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Abstract

Capillary electrophoresis (CE) has recently attracted considerable attention as a

promising analytical technique for the separation of cations and anions in complex

matrices. Determination of ions in aqueous samples using capillary electrophoresis

can be accomplished with indirect UV detection. Most inorganic ions have weak

absorption profiles in the UV-Vis wavelength range. These mostly non-absorbing

species are commonly detected by indirect UV absorbance through addition of an

absorbing co-ion (chromophore) into the electrolyte. Inorganic cations most often

require an additional complexing agent to selectively alter their similar mobilities and

proper separation.

For optimal determination of alkali, alkaline, and transition metal ions, several

electrolytes systems were studied. These include pyridine, imidazole and 4-

aminopyridine as UV-absorbing species and glycolic acid, a-hydroxyisobutyric acid

and their mixture were used as complexing reagents. A mixture of 10 metal ions (K+,

Na+,Ca2+, Mg2+, Mn2+, Fe2+, Cd2+, Pb2+, Ni2+andZn2+) was successfully separated.

Detectionwas performed at 210,214 and 254 nm.

In the anion determination chromate and 2, 6 pyridine dicarboxylic acids (PDC) were

used as back ground electrolytes for inorganic ions (F, cr and 80/-) and organic

acids (tartaric acid, malic acid, succinic acid and citric acid) separations respectively.

Electroosmotic flow (EOF) was reversed in the direction of the anode by adding

Cetyltrimethylammonium bromide (CTAB) to the electrolyte. Highly alkaline

conditions were used to confer a negative charge on inorganic and organic anions to
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promote their migration towards the anode. The detection wavelength was 200 nm.

All peaks were completely resolved and well separated. The limit of detection (LOD)

of cations and anions were in the range of 0.5 - 3 ppm and 2 - 3.5 ppm respectively.

The described methods were used successfully in routine analysis of real samples.

This includes the qualitative and quantitative analysis of an environmental water

samples from the areas surrounding Stellenbosch, beverages and orange juice.
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Uittreksel

Kapillêre Elektroforese (CE) het in die onlangse verlede heelwat aandag getrek as "n

belowende analitiese tegniek vir die skeiding van katione en anione in komplekse

monsters. Die bepaling van ione in waterige medium met kapillêre elektroforese word

gedoen deur indirekte Ultraviolet (UV) deteksie aangesien meeste anorganiese ione

swak absorbsie in die die sigbare UV (UV-Vis) golflengtegebied toon. Deteksie van

hierdie meestal nie-absorberende spesies word algemeen gedoen deur indirekte UV

absorbansie deur die byvoeging van "n ko-ioon (chromofoor) tot die elektroliet.

Anorganiese katione benodig dikwels "n addisionele komplekserings reagens om

selektief hulle eenderse mobiliteite te verander en sodoende goeie skeiding te

bewerkstellig.

Vir die optimale bepaling van alkali-, alkali-aard- en oorgansmetaal ione is verskeie

elektrolietsisteme bestudeer. Hierdie sluit in piridien, imidasool en 4-aminopiridien as

UV absorberende spesies en glikoliensuur, a-hydroksie-isobottersuur asook "n

mengsel van die twee as komplekserings reagense. "n Mengsel van 10 metaalione

(K+, Na+, Ca2+, Mg2+, Mn2+, Fe2+, Cd2+, Pb2+, Ni2+ en Zn2+) is sukselvol op hierdie

wyse geskei. Deteksie is gedoen by golflengtes van 210, 214 en 254 nm.

Vir die anioon bepaling is chromaat en 2,6-piridiendikarboksielsuur gebruik as

agtergrond elektroliete vir die skeiding van anorganiese anione (F, cr en solO) en

organiese sure (tartaarsuur, malonsuur, suksiensuur en sitroensuur), onderskeidelik.

Elektroosmotiese vloei (EOF) is omgekeer na die rigting van die anode deur

byvoeging van setieltrimetielammoniumbromied (CTAB) by die elektroliet. Sterk
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alkaliese kondisies is gebruik om 'n negatiewe lading op die anorganiese en

organiese anione te konsentreer en sodoende hul migrasie na die anode te bevorder.

Die deteksiegolftengte hier gebruik was 200 nm.

Volkome resolusie en goeie skeiding is gerealiseer vir al die pieke. Die

deteksielimiete (LOD) vir die katione en die anione was 0.5 - 3 ppm en 2 - 3.5 ppm,

onderskeidelik. Die metodes wat beskryf word is suksesvol aangewend vir roetiene

analise van werklike monsters. Dit sluit in kwalitatiewe sowel as kwantitatiewe analise

van omgewingswater monsters uit die Stellenbosch area, koeldranke en lemoensap.
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1. Introduction - Aims and objectives

Inorg_anicand organic ions released to the environment may cause risks to the

balance of nature. They are a significant hazard to human health when they are

present in excess. Detection of these ions is imperative for monitoring environmental

water samples and other sample matrices monitoring. The aim of this study was to

determine cations and anions in aqueous samples. To achieve these new methods

have to be developed for the analysis of cations and anions in environmental water

samples, beverages and orange juice. Different methods would be developed for the

study of cations and anions since they have different migration rate with respect to

electroosmotic flow and require different pH values. Initially synthetic (made-up)

samples would be analyzed to validate to the chosen methods. These methods

would then be adapted for further investigation of cations and anions in

environmental water samples, beverages and orange juice.

It is clear that a reliable and efficient analytical method for the determination of

cations and anions is very important, not only in order to detect the ions present in

various samples but also to determine the amount of those ions in those samples.

Currently, analysis of cations and anions could be also performed using high

performance liquid chromatography (HPLC) and ion chromatography (IC). These

separation techniques suffer from long analysis times, often require extensive sample

preparation and high running cost since they consume high amount of chemicals. In

recent years, some studies have investigated the use of capillary electrophoresis

(CE) for the analysis of these compounds. However, the possibilities offered by this

1
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technique have not completely been investigated.

The analysis of cations and anions, in this study, would be determined by indirect

capillary electrophoretic detection methods. Most inorganic ions have weak

absorption profiles in the UV-Vis wavelength range. These mostly non-absorbing

species are commonly detected by indirect UV absorbance through addition of an

absorbing co-ion (chromophore) into the electrolyte. Inorganic cations most often

require an additional complexing agent to selectively alter their similar mobilities in

order to get good separation.

2
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Chapter2

2. Literature review

2.1 Introduction

2.1.1 Summary

This chapter provides a brief review of the role of detection in cation and anion

analysis, the basic principles of metal-ligand complex, the separation mechanism in

capillary electrophoresis (CE), a description of CE instrumentation, detection types,

modes of CE operation, and some trouble-shooting guide. The basic CE principles

discussed for cations are also applicable to anions.

2.1.2 The role of detection in cation and anion analysis

Inorganic and organic ions released to the environment may cause risks to the

balance of nature. Cations and anions appear to contaminate the water supply

systems (surface water and drinking water) and are found as concentrates in

ecological systems 1.

Environmental pollutants are a significant hazard to human health, among them trace

elements can be beneficial or harmful effects depending on their concentration and

chemical form in the living organisms. In addition to the common elements (Sodium,

Calcium, Magnesium etc.), a number of trace elements (Selenium, Zinc,

Molybdenum, Manganese, etc.) are considered essential with specific biological

functions at relatively low levels. However when present in excess, these elements

can be harmful2• 3.

3
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Detection of cations and anions can be performed using direct and indirect modes of

detection. Direct refers to an analytical signal related directly to the chemical or

physical properties of each cation or anion (for example, the energy of emitted x-

rays). Indirect mode of detection refers to signals that are non-specific for the cation

or anion and are obtained from a transformed species containing the cation or anion

(for example, the UV-Vis spectrum of complexed metal ion) or from a species

containing no cation or anion from the sample (for example, the signal from the

background electrolyte in indirect UV-Vis or fluorescence detection).

The indirect mode of detection requires UV-absorbing species (chromophore) and

complexing reagents. In cation analysis, a complexing ligand must be added to the

background electrolyte to provide adequate separation by enhancing the difference in

mobility among the cations. In addition, the separation buffer or background

electrolyte contains a chromophore that provides a background level of absorption at

the detection wavelength. The chromophore is displaced by the analyte ions and a

decrease in the background absorption is measured when the analyte is in the

detector window 4. The commonly used complexing reagents and UV-absorbing

species are given in tables 1 and 6 respectively. The main detection types are

discussed in section 2.1.5.3.

2.1.3 Metal-ligand complex

A metal complex or coordination compound is defined as a central atom or ion

attached to the sheath of ions or molecules. The molecule or ion bonded directly to

the metal ion is called a ligand. A ligand is derived from a Latin word ligare meaning

to bind. Ligands can be monodentate, bidentate, tridentate etc. Ligands containing

4
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more than one-donor atoms are known as chelating agent (from Greek word chelos

for crab's claw) 5.

2.1.3.1 Classes of chelating agents

Chelating agents may be either organic or inorganic compounds (table 1), but the

number of inorganic chelants is small.

Table 1. Commonly used chelating agents 6.

Chelating agent Uses Properties

Hydroxycarboxylic acids Removal of hardness salts, Are expensive but weak

- Citric acid, glycolic acid,
metal cleaning, water chelating agents
treatment, pharmaceutical,

- a-hydroxyisobutyric acid (a-HIBA) biological, food process.

Aminopolycarboxylic acids(APCAs) Removal of hardness salts, Are stable at high

- Ethylene diamine acetic acid (EDT A) boiler cleaning for industrial temperature and pH,
chemical process, brewery, show strong affinity for

- Diethylenetriaminepentacetic acid power plant and diary metals, are somewhat

(DTPA) applications, metal cleaning, expensive
rust removal, petroleum

-Nitrillotriacetic acid (NTA) drilling fluids, wood and pulp
processing.

Phosphoric acids Water treatments e.g., scale Are stable over a wide

- Ethylenediaminetetramethylene and corrosion inhibition in range of temperatures
cooling towers, wood pulp and pH levels, are

phosphoric acid (EDTMP) processing, metal plating, expensive

- Diethylenetriaminepentamethylene polymer processing.

phosphoric acid (DTPMP)

- Nitrillotrimethylenephosphoric acid

(NTMP)

Polycarboxylic acids Processing at high pH Are expensive but weak

Gluconates, citrates, po Iyacrylates,
levels, hardness -ion chelating agents
sequestration with low

polyaspartates stability constants

Polyphosphates (Inorganic chelating Water treatment, consumer Less expensive than
agent) applications such as organic chelants, are

- Tri polyphosphates (TPP)
cleaning products and often hydrolytically
cosmetics. unstable at high

- Haxameta phosphates temperatures and pH
levels

5
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2.1.3.2 Hydroxycarboxylic acids:

The hydroxycarboxylic acids and their derivatives are important chemicals for the

pharmaceutical, biological, food, and other industries. Various hydroxycarboxylic

acids occur naturally 7. The technological, practical, and industrial application of

these compounds has led to numerous studies of their properties and characteristics.

The hydroxycarboxylic acids contain two donor groups, the hydroxyl and the

carboxlate groups, and therefore are all potentially bidentate ligands. The proton and

metal ion complexation constants of these ligands depend strongly on the relative

positions of the donor groups in the molecule. The a-hydroxycarboxylic acids form

considerably stronger complexes with most metal ions, through bidentate chelation

involving both functional groups, than do the corresponding simple carboxylic acids.

Hydroxyl groups more distant from the carboxylic groups do not generally participate

in the formation of chelate complexes, and the ligand coordination to metal ions

occurs via the carboxyl group only. The hydroxyl carboxylic acids form stable

complexes with most metal ions 7.

2.1.4 Principles of capillary electrophoresis

Capillary electrophoresis (CE) is a relatively new separation technique, which

combines aspects of both electrophoresis and chromatographic principles. Like

electrophoresis the separation depends upon differential migration in an electric field.

As in chromatography detection is accomplished as the separation progresses with

resolved zones producing an electronic signal as they migrate past the monitor point

of a concentration-sensitive detector. CE has diverse and rapidly growing number of

applications. CE has been applied to solve problems related to forensic chemistry,

6
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food chemistry, clinical chemistry, biochemistry, pharmaceutical science,

neuroscience, molecular biology, and environmental science. It has been applied

successfully to the separation and analysis of a variety of simple and complex

molecules ranging from ions, vitamins, drugs, amino acids, and nucleotides, to

peptides, aligonucleotides. More recently CE has been used in gene diagnosis and in

the human genome project 8. Scientists are devoting a major effort to build a high-

through put DNA sequencing system based on capillary electrophoresis 9.

