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Summary 

 

The aim of the study was to investigate the potential of black soldier fly (Hermetia illucens) pre-pupae meal 

(BSM) as a protein source in broiler chicken diets. The first part of the study determined the digestibility of 

black soldier fly pre-pupae meal in a trial where four treatment diets, i.e. 100% maize (control diet), BSM 

dried at 100 °C (BSM100), BSM dried at 65 °C (BSM65), and defatted BSM dried at 65 °C (DF-BSM) were 

fed to Cobb 500 broiler chicks, 43 days of age, for a period of three days. The chicks (n=64) allocated to the 

treatment groups were acclimatized to the treatment diets for a period of three days prior to the experimental 

feeding period. The chicks received a commercial diet, according to the guidelines of Cobb-Vantress, up to 

an age of 39 days. The DF-BSM diet was found to be more digestible than the BSM65 diet, and acceptable 

digestibility values (i.e. above 70%) were reported for all the treatment diets. The apparent metabolisable 

energy of the BSM65 diet was 16.52, with a crude protein coefficient of total intestinal tract digestibility 

(CTTD) of 86%, which is higher than that reported for soya bean meal. In the second part of the study, the 

inclusion of BSM65 in chicken diets and the effect on broiler production parameters; organ, gut and skeletal 

parameters, were investigated. Black soldier fly pre-pupae meal, dried at 65 °C (BSM), was included in 

broiler diets at levels of 0, 5, 10, and 15%, respectively and fed to 320 day-old Cobb 500 broiler chicks for a 

period of 35 days. For most of the production parameters studied, no significant differences were reported for 

average daily intake, live weight gain, feed conversion ratio and European protein efficacy factor. A 

significant effect was observed for average weekly feed intake and cumulative feed intake at day 18 of age. 

This part of the study indicated that BSM65 levels included at 15% sustained normal growth in birds used in 

the study, which indicated the viability of BSM to be used as a protein source in broiler diets. The findings 

also indicated that the inclusion of BSM in broiler diets did not influence organ weight, gizzard erosion score, 

tibia ash percentage, tibia breaking strength, tibia mineral content, small intestine pH, and histomorphology 

of the duodenal and jejenal regions. In the third part of the study, the inclusion of BSM65 in broiler diets on 

carcass characteristics and meat quality of broilers was investigated. Black soldier fly pre-pupae meal dried 

at 65 °C did not compromise the physical, sensory and chemical quality of the broiler meat. No significant 

effects were also found in terms of live slaughter weight, cold carcass weight and the commercial portions 

(i.e. breast, thigh, drumstick, wing and back). Overall, the study indicated that BSM, which is considered a 

non-traditional protein source, can be included in broiler diets at levels as high as 15%, without any adverse 

effect on normal broiler production, organ and skeletal parameters. The inclusion of BSM in broiler diets did 

not affect the quality of the meat nor compromised the eating quality of the meat produced, when compared 

to meat of broilers fed the control diet (commercial broiler diet). 
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Opsomming 

 

Die doel van die studie was om die potensiaal van die Venstervleig (Hermetia illucens) pre-papie meel 

(SSM) as ŉ alternatiewe proteïenbron in braaikuiken dieëte te ondersoek. In die eerste deel van die studie is 

die verteerbaarheid van SSM bepaal deur vier verskillende diëte, d.i. 100% mielies (kontrole dieet), SSM 

gedroog by 100 °C (SSM100), SSM gedroog by 65 °C (SSM65) en ontvette SSM gedroog by 65 °C (DF-

SSM), aan 43 dae oue Cobb 500 braaikuikens te voer vir 'n tydperk van drie dae. Die kuikens (n=64) is 

ewekansig aan die onderskeie behandelingsgroepe toegeken en is drie dae voor aanvang van die 

eksperimentele voerperiode aangepas. Die kuikens het 'n kommersiële dieet, geformuleer volgens die 

riglyne van Cobb-Vantress, tot 'n ouderdom van 39 dae, ontvang. Die verteerbaarheid van die DF-SSM was 

hoër as die van die SSM65 dieet.  Alle verteerbaarhede was hoogs aanvaarbaar met waardes bo 70%. Die 

skynbare metaboliseerbare energiewaarde van die SSM65 dieet was 16.52 MJ/kg, met 'n koëffisiënt 

verteerbaarheid (CTTD) van 86%, wat hoër is as die waardes vir sojaboonmeel. In die tweede deel van die 

studie is die insluiting van SSM65 in braaikuiken diëte en die effek op braaikuikenproduksie parameters, 

orgaan-, derm- en skeletale parameters, ondersoek. Venstervlieg pre-papie meel, gedroog by 65 °C (SSM), 

is ingesluit in braaikuiken diëte teen vlakke van 0, 5, 10, en 15%, onderskeidelik en gevoer vir ŉ tydperk van 

35 dae aan 320 dag-oud Cobb 500 braaikuikens. Geen betekenisvolle verskille is gevind vir gemiddelde 

daaglikse inname, lewende massatoename, voeromsetverhouding of die Europese produksie 

effektiwiteitsfaktor nie. 'n Betekenisvolle verskil is gevin vir gemiddelde weeklikse voerinname en 

kumulatiewe voerinname waargeneem by dag 18 van ouderdom. Hierdie deel van die studie het aangedui 

dat SSM ingesluit teen vlakke so hoog as 15%, nie die normale groei van die kuikens in die studie beïnvloed 

het nie, wat dui op die potensiaal van SSM om as 'n proteïenbron in braaikuiken diëte gebruik te word. Die 

bevindinge het ook aangedui dat die insluiting van SSM in braaikuiken diëte nie orgaanmassas, spiermaag 

erosie telling, tibia mineraal inhoud, tibia breekkrag, dunderm pH en histomorfologie van die duodenum en 

jejunum beïnvloed het nie. In die derde deel van die studie, is die insluiting van SSM65 in braaikuiken diëte 

op die karkas eienskappe en vleiskwaliteit parameters van braaikuikens ondersoek. Venstervlieg pre-papie 

meel, gedroog by 65 °C, het nie die fisiese-, sensoriese- en chemiese kwaliteitseienskappe van braaikuiken 

vleis beïnvloed nie. Geen betekenisvolle verskille is gevind vir slaggewig, koue karkasgewig of die massas 

van die onderskeie handelsnitte (d.i. bors, dy, boudjie, vlerk en rug) nie. Die algehele bevinding van die 

studie was dat SSM65, wat beskou word as 'n nie-tradisionele bron van proteïen, in braaikuiken diëte teen 

vlakke van so hoog as 15% ingesluit kan word, sonder enige nadelige invloed op die normale 

braaikuikenproduksie parameters, orgaan- en skeletparameters of vleiskwaliteit nie. 
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Chapter 1 

General introduction 

 

The world population is increasing rapidly, creating a higher demand for food to feed this growing population 

(Cribb, 2010; Dar & Gowda, 2013). Due to the population increase and increase in disposable income, the 

global demand for animal protein is increasing with an expected continual rise in protein cost both for animal 

and human use (Food & Agriculture Organization [FAO], 2009). It is predicted that the world population will 

reach 9 billion by the year 2050 (DESA, 2009), while climate change is expected to create a warmer world 

over the next 50 years (Change, Intergovernmental Panel On Climate, 2007), which may lead to a reduction 

in crop yield (Dar & Gowda, 2013). Thus, a challenge to feed the world population is expected, which can 

only be addressed by an increase in global agricultural production of 70-100% by the year 2050 (Bruinsma, 

2009). This increase in production requires improving the efficiency and cost effectiveness of food production 

systems, with food production needed to increase with minimal effect on the environment (Berg et al., 2013). 

Enhanced agricultural investments are needed for improved land, water, and nutrient use to help counteract 

the negative effects of climate change on the global food security (Dar & Gowda, 2013). Protein is a major 

nutrient needed in the human diet and is abundant in livestock meat, thus human demand for livestock meat 

may also be expected to increase. 

 

To feed the growing population, global agricultural food production output should increase production to 

approximately 200 million tons of livestock meat (Bruinsma, 2009). Furthermore, meat and meat products 

demand is set to increase despite the focus being on the continual price increase for meat proteins (Hoffman 

& Cawthorn, 2012). Broiler production represents one of the most economic and easiest means of bridging 

the supply-demand gap of animal protein, due to their rapid growth rate and superior feed conversion ratio 

(Khusro et al., 2012). The main protein source for broiler production is legumes (Delgado et al., 2001; 

Khusro et al., 2012), which are also used by the biofuel industry that is expanding at a rapid rate (Biswas et 

al., 2011). Thus, the biofuel industry has become the largest competitor for crop products, especially those 

high in fat (Biswas et al., 2011). Therefore, there is an incentive to find an alternative feed source for broiler 

production that is not in competition with humans nor the biofuel industry. 

 

Insects are rich in protein and fat; hence insects are consumed on a daily basis by free range animals and 

wild birds, making up a large portion of their diets (Miao et al., 2005). In this regard, insect meals have been 

studied as potential feed ingredients in commercial animal diets, where they resulted in good growth 

performances, without compromising meat quality (Newton et al., 2005a; Ijaiya & Eko, 2009; Hassan et al., 

2009; Barroso et al., 2014; Pieterse et al., 2014). Insects have high feed conversion efficiencies and act as 

bio-transformers converting organic waste to biomass and have the potential of reducing organic waste 

moisture content by over 50% (Diener et al., 2009; Khusro et al., 2012). Vermi-composting of organic waste 

produces larvae, pupae and pre-pupae which are high in protein (30-80%) and fat (14-35%); these ratios 

differing among insect species (Newton et al., 2005b; Pieterse & Pretorius, 2014). The remaining vermi-

composted biomass produced is usable as an animal feed ingredient or as a soil amender (DeFoliart, 1975). 
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Furthermore, during aerobic composting of organic waste with insects and/or larvae, biogas is produced that 

is collectable and useable to generate electricity (Banks et al., 2011; Gonzalez-Gonzalez et al., 2013). 

Therefore, an efficient production of insect meals for use in animal diets can be combined with various 

production systems as mentioned, to increase their economies of scale. 

 

Most research on insect meals as alternative protein sources in animal diets has been on the house fly 

(Musca domestica), both in fish and poultry diets (Sealey et al., 2011; 2012; Pieterse et al., 2014) and black 

soldier fly (Hermetia illucens) (BSF) in fish diets (Barroso et al., 2014). There is paucity of information on the 

usage of BSF as a feed ingredient in poultry diets. Hale (1973) reported similar weight gains in chickens fed 

BSF larvae meal and those fed soya bean meal. Black soldier fly pre-pupae meal (BSM) is high in protein 

with an adequate amino acid profile and a high Ca and P content, which are essential for normal bird skeletal 

development and growth (Newton et al., 2005b). Furthermore, apparent digestibility values of BSM need to 

be analysed, thereby enabling appropriate inclusion in diets during formulation. Since it is a non-traditional 

feed its effects on organ, gut and skeletal parameters also need to be documented as these are vital in 

determining the effective use of BSM in producing broiler chickens. The use of BSF larvae/prep-pupae as an 

alternative protein source in poultry feeds has however, not been fully investigated. This underscores the 

need to investigate the potential of using BSF meals (larvae/pre-pupae) in broiler production, with particular 

attention to its effect on growth performance and meat quality. 

 

Therefore, the aim of this study is to investigate the potential of BSM as a protein source on broiler 

production. The specific objectives were to evaluate: 

 

i. The apparent metabolisable energy and apparent digestibility of nutrients in BSM; 

ii. The production performance of broiler chickens fed BSM; 

iii. The effect of BSM on organ, gut and skeletal parameters of broiler chickens; 

iv. The effect of BSM on carcass yield and characteristics, physical measurements, sensory attributes 

and chemical meat quality of broiler carcasses. 
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Chapter 2 

Literature Review 

 

2.1 Introduction 

The world is facing a drastic increase in human population leading to more mouths to feed (Dar & Gowda, 

2013). However, not all agricultural productions systems are sufficiently sustainable to feed the growing 

population (Capper, 2013). Although “sustainable” has many definitions it can be defined as “meeting the 

needs of the present without compromising the ability of future generations to meet their own needs” (Burton, 

1987). Capper (2013), in a review on sustainable livestock production, noted that sufficient food should be 

produced from a sustainable food system that must reach the consumers. Globally, the animal production 

industry is experiencing a shortage in supply of feed ingredients lowering animal production. These have led 

to minimal animal protein being produced and available for human consumption, especially in developing 

countries (Teguia & Beynen, 2005). Furthermore, due to increase in disposable income the demand for 

animal protein is also increasing (Food & Agriculture Organization [FAO], 2009). 

 

The agricultural industry during production of food for humans has produced a huge tonnage of waste that is 

not recovered, but has potential for recovery and reuse in another sector of the industry (Cordell et al., 

2009). For example, organic waste biomass as composted by insects can be used as an animal feed 

ingredient (Diener et al., 2009) or as a soil amender (Newton et al., 2005b). Insects have proven to be 

feasible decomposers of organic waste and useful as a nutrient recovery tool from waste (Newton et al., 

2005a). During vermi-composting, insect larvae, pupae and/or pre-pupae are produced that are useable as 

animal feed ingredients. This has led to insect meals attracting research attention as animal feed sources 

and is proving to be feasible for animal production and reducing waste accumulation (Newton et al., 2005b; 

Ogunji et al., 2008a, b; Diener et al., 2009; Pieterse et al., 2014). 

 

Defining ‘waste’ is a challenge; the term waste can be described as subjective and inaccurate because 

waste to one person is not waste to another. In 1981, the Food and Agricultural Organization defined waste 

as “wholesome edible material intended for human consumption, arising at any point in the food supply chain 

that is instead discarded, lost, degraded or consumed by pests” (Boland et al., 2013). The term ‘discard’ is 

an elemental part of defining waste, to be approached effectively without posing a risk to the environment 

(Cheyne & Purdue, 1995). 

 

On that point, waste can be classified from different origins such as solid municipal waste, non-hazardous 

waste, non-industrial and agricultural wastes and are mostly disposed of in landfills. However, with increase 

in livestock production, industrialisation and population, land is becoming a scarce resource and therefore, 

alternative disposal methods should be developed. Waste disposal as landfills are also detrimental to the 

environment and can cause technical and social issues, such as environmental pollution and the release of 

toxins into the air, soil, river and dams (Seng et al., 2013). Amongst others: organic waste contains high 

energy and a nutrient content suitable as feed for other forms of life such as insect larvae (Lalander et al., 
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2013). Therefore, organic waste can be composted using insect larvae leading to protein recovery (El 

Boushy, 1991; Li et al., 2011), reduction of moisture and thus, providing a solution to waste disposal (Newton 

et al., 2005a, b; Diener et al., 2009; Kim et al., 2011; Zhang et al., 2012). 

 

Black soldier fly (Hermetia illucens) larvae are known to consume decomposing organic matter reducing the 

dry matter of waste to about 60% (Newton et al., 2005a; Kim et al., 2011). Insect larvae, pre-pupae and 

pupae produced are high in energy and protein (Jeon et al., 2011). Pre-pupae and larvae meal of black 

soldier fly (BSF) can be utilised as a feed ingredient in animal diets, and has been researched to a large 

extent in fish but minimally in monogastrics’ and other animals (Bondari & Sheppard, 1981; Bondari & 

Sheppard, 1987; Newton et al., 2005b; St‐Hilaire et al., 2007a; Sealey et al., 2011). 

 

This chapter therefore, aims to review the recovery of protein from various industry wastes, using insect 

larvae and hence their potential usage as animal protein sources. This study utilises BSF pre-pupae meal as 

a protein source in broiler production and thus in this review emphasis is placed on the BSF life cycle, 

organic waste decomposition and potential uses of their larvae and pre-pupae produced. 

 

2.2 Agricultural waste 

Smit & Nasr (1992) defined urban agriculture as “food and fuel grown within the daily rhythm of the city or 

town, produced directly for the market and frequently processed and marketed by the farmers or their close 

associates”. With an increase in population growth, crop and livestock production, land is becoming a scarce 

resource making waste disposal more of a challenge (Seng et al., 2013). As livestock production changes 

towards industrialization, it produces animal waste that exceeds available land for its storage (Mallin & 

Cahoon, 2003). 

 

Waste from households, food industries, abattoirs, manure and sewage are known to be recyclable and can 

be used as soil amenders. However, the presence of pathogenic micro-organisms limits the use of some 

organic wastes because of potential health risks. Waste can also be detrimental to ground water and crops if 

not properly managed before being used. During composting, most pathogens are destroyed as the 

temperature rises (Georgacakis et al., 1996). However during composting at temperatures between 15 and 

45 °C, Salmonella spp. and Escherichia coli O157 can increase in numbers. Furthermore, Salmonella 

tryphimurium can grow and survive in household waste at 14, 24, and 37 °C (Elving et al., 2010). 

 

Kitchen waste also has the potential of spreading infectious diseases if not properly disposed of. The 

disposal of kitchen waste is a challenge; it contains high protein and fat content producing high 

concentrations of ammonia, causing accumulation of volatile fatty acids during anaerobic fermentation 

(Banks et al., 2011; Dlabaja & Malaťák, 2013). However, anaerobic digestion of organic waste produces 

biogas and recovered material is useable as a soil fertilizer/amender (Banks et al., 2011). 
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2.1.2 Quantifying waste production 

The amount of manure produced is increasing with livestock production, producing a vast quantity of this 

waste. According to Arkhipchenko et al. (2005) in the St Petersburg region, 11 million chickens produced 

400 000-450 000 tons of manure and 150 000 pigs produced 1.5 million m
3
 of liquid waste per annum. A 

dairy cow on average produces 57 litres (L) of excreta per day (Welsh Ministry of Agriculture, Fisheries & 

Food, 1991). In the 2012 financial year, South Africa had a livestock population of about 247.053 million 

(Table 2.1), mostly reared under intensive systems. 

 

Table 2.1 Animals produced during the 2012 financial year in South Africa (FAO, 2014) 

Animal species Total number (million) 

Cattle   13. 888 

Sheep   24. 391 

Goats     6. 142 

Pigs     1. 579 

Poultry 201. 053 

Total 247. 053 

 

Another waste product that is causing concern due to its potential negative effect on the environment is the 

blood released during the slaughter of animals. One steer yields 10-12 L of blood and a sheep ±2.5 L of 

blood (Nollet & Toldrá, 2011). In the 2012 financial year, 2. 822 million cattle were slaughtered (excluding 

calves) in South Africa (Department of Agriculture, Forestry & Fisheries [DAFF], 2012) translating into 

approximately 28. 220 million L (27.17 tons) of blood produced as part of the abattoir waste. In the United 

Kingdom over 100 000 tons of blood is yielded every year, containing about 20 000 tons of protein 

(Arvanitoyannis & Ladas, 2008). Since the outbreak of bovine spongiform encephalopathy (BSE) many 

countries including the European Union have banned the use of animal origin protein as feed for livestock 

(Smith & Bradley, 2003; Hard, 2004). Therefore, alternative uses need to be found for this “new” waste 

product. 

 

Briefly, a vast amount of waste is generated worldwide by agricultural production in its various sectors. The 

by-product wastes are mainly organic and can be composted either by aerobic or anaerobic processes. The 

composted material has potential use as an animal feed ingredient, soil enhancer, amender and/or fertilizer. 

There is currently a shortage of feed ingredients in the animal production sector especially those rich in 

protein, hence a need to find suitable feedstuff for use in animal diets. Protein recovery from waste is one of 

the possible routes to enhance environmental sustainability and prevent food shortage globally, with the ever 

growing human population. The following section reviews recovery of nutrients from waste. 

 

2.2 Recovery of protein/usable substances from agricultural waste 

2.2.1 Manure 

Manure composition differs from species to species but on the whole is pre-determined by the diet of the 

animal (Kirchmann & Witter, 1992). Livestock manure contains large amounts of faecal bacteria. These 

microbes are however, not exposed to secondary treatment (disinfection) before disposal, as opposed to 
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human waste (Mallin & Cahoon, 2003). During composting of livestock manure, the temperature is raised to 

a high level that kills most microbes (Mawdsley et al., 1995; Georgacakis et al., 1996; Lalander et al., 2014). 

Lalander et al. (2014) found viable viruses in pig manure and human faeces to have been reduced below 

detection limit after 14 days of vermi-composting with BSF larvae. Animal waste slurries do not reach lethal 

temperatures allowing microbes in animal waste slurries such as lagoon liquid to survive for extended 

periods (Mawdsley et al., 1995). Mawdsley et al. (1995) reported that E. coli could survive up to 11 weeks in 

animal waste slurry. Alternative methods to decrease these microbiological loads need to be exploited. As 

example, BSF larvae feeding on cow manure reduced E. coli (Liu et al., 2008) and on pig manure reduced 

Salmonella spp. (Lalander et al., 2014) significantly as the temperature rose from 23 °C to 35 °C. 

Furthermore, horse manure inoculated with earthworms was found to reduce the pathogenic persistence of 

bacteria (Murry Jr & Hinckley, 1992). 

 

Fly larvae, worms and beetles readily feed on fresh manure converting its residual protein and other 

nutrients into insectivorous biomass, which can be used as an animal feedstuff or soil fertilizer (DeFoliart, 

1975). Biomass can be defined as the total amount of living material in a given sample. These can be plant 

material, animal or other organic waste that can be used for energy. Kim et al. (2011) noted that BSF were 

able to consume and digest raw organic waste materials (manure, kitchen waste, abattoir waste: blood and 

offal’s etc.) more rapidly and resourcefully than the house fly (Musca domestica). This is due to the high 

digestive enzyme content secreted in the gut and salivary gland of the BSF. The larvae of BSF are known to 

be voracious consumers of organic matter. Li et al. (2011) observed that 1248.6  g fresh manure treated with 

1200 BSF larvae would produce 15.8  g of biodiesel, 54.4  g of residual larvae and 96.2 g of sugar. The 

larvae of BSF have a protein content of 42% and 38% fat (Newton et al., 1977), which varies depending on 

feed substrate fed to the larvae (Ramos-Elorduy et al., 2002; St‐Hilaire et al., 2007). Once the larvae have 

metamorphosed into pre-pupae it contains about 40% crude protein and 30-35% fat (Newton et al., 2005b; 

Diener et al., 2009). 

 

House fly (HF) larvae have been studied for its ability to compost animal manure (El Boushy, 1991; Zhang et 

al., 2012; Wang et al., 2013). Composting of manure using insect larvae can reduce the manure moisture 

content by 40-80% resulting in a total mass weight reduction of 55-65% depending on the insect species 

used (Newton et al., 2005b; Diener et al., 2009; Kim et al., 2011; Zhang et al., 2012; Wang et al., 2013). In 

addition, insect larvae feeding on manure decrease the nutrient concentration and bulk of the manure 

residue leading to a 50-60% reduction of possible air pollution (Newton et al., 2005b; Everest Canary & 

Gonzalez, 2012). Furthermore, adding bulk agents to manure during composting led to a reduction of 

nitrogen released into the atmosphere (Barrington et al., 2002). Composting of manure reduces its moisture 

content, making it less attractive to insects and causing it to be easily handled and stored (Barrington et al., 

2002). In addition, the remaining decomposed manure can be used as a soil amender (Newton et al., 2005b; 

Sheppard et al., 2007) and/or as an animal feed ingredient (Diener et al., 2009). 

 

Broiler litter processed by deep stacking can replace 26% of cotton seed cake in ruminant rations as a 

protein source. Processed broiler litter as a feed ingredient in buffalo steers led to an increase in body weight 
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but a decrease when added over 26% (Chaudhry & Naseer, 2009). The price of cotton seed cake is 

increasing (Sarwatt et al., 2004). Therefore, substituting processed broiler litter partially as a protein source 

in ruminants may reduce feed cost. Dehydrated poultry excreta used as feed in cattle had a nitrogen ruminal 

degradability of 78% and post-ruminal degradability escape of 27% nitrogen. The dehydrated poultry excreta 

are low in energy due to its high ash content (Zinn et al., 1996), but can be formulated with other feed 

ingredients that are high in energy. However, most importantly poultry litter is banned for use as animal feed 

except in the United States but a withdrawal period of 21 days is required before slaughter due to 

pharmaceuticals used in poultry which may be deposited in the meat (Olson & Daniel, 2005). 

