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SUMMARY 

 

The human body has developed an integrated antioxidant defence system to protect 

against free radical damage. Acute exercise may result in the increased generation of free 

radicals, including reactive oxygen species, and this may overwhelm antioxidant defence 

systems resulting in oxidative stress. However, it has been shown that individuals who 

undergo regular exercise training may have improved antioxidant capacity when compared 

to sedentary controls. Results from research regarding the association between 

antioxidant capacity and exercise training are however not conclusive and further 

investigation is required. Therefore, the aim of this study was to investigate the association 

between the total plasma antioxidant status and selected plasma indicators of antioxidant 

status and the MnSOD Ala-9Val (-28C→T) polymorphism in trained male athletes (rugby 

players) and sedentary male students while controlling for dietary intake of the major 

antioxidants using a validated dietary assessment method.  

 

In order to address the potential confounding effect of dietary antioxidant intake on 

antioxidant status in the main study, a FFQ that measures vitamin C, vitamin E, carotenoid 

and flavonoid intake was developed. The reproducibility was assessed by the repeat 

administration of the FFQ (n = 38), while the va lidity was assessed using a 28-day close-

ended dietary record and repeated plasma vitamin C values (n = 18). Several statistical 

tests were conducted to compare the values obtained from the FFQ with values obtained 

from the various reference methods. While  results from Bland-Altman plots suggested that 

the reproducibility and validity of FFQ was not completely satisfactory, similar mean values, 

moderate to strong correlation coefficients, and a high percentage of individuals classified 

correctly according to quartiles of intake indicated satisfactory reproducibility and validity of 

the FFQ in assessing antioxidant intake. Furthermore, moderate to strong validity 

coefficients obtained from the method of triads also indicated satisfactory validity for the 

FFQ. 

 

The main study involved a cross-sectional study that compared plasma vitamin C and 

carotenoid levels as well as total plasma antioxidant status in trained rugby players (n = 76) 

and sedentary male subjects (n = 39) with different MnSOD genotypes, while controlling 

for dietary antioxidant intake. Rugby players had significantly higher plasma vitamin C and 

carotenoid levels compared to sedentary students, which indicated more satisfactory 

plasma antioxidant status. This was also reflected in the tendency for total plasma 
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antioxidant status (ORAC assay) to be higher in rugby players than sedentary students. 

MnSOD genotype did not influence plasma vitamin C and carotenoid levels or plasma total 

antioxidant status, with or without control for dietary antioxidant intake. Dietary vitamin C, 

vitamin E, carotenoid an flavonoid intake (from foods + supplements) was similar for rugby 

players and sedentary students and was adequate for both groups. Thus the association 

between antioxidant status and MnSOD genotype in rugby players and sedentary students 

seemed not to be influenced by dietary antioxidant intake.  In conclusion therefore, rugby 

players undergoing regular exercise training had a more satisfactory antioxidant status 

compared to sedentary students. Based on this conclusion, the widespread use of 

antioxidant supplements by athletes is questioned. 
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OPSOMMING 

 

Die menslike liggaam beskik oor ‘n geintegreerde antioksidantmeganisme om dit teen 

vryradikaalskade te beskerm. Akute oefening kan bydra tot ‘n verhoogde produksie van 

vry radikale, insluitend reaktiewe suurstofspesies, wat kan veroorsaak dat die 

antioksidantbeskermingsmeganisme oorlaai word, wat dan kan aanleiding gee tot die 

ontstaan van oksidatiewe stress. Dit is aangetoon dat persone wat gereeld oefening doen 

verbeterde antioksidantkapasiteit toon in vergelyking met persone wat geen oefening doen 

nie. Die resultate van navorsingstudies wat die verband tussen antioksidantkapasiteit en 

oefening ondersoek is egter teenstrydig en verdere navorsing op hierdie gebied is 

essensieël om uitsluitsel te kry oor kontensieuse vraagstukke. Die doel van hierdie studie 

was dus om ondersoek in te stel na die verband tussen plasma antioksidant status, die 

MnSOD Ala-9Val (-28C T) polimorfisme en geselekteerde plasma antioksidantmerkers in 

geoefende manlike atlete (rugby spelers) en ‘n onaktiewe manlike kontrolegroep terwyl 

gekontroleer word vir die dieetinname van die vernaamste antioksidante. 

 

Om vir die potensiële invloed van dieetantioksidantinname op die antioksidantstatus van 

proefpersone in die hoofstudie te kontroleer, is ‘n voedsel frekwensievraelys  wat vitamien 

C-, vitamien E-, karotenoïed- en flavinoïedinname meet, ontwikkel. Die herhaalbaarheid 

(betroubaarheid) van die vraelys is getoets deur herhaalde voltooiing daarvan deur ‘n 

toetsgroep (n=38), terwyl die geldighied getoets is deur gebruik te maak van ‘n 28-dag 

geslote dieetrekord en herhaalde plasma vitamien C bepalings as verwysingswaardes 

(n=18). Verskeie statistiese toetse is uitgevoer om die frekwensievraelys waardes met die 

verskillende verwysingswaardes te vergelyk. Alhoewel die Bland-Altman grafieke nie dui 

op bevredigende herhaalbaarheid en geldigheid van die voedselfrekwensie vraelys nie, dui 

gelyke gemiddelde waardes, matig tot sterk en betekenisvolle korrelasiekoeffisiënte en ‘n 

hoë persentasie individue korrek geklassifiseer volgens kwartiele van inname, wel op 

bevredigende herhaalbaarheid en geldigheid. Matige tot sterk geldigheidskoeffisiënte is 

ook verkry met die toepassing van “The method of Triads”, wat verdere steun bied vir 

bevredigende geldigheid.  

 

In die hoofstudie is plasma vitamien C, karotenoïedvlakke en totale plasma 

antioksidantstatus in manlike rugby spelers (n=76) vergelyk met dié van onaktiewe 

manlike kontroles (n=39). Vergelykings tussen MnSOD genotipes binne die 

aktiwiteitsgroepe is ook getref. Al genoemde analises is gekontroleer vir dieet- 
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antioksidantinname. Resultate dui daarop dat die plasma vitamien C en karotenoïedvlakke 

van rugby spelers betekenisvol hoër was as dié van die kontrolegroep, wat dui op ‘n meer 

bevredigende antioksidantstatus. Hierdie resultaat is ook weerspieël in die feit dat totale 

plasma antioksidantstatus (ORAC) in die rugby spelers oog geneig was om hoër te wees 

as dié van die kontrole groep. Dit het ook geblyk dat MnSOD genotipe nie ‘n effek gehad 

het op plasma vitamien C-, karotenoïed- of totale antioksidantstatus nie, met of sonder 

kontrole vir dieet antioksidantinname. Die dieet vitamien C-, vitamien E-, karotenoïed- en 

flavinoïedinname (vanaf voedsel en supplemente) was dieselfde vir rugby spelers en 

kontrole en was toereikend vir beide groepe. Dit blyk dus dat dat die verband tussen 

antioksidantstatus en MnSOD genotipe in die twee groepe nie beinvloed is deur 

antioksidantinname nie. Ten slotte kan die gevolgtrekking gemaak word dat manlike rugby 

spelers ‘n meer bevredigende antioksidant status het as onaktiwe manlike kontroles. Op 

grond van hierdie gevolgtrekking word die algemene gebruik van antioksidant 

supplemente deur atlete bevraagteken. 
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CHAPTER 1 

 

INTRODUCTION



 

 

2 

INTRODUCTION 

 

1. Introduction and problem identification 

 

The benefits of regular moderate exercise have been well-documented and include 

reduced risk of obesity, cardiovascular disease, cancer, osteoporosis and diabetes among 

others (Astrand, 1992; Durstine & Haskell, 1994; Rippe & Hess, 1998; Powers & Lennon, 

1999). However, at another level of exercising, where the focus is not necessarily on 

health, but on competitive performance, exercise may result in the  increased generation of 

free radicals and reactive oxygen species (ROS) (Davies et al., 1982; Ashton et al., 1998). 

These reactive species can attack and cause oxidative damage to a wide variety of 

biological molecules including proteins, lipids and DNA (Halliwell & Gutteridge, 1999). To 

protect against free radical attack and subsequent oxidative damage, antioxidant defence 

systems have developed (Halliwell & Gutteridge, 1999; Benzie, 2000). A disturbance in 

this pro-oxidant-antioxidant balance in favour of the former, leading to potential damage 

has been defined as oxidative stress (Sies, 1991). Several, but not all, studies have 

reported an increase in markers of oxidative stress in response to exercise (Dillard et al., 

1978; Niess et al., 1996; Alessio et al., 2000; Lee et al., 2002).  

 

However, while acute exercise may result in increased ROS production and oxidative 

stress, there is increasing evidence that exercise training may enhance the antioxidant 

defence system (Powers & Lennon, 1999). Studies have shown that the antioxidant 

system is able to adapt to the increased ROS exposure by upregulating antioxidant 

enzyme activities and possibly increasing non-enzymatic antioxidant levels (Oberley et al., 

1987; Ji, 1998; Powers & Sen, 2000). This adaptation of the antioxidant system would thus 

enable the body to cope with the exercise-induced ROS production and minimise 

associated oxidative damage (Vollaard et al., 2005). Animal studies have generally shown 

that the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione 

peroxidase (GPX) in skeletal muscle improve with regular exercise training (for summary 

see (Ji, 1998; Powers & Lennon, 1999). Evidence regarding the training-induced 

adaptation of antioxidant defence systems in humans is based on training intervention 

studies and cross-sectional studies in which trained individuals are compared to sedentary 

ones. However, the effect of training on antioxidant enzyme adaptation in humans is not 

clear. Furthermore, findings from human studies investigating exercise training-induced 

changes in total antioxidant status and concentrations of individual antioxidants such as 
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vitamin E and vitamin C are not consistent (Robertson et al., 1991; Rokitzki et al., 1994; 

Brites et al., 1999; Evelson et al., 2002; Cazzola et al., 2003).    

 

A variety of factors may contribute to the discrepancies in results, including the markers of 

oxidative stress and analytical methodology used, the study population characteristics, and 

the diversity of exercise training protocols. In addition, according to Sen and Goldfarb 

(2000): “Depending on nutritional habits and genetic disposition susceptibility to oxidative 

stress may vary from person to person”.  

 

Although there are various analytical methods that can be used to assess oxidative stress, 

each is associated with difficulties and some of the reported inconsistencies may be 

attributed to this. Free radicals have a short lifetime, making their direct detection 

extremely difficult and this approach is thus rarely used (Han et al., 2000). ROS attack of 

proteins, lipids, and DNA results in the formation of unique oxidatively modified 

biomolecules, which can be used as biomarkers of oxidative stress in in vivo studies (Han 

et al., 2000). An increase in these molecules provides strong evidence of oxidative stress 

in biological systems (Han et al., 2000). The determination of antioxidant enzymatic activity 

or level and the measurement of both individual plasma markers of antioxidant status and 

total antioxidant status have also been used to indirectly assess oxidative stress. A 

decrease in these indicators does not necessarily indicate oxidative stress, but does point 

to a compromised antioxidant defence due to increased production of ROS (Packer, 1997).  

However, the measurement of markers of oxidative stress is also a difficult task due to the 

lack of specific and sensitive assays (Jenkins, 2000; Han et al., 2000). 

 

In human studies variations in the characteristics of the study population may contribute to 

inconsistent findings. Differences in factors such as gender, age, genotype, the type of 

exercise and the levels and years of training could account for conflicting results regarding 

exercise-induced ROS production and the subsequent antioxidant system adaptation 

(Jackson, 2000; Jenkins, 2000). Human studies investigating antioxidant capacity in 

relation to exercise training have done so employing a wide variety of exercise training 

protocols and sports, including endurance sports (Robertson et al., 1991; Ohno et al., 

1992), soccer (Brites et al., 1999; Cazzola et al., 2003), athletics (Watson et al., 2005), 

rugby (Evelson et al., 2002), and others (Rokitzki et al., 1994). The different types of sports 

have different energy requirements, oxygen consumption and mechanical stresses on 
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tissue and which may potentially influence free radical generation and the subsequent 

antioxidant response (Jackson, 2000).    

 

Genetic variation is an aspect that has, to our knowledge, not been investigated in the 

context of oxidative stress and antioxidant adaptation associated with exercise training. 

Human genetic variation is quite common and is largely in the form of single nucleotide 

polymorphisms (SNP’s) (Forsberg et al., 2001). In the context of oxidative stress and 

antioxidant enzymes, many potentially significant genetic variants have been identified and 

are reviewed in Forsberg (Forsberg et al., 2001). Oxidative-stress related genetic variation 

can be found in for example CuZnSOD, MnSOD, glutathione peroxidase, catalase, 

glutathione synthase, glutathione reductase and other enzymes (in Forsberg et al. (2001). 

Variations in MnSOD genotype have been investigated in relation to cancer (Ambrosone et 

al., 1999; Mitrunen et al., 2001; Woodson et al., 2003). The effect of these polymorphic 

genes on oxidative stress susceptibility and subsequent antioxidant status in general and 

more specifically in athletes is not clear and requires further investigation in order to 

determine whether certain individuals may be at an increased risk of oxidative stress.    

 

A further potential confounding factor that has been alluded to is the dietary habits of 

individuals, specifically the dietary intake of antioxidants. The major dietary antioxidants 

include vitamin C, vitamin E, carotenoids and flavonoids (Powers & Sen, 2000). Studies 

have shown that variations in circulating levels of dietary antioxidants generally reflect 

dietary antioxidant intakes (Block et al., 2001; Record et al., 2001; Anlasik et al., 2005). In 

addition, some studies have reported that increases in dietary antioxidant intake improves 

general indicators of plasma antioxidant capacity (Cao et al., 1998; Lesgards et al., 2002). 

The improvement in antioxidant capacity and antioxidant levels associated with training 

may thus be as a result of dietary habits and not necessarily a training-induced adaptation. 

Therefore, it is necessary to control for the dietary intake of antioxidants when assessing 

training-induced antioxidant adaptation to eliminate this possibility. Many studies have 

failed to adequately control/determine dietary antioxidant intake in the exercise training 

context and this may have been a confounding factor in the findings reported. In order to 

control for dietary antioxidant intake, dietary intake must be assessed very meticulously. 

This however is a challenging task due to the fact that available assessment methods, e.g. 

recall, food frequency questionnaire (FFQ), and records are all associated with specific 

challenges (Thompson & Byers, 1994; Willett, 1998). 
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The finding that exercise may increase ROS production, which may result in reduced 

antioxidant capacity and oxidative damage, has led to the general perception that athletes 

have increased antioxidant requirements and in order to meet these increased needs 

should consume antioxidant supplements. This belief is evident from the availability of 

specialized antioxidant supplement formulations for athletes and the high prevalence of 

supplement use among athletes. Recent studies have reported prevalence of supplement 

use among university athletes of above 80% (Froiland et al., 2004; Kristiansen et al., 2005).  

The type of dietary supplement used varies, but antioxidant vitamin containing 

supplements are among the most common types of supplement used (Krumbach et al., 

1999; Schroder et al., 2002; Froiland et al., 2004). However, as is evident from the above 

background information there seems to be no clear evidence at this point in time that 

athletes actually do have an increased antioxidant requirement and a need for 

supplements. On the contrary, there is evidence pointing to the fact that athletes may 

actually adapt to the increased oxidative damage by upregulating antioxidant defence 

systems and therefore do not need antioxidant supplements, especially if dietary intake is 

adequate. In order to clarify whether athletes do indeed have a greater antioxidant 

requirement and need antioxidant supplements, more research is needed that investigates 

the link between exercise training and antioxidant status in the body as well as genotype, 

while dietary antioxidant intake is controlled for as is illustrated in Figure 1.  
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Figure 1: Conceptual framework of the possible interaction between the exercise training, 
antioxidant status, dietary antioxidant intake and genotype.   
ROS = reactive oxygen species. 
 

 

2. Aim and objectives 

 

The aim of this study was to investigate the association between plasma antioxidant status 

(total plasma antioxidant status as well selected plasma indicators of antioxidant status) 

and the MnSOD Ala-9Val (-28C→T) polymorphism in trained male athletes (rugby players) 

and sedentary male students while controlling for dietary intake of the major antioxidants. 

 

In order to achieve these aims the following objectives were formulated:  

 

Objective 1: To develop and assess the reproducibility and validity of a quantified FFQ that 

measures the dietary intake of vitamin C, vitamin E, carotenoids and flavonoids 

 

Enzyme based 
antioxidant status 

Exercise training 

Dietary intake + 
supplements 

Plasma indicators of 
antioxidant status 

Genotype 

Plasma levels of 
antioxidants 

ROS levels 

Antioxidant 
status 



 

 

7 

Objective 2: To determine and compare the total intake, including dietary and supplement 

intake, of the major antioxidants, namely vitamin C, vitamin E , carotenoids and flavonoids 

of subjects  

 

Objective 3: To assess the plasma total antioxidant status and plasma vitamin C and 

carotenoid concentrations in subjects 

 

Objective 4: To screen DNA samples of subjects for the MnSOD Ala-9Val polymorphism 

and determine the association between any specific MnSOD genotype (Ala/Ala = CC, 

Ala/Val = CT, Val/Val = TT), physical training group (rugby players and sedentary 

students), and : 

o total plasma antioxidant status  

o and plasma vitamin C and carotenoid concentration, 

while controlling for dietary antioxidant intake 

. 

 

3. Outline of the thesis 

 

Chapter 2 of this thesis is an overview of the literature regarding oxidative stress and 

antioxidant status and the effects of dietary antioxidant intake, exercise and exercise 

training. The development and validation of a FFQ that measures antioxidant intake is 

presented in the first article in Chapter 3. The second article is an exploratory study 

investigating the association between plasma antioxidant status, MnSOD genotype and 

physical exercise training while controlling for dietary antioxidant intake, and is presented 

in Chapter 4. A general discussion of the two articles and general conclusions and 

recommendations are presented in Chapter 5.  

 

The articles in this thesis are referenced according to The British Journal of Nutrition. 
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LITERATURE REVIEW 

 
The aim of this chapter is to provide a summary of the literature relating to oxidative stress 

and antioxidant status in relation to dietary antioxidant intake, exercise and exercise 

training. This literature review will begin with a brief description of reactive oxygen species 

and oxidative stress and the assessment thereof and will follow with an overview of 

antioxidant defence systems. The potential pro-oxidant activity of antioxidants as well as 

genetics relating to antioxidant defence will be discussed briefly. Thereafter, the influences 

of dietary antioxidant intake and exercise on oxidative stress and antioxidant status will be 

discussed. The literature regarding training-induced adaptation of the antioxidant systems 

will be reviewed in the final section.  

 

1. Reactive molecules in biological systems 

1.1. Overview 

Free radicals are defined as any species that is capable of independent existence and that 

contains one or more unpaired electrons (Halliwell & Gutteridge, 1999). Free radicals are 

conventionally symbolised by a radical dot “•”. When a free radical reacts with a molecule 

that is a non-radical, the molecule becomes a new radical, and this can result in a radical 

chain reaction as further reactions with non-radicals take place (Halliwell, 1998). As most 

biological molecules are non-radicals, the generation of reactive radicals in vivo will usually 

set off a chain of radical reactions. Typically a radical reaction involves three steps: 

initiation (the formation of free radicals), propagation (the formation of subsequent radicals) 

and termination (radicals combine with other radicals or are scavenged resulting in a 

stable form) (Jenkins, 1988). Free radicals can interact with and damage a variety of 

substrates in the human body including lipids, proteins, DNA and carbohydrates, as was 

first suggested by Harman in 1956 (Harman, 1956).  

 

Although most of the biologically important free radicals and reactive species are derived 

from or are associated with molecular oxygen, they are not limited to oxygen species. 

Reactive oxygen species (ROS) is a collective term that includes oxygen radicals and 

certain non-radicals that are oxidising agents and/or easily converted into radicals 

(Halliwell, 1998). Included in this group are superoxide, hydrogen peroxide, hydroxyl, 

hypochlorous acid, ozone and peroxynitrite (Halliwell & Gutteridge, 1999). Other terms 

used to describe this group include the term oxygen-derived species, based on the fact 

that some molecules, for example hydrogen peroxide, are not particularly reactive 
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(Halliwell, 1998). Another term that has been used is ‘oxidants’, but its use is less popular 

due to the fact that hydrogen peroxide and superoxide can act as both oxidising and 

reducing agents in different systems in aqueous solution (Halliwell & Gutteridge, 1999). 

For the focus of this review reactive oxygen species (ROS) will be used, which includes 

the oxygen radicals and other oxygen derived non-radical species.   

 

1.2. Reactive oxygen species 

1.2.1. ROS chemistry  

The production of highly reactive oxygen-containing molecular species in biological 

systems is a normal consequence of a variety of essential biochemical reactions (Spitzer, 

1995). Superoxide (O2
•-) is produced by the addition of a single electron to oxygen 

(Halliwell & Gutteridge, 1999) (see Equation 1). As a result of a spontaneous dismutation 

reaction, which is catalysed by superoxide dismutase, superoxide will form hydrogen 

peroxide (H2O2) (Halliwell & Gutteridge, 1999) (see Equation 2). Although hydrogen 

peroxide is less reactive than other oxygen-derived reactive species, it is a biologically 

important oxidant due to its ability to diffuse considerable distances from its site of 

production and react with reduced metal ions in the Haber-Weiss reaction (referred to as 

the Fenton reaction when it is iron catalyzed (see Equation 3) forming the highly reactive 

and damaging hydroxyl radical (OH•) (Halliwell & Gutteridge, 1999). Thus the incomplete 

reduction of oxygen may result in the formation of superoxide radical, hydrogen peroxide, 

and hydroxyl radical.  

 

O2 + e– ?  O2
•-                  Equation 1 

2O2
•- + 2H+ ?  H2O2 + O2                        Equation 2 

Fe2+ + H2O2 ?   OH• + OH- + Fe3+                     Equation 3       

 

1.2.2. Physiological effects of ROS 

The production of controlled amounts of ROS may be physiologically useful in various 

biological processes, including cell signalling and gene expression (Suzuki et al., 1997; 

Allen & Tresini, 2000; Jackson et al., 2002). However, the production of these highly 

reactive molecules may also be harmful as they are able to attack and damage a wide 

variety of biological molecules including lipids, proteins and DNA. These processes have 

been associated with various pathophysiological conditions such as the process of ageing 

and chronic degenerative diseases (Halliwell & Gutteridge, 1999; Beckman & Ames, 2000).   

There are a variety of complex reactions that can take place when free radicals attack 
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molecules. The species and site of the oxidants produced, the target molecule, the 

availability of transition metals and the action of enzymes are factors that determine the 

fate of radical species and the cellular response (Thomas, 1999; Finkel & Holbrook, 2000).  

 

1.2.2.1. Lipid peroxidation 

When free radicals attack lipids, such as fatty acid side chains in membranes and 

lipoproteins, a self-propagating chain of chemical reactions can be initiated, known as lipid 

peroxidation (Alessio, 2000). ROS that can initiate and propagate lipid peroxidation include 

superoxide radical, hydroxyl radical, perhydroxyl radical and the conjugated peroxyl radical 

(Alessio, 2000). The first step in lipid peroxidation reactions is the formation of a lipid 

radical. This lipid radical can combine with molecular oxygen to form lipid hydroperoxides, 

which decompose to form alkoxyl and peroxyl radicals, that can react further and thus 

propagate oxidative damage (Yu, 1994). Lipid peroxidation may lead to a changed or 

damaged lipid molecular structure (Alessio, 2000). In the case of membranes, lipid 

peroxidation may result in altered membrane fluidity and permeability and ultimately 

impaired membrane function (Tyler, 1975; Chia et al., 1983; Yu et al., 1992). In addition to 

the production of harmful radicals, lipid peroxidation is also a source of products such as 

hydrocarbon gases (e.g. ethane and pentane) and aldehydes (e.g. MDA) that are 

produced from the decomposition of lipid hydroperoxides (Esterbauer et al., 1987). 

Aldehydes can in turn be harmful due to their carcinogenic, mutagenic and protein cross-

linking properties (Basu & Marnett, 1984; Halliwell & Gutteridge, 1999).  

 

1.2.2.2. Protein oxidation 

Proteins are a prime target of free radical attack due to their abundance as cell 

constituents, their complex structure and the numerous oxidizable functional groups of 

amino acids (Tirosh & Reznick, 2000). Protein oxidation can result in modifications to the 

secondary and tertiary protein structure, increased susceptibility to proteolytic degradation 

and can influence essential cell-regulatory processes, causing amongst others receptor 

modification, intracellular ionic homeostasis disturbance and altered signal transduction 

ultimately resulting in impaired biological activity (Davies, 1986; Stadtman, 1990; Sen, 

2001). Free radical attack may also result in the conversion of amino acid residues to 

reactive carbonyl derivatives (Levine et al., 1990). The accumulation of these derivatives 

has been linked to a variety of pathophysiological conditions including ageing, Alzheimer’s 

disease, rheumatoid arthritis, atherosclerosis, muscular dystrophy and diabetes (Tirosh & 

Reznick, 2000).   
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1.2.2.3. DNA oxidation 

DNA damage caused by ROS includes base lesions, single- and double strand breaks, 

base/nucleotide modifications and DNA-protein crosslinks (Birnboim, 1982; Breen & 

Murphy, 1995). If these are not repaired or misrepaired, it may lead to gene and/or 

chromosome mutations, which may then alter gene/protein activity and initiate 

carcinogenesis (Hartmann & Niess, 2000). Oxidised DNA is abundant in human tissues 

and besides its role in cancer development, oxidative DNA damage, especially 

mitochondrial DNA, has been associated with age-related degenerative diseases such as 

Alzheimer disease, Parkinson disease and aging heart failure (Hartmann & Niess, 2000).  

 

1.2.3. Neutralization of ROS 

A variety of processes have evolved in order to eliminate ROS. These include specific 

channelling of ROS into harmless products by enzymatic diversion or neutralisation, 

scavenging ROS through the sacrificial interaction with ROS by replaceable or recyclable 

substrates and quenching of ROS by the absorption of electrons and/or energy (Gutteridge, 

1994; Benzie, 2000; Benzie, 2003). These processes involve the action of antioxidants 

systems, including enzymatic and non-enzymatic antioxidants (Halliwell, 1998). The 

antioxidant systems are discussed in Section 2 of this literature review. 

 

1.3. Oxidative stress 

In order to minimize the risk of damage caused by oxidants, a fine balance must be kept 

between ROS production and antioxidants. This balance is referred to as antioxidant 

status (Papas, 1996), and an imbalance in this system is referred to as oxidative stress. 

Sies (1991) defined oxidative stress as a disturbance in the pro-oxidant-antioxidant 

balance in favour of the former, leading to potential damage. This imbalance can be as a 

result of depletion or weakening of the antioxidant defence system or as a result of an 

excess production of ROS (Halliwell & Gutteridge, 1999). A depressed antioxidant system 

can be a result of depletion of the endogenous antioxidant system, caused by, for example, 

mutations affecting the antioxidant enzymes such as MnSOD, CuZnSOD and glutathione 

peroxidase, and/or depletion of the dietary antioxidants caused by, for example, 

malnutrition (Halliwell & Gutteridge, 1999). A variety of factors can cause excess ROS 

production, including increased oxygen exposure, environmental toxins, and excessive 

activation of “natural” free radical-producing systems, caused by, for example, exercise 

(Halliwell & Gutteridge, 1999).  
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1.4. Assessment of oxidative stress in biological systems 

Oxidative stress is generally characterised by one or more of the following parameters: an 

increase in the formation of ROS; a decrease in the levels of low molecular weight, water 

and/or lipid soluble antioxidants; and an increase in oxidative damage to proteins, lipids 

and DNA (Han et al., 2000). These can be used as indicators in the measurement of 

oxidative stress in an individual. 

 

1.4.1. Direct assessment of oxidative stress: ROS levels 

Currently the only method that can directly detect free radical species is electron 

paramagnetic resonance (EPR or also known as electron spin resonance, ESR), which is 

a spectrophotometric technique that relies on the detection of unpaired electrons (Halliwell 

& Gutteridge, 1999). EPR can be used to quantify free radicals and can also identify the 

free radical species generated. ROS, particularly free radicals, are highly reactive and 

have very short lifetime, thus their detection using EPR in biological samples is very 

difficult (Han et al., 2000). Exogenously added traps and probes have been used to 

overcome this problem (Halliwell & Gutteridge, 1999). These probes or traps react with 

free radicals to form a relatively stable radical with a relatively long lifetime that can readily 

be detected and quantitated by EPR as a measure of ROS (Halliwell & Gutteridge, 1999). 

Many of the traps and probes are toxic and their use in in vivo measurements is therefore 

limited (Halliwell & Gutteridge, 1999). Also, the addition of these molecules to biological 

systems may disrupt the sys tem being measured (Han et al., 2000).  Despite these 

limitations, EPR together with spin traps remains the most useful method of ROS detection 

and measurement in biological systems (Han et al., 2000). 

 

1.4.2. Indirect assessment: Measurement of oxidatively modified biomolecules 

Mild oxidative stress can usually be tolerated by cells and often results in the increase in 

the synthesis of antioxidant defence systems to help protect the cells (Halliwell & 

Gutteridge, 1999).  However, severe oxidative stress may cause lipid peroxidation, protein 

modification and degradation and DNA damage, which can lead to alterations in 

membranes and organelle structure and function causing cell and tissue damage and 

ultimately can even lead to cell death (Reznick et al., 1998). Oxidative damage of lipids, 

proteins and DNA has been shown to result in a wide range of unique break-down 

products in in vitro studies, and these can be used as biomarkers of oxidative stress in in 

vivo studies (Han et al., 2000). An increase in these molecules provides strong evidence of 

oxidative stress in biological systems (Han et al., 2000).  
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1.4.2.1. Lipid peroxidation by-poducts 

Lipid peroxidation by-products that are measured include malondialdehyde (MDA) and 

other aldehydes, thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides 

(LH), and 4-hydroxyalkenals (4-HNE) (Alessio, 2000). Increases in these by-products are 

directly linked to increased lipid peroxidation rates (Alessio, 2000). Many human studies 

make use of the TBARS assay, which is thought to reflect the production of MDA, one of 

the secondary products formed during the oxidation of polyunsaturated fatty acids  

(Gutteridge & Quinlan, 1983; McCall & Frei, 1999; Alessio, 2000). Although its use has 

been criticised due to its lack of specificity, it is still commonly because it is inexpensive 

and easy to perform (Halliwell & Gutteridge, 1999; Han et al., 2000). Other assessments 

have included the measurement of levels of isoprostanes, isoleukotrienes, ethane and 

pentane (Han et al., 2000). Currently, F2-isoprostanes, which are isomers of prostaglandin 

F2 and are produced by peroxidation of arachidonic acid, are being suggested as a reliable 

index of in vivo free radical generation and lipid oxidative damage (Morrow et al., 1990; 

McCall & Frei, 1999). 

 

1.4.2.2. Protein oxidation by-products 

ROS induced protein oxidation results in the formation of carbonyls from amino acid 

residues, which can be used as markers of oxidative damage (Han et al., 2000). Similar to 

the TBARS assay, this assay is also widely used despite its lack of specificity and 

reproducibility (Cao & Cutler, 1995; Han et al., 2000). Other indicators of protein oxidation 

that have been used include protein thiol/disulfide redox status, oxidized amino acids, 

nitration of protein-bound tyrosine residues and protein peroxides/hydroxides (Han et al., 

2000).  

 

1.4.2.3. DNA oxidation by-products 

DNA oxidation has been assessed by measuring DNA strand breaks and more commonly 

products of DNA base oxidation, such as thymidine, glycol and 8-hydroxydeoxyguanosine 

(Han et al., 2000). The measurement of urinary 8-hydroxydeoxyguanosine (8-OHdG) 

represents a potentially useful measure of whole-body DNA base oxidation in humans and 

animals, although controversy does exist with regards to its accuracy as an indicator of 

oxidative stress (Collins et al., 1996; Helbock et al., 1998; Jackson, 1999). Different 

methods that have been used to measure 8-hydroxydeoxyguanosine formed by free 

radicals induced damage have however resulted in a wide discrepancy of values, with 
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artefacts generated during extraction and derivatization being responsible for most of the 

discrepancies in results (Ravanat et al., 1995; Collins et al., 1997).  

 

1.4.3. Indirect assessment: Measurement of antioxidant levels 

The third parameter that can be used to indicate oxidative stress is the decrease in levels 

of antioxidants. Vitamin C, vitamin E and glutathione are commonly used as biomarkers to 

assess oxidative stress as these tend to decrease during oxidative stress (Han et al., 

2000). In addition to assays of individual antioxidant levels, assays that measure the total 

antioxidant status or antioxidant capacity of biological fluids have been developed to 

assess oxidative damage (Han et al., 2000). In these assays, a free radical species is 

generated by a variety of chemical methods and is subsequently monitored. Biological 

samples (tissue or blood) or different compounds are then added and the ability of the 

added compounds to resist oxidative damage or quench the radicals is used to assess its 

antioxidant capacity. Many different assays are available, the common ones include the 

ORAC (oxygen radical absorbance capacity) assay, TAC (total antioxidant capacity) assay, 

the TRAP (total peroxyl radical trapping antioxidant capacity of plasma) assay, the FRAP 

(ferric-reducing ability of plasma) assay and the TEAC (TROLOX –equivalent antioxidant 

capacity) assay. It has however been shown that several of the commonly used assays do 

not correlate well when compared to each other (Cao & Prior, 1998). In addition, assays 

developed to measure total antioxidant capacity are not always as sensitive as assays 

used to measure individual antioxidants (Han et al., 2000). Although the total antioxidant 

assay does not indicate which antioxidants are specifically being measured, its strength 

lies in its ability to provide a quantitative value for the general antioxidant status of 

biological systems without having to measure each individual antioxidant separately (Han 

et al., 2000). It must be noted however, that the use of individual or total antioxidant levels 

as biomarkers offers only an indirect measure of oxidative stress that shows that the 

antioxidant system is working (Halliwell, 1998). Antioxidant depletion does not prove 

oxidative damage but only points to a compromised antioxidant system (Packer, 1997).   

 

1.4.4. Oxidative stress assessment methods: Conclusion 

Due to the complex nature of oxidative stress and the many sources and target molecules 

of ROS as well as the limitations of various assays that were mentioned above, the 

measurement of oxidative stress in biological systems is difficult. As such, no marker or 

group of markers has been established as a standard and there is no single marker that 

can be used to accurately measure oxidative stress in an organism (Prior et al., 2000).  
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There is no best assay to assess oxidative stress and generally a combination of 

parameters that characterise oxidative stress should be used in order to provide an 

accurate picture of oxidative stress (Prior & Cao, 1999; Han et al., 2000).  

 

2. Antioxidant defence systems  

2.1. Overview of antioxidants 

To protect against free radical attack and subsequent oxidative damage, antioxidant 

defence systems have evolved in aerobic organisms (Benzie, 2000). As mentioned in 

Section 1.2.3, these systems include both enzymatic and non-enzymatic antioxidants that 

work as a complex unit to minimize the generation and counter-act the potential oxidative 

damaging effects of ROS (Benzie, 2000). An antioxidant is defined as “any substance that 

when present at low concentrations, compared to those of the oxidisable substrate, 

significantly delays, or inhibits, oxidation of that substrate” (Halliwell & Gutteridge, 1999). 

In general terms an antioxidant is therefore anything which can prevent or inhibit oxidation 

of a susceptible substrate (Benzie, 2003).   

  

Within the cell antioxidants protect against oxidative damage at different levels including  

preventing radical formation, intercepting formed radicals, repairing damage caused by 

radicals, eliminating damaged molecules and preventing mutations occurring by non-

repair-recognition of excessively damaged molecules (Gutteridge, 1994).   

 

The intra- and extra cellular location of the enzymatic and non-enzymatic antioxidant 

defences are illustrated in Figure 1.   
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Figure 1: A schematic representation of the locations of the various major enzymatic and non-enzymatic 
antioxidants.  
Vit C = vitamin C, Vit E = vitamin E, GSH = glutathione, MnSOD = manganese superoxide dismutase, 
CuZnSOD = copper zinc superoxide dismutase, GPX = glutathione peroxidase.  
Adapated from Powers and Lennon (1999); Powers and Sen (2000). 
 