CE in conjunction with other instrument like, electrochemical detection (CE-ED) 10,

Electron spray ionisation - Mass spectrometry (ESI-MS) 11 and Nuclear magnetic

resonance (NMR) 12 has increased the range of its application.

2.1.4.1 Electrophoresis

Electrophoresis (from Greek words electron = electron and phoresis = carrying) is a

well-established method in which ions are separated due to the difference in their

migration rates under an external field 13. Tiselius introduced electrophoresis as a

separation technique in 1937. Placing protein mixtures between buffer solutions in a

tube and applying an electric field, and he found that sample components migrated in

a direction and at rate determined by their charge and mobility 15.

Separation efficiency in free solutions, as performed by Tiselius, was limited by

thermal diffusion and convection. For this reason, electrophoresis traditionally has

been performed in anti-convective media, such as polyacrylamide or agarose gels.

Gels in the slab or tube format have been used primarily for the size- dependent

separation of biological macromolecules, such as nucleic acids and proteins. A gel

7

Stellenbosch University http://scholar.sun.ac.za



provides physical support and mechanical stability in the separation. Although it is

one of the most widely used separation techniques, slab gel electrophoresis

generally suffers from long analysis times, low efficiencies, and difficulties in

detection and automation 14,15.

2.1.4.2 Capillary Electrophoresis

CE is an instrumental approach to electrophoresis in which sample components

placed between two buffers solutions are separated in a narrow bore-tube capillary

(figure 1) with inside diameter ranging from 2 to 200 um (usually from 25 to 75 urn

employed) and a length usually between 10 to 100 em.

_ 36°p,m-

Fused Silica

Polyimide Coating

12ILm 25-75 ILm

Fig. 1. Cross - sectional view of a fused silica capillary 16.
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The separation is based on the electrophoretic mobility of the analyte species

induced by the large potential (10 - 30 kV) applied across the capillary. This migration

takes place under the combined effects of electrophotertic and electro osmotic flows

(EOF) generated by applying an electric field across the capillary 17. A schematic

diagram of capillary electrophoresis is shown in figure 3.

High Voltage Supply

High
Voltage
Electrode

Fused
Silica
Capillary

Grounding
Electrode

Buffer
Recorder

'tl
Sample Electrophoretic
Plug Zones

Fig. 2. Schematic diagram for capillary electrophoresis system 8.

The principle of separation in electrophoresis is that charged molecules migrate in

the presence of an electric field. When an electric field is applied, a charged molecule

experiences a force, Fe, equal to the product of its net charge, q, and the electric field

strength E:

Fe = qE (1)
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The charged molecule also experiences a drag force in the opposite direction of its

motion, Fd, which is proportional to its velocity, v, and its translation friction coefficient

t.

(2)

When the molecule is electrophoresing, the drag force acting on the molecule will

counter balance the electrostatic force. Thus, the velocity of the analyte at steady-

state (Fe = Fd) can be expressed as:

v = qE
f

(3)

The electrophoretic mobility Il is defined as the velocity of the analyte divided by the

electric field:

(4)

Electrophoretic mobility, Il, is also described by the following equation.

(5)

Where: Il = solution viscosity

r = ion radius

Therefore, differences in the mobility of the molecules will arise from either

differences in their frictional properties (dependent on their size and shapes) or their

net charges. It is these variations between the molecules that make separation by

electrophoresis possible 18-20.
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2.1.4.3 Characteristics and limitation of capillary electrophoresis

2.1.4.3.1 Characteristics

Capillary electrophoresis has the following characteristics

• High speed of analysis 21.

• High separation efficiency 22.

• Nano scale separation technique. The power of CE in micro-separation is

linked to the very small injection volume 23.

• Low consumption of electrolytes and samples 24.

• Capillaries can be easily conditioned with buffer before the start of the analysis

25

• It has very simple electropherograms 26.

• Method robustness and simplicity 27.

• Simpler chemistry 28.

• It has high resolving power and quantitative capability 29.

• It uses cheap columns 30.

• Good tolerance to sample matrix, e.g., to high pH values 31.

• The ability to resolve complex mixtures efficiently 32.

• Unambiguous identification of species oxidation state 33.

• The availability of sensitive detectors for determining analytes migrating from

the column 34.

• It has uniform flow profile 35.

• Feasibility and automation 36.

• Greater flexibility 37.

• Proved to be a good choice for investigation of samples in aqueous media

since usually no more than a simple dilution of samples is needed 38.

11
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• Poses versatility of application 39.

2.1.4.3.2 Limitation of CE

CE suffers from the following disadvantages.

• CE is the high detection limit for the usually involved on column UV detection

(ppm range) which is a serious limitation for its application to environmental

analytes, i.e, relatively poor concentration detectability of CE, particularly using

UV detector 40.

• Provides insufficient information for structural elucidation of unknown

compounds, especially in complex multicomponent mixtures 41 .

• Instability and irreproducibility of migration times and peak areas, manipulation

of separation selectivity is difficult and detection options are limited 31.

2.1.4.4 Electroosmotie flow (EOF)

One of the most distinguishing properties of capillary electrophoresis is

electroosmotic flow (EOF), which is the bulk flow of a liquid in the capillary. Fused

Silica capillary columns are used with ionizable silanol (SiOH) groups. Above about

pH 2, the silanol groups ionize to produce a negative charge on the capillary surface,

called the zeta potential. This surface charge creates an electrical double layer, from

the accumulation of cations along the walls 42. The EOF is directed towards the

cathode as long as the capillary walls remain negatively charged. This means that

cationic species move by electrophoresis in the same direction as the EOF. However,

anionic electrophoretic mobilities and EOF have different directions 43. The

relationship of the EOF and zeta potential can be expressed as:
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Where:

VeOF = (EQ'l) E

lJeoF = EQ'l

VeOF= EOF velocity

lJeoF = EOF mobility

~ = zeta potential

E = dielectric constant

(6)

(7)

2.1.4.4.1 Alteration of Electroosmotie flow (EOF)

A great deal of work has been done to marnoulate EOF. For example, the separation

of proteins in free zone electrophoresis was accomplished by adjusting the pH of the

buffer to 8 - 11, where the capillary wall and many proteins are electronegative and

repel one another to minimize surface interaction. The addition of NaCI reduces EOF

by decreasing double-layer thickness 44.

In addition to simple manipulation of the ionic composition of the buffer several

chemicals have been added to the buffer to alter the zeta potential developed across

the capillarylwater interface. The direction of the EOF is reversed through the

addition of cationic surfactant Cetyltrimethylammoniumbromide (CTAB) 38 or Tetra

decyltrimetylammoniumbromide (TTAB) 45.

2.1.4.4.2 Control of Electroosmotie flow (EOF)

EOF can be suppressed using different ways. The main ones are described in

table 2.
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Table 2. Methods to control electroosmotic flow 46.

Variable Result Comment

Electric field Proportional change • Efficiency and resolution may

inEOF decrease when lowered
• Joule heating may result when

increased
Buffer pH EOF decreased at low pH and • Most convenient and useful method to

increased at high pH change EOF
• May change charge or structure of the

solute
Ionic strength or buffer Decrease zeta potential and EOF • High ionic strength generates high
concentration when increased current and possible Joule heating

• Low ionic strength problematic for
sample adsorption

• May distort peaks shape if
conductivity different from sample
conductivity

• Limits sample stacking if reduced
Temperature Changes viscosity • Often useful since temperature is

controlled instrumentally
Organic modifier Changes zeta potential and • Complex changes, effect most easily

viscosity (usually decrease EOF) determined experimentally
• May alter selectivi!ï

Surfactant Adsorbs to capillary wall via • Anionic surfactants can increase EOF
hydrophobic and/or ionic • Cationic surfactants can decrease or
interactions reverse EOF

• Can s_ignificantly alter selectivity
Neutral hydrophilic Adsorb to capillary wall via • Decreases the EOF by shielding
polymer hydrophobic interactions surface charge and increasing

viscosi_!ï
Covalent coating Chemical bonding to capillary • Many modifications possible

(hydrophilicity or charge
• Stabili!ï often _e_roblematic

2.1.4.5 Migration time

In order to be separated analytes must have different electrophoretic velocities. The

time required for a solute to migrate to the point of detection is called the migration

time 47. The migration time or residence time is given as:

_ I _ IL
tm- ---

vE J.l.V
(8)

Where: 1..1 = electrophretic mobility

14

Stellenbosch University http://scholar.sun.ac.za



v = applied voltage

I = effective capillary length (to the detector)

L = total capillary length

t = migration time

E = electric field

v = velocity

2.1.4.6 Dispersion

Separation in electrophoresis is based on differences in the electrophoretic mobility

of analytes. During analysis, the analytes are focused into zones, and the difference

in migration distance necessary to resolve two zones depends on the width of these

zones. Dispersion, spreading of the analytes zone and increases zone length (band

broadening) should be controlled 48, 49. Dispersion results from differences in solute

velocity within that zone, and can be defined as the baseline peak width, Wb, for a

Gaussian peak,

Fig.3. The typical Gaussian peak showing half peak height (wtJ2), peak width (Wb)

and standard deviations of the peak (0).
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(9)

Where: 0= standard deviation of the peak (in time, length, or volume).

The efficiency, expressed in number of theoretical plates, N, can be obtained by

(10)

Where: I = capillary effective length

and can be related to the height equivalent to a theoretical plate (HEPT), H, by

I
H= -

N
(11 )

Under ideal conditions (that is, small injection plug length, no solute- wall

interactions, and so on) the sole contribution to solute- zone broadening in HPCE can

be considered to be longitudinal diffusion (along the capillary). Radial diffusion

(across the capillary) is unimportant due to the plug flow profile. Similarly, convective

broadening is unimportant due to the anti-convective properties of the capillary. Thus,

the efficiency can be related to the molecular diffusion term in chromatography as:

02 = 2Dt = 2DIL
peV

(12)

Where: D = diffusion coefficient of the solute

Substituting equation (12) into equation (10) yields a fundamental electrophoretic

expression for plate number

N - pVl _ pEl---_-
2DL 2D

(13)

From equation (13), the reason for the application of high fields is evident. This

16

Stellenbosch University http://scholar.sun.ac.za



follows simply because the solute spends less time in the capillary at high field and

has less time to diffuse. In addition, this equation shows that large molecules such as

proteins and DNA, which have low diffusion coefficients, will exhibit less dispersion

than small molecules.

The theoretical plate number can be determined directly from an electropherogram,

using, for example,

N = 5.54 [_t ]2
WI/2

(14)

Where: t = migration time

W1l2 = temporal peak width at half height

Note that equation (14) should only be used for Gaussian peaks. Any asymmetry

should be taken into account, for example, by use of central moments.

In practice, the measured efficiency, equation (14) is usually lower than the

calculated efficiency, equation (13). This is because the theoretical calculation

accounts only for zone broadening due to longitudinal diffusion.

2.1.4.6.1 Sources of band broadening

Diffusion is not the only cause for band broadening. Adsorption of solutes at the wall,

temperature effects, detection and sample injection can also lead to dispersion

according the following equation.

N = (t2;ig )
Cj Tot

(15)
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Where ei Tot is the zone variance due to all sources of band broadening.

In CE, ei Tot is given by:

(16)

Where eiOiff, ei1nj, eiDet, eiHeat, a2
AdS are the variances due to longitudinal diffusion,

sample injection, detection, joule heating, and adsorption respectively 50. Some of the

key sources of dispersion along with their importance and remedy are given in table

3.

Table 3. Sources of band broadening.

Cause Solution

longitudinal diffusion Minimized by increasing the voltage

Adsorption Use coated capillary or buffer additive

Injection size Reduce injection size

Joule heating Reduce voltage

Detection window Reduce slit width if possible

2.1.4.7 Resolution

The measure that describes the degree of separation of a pair of subsequently

migrating analytes is the resolution. It is dimensionless and the definition used in

most cases is:

R = 2(t2 -tl) = t2 -tl
WI+W2 40-

(17)

Where: t = migration time
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w = base line peak width (in time)

o = temporal standard deviation (subscripts 1 and 2 refer to the two

solutes).

The numerator in the equation (17) describes the separation process in terms of

differential and the denominator the dispersive processes acting against it.