 

Composting of organic matter emits ammonia, however ammonia produced in aerobic digestion can easily 

be eradicated by installing a proper ventilation system (Banks et al., 2011). Anaerobic digestion of high 

energy food waste emits vast concentrations of ammonia which cannot be easily collected (Banks et al., 

2011). Furthermore, composting aerobically of animal excreta and other organic waste stabilize its carbon 

content, thereby transforming waste into a suitable soil amender. However, nitrogen in waste is better 

conserved in anaerobic digestion then with aerobic composting (Kirchmann & Bernal, 1997). 

 

2.2.2 Abattoir waste 

Abattoirs produce vast amounts of organic waste. Abattoir waste, also called slaughter waste, is defined as 

the waste considered unfit for human consumption or not suitable for consumption for reasons associated 

with consumers’ lifestyle (Weiers & Fischer, 1978). Abattoir waste consists of bones, hides, blood, gut and 

gut content, which are high in protein and fat (Adeyemi & Adeyemo, 2007). However, abattoir waste differs 

from country to country and place to place, in terms of what is regarded as inedible and edible. In most 

developing countries, blood and rumen content are considered as abattoir waste, hides are processed and 

the remaining (also known as offal) consumed by humans (Makinde & Sonaiya, 2010). In Nigeria it has been 

found that approximately 46% of a cow, 48% of a sheep, 38% of a pig and 28% of a chicken after processing 

is waste and is disposed of by dumping onto open fields or into municipal sewers (Adeyemi & Adeyemo, 

2007). 

 

Abattoir wastes can be a potential health hazard and may cause outbreak of food-borne diseases when not 

properly disposed of (Couillard & Zhu, 1993). Echerichia coli O157 which is pathogenic in humans, can 

survive in abattoir waste stored at 5 °C for 28 hours. Fresh blood has a lower bacterial load than aged blood 

creating a favourable environment for microbial pathogen growth (Hepburn et al., 2002). 

 

Abattoir waste can be treated by anaerobic digestion producing biogas whilst the remaining waste is usable 

as soil fertilizer (Adeyemi & Adeyemo, 2007). Abattoir wastes contain lipids and if treated through anaerobic 

digestion, it has a high potential for producing methane (Affes et al., 2013), which can be used as fuel in 

electricity plants to provide energy (Gonzalez-Gonzalez et al., 2013). Abattoir waste when treated by an 

aerobic thermophilic process recovered gross protein of 70% containing an acceptable amino acid profile 

(Table 2.2). An additional advantage is that digested slaughter waste effluents reclaim large volumes of 

water that can be used for field irrigation (Gonzalez-Gonzalez et al., 2013). Thus, this enables recovering of 
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protein, recycling water and processing wastes before it’s disposed of causing less negative impacts on the 

environment. 

 

Feathers constitute about 5% of the total body weight of a bird. A broiler slaughterhouse with a 50 000 bird 

per day slaughter capacity produces about 2-3 tons of feathers per day (Dalev, 1994). If untreated these 

accumulate to 10-15 tons of waste feathers produced per week. Processing of bird feathers is a challenge on 

a large scale and there is need of a readily available non-toxic substance for the processing of feathers 

which can improve its nutritional value for possible use in animal diets (Dalev, 1994; Kumar et al., 2012). 

Feathers that were pre-treated with sodium hydroxide, mechanically disintegrated and then hydrolysed by an 

enzyme led to total solubilisation of the feathers producing a powder high in protein (Karam & Nicell, 1997; 

Kumar et al., 2012). Furthermore, Bertsch & Coello (2005) successfully processed feathers through 

fermentation using K. rosea LPB-3 a non-pathogenic bacterium. Feather powder contains large amounts of 

essential amino acids, usable as a feed component and as soil fertilizer, when corrected for sulphur (Dalev, 

1994; Kumar et al., 2012). 

 

Table 2.2 Amino acid (%) profile of slaughterhouse waste (adapted from Couillard & Zhu, 1993) 

Amino acids Recovered biomass (at 90% dry matter)  

Arginine 3-4 

Histidine 0.9 

Isoleucine 1.8 

Leucine 3-5 

Lysine 2-4 

Methionine + Cysteine 1.3 

Phenylalanine + Tyrosine 3-8 

Threonine 1-9 

Tryptophan 0.2 

Valine 2.1 

Glycine 3.9 

Proline 1.2 

 

Since the outbreak of BSE disease, the use of animal origin feed has been banned in most countries and is 

strictly regulated by the European Union. This has contributed to the increase in competition between 

humans and animals for grains and legumes as food sources. Meat compost and powder were found to be 

good soil fertilizers increasing the yield of maize and mustard crops during drought seasons. In addition, 

meat products are banned as animal feed but not as soil fertilizer, providing a method of disposal and 

nutrient recovery (Ragályi & Kádár, 2012). The recovered protein from waste once treated, can be 

appropriately disposed of. Therefore, recovered nutrients may be recycled through soil and produce more 

food by enhancing soil quality. 

 

2.2.3 Waste water 

Waste water contains amongst others, toxic aromatic compounds which should be removed before disposing 

of the water. The use of enzymes for treatment of waste water seems promising. Enzymes can operate over 
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a broad aromatic concentration range and require low retention times; they are highly selective and can 

effectively treat and even dilute waste. Protease can solubilize proteins in waste streams producing dry 

solids or liquid concentrates that can be used in fish or livestock feed. Amylase can simultaneously scarify 

and ferment starch in waste waters, producing lactic acid that can be used in the production of photo- and 

bio- degradable plastics from waste such as cheese whey and potato by-products (Karam & Nicell, 1997). 

The use of enzymes has proven their ability to recover usable contents from waste solutions. The recovered 

material can be used to enhance production of another line within the industry, for example plastic 

production. 

 

Cellulose containing agricultural waste materials has a potential in bio-sorption of metals. This is becoming 

an area of interest due to agricultural materials being cheap, abundant, renewable and usable as feed for 

animals. Depending on their chemical composition some materials bind to numerous heavy metals, of which 

some are specific. The capacity, affinity, specificity and physico-chemical nature of the bio-sorption material 

determines its efficiency in metal removal present in waste. Therefore, waste such as peanut shells, soya 

bean hulls, orange peels, maize cobs, hazelnut shells and jack fruit has been researched and found to be 

efficient in chromium removal from aqueous waste. Maize bran also has ability to optimally bio-sorb the 

metal lead (Pb) at 20-30 °C temperature and a pH of 3.0-6.5 in aqueous waste (Sud et al., 2008). The 

recovered waste water is usable as field irrigation water, thus recovering nutrients and saving water. 

 

Therefore, processing of agricultural waste in various ways reduces waste bulkiness and potential gas 

emissions into the atmosphere. The decomposed organic wastes can be used as a soil fertilizer or amender 

and as an animal feed ingredient. Therefore, this will minimize disposal problems of accumulating animal 

excreta caused by the increased production of animals. Alternatively, insect larvae have the potential of 

altering the remaining protein and several nutrients in organic waste into high quality organic matter which 

can be used as animal feedstuff or as a soil amender. This in turn will produce animal and plant protein, but 

research is warranted to evaluate its feasibility in animal diets and test whether produced products are fit for 

human consumption. In this study, the BSF species is utilized as a protein source in broiler chicken diets. 

Therefore, the origin, behaviour and life cycle of the BSF is of principle importance in understanding the fly 

species. 

 

2.3 Black Soldier Fly (Hermetia illucens) 

Furman, Young and Catts were amongst the first researchers to carry out a contemporary study on Hermetia 

illucens in 1959 (Canary & Gonzalez, 2012). Black soldier fly (H. illucens) is a native insect common to the 

warm temperate region of south-eastern United States (Newton et al., 2005b). According to Canary & 

Gonzalez (2012), BSF have been found all over South America and Asia but was native in Medellin, 

Colombia. The warming of climate is one factor that causes the spread of insects to other parts of the world 

(Turchetto & Vanin, 2004). Locomotion of humans and goods across the globe has also led to the wide 

spread of arthropods. 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

12 
 

Black soldier fly larvae are known as ravenous consumers of decomposing organic matter, leading to adults 

being able to live without feeding using body fat storage for survival (Newton et al., 2005b; Kim et al., 2011). 

Their unique feeding enable them in their last developmental stage (pre-pupae) to migrate out of the waste 

to a dry place, making them simple to harvest. During the pre-pupae stage of BSF they no longer consume 

food, thus they have an empty gut and are high in stored energy (Sheppard et al., 1994). Black soldier fly 

pre-pupae meal is a suitable potential feed ingredient for use in animal diets as it is high in protein and 

energy (Jeon et al., 2011). Furthermore, BSF larvae when feeding on waste can eradicate the breeding of 

the HF thus reduce possible disease spreading by the HF (Bradley & Sheppard, 1984). Black solder fly is a 

non-pest fly (Kim et al., 2011) and the female flies lay only a single egg batch and die shortly thereafter 

(Tomberlin et al., 2009). Fly fitness in the BSF species is more vital than longevity and is determined by 

energy reserves obtained while feeding. Black soldier flies can thrive at temperatures between 27-36 °C, and 

perform optimally at 30 °C with a declining survival rate and development at temperatures above 36 °C 

(Tomberlin et al., 2009). 

 

2.3.1 Black soldier fly life cycle 

The life cycle of black soldier fly is 40-44 days as depicted in Figure 2.1 (Tomberlin et al., 2009; Alvarez, 

2012) but is pre-determined by the environment and the type of waste fed (Tomberlin et al., 2002; Diener et 

al., 2009; Jeon et al., 2011). Food quality and the number of mating’s determines the production of eggs in 

BSF. The flies fed an adequate diet and mated several times produce more eggs. The flies fed directly after 

hatching have a higher mating rate then their counterparts delayed in feeding. Black soldier flies can still 

reproduce without feeding after emerging into a fly, relying on fat reserves stored during larvae development. 

However, these flies die shortly after laying eggs which may be attributed to the depletion of fat reserves 

(Tomberlin et al., 2002). With reagards to the male BSF, no information was found on what happens to them 

after mating and forth. 

 

 

Figure 2.1 Life cycle of the black soldier fly (Hermetia illucens) (Alvarez, 2012) 

Adults, mate 

Acquisition 4 days 

                                                 

                                                

                                                                             

   

           

          Pre-pupae, migration                                                             Egg laying 4 days to hatching 

                                                                             

Larval stage, feeding 22-24 days  

 

  

Pupae emergence 14 days Mating 

TOTAL LIFE CYCLE 

TIME ± 44 DAYS 
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2.4 Enzymatic activity of insects 

Insects are known to protect themselves against microbial infections by producing antimicrobial substances 

from their digestive tract or surface exoskeleton. Furthermore, methanol extracts of BSF larvae have 

antibacterial activity that strongly inhibits the growth and proliferation of certain gram-negative bacteria 

(Choi et al., 2012). These antimicrobial substances do not seem to be effective on gram-positive bacteria. 

 

Jeon et al. (2011) found that intestinal bacteria of BSF larvae led to the degradation and reduction of the 

organic compounds of the food fed to the larvae, producing probiotic compounds that can improve soil 

conditions. This was due to the unique gut microbiota, which was found in BSF larvae fed three different 

diets. However, it could not be determined whether the bacteria existed temporarily or as symbiotic 

organisms in the gut. 

 

Larvae of Hepialus gonggaensis (ghost moth) were found to contain Rahnella and Carnobaterium strains 

amongst six others in the gut, which are known to reduce nitrate to nitrite, producing L-lactose from glucose 

and also producing acid from D-glucose. This plays a role in the metabolism and food utilization in insects 

(Yu et al., 2008). Furthermore, Lalander et al. (2013) found BSF larvae to have significantly reduced 

Salmonella spp. in human faeces during composting. Black soldier fly larvae had no positive effect on the 

deactivation of Ascaris suum ova, recommending further treatment when used as crop fertilizer. 

 

Insect larvae can compose and reduce organic waste content. Table 2.3 summarises the effects of 

composting swine manure with HF larvae. House fly significantly reduced the moisture, odour, faecal 

coliform, and fat content of the manure, while increasing its organic carbon and fibre content significantly 

(Zhang et al., 2012). After one week of composting with HF larvae, there was an overall mass reduction of 

55-65%. The organic carbon content in the waste as it decomposes might be a key indicator of the 

biochemical features and microbial functions of the larvae vermi-reactor. Since, results showed a correlation 

between microbial biomass and extracellular enzyme activities to the organic carbon content of waste before 

and after composting (Zhang et al., 2012). Vermi-composting is the decomposition of organic waste by 

worms under aerobic and mesophilic conditions (Gómez-Brandón et al., 2013). 

Stellenbosch University  https://scholar.sun.ac.za



 
 

14 
 

Table 2.3 Comparison of swine manure before and after vermi-composting using house fly larvae (adapted 

from Zhang et al., 2012) 

Manure content 
 Before vermi-composting After vermi-composting  

t-Test P-value  Average n Average n 

Moisture                         % 78.3 ± 5.4 8 47.6 ± 1.6 8 <0.001 

Organic carbon                       % 32.5 ± 12.4 8 53.3 ± 4.7 8 <0.001 

Crude fibre                     % 17.2 ± 2.8 4 20.5 ± 2.7 4 0.008 

Crude fat                       % 4.61 ± 0.54 4 1.35 ± 0.43 4 0.002 

TKN                                % (N) 2.99 ± 0.65 8 2.20 ± 0.31 8 0.346 

AN                                  % (N) 0.575 ± 0.079 8 0.441 ± 0.125 8 0.021 

TP                                 % (P) 1.82 ± 0.54 8 2.86 ± 0.36 8 0.054 

AP                                  % (P) 0.827 ± 0.43 8 1.15 ± 0.07 8 0.017 

Odor (3-MI)                     mg/kg 40.4 ± 7.5 2 2.24 ± 1.41 3 <0.001 

Faecal coliforms            log/g 33.7 ± 16.9 2 3.01 ± 0.78 2 <0.001 

n (Number of samplings) 

TKN (Total Kjeldahl nitrogen)  

AN (Available nitrogen) 

TP (Total phosphorous) 

AP (Available phosphorous) 

 

2.4.1 Other beneficial characteristics of insect larvae 

Black soldier fly larvae and/or pre-pupae are used in forensic studies to estimate the post-mortem interval 

(PMI) on human corpses (Pujol-Luz et al., 2008; Martínez-Sánchez et al., 2011); with error implications that 

can occur as BSF development differs according to differences in temperature (Tomberlin et al., 2009). The 

forensic PMI is defined as the time in which a dead body has been exposed to the environment (Turchetto & 

Vanin, 2004), which helps to determine the time of death. 

 

Arrival time of insect species on corpses differ, with Chrysomya megacephala and C. rufifacies being usually 

the first flies to appear on the corpse within five minutes after death. Other species such as H. illucens and 

beetles arrive during the advanced decaying stage of the corpse. The larvae are collected, identified and 

human DNA is extracted from their gut. The extracted DNA is used in polymerase chain reaction for profiling 

(Chua & Chong, 2012). Proper identification of the specimen (fly species) is the key foundation in forensic 

entomology for PMI estimation (Chua & Chong, 2012; Turchetto & Vanin, 2004; Velásquez et al., 2010; 

Martínez-Sánchez et al., 2011). 

 

Knowing the various benefits of insect larvae and their potential uses raised questions regarding food 

production utilising insect meals. This led into studying the nutritional composition of insect meals and their 

use as a feed ingredient in poultry diets. 

 

2.5 Poultry Nutrition 

When formulating feed rations different ingredients are mixed to produce a balanced diet with appropriate 

quantities of nutrients to sustain normal growth. Since poultry have a short digestive tract they require 

nutrient-dense diets to obtain high performances. Nutrients required by birds depend on the species, age 
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and type of production. Poultry cannot digest complex carbohydrates containing insoluble fibre but readily 

obtain energy from simple carbohydrates, fat and protein (Hetland et al., 2004; Ravindran, 2013). However, 

when fed high concentrate diets containing insoluble fibre, the latter helps improve feed utilisation by the bird 

(Hetland et al., 2004). 

 

Anti-nutritional components within the feed also effect the efficient utilisation of the feed by the birds. They 

are usually found in small quantities but can alter the nutrient quality of the feed, as some nutrients will not 

be available for digestion by the bird (Aletor & Adeogun, 1995). Aflatoxins and ochratoxins included in broiler 

diets led to a reduction in the breaking strength of the chicken’s bones and increased its flexibility (Huff et al., 

1980). Furthermore, the presence of anti-nutritional factors such as soluble non-starch polysaccharides 

(Rebolé et al., 2010), protease and trypsin inhibitors (Clarke & Wiseman, 2000) and mycotoxins, aflatoxin 

and ochratoxins (Huff et al., 1980; Awad et al., 2006) can affect nutrient utilisation adversely and possibly 

decrease animal growth performance. It is however, not known whether insect larvae, pre-pupae and/or 

pupae contain any ant-nutritional factors that might inhibit its efficient utilisation in broiler chicken diets, which 

warrants research. 

 

2.5.1 Protein 

Protein is an essential nutrient in animal diets required to ensure adequate growth and health. The 

performance of broilers (based on nutrient utilisation) is influenced by the metabolisable energy and crude 

protein (CP) content of the diet (Zaman et al., 2008). However, adequate energy must be supplied so that 

the dietary protein is used for growth rather than metabolised for energy. A proper ratio of energy and protein 

should be maintained as excessive energy can cause reduced feed intake, resulting in decreased growth 

(Aletor et al., 2000; Ravindran, 2013). However, a high CP diet in broilers is not economical as this increases 

the nutrient specification of the amino acids (AA). This will lead to an increase in the bird’s metabolism in 

order to catabolize excess AA, thereby causing a loss of energy and hence decrease in body weight as 

compared to low protein diets (Kidd et al., 2001). Alternatively, a high CP diet is to be supplemented with 

high energy source to ensure a balanced intake of AA, as birds will consume less feed with high energy diets 

(Ensminger, 1992). 

 

Dietary proteins’ function is to provide AA to the birds. Protein quality is determined by the available dietary 

AA that can be digested and absorbed by the animal to maintain its metabolic processes (Boland et al., 

2013). However, no single protein source contains the entire AA requirement in a balanced ratio to ensure 

maximum chicken performance and alternative strategies have to be applied to address this shortage. 

Production of synthetic AA for use in animal feed is one of the ways to bridge the protein supply chain and 

address this shortage. According to the FAO (2004), supplementing feed with synthetic AA can reduce 

protein levels in diets by 2% annually. This will save plant protein added to rations, reducing food source 

competition between humans, animals and emerging competitors (for example the biofuel industry). 

 

The protein and AA requirement amongst different animal species that are needed for growth is indicated in 

Table 2.4. Optimum human and animal performance is dependent on the AA contained in the protein source, 
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amongst other nutrients needed for growth, health and reproduction. Amino acid composition of protein is 

important as not all AA can be synthesised by the body, hence supplementation is required (Boland et al., 

2013). 

 

Table 2.4 Dietary crude protein requirement (% dry matter) and ideal amino acid pattern (g/g lysine) of 

essential amino acids for growth of different animal species (adapted from Boland et al., 2013) 

Nutrients Human Pig Poultry Nile tilapia 

Crude protein 10-15.00 15-29.00 18-23.00 30.00 

Arginine - 0.38 1.10 0.82 

Histidine 0.33 0.32 0.32 0.34 

Isoleucine 0.67 0.54 0.73 0.61 

Leucine 1.30 1.00 1.09 0.66 

Lysine 1.00 1.00 1.00 1.00 

Methionine 0.33 0.27 0.38 0.52 

Phenylalanine 0.83 0.60 0.65 0.73 

Taurine - - - - 

Threonine 0.50 0.64 0.74 0.73 

Tryptophan 0.13 0.18 0.18 0.19 

Valine  0.87 0.68 0.82 0.55 

 

It is not only the amount of AA present that determines its nutritional value, but even more importantly, the 

digestibility of the AA. The digestibility of the protein and its AA in feed is predetermined by the protein 

source and is depended on the animal species for effective use (Boland et al., 2013). The protein source 

should contain an appropriate AA profile (Table 2.4) and be highly soluble with limited or no ant-nutritional 

factors. Processing methods are another limiting factor to the bio-availability of protein in feed to the animals 

(Choct & Kocher, 2000). The use of heat and acid treatment may lead to protein denaturation during 

processing (Boland et al., 2013). Lysine is the most affected AA by extreme heat processing as it is 

susceptible to Maillard reactions reducing its availability for use by the animal (Parsons, 1996). Therefore, 

protein ingredients for animal feed must be handled with care. It is evident that insect derived protein source 

meals are highly digestible in poultry as indicated in Table 2.5. 

 

Table 2.5 Protein content and digestibility of protein in broiler chickens in percentage 

Protein source Crude protein Apparent digestibility Reference 

Plant products    

Soya bean meal 49.44 85-87.00 Boland et al. (2013) 

Animal by-products    

Fish meal 60.20 91.30 Pieterse &
 
Pretorious (2014) 

Insect products    

HF larvae meal 60.38 69.00 Pieterse & Pretorious (2014) 

HF pupae meal 73.26 79.00 Pieterse & Pretorious (2014) 

Field cricket 58.30 92.90 Wang et al. (2005) 

HF (House fly) 

 

Feed formulation of poultry has evolved over the years identifying that birds do not require protein ‘per se’ 

but rather availability of AA within the protein source. Therefore, poultry diets are formulated based on 
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availability of AA in the feed ingredient used (Lemme et al., 2004). The AA profile values for inclusion in a 

ration should be specific and not in excess or less than required, as this may lead to inhibition of growth 

especially with methionine, lysine and threonine in poultry diets (Lewis et al., 1963). Furthermore, in poultry 

diets methionine or methionine plus cysteine is/are the first limiting amino acid(s) on bird growth followed by 

lysine and then threonine (Ravindran, 2013). Even though methionine is the first limiting AA, lysine is the 

preferred reference amino acid in diet formulation, since it is easier to analyse, least affected by metabolic 

functions and forms no metabolic conversions with other AA (Lemme et al., 2004). Excess lysine inclusion in 

poultry diets may cause antagonism, while excess methionine may cause toxicity. Arginine and lysine have 

an antagonistic relationship which is prevented when supplied in a 1:1 ratio (Austic & Scott, 1975). 

Furthermore, in poultry diets if arginine is in excess lysine is added to correct for arginine to prevent losses 

on growth performance. However, the effect of lysine and arginine on body weight gain and feed conversion 

ratio is more evident when lysine is in excess then when arginine is in excess (Lewis et al., 1963; Balnave & 

Barke, 2002). Chamruspollert et al. (2002) found increased methionine in broiler chicken diets to have 

improved growth and feed intake significantly. Furthermore, addition of methionine to a diet containing 

excess arginine was found to alleviate growth depression of broiler chickens (Chamruspollert et al., 2002). 

 

2.5.2 Use of alternative feed ingredients 

Broiler production cost is mainly dominated by the feed costs which amount to about 70% of the total 

production cost. Grains are the main feed ingredient in poultry diets but are also a staple food for humans in 

most developing countries (Teguia & Beynen, 2005). Moreover, with the increase in the human population, 

the demand for food has been increasing causing more of a challenge to feed the growing nation. Another 

factor influencing food availability rather than food competition and population increase is global warming, 

causing weather changes and thus reducing crop yields. These factors have contributed to an increase in 

grain commodity price attributing to a costly production of livestock and its products (Dar & Gowda, 2013). 