 

2.2. Major enzymatic antioxidants 

Enzymatic antioxidants include superoxide dismutase (SOD), glutathione peroxidase, 

catalase, thioredoxin and glutaredoxin. Table 1 summarises the location, properties and 

antioxidant action of these enzymatic systems in the human body.  
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Table 1: Cellular location, properties and antioxidant mechanism of the major enzymatic antioxidant enzymes   

 

Sources: Halliwell and Gutteridge (1999); Powers and Sen (2000); Young and Woodside (2001) 

 
 

Enzymatic antioxidant Cellular location Properties Target ROS and antioxidant action 

Superoxide dismutase (SOD) Both in cell cytoplasm (copper-

zinc enzyme) and mitochondria 

(manganese enzyme) 

Two isozymes – copper-zinc (CuZn SOD) 

and manganese (MnSOD) 

Highest levels found in liver, spleen, 

kidney and adrenal gland 

Catalyzes dismutation of superoxide 

anion 

Catalase Widely distributed in cell, high 

concentrations in peroxisomes 

and mitochondria 

Heme protein 

Greatest activity in liver and erythrocytes 

Catalyzes decomposition of hydrogen 

peroxide 

Glutathione peroxidase (GPX) Cell cytosol, mitochondria and 

plasma membrane 

Selenium dependent 

Activity dependent on constant availability 

of reduced glutathione 

Highest concentration in liver 

Catalyzes reduction of hydrogen 

peroxide or organic hydroperoxides to 

H2O and alcohol respectively 

Thioredoxin (Trx) Widely distributed in 

mammalian cells, especially in 

endoplasmic reticulum 

Found in both prokaryotes and 

eukaryotes 

Repairs oxidised sulfhydryl proteins. 

Removes hydrogen peroxide and 

radicals. 

Glutaredoxin Widely distributed in 

mammalian cells 

Thiodisulfide oxidoreductase enzyme Involved in the protection and repair 

of protein and non-protein thiols under 

oxidative stress 
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Trace minerals such as selenium, copper, iron, manganese and zinc play an indirect but 

important role in contributing to the effectiveness of specific antioxidant enzymes by acting 

as co-factors in the enzymes mentioned in Table 1 (Powers et al., 2004). Selenium’s role 

as an antioxidant resides in its involvement in the active site of the seleno-enzyme 

glutathione peroxidase (GSH-PX) (Flohe et al., 1973; Rotruck et al., 1973). Glutathione 

peroxidase is one of the major free-radical scavenging enzymes in the antioxidant defence 

systems and a deficiency in selenium results in depleted GSH-PX thus altering antioxidant 

defence (Ji et al., 1988). 

 

Copper and zinc contribute to antioxidant protection as co-factors for the antioxidant 

enzyme CuZn superoxide dismutase (CuZnSOD) and a deficiency would result in 

decreased levels of enzyme activity (Powers et al., 2004). Similarly, manganese plays an 

important role as co-factor in the key antioxidant enzyme manganese superoxide 

dismutase (MnSOD) in the mitochondria (Halliwell & Gutteridge, 1999). Iron is an essential 

co-factor in the antioxidant enzyme catalase (Halliwell & Gutteridge, 1999). Deficiencies in 

the above nutrients could therefore contribute to an impaired antioxidant activity (Powers 

et al., 2004). 

 

2.3. Major non-enzymatic antioxidants 

The major non-enzymatic antioxidants include the dietary antioxidants vitamin E, vitamin C, 

glutathione, carotenoids, flavonoids, a-lipoic acid, and ubiquinones and the non-dietary 

antioxidants uric acid, and bilirubin (Powers & Sen, 2000; Powers et al., 2004). The dietary 

antioxidants are discussed in greater detail in Section 3. Table 2 summarises the location, 

properties and antioxidant action of the major non-enzymatic antioxidants in the human 

body.   
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Table 2: Cellular location, properties, and antioxidant function of the major non-enzymatic antioxidants    

Antioxidant Cellular location Properties Target ROS and antioxidant action 

Vitamin C Located in cytosol 

Concentration in plasma: 

25-80µM 

Exists in 2 forms: ascorbic acid and oxidised 

dehydroascorbic acid form 

At physiological pH exists as ascorbate anion 

Water soluble 

Directly scavenge wide variety of aqueous -phase 

ROS 

Regenerates vitamin E from its oxidised product 

Can exert pro-oxidant effects at high levels in the 

presence of transition metals 

Pro-oxidant activity 

Vitamin E Cell membranes 

Concentration in plasma: 

15-40µM 

Most widely distributed antioxidant in nature. 

Primary chain breaking antioxidant in cell 

membranes. 

Lipid-soluble phenolic compound. 

Occurs in at least eight structural isomers of 

tocopherols and tocotrienols. ?-tocopherol most 

potent antioxidant. 

Converts superoxide, hydroxyl and lipid peroxyl 

radicals to less reactive forms. 

Breaks lipid peroxidation chain reactions by 

reacting with lipid peroxyl and alkoxyl radicals. 

Pro-oxidant activity 

Carotenoids Membranes of tissues 

Concentration in plasma: 

<1µM 

Lipid soluble 

Pro-oxidant activity 

Most important is ß-carotene 

Scavenge several ROS including singlet oxygen, 

superoxide radicals and peroxyl radicals. 

Pro-oxidant activity 

Flavonoids and 

other plant 

phenols 

Throughout cell Major component of phytochemicals. 

Amphipathic antioxidants 

Scavenge radicals in lipid and aqueous 

environments 

Inhibit metal ion-mediated radical formation 

Inhibit formation of lipid peroxyl radical species 

Pro-oxidant activity 
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Table 2 (continued) 

Antioxidant Cellular location Properties Target ROS and antioxidant action 

Ubiquinone Relative high levels in 

heart, liver and kidney. 

Intracellularly, about 50% in 

mitochondria, rest in 

nucleus, endoplasmic 

reticulum and cytosol. 

Concentration in plasma 

0.4-1.0 µmol/l 

Lipid soluble quinone derivatives. 

Reduced form is efficient antioxidant. 

Predominant form in humans is ubiquinone-10 

(coenzyme Q) 

Prevent lipid peroxidation by reacting with oxygen 

radicals and singlet oxygen. 

Function in vitamin E recycling. 

Glutathione  Located in cytosol and 

mitochondria 

 

Tripeptide  

Most abundant non-protein thiol in mammalian cells. 

Highest levels in lens of eye and liver.  

Found in both the reduced (GSH) or oxidised 

(GSSG) state 

Liver is primary site of GSH synthesis 

Interacts with variety of radicals, including 

hydroxyl and carbon radicals. 

Removes hydrogen and organic peroxides. 

Important role in vitamin E and C recycling. 

Pro-oxidant activity 

a-Lipoic acid Located in both lipid and 

aqueous phase of cell 

Endogenous thiol 

Unbound form may be effective as an antioxidant. 

 

Reduced form is potent antioxidant against all 

forms of ROS and can assist in vitamin C 

recycling. 

Uric acid Intracellular and 

extracellular antioxidant 

By-product of purine metabolism in humans and 

higher apes. 

Scavenges hydroxyl radicals. 

Preserves plasma ascorbate. 

Bilirubin Intracellular and 

extracellular antioxidant. 

By-product of heme-metabolism. 

Partially soluble in water. 

Bound to albumin in human plasma. 

Can protect albumin-bound fatty acids from lipid 

peroxidation. 

Sources: Yu (1994); Halliwell (1998); Halliwell and Gutteridge (1999); Powers and Lennon (1999); Powers and Sen (2000)
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2.4. Transition metal binding proteins in antioxidant systems 

As mentioned in Section 2.2, iron and copper are co-factors for antioxidant enzymes. 

However, these transition metals also play a key role in the production of hydroxyl radicals 

via Haber-Weiss reactions in vivo (Stohs & Bagchi, 1995). These reactions only take place 

in the presence of free metal ions. Once absorbed, metals such as copper are rapidly 

transported to enzymes requiring them, and only a small amount is stored in the body 

(Halliwell & Gutteridge, 1999). Thus, in healthy humans, extra cellular fluids have 

essentially no transition metal ions that can catalyse free radical reactions. However, with 

regards to iron, extracellular unbound iron may be increased in some cases, such as in 

iron-overload diseases or where iron intake is very high (as can occur through 

supplementation) and this free iron is then available to catalyse free radical reactions 

(Halliwell & Gutteridge, 1999). Transferrin, ferritin, lactoferrin and caeruloplasmin are 

transition metal binding proteins that sequester free iron and copper in a form that is not 

available to drive the formation of the hydroxyl radical, thereby playing a crucial role in the 

antioxidant defence system (Halliwell & Gutteridge, 1999; Young & Woodside, 2001).  

 

2.5. Antioxidant repair systems 

As the human antioxidant system is not 100% effective against free radical attack, some 

damage of lipids, proteins and DNA occurs, which must be dealt with by repair processes 

(Halliwell, 1998). Such repair processes can therefore be regarded as part of antioxidant 

defence systems (Halliwell, 1998). Proteins that are damaged, including damage due to 

oxidative processes, are recognised and degraded by cellular proteases, especially the 

proteasome (Stadtman, 1992; Berlett & Stadtman, 1997; Halliwell & Gutteridge, 1999). 

This prevents the build up of altered and damaged proteins in the cell (Halliwell & 

Gutteridge, 1999). Oxidised lipids can be repaired or removed by various enzymes 

including phospholipases and glutathione dependent enzyme systems (Pacifici & Davies, 

1991). Phopsholipases cleave lipid peroxides from membranes, thus allowing them to be 

converted to alcohol by glutathione peroxidase (Halliwell & Gutteridge, 1999). Cells are 

equipped with various enzymes that are able to recognise DNA abnormalities. Enzymes 

such as endonucleases and glycosylases are able to remove these abnormalities by 

excision, resynthesis and rejoining of the DNA strands (Halliwell & Gutteridge, 1999). Even 

though cells are equipped with these repair systems, some oxidative damage may still 

occur and this has been linked to the process of ageing and chronic degenerative 

diseases (Halliwell & Gutteridge, 1999; Beckman & Ames, 2000). 
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2.6. Interaction between antioxidant systems 

Antioxidants function as a network to minimise oxidative damage and interactions between 

vitamin C, vitamin E and glutathione, are evident (Powers & Sen, 2000). For example, the 

importance of vitamin C as an antioxidant is not only based on its ability to directly 

scavenge radicals, but also on its ability to recycle vitamin E (Packer et al., 1979). When 

vitamin E reacts with a radical species, a vitamin E radical is formed that can be reduced 

back to its non-radical form by the interaction with vitamin C. In the process, vitamin C is 

oxidised to a relatively stable radical form, semidehydroascorbic acid. 

Semidehydroascorbic acid is reduced back to non-radical vitamin C by NADH 

semiascorbyl reductase or by cellular thiols such as glutathione and dihydrolipoic acid 

(Packer et al., 1979; Sevanian et al., 1985). The reaction of vitamin C and glutathione 

ensures that the antioxidant functions of vitamin C and E are preserved until there is a 

significant oxidation (Jones & deLong, 2000). An interaction between selenium and vitamin 

E has also been observed as selenium can prevent or reduce the severity of several 

symptoms of vitamin E deficiency in animals (Chow, 2000). Selenium forms an integral 

part of the glutathione peroxidase enzymes and it complements the antioxidant function of 

vitamin E via the role of these selenoenzymes in reducing lipid peroxidation (Chow, 2000). 

Other, as yet non-detected, interactions may also be present.  

 

2.7. Effectiveness of antioxidant systems 

The effectiveness and relative importance of antioxidants as protective agents against 

oxidative damage depends on a variety of factors, including the type of reactive species 

that is generated, how it is generated, where it is generated and what target of damage is 

being measured (Halliwell & Gutteridge, 1999). This is illustrated by the following 

examples: In human blood plasma exposed to oxidising conditions that generate peroxyl 

radicals, superoxide anion, hydrogen peroxide, hypochlorite, and chloramines, it was 

found that ascorbate was the most effective antioxidant in preventing lipid peroxidation 

(Frei et al., 1990). In contrast, ascorbate was not effective in decreasing protein oxidation 

in plasma exposed to gas-phase cigarette smoke (Reznick et al., 1992). The transition 

metal binding proteins, transferrin and ceruloplasmin, are found to be the most important 

protective agents in inhibiting iron ion-dependent lipid peroxidation in human blood 

(Gutteridge & Quinlan, 1983). However, lipid peroxidation in cell membranes is most 

effectively inhibited by the chain-breaking antioxidant vitamin E, probably due to its close 

association with the polyunsaturated components of the membrane (Thomas, 1999).   
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2.8. Pro-oxidant activity of antioxidants 

What is often disregarded by the promoters of antioxidant supplements, is that some 

antioxidants including vitamin C, vitamin E, carotenoids, GSH and flavonoids have shown 

pro-oxidant behaviour in vitro (Halliwell & Gutteridge, 1999). The presence of these 

antioxidants may therefore increase oxidative stress in certain circumstances. The above-

mentioned antioxidants are reducing agents (can donate electrons) and are able to reduce 

Fe3+ and Cu2+ to Fe2+ and Cu+ respectively, thus generating transition metal ions that can 

stimulate free radical generation (Halliwell & Gutteridge, 1999). In equations 4 and 5 below, 

vitamin C is used as an example to illustrate the pro-oxidant activity of antioxidants 

(Halliwell & Gutteridge, 1999). Whether these reactions occur in vivo and result in 

oxidative damage is however still unclear; the main point of contention being the actual 

availability of catalytic metal ions (Carr & Frei, 1999).   

 

Fe(III) + ascorbate ?  Fe2+ + ascorbate ·                Equation 4 

Fe2+ + H2O2 ?  Fe (III) OH• + OH-                     Equation 5 

 

2.9. Genetics and antioxidant systems 

Variations in genes encoding antioxidant enzymes may also influence their effectiveness 

in antioxidant systems. Human genetic variation is quite common and is largely in the form 

of single nucleotide polymorphisms (SNP’s), which involve the change of a nucleotide 

(Forsberg et al., 2001).  Antioxidant enzyme genes for which polymorphisms have been 

identified include superoxide dismutase (SOD) (copper.zinc SOD and manganese SOD), 

glutathione peroxidase, catalase, glutathione synthase, glutathione reductase and are 

reviewed in Forsberg et al., (2001).  

 

One polymorphic enzyme that has been researched in relation to breast and prostate 

cancer is MnSOD (Ambrosone et al., 1999; Mitrunen et al., 2001; Woodson et al., 2003).  

The antioxidant enzyme MnSOD is a key enzyme in the antioxidant defence system and 

provides the first line of defence against ROS produced in the mitochondria. MnSOD is 

encoded by a single gene, containing 5 exons, located on chromosome 6q25 (Church et 

al., 1992; Wan et al., 1994). A single nucleotide polymorphism located at position 16 in the 

mitochondrial targeting sequence involving an Alanine (GCT) - Valine (GTT) amino acid 

change has been described (Rosenblum et al., 1996)1. This polymorphism has been 
                                                 
1 Note alternative numbering for the MnSOD polymorphism:  DNA change: C to T change at base 47 

(47C→T); Protein change: Alanine to Valine amino acid change at codon 16 (Ala16Val) 
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suggested to alter the conformation of the leader signal and thereby affect the import of 

MnSOD into the mitochondria (Shimoda-Matsubayashi et al., 1996). Rosenblum et al., 

(1996) suggested that the MnSOD Ala allele is associated with decreased protection 

against superoxide radicals in the mitochondria and thus increased oxidative stress, as the 

transport of the enzyme into the mitochondria, where it is biologically available, seems to 

be affected. Inefficient targeting of MnSOD could leave the mitochondria without their full 

defence against superoxide radicals, which could lead to protein oxidation and 

mitochondrial DNA mutations (Rosenblum et al., 1996). Allele frequencies of about 0.5 

have been reported for the two alleles in the Caucasian population (Ambrosone et al., 

1999; Van Landeghem et al., 1999). The effect of MnSOD genotype on oxidative stress 

susceptibility and the influence of it on antioxidant system adaptation in response to 

exercise training is not clear and requires investigation.  

 

3. Dietary antioxidant intake and antioxidant capacity 

3.1. Introductory perspectives  

Dietary antioxidants have been defined by the Food and Nutrition Board of the National 

Institute of Medicine USA as: ‘a substance in foods that significantly decreases the 

adverse effects of reactive oxygen species, reactive nitrogen species, or both on normal 

physiological function in humans’. Dietary antioxidants can be classified as those that are 

essential to health [vitamins A (carotenoids), C and E] and those that are not essential to 

health but may be beneficial to health (Decker & Clarkson, 2000). These non-essential 

dietary antioxidants consist of a wide variety of compounds, including flavonoids and other 

phenolic compounds, ubiquinone, a-lipoic acid and glutathione, which inhibit oxidative 

reactions by a variety of mechanisms (see Table 2) (Decker & Clarkson, 2000). The 

sources, bioavailability, and dietary reference intakes of vitamin C, vitamin E, carotenoids 

and flavonoids are summarised in Table 3.  
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Table 3: Sources, dietary reference intakes and bioavailability of vitamin C,  

vitamin E, carotenoids and flavonoids.  

Antioxidant Sources DRI (mg/day)* Bioavailability 

Vitamin C Green vegetables, 

citrus fruits, 

tomatoes, berries, 

potatoes 

RDA 

• Males 19-50y: 90 

• Females 19-50y: 75 

UL 

• 2000 

Dose dependent: 

100% at doses < 100mg 

decreasing to <15% at 

doses >10g 

 

Vitamin E Plant oils, green 

leafy vegetables, 

nuts, seeds 

RDA 

• Males and females 

19-50y: 15 

UL 

• 1000 

10-95%, saturable hepatic 

uptake  

Carotenoids Orange/ yellow/ red 

fruit and 

vegetables, green 

leafy vegetables 

NE Unclear, dose and form 

dependent  

(for ß-carotene, 5-50% is 

absorbed) 

 

Flavonoids Berries, apples, 

onions, tea, red 

wine, citrus fruits, 

grapes, cherries 

NE Poorly absorbed, depends 

on form and dose 

* DRI obtained from Food and Nutrition Board (2000) 
DRI = dietary reference intakes; RDA = recommended dietary allowance; NE = DRI not established 
Sources: Decker and Clarkson (2000); Benzie (2003) 
 
 
3.2. Dietary antioxidant intake, plasma antioxidant levels  and plasma antioxidant 

capacity 

As fruit and vegetables represent the main sources of dietary antioxidants (Table 3), 

researchers have focussed on assessing the effect of fruit and vegetable intake on 

antioxidant capacity to reflect the effect of dietary antioxidants on markers of antioxidant 

capacity.  

 

Plasma levels of antioxidants are generally influenced by the dietary antioxidant intake. 

For example, Block et al. (2001) examined the correlation between fruit and vegetable 

intake measured with an abbreviated food frequency questionnaire and several plasma 

antioxidants. Both plasma vitamin C and carotenoids were highly significantly associated 

with frequency of fruit and vegetable consumption. After adjustment for age and energy 

intake, the correlation between fruit and vegetable intake and vitamin C was 0.64; while 
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lipid adjusted total carotenoids was 0.44. In a study by Dragsted et al. (2004), a diet 

devoid in fruit and vegetables resulted in significantly lower plasma ascorbic acid and 

serum ß-carotene levels. Others have also reported significant increases in plasma levels 

of antioxidants in response to high antioxidant diets (Record et al., 2001; Nelson et al., 

2003; Anlasik et al., 2005).   

 

It is important to note that the first level of the assessment of the association between 

antioxidant intake and antioxidant capacity is the correlation between intake and plasma 

levels. However, a positive link between these two parameters does not necessarily reflect 

a positive link between intake and antioxidant capacity, thus the actual functional outcome 

of the presence of the compound in question. Therefore, an assessment of the actual 

antioxidant capacity and the link with dietary antioxidant intake should be included to serve 

as conclusive evidence that increases/decreases of intake and plasma levels can actually 

be used to predict antioxidant capacity.  

 

The effect of dietary antioxidant intake on total antioxidant capacity and markers of 

oxidative damage is not clear (see Section 1.4 for detail on indicators of oxidative damage 

and antioxidant capacity). Studies that support an association between antioxidant intake 

and antioxidant capacity include the following: Lesgards et al. (2002) conducted an 

assessment of lifestyle effects (including fruit and vegetable intake) on overall antioxidant 

capacity (assessed using a test based on free radical induced blood hemolysis) in 184 

healthy subjects. Subjects with an intake of less than one fruit per day and less than two 

vegetables per week showed impaired antioxidant capacity compared to those who ate 

more. Anlasik et al. (2005) reported that subjects with high fruit and vegetable diets (=4 

portions/day) had higher plasma antioxidant levels and lower plasma malondialdehyde 

levels (a biomarker of lipid peroxidation) than subjects with low fruit and vegetable diets (0-

1 portion/day).  Cao et al. (1998) also found that baseline fasting plasma total antioxidant 

capacity (measured using the ORAC assay) was significantly correlated with estimated 

daily intake of total antioxidants from fruit and vegetables. In this study subjects had an 

estimated average intake of five servings of fruit and vegetables per day, and when intake 

was increased to ten servings per day, the plasma antioxidant capacity increased 

significantly.  

 

In contrast, Record et al. (2001) reported that an increase in fruit and vegetable intake did 

not improve plasma antioxidant capacity (assay not specified), even though plasma levels 
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of vitamin C, a- and ß-carotene and lutein+zeaxanthin were increased. In a well-designed 

25-day, randomized partly-blinded intervention trial, Dragsted et al. (2004) investigated the 

effects of fruit and vegetable intake and antioxidant supplementation on markers of 

oxidative stress and antioxidant defence. The markers that were used included plasma 

vitamin C, plasma carotene and plasma tocopherol, markers of lipid and protein oxidation, 

antioxidant enzyme activities and total antioxidant capacity (assessed using the TEAC and 

FRAP assay). In their comparison of a basic diet without fruit and vegetables (placebo 

group), a fruit and vegetable diet (fruveg group) and a basic diet plus an antioxidant 

combination supplement (supplement group), they found that plasma vitamin C and ß-

carotene were significantly decreased in the placebo group. However, total plasma 

antioxidant capacity was not significantly affected by any intervention. Erythrocyte 

antioxidant enzyme activities were not different between treatments, with the exception of 

GPx, which was significantly higher in the fruveg group compared to the placebo and 

supplement groups. Biomarkers of plasma lipid peroxidation did not change significantly, 

whereas plasma protein carbonyl formation (a marker of protein oxidation) was 

significantly increased in the fruveg and supplement groups compared to placebo group, 

which the researchers ascribe to a possible pro-oxidant effect of some antioxidant. 

Therefore, they concluded that within the 25-day study period there was no positive effect 

of fruit and vegetable intake on plasma antioxidant capacity. Similarly, Nelson et al. (2003) 

reported that a five week intervention with a high carotenoid diet or an antioxidant 

combination supplement did not change markers of oxidative damage or total antioxidant 

capacity (assessed using the ORAC assay). Thompson et al. (1999) reported a decrease 

in markers of DNA damage in response to an increase in fruit and vegetable intake. 

However, markers of lipid peroxidation did not change.   

 

As can be seen from the findings of the studies mentioned, the effect of dietary 

antioxidants on antioxidant capacity is not conclusive and more research is needed in 

healthy individuals to determine the effect of antioxidant-rich diets on antioxidant capacity 

and oxidative stress.  A variety of factors may influence the effectiveness of dietary 

antioxidants in improving antioxidant capacity or decreasing markers of oxidative stress, 

including the study population, baseline antioxidant levels, and the intervention period 

studied (Trevisan et al., 2001; Galan et al., 2005).  In addition, the issues of suitability and 

validity of biomarkers of oxidative damage may contribute to discrepancies in results. 

Better in vivo markers of oxidative stress need to be developed and used in order to  
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improve our knowledge of the effect of antioxidants on oxidative stress (McCall & Frei, 

1999). 

  

3.3. Antioxidant supplementation and indicators of oxidative stress and antioxidant 

status 

While the possibility cannot be ruled out that some as yet unidentified compound(s) found 

in fresh products is responsible for the beneficial effect of fruit and vegetable intake, it is 

generally believed that the healthful effects of fruit and vegetables is a result of the 

antioxidant vitamins, other compounds with antioxidant activity or most likely from a 

concerted action of a combination of different antioxidants present in these foods (Cao et 

al., 1998). The latter notion is supported by studies that have shown that the protection 

against chronic degenerative diseases is much stronger and consistent for foods rich in 

antioxidants than for single compounds. For example, epidemiological research conducted 

more than 20 years ago attempted to elucidate the link between fruit and vegetable intake 

and the decreased risk of degenerative diseases.  At that point in time data and statistical 

analysis pointed to the fact that the benefits were linked to ß-carotene (Peto et al., 1981). 

This resulted in large ß-carotene supplementation trials, including the Alpha-

Tocopherol/Beta-Carotene Trial (ATBC) (The ATBC study group, 1994) and the beta 

Carotene and Retinol Efficiency Trial (CARET) (Omenn et al., 1996). The ATBC trial 

tested ß-carotene and/or vitamin E in 29 133 male smokers in Finland and the CARET 

tested the combination of ß-carotene and vitamin A compared to a placebo in 18 314 men 

and women who were at high risk for lung cancer and heart disease in the US. Results 

from these intervention trials however showed an unexpected increase in lung cancer 

incidence and mortality with ß-carotene supplementation resulting in termination of the 

studies.  A possible explanation that was given for these unexpected adverse findings was 

the pro-oxidant activity of ß-carotene resulting in carcinogenic effects (Omenn et al., 1996).      

 

Despite this clear indication that supplementation of single biologically active compounds 

does not necessarily result in the hypothesised health benefits, the belief that antioxidant 

supplementation could result in a range of health benefits via protection against oxidative 

stress is still strong. This is also reflected in ongoing research in this regard. However, 

results from studies investigating the effects of antioxidant supplementation on antioxidant 

capacity and markers of oxidative stress are still equivocal. The use of dietary antioxidant 

supplements generally seems to increase plasma levels of antioxidants (Papas, 1996; 

Block et al., 2001; Record et al., 2001; Jacob et al., 2003; Nelson et al., 2003). With 
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regards to antioxidant capacity, Lesgards et al. (2002), found that subjects who reported 

regular vitamin use had significantly higher blood antioxidant capacity than the non-

consumers. No further detail as to the type of supplements that were used was given, 

other than that they were mainly in the form of vitamins C, E, B and magnesium.  

 

McCall and Frei (1999) conducted a comprehensive review to examine the scientific 

evidence relating to the ability of antioxidant vitamin supplements to reduce in vivo 

oxidative damage based on the measurement of biomarkers of oxidative damage. The 

researchers reported that from the data that was reviewed, it appeared that vitamin E 

supplementation and perhaps vitamin C could reduce oxidative damage to lipids, whereas 

supplementation with ß-carotene appeared to have little effect on lipid peroxidation. They 

therefore concluded that current evidence was insufficient to conclude that antioxidant 

vitamin supplementation actually reduces oxidative damage in humans. 

 

3.4. Assessment of dietary intake of antioxidants  

A challenge in research that is aimed at assessing the link between dietary antioxidant 

intake and antioxidant capacity is the valid and reliable assessment of dietary intake 

(Willett, 1998). Dietary intake measurement is based on food intake and the energy and 

nutrient content of these foods. Therefore, dietary intake assessments are only an 

indicator of, and not a direct measure of the amount of nutrients that are available for 

metabolism (Willett, 1998).  

 

3.4.1. Appropriate methodology 

Various approaches to measure dietary nutrient intake have been developed, including 

food frequency questionnaires (FFQ), diet recalls and diet records. Each method is 

characterised by specific strengths and limitations. The choice of assessment tool 

therefore depends on several factors including amongst others, the aims of the study (e.g. 

nutrients, other food constituents, foods, food groups and dietary patterns), the nutrient(s) 

being assessed, and the subject population (Dwyer, 1999).  

 

Antioxidant nutrient intake demonstrates considerable within- and between-person 

variability over time. Therefore, in order to accurately estimate intake, the dietary intake 

assessment tool should capture usual or habitual intake of the antioxidants in question. In 

addition, antioxidant nutrient intake is contributed to by relatively few food sources (mainly 

fruit and vegetables). For these reasons, a food frequency questionnaire (FFQ) that 
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specifically measures these nutrients is recommended as it is most likely to provide the 

most accurate estimates of usual intake (Willett, 1998). 

 

3.4.2. Development of a FFQ 

The FFQ was developed as an alternative to diet records and food recalls to assess long-

term dietary intake in large population studies (Horwath, 1990; Willett, 1998). Food 

frequency questionnaires can be developed to assess the complete dietary intake of 

individuals or can be designed to only measure intake of selected foods or nutrients. The 

basic FFQ, known as a qualitative FFQ, consists of a food list and a frequency response 

section and subjects are required to report their usual frequency of consumption of each 

food from the food list for a specific time period. Quantitative FFQs contain additional 

questions regarding usual portion sizes for each food item. Information obtained from the 

FFQ can then be used to estimate daily nutrient intake by multiplying the food frequency, 

the portion size and the nutrient content for each food item (Willett, 1998).   

 

Advantages of the FFQ include its ability to assess usual intake, its relatively low 

respondent burden, and its cost- and time-effectiveness (Horwath, 1990; Thompson & 

Byers, 1994). The major limitation of the FFQ is that it is not able to measure many details  

of dietary intake and that the quantification of intake is not as accurate as with dietary 

records (Thompson & Byers, 1994). Incomplete food lists as well as errors in frequency 

and portion size estimation may contribute to inaccuracies (Thompson & Byers, 1994). A 

further source of possible source of error, that is not limited to FFQs, is the nutrient 

database that is used to calculate nutrient intake (Willett, 1998). An underlying assumption 

for these calculations is that the nutrient content of a specific food is relatively constant 

(Willett, 1998). This is not completely correct as foods vary in nutrient content based on 

various factors including, its size, growing and harvesting conditions, processing, cooking, 

storage (Willett, 1998). This may contribute to inaccuracies in nutrient calculations. With 

regards to antioxidants, for some nutrients such as flavonoids, complete food composition 

databases are not available, which restricts dietary antioxidant intake estimations. 

Improvements in dietary assessment methods are essential in order to provide conclusive 

evidence regarding the association between antioxidant intake and antioxidant capacity.  

 

As with any research instrument the reproducibility and validity of a FFQ needs to be 

determined for application in a particular study. 
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3.4.3. Reproducibilty of a FFQ 

Reproducibility refers to how consistent the measurements obtained from the 

questionnaire are when the questionnaire is administered to the same person at different 

times (Willett, 1998). The reproducibilty of a FFQ can be assessed using various statistical 

tests. It must be noted though, that no single test provides a definite answer on either the 

reproducibility or validity of a FFQ (Willett, 1998).  

 

While it is useful to compare means and standard deviations for the two methods to give 

an indication of the average tendency of individuals to over- or underestimate dietary 

intake, it is more important to give information regarding the associations between the 

intakes measured by the respective methods (Kaaks et al., 1994; Willett, 1998). In the past, 

various forms of correlation coefficients, including the Pearson’s, Spearman rank and 

intraclass have been used to describe the associations between intakes estimated from 

the two administrations (Willett, 1998).  

 

However, the appropriateness of the correlation coefficient as a measure of the agreement 

between two methods, or between administrations, has been questioned (Bland & Altman, 

1986). According to Bland and Altman (1986), a high correlation between two 

measurements, or administrations, does not necessarily imply agreement. They motivate 

this statement as follows: 1) The correlation coefficient measures the strength of a relation 

between two variables, not the agreement between them. A correlation is perfect if the 

data points lie along any straight line, whereas for a perfect agreement, the points lie along 

the line of equality; 2) a change in scale of measurement does not affect the correlation 

but affects the agreement;  3) the correlation depends on the range of the true value in the 

sample, with the correlation being greater for a wide range; 4) the test of significance may 

show that the two methods are similar, but two methods that are designed to measure the 

same quantity must be related; and 5) data which seem to be in poor agreement can 

produce quite high correlations. To address these limitations, these researchers have 

developed an alternative statistical technique to assess agreement. This method uses the 

mean and the difference between measurements obtained from either two administrations 

of an instrument or from two instruments that are being compared. The mean and 

standard deviation of the differences is used to obtain limits of agreement (LOA), which 

define the boundaries within which 95% of differences are expected to fall (Bland & Altman, 

1986). Bland-Altman plots can be used to show the relationship between the size of the 

difference and the mean intakes of the two FFQ administrations. If a relationship is present, 
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this is most often manifested as an increasing between-method difference as the size of 

the measurement increases and is referred to as proportional bias (Bland & Altman, 1995). 

This will result in LOA being wider apart than necessary thereby indicating poorer 

agreement (Bland & Altman, 1986). The Spearman rank correlation coefficient between 

the mean intakes and the difference in intakes will be significant if proportional bias is 

present (Bland & Altman, 1995). In these cases, log transformation of the raw data is 

recommended to remove the relationship, and the analysis can then be applied to the log-

transformed data (Bland & Altman, 1986). The LOA will be narrower but because they are 

on a log scale, it is not possible to relate them back to the original measurement scale, 

thus limiting the interpretation of the data. The interpretation of the Bland-Altman and the 

judgement of agreement is based on the following: The width of the LOA, the closeness of 

the mean difference to 0, the scatter of data and the presence of proportional bias (Bakker 

et al., 2003). Generally, differences that are within the LOA (d±2SD) are in agreement, 

provided that these differences are not clinically relevant (Bland & Altman, 1986). However, 

the width of the LOA (i.e. the clinical relevance of the differences) and the scatter around 

the mean difference line must be judged by eye. Therefore, the decision about whether the 

methods are in agreement is a subjective one based on the mentioned criteria and does 

not rely on statistical tests (Bland & Altman, 1999; Bakker et al., 2003).  

 

Other statistical tests that have been used to compare measurements obtained from 

separate administrations include contingency tables (cross-classification) and regression 

coefficients, both of which have their own problems (Bland & Altman, 1995; Willett, 1998). 

With regards to the cross-classification, the agreement between administrations is 

assessed by grouping individuals into quartiles for each of the nutrient intake distributions. 

The percentage of individuals classified into the same and adjacent quartiles of intake on 

each administration gives an indication of the agreement between the administrations 

(Willett, 1998).  

 

To summarize: Reproducibility of a FFQ will be indicated by similar means and standard 

deviations, correlation coefficients that are significant and moderate to strong, Bland-

Altman plots with narrow limits of agreement, mean differences situated around the 0, data 

points that are scattered around the line of the mean difference, and no proportional bias, 

and lastly by the ability to classify a high percentage of individuals correctly into quartiles 

of intake obtained from the two administrations (Bland & Altman, 1986; Willett, 1998). 
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3.4.4. Validity of a FFQ 

Validity refers to how well a dietary assessment method actually measures the aspect of 

diet that it was designed to measure (Willett, 1998). For the assessment of the validity of a 

new dietary assessment method (test method), the outcome should be compared to the 

outcome generated by a method that reflects the true intake of the study population, i.e. a 

golden standard. However, as no golden standard for determining dietary intake is 

available, comparisons in validity studies are made with another dietary assessment 

method that is judged to be superior (reference method) (Willett, 1998). It must, however, 

be borne in mind that neither method (test or reference) will provide an accurate reflection 

of the truth and each is associated with different types of measurement error. It is 

therefore crucial that the errors of both methods are as independent as possible to avoid 

spuriously high estimates of validity (Horwath, 1990). For FFQ validations, dietary records 

represent the best comparison method as the two methods have independent sources of 

error, namely the food record is not restricted by a food list, does not depend on memory 

and has the ability to accurately estimate frequency of intake and portion size (Horwath, 

1990).  

 

For the assessment of agreement between the test and reference methods, the same 

statistical tests described above for reproducibility testing can be applied in validation 

studies to compare the measurements obtained from the test method (e.g. a FFQ) with the 

reference method (e.g. a dietary record). As mentioned previously for reproducibility 

assessment, no single statistical test can provide an answer regarding the validity of the 

FFQ. It is therefore recommended that several statistical tests be used to assess validity. 

The more the various tests point towards satisfactory agreement, the more certain one can 

be that the validity is satisfactory.    

 

Due to the unavailability of a golden standard in the form of a dietary assessment method, 

biochemical indicators (e.g. nitrogen, sodium, vitamins, fatty acids) and/or estimates of 

energy expenditure (e.g. doubly labelled water (DLW), and direct/indirect 

calorimetry/formulae) have been investigated as independent standards for validation 

studies (Willett, 1998).  The major advantage of using these indicators is that the sources 

of measurement error are different from those of questionnaire measurements (Kaaks, 

1997; Willett, 1998). These indicators are however influenced by a variety of factors that 

are unrelated to intake, which result in the weakening of correlations between indicator 
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and questionnaire measurements (Willett, 1998). In addition, suitable indicators are not 

available for all nutrients, thus limiting their use (Willett, 1998).  

