
Specification, Design and Implementation of
a Flight Control Unit for an Unmanned Aerial

Vehicle

by

Hartmut Behrens

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering in the Faculty of

Engineering at Stellenbosch University

Department of Electrical and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Supervisor: Prof T. Jones

December 2015

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: .

Copyright © 2015 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

The specification, design and implementation of an avionics system including
a flight control unit for an unmanned aerial vehicle that is suitable for research
purposes is presented. The project aims to address a number of limitations of
previous systems that were developed at the Electronic Systems Laboratory
of Stellenbosch University.

An architecture is developed that is based on documented research and
open industry standards. The architecture enables distributed, real-time and
embedded flight control applications to be developed. The platform is ex-
tendible with minimal effort. Provision is made to support sensor and actuator
hardware that has been developed in the past.

The results of a flight controller that was previously developed at the Elec-
tronic Systems Laboratory and was ported to the new architecture are pro-
vided. The newly ported flight controller is proven to work correctly using
hardware-in-the-loop simulations. Comparative tests indicate that the perfor-
mance is on-par with existing Electronic Systems Laboratory systems.

ii

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Die spesifikasie, ontwerp en implementering van avionika, insluitende ’n vlug-
beheerstelsel vir ’n onbemande vliegtuig wat geskik is vir navorsing doeleindes,
word aangebied. Die projek spreek ’n aantal beperkinge aan van vorige stelsels
wat by die Elektroniese Stelses Laboratorium van die Universiteit van Stellen-
bosch ontwikkel is.

’n Argitektuur is ontwikkel wat gebaseer is op vorige navorsing en oop in-
dustrie standaarde. Die argitektuur maak dit moontlik om ’n verspreide, geïn-
tegreerde en intydse vlugbeheerstelsel te ontwikkel. Die platform kan met min-
imale inspanning opgegradeer word. Voorsiening is ook gemaak om bestaande
sensors en aktueerders te ondersteun.

Die resultate van ’n bestaande vlugbeheerstelsel wat oorgedra is na die
nuwe argitektuur word beskryf. Dit word gewys dat die nuwe stelsel korrek
werk met behulp van hardeware-in-die-lus simulasies. Vergelykende toetse
dui daarop dat die prestasie op gelyke voet is met bestaande stelsels van die
Elektroniese Stelses Laboratorium.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to:

• Prof T. Jones for affording me the opportunity to complete this project
in the ESL and guiding me in the right direction during our discussions.

• My Wife and Family - Thank you - for too many reasons to list here !

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents v

List of Figures vii

Nomenclature x

1 Flight Control Systems 1
1.1 Introduction . 1
1.2 Limitations . 2
1.3 Objectives / Requirements . 4
1.4 Evaluation . 5
1.5 Approach . 5
1.6 Thesis Overview . 5

2 System Design 6
2.1 Types . 6
2.2 Distributed Systems . 8
2.3 Software . 9
2.4 Components . 12
2.5 Standards . 13
2.6 Model Driven Development . 13
2.7 Real-time Operating System . 14
2.8 Compatibility . 15
2.9 Conclusion . 15

3 Architecture 17
3.1 Structure . 17

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

3.2 Components . 19
3.3 Event Service . 22
3.4 Flow Policies . 22
3.5 Distributed Systems . 27
3.6 Hardware Block Diagram . 29
3.7 Software Block Diagram . 30
3.8 Simulation . 32
3.9 CAN-Ethernet Gateway . 33
3.10 Conclusion . 33

4 Development 35
4.1 Hardware . 35
4.2 Real-time Operating System . 37
4.3 Software . 38
4.4 Conclusion . 48

5 System Integration 49
5.1 Hardware . 49
5.2 Software . 50
5.3 Conclusion . 56

6 System Verification 57
6.1 CAN-Ethernet Gateway . 58
6.2 Real-time Operation . 59
6.3 Ethernet Switch . 62
6.4 Comparison . 62
6.5 Flight Control System . 77
6.6 Distributed Flight Control System 82
6.7 Conclusion . 87

7 Summary and Recommendations 89
7.1 Summary . 89
7.2 Recommendations . 89

Appendices 91

A Software 92
A.1 Serial Communication Protocol 92

List of References 93

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 Overview of an ESL flight control system. 2

2.1 Independent avionics [1]. 6
2.2 Federated avionics [1]. 7
2.3 Integrated modular avionics [1]. 8
2.4 Middleware layers [2]. 12

3.1 Template Flight Control System Architecture [3]. 18
3.2 Ports and attributes of a software component 20
3.3 IDL to C++ mapping . 21
3.4 A basic flight control system . 21
3.5 Publish/Subscribe architecture using an event service. 22
3.6 Flow Chart of periodic tasks [4]. 25
3.7 Control and data flow diagram. 25
3.8 Remote method invocation. 28
3.9 Hardware block diagram of the flight control system. 29
3.10 Component diagram of the flight control system. 30
3.11 HIL simulation of existing FCS [11]. 32

4.1 Rate Generator component interface. 38
4.2 Command component interface. 40
4.3 HILInterface component interface. 40
4.4 GPS component interface. 42
4.5 IMU component interface. 43
4.6 Estimator component interface. 44
4.7 Controller component interface. 45
4.8 Servo component interface. 46
4.9 OnBoardComputer component interface. 47
4.10 Existing HIL simulation setup. 48
4.11 New HIL simulation setup. 48

5.1 HIL tested hardware block diagram of the flight control system. . . 50
5.2 Rate Generator component interface. 50
5.3 Visual modelling of port connection. 55

vii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES viii

6.1 CAN-Ethernet gateway test setup. 58
6.2 Event latency. 59
6.3 Latency distribution graph. 60
6.4 Total algorithm execution time. 61
6.5 Execution event interval. 61
6.6 Execution event interval after adjustment. 62
6.7 Setup for simultaneous operation of both flight control systems. . . 63
6.8 Way-points that were used during the simulation. 64
6.9 Latitude comparison. 66
6.10 Longitude comparison. 66
6.11 GPS north velocity comparison. 67
6.12 GPS east velocity comparison. 67
6.13 Gyro x-axis/roll angle comparison. 68
6.14 Gyro y-axis/pitch angle comparison. 68
6.15 Gyro z-axis/yaw angle comparison. 69
6.16 Pitot-static indicated airspeed. 69
6.17 Pitot-static pressure altitude. 70
6.18 Estimator north position comparison. 70
6.19 Estimator east position comparison. 71
6.20 Estimator north velocity comparison. 71
6.21 Estimator east velocity comparison. 72
6.22 Estimator roll angle comparison. 72
6.23 Estimator pitch angle comparison. 73
6.24 Estimator yaw angle comparison. 73
6.25 Controller bank angle reference comparison. 74
6.26 Controller horizontal acceleration reference comparison. 74
6.27 Comparison of navigated waypoints. 75
6.28 Comparison of actuator throttle commands. 75
6.29 Comparison of left aileron commands. 76
6.30 Comparison of actuator elevator commands. 76
6.31 Comparison of actuator rudder commands. 77
6.32 Next destination way-point selected by controller. 78
6.33 GPS Longitude vs Latitude. 78
6.34 Pitot-static pressure altitude. 79
6.35 Estimator determined Longitude vs Latitude. 79
6.36 Pitot-static indicated airspeed. 80
6.37 Actuator throttle command. 80
6.38 Actuator elevator command. 81
6.39 Actuator rudder command. 81
6.40 Actuator left aileron command. 82
6.41 Waypoints for the distributed test. 83
6.42 GPS Longitude vs Latitude. 84
6.43 Pitot-static pressure altitude. 84
6.44 Estimator determined Longitude vs Latitude. 84

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES ix

6.45 Pitot-static indicated airspeed. 85
6.46 Actuator throttle command. 85
6.47 Actuator elevator command. 86
6.48 Actuator rudder command. 86
6.49 Actuator left aileron command. 87

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Acronyms

AFDX Avionics Full Duplex Ethernet

ARINC Aeronautical Radio Incorporated

ARM Advanced RISC Machines

CAN Controller Area Network

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf

DRE Distributed, Real-Time, Embedded

ESL Electronic Systems Laboratory

FCS Flight Control System

FPGA Field Programmable Gate Array

FOSS Free Open Source Software

GME Generic Modelling Environment

GPS Global Positioning System

HIL Hardware In the Loop

IDL Interface Description Language

IMA Integrated Modular Avionics

x

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xi

IMU Inertial Measurement Unit

IOR Interoperable Object Reference

IP Internet Protocol

LwCCM Lightweight CORBA Component Model

LRU Line Replaceable Unit

MVC Model-View-Controller

OMG Object Management Group

OO Object Oriented

ORB Object Request Broker

OS Operating System

RAM Random Access Memory

RC Radio Controlled

RTOS Real-Time Operating System

SBC Single Board Computer

UAV Unmanned Aerial Vehicle

UCM Unified Component Model

UDP User Datagram Protocol

XML Extensible Markup Language

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Flight Control Systems

1.1 Introduction
The Electronic Systems Laboratory (ESL) at Stellenbosch University is a cen-
tre of expertise in the modelling, control and automation of aerospace, terres-
trial and underwater vehicles. As a result of research activities, a number of
flight control platforms have already been developed at the ESL that addressed
various flight control problems related to autonomous flight. The platforms
that were designed as a result of the conducted research activities provided an
efficient solution to the control problem that was being studied.

The current state of avionics that include flight control systems in the
ESL can be briefly summarized as follows: The first project at the ESL that
automated the flight of a fixed wing aircraft produced a micro-controller based
flight avionics package with a Controller Area Network (CAN) fieldbus [5]. The
package was refined by adding hardware-in-the-loop simulation functionality
during research that implemented autonomous take-off and landing capability
for the fixed wing unmanned aerial vehicle (UAV) [6]. At the same time, an
alternative flight control platform that off-loaded most of the processing to
a ground station via a high speed link was also developed for an electrically
powered radio-controlled (RC) helicopter [7]. Also during the same year, an
avionics package that was based on a PC/104 motherboard equipped with
a CAN fieldbus extension running a Linux-based operating system (OS) was
produced [8] [9]. It was initially used as a rotary wing testbed and also to
perform research on vertical take-off and landing (VTOL). The PC/104 setup
was later improved as part of research aimed at introducing aerobatic flight
manoeuvrability during autonomous flight [10]. A light weight, low-power
drop in replacement for the PC/104 avionics was eventually designed during
research on a variable stability UAV. This variant however lacked the ability to
run a Linux-based OS [11]. It is the platform that is currently predominantly
used at the ESL.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. FLIGHT CONTROL SYSTEMS 2

Figure 1.1: Overview of an ESL flight control system.

Through all these studies, extensive experience has been gained in develop-
ing complex control algorithms that equip UAVs with new autonomous flight
capabilities. The efficient implementation of systems realizing these capabili-
ties has in part been made possible by the introduction of digital computing
hardware into the control loop [12]. However, architectural considerations
such as maintainability and upgradability of the avionics were often secondary
concerns that were relegated in favour of demonstrating the achievement of
research objectives.

1.2 Limitations
The avionics systems that have been developed at the ESL are purpose-built
for the task at hand, with the architecture typically being dictated by the
flight control algorithms being implemented. The systems consist of a cen-
tralized processor with tightly coupled subsystems, each partitioned to per-
form a specific function, that are bound together into a single unit performing
the required aircraft control. Each subsystem is developed from scratch with
minimal technology reuse. Data is shared either via specific analogue/digital
signals or via a low-speed fieldbus such as CAN. Sensors and actuators are also
connected via the CAN fieldbus. Figure 1.1 illustrates the architecture of an
existing flight control system at the ESL.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. FLIGHT CONTROL SYSTEMS 3

While this custom architecture yields a highly efficient design - it is at the
same time also inflexible, since it is built and wired specifically for the task at
hand. Consider, for example, the emerging trend of vision-based navigation,
a first study of which has been completed at Stellenbosch University [13]. It
was difficult to implement a flight-capable demonstrator model for the study
using only the avionics available at that time due to the high processing power
and bandwidth requirements of the vision-based control algorithm. To over-
come the limitation, dedicated field programmable gate array (FPGA) based
hardware was developed for the project that performed most of the image pro-
cessing functions. As this example illustrates, to keep up with an expected
increase in capability, an extension or redevelopment of the avionics would
often be needed every time a new capability is required.

The use of embedded hardware to implement control systems has also in-
troduced software (firmware) into the control loop which must be programmed,
supported and eventually evolved [12] . Since software development is error-
prone, mechanisms are required that will allow the developer to manage the
complexity and reduce the occurrence of errors. A mechanism, which has
already been implemented and used effectively at the ESL, is a hardware-in-
the-loop (HIL) simulator which allows the control systems to be tested and
proven under conditions resembling those encountered in the field. Another
mechanism that could achieve a reduction in encountered errors is to rely more
on previously developed, proven and tested software. Unfortunately this is not
easily done on a custom system, since the software is tied to a great degree to
the underlying hardware.

Beyond this, flight control software needs to periodically process tasks in a
deterministic way with real-time deadlines. The correctness of an algorithmic
computation depends not only on the logical correctness of the calculated
value but also on the timely delivery of the result. Should this not occur, the
consequences could be severe - in the worst case, flight control could be lost.

Enforcing real-time constraints with software developed from scratch could
result in a sub-optimal implementation. Developing software that meets real-
time requirements often also results in an implementation that is tightly cou-
pled to the underlying hardware. The inflexibility of tightly coupled software
can lead to more expensive development effort when changes are required due
to e.g. the availability of new / obsolescence of old hardware . Additionally,
tight coupling makes reuse of existing, tested software components substan-
tially more difficult.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. FLIGHT CONTROL SYSTEMS 4

The limitations of the current ESL avionics systems can therefore be sum-
marized as follows:

• The system has limited processor, memory and fieldbus bandwidth re-
sources.

• Upgrading system resources often requires a redesign.

• The developed software is tightly coupled to the underlying hardware.

• The scheduling is hard-coded in the main cycle, with poor ability to
support asynchronous timing requirements.

• The scheduling assumes all tasks need to run at the same rate of repeti-
tion with the same priority.

• Application logic is evolved around the execution ordering hard-coded in
the main cycle.

• It could be difficult to accommodate multi-threaded operations with the
current scheduling technique.

• It is difficult to extend the system with new payload hardware that may
be required for specific research purposes - e.g. a camera subsystem for
vision-related flight control research.

1.3 Objectives / Requirements
The project aims to specify, design and implement a new avionics system that
is suitable for autonomous flight research purposes while also addressing the
identified limitations of the previously developed systems. The objectives of
the project will be to :

• develop a flight control system that is modern.

• address the existing system resource limitations.

• make the system and its resources extendible.

• enable re-use of developed software and technology.

• develop a system that is based on open industry standards.

• take into account the real-time, embedded nature of the flight control
system.

• make provision to incorporate existing sensors and actuators.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. FLIGHT CONTROL SYSTEMS 5

• develop a system that is suitable for research purposes.

• port an existing flight control system to the new architecture as a proof
of concept exercise.

1.4 Evaluation
In order to quantitatively evaluate whether the objectives have been met, the
flight control logic of an existing flight control system will be ported to the new
hardware / software architecture. Its performance will be evaluated against the
existing system from which it was ported using Hardware-in-the-Loop (HIL)
simulation results.

1.5 Approach
The approach taken by the thesis to realize the objectives of the study was
to investigate whether advances in computer hardware, software and sensor
technologies that are relevant to the domain provided promising cues for the
development of a modern, re-usable and extendible platform. While a majority
of research in autonomous flight is aimed at solving interesting flight control
problems - with the usual associated flight controller design to test the validity
of study findings - projects focused on the architecture of the platform do also
exist. Academic research results as well as industry trends were investigated
for their suitability to overcome the limitations of the current architecture.

1.6 Thesis Overview
In chapter 2 the alternatives to meet the project objectives are introduced and
a system design is sketched out. In chapter 3 the architecture and functional
requirements of the avionics system are developed. The individual hardware
and software modules of the new avionics system are designed in detail in
chapter 4. This chapter includes the porting and design of an existing ESL
flight control system. In chapter 5 the process of combining the individually
designed modules into a functioning flight control system is described, while the
results of testing and verifying that the completed system works as intended
using a HIL simulation are described in chapter 6. The thesis concludes in
chapter 7 with recommendations on future developments.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

System Design

Chapter 1 gave an overview of the current state of flight control hardware
and software available in the ESL. It described the architectural limitations
that currently exist with these systems. The objectives for a new system
that will address the current limitations were also provided. In this chapter,
suitable approaches which can be employed to address each of the objectives
are introduced and evaluated.