Therefore, there is a need for the search of alternative feed ingredients with an appropriate nutritional value 

for use in animal feeds, in this context focusing on poultry. These ingredients should be accessible, 

affordable and not in competition with humans. Alternative feed ingredients are not only needed in the 

poultry industry but also in other animal species used for farming. Insect meals are amongst the possible 

alternative feed sources under consideration owing to its performances when included in animal diets 

(Téguia et al., 2002; Ogunji et al., 2008a, b; Ijaiya & Eko., 2009; Sealey et al., 2011). 

 

There are about 10 million living species in the world, of which more than 60% are insects. Insect are the 

most diverse group of living organisms on earth. This may be due to their efficient defence systems providing 

them with an innate immunity enabling them to prosper amongst other living species (Masova et al., 2010). 

DeFoliart (1989) estimated a total of about 500 insect species from 260 genera and 70 families of insect 

used as human food in central northern Africa, Asia, Australia and Latin America. However, DeFoliart (1989) 

further stated the estimated values to probably be more than the reported statistics. According to Jongema 

(2014) there are about 2 040 edible insect species recorded worldwide. This statistics substantiate statement 

by DeFoliart (1989) that there are more insect species than reported. 
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The diversity of insect species, availability and exceptional nutritional content makes them eligible sources 

for use as food. In animal diets, feed ingredients are analysed for their nutritional content to enable relatively 

accurate ration formulation that meet the nutrient requirements of the animals. Insect meals have an 

adequate amino acid content which is comparable or even better than the traditional feed ingredients: fish 

meal and soya bean meal (Table 2.6). This signifies insect meals to be potential protein sources for use in 

animal diets. 

 

Table 2.6 Comparison of the nutritional value of insect meals with that of fish and soya bean meal 

Parameters HFM
1,a

 M
2,b

 FC
3,c

 GH
4,d

 SWC
5,e

 FM
6,f

 SCM
7,f

 HFP
8,g

 BSM
9,h

 

Proximate 

analysis (%) 
         

Crude protein 47.60 55.10 58.30 53.58 50.30 69.13 49.44 76.23 43.20 

Crude fat 25.30 20.70 10.30 26.52 16.43 10.11 0.90 14.39 28.00 

Crude fibre 7.50 6.30 8.70 9.21 10.90 0.54 7.87 15.71 - 

Ash  6.25 10.40 2.96 4.31 12.03 - 5.90 7.73 16.60 

Amino acids (%)          

Lysine 6.04 2.92 4.79 - 5.02 3.57 3.05 4.92 2.21 

Methionine 2.28 - 1.93 - 3.02 1.09 0.70 1.37 0.83 

Threonine 2.03 - 2.75 - 4.50 1.47 1.95 2.31 1.41 

Mineral content 

(%) 
         

Ca - - - - 1.05 1.34 0.33 0.52 5.36 

P - - - - 2.77 1.77 0.73 1.72 0.88 
a
 Aniebo et al. (2009)    

1
 HFM (Housefly maggot, blood & wheat meal) 

b
 Awoniyi et al. (2003)    

2 
M (Maggot meal) 

c
 Wang et al. (2005)    

3
 FC (Field cricket meal) meal) 

d
 Hassan et al. (2009)    

4
 GH (Grasshopper meal meal) 

e
 Ijaiya & Eko (2009)    

5
 SWC (Silkworm caterpillar 

f
 National research council (2004)       

6
 FM (Fish meal dehydrated) 

g
 Pieterse & Pretorius (2014)    

7
 SCM (Soya oil cake meal) 

h 
Newton et al. (2005a)                  

   8
 HFP (Housefly pupae meal dried) 

                                                         
9
 BSM (Black soldier fly pre-pupae meal dried) 

 

2.5.2.1 House fly meal 

Calvert et al. (1969) evaluated the use of HF pupae meal (crude protein 63.1%) as a feed ingredient in 

poultry diets, partially substituting soya bean meal. The results obtained were favourable and warranted 

further research. The biological assay of HF larvae and pupae meal nutrients fed to broiler diets revealed HF 

to be highly digestible and their chemical analyses determined a complimentary nutrient composition of both 

larvae and pupae meals (Pieterse & Pretorius, 2014). 

 

Pieterse et al. (2014), found significantly higher live and carcass weights in birds fed 10% HF meal but 

observed no treatment differences on sensory analysis of broiler chicken breast muscle for chicken aroma, 

initial juiciness, chicken flavour and tenderness. In another study by Zuidhof et al. (2003) on turkey poults fed 

HF larvae meal, a decrease in feed intake of poults receiving the larvae meal attaining a daily feed 

consumption of 39 g and an average weight gain of 34 g was observed during the digestibility study. 

However, the poults fed the commercial diet consumed about 60 g per day and gained 43 g. These results 
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look promising but no statistically analysed results were found to indicate liable differences in growth 

performance of the turkey poults given it was a digestibility study and not a production study. Agunbiade et 

al. (2007) found maggots collected from poultry manure to have supported normal egg production without 

compromising its quality by analysing egg weight, shape, yolk colour and index, shell thickness and weight. 

 

Ogunji et al. (2008a) evaluated HF maggot meal (MGM) as a protein source for Oreochromis niloticus (Nile 

tilapia). It was concluded that HF MGM has a good amino acid profile and can produce results similar to 

those from fish fed fishmeal. However, they observed improved metabolic functions of fish translating into 

optimal growth when the diet was enhanced with n-6 and n-3 fatty acids. In another study, Ogunji et al. 

(2008b) again evaluated HF MGM as a protein source for O. niloticus. It was noted that with an increase in 

HF MGM inclusion in Nile tilapia fish diets there was a decrease in feed conversion ratio (FCR) which is 

beneficial indicating increased efficiency in conversion of feed. Furthermore, the increase in MGM inclusion 

in the diet also led to an increased feed intake. On that note, acceptable performances were observed with 

up to 15% MGM inclusion in the tilapia diets. Aniebo et al. (2009), found no significant difference for growth 

parameters and nutrient utilisation of catfish fed HF MGM and those fed the standard meal at all inclusion 

levels (12.5 and 25%). Furthermore, catfish fed a 50% and 100% HF larvae meal compared with a standard 

commercial feed were evaluated for carcass quality and sensory characteristics; no significant differences 

were found (Aniebo et al., 2011). 

 

According to Téguia et al. (2002), HF MGM replacement of fish meal in broiler diets increased weight gain 

with no significant difference in carcass characteristics observed at inclusion levels of 5, 10 and 15%. They 

also found HF MGM had a better metabolisable energy (ME) than fishmeal. In another study, Okah & 

Onwujiariri (2012) reported 50% HF MGM replacement in finisher broiler chicken diets resulted in 

significantly higher weight gain and dressing percentage than the control, but a decrease in feed intake was 

observed in diets containing over 20% HF MGM, due to nutrient imbalances caused by higher maggot meal 

inclusion. Awoniyi et al. (2003) found HF MGM to be a suitable protein substitute for fishmeal in broiler diets. 

An optimal level of 25% was found to replace fish meal with no adverse effect on growth parameters and 

carcass characteristics. However, they further found an increase in HF MGM in broiler chicken diets over 

25%, led to a reduction in feed intake. In a study by Pieterse et al. (2014), 10% HF meal substituted for fish 

meal in broiler diets resulted in significantly better live and carcass weight than those on the fishmeal and the 

control diet. Furthermore, the larvae meal diet yielded significantly higher breast and thigh muscle 

percentage of carcass weight than the control diet. The birds fed larvae meal and the control diet also had 

significantly higher leg muscle weights than those fed the fishmeal diet (Pieterse et al., 2014). Thus, 

ilustrating HF larvae meal to be a suitable feed ingredient in fish and poultry diets.  

 

2.5.2.2 Black Soldier fly larvae/pre-pupae meal 

Black soldier fly larvae and pre-pupae meal contains a number of essential amino acids and is high in 

minerals (Table 2.7). Bondari & Sheppard (1981) evaluated BSF larvae as a feed ingredient in tilapia and 

channel catfish diets. They observed refusal of fish to consume whole larvae, however when crushed both 

fish species resumed feeding with no refusal observed. They found no significant treatment difference on 
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growth. In addition, sensory analysis results indicated no significant treatment difference in aroma and 

texture of the fish. Thus, they concluded that BSF larvae to be a suitable feed ingredients for use in channel 

catfish and tilapia even at 100% inclusion or in combination with other ingredients. Similarly, in rainbow trout 

fed a 50% black soldier fly pre-pupae meal (BSM) for eight weeks, there was no significant effect on fish 

growth determined. Furthermore, the fish fillet was tested for quality through sensory techniques and no 

significant treatment differences were found compared to fish fed the control diet (Sealey et al., 2011). 

Widjastuti et al. (2014) found quail (Coturnix coturnix japonica) fed 50% BSM to have led to a significantly 

higher feed consumption and an improved feed conversion ratio (reduced). 

 

Table 2.7 Chemical composition of black soldier fly larvae 

Essential Amino Acids
1
 (%) Mineral and Proximate

1
 Fatty acid composition

2
 (%) 

Methionine 0.83 P 0.88% C10:0   0.9 

Lysine 2.21 K 1.16% C12:0 47.0 

Leucine 2.61 Ca 5.36% C14:0   6.5 

Isoleucine 1.51 Mg 0.44% C16:0 15.0 

Histidine 0.96 Mn 348 ppm C18:0   2.2 

Phenylalanine 1.49 Fe 776 ppm C16:1n=9   3.1 

Valine 2.23 Zn 271 ppm C18:1n=9 14.0 

l-Arginine 1.77 Crude protein 43.2% C18.1n-7   0.2 

Threonine 1.41 Ether extract 28.0% C20:1n=9 <0.1 

Tryptophan 0.59 Ash 16.6 C22:1n=9 <0.1 

    C22:1n=11 <0.1 

    C18:2n=6 9.4 

    C20:4n=6 <0.1 

    C18:3n=3 0.8 

    C18:4n=3 <0.1 

    C20:5n=3 <0.1 

    C22:5n=3 <0.1 

    C22:6n=3 <0.1 

    Ʃ SFA
a
 71.6 

    Ʃ MUFA
b
 17.3 

    Ʃ PUFA
c
 10.2 

1
 Newton et al. (2005a) 

2
 Kroeckel et al. (2012) 

a 
Saturated fatty acid 

b 
Mono-unsaturated fatty acid 

c 
Poly-unsaturated fatty acid 

 

2.5.2.3 Other insect meals 

Field cricket and other insect meals have an adequate AA content that can sustain the set requirements of 

poultry AA inclusion in diets (Table 2.6 and 2.8, respectively). Field crickets were utilized as a protein source 

in broiler diets up to a 15% inclusion level with no treatment effect on growth noted. Furthermore, field 

crickets had a higher true amino acid digestibility coefficient of 92.9% than the 91.3% of fishmeal (Wang et 

al., 2005). Grasshopper meal is another suitable feed ingredient in broiler starter diets. A 50% grasshopper 

meal diet partially substituting fishmeal had a feed conversion efficiency of 80%, while the 100% fishmeal 

diet had an efficiency of 92%. There was however, no significant treatment difference regarding weight gain. 
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The 100% grasshopper meal had a higher weight gain with a lower feed efficiency of 69% as compared to 

the 80% of the 50% diet (Hassan et al., 2009). Therefore, grasshopper meal is a suitable feed ingredient in 

broiler starter diet but in combination with other protein sources. Ijaiya & Eko (2009) evaluated silkworm 

(Anaphe infracta) caterpillar meal as a protein substitute for fish meal in starter diets of broiler chickens. They 

found, no significant treatment difference regarding feed intake, weight gain, feed conversion ratio and 

protein efficiency ratio, with inclusion levels as high as 100%. 

 

Table 2.8 Ideal amino acid (g/100g) requirement in poultry diets, adapted from NRC (1994) 

Nutrients  Poultry 

Crude protein % 18-23.00 

Arginine 1.10 

Histidine 0.32 

Isoleucine 0.73 

Leucine 1.09 

Lysine 1.00 

Methionine 0.38 

Phenylalanine 0.65 

Threonine 0.74 

Tryptophan 0.18 

Valine  0.82 

 

Generally, studies utilizing insect meals and other waste recovered protein sources as feed when fed to 

birds, fish and pigs resulted in acceptable growth rates. They also yielded carcasses with acceptable meat 

quality; most authors observed no difference in flavour as determined by consumers or trained taste panels. 

However, only few authors went further to investigate the effects of insect meals on the quality of the meat 

produced, thus minimal literature available. This review clearly outlined the potential of several alternative 

animal feed sources that can be utilised for animal based food production for safe consumption by humans. 

It was also found that insects can decompose organic material into biomass and reducing waste by over 

50%, solving disposal problems by making it easy to store and properly dispose of composted waste. 

However, several studies have indicated insect meal to be costly, which was not discussed in this study as 

it’s beyond the scope. Therefore, for sustainable mass production of insect meals that are cheaper, efficient 

and effective rearing techniques should be developed ensuring safety and a homogenous quality of insects 

meals produced. Moreover, this will increase the competitiveness of insect meals with other meals used. 

 

2.5.2.4 Effects of nutrition on organ, intestine and skeletal parameters in poultry 

Primarily, a diet is formulated to meet the nutrient requirements of the bird that sustains all its body functions. 

However, the overall development of an animal, its feed utilisation and digestive process is highly influenced 

by the intestinal microbiota and its metabolic activities (Rehman et al., 2008). The diet can alter or affect the 

structural integrity of organs (Fasina et al., 2006). When a chick is hatched its small intestinal mucosa is 

immature, hence it undergoes rapid intestinal development which is highly influenced by the presence of 

feed in the intestine. However, if chicks are fasted post hatch 24-48 hours it causes a reduction in the 

proliferation and migration rate of enterocytes producing fewer cells per villus and a smaller surface area is 
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produced reducing nutrient absorption (Geyra et al., 2001). Therefore, the rapid and simultaneous 

development of the gut associated lymphoid tissue (GALT) after hatching is essential to ensure the survival 

of the chick. The GALT only become immunologically mature in all chicks ten days after hatching, which 

creates a window for pathogenic invasion if early immunization is not done. In addition, the GALT 

development and functionality rate of a chick is determined by the diet and time of feeding (Klipper et al., 

2000). Early fasting may cause damage to the hindgut for the first two weeks of the chick’s life, due to a low 

intestinal antibody response leading to late colonization of the B and T lymphocytes in the hindgut and 

delayed lymphocyte populations in the cloacal bursa (Shira et al., 2005). Avian lymphoid organs are vital as 

they assure that pathogens do not evade the host, resist infections and maintain productivity during 

infectious attacks (Fasina et al., 2006). 

 

The structure of the intestinal mucosa can be used as an indicator of the gut’s condition and hence animal 

health, but it is affected by various factors (Xia et al., 2004; Choct, 2009; Jönsson & Holm, 2010). According 

to Salim et al. (2013), modern broilers are hatched in a hygienic environment and raised in disinfected 

houses making the development of a balanced gut microflora difficult, thus chicks need microbial stimulants 

(probiotics) during the starter phase to enhance the development of the gut microflora. Naqi et al. (1970) 

found turkey poults to have had several bacterial species shortly after hatching. Apajalahti et al. (2004) noted 

on day one after hatching broiler chick’s bacteria densities raised to 10
8
 in the ileum and 10

10
 in the caecum 

per gram of digesta. Furthermore, on day three bacteria densities rose to 10
9
 and 10

11
 in the ileum and 

caeca, respectively and remained stable until day 30 of age. The processing method of the feed and the 

rearing environment affects the intestinal microbial community load and its rate of development, as it derives 

its energy from the diet depending on the availability of sources (Apajalahti et al., 2004). 

 

A healthy gut has a high nutrient absorption and consequently an improved immune status (by increase in 

plasma immunoglobulin levels) of the host (Salim et al., 2013). However, the gut requires more energy and 

protein compared to other organs due to its high maintenance costs (Xu et al., 2003; Choct, 2009), utilizing 

20% of all dietary energy to support absorptive and digestive processes (Weurding et al., 2003; Apajalahti et 

al., 2004). The digestion and absorption of nutrients occurs mostly in the small intestine. The absorptive 

capability of the intestinal villus area is determined by the villus size, the mutual proportion of enterocytes, 

goblet and entero-endocrine cells (Awad et al., 2011). However, destruction of the gut wall (epithelium cells) 

directly affects intestinal barrier function, weakening absorption of nutrients and making the wall barrier 

permeable by luminal antigenic agents (Song et al., 2014). The presence of toxins in the gut can be 

accessed by analysing the villi length and crypt depth (Choct, 2009). In addition, shorter villi’s and deeper 

crypt are an indication that toxins where or are present in the gut of the animal. The length and width of the 

villi and the crypt depth gives an indication on the rate of tissue turnover of epithelial cells, energy 

requirement and the absorption capacity of nutrients in the gastro-intestinal tract (Pluske et al., 1996; Xu et 

al., 2003; Xia et al., 2004; Choct, 2009; Awad et al., 2009; Zhang et al., 2013). 

 

Modern poultry birds have been selected for fast growth. This has led to bone problems, as weight gain 

occurs at a faster rate than the bone development (Hocking et al., 2009; Garcia et al., 2013). The occurrence 
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of leg disorders is common in intensive poultry production systems. Osteoporosis is one of the common 

diseases causing leg disorders in the poultry industry and has been a problem since 1955, causing financial 

losses (Rubin et al., 2007). Osteoporosis causes decline in bone mass and mineral content, and also alters 

the micro structure of the bone leading to bone fragility, and increased risk of fracturing (Gregory & Wilkins, 

1989; Peck et al., 1993; Bishop et al., 2000; Rubin et al., 2007). The fragility and porosity of the bones may 

lead to bones fragmenting during slaughter and deboning. Bone fragmenting can lead to discoloration of 

meat in close contact to the bone due to leaching of blood thereby producing a product that may not be 

appealing to the consumers (Gregory & Wilkins, 1989; Rath et al., 2000; Garcia et al., 2013). However, bone 

effects can be counter acted by supplying sufficient ratios of Ca to P amongst others, to support normal 

skeletal growth (Leeson & Summers, 2001). Therefore, during feed formulation, certain vitamins and 

minerals that cannot be synthesised by the birds are included in the diet as they are important to their health 

and attribute to birds attaining better production performances (Pandian et al., 2012). In modern poultry 

diets, a commercial phytase enzyme can be used, aiding digestion and utilisation of phosphorus bound by 

phytic acid thereby reducing the use of inorganic phosphates in poultry diets (Huff et al., 1998; Selle & 

Ravindran, 2007; Ravindran, 2013). 

 

Furthermore, Rennie et al. (1997) and Fleming et al. (2003) reported Ca deficiency and retention, not to be 

the main cause of osteoporosis in laying hens. Feeding of Ca in particulate (as oyster shells) to laying hens 

led to a greater deposition of calcium in the skeleton (Rennie et al., 1997). In other studies, feeding of 

calcium in particulate to laying hens led to a decrease in cancellous bone loss and increased growth of the 

medullary bone (Fleming et al., 1998; Fleming et al., 2003). According to Rama Rao et al. (2003), an 

increase in broiler dietary Ca level led to a decrease in growth and also Ca and P retention. These may be 

attributed to the high level of Ca to non-phytin phosphorous ratio of 2.85: 1. Furthermore, the level of Ca in 

the diet did not significantly influence Ca retention, feed intake, weight gain, leg score and serum P content 

in broiler chickens. Williams et al. (2000) found dietary Ca and available P content not to have affected bone 

reabsorption. Hence, they concluded that it may be due to genetic factors attributed to the different strains 

used. A 2Ca:1P ratio is the optimal set supplementation level in poultry (NRC, 1994), however not all feed 

ingredients are high in these minerals and are mostly bound by phytate reducing its availability. However, 

BSM utilised is known to contain high Ca and P levels (Newton et al., 1977; Newton et al., 2005b), which are 

essential to bone development in animals. Therefore, the use of nutrients and minerals that support proper 

bone growth during rearing can be a possible strategy to reduce leg problems (Gregory & Wilkins, 1989). To 

the authors knowledge no known study has been done on the effects of high Ca and P levels in BSM on 

bone strength and mineral composition. 

 

2.6 Consumer perception 

In the early 1980’s consumers became increasingly concerned about excessive fat in red meat due to health 

reasons (Crouse et al., 1984). However, in the 21
st
 century, fat percentage is still of concern to consumers’ 

preferring meat with less fat (Ngapo et al., 2007; Troy & Kerry, 2010), especially saturated fatty acids in the 

diet (Wood & Enser, 1997). The United Kingdom Department of Health in 1994 recommended a diet 

Stellenbosch University  https://scholar.sun.ac.za



 
 

24 
 

consisting of 35% of energy from fat of which 10% should be saturated fatty acids (Wood & Enser, 1997); 

this was done in attempts to reduce coronary heart disease and cancer. 

 

Modern day consumers are more concerned about their health, making sure that what they consume is 

healthy. These consumers require meat portions that are considered good value for money with more 

muscle, less fat (just to maintain juiciness and flavour) and a consistent quality (Ward et al., 1995). 

Consumers select meat products not only according to eating quality and price but also consider the ethical 

quality involving animal welfare issues (Kouba, 2003). These consumer concerns have led the food 

processing industry into producing products that meet their demands (McIlveen, 1994). 

 

However, modern day consumers are opting to buy mimicked products that do not contain meat but meat 

alternatives due to health reasons, weight loss and convenience (McIlveen et al., 1999).The purchasing 

power and behaviour of a consumer is controlled by social and psychological characteristics related to food 

risk of a particular product (Yeung & Morris, 2006). This leads to a consumer not willing to purchase a 

product if there are negative aspects related to food safety of the product. On that note, the outbreak of BSE 

since its first documentation in 1986, has led to a decrease in beef consumption leading to an increase in 

demand for chicken, pork and fish (Yeung & Morris, 2001; Ishida et al., 2010). However, the outbreak of bird 

flu (avian influenza) led to a decrease in chicken meat consumption (Ishida et al., 2010). Avian influenza 

H5N1 stain was documented in Asia during 2003, reaching Europe in 2005 and spread to Africa and Middle 

East around 2006. The H5N1 stain of the influenza virus is pathogenic and can cause death in humans 

(http://en.wikipedia.org/wiki/Avian_influenza). However, control measures and efforts from government to 

help control outbreaks of these diseases has led to stable situations and increase in consumption of these 

products overtime. It took longer for BSE outbreak situations to subside than compared to bird flu situations 

(Ishida et al., 2010). According to Ravindran (2013), poultry meat consumption has shown steady increases 

over the years and it is predicted to keep rising. Poultry meat demand is increasing due to its acceptance in 

many societies (Bolan et al., 2010). 

 

When it comes to food safety of chicken meat, microbiological contamination is more of a concern to 

consumers, in which the consumers monitor it closely based on their choice of purchase outlet with most 

consumers’ preferring to purchase from trusted supermarkets (Yeung & Morris, 2001). Food producing 

industries has recently (during the 21
st
 century) shifted their production focus to meet the demands of 

modern day consumers (Grunert, 2002). 

 

The use of alternative feed ingredients in broiler diets, especially the recent use of insects and their larvae, 

pupae or pre-pupae as a feed source has been of bacterial concern to consumers. Insects and their larvae 

are known to consume decaying organic matter such as manure which contains micro-organisms of which 

some are pathogenic; for example E. coli. Awoniyi et al. (2004) found that feeding maggot meal to broilers 

had no adverse effects on the erythrocyte numbers; this can be attributed to the defence mechanism of 

insects and larvae (they contain natural antibiotics which reduces transmission of pathogens from feed to 

insects) (Sheppard et al., 2007), as well as the high body core temperature of the birds destroying some of 
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the organisms. Broiler chicken blood derived from birds fed maggot meal had a lower bacterial count than 

that from the control diet (not containing maggot meal) (Awoniyi et al., 2004). This shows that maggot meal 

has no adverse bacterial threat to poultry meat and consumers can enjoy the flavourful meat produced. 

However, before birds were fed fish and soya bean meals they have been consuming insects and in fact, 

wild birds that still consume insects and their meat is consumed by humans with no reported health problems 

being experienced (Miao et al., 2005). 