Separation in HPCE is primarily driven by efficiency, not selectivity. This is in contrast

to chromatography in which the opposite is usually true. Due to very sharp solute

zones, small differences in solute mobility «0.05% in some cases) are often

sufficient for complete resolution. Of course, the extent of dispersion is immaterial if

mobil ity differences are realized 51, 61.

The resolution of two components can be expressed with respect to efficiency

(18)

Where:

Jl = Jl2 + JlJ
2

(19)

Substituting equation (13) into equation (18) yields a commonly cited theoretical

equation for resolution that does not require explicit calculation of efficiency. It also

describes the effect of EOF on resolution.

[ ]

1/2

R- 1 L\ v- [4hJ Jl n(Jl+jl~ J (20)
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2.1.5 Instrumental and operational aspects of high

performance capillary electrophoresis (HPCE)

The commercial HPCE systems available have no well-defined standard instrument

specifications, and the apparatus from different companies may be quite different

from each other with respect to technical data. A typical commercial HPCE system

consists, however, basically of the high voltage power supply (max.30 kV), two buffer

reservoirs, electrodes, capillary tube, capillary temperature controller, capillary filling

system, detector, and data acquisition equipment. The following comprise a

discussion of more general parameters such as capillary conditioning selected,

detection types and injection modes in HPCE.

2.1.5.1 Capillary conditioning

One of the most important factors leading to good reproducibility is capillary

conditioning. Proper conditioning of capillary surface ensures a consistent and

repeatable EOF. The most reproducible conditions are encountered when no

conditioning other than with buffer is employed. However, adsorption of sample to the

surface and changes in EOF often do not allow this.

Base conditioning to remove adsorbates and refresh the surface by deprotonation of

silanol groups is most commonly employed. A typical wash method includes flushing

a new capillary with 1 M NaOH for 20 minutes. Before each injection, capillaries are

conditioned by washing with 0.1 M NaOH for 5 - 10 minutes, with Milli- Q water (since

many organic ions are poorly soluble in organic solvents, and precipitated buffer

crystals can block the capillary) for 5 - 10 minutes and with background electrolyte

solution for 5 - 10 minutes. Before each analysis only the last two steps are

performed. In some cases, the capillary is flushed with pure organic solvents e.g.,
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methanol or DMSO, prior to the final conditioning step with electrolyte solution to

eliminate water 52.

2.1.5.2 Sample injection

There are basically two different methods of sample introduction into the capillary-

either hydrodynamic injection or electrokinetic injection.

2.1.5.2.1 Hydrodynamic injection

Hydrodynamic injection is the most widely used injection technique. It is simple to

employ and usually guarantees that the proper amount of sample enters the

capillary.

Hydrodynamic injection is accomplished in one of four ways:

• By elevating the capillary at the sample (inlet) end, permitting sample

introduction by siphoning

• By applying pressure on the individual sample vial

• By applying vacuum on the detector-side buffer reservoir

• Injecting by syringe and employing a splitter to reduce the volume introduced

into the capillary.

The volume of material injected per unit time (Vt, nUs) is determined by the

Poiseuile equation 53

IlPD4
1lV----

t - 1281]L
(21)

Where: t:..P = the pressure drop
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o = the capillary internal diameter

" = the viscosity

L = the total length of the capillary

For gravity based- injections, ,~.Pis given by:

~P=pg~h (22)

Where: p = the density of the sample solution

g = the gravitational constant

~h = the height difference between the liquid levels in the sample vial and

in the detector-side buffer reservoir.

The consequences of an open-ended injection system and the Poiseuille equation

mean that changes in the experimental conditions will result in variations of the

amount of the material injected. If the temperature is increased, more material enters

the capillary because of the decreased viscosity of the BGE. If the capillary is

lengthened, the amount of material injected decreases due to the increase of

backpressure.

Hydrodynamic injection is generally useful for capillaries with i.d.'s ranging from 25 to

100 urn, For smaller i.d. capillaries; high-pressure injection must be used to keep the

injection time reasonably short. For large-diameter capillaries, the injection pressure

must be reduced to maintain an injection time of over 1 s. Shorter injection times may

adversely affect precision 54.
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2.1.5.2.2 Electrokinetic injection

Electrokinetic is the simplest injection method in CE; the capillary inlet is immersed in

the sample solution and high voltage is applied for a brief period (typically a few

seconds). If no EOF is present, sample ions enter the capillary by electrophoretic

mobility alone. If EOF is present, sample ions will be introduced by a combination of

electrophoretic mobility and EOF.

This mode is generally termed electrokinetic injection and the quantity (Q) of a solute

injected is given as 53:

Q = (!-Iep + !-leo) rrr2ECT (23)

Where: !-Iep = the electrophoretic mobility

!-leo = the electroosmotic mobility

r = the capillary radius

E = the field strength

t = the time of injection

C= the concentration of each solute

Electrokinetic's injection offers two advantages. First, only like charges will enter the

capillary (in the absence of EOF). This enables discrimination against compounds of

opposite charge, simplifying the separation problem. Second, zone sharpening can

be achieved using the stacking principle, which is on capillary sample concentration
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based on the electric field strength differences between the sample zone and the

running buffer 51. Electrokinetic injection suffers from matrix effects, in that many

sample matrices contain components such as proteins, can adsorb onto the capillary

wall and change the magnitude of EOF 55.

2.1.5.2.3 No injection

The most frequent cause of no injection is a plugged capillary. This can result from

evaporation of water at the capillary tip, which allows salt crystals to form. If the

polyamide is not removed from the capillary tip, a shard of that material can enter

and plug up the capillary. It is also possible that material from unfiltered sample or

material that is insoluble in BGE can plug the capillary. If the capillary is plugged, the

observed current is usually zero or thereabout. Cutting a few millimetres of capillary

from the end or replacing the capillary should remedy the situation. No injection can

also occur if an empty or incorrect sample vial is used, if an incorrect vial is called for

in the method, if the vial cap is missing or badly leaking, or if the external pressure

source is not activated. It is also possible that the capillary is broken. Breaks usually

occur at the detection window. Check that the voltage polarity is correct set 56.

2.1.5.3 Detection

Perhaps the most rapidly developing aspect of capillary electrophoresis is detection.

The ability to detect trace amount of a wide variety of solutes will dictate the future of

capillary electrophoresis. Although on column UV absorbance and fluorescence have

been the most commonly used detection modes, there has been a flurry of new

detection and derivatization schemes developed. The main detectors are discussed

below 57.
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2.1.5.3.1 UV absorbance

UV detection is most common in capillary electrophoresis, as it is simple and reliable.

Many of the early reports of capillary electrophoresis with high field strength (150

V/cm) used UV detection with large diameter capillaries. Due to the need for small

detection volumes, UV detection is accomplished on column, such that the path

length is defined by the diameter of the capillary. This limits the sensitivity of

absorbance methods, since sensitivity is proportional to path length. UV detection

has remained the most popular method of detection, even with its limited

sensitivity 58.

2.1.5.3.2 Fluorescence

Fluorescence detection is most easily adapted for use in CE, since its sensitivity is

not path-length dependent. On column detection is accomplished simply by imaging

the excitation source onto the column and collecting the emission at an angle

perpendicular to the incident light. This allows the use of much narrower columns as

low as 11 IJ.mwhen lasers are employed as excitation source. The excitation source

can be as simple as an arc lamp where the excitation wavelength is isolated with

glass filters and then focused onto the capillary. The major pit fall with fluorescence

detection is that it is only possible for use with compounds that have a chromophore

or fluorophore 59-60.

2.1.5.3.3 Mass spectrometry (MS)

Mass spectrometry (MS) is another detection technique common in macro scale

separation that has been applied to micro column separations. This technique is

attractive because of its general applicability and its ability to yield structural
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information. Coupling micro column to MS is not as straightforward as coupling to

optical detection methods because the on-column scheme cannot be used.

Therefore the technology for routine use of MS in micro separation is still being

developed 61.

2.1.5.3.4 Electrochemical detection (ED)

The growing popularity of ED has become evident within the last few years.

Principally, there are three ED systems suitable for sensitive detection of inorganic

ions (metal ions), i.e., amperametric, conductametric and potentiometeric detection.

For all of these, investigations into simpler and more robust cell arrangements

continued to be the main trend. Amperametric detection appears to be by far the

most suited for CE of the metal analyte ions because a high- sensitivity response can

be expected for a wider range of metal analytes. It can attain detection limits as low

as 10-11 M for metal ions (table 4). Most recent advances in amperametric detection

involved a simplified detector cell with a single (not electrophoretic) electrode, a field-

portable CE instrument which incorporates, in a single unit, bath amperametric and

potetiometric detection, and a sensor for non-electro active cations employing a

modified graphite electrode (with a mixed-valence ruthenium-iron cyanide) 62.
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Table 4. Detection types for capillary electrophoresis 63-64.

Method Advantage Drawback Detection limit (mol L·~)

UV-Absorbance Universal Relatively low sensitivity 10.4_10.6

Fluorescence Sensitive Limited number of fluorophores 10~-10·g

Mass spectrometry Selective Limited number of buffer 10-8-10·g

Amperometry Sensitive, Stability, different electrodes 10.5_10.11

Selective are needed for different species

Condutometry Universal Maintenance of electrodes 10-4_10.8

Potentiometry Universal For lipophilic ions only 10.3_10.11

2.1.6 Modes of CE operation

Capillary electrophoresis (CE) can be accomplished with various modes, including

the popular1yemployed Capillary zone electrophoresis (CZE), Micellar electrokinetic

chromatography (MEKC), Capillary gel electrophoresis (CGE), Capillary

isotachophoresis (CITP), Capillary isoelectric focusing (ClEF), lon-exchange

electrokinetic chromatography (IEEC) as well as some newly developed separation

strategies that involve Affinity capillary electrophoresis (ACE), Capillary

electrochromatography (CEC), Separation of microchip (MC) and using organic

solvents as the separation medium-nonaqueous capillary electrophoresis(NACE).

This project focuses on Capillary zone electrophoresis mode of CE separation. The

basic principle and application of Capillary zone electrophoresis is discussed in

upcoming sections.
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2.1.6.1 Capillary zone electrophoresis (CZE)

CZE-based separation is the most widely used operational mode in CE. Its

mechanism is based on the differences in the electrophoretic mobility of analytes.

The analytes with different electrophoretic mobility will migrate in separated zones,

and the analytes with the same electrophoretic mobility will co-migrate within the

same zone in the capillary under the applied electric field. That is the origin for name

zone. CZE provides high efficiency, resolution, speed and reduced consumption of

reagents 65. CZE is commonly used for the separation of inorganic ions (cations and

anions). In the determination of metal ions, CZE is usually accomplished by the

complexation method to enhance the difference in electrophoretic mobility of each

metal ion. In the anion analysis a suitable BGE and surfactant for reversal of EOF

should be used.

2.1.6.1.1 CZE for metal ion separation

CE has recently been developing very rapidly. It has become established as a

powerful technique for metal ion separation 66.Thefirst paper on the CE analysis of

inorganic cations was published by Hjerten in 1967(separation of Bi3+and Cu2+) with

lactic acid as the complexing agent 67, but the real boom in CE started after 1990 in

close connection with rapid development of the instrumentation 68.

One of the problems in the analysis of metal ions by CE is that most of the transition

metal cations have almost the same mobility due to their similar size and identical

charge (see table 6). The electrophoretic mobility of cation, lJep (ion), can be related to

the limiting ionic equivalent conductivity, '\ekv, by eq. (24),

lJep (ion) = Aei<JF .. q/6TTl1n (24)
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Where: F = the Faraday constant (F=9.6487x1Q4as mol"):

qi = the charge of the hydrated cation

11 = the dynamic viscosity of the electrolyte (g cmês"),

n = the radius of the hydrated cation (cm).

The hydrated ionic radii of selected inorganic cations, calculated using eq. (24) are

listed in table 5.

Table 5. Hydrated ionic radii ri (in cm) of the selected inorganic cations 69.

Cation 10D r. Cation 10D rl Cation 10D rl
BaL+ 2.572 oe= 3.651 NiL+ 3.244
CaL' 2.750 Ho"'" 3.706 PbL+ 2.297
CdL+ 3.039 K+ 1.114 Pr"+ 3.520
Ce;j+ 3.530 ta" 3.530 Rb+ 1.058
CoL+ 3.150 Lt 2.117 Sm;j+ 3.587
Cs+ 1.044 Mg"'+ 3.088 Sr+ 2.742
CuL+ 3.000 Mn"'+ 3.168 ru= 3.757
Dy"+ 3.745 Na+ 1.624 Yb"+ 3.745
Ef+ 3.728 Nd'" 3.540 Zn"'+ 3.046
Eu"'" 3.624 NH/ 1.104

Obviously, the enhancement of separation selectively is the only alternative with

which to achieve a satisfactory resolution. Generally, there are two main approaches

in this direction that imply the addition of a complexing ligand to either the carrier

electrolyte or a sample solution before introduction into the capillary.