2.1 Types
Avionics systems can generally be divided into three architectural paradigms:
independent (analogue), federated and integrated modular architectures [1].
The first generation of avionics architectures were also known as independent
avionics. Each function (e.g. flight control, navigation, communication) had
its own separate, dedicated sensors and processors. Where an interconnect was
required it was achieved using point-to-point wiring. A majority of indepen-
dent avionics consisted of analogue systems. Figure 2.1 represents an overview
of such a system.

Figure 2.1: Independent avionics [1].

Federated avionics architectures distribute the individual functions of the
system over dedicated modules, known as line replaceable units (LRU), each

6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 7

of which contains its own dedicated processing resources. An LRU is equipped
with specifically developed hardware and software that is suited to the function
it needs to perform. Each LRU has few dependencies on other LRU’s in the
system. The LRU’s are connected via a communication bus to form a complete
avionics system. Since each LRU is contained in a separate hardware box,
a major advantage of federated avionics system is that it is fault tolerant.
However, a disadvantage of this approach is that the introduction of a new
function into the system also requires the development of a new LRU and thus
also of new hardware and software. Figure 2.2 illustrates this concept.

Figure 2.2: Federated avionics [1].

A current trend in the aerospace industry is to develop airborne systems in
a modular manner according to the Integrated Modular Avionics (IMA) con-
cept. IMA architecture describes a distributed, real-time computer network
that could consist of numerous modules, each of which performing functions
that may have different levels of safety-criticality associated with it [14]. Each
module could have several partitions that run on top of a real-time OS. Each
partition has shared system resources like CPU and memory available to it,
but also includes protection mechanisms that allow it to function regardless
of failures on other partitions. The Aeronautical Radio Incorporated (AR-
INC) subsidiary of Rockwell Collins is the major supplier of specifications for
the IMA architecture: ARINC 650 and ARINC 651 describe general hard-
ware and software standards for the IMA architecture while ARINC 653 is
the software specification describing the partitioning mechanism that needs
to be implemented on the underlying (real-time) operating system. ARINC
specifications are voluntary aviation technical standards that are available for
purchase. Although IMA architectures are most often associated with large
aircraft, promising Linux-based research implementations for small UAVs have
also been built [15]. Figure 2.3 provides a top-level overview of an IMA-based
avionics system.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 8

Figure 2.3: Integrated modular avionics [1].

IMA platforms are also increasingly establishing a trend in the aerospace
industry to use general purpose computing hardware as the avionics platforms
[16] in order to address some of the limitations of custom design [17]. Us-
ing this concept, the platform does not perform any dedicated flight control
functions but provides the necessary computing, communication and memory
resources to implement the required functions. The use of commercial-off-
the-shelf (COTS) technology leads to a system that is mirrored on industry
standards [18], with the additional benefit that design time and cost are also
reduced.

The development of sophisticated mobile handsets has spurred the devel-
opment of high performance, low-power and low-cost processors that deliver
high floating point calculation performance. Such characteristics also make
them well suited for use in research-based unmanned flight control system
hardware. Various appropriately equipped low-cost, low-power and low-weight
rapid prototyping boards are currently available that could be used as general
computing hardware for a flight control system. The use of high-performance
computing hardware would also make it possible to use a (real-time) OS on top
of the hardware, similar to what is being done in IMA systems. An advantage
of introducing an OS into the system is that it abstracts away a significant
amount of the "bare-metal" firmware programming - resulting in software that
is also more portable and reusable, since it is less dependent on the underlying
hardware.

2.2 Distributed Systems
It could reasonably be expected that autonomous flight research would focus
on a variety of mission types and objectives - each one of which could re-
quire the use of a different set of technologies. It could also be expected that
improvements in electronics hardware and sensor technologies need to be con-
tinuously exploited to achieve research objectives. The combination of these
factors indicate that there will be a need for frequent replacements/redesigns
of the current avionics, if the existing design approach continues to be pursued

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 9

[19]. By adopting a distributed systems architecture for the avionics system,
a flexible substitution and extension of subsystems could be enabled [20] [21].

Tied to the introduction of a distributed systems architecture is the use of a
suitable data bus. CAN has to date been the standard data bus in use in avion-
ics systems in the ESL due to its deterministic nature. However its low-speed
and low bandwidth could limit the ability of a flight control system to support
high bandwidth / throughput applications. Advances in computer networks
have established Ethernet as an ubiquitous standard, with COTS parts being
readily available. The adoption of Ethernet in the past in real-time, embed-
ded systems as a data bus has been very limited due to the non-deterministic
behaviour of its access contention resolution algorithm when being used in
conjunction with a shared medium. This problem has been addressed with
the development of switched Ethernet. Its use in industrial applications has
been validated [22]. A commercial standard describing the use of deterministic
Ethernet, ARINC 664 as well as a vendor implementation thereof, known as
Avionics Full Duplex Ethernet (AFDX) also exist and are gaining support. It
is even possible to develop an AFDX implementation entirely in software on
top of an existing switched Ethernet network [23].The use of switched Ethernet
as a data bus would be a significant enabler since:

• Higher volumes of data could be transferred at a greater speed between
modules connected to the data bus, allowing the use of new "high band-
width" sensors.

• The flight control system could be extended with dedicated payload mod-
ules that provide new capabilities for mission-specific tasks.

• The need for more processing power could be addressed by enabling the
capability to add more computing modules to the data bus and spreading
the workload across the various modules. This implies the use of a new
software programming paradigm that enables this facility.

2.3 Software
Developing software for a high-performance, real-time embedded avionics plat-
form is a complex task, made more difficult if it is based on a distributed,
modular architecture. An accepted technique for developing complex software
systems is to use the object-oriented (OO) programming paradigm. Object-
oriented techniques focus on composing applications from classes and objects
that have well-defined interfaces and are related via derivation, aggregation
and composition [24]. However, using OO techniques still results in an amount
of careful and error-prone work that is required when connecting many small

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 10

parts together in order to form a module handling some bigger part of an
overall application [24]. In general, a lot of boilerplate code is still required.

On the other end of the spectrum are automatic code generation suites such
as IBM Rhapsody, Esterel Technologies SCADE and MathWorks Simulink /
Stateflow combined with the Embedded Coder extension. In the case of these
tools, software is developed with graphical building blocks in a model-driven
design environment. Once the building blocks have been connected to form a
complete system, an automatic code generator is able to turn the model into
equivalent C source code. The generator in turn has been verified to generate
safety critical code without any ambiguity according to a specification such
as DO-178B / DO-178C, allowing the automatically generated software to be
used in airborne environments. As can be expected, these tools are available
at a price premium.

Research was conducted to identify possible solutions that would deal with
the complexity of object-oriented software development for distributed, real-
time embedded systems, while at the same time being cost-effective. A notable
development evolved from a program started in 1995 at McDonnell Douglas,
now part of the Boeing Company, to study the possibility of reusing flight
software that was being developed for its various fighter aircraft [25]. The
goals of the project were to:

• enable the development of new control applications that were difficult to
implement using software techniques available at that time.

• define a system architecture that is based on COTS hardware and open
software, standards.

• develop a re-usable software architecture framework.

• develop applications using reusable software components that reside in
the framework

The software framework contemplated at the time would ideally contain the
change and maximize re-usability of software across their product lines. The
project was later expanded under the Open Control Platform initiative in
the Boeing Phantom Works division to also include UAVs [26]. The software
framework that was evolved out of these and other similar studies came to be
known as middleware [2].

Middleware is located between the application being developed and the
underlying OS / network / hardware. It provides re-usable building blocks,
infrastructure and services that can be used to compose application software -

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 11

as a result, it is more completely referred to as host infrastructure middleware.
It allows developers to build applications from a re-usable software framework
instead of being concerned with developing low-level code that has a direct
dependency on the underlying OS and hardware platform. Examples of well
known host infrastructure middleware include Oracle’s Java virtual machine
and Microsoft’s Common Language Runtime - the foundation for .NET ser-
vices.

A specialized type of middleware, known as distribution middleware, has
been developed that extends the functionality of host infrastructure middle-
ware by providing re-usable network programming capabilities and services.
Distribution middleware makes it possible to create and program distributed
systems that run across computer networks. Examples of distribution middle-
ware include Microsoft’s Component Object Model and the Common Object
Request Broker Architecture (CORBA) from the Object Management Group
(OMG). It is interesting to note that the use of CORBA in real-time control
applications for robotics and UAVs has been validated [27] [28].

Both commercial as well as free, open-source software (FOSS) versions of
middleware that are suitable for use in a distributed, real-time and embedded
environment are available and actively maintained. Commercial versions of
distribution middleware are available from companies such as Prismtech and
RTI. A FOSS version of distribution middleware, directly developed as a re-
sult of the research started at McDonnell Douglas / Boeing in collaboration
with Washington University is also available [29] [30]. It is also known that
proprietary derivatives of the FOSS distribution middleware exist and are in
active use at companies such as Northrop Grumman [31].

Middleware can be thought of as being organized in layers, as shown in
figure 2.4. The host infrastructure middleware sits on top-of and depends
on the underlying OS and hardware. Distribution middleware extends host
infrastructure middleware with distribution / networking capabilities and to
this end provides further re-usable services, such as an event service, which
will be described further in 3.3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 12

Figure 2.4: Middleware layers [2].

Using a suitable distribution middleware framework would make it possible
to create complex application software - in this case flight control software -
that can, as much as possible, contain change and enable re-usability while at
the same time also allowing the system resources to be expanded [32] [33]. It
is claimed that the use of middleware can reduce the effort required to build
and maintain distributed, real-time and embbedded (DRE) systems [34].

2.4 Components
Domain independent distribution middleware has been developed that is suit-
able for use in a distributed, real-time and embbedded (DRE) environment
[35]. It is based on the CORBA architecture that has been standardized by
the OMG. More recently, the standard was evolved to support component-
based system development. In the context of middleware, components are
software units that enhance the object oriented programming paradigm by en-
capsulating parts of a system that are offering a specific service. The service
is exposed and made available to other components via attributes and ports.
Component-based software development proceeds by assembling various com-
ponents into a system, using their exposed ports to tie them together.

When used in the context of software development, the term component is
often ambiguous [25]. For the purposes of this project, a component will be a
software entity that:

• can be composed of multiple smaller objects.

• provides a set of services to a client

• executes inside a server runtime / container which is part of the middle-
ware framework.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 13

• relies on few underlying assumptions about the environment in which it
is executing.

• has access to reusable middleware services such as an event channel, a
persistence service, a load balancing service, scheduling mechanisms.

2.5 Standards
A lightweight profile of the component-based distribution middleware, known
as Lightweight CORBA Component Model (LwCCM) has been standardized
by the OMG [36]. It retains the essential functionality to develop distributed,
real-time systems but is optimized to be used in a resource constrained, em-
bedded environment. Domain-specific component models have also been de-
veloped: these include research to combine the LwCCM component model
with the services described in the ARINC-653 standard in order to build a
hard real-time platform suitable for use in safety-critical avionics [37]. Other
domain-specific examples include Autosar for the automotive industry and
Orocos, which is used in the robotics domain.

The current state of the art is for component-based distribution middleware
to be combined with publish/subscribe technologies in order to enable the
exchange of large amounts of data efficiently. An example application of this
architecture was described in the development of a fractionated satellite system
in which a traditional monolithic satellite was replaced by a cluster of wirelessly
connected modules [38].

Presently, work is progressing on a new standard, the Unified Component
Model (UCM), which will evolve out of the LwCCM. The main goal of the new
UCM standard will be to remove the dependency on CORBA and introduce
more support for publish/subscribe technologies. It is hoped that this will
result in an even simpler, more extensible and customizable middleware.

2.6 Model Driven Development
The use of software components in the development of the flight control system
opens up the possibility to define system functionality using a Model Driven
Architecture (MDA) methods, the specification of which has been standardized
by the OMG [39]. Using an MDA approach, it is possible to design the in-
terface, interconnectivity and configuration of software components in a visual
modelling environment such as the free, open-source Generic Modelling Envi-
ronment (GME) from Vanderbilt University [40]. Once the software model has
been completely developed it is possible to generate component interface def-
inition, deployment and configuration files for the system as well as low-level

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 14

networking code that are usually required by middleware to run and inter-
operate the software components. This task could be tedious and error-prone,
since a manual approach would entail editing configuration files by hand.

While tools like Esterel Technologies SCADE andMathWorks Matlab Simulink
/ Stateflow allow C source code to be developed for the complete system, GME
attempts to strike a middle-ground by automating away the most tedious, re-
peatable tasks. The implementation of the business logic of a flight control
system however must still be completed manually.

2.7 Real-time Operating System
The correct operation of the flight control system will require the ability to
deliver computational results in a deterministic manner. This cannot simply
be achieved by using a particular type of "real-time" middleware, since the
middleware relies on underlying OS facilities that enable deterministic perfor-
mance. In order to achieve real-time performance, a mechanism in the OS
must be available that enable highest priority tasks to obtain use of the CPU
without being pre-empted by any other tasks, including the OS kernel itself.
On such an OS, known as a real-time OS (RTOS) the latency of execution of
a task can only be affected by tasks with a higher priority.

At least two different distinctions of real-time behaviour exist: hard and
soft real-time. Hard real-time guarantees are important for applications such
as flight control systems: these systems require that every task that is exe-
cuted must meet a deadline for execution, or a critical failure could occur. In
contrast, it is acceptable for some deadlines to be missed in a system requiring
soft real-time deadlines. However, eventually performance could degrade if too
many deadlines are missed.

The overwhelming majority of RTOS’s that are available for avionics sys-
tem are of the commercial variety - examples of which include LynuxWorks
LynxOS-178 and Wind River’s VxWorks 653. As their name appears to sug-
gest, they have been certified to be suitable for use in airborne systems requir-
ing DO-178B/C certification and ARINC-653 compliant partitioning mecha-
nisms that isolate running processes from each other. Unfortunately, RTOS’s
providing these certifications and facilities are only available at a price pre-
mium.

A trade-off can be achieved with the Linux kernel by forgoing the certi-
fication status and partitioning mechanisms that are provided in commercial
RTOS’s and only requiring that the OS meet hard real-time schedules. Un-
fortunately, a standard Linux kernel will not be sufficient as it only meets soft
real-time requirements - the latency of execution of a task could result in a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 15

deadline being missed. This could result in catastrophic failure of the flight
control system. However a kernel patch, known as the PREEMPT_RT patch [41],
converts Linux into a fully preemptible kernel, thereby conferring hard real-
time capabilities on the OS. A PREEMPT_RT patched Linux kernel has been
shown suitable for use in hard real-time control applications [42].

Developing a real-time capable system that is at the same time also based
on a distributed architecture could be a difficult task if facilities to enable
these qualities had to be developed from scratch. As will be seen in chapter
3, the distribution middleware provides re-usable infrastructure and services,
including mechanisms to enable real-time scheduling of tasks, that enable a
DRE system to be built.

2.8 Compatibility
In order to retain support for existing sensor and actuator technologies that
have been developed, a hardware gateway can be introduced that translates
between the CAN and Ethernet buses. This mirrors a trend in industry for to
be translated from/ to "legacy" transducer equipment into the new standard
data bus network [16]. A difficulty with this approach could be to coordinate
the operation of the many different sensing and actuating devices [2].

2.9 Conclusion
A high level overview of the approach that will be taken to develop a new flight
control system architecture has been provided. Implementing a distributed,
real-time and embedded flight control system that addresses the problems
of the existing systems in the ESL can be achieved by combining existing
solutions:

• A networked system will provide the ability to address the existing com-
putation and communication resource constraints.

• Standards based distribution middleware such as the Lightweight CORBA
Component Model will provide the software infrastructure and program-
ming paradigm required to develop the flight control algorithms on a
resource constrained, distributed system [2].

• Real-time capability will be enabled on general purpose COTS comput-
ing hardware by patching a Linux OS with the RT-Preempt patch.

• Compatibility with existing transducer hardware will be maintained by
introducing gateway devices that translate between CAN and Ethernet
buses.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. SYSTEM DESIGN 16

This chapter outlined modern approaches, based on open industry standards,
that can be used to design a replacement flight control system suitable for un-
manned flight research that will address the limitations of the existing systems.
In chapter 3 these approaches will be developed further into an architecture
for the new flight control system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Architecture

In chapter 2 the main concepts were introduced which will aid in the design
a flight control system to meet the project objectives. In this chapter, the
concepts are expanded in order to develop an architecture for the avionics
system.

3.1 Structure
The architecture of a flight control system can be divided into two concerns:
how the system maintains a model of the state of the aircraft and the manner
in which updates in response to new input data are propagated through the
system [3]. To illustrate this better, consider the operation of a flight con-
trol system, which can be briefly and generically described as continuously
performing the following functions:

• collect input data, including data about the position and environment,
using sensors.