 

In most cases where biochemical indicators or energy expenditure estimates have been 

used in dietary assessment validation studies, the information is presented as a correlation 

coefficient between the indicator and the dietary assessment method (Willett, 1998). More 

recently, structural equation modelling (SEM) has been used to assess the validity of 

dietary assessment tools. One of these models that have been developed is referred to as 

‘the method of triads’, which makes triangular comparisons between the test questionnaire, 

reference method (e.g. dietary record) and a biochemical indicator/ energy expenditure 

estimate (Ocke & Kaaks, 1997). This approach can be used to estimate a validity 

coefficient (VC), which is the correlation between observed intake and an individual’s 

unknown true intake, for each of the three methods. The higher the VC for a particular 

method, the more accurately that method estimates true intake. This technique assumes 

that positive linear correlations between estimates obtained from the dietary assessment 

methods and true intake exist and that random measurement errors in the methods are 

mutually independent (Ocke & Kaaks, 1997; Kaaks, 1997).  

 

3.4.5. Dietary assessment of antioxidant intake: Conclusion 

 

As mentioned, there are several challenges that researchers are faced with regarding the 

assessment of dietary intake. These need to be addressed to obtain conclusive evidence 

regarding the influence of dietary antioxidant intake on oxidative stress and antioxidant 

capacity. Such information can then be used to formulate appropriate guidelines and 

recommendations regarding the intake of antioxidants.  

 

Data regarding reproducibility and validity should be analysed using several statistical 

tests as “no single method for relating a surrogate measure to a measure of truth conveys 

all the available information” (Willett, 1998). Rankin and Stokes (1998) also recommend 

the use of more than one statistical test for evaluating agreement as the judgement 

regarding the agreement between two methods is a rather subjective one.   
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4. Exercise and ROS generation 

4.1. Overview 

Regular physical exercise has been associated with a variety of health benefits including 

the reduced risk of obesity, coronary artery disease, myocardial infarction stroke and 

osteoporosis, a reduction in blood pressure, improved glucose tolerance, maintenance of 

ideal body weight and improved lipid profile (Astrand, 1992; Durstine & Haskell, 1994; 

Rippe & Hess, 1998; Powers & Lennon, 1999). However, it has been shown that exercise 

may also result in the increased production of ROS, which may lead to disturbances in 

muscle redox balance, which may in turn contribute to oxidative injury and muscle fatigue 

(Powers et al., 2004). There are several proposed mechanisms of exercise-induced 

increases in ROS production, which are briefly discussed in Section 4.2. 

  

4.2. Exercise-induced production of free radicals and ROS 

There are a number of potential sources of ROS production during exercise, including 

primary sources such as mitochondrial activity, cellular enzyme systems, and prostanoid 

metabolism (Jackson, 2000). A number of other mechanisms have been identified that are 

potentially responsible for increases in ROS production secondary to damage induced by 

other processes (Pattwell & Jackson, 2004). These secondary sources include 

autoxidation of catecholamines, generation of radicals by phagocytic white cells, and 

disruption of iron-containing proteins (Jackson, 2000). The contributions and significance 

of these various mechanisms is however not clear and conclusive evidence for the 

occurrence of some of the proposed mechanisms in an exercise related context is still 

lacking. 

 

 

4.2.1. Mitochondrial production of free radicals and ROS (primary source) 

During ATP production in the mitochondria, 95-98% of molecular oxygen is reduced to 

water via electron reduction catalyzed by cytochrome oxidase (Jackson, 2000). However, 

2-5% of the oxygen consumed may undergo one electron reduction leading to the 

formation of the superoxide radical (Jackson, 2000). This in turn can form other harmful 

ROS such as hydrogen peroxide, which subsequently can leak out of the mitochondria 

and enter the extracellular fluid where they can generate hydroxyl radicals (Jackson, 2000). 

During maximal aerobic exercise whole body oxygen consumption increases and in 

working muscles this may increase by 100-fold compared to resting levels (Keul et al., 

1972). Therefore, there will be an increase in oxygen flow through the mitochondria and 
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with it a potential increase in electron flux through the mitochondrial electron transport 

chain. Theoretically this would then lead to a proportional increase in free radical and ROS 

production (Jackson, 1998; Powers et al., 2004). However, conclusive evidence for this 

theory is still lacking at this point in time and its role in exercise-induced ROS generation is 

therefore not clear (Ji, 1999; Vollaard et al., 2005).  

  

4.2.2. Xanthine oxidase (primary source) 

Another possible mechanism of increased free radical generation during exercise is via the 

xanthine oxidase pathway during ischemia-reperfusion (McCord, 1985; Jackson, 2000). 

During ischemia, ATP is broken down to AMP via the adenylate kinase reaction, and is 

further broken down to hypoxanthine, which is a substrate for xanthine oxidase. Xanthine 

oxidase is converted from its reduced form xanthine dehydrogenase via activation of a 

calcium-dependent protease.  Using molecular oxygen as an electron acceptor, xanthine 

oxidase converts hypoxanthine to xanthine (and eventually uric acid) and the superoxide 

radical (McCord, 1985). Therefore, strenuous exercise performed at or above VO2max, 

that leads to muscular ischemia (especially anaerobic or eccentric exercise), and a failure 

of calcium homeostasis (necessary for activation of the calcium-dependent protease) may 

result in increased ROS production via the xanthine oxidase pathway, provided that the 

substrate hypoxanthine is produced in substantial amounts by the exercising muscle 

(Jackson, 2000). This situation is most likely to occur in very high-intensity, short-duration 

exercise, such as sprinting, which produces the cellular environment that is necessary for 

the activation of this pathway (Ji, 1999; Jackson, 2000).  

 

4.2.3. Phagocytic white cells (secondary source) 

Exercise that results in skeletal muscle fibre damage can elicit a response that resembles 

the acute phase immune response to infection, which involves the activation and 

infiltration of blood-borne neutrophils that are attracted to the area of tissue damage by 

chemotactic factors (Ji, 1999; Cannon & Blumberg, 2000). As part of the phagocytic 

process, neutrophils produce substantial amounts of ROS in the NAD(P)H oxidase 

catalysed oxidative burst reaction (Jackson, 2000; Cannon & Blumberg, 2000). These 

ROS are essential for the regeneration of tissue by removing damaged proteins and 

preventing bacterial and viral infection (Jackson, 2000). The production of ROS  is however 

non-specific and can result in damage to surrounding tissues (Jackson, 2000). The ROS 

produced by this mechanism is therefore not an exercise-induced ROS production, but is a 
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result of exercise-related damage that causes a secondary increase in ROS in skeletal 

muscles.  

 

4.2.4. Iron-containing protein disruption (secondary source) 

A possible further mechanism for the secondary production of ROS after cellular damage 

is the disruption of iron-containing proteins. Certain types of exercise (especially eccentric 

contractions) may cause cellular damage, including erythrocyte destruction and skeletal 

muscle fibre damage, which may result in the release of amongst other things iron or iron-

containing proteins into the circulation (Jackson, 2000). This free iron is then available for 

free radical production reactions via Fenton chemistry (Haber-Weiss reaction) resulting in 

further ROS generation. 

 

4.2.5. Other potential primary and secondary sources 

Other potential sources of increased free radical production in response to exercise that 

have been proposed include the following: metal ion-catalyzed oxidation of 

catecholamines, such as epinephrine, to free radical products (Singal et al., 1982); and the 

metabolism of the arachidonic acid precursor, prostaglandin, which forms free radical 

intermediates (Jackson, 2000). Evidence for the actual presence of these mechanisms is 

however lacking and their role in the generation of free radicals during exercise is thus not 

clear (Jackson, 2000). 

 

5. Effect of exercise on ROS production and oxidative stress  

5.1. Overview 

While the sources and mechanisms of increased free radical production during exercise 

remain unclear, the occurrence of exercise-induced oxidative stress is generally accepted. 

As mentioned in Section 1.4.1, EPR (electron paramagnetic resonance) is the only method 

that can directly measure free radical production, but due to the difficulties involved it has 

not been used to a great extent in exercise studies. The majority of studies investigating 

the effect of exercise on free radical production and oxidative stress have made use of 

biomarkers of oxidative damage as an indirect assessment of oxidative stress.  

 

5.2. Exercise and free radical production  

Davies et al. (1982) were the first group to demonstrate that free radical generation was 

increased in skeletal muscle of rats exercising to exhaustion. Using ESR (electron spin 

resonance), they reported two- to three-fold increases in free radicals in muscle and liver 
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tissue following exercise. This technique has also been used by Jackson et al. (1985) to 

show an increase in free radicals in mammalian skeletal muscle following exercise, 

although they interpreted the increase as a result of a secondary consequence of 

alternative damaging processes. More recently, Ashton et al. (1998) used ESR together 

with spin trapping to measure free radical species in blood in response to exercise in 

humans. In their study, using 19 healthy untrained males, exhaustive incremental cycling 

resulted in an approximately threefold increase in free radical production.  

 

5.3. Effect of exercise on markers of oxidative stress 

5.3.1. Oxidatively modified biomolecules 

Dillard et al. (1978) were the first to report an exercise-induced increase in lipid 

peroxidation products in humans. Since then a large number of studies have investigated 

the effect of various types of exercise on a range of lipid peroxidation by-products. Results 

from these studies are however conflicting. A commonly measured bio-marker of oxidative 

damage to lipids is MDA, which is normally assessed using the TBARS assay. Several 

studies have reported increases in MDA after sprint exercise (Marzatico et al., 1997), after 

a 30 min treadmill test at 60% and 90% VO2max (Kanter et al., 1993) and after 

submaximal resistance exercise (Ramel et al., 2004). Other by-products of lipid 

peroxidation that have been shown to increase with exercise include F2-isoprostanes 

(Child et al., 1999; Mastaloudis et al., 2001) and conjugated dienes (Marzatico et al., 

1997). Another marker of lipid peroxidation, namely lipid hydroperoxides, was found to 

increase after exercise (Alessio et al., 2000). In the latter study lipid hydroperoxides were 

increased whereas MDA showed no change. In contrast, Ashton et al. (1998) reported an 

increase in both lipid hydroperoxides and MDA following exhaustive incremental cycling 

exercise. Other studies have however reported no change or even decreases in lipid 

peroxidation by-products as a result of exercise   (Duthie et al., 1990; Maxwell et al., 1993; 

Rokitzki et al., 1994b; Marzatico et al., 1997; Quindry et al., 2003).   

 

Even though the TBARS assay is widely used, its use in human studies has been 

criticised due to its non-specificity (Han et al., 2000). This may account for some of the 

discrepancies in the results of exercise induced oxidative stress studies. Therefore, at this 

stage the evidence for the effect of exercise on lipid peroxidation is inconclusive, but it can 

be said that some forms of exercise may result in increased lipid peroxidation. 
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Protein oxidation by-products have also been used to assess exercise induced oxidative 

stress. Protein carbonyls have been reported to increase after exhaustive aerobic exercise 

(Alessio et al., 2000) and after eccentric exercise in humans (Lee et al., 2002). However, 

the use of protein carbonyls as marker is controversial, and the methods have been 

criticised as being non-specific and having a lack of reproducibility (Han et al., 2000). On 

the other hand, oxidised amino acids appear to be one of the best methods to assess 

oxidative stress in biological systems as they are specific markers of oxidative damage 

(Han et al., 2000). However, due to technical difficulties not many studies have measured 

oxidised amino acids in response to exercise. Orhan et al. (2004) used this method and 

reported increases in urinary excretion of o,ó -dityrosine (a tyrosine oxidation product) 

following 60 minutes of exercise at 70% VO2max on a cycle ergometer. Similarly, Radak 

et al. (2003) reported increases in urinary and serum nitrotyrosine as well as protein 

carbonyls during a four day super marathon. These findings suggest that protein oxidation 

may increase in response to exercise. 

 

Results from studies investigating exercise and DNA oxidative damage are conflicting. 

Several studies have reported significant increases in DNA strand breaks of leukocyte 

DNA after exercise of various intensities (Sen et al., 1994; Hartmann et al., 1995; Niess et 

al., 1996). Measuring oxidised nucleosides or DNA bases excreted in urine is a widely 

used indicator for oxidative DNA damage, but results from exercise studies report 

conflicting results. Elevated levels of 8-OHdG were reported after a marathon run (Alessio, 

1993) as well as after a training camp (Okamura et al., 1997) and after 60 minutes of cycle 

exercise (Orhan et al., 2004). In contrast others have found no  significant increase in 

markers of DNA oxidation after exercise (Viguie et al., 1993; Hartmann et al., 1998).    

 

Due to the inaccuracy, lack of specificity, or reliability of some of the assays used to 

measure oxidatively modified biomolecules, it is generally agreed that results from such 

studies have to be interpreted with caution. Nevertheless, evidence does point to the 

possibility that some types of exercise may increase free radical production and may result 

in oxidative damage as indicated by increases in by-products of oxidative processes.   

 

5.3.2. The effect of exercise on antioxidant enzymes 

Changes in antioxidant enzymes have also been used to investigate exercise-induced 

oxidative stress. The antioxidant enzymes that are most commonly measured include 
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SOD (total SOD, MnSOD and CuZnSOD), catalase, glutathione peroxidase (GPx), with 

the majority of studies investigating enzyme activity changes.  

 

Marzatico et al. (1997) measured SOD, glutathione peroxidase and catalase activity in 

erythrocytes of highly trained marathon runners after a half marathon and highly trained 

sprint athletes after a sprint training session. SOD and GPx activity was significantly 

elevated immediately after exercise in the sprinters, whereas catalase activity was 

unchanged. SOD and GPx activity returned to baseline values six hours after the sprint 

exercise. In the marathon runners, only SOD was significantly elevated after the 

endurance exercise, and returned to baseline values six hours after the marathon. GPx 

activity remained unchanged and catalase activity was elevated only at 24 and 48 hours 

after the marathon. In contrast, Tauler et al. (1999) reported an increase in erythrocyte 

catalase activity while SOD activity did not change after a duathlon in endurance athletes. 

Catalase activity returned to baseline values within an hour after exercise. The authors 

ascribe the difference in catalase activity to haemolysis that occurred during the exercise, 

which may change the response pattern of antioxidant enzymes in erythrocytes. Duthie et 

al. (1990) and Rokitzki et al. (1994b) reported no change in erythrocyte catalase and GPx 

after a marathon in trained athletes, while Minami et al. (1981) reported that light exercise 

increased plasma SOD activity. The variable results of these studies indicate that the 

effect of acute exercise on antioxidant enzyme activity in humans is not clear.   

 

5.3.3. The effect of exercise on non-enzymatic antioxidant compounds and total 

antioxidant capacity 

Levels of non-enzymatic antioxidants have also been used to investigate the effect of 

exercise on antioxidant capacity. The most commonly measured antioxidants in exercise 

studies include vitamin E, vitamin C, and glutathione.  

 

Glutathione is found in both the reduced form (GSH) and the oxidised form (GSSG) and 

the ratio of GSH-GSSG decreases under oxidative conditions (Urso & Clarkson, 2003). 

Increased levels of GSSG following exercise have been reported by several researchers 

including (Viguie et al., 1993; Tessier et al., 1995; Dufaux et al., 1997). However, some 

studies have reported no changes in blood GSH and/or GSSG levels in response to 

exercise (Camus et al., 1994; Lee et al., 2002).  
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Reported changes in circulating vitamin C following exercise are not consistent. Gleeson 

et al. (1987) reported increased plasma and lymphocyte vitamin C immediately after a 

21km run, with decreased levels below baseline at 24h post exercise. Mastaloudis et al. 

(2001) reported a similar pattern with plasma vitamin C increasing immediately after a 

50km ultramarathon and a decrease to below pre-race levels 24h after the race. Transient 

increases in plasma vitamin C were reported by Duthie et al. (1990) with plasma vitamin C 

increasing five minutes after a half marathon, and returning to normal 24 hours later.  

Others have also reported elevated plasma vitamin C after various forms of acute exercise 

(Viguie et al., 1993; Rokitzki et al., 1994b; Aguilo et al., 2003; Groussard et al., 2003). 

Although it is unclear what causes the exercise-induced increases in plasma vitamin C, 

possible explanations that have been put forward include an efflux of vitamin C from the 

adrenal gland in response to cortisol and/or the release of vitamin C from other tissue sites 

such as erythrocytes or leukocytes (Peake, 2003). In contrast to the studies reporting 

increased vitamin C levels following exercise, Camus et al. (1994) reported that plasma 

vitamin C was decreased immediately after downhill running with levels returning to 

baseline 20 min later, while uphill walking did not affect plasma vitamin C. Similarly, 

Quindry et al. (2003) reported decreased plasma vitamin C levels immediately after 

maximal exercise with a return to baseline levels at one hour and two hours post exercise, 

whereas submaximal exercise had no effect. Plasma vitamin C levels did not change after 

submaximal resistance exercise (Ramel et al., 2004), immediately after or four days after a 

marathon run (Liu et al., 1999), or after downhill treadmill running (Meydani et al., 1993).  

 

Similar to the results of the effect of exercise on vitamin C, vitamin E response to exercise 

is also inconsistent. While some reported increases in plasma vitamin E in response to 

exercise (Camus et al., 1990; Aguilo et al., 2003), others have reported no changes in 

plasma vitamin E following exercise (Duthie et al., 1990; Meydani et al., 1993; Viguie et al., 

1993; Liu et al., 1999). Groussard et al. (2003) even reported a decrease in plasma 

vitamin E immediately after an acute exercise test, but values returned to basal levels 20 

minutes after exercise. Packer et al. (1989) proposed an interorgan transport of vitamin E 

as a possible reason for exercise-induced changes in vitamin E levels. This may involve 

vitamin E being exported from the liver and adipose tissue and imported by the muscles 

and heart. Studies that have shown increases in plasma vitamin E levels following 

exercise lend support to this theory.  However, in view of the discrepant results, the effect 

of exercise on vitamin E levels remains unclear.  In a recent study, Mastaloudis et al. 

(2001) compared the rate of vitamin E disappearance using a deuterium labelled vitamin E 
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supplement during a 50 km ultramarathon with a sedentary trial. They found an increased 

rate of vitamin E turnover during endurance exercise compared to the sedentary period 

providing evidence that exercise results in an increase in vitamin E disappearance. As lipid 

peroxidation was also increased in response to exercise, the researchers suggested that 

the increase in oxidative stress resulted in an increase in vitamin E oxidation.   

 

Other antioxidants that have been measured in response to exercise include ß-carotene 

and uric acid. ß-carotene concentrations have been reported to decrease after exercise by 

some researchers (Aguilo et al., 2003; Groussard et al., 2003). In contrast, Ramel et al. 

(2004) and Liu et al. (1999) reported no change in plasma ß-carotene levels after 

submaximal resistance exercise and a marathon run respectively. Exercise appears to 

transiently increase plasma uric acid (Duthie et al., 1990; Liu et al., 1999; Mastaloudis et 

al., 2001; Groussard et al., 2003). Quindry et al. (2003) reported that plasma uric acid 

decreased immediately after maximal exercise with an increase to above pre exercise 

values at one and two hours after exercise, whereas submaximal exercise did not change 

plasma uric acid. The increase in plasma uric acid may be due to enhanced purine 

oxidation in the muscle (Hellsten et al., 1997).    

 

Changes in total antioxidant capacity have also been used to assess oxidative stress in 

biological fluids following exercise. Various assays that measure total antioxidant capacity 

have been used in exercise studies including the oxygen radical absorbance capacity 

(ORAC) assay, the total antioxidant capacity (TAC) assay and the total peroxyl radical 

trapping antioxidant capacity of plasma (TRAP) assay. Alessio et al. (2000) reported that 

aerobic exercise and to a lesser extent isometric exercise, resulted in improved antioxidant 

capacity, as measured by the ORAC assay, immediately after the exercise, with values 

remaining elevated (not significantly) an hour after the exercise in untrained subjects. In 

contrast, Alessio et al. (1997) reported unchanged ORAC levels after 30 min of 

submaximal exercise. In another study, Child et al. (1999) investigated TAC in response to  

eccentric exercise. While serum TAC did not change in response to exercise, muscle TAC 

was elevated on day four and seven after eccentric exercise in untrained but active 

subjects. Serum TAC was, however, elevated after a simulated half marathon in trained 

subjects (Child et al., 1998). Ashton et al. (1998) reported that serum TAC did not change 

significantly following exhaustive aerobic exercise despite increases in free radicals 

(measured by ESR) and plasma lipid peroxidation markers. Using the TRAP assay, Liu et 

al. (1999) reported higher values both immediately and four days after a marathon 
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compared to baseline values in trained subjects, indicating an improved antioxidant 

capacity.  

 

These results thus indicate that acute exercise may result in changes in antioxidant levels 

and may result in changes in antioxidant status. However, the direction of change 

(increases or decreases in response to exercise) is not consistent as can be seen from the 

variable results reported in the above-mentioned studies. 

 

5.4. Antioxidant supplementation and exercise induced oxidative stress 

The finding that exercise may increase oxidative stress, has led to a number of studies 

investigating the effects of antioxidant supplementation on oxidative stress markers. In 

theory, antioxidant supplementation should protect against the negative consequences of 

exercise-induced generation of ROS (Viitala & Newhouse, 2004). However, human studies 

investigating the effects of antioxidant supplementation on exercise-induced markers of 

oxidative stress are not conclusive.  

 

The most common antioxidant supplements tested include vitamin E, vitamin C and 

antioxidant combination supplements. In a critical review of studies investigating the effect 

of vitamin E supplementation on exercise-induced markers of lipid peroxidation in humans, 

Viitala and Newhouse (2004) concluded that vitamin E supplementation alone does not 

appear to decrease markers of lipid peroxidation following exercise. In addition, McAnulty 

et al. (2005) reported a pro-oxidant effect of prolonged large dose vitamin E 

supplementation in highly trained athletes during exhaustive exercise. Results of vitamin C 

supplementation and exercise-induced oxidative stress in humans are inconsistent, with 

some reporting a positive effect (Ashton et al., 1999; Close et al., 2006) and others 

reporting no effect on markers of oxidative damage after exercise (Maxwell et al., 1993; 

Alessio et al., 1997).  

 

Due to the synergistic nature of antioxidant functioning, several studies have investigated 

the effect of antioxidant combination supplements on oxidative stress markers following 

exercise. Antioxidant combination supplements that have been investigated typically 

contain two or more of the following antioxidants: vitamin C, vitamin E, ß-carotene, 

selenium and glutathione. While some studies report increased tissue antioxidant levels 

after supplementation and an attenuation of the oxidative stress response to exercise 

(Kanter et al., 1993; Goldfarb et al., 2005; Bloomer et al., 2006; Tauler et al., 2006), others 
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reported that antioxidant supplementation did not change markers of oxidative stress 

(Rokitzki et al., 1994b; Bryant et al., 2003).  Differences in antioxidant combinations, 

duration of supplementation and dosages amongst other factors make comparison 

between studies difficult and as such no clear conclusion can be drawn as to the effect of 

combination supplements on exercise-induced oxidative stress. 

 

5.5. Exercise-induced oxidative stress: Conclusion 

Due to the lack of consistent results, no definitive conclusion can be drawn at this stage as 

to the effect of exercise on oxidative stress and antioxidant capacity.  However, it does 

seem that some, but not all exercise may cause an increase in the generation of ROS and 

may result in oxidative stress as indicated by an increase in biomarkers of oxidative 

damage. Thus, more well-designed studies are needed in order to determine the effect of 

exercise on oxidative stress and the possible role of antioxidant supplementation in 

preventing exercise-induced oxidative stress. 

 

Various factors could contribute to some of the discrepancies found in the results of 

studies investigating exercise-induced oxidative stress. These include the following: A lack 

of reliable and valid biomarkers and methodological difficulties of assays may account for 

some differences in results (Jenkins, 2000). Furthermore exercise may result in plasma 

volume changes, which may consequently modify plasma molecule concentrations 

measured, including antioxidant concentrations (Meydani et al., 1993). The lack of 

controlling for plasma volume changes may have been the reason for significant changes 

reported in some studies (Camus et al., 1990; Ashton et al., 1998). The timing  of the 

biomarker measured (i.e. the sampling of the biomarker in relation to the exercise test) is 

also critical and inconsistent measuring times may account for some discrepancies 

(Marzatico et al., 1997; Viitala & Newhouse, 2004). The type, duration and intensity of 

exercise used may play a role in the exercise-induced production of ROS and 

consequential oxidative stress (Marzatico et al., 1997; Jackson, 2000; Aguilo et al., 2003; 

Quindry et al., 2003). In addition, factors relating to the subjects used, including age, 

nutritional status, gender, genotype and training status could potentially influence the 

findings of different studies (Sen, 2001; Ginsburg et al., 2001; Aguilo et al., 2003; Vollaard 

et al., 2005). The influence of some of these factors has not been thoroughly investigated 

and their contribution to the discrepancies in results is still unclear. Furthermore, Balog et 

al. (2006) report seasonal variations in lipid peroxidation markers (TBARS) and antioxidant 

enzyme activities in both trained and untrained men and women.  
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Based on the inconsistent findings of antioxidant supplementation studies and exercise-

induced oxidative stress, there is to date not enough conclusive evidence to recommend 

antioxidant supplements to athletes or persons who exercise regularly (Sharpe, 1999; 

Clarkson & Thompson, 2000; ADA, 2000; Powers et al., 2004; Williams et al., 2006).  

 

 
6. Training and antioxidant system adaptation 

Cellular levels of oxygen use are correlated with the rates of free radical production and 

tissues with the highest rates of resting oxygen consumption show the greatest antioxidant 

enzyme activity (Powers & Lennon, 1999). Similarly, highly oxidative muscles show 

greater antioxidant capacity than muscles with lower oxidative capacity (Powers & Lennon, 

1999). Thus, antioxidant defence capacity seems to match the rate of radical production.  

Furthermore, it has been shown that antioxidant defence systems are capable of adapting 

to chronic exposure to oxidants (Oberley et al., 1987).Therefore, since exercise may 

increase the production of ROS, repeated exercise exposure during chronic training can 

be expected to upregulate the antioxidant systems in order to protect against potential 

oxidative damage (Ji, 1998).   

 

Findings from animal studies provide convincing evidence that endurance exercise training 

results in increased SOD and GPX activity in skeletal muscle (for comprehensive 

summary in this regard see Ji (1998); Powers and Lennon (1999); Powers and Sen (2000) 

and Suzuki et al. (2000). High intensity exercise training is generally superior to low-

intensity training in the upregulation of both SOD and GPX activity in skeletal muscle 

(Powers et al., 1994). In addition, exercise-induced upregulation of these enzymes may be 

fibre type specific with highly oxidative muscles being most responsive (Powers et al., 

1994). Differences in training protocols and muscle fibre recruitment may explain why 

some have reported that endurance training does not promote an increase in SOD and 

GPX activity in skeletal muscles (Powers & Sen, 2000). In contrast to SOD and GPX 

adaptability, there is little evidence to suggest that exercise training results in increased 

CAT activity in skeletal muscle. While some have shown catalase activity to increase in 

response to training, most studies report either no change in catalase activity or even a 

decrease in activity (summarised in Ji (1998); Powers and Lennon (1999) and Powers and 

Sen (2000).   
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Results from human training intervention studies are not consistent. Elosua et al. (2003) 

found that sixteen weeks of aerobic training significantly increased blood GPx and plasma 

glutathione reductase activity, while erythrocyte SOD did not change significantly.  

Markers of lipid peroxidation were also improved after training. In addition, the researchers 

investigated the effect of training on the markers of lipid peroxidation during an acute bout 

of exercise, and reported that the response pattern to exercise did not change significantly 

with training. Similarly, Miyazaki et al. (2001) reported that twelve weeks of endurance 

training resulted in an improvement in erythrocyte GPx activities as well as SOD activities, 

whereas CAT activity did not change after training. In their study, however, training 

attenuated the effect of acute exercise on lipid peroxidation and neutrophil superoxide 

anion production. Protein oxidation was not affected by either training or acute exercise in 

their study. Tiidus et al. (1996) examined the effects of eight weeks of aerobic exercise 

training on skeletal muscle antioxidant activity in seven males and six females. Training 

did not affect skeletal muscle SOD, Cat and GPx activity. Muscle vitamin E, GSH, GSSG, 

ratio GSH/GSSG, and total glutathione were also similar before and after exercise training. 

The results therefore suggest that the exercise training intensity, duration, and frequency 

were not sufficient oxidative stressors to induce muscle antioxidant status adaptation. 

Similarly, Tonkonogi et al. (2000) found that a 6 week endurance training period did not 

improve skeletal muscle SOD or GPX activity and muscle glutathione status.   

 

Bergholm et al. (1999) measured circulating antioxidants in nine semi-fit males before and 

after three months of running training. Plasma levels of uric acid, vitamin E, ß-carotene, 

retinol and serum sulfhydryl groups were significantly lower after the training period, 

whereas plasma vitamin C was significantly higher and total antioxidant capacity 

(measured by the TRAP assay) did not change. Although subjects were on a weight-

maintaining diet during the training period and did not report antioxidant supplement use, 

no information regarding dietary antioxidant intake was provided. Therefore the possibility 

that dietary antioxidant intake could have influenced the results cannot be excluded.   

 

Whether regular exercise training has a protective effect on oxidative stress in response to 

an acute bout of exercise is also not clear. Niess et al. (1996) showed that exercise-

induced DNA damage was reduced in trained subjects compared to untrained subjects. In 

addition trained subjects also had lower plasma MDA levels at rest and 15minutes after 

exercise compared to the untrained group. In contrast, Ortenblad et al. (1997) did not find 

any significant differences in plasma or muscle MDA levels after exercise between trained 
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and untrained subjects. However, resting muscle total SOD, GPX, and MnSOD activity 

was higher in trained subjects than untrained. Blood antioxidant enzymes were similar in 

both groups. The two studies involved different exercise tests and differently trained 

subjects, which may contribute to the discrepancy in the results.   

 

Other researchers have conducted cross-sectional studies that compare antioxidant 

capacity and/or levels of biomarkers of oxidative stress between trained and sedentary 

individuals to investigate whether antioxidant systems are upregulated with training (see 

Table 4). From the table it is evident that this type of research has not provided conclusive 

evidence regarding the effect of training on oxidative stress markers. Some have found 

that trained individuals have improved antioxidant capacity as shown by decreased 

markers of oxidative damage and/or improved antioxidant levels when compared to 

sedentary individuals. In contrast, others studies have reported similar or no differences in 

oxidative stress markers or antioxidant levels between trained individuals and sedentary 

controls. 

 

A variety of factors may play a role in the adaptation of the antioxidant system in response 

to training including the type, duration and intensity of exercise training (Powers et al., 

1994; Tiidus et al., 1996). Dietary antioxidant intake, which is often poorly controlled for, 

influences plasma antioxidant levels and may therefore also influence antioxidant capacity 

and oxidative stress. Therefore, the differences reported between studies investigating 

antioxidant adaptation in response to training, may be in part due to differences in dietary 

antioxidant intake and also due to mobilisation of plasma antioxidants.   
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Table 4: Summary of cross-sectional studies comparing markers of oxidative stress between athletes and sedentary controls. 

Reference Subjects Dietary intake control and results  Markers of oxidative damage  Antioxidant levels  

Robertson et 
al., 1991 

6 high-training runners, 6 
low-training runners and 6 
sedentary, all males  

7-day weighed food record, no 
results of intake given, vitamin 
supplement users excluded 

TBARS, plasma conjugated 
dienes,  

Plasma vitamin C, vitamin E, 
albumin, caeruloplasmin, similar, 
erythrocyte vitamin E, selenium, 
glutathione, higher in runners, 
leokocyte vitamin C higher in high-
training runners than low-training, 
plasma uric acid lower in high-
training runners than sedentary 
controls. SOD activity similar, 
erythrocyte GSHPx activity, CAT 
activity higher in runners 
 

Rokitzki et al., 
1994a 

44 male athletes, various 
sports, 16 sedentary 
controls 

7-day weighed food record, no 
significant difference in vitamin C 
intake, no supplements used during 
study period 
 

 Plasma and urinary vi tamin C similar 

Balakrishnan & 
Anuradha, 1998  

26 male sport science 
students, 27 sedentary 
students  

Determined food intake but no 
results reported (similar food 
habits), supplement users excluded 

Trained group higher plasma 
TBARS, higher conjugated 
dienes 
 

Similar blood vitamin E, lower blood 
vitamin C and GSH and 
ceruloplasmin in athletes 

Brites et al., 
1999 

30 soccer players, 12 
sedentary males 

Dietary food intake with FFQ, 
similar foods, supplement users 
excluded 

 Plasma total antioxidant capacity, 
plasma vitamin C, uric acid, vitamin 
E higher in athletes, bilirubin similar. 
Plasma SOD higher in athletes 
 

Evelson et al., 
2002 

15 rugby players, 15 
sedentary controls 

Dietary food intakes similar using 
FFQ, supplement users excluded 

TBARS similar 
 

TRAP, plasma vitamin C, vitamin E 
higher in sportsmen plasma uric 
acid, bilirubin, similar. SOD activity 
higher in sportsmen 
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Table 4 (continued) 

Reference Subjects Dietary intake control and results  Oxidative stress markers Antioxidant status 

Ohno et al., 
1992 

19 long-distance cross 
country skiers, 12 
sedentary males 
 

No dietary control   Plasma MnSOD levels higher in 
athletes, similar CuZnSOD levels 

Cazzola et al., 
2003 

20 soccer players, 20 
sedentary controls, male 

3-day weighed food record, higher 
vitamin C intake by soccer players, 
supplement users excluded 

Lipoperoxides lower in athletes 
 

Plasma albumin, bilirubin similar, 
plasma uric acid, vitamin C, vitamin 
E, higher in athletes. Plasma GPX 
activity similar, plasma SOD activity 
higher in athletes 
 

Rousseau et al., 
2004 

115 athletes, 16 sedentary 
controls, male and female 

Antioxidant containing therapeutic 
agents excluded, 7-day food 
record, similar intakes 
 

Plasma TBARS similar (Plasma antioxidants not compared 
between sedentary and active, only 
between male and female) 

Watson et al., 
2005 

20 track and field athletes, 
20 sedentary controls, 
male and female 

4 day weighed food records 
(vitamin E intake not measured), 
dietary intake similar, supplement 
users excluded 

F2-isoprostanes similar Uric acid similar in both groups, 
plasma vitamin E and ß-carotene 
higher in athletes, total antioxidant 
capacity lower in male athletes than 
male controls. SOD and GPx similar 
in both groups 
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7. Conclusion 

Reactive oxygen species are produced as part of normal metabolism and their generation 

may be increased under certain circumstances such as exercise. While the human body 

has developed an integrated antioxidant system to remove these potentially damaging 

molecules, studies have shown that exercise-induced oxidative damage may occur. This 

has been indicated by increases in markers of oxidative protein, lipid and DNA damage 

and decreases in levels of antioxidants and/or decreased antioxidant capacity. On the 

other hand, exercise training has been shown to upregulate antioxidant defences, 

suggesting that the antioxidant system is able to adapt to exercise-induced ROS 

production and so reduce the risk of oxidative stress. The effect of dietary antioxidant 

intake on antioxidant capacity and oxidative stress is not clear and the role thereof in the 

training-induced adaptation of the antioxidant system requires further investigation. 

However, results from studies investigating oxidative stress and antioxidant capacity in 

response to training are not consistent and further research is needed.  

 

Susceptibility to oxidative stress may vary considerably from person to person and may be 

influenced by genetic disposition, which may account for some of the discrepancies 

reported. However, the effect of genetic variation on antioxidant capacity in an exercise-

training context has not yet been investigated and it is therefore not clear whether certain 

individuals may be predisposed to oxidative stress based on a specific genotype. Thus the 

effect of inter-individual genetic variation and dietary antioxidant intake on antioxidant 

capacity in trained adaptation needs to be explored further. 

 

As mentioned in Section 5.4, methodological problems relating to exercise-induced 

oxidative stress measurement may explain some of the discrepancies found in studies 

investigating training-induced changes in antioxidant capacity. The lack of appropriate 

assays may influence some of the findings and this must be taken into account when 

interpreting the results. Furthermore, factors relating to the type and intensity of exercise 

training and the subjects, including the dietary habits, could also play a role in the 

conflicting results and need to be investigated further. Errors relating to dietary antioxidant 

intake assessments may contribute to contrasting findings. Several methods of dietary 

assessment are available and while some researchers have made use of these to 

measure antioxidant intake, others have failed to adequately control for dietary intake. In 

addition, different dietary assessment methods have different strengths and limitations, 

thus making dietary assessment a challenging task.  



 

 

57 

8. References 

 

ADA (2000) Position of the American Dietetic Association, Dietitians of Canada, and the 

American College of Sports Medicine: Nutrition and athletic performance. J Am Diet 

Assoc 100, 1543-1556 

Aguilo A, Tauler P, Pilar GM, Villa G, Cordova A, Tur JA & Pons A (2003) Effect of 

exercise intensity and training on antioxidants and cholesterol profile in cyclists. J 

Nutr Biochem 14, 319-325 

Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25, 218-224 

Alessio HM (2000) Lipid peroxidation in healthy and diseased models: influence of 

different types of exercise. In Handbook of Oxidants and Antioxidants in Exercise, 

pp. 115-127 [Sen CK, Packer L and Hänninen O, editors]. Amsterdam: Elsevier. 