 

According to studies in numerous countries in Europe and the United States, results show that consumers 

are willing to pay for meat products that result from animal friendly free-range production systems (Carlsson 

et al., 2007). Country of origin has also been shown to be linked to animal welfare and the use of antibiotics 

as a quality cue for meat products in Sweden led to a shift from locally produced products to imported 

products (Hoffmann, 2000). Similarly, place of purchase as well as country of origin are main quality cues to 

consumers for fresh meat (Becker, 2000). Furthermore, consumers are shifting from beef, veal and lamb 

consumption to chicken and vegetables, as beef is not only expensive, but perceived to have a high calorie 

content and cholesterol. However, some consumers still find beef to be the best meat product as it is tastier, 

tender and juicy (Resurreccion, 2004). According to a study in Ethiopia, chicken, beef and chevon were 

preferred as opposed to fish and pork due to religious beliefs and sociocultural taboos (Teklebrhan, 2012), 

which are other factors that affects consumer product purchase choices. 

 

Yeung & Yee (2002) reported chicken meat to have become a healthy and popular option in the United 

Kingdom. Similarly, Hoffman & Wiklund (2006) have found venison to be a healthier choice for the modern 

day consumer, as it is leaner. Interestingly, Yeung & Yee (2002) found retirees and non-degree holders, in 

need of food safety information to help reduce their perceived concerns about food risks. Moreover, Pirvutoiu 

& Popescu (2013) showed increased consumption of poultry meat with increase in education and income 

levels. It should therefore, be noted that not necessarily every potential hazard that occurs results in a food 

scare even though it has happened before. This is because food scares occurs in different ways of which 

some are detrimental and some not (Grunert, 2002). 

 

It can, therefore, be said that these non-traditional feed ingredients derived from insects can be used as 

animal feed sources producing meat of similar quality as those fed traditional feeds or even better. Studies 

utilising insect meals as feed ingredients in animal diets, provided evidence that meat produced is safe for 

human consumption and of no inferior quality. 

 

2.7 Conclusion 

Fish meal is currently the only meat origin protein used in poultry diets in most countries across the globe 

due to the ban of animal products as feed ingredients since the outbreak of BSE. However, in some parts of 

Africa, fish meal is a scare commodity which has to be imported and is hence expensive. On the other hand, 

soya bean meal is the most used plant protein in poultry diets of which there has been an increase in prices 

due to increase in demand and reduction in quantity due to weather changes as well as the use thereof in 
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the biofuel industry. Therefore, animal scientists are searching for alternative feed ingredients to keep the 

animal production industry operating, especially broiler production. Since, broilers have a rapid growth rate 

and superior feed conversion ratio; their superior growth rate may be used as a production incentive to 

increase production of animal protein. 

 

Insect meals have proven to be suitable protein sources in poultry diets. Therefore, a possible efficient 

production system of BSF larvae/pre-pupae can be one that would include composting of farm organic 

waste, produce biogas, biodiesel and pre-pupae that can be extracted for chitin, with the remaining larvae, 

pupae or pre-pupae after extraction usable as an animal feed ingredient. Therefore, recycling waste protein 

as feed for animals would help bridge the animal protein gap without shifting the human diet to plant protein. 

Black soldier fly larvae bred on poultry manure inoculated with bacteria led to faster development of the 

larvae, which can be a useful tool in waste management to fasten the process of vermi-composting. 

 

Consumer perception regarding the use of non-traditional feed ingredients as animal feed might be a 

challenge, especially with the worldwide growing concern on animal welfare. The use of insects in animal 

diets is humane and reported to have no effects on the production efficiency of animals. However, waste 

protein recovery used as animal feed is nothing new to the world. Especially, the use of insects as they have 

been part of free range and wild birds’ diets, which is considered by some people as organic due to their 

origin. Composting waste using insect and/or their larvae is environmental friendly, reducing gas emissions 

and waste disposal. Therefore, recovery and recycling of waste material with insects may solve waste 

management problems; produce animal feed and consequently increase production of food. 

 

However, the scientific knowledge of the use of these various insects and their developmental stages as 

poultry feed is still sparse. Therefore, a study investigating the use of black soldier fly (Hermetia illucens) pre-

pupae meal (BSM) as a protein source in chicken broiler diets will be initiated. Various attributes of 

importance in animal production will be evaluated to assess any possible effects arising from the use of BSM 

in chicken broiler diets. Furthermore, the quality of meat that’s produced from the use of this non-traditional 

feed will also be documented. Black soldier fly pre-pupae meal has been studied extensively in fish but 

minimally in poultry. Therefore, it’s vital to conduct a study enabling the scientific classification of BSM as a 

feed ingredient. If BSM proves to be a viable protein source in broiler chicken diets, this in turn will increase 

the availability of protein sources for broiler production that are sustainable and also increase meat protein 

for human consumption. 
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Chapter 3 

Evaluation of the total intestinal track digestibility of black soldier fly 

(Hermetia illucens) pre-pupae meal in the diets of broiler chickens 

 

Abstract 

This study investigated the nutrient (protein, fat, fibre, ash and amino acids) digestibility and apparent metabolisable 

energy (AME) of black soldier fly pre-pupae meal (BSM) in broiler chicken diets. Sixty four Cobb 500 broiler chickens at 

day 40 of age; two birds were randomly assigned to one of four dietary treatments. The treatment diets were each 

replicated eight times, yielding 32 experimental units. The treatment diets were 100% maize (control), BSM dried 100 °C 

(BSM100), BSM dried 65 °C (BSM65), and defatted BSM dried 65 °C (DF-BSM). The effect of drying temperature 

(100 °C and 65 °C) was also tested on the nutrient digestibility of BSM in a completely randomised design. The birds 

were acclimatised to the feed for three days where ad libitum feed intakes were determined. Thereafter, the digestibility 

trial commenced for three days and faecal samples were collection each morning. Treatment significantly affected the 

AME and coefficient of total intestinal tract digestibility (CTTD) of nutrients. Overall DF-BSM had high CTTD values for 

nutrients and AME. The nutrient CTTD values of BSM65 were significantly lower than DF-BSM. Results further revealed 

that the nutrients CTTD of BSM100 were not significantly different from those of DF-BSM for most nutrients and AME. 

Therefore, it can be concluded that nutrients in BSM dried at 65 °C and 100 °C are highly digestible in broiler chickens. 

These results will allow a more accurate inclusion of BSM into balance commercial broiler diets. 

 

Keywords: CTTD, apparent digestibility, BSF, larvae meal, acid insoluble ash, amino acids 

 

3.1 Introduction 

The extent to which nutrients are ingested, digested and absorbed by an animal determines the level of 

performance of an animal. Animals fed highly digestible feeds perform better than their counterparts fed 

feeds of low digestibility. Superior growth performance was observed in animals that consumed nutrients 

with higher digestibility coefficients than those fed low-digestibility nutrients (Thang et al., 2010; Salem et al., 

2013). In broilers, high digestibility figures for dry matter, crude protein, ether extract and phosphorus were 

associated with superior growth performance (Emami et al., 2013; Thiamhirunsopit et al., 2014). In modern 

day intensive monogastric nutrition, use is made of feeding balanced diets of which the digestibility of the 

feedstuffs incorporated into the diet are known and included into the formulation process. This not only leads 

to better/best performance from the animals being fed, but also reduces the undigested waste. This implies 

that before any feed ingredient can be incorporated into an animal feed the digestibility of its nutrients should 

be ascertained using a digestibility study. 

 

A digestibility study measures the digestion of certain nutrients in a feed component as consumed by 

animals (Scott & Boldaji, 1997). Digestibility methods differ between animal species, where the method used 

depends on the structure of the animal’s digestive system. Thus, methods used in ruminants cannot be used 

in monogastrics or fish or vice versa (Scott et al., 1998; Yahya et al., 2011; Kroeckel et al., 2012; Salem et 

al., 2013). In vivo digestibility studies can be done through ileal digesta or excreta collection; however they 

are not well-suited for determining amino acid digestibility of individual feed ingredients (Parsons et al., 
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2002). On the other hand, precision feeding (and excreta collection) is more advantageous as it is cheaper, 

faster and requires less feed samples, despite having been criticised for being less accurate (Parsons et al., 

2002). Markers (inert and external) are added in excreta assay diets to aid error minimization regarding 

inaccurate measurement of feed intake, excreta output and external contamination of excreta (Sibbald, 

1987). Despite several studies stipulating that total excreta collection digestibility is less reliable than ileal 

digestibility, Ravindran et al. (1999) found no differences in digestibility of sorghum and maize utilizing both 

methods. They further found differences in wheat digestibility, while ileal amino acid (AA) digestibility was 

higher than in excreta assay; opposing literature also shows overestimated AA digestibility by excreta assay 

(Ravindran & Bryden, 1999; Parsons et al., 2002). 

 

Inert digestibility markers are routinely used to estimate the digestibility of dietary nutrients. In broilers, an 

indigestible inert marker is added to the birds’ diet, where the digestibility of the nutrients is attained by the 

differences found between the proportion of the marker in the diet and that in the excreta. Oberleas et al. 

(1990) observed that the use of chromium as an inert digestibility marker may be negative for estimating 

rates of passage because it is unpalatable, reduces intake and is carried more readily by the fluid rather than 

the solid portion of the digesta, thus changing its digestibility. An ideal marker should accurately estimate 

total tract digestibility and provide results on the extent and direction of the effects induced by the diet, 

without changing the importance of the treatment effects to the animal (Huhtanen et al., 1994). The faecal 

recovery rate of any marker is of significance in the reliability of the faecal marker to ensure accurate nutrient 

digestibility data analysis (Tamminga et al., 1989; Sales & Janssens, 2003). 

 

Feed naturally contains acid insoluble ash in low quantities; hence an exogenous source of acid insoluble 

ash can be added to help improve the accuracy of recovering the marker (Sales & Janssens, 2003). Scott & 

Boldaj (1997) observed that acid insoluble ash was more appropriate in conducting digestibility trials for 

broilers compared to chromium oxide. Digestibility trials have been conducted on diets of different 

compositions (Scott & Boldaji, 1997; Emami et al., 2013; Thiamhirunsopit et al., 2014). There are certain 

factors that can reduce the digestibility potential of feed by the animal. The use of heat and acid treatment 

may lead to protein denaturation during processing (Boland et al., 2013). Lysine is the most affected AA by 

extreme heat processing as it is susceptible to Maillard reactions reducing its availability for use by the 

animal (Parsons, 1996). Thus these effects are to be tested to determine their effects on nutrient 

bioavailability to the animals. In monogastric animals fat content within the diet can affect the intake and 

growth of the animal. Crespo & Esteve-Garcia (2001) found a decrease in feed intake with an increase in 

dietary fat inclusion in broiler chickens. This may have been due to imbalances caused by metabolisable 

energy (ME) and protein ratio. The ME and protein content of the diet influences performance of birds 

(Zaman et al., 2008). A higher ME to protein ratio in broiler chickens diets leads to excessive feed 

consumption in order to meet the required amino acids for maintenance and survival (Aletor et al., 2000). An 

optimal and balanced ME and protein ratio ensures maximum nutrient and efficient dietary protein utilization 

under optimal rearing conditions (Zaman et al., 2008; Ogunji et al., 2008). 
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Despite the potential of black soldier fly larvae and pre-pupae meal as a potential diet for broilers (Hale, 

1973), the extent of digestibility of its nutrients is not known in broiler chickens. Therefore, the objective of 

this study was to investigate the effect of heat and defatting on black soldier fly pre-pupae meal’s (BSM) 

apparent metabolisable energy and apparent digestibility coefficients of nutrient composition and amino 

acids, utilising the following processed treatment diets; BSM dried at 100 °C, BSM dried at 65 °C and 

defatted BSM dried at 65 °C. 

 

3.2 Materials and Methods 

3.2.1 Experimental animals, layout and housing  

Before the trial was commenced ethical clearance was obtained from Stellenbosch University; ethical 

clearance number SU-ACUM13-00026. For the trial, 64 day-old Cobb 500 broiler chicks were raised for the 

digestibility study at the Mariendahl experimental farm (33° 51’ 0 S; 18° 49’ 60 E) of Stellenbosch University. 

 

On day 40 the birds were randomly selected and changed to different metabolic wire cages (0.45m X 0.3m) 

with two birds per cage, in the same grower pullet house. Each cage contained one nipple drinker and one 

tube feeder. The temperature in the grower pullet house was controlled with ventilation set at six air changes 

per hour. The artificial lighting was set at a pattern of 18 h of light and six hours of darkness. 

 

3.2.2 Experimental diets, design and trail procedure 

For the first 39 days, the birds were fed commercial diets according to the nutrient specifications of 

Cobb-Vantress (2012). Feed and water was provided to the birds ad libitum. At day 40 the birds were 

randomly switched to one of the four experimental diets (Table 3.1) formulated according to Scott & Boldaji 

(1997), with 1% Celite (acid insoluble ash) inclusion. In a completely randomised design, the treatments 

were each replicated eight times yielding 32 experimental units (each unit representing two birds per cage 

(0.45m x 0.3m)). The black soldier fly (BSF) pre-pupae used in this study were harvested at different times of 

the year and were also fed different feed composition of organic kitchen waste, fruits and vegetables but the 

rearing methods and temperature were kept constant. The treatment diets were 100 % maize as a control, 

BSM dried at 100 °C (BSM100), BSM dried at 65 °C (BSM65) and defatted BSM dried at 65 °C (DF-BSM) 

shown in Table 3.1. The diets were mixed and administered to birds as mash diets. 

 

The birds were acclimatised to the experimental diets on days 40-42. Feed intake and refusal were 

measured during the acclimatisation period for the determination of specific daily feed intake. The actual 

digestibility trail began on day 43 and ran for three days. The wire cages were fitted with faecal collection 

trays placed underneath each cage and outlined with a clean sheet of clear plastic. On this day the birds 

were provided with a specific amount of feed per day in grams based on the adjusted amounts of feed 

obtained during the acclimation period. The water was provided ad libitum. The digestibility assays of the 

various BSM were done according to the Acid Indigestible Assay as described by Scott & Boldaji (1997). 
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Table 3.1 Ingredient compositions of black soldier fly pre-pupae meal (BSM) digestibility treatment diets  

Ingredients 
Treatment diets 

100% maize BSM100 BSM65 DF-BSM  

Yellow Maize (fine) 100.00 50.00 50.00 60.00 

BBSM  50.00 50.00 40.00 

Acid insoluble ash 

(Celite™)** 
    1.00   1.00   1.00   1.00 

Vit+min premix*     0.15   0.15   0.15   0.15 

** Celite™ included at a level as indicated by Scott & Boldaji (1997) 

* Vitamins and mineral are included according to the levels recommended by the National Research Council (1994) 

 

3.2.3 Data collection 

The broiler chickens were weighed at the beginning and end of the digestibility trail (day 40 and 46). 

Treatment feed samples were collected for further analyses. Excreta dropped were collected every morning 

at 08:00 (on day 44-46). The faeces were cleaned of any visible feathers, sealed in airtight zip lock bags and 

immediately frozen in a -18 °C freezer until further analysis. At the end of the trial period, the faeces 

collected were all pooled together per treatment replicate. In addition, feed intake and refusal were 

measured and samples of the refused feed were collected. However, the feed refused did not weigh more 

than 2 g per cage for the trial period and was thus not included in any further analyses. 

 

3.2.4 Analytical methodologies 

3.2.4.1 Dry matter determination 

The dry matter (DM) content of the samples was determined according to the Association of Official 

Analytical Chemists International (AOAC) (2002), official method 934.01. The samples were dried at 100 °C 

for 24 h. 

 

3.2.4.2 Crude protein determination 

The crude protein content of each treatment feed and faecal samples was determined by measuring the total 

nitrogen content using a LECO FP528 machine, according to the Dumas combustion method 992.15 

described by AOAC (2002). The nitrogen content was directly measured and used to calculate the crude 

protein content using a factor of 6.25. 

 

3.2.4.3 Crude fat determination 

The crude fat content of each treatment feed and faeces sample were determined using the acid hydrolysis 

fat extraction method using diethyl ether, petroleum ether, ethanol and hydrochloric acid 38% reagent as 

described by the AOAC (2002), official method 920.39.  

 

3.2.4.4 Ash determination 

The duplicate samples used in the dry matter determination (3.2.4.1) were retained and used to analyse the 

ash content of the feed and faeces (AOAC, 2002; official method 942.05). The samples were combusted in a 

furnace oven at 500 °C for 6 h. 
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3.2.4.5 Crude fibre determination 

The crude fibre in the feed and faeces samples was analysed according to the official method 962.09 

(AOAC, 2002) on a Fibertec/Dosifiber extrusion apparatus. The samples were dried in a 100 °C oven for 

48 h and then combusted at 500 °C for 6 h. 

 

3.2.4.6 Amino acid hydrolysis and analysis 

Amino acid hydrolysis was according to the official method 994.12 of the AOAC (2002). The feed and faecal 

samples with addition of 6 mm of 6N hydrochloric acid containing 15% phenol solution was sealed under 

nitrogen and were left to hydrolyse for 24 h in a 110 °C oven. The samples were removed and allowed to 

cool then poured into eppendorf tubes and were frozen at -18 °C until amino acid analysis. 

 

The amino acid analysis was done using a Water API Quattro Micro instrument with the samples being 

subjected to the Water AccQ Tag Ultra derivitization kit for cleaning. The amino acid standard used was 

purchased from Waters (P/N: WAT088122) and prepared by adding 40 µl of standard plus 760 µl Water and 

200 µl Internal standard. The samples were diluted according to their protein content where 8-20% protein 

was diluted 10x, 20-60% protein was diluted 20x and 60-100% protein was diluted 50x. The samples were 

then prepared by adding 10 µl of sample, 70 µl Borate buffer and 20 µl of reconstituted AccQ Tag reagent, 

vortexed and allowed to stand at room temperature (28 °C) for 1 min and placed in a heating block at a 

temperature of 55 °C, for 10 min. Thereafter, 1 µl was injected into the apparatus for the actual test and the 

different amino acids were determined in g/100g sample. 

 

3.2.4.7 Acid insoluble ash 

In duplicates, 5 g of samples were weighed and placed into combustible crucibles and were combusted in a 

furnace for 12 h at 550 °C. After combustion the samples were transferred to 500 cm
3
 Erlenmeyer flasks and 

100 ml of 2 mol hydrochloric acid solution was added. Thereafter, the mixed substances were boiled on a hot 

plate for five minutes. Subsequently, the hot solution was filtered through a Whatman® No 41 filter paper. 

Hot distilled water (85-100 °C) was used to rinse the flask and wash the samples free of acid. The filter 

papers with the ash residue were placed in combustible crucibles and re-combusted for 12 h at 550 °C. After 

12 h of combustion the samples were removed, placed in a desiccator for 30 min and then weighed. The 

acid insoluble ash content of the sample was calculated using Equation 3.1 as outlined with the procedure by 

Van Keulen & Young (1977).  

 

Equation 3.1, 

 

Acid insoluble ash (%) = Weight of crucible (g) + Weight of ash (g)  −   
Weight of empty crucible (g)

DM weight  of sample (g)
 × 

100

1
 

 

3.2.4.8 Gross energy 

The gross energy of the feed and faecal samples was determined using the CP 500 isothermal bomb 

calorimeter. The CP 500 isothermal bomb calorimeter apparatus was calibrated before commencing of 
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analysis. At the start of the analysis two benzoic acid tablets were analysed separately, the values obtained 

were used to standardize the samples gross energy obtained as a correction factor. The bomb was sealed 

with pure oxygen and the gross energy was directly measured in MJ/kg. The values were obtained and used 

to calculate for the apparent metabolisable energy (AME) of each treatment diet and faeces using Equation 

3.2, as described by Scott & Boldaji (1997). 

 

Equation 3.2, 

 

Apparent metabolisable energy (AME) = Gross energy
diet

- [Gross energy
excreta 

× (
Markerdiet

Markerexcreta

)] 

 

3.2.4.9 Mineral Analysis 

At the institute of Animal Production, Western Cape Department of Agriculture at Elsenburg, the mineral 

composition of the sample (feed and faeces) was analysed according to the Combustion Method No. 6.1.1 

as described by Agriculture Laboratory Association of Southern Africa (AgriLASA) (2007). Briefly, 5 ml of 6 M 

hydrochloric acid was added to 0.5 g sample. The samples were then placed in a 50 °C oven for 30 minutes. 

After removal of samples, 35 ml of distilled water was added and filtered into a 50 ml bottle topped with 

distilled water to fill to the 50 ml mark. The minerals were measured on an iCAP 6000 Series Inductive 

Coupled Plasma (ICP) Spectrophotometer (Thermo Electron Corporation, Strada Rivoltana, 20090 Rodana, 

Milan, Italy) fitted with a vertical quartz torch and Cetac ASX-520 autosampler. The iTEVA Analyst software 

was used to calculate for the mineral concentrations. The wavelengths at which Ca and P were eluted are 

317.933 and 177.495 nm, respectively. 

 

3.2.5 Coefficient of total tract digestibility 

The coefficient of total tract digestibility of each nutrient was calculated using the following Equations 3.3-3.6: 

 

Equation 3.3, 

 

Nutrients consumed (g/trial) = Nutrient analysed in feed × DM intake (g/trial), 

 

Equation 3.4, 
 

Nutrients excreted (g/trial) = Nutrient analysed in excreta × DM excreta (g/trial), 

 

Equation 3.5, 

 

Digested nutrient (g/trial) = Nutrient consumed − [Nutrient excreta × (
Marker diet

Marker excreta

)] , and 
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Equation 3.6, 

Coefficient of total tract digestibility (g/kg) = 
Digested nutrient

Nutrient consumed
 ∙ 

 

The 100% maize meal diet coefficient of total intestinal tract digestibility (CTTD) obtained was used for 

digestibility correction of the pre-pupae-maize meal diets according to Aksnes et al. (1996), using Equation 

3.7: 

 

Equation 3.7, 

 

CTTD test ingredient =  CTTD maize + (
CTTD test ingredient −  CTTD maize

% Test ingredient in test diet
) 

 

3.2.6 Statistical analysis  

The data from the trial were analysed using the general linear models (GLM) procedure of SAS (2009). The 

analysis of variance (ANOVA) assumptions for normality and homoscedasticity were investigated before 

further analyses were done. The tests were considered significant at P>0.05. The data adhered to the 

normality and homoscedasticity test and thus a one-way analysis of variance (ANOVA) with Bonferroni’s post 

hoc (least square means) test was used for statistical analysis. In cases where the homoscedasticity 

assumption for the data was not satisfied, a Welch’s ANOVA for unequal variances was used. The 5% 

significance level was used for the statistical tests and treatment differences were declared at P<0.05. 

 

The model for the one-way ANOVA is indicated by, Yіϳ = µі + αj + ԑіϳ where the terms in the model are defined 

as; the treatment effect response (Yіϳ), the overall mean (µі), treatment effect (αj) and the unexplained error 

(ԑіϳ). 

 

3.3 Results 

The chemical composition of the treatment diets is shown in Table 3.2. All nutrients analysed for coefficient 

of total intestinal tract digestibility (CTTD) were influenced (P<0.05) by the treatment diets except CTTD for 

crude fat, leucine and methionine (Table 3.3). Apparent metabolisable energy of BSM100 was higher 

(P<0.05) than BSM65 but similar to DF-BSM (Table 3.3). Treatment differences were observed for Ca CTTD 

with the BSM100 diet being (P<0.05) higher than BSM65, but both did not differ from the DF-BSM diet. 