• use the input data to estimate the actual state of the aircraft.

• compute the desired aircraft state with respect to a guidance mode, such
as autopilot.

• manipulate aircraft actuators to bring the actual and the desired states
closer together.

When viewed from a structural perspective, this description of a flight control
system can be interpreted as an example of a Model-View-Controller (MVC)
architecture [25] [43]. The system maintains a model of the actual state of
the aircraft that is controlled via updates in response to new input data. The
updates are "viewed" by the aircraft effectors, which bring the aircraft in

17

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 18

Figure 3.1: Template Flight Control System Architecture [3].

closer agreement with the desired state. Model maintenance, input sources
and output sinks are generally handled by different components in order to
keep their responsibilities separate.

The diagram shown in figure 3.1 summarizes the idea of an avionics system
based on a MVC architecture: sensors feed new input data into the system
via filters, which may establish average values or remove any gain/bias that
was introduced in the measured value during sampling. Navigation models
represent the actual state of the aircraft, as updated by new sensor values.
Objective models represent the desired state of an aircraft, which are informed
by guidance modes such as autopilot, way-point navigation or terrain following
modes. Helper components may also be introduced when required for estima-
tion purposes [3]. The difference/error between the actual and desired state
ultimately drives the the aircraft effectors to bring these two states closer to-
gether. Finally, the monitoring and control component allows the system to
collect telemetry data and/or activate de-activate the system from a ground
station.

The above description alludes to several software entities and mechanisms
in the structure of the flight control system. Components represent software
entities that contain the necessary core functionality and services that will be
used to implement the system. Less obvious, a mechanism to move execution
from one component to another is also required. Finally, input data, which is
required to calculate updates, also needs to be propagated through the system
in an effective manner.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 19

3.2 Components
As introduced in section 2.4, a component is a software entity which can be
constructed from multiple smaller objects in order to build a specific set of
functionalities required in a system. It is described by a standard: for the ESL
avionics that have been ported and re-implemented in this project, the LwCCM
standard was used [36], due its suitability for use in a DRE environment and
domain independent applicability.

Components are contained within the middleware framework and run inside
a server runtime, also known as a container, that provides it with access to all
available middleware services - services such as scheduling, event channels (see
3.3) and others. A component container is similar in concept to a Java virtual
machine, in that it enables the component to execute within a well-defined
environment, using well-defined interfaces. The container itself is responsible
for mediating interaction with the underlying OS. In this way, it is possible to
develop a single component that can be used on a range of operating systems.

The functionality contained within a component can be shared with other
components. For this purpose, the LwCCM standard enables components to
expose available operations / services and functionality through port and at-
tribute interfaces that can be specified when the component is created. Ports
allow components to interact and collaborate with other components, by shar-
ing operations that it is able to perform. Alternatively, operations can be
requested from other components through ports. The types of ports available
are shown in figure 3.2. Facets are ports through which functionality contained
within a component can be accessed. A receptacle enables a component to ex-
press the need for functionality that it does not implement, but requires in
order to correctly perform its own function. Finally, attributes represent val-
ues configured within a component that can be retrieved or altered by other
components.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 20

Figure 3.2: Ports and attributes of a software component

Event sinks and sources are ports through which event notifications can
be received and sent. Events are signals/messages which a component can
use to notify other components of an event that has occurred. They enable
a publish/subscribe ability in components, in which publishers of a message
are not aware of any subscribers to the message. Subscribers on the other
hand can express interest in a message by subscribing to receive a particu-
lar type of message. The use of the publish/subscribe mechanism promotes
looser coupling between components and also enables to be distributed more
dynamically across a network topology.

Component interfaces are described in a programming language-independent
manner using the Interface Definition Language (IDL). The IDL-defined in-
terface represents the ports and attributes of a component that should be
advertised and made available to other components. This allows the interface
and implementation of a particular object to be separated. Once the interface
of a component has been specified in IDL, a compiler which forms part of
middleware generates a programming-language specific skeleton implementa-
tion of the component known as the executor. The skeleton implementation /
executor can then be filled out with application logic. Figure 3.3 shows how an
example minimal IDL to C++ mapping would look like. Besides the executor,
the IDL compiler also generates another software entity known as the servant.
The servant contains all the methods required for components to interact in a
distributed system, including methods to handle remote method invocations.
The servant code rarely has to be modified by the developer.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 21

Figure 3.3: IDL to C++ mapping

The IDL for a minimal rate generator component, shown in the three com-
ponent flight control system of figure 3.4, could be implemented as shown in
the IDL listing below:

1 eventtype tick
2 {};
3 component RateGenerator
4 {
5 publishes tick Pulse;
6 attribute long Rate;
7 }

Once all components have been programmed with suitable business logic
implementing their functionality, they can be combined to form a system by
connecting their exposed interface ports. Facets (offered methods) and event
sources of a particular component can be connected to receptacles (required
methods) and event sinks of another component. Figure 3.4, which represents
a very basic flight control system, illustrates this idea.

Figure 3.4: A basic flight control system

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 22

The RateGen component pulses the GPS component at a rate configured
through the Rate attribute. The Pulse event source is connected to the
Refresh event sink of the GPS component, which forwards the event onto
the NavDisplay. Upon triggering the Refresh event, the GPSLocation recep-
tacle updates the NavDisplay location by retrieving location data from the
MyLocation facet of the GPS component.

3.3 Event Service
The event service implemented in the LwCCM standard - which is a real-time
capable service [44] - was employed to enable a publish/subscribe mechanism
that decouples publishers which periodically generate data and notifications
from subscribers that consume the data. The event service is a re-usable
facility that is offered by the distribution middleware.

Figure 3.5: Publish/Subscribe architecture using an event service.

The service enables the software components to send event notifications
between each other that alert a interested component of a processing tasks
that has completed, or new sensor data that has become available. The use
of an event service makes the system easier to evolve, since publishers and
subscribers are decoupled from each other. It also makes the system easier to
schedule, as will be described in 3.4.2.

3.4 Flow Policies
It was found that the propagation of updates through an avionics system, also
known as the flow policy, significantly impact performance, distributability,
re-usability and maintainability of a system [45], since they determine how
the software communicates and executes. The flow policy of a system can be

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 23

categorized into two concerns: the flow of control, and the flow of data through
the system.

Control flow represents the movement of execution in the software system.
It can be performed in three different ways[45]:

• synchronously on reception of new input - this mode is used when exe-
cution is required as soon as new input data is available.

• synchronously according to system output requirements - this mode is
used when execution is required at a periodic rate.

• asynchronously - this mode is used when other timing/periodic responses
are required.

Control flow determines when it is acceptable for a particular software com-
ponent in the system to execute. However, it may be possible that at any
point in time more than one software component is able to execute. In order
to decide the order in which components will execute, a scheduling policy is
used. These two aspects of control flow are also known as component control
flow and application control flow respectively [46] [45].

3.4.1 Component Control Flow

Within component control flow, there are two axes of variation that need to
be considered when deciding on the avionics system flow policy: the control
flow can be either push or pull based and the component itself could either be
active or passive.

3.4.1.1 Push or Pull Control flow

In push mode, the component waits for an external actor to effect its execution.
The decision when to execute is removed from the component and placed in a
separate entity. The advantages of push control flow are:

• avoids polling overhead - an external actor is responsible to initiate exe-
cution.

• minimizes latency between execution of components.

• minimizes scheduling logic within components.

In pull mode, the component interrogates the current system state in order to
determine whether it should run. One way it could do this is to poll suppliers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 24

for new data availability and execute upon reception of a positive notification.
In this mode, the component itself controls when it executes. Pull control flow
results in a component that has a more intelligent / mode dependent execution
mechanism - however, the ability to interrogate system state could also result
in the component being less reusable. Considering the merits of both push
and pull control flow, it was found that push control flow is preferred for an
avionics system [45].

3.4.1.2 Active / Passive Components

The other axis of variation that should be considered is whether to implement
active or passive components. An active component has its own processing
resources, while a passive component relies on other active components to
invoke its execution. The advantage of an active component is that it will
potentially be more responsive due to being equipped with its own dedicated
processing resources. On the other hand a passive component:

• requires less context switching, which is useful for systems equipped with
a single processing unit.

• exhibits less resource contention.

• makes the use of smaller components more feasible.

• supports centralized scheduling.

For a DRE avionics system, the advantages of a passive component make it
the preferred choice, since these address the objectives of the system closer
than those of an active component [45].

3.4.1.3 Component Control Flow Strategy

Combining the the use of push mode with passive components results in the
avionics system having an aggregated passive-push approach to moving exe-
cution through the system from one component to another. Concretely, this
will be achieved by equipping each component with an execute event sink. As
soon as an event is received on this sink, component execution will be invoked.

3.4.2 Application Control Flow

Component control flow determines the mechanism by which execution passes
from one component to another. As explained in section 3.4.1, the components
in the avionics system will implement a passive-push component control flow
policy. However, at least one active component is required for the system to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 25

function, otherwise no possibility exists for the execution of any component
to be invoked. Scheduling execution of each component in the system, also
known as application control flow, is the second aspect of control flow that
needs to be considered.

Since the the new avionics system architecture needed to be ported from,
and would be compared against an existing system for correctness, a scheduling
design was chosen that results in component execution corresponding to the
scheduling of the existing ESL avionics system.

Figure 3.6: Flow Chart of periodic tasks [4].

Figure 3.6 is a flow chart showing the control flow of the main tasks in
the existing ESL avionics. As can be seen, the cycle results in servo output
being generated every 20ms. Figure 3.7 provides more detail on the the flow
of control and data in an existing flight control system.

Figure 3.7: Control and data flow diagram.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 26

A sync is generated every 20ms in order to mark the start of a new output
cycle. During the first 3ms of the cycle sensors sample the environment in order
to generate new input data. After the 3ms "sensor cutoff" time-out occurs,
the avionics system retrieves the new data and runs estimation and control
algorithms. The algorithms calculate updated actuator values necessary to
retain flight control. The updated actuator values are written out and the
cycle repeats.

To mimic this behaviour, a rate generator component will generate sync
pulses every 20ms and sensor time-out pulses 3ms after the 20ms cycle has
started. The sync pulse will generate execute events that are sent via the event
service to the sensor components. Upon reception, the sensor components will
generate new data from updated readings. After the 3ms sensor time-out
occurs, execute events will again be sent via the event service, this time to
estimator and controller components, in order to calculate updated state and
actuator values. The controller invokes the execution of the servo component
that will write out the updated actuator positions, again by sending an execute
event through the event service.

Real-time operation of the system on a Linux OS modified with the PREEMPT_RT
patch is guaranteed by assigning the highest possible absolute priority to the
process running the rate generator component and choosing SCHED_FIFO as
a scheduling policy for the process. As a result, the rate generator compo-
nent can only be pre-empted by processes that have a higher absolute priority.
SCHED_FIFO implements a first-in first-out, fixed-priority, real-time schedul-
ing policy as specified in the POSIX standard. SCHED_FIFO requires that the
active process explicitly yield the processor to allow other tasks to run as well.

Within the avionics system, it is possible to change the scheduling of execu-
tion of the various components by controlling the order in which execute events
are delivered from the event service to the receiving component [46]. Since all
execute events pass through the event service, the scheduling can be updated
"behind the scenes", by assigning different priorities to the various dispatched
events. Even thought this facility was not used in the project, the distribution
middleware provides re-usable schedulers that allow this to be achieved [47].

3.4.3 Data Flow

The flow of data in a flight control system is generally from sensors to effectors.
Even "feedback" is obtained from sensors, and not assumed to be the last value
that was written out to an effector [3]. Similarly to component control flow,
the movement of data through the system that is required for calculation and
eventual output can either be push or pull based: in push mode, the publishing
component transfers data to a subscribing component. In pull mode, the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 27

receiving component is responsible for retrieving data from the generating
component. Push mode implies that receiving components rely on external
actors to satisfy data needs, while in pull mode the receiving components
themselves control their data flow. The advantages of push data flow are that:

• latency between component execution start and data reception is mini-
mized when data can be combined with push control flow notification.

• no concurrency mechanisms are required when data is being transferred
to a receiving component.

On the other hand, pull mode data flow has the following advantages:

• Receiving components retrieve only the data they need, when they need
it.

• Receiving components can potentially control when calculations are per-
formed, since a function call to retrieve data is made to generating com-
ponents who could use this as a trigger to perform updated calculations.

For a DRE avionics system, it was found that the advantages of pull data
mode outweigh those of push data mode [45].

3.5 Distributed Systems
To enable developers to build a distributed system with multiple processor
boards, software infrastructure enabling this functionality would be desirable,
in order to avoid the difficulties associated with network programming [2]. A
software entity that forms the basis of CORBA distribution middleware and is
capable of providing this functionality is known as an Object Request Broker
(ORB). It is an object oriented equivalent of a previous technology known as
Remote Procedure Call (RPC), which allowed a client program to invoke an
operation on a program that could potentially be separated via a network.
An ORB hides the network programming complexities and protocol-specific
details that enable this ability.

An ORB facilitates the routing of the request to perform an operation
through the network from client to the object implementing the operation,
and returns any result back to the client, as shown in figure 3.8. In a manner,
it brokered the interaction between client and object.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 28

Figure 3.8: Remote method invocation.

An ORB keeps track of the various ports (offered methods/operations)
that a component has made available through the interface that was declared
in IDL which was used to create the component. The repository of the various
operations is then used as a part of the resolution mechanism to determine
where a particular request for an operation needs to be routed to.

A mechanism is required for the client to locate the component on which
it would like to invoke an operation on - it requires the "contact details" of
the potentially remote component. Distribution middleware has a few services
that can be used to achieve this, one of them being the interoperable object
reference (IOR). Upon instantiation, a component can be configured to write
out its IOR into a file. An ORB can then examine the IOR, discover the
location and network protocol required to contact the component, and route
the client’s request appropriately. This process is transparent to the client -
nothing in the IOR can reveal the location of the component to the client.

Various implementations of CORBA distribution middleware are available,
however not all of them may be suitable for use in a real-time control applica-
tion. Boeing (McDonnel Douglas), together with Washington University, and
funded by DARPA, developed an ORB that was optimized to support dis-
tributed, real-time and embedded flight control applications for their fighter
jets. The development was later extended to include the needs of their UAV
program (Phantom Works) [48]. The ORB that was developed came to be
known as "The ACE ORB" (TAO) [29]. TAO was later extended to include
support for the component based software development paradigm. The TAO
extension providing component support is known as the Component Integrated
ACE ORB (CIAO). Together, the open-source TAO and CIAO implemen-
tations are compliant with the OMG LwCCM standard, first introduced in
section 3.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 29

3.6 Hardware Block Diagram
Section 2.2 described the benefits of building a flight control system in a dis-
tributed manner around on an Ethernet network. This capability in the ar-
chitecture would allow additional computing nodes to be added, thereby in-
creasing the capacity of the system. It would also allow new functionality to
be introduced with less disruption to the existing system than a complete re-
design, since the new functionality could be located on a separate node that
is attached to the network.

The avionics computing hardware will be based on a COTS single board
computer (SBC). An important requirement is that it must be able to run
Linux OS. Most of the existing actuator and power management hardware
would be reused for this project. Since the hardware was built around a CAN
bus, a interface board will be developed that translates between the CAN and
Ethernet protocols. Alternatively, COTS CAN-Ethernet gateways are also
available, although at a price-premium. COTS RS232-Ethernet converters are
also available that can be used to translate GPS sensor input toward Ethernet.

Figure 3.9: Hardware block diagram of the flight control system.

The block diagram shown in figure 3.9 illustrates the layout of the flight
control system with the new hardware elements inserted. Blocks shaded in
yellow indicate existing functionality, while blue blocks identify new function-
ality.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 30

3.7 Software Block Diagram
Figure 3.10 illustrates a component diagram of the flight control system that
has been developed using the MDA approach described in 2.6.

Figure 3.10: Component diagram of the flight control system.

As can be seen, the avionics system consists of 9 components:

• RateGenerator: a component implementing scheduling.

• Command: a component that provides communication to and from the
groundstation.

• OnBoardComputer: a component that collects and sends telemetry relat-
ing to the functioning of the system.

• HILInterface: a component that receives sensor values from, and sends
actuator values to a HIL simulation.

• IMU: a component representing inertial measurement unit functionality
containing pressure-meter, accelerometer, gyroscope and magnetometer.

• GPS: a component representing measurements derived from a GPS sensor.

• Estimator: a component that uses sensor values to estimate the current
state of the aircraft.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 31

• Controller: a component implementing the control algorithms to main-
tain autonomous flight.