Alessio HM, Goldfarb AH & Cao G (1997) Exercise-induced oxidative stress before and 

after vitamin C supplementation. Int J Sport Nutr 7, 1-9 

Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE & Wiley RL (2000) 

Generation of reactive oxygen species after exhaustive aerobic and isometric 

exercise. Med Sci Sports Exerc 32, 1576-1581 

Allen RG & Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28, 

463-499 

Ambrosone CB, Freudenheim JL, Thompson PA, et al  (1999) Manganese superoxide 

dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast 

cancer. Cancer Res 59, 602-606 

Anlasik T, Sies H, Griffiths HR, Mecocci P, Stahl W & Polidori MC (2005) Dietary habits 

are major determinants of the plasma antioxidant status in healthy elderly subjects. 

Br J Nutr 94, 639-642 

Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B & Peters JR (1998) 

Electron spin resonance spectroscopic detection of oxygen-centred radicals in 

human serum following exhaustive exercise. Eur J Appl Physiol Occup Physiol 77, 

498-502 



 

 

58 

Ashton T, Young IS, Peters JR, Jones E, Jackson SK, Davies B & Rowlands CC (1999) 

Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic 

acid intervention study. J Appl Physiol 87, 2032-2036 

Astrand PO (1992) Physical activity and fitness. Am J Clin Nutr 55, 1231S-1236S 

Bakker I, Twisk JW, van Mechelen W, Mensink GB & Kemper HC (2003) Computerization 

of a dietary history interview in a running cohort; evaluation within the Amsterdam 

Growth and Health Longitudinal Study. Eur J Clin Nutr 57, 394-404 

Balakrishnan SD & Anuradha CV (1998) Exercise, depletion of antioxidants and 

antioxidant manipulation. Cell Biochem Funct 16, 269-275 

Balog T, Sobocanec S, Sverko V, Krolo I, Rocic B, Marotti M & Marotti T (2006) The 

influence of season on oxidant-antioxidant status in trained and sedentary subjects. 

Life Sci 78, 1441-1447 

Basu AK & Marnett LJ (1984) Molecular requirements for the mutagenicity of 

malondialdehyde and related acroleins. Cancer Res 44, 2848-2854 

Beckman KB & Ames BN (2000) Oxidants and aging. In Handbook of Oxidants and 

Antioxidants in Exercise, pp. 755-796 [Sen CK, Packer L and Hänninen O, editors]. 

Amsterdam: Elsevier. 

Benzie IF (2000) Evolution of antioxidant defence mechanisms. Eur J Nutr 39, 53-61 

Benzie IF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr 

Physiol 136, 113-126 

Bergholm R, Makimattila S, Valkonen M, Liu ML, Lahdenpera S, Taskinen MR, Sovijarvi A, 

Malmberg P & Yki-Jarvinen H (1999) Intense physical training decreases circulating 

antioxidants and endothelium-dependent vasodilatation in vivo. Atherosclerosis 145, 

341-349 

Berlett BS & Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. 

J Biol Chem  272, 20313-20316 

Birnboim HC (1982) DNA strand breakage in human leukocytes exposed to a tumor 

promoter, phorbol myristate acetate. Science 215, 1247-1249 



 

 

59 

Bland JM & Altman DG (1986) Statistical methods for assessing agreement between two 

methods of clinical measurement. Lancet 1, 307-310 

Bland JM & Altman DG (1995) Comparing two methods of clinical measurement: a 

personal history. Int J Epidemiol 24 Suppl 1, S7-14 

Bland JM & Altman DG (1999) Measuring agreement in method comparison studies. Stat 

Methods Med Res 8, 135-160 

Block G, Norkus E, Hudes M, Mandel S & Helzlsouer K (2001) Which plasma antioxidants 

are most related to fruit and vegetable consumption? Am J Epidemiol 154, 1113-

1118 

Bloomer RJ, Goldfarb AH & McKenzie MJ (2006) Oxidative stress response to aerobic 

exercise: comparison of antioxidant supplements. Med Sci Sports Exerc 38, 1098-

1105 

Breen AP & Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 

18, 1033-1077 

Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basilico MJ, Wikinski RW & Llesuy SF 

(1999) Soccer players under regular training show oxidative stress but an improved 

plasma antioxidant status. Clin Sci (Lond) 96, 381-385 

Bryant RJ, Ryder J, Marti no P, Kim J & Craig BW (2003) Effects of vitamin E and C 

supplementation either alone or in combination on exercise-induced lipid 

peroxidation in trained cyclists. J Strength Cond Res 17, 792-800 

Camus G, Felekidis A, Pincemail J, Deby-Dupont G, Deby C, Juchmes-Ferir A, Lejeune R 

& Lamy M (1994) Blood levels of reduced/oxidized glutathione and plasma 

concentration of ascorbic acid during eccentric and concentric exercises of similar 

energy cost. Arch Int Physiol Biochim Biophys 102, 67-70 

Camus G, Pincemail J, Roesgen A, Dreezen E, Sluse FE & Deby C (1990) Tocopherol 

mobilization during dynamic exercise after beta-adrenergic blockade. Arch Int 

Physiol Biochim 98, 121-126 



 

 

60 

Cannon JG & Blumberg JB (2000) Acute phase immune responses in exercise. In 

Handbook of Oxidants and Antioxidants in Exercise, pp. 177-193 [Sen CK, Packer L 

and Hänninen O, editors]. Amsterdam: Elsevier. 

Cao G, Booth SL, Sadowski JA & Prior RL (1998) Increases in human plasma antioxidant 

capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin 

Nutr 68, 1081-1087 

Cao G & Cutler RG (1995) Protein oxidation and aging. I. Difficulties in measuring reactive 

protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch Biochem 

Biophys 320, 106-114 

Cao G & Prior RL (1998) Comparison of different analytical methods for assessing total 

antioxidant capacity of human serum. Clin Chem  44, 1309-1315 

Carr A & Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? 

FASEB J 13, 1007-1024 

Cazzola R, Russo-Volpe S, Cervato G & Cestaro B (2003) Biochemical assessments of 

oxidative stress, erythrocyte membrane fluidity and antioxidant status in 

professional soccer players and sedentary controls. Eur J Clin Invest 33, 924-930 

Chia LS, Thompson JE & Moscarello MA (1983) Disorder in human myelin induced by 

superoxide radical: an in vitro investigation. Biochem Biophys Res Commun 117, 

141-146 

Child R, Brown S, Day S, Donnelly A, Roper H & Saxton J (1999) Changes in indices of 

antioxidant status, lipid peroxidation and inflammation in human skeletal muscle 

after eccentric muscle actions. Clin Sci (Lond) 96, 105-115 

Child RB, Wilkinson DM, Fallowfield JL & Donnelly AE (1998) Elevated serum antioxidant 

capacity and plasma malondialdehyde concentration in response to a simulated 

half-marathon run. Med Sci Sports Exerc 30, 1603-1607 

Chow CK (2000) Vitamin E. In Biochemical and Physiological Aspects of Human Nutrition, 

pp. 584-598 [Stipanuk MH, editors]. Philadelphia: W.B. Saunders Company. 



 

 

61 

Church SL, Grant JW, Meese EU & Trent JM (1992) Sublocalization of the gene encoding 

manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ 

hybridization and somatic cell hybrid mapping. Genomics 14, 823-825 

Clarkson PM & Thompson HS (2000) Antioxidants: what role do they play in physical 

activity and health? Am J Clin Nutr 72, 637S-646S 

Close GL, Ashton T, Cable T, Doran D, Holloway C, McArdle F & MacLaren DP (2006) 

Ascorbic acid supplementation does not attenuate post-exercise muscle soreness 

following muscle-damaging exercise but may delay the recovery process. Br J Nutr 

95, 976-981 

Collins A, Cadet J, Epe B & Gedik C (1997) Problems in the measurement of 8-

oxoguanine in human DNA. Report of a workshop, DNA oxidation, held in Aberdeen, 

UK, 19-21 January, 1997. Carcinogenesis 18, 1833-1836 

Collins AR, Dusinska M, Gedik CM & Stetina R (1996) Oxidative damage to DNA: do we 

have a reliable biomarker? Environ Health Perspect 104 Suppl 3, 465-469 

Davies KJ (1986) Intracellular proteolytic systems may function as secondary antioxidant 

defenses: an hypothesis. J Free Radic Biol Med 2, 155-173 

Davies KJ, Quintanilha AT, Brooks GA & Packer L (1982) Free radicals and tissue 

damage produced by exercise. Biochem Biophys Res Commun 107, 1198-1205 

Decker EA & Clarkson PM (2000) Dietary sources and bioavailbality of essential and non-

essential antioxidants. In Handbook of Oxidants and Antioxidants in Exercise, pp. 

323-358 [Sen CK, Packer L and Hänninen O, editors]. Amsterdam: Elsevier. 

Dillard CJ, Litov RE, Savin WM, Dumelin EE & Tappel AL (1978) Effects of exercise, 

vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol 

45, 927-932 

Dragsted LO, Pedersen A, Hermetter A, et al  (2004) The 6-a-day study: effects of fruit and 

vegetables on markers of oxidative stress and antioxidative defense in healthy 

nonsmokers. Am J Clin Nutr 79, 1060-1072 

Dufaux B, Heine O, Kothe A, Prinz U & Rost R (1997) Blood glutathione status following 

distance running. Int J Sports Med 18, 89-93 



 

 

62 

Durstine JL & Haskell WL (1994) Effects of exercise training on plasma lipids and 

lipoproteins. Exerc Sport Sci Rev 22, 477-521 

Duthie GG, Robertson JD, Maughan RJ & Morrice PC (1990) Blood antioxidant status and 

erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 282, 

78-83 

Dwyer J (1999) Dietary assessment. In Modern Nutrition in Health and Disease, pp. 937-

959 [Shils ME, Olson JA, Shike M and Ross AC, editors]. Philadelphia: Lippincott 

Williams & Wilkins. 

Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, Ordonez-Llanos J 

& Marrugat J (2003) Response of oxidative stress biomarkers to a 16-week aerobic 

physical activity program, and to acute physical activity, in healthy young men and 

women. Atherosclerosis 167, 327-334 

Esterbauer H, Jurgens G, Quehenberger O & Koller E (1987) Autoxidation of human low 

density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation 

of aldehydes. J Lipid Res 28, 495-509 

Evelson P, Gambino G, Travacio M, Jaita G, Verona J, Maroncelli C, Wikinski R, Llesuy S 

& Brites F (2002) Higher antioxidant defences in plasma and low density 

lipoproteins from rugby players. Eur J Clin Invest 32, 818-825 

Finkel T & Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 

408, 239-247 

Flohe L, Gunzler WA & Schock HH (1973) Glutathione peroxidase: a selenoenzyme. 

FEBS Lett 32, 132-134 

Food and Nutrition Board IoM (2000) Dietary reference intakes for vitamin C, vitamin E, 

selenium, and carotenoids., Washington, DC: National Academic Press. 

Forsberg L, de Faire U & Morgenstern R (2001) Oxidative stress, human genetic variation, 

and disease. Arch Biochem Biophys 389, 84-93 

Frei B, Stocker R, England L & Ames BN (1990) Ascorbate: the most effective antioxidant 

in human blood plasma. Adv Exp Med Biol 264, 155-163 



 

 

63 

Galan P, Briancon S, Favier A, et al  (2005) Antioxidant status and risk of cancer in the 

SU.VI.MAX study: is the effect of supplementation dependent on baseline levels? 

Br J Nutr 94, 125-132 

Ginsburg GS, O'Toole M, Rimm E, Douglas PS & Rifai N (2001) Gender differences in 

exercise-induced changes in sex hormone levels and lipid peroxidation in athletes 

participating in the Hawaii Ironman triathlon. Ginsburg-gender and exercise-induced 

lipid peroxidation. Clin Chim Acta 305, 131-139 

Gleeson M, Robertson JD & Maughan RJ (1987) Influence of exercise on ascorbic acid 

status in man. Clin Sci (Lond) 73, 501-505 

Goldfarb AH, Bloomer RJ & McKenzie MJ (2005) Combined antioxidant treatment effects 

on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 37, 234-

239 

Groussard C, Machefer G, Rannou F, Faure H, Zouhal H, Sergent O, Chevanne M, Cillard 

J & Gratas-Delamarche A (2003) Physical fitness and plasma non-enzymatic 

antioxidant status at rest and after a wingate test. Can J Appl Physiol 28, 79-92 

Gutteridge JM (1994) Biological origin of free radicals, and mechanisms of antioxidant 

protection. Chem Biol Interact 91, 133-140 

Gutteridge JM & Quinlan GJ (1983) Malondialdehyde formation from lipid peroxides in the 

thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. J 

Appl Biochem 5, 293-299 

Halliwell B (1998) Free radicals and oxidative damage in biology and medicine: An 

introduction. In Oxidative stress in skeletal muscle, pp. 1-27 [Reznick AZ, Packer L, 

Sen CK, Holloszy JO and Jackson MJ, editors]. Basel: Birkhäuser Verlag. 

Halliwell B & Gutteridge JMC (1999) Free Radicals in Biology and Medicine, 3rd ed. New 

York: Oxford University Press. 

Han D, Loukianoff S & McLaughlin L (2000) Oxidative stress indices: analytical aspects 

and significance. In Handbook of Oxidants and Antioxidants in Exercise, pp. 433-

483 [Sen CK, Packer L and Hänninen O, editors]. Amsterdam: Elsevier. 



 

 

64 

Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 

11, 298-300 

Hartmann A & Niess AM (2000) Oxidative DNA damage in exercise. In Handbook of 

Oxidants and Antioxidants in Exercise, pp. 195-217 [Sen CK, Packer L and 

Hanninen O, editors]. Amsterdam: Elsevier. 

Hartmann A, Niess AM, Grunert-Fuchs M, Poch B & Speit G (1995) Vitamin E prevents 

exercise-induced DNA damage. Mutat Res 346, 195-202 

Hartmann A, Pfuhler S, Dennog C, Germadnik D, Pilger A & Speit G (1998) Exercise-

induced DNA effects in human leukocytes are not accompanied by increased 

formation of 8-hydroxy-2'-deoxyguanosine or induction of micronuclei. Free Radic 

Biol Med 24, 245-251 

Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC & Ames BN 

(1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-

deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A 95, 288-293 

Hellsten Y, Tullson PC, Richter EA & Bangsbo J (1997) Oxidation of urate in human 

skeletal muscle during exercise. Free Radic Biol Med 22, 169-174 

Horwath C (1990) Food frequency questionnaires: a review. Australian Journal of Nutrition 

and Dietetics 47, 71-76 

Jackson MJ (1998) Free radical mechanisms in exercise-related muscle damage. In 

Oxidative Stress in Skeletal Muscle, pp. 75-86 [Reznick AZ, Packer L, Sen CK, 

Holloszy JO and Jackson MJ, editors]. Basel: Birkhäuser Verlag. 

Jackson MJ (1999) An overview of methods for assessment of free radical activity in 

biology. Proc Nutr Soc 58, 1001-1006 

Jackson MJ (2000) Exercise and oxygen radical production by muscle. In Handbook of 

Oxidants and Antioxidants in Exercise, pp. 57-86 [Sen CK, Packer L and Hänninen 

O, editors]. Amsterdam: Elsevier. 

Jackson MJ, Edwards RH & Symons MC (1985) Electron spin resonance studies of intact 

mammalian skeletal muscle. Biochim Biophys Acta 847, 185-190 



 

 

65 

Jackson MJ, Papa S, Bolanos J, et al  (2002) Antioxidants, reactive oxygen and nitrogen 

species, gene induction and mitochondrial function. Mol Aspects Med 23, 209-285 

Jacob RA, Aiello GM, Stephensen CB, Blumberg JB, Milbury PE, Wallock LM & Ames BN 

(2003) Moderate antioxidant supplementation has no effect on biomarkers of 

oxidant damage in healthy men with low fruit and vegetable intakes. J Nutr 133, 

740-743 

Jenkins RR (1988) Free radical chemistry. Relationship to exercise. Sports Med 5, 156-

170 

Jenkins RR (2000) Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 

72, 670S-674S 

Ji LL (1998) Antioxidant enzyme response to exercise and training in the skeletal muscle. 

In Oxidative Stress in Skeletal Muscle, pp. 103-125 [Reznick AZ, Packer L, Sen CK, 

Holloszy JO and Jackson MJ, editors]. Basel: Birkhäuser Verlag. 

Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222, 

283-292 

Ji LL, Stratman FW & Lardy HA (1988) Antioxidant enzyme systems in rat liver and 

skeletal muscle. Influences of selenium deficiency, chronic training, and acute 

exercise. Arch Biochem Biophys 263, 150-160 

Jones DP & deLong MJ (2000) Detoxification and protective functions of nutrients. In 

Biochemical and Physiological Aspects of Human Nutrition, pp. 901-916 [Stipanuk 

MH, editors]. Philadelphia: W.B. Saunders Company. 

Kaaks R, Riboli E, Esteve J, van Kappel AL & van Staveren WA (1994) Estimating the 

accuracy of dietary questionnaire assessments: validation in terms of structural 

equation models. Stat Med 13, 127-142 

Kaaks RJ (1997) Biochemical markers as additional measurements in studies of the 

accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 

65, 1232S-1239S 

Kanter MM, Nolte LA & Holloszy JO (1993) Effects of an antioxidant vitamin mixture on 

lipid peroxidation at rest and postexercise. J Appl Physiol 74, 965-969 



 

 

66 

Keul J, Doll E & Koppler D (1972) Energy metabolism and human muscle, Basel: S. 

Karger. 

Lee J, Goldfarb AH, Rescino MH, Hegde S, Patrick S & Apperson K (2002) Eccentric 

exercise effect on blood oxidative-stress markers and delayed onset of muscle 

soreness. Med Sci Sports Exerc 34, 443-448 

Lesgards JF, Durand P, Lassarre M, Stocker P, Lesgards G, Lanteaume A, Prost M & 

Lehucher-Michel MP (2002) Assessment of lifestyle effects on the overall 

antioxidant capacity of healthy subjects. Environ Health Perspect 110, 479-486 

Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S & 

Stadtman ER (1990) Determination of carbonyl content in oxidatively modified 

proteins. Methods Enzymol 186, 464-478 

Liu ML, Bergholm R, Makimattila S, Lahdenpera S, Valkonen M, Hilden H, Yki-Jarvinen H 

& Taskinen MR (1999) A marathon run increases the susceptibility of LDL to 

oxidation in vitro and modifies plasma antioxidants. Am J Physiol 276, E1083-

E1091 

Marzatico F, Pansarasa O, Bertorelli L, Somenzini L & Della VG (1997) Blood free radical 

antioxidant enzymes and lipid peroxides following long-distance and lactacidemic 

performances in highly trained aerobic and sprint athletes. J Sports Med Phys 

Fitness 37, 235-239 

Mastaloudis A, Leonard SW & Traber MG (2001) Oxidative stress in athletes during 

extreme endurance exercise. Free Radic Biol Med 31, 911-922 

Maxwell SR, Jakeman P, Thomason H, Leguen C & Thorpe GH (1993) Changes in 

plasma antioxidant status during eccentric exercise and the effect of vitamin 

supplementation. Free Radic Res Commun 19, 191-202 

McAnulty SR, McAnulty LS, Nieman DC, Morrow JD, Shooter LA, Holmes S, Heward C & 

Henson DA (2005) Effect of alpha -tocopherol supplementation on plasma 

homocysteine and oxidative stress in highly trained athletes before and after 

exhaustive exercise. J Nutr Biochem 16, 530-537 

McCall MR & Frei B (1999) Can antioxidant vitamins materially reduce oxidative damage 

in humans? Free Radic Biol Med 26, 1034-1053 



 

 

67 

McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J 

Med 312, 159-163 

Meydani M, Evans WJ, Handelman G, et al  (1993) Protective effect of vitamin E on 

exercise-induced oxidative damage in young and older adults. Am J Physiol 264, 

R992-R998 

Minami M, Mori K & Nagatsu T (1981) The effect of light exercise on the plasma 

superoxide dismutase activity and on the plasma noradrenaline concentration. Ind 

Health 19, 133-138 

Mitrunen K, Sillanpaa P, Kataja V, Eskelinen M, Kosma VM, Benhamou S, Uusitupa M & 

Hirvonen A (2001) Association between manganese superoxide dismutase 

(MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis 22, 827-829 

Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL & Ohno H 

(2001) Strenuous endurance training in humans reduces oxidative stress following 

exhausting exercise. Eur J Appl Physiol 84, 1-6 

Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF & Roberts LJ (1990) A series of 

prostaglandin F2-like compounds are produced in vivo in humans by a non-

cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87, 

9383-9387 

Nelson JL, Bernstein PS, Schmidt MC, Von Tress MS & Askew EW (2003) Dietary 

modification and moderate antioxidant supplementation differentially affect serum 

carotenoids, antioxidant levels and markers of oxidative stress in older humans. J 

Nutr 133, 3117-3123 

Niess AM, Hartmann A, Grunert-Fuchs M, Poch B & Speit G (1996) DNA damage after 

exhaustive treadmill running in trained and untrained men. Int J Sports Med 17, 

397-403 

Oberley LW, St Clair DK, Autor AP & Oberley TD (1987) Increase in manganese 

superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem 

Biophys 254, 69-80 

Ocke MC & Kaaks RJ (1997) Biochemical markers as additional measurements in dietary 

validity studies: application of the method of triads with examples from the 



 

 

68 

European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 65, 

1240S-1245S 

Ohno H, Yamashita  H, Ookawara T, Saitoh D, Wakabayashi K & Taniguchi N (1992) 

Training effects on concentrations of immunoreactive superoxide dismutase iso-

enzymes in human plasma. Acta Physiol Scand 146, 291-292 

Okamura K, Doi T, Hamada K, Sakurai M, Yoshioka Y, Mitsuzono R, Migita T, Sumida S & 

Sugawa-Katayama Y (1997) Effect of repeated exercise on urinary 8-hydroxy-

deoxyguanosine excretion in humans. Free Radic Res 26, 507-514 

Omenn GS, Goodman GE, Thornquist MD, et al  (1996) Effects of a combination of beta 

carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 

334, 1150-1155 

Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NP, Hollander P & Meerman JH 

(2004) Evaluation of a multi-parameter biomarker set for oxidative damage in man: 

increased urinary excretion of lipid, protein and DNA oxidation products after one 

hour of exercise. Free Radic Res 38, 1269-1279 

Ortenblad N, Madsen K & Djurhuus MS (1997) Antioxidant status and lipid peroxidation 

after short-term maximal exercise in trained and untrained humans. Am J Physiol 

272, R1258-R1263 

Pacifici RE & Davies KJ (1991) Protein, lipid and DNA repair systems in oxidative stress: 

the free-radical theory of aging revisited. Gerontology 37, 166-180 

Packer JE, Slater TF & Willson RL (1979) Direct observation of a free radical interaction 

between vitamin E and vitamin C. Nature 278, 737-738 

Packer L (1997) Oxidants, antioxidant nutrients and the athlete. J Sports Sci 15, 353-363 

Packer L, Almada AL, Rothfuss LM & Wilson DS (1989) Modulation of tissue vitamin E 

levels by physical exercise. Ann N Y Acad Sci 570, 311-321 

Papas AM (1996) Determinants of antioxidant status in humans. Lipids 31 Suppl, S77-S82 

Pattwell DM & Jackson MJ (2004) Contraction-induced oxidants as mediators of 

adaptation and damage in skeletal muscle. Exerc Sport Sci Rev 32, 14-18 



 

 

69 

Peake JM (2003) Vitamin C: effects of exercise and requirements with training. Int J Sport 

Nutr Exerc Metab 13, 125-151 

Peto R, Doll R, Buckley JD & Sporn MB (1981) Can dietary beta-carotene materially 

reduce human cancer rates? Nature 290, 201-208 

Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA & Dudley G (1994) Influence of 

exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J 

Physiol 266, R375-R380 

Powers SK, Deruisseau KC, Quindry J & Hamilton KL (2004) Dietary antioxidants and 

exercise. J Sports Sci 22, 81-94 

Powers SK & Lennon SL (1999) Analysis of cellular responses to free radicals: focus on 

exercise and skeletal muscle. Proc Nutr Soc 58, 1025-1033 

Powers SK & Sen CK (2000) Physiological antioxidants and exercise training. In 

Handbook of oxdidants and antioxidants in exercise, pp. 221-242 [Sen CK, Packer 

L and Hänninen O, editors]. Amsterdam: Elsevier. 

Prior RL & Cao G (1999) In vivo total antioxidant capacity: comparison of different 

analytical methods. Free Radic Biol Med 27, 1173-1181 

Prior RL, Cao G, Prior RL & Cao G (2000) Analysis of botanicals and dietary supplements 

for antioxidant capacity: a review. J AOAC Int 83, 950-956 

Quindry JC, Stone WL, King J & Broeder CE (2003) The effects of acute exercise on 

neutrophils and plasma oxidative stress. Med Sci Sports Exerc 35, 1139-1145 

Radak Z, Ogonovszky H, Dubecz J, Pavlik G, Sasvari M, Pucsok J, Berkes I, Csont T & 

Ferdinandy P (2003) Super-marathon race increases serum and urinary 

nitrotyrosine and carbonyl levels. Eur J Clin Invest 33, 726-730 

Ramel A, Wagner KH & Elmadfa I (2004) Plasma antioxidants and lipid oxidation after 

submaximal resistance exercise in men. Eur J Nutr 43, 2-6 

Rankin G & Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration 

of appropriate statistical analyses. Clin Rehabil 12, 187-199 



 

 

70 

Ravanat JL, Turesky RJ, Gremaud E, Trudel LJ & Stadler RH (1995) Determination of 8-

oxoguanine in DNA by gas chromatography--mass spectrometry and HPLC--

electrochemical detection: overestimation of the background level of the oxidized 

base by the gas chromatography--mass spectrometry assay. Chem Res Toxicol 8, 

1039-1045 

Record IR, Dreosti IE & McInerney JK (2001) Changes in plasma antioxidant status 

following consumption of diets high or low in fruit and vegetables or following dietary 

supplementation with an antioxidant mixture. Br J Nutr 85, 459-464 

Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L & 

Halliwell B (1992) Modification of plasma proteins by cigarette smoke as measured 

by protein carbonyl formation. Biochem J 286 ( Pt 2), 607-611 

Reznick AZ, Packer L & Sen CK (1998) Strategies to assess oxidative stress. In Oxidative 

Stress in Skeletal Muscle, pp. 43-58 [Reznick AZ, Packer L, Sen CK, Holloszy JO 

and Jackson MJ, editors]. Basel: Birkhäuser Verlag. 

Rippe JM & Hess S (1998) The role of physical activity in the prevention and management 

of obesity. J Am Diet Assoc 98, S31-S38 

Robertson JD, Maughan RJ, Duthie GG & Morrice PC (1991) Increased blood antioxidant 

systems of runners in response to training load. Clin Sci (Lond) 80, 611-618 

Rokitzki L, Hinkel S, Klemp C, Cufi D & Keul J (1994a) Dietary, serum and urine ascorbic 

acid status in male athletes. Int J Sports Med 15, 435-440 

Rokitzki L, Logemann E, Sagredos AN, Murphy M, Wetzel-Roth W & Keul J (1994b) Lipid 

peroxidation and antioxidative vitamins under extreme endurance stress. Acta 

Physiol Scand 151, 149-158 

Rosenblum JS, Gilula NB & Lerner RA (1996) On signal sequence polymorphisms and 

diseases of distribution. Proc Natl Acad Sci U S A 93, 4471-4473 

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG & Hoekstra WG (1973) 

Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 

588-590 



 

 

71 

Rousseau AS, Hininger I, Palazzetti S, Faure H, Roussel AM & Margaritis I (2004) 

Antioxidant vitamin status in high exposure to oxidative stress in competitive 

athletes. Br J Nutr 92, 461-468 

Sen CK (2001) Antioxidants in exercise nutrition. Sports Med 31, 891-908 

Sen CK, Rankinen T, Vaisanen S & Rauramaa R (1994) Oxidative stress after human 

exercise: effect of N-acetylcysteine supplementation. J Appl Physiol 76, 2570-2577 

Sevanian A, Davies KJ & Hochstein P (1985) Conservation of vitamin C by uric acid in 

blood. J Free Radic Biol Med 1, 117-124 

Sharpe P (1999) Oxidative stress and exercise: need for antioxidant supplementation? Br 

J Sports Med 33, 298-299 

Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y & 

Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in 

the human manganese superoxide dismutase gene. A predictive evidence for 

conformational change to influence mitochondrial transport and a study of allelic 

association in Parkinson's disease. Biochem Biophys Res Commun 226, 561-565 

Sies H (1991) Oxidative Stress II. Oxidants and Antioxidants. London: Academic Press. 

Singal PK, Kapur N, Dhillon KS, Beamish RE & Dhalla NS (1982) Role of free radicals in 

catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 60, 1390-1397 

Spitzer JA (1995) Active oxygen intermediates--beneficial or deleterious? An introduction. 

Proc Soc Exp Biol Med 209, 102-103 

Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism 

and biological consequences. Free Radic Biol Med 9, 315-325 

Stadtman ER (1992) Protein oxidation and aging. Science 257, 1220-1224 

Stohs SJ & Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free 

Radic Biol Med 18, 321-336 

Suzuki K, Ohno H, Oh-ishi S, Kizaki T, Ookawara T, Fujii J, Radak Z & Taniguchi N (2000) 

Superoxide dismutases in exercise and disease. In Handbook of oxidants and 



 

 

72 

antioxidants in exercise, pp. 243-296 [Sen CK, Packer L and Hänninen O, editors]. 

Amsterdam: Elsevier. 

Suzuki YJ, Forman HJ & Sevanian A (1997) Oxidants as stimulators of signal transduction. 

Free Radic Biol Med 22, 269-285 

Tauler P, Aguilo A, Gimeno I, Fuentespina E, Tur JA & Pons A (2006) Response of blood 

cell antioxidant enzyme defences to antioxidant diet supplementation and to intense 

exercise. Eur J Nutr 45, 187-195 

Tauler P, Gimeno I, Aguilo A, Guix MP & Pons A (1999) Regulation of erythrocyte 

antioxidant enzyme activities in athletes during competition and short-term recovery. 

Pflugers Arch 438, 782-787 

Tessier F, Margaritis I, Richard MJ, Moynot C & Marconnet P (1995) Selenium and training 

effects on the glutathione system and aerobic performance. Med Sci Sports Exerc 

27, 390-396 

The Alpha-Tocopherol BCCPSG (1994) The effect of vitamin E and beta carotene on the 

incidence of lung cancer and other cancers in male smokers. N Engl J Med 330, 

1029-1035 

Thomas JA (1999) Oxidative stress and oxidant defense. In Modern Nutrition in Health and 

Disease, pp. 751-760 [Shils ME, Olson JA, Shike M and Ross AC, editors]. 

Philadelphia: Lippincott Williams & Wilkins. 

Thompson FE & Byers T (1994) Dietary assessment resource manual. J Nutr 124, 2245S-

2317S 

Thompson HJ, Heimendinger J, Haegele A, Sedlacek SM, Gillette C, O'Neill C, Wolfe P & 

Conry C (1999) Effect of increased vegetable and fruit consumption on markers of 

oxidative cellular damage. Carcinogenesis 20, 2261-2266 

Tiidus PM, Pushkarenko J & Houston ME (1996) Lack of antioxidant adaptation to short-

term aerobic training in human muscle. Am J Physiol 271, R832-R836 

Tirosh O & Reznick AZ (2000) Chemical bases and biological relevance of protein 

oxidation. In Handbook of Oxidants and Antioxidants in Exercise, pp. 89-114 [Sen 

CK, Packer L and Hanninen O, editors]. Amsterdam: Elsevier. 



 

 

73 

Tonkonogi M, Walsh B, Svensson M & Sahlin K (2000) Mitochondrial function and 

antioxidative defence in human muscle: effects of endurance training and oxidative 

stress. J Physiol 528 Pt 2, 379-388 

Trevisan M, Browne R, Ram M, Muti P, Freudenheim J, Carosella AM & Armstrong D 

(2001) Correlates of markers of oxidative status in the general population. Am J 

Epidemiol 154, 348-356 

Tyler DD (1975) Role of superoxide radicals in the lipid peroxidation of intracellular 

membranes. FEBS Lett 51, 180-183 

Urso ML & Clarkson PM (2003) Oxidative stress, exercise, and antioxidant 

supplementation. Toxicology 189, 41-54 

Van Landeghem GF, Tabatabaie P, Kucinskas V, Saha N & Beckman G (1999) Ethnic 

variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum 

Hered 49, 190-193 

Viguie CA, Frei B, Shigenaga MK, Ames BN, Packer L & Brooks GA (1993) Antioxidant 

status and indexes of oxidative stress during consecutive days of exercise. J Appl 

Physiol 75, 566-572 

Viitala P & Newhouse IJ (2004) Vitamin E supplementation, exercise and lipid peroxidation 

in human participants. Eur J Appl Physiol 93, 108-115 

Vollaard NB, Shearman JP & Cooper CE (2005) Exercise-induced oxidative stress:myths, 

realities and physiological relevance. Sports Med 35, 1045-1062 

Wan XS, Devalaraja MN & St Clair DK (1994) Molecular structure and organization of the 

human manganese superoxide dismutase gene. DNA Cell Biol 13, 1127-1136 

Watson TA, MacDonald-Wicks LK & Garg ML (2005) Oxidative stress and antioxidants in 

athletes undertaking regular exercise training. Int J Sport Nutr Exerc Metab 15, 131-

146 

Willett WC (1998) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press. 

Williams SL, Strobel NA, Lexis LA & Coombes JS (2006) Antioxidant requirements of 

endurance athletes: implications for health. Nutr Rev 64, 93-108 



 

 

74 

Woodson K, Tangrea JA, Lehman TA, Modali R, Taylor KM, Snyder K, Taylor PR, Virtamo 

J & Albanes D (2003) Manganese superoxide dismutase (MnSOD) polymorphism, 

alpha-tocopherol supplementation and prostate cancer risk in the alpha-tocopherol, 

beta-carotene cancer prevention study (Finland). Cancer Causes Control 14, 513-

518 

Young IS & Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54, 176-

186 

Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol 

Rev 74, 139-162 

Yu BP, Suescun EA & Yang SY (1992) Effect of age-related lipid peroxidation on 

membrane fluidity and phospholipase A2: modulation by dietary restriction. Mech 

Ageing Dev 65, 17-33 

 

 



 

 

75 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 

DEVELOPMENT AND VALIDATION OF A QUANTIFIED FOOD 

FREQUENCY QUESTIONNAIRE TO ASSESS DIETARY ANTIOXIDANT 

INTAKE 
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Introduction  

 

Antioxidant compounds that are consumed as part of our diet are an important part of the 

body’s antioxidant defence system that protects against damage caused by free radicals. 

Such dietary antioxidants include vitamin C, vitamin E, carotenoids (or ß-carotene) and 

flavonoids and are found primarily in fruit and vegetables but also in plant oils, nuts, tea, 

red wine, legumes and spices (Willett, 1998b). Diets rich in fruit and vegetables are 

associated with positive health benefits, which are often attributed to the antioxidant 

nutrient intake (Cao et al., 1998; Benzie, 2003; Prior, 2003).  

 

Antioxidant nutrient intake demonstrates considerable within- and between-person 

variability and therefore in order to accurately estimate intake, the dietary intake 

assessment method should capture usual or habitual intake. Assessment of the habitual 

intake of antioxidants poses an additional challenge, namely that many of the relatively few 

major sources may not be consumed regularly. Therefore, a method that captures intake 

over as many as possible days, possibly covering seasonal variation, must be considered. 

For these reasons, a food frequency questionnaire (FFQ) that specifically measures 

antioxidant intake (vitamin C, vitamin E, carotenoid and flavonoid) is recommended as it is 

most likely to provide the most accurate estimates of usual intake (Willett, 1998b).  

 

The FFQ consists of a food list and a frequency response section and sub jects are 

required to report their usual frequency of consumption of each food from the food list for a 

specific time period. The food list can be tailored to suit the specific aims of a particular 

study (Zulkifli & Yu, 1992). Quantitative FFQs contain additional questions regarding usual 

portion sizes for each food item. Information obtained from the FFQ can then be used to 

estimate daily nutrient intake by multiplying the food frequency, the portion size and the 

nutrient content for each food item (Willett, 1998b). 