Complexation of the cation to be separated with auxiliary ligands is used to change

the selectivity of the separation and/or to facilitate the detection.
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2.1.6.1.2 Choice of derivatlzation ligands

In the application of CE to analysing metal complexes, the selection and utilization of

the ligands are undoubtedly of key importance in the research and the core of the

experimental design. A good derivitization reagent should fulfil the following

requirements:

(i) It must be easily synthesized and purified.

(ii) It must form stable, sensitive and single-state complexes with multielements under

controlled conditions.

(iii) The formed complex should be stable during electrophoresising in the capillary

(iv) The maximum absorptive wavelengths of the complexes investigated in an

electrophoretic should be close to each other, far away from that of the ligand for

the demand of detection 70.

2.1.6.1.3 Selection of the background electrolyte (BGE)

Choice of the BGE is most important in developing a method employing CZE with

indirect UV detection since it must conform to the following requirements:

• The BGE must contain an absorbing co-ion of the analyte.

• Since sensitivity is directly related to the molar absorptivity of the BGE, this

should be high.

• The peak shape of the analyte can be affected by differences between its

mobility and the mobility of the BGE. Consequently, mismatching the ionic

mobilities of the BGE and sample ions can produce peaks exhibiting fronting

or tailing. Therefore the mobility of the BGE should be similar to that of the

analyte of interest.
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• Migration time reproducibility is dependent upon reproducible mobilities, which

in tum is pH dependent. Therefore, the BGE should have a good buffering

capacity at the operating pH 71.

The commonly used UV-Vis absorbing electrolytes are described below.

Table 6. Frequently used UV-Vis absorbing electrolytes 72.

S.No UV-Vis absorbing S.No UV-Vis absorbing
electrolyte electrolyte

1 Creatinine 6 4-aminopyridine

2 Imidazole 7 4-Methyl benzyl amine

3 Ephedrine 8 p-toluidine

4 Pyridine 9 Benzimidazole

5 Copper sulfate

2.1.6.1.4 Methods of metal Ion complexation

In principle, two experimental approaches are used in the CE analysis of cations, an

off-line preparation of complexes prior to the CE analysis, and on line comlexation in

the separation capillary 73.

2.1.6.1.4.1 On-line complexation

If complexes of low stability are rapidly formed, then on-capillary partial complexation

can be used. A ligand is added to the running electrolyte and rapid equilibrium

between the free metal ions and their complexes is established, with the most of the

ions present in the free form. Owing to different complexation degrees with various

charges on the complexes, the ions have different migration rates 74-78.

2.1.6.1.4.2 Off-line complexation

If the complexes of a metal with ligands are sufficiently stable under CE conditions,

then off-capillary complexation is preferred. An excess of a strong complexing agent
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is added to the sample prior to the CE analysis. On-column UV-detection is possible

as the fraction of the complexed ions is large. If there is a danger of the complex

dissociation during the CE analysis, the complexation agent is added to the running

buffer in a low concentration. The number of ligands do not affect the separation but

the buffer components or competing complexing ligands do. Several conditions must

be satisfied in off-line complexation. The ligand should react with a large number of

metal cations and should suppress the original properties of the metals. The

complexes should have a high UV absorbance, high solubility and a low

electronegativity to prevent adsorption on the capillary wall.

Generally, partial complexation techniques gives significantly better separation

selectivity, high efficiency and shorter analysis time 79-84.

2.1.7 Trouble shooting

Table 7 contains some troubleshooting guidelines. This table can be used as an aid

in methods development as well as for troubleshooting of a previously established

method. Most of these problems have been covered in the appropriate section of this

chapter.

Table 7. Some troubleshooting guides 85.

Problem Cause Remedy

Base line too noisy • Buffer solution polluted • Replace buffer (perhaps
• Current too high degas or filtrate)
• Detector lamp defect • Cool capillary
• pH too high • Lower the voltage/current
• Broken capillary • Replace detector lamp
• Dirty detector window • Lower pH

• Change the capillary
• Check the window

Base line shifts • Different buffer solutions in • Increase flush time for
capillary actual buffer solution

• pH too high • Lower pH
• Too much strain ion window • Bend capillary less
• Detector lamp defect • Replace detector lamp
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Continued

Small peak height • Detector lamp off • Switch lamp on

• Wrong wave length • Check the wave length
• Sample too old • Refresh the sample
• Sample too much diluted • Use more concentrated

• Detector is not sensitive sample

• Plugged capillary • Check the range of detector

• Air bubbles in capillary • Replace capillary or remove

• Adsorption of substance on a few mm from the inlet side
capillary wall or retry

• No voltage or voltage too low • Flush with buffer at 2000
mbar,1min

• Increase the ionic strength
of buffer

• Turn voltage on or increase

Migration times drift • Buffer evaporation • Replace buffer
• Balance fluid levels between

• Buffer depletion inlet and out let side
• Reduce capillary diameter

Siphoning • Check the temperature of
oven

• Temperature of the capillary • Check voltage

buffer has changed • Use the appropriate flushing
procedures

• Voltage is not stable • Use wall coated capillary
• Inject less sample

Inner wall of capillary change • Increase buffer•
sample effect (bound disturb concentration

electrical field capillary) • Change pH

Resolution gets • Adsorption of substance on • Use the appropriate flushing
worse capillary wall procedures

• Change to a wall coated
capillary

• Increase the ionic strength
of the buffer

Broad peaks • Large injection size • Reduce injection size
• High ionic strength of sample • Dilute sample

solution • Prepare sample in a low
• Siphoning ionic strength buffer
• Solubility problem

• Balance fluid levels of inlet
and out let side

• Add detergent and modifier
to sample or buffer

Peak tailing • Shard at capillary end • Cut and clean capillary ends
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Chapter3

3. Experimental procedures

3.1 Experimental conditions for metal ion detection

The CE analysis was performed on Prince Technologies (Emmen, Netherlands)

capillary electrophoresis system equipped with power supply (0 - ±35kV) and UV

detector (PU 4225 UV detector, Philips) with wavelength of 190 - 820 nm. Fused-

silica capillaries (Polymicro Technology, Phoenix, AZ, USA) of 75 urn LO, (360 um

0.0) and 108.5 cm long (96.5 cm effective length) were used. The samples were

injected using hydrodynamic mode (50 mbar). Data acquisition and analysis (DAx)

soft ware from Prince Technologies was used for the control of instrument settings.

All experiments were conducted at 25°C. The current was monitored for all

evaluated background electrolytes and was in the range of 7 to 11 !JA.

A typical Capillary electrophoresis instrument used for the analysis of cations and

anions is given in figure 4.

Fig. 4. A typical Capillary electrophoresis instrument(Manual type)

39

Stellenbosch University http://scholar.sun.ac.za



All electrolytes were prepared daily using Milli-Q water through dilution of an

appropriate amount of the UV-absorbing buffer compound and the complexing

reagent.

Different methods have been investigated for the separation and detection of metal

ions. The methods are listed below.

3.1.1 Glycolic acid-pyridine background electrolyte

In this method the following experimental conditions were used.

• Glycolic acid (13 mM), pyridine (10 mM)

• Analyte concentration

• Applied voltage

• Wavelength

• Injection pressure

10 ppm

+25 kV

254 nm

50 mbar- hydrodynamic

injection

24 s

4.0 adjusted with 0.1 M HCI

7IJA

• Injection time

• pH

• Current

3.1.2 a.-Hydroxyisobutyric acid-4-amino pyridine background electrolyte

Better base line noise, resolution and selectivity were obtained under the following

experimental conditions.

• a.-HIBA (6.5 mM) and 4-Amino pyridine (10 mM)

• Analyte concentration 10 ppm
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• Applied voltage

• Wavelength

• Injection pressure

+25 kV

214 nm

50 mbar-hydrodynamic

injection

18 s

4.5 adjusted with 0.1 M

HCI

9!JA

• Injection time

• pH

• Current

3.1.3 Glycolic acid-imidazole background electrolyte

This background electrolyte was used for the analysis of base metals and transition

metals. In the analysis the following experimental conditions were used.

• Glycolic acid (15 mM), imidazole (12 mM)

• Analyte concentration

• Applied voltage

• Wavelength

• Injection pressure

10 ppm

+25 kV

214 nm

50mbar- hydrodynamic

injection

24 s

4.29 adjusted with 0.1 M

HCI

10 !JA

• Injection time

• pH

• Current

3.1.4 a-HIBA-imidazole background electrolyte

This method was used for metal ions detection using the following experimental
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conditions.

• a-HIBA (7 mM) and imidazole (10 mM)

• Analyte concentration

• Applied voltage

• Wavelength

• Injection pressure

10 ppm

+25 kV)

210 nm

50 mbar- hydrodynamic

injection

12 s

4.5 adjusted with 0.1 M HCI

9 ~A

• Injection time

• pH

• Current

3.1.5 Mixtures of complexing agent and imidazole

• a-HIBA (7 mM), glycolic acid (13 mM» and imidazole (10 mM)

• Analyte concentration 10 ppm

• Applied voltage +25 kV

• Wavelength

• Injection pressure

• Current

214 nm

50 mbar-

hydrodynamic injection

24 s

4 adjusted with

0.1 M HCI

8 ~A

• Injection time

• pH

3.2 Experimental conditions for anion detection

The same equipment was also used for anion analysis. All experiments were
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conducted at 25 DC. The current was monitored for all evaluated back ground

electrolytes and was in the range of 10 to 13 !JA. All electrolytes were prepared daily

using MiIIi-Q water through dilution of an appropriate amount of the UV-absorbing

buffer compound and the complexing reagent

Different methods have been used for the separation and detection of inorganic and

organic acids anions. The following parameters were used for inorganic and organic

anions analysis.

3.2.1 The experimental condition for inorganic anions

In this method the following experimental condition was used.

• K2Cr04 (5 mM), Boric acid (3 mM), CTAB (35 !JM) and EDTA(12 urn)

• Analyte concentration

• Applied voltage

• Wavelength

• Injection pressure

30 ppm

-20 kV

200 nm

50mbar-

hydrodynamic injection

12 s

8.2 adjusted with 1 M

NaOH

13!JA

• Injection time

• pH

• Current

3.2.2 The experimental conditions organic acid anions

In this method the following experimental condition was used.
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• POC (5 mM), CTAS (0.5 mM)

• Analyte concentration

• Applied voltage

• Wavelength

• Injection pressure

30 ppm

-25 kV

200 nm

50 mbar- hydrodynamic

injection

12 s

5.1 adjusted with 1M NaOH

10 !JA

• Injection time

• pH

• Current

In both experimental conditions, a 75 um capillary with total length of 96.5 cm (84.5

cm effective length) was used.

3.3 Reagents and chemicals

All chemicals and reagents were purchased commercially and used as received. The

ultra pure water that was prepared in MiIIi-Q purification unit.

Table 8. List of reagents and chemicals used for the project.

Chemicals Manufacturer and Grade

KCI PAL(chemically pure reagent)

NaCI PAL (analytical reagent -99%)

MgC12.6H20 Merck (99%)

CaC12.2H20 NT Laboratory Supplies(Chemically pure)

FeS04.7H20 NT Laboratory Supplies (Chemically pure -97%)

Manganese Solution (1000 ppm) Fluka(spectro sol)

Cadmium Solution (1000 ppm) Fluka(spectro sol)

2, 6 Pyridine dicarboxylic acid ACROS ORGANICS (99%)
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Continued

Boric acid Merck (99.8%)

Ethylene diamine acetic acid NT (analytical reagent-99%)

NaF ANALAR (analytical reagent-99%)

NH4N03 NT (analytical reagent-99%)

Na2S04 ANALAR (analytical reagent-99%)

Cetyl trimethyl ammonium bromide Sigma (99%)

Zinc Solution (1000 ppm) Fluka (spectra sol)

Lead Solution (1000 ppm Fluka(spectro sol)

Nickel Solution (1000 ppm) Merck (spectra sol)

Copper Solution (1000 ppm) Merck (spectra sol)

2-Hydroxyisobutyric acid (a-HIBA) Aldrich (98%)

4-Amino pyridine Aldrich (98%)

Imidazole Sigma (99%)

Glycolic acid Fluka (99%)

Pyridine Riedel-dehaen (99%)

HCI solution Riedel-dehaen (37%)

NaOH Riedel-dehaen (99%)

Ethanol absolute Riedel-dehaen (99.8 %)

Phosphoric acid Aldrich (85%)

~Cr04 General-purpose reagent (99%)

Tartaric acid Merck (99.5%)

Citric acid Merck (99.5%)

Malonic Sigma (95-100%)

Succinic acid ACROS (99%)
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3.3.1 Preparation of Standard solutions

Preparation of Glycolic - pyridine buffer solution. 0.198 9 of glycolic acid and

0.161 ml of pyridine were diluted with Milli-Q water to the mark in a 200 ml volumetrie

flask.