• Servo: a component that converts the actuator positions that have been
calculated by the Controller into suitable timer values that can be sent
to the actuators.

The system contains two active components: a rate generator component re-
sponsible for driving the real-time scheduling of the system, as described in
section 3.4.2, and a command component that represents the interface of the
flight control system with the ground-station. The command component has
a message_to_component / message_from_component event source / sink in
order to facilitate transfer of messages between the groundstation and com-
ponents. To interface with the rate generator and command component, each
passive component has some common functionality:

• a receive_execute event sink to allow execution of the component to
be invoked.

• message_from_command and message_to_command event sinks and sources
to enable communication with the command component.

Additionally, the passive components each have one or more receive_timeout
event sinks that enable it to receive time-out events from the rate generator.
The purpose of these is to notify components to send telemetry data to the
command component. The remaining ports are dedicated to the specific func-
tionality of the component and will be discussed further in 4.

3.7.1 Configuration and Deployment

Since the flight control system will contain a number of components, it will be
necessary to specify the components attributes as well as the interconnections
between the various ports that will form an entire running system. Should
more than one processor board be used, it will also be necessary to specify on
which host the component will reside. To handle these aspects, the OMG has
developed a Configuration and Deployment specification [49] which has been
implemented in the distribution middleware used for this project [50].

Configuration of the system is achieved by specifying running component
instances, their implementation artefacts, as well as interconnection and at-
tributes in an extensible mark-up language (XML) file. Deployment in the
context of a component-based system is the task of getting the complete sys-
tem up and running. Since these task could become tedious with the possibility

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 32

of hard-to-trace errors occurring, MDA tools allow for the required configu-
ration and deployment files to be generated from suitably completed visual
models. Suitable tools provided by the distribution middleware then read in
the XML configuration and deployment file and appropriately configure and
instantiate the various components.

3.8 Simulation
HIL simulation provides the ability to verify that developed functionality is
performing as expected, by testing the flight control system against a known
mathematically correct simulation of the entire dynamic system. This is
achieved by inserting the hardware containing the flight control system into a
simulation loop and feeding it with emulated sensor values. The flight control
system calculates updated actuator positions based on the provided sensor in-
put and feeds these back into the simulation. Using the actuator values, the
simulation is updated by a time increment corresponding to the output rate
of the system - in the case of the ESL avionics this is 20ms. During this time
the vehicle dynamics are propagated forward in time by 20ms and new sensor
values are calculated. The entire cycle is then repeated.

The HIL simulation setup for the existing flight control systems required
the use of a distribution board [10], as shown in figure 3.11.

Figure 3.11: HIL simulation of existing FCS [11].

The simulation is implemented in MATLAB Simulink and executes on a
PC. Since the sensor values will be distributed via Ethernet to the computing
node running the flight control algorithms in the new architecture, it is now
possible to feed the computing node with HIL emulated sensor values directly,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 33

by redirecting the Simulink I/O to occur via Ethernet instead of the serial
interface. Consequently, the need for a HIL distribution board was eliminated.

The User Datagram Protocol (UDP) was used to implement Ethernet-
based I/O, since it incurs less delay when sending data compared to TCP and
also requires less processing at the transmitting and receiving hosts. UDP
does not guarantee delivery of packets, but this is less of a concern in a closed
system such as the one being designed for the avionics.

3.9 CAN-Ethernet Gateway
In order to support existing sensor and actuator hardware, while at the same
time also moving toward a distributed architecture, it was necessary to intro-
duce functionality that would translate between the existing Controller Area
Network and the new Ethernet based network. The CAN-Ethernet gateway
will fulfil this function and is developed in detail in section 4.1.3. Though
several examples of commercial products are available, their price was quite
prohibitive for research purposes and it was decided to implement this func-
tionality on a small, lightweight prototyping board that contains both CAN
and Ethernet interfaces.

3.10 Conclusion
A hardware and software structure was developed in this chapter for a flight
control system that is capable of meeting the objectives listed in section 1.3.
The functions that form part of the architecture have been described. They
will be developed in detail in chapter 4. Combining all the concepts introduced
so far, the avionics architecture can be summarized as follows:

• A distributed architecture based around a switched Ethernet network
will be used.

• Distribution middleware will provide the software infrastructure required
to develop the flight control system.

• Components will be used to contain the core functionality of the system.

• Component interfaces are described in IDL.

• An event service will be used to aid with the control flow of the system
and to distribute events between publisher to subscribers.

• Components will be passive - they will not contain their own processing
resources.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. ARCHITECTURE 34

• Execution will be moved from one component to another by sending an
execute event to the component.

• Scheduling will be performed by an active, rate generator component. Its
process has a high priority and uses the SCHED_FIFO scheduling policy,
in order to avoid being pre-empted.

• Components will pull data required for calculations on demand.

• ORB to handle "low-level network details and enable distributed systems
development.

• A CAN-Ethernet gateway to allow existing transducer equipment to be
used.

• The avionics hardware will make use general purpose COTS SBC boards.

• A PREEMPT_RT patched Linux OS will be used to provide real-time capa-
bilities.

• For HIL simulations, the existing HIL distribution board will no longer
be required.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Development

Chapter 3 described the structure and operation of the avionics system archi-
tecture. In this chapter, the individual hardware and software functions of the
architecture will be developed. The avionics hardware will be chosen and the
CAN-Ethernet gateway, required to support existing actuator hardware, will
be developed. On the software side, the individual components that constitute
the system, as described in section 3.7, will be developed.

4.1 Hardware

4.1.1 Avionics

As shown in section 3.6, the avionics system computing hardware will be based
on a COTS SBC since numerous specimens have recently become easily avail-
able. The board should have Ethernet connectivity in order to plug it into the
system network. It should also have an option to connect serial devices, since
the communication protocol between ground-station and the flight control sys-
tem will be re-used from existing ESL systems (reproduced for convenience in
A.1). The SBC must have driver support for all its peripherals and be powerful
enough to run a recent version of a Linux-kernel based OS.

Computer-on-Module (COM) based SBCs are a promising hardware plat-
form since the I/O peripherals and connectors are usually located on a separate
carrier board to the main computer system. The processor system is mounted
on top of a carrier board implementing the required I/O interfaces. This en-
ables an additional upgrade path, since the carrier board can be kept constant
while the processor board is upgraded. A commercially available example of
a COM system, the Gumstix Overo platform, was selected for this project
since its weight (35g), form-factor (105mm x 40mm) and power requirements
(250mA at 4v) lend it to be used in small UAV applications and also com-
pare favourably to the characteristics of the existing system. The processor

35

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 36

board was equipped with an ARM Cortex A8 core running at 800MHz and
512 Mbyte of random access memory (RAM).

4.1.2 Ethernet Switch

A TrendNet TE100-S5 5-port COTS 100 Mbps Ethernet switch, of the read-
ily available variety, was chosen. Besides being small and offering standard
features, the switch did not possess any other notable properties. The switch
required a power source capable of supplying 5v at 1A.

4.1.3 CAN-Ethernet Gateway

The LM3S8962 board from Texas Instruments was used to prototype the CAN-
Ethernet functionality, since it contained both CAN and Ethernet interfaces
available in a relatively small form factor (11.5cm x 6.2cm). The gateway was
designed to implement a state machine that translates CAN packets into UDP
packets and vice-versa. UDP was chosen since, as with the HIL simulation,
it incurs a smaller sending delay compared to TCP. For the gateway to be as
efficient as possible, the smaller processing overhead associated with UDP was
also desirable. Introducing the CAN-Ethernet gateway into the system would
introduce a new delay into the system, but this would be minimized by using
UDP.

The CAN-Ethernet gateway was prototyped on an Advanced RISC Ma-
chines (ARM) Cortex-M processor equipped evaluation board containing CAN
and Ethernet interfaces. On power-up, the state machine cycles through a few
states that initialize the Ethernet interface, interrupts and the Internet Pro-
tocol (IP) stack, resulting in the board acquiring an IP address via DHCP. If
no DHCP servers can be found, the Auto-IP module is used, which enables
a server-less method of assigning an IP address. At this point, the gateway
sends out UDP broadcast messages to find targets interested in receiving its
UDP packets encapsulating CAN data. These could either be another CAN-
Ethernet gateway, in which case the UDP packet is unpacked and sent out on
the receiving gateway CAN interface (CAN-over-IP functionality) or it could
be a flight control system interested in receiving and processing the CAN data.

The CAN-Ethernet gateway enters a state waiting for CAN or UDP mes-
sages to arrive, once targets have expressed their interest in receiving UDP
messages from the gateway by replying to the broadcast message. Incoming
CAN messages trigger an interrupt service routine which copies the CAN data
into a ring buffer. An exception that is unique to the Cortex-M, known as a
pended software interrupt (PendSV), is then raised, which notifies the system
that new CAN data is available that can be sent out via UDP. PendSV is an
asynchronous exception that is only triggered once all higher priority interrupt

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 37

service routines have completed processing. In order to ensure that incoming
CAN messages and Ethernet messages can always be timeously processed, the
CAN and Ethernet handling service routines have been assigned with highest
priorities, while PendSV has been assigned the lowest priority.

The PendSV service routine removes any available CAN messages from the
ring buffer and packages them into a UDP packet containing the CAN message
ID and data, along with flags indicating whether the CAN message originated
from an extended frame and/or remote transmission. The UDP packet is
prepended with a unique string identifying it as a gateway data packet and
sent to all targets that responded to the initial broadcast messages.

Incoming UDP messages that contain CAN data are unpacked immediately.
A CAN message is then crafted from the contents of the UDP message and
sent out on the CAN interface.

4.2 Real-time Operating System
Though several Linux distributions are freely available that include the neces-
sary firmware and device drivers to be suitable for use on a Gumstix platform,
none of them included a recent PREEMPT_RT patched Linux kernel, even though
PREEMPT_RT patches are produced for every Linux kernel version. To retroac-
tively patch the kernel could also be a daunting task, since it was not known
which options were used when first compiling the kernel.

To make the process of obtaining a Real-time Linux Operating System
repeatable and modifiable, in case a new processor board was introduced, a
set of tools from the Yocto project were used [51]. The Yocto tools enable
the creation of a Linux-kernel based OS that is customized according to the
requirements of the underlying hardware. This is achieved by specifying a
set of recipes that are "compiled" to eventually build the desired OS image.
Recipes to include the correct board support packages and Linux kernel patches
can also be added, thereby automating the task of customizing the OS for the
targeted hardware platform. The Yocto organization creates packages for most
commercially available hardware platforms. Once the OS has been "compiled"
it can be transferred to suitable bootable media that the hardware platform
accepts.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 38

4.3 Software

4.3.1 Method

Figure 3.10 provided an overview of all the components that form part of the
flight control system software. As shown in section 3.7, the system consists of
9 components: RateGenerator, Command, OnBoardComputer, HILInterface,
IMU, GPS, Estimator, Controller and Servo. The process of developing a
software component starts by declaring the component’s interface using the
programming language agnostic IDL specification. The IDL files are compiled
to generate a skeleton implementation of the component that can be completed
by the developer with the required functionality (described in section 3.2). In
this section, the function and structure of each of the components will be
developed in turn by describing the interfaces, the function of the individual
ports in the interface and how they are used to interact with other components.
The complete IDL interface descriptions of all components can be found in an
archive attached to this report.

A modification to the Matlabl HIL simulation software was also required,
since the avionics system would now be Ethernet based. As a result, emulated
sensor values could no longer be transferred via the previously used, USB-based
HIL distribution board, but had to be transferred directly from the simulation
to the processor board responsible for sampling sensor values.

4.3.2 RateGenerator

The RateGenerator is an active component that is responsible for performing
the application control flow of the flight control system. Real-time perfor-
mance characteristics are obtained by setting the highest possible priority of
its containing thread and using a SCHED_FIFO scheduling policy, as described
in section 3.4.2.

The rate generator, as shown in figure 4.1, contains five event sources ()
in order to help it schedule events.

Figure 4.1: Rate Generator component interface.

The attribute () values can be used to configure the timing of the trig-
gered events. In total, five different events are configured using the attribute

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 39

values:

• The sync_period attribute configures the rate at which sensors are sam-
pled and output is provided to the actuators. The attribute value was
set to 20ms, which configured a sync event to be sent every 50Hz.

• The sensor_cutoff_delay attribute determines how long after the start
of a sync period the sensor cut-off event is triggered, at which point the
sensors stop sampling. The attribute value was set to 3ms.

• The timeout_1_period attribute controls the signalling of Controller,
GPS and OnBoardComputer components to send telemetry data via the
Command component to the ground station. The attribute value was set
to 2s.

• The timeout_2_period attribute results in an event being pushed to the
Servo component to compel it to send telemetry data. The attribute
value was set to 1s.

• The timeout_3_period event signals to the Estimator and IMU to send
their respective telemetry values. Additionally, this event also pushes the
Controller and OnBoardComputer to send their secondary telemetry
data.

Internally, the RateGenerator uses a reactor object [52] to schedule five timers
[53] corresponding to the previously described attributes. Upon time-out of
each, the reactor calls the associated handler method, resulting in the corre-
sponding event being pushed: at time-out of every sync_period, the sync
event indicates to sensors to start sampling the environment in order to gen-
erate new input data. Actuator positions that were calculated in the previous
cycle are written out. Shortly thereafter, the sensor_cutoff_delay time-out
is triggered which results in the execute event being sent that invokes exe-
cution of the passive components. The components use the new sensor input
data to perform their respective functions. GPS and IMU components are ex-
ecuted first, followed by the Estimator, Controller and Servo components.
Finally, telemetry data is sent upon reception of events associated with the
previously described attributes.

4.3.3 Command

The Command component is an active component that is the interface of the
flight control system to a ground-station. The function of the Command compo-
nent is to relay messages such as telemetry data from the components to the
ground-station. It also receives data from the ground-station and distributes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 40

it toward the components. For this reason, it is an active component since it
needs to be ready to receive and transmit messages to and from the ground-
station at any moment. The interface of the Command component is shown in
figure 4.2.

Figure 4.2: Command component interface.

The message_to_component event source () enables the Command compo-
nent to send event notifications, including any ground-station data that may
have accompanied the notification, toward the passive components. Passive
components in turn only act on notifications that are relevant to them.

The message_from_component event sink () enables passive components
to send notifications, such as telemetry data, back to the ground-station via
the Command component.

Internally, the Command component uses RS-232 serial communication to-
ward the ground-station. During flight, the link will be maintained by a RF
modem. When a HIL simulation is performed, the wireless link can be replaced
by a serial cable between the ground-station and the avionics system . The
device attribute () can be used to configure the serial device that will be
used. Its value is set to /dev/ttyO2 by default. This value maps directly to
the underlying Linux OS serial device.

4.3.4 HILInterface

The HILInterface is the component that interfaces with a Matlab Simulink
simulation in order to receive emulated sensor values from the simulation and
transmit updated actuator values back toward the simulation. The interface
of the HILInterface component is illustrated in 4.3.

Figure 4.3: HILInterface component interface.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 41

The HILInterface exchanges data directly with the Matlab Simulink sim-
ulation using UDP packets (see section 3.8 for further details). The device
attribute () is used to configure the IP address of the computer running the
simulation. The HILInterface contains a UDP helper object that is respon-
sible for sending and receiving of UDP packets.

When the sync event () dispatched by the RateGenerator component is
received, reception of emulated sensor values from the simulation is enabled.
The received data is continuously accumulated in a buffer until a complete
message is detected. The protocol used to encapsulate messages is retained
from previous flight control systems - see e.g. [10] for a description. A com-
plete message could contain either emulated GPS or IMU sensor values. De-
pending on the type of message, a gps_data_update or analog_data_update
event () is sent. The GPS and IMU components will receive these events
when their execution is invoked and retrieve the updated sensor readings from
the HILInterface component using the get_gps_data and get_analog_data
facets (). The data is maintained in buffers since the GPS and IMU components
will not retrieve it at the instant it becomes available. Provision has also been
made for the introduction of additional "custom" sensor values, should the
need arise, by specifying custom_data_update event and get_custom_data
facet ports.

The HILInterface is able to receive/send notifications from/to the Command
component through its message_from_command and message_to_command event
source () and sink (). Currently it only acts on a notification sent from the
ground-station to enable HIL mode. The notification to enable HIL mode ac-
tivates the UDP helper object and prepares it to send and receive data packets
from the simulation.

The HILInterface is also responsible to write updated actuator values
back to the simulation. It uses the get_tx_sb_timer_data receptacle () to
retrieve updated actuator values from the Servo component when it receives
the new_tx_sb_timer_data_available event (), indicating that new data
is available. The data is then written back to the simulation using the UDP
helper object.