 

As with any research instrument, the reproducibility and validity of a FFQ needs to be 

determined for application in a particular study. Reproducibility refers to the degree of 

consistency of measurements obtained from the measurement instrument from more than 

one administration to the same persons at different times (Willett, 1998b). Validity refers to 

the degree to which the questionnaire actually measures the aspect of diet that it was 

intended to measure (Willett, 1998b). For effective validity assessment, the FFQ should 

ideally be compared to a ‘gold standard’. However, as there is no perfect standard for 
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determining dietary intake, comparisons in validity studies are made with another dietary 

method that is judged to be superior (Horwath, 1990; Willett, 1998b). As neither method is 

perfect and each is associated with different types of measurement error, it is crucial that 

the errors of both methods are as independent as possible to avoid spuriously high 

estimates of validity (Horwath, 1990; Willett, 1998b). For FFQ validations, dietary records 

represent the best comparison method as the two methods have independent sources of 

error, namely the food record is not restricted by a food list, does not depend on memory 

and has the ability to accurately estimate frequency of intake and portion size (Horwath, 

1990). Biochemical indicators of dietary intake and energy expenditure estimations 

represent attractive independent standards for validation studies (Willett, 1998b).  The 

major advantage of using such indicators is that the sources of measurement error are 

different from those of questionnaire measurements (Kaaks, 1997; Willett, 1998b). 

Biochemical indicators and energy expenditure estimations are however influenced by a 

variety of factors that are unrelated to intake, which result in the weakening of correlations 

between indicator and questionnaire measurements (Willett, 1998b). 

 

Various approaches can be used to assess the level of agreement between the test 

method (e.g. a FFQ) and the reference method (e.g. a dietary record) for reproducibility 

and validity testing. However, it must be borne in mind that no single test provides 

definitive answers on either the reproducibility or validity and that the judgement thereof is 

based largely on the subjective interpretation of the statistical tests (Rankin & Stokes, 

1998). It is therefore recommended that more than one statistical test be used to assess 

the reproducibility and validation of a FFQ (Rankin & Stokes, 1998; Willett, 1998b). The 

more of the tests that point towards satisfactory agreement, the more certain one can be 

that the reproducibility and validity is satisfactory.   

 

For the assessment of reproducibility, the following statistical tests are applicable: 

comparison of means and standard deviations for the two administrations; correlation 

coefficients, including the Pearson’s, Spearman rank and intraclass, which describe the 

associations between intakes estimated from the two administrations; Bland-Altman plots 

and the assessment of the agreement between the classification of individuals according 

to quartile distributions of intake obtained from the two administrations (Bland & Altman, 

1986; Willett, 1998b).  For the assessment of the validity of the FFQ the same statistical 

methods can be used to compare the FFQ with a reference dietary assessment method 

(or a biomarker or an energy expenditure estimation).  
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Furthermore, structural equation modelling (SEM), e.g. the method of triads, can be 

applied to assess the validity of the test questionnaire in relation to the unknown true 

intake if data from two dietary assessment methods and a biomarker are available (Kaaks 

et al., 1994; Kaaks, 1997).  

 

It is clear that the effective development and validation of FFQ involves a number of 

important steps from the development of the food list to the choice of statistical tests to be 

used in the assessment of the reproducibility and validity. Bearing this in mind, the aims of 

this study were to firstly develop a quantified FFQ to measure vitamin C, vitamin E, 

carotenoid and flavonoid intake in a young adult male population, and secondly, to assess 

the reproducibility and validity of the developed FFQ.  

 

 

 
Materials and methods  

 

Study design 

The study consisted of two parts. In the first part, a quantified food frequency 

questionnaire was developed to measure dietary intake of vitamin C, vitamin E, 

carotenoids and flavonoids during the previous month in male athletes and sedentary male 

controls. The second part of the study involved the assessment of the reproducibility and 

validity of the FFQ. The study design is depicted in Figure 1.   
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Figure 1: Schematic diagram of study design 
FFQ = food frequency questionnaire; vit C = vitamin C 
 

 

Food frequency questionnaire development 

The development of the FFQ involved generating a food list, identifying frequency 

categories, developing a portion size estimation section and tools as well guidelines for the 

administration of the final questionnaire to subjects using the picture-sort method 

(Kumanyika et al., 1996).  

 

Food list 

The foods to be included in a food list depend on the objectives of the study, for example, 

measuring intakes of specific foods or nutrients or conducting a comprehensive dietary 

assessment (Willett, 1998b). In either circumstance, it is important to carefully select the 

most informative food items for the food list, as lists that are too short may omit important 

foods resulting in underestimation of intakes, whereas an excessively long food lists can 

lead to fatigue and boredom, which can impair concentration and accuracy (Willett, 1998b).   

As the aim of this study was to assess dietary antioxidant intake, only foods that were 

important contributors to vitamin C, vitamin E, carotenoid and flavonoid intake were 

included in the food list. According to Willett (1998b), three criteria relating to food items 

need to be assessed when it is considered for inclusion in a particular food list, namely: 1) 

the food item has to be a good source of the specific nutrient; 2) the food item has to be 

used reasonably often by an appreciable number of individuals, and 3) the use of the food 

item must vary between persons.  
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To meet the first criterion, foods that were good sources of the nutrients in question were 

identified from the literature as well as from nutrient composition tables (Langenhoven et 

al., 1991a; Shils et al., 1999; Decker & Clarkson, 2000; Pietta, 2000; Stipanuk, 2000). To 

meet the second criterion information regarding population frequencies of intake of specific 

food items was obtained from a study that determined usual food consumption of the 

South African population by analysing secondary data of dietary surveys undertaken in 

South Africa (Steyn et al., 2003). In addition, dietary intake data from 7-day food records, 

which was gathered during a study conducted with a similar group of rugby players 

(Personal communication, 2005, Dr. J. van Rooyen, Department of Physiological Sciences, 

University of Stellenbosch) was analysed and commonly eaten foods that contained the 

nutrients under investigation were identified and added to the FFQ list. As no information 

could be found regarding the variation in the use of the food items between persons, the 

third criterion was not considered in the development of the food list in this study. All the 

food items identified in the above described steps were integrated in order to finalise the 

food list. Both single-food items and mixed dishes, such as salads or vegetable soups, 

were included. The food items were divided into three categories, namely fruit and fruit 

juices, vegetables and other foods.  

 

Recall period, frequency categories and portion size estimation 

The recall period for a FFQ is usually six months to a year, but can be made shorter for a 

specific study (Willett, 1998b). In the present study the recall period for the FFQ was set at 

one month. This time period was chosen based on the rugby season and the university 

timetable, to ensure a homogenous time period (e.g. no holidays). This ensured that the 

dietary intake would be fairly consistent and well-controlled, in order to be able to link 

nutrient intake with blood levels. 

  

An open-ended frequency response was used according to which subjects were required 

to report their intake in terms of frequency per day, week or month. In order to quantify 

dietary antioxidant intake, subjects were required to provide information regarding usual 

portion sizes of the foods consumed during the preceding month. Usual portion sizes could 

be described in terms of 1) small, medium or large compared to diagrams of single food 

items; 2) common household measurements; 3) an amorphous flour model of half a cup 

with portion size being half the size, the same, one-and-a-half times the size or twice the 

size. See addendum 1 for the final questionnaire.    
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FFQ administration 

For the FFQ administration the picture-sort approach was used, which was first developed 

by Kumanyika et al. (1996) and Kumanyika et al. (1997) for use in the Cardiovascular 

Health study. The picture-sort method is an adaptation of a written FFQ that involves 

respondents having to sort colour picture cards of foods into piles representing frequency 

of use. The food cards that were used for this study were part of the Food Photo Manual 

developed by Senekal and Steyn (2004).    

 

FFQ reproducibility and validation  

FFQ reproducibility 

For the purposes of this study, reproducibility was defined as the consistency of the FFQ 

measurements in repeated administrations under similar conditions. To assess the 

reproducibility of our FFQ, subjects were required to complete the FFQ twice 

approximately one month apart, and nutrient intake derived from the two administrations 

were compared. When deciding on a time interval for repeat FFQ administrations, it must 

be borne in mind that shorter time periods may result in subjects remembering their 

answers, whereas longer time intervals may result in decreased reproducibility due to true 

changes in diet or variations in responses (Willett, 1998b). Due to time constraints related 

to the rugby season and university timetable a longer time interval could not be used. 

 

FFQ validity 

For the purpose of this study, validity was defined as the ability of the FFQ to accurately 

estimate dietary antioxidant intake. Validity testing in this study was based on the following: 

two FFQ administrations one month apart, a 28-day dietary record and three plasma 

vitamin C samples. The validity was assessed by: 1) Comparing the means ± SD of the 

reported frequencies of intake of specific food items derived from the FFQs to the means ± 

SD of the frequencies of intake of the same food item derived from the 28-day dietary 

record; 2) Comparing the frequencies of intake of specific food items derived from the 

FFQs to the frequencies of intake of the same food item derived from the 28-day dietary 

record; 3) Comparing the vitamin C and carotenoid intake derived from the FFQs (two 

repetitions: FFQ 1 and FFQ 2, and the mean of the two FFQ: FFQmean) with values 

obtained from a 28-day close-ended dietary record; and 4) comparing plasma vitamin C 

levels to vitamin C intake derived from the FFQs and the 28-day dietary record. The 

vitamin C intake derived from FFQs, 28-day dietary record as well as plasma vitamin C 
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levels were also included in a structural equation model (SEM) to assess the relationship 

thereof with the true unknown intake.  

 

The comparison of frequency of intake derived from the FFQs and the 28-day dietary 

record is essential in the validity testing of a FFQ, as Thompson and Byers (1994) and 

Willett (1998b) mention that frequency estimation of intake is a greater contributor than 

estimated portion size to variance in intakes for most foods and therefore has a greater 

influence on FFQ validity.  

 

Vitamin E and flavonoid intake were not considered for the validation assessments as 

inclusion of the additional food items in the close-ended dietary record would have resulted 

in a too long list of items, which would increase respondent burden and thus decrease 

compliance.  

 

Study sample 

Subjects in a validation study should ideally be a random sample of the study population 

for which the FFQ is being used (Willett, 1998b). Although this is often not practical, the 

sample should at least be representative of the main study cohort. According to Willett 

(1998b) and Kaaks et al. (1994) a similar reproducibility estimation of a FFQ can be 

achieved by using a larger sample size with fewer days of recording intake versus an 

increased number of days using a smaller sample size. As the recruitment of a large 

sample was not possible for the purposes of this study, it was decided to combine a 

smaller sample with 28 recording days. For the purposes of reproducibility and validity 

testing of the present FFQ, subjects therefore included a sub-sample of volunteers who 

were participating in the main study (n = 115) that investigated the association of plasma 

antioxidant status and genotype in trained rugby players and sedentary male students 

controlled for dietary antioxidant intake. Thirty-eight subjects participated in the 

reproducibility study and a subgroup of these (n = 18) volunteered for the validation study. 

Subjects were healthy, non-smoking males between the ages of 18 and 25 years.  Both 

supplement users and non-users were included.  

 

Dietary assessment procedures and methods 

FFQ administration  

For the administration of the FFQ, the mentioned picture-sort method was used. After the 

procedure was thoroughly explained, subjects were asked to sort the  food cards into three 
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separate piles based on the frequency of consumption over the previous month, namely 

never in the last month, sometimes in the last month and frequently during the past month. 

The cards corresponding to foods eaten never in the past month were placed aside and no 

further information regarding those foods was collected. Food items included in the FFQ 

that were not represented by a photograph, such as vitamin C containing sweets, were 

asked about separately. Subjects were then required to give detail regarding the exact 

frequency of consumption (per day / per week / per month) and the usual portion size of 

the food items that were consumed sometimes or frequently. Visual aids were used to 

ensure accurate portion size estimation. Life size line drawings depicting small, medium or 

large servings of fruit and some vegetable items were used (Senekal & Steyn, 2004) as 

well as a three-dimensional amorphous flour model of half a cup. For the latter, subjects 

could indicate portion size as half the size, the same size, one-and-a-half times the size or 

twice the size of the standard portion size. In addition, life size line drawings of different 

sizes of cups, glasses, bowls and spoons were used (Senekal & Steyn, 2004). 

 

28-day close-ended dietary record  

The close-ended dietary resembles FFQs as it also consists of a list of food items that the 

subject needs to indicate whether it had been consumed (Thompson & Byers, 1994). 

However, in contrast to the FFQ the subject does not rely on memory to complete this 

checklist as it is completed either concurrent with actual intake or at the end of a day for 

that day’s intake (Thompson & Byers, 1994).  

 

The dietary record checklist for this study consisted of a booklet with a page for each of 

the four weeks. Each page contained the same list of food items and response space for 

each of the seven days. The checklist included a list of food items judged to be frequently 

consumed sources of vitamin C and carotenoids that were also part of the FFQ. These 

food items included fruit and fruit juices, vegetables, and vitamin C containing sweets (see 

Addendum 2).  

 

The purpose of the booklet as well as the recording procedure was thoroughly explained to 

the subjects. Subjects were also instructed to maintain their usual eating habits and keep 

the food diary with them at all times, completing it concurrent with actual intake. Therefore, 

every time a subject consumed a food that was in the food list, a mark had to be made in 

the block corresponding to the food item and the specific day. If the same food item was 
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eaten again during that day, another mark had to be made in that particular block. 

Subjects were not required to indicate portion sizes in the checklist.   

 

The recording started immediately after the first administration and continued for 28 days. 

The second administration of the FFQ took place after the completion of the dietary record 

 

Dietary supplement intake 

As part of the first FFQ administration subjects were asked whether they had taken a 

dietary supplement during the previous month. Those subjects who had used dietary 

supplements were then requested to specify the type of supplement(s) they had used, the 

dosage, frequency and duration of use.  For reproducibility assessment, nutrient intake 

from supplement use was not documented in the repeat FFQ administration. Data on 

supplemental vitamin C intake was only used in the validation part of the study.  

 

Nutrient content and frequency computation 

For the FFQ, intake of vitamin C, vitamin E, carotenoids and flavonoids was calculated for 

each subject for each FFQ administration. For the analysis of dietary data for these 

nutrients, the recorded usual portion size for each food item was converted to grams, 

using the South African Food Quantities Manual (Langenhoven et al., 1991b) and the  

Food Photo Manual (Senekal & Steyn, 2004). The vitamin C and vitamin E content of 

foods was determined using Foodfinder III (Nutritiona l Intervention Research Unit and 

Research Information Systems Division of the Medical Research Council, 

South Africa: Medical Research Council, 2002). For the determination of carotenoid 

content, Foodfinder III was used for most foods. For foods for which no carotenoid values 

were indicated in Foodfinder, the US database for carotenoids was used (Mangels et al., 

1993). Total carotenoid intake was calculated by adding the intake of the following 

carotenoids: ß-carotene, a-carotene, lutein, lycopene and cryptoxanthin.  For the 

determination of the flavonoid content of foods, the US database for flavonoids 

(U.S.Department of Agriculture, 2003) was used as Foodfinder III does not include 

flavonoid content data. In order to calculate the total intake of a nutrient, the estimated 

portion size in grams was multiplied by the frequency of intake and this value was then 

multiplied by the nutrient content value of each food item.  This was transformed to reflect 

nutrient intake per day by dividing the total nutrient intake by seven (if eaten weekly) or 28 

(if eaten monthly). This process was repeated for each food item and the total daily intake 

of vitamin C, vitamin E, carotenoids and flavonoids was calculated by adding the data from 
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each food item. Vitamin C and E intake was expressed as mg/day and carotenoid and 

flavonoid intake as µg/day respectively.  

 

To compute the frequencies of intake per month for the food items on the 28-day dietary 

record, the number of marks for each food on the record was counted. Some food items 

were combined into a single category, for example, oranges and “naartjies” were 

combined into a citrus category, orange juice and other fruit juices into a fruit juice 

category, potatoes and sweet potatoes into a combined potato category and tomatoes and 

tomato sauces into a combined tomato group. To quantify the nutrient intake of the 28-day 

dietary record, portion sizes for each food item was based on either a mean value derived 

from the portion sizes indicated on the FFQ (first and second administration) or a standard 

portion size when no portion size was available from the FFQs (Langenhoven et al., 1991b; 

Senekal & Steyn, 2004).  

 

The vitamin C content of each supplement was determined by analysing the nutritional 

information supplied on the supplement containers and/or dietary supplement company 

websites. This quantity was multiplied by the dosage and frequency of intake and the 

value was then transformed to reflect nutrient intake per day by dividing the total vitamin C 

intake by seven (if taken weekly) or 28 (if taken monthly). The vitamin C intake from each 

separate supplement was finally added together to obtain total daily supplement vitamin C 

intake for each subject if applicable. This value was added to the vitamin C intake 

estimated by FFQ 1, FFQ 2 and FFQmean and the 28-day dietary record respectively, to 

provide a total vitamin C intake value for comparison with plasma vitamin C levels .  

 

Biomarker assessment procedures 

During the four week validation study, subjects were required to provide three blood 

samples for the assessment of plasma vitamin C. This was done at the beginning of the 

study period (baseline), two weeks after baseline and four weeks after baseline. Blood 

samples were prepared for vitamin C analysis and were subsequently analysed for vitamin 

C levels according to the method of (Wei et al., 1996) (see Chapter 4 for details of these 

methods).  
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Statistical analysis 

Data were analysed using the Statistical Programme for Social Sciences (SPSS) version 

14 for Windows (SPSS 14.0, Chicago, Ill 2006). As dietary intake data did not follow a 

normal distribution, non-parametric statistical tests were performed.  

 

Reproducibility 

For the assessment of reproducibility, data regarding vitamin C, vitamin E, carotenoid and 

flavonoid intakes derived from the two FFQ administrations was used. Firstly, means, 

standard deviations, medians and 25th and 75th percentiles of nutrient intakes for the study 

sample were calculated for descriptive purposes. Differences in nutrient intakes derived 

from the two FFQ administrations were then analysed using the Wilcoxon sign-rank test. 

The presence of no statistically significant differences between the two methods is an 

indication of satisfactory reproducibility of the FFQ. The association between the two FFQs 

was further determined using Spearman rank correlation coefficients for each nutrient. In 

this case, a significant correlation coefficient (r) that is moderate to high is desired as this 

indicates satisfactory reproducibility. The agreement between the two FFQ administrations 

for each nutrient was further assessed by plotting the mean intake of the two 

administrations of the FFQ against the difference in intake from the two FFQs for each 

subject using Bland-Altman plots (Bland & Altman, 1986). The limits of agreement (LOA) 

were computed using the mean difference ± 2SD (Bland & Altman, 1986). Spearman rank 

correlation coefficients between the mean of the FFQs and the difference were computed 

to determine whether proportional bias was present (Bland & Altman, 1986). The criteria 

that can be applied to indicate satisfactory reproducibility based on Bland-Altman plots 

include the following: narrow limits of agreement, mean differences close to zero, data 

points that are scattered close to the line of the mean difference, and no proportional bias 

(Bland & Altman, 1986; Bakker et al., 2003). Lastly, the distributions of the intakes 

estimated from the two FFQ administrations were divided into quartiles and the number of 

respondents falling into the same or adjacent quartiles on each administration was 

determined. The higher the percentage of subjects being classified into the same and 

adjacent quartiles on both administrations, the more satisfactory the reproducibility. 

 

Validity 

Data used in statistical analysis included food item intake frequencies and nutrient intake 

obtained from FFQ 1, FFQ 2, the mean of FFQ 1 and FFQ 2 (= FFQ mean), and the 28-

day dietary record as well as three plasma vitamin C values. The dietary data derived from 
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the 28-day dietary record was compared to all three FFQ values as the literature regarding 

which FFQ administration to use is not consistent.  

 

Firstly, the mean and standard deviation (mean ± SD) of frequency of food item intake was 

calculated for descriptive purposes. The mean, standard deviation, median and 25th and 

75th percentile of nutrient intake from FFQ 1, FFQ 2 and FFQmean (= three FFQ values) 

and the 28-day dietary record were calculated for descriptive purposes. Differences 

between frequencies of food item intake as well as nutrient intakes, derived from the three 

FFQ values and the dietary record were analysed using the Friedman test with the 

Bonferroni post hoc test. Spearman rank correlation coefficients were computed to 

determine the association between the frequency of food item intake derived from the 28-

day dietary record and each of the three FFQ values as well as the association between 

nutrient intake derived from the 28-day dietary record and each of the three FFQ values. 

Bland-Altman plots (Bland & Altman, 1986) were used to describe the agreement between 

the 28-day dietary record and each of the three FFQ values for vitamin C and carotenoid 

intake. The distributions of the intakes estimated from the dietary record, FFQ 1, FFQ 2 

and the mean FFQ were divided into quartiles and the percentage agreement of the 

classification between the dietary record and the respective three FFQ values was 

determined. Criteria for validity assessment using these methods are the same as the 

criteria mentioned above for reproducibility assessment. 

 

For the assessment of plasma vitamin C levels the mean ± SD of the plasma vitamin C 

levels obtained from the three time points was compared using the Friedman test with the 

Bonferroni post hoc test. The vitamin C values obtained from the three time points were 

then combined to provide a mean plasma vitamin C value for each subject. The mean 

plasma vitamin C was then correlated with the vitamin C intake derived from the FFQ 

values as well as the 28-day dietary record using the Spearman rank correlation test. 

 

The method of triads (Kaaks, 1997) was used to determine the VC (validity coefficient) 

between the true unknown intake and intake estimated from the 28-day dietary record 

(reference dietary method), the three FFQ values (test method), as well as the mean 

plasma levels (biomarker) (Figure 2). Firstly, the Pearson’s correlation coefficient between 

each of the methods was computed. The VCs between the true dietary intake and the 

dietary intake estimated from the different dietary assessment methods were then 

estimated using the correlation coefficients generated using Formulas 1 - 3. This process 
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was repeated three times, each time using a different one of the three FFQ values, namely 

FFQ 1, FFQ 2 and the FFQ mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: diagrammatic representation of the method of triads used to estimate the validity coefficients (VC) 

between the true unknown dietary intake (T) and intake estimated by the FFQ (Q), biomarker (M), and 

dietary record (R).  rRM, rQR and rQM are the correlation coefficients between the different methods (adapted 

from Ocke and Kaaks (1997) and Andersen et al. (2005).  

 

 

 

 

 

 

 

 

 

 

 

Confidence intervals were constructed for each repetition using empirical percentiles (2.5 th 

and 97.5th) for the replicates of estimated VCs from 1000 bootstrap samples (Ocke & 

Kaaks, 1997). Bootstrap sampling involves the repeated drawing of samples from the 

group of subjects participating in the study (Ocke & Kaaks, 1997). Sampling is done with 

replacement, which allows each case to be drawn more than once or not at all in each of 
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the samples. The method of triads is then applied to each sample and the empirical 

distributions of the estimated validity coefficients can be used to determine the confidence 

intervals. This was done using the Univariate procedure of SAS software. The VC obtained 

for each assessment method (questionnaire, record and biomarker) indicates the 

agreement between that method and the true unknown dietary intake (Kaaks, 1997). The 

higher the value of the VC the better the agreement between the dietary assessment 

method and the true intake. However, in some cases the VC and confidence intervals are 

greater than one. This is known as a Heywood case (Dunn, 1989) and when this occurs it 

is common practice to set the VC and confidence intervals at one (Ocke & Kaaks, 1997; 

Kabagambe et al., 2001; Andersen et al., 2005). In the method of triads, Heywood cases 

occur when the product of two or three sample correlations is larger than the third (Ocke & 

Kaaks, 1997). In the presence of a high number of Heywood cases, results need to be 

interpreted with caution.  

 

For all statistical analyses, a value of p < 0.05 was considered to be statistically significant.  
 

 

Results 

 

Sample characteristics 

The mean age of the subjects was 20.7 ± 1.9 years. Mean BMI (body mass index) was 

27.0 ± 3.7 kg/m2. Dietary supplement use was reported by 68.4% of subjects.  

 

Reproducibility of the FFQ 

A comparison of the nutrient intake obtained from the two administrations of the FFQ is 

shown in Table 1. Dietary intakes were lower for all the nutrients with the repeat FFQ, 

significantly so for Vitamin C and flavonoid intake. Spearman Rank correlation coefficients 

for the nutrients assessed by the two FFQ administrations are also shown in Table 1. 

Correlation coefficients ranged from 0.51 for vitamin E to 0.68 for flavonoid. All correlations 

were statistically significant. 
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Table 1: Comparison of daily nutrient intakes (mg/day) derived from repeated FFQs (n = 38)  

 FFQ Mean ± SD Median (P25-P75) Spearman rank 
correlation coefficients 

Vitamin C 1 115.4 ± 71.8* 91.2 (65.3-152.2) 0.54 (p = 0.000) 
 2 94.6 ± 73.2 82.0 (55.3-113.0)  

Vitamin E 1 6.9 ± 5.4 5.6 (3.7-9.4) 0.51 (p = 0.001) 
 2 5.7 ± 4.9 4.3 (3.2-8.1)  

Carotenoid 1 7.7 ± 6.5 6.5 (2.4-10.5) 0.68  (p = 0.000) 
 2 6.3 ± 4.6 5.3 (2.0-8.3)  

Flavonoid 1 74.0 ± 79.4* 51.9 (24.0-91.5) 0.68 (p = 0.000) 
 2 56.0 ± 57.3 41.7 (17.0-66.3)  

FFQ 1 = first FFQ administration; FFQ 2 = second FFQ administration 

*Statistically significant difference between FFQ 1 and FFQ 2 as determined by the Wilcoxon sign-rank test  

 

The percentage of respondents classified into similar or adjacent quartiles of intake for the 

two administrations of the FFQ is reported in Table 2.  For all nutrients, over 75% of 

respondents were classified in the same or adjacent quartiles by both administrations.  

Only vitamin C showed extreme misclassification with 5% of individuals being ranked in 

the first quartile on one FFQ administration and in the fourth quartile with the other FFQ 

administration.  

 

Table 2: Classification of subjects into the same and adjacent quartiles of intake for the two 

administrations of the FFQ (n = 38). 

Nutrient % in same 
quartile 

% within one 
quartile 

% within two 
quartiles 

% within three 
quartiles 

Vitamin C 50 32 13 5 
Vitamin E 39 37 24 0 
Carotenoid 39 47 13 0 
Flavonoid 45 42 13 0 
 

 

Bland-Altman plots for the nutrients are depicted in Figures 3 – 6 and the actual values are 

presented Table 3. As can be seen from Figures 3 – 6 and Table 3, almost all 

observations lay within the limits of agreement. However, the LOA were relatively wide for 

all nutrients. For vitamin C, the LOA corresponded to more than one and a half times the 

RDA (90mg/day,  Food and Nutrition Board (2000), while the LOA for vitamin E 

corresponded to just less than the RDA (15mg/day, Food and Nutrition Board (2000). No 

RDA’s have been established for carotenoids and flavonoids. Although the mean 

difference was close to zero, the scatter was not satisfactory. It is clear from Figures 3 – 6 
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that significant proportional bias was present for vitamin C, which is also reflected in the by 

significant Spearman rank correlation coefficients. Therefore, for vitamin C differences in 

intake are dependant on the magnitude of intake i.e. at lower intakes FFQ 2 

underestimated intake, while at higher intakes, FFQ 2 overestimated intake. The Bland-

Altman plot for vitamin E showed a different relationship between the two administrations, 

with the variation between the FFQs increasing in both directions as the magnitude of 

intake increased (Figure 4).  

 

 

Table 3: Mean differences (d), limits of agreement (LOA) (d ± 2SD), % observations lying outside 

the LOA and the presence of proportional bias as calculated by the Bland-Altman method between 

the first and second FFQ administration (n = 38).  

Nutrient Mean 
difference (d) 
(FFQ2– FFQ1) 

LOA % > (d 
+ 2SD) 

% < (d 
– 2SD) 

p value for 
correlation 
coefficient* 

LOA vs RDA 

Vitamin C 
(mg) 

-20.8 -164.5 – 122.8 2.6 2.6 0.02 >1xRDA 
(90mg/day) 

Carotenoids 
(mg) 

-1.4 -13.1 – 10.3 2.6 2.6 0.15 RDA ne 

Vitamin E 
(mg) 

-1.2 -12.5 – 10.1 2.6 0 0.73 ˜ RDA 
(15mg/day) 

Flavonoids 
(mg) 

-18.0 -102.2 – 66.3 2.6 0 0.06 RDA ne 

LOA = limits of agreement; RDA = recommended dietary allowances; ne = not established 

* Spearman rank correlation between the mean (FFQ 1 and FFQ 2) and the difference (FFQ 2 – FFQ 1). 

Significant correlation coefficients indicate proportional bias. 
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Figure 3: Bland-Altman plot of vitamin C (mg/day) intake derived from the two FFQ administrations 

showing the mean difference and limits of agreement (d±2SD).  
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Figure 4: Bland-Altman plot of vitamin E intake (mg/day) derived from the two FFQ administrations 

showing the mean difference and limits of agreement (d±2SD). 
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Figure 5: Bland-Altman plot of carotenoid intake (mg/day) derived from the two FFQ 

administrations showing the mean difference and limits of agreement (d±2SD). 
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Figure 6: Bland-Altman plot of flavonoid intake (mg/day) derived from the two FFQ administrations 

showing the mean difference and limits of agreement (d±2SD). 
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Relative validity of the FFQ 

The results of the comparison between the mean frequency of food intake derived from the 

28-day dietary record, FFQ 1, FFQ 2 and the FFQmean are shown in Table 4. Food 

intakes were similar across the board for most foods, except for fruit salad, 

pumpkin/butternut and potatoes, which were significantly lower for the 28-day dietary 

record.  

 

Table 4: Mean±SD of reported frequency of intake of food items (times/month) derived  

from the 28-day dietary record and FFQ 1, FFQ 2 and FFQmean values (n = 18).  

Food item FFQ 1 FFQ 2 FFQ mean Dietary 
record 

Citrus fruit 6.9 ± 7.8 5.4 ± 8.9 6.2 ± 6.5 3.1 ± 3.8 
Strawberry 0.6 ± 1.7 1.4 ± 2.9 1.0 ± 1.8 1.72 ± 2.9 
Apple 11.3 ± 7.7 9.9 ± 9.9 10.6 ± 7.3  8.3 ± 7.7 
Banana 7.9 ± 5.6 5.8 ± 4.7 6.8 ± 4.5 6.8 ± 7.0 
Fruit salad 3.7 ± 6.0* 0.6 ± 1.3 2.1 ± 3.4* 0.6 ± 1.0 
Avocado 2.7 ± 4.3 1.9 ± 3.3 2.3 ± 3.1 2.3 ± 3.5 
Fruit juice 11.9 ± 10.5 12.2 ± 10.0 12.0 ± 7.7 18.3 ± 13.0 
Carrot 6.7 ± 5.6 8.1 ± 6.4 7.4 ± 4.7 5.8 ± 3.1 
Pumpkin 6.5 ± 4.3* 4.2 ± 3.0 5.3 ± 3.0* 3.7 ± 2.8 
Peas 4.2 ± 5.3 2.4 ± 2.7 3.3 ± 3.0 1.3 ± 1.4 
Cauliflower 4.8 ± 4.4 3.6 ± 4.0 4.2 ± 3.6 2.3 ± 2.3 
Broccoli 4.1 ± 4.4 4.2 ± 4.3 4.2 ± 3.6 3.1 ± 2.8 
Green beans 2.9 ± 3.5 1.8 ± 1.9 2.4 ± 2.3 1.2 ± 1.3 
Mixed salad 7.2 ± 6.7 4.9 ± 3.3 6.1 ± 3.6 4.4 ± 4.3 
Tomato 22.3 ± 15.7 18.6 ± 16.9 20.5 ± 15.1 18.1 ± 12.2 
Mixed vegetable 6.4 ± 4.6 4.0 ± 4.5 5.2 ± 4.0 3.9 ± 3.7 
Spinach 0.8 ± 1.4 1.1 ± 2.1 0.9 ± 1.3 0.8 ± 1.9 
Potato 29.5 ± 18.0* 22.3 ± 8.8* 25.9 ± 10.6* 16.1 ± 7.8 
Citrus includes oranges and naartjies; fruit juice includes orange juice and other fruit juices; pumpkin  

includes pumpkin and butternut; tomato includes tomatoes, tomato sauces; potato includes potatoes  

and sweet potatoes. 

* Indicates statistically significant difference between FFQ and the 28-day dietary record for the food  

item (p<0.05 as assessed by Friedman test and Bonferroni post hoc) 

 

The Spearman correlation coefficients for the frequencies of intake of individual food items 

derived from the 28-day dietary record and each of the three FFQ values ranged from 0.03 

(non-significant) to 0.93 (Table 5). For all food items, the strongest correlation was found 

between the 28-day dietary record and FFQ 2. In the fruit group, correlations for frequency 

of intake derived from the 28-day dietary record and each of the three FFQ values were 
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strongest for apples and bananas; while the frequency of intake of fruit juice and fruit salad 

did not show a significant correlation. The frequency of intake of broccoli, cauliflower and 

tomato intake showed the strongest correlation in the vegetable group, with the frequency 

of intake of green beans  and mixed vegetables not being significantly correlated between 

the 28-day dietary record and each of the three FFQ values respectively. 

 

Table 5: Spearman rank correlations for frequency of intake of specific food items  

between the 28-day dietary record and each of the three FFQ values (n = 18) 

 Correlation coefficient (r) between 28-day dietary 
record and… 

Food item FFQ 1 FFQ 2 FFQ mean 
 r p r p r p 
Citrus fruit 0.09 0.736 0.62 0.006 0.33 0.179 
Strawberry 0.12 0.639 0.57 0.013 0.61 0.007 
Apple 0.58 0.012 0.79 0.000 0.80 0.000 
Banana 0.48 0.042 0.68 0.002 0.73 0.001 
Fruit salad 0.03 0.915 0.23 0.368 0.11 0.652 
Avocado 0.29 0.250 0.85 0.000 0.64 0.004 
Fruit juice -0.12 0.629 0.17 0.498 0.14 0.584 
Carrot 0.26 0.306 0.55 0.018 0.54 0.022 
Pumpkin 0.45 0.060 0.76 0.000 0.69 0.001 
Peas 0.37 0.136 0.68 0.002 0.50 0.034 
Cauliflower 0.52 0.028 0.93 0.000 0.77 0.000 
Broccoli 0.50 0.034 0.86 0.000 0.64 0.004 
Green beans 0.08 0.748 0.46 0.054 0.25 0.311 
Mixed salad 0.09 0.735 0.73 0.001 0.29 0.247 
Tomato 0.77 0.000 0.92 0.000 0.83 0.000 
Mixed vegetable 0.26 0.299 0.36 0.149 0.30 0.227 
Spinach 0.05 0.831 0.61 0.007 0.44 0.068 
Potato -0.09 0.695 0.49 0.039 0.09 0.716 
Citrus includes oranges and naartjies; fruit juice includes orange juice and other fruit juices;  

pumpkin includes pumpkin and butternut; tomato includes tomatoes, tomato sauces; potato  

includes potatoes and sweet potatoes. 

 

Table 6 presents a comparison of the vitamin C and carotenoid intakes derived from the 

28-day dietary record and each of the three FFQ values. Vitamin C intakes were similar for 

all dietary intake assessments. Carotenoid intake values derived from FFQ 1, FFQ 2 and 

the FFQmean respectively, were all three significantly higher than the intake estimated 

from the dietary record. The Spearman rank correlation coefficients between the nutrient 

intakes derived from the 28-day dietary record and each of the three FFQ values are 
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presented in Table 7. For vitamin C, only the correlation between the second FFQ 

administration and the dietary record was significant. The intake of carotenoids derived 

from the 28-day dietary record was significantly correlated with the intake derived from all 

three FFQ values, with the strongest correlation coefficient being between the dietary 

record and the second FFQ administration (0.80).    

