage, in Uganda and spread to neighboring Rwanda. The

T3 sub-lineage (defined by the loss of spoligotyping spacer 13) was largely found in Ethiopia

and it is hypothesized that this lineage evolved into T3-Ethiopia strain through the loss of spo-

ligotyping spacer 10–12 and 14–19. Strains of both the T3 and T3-Ethiopia sub-lineages were

also identified in neighboring Djibouti and Saudi Arabia possibly reflecting modern day move-

ment of Ethiopian refugees travelling to Saudi Arabia via Djibouti.

M. tuberculosis cultured from patients resident in South Africa showed the greatest diversity

as well as the greatest abundance of Beijing lineages. Interestingly, the Beijing lineage strains

found in Cape Town show similar genetic features to the Beijing strains from Southeast Asia

[44,45], possibly reflecting the importation of slaves. The success of the Beijing lineage in

South Africa has been ascribed to host pathogen compatibility and an association between

HLA-B27 [46]. We could also speculate that one reason why some lineages are prevalent in

specific regions/countries is that they might be well adapted to some populations [47]. The low
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proportion of Beijing lineage stains in other African countries situated on the East coast of

Africa is surprising given the traditional trade routes between Africa and Asia.

In recent years the increasing interaction between people on a worldwide scale due to

advances in technology and transportation will likely define new patterns of M. tuberculosis
distribution. More specifically in Africa refugee migration, driven by conflict or economic

hardships is very common. This could influence the population structure of M. tuberculosis
given the success of strains such as Beijing or LAM. These strains may be taking over the tradi-

tional ones and in some areas may emerge as new strains, such as in the case of T family. How-

ever we do not have strong evidence to show that the population structures are changing and

more longitudinal studies are needed. Patterns of distribution and percentages of newer line-

ages emerging in areas where they would not be traditionally expected may help generate

hypothesis about the direction of the general epidemic in future, given new patterns of migra-

tion and globalization.

We acknowledge that this study has a number of limitations. First, our data was not substanti-

ated with more robust analysis like MIRU-VNTR or whole genome sequencing. This could have

increased the discriminatory power, thereby optimizing the classification of the M. tuberculosis
strains. Second, the PCA was carried out using either lineages or sub-lineages, and not the SITs.

Considering that some of the sub-lineages might be polyphyletic, corresponding strains between

countries may not fully represent a true monophyletic branch, and in such cases a shared evolu-

tionary history for the strains in question might have not occurred. Nevertheless, it would have

been too cumbersome to perform PCA analysis of M. tuberculosis isolates based on thousands of

SITs, with inherently complicated results and interpretations. We therefore chose to perform

PCA using either lineages or sub-lineages for the time being. When the next database is released

with a significantly greater number of strains and SITs worldwide in near future, and SITs from

Africa are better characterized, it might be worthwhile to run PCA analysis of selected SITs.

Third, the strain population structure in many of the countries was defined by a single study. This

could introduce bias depending on how representative the study was. However, our observation

of geographical clustering suggests that the data included largely reflects the strain diversity of that

country. Fourth, data from a number of countries was not available. This together with the exclu-

sion of countries with less than 100 isolates may have prevented the detection of new regional

clustering. Fifth, it is not possible to determine whether the observed clustering of M. tuberculosis
lineages or sub-lineages reflects recent or historic movement of people as spoligotyping was only

implemented as a genotyping tool in 1997. This would have been more feasible by using MIR-

U-VNTR in addition to spoligotyping which would have allowed robust evaluation of clonal sta-

bility. Last, the sampling period for these studies was different and represented different time-

points of ongoing epidemic, therefore we cannot exclude the possibility that clustering may be

missed if the population structure of M. tuberculosis has changed.

In summary, this study suggests a more complex population structure than was previously

reported using either spoligotyping [18] or LSP data [5]. Furthermore, this study highlighted

that the TB epidemic in Africa is driven by regional epidemics characterized by genetically dis-

tinct lineages of M. tuberculosis. TB in these regions may have been introduced from either

Europe or Asia and has spread through pastoralism, mining and war. The vast array of geno-

types and their associated phenotypes should be considered when designing future vaccines,

diagnostics and anti-TB drugs.