4.3.5 GPS

The GPS component represents measurements derived from a GPS sensor. The
interface of the component is shown in figure 4.4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 42

Figure 4.4: GPS component interface.

The implementation of the GPS component is not linked to any particular
type of GPS sensor. It expects to retrieve raw GPS measurements through the
get_new_gps_data receptacle (). This design was chosen in order to allow the
introduction of any type of GPS sensor without having to change the internals
of the GPS component. The design also allows it to retrieve emulated GPS
measurements from the HILInterface component using its get_gps_data
facet (). To introduce a new type of GPS sensor, it will be necessary to
create an I/O-type driver component for the specific sensor that provides a
get_gps_data facet, which can be linked up to the get_new_gps_data recep-
tacle of the GPS component.

The execution of the GPS component is invoked when it receives an execute
event on its receive_execute event sink (). The component is notified of the
availability of new GPS measurements through its new_data_available event
sink. Updated GPS measurements are then retrieved through the get_new-
_gps_data receptacle () when the component executes. Depending on the
type of measurement received - it could be either position or velocity measure-
ments - calculations and data extractions are performed to update the cur-
rent position or velocity related data. Once updated calculations have been
performed, the component emits the gps_data_updated event () in order
to notify other components of the availability of new GPS data. Interested
components are able to retrieve the data through the current_position and
current_velocity facets () which return a structure filled with relevant
position and velocity measurements.

The GPS can receive/send notifications from/to the Command component
through its message_from_command and message_to_command event sources
() and sinks (). When it receives a receive_timeout_1 event () from the
RateGenerator, the component sends updated telemetry measurements back
to the ground-station using the message_to_command event source ().

4.3.6 IMU

The IMU component is a container for accelerometer, gyroscope, magnetometer
and pressure sensor measurements. The facets, receptacles, event sources and
sinks of the component are shown in figure 4.5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 43

Figure 4.5: IMU component interface.

Like the GPS component, the IMU component executes when its receive_exe-
cute event sink () receives the execute notification from the RateGenerator
component. It retrieves updated measurements using the get_new_analog_da-
ta receptacle () once it executes and only after the new_analog_data_availa-
ble event () was received. The new measurements are used to update ac-
celerometer, gyroscope, magnetometer and pressure sensor readings. The mea-
surements are compensated for any offset that may have been introduced dur-
ing sampling, as this was also done in the original ESL avionics firmware from
which the IMU component was ported.

Other interested components are able to retrieve the new sensor data using
the facets () that have been provided for that purpose:

• The current_acceleration facet provides a vector containing updated
accelerometer sensor data for the x,y and z axes.

• The current_magnetization facet provides a vector containing updated
magnetometer sensor data for the x,y and z axes.

• The current_orientation facet provides a vector containing updated
gyroscopic sensor data for the x,y and z axes.

• The current_presssure_measurements facet provides a structure con-
taining updated pressure measurement data such as altitude and abso-
lute, differential pressure measurements.

The IMU is also equipped to receive/send notifications from/to the Command
component through its message_from_command and message_to_command event
sources () and sinks (). It acts on commands from the ground-station to
re-initialize accelerometer, gyroscope and pressure sensor measurements. Up-
dated telemetry measurements are sent back to the ground-station via the
Command component using the message_to_command event source when a no-
tification is received on receive_timeout_3 sink ().

Once the IMU sensor data has been updated, the component moves execu-
tion off to the next component using its execute event source ().

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 44

4.3.7 Estimator

The Estimator component uses accelerometer, gyroscope and magnetometer
measurements from the IMU component, as well as position and velocity mea-
surements from the GPS component in order to estimate the current state of
the aircraft. The interface of the Estimator component is shown in figure 4.6.

Figure 4.6: Estimator component interface.

As with the other components, the estimators algorithms were ported from
existing ESL flight control systems and adapted to function in a component
based system. The Estimator retrieves updated sensor measurements from
IMU and GPS components when the execution of the component is invoked us-
ing its receive_execute event sink (). Measurements from the IMU are re-
trieved using the get_current_acceleration, get_current_magnetzation
and get_current_orientation receptacles (). These link into the current_-
acceleration, current_magnetization and current_orientation facets
() provided by the IMU component. Additionally, position and velocity mea-
surements are retrieved using the get_current_position and get_current_-
velocity receptacles which link into current_position and current_veloci-
ty facets of the GPS component.

Once the new measurements have been retrieved, the estimator performs
updated position, velocity and orientation (angle) state calculations. These are
made available to other components through the current_state facet ().

Like other passive components, the Estimator is also equipped to re-
ceive/send notifications from/to the Command component through its message_-
from_command and message_to_command event sources () and sinks (). It
acts on notifications from the ground-station to initialize, enable and dis-
able estimation. The estimator is able to perform full inertial estimation if
the ground-station enables this facility in the estimator initialization notifi-
cation. All other received notifications are ignored. Telemetry measurements
are sent back to the ground-station upon reception of a notification on the
receive_timeout_3 event sink ().

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 45

When state estimation is completed, the Estimator moves execution off to
the next component using its execute event source ().

4.3.8 Controller

The Controller component uses state estimates produced by the Estimator
and orientation (gyro), acceleration and pressure measurements from the IMU
together with guidance input from a path-planning function to maintain au-
tonomous flight along way-points that have been provided by the ground-
station. Figure 4.7 represents the interface of the Controller.

Figure 4.7: Controller component interface.

The controller and path planning algorithms have been ported from exist-
ing ESL flight control systems [54]. Four separate inner loop controllers are
contained in the Controller component - three specific acceleration controllers
and a roll rate controller. State estimates, orientation, acceleration and pres-
sure measurements that are required as input to the controllers are retrieved us-
ing the get_current_state, get_current_orientation, get_current_acce-
leration and get_pressure_measurements receptacles ().

As with the other components, the Controller is also equipped to re-
ceive/send notifications from/to the Command component through its message_-
from_command and message_to_command event sources () and sinks (). It
acts on a number of notifications and commands from the ground-station.
These include commands to enable the autopilot, waypoint navigation and
various "inner loop" controller commands that configure control of roll angle,
velocity, pitch rate and other aircraft behaviours. It also includes commands
to set the desired target values for the controlled quantities.

The Controller retrieves state and sensor measurements from Estimator
and IMU when its execution is invoked and the autopilot has been enabled.
The various controller updates are then run sequentially, which results in new
actuator commands being produced for throttle, aileron, elevator and rudder.
The actuator commands are stored until the Servo command retrieves them
using the current_tx_ap_command_data facet ().

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 46

The Controller sends telemetry related to the functioning of the path
planning and navigation algorithms upon reception of a notification on its
receive_timeout_1 event sink (). Similarly, it sends telemetry related to the
functioning of the various controller algorithms when a notification is received
on the receive_timeout_3 event sink.

When the controller algorithm updates have been completed, the Control-
ler pushes execution to the next component using its execute event source
().

4.3.9 Servo

The Servo component takes the actuator commands calculated by the Control-
ler and transforms them into timer values that can be written out to the
aircraft actuators in order to effect updates to throttle, aileron, elevator and
rudder. The interface of the Servo component is shown in figure 4.8.

Figure 4.8: Servo component interface.

The Servo component retrieves updated actuator commands when it re-
ceives the push to execute via its receive_execute event sink (). The actua-
tor commands are obtained using the get_tx_ap_command_data receptacle ()
which links into the current_tx_ap_command_data facet () provided by the
Controller. The actuator commands are then transformed into timer values
using an algorithm that was ported from an existing ESL flight control sys-
tem. Following this, the Servo notifies interested components of the availabil-
ity of new actuator timer values using the tx_sb_timer_data_update event
(). The notification is picked up by the HILInterface component, which re-
trieves updated actuator timer values using the current_tx_sb_timer_data
facet () provided by the Servo component.

The Servo component is also able to receive/send notifications from/to the
Command component through its message_from_command and message_to_com-
mand event sources () and sinks (). For its operation, the only events of
interest are the enabling/disabling of the autopilot since this affects how the
timer values are derived. Should the autopilot not be enabled, then the com-
mands from the safety pilot are transferred directly to the actuators.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 47

The Servo sends actuator telemetry upon reception of a notification on its
receive_timeout_2 event sink (). Since the Servo component is the last
component required to execute per update cycle, it does not push execution
to another component. It is however easy to extend the component with a
execute event source () through the interface definition (IDL) files, should
more components be added to the system.

4.3.10 OnBoardComputer

The OnBoardComputer is a component that does not perform functionality
that is essential toward maintaining autonomous flight. It exists in order to
collect status information on the functioning of the flight control system and
report this back to the ground-station via telemetry messages. The interface
of the OnBoardComputer is shown in figure 4.9.

Figure 4.9: OnBoardComputer component interface.

In order to perform its functionality, the OnBoardComputer is equipped to
receive/send notifications from/to the Command component through its message-
_from_command and message_to_command event sources () and sinks ().

Primary telemetry that is collected by this component includes the activa-
tion and configuration status of various functions such as autopilot, estimator,
and HIL. The secondary telemetry that is gathered contains the voltage levels
of the main and backup batteries, as well as the voltage level supplied to the ac-
tuator board. Upon reception of notifications on the receive_timeout_1 and
receive_timeout_3 event sinks (), the primary and secondary telemetries
are sent back to the ground-station using the message_to_command event.

The OnBoardComputer pushes execution to the next component using its
execute event source ().

4.3.11 HIL simulation

The HIL simulation setup that has been used in the past at the ESL for
most avionics systems involved the use of a distribution board which converted
emulated sensor values received serially (USB) from the computer into CAN
packets that can be injected into the field bus, as shown in figure 4.10.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEVELOPMENT 48

Figure 4.10: Existing HIL simulation setup.

This simulation setup required some modification since the new avionics
architecture would be distributed around an Ethernet switch. The new archi-
tecture enabled the Matlab HIL simulation software to write out the emulated
sensor values via Ethernet to the processor board that is being tested, bypass-
ing the need for a distribution board altogether, as shown in figure 4.11.

Figure 4.11: New HIL simulation setup.

Previously, values were written out serially (the distribution board is equipped
with an FTDI chip converting RS-232 to USB) to the HIL distribution board
from the Matlab simulation by hooking into the mdlOutputs method, which
Simulink calls during every simulation time step. The serial output routines
were replaced in the mdlOutputs method with new functions writing out UDP
packets toward the IP address that had been configured.

4.4 Conclusion
In this chapter, the design of the individual hardware and software functions
that are required in the new avionics architecture were described. In chapter
5 it is shown how the functions were integrated to form a complete system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

System Integration

In chapter 4 the individual hardware and software functions of the flight control
system architecture were designed. In this chapter, the functions are put
together to form a complete functioning system. The majority of the effort
required was on the software side. On the hardware side, COTS, prototyping
and existing actuator boards have been used thereby avoiding any custom
printed circuit board development.

5.1 Hardware
Figure 3.9 showed the hardware block diagram of the flight control system as it
would be used for flight tests. Since this project relied on HIL simulation test-
ing, the final, tested hardware part of the system implementation is illustrated
in the block diagram of figure 5.1.

49

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 50

Figure 5.1: HIL tested hardware block diagram of the flight control system.

The PREEMPT_RT patched Linux-kernel based OS that was created using
Yocto recipes was transferred to a SD-card and used as the bootable medium
for the Gumstix SBC computing node.

5.2 Software
Integrating the various components into a complete function system is achieved
through a number of steps prescribed by the OMG Deployment and Config-
uration standard [49]. The standard prescribes how to install, configure and
launch a component-based software application. The TAO/CIAO distribution
middleware that was used for this project includes a standards compliant im-
plementation, known as the Deployment and Configuration Engine (DaNCE)
that aids in executing the process [50]. The process will be explained using the
RateGenerator component as an example, however certain steps may need to
be repeated for all components in the system. For convenience, the component
is shown again in figure 5.2.

Figure 5.2: Rate Generator component interface.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 51

5.2.1 Preparation

Once the core functionality has been implemented, the software components
have to be packaged in a suitable manner. To this end, each "software artefact"
of the component was compiled into a shared library which represents the de-
ployable implementation of a component. The main artefacts of a component
include:

• the user-implemented core functionality of the component, also referred
to as the executor,

• a compiler-generated servant of the component, which houses the remote
method invocation functionality associated with the component, and,

• a compiler-generated stub, which represents the public interface of the
component as seen by other components.

5.2.2 Installation

The configuration and deployment standard makes provision for the packaged
software components to be stored in a repository from where they can be re-
trieved during the installation process. The repository does not have to located
on the same system where the software will execute. For this project, the de-
cision was made to keep it simple - installation consisted of transferring all
required shared libraries, associated binaries and start-up scripts to a suitable
location on the target host.

5.2.3 Configuration

All the software artefacts required to enable complete functionality of the
system have to be registered with the configuration and deployment tool of
the distribution middleware, so that they can be located during deployment
of the components into the middleware server runtime. This is achieved by
listing them in a configuration and deployment XML file, a minimal example
of which is shown in the listing below:

1 <Deployment:DeploymentPlan>
2 <artifact xmi:id="IO-Rate_Generator_exec">
3 <name>Rate_Generator_exec</name>
4 <source/>
5 <node/>
6 <location>Rate_Generator_exec</location>
7 </artifact>
8 <artifact xmi:id="IO-Rate_Generator_svnt">
9 <name>Rate_Generator_svnt</name>

10 <source />

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 52

11 <node />
12 <location>Rate_Generator_svnt</location>
13 </artifact>
14 </Deployment:DeploymentPlan>

The listing only shows the configuration of RateGenerator artefacts, how-
ever all artefacts of each developed component required for a complete system
have to be registered. The <name> child node in the listing maps to the shared
library that was created for each of the component artefacts. In the case
of the RateGenerator, Rate_Generator_exec in the listing above refers to
the previously described executor, while Rate_Generator_svnt refers to the
servant.

The next step is to describe the implementation of the component. This
involves listing all software artefacts that have been previously declared which
are relevant to the component. Additionally, entry points are also declared
that will be used by the deployment tool to launch the component - these are
the execParameter nodes in the listing. In the case of a C++ implementation,
the home factory entry point is the name of the method that returns a pointer
to a constructed executor - i.e. that part of the component which implements
the core functionality. Similarly, the ServantEntryPoint returns a pointer to
the constructed servant, which is responsible for handling any remote method
invocations on the component. For the purposes of brevity, some details have
been omitted where ellipses (...) are shown.

1 <Deployment:DeploymentPlan>
2 <implementation xmi:id="IO-Rate_Generator-mdd">
3 <name>IO-Rate_Generator-mdd</name>
4 <source />
5 <artifact xmi:idref="IO-Rate_Generator_svnt" />
6 <artifact xmi:idref="IO-Rate_Generator_exec" />
7 <execParameter>
8 <name>home factory</name>
9 ...

10 </execParameter>
11 <execParameter>
12 <name>edu.vanderbilt.dre.CIAO.ServantEntrypoint</name>
13 ...
14 </execParameter>
15 </implementation>
16 </Deployment:DeploymentPlan>

The description of a component implementation is followed by configuring
properties and attributes that could be of use to a running instance of the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 53

component, as shown in the following listing.

1 <Deployment:DeploymentPlan>
2 <instance xmi:id="IO-Rate_Generator-idd">
3 <name>IO-Rate_Generator-idd</name>
4 <node>Rate_GeneratorNode</node>
5 <source />
6 <implementation xmi:idref="IO-Rate_Generator-mdd" />
7 <configProperty>
8 ...
9 </configProperty>

10 </instance>
11 </Deployment:DeploymentPlan>

For the RateGenerator component, the attributes configuring the various
time-out periods need to be configured. An example configuration of the
sensor_cutoff_delay time-out period is given in the listing below:

1 <configProperty>
2 <name>sensor_cutoff_delay</name>
3 <value>
4 <type>
5 <kind>tk_long</kind>
6 </type>
7 <value>
8 <long>3000</long>
9 </value>

10 </value>
11 </configProperty>

The reactor object used to implement the timers (see 4.3.2) expects input to
be provided in micro-seconds, therefore a value of 3000 is provided to obtain a
3ms time-out. Any other configurable parameters of interest could be defined
in this section.

The final configuration that is required to launch the complete applica-
tion is to appropriately connect the various interfaces of one component to
another. Two types of connections exist: event sources to sinks, and facets
to receptacles. The listing below shows how thetimeout_1 event source of
the RateGenerator component is connected to the receive_timeout_1 event
sink of the GPS component.