Treatment also (P<0.05) influenced phosphorous CTTD, with the BSM100 and DF-BSM diet attaining higher 

CTTD’s than the BSM65 diet. Treatment differences (P<0.05) were found regarding organic matter with the 

BSM65 being lower, while the BSM100 and DF-BSM were similar. Furthermore, unequal variances were 

found regarding the data of organic matter and hence the Welch’s ANOVA value was reported. The ash 

CTTD differed (P<0.05), with the DF-DSM being higher. 
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Similar CTTD results were observed regarding crude protein, crude fibre, valine and isoleucine were the 

DF-BSM diet attained higher CTTD (P<0.05) than BSM65 but was similar to that of BSM100. However, the 

BSM100 CTTD did not differ from that of BSM65 (P<0.05). Furthermore, the CTTD of histidine, tyrosine, 

arginine, aspartic acid, glutamic acid, proline, threonine, cysteine, lysine, phenylanine were observed to be 

similar. Pertaining to the above, the BSM65 attained CTTD lower (P<0.05) than DF-BSM and BSM100 which 

were similar. The CTTD of serine was influenced (P<0.05) by treatment with DF-BSM being higher, while 

BSM65 was lower and BSM100 being intermediate. 

 
Table 3.2 Chemical composition of the digestibility treatment diets fed to broiler chickens 

Parameters Units 
Treatment diets 

100% maize BSM100
# 

BSM65
#
 DF-BSM

#
 

AME
1
 MJ/kg 14.82 17.40 16.52 16.85 

Crude protein %   8.95 26.19 25.52 24.66 

Ether extract %   3.70 19.46 15.64 10.21 

Ash %   4.74   7.17   7.97   6.69 

Crude fibre %   2.70   6.51   7.68   5.72 

Histidine* g/100g   3.39   3.77   3.39   3.78 

Serine g/100g   6.04   5.43   5.56   6.17 

Arginine* g/100g   5.87   6.47   5.78   6.47 

Glycine g/100g   5.64   7.01   7.47   7.54 

Aspartic acid g/100g   7.73   9.44   9.65   8.78 

Glutamic acid g/100g 22.17  14.34  14.61 15.37 

Threonine* g/100g   4.73   4.73   4.93   4.95 

Alanine g/100g   8.23   7.47   7.73   7.53 

Proline g/100g 11.49   7.80   7.83   8.53 

Cysteine g/100g   0.55   0.20   0.21   0.26 

Lysine* g/100g   3.29   5.55   5.26   5.13 

Tyrosine g/100g   4.87   8.00   8.20   8.28 

Methionine* g/100g   0.79   1.87   2.08   1.67 

Valine* g/100g   5.65   7.24   7.32   7.04 

Isoleucine* g/100g   3.94   5.07   5.08   5.06 

Leucine* g/100g 14.00   9.61 10.03 10.18 

Phenylalanine* g/100g   6.19   5.54   6.26   5.97 

Calcium % 1.88 1.62 1.08 1.21 

Phosphorus % 0.50 0.59 0.45 0.36 

* Essential amino acids 
1
 Apparent metabolisable energy 

#
 BSM (Black soldier fly pre-pupae meal) 
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Table 3.3 Mean (± standard error) for coefficient of total intestinal tract digestibility (CTTD) of black soldier fly 

pre-pupae meal (BSM)’s with apparent metabolisable energy (AME) in broiler chickens  

Parameters Units 
Treatment diets 

P-value 
BSM100

 
BSM65 DF-BSM 

AME % 17.40
a
 ± 0.200 16.52

b
 ± 0.220 16.85

ab 
± 0.104 0.013 

Organic matter %    0.94
a
 ± 0.004    0.91

b
 ± 0.009     0.95

a
 ± 0.004 0.006 

Crude protein % 0.91
ab

 ± 0.015   0.86
b
 ± 0.014    0.97

a
 ± 0.010 0.003 

AH
1
 fat extract %    1.02 ± 0.001    1.00 ± 0.004     1.01 ± 0.001 0.101 

Ash %  0.85
b
 ± 0.024  0.83

b
 ± 0.017    0.92

a
 ± 0.016 0.002 

Crude fibre % 0.74
ab

 ± 0.015  0.70
b
 ± 0.022    0.81

a
 ± 0.017 0.005 

Histidine* %  0.95
a
 ± 0.006  0.90

b
 ± 0.009    0.96

a
 ± 0.005 <0.001 

Serine %  0.91
b
 ± 0.006  0.87

c
 ± 0.011    0.95

a
 ± 0.004 <0.001 

Arginine* %  0.98
a
 ± 0.002  0.95

b
 ± 0.005    0.99

a
 ± 0.004 <0.001 

Glycine %  0.88
b
 ± 0.011  0.83

b
 ± 0.019    0.94

a
 ± 0.011 0.000 

Aspartic acid %  0.95
a
 ± 0.005  0.93

b
 ± 0.008    0.96

a
 ± 0.003 0.001 

Glutamic acid %  0.94
a
 ± 0.005  0.91

b
 ± 0.009    0.95

a
 ± 0.004 0.002 

Threonine* %  0.94
a
 ± 0.004  0.91

b
 ± 0.013    0.96

a
 ± 0.005 0.001 

Alanine %  0.92
b
 ± 0.008  0.89

b
 ± 0.013    0.96

a
 ± 0.005 0.000 

Proline %  0.92
a
 ± 0.004  0.89

b
 ± 0.011    0.94

a
 ± 0.004 0.001 

Cysteine %  0.86
a
 ± 0.024  0.77

b
 ± 0.028    0.88

a
 ± 0.011 0.005 

Lysine* %  0.97
a
 ± 0.004  0.94

b
 ± 0.009    0.98

a
 ± 0.004 0.002 

Tyrosine %  0.95
a
 ± 0.005  0.93

b
 ± 0.006    0.98

a
 ± 0.008 0.000 

Methionine* %   0.97 ± 0.008   0.95 ± 0.009     0.98 ± 0.009 0.070 

Valine* % 0.92
ab

 ± 0.005 0.90
b
 ± 0.011    0.95

a
 ± 0.006 0.001 

Isoleucine* % 0.94
ab

 ± 0.004 0.92
b
 ± 0.012    0.96

a
 ± 0.005 0.003 

Leucine* %   0.92 ± 0.010  0.94 ± 0.005     0.94 ± 0.007 0.444 

Phenylalanine* %  0.96
a
 ± 0.003 0.94

b
 ± 0.005   0.97

a
 ± 0.003 0.001 

Calcium %  0.90
a
 ± 0.004 0.80

b
 ± 0.032  0.83

ab
 ± 0.013 0.021 

Phosphorous %  0.85
a
 ± 0.021 0.63

b
 ± 0.023   0.85

a
 ± 0.006 <0.001 

(a,b,c) 
Means with different superscripts within the same row differ significantly (P<0.05) 

* Essential amino acids 
1
 Acid hydrolysis  

 

3.4 Discussion 

The chemical analyses revealed that BSM contains an adequate composition of nutrients yielding favourable 

CTTD for all nutrients analysed and AME. Black soldier fly pre-pupae meal is known to be high in Ca and P 

content (Newton et al., 2005b), but its bioavailability and digestibility rate are not known. Modern broilers are 

selected for fast growth which has led to leg problems as weight gain occurs at a faster rate than bone 

development causing bones to become porous and fragile (Hocking et al., 2009; Garcia et al., 2013). Thus, 

the Ca and P content in poultry diets should be available for bio-absorption by the bird and used to sustained 

bone development and growth, making the quantification of Ca and P digestibility values of various feed 

sources vital. This study revealed BSM CTTD for Ca was high with the lowest CTTD obtained by BSM65 diet 

being 80%. The phosphorous CTTD of BSM65 diet was significantly lower (63%) than BSM100 and DF-BSM 

diet both, attaining 85% CTTD. Further research is warranted on the bio-availability of Ca and P from BSM in 

poultry given their CTTD values obtained in broiler chickens and their importance in bone development and 

growth. The CTTD of crude protein for BSM100, BSM65 and DF-BSM were 91%, 86% and 97%, 
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respectively. Treatment (P<0.05) lowered CTTD of organic matter in the BSM65 diet, while the ash content 

was (P<0.05) higher in the DF-BSM diet. The crude protein CTTD of BSM is higher than the 79% of house 

fly pupae meal (Pieterse & Pretorius, 2014) and the 80.7% soya oil cake meal (Sebastian et al., 1997). 

Hwangbo et al. (2009) found soya bean meal protein digestibility to be 98%, which is similar to the 97% 

digestibility of DF-BSM in this study. The adequate AA profile of BSM (Newton et al., 2005a) might have led 

to the high protein digestibility in this study given that various meals contain different AA profiles which 

determine the protein quality of a feed (Boland et al., 2013). 

 

Arginine, an essential AA for broiler growth, was found in BSM with a CTTD of 95-99% across treatment 

diets. Arginine deficiency or excess supply can cause decreased bird performance influenced by the 

antagonistic relationship of arginine and lysine which may arise if not supplied in an equal ratio 

(Chamruspollert et al., 2002). Furthermore, Kwak et al. (1999) observed that arginine-deficient diets caused 

poor development of lymphoid organs, affecting thymus growth to a greater extent. Therefore, the 

combination of BSM with other raw ingredients may easily balance the arginine requirement in broiler 

chicken diets and thus prevent lysine-arginine antagonism. Glutamic acid has being classified as an AA of 

interest regarding broiler growth improving live weight and carcass weight (Moran & Stilborn, 1996) and it is 

therefore important to quantify its digestibility value in BSM. Results showed high CTTD for glutamic acid in 

BSM diets, with BSM65 attaining a CTTD of 91% which is lower (P<0.05) than DF-BSM (95%) and BSM100 

(94%). 

 

Methionine being the first limiting AA in poultry diets, lysine second and threonine third, their CTTD are 

considered important. The study results indicated BSM has high CTTD for methionine ranging between 

95-98% and no treatment differences were observed (P>0.05). The methionine digestibility values obtained 

in this study are higher than the 91.6% of soya bean meal reported by Sebastian et al. (1997) and the 93% 

reported by Hwangbo et al. (2009). Lysine CTTD of DF-BSM was 98%, BSM100 (97%) and BSM65 (94%) 

being different (P<0.05). Lysine is vital in poultry diets being the second limiting AA and used as a reference 

AA in feed formulation and important for muscle growth (Lemme et al., 2004). L-Threonine in poultry diets 

optimises the use of body protein deposition and weight gain, in complement with lysine, and is also vital in 

the immune responses of the birds (Taghinejad-Roudbaneh et al., 2013). In this study the threonine CTTD in 

BSM was high at 96% for the DF-BSM being different (P<0.05) from BSM65 which attained a CTTD of 91%. 

It can therefore be concluded that BSM contain the first three limiting AA in poultry diets and their CTTD 

digestibility values are above 91%. 

 

Fat was the highest digested nutrient attaining a CTTD of 100% with no treatment differences observed 

(P>0.05). However, the homoscedasticity test for the fat was not met indicating unequal variances and thus a 

Welch’s ANOVA was done attaining P=0.101. Newton et al. (1977) found an 83.6% apparent fat digestibility 

of BSF larvae meal in pigs; lower than that attained in this study in broiler chickens. Even though the 

treatment diets contained different levels of fat, it is possible to attain a similar CTTD for fat. According to 

Zollitsch et al. (1997) the fatty acid profile of the dietary fats determines its digestibility and not total fat per 

se. The amount of fat in poultry diets is important, Crespo & Esteve-Garcia (2001) found a decrease in feed 
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intake with an increase in dietary fat inclusion. This may help explain the significantly higher CTTD of 

nutrients obtained in the DF-BSM diet, given that their fat level was lower than its counterpart treatment 

diets. This seems to indicate that removal of fat from BSM has led to higher digestibility coefficients of 

nutrients (P>0.05) in broiler chickens. Therefore, a further study is warranted on dietary fat percentage 

correlation to dietary fatty acid profile in BSM and its effects on fat CTTD, and their corresponding effects on 

broiler growth. 

 

Processing methods, especially over-heating of feed ingredients high in protein, is considered to be the main 

cause in reducing the bioavailability of amino acids to animals (Parsons, 1996). One of the objectives of this 

study was to test the effect of heat on digestibility coefficients of BSM. The results revealed that heat 

processing did not affect CTTD of protein and AA in BSM diets, as the highest heat treatment at 100 °C 

performed comparably to those dried at 65 °C (Table 3.3). Insect pupae and pre-pupae meals covered in 

chitin are expected to yield lower digestibility values (Diener et al., 2009). Furthermore, Razdan & Pettersson 

(1994) and Kroeckel et al. (2012) found an increase of chitin inclusion in chicken and fish diets to have 

caused a decrease in nutrient digestibility. Although, chitin levels in this study’s treatment diets were not 

investigated, BSM are known to be high in chitin (Newton et al., 2005b). In this study the CTTD of the 

nutrients analysed across the treatment diets were above 70%. Coefficients of total tract digestibility of 

nutrients above 70% are acceptable (Emami et al., 2013; Thiamhirunsopit et al., 2014). Therefore; the chitin 

layer might have protected the nutrients in the pre-pupae meal from the heat effects on nutrients and 

consequently, the nutrients were made available for digestion in the gastrointestinal tract. Furthermore, 

Newton et al. (2005b) observed that fractioning of pre-pupae cuticle layer containing chitin might improve the 

availability of nutrients for digestion. Therefore, further studies are warranted on the effect of chitin in insect 

pre-pupae/pupae meals on the digestibility of nutrients by determining their chitin levels, fractioning and 

removal of chitin. 

 

Furthermore, according to McDonald (2002) milling of feed ingredients increases the surface area of feeds 

thereby availing more nutrients for absorption and enhancing digestion. The BSM used in this study were 

minced and this process might have partitioned the chitinous cuticles thereby improved digestibility of BSM. 

Wenk (2001) noted that increased animal dietary fibre content in the diet on one hand reduces digestion rate 

of nutrients in the upper digestive track and on other hand increases digestion in the lower digestive tract. In 

this regard it was noted that the DF-BSM diet had a low crude fibre (5.72%) content compared to BSM65 

(7.68%). It was observed that DF-BSM diet had better CTTD of nutrients analysed compared to BSM65. The 

CTTD obtained in this study could also be related to the fibre content as illustrated by Wenk (2001), since 

the diets with low fibre content had better CTTD then those with high fibre content. Furthermore, Wenk 

(2001) observed an increase in dietary fibre to reduce the diet’s metabolisable energy. Similarly, Pieterse & 

Pretorius (2014) noted AME values and acid detergent fibre content in broiler chicken diets to be related; a 

low acid detergent fibre value in the diet led to an increase in diet AME value. It was observed that BSM65 

had a low AME value of 16.52 while DF-BSM had a value of 16.85 which, did not differ from each other 

(P>0.05). 
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Overall, the digestibility efficiency of feed sources by animals is dependent on the quantity and composition 

of the feed sources in the diet (Wenk, 2001). Briefly, the differences found in dietary fibre content and fat as 

mentioned amongst treatments may explain why DF-BSM had significantly higher CTTD of nutrients 

analysed. Another possible explanation on treatment differences and overall high digestibility values 

obtained in this study could be due to the feed substrate used and/or age at harvest of the pre-pupae 

(Ramos-Elorduy et al., 2002; St‐Hilaire et al., 2007) or simply superiority of diets. The feed substrate feed to 

the larvae during its growth stage can alter its fat and fatty acid composition. Sheppard et al. (1994) found 

differences in weight and crawl off patterns of larvae between seasons. St‐Hilaire et al. (2007) found 

differences in fat composition of BSM fed cow manure and that of cow manure enriched with fish offal, 

reporting an increased fat percentage and omega-3 content with the enriched diet. The BSF pre-pupae used 

for the BSM in this study were harvested at different times of the year and were thus fed different feed 

composition of organic kitchen waste, fruits and vegetables, although the larvae rearing methods and 

temperature were kept constant.  

 

The CTTD of AME and nutrients analysed in this study utilising BSM in various processed forms are similar 

and comparable to that of soya bean as reported by Newton et al. (1977); Sebastian et al. (1997) and 

Hwangbo et al. (2009). However, the bioavailability of nutrients in soya bean meal may be lower due to the 

presence of phytate binding to nutrients and minimizing their availability for digestion (Omogbenigun et al., 

2004). Anti-nutritional factors in BSM were not analysed and if any; they are not known. The CTTD obtained 

for BSM indicated it to be a viable protein source for use in broiler chicken diets, warranting further research 

on BSM effects on broiler production. Furthermore, Zuidhof et al. (2003); Hwangbo et al. (2009) and Pieterse 

& Pretorius (2014) also found insect meals to be highly digestible, noting results similar to the current study 

on BSM. Further digestibility studies of insect meals are needed as very little is currently being researched 

with no study having been found on BSM digestibility in broiler chickens. 

 

3.5 Conclusion 

The DF-BSM diet’s CTTD values showed the highest digestible potential. The study results revealed BSM 

processed in different forms to be generally more digestible than soya bean meal. However, further research 

is warranted on the effects of BSM on broiler production, given its digestibility and waste reduction potential. 

Since BSF larvae are known to be ravenous consumers of organic waste, their use as animal protein 

sources may increase their use as organic waste decomposers, which will help reduce waste accumulation 

and thus simplify waste disposal. Future research warranted on BSM, on broiler production may have the 

potential to indicate whether the BSM CTTD values for nutrients obtained have the potential to be efficiently 

utilised by broiler chickens, converting it to growth and ultimately into meat. 
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Chapter 4 

Effect of black soldier fly (Hermetia illucens) pre-pupae meal on production 

parameters of broiler chickens 

 

Abstract 

The study was conducted to investigate the effect of black soldier fly (Hermetia illucens) pre-pupae meal (BSM) as a 

protein source in broiler diets on chicken production parameters. Four treatment diets with BSM included at 0%, 5%, 

10% and 15% replacing soya-bean meal, were used. Three hundred and twenty day-old Cobb 500 broiler chickens were 

randomly allocated to the treatments, where each treatment was replicated eight times. These broiler chickens were 

raised to slaughter at day 35 of age. Addition of BSM as a protein source did not significantly affect average live weight, 

average daily gain (ADG), feed conversion ratio (FCR), and European protein efficacy factor (EPEF). Weekly feed intake 

and cumulative feed intake differed significantly between treatments only at day 18. Treatment had an effect on protein 

efficacy ratio (PER), with chicks receiving the 5% diet being significantly lower than their counterparts. It is therefore, 

concluded that BSM can be used in broiler diets up to 15% as a protein source, with no effect on the growth performance 

of broilers. 

 

Keywords: Poultry, BSF, magmeal, larvae meal, FCR, ADG, EPEF 

 

4.1 Introduction 

About 70% of the total costs in broiler production are attributed to feed costs (Teguia & Beynen, 2005) where 

soya bean meal is a major protein source. There is a fierce competition for soya beans and grains among 

humans, livestock (Teguia & Beynen, 2005; Khusro et al., 2012) and the biofuel industry (Biswas et al., 

2011). In Asia, soya beans and their products are used mainly for human consumption and minimally for 

animal production (Ravindran & Blair, 1992). Nonetheless, crop yields have decreased due to climate 

change influenced by global warming (Dar & Gowda, 2013). It is argued that the competing needs for plant 

products between humans, livestock and the biofuel industry will increase due to rapid human population 

growth and climate changes (Delgado et al., 2001; Cribb, 2010). These effects have led to price increase of 

protein and other feed ingredients; thus an urgent need to find alternative protein sources that are 

acceptable and sustainable (Téguia et al., 2002). 

 

In South Africa, the poultry industry is the largest utilizer of soya bean meal for animal production. On 

average South Africa produces about 0.5 million tons of soya beans per annum which is not sufficient 

(Department of Agriculture, Forestry & Fisheries [DAFF], 2010). The production of soya bean requires an 

enormous amount of land and capital for the infrastructure necessary for input and harvesting. In Brazil soya 

bean cultivation is increasing and shifting into the Amazonia causing losses of natural ecosystems, driven by 

the expanding market (Fearnside, 2001). Soya beans are being considered for biodiesel production due to 

their extractable fat content and availability (Biswas et al., 2011). The use of soya beans for biodiesel 

extraction in South Africa will not be feasible due to the high soya bean price coupled with low cultivation and 

yield (Sparks et al., 2011). Soya bean meal is the preferred protein source widely used in the poultry 

industry, attributed to its high protein content with an adequate amino acid (AA) profile supporting normal 
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animal growth (Kocher et al., 2002). The protein quality of a feed ingredient is determined by its AA content 

in monogastric animals, particularly in poultry diets being formulated on the basis of digestible AA as 

requirement by the animal (Corzo et al., 2005; Boland et al., 2013). A balanced amino acid profile (synthetic 

or natural) in a feed ration is essential as it regulates broiler growth and maintenance regardless of the 

protein percentage level in the diet (Deschepper & DeGroote, 1995; Aletor et al., 2000; Rezaei et al., 2004; 

Corzo et al., 2005). In poultry, methionine is the first limiting amino acid followed by lysine and threonine. 

However, if lysine is added in excess it may cause antagonism with arginine, while excess methionine leads 

to toxicity (Lemme et al., 2004). The deficiency of limiting amino acids in poultry diets causes depressed bird 

growth (Ravindran, 2013). Hence, it is vital to supply animal diets with various protein sources that contain 

adequate amounts of amino acids balancing the ratio’s leading to sustained normal growth. 

 

Insect meal as an alternative protein source in poultry and fish production is attracting research interest 

globally. Insect meal is prepared either from larvae, pupae or pre-pupae. Insect meals have been identified 

to contain high protein levels, as evidenced by their usage in human (Ramos‐Elorduy, 1997; van Huis, 

2013), poultry (Okah & Onwujiariri, 2012; Pieterse et al., 2014) and fish diets (Ogunji et al., 2008a, b; Aniebo 

et al., 2009). Several authors have reported improved performance of poultry and fish supplemented with 

insect meal (Sealey et al., 2011; Okah & Onwujiariri, 2012; Pieterse et al., 2014). This can be attributed to 

their high protein content (36.2-76.23%) with sufficient quantities of essential AA required by animals 

(Newton et al., 2005a; Hassan et al., 2009; Ijaiya & Eko, 2009; Barroso et al., 2014; Pieterse et al., 2014). 

Furthermore, the protein content of larvae, pupae and pre-pupae do not differ (Newton et al., 1977; Newton 

et al., 2005b; Diener et al., 2009) within distinct insect species. Insect meals also contain adequate amounts 

of essential minerals (Newton et al., 2005a) and a fatty acid composition (Raksakantong et al., 2010; 

Pieterse & Pretorius, 2014) necessary for animal growth. Insect meals’ crude protein is digestible attaining 

apparent digestibility ranging between 69 and 98.8% in poultry (Zuidhof et al., 2003; Hwangbo et al., 2009; 

Pieterse et al., 2014), comparable to that of soya bean meal’s 80.7-87% (Sebastian et al., 1997; Boland et 

al., 2013). The feed consumed by insects may affect its nutritional value, pertaining to fat and fatty acid 

content (Ramos-Elorduy et al., 2002), which may account for some differences in nutritional values observed 

by various authors investigating insect meals. 

 

Organic wastes are suitable growth media for rearing insect larvae, yielding an insect meal high in protein 

and suitable as a feed ingredient in fish and poultry diets (Ogunji et al., 2008a, b; Pieterse & Pretorius, 

2014). This also solves waste disposal and storage problems, thereby reducing waste accumulation and 

possible pollution (El Boushy, 1991; Li et al., 2011). The black soldier fly (BSF) is a non-pest species and its 

larvae is known as a ravenous consumer of decomposing organic matter reducing its moisture to about 60% 

(Newton et al., 2005a; Kim et al., 2011). The life cycle of BSF is about 40-44 days and it migrates out of 

waste in its last developmental stage (pre-pupae), making it easily harvestable (Bradley & Sheppard, 1984). 

This last immature stage of BSF no longer feed and thus it has an empty gut and is high in stored energy 

(Sheppard et al., 1994), making it a suitable potential feed ingredient for use in high protein and energy diets 

for animals (Jeon et al., 2011). Studies on BSF larvae or pre-pupae meal as a feed ingredient indicated that 
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they are good sources of nutrients for chickens (Hale, 1973), pigs (Newton et al., 1977) and fish (Bondari & 

Sheppard, 1981), which the pre-pupae is digestible in broiler chickens (Chapter 3). 