Preparation of Glycolic - imidazole buffer solution. 0.228 9 of glycolic acid and

0.163 9 of imidazole were diluted with Milli-Q water to the mark in a 200 ml volumetric

flask.

Preparation of 2-Hydroxyisobutyric acid (a-HIBA) - imidazole buffer solution.

0.145 9 of 2-Hydroxyisobutyric acid (a-HIBA) and 0.136 9 of imidazole were diluted

with Milli-Q water to the mark in a 200 ml volumetric flask.

Preparation of 2-Hydroxyisobutyric acid (a-HIBA) - 4-amino pyridine buffer

solution. 0.135 9 of 2-Hydroxyisobutyric acid (a-HIBA) and 0.188 9 of amino pyridine

were diluted with MiIIi-Q water to 200 ml in a volumetric flask.

Preparation of 2-Hydroxyisobutyric acid (a-HIBA), Glycolic acid and imidazole

buffer solution. 0.145 9 of 2-Hydroxyisobutyric acid (a-HIBA), 0.198 9 of glycolic

acid and 0.136 9 of imidazole were dissolved in water and made up to 200 ml in a

volumetric flask.

Preparation of 2, 6 Pyridine dicarboxylic acid - Cetyl trimethyl ammonium

bromide buffer solution. 0.167 9 of 2,6 pyridine dicarboxylic acid and 0.03645 9
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Cetyl trimethyl ammonium bromide were dissolved in diluted water and made up to

200 ml in a volumetric flask.

Preparation of Potassium Chromate, Cetyl trimethyl ammonium bromide, Boric

acid and Ethylene diamine acetic acid buffer solutions. 0.097 g of potassium

Chromate, 0.0013 g of Cetyl trimethyl ammonium bromide, 0.0185 g of Boric acid

and 0.00045 g of Ethylene diamine acetic acid were dissolved in water and diluted to

100 ml in a volumetric flask.

Preparation of metal standard solutions. Transition metals (Mn2+, Cd 2+,

Pb 2+, Ni 2+,Zn 2+,Cu 2+) were prepared by diluting 0.100 ml of the metal solution

(each 1000 ppm) with Milli-Q water in a 10 ml volumetric flask. The common metals

(~, Na+, Mg 2+,Ca 2+)and Fe 2+standard solutions were prepared by weighing 0.1 g

of the respective salt and diluting with MiII-Q water in a 100 ml volumetric flask. 10

ppm was prepared by diluting 0.100 ml of the metal solution with MiIIi-Q water in a 10

ml volumetric flask.

Preparation of calibration curve. A calibration curve was prepared with 5 ppm, 25

ppm, 50 ppm, 100 ppm and 200 ppm measuring 25 !-II,125 !-II,250 !-II,500 !-IIand

1000 !-IIrespectively of each base metal ions in 5 ml volumetric flask. The same

calibration procedure was used in the anion study.

Preparation of anion standard solutions. Anion standard solutions were prepared

from sodium salts or free acids by weighing 0.01 g anion and diluting with Milli-Q
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water in a 10 ml volumetric flask.

Preparation of 1.0 M of NaOH Solution. 4 g of NaOH was dissolved in Milli -Q

water and then diluted with to the mark in a 100 ml volumetric flask.

Preparation of 0.1 Mof HCI Solution. 0.8 ml of Concentrated (37%) HCIwas

diluted with MiIIi-Qwater to the mark in a 100 ml volumetric flask.

3.4 Capillary conditioning

The capillary was flushed before sample injection using a 1 M NaOH solution (10

min), Milli-Q water-ultra pure water (10 min) and running electrolyte (10 min) and the

sample was injected with the appropriate method. Between each run the capillary

was rinsed with running electrolyte for 4 min.

3.5 Sampling and sample handling

Environmental water samples were sampled from river, lake and reservoir areas

surrounding the Stellenbosch. Tap water was used from a sink in the laboratory. The

water samples were collected in polyethylene containers and acidified and then kept

in refrigerator at 4 oe. Samples (Multimin and Mineral Max), which are used for animal

protection, were also analyzed. The wine sample provided by the laboratory for

separation sciences at Stellenbosch University. The orange juice and the beer were

bought from the market.

The same environmental water sampling and sample handling was used from all

water sites.
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Typical water sampling from University of Stellenbosch Gymnasium area (river) is

shown in figure 5.

Fig. 5. Environmental water sampling near University of Stellenbosch Gymnasium
area (river).
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Chapter4

4. Results and discussion for metal ions

The separation was performed using the Capillary zone electrophoresis (CZE) since

it is a commonly used method for metal ion analysis 1. The normal electro osmotic

flow (EOF) phase was used 2. The most important optimization parameter for the

separation of cationic compounds is the choice of a suitable cationic background

electrolyte (BGE) 3-5. In these studies, three BGEs were used, that is, pyridine,

imidazole and 4-aminopyridine. These background electrolytes all absorb strongly in

the UV region and all have similar mobilities.

Determination of metal ions in aqueous samples using electrophoresis was

accomplished with indirect UV-detection. For optimal determination of alkali, alkaline

earth, and transition metal ions, several electrolyte systems were studied. Detection

at different wavelength was performed with back ground electrolyte containing

reagents with inherent absorbance in the UV range: pyridine, imidazole, and 4-

aminopyridine. Glycolic acid and a-hydroisobutyric acid were also used as

complexing reagents 6-8. With these background electrolytes, a successful separation

of mixture of cations (~, Na+,Ca2+, Mg2+,Mn2+, Fe2+, Cd2+, Pb2+, Ni2+,and Zn2+) was

obtained.

Inorganic cations are small and thus have higher charge densities (q/r ratios) than

most organic ions. The problems connected with CE analysis of inorganic cations are

due to small differences in their migration rates. Only the alkali metal ions exhibit

large differences in their mobilities and can be easily separated. Bivalent and trivalent

cations, such as those of the alkaline earth, rare earth and transition metals cannot
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be separated in a simple electrolyte as their mobilities are similar. An exception is the

Pb2+ ion with higher mobility due to its smaller hydrated radius resulting from a lower

degree of hydration. Hence complexation reaction of the cations is employed to

enhance the differences in their mobilites 9, 10. Different methods were developed for

cations and are discussed below.

4.1 Separation of metal ions using glycolic acid as the complexing agent and

pyridine as background electrolyte:

Pyridine is a good UV-absorbing additive in CE cation separations. At A = 254 nm the

pyridinium cation has both good sensitivity and shows a stable background 11. A

mixture of 9 metals (as complexes) could be separated using pyridine as shown in

(Fig. 6a). All peaks were completely resolved with a resolution R>1. Detection of Cd2+

in this system was problematic because of the very small peak height. Small peak

distortion of Pb2+, Ni2+ and Zn2+ peaks were caused by the formation of relatively

stable complexes with glycolic acid with only small mobility 12.

Tme[min)

Fig. 6a. Electrophoretic separation of 9 metal ions. Carrier electrolyte, 10 mM
pyridine - 13 mM glycolic acid (pH 4.0); hydrodynamic injection 24 s: voltage, 25
kV,wavelength , 254 nm. Peaks according to sequence: 1=K+,2=Na+, 3=Ca2+,
4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Pb2+, 8=Ni2+, 9=Zn2+.
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The overlap of different electropherograms in figure 6b show the degree of

reproducibility among the different runs for metal ions mentioned before.

0.002

~
~
~ O.OOO'___..."""'""''''''' .... ,...~
:i!

10 12 14 Time [min)

Fig. 6b. The reproducibility of metal ions over three runs (within runs). Experimental
condition is the same as in fig. 1a. Peaks according to sequence: 1=K+,2=Na+,
3=Ca2+ 4=Mg2+ 5=Mn2+ 6=Fe2+ 7=Pb2+ 8=Ni2+ 9=Zn2+, , t , , , •

The migration time, peak area and corrected peak area is included in table 9. The

corrected peak areas were obtained by dividing peak areas of each metal ion to its

migration time. A lower relative standard deviation (RSD) was obtained for the

corrected peak area (tables 9, 10, 11, 12 and 13).
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Table 9. The migration time, peak area and corrected peak area of metal ions at a

concentration of 10 ppm (n = 6).

Metal ion Migration time, min (RSD) Peak area, (RSD) Corrected peak area, (RSD)

K 8.61 (±1.65%) 2.12E-05(±6.57%) 2.46E-06(±4.88%)

Na+ 11.21 (1.89%) 2.47E-05(±9.70%) 2.20E-06(±8.09%)

CaL+ 11.37(±1.90%) 5.02E-05(±4.06%) 4.41 E-06(±3.92%)

MgL+ 11.78(±1.77%) 3.36E-05(±9.86%) 2.85E-06(±9.45%)

MnL+ 12.17(±1.75%) 1.27E-04(±12.89%) 1.04E-05(±11.51 %)

FeL+ 12.49(±1.77%) 9.69E-05(±12.11 %) 7.74E-06(±10.21%)

PbL+ 13.50(±1.86%) 2.76E-05(±11.46%) 2.04E-06(±10.44%)

NiL+ 13.85(±1.89%) 1.17E-04(±13.99%) 8.42E-06(±12.56% )

ZnL+ 14.29(±1.94%) 1.23E-04(±12.21 %) 8.62E-06(±10.61%)

As it shown in the above table, the relative standard deviations of the corrected peak

areas were lower than the peak areas. Similar comparisons were obtained with other

methods that are shown in the upcoming tables.

The main pitfalls of the method were that it was not sensitive enough for the

detection of Cd2+. The sensitivity of K+was also low. The reproducibility among the

electropherograms of the metal ions was good as shown in figure 6b.
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4.2 Separation of metal ions using glycolic acid as the complexing agent and

imidazole as background electrolyte

A mixture of 9 metal ions could be separated using imidazole as UV-absorbing

species (fig 7a). All peaks were completely resolved. Detection of Pb2+ in this system

was problematic because of its small peak height. Due to low absorbance of the Pb-

glycolic acid complex. The detection sensitivity of Pb2
+ can be improved using a-

hydroxyisobutyric acid (a-HIBA) as complexing agent (fig 8a). The migration time,

peak area and corrected peak area of the metal ions is shown in table 10.

Table 10. The migration time, peak area and corrected peak area of metal ions at a

concentration of 10 ppm (n = 6).

Metal ion Migration time, min (RSD) Peak area, (RSD) Corrected peak area, (RSD)

K+ 8.75(±1.39%) 3.85E-05(±10.17%) 4.39E-06(±9.36%)

Na+ 11.78(±1.63%) 9.30E-05(± 6.84%) 7.89E-06(±5.75%)

CaL+ 11.94(±1.67%) 5.41 E-05(4.13%) 4.53E-06(±5.19%)

MgL+ 12.46(±1. 71%) 5.30E-05(±6.27%) 4.25E-06(±5.83%)

MnL+ 12.86 (±1.70%) 2.13E-04(±3.83%) 1.66E-05(±2.97%)

FeL+ 13.63 (±1.72%) 4.08E-05(±13.16%) 2.99E-06(±12.13%)

Cd z+ 13.89 (± (1.72%) 1.11 E-04(±14.05%) 7.99E-06(±13.44%)

Ni'+ 15.614(±1.83%) 2.25E-04(±6.74%) 1.44E-05(±6.39%)

ZnL+ 16.31(±1.83%) 2.20E-04(±4.98%) 1.35E-05(±5.12%)
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The electropherograms obtained using glycolic acid and imidazole as complexing

agent and as UV-absórbing species respectively for mixtures of 9 metal ions are

given below. The reproducibility of the method for three runs (red, black and blue) is

shown in figure 7b. Peaks 8 and 9 are distorted due to the strong complexes formed

between Ni2+and glycolic acid and Zn2+and glycolic acid.