1 </Deployment:DeploymentPlan>
2 <connection>
3 <name>Rate_Generator_to_GPS_timeout_1_event</name>
4 <internalEndpoint>

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 54

5 <portName>timeout_1</portName>
6 <provider>false</provider>
7 <kind>EventPublisher</kind>
8 <instance xmi:idref="IO-Rate_Generator-comp-idd" />
9 </internalEndpoint>

10 <internalEndpoint>
11 <portName>receive_timeout_1</portName>
12 <provider>true</provider>
13 <kind>EventConsumer</kind>
14 <instance xmi:idref="Sensors-GPS-comp-idd" />
15 </internalEndpoint>
16 </connection>
17 </Deployment:DeploymentPlan>

The syntax required to connect a receptacle to a facet is very similar. Since the
RateGenerator component has no facet or receptacle to connect, the example
below shows how the current_acceleration facet of the IMU component is
connected to the get_current_acceleration receptacle of the Estimator
component.

1 </Deployment:DeploymentPlan>
2 <connection>
3 <name>IMU_to_Estimator_acceleration_facet</name>
4 <internalEndpoint>
5 <portName>current_acceleration</portName>
6 <provider>true</provider>
7 <kind>Facet</kind>
8 <instance xmi:idref="Sensors-IMU-comp-idd" />
9 </internalEndpoint>

10 <internalEndpoint>
11 <portName>get_current_acceleration</portName>
12 <provider>false</provider>
13 <kind>SimplexReceptacle</kind>
14 <instance xmi:idref="Navigation-Estimator-comp-idd" />
15 </internalEndpoint>
16 </connection>
17 </Deployment:DeploymentPlan>

5.2.4 Launching

The launch process brings the flight control system into a executing state by
using the XML based configuration and deployment file described above to
reference all required resources. Initially a server run-time environment (also
referred to as node) that has its own associated memory and processing re-
sources is first prepared per component. The run-time environment is provided

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 55

by the deployment and configuration tool, which is part of the distribution mid-
dleware. Any additional services that are required by the application, such as
a naming service that could be used by the components to locate each other,
are also started up.

An execution manager, also part of the distribution middleware, then in-
stantiates each component into its own run-time environment. During this
process, component attribute values are initialized using the values provided
in the configuration file. Event sources/sinks as well as facets/receptacles are
also connected as per the configuration file.

Finally, a small driver program is used to activate the reactor object in the
RateGenerator component. Once the reactor object is activated, the various
timers are enabled and the system is put into an executing state. This design
was chosen in order to be able to control the commencement of execution in
the system.

5.2.5 Model Driven Design

Alternatives have been developed to writing configuration and deployment files
by hand, since the activity may become tedious. It is also possible that the task
can become error-prone as the number of components in a system increases,
which will likely result in difficult-to-debug problems occurring during system
configuration and/or activation.

To aid with this difficulty, model driven design and architecture tools, first
introduced in section 2.6 have been developed. They allow component inter-
faces to be designed visually, as was shown in chapter 4. Iterative adjustments
that often occur during development of a system are also more intuitive on a
visual model than a XML file. Once the component interface has been mod-
elled, interconnections between ports can be added, as shown in figure 5.3
using the example of the IMU and Controller component.

Figure 5.3: Visual modelling of port connection.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SYSTEM INTEGRATION 56

The point of visual modelling of components and interfaces is that it enables
software artefacts, such as IDL and deployment files, that are required to
develop and run distributed systems, to be generated from the model. Freely
available tools, such as the Generic Modelling Environment, together with
domain specific modelling languages and interpreters that have been adapted
for component-based development, are available that provide this functionality
[55].

5.3 Conclusion
In this chapter, it was shown how the individual hardware and software com-
ponents that comprise the flight control system were integrated into a complete
unit. In chapter 6 the results of system testing to verify correct functionality
of the complete system is presented.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

System Verification

In chapter 5 it was shown how the individual hardware and software functions
were integrated and combined into a complete flight control system. New flight
computing hardware was introduced, while CAN-Ethernet functionality was
also designed to enable the reuse of existing actuator hardware. The system
was built in a distributed fashion around a COTS Ethernet switch to enable
extendibility. The component-based avionics system application was designed
to run on a real-time OS to ensure deterministic behaviour.

In this chapter, results of experiments are presented that were performed
in order to quantitatively and qualitatively ascertain how well the system is
performing. Tests for the CAN-Ethernet gateway, real-time OS and Ethernet
switch are described in sections 6.1, 6.2 and 6.3.

As the flight control logic implemented in the software components was
ported from a previous system in use at the ESL [54], an experiment was
completed in which both existing and new systems were run in parallel and
telemetry was used to determine functional equivalence. Some modifications to
the newly developed avionics system were required to enable direct comparison
with an existing system, which, together with the results, are described in sec-
tion 6.4. The testing was performed using a Matlab Simulink HIL simulation
which was previously developed at the ESL [10].

Testing of the complete avionics system in its final form is documented in
section 6.5. Testing for the system was also completed using the Matlab HIL
simulation environment.

Since a goal of this thesis was to enable extendibility of the flight control
unit, the system was also tested with a setup in which component functions
were distributed over two host platforms. The results of the experiment are
documented in subsection 6.6.

57

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 58

The chapter concludes with an overview of all the results in 6.7.

6.1 CAN-Ethernet Gateway
The correct operation of the CAN-Ethernet Gateway was confirmed by running
successful HIL simulation tests using the gateway, as described in section 6.5.
However, the amount of latency introduced by the gateway was also of interest,
since it is a new function that has been inserted into a distributed architecture.

To quantitatively measure the latency proved to be cumbersome, since it
was difficult to track the ingress of a particular CAN packet up until the point
at which it exits as a UDP packet and vice versa. Instead, to qualitatively
evaluate the performance of the gateway, two tests were performed: in the
first test, two gateways were inserted into a HIL simulation setup of an ex-
isting flight control system, as shown in figure 6.1. The HIL simulation was
run successfully in this test, despite the presence of one more CAN-Ethernet
translation step in the network than would normally be used in a system.

Figure 6.1: CAN-Ethernet gateway test setup.

In the second test, a separate CAN device was programmed to transmit
at a speed of 800kbps, which is the speed at which the existing sensor and
actuator devices operate at. CAN packets were then continuously sent in
order to consume the available bandwidth on the CAN interface. The data
in the CAN packets was populated with numbers that were increasing in a
loop until a maximum was reached, at which point it was reset. The CAN-
Ethernet gateway was set-up to count the number of lost packets as soon as
it detected collisions of CAN packets and write this statistic to the prototype
board screen. During an hour test, no lost CAN packets were detected. Correct
number sequencing was also found in the received UDP packets.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 59

6.2 Real-time Operation

6.2.1 RTOS

Although it has been shown that a PREEMPT_RT patched Linux kernel can be
used successfully in hard real-time control applications [42], this depends to
a degree on the actual hardware and device drivers that are in use. Tasks
running on a patched Linux kernel could still incur execution latencies due to
hardware generated interrupts or OS generated software signals [41].

To characterise this possibility, tests were performed on the Gumstix com-
puting hardware used for this project in order to measure the latency between
when a task is first requested and when it starts executing, as illustrated in
figure 6.2.

Figure 6.2: Event latency.

The test was performed using the cyclictest utility that is part of the
PREEMPT_RT patch. A 1000 µs periodic event was repeated to obtain 100000000
samples - approximately 24 hours running time. The test was repeated for a
lightly-loaded as well as heavily-loaded system. For the heavy-load scenario,
the CPU was kept busy by invoking a continuous loop with a basic arithmetic
operation. The CPU load was shown to be close to 100% at the start of the
test.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 60

Figure 6.3: Latency distribution graph.

The average latency was found to be 23 µs on a lightly loaded system, with
the highest limit being recorded at 53 µs. On a loaded system the average
latency was calculated to be at 22 µs, while the highest latency samples were
recorded at 60 µs. Figure 6.3 illustrates the distribution in latencies for both
systems.

6.2.2 Flight Control System

Confirming the capability of the OS is the first aspect to verifying real-time
operation of the system. The ported flight control software also needs to be
shown to conform with the timing requirements as described in subsection
3.4.2. Two aspects were investigated:

• total algorithm running time should be completed within a 20ms interval.

• execution events should be triggered precisely every 20ms.

Both characteristics are required to ensure that the avionics system pro-
duces actuator output timeously at the required rate in order to maintain
stable flight. The algorithm execution time was calculated by measuring the
delta between the start time of the first executed component and the end time
of the last executed component. Figure 6.4 shows the result of this. As can be
seen, the algorithm generally completed within 13ms, which fits well within
the 20ms budget.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 61

Figure 6.4: Total algorithm execution time.

The control algorithm execution interval was measured by repeatedly log-
ging the exact start time at which the first execute event was triggered and
then calculating the delta of successive iterations. Figure 6.5 shows the result,
and as can be seen the system generally triggered an execute event every
20ms. However, a peaks and troughs pattern could also be observed in the
graph that were spaced 0.5s apart.

Figure 6.5: Execution event interval.

Upon closer investigation, it was found that the time-out events to trigger
the sending of telemetry data were occurring at regular 0.5s intervals precisely
at the same time an execute event was triggered. Once the time-out events
were re-scheduled to not occur at precisely the same time as the execute

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 62

event, the execution interval triggered every 20ms after a short initial "settling
period", as shown in figure 6.6.

Figure 6.6: Execution event interval after adjustment.

6.3 Ethernet Switch
The distribution test described in the introduction to this chapter also offered
the possibility to ascertain the impact on flight performance of the Ethernet
switch in the architecture. The distribution of components over two hosts
would result in inter-host control and data flow through the switch, thereby
providing the chance to qualitatively observe the performance of the switch.

6.4 Comparison

6.4.1 Method

The algorithms of the new avionics system were based on, and ported from
an existing system that was previously developed and supplied by the ESL
[54]. To determine functional equivalence of the existing and new systems, a
method needed to be found that would allow both systems to be run at the
same time with the same input data. The response of both systems to the
same input data could then be recorded in the telemetry measurements and
compared.

A number of modifications to the new avionics system were performed
that enabled it to be run in tandem with the existing system while a MAT-
LAB Simulink based HIL simulation was performed. The new avionics system
was hosted on a computer running a Linux-kernel based OS, while the HIL
simulation was run in a virtual machine hosted on the same computer. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 63

HIL simulation exchanged emulated sensor values via a USB-connected HIL
distribution board [10] with the existing system. The distribution board acted
as a USB-to-CAN gateway, injecting the emulated sensor values received from
the simulation on the USB interface into the CAN bus where the existing flight
control system was able to retrieve them.

A modification to the HILInterface component was required in order to
enable it to simultaneously receive the same emulated sensor values from the
simulation as the existing system. The modification entailed replacing the
object in the HILInterface that exchanged data with a simulation via UDP
with a new object that extracted data from the same USB interface as was
being used by the existing system. The object encapsulated a facility in the
Linux kernel known as usbmon, which exposes the I/O activity of a USB bus as
a text file under the /sys/kernel file-system and also provides for the data to be
read in a binary format from a character device called /dev/usbmonN, N being
the usb bus number that is traced. This facility enabled the HILInterface to
sniff the USB data exchange between the existing system and the simulation
for emulated sensor values and copying these over as they were being sent. This
allowed both the existing as well as the new system to run simultaneously off
the same emulated sensor values. The existing system then fed back updated
actuator positions into the HIL simulation, since the simulation expects to
receive updates from one system only. The complete setup is show in figure
6.7.

Figure 6.7: Setup for simultaneous operation of both flight control systems.

Since both systems needed to have the same frequency of operations, the
timing of the new flight control system was slaved to that of the existing
system. This was achieved by removing the RateGenerator component and
instead basing the timing on packets sent from the Matlab simulation to the
existing flight control system. The HILInterface started execution of relevant
components as soon as it detected appropriate data on the USB interface

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 64

indicating the start of a new sync period (see figure 3.7 for a reminder of
control and data flow timing).

To enable reception of ground-station messages, the Command component
was modified in a similar manner to the HILInterface, allowing it to monitor
the serial communication between the ground-station and the existing flight
control system for any relevant notifications and commands being sent. This
also allowed the Command component to copy the existing telemetry messages,
which turned out to be convenient for comparison purposes.

For the MATLAB Simulink based HIL simulation, four way-points were
programmed into the system from the ground-station to form a lap. The
runway coincided with the last way-point and was located at 34°2′47.778” S
latitude and 18°44′25.072” E longitude. The remaining way-points were spaced
500m apart in a square, as shown in figure 6.8 and table 6.1. All way-points
were located 160m above ground. The desired airspeed for the aircraft was set
to 22m/s.

Figure 6.8: Way-points that were used during the simulation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 65

Waypoint North Offset East Offset Altitude Heading Airspeed
WP0 500m 0m 160m 0° 22m/s
WP1 500m 500m 160m 0° 22m/s
WP2 0m 500m 160m 180° 22m/s
WP3 0m 0m 160m 270° 22m/s

Table 6.1: Way-point details.

Since an RC controller was not available during the development of the
system, take-off of the aircraft was achieved by introducing a switch into the
Matlab Simulink model that, when toggled to the on-position, enabled max-
imum throttle. This allowed the aircraft to take-off and gain a measure of
altitude. After aircraft take-off, maximum throttle was disengaged while the
autopilot was activated in order to allow the system to fly autonomously be-
tween the four way-points in a clock-wise manner. Since the aircraft was not in
the desired position directly after take-off, the autopilot initially manoeuvred
around the first way-point until the correct altitude was achieved and then
proceeded to autonomously fly through the remaining way-points, repeating
the lap until it was dis-engaged. The results of the telemetry comparisons
for various components/functions are presented in the subsequent paragraphs,
while the results are discussed in subsection 6.4.6.

6.4.2 Sensors

6.4.2.1 GPS

The GPS component telemetry of position and velocity measurements between
existing and new flight control systems indicated good correlation. Figures
6.9, 6.10 illustrate the correlation in GPS reported latitude and longitude, while
figures 6.11, 6.12 show the same for north and east velocity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 66

13:36:29
13:36:44

13:36:59
13:37:14

13:37:29
13:37:44

13:37:59
13:38:14

13:38:29

time

−0.020

−0.018

−0.016

−0.014

−0.012

−0.010

ra
di

an
s

−3.403e1 Comparison of Latitude

New FCS
Existing FCS

Figure 6.9: Latitude comparison.

13:
36:

39
13:

36:
54

13:
37:

09
13:

37:
24

13:
37:

39
13:

37:
54

13:
38:

09
13:

38:
24

13:
38:

39

time

0.008

0.010

0.012

0.014

0.016

0.018

ra
di

an
s

+1.873e1 Comparison of Longitude

New FCS
Existing FCS

Figure 6.10: Longitude comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 67

13:36:22
13:36:37

13:36:52
13:37:07

13:37:22
13:37:37

13:37:52
13:38:07

13:38:22
13:38:37

time

−30

−20

−10

0

10

20

30

m
/s

Comparison of north velocity

New FCS
Existing FCS

Figure 6.11: GPS north velocity comparison.

13:36:22
13:36:37

13:36:52
13:37:07

13:37:22
13:37:37

13:37:52
13:38:07

13:38:22
13:38:37

time

−30

−20

−10

0

10

20

30

m
/s

Comparison of east velocity

New FCS
Existing FCS

Figure 6.12: GPS east velocity comparison.

6.4.2.2 IMU

As with the GPS component, the correlation in IMU sensor measurements be-
tween the new and existing system was good. Figures 6.13 - 6.15 show the
similarity in gyroscope readings, while figures 6.16 and 6.17 indicate that the
pitot-static airspeed and altitude telemetry readings from the pressure-meter
were also comparable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 68

13:36:21
13:36:36

13:36:51
13:37:06

13:37:21
13:37:36

13:37:51
13:38:06

13:38:21
13:38:36

time

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

ra
d/

se
c

Comparison of gyro x-axis/roll angle

New FCS
Existing FCS

Figure 6.13: Gyro x-axis/roll angle comparison.

13:
36:

24
13:

36:
39

13:
36:

54
13:

37:
09

13:
37:

24
13:

37:
39

13:
37:

54
13:

38:
09

13:
38:

24
13:

38:
39

time

0.0

0.5

1.0

1.5

ra
d/
se
c

Comparison of gyro y-axis/pitch angle

New FCS
Existing FCS

Figure 6.14: Gyro y-axis/pitch angle comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 69

13:
36:

21
13:

36:
36

13:
36:

51
13:

37:
06

13:
37:

21
13:

37:
36

13:
37:

51
13:

38:
06

13:
38:

21
13:

38:
36

time

0.0

0.5

1.0

1.5

ra
d/

se
c

Comparison of gyro z-axis/yaw angle

New FCS
Existing FCS

Figure 6.15: Gyro z-axis/yaw angle comparison.