 

Table 6: Comparison of daily vitamin C and carotenoid intake (mg/day)  

derived from the 28-day dietary record and each of the three FFQ values (n = 18)  

   Mean ± SD Median (P25 – P75) 

Vitamin C DR 89.5 ± 38.6 89.5 (60.9-105.4) 

 FFQ 1 137.3 ± 88.1 113.9 (64.5-209.3) 

 FFQ 2 120.2 ± 94.4 104.7 (69.2-124.0) 

 FFQ mean 128.8 ± 77.0 110.8 (71.8-159.2) 
    

Carotenoid DR 5.8 ± 3.1 5.7 (3.3-6.8) 

 FFQ 1 9.8 ± 7.9* 7.3 (4.0-12.7) 

 FFQ 2 8.1 ± 4.9* 7.1 (4.3-11.3) 

 FFQ mean 8.8 ± 5.3* 8.3 (4.7-13.9) 
DR = 28-day dietary record; FFQ 1 = first FFQ administration; FFQ 2 = second FFQ  

administration; FFQ mean = mean of FFQ 1 and FFQ 2 

* Statistically significantly different from DR using Friedman test and Bonferroni post hoc test  

(p<0.05) 

 

 

Table 7: Spearman rank correlation coefficients for vitamin C and carotenoids  

between the 28-day dietary record and each the three FFQ values (food only) (n = 18) 

 Dietary record correlation with… 
 FFQ 1 FFQ 2 FFQ mean 
Vitamin C 0.27 (p = 0.284) 0.48 (p = 0.043) 0.23 (p = 0.358) 
Carotenoids 0.53 (0.025) 0.80 (p = 0.000) 0.71 (p = 0.001) 
FFQ 1 = first FFQ administration; FFQ 2 = second FFQ administration; FFQ mean = mean of  

FFQ 1 and FFQ 2 

 

The ability of each of the FFQ values to assign individuals into the same or adjacent 

quartiles of nutrient intake relative to the 28-day dietary record is shown in Table 8. For 

both vitamin C and carotenoids, over 60% of individuals were classified into the same or 

adjacent quartiles by the dietary record and the respective FFQ value. Agreement was 
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lowest for vitamin C between the 28-day dietary record and the first FFQ administration 

(61%), and highest between the dietary record and the second FFQ for carotenoid (94%).  

The lowest degree of misclassification for both nutrients was between the dietary record 

and the second FFQ administration. Extreme misclassification varied from 0% to 17%, with 

carotenoid intake estimated by the dietary record and the FFQ mean showing the greatest 

degree of misclassification (17%).    

 

 

Table 8: Classification of subjects into quartiles of intake for the 28-day dietary record versus  

each of the three FFQ values (n = 18). 

 % in same 
quartile 

% within one 
quartile 

% within two 
quartiles  

% within three 
quartiles 

Vitamin C     
DR vs FFQ 1 33 28 33 6 
DR vs FFQ 2 33 33 33 0 

DR vs FFQ mean 39 22 28 11 
     
Carotenoid      

DR vs FFQ 1 44 33 11 11 
DR vs FFQ 2 50 44 6 0 

DR vs FFQ mean 39 44 0 17 
DR = 28-day dietary record; FFQ 1 = first FFQ administration; FFQ 2 = second FFQ administration;  

FFQ mean = mean of FFQ 1 and FFQ 2 

 

Table 9 presents the actual values of the Bland-Altman tests for vitamin C and carotenoids 

for the 28-day dietary record and each of the three FFQ values. The graphs are included in 

Addendum 3. For both nutrients, only one data point was positioned outside the limits of 

agreement. The LOA were relatively wide for both nutrients and for all three FFQ values, 

and in terms of the RDA for vitamin C, lay between approximately one and more than two 

times the RDA. The scatter of data points was not satisfactory for all plots. The mean 

difference for vitamin C between the 28-day dietary record and each of the three FFQ 

values was less than approximately half the RDA. The mean difference was closest to 

zero between the second FFQ administration and the 28-day dietary record for both 

nutrients. Proportional bias was present for vitamin C between the 28-day dietary record 

and FFQ 1 and for carotenoid between the 28-day dietary record and each of the FFQ 

values.   
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Table 9: Mean differences (d), limits of agreement (LOA) (d ± 2SD), % observations lying outside 

the LOA and the presence of proportional bias as calculated by the Bland-Altman method between 

the 28-day dietary record and each of the FFQ values (n = 18). 

Nutrient Mean 
difference 
(DR–FFQ) 

LOA % > (d 
+2SD) 

%< (d 
– SD) 

p value for  
correlation 
coefficient* 

LOA vs RDA 

Vitamin C (mg)       
FFQ 1 -47.9 -221.6 – 125.9 0 2.6 0.001 >1X RDA 

(90mg/day) 
FFQ 2 -30.9 -220.9 – 159.5 0 2.6 0.36 >1X RDA 

(90mg/day) 
FFQ mean -39.3 -192.2 – 113.7 0 2.6 0.08 >1X RDA 

(90mg/day) 
       
Carotenoids (mg)       

FFQ 1 -3.8 
 

-18.9 – 11.3 0 2.6 0.03 RDA ne 

FFQ 2 -2.3 
 

-10.0 – 5.4 0 2.6 0.04 RDA ne 

FFQ mean -3.1 
 

-12.1 – 6.0 0 0 0.01 RDA ne 

LOA = limits of agreement; RDA = recommended dietary allowances; ne = not established 

* Spearman rank correlation between the mean (DR and FFQ) and the difference (DR – FFQ). Significant 

correlation coefficients indicate proportional bias. 

 

The mean ± SD of plasma vitamin C levels measured at the three time points during the 

validation study were as follows: baseline = 0.92 ± 0.3 mg/dl; two weeks post baseline = 

0.91 ± 0.3 mg/dl; and four weeks post baseline = 0.94 ± 0.3 mg/dl. There were no 

significant differences for plasma vitamin C levels between the three time points (p = 0.28 

from Friedman test). Table 10 presents the correlations between vitamin C intakes 

according to the different dietary assessment methods and the mean plasma vitamin C 

levels.  No significant correlations were evident.  

 

 

Table 10: Spearman rank correlations between vitamin C intakes (food + supplements) derived 

from the 28-day dietary record as well as from FFQ 1, FFQ 2 and the FFQmean with plasma  

vitamin C levels (n = 18) 

 Mean plasma vitamin C* correlation with… 
 FFQ 1 FFQ 2 FFQ mean Dietary record 

Vitamin C 0.32  
p = 0.197 

0.10  
p = 0.693 

0.21 
p = 0.395 

0.14 
p = 0.581 

*Mean of three values for each individual 
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Finally, the validity coefficients (VCs) and confidence limits for vitamin C for each dietary 

assessment method (28-day dietary record, FFQ and plasma) for each of the three FFQ 

values according to the method of triads are shown in Table 11. The VCs ranged from 

0.29 to 1.00 and were lower for plasma vitamin C than for the FFQ 1, FFQ 2, FFQmean 

and the dietary record vitamin C values, which were similar. Confidence limits were also 

the widest for plasma vitamin C. Heywood cases, represented by VCs larger than one and 

that are thus set at one, were present for some of the validity coefficients.  

 

Table 11: Validity coefficients (VC) with 95% bootstrap confidence intervals for  

vitamin C derived from FFQ 1, FFQ 2 and the FFQmean, the 28-day dietary  

record (DR) and actual plasma levels (n = 18).   

 VC* 95% CI* 

FFQ 1   
DR vs T 0.86 0.57 – 1.00 

FFQ 1 vs T 1.00 0.59 – 1.00 
Plasma vs T 0.34 0.04 – 0.80 

FFQ 2   
DR vs T 1.00 0.60 – 1.00 

FFQ 2 vs T 0.84 0.37 – 1.00 

Plasma vs T 0.29 0.03 – 0.76 

FFQ mean   
DR vs T 0.92 0.61 – 1.00 

FFQ mean vs T 0.99 0.57 – 1.00 

Plasma vs T 0.32 0.04 – 0.77 
DR = 28-day dietary record; T = true unknown intake, FFQ 1 = first FFQ administration,  

FFQ 2 = second FFQ administration, FFQ mean = mean of FFQ 1 and FFQ 2. 

*Validity coefficients and confidence intervals > 1 (Heywood cases) were set to 1. These values  

may thus in actual fact be higher than one?  

 

Discussion  

 

The aims of this study were to develop and validate a quantified FFQ that measures intake 

of vitamin C, vitamin E, carotenoids and flavonoids in a young adult male population. The 

final FFQ consisted of 81 food items divided into a fruit and fruit juice section, a vegetable 

section and an “other” section. The short-term reproducibility was assessed by 

administering the FFQ twice within a one month period. The reference methods that were 

used to assess the  validity of the FFQ in terms of frequency of food item intake and 
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vitamin C (mg/day) and carotenoid intake (mg/day) was a 28-day close-ended dietary 

record and repeated plasma vitamin C levels.  

 

For the assessment of reproducibility of the FFQ in this study several statistical methods 

were used, including comparison of mean differences, correlation coefficients, Bland-

Altman plots and cross-classification of individuals according to quartile distributions of 

intake. When considering the difference between mean values, the first administration of 

the FFQ generally gave higher estimates of nutrient intakes than the second questionnaire, 

with intakes being significantly different for vitamin C and flavonoids. This trend of lower 

nutrient intakes estimated from repeated FFQs has been reported by several other studies 

(Pietinen et al., 1988; Munger et al., 1992; Elmstahl et al., 1996; Jackson et al., 2001), 

although the opposite has also been observed (Macintyre et al., 2001a; Fornes et al., 

2003). It has been suggested that the overestimation of nutrient intakes associated with a 

first FFQ administration may be due to participants having a more realistic idea of their 

diets and thus being able to quantify their intake more accurately with the repeat FFQ 

administration (Pietinen et al., 1988). In the present study the month of recording prior to 

the second administration of the FFQ in a sub-sample (n = 18) of the reproducibility 

sample of 38, may have contributed to a higher awareness of actual frequency of intake of 

food items and thus favouring a more accurate estimate  of intake. 

   

With reference to correlation testing in reproducibility studies, correlation coefficients 

ranging from 0.5 to 0.7 for nutrient intakes measured at recall periods of between one and 

ten years are generally reported (Willett, 1998b; Johansson et al., 2002). The present 

correlation coefficients ranging from 0.5 (vitamin E and vitamin C) to 0.68 (carotenoids and 

flavonoids) fall within this range, even though the time interval between the administrations 

in the present study was shorter. Compared to other short-term reproducibility studies, the 

present correlation coefficients were in line with what has been reported and accepted as 

satisfactory by others (Schroder et al., 2001; Jackson et al., 2001; Macintyre et al., 2001a). 

We therefore feel that our correlation coefficients indicate satisfactory reproducibility for 

the FFQ.   

 

Reproducibility was further assessed by determining the agreement between the 

classifications of participants into quartiles of intake based on the two FFQ administrations. 

The percentage of participants classified in the same or adjacent quartiles in our study 

ranged from 76% to 87%. This is in line with the range reported by Macintyre et al. (2001a).  
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The high levels of agreement in ranking between the two FFQ administrations for all 

nutrients in the present study suggest that the FFQ is reproducible.  

 

While estimated vitamin C and flavonoid intakes were significantly lower with the second 

administration of the FFQ, the satisfactory correlation coefficient (0.54 for vitamin C and 

0.68 for flavonoid) and the agreement in quartile ranking of individuals between the two 

FFQ administrations suggests that the entire distribution of vitamin C and flavonoid intake 

was shifted downwards. A similar pattern, but in the opposite direction, was observed for 

vitamin C intake by Macintyre et al. (2001a). The authors attributed their upward shift in 

distribution to the increased availability of citrus during the repeat FFQ administration. In 

the present study, the opposite may have occurred with the repeat FFQ being 

administered towards the end of the citrus season, which may explain the significantly 

lower vitamin C intake estimated with FFQ 2.  

  

A statistical test that is now becoming more popular in the assessment of reproducibility 

and validity of FFQs are Bland-Altman plots (Bland & Altman, 1986). These plots have 

been referred to as “eyeball tests” as they are used to visualise the mean differences, the 

limits of agreement between the methods or administrations, and the presence of a 

relationship or bias between the differences in intake and the mean intake (Bakker et al., 

2003). As mentioned in the methods, the most desirable outcome would include: 1) narrow 

limits of agreement; 2) mean differences close to zero, 3) data points that are scattered 

close to line of the mean difference, and 4) no proportional bias (Bakker et al., 2003). 

However, the judgement of these criteria is to a large extent subjective as it based on 

judgement by eye and does not rely on statistical tests, except for the judgement regarding 

proportional bias, which is reflected by a significant Spearman rank correlation coeffcient 

(Bland & Altman, 1986; Bakker et al., 2003). Bland and Altman (1986) point out that the 

width of the LOA should be judged according to the clinical importance of the differences 

between the two methods/administrations. However, there are no set criteria against which 

the clinical importance of the width of the LOA in FFQ validation studies can be judged. 

Therefore, in the present study, the RDAs (where established) were used to judge the 

clinical importance of the width of the LOA. The estimations of intake from the two FFQ 

administrations varied by up to one and a half times the RDA for vitamin C as the mean 

difference ± 2SD was -164.5 – 122.8 (Food and Nutrition Board, 2000). If a subject were 

therefore to be classified for adequacy of vitamin C intake based on RDA cut-offs, it would 

be possible for the intake of vitamin C of the subject to be classified as adequate when 
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using the vitamin C data derived from the one administration of the FFQ, but as deficient 

when using the data from the other administration of the FFQ. We feel that this type of 

scenario would definitely be of clinical importance and therefore suggest that LOA that are 

wider than one times the RDA should be deemed not satisfactory.  

 

When considering the reproducibility of the FFQ in measuring vitamin C based on Bland-

Altman plot outcomes, it did not seem satisfactory, even though all data points were within 

the LOA and the mean difference close to zero, as the LOA were judged to be clinically 

significant, the scatter wide and proportional bias was present. Although Macintyre et al. 

(2001a) did not comment on the other criteria, they also observed proportional bias for 

vitamin C between two FFQ administrations. This outcome of the Bland-Altman plots is not 

supported by the results of the correlations and the quartile ranking, which pointed to 

satisfactory reproducibility. For vitamin E, differences were within one RDA, and the LOA 

were not judged to be clinically significant, the mean difference was close to zero and no 

proportional bias was present, thus suggesting satisfactory reproducibility. For carotenoids 

and flavonoids the LOA were relatively wide, but no RDA have been established for these 

nutrients to assess the clinical significance of the width of the LOA. For both nutrients the 

mean difference was close to zero, scatter was wide, but no proportional bias was present. 

These results suggest satisfactory reproducibility, which is in line with the results from the 

other statistical tests.  

 

When interpreting and applying the results of the Bland-Altman plots it must be borne in 

mind that, although these plots have been proposed as superior to the correlation 

assessments, the interpretation thereof in general and in dietary assessment context is 

subjective and the criteria for good agreement in actual fact not very clear. Furthermore, 

researchers such as Hopkins (2004) are very critical of the Bland-Altman procedure and 

warn that it has a fatal flaw in that it may incorrectly indicate systematic differences or bias 

in the relationship between two measures. Therefore, the fact that at least two out of the 

four statistical tests conducted for each nutrient indicate satisfactory reproducibility, points 

to satisfactory reproducibility of the FFQ in the assessment of antioxidant intake. Bearing 

in mind the limited sample size, we feel that the results do point to reasonable 

reproducibility.  

 

When considering the validity of a questionnaire, good reproducibility is essential, but this 

does not necessarily ensure validity. It therefore remains essential that validation 
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assessments are also carried out (Willett, 1998b). For the purposes of this study, validity 

was assessed by firstly comparing the mean and frequency estimation of intake of food 

items, and the vitamin C and carotenoid intake derived from FFQ 1, FFQ 2, and the 

FFQmean to values generated from a 28-day close-ended dietary record (difference 

between means, correlation coefficients, Bland-Altman plots and quartile distributions). 

Secondly, the vitamin C intake derived from FFQ 1, FFQ 2, FFQmean and the 28-day 

dietary record was correlated with the mean of the three repeat plasma vitamin C 

assessments. Lastly, a SEM, based on the method of triads, was constructed to assess 

the association between the vitamin C intake derived from the different assessments and 

true unknown intake.  

 

The means of reported frequencies of intake of food items (times/month) were similar for 

most of the food items for the three FFQ values and the 28-day dietary record. In addition, 

correlation coefficients for the frequencies of intake of food items between each of the 

three FFQ values and the 28-day dietary record were moderately strong, especially 

between the dietary record and FFQ 2. If the statement by Flegal and Larkin (1990) that 

differences in reported food intake frequencies are the most important source of error for 

group means and for relative ranking of subjects is considered, the present results on 

estimated frequency of intake, which were similar for the FFQ and the 28-day dietary 

record, suggest satisfactory validity. These results also create the expectation that the 

three FFQ values of actual vitamin C and carotenoid intake should be similar to the values 

derived from the 28-day dietary record.  

 

Comparisons of mean values support this notion for vitamin C, but not for carotenoids. The 

three FFQ values for vitamin C intake were not significantly different from the 28-day 

dietary record values. However, carotenoid intake derived from the three FFQ values was 

significantly higher than the 28-day dietary record values. Several other researchers have 

observed that FFQs overestimate nutrient intakes when compared with various dietary 

records (Schroder et al., 2001; McKeown et al., 2001; George et al., 2004). This was 

especially apparent for vitamin intakes (McKeown et al., 2001; Macintyre et al., 2001b). 

The relatively long list of fruit and vegetables in the FFQ may account for this observed 

overestimation in carotenoid intake (Harlan & Block, 1990; Willett, 1998a). On the other 

hand, Willett (1998b) points out that the process of recording food intake may lead to a 

change in eating habits and this may partly explain why intake obtained from dietary 

records is often lower than the reported FFQ intakes. One of the explanations for the 
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behavioural modification related to keeping dietary records is the burden that is associated 

with recording of foods, especially mixed dishes (Willett, 1998b). The present study made 

use of a close-ended dietary record with relatively low respondent burden compared to 

open-ended or weighed records. It is thus unlikely that the participants’ eating habits would 

have changed much resulting in lower nutrient estimations from the dietary record 

compared to the FFQ. However, the fact that the dietary record was a close-ended record 

that did not include all the food items in the FFQ, could also have contributed to the 

observed lower nutrient intakes compared to the FFQ.  

 

As far as the correlation assessments are concerned, results from a large number of FFQ 

validation studies in various populations indicate that the correlation coefficients between 

FFQ and reference methods range from 0.5 – 0.7 for macro-nutrients and 0.4 – 0.7 for 

micronutrients (for a summary of studies see (Willett, 1998b). Spearman Rank correlation 

coefficients for carotenoid and vitamin C intakes between the 28-day dietary record and 

each of the three FFQ values obtained in the present study ranged from 0.23 (non-

significant) to 0.80 9highly significant). Similarly to Willett et al. (1985), we observed the 

best correlation to be between the 28-day dietary record and the second administration of 

the FFQ. In the present study the second FFQ administration took place at the end of the 

dietary record and thus gave a measure of intake from the same period as the dietary 

record, which may explain the improved correlation coefficients. On the other hand, the 

recording process could have sensitized the subject with regards to actual frequency of 

intake resulting in better estimation of intake with the second administration.  

 

The results of the agreement of the ranking of subjects according to quartiles of intake for 

each dietary method support satisfactory validity. Between 61% and 94% of respondents 

could be classified into the same or adjacent quartiles of intake relative to the 28-day 

dietary record for each of the three FFQ values, although FFQ 2 resulted in the best 

comparison. In the present study above 60% (depending on which FFQ value was used) 

of participants were classified into the same and adjacent quartile of vitamin C intake as 

the 28-day dietary record, compared to the 95% reported by Macintyre et al. (2001b). In 

terms of classification into the same quartile, the present results (approximately 35%) are 

however comparable with results reported by McKeown et al. (2001) in men (36%) and by 

George et al. (2004) in college women (40%). No similar comparative information is 

available for carotenoids.  
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As few studies to date have employed the Bland-Altman plots to analyse validation data, 

comparative data is also scarce. The Bland-Altman plots for vitamin C and carotenoids in 

the validation study were judged according to the same criteria mentioned for the 

assessment of reproducibility. For both vitamin C and carotenoids, proportional bias was 

present, the scatter of data points was relatively wide and the mean difference was not 

close to zero. With regards to the LOA, almost all of the data points were within the LOA; 

however, these were fairly wide for both nutrients. Based on the RDA, the LOA for vitamin 

C were also judged to be of clinical significance, as the LOA differed by more than once to 

more than twice the RDA. As no RDA values for carotenoids have been established, this 

criterion of judgment could not be applied to the Bland-Altman plots for carotenoids. The 

observed presence of proportional bias and wide LOA have been observed by others for 

vitamin C (Macintyre et al., 2001b) and for ß-carotene (Ambrosini et al., 2001).  Therefore, 

to conclude, the agreement between the three FFQ values and the 28-day dietary record 

according to the Bland-Altman plots was not deemed satisfactory. However, the same 

comments regarding the judgment and potential flaw of these plots mentioned for the 

reproducibility, also apply for validity assessments, and this must be borne in mind when 

interpreting results.  

  

When assessing the association of the three FFQ values and the 28-day dietary record 

vitamin C intake values with plasma vitamin C values (as biomarker), no significant 

correlation was found. Porrini et al. (1995) and Kobayashi et al. (2003) also reported no 

correlation, while Willett et al. (1983); Bolton-Smith et al. (1991); Boeing et al. (1997); 

Schroder et al. (2001) and McKeown et al. (2001) report significant, albeit only modest, 

correlation coefficients between vitamin C intake obtained from FFQ and dietary records 

respectively and plasma vitamin C levels. The small sample size in our study may have 

contributed to the lack of a significant association between plasma levels of vitamin C and 

vitamin C intake estimates. Indeed, in the main study, where the present FFQ was used in 

a study with a larger sample, the association between vitamin C intake estimated from the 

FFQ and plasma vitamin C levels was significant (r = 0.21; p = 0.03) (Chapter 4). It must 

also be borne in mind that plasma vitamin C levels are tightly controlled by saturable/dose 

dependent absorption and renal excretion and are closely related to vitamin C intakes 

below 100mg/day (Levine et al., 1996). The mean vitamin C intake from foods and 

supplements observed in this study was above 100mg/day and therefore, at these 

observed high intakes, plasma vitamin C levels may not correspond to greater intakes, 

which may explain the non-significant correlation coefficient.  
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A more recent approach to assessing the validity of dietary measurement instruments is 

structural equation modelling (SEM) (Kaaks et al., 1994). The method of triads is an 

example of such a model and can be used when dietary intake information is available 

from a test instrument (e.g. a FFQ), a reference method (e.g. a dietary record) and a 

biomarker of intake (e.g. plasma levels of a nutrient) (Kaaks, 1997), which was the case in 

the present study. Validity coefficients (VCs) generated for the FFQ and the dietary record 

were comparable, which suggests that the two methods estimate dietary intake similarly 

when compared to the true unknown intake. The VCs for plasma vitamin C were lower 

(0.29 – 0.34), suggesting that plasma vitamin C is not as accurate as the dietary 

assessments in estimating true vitamin C intake. This was not expected as biomarkers are 

usually seen as the best indicator of the truth. However, plasma vitamin C levels reflect 

short-term intakes (last few days) while the FFQ and 28-day dietary record reflect longer 

term intake. It may therefore be more appropriate to use leukocyte vitamin C levels as a 

biomarker as these reflect longer term intake (Shils et al., 1999). Published data regarding 

validity coefficients for vitamin C is scarce. Ocke and Kaaks (1997), applied the method of 

triads to vitamin C data from the EPIC validity studies. The reported validity coefficient for 

plasma (0.39) was slightly higher than what was observed in the present study, while the 

questionnaire validity coefficient was lower (0.34) than for the present FFQ. In the EPIC 

studies, the reference method was the mean of twelve 24-h recalls and the VC for this 

method was 1.01, which was similar to the VC for the 28-day dietary record used in this 

study. Similar to the findings in the present study, Ocke and Kaaks (1997) also reported 

the presence of Heywood cases. Heywood cases may be caused by random sampling 

fluctuations in the observed correlation coefficients (Ocke & Kaaks, 1997). Random 

variances in the sample are influenced by sample size, and to stabilize the random 

fluctuations sample sizes above 120 are recommended (Kabagambe et al., 2001). The 

small sample size used in the present study may thus have contributed to the presence of 

Heywood cases. The use of a larger sample is therefore advised to correct for random 

fluctuations. Violations of the underlying model assumptions may also result in Heywood 

cases, indicating biased validity coefficients (Ocke & Kaaks, 1997). Such model 

assumptions include linear relations between the measurements and the true intake and 

independence of random errors between the measurements (Ocke & Kaaks, 1997; Kaaks, 

1997). The assumption that errors are not correlated may not be true in the present case 

as the FFQ and the dietary record may have some sources of error in common , e.g food 

composition tables (Willett, 1998b). The validity coefficients for the FFQ and the dietary 
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record may thus be overestimated and should be interpreted as the upper limits of the true 

validity coefficients (Kaaks, 1997).  

  

In summary it can be said that while Bland-Altman plots suggest that validity was not 

complete ly satisfactory, all the other statistical tests that were conducted point to 

satisfactory validity of our FFQ in assessing dietary antioxidant intake.   

   

Conclusions and recommendations 

 

In order to assess dietary antioxidant intake, a FFQ was developed that measured vitamin 

C, vitamin E, carotenoid, and flavonoid intake. This FFQ was then assessed for 

reproducibility and validity. For this reproducibility and validity testing, the sample size 

used was relatively small when compared to other studies and this must be taken into 

account when interpreting the results.  

   

In this study, several statistical tests were used to assess the reproducibility and validity of 

the FFQ as no single statistical test can provide the answer regarding reproducibility and 

validity. In addition, the interpretation of the Bland-Altman test relies on subjective 

judgement and this must be borne in mind when analysing the results. For the purposes of 

this study, we used RDA values as cut-offs to judge the width of the LOAs, and have 

shown that these indicators can be successfully used to judge the clinical significance of 

the width of the LOA. 

 

While results from Bland-Altman plots do not indicate satisfactory reproducibility for vitamin 

C, the reproducibility of the FFQ was deemed satisfactory for the other nutrients assessed, 

based on the Bland-Altman method. Satisfactory reproducibility for the present FFQ for all 

nutrients was however indicated by similar nutrient intake means, moderately to strong 

correlation coefficients and a high percentage of individuals classified correctly into 

quartiles of intake on both administrations of the FFQ. Thus, these results point to 

satisfactory reproducibility for the present FFQ.  

 

The validity of the FFQ was assessed using the same statistical techniques as the 

reproducibility testing. In addition, a SEM (method of triads) was constructed to assess 

validity further.  Satisfactory validity was indicated by similar frequency of intake of food 

items between the 28-day dietary record and the three FFQ values, satisfactory correlation 
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coefficients and quartile classifications as well as moderate to strong validity coefficients. 

However, in terms of the Bland-Altman plots, the agreement between the three FFQ 

values and the 28-day dietary record was not deemed completely satisfactory. The fact 

that the results of the other statistical tests conducted suggest satisfactory validity, points 

to satisfactory validity of the FFQ in assessing vitamin C and carotenoid intake.    

 

It must be borne in mind that the validity of the present FFQ was only tested in terms of 

vitamin C and carotenoids and this does not necessarily imply validity for vitamin E and 

flavonoid intake, because the most important food sources, especially for vitamin E, are 

not similar. It is therefore recommended that the validity of the FFQ in terms of vitamin E 

and flavonoids be determined in future studies. The lack of an observed association 

between plasma vitamin C levels and the intake of vitamin C may have been as a result of 

the small sample size. Therefore, in conclusion, despite the limitations set by the small 

sample size, the FFQ demonstrated satisfactory reproducibility and validity and can thus 

be used for its intended purpose.      

 

 

References 

 
Ambrosini GL, de Klerk NH, Musk AW & Mackerras D (2001) Agreement between a brief 

food frequency questionnaire and diet records using two statistical methods. Public 

Health Nutr 4, 255-264 

Andersen LF, Veierod MB, Johansson L, Sakhi A, Solvoll K & Drevon CA (2005) 

Evaluation of three dietary assessment methods and serum biomarkers as 

measures of fruit and vegetable intake, using the method of triads. Br J Nutr 93, 

519-527 

Bakker I, Twisk JW, van Mechelen W, Mensink GB & Kemper HC (2003) Computerization 

of a dietary history interview in a running cohort; evaluation within the Amsterdam 

Growth and Health Longitudinal Study. Eur J Clin Nutr 57, 394-404 

Benzie IF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr 

Physiol 136, 113-126 



 

 

109 

Bland JM & Altman DG (1986) Statistical methods for assessing agreement between two 

methods of clinical measurement. Lancet 1, 307-310 

Boeing H, Bohlscheid-Thomas S, Voss S, Schneeweiss S & Wahrendorf J (1997) The 

relative validity of vitamin intakes derived from a food frequency questionnaire 

compared to 24-hour recalls and biological measurements: results from the EPIC 

pilot study in Germany. European Prospective Investigation into Cancer and 

Nutrition. Int J Epidemiol 26 Suppl 1, S82-S90 

Bolton-Smith C, Casey CE, Gey KF, Smith WC & Tunstall-Pedoe H (1991) Antioxidant 

vitamin intakes assessed using a food-frequency questionnaire: correlation with 

biochemical status in smokers and non-smokers. Br J Nutr 65, 337-346 

Cao G, Booth SL, Sadowski JA & Prior RL (1998) Increases in human plasma antioxidant 

capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin 

Nutr 68, 1081-1087 

Decker EA & Clarkson PM (2000) Dietary sources and bioavailbality of essential and non-

essential antioxidants. In Handbook of Oxidants and Antioxidants in Exercise, pp. 

323-358 [Sen CK, Packer L and Hänninen O, editors]. Amsterdam: Elsevier. 

Dunn G (1989) Design and analysis of reliability studies: the statistical evaluation of 

measurement errors. New York: Oxford University Press. 

Elmstahl S, Gullberg B, Riboli E, Saracci R & Lindgarde F (1996) The Malmo Food Study: 

the reproducibility of a novel diet history method and an extensive food frequency 

questionnaire. Eur J Clin Nutr 50, 134-142 

Flegal KM & Larkin FA (1990) Partitioning macronutrient intake estimates from a food 

frequency questionnaire. Am J Epidemiol 131, 1046-1058 

Food and Nutrition Board IoM (2000) Dietary reference intakes for vitamin C, vitamin E, 

selenium, and carotenoids. Washington, DC: National Academic Press. 



 

 

110 

Fornes NS, Stringhini ML & Elias BM (2003) Reproducibility and validity of a food-

frequency questionnaire for use among low-income Brazilian workers. Public Health 

Nutr 6, 821-827 

George GC, Milani TJ, Hanss-Nuss H & Freeland-Graves JH (2004) Development and 

validation of a semi-quantitative food frequency questionnaire for young adult 

women in the southwestern United States. Nutrition Research 24, 29-43 

Harlan LC & Block G (1990) Use of adjustment factors with a brief food frequency 

questionnaire to obtain nutrient values. Epidemiology 1, 224-231 

Hopkins WG (2004) Bias in Bland-Altman but not regression validity analyses. Sportsci 8, 

42-46 

Horwath C (1990) Food frequency questionnaires: a review. Australian Journal of Nutrition 

and Dietetics 47, 71-76 

Jackson M, Walker S, Cade J, Forrester T, Cruickshank JK & Wilks R (2001) 

Reproducibility and validity of a quantitative food-frequency questionnaire among 

Jamaicans of African origin. Public Health Nutr 4, 971-980 

Johansson I, Hallmans G, Wikman A, Biessy C, Riboli E & Kaaks R (2002) Validation and 

calibration of food-frequency questionnaire measurements in the Northern Sweden 

Health and Disease cohort. Public Health Nutr 5, 487-496 

Kaaks R, Riboli E, Esteve J, van Kappel AL & van Staveren WA (1994) Estimating the 

accuracy of dietary questionnaire assessments: validation in terms of structural 

equation models. Stat Med 13, 127-142 

Kaaks RJ (1997) Biochemical markers as additional measurements in studies of the 

accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 

65, 1232S-1239S 

Kabagambe EK, Baylin A, Allan DA, Siles X, Spiegelman D & Campos H (2001) 

Application of the method of triads to evaluate the performance of food frequency 



 

 

111 

questionnaires and biomarkers as indicators of long-term dietary intake. Am J 

Epidemiol 154, 1126-1135 

Kobayashi M, Sasaki S & Tsugane S (2003) Validity of a self-administered food frequency 

questionnaire used in the 5-year follow-up survey of the JPHC Study Cohort I to 

assess carotenoids and vitamin C intake: comparison with dietary records and 

blood level. J Epidemiol 13, S82-S91 

Kumanyika S, Tell GS, Fried L, Martel JK & Chinchilli VM (1996) Picture-sort method for 

administering a food frequency questionnaire to older adults. J Am Diet Assoc 96, 

137-144 

Kumanyika SK, Tell GS, Shemanski L, Martel J & Chinchilli VM (1997) Dietary assessment 

using a picture-sort approach. Am J Clin Nutr 65, 1123S-1129S 

Langenhoven M, Kruger M, Gouws E & Faber M (1991a) MRC Food Composition Tables, 

Parow: Medical Research Council 

Langenhoven M, Kruger M, Gouws E & Faber M (1991b) MRC Food Quantities Manual, 

Parow: Medical Research Council 

Levine M, Conry-Cantilena C, Wang Y, et al  (1996) Vitamin C pharmacokinetics in healthy 

volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S 

A 93, 3704-3709 

Macintyre UE, Venter CS & Vorster HH (2001a) A culture-sensitive quantitative food 

frequency questionnaire used in an African population: 1. Development and 

reproducibility. Public Health Nutr 4, 53-62 

Macintyre UE, Venter CS & Vorster HH (2001b) A culture-sensitive quantitative food 

frequency questionnaire used in an African population: 2. Relative validation by 7-

day weighted records and biomarkers. Public Health Nutr 4, 63-71 

Mangels AR, Holden JM, Beecher GR, Forman MR & Lanza E (1993) Carotenoid content 

of fruits and vegetables: an evaluation of analytic data. J Am Diet Assoc 93, 284-

296 



 

 

112 

McKeown NM, Day NE, Welch AA, Runswick SA, Luben RN, Mulligan AA, McTaggart A & 

Bingham SA (2001) Use of biological markers to validate self-reported dietary 

intake in a random sample of the European Prospective Investigation into Cancer 

United Kingdom Norfolk cohort. Am J Clin Nutr 74, 188-196 

Munger RG, Folsom AR, Kushi LH, Kaye SA & Sellers TA (1992) Dietary assessment of 

older Iowa women with a food frequency questionnaire: nutrient intake, 

reproducibility, and comparison with 24-hour dietary recall interviews. Am J 

Epidemiol 136, 192-200 

Ocke MC & Kaaks RJ (1997) Biochemical markers as additional measurements in dietary 

validity studies: application of the method of triads with examples from the 

European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 65, 

1240S-1245S 

Pietinen P, Hartman AM, Haapa E, Rasanen L, Haapakoski J, Palmgren J, Albanes D, 

Virtamo J & Huttunen JK (1988) Reproducibility and validity of dietary assessment 

instruments. I. A self-administered food use questionnaire with a portion size picture 

booklet. Am J Epidemiol 128, 655-666 

Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63, 1035-1042 

Porrini M, Gentile MG & Fidanza F (1995) Biochemical validation of a self-administered 

semi-quantitative food-frequency questionnaire. Br J Nutr 74, 323-333 

Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J 

Clin Nutr 78, 570S-578S 

Rankin G & Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration 

of appropriate statistical analyses. Clin Rehabil 12, 187-199 

Schroder H, Covas MI, Marrugat J, Vila J, Pena A, Alcantara M & Masia R (2001) Use of a 

three-day estimated food record, a 72-hour recall and a food-frequency 

questionnaire for dietary assessment in a Mediterranean Spanish population. Clin 

Nutr 20, 429-437 



 

 

113 

Senekal M & Steyn NP (2004) Food Photo Manual, Parow: Medical Research Council. 

Shils ME, Olson JA, Shike M & Ross AC (1999) Modern Nutrition in Health and Disease, 

9th ed. Philadelphia: Lippincott Williams & Wilkins. 

Steyn NP, Nel JH & Casey A (2003) Secondary data analyses of dietary surveys 

undertaken in South Africa to determine usual food consumption of the population. 

Public Health Nutr 6, 631-644 

Stipanuk MH (2000) Biochemical and Physiological Aspects of Human Nutrition, 1st ed. 

Philadelphia: W.B. Saunders Company. 

Thompson FE & Byers T (1994) Dietary assessment resource manual. J Nutr 124, 2245S-

2317S 

U.S.Department of Agriculture (2003) USDA database for the flavonoid content of selected 

foods, Beltsville (MD): U.S. Department of Agriculture. 

Wei Y, Ota RB, Bowen HT & Omaye ST (1996) Determination of human plasma and 

leukocyte ascorbic acid by microtiter plate assay. Nutritional Biochemistry 7, 179-

186 

Willett WC (1998a) Invited commentary: comparison of food frequency questionnaires. Am 

J Epidemiol 148, 1157-1159 

Willett WC (1998b) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press. 

Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH & 

Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency 

questionnaire. Am J Epidemiol 122, 51-65 

Willett WC, Stampfer MJ, Underwood BA, Speizer FE, Rosner B & Hennekens CH (1983) 

Validation of a dietary questionnaire with plasma carotenoid and alpha-tocopherol 

levels. Am J Clin Nutr 38, 631-639 



 

 

114 

Zulkifli SN & Yu SM (1992) The food frequency method for dietary assessment. J Am Diet 

Assoc 92, 681-685 

 

 

 



 

 

115 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

 
ASSOCIATION BETWEEN ANTIOXIDANT STATUS AND MnSOD ALA-

9VAL POLYMORPHISM IN TRAINED MALE ATHLETES (RUGBY 

PLAYERS) AND SEDENTARY MALE STUDENTS CONTROLLED FOR 

ANTIOXIDANT INTAKE: AN EXPLORATORY STUDY 
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Introduction 

 

Free radicals, including reactive oxygen species (ROS), are continuously produced as part 

of normal human metabolism (Spitzer, 1995). Although the production of these highly 

reactive molecules may be harmful and has been associated with various 

pathophysiological conditions such as the process of ageing and chronic degenerative 

diseases controlled amounts of these molecules are tolerated by cells and may be 

physiologically useful in various biological processes, including cell signalling, gene 

expression, and the body’s immune response (Suzuki et al., 1997; Halliwell, 1998; Allen & 

Tresini, 2000; Jackson et al., 2002). To protect against free radical attack and subsequent 

oxidative damage, antioxidant defence systems have developed (Halliwell & Gutteridge, 

1999; Benzie, 2000). These systems include both enzymatic and non-enzymatic 

antioxidants that work as a complex unit to minimize the generation and counter-act the 

potential oxidative damaging effects of ROS (Benzie, 2000). 

 

The balance between ROS production and antioxidants has been referred to as 

antioxidant status (Papas, 1996). A disturbance in this pro-oxidant-antioxidant balance in 

favour of the former leading to potential damage has been defined as oxidative stress 

(Sies, 1991). Oxidative stress can result from either depletion of antioxidants and/or due to 

an excess production of ROS (Halliwell, 1998). Physical exercise has been shown to 

increase the generation of free radicals, including ROS (Davies et al., 1982; Ashton et al., 

1998). In addition, several studies have reported that exercise resulted in increases in 

markers of oxidative stress in humans, including lipid peroxidation, protein oxidation and 

DNA oxidation products (Dillard et al., 1978; Hartmann et al., 1995; Niess et al., 1996; 

Alessio et al., 2000; Lee et al., 2002). Others have reported decreases in antioxidant 

status and antioxidant levels following exercise, which points to a compromised antioxidant 

defence due to increased ROS production (Duthie et al., 1990; Lee et al., 2002; Groussard 

et al., 2003; Quindry et al., 2003). Findings regarding exercise-induced oxidative stress are 

however not consistent and some do not report increases in oxidative stress markers or 

decreases in antioxidant status in response to exercise (Duthie et al., 1990; Viguie et al., 

1993; Rokitzki et al., 1994b; Mastaloudis et al., 2001).    

   

Although some forms of exercise may increase ROS and subsequently result in oxidative 

stress, regular exercise training has been associated with an improvement in antioxidant 

status (Brites et al., 1999; Evelson et al., 2002; Cazzola et al., 2003). Currently there is no 



 

 

117 

clear explanation for this apparent paradox, but there is growing evidence that the 

antioxidant system is capable of adapting to chronic exposure to oxidants, which may be 

the case with exercise training (Oberley et al., 1987; Ji, 1998; Powers & Lennon, 1999). 

The majority of studies have reported that endurance training results in the up -regulation 

of SOD and GPX activity in skeletal muscle in rats (for summary of studies see Ji, 1998; 

Powers & Lennon, 1999). Human studies comparing oxidative stress markers and 

antioxidants in trained and sedentary subjects have produced equivocal results.  Plasma 

total antioxidant status as well as individual nonenzymatic plasma antioxidants were found 

by some to be higher in trained subjects compared to untrained subjects (Brites et al., 

1999; Evelson et al., 2002; Cazzola et al., 2003). In contrast, others have reported no 

differences in plasma antioxidant levels between trained and untrained subjects 

(Robertson et al., 1991; Rokitzki et al., 1994a; Balakrishnan & Anuradha, 1998).  

 

These discrepancies in findings may be explained to some extent by study design and 

subject related factors, including differences in the training status of subjects as well as the 

dietary antioxidant intake. The effect of dietary antioxidant intake on antioxidant status is 

often poorly controlled for, and may therefore have influenced some of the study findings.    

 

A further factor that may influence antioxidant sta tus is inter-individual genetic variation 

(Sen & Goldfarb, 2000). Human genetic variation is quite common and single nucleotide 

polymorphisms (SNP’s) are responsible for the majority of the variants (Forsberg et al., 

2001; Morgenstern, 2004). Although some single nucleotide polymorphisms in genes 

encoding antioxidant enzymes have been described, the influence of these on antioxidant 

status and susceptibility to oxidative stress in an exercise training context is unknown 

(Forsberg et al., 2001). A polymorphism in the gene encoding the MnSOD enzyme, 

involving an Alanine (GCT) - Valine (GTT) amino acid change, was described by 

Rosenblum et al. (1996)2. The variant allele of the gene is quite common, with similar 

allele frequencies of about 50% occurring for the two alleles at nucleotide position -28 in 

the Caucasian population (Ambrosone et al., 1999). Rosenblum et al., 1996 suggested 

that the MnSOD Ala allele is associated with decreased protection against superoxide 

radicals in the mitochondria and thus increased oxidative stress, as the transport of the 

enzyme into the mitochondria, where it is biologically active, seems to be affected. The 

                                                 
2 Note alternative numbering for the MnSOD polymorphism:  DNA change: C to T change at base 47 

(47C→T); Protein change: Alanine to Valine amino acid change at codon 16 (Ala16Val) 
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effect of MnSOD genotype on training related antioxidant status has to our knowledge not 

been investigated yet.  

 

Based on the inconsistent results observed in studies investigating antioxidant status and 

oxidative stress in relation to exercise training, it is not clear whether athletes have greater 

antioxidant needs and at this point in time there is not sufficient evidence to recommend 

increased antioxidant intakes by athletes, despite the fact that this is a common practice 

(Froiland et al., 2004; Kristiansen et al., 2005). More research is needed that considers as 

many as possible of the confounding factors in order to better identify those in need of 

additional antioxidants. Therefore, the aim of this study was to investigate the association 

between the MnSOD Ala-9Val (-28C→T) polymorphism, the total antioxidant status and 

selected plasma indicators of antioxidant status in trained male athletes (rugby players) 

and sedentary male students while controlling for dietary intake of the major antioxidants. 

 

 

Materials and methods 

Study design 

A cross-sectional study design was used to compare antioxidant status in trained and 

sedentary male subjects with different MnSOD genotypes, while controlling for dietary 

antioxidant intake.  

 

Study sample and sampling  

Sample size calculation for optimal statistical power resulted in a total sample size 

(including trained and sedentary group) of 329 to 341 (personal communication, 2005, Dr. 

C. Lombard, Institute for Biostatistics, Medical Research Council). As it was not feasible 

within the scope of this study to attain the sample size, the study should be deemed as an 

exploratory study.  

 

For the trained subjects, male volunteers from the university rugby club were recruited. 

The definition of trained subjects was based on other similar studies, where subjects who 

trained between five and eight hours a week and played matches once a week for at least 

the season, were included (Brites et al., 1999; Evelson et al., 2002; Chang et al., 2002; 

Schippinger et al., 2002). For the purposes of this study, rugby players training at least 1½ 

hours a day three days a week and participating in matches at least once a week during 

the season for the past month, were included.  
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The sedentary subject group consisted of male students enrolled at the university. The 

definition of sedentary subjects was based on the guidelines for physical activity and 

health formulated by the US Department of Health and Human Services, which 

recommends 30 minutes or more of moderate -intensity physical activity on all, or most, 

days of the week (US Department of Health and Human Services. Physical activity and 

health: a report of the Surgeon General, 1996).  Therefore, for this study, male students 

who did not meet these requirements were included (a student who did 30 minutes of 

moderate intensity physical activity two times or less per week qualified for participation).  

 

Only healthy subjects between the ages of 18-25 who did not smoke more than 10 

cigarettes per day were included. As dietary supplement use in common among athletes 

and students in general (Froiland et al., 2004; Kristiansen et al., 2005; Seele & Senekal, 

2005), both dietary supplement users and non-users took part in the study. Supplement 

use was controlled for in the assessments.  

 

Subjects were recruited over a four-month period between August and November over two 

consecutive years. The months correspond with the middle and end of the rugby season, 

which ensured that the rugby players were most likely to be fit. In addition the possible 

effect of seasonal variation on dietary intake was also accommodated in this way. The 

recruitment procedure for the rugby players involved an introductory lecture to all members 

of the university rugby club in which the aims and requirements of the study were briefly 

explained. A similar procedure was followed for the sedentary students, with introductory 

lectures given to residents of the university male residences at meal times, followed by an 

invitation to participate in the study.  

 

Volunteers for the two different groups were subjected to a screening interview. 

Information regarding the type, frequency, duration and intensity of physical exercise or 

sport during a typical week; the presence of chronic diseases or illness; and present and 

past smoking habits was obtained during this session in order to determine whether 

subjects met the inclusion criteria of this study. Note that the physical activity levels, health 

and smoking related information documented during the screening interview were not 

further quantified and analysed for the present study.  

 

The subjects were required to give written informed consent and the study was approved 

by the Ethics Committee for Human Research of the University of Stellenbosch.  
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Experimental methods and procedures 

Blood sampling 

For the analysis of plasma antioxidant status and MnSOD genotyping blood samples were 

collected from each subject. For the rugby players, blood samples were taken before a 

training session. Rugby players were encouraged to refrain from exercising for at least 24 

hours before the blood drawing to prevent any effects of acute exercise on circulating 

levels of antioxidant nutrients.  For the sedentary subjects, blood was drawn at rest. Blood 

samples for the analysis of plasma vitamin C, plasma carotenoids and total plasma 

antioxidant capacity were collected in lithium heparin tubes protected from light and kept 

on ice. The blood samples were centrifuged within an hour of collection at 4500 rpm for 15 

minutes at 4oC. Plasma fractions were aliquoted into Eppendorfs. Plasma for carotenoids 

and for total antioxidant status analysis was stored at -70oC until analysis within three 

months. Plasma for the vitamin C analysis was prepared as follows: the plasma layer was 

transferred to an Eppendorf and an equal volume of 10% trichloroacetic acid (TCA) was 

added in order to stabilise samples. Each tube was vortexed for 3 minutes and centrifuged 

at 4500 rpm for 15 minutes at 4oC. The supernatant was removed, placed in an Eppendorf 

and frozen at  -70oC until analysis 24 hours later. Blood samples for MnSOD genotyping 

was collected in EDTA tubes and kept at 3oC until analysis. 

 

Survey instrument (questionnaire) and administration thereof 

Each subject was required to attend a face to face interview with the primary researcher 

during which information regarding dietary antioxidant intake, dietary supplement use, 

sociodemographics and weight status was collected (Addendum 1). The interview took 

place within one week of the blood drawing.  

 

Dietary antioxidant intake 

Subjects were required to provide information regarding their dietary antioxidant intake 

over the past month. For these purposes a quantified food frequency questionnaire was 

developed to determine intake of vitamin C, vitamin E, carotenoids and flavonoids 

(Addendum 1). The development and validation of this questionnaire is described in the 

first paper of this thesis (Chapter 3). The picture-sort method (Kumanyika et al., 1996) was 

used to administer the FFQ. Subjects were requested to sort the food cards (Senekal & 

Steyn, 2004) into three separate piles based on the frequency of consumption over the 

previous month, namely never, sometimes or frequently during the past month. The cards 

corresponding to foods never eaten were placed aside and no further information 
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regarding those foods was collected. Food items included in the FFQ that were not 

represented by a photograph, such as vitamin C containing sweets, were asked about 

separately. Subjects were then required to give detail regarding the exact frequency of 

consumption (per day / per week / per month) and the usual portion size of the food items 

that were consumed sometimes or frequently. Visual aids were used to ensure accurate 

portion size estimation. Life size line drawings depicting small, medium or large servings of 

fruit and some vegetable items were used (Senekal & Steyn, 2004) as well as a three-

dimensional amorphous flour model of half a cup. For the latter, subjects could indicate 

portion size as half the size, the same size, one-and-a-half times the size or twice the size 

of the standard portion size. In addition, life size line drawings of different sizes of cups, 

glasses, bowls and spoons were used (Senekal & Steyn, 2004). 

 

Dietary analysis  

The vitamin C and E content of foods was determined using Foodfinder III (Nutritional 

Intervention Research Unit and  Research Information Systems Division of the Medical 

Research Council, South Africa: MRC, 2002). For the determination of carotenoid content, 

Foodfinder III was used for most foods. Carotenoid content for foods for which no values 

were indicated in Foodfinder III, the US database for carotenoids was used (Mangels et al., 

1993). Total carotenoid intake was calculated by adding the intake of the following 

carotenoids: ß-carotene, a-carotene, lutein, lycopene and cryptoxanthin.  For the 

determination of the flavonoid content of foods, the US database for flavonoids 

(U.S.Department of Agriculture, 2003) was used as Foodfinder III does not include 

flavonoid content data. For the analysis of dietary data, usual portion size for each food 

item was converted to grams, using the South African MRC Food Quantities Manual 

(Langenhoven et al., 1991) and the Food Photo Manual (Senekal & Steyn, 2004). In order 

to calculate the total intake of a particular nutrient, the estimated portion size was 

converted to grams, which was then multiplied by the frequency of intake and the nutrient 

content/100g of each food item. This was transformed to reflect nutrient intake per day by 

dividing the total nutrient intake by seven (if eaten weekly) or 28 (if eaten monthly). This 

process was repeated for each food item and the total daily intake (mg/day) of vitamin C, E, 

carotenoids and flavonoids was calculated by adding the data from each food item.     

  
Dietary supplement use 

For the purposes of this study dietary supplements were defined as products containing 

one or more vitamins, minerals, herbals and/or botanicals.  
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Amino acid, protein and carbohydrate supplements were also included in the definition.  

 

Subjects who indicated that they had taken a dietary supplement during the previous 

month were requested to specify the type of supplement(s) they had used, as well as the 

dosage, frequency and duration of use. The vitamin C, vitamin E, carotenoid and flavonoid 

content of each supplement was determined by analysing the nutritional information 

supplied on the supplement containers and/or dietary supplement company websites. This 

quantity was multiplied by the dosage and frequency of intake for each nutrient and the 

value was transformed to reflect nutrient intake per day by dividing the total nutrient intake 

by 7 (if taken weekly) or 28 (if taken monthly). The individual nutrient intake from individual 

supplements was finally added together to obtain total daily supplement nutrient intake for 

each subject where applicable. The supplement nutrient intake was added to the nutrient 

intake obtained from food to provide a total nutrient intake value. 

 

Sociodemographic related information 

Subjects were requested to provide information regarding their birthdates and ages as part 

of the questionnaire.   

 

Weight status 

Weight status assessment was done for descriptive purposes only and was measured 

using the body mass index (BMI). For these purposes the height and weight of subjects 

was measured. The weight of the subjects was measured, to the nearest 0.1kg, in light 

clothing and without shoes using a calibrated electronic scale. Subjects were measured 

while standing in the centre of the scale without support and with weight distributed evenly 

on both feet, while looking directly in front of them. Height without shoes was measured to 

the nearest 0.1cm with a stadiometer. Subjects stood with their feet together and heels, 

buttocks, scapulae and back of the head touching the vertical surface of the stadiometer; 

the head was placed in the Frankfort horizontal plane. Subjects were then asked to inhale 

deeply and hold their breath before the measurement was taken. The body mass index 

(BMI) was calculated by dividing weight (kg) by the square of height (m2) (Bastow, 1982). 

 

Biochemical methods 

Plasma total antioxidant capacity 

Total antioxidant capacity of plasma was measured using the Oxygen Radical Absorbance 

Capacity (ORAC) assay, which measures the capacity of antioxidants to directly quench 
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free radicals produced by a biological radical source (Prior & Cao, 1999; Huang et al., 

2005). The principle of the ORAC assay is based on the reaction between a fluorescent 

probe and free radicals. Free radical damage to the probe results in a change in 

fluorescence intensity, and the change of intensity is an index of the degree of free radical 

damage. In the presence of antioxidants, free radical damage is inhibited, which is 

reflected in protection against the change of probe fluorescence. The inhibition of free 

radical damage by the antioxidant is a measure of its antioxidant capacity against the free 

radical (Huang et al., 2002). The ORAC assay was first developed by Cao and co-workers 

(Cao et al., 1993) and then improved by a number of researchers (Naguib, 2000; Ou et al., 

2001; Huang et al., 2002).    

 

The determination of ORAC in the present study was done according to the method 

described by Huang et al., (2002) and Ou et al., (2001). Plasma was thawed and diluted 

150 times with pH 7.4 phosphate buffer. The following solutions were used: 75mM 

phosphate buffer, Trolox standard solutions of 6.25µM, 12.5 µM, 25 µM and 50 µM, 53mM 

2,2´-azobis(2-amidinopropane)dihydrochloride (AAPH) and 8.16x10-5 mM fluorescein 

solution (Huang et al 2002). For quality control purposes plasma from a volunteer was 

aliqouted into Eppendorfs and a sample was used in every run. For the analysis of sample 

150 µl fluorescein solution was pipetted into the wells of a black 96 well microplate, 

followed by triplicates of 25 µl of Trolox standards and plasma respectively. The plate was 

incubated in a Biotek FLX800 Microplate Fluorescence Reader at 370C for 10 minutes 

before AAPH was solution was added to initiate the reaction. The fluorescence intensity 

was measured every minute for 35 min at 37oC using fluorescence filters for an excitation 

wavelength of 485±20nm and an emission wavelength of 530±25nM. As the reaction 

progresses, fluorescein is consumed and the FL intensity decreases. In the presence of 

antioxidant, the FL decay is inhibited.   

 

ORAC data was calculated as follows: The area under the kinetic curve (AUC) of the 

samples and standards was calculated using Formula 1 below.  

 
 AUC = 0.5 + f1/f0 + … fi/f0 + f34/f0 + 0.5(f35/f0)                       [Formula 1] 

where f0 = initial fluorescence reading at 0 minutes and  

fi = fluorescence reading at time i. 

 
The net AUC was calculated using Formula 2. 

 
Net AUC = AUCsample – AUCblank               [Formula 2]     
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A standard curve was obtained by plotting the net AUC of each Trolox standard against 

the Trolox concentrations of the standard. ORAC values for samples were calculated using 

the regression equation between TROLOX concentration and net AUC and were 

expressed as micromole Trolox equivalents per litre. Normal ORAC values that have been 

reported range between 7780 ± 467 µmol Trolox equivalents/l (Ou et al., 2001) and 9024.7 

µmol Trolox equivalents/l (Huang et al., 2002).  

 
Plasma vitamin C 

For the measurement of plasma vitamin C levels the method of Wei et al., (1996) was 

followed, which involves a microtiter plate assay that measures the ascorbic acid content 

in plasma using the 2,4-dinitrophenylhydrazine reaction with ketonic acid groups of 

dehydroascorbic acid. For this assay, a Biotek EL800 Universal Microplate Reader was 

used together with untreated 96-well microplates. The reagents that were used included a 

10% TCA solution, a DNPH/thiourea/copper (DTC) solution and a 65%H2SO4 solution. The 

TCA-stabilised plasma was thawed and centrifuged at 14000 rpm for 30 minutes at 4oC. 

Three 100µl aliquots of each sample were placed into separate Eppendorfs. Standard 

ascorbic acid solutions varying from 0.0 to 2.0 µg of ascorbic acid/100µl were prepared in 

Eppendorfs. 20 µl of DTC solution was added to all samples and standards. Tubes were 

gently vortexed and thereafter incubated in a water bath at 37oC for two hours. Samples 

were vortexed every 30 minutes during the incubation period. After incubation, samples 

were placed on ice and 150 µl ice-cold H2SO4 was added. Samples were vortexed and 

kept in the dark at room temperature for one hour with gentle vortexing after the first 30 

minutes. Samples were transferred to a 96-well plate and read on a Biotek EL800 

Universal Microplate Reader at 515nm. Means were calculated for triplicate readings and 

sample vitamin C concentrations were obtained from the standard curve. Vitamin C 

concentrations were expressed as mg/dl. For quality control purposes, plasma from a 

volunteer was prepared as necessary, aliqouted into Eppendorfs and a sample was used 

in every run. Normal plasma vitamin C levels are between 0.4mg/dl and 1.5mg/dl, with 

values below 0.2mg/dl indicating deficiency (Shils et al., 1999). 

 

Plasma carotenoid  

Carotenoid levels in plasma or serum are ideally measured using high performance liquid 

chromatographic (HPLC) approaches (Craft, 1992). As this technique has not been set up 

in our laboratory, carotenoid levels in plasma in the present study were colorimetrically 

analysed based on the method of (Neeld & Pearson, 1963). A 0.5mg/ml ß-carotene stock 
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solution was prepared by dissolving 12.5 mg of all-trans ß-carotene in a few milliliters of 

chloroform. The solution was brought to exactly 25 ml with hexane. From this stock 

solution, an intermediate standard was prepared by diluting 250 µl of the stock solution in 

24.75 ml hexane. The intermediate solution was used to prepare working standards of 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 µg ß-carotene/ml by diluting the intermediate solution 

further with the appropriate volumes of hexane. Plasma samples were thawed and plasma 

proteins were precipitated with ethanol. This was done by mixing 100 µl of plasma with 

100 µl 95% ethanol in an Eppendorf after which 150 µl of hexane was added and the 

solution vortexed for two minutes to extract the carotenoids. Solutions were then 

centrifuged for 7 minutes at 3000 rpm to achieve a clean phase separation. 100 µl of the 

hexane extract of each sample as well as 100 µl of each standard solution was pipetted 

into a 96-well microplate in triplicate and read against a hexane blank on a Biotek EL800 

Universal Microplate Reader at 450 nm. Calculation of plasma carotenoid levels involves 

calculating a carotene factor (FC) using the Formula 3.  

 

FC450 = (µg carotene/ml)/A450                          [Formula 3] 
 
where A450 is the absorbance of the standard at 450 nm.  

 

Formula 4 was then used to calculate the plasma values for carotenoids for each sample:  

 

Total carotenoids (as µg ß-carotene/dl) = A450 x FC450 x 150                   [Formula 4] 
 

where FC450 is the constant determined for each laboratory and 150 accounts for dilution factors.  
 

A quality control sample was included in every run. No cut-off values or normal levels of 

plasma carotenoid values have as yet been published. However, the developers of this 

method reported carotenoid values of between 63.5µg/dl and 180.6µg/dl for human 

plasma (Neeld & Pearson, 1963). 

 

MnSOD genotyping 

MnSOD genotyping was done by GeneCare Molecular Genetics (Pty) Ltd.  using a real-

time polymerase chain reaction (PCR) method. 

 

Statistical analysis 

Data was analysed using the Statistical Programme for Social Sciences (SPSS) version 14 

for Windows (SPSS 14.0, Chicago, Ill 2006). Means, standard deviations, medians and 
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25th and 75th percentiles were calculated as appropriate for applicable variables for 

descriptive purposes. Sociodemographic and anthropometric differences between rugby 

players and sedentary subjects were analysed using the unpaired student t-test. The 

Pearson’s Chi-squared test was used to assess significant differences in supplement use 

and genotype distribution between the two groups. Genotype distribution within the total 

group and for the rugby and sedentary groups separately was analysed for Hardy-

Weinberg equilibrium and deviations were assessed using Pearson’s Chi-squared test.  

 

Spearman rank correlation coefficients were calculated to determine association between 

dietary intake and plasma concentrations of vitamin C and carotenoid respectively.  

 

To determine the effect of activity group (rugby players versus sedentary subjects) and 

MnSOD genotype (Ala/Ala, Ala/Val, Val/Val) on plasma antioxidant concentrations while 

controlling for dietary intake, three univariate general linear models (GLM) were 

constructed for plasma vitamin C, plasma carotenoids and total plasma antioxidant status 

as dependent variables in each case. Activity group and MnSOD genotype were the 

independent variables and dietary antioxidant intake was entered as a covariate. When 

plasma vitamin C was the dependent variable, dietary vitamin C intake was entered as 

covariate, while carotenoid intake was the covariate for plasma carotenoid. For total 

antioxidant status as dependent variable, dietary intake of vitamin C, vitamin E, 

carotenoids and flavonoids were entered as covariates. Differences were considered 

significant at values of P < 0.05. 

 

 

Results 

 

Subjects 

The trained group included 76 rugby players, while the control group included 39 

sedentary students. The characteristics of the study population are displayed in Table 1. 

Both groups were of similar age. The trained group weighed significantly more and had a 

higher BMI than the sedentary group. Dietary supplement use was non-significantly higher 

in the rugby players compared to the sedentary students, with about three-quarters of 

rugby players and two-thirds of sedentary subjects reporting dietary supplement use in the 

past month.  
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Table 1: Characteristics of the study sample  

 
Rugby players 

(n = 76) 

Sedentary students 

(n = 39) 

p value* 

Age (yrs) (mean±SD) 20.6 ± 1.8 20.6 ± 1.5 0.84 

Height (m) (mean±SD) 1.83 ± 0.07 1.80 ± 0.07 0.05 

Weight (kg) (mean±SD) 92.3 ± 13.3 79.5 ± 12.5 0.00 

BMI (kg/m2) (mean±SD) 27.5 ± 3.6 24.4 ± 3.0 0.00 

Supplement use (n (%)) 56 (73.7) 25 (64.1) 0.29 (Chi-square) 

* Independent sample t-test except where otherwise indicated 

BMI = Body mass index 

 

 

Genotype distribution  

Table 2 shows the distribution of the MnSOD genotype for the rugby players and 

sedentary group as well as for the total group. Both groups displayed similar genotype 

distributions (Pearsons Chi-square, p=0.81), with an allele frequency of about 0.5. All 

distributions were in agreement with the Hardy-Weinberg equilibrium (Addendum 4). 

 

Table 2: MnSOD genotype distribution 

 Rugby players 
(n =76) 

Sedentary students 
(n = 39) 

Total group 
(n = 115) 

Ala/Ala 19 (25.0) 11 (28.2) 30 (26.1) 

Val/Ala 40 (52.6) 18 (46.2) 58 (50.4) 

Val/Val 17 (22.4) 10 (25.6) 27 (23.5) 

Values are n (%) 
 
 

Dietary antioxidant intake  

The dietary intakes from foods alone and from foods combined with dietary supplements of 

vitamin C, vitamin E, carotenoids and flavonoids are displayed in Table 3. Dietary intakes 

for all nutrients were similar for trained and sedentary subjects. Nutrient intake from 

supplements was also similar between the groups. For the rugby players, the contribution 

of dietary supplements to intake for the various nutrients was as follows: 50% for vitamin C, 

44% for vitamin E and 2% for carotenoids. No flavonoid containing supplements were 

used. A similar pattern was observed for the sedentary group for vitamin C, carotenoid and 

flavonoid intake with supplements contributing 52%, 1% and 0% respectively to intake. 

Supplements contributed slightly less to vitamin E intake in this group (28%) than in the 



 

 

128 

rugby players. The relationship between dietary vitamin C and carotenoid intake and their 

respective plasma concentrations is shown in Table 4. Dietary vitamin C intake displayed a 

significant correlation with plasma vitamin C levels for the total group only. Carotenoid 

intake and plasma carotenoid showed a significant association only in the rugby group. 

However, these correlations need to be interpreted with caution as the correlation 

coefficients (r) were on the low side.   

 

Table 3: Dietary antioxidant intakes (mg/day) in rugby players and sedentary controls.   

 Rugby players (n = 76) Sedentary subjects (n = 38) 
 Total * Food only Total * Food only 

Vitamin C     
Mean ± SD 252.1 ± 232.7 127.2 ± 74.6 219.6 ± 234.6 104.7 ± 61.5 

Median  
(P 25th–75th) 

190.2  
(96.9–315.0) 

106.7  
(69.3–164.7) 

150.5  
(83.9–220.1) 

91.5  
(60.9–129.8) 

     
Vitamin E     

Mean ± SD 12.3 ± 15.8 6.9 ± 5.6 7.9 ± 6.2 5.7 ± 4.4 

Median  
(P 25th – 75th) 

8.9  
(3.9–13.8) 

6.1  
(2.8–9.0) 

5.3  
(2.7–11.2) 

4.4  
(2.5–8.8) 

     
Carotenoids      

Mean ± SD 8.6 ± 7.9 8.4 ± 8.0 8.1 ± 4.7 8.0 ± 4.8 
Median  

(P 25th – 75th) 
6.7  

(3.8–9.7) 
6.6 (3.6–9.5) 6.5  

(4.4–11.2) 
6.5  

(4.3–11.2) 
     
Flavonoids     

Mean ± SD 76.9 ± 77.0 76.9 ± 77.0 107.4 ± 156.0 107.4 ± 156.0 

Median  
(P 25th – 75th) 

61.3  
(29.5–90.0) 

61.3  
(29.5–90.0) 

58.2  
(28.0–100.8) 

58.2  
(28.0–100.8) 

* Intake from food + supplements 

 

 

Table 4: Spearman rank correlation coefficients (r) between dietary vitamin C intake  

and plasma vitamin C concentrations and dietary carotenoid intake and plasma  

carotenoid concentrations.   

 Vitamin C Carotenoid 
 r p r p 

Total group* 0.21 0.03 0.17 0.08 

Rugby subjects (n = 76) 0.17 0.14 0.24 0.04 

Sedentary subjects ** 0.23 0.16 0.11 0.51 
* n = 115 for vitamin C and 114 for carotenoid 

** n = 39 for vitamin C and 38 for carotenoid 
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Antioxidant status  

Plasma vitamin C and carotenoid levels were significantly higher in the rugby players 

compared to the sedentary subjects (p<0.05) (Figs 1 and 2). For both groups, the plasma 

vitamin C and carotenoid values were within the expected ranges respectively (dotted lines 

in Figures 1 and 2).  Plasma total antioxidant capacity, measured by the ORAC assay, was 

similar in both groups of subjects, but tended to be higher in the rugby players (p = 0.09) 

(Fig 3). The observed ORAC values were in line with the expected values. As shown in 

Figures 1 – 3, the MnSOD genotype did not have a significant effect on plasma total 

antioxidant capacity or on plasma vitamin C and carotenoid levels in either subject group, 

with or without control for dietary intake. 
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Figure 1: Plasma vitamin C concentration (mg/dl) according to MnSOD genotype and physical 

activity group. *Significant difference between total rugby group and total sedentary group (p = 

0.005, univariate GLM). Dotted lines indicate adequacy values for plasma vitamin C levels (Shils et 

al., 1999). 

Rugby players (n=76) Sedentary students (n=39) 

  * 

>0.4mg/dl, 
adequate 

0.4-1.5 mg/dl,  
normal range 

< 0.2 mg/dl, 
deficient  
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Figure 2: Plasma carotenoid concentration (µg ß-carotene/dl) according to MnSOD genotype and 

physical activity group. 

* Significant difference between total rugby group and total sedentary group (p = 0.001, univariate 

GLM). ** Dotted line indicates estimated normal level as reported (Neeld & Pearson, 1963) 
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Figure 3: Total plasma antioxidant capacity (µmol Trolox equivalents/l) as measured by the ORAC 

assay according to MnSOD genotype and physical activity group. Dotted lines indicate estimated 

normal level as reported by Ou et al., (2001) (*) and Huang et al., (2002) (**).  
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Discussion  

 

In order to examine the link between antioxidant status and exercise training in more depth, 

the association between physical training, markers of plasma antioxidant status (plasma 

vitamin C, plasma carotenoids and plasma total antioxidant status) and genotype (MnSOD 

Ala-9Val polymorphism) was investigated while controlling for dietary antioxidant intake.  

 

As the sample size was smaller than the sample calculated for optimal statistical power, 

the present study should be viewed as an exploratory study. As it is the first study to 

examine the mentioned relationship, the results provide further insight into a very 

contentious field of research.  

 

In this study all three indicators of plasma antioxidant status point to a possible more 

satisfactory antioxidant status in trained subjects compared to sedentary controls. This 

statement can be motivated as follows: 

 

Plasma vitamin C for both groups were within the normal range (0.4 – 1.5 mg/dl, (Shils et 

al., 1999), indicating adequate vitamin C status and possibly vitamin C based antioxidant 

status. However, rugby players showed better plasma vitamin C levels compared to 

sedentary students in this study. Similarly to the findings in this study, others have also 

reported higher plasma vitamin C levels in soccer players (Brites et al., 1999; Cazzola et 

al., 2003) and rugby players (Evelson et al., 2002) compared to sedentary controls. 

However, this finding is not universal as other studies have reported that plasma vitamin C 

levels were not different between athletes and controls (Robertson et al., 1991; Fogelholm 

et al., 1992; Rokitzki et al., 1994a; Watson et al., 2005). With regards to vitamin C intake 

as an indicator of vitamin C status, mean intake (from foods and dietary supplements) in 

our study population was similarly high for both groups and was approximately two and a 

half times the current recommended dietary allowance (RDA) of 90mg/day for males (Food 

and Nutrition Board, 2000). When vitamin C intake was calculated from foods only, 

estimated intake was considerably less but was still above the RDA. Research by others 

indicates that vitamin C intake in athletes varies considerably and in male athletes is 

reported to range from 90 to 520 mg per day (Fogelholm et al., 1992; Cazzola et al., 2003; 

Peake, 2003; Rousseau et al., 2004; Lukaski, 2004; Watson et al., 2005). Our data thus 

supports the view that athletes generally consume adequate amounts of vitamin C even if 

supplements are not taken. Therefore, in this study, vitamin C status as assessed by 
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plasma vitamin C and dietary vitamin C intake was adequate in both groups, with rugby 

players showing an improved plasma vitamin C status compared to sedentary students.  

 

In this study vitamin E status was only assessed in terms of dietary intake. There was no 

difference in vitamin E intake between the groups, although the mean vitamin E intake was 

approximately 80% of the RDA of 15mg/day (Food and Nutrition Board, 2000) for the 

rugby players and only 50% for sedentary controls. This does suggest that rugby players 

may have a better dietary vitamin E status compared to sedentary students. Reported 

vitamin E intakes in our study were similar to what was reported by others (Cazzola et al., 

2003; Rousseau et al., 2004). The results of our study point to the possibility that vitamin E 

based antioxidant status may not be optimal in both study groups based on inadequate 

dietary vitamin E intake according to the RDA.  

 

With regards to plasma carotenoid adequacy, no reference values for normal ranges exist. 

Plasma levels in this study were however in line with values reported by other researchers 

in the general population (Neeld & Pearson, 1963). In this study, rugby players had higher 

plasma carotenoid levels than sedentary students. No other studies were found that 

compared plasma carotenoid levels between trained individuals and sedentary controls. 

However, Watson et al., (2005) reported that plasma ß-carotene was higher in athletes 

than in sedentary controls, which is in line with the finding in the present study. Concerning 

carotenoid intake, there is currently no RDA available and comparative data on the dietary 

intake of carotenoids in athletes is scarce. In this study, reported carotenoid intakes for 

rugby players were in line with the values reported by Rousseau et al., (2004) for athletes, 

but slightly higher than the reported values for sedentary controls. Therefore, in this study 

plasma carotenoid levels and carotenoid intake, suggest that carotenoid status is 

adequate for both groups, with the trained group showing better plasma carotenoid levels 

and thus possibly improved carotenoid based antioxidant status.  

 

When considering flavonoid intake as an indicator of flavonoid related antioxidant status, 

flavonoid intake in rugby players and sedentary controls was similar in this study. As no 

RDA values for flavonoid intake have as yet been established, the adequacy of intake in 

this study is not clear, but the intake does correspond to the reported range of intake in 

various populations (Pietta, 2000).  
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As the above indicators of plasma antioxidant status point to a more satisfactory plasma 

antioxidant status in rugby players, based on individual dietary antioxidants, the total 

plasma antioxidant status should reflect this difference. The observed ORAC values, which 

reflect total plasma antioxidant capacity, in this study were in line with values reported by 

others for plasma samples from the general population (Ou et al., 2001; Huang et al., 

2002). Furthermore, although not statistically significant, plasma total antioxidant capacity 

was higher in the rugby players in our study compared to the controls. This tendency may 

have become statistically significant with an increase in sample size. Plasma antioxidant 

capacity was also reported to be higher in soccer players (Brites et al., 1999; Cazzola et 

al., 2003) and rugby players (Evelson et al., 2002) when compared to sedentary controls. 