000·

~
III .().O()1.c
Cl

7w 8.c
4«

23
.()002

10 15
Time (tntn I

Fig. 7a. Electrophoretic separation of 9 metal ions. Carrier electrolyte, 12 mM
imidazole - 15 mM glycolic acid (pH 4.29); hydrodynamic injection 24 s: voltage, 25
kV, wavelength, 214 nm. Peaks according to sequence: 1=K+, 2=Na+, 3=Ca2+,
4=Mg2+ 5=Mn2+ 6=Fe2+ 7= Cd2+ 8=Ni2+ 9=Zn2+, t , f , •
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Fig.7b.The reproducibility of metal ions over three runs (within runs). Experimental
condition is the same as in fig.6a. Peaks according to sequence: 1=K+, 2=Na+,
3=Ca2+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Cd2+, 8=Ni2+, 9=Zn2+.

55

Stellenbosch University http://scholar.sun.ac.za



4.3 Separation of metal ions using a-HIBA as the complexing agent and

imidazole as background electrolyte

The use of a different complexing system influences the separation of the ions. With

a-HIBA Cd2
+ could be resolved. The ~ and Fe2+ peaks are small due to low

sensitivity of the method towards those ions. The use of a-HIBA as a complexing

reagent allows the detection of Pb2+ that could not be detected using glycolic acid as

complexing reagent. The uses of different complexing agents affect the mobilities of

the ions. The mobility of metal ions using a-HIBA as complexing agent is generally

higher than when glycolic acid is used as complexing agent (tables 10 and 11).

However, the order of migration time of the ions remains the same. The migration

time, peak area and corrected peak area with a-HIBA - imidazole buffer are shown in

table 11.

Table 11. The migration time, peak area and corrected area of the metal ions at a
concentration of 10 ppm (n = 6).

Metal ion Migration time, min (RSD) Peak area, RSD Corrected peak area, RSD

K+ 7.68(±0.46%) 2.66E-05(±9.21 %) 3.46E-06(±9.24%)

Na+ 9.71 (±0.45%) 2.33E-05(±11.01%) 2.4E-06(±10.56%)

CaL+ 10.08(±0.43%) 3.67E-05(±2.33%) 3.64E-06(±2.28%)

Mg"'+ 10.40(±0.42%) 1.96E-05(±10.64%) 1.89E-06(±10.57%)

Mn"'+ 10.58(±0.40%) 8.39E-05(±2.24%) 7.93E-06(±1.88%)

FeL+ 10.96(±0.40%) 1.56E-05(± 10.73%) 1.42E-06(±1 0.61 %)

PbL+ 11.30(±0.38%) 4.53E-05(±5.41 %) 4.01 E-06(±5.43%)

NiL+ 11.60(±0.56%) 5.67E-05(±10.57%) 4.88E-06(±10.26%)

ZnL+ 11.75(±0.41%) 3.60E-05(±4.88%) 3.06E-06(± 4.58%)
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The electropherograms showing a mixture of 9 metal ions and the overlapped for

three runs are indicated below (fig 8a and 8b). In figure 8a, the peak shape for Fe2+,

Pb2+, Ni2+ and Zn2+ is slightly distorted, showing the formation of strong complexes.

0.000

6 8 10 12
Time [min]

Fig 8a. Electrophoretic separation of 9 metal ions. Carrier electrolyte, 10 mM
imidazole - 7 mM a-hydroxyl isobutyric acid (pH 4.5); hydrodynamic injection 24 s:
voltage, 25 kV, wavelength, 210 nm. Peaks according to sequence: 1=K+, 2=Na+,
3=Ca2+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Pb2+, 8=Ni2+, 9=Zn2+.

e e 10 12 14

Time (min)

Fig. 8b. The reproducibility of metal ions over three runs using the same
experimental conditions as in fig. 8a. Peaks accordina to sequence: 1=K+, 2=Na+,
3=Ca2+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Pb2+, 8=Ni2+, 9=Znr+.
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4.4 Separation of metal ions using a-HIBA as the complexing agent and 4-

amino pyridine as background electrolyte:

a-hydroxyisobutyric acid as complexing agent and 4-aminopyridine as background

electrolyte is the most efficient method for separation of a mixture of ions. A mixture

of 10 metals could be separated efficiently using 4-aminopyridine (Fig 9a). All peaks

were completely resolved. With this method it was possible to detect Cd2+ and Pb2+.

Table 12. The migration time, peak area and corrected peak area of metal ions at a

concentration of 10 ppm (n = 6).

Metal ion Migration time, min (RSD) Peak area, (RSD) Corrected peak area, (RSD)

K+ 7.99(±1.74%) 3.65E-05(±6.74%) 4.57E-06(±6.50%)

CaL+ 10.04(±2.79%) 3.87E-05(±7.13 %) 3.86E-06(±5.26%)

Na+ 10.41 (±2.83%) 6.4 7E-05(±4 .85%) 6.22E-06(± 4.72%)

Mg:l+ 10.77(±3.03%) 3.43E-05(± 7.64%) 3.19E-06(±6.48%)

Mn:l+ 11.07(±3.16%) 0.000138(±8.05%) 1.25E-05(±5.44%)

Fe:l+ 11.38(±3.36%) 2.01 E-05(±4.85%) 1.76E-06(±3.70%)

CdL+ 11.69(±3.51 %) 7.20E-05(±5.86%) 6.17E-06(±2.97%)

PbL+ 11.83(±3.81 %) 1.67E-05(±12.04%) 1.42E-06(±11.83%)

NiL+ 12.023(±3.84%) 1.32E-04(±8.46%) 1.1OE-05(±5. 72%)

ZnL+ 12.21 (±3. 94%) 1.20E-04(±8.36%) 9 .85E-06(±5.27%)
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Fig. gc. The reproducibility of metal ions over three runs (between runs) using the
same experimental conditions as in fig. sa. Peaks according to sequence: 1=K",
2=Ca2+,3=Na+,4=Mg2+,5=Mn2+,6=Fe2+,7=Cd2+,8=Pb2+,9=Ni2+,10=Zn2+.

Higher reproducibility was obtained over three runs (within runs) as shown in figure

9b and the reproducibility decreases over three runs (between runs), in this plot a

drift to some degree in migration time (especially with that of Ni2+and Zn2+)was

observed (figure gc). This may be due to capillary buffer temperature change, buffer

evaporation and low stability of voltage over time that was also seen with other runs.

Capillary electrophoresis suffers from instability and irreproducibility of migration

times and peak areas with time 31.

4.5 Separation of metal ions using mixtures of the complexing agent and

imidazole as background electrolyte

Mixture of complexing agent (a.-HIBA and glycolic acid) with imidazole as UV-

absorbing species have been investigated and 10 metal ions have been separated. A

very small peak for Pb2+was obtained but it was problematic to integrate.

The migration time, peak area and corrected peak area of the metal ions at a

concentration of 10 ppm is shown in table below. Very good overlap among
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Fig 9a. Electrophoretic separation of 10 metal ions. Carrier electrolyte, 10 mM 4-
amino pyridine - 6.5 mM a-hydroxylisobutyric acid (pH 4.5); hydrodynamic injection
18 s: voltage, 25 kV, wavelength, 214 nm. Peaks according to sequence: 1=K+,
2=Ca2+, 3=Na+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Cd2+, 8=Pb2+, 9=Ni2+, 10=Zn2+.
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Fig. 9b. The reproducibility (within runs) of metal ions over three runs using the same
experimental conditions as in fig. 9a. Peaks according to sequence: 1=K+, 2=Ca2+,
3=Na+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Cd2+, 8=Pb2+, 9=Ni2+, 10=Zn2+.
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electropherograms were obtained (fig. 10b)

Table 13. The migration time, peak area and corrected peak area of metal ions at a

concentration of 10 ppm (n = 6).

Metal ion Migration time, min (RSD) Peak area, (RSD) Corrected peak area, (RSD)

K+ 8.48(±O.81%) 3.40E-04(±3.28%) 4.01 E-06(±3.17%)

Na+ 11.24(±1.02%) 5.33E-05(±6.49%) 4.74E-06(±6.94%)

CaL+ 11.33(±1.05%) 3.76E-05(±7.62%) 3.31 E-06(±6.99%)

MgL+ 11.84(±1.07%) 5.26E-05(±3.07%) 4.45E-06(±3.51 %)

MnL+ 12.19(±1.08%) 2.13E-04(±6.40%) 1.75E-05(±6.59%)

FeL' 12.76(±1.10%) 1.07E-04(±4.84%) 8.36E-06(±4.60%)

Cd L' 13.00(±1.06%) 2.59E-05(±2.37%) 1.99E-06(±2.06%)

NiL' 14.56(±1.16%) 2.10E-04(±3.01 %) 1.44E-05(±3.20%)

ZnL' 15.17(±1.08%) 2.10E-04(±3.01 %) 1.38E-05(±2.06%)

0.000

10 15

TIme (min]

Fig. 10a. Electrophoretic separation of 9 metal ions. Carrier electrolyte, 10 mM
imidazole - 7 mM a-hydroxyl isobutyric acid and 13mMglycolic acid (pH 4.0);
hydrodynamic injection 24 s: voltage, 25 kV, wavelength, 214 nm. Peaks according
to sequence: 1=~, 2=Ca2+, 3=Na+, 4=Mg2+, 5=Mn2+, 6=Fe2+, 7=Cd2+, 8=Pb2+, 9=Ni2+,
10=Zn2+.
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The peak for Pb2+, Ni2+ and Zn2+ is distorted due to the formation of strong

complexes. The relative standard deviations, RSD, for Ni2+ and Zn2 using a mixture of

complexing agent are lower compared with the other complexing agents, showing

lower peak distortion.

10 15
Time [min)

Fig. 10b. The reproducibility of metal ions over three runs (within runs). Experimental
condition as in fig. 10a. Peaks according to sequence: 1=K+, 2=Ca2+, 3=Na+, 4=Mg2+,
5=Mn2+, 6=Fe2+, 7=Cd2+, 8=Pb2+, 9=Ni2+, 10=Zn2+.

Generally, good electropheragrams of a mixture of metal ions with different methods

were obtained. The detection of Cd2+ and Pb2+ was problematic with glycolic acid

complexing agent. The peak area for K+was small. The mobility of metal ions was

the highest for K+ and lowest for Zn2+ depending on the charge to mass ratio of each

metal ion 9, 10. The order of migration time for metal ions in the mixture was found to

be similar to previous studies by other researchers 12.

4.6 The analysis of synthetic and environmental samples using

a-Hydroxyisobutyric acid-4-amino pyridine background electrolyte system

4.6.1 Analysis of synthetic samples

a-Hydroxyisobutyric acid-4-amino pyridine background electrolyte was chosen for the
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analysis of real samples since all 10 metals could be analysed. a.-Hydroxyisobutyric

acid is a widely used complexing agent since it complexes with a large number of

metal ions 13 and contains suitable binding groups (carboxyl, hydroxyl) 14.

A high concentration of a.-hydroxyisobutyric acid was used to decrease the EOF 15

and enhance the resolution. An increase in buffer conductivity and running current

resulted in a significant increase in the baseline noise and markedly decreased the

analyte peak response16. Optimum injection time was used to reduce overlap

resulting from electromigration dispersion that causes a broad peak. The more the

concentration of the sample component, the more pronounced is this dispersion and

therefore the broader the peak 17.

The pH, the injection time and the separation voltage were the main factors affecting

the separation of metal ions 18. The effect of pH, applied voltage and injection on

peak area and migration time has been studied.

4.6.1.1 Effect of pH of the background electrolyte

Buffer pH has much influence on the separation selectivity of metal and controls the

improvement of resolution of complexes 19, 20. The electroosmosis flow (EOF)

decreases with a decrease in pH 21-23 owing to a reduced dissociation of surface

silanol groups. A decrease in the pH of BGE results in an increase in the difference

of the migration times between two neighbouring cations. Changing the pH affects

the selectivity and thus the peak area. A pH range between 3 - 6.5 has been studied.

Figure 11 shows a plot of peak area as a function of pH.
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Fig. 11. The effect of pH of the background electrolyte on peak area. Experimental

conditions are the same as in fig. 9a.

A decrease in pH results in an increase in peak area. The increased peak responses

are caused by a decreased migration velocity of the sample zone through the

detector because peak area is inversely related to the migration velocity 24, 25. At pH

4.5 the largest peak area response, and consequently the highest sensitivity, were

obtained for the cations. At pH below 4.5 a high noise and distortion in background

was observed. Likewise, cations like, Mg2+, Pb2+and Zn2+were not seen at pH lower

than 4.5. This is because of the distortion of buffer solution and the complexes

formed are not stable.