13:
36:
18

13:
36:
33

13:
36:
48

13:
37:
03

13:
37:
18

13:
37:
33

13:
37:
48

13:
38:
03

13:
38:
18

13:
38:
33

time

0

5

10

15

20

25

30

m
/s

Comparison of pitot-static indicated airspeed

New FCS
Existing FCS

Figure 6.16: Pitot-static indicated airspeed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 70

13:
36:

33
13:

36:
48

13:
37:

03
13:

37:
18

13:
37:

33
13:

37:
48

13:
38:

03
13:

38:
18

13:
38:

33

time

0

100

200

300

m
/s

Comparison of pitot-static pressure altitude

New FCS
Existing FCS

Figure 6.17: Pitot-static pressure altitude.

6.4.3 Estimator

The Estimator telemetry readings for the position and velocity estimates
shown in figures 6.18 - 6.21 were similar between existing and new flight control
systems. State estimation of position and velocity also correlated to a high
degree with GPS telemetry measurements, as shown previously in figures 6.9 -
6.12. However, the state estimates for roll, pitch and yaw angles, as shown in
figures 6.22 to 6.24, exhibit small but discernible differences.

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−100

0

100

200

300

400

500

600

m
et

er
s

Comparison of estimator north position

New FCS
Existing FCS

Figure 6.18: Estimator north position comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 71

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−100

0

100

200

300

400

500

600

m
et

er
s

Comparison of estimator east position

New FCS
Existing FCS

Figure 6.19: Estimator east position comparison.

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−30

−20

−10

0

10

20

30

m
/s

ec

Comparison of estimator velocity north

New FCS
Existing FCS

Figure 6.20: Estimator north velocity comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 72

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−30

−20

−10

0

10

20

30

m
/s

ec

Comparison of estimator velocity east

New FCS
Existing FCS

Figure 6.21: Estimator east velocity comparison.

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

ra
d/

se
c

Comparison of estimator roll

New FCS
Existing FCS

Figure 6.22: Estimator roll angle comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 73

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ra
d/

se
c

Comparison of estimator pitch

New FCS
Existing FCS

Figure 6.23: Estimator pitch angle comparison.

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−4

−3

−2

−1

0

1

2

3

4

ra
d/

se
c

Comparison of estimator yaw

New FCS
Existing FCS

Figure 6.24: Estimator yaw angle comparison.

6.4.4 Controller

Small differences were noted in some of the Controller component telemetry
measurements. While the telemetry of some of the controller references were
similar between existing and new flight controllers, differences could be seen in
the bank angle reference (figure 6.25), horizontal acceleration reference (figure
6.26) and time at which navigated waypoints were reached (figure 6.27.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 74

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

ra
d/

se
c

Comparison of Comparison of controller roll angle reference

New FCS
Existing FCS

Figure 6.25: Controller bank angle reference comparison.

13:36:18
13:36:33

13:36:48
13:37:03

13:37:18
13:37:33

13:37:48
13:38:03

13:38:18
13:38:33

time

−4

−3

−2

−1

0

1

2

3

4

5

m
/(s

ec
*s

ec
)

Comparison of Comparison of controller horizontal acceleration reference

New FCS
Existing FCS

Figure 6.26: Controller horizontal acceleration reference comparison.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 75

13:
36:

22
13:

36:
37

13:
36:

52
13:

37:
07

13:
37:

22
13:

37:
37

13:
37:

52
13:

38:
07

13:
38:

22
13:

38:
37

time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
ay

po
in
t

Comparison of navigated waypoints

New FCS
Existing FCS

Figure 6.27: Comparison of navigated waypoints.

6.4.5 Servo

The Servo telemetry readings, although being similar between existing and
new flight controllers, exhibited a number differences, especially on the aileron,
elevator and rudder commands, as can be seen in figures 6.28 - 6.31.

13:
36:

18
13:

36:
33

13:
36:

48
13:

37:
03

13:
37:

18
13:

37:
33

13:
37:

48
13:

38:
03

13:
38:

18
13:

38:
33

time

0

1000

2000

3000

4000

5000

se
c

Comparison of Comparison of actuator throttle commands

New FCS
Existing FCS

Figure 6.28: Comparison of actuator throttle commands.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 76

13:
36:
18

13:
36:
33

13:
36:
48

13:
37:
03

13:
37:
18

13:
37:
33

13:
37:
48

13:
38:
03

13:
38:
18

13:
38:
33

time

3000

3100

3200

3300

3400

3500

3600

3700

3800

se
c

Comparison of Comparison of actuator left aileron commands

New FCS
Existing FCS

Figure 6.29: Comparison of left aileron commands.

13:
36:

18
13:

36:
33

13:
36:

48
13:

37:
03

13:
37:

18
13:

37:
33

13:
37:

48
13:

38:
03

13:
38:

18
13:

38:
33

time

0

500

1000

1500

2000

2500

3000

3500

4000

se
c

Comparison of Comparison of actuator elevator commands

New FCS
Existing FCS

Figure 6.30: Comparison of actuator elevator commands.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 77

13:
36:

20
13:

36:
35

13:
36:

50
13:

37:
05

13:
37:

20
13:

37:
35

13:
37:

50
13:

38:
05

13:
38:

20
13:

38:
35

time

3200

3300

3400

3500

3600

3700

3800

se
c

Comparison of Comparison of actuator rudder commands

New FCS
Existing FCS

Figure 6.31: Comparison of actuator rudder commands.

6.4.6 Discussion

Since the controller algorithms for the new avionics were ported from an ex-
isting system, it was expected that, given the same input, both systems would
produce the same response. This is the case for the GPS and IMU sensor compo-
nents. However, the modifications that were completed to the HILInterface
in order to monitor and extract the emulates sensor values as they were ex-
changed between the Matlab HIL simultion and the existing flight control
system resulted in the real-time requirements for the new system not being
met. While the GPS and IMU component sensor telemetry was comparable with
the existing system, Estimator, Controller and Servo component telemetry
exhibited small but noticeable differences. The differences are as a result of
algorithmic calculation not completing on time for some 20ms output periods,
resulting in errors being accumulated when compared to the output of the
original flight control system.

6.5 Flight Control System

6.5.1 Method

This section presents results collected while the new system hardware and
software was tested in a HIL simulation. Four way-points were programmed
into the system from the ground-station to form a lap, as described in section
6.4 and table 6.1. The results presented below document how the system
performed.

As shown by the controller way-point telemetry in figure 6.32, two laps
were flown before the simulation was stopped. (The next destination way-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 78

point indicators in the subsequent graphs correlate with the way-points shown
in figure 6.32.)

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

19:50:00

time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
ay

po
in

t

Destination waypoint

Figure 6.32: Next destination way-point selected by controller.

After manual take-off from the runway located at WP3, the autopilot was
engaged in order to allow the aircraft to fly autonomously between the four
way-points in a clock-wise manner starting at WP0. The GPS positional teleme-
try in figure 6.33 shows that the aircraft initially manoeuvred extensively
around WP0, before proceeding to navigate between the remaining way-points.
The reason for the manoeuvring was the autopilot algorithm working to attain
the correct altitude of 160m after take-off, as can be seen in the IMU pitot-static
pressure altitude telemetry shown in figure 6.34. The aircraft then correctly
maintained the altitude after it was achieved.

0.001 0.002 0.003 0.004 0.005 0.006 0.007
Longitude +1.8739e1

−0.011

−0.009

−0.007

−0.005

−0.003

La
tit

ud
e

−3.4037e1

WP0 WP1

WP2WP3

GPS Longitude vs Latitude

Figure 6.33: GPS Longitude vs Latitude.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 79

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

time

0

50

100

150

200

m
et

er
s

WP0

WP1

WP2

WP3 WP0 WP1 WP2 WP3 WP0

Pitot-static pressure altitude

Figure 6.34: Pitot-static pressure altitude.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Latitude +1.8739e1

−0.011

−0.009

−0.007

−0.005

−0.003

Lo
ng

itu
de

−3.4037e1

WP0 WP1

WP2WP3

Estimator Longitude vs Latitude

Figure 6.35: Estimator determined Longitude vs Latitude.

The position estimates calculated by the Estimator component, and shown
in figure 6.35 correlated closely with the counterpart GPS measurements of
figure 6.33. The pitot-static indicated airspeed IMU telemetry shown in figure
6.36 confirms that after the initial manoeuvring around WP0, the Controller
regulated the aircraft airspeed at 22m/s.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 80

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

19:50:00

time

0

5

10

15

20

25

30

m
/s

WP0

WP1

WP2

WP3
WP0 WP1 WP2 WP3 WP0

Pitot-static indicated airspeed

Figure 6.36: Pitot-static indicated airspeed.

In order to attain the correct altitude and airspeed, the aircraft had to
initially throttle at full power, as seen in figure 6.37. Afterwards, only mi-
nor adjustments to the throttle power were required to maintain the correct
airspeed. Similarly, the elevator also had to be engaged initially to pitch the
aircraft up in order to reach the correct altitude. Once the altitude had been
reached, the elevator actuator setting only required small changes to maintain
a constant altitude, as seen in figure 6.38. The rudder and aileron were used to
steer and roll the aircraft through the change in direction that occurred after
the Controller selected the next destination way-point way-point, as can be
seen in figures 6.39 and 6.40.

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

19:50:00

time

0

1000

2000

3000

4000

5000

se
c

WP0

WP1

WP2
WP3

WP0 WP1 WP2 WP3 WP0

Throttle command

Figure 6.37: Actuator throttle command.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 81

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

time

2800

3000

3200

3400

3600

se
c WP0

WP1

WP2 WP3 WP0 WP1 WP2 WP3
WP0

Elevator command

Figure 6.38: Actuator elevator command.

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

time

2400

2600

2800

3000

3200

3400

3600

3800

se
c

WP0
WP1

WP2 WP3 WP0 WP1 WP2 WP3 WP0

Rudder command

Figure 6.39: Actuator rudder command.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 82

19:42:00
19:43:00

19:44:00
19:45:00

19:46:00
19:47:00

19:48:00
19:49:00

time

2000

2500

3000

3500

4000

4500

se
c

WP0 WP1 WP2 WP3 WP0
WP1 WP2 WP3 WP0

Left Aileron command

Figure 6.40: Actuator left aileron command.

6.5.2 Discussion

The telemetry showed that the aircraft successfully navigated through all the
way-points in the right order during a HIL simulated two-lap flight. As figures
6.34 and 6.36 show, some initial manoeuvring by the autopilot was required
to attain the configured altitude of 160m and airspeed of 22m/s. Once these
had been achieved, the simulated aircraft proceeded as expected until the
simulation was stopped.

Unlike the results from sections 6.4 and 6.6, figures 6.34, 6.36, 6.38 and oth-
ers from this section show some form of oscillation occurring while the aircraft
is manoeuvring towards the first way-point. This behaviours was observed
during some simulation runs and is a consequence of the experimental setup
described in section 6.4 and in particular due to the unavailability of an RC
controller, which limited the ability to put the aircraft in close proximity of
the initial way-point. Instead, the autopilot was engaged directly after take-off
and the controller was responsible for achieving correct altitude, airspeed and
position at the first way-point before proceeding to fly through the remaining
way-points.

6.6 Distributed Flight Control System

6.6.1 Method

For this experiment, the flight control system was distributed over two target
platforms: the majority of components were located on the original Gumstix
SBC, while the Estimator was moved to a Linux-kernel based computer. Both
hosts were connected via an Ethernet switch while a HIL simulation fed em-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 83

ulated sensor values into the distributed flight control system. No software
components had to be altered to achieve the distributed configuration: the
instantiation of the Estimator component inside a run-time container was
moved to the Linux-kernel based computer, while the rest of the configuration
and launch sequence required to get the system executing remained constant.
The telemetry results below document the performance of the distributed sys-
tem while the configured way-points described in section 6.5.1 were flown in a
HIL simulation.

The destination way-point telemetry shown in figure 6.41 indicate that the
system completed two laps of the configured circuit before the simulation was
stopped. (The next destination way-point indicators in the subsequent graphs
correlate with the way-points shown in figure 6.41.)

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

20:11:00

time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
ay

po
in

t

Destination waypoint

Figure 6.41: Waypoints for the distributed test.

As with the results presented in section 6.5.1, the aircraft took off manually
from the runway located at WP3. After take-off, the autopilot was engaged
and WP0 was selected as the next destination way-point. WP0 was quickly
reached, at which point way-point WP1 was selected as the next destination
way-point. However, as can be seen in figures 6.43 and 6.45, when the aircraft
reached way-point WP0 it hadn’t yet attained the correct altitude and air-
speed, so manoeuvred until it achieved the correct values and then proceeded
to fly to way-point WP1. Once WP1 was reached, WP2 was selected as the
next destination way-point and finally WP3 before the lap was repeated. Fig-
ures 6.42 and 6.44 indicate the path followed by the aircraft as it flew through
WP0 - WP3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 84

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Longitude +1.8739e1

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

La
tit

ud
e

−3.404e1

WP0 WP1

WP2WP3

GPS Longitude vs Latitude

Figure 6.42: GPS Longitude vs Latitude.

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

time

0

50

100

150

200

m
et

er
s

WP0

WP1

WP2
WP3 WP0 WP1 WP2 WP3 WP0

Pitot-static pressure altitude

Figure 6.43: Pitot-static pressure altitude.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Latitude +1.8739e1

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

Lo
ng

itu
de

−3.404e1

WP0 WP1

WP2WP3

Estimator Longitude vs Latitude

Figure 6.44: Estimator determined Longitude vs Latitude.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 85

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

20:11:00

time

0

5

10

15

20

25

30

m
/s

WP0

WP1

WP2

WP3 WP0 WP1 WP2 WP3 WP0

Pitot-static indicated airspeed

Figure 6.45: Pitot-static indicated airspeed.

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

20:11:00

time

0

1000

2000

3000

4000

5000

se
c

WP0

WP1

WP2 WP3 WP0 WP1 WP2 WP3 WP0

Throttle command

Figure 6.46: Actuator throttle command.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 86

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

time

500

1000

1500

2000

2500

3000

3500

se
c

WP0

WP1

WP2 WP3 WP0 WP1 WP2 WP3 WP0

Elevator command

Figure 6.47: Actuator elevator command.

As was the case with the simulation described in subsection 6.5, the aircraft
flew full-throttle initially to attain the correct airspeed (figure 6.46), while at
the same time engaging the elevator to reach the desired altitude (figure 6.47).
The rudder and aileron were used to steer and roll the aircraft through the
change in direction that occurred once the current desired way-point had been
reached and the next destination way-point had been selected, as is shown in
figures 6.48 and 6.49.

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

time

2000

2500

3000

3500

se
c

WP0
WP1 WP2 WP3 WP0 WP1 WP2 WP3 WP0

Rudder command

Figure 6.48: Actuator rudder command.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 87

20:05:00
20:06:00

20:07:00
20:08:00

20:09:00
20:10:00

time

2500

3000

3500

se
c

WP0 WP1
WP2

WP3 WP0 WP1
WP2

WP3 WP0

Left Aileron command

Figure 6.49: Actuator left aileron command.

6.6.2 Discussion

The telemetry results for the distributed flight control system showed that
the aircraft performed as expected during the HIL simulation experiment.
The aircraft reached and maintained the correct altitude and airspeed, while
flying through the way-points in the correct order until the simulation was
terminated.

6.7 Conclusion
The results from section 6.5 indicate that the developed avionics system was
successfully able to maintain autonomous flight when tested in a HIL sim-
ulation environment. After some initial manoeuvring, the aircraft attained
and maintained the correct altitude and airspeed, while flying through the
programmed way-points in the correct order.

The parallel systems experiment described in section 6.4 showed that the
new system performed in a similar manner to the existing system from which
it was ported. Minor variations were observed in the actuator output, but
these did not affect the ability of the system to fly autonomously. The source
of the differences was traced back to real-time timing not being provided by
the HILInterface component, which was modified to enable the experiment.

The distributed flight control system experiment described in section 6.6 in-
dicated that components of the flight control application could be run over mul-
tiple processor boards while still successfully maintaining autonomous flight.
This result indicated that it is possible for the system resources to be expanded
when the need arises, without the need to re-develop existing hardware and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SYSTEM VERIFICATION 88

software. The result also validated the use of an Ethernet switch in a dis-
tributed system for real-time control applications.

The results of the HIL simulation experiments described in sections 6.5 and
6.6 as well as those described in section 6.2 indicated that the system was able
to maintain real-time timing requirements.