 

Despite the availability of black soldier fly in South Africa and the need for alternative protein sources in the 

poultry industry, black soldier fly pre-pupae (BSM) has not been used as a feed ingredient in poultry diets. 

The objective of the study was to investigate the effects of BSM as a protein source, at different inclusion 

levels on broiler chicken production parameters. 

 

4.2 Materials and Methods 

4.2.1 Experimental treatments, layout and housing system 

The experiment consisted of four treatment diets: three diets based on black soldier fly (H. illucens) pre-

pupae meal (BSM) at inclusion levels of 0%, 5%, 10% and 15% replacing soya in the diet. The four 

treatments were each replicated eight times yielding 32 experimental units (cages). A completely 

randomised design was used for treatment allocation across the poultry house. Ethical clearance was 

obtained from Stellenbosch University; ethical clearance number SU-ACUM13-00026. 

 

Three hundred and twenty Cobb 500 day-old broiler chicks were received at Mariendahl Experimental Farm 

(33° 51’ 0 S; 18° 49’ 60 E) of Stellenbosch University, Western Cape, South Africa. The chicks were 

vaccinated against infectious bursal disease (IBD) and Newcastle disease at the hatchery. The chicks 

obtained were from the same parental group. Upon arrival the chicks were randomly selected and weighed 

in groups of ten and then randomly allocated to the treatment cages. From day one to day three the chicks 

received a commercial starter diet before switching to the respective treatment diets. The heating component 

in the poultry house intended for the trial malfunctioned and emergency repairs were done, thus the actual 

trial started on day four. At day four, the chicks were moved to a chicken house equipped with wire cages 

(0.9 x 0.6 m; 10 birds/m
2
), each containing a hanging tube feeder and two nipple drinkers. Artificial lighting 

was provided at a pattern of 18 h of light alternating with six hours of darkness. The ventilation of the house 

was set to six air changes per hour. The chicks were fed a mash diet per bird: 900 g for starter consumed 

within 15 days, 1200 g of grower consumed within 9 days and 1200 g of finisher consumed within 8 days. 

The birds were provided with feed and water ad libitum. 

 

4.2.2 Management and handling of birds 

The broilers were cared and managed based on the Cobb 500 management guide (Cobb-Vantress, 2012), 

from day one to slaughter age at day 35. The chicks were vaccinated against IBD and Newcastle disease at 

the hatchery; repeated at day 17 for IBD and Newcastle at day 20 and 31 of age. The vaccinations were 

administered using purified water and given to the birds through chick water fountains. Prior to vaccination, 

the drinkers were lifted for an hour to ensure all the birds drink the vaccination. The birds were further 

checked for blue beaks and/or blue surroundings around their eyes to ensure that each bird had been 

vaccinated. 
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The birds were reared in a temperature controlled room and the ventilation in the house was set to provide a 

minimum of six air changes per hour. Temperature of the house was checked and recorded every morning at 

eight o’clock. The birds were monitored every two hours for the first week of age and thereafter every four 

hours, except in the darkness hours. Check-ups on the birds where done, for any abnormal behaviour with 

regards to sickness, cannibalism, activeness, eating and water drinking patterns. All mortalities were 

accounted for and underwent post-mortem inspection to determine the cause of death. 

 

4.2.3 Experimental diets formulations 

The four treatments diets were formulated according to Cobb 500 nutrient specifications (Cobb-Vantress, 

2012), using table nutrient values. Treatment diets were mixed at the Mariendahl experimental farm 

(Stellenbosch University). The diets were mixed at room temperature (28 °C) and administered to birds as 

mash diets. The black soldier fly (BSF) pre-pupae used in this study were harvested at different times of the 

year and were also fed different feed composition of organic kitchen waste, fruits and vegetables, but the 

rearing methods and temperature were kept constant. Furthermore, the BSM used in this study was dried at 

65 °C. The ingredients used to formulate the treatment diets are shown in Table 4.1 for the starter, grower 

and finisher diets. 
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Table 4.1 Ingredients used for the Starter, Grower and Finisher diets with inclusion of black soldier fly 

pre-pupae meal (BSM) 

Ingredients Unit 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

Starter diets      

Yellow Maize Fine % 50.091 48.424 46.757 52.813 

Soybean full fat % 15.392 16.606 17.821 13.995 

Soybean % 30.138 25.618 21.099 13.553 

BSM
1
 %  5.000 10.000 15.000 

L-Lysine % 0.136 0.129 0.121 0.337 

DL Methionine % 0.125 0.119 0.113 0.143 

Vit+Min Premix* % 0.150 0.150 0.150 0.150 

Limestone % 1.660 1.650 1.640 1.677 

Salt % 0.129 0.131 0.133 0.090 

Monocalcium Phosphate % 1.639 1.637 1.635 1.644 

Sodium Bicarbonate % 0.540 0.536 0.532 0.598 

Grower diets      

Yellow Maize Fine % 45.682 47.342 51.707 49.037 

Soybean full fat % 44.172 34.676 16.459  

Soybean % 6.147 8.974 17.784 26.418 

BSM
1
 %  5.000 10.000 15.000 

L-Lysine % 0.045 0.060 0.093 1.094 

DL Methionine % 0.145 0.124 0.094 0.764 

Vit+Min Premix* % 0.150 0.150 0.150 0.150 

Limestone % 1.632 1.642 1.667 1.679 

Salt % 0.275 0.262 0.238  

Monocalcium Phosphate % 1.632 1.634 1.640 1.661 

Sodium Bicarbonate % 0.118 0.135 0.168 0.725 

Oil - Sunflower %    3.471 

Finisher diets      

Yellow Maize Fine % 47.164 47.292 47.420 47.798 

Soybean full fat % 48.887 43.776 38.665 33.294 

Soybean %         

BSM
1
 %  5.000 10.000 15.000 

L-Lysine %       0.006 

DL Methionine % 0.134 0.115 0.097 0.080 

Vit+Min Premix* % 0.150 0.150 0.150 0.150 

Limestone % 1.640 1.641 1.642 1.644 

Salt % 0.290 0.284 0.279 0.271 

Monocalcium Phosphate % 1.634 1.634 1.634 1.635 

Sodium Bicarbonate % 0.100 0.107 0.113 0.122 

*Vitamins + Minerals premix included according to levels set by the National Research Council (1994) 

 

4.2.4 Chemical composition analysis of the treatment diets 

The proximate analysis of the feed samples was analysed according to acceptable standard methods as 

provided by the Association of Official Analytical Chemists International (2002). Refer to Chapter 3 regarding 

methodological analysis of dry matter, crude protein, ash content, crude fibre and amino acid analysis under 

sections 3.2.4.1, 3.2.4.2, and 3.2.4.4-3.2.4.6, respectively. 
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4.2.4.1 Crude fat determination 

The crude fat content of each treatment feed sample was determined by the ether extract official method 

920.39 using diethyl ether reagent on a Tecator Soxtec System HT 1043 Extraction Unit (AOAC, 2002). 

 

4.2.5 Production data collection 

The birds were weighed on day four (before they were changed to their experimental diets) and weekly 

thereafter. All the birds in each cage were weighed together and the average weight for an individual chicken 

in each cage was calculated. Left-over feed was also weighed during the weighing of the birds. The 

measurements of live weight and left-over feed were used for calculating the average live weight, weekly 

feed intake, cumulative feed intake, feed conversion ratio (FCR), average daily gain (ADG) and the 

European production efficiency factor (EPEF) and protein efficiency ratio (PER). The PER (Equation 4.3) and 

EPEF (Equation 4.4) were calculated according to Boling-Frankenbach et al. (2001) and Awad et al. (2009), 

respectively. The EPEF takes liveability into account. The number of birds that died during the trial is shown 

in Table 4.2. The death of the birds were found to be caused by excess weight which was revealed by the 

post mortem diagnosis, while those that were culled were due to observed cannibalism and leg problems. 

Only one bird was culled due to neck cannibalism from the group of chicks receiving the 10% treatment diet 

on day 23. Liveability of the birds was calculated as a percentage of birds that survived till the end of the trial 

over the total number of birds placed at the start of the trial. 

 

Table 4.2 The number of birds lost during the production trial and weight at death (g)  

Pen 

number 

Date of 

death 

Cause of 

death 
n 

Treatment diets 

Control 5% BSM
#
 10% BSM

#
 15% BSM

#
 

2 28 Mortality 1  985.70   

4 29 Mortality 1   1897.00  

7 9 Culled
3
 1 165.78    

12 7 Culled
3
 1    160.95 

14 18 Morbidity
1
 1   330.00  

18 23 Culled
2
 1   918.00  

22 24 Mortality 1  1207.90   

31 13 Culled
3
 1 294.40    

32 15 Mortality 1   564.50  

Total   9     
n 

Number of birds that died per treatment 
1 

Removal of bird from its replicate group (but not killed) due to large differences in bird average weight 
2 

Culled due to cannibalism  
3 

Culled due to leg problems 
#
 BSM: Black soldier fly pre-pupae meal

 

 

The following formulae were used for calculating the ratios and efficient coefficients (Equation 4.1-4.4): 

 

Equation 4.1,  

Average daily gain = 
Average live weight per chick (g)

Age (days)
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Equation 4.2, 

 

Feed conversion ratio = 
Cumulative feed intake (g)

Average live weight per chick (g)
 

 

Equation 4.3  

 

Protein efficiency ratio = 
Body weight gain (g)

Crude protein intake (g)
 

 

Equation 4.4 

 

European production efficacy factor = 
Liveability % × Live weight (g)

Age (days) × Feed conversion ratio
 ×  

100

1
 

 

4.2.6 Statistical analysis 

The statistical analysis was done using the general linear models (GLM) procedure of SAS (2009). The 

analysis of variance (ANOVA) assumptions for normality and homoscedasticity were investigated before 

further analyses were done. The tests were considered significant at P>0.05. A one-way analysis of variance 

(ANOVA) with Bonferroni’s post hoc (least square means) test was used for statistical analysis. The ADG 

slope was calculated by means of a regression. The ADG slope comparison of the treatments was analysed 

using a one-way analysis of variance (ANOVA) with Bonferroni’s post hoc test. The 5% significance level 

was used for all the statistical tests and treatment differences were declared at P<0.05. 

 

The statistical model for the ANOVA test is indicated by; Yіϳ = µі + αj + ԑіϳ where the terms in the model are 

defined as: the treatment effect response (Yіϳ), the overall mean (µі), treatment effect (αj) and the 

unexplained error (ԑіϳ). 

 

The statistical model for the regression test is indicated by; Yі = β0 + β1Xi + ԑі where the terms in the model 

are defined as: the treatment value of the dependent variable (Yі), the intercept of the best-fitting line (β0), the 

slope of the best-fitting line (β1), the treatment value of the independent variable (Xi), the unexplained error 

associated with the treatment effect not explained by the regression line (ԑі). 

 

4.3 Results 

The chemical composition of the treatment diets are summarized in Tables 4.3, 4.4 and 4.5 for the starter, 

grower and finisher, respectively. 
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Table 4.3 Analysed proximate and amino acid composition of trial Starter diets on dry matter basis, with 

inclusion of black solder fly pre-pupae meal (BSM) 

Parameters Units 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

Dry matter % 89.28 90.02 89.71 88.78 

Crude protein % 27.23 29.58 29.54 26.50 

Crude fat % 5.08 7.67 9.62 9.11 

Ash % 7.75 8.16 7.82 8.62 

Crude fibre % 4.35 4.81 5.27 4.25 

Histidine* g/100g 0.54 0.53 0.56 0.47 

Serine g/100g 1.06 1.16 1.01 0.86 

Arginine* g/100g 1.33 1.38 1.38 1.06 

Glycine g/100g 0.91 0.96 1.01 0.81 

Aspartic acid g/100g 1.93 1.80 1.93 1.48 

Glutamic acid g/100g 3.46 3.27 3.33 2.65 

Threonine* g/100g 0.78 0.79 0.79 0.66 

Alanine g/100g 0.88 0.92 0.97 0.83 

Proline g/100g 1.16 1.11 1.15 1.00 

Cysteine g/100g 0.09 0.08 0.07 0.07 

Lysine* g/100g 1.08 1.06 1.15 1.09 

Tyrosine g/100g 0.74 0.92 0.88 0.75 

Methionine* g/100g 0.24 0.27 0.25 0.23 

Valine* g/100g 0.86 0.93 1.01 0.79 

Isoleucine* g/100g 0.74 0.78 0.85 0.62 

Leucine* g/100g 1.60 1.56 1.64 1.33 

Phenylalanine* g/100g 1.10 1.16 1.09 0.87 

* Essential amino acids 
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Table 4.4 Analysed proximate and amino acid composition of trial Grower diets on dry matter basis, with 

inclusion of black solder fly pre-pupae meal (BSM) 

Parameters Units 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

Dry matter % 90.03 89.55 89.03 88.28 

Crude protein % 26.97 27.78 25.73 29.74 

Crude fat % 9.60 9.98 9.48 10.78 

Ash % 6.75 7.66 7.84 8.23 

Crude fibre % 4.60 6.57 5.26 4.19 

Histidine* g/100g 0.54 0.61 0.51 0.52 

Serine g/100g 0.99 1.12 0.86 1.00 

Arginine* g/100g 1.40 1.40 1.22 1.29 

Glycine g/100g 0.90 1.00 0.88 1.00 

Aspartic acid g/100g 1.78 1.60 1.51 1.79 

Glutamic acid g/100g 3.24 2.91 2.82 3.06 

Threonine* g/100g 0.74 0.74 0.71 0.79 

Alanine g/100g 0.83 0.83 0.81 0.99 

Proline g/100g 1.11 1.04 1.03 1.19 

Cysteine g/100g 0.07 0.07 0.07 0.08 

Lysine* g/100g 0.93 0.87 0.89 1.63 

Tyrosine g/100g 0.74 0.89 0.90 0.95 

Methionine* g/100g 0.22 0.28 0.25 0.74 

Valine* g/100g 0.87 0.94 0.86 0.95 

Isoleucine* g/100g 0.76 0.79 0.72 0.79 

Leucine* g/100g 1.51 1.49 1.48 1.59 

Phenylalanine* g/100g 1.11 1.17 1.06 1.08 

* Essential amino acids 
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Table 4.5 Analysed proximate and amino acid composition of trial Finisher diets on dry matter basis, with 

inclusion of black solder fly pre-pupae meal (BSM) 

Parameters Units 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

Dry matter % 89.61 89.84 90.63 90.02 

Crude protein % 22.21 24.73 21.55 21.45 

Crude fat % 7.98 11.21 14.95 12.79 

Ash % 8.76 4.20 9.82 9.45 

Crude fibre % 5.89 7.98 5.77 6.08 

Histidine* g/100g 0.51 0.53 0.49 0.41 

Serine g/100g 0.81 0.89 0.78 0.70 

Arginine* g/100g 1.17 1.34 0.92 0.93 

Glycine g/100g 0.77 0.87 0.87 0.76 

Aspartic acid g/100g 1.39 1.67 1.31 1.13 

Glutamic acid g/100g 2.67 3.04 2.30 2.17 

Threonine* g/100g 0.61 0.69 0.63 0.56 

Alanine g/100g 0.73 0.78 0.88 0.76 

Proline g/100g 1.00 1.08 1.04 0.97 

Cysteine g/100g 0.07 0.07 0.06 0.04 

Lysine* g/100g 0.76 0.85 0.72 0.62 

Tyrosine g/100g 0.70 0.76 0.94 0.79 

Methionine* g/100g 0.32 0.18 0.30 0.24 

Valine* g/100g 0.76 0.85 0.85 0.74 

Isoleucine* g/100g 0.66 0.73 0.66 0.60 

Leucine* g/100g 1.36 1.44 1.38 1.24 

Phenylalanine* g/100g 1.00 1.04 0.85 0.84 

* Essential amino acids 

 

The production parameters for the chickens fed different levels of black soldier fly pre-pupae meal (BSM) 

included at 0, 5, 10 and 15% in broiler chicken diets, under a three phase feeding system (starter, grower 

and finisher) are summarised in Table 4.6. 

 

During the experimental period birds were in good health, experiencing low bird mortalities of 2.81% (Table 

4.2). Liveability results indicated that mortality of birds was not related to treatment, attaining P=0.433. 

Inclusion of BSM (treatment) did not (P>0.05) affect the average live weight of the birds at day 11, 18, 25, 32 

and 35 of age. Also, at day 11, 25, 32 and 35 of age, no treatment differences (P>0.05) were found 

regarding weekly feed intake and cumulative feed intake. However, at day 18 of age treatment did (P<0.05) 

affect weekly feed intake and cumulative feed intake of broiler chicks. The chicks receiving the 5% inclusion 

of BSM had a higher weekly feed intake and cumulative feed intake, while the 10% pre-pupae meal had 

significantly lower values. Weekly feed intake and cumulative feed intake did not differ significantly between 

chicks that received the 0% and 15% treatment diets, however being similar to the 5 and 10% treatment 

diets chicks. 

 

The inclusion of BSM in the diets of broiler chickens did not (P>0.05) influence average daily gain (ADG), 

feed conversion ratio (FCR), liveability and European protein efficacy factor (EPEF). Treatment did (P<0.05) 
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influence protein efficiency ratio (PER). The chicks receiving the 5% BSM diet differed significantly from the 

0, 10 and 15% diets, attaining a (P<0.05) lower PER value (Figure 4.1). 

 

Table 4.6 The means (± standard error) of weekly feed intake (g), live weight (g) and cumulative feed intake 

(g) and the production ratios (ADG, FCR, EPEF and PER) of broilers as influenced by inclusion of black 

soldier fly pre-pupae meal (BSM) 

Production days 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Day 11      

Average live weight 267.6 ± 4.22 270.4 ± 3.48 265.2 ± 4.33 262.1 ± 5.28 0.587 

Weekly feed intake 221.6 ± 2.77 222.3 ± 1.99 216.7 ± 3.78 210.7 ± 5.05 0.100 

Cumulative feed 

intake 

221.6 ± 2.77 222.4 ± 1.99 216.7 ± 3.78 210.7 ± 5.05 0.810 

      

Day 18      

Average live weight    604.3 ± 7.59   626.8 ± 6.38   610.8 ± 8.19    625.0 ± 8.46 0.133 

Weekly feed intake 491.1
ab

 ± 6.21 499.0
a
 ± 3.95 475.0

b
 ± 3.44 489.6

ab
 ± 7.28 0.033 

Cumulative feed 

intake 

715.6
ab 

± 6.28 721.3
a
 ± 4.70 691.7

b 
± 5.39 710.3

ab
 ± 9.28 0.022 

      

Day 25      

Average live weight 1122.4 ± 9.22   1135.0 ± 17.88 1131.8 ± 27.30 1147.4 ± 18.46 0.835 

Weekly feed intake     764.4 ± 10.00   789.7 ± 5.98   788.8 ± 12.82 769.6 ± 6.49 0.140 

Cumulative feed 

intake 

  1489.8 ± 17.68 1511.0 ± 8.92 1499.9 ± 27.99 1479.9 ± 11.12 0.652 

      

Day 32      

Average live weight 1758.3 ± 16.40 1800.9 ± 17.00 1783.0 ± 24.19 1794.8 ± 23.66 0.488 

Weekly feed intake 1033.7 ± 17.39 1064.4 ± 12.80 1068.2 ± 15.35 1033.6 ± 14.23 0.216 

Cumulative feed 

intake 

2523.5 ± 27.10 2617.3 ± 37.23 2608.5 ± 43.09 2513.4 ± 20.62 0.063 

      

Day 35      

Average live weight 2033.4 ± 23.80 2082.4 ± 17.13 2077.5 ± 25.90 2076.6 ± 26.97 0.441 

Weekly feed intake   480.3 ± 10.06   490.7 ± 10.86 492.0 ± 5.98   478.1 ± 12.24 0.690 

Cumulative feed 

intake 

3003.8 ± 35.27 3108.0 ± 42.05 3100.5 ± 41.96 2991.6 ± 30.63 0.067 

      

ADG
1
 (g)

 
64.3 ± 0.68 65.9 ± 0.59 65.6 ± 0.95 65.8 ± 0.84   0.666 

FCR
2 

  1.6 ± 0.01   1.6 ± 0.01   1.6 ± 0.01   1.5 ± 0.01   0.121 

EPEF
3 

400.7 ± 12.22 411.6 ± 14.81 390.9 ± 17.80 431.0 ± 14.57   0.288 

PER
4 

2.5
b
 ± 0.02  2.4

a 
± 0.02 2.5

b
 ± 0.02 2.5

b
 ± 0.02 <0.001 

Liveability  1.0 ± 0.02   1.0 ± 0.02   1.0 ± 0.02   1.0 ± 0.01     0.433 

(
a,b

) Means with different superscripts within the same row differ significantly (P<0.05) 
1
 Average daily gain 

2 
Feed conversion ratio 

3 
European protein efficacy factor 

4 
Protein efficiency ratio 
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Figure 4.1 Least square means with error bars for protein efficacy ratio at 5% significant level for treatment 

effect 

 

4.4 Discussion 

The effect of BSM on growth results reported in this study on day 11, 18, 25, 32 and 35 (except at day 18 for 

weekly feed intake and cumulative feed intake), were similar with those reported in chickens by Wang et al. 

(2005) and in fish (Newton et al., 2005b; Ogunji et al., 2008a, b; Aniebo et al., 2009) who used house fly 

maggot meal (HFMM) in their experiments. No treatment differences (P>0.05) were observed regarding 

average live weight, weekly feed intake, cumulative feed intake, ADG, FCR, EPEF and liveability, but 

treatment differences (P<0.05) were observed at day 18 for weekly feed intake and cumulative feed intake. 

The production parameters results indicated that BSM inclusion in broiler chicken diets did not positively or 

negatively affect growth but sustained normal bird growth, yielding results similar to the chicks receiving the 

control treatment diet. Contrastingly, Téguia et al. (2002), Okah & Onwujiariri (2012) and Pieterse et al. 

(2014) found improved performance in broiler chickens fed house fly meal as a protein source. Furthermore, 

Cole (2007) found treatment differences with growth parameters measured in alligators, fed diets containing 

different inclusion of BSM leading to a decrease in growth. However, treatment difference found by Cole 

(2007) may have been due to a shorter trial period (3 months) observing a substantial increase in growth of 

male alligators then females, even though mixed sex was used per treatment, differences were noted. In the 

study by Newton et al. (2005b), the addition of BSM over 7.5% had no positive effect on growth, in fact 

Awoniyi et al. (2003) found a decrease in weight gain with increased inclusion of HFMM at levels >25% in 

broiler chicken diets. This might be due to an oversupply of proteins that may arise with high inclusion levels 

of insect meals which was also observed by Pretorius (2011) in broiler chickens fed house fly larvae meals. 
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However, in this study BSM was included up to 15% obtaining no declining effect on growth parameters 

investigated but rather comparable performance results to the control were observed. 

 

To obtain production efficiency in broiler birds’ production the following should be achieved: acceptable 

EPEF value ≥260 units, with ADG of ≥50 g, a FCR ≤1.85 and slaughter live weight of 1.5-2 kg at 35 days, 

reared under optimal management and adequate nutrition (Butcher & Nilipour, 2002). The results obtained in 

the current study for EPEF, ADG, FCR and live weight (Table 4.6) were above the stated standards, 

indicating BSM to be a viable protein source in broiler diets. 

 

In this study a 2.81% (Table 4.2) bird mortality was obtained. The accepted mortality percentage of a bird 

flock is 2%. However, 1.56% (4 birds) of the death experienced in the study was due to heart attacks and 

1.25% (4 birds) were culled and 0.31% (1 bird) was morbid. Only one bird was culled due to neck 

cannibalism from chicks receiving the 10% treatment diets. Three birds were culled due to leg disorders with 

two birds from the 0% (control) and one from the 15% treatment groups. Based on the post-mortem 

inspection done on the mortality birds, it was revealed that they died due to excess weight with increased 

heart size to body weight percentage. Furthermore, there was no (P>0.05) treatment difference observed 

regarding liveability (Table 4.6), indicating that the inclusion of BSM in broiler chickens did not cause death 

of the birds. 