4.6.1.2 Effect of applied voltage

The increase in the applied voltage increases in the velocity of the ion and

consequently its migration time. The relation between velocity of the ion (V),

migration time (~) and the applied voltage (E) 26 is given by:

The plot of the migration time as a function of applied voltage is given in Figure 11.
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Fig.12. The effect of applied voltage on migration time. Experimental conditions are
the same as in fig. 9a.

A change in the applied voltage has direct effect on the migration time. The migration

time between the neighbouring cations changes when the applied voltage changes

from 10 to 30 kV. From the above considerations, a positive voltage of 25 kV was

selected for further experiments.

4.6.1.3 Injection time

The signals obtained were, in general, proportional to the injection time for metals

investigated. However, peak broadening was found to occur at long injection time,

leading to poor separation 27, 28. The effects of varying injection time to 0.2, 0.3, 0.4

and 0.5 min was studied. High injection time was used since the sensitivity of the

instrument is low. At higher injection time the peak area was increased. Therefore, in

this study, 0.3 min for metal separation and 0.2 min for the calibration curve was

used to reduce overlapping. The plot of peak area versus injection time is shown

below.
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The effect of injection time on peak area
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Fig.13. The effect of injection time on peak area. Experimental conditions are the
same as in fig. 9a.

4.6.1.4 Validation of the method

4.6.1.4.1 Limit of detection (LOD)

With hydrodynamic injection for 24 s, at pH 4.5, with respect to each metal ion the

following LOD was found (table 6). Lower limits of detection was obtained by injecting

greater volumes, but at the expense of peak efficiency 29. A higher LOD was obtained

Table 14. The limit of detection of metal ions (ppm).

Cation LOD Cation LOD

~ 3.0 Fe:l+ 3.0

Na+ 2.5 Cd2+ 1.0

Ca:l+ 0.5 PbL+ 3.0

Mg2+ 2.5 Ni:l+ 1.0

Mn:l+ 1.0 ZnL+ 1.0

The limit of detection of each metal ion was determined by preparing standard
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solutions of each metal ion to the lowest concentration that can be obtained.

4.6.1.4.2 Linearity of the calibration line

Standard solutions containing 5, 25, 50,100, 200 ppm of each mixtures of metal was

prepared under the optimised conditions to test the linearity of the response for the

metals under the conditions of indirect detection 30. Five injections were performed at

each concentration level. Analytical calibration lines were calculated based on the

measurement of the peak areas. Regression values greater than 0.9861 were

obtained. The regression value for K+was low due to its small peak. The calibration

curve for base metal ions is given below.

Calibration curve of Potassium Ion
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Calibration curve of Calcium ion
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Calibration curve of Sodium ion
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Fig. 14. Calibration curve of (a) ~, (b) Ca2+, (c) Na+,(d) Mg2+

4.6.1.4.3 Precision

250

250

The precision of the various methods was evaluated. Variations in migration time can

be reflected as increased imprecision. Therefore, it is possible to calculate

normalised areas by dividing the measured area of each peak by its corresponding

migration time (corrected area) 31. The relative standard deviations (RSD) for the
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migration time, peak areas and corrected areas are generally in the range of 0.38 -

3.94%,2.37 - 14.05%, and 2.06 - 13.44% respectively.

4.6.2 Analysis of real samples

Samples from various locations were collected and identification of metal ions in

those sample matrices has been performed using some of the developed methods.

Identification of peaks was carried by the standard addition method, that is, the

addition of single metal species to a metal mixture and identification of the peak with

increased height32• 33.

The two samples (Multimin and Mineral Max) that contain metals like sodium,

Magnesium, copper and Zinc either in salt or chelated form and are useful for animal

protection have been analysed and compared.

CE was run and a similar electropherograms (fig. 15 and 16) of the two samples

have been obtained by decomplexing the chelated sample at lowest pH (==1.0).

4.6.2.1 Multimin analysis

The sample was analyzed with glycolic acid-imidazole buffer solution and the

electropherogram containing 4 metal ions was obtained.

The migration time, peak area, corrected peak area (table 15) and electropherogram

(Fig. 15) of metal ions are given below.
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Table 15. The migration time, peak area, corrected peak area metal ions (n = 6).

Metal ion Migration time, min (RSD) Peak area, RSD Corrected area, RSD

Na+ 12.32(±0.48%) 3.40E-03(±1.56%) 2.76E-04(±1.55%)

Mn2+ Zn2+ 12.60(±0.56%) 1.15E-03(±4.68%) 9.00E-06(±4.21%),

Cu;.!+ 15.53(±0.71%) 8.95E-04(±8.75%) 5.00E-06(±9.06%)

§ ~.ClO5 2
~
R
~

.0.010

20

TIme [min)

Fig. 15. Electrophoretic separation of metal ions. Carrier electrolyte, 12 mM imidazole
- 15 mM glycolic acid (pH 4.29): hydrodynamic injection, 0.6 s: voltage 25 kV. Peaks
according to sequence: 1=Na+,2=Mn2+ (Zn2+), 3=Cu2+.

Synthetic (standard) samples of respective metals have been injected to identify the

peaks in the sample. The highest peak for Na+was obtained. The tail in the second

peak is due to the overlap of Mn2+ and Zn2+. Different attempts have been made to

resolve the two peaks, that is, by varying the pH of the buffer and concentration of

the sample. However, these attempts proved to be inconclusive. Strong peak

distortion of Cu2+ peaks is caused by the formation of very stable complex with

glycolic acid with only small mobility 11.
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4.6.2.2 Mineral Max analysis

A similar electropherogram of Mineral Max was obtained as it shown in figure 16.

Table 16. The migration time, peak area, corrected peak area of metal ions (n = 6).

Metal ion Migration time, min (RSD) Peak area, RSD Corrected area, RSD

Na+ 12.33(±0.48%) 3.40E-03(±1.56%) 2.76E-04(±1.55%)

Mn2+ Zn2+ 12.79(±0.57%) 1.08E-03(±5.16%) 8.40E-05(±5.47%),

Cu;.!+ 15.53(±0. 71%) 8.94E-04(±8. 72%) 5.00E-06(±9.10%)

o.ooo__,_.-.----------""'"
~ .ClOGS
(lg

1
1

2

15

Tlme[mlnJ

Fig. 16. Electrophoretic separations of metal ions. Carrier electrolyte, 12 mM
imidazole - 15 mM glycolic acid (pH 4.29): hydrodynamic injection, 0.6 s: voltage 25
kV. Peaks according to sequence: 1=Na", 2=Mn2+ (Zn2+), 3=Cu2+.

o 10 20

The electrophergrams obtained from Multimin and Mineral max were overlapped to

compare the two samples. The degree of overlap was very high as it shown in figure

17. The migration time and peak area were similar for the two samples (tables 15

and 16).
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Fig. 17. The reproducibility between the two samples: Multimin (red
electropherogram) and Mineralmax (green electropherogram). Carrier electrolyte, 12
mM imidazole - 15 mM glycolic acid (pH 4.29): hydrodynamic injection, 0.6 s: voltage
25 kV. Peaks according to sequence: 1=Na", 2=Mn2+ (Zn2+), 3=Cu2+.

It can be said that the two samples are identical with regard to Na+ and Cu2+. But it is

difficult at this stage to conclude with respect to Mn2+ and Zn2+ since they show

different degree of overlapping. It can be concluded the electropherogram of the

samples are similar and very good reproducibility between the two samples has been

obtained.

4.6.2.3 Environmental water samples

Environmental water samples were collected from different sites (table 17) and

analyzed for the presence of the metal ions using a.-HIBA - 4-aminopyridine buffer

solution. The map (fig. 18) is included to show where environmental samples were

taken.
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Table 17. List of environmental water samples.

Sample Type of water Area taken

number

1 Reservoir water Tokera

2 Small River Village near Tokera

3 River Boschendal

4 Main river Village near Tokera

5 River Franshock

6 River Kastaing
...

7 Lake Bridge house (water fall)

8 Lake Kastaing

9 Lake Berg

10 Lake FBA

11 River near university of Stellenbosch Gymnasium area

12 Tap water Laboratory
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Fig. 18. Map (Topographical) showing different environmental water sites (Stellenbosch area).
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The electropherograms for metal ions in environmental water samples from different

areas were obtained as follows. The electropherograms were enlarged to different

scale to see the peaks that caused the peak distortion.

0.0000

.0.0010
2

10 12 1.
TIme!,,*,!

Fig. 19. Electrophoretic separation of metal ions in tap water from the laboratory.
Carrier electrolyte, 10 mM 4-amino pyridine - 6.5 mM a-hydroxylisobutyric acid (pH
4.5); hydrodynamic injection 12 s: voltage, 25 kV, wavelength, 214 nm. Peaks
according to sequence: 1=Ca2+, 2=Na+.

10 15
TmolrrWI)

Fig. 20. Electrophoretic separation of metal ions in FBA-Iake. Carrier electrolyte, 10
mM 4-amino pyridine - 6.5 mM a-hydroxylisobutyric acid (pH 4.5); hydrodynamic
injection 12 s: voltage, 25 kV, wavelength, 214 nm. Peaks according to sequence:
1=Ca2+, 2=Na+, 3=Mg2+.
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Fig. 21. Electrophoretic separation of metal ions in Kostaing - lake. Diluted 1:2
Carrier electrolyte, 10 mM 4-amino pyridine - 6.5 mM a-hydroxylisobutyric acid (pH
4.5); hydrodynamic injection 12 s: voltage, 25 kV, wavelength, 214 nm. Peaks
according to sequence: 1=~, 2=Ca2+, 3=Na+, 4=Mg2+.
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Fig. 22. Electrophoretic separation of metal ions in Village near Tokera - river. Carrier
electrolyte, 10 mM 4-amino pyridine - 6.5 mM a-hydroxylisobutyric acid (pH 4.5);
hydrodynamic injection 12 s: voltage, 25 kV, wavelength, 214 nm. Peaks according
to sequence: 1=K+, 2=Ca2+, 3=Na+, 4=Mg2+.
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Fig. 23. Electrophoretic separation of metal ions in University of Stellenbosch
gymnasium area-river. Carrier electrolyte, 10 mM 4-amino pyridine - 6.5 mM a-
hydroxylisobutyric acid (pH 4.5); hydrodynamic injection 12 s: voltage, 25 kV,
wavelength, 214 nm. Peaks according to sequence: 1=Ca2+, 2=Na+, 3=Mg2+.

The peak shape for base metals in the environmental water samples is also affected

by the concentration of each metal ion in the sample. The quantitative data of metal

ions in environmental water samples have been presented as table 18.

Table18. Capillary electrophoresis results of metal ions from environmental samples

(n=6).
Cation Tab water Village near Kostaing -lake FBA-Iake Gymnasium area-

Tokera -river
river

K <LOD 1.42E+01 (±3.88%) 3.60E+01 (±6.09%) < LOD <LOD

Ca~· 1.26E+01 (±3.01 %) 8.26(±4. 72%) 4.32E+01(±9.31%) 5.27E+01(±7.56%) 8.26(±0. 48%)

Na 8.27(±3. 72%) 3.37E+01(±5.05%) 1.19E+02(±3.18%) 1.89E+02(±2.46%) 4.18E +01 (±5.14%)

Mg" < LOD 1.22E+01(±1.93%) 3.43E+01 (±6.08%) 6.48E+01(±5.14%) 1.45E+01 (±4.50%)

From the above table (table 18), the presence of base metal ions in tap water was

low. A higher concentration of Ca2+, Na+ and Mg2+was found in water samples from
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Kostaing and FBA especially with Na". The source of the high levels of Na+ in the

lake water could not be determined.
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Chapter5

5. Analysis of anions

5.1 Introduction

The simultaneous separation of anions and cations in a single run is somewhat

problematic due to the difference in the migration of ions to that of the electro osmotic

flow (EOF). That is, where one class of analytes (cations) migrates in the same

direction of EOF, the other class of analytes (anions) migrates opposite to the

direction of the EOF. The use of indirect UV detection for simultaneous anion and

cation determination demands the presence of anionic and cationic UV-absorbents in

the background electrolyte (BGE) 2-4. Likewise, most of these cationic UV

chromophores can be used only in acidic medium (pH<6) due to their deprotonation

or low solubility at higher pH-values 5. At low pH cations are normally not or only

weakly complexed. Hence different experimental conditions are required for the

analysis of cations and anions.