Supporting information

S1 Fig. Geospatial distribution of M. tuberculosis isolates belonging to the CAS sub-line-

ages. Country specific spoligotype data was only included if the country had>100 M.
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tuberculosis isolates and�15% of these isolates were from the CAS lineage. The sizes of the pie

chart segments depict the proportion of isolates belonging to the different CAS sub-lineages

(see colour chart for the respective sub-lineages). Each country has been shaded according to

the proportion of CAS sub-lineages isolates present in that country (see colour intensity

chart). Country codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S2 Fig. pvclust analysis of M. tuberculosis isolates belonging to the CAS sub-lineages. The

clusters edges are numbered in grey and the AU p-values are shown in black. Strongly sup-

ported clusters with AU greater than 95% are highlighted with red rectangle. Country codes

(http://www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S3 Fig. Geospatial distribution of M. tuberculosis isolates belonging to the EAI sub-lineage.

Country specific spoligotype data was only included if the country had>100 M. tuberculosis
isolates and�15% of these isolates were from the EAI lineage. The sizes of the pie chart seg-

ments depict the proportion of isolates belonging to the different EAI sub-lineages (see colour

chart for the respective sub-lineages). Each country has been shaded according to the propor-

tion of EAI sub-lineages isolates present in that country (see colour intensity chart). Country

codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S4 Fig. pvclust analysis of M. tuberculosis isolates belonging to the EAI sub-lineages. The

clusters edges are numbered in grey and the AU p-values are shown in black. Strongly sup-

ported clusters with AU greater than 95% are highlighted with red rectangle. Country codes

(http://www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S5 Fig. Geospatial distribution of M. tuberculosis isolates belonging to the H sub-lineage.

Country specific spoligotype data was only included if the country had>100 M. tuberculosis
isolates and�15% of these isolates were from the H lineage. The sizes of the pie chart segments

depict the proportion of isolates belonging to the different H sub-lineages (see colour chart for

the respective sub-lineages). Each country has been shaded according to the proportion of H

sub-lineages isolates present in that country (see colour intensity chart). Country codes see

(http://www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S6 Fig. pvclust analysis of M. tuberculosis isolates belonging to the H sub-lineages. The clus-

ters edges are numbered in grey and the AU p-values are shown in black. Strongly supported

clusters with AU greater than 95% are highlighted with red rectangle. Country codes (http://

www.worldatlas.com/aatlas/ctycodes.htm).

(TIF)

S7 Fig. Minimum spanning tree based on spoligotypes present in Africa. Minimum span-

ning tree based on spoligotypes (n = 10577 isolates) showing the main SITs present in Africa.

The structure of the tree is represented by links (continuous vs. dashed and dotted lines)

denoting distance (changes) between patterns, and circles representing each spoligotype pat-

tern. The size of circles is proportional to the number of isolates associated to a given SIT (SIT

number in the circle (large circles) or SIT number adjacent to the circle (small circles). The fig-

ure can be zoomed for a better visualization. In the insert, the number following the lineage

indicates the total number of isolates for the given lineage.

(TIF)
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S8 Fig. Minimum spanning tree based on LAM spoligotypes present in Africa. Minimum

Spanning Trees based on spoligotypes (A) focusing on LAM sub-lineage representing

n = 2719 and (B) focusing on T sub-lineages representing n = 2531 isolates. The structure of

the tree is represented by links (continuous vs. dashed and dotted lines) denoting distance

(changes) between patterns, and circles representing each spoligotype pattern. The size of cir-

cles is proportional to the number of isolates associated to a given SIT (SIT number in the cir-

cle (large circles) or SIT number adjacent to the circle (small circles). In the insert, the number

following the sub-lineage indicates the total number of isolates for the given sub-lineage.

(TIF)

S1 Table. Spoligotype data for the major M. tuberculosis lineages present in 36 countries in

Africa. Spoligotype data was extracted from SITVIT2 as well as from literature for countries

were spoligotype date had not been included in SITVIT2. Countries highlighted in grey were

not included in the analysis as<100 M. tuberculosis isolates had been spoligotyped. Country

codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

(XLSX)

S2 Table. Spoligotype data for the M. tuberculosis sub-lineages present in 36 countries in

Africa. Spoligotype data was extracted from SITVIT2 as well as from literature for countries

were spoligotype date had not been included in SITVIT2. Countries highlighted in grey were

not included in the analysis as<100 M. tuberculosis isolates had been spoligotyped. Country

codes (http://www.worldatlas.com/aatlas/ctycodes.htm).

(XLSX)
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