 

The chicks receiving the 5% treatment diet differed (P<0.05) from those receiving the 10% diet, but both did 

not differ from those fed the control and 15% diets regarding weekly feed intake and cumulative feed intake 

at day 18 of age (Table 4.6). However, the treatment differences (P<0.05) found in this study at day 18 are 

difficult to explain, since a general trend of no significant treatment differences was observed in the study. 

The treatment difference observed was thought to have been attributed to a slightly higher crude fibre (CF) 

percentage found in the 5% treatment diet. However, slightly higher CF content was found in all three 

feeding phases of the 5% diet but only affected feed intake significantly at day 18 of age. Furthermore, a 

slightly higher CF content was also observed with the remaining treatment diets in starter, grower and 

finisher which however, did not lead to treatment differences in feed intake at any given day. Nevertheless, it 

is reported that birds consume slightly more feed when CF is higher in their diets (Ranjhan, 2001). 

Furthermore, the significant increase in weekly feed intake and cumulative feed intake found at day 18 did 

not affect (P>0.05) the overall treatments’ live weight, ADG, FCR and EPEF (P>0.05), but may have affected 

PER where (P<0.05) treatment differences were observed. The chicks receiving the 5% treatment diet had a 

(P<0.05) lower PER and a higher weekly feed intake and cumulative feed intake. The differences observed 

might be attributed to a measuring error that possibly occurred during measurement of the birds and feed but 

no outliers were found, thus there seems to be no biological explanation to the differences observed. 

 

The PER explains the protein utilization by the animal: a low PER value (<1.5) is an indicator of low protein 

quality in the diet and its utilization by the animals (Johnson & Parsons, 1997). However, in this study even 

though treatment (P<0.05) affected PER, the values obtained indicate that dietary protein was efficiently 

utilized with a minimum of 2.35 PER (Table 4.6). This indicates that dietary protein quality was not the cause 
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for PER treatment differences observed as it would have affected the 10% and 15% treatment diet more 

than the 5% diet, as they have a higher inclusion of BSM. However, a balanced amino acid profile in an 

animal diet is more essential than the protein percentage, as the amino acids regulates growth and 

determines the protein quality of the feed source (Boland et al., 2013). The BSM protein and AA digestibility 

values (Table 3.3) may help explain the lack of treatment differences attained given that it attained a higher 

protein digestibility than soya bean meal, as indicated by Sebastian et al. (1997), thus proving that nutrients 

were available for use by the animal for conversion into growth. 

 

Furthermore, the amino acid content of BSM closely fits that of the ideal amino acid requirements for poultry 

diets, shown in Table 2.7 and 2.8, respectively. This may further explain why no treatment differences were 

obtained amongst the production parameters investigated as the quality of the BSM enabled formulation of 

balanced diets according to the nutritional requirements for this chicken line (Cobb 500). A balanced amino 

acid profile (synthetic or natural) in a feed ration is essential as it regulates broiler growth and maintenance 

regardless of the protein percentage level in the diet (Deschepper & DeGroote, 1995; Aletor et al., 2000; 

Rezaei et al., 2004; Corzo et al., 2005). The amino acid content of BSM summarized in Table 2.7 has proven 

to be adequate, producing broiler chickens with production parameters results similar to those fed a soya 

bean meal based diet. Therefore, the results obtained in this study proved BSM to be a possible protein 

source in broiler bird’s diets as it has supported normal growth of broiler chickens. 

 

4.5 Conclusion 

The use of back soldier fly (H. illucens) pre-pupae meal in broiler chicken diets resulted in a similar 

production efficiency when compared to soya bean meal (the preferred protein source in the poultry 

industry). The lack of treatment differences noted for the growth parameters indicate that BSM can 

successfully be used in broiler chicken diets with no detrimental effects on broiler production up to the 

evaluated inclusion level of 15%. The use of insect meals in animal diets will however, lead to an increase in 

organic waste vermi-composting thereby minimizing waste effects, and in the process yield larvae and/or 

pupae which will increase protein availability for animal use and minimize usage of crop products used for 

human consumption in broiler diets. Since, BSM proved to have supported broiler chickens growth with no 

adverse effects, further research is warranted on BSM’s effect on organs, gut and bone parameters of broiler 

chickens. 
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Chapter 5 

The effects of black soldier fly (Hermetia illucens) pre-pupae meal on organ, 

gut and tibia bone parameters of broiler chickens 

 

Abstract 

This study investigated the effect of black solder fly (Hermetia illucens) pre-pupae meal (BSM) as a protein source 

included at 0, 5, 10 and 15% in starter, grower and finisher diets of broiler chickens on organ weight, gastrointestinal pH, 

histomorphological measurements of the small intestine (duodenum and jejunum) and tibia bone parameters. Three 

hundred and twenty Cobb 500 broiler chicks were randomly assigned to the four dietary treatments each replicated eight 

times and were fed for 35 days. At day 35 of age, eight birds were selected from each treatment and slaughtered. The 

excised organs from the carcasses were weighed and the gizzards were scored for erosion. The pH of the duodenum, 

jejunum and ileum were taken and histomorphology evaluations were done on the duodenum and jejunum. The tibia 

bone was measured for breaking strength, ash percentage and mineral content. Inclusion of BSM did not significantly 

affect organ weight, gizzard erosion score, intestinal pH, tibia bone ash percentage, tibia breaking force (N), tibia 

breaking force per gram of tibia weight (N/g) and tibia breaking strength (N/mm
2
). Treatment did not significantly affect 

tibia bone minerals except for calcium (Ca) where a significantly increased Ca content was observed for chicks fed BSM 

but this did not differ from the control. It could therefore, be concluded that the use of black solder fly pre-pupae meal in 

broiler chickens did not affect organs, small intestine and tibia bone development. 

 

Keywords: Tibia, bone breaking strength, minerals, Instron, gastrointestinal tract, histomorphology, BSF 

 

5.1 Introduction 

The major protein and energy sources in broiler chicken diets are soya bean and maize meal, respectively. 

There has been a decline in production yield of these important crops, attributed to climate change due to 

global warming, consequently increasing their prices (Dar & Gowda, 2013). The low supply and raise in price 

of maize and soya bean meal forced the livestock industry to search for alternative feed ingredients (Téguia 

et al., 2002). Primarily a diet is formulated to meet the nutrient requirements of the animal and maintain its 

body functions, as nutrient imbalances affect animal growth and development (Awad et al., 2009). 

 

In monogastric nutrition the major gut functions being digestion, absorption and intestinal barrier, are vital for 

efficient production and should be optimised at minimal nutrient use (Van der Klis & Jansman, 2002). Briefly, 

apart from hygiene and vaccines, an adequate nutritional supply to the bird is vital for optimal health and 

immune responsiveness (Goddeeris et al., 2002). Furthermore, the feed may alter or affect the structural 

integrity of organs depending upon its nutritional composition (Fasina et al., 2006) and feed granule size 

(Engberg et al., 2002). The deficiency of essential nutrients, such as low arginine amongst others in avian 

diets, causes poor development of organs, including lymphoid organs which are essential for immune 

responses of birds. Avian lymphoid organs assure that pathogens do not evade the host, resist infections 

and maintain productivity during infectious attacks (Kwak et al., 1999). Diets must therefore, be balanced for 

essential nutrients for proper development and growth of birds, which is dictated by the feed ingredient’s 

nutritional quality (Ensminger, 1992). 
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The skeletal structure and strength of avian bones is determined by physical, nutritional and physiological 

factors (Rath et al., 2000). Avian bone is composed of the organic and inorganic matrix responsible for bone 

stiffness, tensile and compositional strength. Calcium (Ca), phosphorous (P) and dietary vitamin D available 

to the bird aids the development of its bone’s inorganic matrix (Rath et al., 1999). The fast growth of modern 

broiler chickens has led to bone problems, as weight gain occurs at a faster rate than bone development, 

causing bones to become porous and fragile and thus being unable to support the excessive weight of the 

birds. In addition, the porosity of the bones cause them to become fragile, due to insufficient P and Ca 

mobilization from the bones to support mineral metabolism and support the rapid growth, influenced by 

mineral deficiency in the diet (Hocking et al., 2009; Garcia et al., 2013). Porous and fragile bones also easily 

fragment during slaughter and processing of the birds, leading to discoloration of meat which is in close 

contact with the bone. This is due to leaching of blood and is met with consumer resistance (Rath et al., 

2000; Brenes et al., 2003; Garcia et al., 2013). 

 

Most ingredients used in poultry diets are deficient in P and Ca increasing occurrence of bone breakage and 

leg defects (Brenes et al., 2003). Black soldier fly larvae and pre-pupae meal are potential alternative feed 

ingredients gaining popularity in monogastric nutrition as a feed ingredient and at the same time as a waste 

reduction tool. Black soldier fly pre-pupae meal (BSM) is known to contain high levels of Ca and P (Newton 

et al., 2005). However, studies utilizing BSM have not evaluated its effects on bone strength despite it being 

high in Ca and P which are essential for bone development. There is also very limited literature available on 

evaluation of BSM’s toxic effects, if any in broiler chickens. It is however, vital to study the effects of any new 

feed ingredient in animal diets for toxicity on organs (Téguia et al., 2002). Therefore, research is merited to 

find out whether BSM would affect the skeletal, gut and organ development of animals. 

 

The objectives of this study were two-fold. Firstly, investigate the effect of BSM on the organ and gut 

parameters of broiler chickens. The study focused on charactering the possible changes in the 

gastrointestinal tract and organ size of broilers in response to BSM in diets. Secondly, investigate the effect 

of BSM on the tibia bone of broiler chickens by evaluating its breaking strength, ash percentage and mineral 

content. 

 

5.2 Materials and methods 

The materials and methods on the experimental treatments, layout, housing, experimental diets procedures, 

management and handling of birds are outlined in Chapter 4 under sections 4.2.1, 4.2.3, and 4.2.2, 

respectively. Briefly, 320 Cobb 500 day-old chicks were feed four diets (0, 5, 10 and 15%) based on 

inclusion of black soldier fly pre-pupae meal (BSM) till day 35. The treatment diets where each replicated 

eight times. One bird per cage was randomly selected from the middle weight group for slaughter at day 35 

of age. The birds were slaughtered according to acceptable slaughtering standard methods used for 

commercial chickens (Department of Agriculture, Forestry & Fisheries [DAFF], 2006). 
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5.2.1 Organ sample 

At slaughter the birds were rendered unconscious by electrical stunning (50-70 volts; 3-5 s) then 

exsanguinated and allowed to bleed out for about 2 min. Thereafter, the organs were immediately excised 

from the carcass using scalpels and scissors from dissection kits. Organs excised were the heart, spleen, 

liver, gizzard and bursa of Fabricius. The gizzard was cut open then rinsed with clean water and scored for 

gizzard erosion, using an ordinal scale according to Johnson & Pinedo (1971) shown in Table 1. Then 

organs were immediately weighed using a PC 400 Mettler laboratory scale (Mettler-Toledo, Switzerland). 

These organs were removed with care to avoid any damage to the organs. The organ weight relative to body 

weight was calculated as a percentage of organ weight to live weight of the bird. 

 

Table 5.1 Gizzard erosion scoring description (Johnson & Pinedo, 1971) 

Score Description 

0 No erosion 

1 Light erosion (minimal roughness of the epithelia) 

2 Modest erosion (roughness and minimal gaps of the epithelia) 

3 Severe erosion (roughness, gaps and ulcers on wall showing slight haemorrhaging) 

4 
Extreme erosion (roughness, gaps and haemorrhagic ulcers on stomach wall and 

visible separation of epithelia from stomach wall) 

 

5.2.2 Intestinal samples  

Within 15 min after slaughter the small intestine was removed to obtain the gut samples: duodenum, jejunum 

and ileum. The duodenum section for histology samples was cut on the gizzard side of the duodenum, while 

the jejunum section was taken from the centre of the jejunum and the ileum was taken 5 mm from Meckel’s 

diverticulum to the ileocecal junction. After sectioning, the pH of the duodenum, jejunum and ileum contents 

were measured using a calibrated (standard buffers pH 4.0 and 7.0 at 25 °C) portable Crison pH 25 meter 

(Alella, Barcelona), by inserting the pH electrode into the centre of the intestinal section to be measured. 

Distilled water was used to thoroughly rinse the probe between each reading. Approximately a 2 cm long 

segment of each sample (duodenum, jejunum and ileum) was then dissected and cut open longitudinally and 

rinsed with 0.9% saline solution and then fixed in 10% buffered formalin solution until further analysis. 

 

The duodenum and jejunum histology samples were processed according to Presnell & Schreibman (1997). 

The samples were cut to size, placed into embedding cassettes, processed and impregnated with paraffin 

wax (Histosec, Merck) followed by tissue processing using an automated tissue processor (TISSUE TEK II, 

model 4640B, Lab-Tek division, Miles Laboratories Inc, Naperville, IL). Thereafter, 5 μm cross-sections were 

cut using a rotary microtome (Reichert Jung, Heidelberg, Austria) and stained with haematoxylin and eosin 

to enable subjective visualisation of the immune cell infiltration. The slides were examined with an Olympus 

IX70 microscope equipped with a digital camera (color view II) and analysed with Analysis Imaging Software 

(build 5.1.0.2640) supplied by the Olympus company. The 2X magnification objective lens was used for villi 

height, width and area, and crypt depth, while a 4X magnification objective lens was used for analysing the 

outer longitudinal fibres, inner circular fibres and muscularis mucosa. The villi area and length were 

measured from the tip of the villi to the villous-crypt junction (in areas with intact villi’s), while crypt depth was 
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measuring as the vertical distance from the villous-crypt junction to the lower limit of the crypt as indicated in 

Figure 5.1. Furthermore, the outer longitudinal fibres, inner circular fibres and muscularis mucosa were 

measured as indicated in Figure 5.2. Each parameter was estimated by measuring 10 consecutive 

measurements and the average was used. 

 

 

Figure 5.1 Photomicrograph of jejunum cross section indicating measurements taken for crypt depth, villi 

area, villi length and villi width from chicks that received the control treatment diet 
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Figure 5.2 Photomicrograph of jejunum cross section indicating measurements taken for muscularis 

mucosa, submucosa, inner circular fibres and outer longitudinal fibres from chicks that received the 15% 

treatment diet 

 

5.2.3 Tibia bone samples  

After slaughter of the birds, the internal organs and intestines were immediately removed as discussed. 

Thereafter, the tibia bones were detached from the carcass by carefully cutting between the periosteum of 

the tibia and femur bone, using a knife without damaging the periosteum. These samples were frozen and 

stored at -18 °C with their muscle and skin still attached to the bone until further analysis. Prior to analysis, 

the samples were thawed for ±12 h at 4 °C in a refrigerator. The right tibia bone from each sample bird were 

deboned and cleaned of all visible adherent tissues and fat. Thereafter, the fibula and periosteum were 

detached. These were done with outmost care to avoid any damage to the bone. The length of the bone was 

measured using a Vernier calliper, weighed and finally bone breaking strength was determined using an 

Instron (Fleming et al., 1998). 

 

5.2.4 Tibia bone strength and mineral content  

A three-point bending test was used to determine the breaking strength of each bone using an Instron 

tensile/compression machine fitted with a 50 kg load cell. The machine was set at a total distance of 30 mm 

span between the two supporting ends. Each bone was placed onto the machine in a stable position, with 

the mid-diaphyseal diameter at the centre of the breaking probe. The mid-diaphyseal diameter of the bone at 

the site of impact was measured using a Vernier calliper. The bending force (strain: which is the total force 

the object can endure before it goes into failure) of the bone was determined using a 10 mm diameter probe 

crosshead which approached the bone at a constant speed of 30 mm/s. The Instron machine is computer 

Inner circular fibres 
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Submucosa 

Outer longitudinal fibres 

500 µm 
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controlled using an HBM MVD25010 signal conditioning and data acquisition system. This system records 

the force (Newton) readings with its displacement value every 0.02 seconds while the bending test is 

conducted. The values and methodology used for the set up were according to a method described by 

Fleming et al. (1998). The peak of each loading curve as generated by the computer was used to obtain the 

failure point in Newton’s which was used to determine the breaking strength of each tibia bone. Bone 

strength is measured by the load in N and the cross-sectional area (mm
2
), defined as a force in N/mm

2
 

(kilograms force per square millimetre) which indicates the modulus measures of stiffness or rigidity, as 

related to stress and strain (Rath et al., 1999; Baird et al., 2008). 

 

The formulas for bone breaking strength (N/mm
2
) and breaking force per gram of bone were derived from 

breaking strength units according to Hibbeler (2005) and thus calculated using Equation 5.1 and 

Equation 5.2, respectively: 

 

Equation 5.1, 

Breaking strength  (N/mm
2) = 

Force (N) × Span between supports (m)

π × radius
2   

Equation 5.2, 

 

Breaking force (N/g) = 
Force (N)

Weight of bone (g)
 

 

After the bones were broken, all the pieces were collected, weighed and then dried in a 100 °C oven for 48 

hours to obtain a constant dry weight for each sample. The samples were weighed again after drying to 

determine moisture lost during drying. Thereafter, the bone samples were incinerated in a furnace at 600 °C 

for 24 hours continuously, following weighing of the samples. This was done to obtain the total ash 

percentage for each bone sample as described in Chapter 3 section 3.2.4.4. Weight measurements taken of 

the bone were determined using a Mettler AE 200 scale with an accuracy of 0.0001 g (Mettler-Toledo, 

Switzerland). Thereafter, combusted bones were ground to powder using a mortar and pistol and sent to the 

Institute of Animal Production, Western Cape Department of Agriculture at Elsenburg for mineral analysis. 

The tibia bone mineral composition was analysed as described in Chapter 3 section 3.3.4.9. It should be 

noted that the minerals where eluted at a wavelength of 2497for B, Ca (317.933), Cu (324.754), Fe (259.94), 

K (766.49), Mn (257.61), Na (589.592), P (177.495) and Zn (213.856). 

 

5.2.5 Statistical analysis 

Statistical analysis were analysed using the general linear models (GLM) procedure of SAS (2009). The 

analysis of variance (ANOVA) assumptions for normality and homoscedasticity were investigated before 

further analyses were done. The tests were considered significant at P>0.05. Treatment effects of all 

parameters except for gizzard erosion score were analysed using one-way ANOVA with Bonferroni’s post 

hoc (least square means) test. In cases where the homoscedasticity assumption for the data was not 

satisfied, a Welch’s ANOVA for unequal variances was used. The gizzard erosion scores were analysed 

Stellenbosch University  https://scholar.sun.ac.za



 
 

78 
 

using the Chi-squared test of SAS (2009). The significance level of 5% of all tests was used and significant 

treatment differences were declared at P<0.05. 

 

The statistical model for ANOVA is indicated by; Yіϳ = µі + αj + ԑіϳ where the terms in the model are defined 

as: the treatment effect response (Yіϳ), the overall mean (µі), treatment effect (αj) and the unexplained error 

(ԑіϳ). 

 

The Chi-square (goodness of fit) test statistic is indicated by; 2  =  Σ 
(Ο  -Ε)

2

Ε
 where the terms are defined as: 

treatment effect response (2
), summation (Σ), the observed frequencies (O) and expected frequencies (E). 

 

5.3 Results  

5.3.1 Organ weight and gizzard erosion 

Inclusion of black soldier fly pre-pupae meal (BSM) at 0, 5, 10 and 15% in broiler diets did not (P>0.05) affect 

gizzard, liver, heart, bursa, spleen and the spleen:bursa weights and their weights relative to body weight 

(Table 5.2). In addition, treatment did not (P>0.05) affect gizzard erosion score (Table 5.3). 

 
Table 5.2 Mean (± standard error) of organ weight and organ weight relative to body weight as influenced by 

inclusion of black soldier fly pre-pupae meal (BSM) in broiler chicken diets 

Parameters 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Organ weight (g) 

Gizzard 32.7 ± 1.29 34.0 ± 1.14 33.1 ± 0.70 31.9 ± 0.75 0.514 

Liver 36.4 ± 1.52 36.4 ± 1.18 37.6 ± 1.20 36.4 ± 0.71 0.855 

Heart 10.6 ± 0.44 11.3 ± 0.40 10.8 ± 0.49 10.5 ± 0.45 0.612 

Bursa 3.5 ± 0.58 3.4 ± 0.28 4.1 ± 0.64 3.9 ± 0.59 0.746 

Spleen 2.4 ± 0.11 2.3 ± 0.16 2.7 ± 0.25 2.3 ± 0.09 0.338 

Spleen:Bursa 0.7 ± 0.09 0.7 ± 0.5 0.6 ± 0.09 0.7 ± 0.14 0.916 

Organ weight relative to body weight (%) 

Gizzard 1.6 ± 0.04 1.6 ± 0.06 1.6 ± 0.05 1.5 ± 0.04 0.527 

Liver 1.8 ± 0.08 1.8 ± 0.05 1.8 ± 0.05 1.7 ± 0.03 0.800 

Heart 0.5 ± 0.02 0.5 ± 0.02 0.5 ± 0.02 0.5 ± 0.02 0.635 

Spleen 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.00 0.234 

Bursa 0.2 ± 0.03 0.2 ± 0.01 0.2 ± 0.03 0.2 ± 0.03 0.449 

Bursa: 

spleen 
0.04 ± 0.010 0.03 ± 0.000 0.03 ± 0.000 0.03 ± 0.010 0.894 
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Table 5.3 Gizzard erosion scores as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in 

broiler chicken diets 

Treatment diets 
Gizzard erosion score 

0 1 2 3 

0% (Control) 0 2 5 1 

5% BSM 2 4 2 0 

10% BSM 0 5 3 0 

15% BSM 3 3 2 0 

Chi-Square P-value 0.1891 

 

5.3.2 Intestinal pH and histomorphology 

Black soldier fly pre-pupae meal as a protein source in broiler diets did not (P>0.05) influence pH of the 

duodenum, jejunum and ileum sections of the small intestine (Table 5.4). Treatment did not (P>0.05) 

influence most histomorphology measurements of the duodenum and jejunum, except for the duodenum 

crypt depth and outer longitudinal fibres, and jejunum area (Table 5.5). Regarding inner circular fibres no 

treatment differences were found even though they biologically different. The 15% treatment diets chicks had 

significantly lower crypt depths compared to the control and the 5 and 10% treatment chicks were 

intermediate. The 0, 10 and 15% treatment diets outer layer did not differ from one another while the 5% 

treatment diet had a higher (P<0.05) outer longitudinal fibres. The 10% treatment diet had a higher (P<0.05) 

jejenal area than the 5 and 15% treatment diet while the control was intermediate. Due to unequal variances 

in the duodenum outer longitudinal fibres data the Welch’s ANOVA was used. 