The choice of electrolyte is extremely important to the success of any CE analysis.

The mobility of the BGE should match as nearly as possible the mobility of the

analytes of interest. Chromate or pyromellitate is commonly used as BGE for the

analysis of inorganic anions since they have a similar high mobility 6-10. However, for

the analysis of lower mobility compounds such as short chain carboxylic acids (C1-

Ca), benzoate is more suitable 6. Phthalate is the most popular BGE for the analysis

of medium mobility of organic acids 6, 10, 11. The mobility of 2,6 pyridine dicarboxylic

acid (PDC) is similar to that of phthalate which indicated that it is a suitable BGE for

the analysis of medium mobility anions 12.
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In this study of anion separation, the EOF was reversed in the direction of the anode

by adding Cetyltrimethylammonium bromide (CTAB) to the electrolyte and highly

alkaline conditions (greater than pH 8) were used to confer a negative charge on

inorganic and organic anions so that these conditions promote their migration

towards the anode". The separation of inorganic and organic acids was achieved

using chromate and PDC respectively as background UV-absorbing electrolytes.

Thus different experimental conditions have been used for inorganic and organic

anions.

5.2 Results and discussion

5.2 1 Analysis of the standard solutions

Synthetic solutions were analysed prior to the determination of anions in various

sample matrices. The electropherogram of the synthetic inorganic and organic acid

based on the suggested experimental conditions as outlined in section 3.2.1 is given

below. A positive peak for nitrate ion was obtained.

3

•nne (1IIIn)

Fig. 24. Electropherograms of synthetic solutions of inorganic anions (25 mgll). Ions
in the electropherograms: (1) cr, (2) so,'. (3) N03- and (4) F. Experimental
conditions as in section 3.2.1.

o 7
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In the above electropherogram a broad peak for Fwas observed. This is because of

the mismatch of the F electrophoretic mobility with that of the background electrolyte

14. The same effect was shown for succinic acid in the figure 25.

0.0000

2

., e

Fig. 25. Electropherograms of synthetic solutions of organic anions (25 mgll). Ions in
the electropherograms: (1) Tartaric acid, (2) Malonic acid', (3) Citric acid- and (4)
Succinic acid. Experimental conditions as in section 3.2.2.

The order of migration of inorganic and organic anions agrees well with data

previously determined by other researchers 10, 12. For the anions the limit of detection

was in the range of 2 - 3.5 ppm.

5.2.2 Analysis of real samples

The developed methods for anions were applied to the determination of inorganic

and organic anions in water samples, orange juice, beer and wine. The samples

were kept at low temperature (4 oe), degassed and filtered prior to injection. The

determination of anions using other methods for example, ion chromatography, is

possible. However, this demands sample preparations and long analysis times. CE is

a good choice since it involves very simple sample preparation that consisted only of

degassing the sample by sonication, and diluting it with Milli Q water prior to injection.
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For CE measurements all the samples were first screened with CE and their

concentrations were estimated (with the standard solutions). When the peak

resolution was not satisfactory (high ionic strength) or the ion zones were distorted,

the samples were diluted 1:4, 1:10, 1:20 or 1:25 (vlv) (table 1) with purified water.

The samples were not manipulated by pH adjustment or complexation to analyse

them by simulating the real samples conditions as closely as possible. The ions in

each electropherograms were identified by the standard addition, that is, by adding

standard solution to the sample and observing peak's height increases.

Table 19. Samples, dilutions needed in the study.

Sample type Dilution factor

River (Village near Tokera)

Lake (Kastaing)

Lake (FBA)

Orange juice

Beer

Wine (white wine)

Wine (red wine)

Undiluted

Undiluted

1:6

1:10 or 1:20

1:10

1:10

1:25

The analysis of inorganic anions and organic were performed using the methods

given in sections 5.1 and 5.2 respectively. Calibration curves of anions were

prepared using the standard solutions (5, 25, 50 100 and 200 ppm) and the

regression value was >0.9816 (fig. 26).
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Calibration curve of Chloride ion
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Calibration curve of Tartaric acid
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Calibration curve of Malic acid
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o 50 100 150 200 250

Calibration curve of Succinic acid
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Fig. 26. Calibration curve of (a) cr, (b) so,': (c) F, (d) tartaric acid, (e) malic acid

(f) citric acid, (g) succcinic acid

CE results of anions in the samples listed in table 19 were obtained as follows.

Table 20. Capillary electrophoresis results of anions in the samples listed in table 19.

Sample Chloride, Sulfate, Tartaric acid, Malic acid, Citric acid, Succinic acid,

mgll (RSD) mg/l (RSD) mgtl (RSD) mg/l (RSD) mgtl (RSD) mg!1(RSD)

Tokera 2.26E+01 5.44 (±6.28%) - - - -

(±2.81%)

Kastaing 7.16E+01 3.06E+01 - - - -
(±4.2goA,) (±2.03%)

FBA 6.08E+02 3.27E+01 - - -
(±2.35%) (±6.86%)

Orange 1.37E+02 7.01E+01 - 2.27E+01 1.31E+03 -
juice (±1.51%) (±6.49%) (±7.28%) (± 4.36)

Beer 2.06E+02 1.23E+02 - - - -
(±O.94%)

(±3.99%)

Wine 9.88E+01 4.57E+02 - - - -
(white) (±2.95%) (±2.84%)

Wine - - 1.43E+03 - - 6.88E+02

(red) (±5.30%) (±7.99%)
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One of the wine types was used for organic acid analysis to check the potential

applications of the method for the determinations of organic acids.

_-= -.

2

1

8 U 9

TlmelminJ

Fig. 27. Electropherograms of inorganic anions in Tokera area .Ions in the

electropherograms: (1) cr and (2) solo. Experimental conditions as in section 3.2.1.

2

t

• 1.5 • e.5

Fig. 28. Electropherograms of inorganic anions in Kastaing area .Ions in the

electropherograms: (1) cr and (2) solo. Experimental conditions as in section 3.2.1.
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Fig. 29. Electropherograms of inorganic anions in FBA area (diluted 1:6). Ions in the

electropherograms: (1) cr and (2) SO/-. Experimental conditions as in section 3.2.1 .
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Fig. 30. Electropherograms of inorganic anions in orange juice (diluted 1:10). Ions in

the electropherograms: (1) cr and (2) SO/-. Experimental conditions as in section

3.2.1.
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Fig. 31. Electropherograms of inorganic anions in beer (diluted 1:10). Ions in the

electropherograms: (1) cr and (2) 50i-. Experimental conditions as in section 3.2.1.

Time ["*IJ

Fig. 32. Electropherograms of inorganic anions in white wine (diluted 1:10). Ions in

the electropherograms: (1) cr and (2) 501-. Experimental conditions as in section

3.2.1.
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Fig. 33. Electropherograms of organic anions in orange juice (diluted 1:20). Ions in
the electropherograms: (1) Malic acid and (2) citric acid', Experimental conditions as
in section 3.2.2.

2

Fig. 34. Electropherograms of organic anions in redwine (diluted 1:25). Ions in the
electropherograms: (1) tartaric acid (2) succinic acid and (3) unidentified peak.
Experimental conditions as in section 3.2.2.

In the analysis of red wine, a sharp peak for tartaric acid was observed. A slight

tailing of succinic peak was shown due to the mismatch of electrophoretic mobility

with that of BGE. The peak labelled, as '3' could not be identified. It was not one of

the injected synthetic solutions.

The methods developed for the determination of anions were efficient and useful for

both qualitative and quantitative analysis in various samples. These include the

analysis of inorganic anions and organic acids in environmental water, beverages
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and orange juice. Based on the results obtained, it could be applicable for the

determination of anions in similar samples from other areas

Anions could be also determined using the high performance liquid chromatography

(HPLC) and ion chromatography (IC). However, those techniques demand longer

analysis time, high chemical consumptions and complex sample preparation. CE has

comparative advantages over those techniques since it posse's short analysis times,

simple sample preparations and low consumption of chemicals.
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Chapter6

6. Conclusion

New capillary electrophoresis (CE) methods were developed for determination of

both cations and anions in various samples using BGEs containing 10 mM pyridine,

12 mM imidazole and 10 mM 4-Amino pyridine 0.5 mM Chromate and 7 mM PDC as

UV-absorbing cations, inorganic anions and organic acids.

Glycolic acid and a-hydroxyisobutyric acid were used as complexing reagents for

cation separation to selectively alter their similar mobilities and proper separation.

Different methods were developed for cation analysis. Using a glycolic acid -

pyridine, glycolic acid - imidazole and a-hydroxyisobutyric - imidazole back ground

electrolytes, we were able to separate only a mixture of 9 metal ions. A mixture of

complexing reagents (glycolic and a-hydroxyisobutyric acids) with imidazole as UV-

absorbing species was investigated and was found useful for the detection of a

mixture of 10 metal ions though the peak for Pb2+was small and difficult to integrate.

a-hydroxyisobutyric acid and 4-aminopyridine back ground electrolyte was used for

further investigation as it was shown to be the combination where ± 10 metal ions

could be seprated efficiently. Hence it was applied for qualitative and quantitative

analysis of metal ions in tab water from laboratory and environmental water samples

from the areas surrounding Stellenbosch. Successful detection of metal ions was

obtained for tap water and environmental waters from FBA (lake), near the University

gymnasium (river), a village near Tokera (river) and Kostaing (lake). A higher

concentration of metal ions (Ca2+, Na+and Mg2+)was obtained in the FBA area.
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Glycolic acid - imidazole back ground electrolyte was applied for detection of metal

ions in Multimin and Mineral Max samples which are useful for animal protection. The

metal ions were analysed and compared in the two samples. A similar

electropherograms (as shown in fig 15) were obtained showing that the similarity of

the two samples.

Chromate and POC back ground electrolytes were developed for the analysis of

inorganic anions and organic acids respectively. 0.5 mM or 35 !JMCTAB was used

as an EOF modifier. The developed methods were applied to analysis of real sample.

The presence of anions in environmental water samples, beverages and orange juice

were analysed. Inorganic anions like chloride and Sulfate ions were obtained in

environmental water samples from FBA, Kastaing and Tokera areas. Higher

concentration of cr and sol- ions were found in the FBA area. This is in agreement

with the cation analysis. cr and sol- ions in Orange juice, beer and white wine were

determined. High concentration of cr and so> ions in beer and white wine was

obtained. The analysis of organic acids in orange juice and red wine was performed

and high concentration of citric and tartaric acids in orange juice and red wine

respectively was found.

The results obtained in the present study demonstrate the feasibility and advantages

of using CE for the analysis of both cations and anions in environmental water

samples from the areas surrounding Stellenbosch. In this work, data have been

included on the qualitative and quantitative analysis of beverages and orange juice,

showing the possible application of those methods for the determination of cations

and anions on other sample matrices. The corrected peak area was shown to be a

better quantitative parameter than the use of the peak height. The limit of detection
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(LOD) of cations and anions was in the range of 0.5 - 3 ppm and 2 - 3.5 ppm

respectively. The use of longer injection time in hydrodynamic injection was shown to

increase the sensitivity of the methods but suffered the loss of efficiency and

resolution of the separation. Thus, 12 s was adopted for hydrodynamic injection.

The broad peak for ions Ni2+ and Zn2+ in the case of cations and F and succinic acid

for anions were due to the mismatch of electrophoretic mobility of those ions and the

background electrolyte. The higher stability of Ni2+ and Zn2
+ with complexing reagent

was also the cause for peak broadening.

In the environmental water samples only the base metal ions like K+, Na", Ca2+ and

Mg2+ could be determined. None of the transition metals was detected. This could be

either due to low sensitivity of the UV-detector or the water samples contained none

of the transition metals.

In summary, CE was shown to provide a quick, relatively sensitive, economic and

reliable method for qualitative and quantitative determination of both cations and

anions in various samples.

7. Future wort<

Capillary electrophoresis (CE) has high detection limit (ppm range), that is, it has low

sensitivity since it involves UV detection for the analysis of ion in various sample

matrices. This causes a serious limitation for its application to environmental analytes

which are found in a very low concentration range. This can be overcome by coupling

CE with other types of detectors like, electrochemical detection (CE-ED) and Electron
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spray ionisation-Mass spectrometry (ESI-MS) Thus one of the future works is to

couple CE with electrochemical detection since it poses low running cost, easy to

apply and high sensitivity.
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