The presented experimental results showed that the developed avionics
system was able to maintain autonomous flight. The performance of the system
was quantitatively similar to that of the existing system from which it was
ported. The system was also able to operate in a real-time and distributed
manner.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Summary and Recommendations

7.1 Summary
In this project, options to address the limitations of the current avionics sys-
tems in use at the ESL were investigated. An architecture was designed to
meet the objectives after identifying possible choices based on documented re-
search, industry trends and open standards. The individual functions of the
architecture were developed and integrated into a complete system, running
on top of a real-time OS. The flight control algorithms were ported from an
existing system in order to demonstrate the viability of the architecture and
provide a basis for comparison. Experiments were conducted to determine
whether the system met the stated objectives. Experimental results gathered
from HIL simulations showed that the developed flight control system per-
formed comparably to existing systems and was able to maintain autonomous
flight. The system was also able to maintain autonomous flight when run in
a distributed configuration. Provision was made for existing actuator technol-
ogy to be re-used by developing a gateway that translated between CAN and
Ethernet buses.

7.2 Recommendations
Since this project was verified using HIL simulations, a further development
to advance the system would be for it to be packaged and industrialized into
a form that is suitable for flight tests. Some additional developments are
required for this: the CAN-Ethernet gateway was developed on an evaluation
board - a replacement that can be used in flight tests needs to be identified.
In the same sense, the Ethernet switch that was used for this project should
also be replaced with an alternative that can be carried in one of the research
vehicles - this could be as simple as removing the switch out of its housing to
reduce the dimensions and weight of the switch.

89

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 90

Though CORBA Component based systems are actively used and devel-
oped in many telecommunications, medical, aerospace, defence and financial
systems [56], its use is not as common outside industry and in research. Con-
sequently, the volume of information related to component based development
is much smaller compared to other libraries / middleware. As a result, the
advantages afforded by component-based development, as used in this project
to develop a DRE system, would have to be weighed up against the limitations
of introducing a new programming paradigm in the ESL. Component-based
middleware is currently being modernized to include support for the latest fea-
tures introduced by "new" C++ standards, which could simplify the process
of component-based development.

The future of component-based development appears set to evolve into
the Unified Component Model (UCM), which is a new component model that
aims to remove the underlying dependency on CORBA. The OMG has issued
a request for proposal in order to start development on the UCM standard
[57]. A stated purpose of the new model is for it to be "simple, lightweight,
middleware-agnostic and flexible". This is a promising development, although
it may be a while until a working implementation of the UCM standard is
delivered, with no guarantee yet that it will be freely available.

Stellenbosch University https://scholar.sun.ac.za

Appendices

91

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Software

A.1 Serial Communication Protocol
This section is reproduced from the description found in [10]. All serial com-
munications were performed according to the string layout protocol, which was
defined as follows:

$AA data * CS

where the identifiers can be described as follows:

• $ indicates the start of a string.

• AA are two matching letters that uniquely identify the message.

• data is binary data of any length.

• * is the end of string delimiter.

• CS is a 1 byte checksum.

When constructing a message, the following rules must be adhered to:

• If any byte in the binary data string is a start or end of string delimiter,
the respective data byte should be enqueued twice as to avoid ambiguity.

• The checksum is calculated by taking the exclusive OR (XOR) of all
the bytes between the start and end of string delimiters, before any
characters were doubled up as described by the previous rule.

• If the checksum is calculated to be an end of string delimiter character,
the checksum is to be replaced with a ’+’ character as to avoid ambiguity.

92

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] Lead, J.A.: Jsf avionics architecture definition appendices. Arlington, USA:
JAST Avionic Lead, 1994.

[2] Schantz, R.E. and Schmidt, D.C.: Middleware for distributed systems: Evolving
the common structure for network-centric applications. Encyclopedia of Software
Engineering, vol. 1, 2002.

[3] Lea, D.: Design patterns for avionics control systems. Doug Lea., 1994.

[4] Gaum, R. and de Hart, R.: Gen micro obc firmware object documentation.
Documentation delivered with v1.01 of ESL OBC firmware.

[5] Peddle, I.K.: Autonomous flight of a model aircraft. Master’s thesis, Department
of Electrical and Electronic Engineering, University of Stellenbosch, 2005.

[6] Roos, J.: Autonomous Take-Off and Landing of an Unmanned Aerial Vehicle,
University of Stellenbosch. Master’s thesis, Department of Electrical and Elec-
tronic Engineering, University of Stellenbosch, 2006.

[7] Carstens, N.: Development of a Low-Cost Low-Weight Flight Control System
for an Electrically Powered Model Helicopter. Master’s thesis, Department of
Electrical and Electronic Engineering, University of Stellenbosch, 2005.

[8] Groenwald, S.: Development of a Rotary-Wing Test Bed for Autonomous Flight.
Master’s thesis, Department of Electrical and Electronic Engineering, University
of Stellenbosch, 2005.

[9] Venter, J.: Development of an experimental Tilt-Wing VTOL Unmanned Aerial
Vehicle. Master’s thesis, Department of Electrical and Electronic Engineering,
University of Stellenbosch, 2005.

[10] Hough, W.: Autonomous Aerobatic Flight of a Fixed Wing Unmanned Aerial
Vehicle. Master’s thesis, Department of Electrical and Electronic Engineering,
University of Stellenbosch, 2007.

[11] Blaauw, D.: Flight Control System for a Variable Stability UAV. Master’s thesis,
Department of Electrical and Electronic Engineering, University of Stellenbosch,
2009.

93

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 94

[12] Gambier, A.: Real-time control systems: a tutorial. In: Control Conference,
2004. 5th Asian, vol. 2, pp. 1024–1031. IEEE, 2004.

[13] De Jager, A.: The Design and Implementation of vision-based autonomous ro-
torcraft landing. Master’s thesis, Department of Electrical and Electronic Engi-
neering, University of Stellenbosch, 2011.

[14] Integrated modular avionics wikipedia. https://en.wikipedia.org/wiki/
Integrated_modular_avionics. Accessed: 2015-11-15.

[15] Jo, H.-C., Han, S., Lee, S.-H. and Jin, H.-W.: Implementing control and mission
software of uav by exploiting open source software-based arinc 653. In: Digi-
tal Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st, pp. 8B2–1.
IEEE, 2012.

[16] Eveleens, R.: Open systems integrated modular avionics - the real
thing. Available at: http://ftp.rta.nato.int/public/PubFullText/RTO/
EN/RTO-EN-SCI-176/EN-SCI-176-04.pdf, [12 October 2014], 2006. NATO.

[17] Tagawa, G.B. and e Souza, M.L.d.O.: An overview of the integrated modular
avionics (ima) concept. Proc. DINCON, pp. 277–280, 2011.

[18] Kahn, A.: The Design and Development of a Modular Avionics System. Master’s
thesis, Georgia Institute of Technology, 2001.

[19] Ilarslan, M., Bayrakceken, M. and Arisoy, A.: Avionics system design of a mini
vtol uav. In: Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA
29th, pp. 6–A. IEEE, 2010.

[20] Pastor, E., Lopez, J. and Royo, P.: Uav payload and mission control hard-
ware/software architecture. Aerospace and Electronic Systems Magazine, IEEE,
vol. 22, no. 6, pp. 3–8, 2007.

[21] Norris, R.B.: A distributed flight control system architecture for small UAVs.
Master’s thesis, Massachusetts Institute of Technology, 1998.

[22] Lee, K.C. and Lee, S.: Performance evaluation of switched ethernet for real-time
industrial communications. Computer standards & interfaces, vol. 24, no. 5, pp.
411–423, 2002.

[23] Khazali, I., Boulais, M. and Cole, P.: Afdx software network stack implementa-
tion?practical lessons learned. In: Digital Avionics Systems Conference, 2009.
DASC’09. IEEE/AIAA 28th, pp. 1–B. IEEE, 2009.

[24] Schmidt, D.C. and Vinoski, S.: The corba component model: Part1, evolving
towards component middleware. C/C++ Users Journal, 2004.

[25] Sharp, D.C.: Reducing avionics software cost through component based product
line development. In: Digital Avionics Systems Conference, 1998. Proceedings.,
17th DASC. The AIAA/IEEE/SAE, vol. 2, pp. G32–1. IEEE, 1998.

Stellenbosch University https://scholar.sun.ac.za

https://en.wikipedia.org/wiki/Integrated_modular_avionics
https://en.wikipedia.org/wiki/Integrated_modular_avionics
http://ftp.rta.nato.int/public/PubFullText/RTO/EN/RTO-EN-SCI-176/EN-SCI-176-04.pdf
http://ftp.rta.nato.int/public/PubFullText/RTO/EN/RTO-EN-SCI-176/EN-SCI-176-04.pdf

LIST OF REFERENCES 95

[26] Paunicka, J.L., Mendel, B.R. and Corman, D.E.: The ocp-an open middle-
ware solution for embedded systems. In: American Control Conference, 2001.
Proceedings of the 2001, vol. 5, pp. 3445–3450. IEEE, 2001.

[27] Yussof, H., Capi, G., Nasu, Y., Yamano, M. and Ohka, M.: A corba-based con-
trol architecture for real-time teleoperation tasks in a developmental humanoid
robot. International Journal of Advanced Robotic Systems, vol. 8, no. 2, pp.
29–48, 2011.

[28] Doherty, P., Haslum, P., Heintz, F., Merz, T., Nyblom, P., Persson, T. and
Wingman, B.: A distributed architecture for autonomous unmanned aerial ve-
hicle experimentation. In: Distributed Autonomous Robotic Systems 6, pp. 233–
242. Springer, 2007.

[29] Schmidt, D.C. and Kuhns, F.: An overview of the real-time corba specification.
Computer, vol. 33, no. 6, pp. 56–63, 2000.

[30] Deng, G., Gill, C., Schmidt, D.C. and Wang, N.: Qos-enabled component mid-
dleware for distributed real-time and embedded systems. Handbook of Real-Time
And Embedded Systems, pp. 15–1, 2007.

[31] Otte, W.R., Gokhale, A., Schmidt, D.C. and Willemsen, J.: Infrastructure for
component-based dds application development. In: ACM SIGPLAN Notices,
vol. 47, pp. 53–62. ACM, 2011.

[32] Harrison, T.H., Levine, D.L. and Schmidt, D.C.: The design and performance
of a real-time corba event service. ACM SIGPLAN Notices, vol. 32, no. 10, pp.
184–200, 1997.

[33] Pedersen, R.: Object request broker software technology: applications in an
advanced open systems avionics architecture. In: Digital Avionics Systems
Conference, 1997. 16th DASC., AIAA/IEEE, vol. 1, pp. 5–2. IEEE, 1997.

[34] Trombetti, G., Gokhale, A., Schmidt, D.C., Greenwald, J., Hatcliff, J., Jung,
G. and Singh, G.: An integrated model-driven development environment for
composing and validating distributed real-time and embedded systems. In:
Model-driven Software Development, pp. 329–361. Springer, 2005.

[35] Sharp, D.C.: Object-oriented real-time computing for reusable avionics soft-
ware. In: Object-Oriented Real-Time Distributed Computing, 2001. ISORC-
2001. Proceedings. Fourth IEEE International Symposium on, pp. 185–192.
IEEE, 2001.

[36] OMG: Lightweight CORBA Component Model RFP, realtime/02-11-27 edition.
Object Management Group, 2002.

[37] Karsai, A., Kereskenyi, R. and Mahadevan, N.: A real-time component frame-
work: Experience with ccm and arinc 653. In: IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC). 2010.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 96

[38] Dubey, A., Emfinger, W., Gokhale, A., Karsai, G., Otte, W.R., Parsons, J.,
Szabó, C., Coglio, A., Smith, E. and Bose, P.: A software platform for frac-
tionated spacecraft. In: Aerospace Conference, 2012 IEEE, pp. 1–20. IEEE,
2012.

[39] Object management group, model driven architecture. http://www.omg.org/
mda/specs.htm, . Accessed: 2014-11-15.

[40] Generic modelling environment. http://w3.isis.vanderbilt.edu/Projects/
gme/. Accessed: 2014-11-15.

[41] Linux RT-PREEMPT frequently asked questions. https://rt.wiki.kernel.
org/index.php/Frequently_Asked_Questions. Accessed: 2014-11-15.

[42] National Institute of Standards and Technology introduction to linux
for real-time control. http://www.aeolean.com/html/RealTimeLinux/
RealTimeLinuxReport-2.0.0.pdf. Accessed: 2014-11-20.

[43] Krasner, G. and Pope, S.: A cookbook for uisng the model view controller user
interface paradigm in smalltalk-80. Journal of Object-Oriented Programming,
1988.

[44] Gill, C.D., Levine, D.L. and Schmidt, D.C.: The design and performance of a
real-time corba scheduling service. In: Challenges in Design and Implementation
of Middlewares for Real-Time Systems, pp. 3–40. Springer, 2001.

[45] Sharp, D.C.: Avionics product line software architecture flow policies. In: Digi-
tal Avionics Systems Conference, 1999. Proceedings. 18th, vol. 2, pp. 9–C. IEEE,
1999.

[46] Doerr, B.S. and Sharp, D.C.: Freeing product line architectures from execution
dependencies. In: Software Product Lines, pp. 313–329. Springer, 2000.

[47] Gill, C.D., Cytron, R.K. and Schmidt, D.C.: Multiparadigm scheduling for
distributed real-time embedded computing. Proceedings of the IEEE, vol. 91,
no. 1, pp. 183–197, 2003.

[48] Paunicka, J.L., Mendel, B.R. and Corman, D.E.: Open control platform: A
software platform supporting advances in uav control technology. Software-
Enabled Control: Information Technology for Dynamical Systems, pp. 39–62,
2005.

[49] Object management group, deployment and configuration of component-based
distributed applications. http://www.omg.org/spec/DEPL/, . Accessed: 2014-
11-15.

[50] Deng, G., Balasubramanian, J., Otte, W., Schmidt, D.C. and Gokhale, A.:
Dance: A qos-enabled component deployment and configuration engine. In:
Component Deployment, pp. 67–82. Springer, 2005.

[51] Yocto project. https://www.yoctoproject.org/about. Accessed: 2014-11-20.

Stellenbosch University https://scholar.sun.ac.za

http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm
http://w3.isis.vanderbilt.edu/Projects/gme/
http://w3.isis.vanderbilt.edu/Projects/gme/
https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions
https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions
http://www.aeolean.com/html/RealTimeLinux/RealTimeLinuxReport-2.0.0.pdf
http://www.aeolean.com/html/RealTimeLinux/RealTimeLinuxReport-2.0.0.pdf
http://www.omg.org/spec/DEPL/
https://www.yoctoproject.org/about

LIST OF REFERENCES 97

[52] Schmidt, D.C.: Reactor: An object behavioral pattern for concurrent event
demultiplexing and dispatching. 1995.

[53] Schmidt, D.C. and Pyarali, I.: The design and use of the ace reactor. URL
http://www. cs. wustl. edu/˜ schmidt/PDF/reactor-rules. pdf.

[54] Gaum, D.R.: Agressive flight control techniques for a fixed wing unmanned aerial
vehicle. Master’s thesis, 2009.

[55] Schmidt, A.G.D.C. and Gray, N.W.: Model driven middleware. Middleware for
Communications, p. 163, 2004.

[56] Tao users. http://www.dre.vanderbilt.edu/~schmidt/TAO-users.html. Ac-
cessed: 2014-11-20.

[57] Unified component model rfp. http://www.omg.org/cgi-bin/doc?mars/
13-09-10. Accessed: 2014-11-20.

Stellenbosch University https://scholar.sun.ac.za

http://www.dre.vanderbilt.edu/~schmidt/TAO-users.html
http://www.omg.org/cgi-bin/doc?mars/13-09-10
http://www.omg.org/cgi-bin/doc?mars/13-09-10

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	Nomenclature
	Flight Control Systems
	Introduction
	Limitations
	Objectives / Requirements
	Evaluation
	Approach
	Thesis Overview

	System Design
	Types
	Distributed Systems
	Software
	Components
	Standards
	Model Driven Development
	Real-time Operating System
	Compatibility
	Conclusion

	Architecture
	Structure
	Components
	Event Service
	Flow Policies
	Distributed Systems
	Hardware Block Diagram
	Software Block Diagram
	Simulation
	CAN-Ethernet Gateway
	Conclusion

	Development
	Hardware
	Real-time Operating System
	Software
	Conclusion

	System Integration
	Hardware
	Software
	Conclusion

	System Verification
	CAN-Ethernet Gateway
	Real-time Operation
	Ethernet Switch
	Comparison
	Flight Control System
	Distributed Flight Control System
	Conclusion

	Summary and Recommendations
	Summary
	Recommendations

	Appendices
	Software
	Serial Communication Protocol

	List of References