In contrast, Watson et al., (2005) reported that male athletes had lower antioxidant 

capacity than the sedentary male controls. However, it must be borne in mind that the 

methodology for total antioxidant capacity assessment varies between these studies. It 

has been shown that results from these various assays do not necessarily correlate and 

are therefore not necessarily automatically directly comparable (Cao & Prior, 1998).  It 

could thus be said that the findings of this study support the fact that that plasma 

antioxidant status may be more satisfactory in athletes compared to sedentary controls.   

 

When considering the effect of physical activity on antioxidant status, it has to be 

considered that acute exercise may cause transient increases in plasma antioxidants with 

returns to pre-exercise levels at rest (Duthie et al., 1990; Mastaloudis et al., 2001; Aguilo 

et al., 2003; Groussard et al., 2003). This may be attributed to the mobilization of 

antioxidant vitamins and other biologically active compounds such as carotenoids, from 

tissue pools and their transfer through the plasma to sites undergoing oxidative stress 

(Packer et al., 1989; Peake, 2003). Watson et al., (2005) suggested that this could account 

for the increases in circulating antioxidants seen in those exercising regularly as the 

antioxidants mobilised during acute exercise might spill over during the recovery into rest 

periods. In this study, rugby players were requested to refrain from exercising for 24 hours 

before the blood drawing to control for the acute effect of exercise on circulating levels of 

antioxidants. Thus, the finding that plasma levels of antioxidants were higher in rugby 

players than in sedentary controls is likely to be a “real” increase in plasma levels of 

antioxidants. If, however, the finding is due to the spill-over effect of acute exercise on 

circulating antioxidant levels, then the plasma levels of antioxidants may not be an 

accurate reflection of overall antioxidant status in athletes. The exercise-induced 

fluctuations in plasma antioxidant levels that have been reported in other studies may 
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necessitate additional assessments of antioxidant body stores, for example leukocytes for 

vitamin C status, as they may provide a better reflection of antioxidant status over the 

middle or long term (Mayne, 2003). Whether the mobilisation of antioxidants from body 

stores and their transfer through plasma actually depletes body stores is not clear and 

requires further investigation. If a depletion of antioxidant body stores does indeed occur, 

this would indicate that athletes may have a greater antioxidant requirement in order to 

replenish body stores.    

 

As mentioned in the introduction, a wide range of genes encoding antioxidant enzymes 

may play a role in oxidative stress susceptibility and antioxidant status, which could 

possibly explain the larger than expected inter-individual variation in oxidative stress 

markers in athletes as well as sedentary controls (Watson et al., 2005). The polymorphism 

investigated in this study was the MnSOD Ala-9Val polymorphism, which has previously 

been linked to cancer (Rosenblum et al., 1996; Ambrosone et al., 1999; Woodson et al., 

2003). The MnSOD genotype distribution, which has not yet been reported in a South 

African population, was 23.5% for Val/Val and 50.4% for Val/Ala and 26.1% for Ala/Ala, in 

our study, which is similar to what has been reported in other Caucasian populations 

(Ambrosone et al., 1999; Van Landeghem et al., 1999; Mitrunen et al., 2001). In the 

present study population, a specific MnSOD genotype was not associated with decreased 

plasma levels of carotenoids or vitamin C and total plasma antioxidant status.  While the 

sample size may have been a factor contributing to the lack of an association in this study, 

Tamimi et al., (2004) also did not find a significant interaction between MnSOD genotype 

and plasma antioxidant levels in their study that examined the role of MnSOD genotype in 

breast cancer risk in 1205 women. The researchers in the last mentioned study did not 

provide an explanation for their finding. We speculate thus that, in individuals with 

adequate dietary antioxidant intake, as was the case in the present study, the variant allele 

of the MnSOD gene does not result in increased risk of oxidative stress as the levels of 

antioxidants and the antioxidant capacity may be sufficient to counter the production of 

free radicals and ROS.       

 

In the assessment of the association between plasma antioxidant status, physical activity 

and genotype the confounding effect of differences in dietary antioxidant intake should 

always be considered as plasma antioxidant vitamin levels are generally influenced by the 

dietary antioxidant intake (Block et al., 2001; Record et al., 2001; Cazzola et al., 2003; 

Nelson et al., 2003; Anlasik et al., 2005). In our study, there were weak indications that 
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dietary antioxidant intake were reflected in plasma antioxidant levels. With regards to 

vitamin C, the correlation between dietary vitamin C intake and plasma vitamin C levels 

was statistically significant albeit weak. It must be borne in mind that  plasma vitamin C 

levels are tightly controlled by saturable/dose dependent absorption and renal excretion 

(Shils et al., 1999). According to Levine et al., (1996) plasma vitamin C concentration as a 

function of daily oral dose follows a steep sigmoidal curve in healthy young men, with the 

steep portion of the curve lying between 30 mg and 100 mg of oral vitamin C daily. 

Similarly, Rousseau et al., (2004) reported that plasma ascorbic acid was closely related to 

vitamin C intakes when the latter was less than 100mg/day in male athletes, but only a 

minimal increase in plasma ascorbic acid concentration was observed at intakes above 

this dose. In our study over 70% of subjects had intakes above 100mg/day and therefore, 

at these observed high intakes, plasma vitamin C levels may not correspond to greater 

intakes, explaining the weak correlation.  

 

The association between dietary carotenoid intake and plasma carotenoid was significant 

but with a low correlation coefficient (r value) within the rugby group and non-significant 

within the sedentary and total group respectively. Significant associations between plasma 

levels and intakes of various individual carotenoids have been reported by others, 

although in these studies correlation coefficients were also moderately low (Bolton-Smith 

et al., 1991; Brady et al., 1996; El Sohemy et al., 2002).  Although the results could  reflect 

an actual lack of association between plasma and intake levels in the present study, the 

following methodological issues need to be considered when interpreting the results: 

Incomplete nutrient databases may have resulted in inaccurate carotenoid intake 

estimations, thereby reducing the likelihood of an association between dietary intake and 

plasma levels. Furthermore, the method used to analyse plasma carotenoid 

concentrations does not specify which carotenoids are assessed, and it is therefore no t 

clear whether these correspond to the carotenoids that were included in the intake 

assessment. Lastly, the use of the HPLC analytical method (Craft, 1992) would possibly 

also have provided more accurate estimates of plasma levels. 

 

In the present study, dietary antioxidant intake, which was measured using a specially 

designed and validated FFQ, was similar in the two groups. Therefore, in this study, 

dietary antioxidant intake did not seem to have a confounding effect on the tested 

association between plasma antioxidant status, physical activity and MnSOD genotype. 

This observation is also supported by the fact that the control for dietary antioxidant intake 
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did not change the outcomes of the association between the different variables in a 

general linear model (GLM).  

 

Finally the implications of the results of this study regarding dietary and supplementary 

antioxidant requirements for athletes should be considered as dietary supplement use was 

found to be widespread for both subject groups. Approximately three-quarters of the rugby 

players and two-thirds of the sedentary students reporting use in the past month. A meta-

analysis of 51 studies investigating supplement use amongst athletes, showed an overall 

prevalence of supplement use of 46% in 10 274 male and female athletes (Sobal & 

Marquart, 1994). More recent studies have reported prevalence of supplement use 

amongst university athletes to be above 80% (Froiland et al., 2004; Kristiansen et al., 

2005). These studies however included sports drinks as supplements, which were not 

included in our study. Supplement use among sedentary students in this study was similar 

to the reported prevalence of 62% in a survey of 400 students attending the same 

university as the current subjects (Seele & Senekal, 2005).  Despite the adequate vitamin 

C intake from food, the use of vitamin C containing supplements was common and 

contributed 50% to total vitamin C intake for the total study group.  Regarding the other 

antioxidant nutrients investigated, supplements contributed 1.2% to carotenoid intake and 

39% to vitamin E intake while no flavonoid containing supplements were used in this study.  

 

Despite dietary intake being similar among rugby players and sedentary students as well 

dietary supplement use being equally prevalent in rugby players and sedentary students, 

plasma vitamin C and carotenoid concentrations were higher in the rugby players. 

Findings such as these have led several researchers to reflect on the need for antioxidant 

supplementation in athletes. This contention is based on two questions: Firstly, do athletes 

have a lower antioxidant status and therefore an increased antioxidant need, and secondly, 

is antioxidant supplementation beneficial?  Findings from the present study and others 

suggest that most athletes have an adequate antioxidant intake and demonstrate 

adequate or above adequate antioxidant status as measured by vitamin C, vitamin E and 

carotenoids (Robertson et al., 1991; Fogelholm et al., 1992; Rokitzki et al., 1994a; Lukaski, 

2004). In addition, individuals who train regularly may have an enhanced antioxidant status, 

as was shown in the present study and in other studies that have compared antioxidant 

status in athletes and sedentary controls (Brites et al., 1999; Evelson et al., 2002; Cazzola 

et al., 2003). Regarding antioxidant supplementation, results from studies examining the 

efficacy of antioxidant supplementation in reducing exercise-induced oxidative damage are 
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equivocal and inconclusive. While studies generally report that antioxidant 

supplementation results in increases in plasma levels of antioxidants (Papas, 1996; Block 

et al., 2001; Record et al., 2001; Nelson et al., 2003), this does not necessarily result in 

decreases in exercise-induced oxidative stress (McCall & Frei, 1999; Williams et al., 2006).  

Our findings thus support the notion that athletes do not necessarily have greater 

antioxidant requirements and that there is not sufficient evidence to recommend 

antioxidant supplements to persons exercising regularly.  

 

Although only included as a descriptive variable, the higher BMI of rugby players, which 

was observed in this study, must be mentioned. The mean BMI of the rugby players 

corresponded to the overweight category (SASSO, 2003). However, in athletes with well 

developed musculature, and thus a higher lean body mass, BMI may lead to 

misclassification of the athlete as overweight or obese as BMI does not necessarily reflect 

body composition, lean body mass and fat mass effectively (Jonnalagadda et al., 2001; 

Prentice & Jebb, 2001). Therefore, the higher observed BMI in rugby players is most likely 

a result of higher lean body mass due to their exercise training.  

 

Conclusions and recommendations 

 

Rugby players who were engaged in regular physical activity displayed a higher plasma 

antioxidant capacity in terms of plasma vitamin C and carotenoid levels when compared to 

sedentary male students despite similar dietary intakes. While this finding points to an 

actual improvement in antioxidant status, the mechanism responsible for the improvement 

is not clear and further research is needed. 

 

MnSOD genotype did not affect markers of plasma antioxidant status or total plasma 

antioxidant status when dietary antioxidant intake was controlled for. We recommend 

increasing our sample size to further investigate the influence of MnSOD genotype as well 

as other antioxidant enzyme gene variations on antioxidant status. It is also recommended 

that the effect of antioxidant enzyme genetic variants on other markers of oxidative 

damage, e.g. lipid, protein and DNA oxidation by-products be investigated.  

 

The fact that rugby players displayed increased plasma vitamin C and carotenoid levels 

compared to sedentary controls, despite similar dietary intakes, supports the notion that 

athletes generally do not necessarily have increased requirements for antioxidant vitamins. 
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Despite the observed high prevalence of supplement use in our study as well as others, 

there is currently not enough conclusive evidence to recommend antioxidant 

supplementation in athletes. Once results have been confirmed, these results should be 

considered when formulating dietary recommendations for athletes.  
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GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 
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1. General discussion 

 

Research has shown that some forms of acute exercise may result in increases in ROS 

production, which may place additional pressure on antioxidant defences, thus resulting in 

oxidative stress. On the other hand, regular exercise training has been shown by some 

researchers to result in the improvement of antioxidant defences, suggesting that the 

antioxidant system is able to adapt to exercise-induced ROS production and so reduce the 

risk of oxidative stress. While it has been shown that antioxidant enzymes are capable of 

adapting to the exercise-induced increase in ROS production (summarised by Ji (1998) 

and  Powers and Sen (2000), the effect of exercise training on antioxidant capacity and 

oxidative stress is not so clear. Studies that support the notion that antioxidant defence 

systems are enhanced with exercise training have shown that concentrations of 

antioxidants and total antioxidant status are higher in individuals who train regularly while 

markers of oxidative stress are lower compared to sedentary individuals (Brites et al., 1999; 

Evelson et al., 2002; Cazzola et al., 2003). On the other hand, some studies have reported 

that markers of oxidative stress and antioxidant status were similar between trained 

individuals and sedentary controls (Robertson et al., 1991; Rokitzki et al., 1994). One 

potential confounding factor in studies investigating training induced antioxidant 

improvement is dietary antioxidant intake, from food plus supplements, which is often not 

controlled for adequately. Circulating levels of antioxidants are influenced by dietary intake 

and differences observed between trained individuals and sedentary controls may in part 

be due to differences in antioxidant intake (Block et al., 2001; Cazzola et al., 2003; Anlasik 

et al., 2005). Part of the problem of controlling for dietary intake is the difficulty in 

assessing dietary intake largely due to limitations of available dietary assessment methods 

(Willett, 1998).  

 

In order to address the potential confounding effect of dietary antioxidant intake in studies 

investigating antioxidant status  in athletes, the first objective of the study was to develop a 

quantified FFQ that specifically measures intake of the major dietary antioxidants, namely 

vitamin C, vitamin E, carotenoids and flavonoids. For these purposes, foods that were 

good sources of these nutrients and that were commonly consumed were identified and 

added to a food list. The FFQ included an open frequency category and portion sizes.  

 

The reproducibility and relative validity of the FFQ was assessed using several statistical 

approaches as the judgement of agreement between two methods or two administrations 
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is a rather subjective one and no single statistical test can provide the answer (Willett, 

1998; Rankin & Stokes, 1998). To assess reproducibility of the FFQ it was administered 

twice with a one month interval between administrations. Various statistical tests are 

available to assess FFQ reproducibility, including comparison of means and standard 

deviations, correlation coefficients, cross-classification of intake according to quartiles of 

intake and Bland-Altman plots (Bland & Altman, 1986; Willett, 1998).   Although the intake 

obtained from the second administration of the FFQ was lower than the first for some 

nutrients, the FFQ demonstrated satisfactory reproducibility as was shown by moderate to 

strong correlation coefficients between administrations and a high percentage of 

individuals classified within the same or adjacent quartile of intake on both administrations. 

Bland-Altman plots (Bland & Altman, 1986) were used to further assess reproducibility. 

While these plots are able to visually represent the relationship between two 

administrations or methods, it must be borne in mind that the final interpretation and 

judgement regarding the agreement is subjective  and does not rely on statistical tests 

(Bland & Altman, 1999; Bakker et al., 2003). Generally, differences that are within the 

limits of agreement (LOA) (d±2SD) are in agreement, provided that these differences are 

not clinically relevant (Bland & Altman, 1986). However, the judgement regarding the width 

of the LOA and thus the clinical significance thereof is subjective and no criteria have been 

developed for dietary studies. Therefore, we propose using the RDA values (where 

established) as criteria to assess the width of the LOA. Nutrient intakes of approximately 

one times the RDA are generally regarded as sufficient for most individuals. The LOA in a 

Bland-Altman plot are derived from the intakes obtained from two administrations of a 

dietary method or two separate dietary methods. If one administration/method provides a 

value of 50% of the RDA and the other 200% of the RDA for the same individual, this 

individual will be classified as deficient according to the one method, but as more then 

adequate using the other method. Therefore, using the RDA as a means of assessing the 

clinical relevance of the width of the LOA found for nutrient intakes between two 

administrations or methods seems very appropriate. In the present study, although most of 

the data points lay within the LOA, the latter were relatively wide (more than once the RDA 

for vitamin C), and may thus result in misclassification of vitamin C status. Furthermore, 

although the mean difference was close to zero, the scatter was wide and proportional 

bias was present, indicating poor reproducibility according to the Bland-Altman plots. This 

finding is however in contrast to the results of the other statistical tests, which suggest 

satisfactory reproducibility for vitamin C. For vitamin E, carotenoids and flavonoids almost 

all data points were within the LOA, with none judged to be clinically significant based on 
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the RDA; the scatter of points was wide, but the mean differences were close to zero and 

no proportional bias was present. These Bland-Altman plot results indicate satisfactory 

reproducibility for the FFQ for vitamin E, carotenoids and flavonoids, which is in line with 

the results from the other statistical tests for these nutrients.  

 

The validity study involved two administrations of the FFQ (FFQ 1, FFQ 2) separated by 

one month, during which a 28-day close-ended dietary record was kept by the subjects. 

Three blood samples were taken during the month; namely at baseline, two weeks post 

baseline and four weeks post baseline. The validity of the FFQ was assessed by 

comparing the frequencies of intake of food items derived from three FFQ values (FFQ 1, 

FFQ 2 and the FFQmean) to frequencies derived from the 28-day close-ended dietary 

record. Furthermore, vitamin C and carotenoid intake derived from each of the three FFQ 

values was compared with the intake derived from the 28-day close-ended dietary record 

as well as repeated plasma vitamin C levels. The same statistical tests used to assess 

reproducibility are applicable in FFQ validation studies. In addition, the use of biomarkers 

enables structural equation modelling, such as the method of triads, to be used in the 

assessment of FFQ validity (Kaaks et al., 1994; Kaaks, 1997).  

 

For all of the statistical tests used to assess the validity of the FFQ, on both the frequency 

of intake of specific food items as well the nutrient intake, the second administration of the 

FFQ (FFQ 2) showed better agreement with the 28-day dietary record than the first 

administration (FFQ 1) or the mean of the administrations (FFQmean). This has been 

observed by others and could be due to the second administration of the FFQ measuring 

intake during the same period as the dietary record (Willett et al., 1985). On the other hand, 

the recording process could have sensitized the subject with regards to actual frequency of 

intake resulting in better estimation of intake with the second administration (Willett, 1998).  

 

In the present study, frequencies of intake of foods as well as vitamin C intake estimated 

by the FFQ (especially FFQ 2) were similar and correlated well with the frequencies and 

intakes determined by the 28-day dietary record. The three FFQ values were also able to 

classify a high percentage of individuals correctly according to quartiles of intake based on 

the 28-day dietary record. Validity of the FFQ in measuring vitamin C and carotenoid 

intake was further assessed using Bland-Altman plots (Bland & Altman, 1986). While 

almost all of the data points were within the limits of agreement (LOA), these were wide 

and for vitamin C were judged as clinically significant based on the RDA. Furthermore, for 
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both nutrients, the scatter was wide, the mean difference not close to zero and 

proportional bias was present, thus suggesting that validity was not satisfactory based on 

the Bland-Altman method.   

 

In order to further assess the validity of the FFQ, plasma vitamin C levels were used as a 

biomarker in the SEM according to the method of triads (Kaaks, 1997). In this method, the 

vitamin C intake estimated from the three methods (three FFQ values respectively, 28-day 

close-ended dietary record and plasma levels) is compared to the true unknown vitamin C 

intake by computing validity coefficients (VC) (Kaaks, 1997). Plasma vitamin C 

demonstrated the lowest correlation with the true unknown intake, while the three FFQ 

values and the 28-day dietary record showed similar VCs of above 0.8, suggesting that 

both methods are valid assessment tools for estimating dietary vitamin C intake. The 

presence of Heywood cases (VC > 1) indicate that the VC for the three FFQ values and 

the 28-day dietary record may be overestimated and should thus be interpreted as the 

upper limits of the true validity coefficients (Kaaks, 1997).   

 

To summarize, the validity and reproducibility of the FFQ according to the Bland-Altman 

method was not completely satisfactory, however the other statistical tests used indicate 

satisfactory reproducibility and validity. From these results, it is evident that several 

statistical tests need to be used in reproducibility and validity testing. Bearing in mind the 

limitation of the sample size, the developed FFQ showed satisfactory reproducibility and 

validity and could thus be used for its intended purpose in the second part of the study.  

  

The second part of the study investigated the association between antioxidant status and 

the MnSOD Ala-9Val polymorphism in trained male athletes (rugby players) and sedentary 

male students while controlling for dietary antioxidant intake.  

 

Rugby players in the present study demonstrated significantly higher plasma levels of 

vitamin C and carotenoids, while total plasma antioxidant status tended to be higher 

compared to sedentary students. Plasma levels of vitamin C as well as dietary vitamin C 

intake were within the normal range for both groups, which indicates adequate vitamin C 

status and possibly adequate vitamin C based antioxidant status. Dietary vitamin E intake 

was slightly below the RDA for both groups, pointing to the possibility that vitamin E status 

may not be optimal. Flavonoid and carotenoid intakes were in line with reported ranges. 

These findings suggest that antioxidant status is more satisfactory in rugby players 
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compared to sedentary students, which is in line with the finding that antioxidant status is 

enhanced with regular exercise training (Brites et al., 1999; Evelson et al., 2002; Cazzola 

et al., 2003).  

 

It has been suggested that the increased plasma levels of antioxidants found in athletes 

may be due to a spill-over effect of the exercise-induced mobilisation of antioxidants from 

tissue pools and their transfer through the plasma to sites undergoing oxidative stress 

(Packer et al., 1989; Peake, 2003; Watson et al., 2005). However, in this study rugby 

players were requested to refrain from exercising for 24 hours before the blood drawing to 

control for this effect of acute exercise on circulating levels of antioxidants. Thus, the 

finding that plasma levels of antioxidants were higher in rugby players than in sedentary 

controls is likely to be an actual increase in plasma levels of antioxidants.   

 

A factor that has not yet been investigated in the context of exercise training and 

antioxidant status is genotype. Variations in a wide range of genes encoding antioxidant 

enzymes may play a role in oxidative stress susceptibility and thus antioxidant status 

(Forsberg et al., 2001). Therefore, in order to investigate the effect of MnSOD genotype on 

antioxidant status in trained and sedentary individua ls, while dietary antioxidant intake was 

controlled for, DNA samples were screened for the MnSOD Ala-9Val polymorphism. The 

genotype distribution, which has not yet been reported in a South African population, was 

similar to what has been reported in other Caucasian populations (Ambrosone et al., 1999; 

Van Landeghem et al., 1999; Mitrunen et al., 2001). In the present study population, a 

specific MnSOD genotype was not associated with decreased plasma levels of vitamin C, 

carotenoids or total plasma antioxidant status when dietary intake was controlled for. This 

finding may have been influenced by the sample size in this study, however, a similar 

result was reported by Tamimi et al. (2004) with reference to MnSOD genotype and cancer. 

At this stage it is therefore not clear whether MnSOD genotype does influence antioxidant 

status in athletes. We speculate that, in individuals with adequate dietary antioxidant 

intake, as was the  case in the present study, the variant allele of the MnSOD gene does 

not result in increased risk of oxidative stress as the levels of antioxidants and the 

antioxidant capacity may be sufficient to counter the production of free radicals and ROS.  

 

As plasma antioxidants are generally influenced by the dietary antioxidant intake, the 

possible confounding effect thereof in the association between plasma antioxidant status, 

genotype and physical activity must be considered. In our study there were weak 
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indications that dietary intake was reflected in plasma levels for vitamin C for the total 

group, but not for carotenoids. Dietary intake of vitamin C, vitamin E, carotenoids and 

flavonoids was similar in both groups, which points to the fact that differences observed in 

plasma antioxidant levels between rugby players and sedentary students can most 

probably not be directly attributed to differences in antioxidant intake.  

 

The finding that rugby players in this study showed higher plasma vitamin C and 

carotenoid levels than sedentary controls, despite similar dietary intake has certain 

implications regarding antioxidant requirements in athletes and the need for antioxidant 

supplementation. Research, including ours, has shown that dietary supplement use 

(including antioxidant containing supplements) is widespread among athletes and students 

in general (Sobal & Marquart, 1994; Schroder et al., 2002; Froiland et al., 2004; 

Kristiansen et al., 2005; Seele & Senekal, 2005). Whether such supplementation by 

athletes is indeed necessary to reduce exercise-induced oxidative stress is questionable 

as there is no conclusive evidence pointing to a greater antioxidant requirement by 

athletes (Sharpe, 1999; ADA, 2000; Williams et al., 2006). Research has shown that 

antioxidant status in athletes in general is adequate, which was also found in this study. In 

addition we, and others, have shown that individuals who train regularly may have a better 

antioxidant status compared to sedentary controls. Therefore, despite the high prevalence 

of supplement use among athletes, there is currently not sufficient conclusive evidence to 

recommend antioxidant supplementation in athletes.   

 

 

2. Conclusions and recommendations 

 

The FFQ, which was developed for this study, showed satisfactory reproducibility and 

validity for measuring antioxidant intake in a young adult male population. Results from 

this research indicate that rugby players undergoing regular physical activity have a higher 

antioxidant status, as measured by plasma vitamin C and plasma carotenoid 

concentrations, compared to sedentary students despite similar dietary antioxidant intake. 

The presence of a specific MnSOD genotype did not influence plasma antioxidant status 

when dietary antioxidant intake was controlled for. Dietary supplement use was 

widespread among both groups and contributed significantly to vitamin C and vitamin E 

intake. Therefore, results from this study support the finding that regular exercise training 

does not result in increased antioxidant requirements. The association between 
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antioxidant status and MnSOD genotype in rugby players and sedentary students seemed 

not to be influenced by dietary antioxidant intake.  

 

Based on these findings, the following are recommended with reference to: 

 

1. FFQ development and validation: 

• Several statistical tests should be used in the assessment of FFQ reproducibility 

and validity.  

• The RDA values should be considered as a criterion to judge the agreement 

between two methods according to Bland-Altman plots. 

 

2. Antioxidant assessment 

• The use of dietary supplements and their contribution to total dietary intake should 

be considered when assessing dietary intake. 

• The effect of genotype on antioxidant status should be researched further including 

additional commonly occurring polymorphisms in antioxidant enzymes 

• Once the results from this study have been confirmed, results should be used in the 

formulation of guidelines regarding antioxidant intake and dietary supplement use 

by athletes.   
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ADDENDUM 1 

 

SURVEY INSTRUMENT (QUESTIONNAIRE) 

 



 

 

159 

SUBJECT INFORMATION      Code 
 
Section A: Sociodemographic information         Date:  _____________ 

 
 
1. Name: ________________________           Surname: __________________________ 

2. Date of birth:  

                      d    d    m   m   y    y    y    y 

3. Age: _________ 

4. Population group: __________________________________ 

5. Occupation: __________________ 

6. Residence:     

Section B: Health, physical activity and lifestyle information 

 
7. Do you currently smoke daily?     

 
8.1 If yes, for how long have you been smoking? _________________________ 
 
8.2 If yes, how many cigarettes on average do smoke per day? ______________ 

9. If no, do you smoke occasionally (socially)? 

9.1 If yes, how many days a week, on average, do you smoke? ______________ 

9.2 How many cigarettes, on average, do you smoke per day/per occasion? ____ 

10. If no, did you smoke at any point?  

 
 10.1 If yes, when did you stop smoking?________________________________ 

 10.2 On average, how many cigarettes did you smoke per day? ______________ 
 

   

University residence 

Flat or student digs 

At home 

Yes 

No 

Yes 

No 

Yes 

No 



 

 

160 

11. Physical activity and training during a typical week: 
 

 
Activity Frequency  

(Days per 
week) 

Duration (h or  
min per session) 

Description of activity 

 
 
 
 

   

 
 
 
 

   

 
 
 
 

   

 
 
 
 

   

 
 
 
 

   

 12. On average, how active are you at work/university? 

Sitting most of the time, little walking or standing. 

Less sit ting, more walking and standing but no hard physical labour. 

Very little sitting, mostly walking and/or hard physical labour. 

 13.  In what rugby position do you usually play?  
 Forward 

Backline 

N.A. 
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Section C: Dietary supplement use 
 
14.1 Have you taken any dietary supplements during the past month?  
 
 
14.2 Supplement use information:  
 

 
 
 
15. How does this month relate to your usual month as far as the following are concerned?  

 Usual Less More Specify 

Activity levels     

Dietary intake     

Supplement intake     

Stress levels      

 

Yes  

No  

Frequency of use Product name Supplement 
type 

Nutrient 
content Per 

day 
Per 
week 

Per 
month 

Amount/ 
dosage 

Duration 
of use 
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Section D: Food frequency questionnaire 

 

PORTION SIZE FREQUENCY FOOD 

ITEM 
DESCRIPTION 

PREPARATION 1x 
std 

½x  
std 

1½x 
std 

2x 
std 

Per 
day 

Per 
week 

Per 
month 

Never/ 
seldom 

FRUITS          

ORANGE          

NAARTJIE          
OTHER 
CITRUS 
(grapefruit) 

         

MANGO          

PAW-PAW          

GUAVA          
STRAW-
BERRIES          

KIWIS          

PEACHES          
WATER-
MELON, 
SPANSPEK 

         

APPLES          

BANANAS          

FRUIT 
SALAD          

GRAPES          
AVOCADO 
PEAR 

         

ORANGE 
JUICE          

GRAPE 
JUICE          

OTHER 
FRUIT 
JUICES 

 
        

VEGETABLES           

COOKED 
CARROTS 

         

RAW 
CARROTS 
(Carrot salad, 
sticks) 

 

        

SWEET 
POTATO 
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PORTION SIZE FREQUENCY FOOD 

ITEM 
DESCRIPTION 

PREPARATION 1x 
std 

½x  
std 

1½x 
std 

2x 
std 

Per 
day 

Per 
week 

Per 
month 

Never/ 
seldom 

PUMPKIN, 
BUTTERNUT
SQUASH 

 
        

BEETROOT          

PEAS          
CAULI-
FLOWER 

         

BROCCOLI          
BRUSSEL 
SPROUTS 

         

GREEN 
BEANS 

         

BEAN, 
POTATO, 
ONION  
MIX 

 

        

COOKED 
CABBAGE 

         

MIXED 
SALAD 
(lettuce, 
tomato, 
cucumber, 
onion) 

 

        

PEPPERS 
(green, red, 
yellow) 

 
        

TOMATO –
RAW 

         

TOMATO – 
COOKED  

         

TOMATO & 
ONION MIX 

         

TOMATO 
SAUCE 

         

MIXED 
VEGETABLES 

         

COOKED 
SPINACH 

         

RAW 
SPINACH 

         

FRIED 
ONIONS 

         

RAW 
ONIONS          
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PORTION SIZE FREQUENCY FOOD 

ITEM 
DESCRIPTION/ 

PREPARATION 1x 
std 

½x 
std 

1½x 
std 

2x 
std 

Per 
day 

Per 
week 

Per 
month 

Never/ 
seldom 

COOKED 
POTATO, 
MASH 

 
        

POTATO 
CHIPS 

         

FRIED/ROAST 
POTATO 

         

BAKED 
BEANS 

         

STIRFRIES          
VEGETABLE 
STEWS 

         

VEGETABLE 
JUICES 

         

OTHER          
MIXED 
NUTS 
(almonds, 
cashews, 
hazelnuts) 

 

        

PEANUTS          
PEANUT 
BUTTER 

         

SOFT 
MARGARINE 

         

SUNFLOWER 
OIL 

         
SALAD 
DRESSING 
(French) 

 
        

SALAD 
DRESSING 
(Mayo) 

         

FRIED, 
SCRAMBLED 
EGG 

 
        

FRIED FISH          

VETKOEK          

PIES          

GARLIC          
COOKIES/ 
BISCUITS/ 
RUSKS 
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PORTION SIZE FREQUENCY FOOD 

ITEM 
DESCRIPTION/ 

PREPARATION 1x 
std 

½x 
std 

1½x 
std 

2x 
std 

Per 
day 

Per 
week 

Per 
month 

Never/ 
seldom 

HEALTH 
BAR, 
MUESLI 
BAR 

 

        

PRONUTRO          

MUESLI          
OTHER 
VITAMIN 
ENRICHED 
BREAKFAS
T CEREAL 
(fruit loops) 

 

        

VIT. 
ENRICHED 
SWEETS 
(supa-C’s, 
vita C’s) 

 

        

DRIED 
FRUIT/ 
FRUIT 
ROLL 

 

        

TEA 
(black/green) 

         

LUCOZADE
GAME 

         

VITAMIN C 
ENRICHED 
JUICE 
(e.g.Clifton) 

 

        

RED/ 
WHITE 
WINE 

 
        

BEER, 
CIDERS 

         

SPIRITS          

 

Section E: Anthropometric measurements 
 
Height (m)  

Weight (kg)  
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ADDENDUM 2 

 

28-DAY CLOSE-ENDED DIETARY RECORD 
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Dietary record  

 

 

 
NAME: __________________________               
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mon Tue Wed Thur Fri Sat Sun 

Oranges        
Naartjies        
Orange juice         
Other fruit juice         
Banana        
Apples        
Strawbe rries        
Fruit salad        
Tomatoes        
Tomato and onion 
mix        
Tomato sauce         
Potatoes (any type)        
Sweet potato        
Broccoli        
Cauliflower        
Pumpkin/ butternut        
Carrots        
Peas         
Green beans        
Mixed vegetables        
Spinach         
Mixed salad        
Avocado        
Vitamin C sweets 
(Vita C, Supa C, 
bioplus) 

       

INSTRUCTIONS 
1. Write in the date of each day as you go along. 
2. Keep the diary with you at all times. 
3. When you eat something, take out the diary and check if 

the food item is on the list. If it is, make a mark (ü) in the 
block corresponding to the day and food item in question. 

4. If you eat the same item again later in the day, make 
another mark (ü) in that particular block. 

5. Repeat this procedure every day for every food item that 
you eat. 

6. You do not have to worry about portion size. 
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ADDENDUM 3 

 

BLAND-ALTMAN PLOTS FOR VITAMIN C AND CAROTENOIDS 

ESTIMATED FROM THE FFQ AND 28-DAY DIETARY RECORD 
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Figure 1: Bland-Altman plot of vitamin C intake (mg/day) illustrating agreement between the dietary 

record and FFQ 1 showing the mean difference and limits of agreement (d±2SD). DR = 28-day 

dietary record; FFQ 1 = first administration of the FFQ. 
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Figure 2: Bland-Altman plot of vitamin C intake (mg/day) illustrating agreement between the dietary 

record and FFQ 2 showing the mean difference and limits of agreement (d±2SD). DR = 28-day 

dietary record; FFQ 2 = second administration of the FFQ. 
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Figure 3: Bland-Altman plot of vitamin C (mg/day) intake illustrating agreement between the dietary 

record and FFQmean showing the mean difference and limits of agreement (d±2SD). DR = 28-day 

dietary record; FFQ mean = mean of the two administrations of the FFQ. 
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Figure 4: Bland-Altman plot of carotenoid intake (mg/day) illustrating agreement between the 

dietary record and FFQ 1 showing the mean difference and limits of agreement (d±2SD). DR = 28-

day dietary record; FFQ 1 = first administration of the FFQ. 
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Figure 5: Bland-Altman plot of carotenoid intake (mg/day) illustrating agreement between the 

dietary record and FFQ 2 showing the mean difference and limits of agreement (d±2SD). DR = 28-

day dietary record; FFQ 2 = second administration of the FFQ. 
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Figure 6: Bland-Altman plot of carotenoid intake (mg/day) illustrating agreement between the 

dietary record and FFQ 2 showing the mean difference and limits of agreement (d±2SD). DR = 28-

day dietary record; FFQ mean = mean of the two administrations of the FFQ. 
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ADDENDUM 4 

 

HARDY-WEINBERG EQUILIBRIUM CALCULATIONS 
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X2 = ?  

(observed – expected)2 
 expected 

 

Table 1: Hardy-Weinberg equilibrium calculations for MnSOD genotype frequencies for 

rugby players, sedentary subjects and total group. 

 

 

 

 

 

 

 

 

 

A = Ala, V = Val          

* for genes with two alleles (A and V) with allele frequencies of p and q, respectively, 

Hardy-Weinberg equilibrium predicts genotype frequencies of p2 for A/A, 2pq for A/V and 

q2 for V/V (http://en.wikipedia.org/wiki/Hardy-Weinberg_principle ; accessed 2006).  

Expected frequency of p and q calculated as follows: 

 

 

 

 

 

 

 

 

 

 

** Calculated as:  

 

df = 1 and 5% significance level = 3.84. Therefore, all groups are in Hardy-Weinberg 

equilibrium (X2 < 3.84).  

 

 

 

 

Group 
Rugby players 

(n=76)  
Sedentary subjects 

(n=39)  
Total group 

(n=115) 

Genotype A/A A/V V/V  A/A A/V V/V  A/A A/V V/V 

Observed frequency 19 40 17  10 18 11  30 58 27 

Expected frequency* 20.0 38.0 18.0  9.3 19.5 10.3  30.3 57.5 27.3 

Pearson’s Chi-square** 0.22  0.23  0.01 

p =         2x(observed A/A) + observed A/V 
     2x(observed A/A + observed A/V +observed V/V)  
 
expected frequency of A/A = p2 x n 
 
similarly,  
 
q =         2x(observed V/V) + observed A/V  
       2x(observed A/A + observed A/V +observed V/V) 
 
expected frequency of V/V = q2 x n 
 
And expected frequency of A/V = 2pq x n 
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