 

Table 5.2 Mean (± standard error) of small intestine pH as influenced by inclusion of black soldier fly pre-

pupae meal (BSM) in broiler chicken diets 

Parameters 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Duodenum 6.3 ± 0.08 6.2 ± 0.07 6.2 ± 0.08 6.0 ± 0.08 0.222 

Jejunum 6.3 ± 0.05 6.4 ± 0.03 6.4 ± 0.04 6.4 ± 0.04 0.132 

Ileum 6.8 ± 0.09 6.8 ± 0.11 6.8 ± 0.08 6.9 ± 0.07 0.924 
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Table 5.3 Mean (± standard error) of duodenum and jejunum histomorphology sections (µm) as influenced 

by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chicken diets 

Parameters 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Duodenum      

Villi area 119094.0 

± 2838.05 

139245.9 

± 8630.96 

122791.3 

± 4182.13 

124279.8 

± 5345.61 

0.085 

Villi length  1203.9 ± 48.64  1229.1 ± 77.33  1203.2 ± 53.62  1214.3 ± 47.48 0.988 

Villi width   127.1 ± 6.80  119.0 ± 8.02  123.4 ± 7.05  122.8 ± 8.23 0.900 

Crypt depth  187.4
a
 ± 6.89  170.2

ab
 ± 5.99  169.9

ab
 ± 7.31  153.4

b
 ± 8.05 0.021 

Muscularis mucosa     37.3 ± 1.00    37.6 ± 1.43    36.9 ± 2.74    38.7 ± 1.84 0.911 

Submucosa    32.8 ± 0.51    33.5 ± 0.58    32.7 ± 0.41    32.5 ± 0.50 0.534 

Inner circular fibres    188.0 ± 15.71    231.1 ± 11.93    189.7 ± 14.58    214.3 ± 13.72 0.113 

Outer longitudinal 

fibres 

  80.8
b
 ± 2.12 107.2

a
 ± 7.55   79.8

b
 ± 2.67   87.7

b
 ± 4.76 0.001 

Jejunum      

Villi area 108397.5
ab

  

± 3705.8 

100766.8
b
 

± 1811.98 

116803.3
a
 

± 2511.62 

106607.7
b
 

± 2832.08 

0.000 

Villi length 1122.6 ± 26.25 1117.0 ± 37.16 1090.1 ± 50.30 1135.9 ± 37.65 0.864 

Villi width    92.4 ± 3.36   99.1 ± 7.18   90.2 ± 4.57   89.0 ± 4.79 0.523 

Crypt depth 165.5 ± 8.06 155.5 ± 6.08 169.2 ± 4.09 152.9 ± 5.04 0.191 

Muscularis mucosa   47.8 ± 1.59   45.0 ± 3.52   48.5 ± 3.38   49.5 ± 3.10 0.747 

Submucosa   52.4 ± 1.44   47.8 ± 0.81   49.6 ± 1.59   49.6 ± 1.04 0.110 

Inner circular fibres   277.9 ± 11.22   256.8 ± 18.35   252.2 ± 23.56   243.9 ± 17. 46 0.600 

Outer longitudinal 

fibres 

  92.7 ± 4.73   86.0 ± 5.10   93.7 ± 4.75   84.6 ± 4.21 0.420 

a,b
 Means with different superscripts within the same row differ significantly (P<0.05) 

 

5.3.3 Tibia bone parameters 

Results on tibia bone ash percentage and mineral content are shown in Table 5.7. Treatment had no 

(P>0.05) effect on bone ash percentage and mineral content except for calcium (Ca) content (P=0.03; 

Welch’s ANOVA) and Ca:P (P=0.048). The chicks receiving the 5% diet had a Ca content significantly 

different (lower) than that of the 15% but did not differ significantly from chicks receiving the 0 and 10% diets. 

However, the 15% was not statistically different from the 0 and 10% diet chicks. Treatment affected 

(P=0.048) the Ca:P ratio, however based on the Bonferroni post hoc test none of the treatments were 

significantly different from each other. Tibia bone breaking force (N), breaking force per gram of bone weight 

(N/g) and breaking strength (N/mm
2
) were not (P>0.05) influenced by treatment (Table 5.6). 

 

Table 5.6 Mean (± standard error) of tibia breaking force and strength of broiler chickens fed different levels 

of black soldier pre-pupae meal (BSM) in their diets  

Parameters Units 
Treatments 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Breaking force  N 335.7 ± 26.68 384.1 ± 26.68 378.0 ± 26.68 429.2 ± 26.68 0.140 

Breaking strength  N/mm
2
   75.4 ± 7.20   80.0 ± 7.20   78.1 ± 7.20   68.5 ± 7.20 0.694 

Breaking force per 

gram of weight  

N/g   32.6 ± 2.52   33.2 ± 2.52   36.1 ± 2.52   37.4 ± 2.52 0.495 
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Table 5.7 Mean (± standard error) of tibia bone ash percentage and mineral content of broiler chickens fed 

different levels of black soldier fly pre-pupae meal (BSM) in their diets 

Parameters Units 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Ash %    22.2 ± 0.48   21.6 ± 0.48   22.9 ± 0.48   22.6 ± 0.48 0.272 

Ca % 41.0
ab

 ± 0.65 40.3
a
 ± 0.38 41.8

ab 
± 0.56 42.7

b
 ± 0.56 0.034 

P %   19.6 ± 0.24   19.6 ± 0.12   19.8 ± 0.26   20.3 ± 0.18 0.116 

Ca:P %     2.1 ± 0.02     2.1 ± 0.01     2.1 ± 0.01     2.1 ± 0.02 0.048 

Potassium %     1.0 ± 0.03     0.9 ± 0.02     1.0 ± 0.09     1.0 ± 0.07 0.566 

Magnesium %     0.7 ± 0.01     0.7 ± 0.01     0.7 ± 0.01     0.7 ± 0.01 0.427 

Sodium mg/kg   12.8 ± 0.26   13.2 ± 0.81   12.8 ± 0.20   13.3 ± 0.57 0.763 

Copper mg/kg     2.0 ± 0.23     1.7 ± 0.05     1.8 ± 0.15     1.7 ± 0.07 0.592 

Zinc mg/kg  303.1 ± 14.33 294.1 ± 9.78 309.5 ± 5.18 307.6 ± 4.78 0.661 

Iron mg/kg  234.0 ± 12.00 200.1 ± 8.02  247.6 ± 19.56  200.6 ± 15.67 0.069 
a,b

 Means with different superscripts within the same row differ significantly (P<0.05) 

 

5.4 Discussion 

5.4.1 Organ weight and gizzard erosion 

In this study, internal organ weights and their weight relative to live weights of birds investigated were not 

influenced (P>0.05) by BSM inclusion in the diets. Similarly, Téguia et al. (2002) reported lack of treatment 

differences regarding gizzard, heart and liver weights in broiler chicken fed house fly (HF) maggot meal. 

Although, Okah & Onwujiariri (2012) reported broiler chickens fed HF larvae meal had higher gizzard weights 

and lower heart weights, but no treatment differences were found with liver weights. Okah & Onwujiariri 

(2012) evaluated HF maggot meal on older broilers beyond day 35 of age, which might account for the 

significant differences. In a review by Bedford (2000) it’s stated that as birds increase in age their digestive 

capacity also increases, which may be attributed to the subsequent increase in microfloral population. 

Hence, this may have attributed to the higher gizzard weights observed by Okah & Onwujiariri (2012). 

 

In this study no significant treatment differences regarding organ percentage relative to live weight were 

obtained. According to Pope (1991) the decrease of bursa weight relative to body weight is a possible 

indicator of potential increase in immunosuppression of the immune system. The bursa is the only lymphoid 

organ that acts as both a primary and secondary lymphoid organ in avian species. Furthermore, in the bursa 

B-cells are produced that are responsive to antigens for immune protection of the bird (Glick, 1991). As 

bursa plays a vital part in maintaining the immune health of the bird, it is essential to evaluate the effect of 

BSM inclusion in broiler diets on the bursa. In this investigation BSM inclusion in the birds’ diets did not affect 

bursa weight. 

 

Gizzard erosion score is a visual score analysis of any possible lesion occurrence or change within the 

gizzard lining as influenced by treatment diets (Table 5.1). Gizzard erosion occurs mostly in broiler chickens 

characterized by rough inner lining of the gizzard and in severe cases manifestations as erosions and 

ulceration of the inner muscle layer occurs (Wessels & Post, 1989). In this study there were no severe 

erosions observed in the gizzard, which was scored mostly between zero and two, with two and below being 
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acceptable while four and above is not acceptable (Johnson & Pinedo, 1971). Therefore, BSM included up to 

15% in broiler chickens diets did not have any adverse effects on the gizzard lining. 

 

5.4.2 Intestinal pH and histomorphology 

In this study the minimum and maximum values of the intestinal pH values obtained were within the normal 

pH range of the duodenum (5.5-6.2), jejunum (5.8-6.9) and ileum (6.3-8.0) in healthy poultry (Van der Klis & 

Jansman, 2002). Furthermore, the intestinal pH conditions were not (P>0.05) affected by the inclusion of 

BSM in broiler chickens diets. Intestinal pH is considered important for the growth and maintenance of the 

gastro intestinal tract microbial community of birds. However, intestinal pH is not the only determinants for a 

bird’s health status but organ size and the morphology of the intestines should also be considered (Van der 

Klis & Jansman, 2002). The different inclusion levels of BSM had no vital influence (P>0.05) on any of these. 

 

The structure of the intestinal mucosa can be used as an indicator of the gut’s condition and hence animal 

health (Xia et al., 2004; Choct, 2009; Jönsson & Holm, 2010). A healthy gut has a high nutrient absorption 

and consequently an improved immune status (indicated by increase in plasma immunoglobulin levels) of 

the host (Salim et al., 2013). The digestion and absorption of nutrients occurs mostly in the small intestine, 

with the jejunum being the major site of absorption (Nourmohammadi & Afzali, 2013). The absorptive 

capability of the intestinal villus area is determined by the villus size and its mutual proportion of enterocytes, 

goblet and entero-endocrine cells (Awad et al., 2011). No major treatment differences were observed with 

the histomorphology data on the duodenum and jejunum sections hence, the ileum was not analysed. In this 

study treatment significantly influenced the jejunum area with the 10% treatment diet being higher (P<0.05) 

and the control intermediate. Indicating that inclusion of BSM at 10% in the diet might have increase the 

absorptive capacity of the jejunum even though it was not (P<0.05) different from the control. Area of the 

duodenum was not influenced by treatment (P>0.05). Furthermore, shortening of the villi subsequently 

reduce its surface area and decreases the absorptive capacity of the intestine. The villi length and width was 

not influenced (P>0.05) by treatment for both duodenum and jejunum. In addition, destruction within the gut 

wall (epithelium cells) can directly affect intestinal barrier function, weakening absorption of nutrients and 

also making the barrier permeable by luminal antigenic agents (Song et al., 2014). Hence, it is essential to 

analyse the small intestinal histomorphology given that it’s the major cite of absorption for any affects that 

may arise by feeding broiler chickens BSM. 

 

The presence of toxins in the gut is associated with shorter villi and deeper crypts (Choct, 2009). The results 

revealed there was minimal to none toxins present, as no adverse treatment differences were observed 

(P>0.05) regarding the villi length and crypt depth of the duodenum and jejunum. However, treatment 

differences were observed regarding duodenum crypt depth with the 15% diet chicks attaining (P<0.05) 

lower crypt depth than the control diet chicks but this was not of concern as the 5 and 10% treatment diets 

were intermediate, thus minimising the impact of the differences. Furthermore, the length and width of the 

villi and the crypt depth gives an indication on the rate of tissue turnover of epithelial cells, energy 

requirement and the absorption capacity of nutrients in the gastro-intestinal tract (Awad et al., 2009; Choct, 

2009; Zhang et al., 2013). Treatment did not (P>0.05) affect the muscularis mucosa, submucosa, inner 
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circular fibres and outer longitudinal fibres of the jejunum. Treatment neither affected (P>0.05) the 

muscularis mucosa, submucosa and inner circular layer of the duodenum but affected (P<0.05) the outer 

layer. The muscularis mucosa, submucosa, inner circular fibres and outer longitudinal fibres ensure the 

luminal contents remain mixed, enabling contractions of the muscles for efficient transfer of materials into the 

small intestinal sections for digestion and absorption (Rogers, 1983). Therefore, treatment (P<0.05) 

increased the outer longitudinal fibres of the duodenum but this did not affect the inner circular layer, 

submucosa and muscularis mucosa. Since modern broiler chickens have been selected for fast growth, any 

alternative feed source must support normal bird growth and must not cause any adverse effects on the 

chicken’s health. The inclusion of BSM in broiler chickens diets did not affected the histomorphology of the 

small intestine sections (duodenum and jejunum), indicating to have sustained normal development, growth 

and optimal functioning of the tested gut morphology. 

 

5.4.3 Tibia bone parameters 

Diets with BSM included (P>0.05) affected tibia bone Ca content and Ca:P. However, tibia bone breaking 

force (N), breaking force per gram of bone weight (N/g) and breaking strength (N/mm
2
) were not (P>0.05) 

influenced by treatment, even though treatment significantly influenced the Ca content of the tibia bones. 

Black soldier fly pre-pupae meal contains high Ca and P contents (Newton et al., 2005). However the 

treatment diets were formulated for similar Ca levels, thus these results may indicate higher bioavailability of 

Ca in the BSM to broiler chicks. Furthermore, it was noted that the Ca content of tibia bones increased with 

the increase in the inclusion rate of BSM in the diets. Despite the increase in Ca content of the tibia bones 

causing a treatment effect (P=0.048) on Ca:P ratio, no significant treatment differences were found between 

treatment diets when the differences were evaluated using the Bonferroni post hoc (least square) test. 

However, these differences (or lack thereof) are difficult to explain but might be accounted for by the low 

R
2
=0.32 observed, indicating the minimal extent at which the results are explained by the statistical model 

due to variations within treatments. Furthermore, Zinc was found to be the most abundant mineral present in 

broiler chicken tibia bone, followed by Pb, Ca, P and Na, while Mg and K were less abundant. No known 

literature could be sourced evaluating the effects BSM or any other insect meal on bone parameters in 

poultry. 

 

According to Brenes et al. (2003), a deficiency in Ca and/or P in poultry diets causes an increase in mineral 

mobilization from bones resulting in porous and fragile bones that can break easily. The development of 

strong bones is essential in broiler production to avoid rapture and fractures of bones during growth and/or 

processing of the carcass. Moreover, birds are genetically selected for fast growth and attain higher weights 

than the skeletal frame can support, causing bone disorders in poultry production and mitigation strategies 

are vital to minimize this effect. The inclusion of BSM in broiler chicken diets supported normal bone growth 

and did not affect tibia bone breaking strength negatively. It was however noted that the increase in tibia 

bone Ca content with increase in BSM inclusion, might be attributed to higher bioavailability of the Ca in 

BSM to the birds. Therefore, it can be concluded that the addition of BSM to broiler chicken diets did not 

affect tibia bone development negatively but maintained normal bone formation. 
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5.5 Conclusion 

The results in this study indicated that the inclusion of BSM in broiler chicken diets had no effect, positively 

or negatively, on organ weights, gizzard erosion score, pH of the small intestine, histomorphology of the 

duodenum and jejunum and tibia bone breaking force and strength. The results indicate that BSM did not 

affect the organ development of the broiler chicken nor their skeletal structure. BSM can therefore be added 

in broiler chicken diets up to 15% without affecting the growth, development of internal organs, small 

intestine and tibia bone. Future research should evaluate the effect of decreasing the amount of 

supplementary Ca in broiler chicken diets containing 15% BSM on broiler production, since an increase in 

BSM inclusion in the diet was observed to have led to an increase in Ca content of the tibia bones. The use 

of BSM in broiler chicken diets is observed to have supported normal bird growth and without affecting its 

organ, gut and skeletal parameters. However, noting the above indicating the viability of BSM for production 

of broiler chickens, its effects on the broiler carcasses meat quality is questioned. 
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Chapter 6 

Effect of black soldier fly (Hermetia illucens) pre-pupae meal on the carcass 

characteristics, physical measurements, chemical quality and sensory 

attributes of broiler chicken meat 

 

Abstract 

Carcass characteristics, sensory, physical and chemical quality of broiler chicken meat fed black soldier fly (Hermetia 

illucens) pre-pupae meal (BSM) as a protein source were investigated. Four treatment diets based on BSM included at 0, 

5, 10 and 15%, were used. Three hundred and twenty day-old Cobb 500 broiler chicks were randomly allocated to the 

treatment diets. These broiler chicks were raised to slaughter at day 35 of age. Treatment did not significantly affect 

slaughter live weight, cold carcass weight, dressing percentage and commercial portion yield of the breast, thigh, 

drumstick, wing or back. No treatment differences were observed for the physical characteristics of broiler carcasses 

regarding initial and ultimate pH of the breast and thigh muscles, thaw and cooking loss and colour. Neither did treatment 

have a significant effect on the sensory characteristics (flavour, aroma, tenderness and juiciness) or mineral content of 

the cooked broiler chicken meat. Treatment did not influence the fatty acids composition of the meat besides C14:0, 

which was high in the 15% treatment diet and low in the control. A significantly strong positive correlation was only found 

between sensory tenderness and sustained juiciness. No specific fatty acids were found to be correlated to chicken 

flavour, whilst the iron content of the cooked broiler meat did not influence the metallic flavour or aroma. Therefore, it can 

be concluded that the inclusion of BSM in broiler chicken diets did not compromise the quality of meat produced. 

 

Keywords: Portion yield, breast muscle, flavour, tenderness, insect meal, maggots 

 

6.1 Introduction 

Production of consumable goods is focused on the ultimate satisfaction of consumer expectations (McIlveen, 

1994). Tenderness, juiciness and flavour of meat and meat products are elements that contribute to 

consumer eating satisfaction. Meat tenderness is considered the main quality cue for the acceptability of 

cooked meat (Barbut, 1997), whilst juicy meat is desired than less juicy meat (Risvik, 1994) and flavour 

determines the overall product acceptability after consumption. Meat flavour is affected by water-soluble 

components (free sugars, sugar phosphates, peptides, nucleotides, bound sugars, free amino acids, 

peptides, nucleotides and other nitrogenous components) and fat, which are considered as the main 

precursors for flavour development (Mottram, 1998). Colour on the other hand plays a significant role in the 

purchasing intent of a consumer (Allen et al., 1998; Fletcher, 1999; Qiao et al., 2002; Hoffman & Cawthorn, 

2012). 

 

The fat content of meat determines the muscle tissue firmness, shelf life and flavour of the meat. The fatty 

acids contained in fat are responsible for flavour development in meat. Undesired meat flavours are a result 

of fat oxidation, with excessive oxidation leading to rancidity in meat which is not desirable (Song et al., 

2013). An increase in certain dietary fatty acids may lead to an increased rate of fat oxidation reducing the 

shelf life of meat. This may be attributed to the unstable double bond in some fatty acids, especially 

unsaturated fat (Hugo et al., 2009). The rapid oxidation of meat is characterised by rancid odours and 
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flavours as a result of oxidative deterioration of meat post-mortem which may be minimised by the use of 

antioxidants in animal feed (resulting in deposition in meat), which slows down meat oxidation (Wood & 

Enser, 1997; Bou et al., 2004). 

 

In monogastric animals, fatty acid content of the diet pre-determines the fatty acid composition of the meat 

(O'neill et al., 1998; Coetzee & Hoffman, 2002; Barroeta, 2007; Cao et al., 2012). Therefore, essential fatty 

acid content in the meat suitable for human consumption can be manipulated via enhancement of animal 

diets with feed ingredients containing the desirable fatty acids (Coetzee & Hoffman, 2002). However, 

reasonable feeding time before slaughter is required for the modification of dietary fatty acids into the meat. 

The dietary fatty acid modification into intramuscular fatty acid is less effective than its modification in the 

abdominal and subcutaneous fat (Lopez-Ferrer et al., 1999). 

 

Fat is essential in human diets providing energy required for optimal development and used as a carrier for 

fat soluble vitamins (Wiseman, 1997). In particular, n-3 fatty acids in human diets are found to modulate and 

prevent coronary heart diseases and cardiovascular diseases (Simopoulos, 1991; Connor, 2000). Black 

soldier fly pre-pupae meal (BSM) contains a desirable fatty acid composition despite being high in saturated 

fatty acids (Kroeckel et al., 2012). Feeding broilers with BSM is therefore expected to produce meat with a 

desirable fatty acid profile, which will be beneficial to humans. 

 

The benefits of feeding BSM to broilers can only be observed if the carcass and meat characteristics from 

these broilers are not adversely affected. However, studies on the effects of feeding broiler chickens with 

BSM on carcass and meat characteristics are lacking. The objective of this study was therefore, to 

investigate the effect of BSM (Hermetia illucens) on broiler chicken carcass characteristics (live slaughter 

weight, cold carcass weight, dressing percentage, carcass portion yield and the skin, bone and meat 

percentage of the breast portion), sensory attributes (aroma, flavour, initial juiciness, sustained juiciness and 

tenderness), physical measurements (pH, colour, thaw and cooking losses) and chemical composition 

(moisture, protein, fat, ash, minerals, amino acids and fatty acids). 

 

6.2 Materials and methods 

6.2.1 Experimental layout, handling and management 

Detailed description of experimental layout, handling and chicken management procedures is outlined in 

Chapter 4 (section 4.2.1). The trial was carried out at Mariendahl Experimental Farm of Stellenbosch 

University (ethical clearance number SU-ACUM13-00026). The broiler chicks were raised to slaughter at day 

35 of age. 

 

6.2.2 Slaughtering procedure 

At day 35 of age, birds were weighed to attain cage middle weight where one bird weighing around the mean 

was then selected for slaughter (32 sample birds were obtained). The broiler chickens were slaughtered at 

the Mariendahl experimental farm abattoir according to acceptable slaughtering standard methods used for 
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commercial chickens (Department of Agriculture, Forestry & Fisheries [DAFF], 2006). At slaughter the birds 

were rendered unconscious by electrical stunning (50-70 volts; 3-5 s), exsanguinated and allowed to bleed 

out for about 2 min. Thereafter, the birds were soaked in a rotating 60 °C water bath for 5 min, de-feathered 

and then eviscerated. Subsequently, 15 min after slaughter the carcass initial pH was measured from the 

right breast and thigh, and the carcass was immediately chilled at 4 °C for 24 h. The ultimate pH of the right 

breast and thigh was measured 24 h after chilling. After chilling the carcasses were transported to the meat 

laboratory at Stellenbosch University for further processing. 

 

6.2.2 Carcass characteristics 

At the meat laboratory cold carcass weight was determined. The dressing percentage was calculated as the 

percentage of cold carcass weight to the live slaughter weight. The carcasses were portioned into 

commercial cuts (wing, breast, drumstick and thigh) using a meat slicing machine. The cutting procedure 

was as follows: firstly, the whole carcass was halved into two. Then the leg was removed by cutting above 

the thigh towards the acetabulum just behind the pubic bone. The leg was further cut perpendicular to the 

joints where the tibia, fibula and femur bones are attached together to obtain the drumstick and thigh 

portions. Then the wing was removed by cutting through the joint between the scapula and coracoid and the 

breast portion was separated from the wing. 

 

The breast, wing, drumstick and thigh portions were then weighed in pairs and recorded. The right breast 

portion was skinned and deboned. The skin, muscle and bone of each breast portion were weighed 

separately for the determination of the bone, meat and skin (and subcutaneous fat) percentage. The left 

breast samples were vacuum-packed with their skins and bones attached, and frozen at -18 °C until further 

analyses. 

 

6.2.3 Physical measurements 

6.2.3.1 pH 

The pH measurements of each carcass were measured 15 min after slaughter and 24 h post-mortem. The 

pH was measured by means of a Crison pH 25 handheld portable pH meter (Lasec (Pty) Ltd, South Africa) 

with an automatic temperature adjuster. The Crison pH 25 was calibrated before pH measurements were 

taken with the standard buffers (pH 4.0 and pH 7.0) as provided by the manufacturer. 

 

6.2.3.2 Colour 

Breast meat colour was instrumentally measured at three randomly selected positions on the meat muscle 

surface of the fresh meat of each experimental unit, 24 h post-mortem. The colour was recorded using a 

Colour guide 45°/0° colorimeter (Catelogue no: 6805; BYK-Gardner, USA) to determine the L*, a* and b* 

values. The L* indicating lightness, a* red-green range and b* blue-yellow range of the meat muscle surface. 

The a* and b* values were used to calculated the hue angle (ℎ𝑎𝑏) (°) and chroma value (𝐶∗) as outlined in 

Honikel (1998). 
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6.2.3.3 Thaw and cooking loss 

The thawed breast muscle weight was used to calculate for thaw loss as a percentage of the initial breast 

muscle weight before freezing. The weight of the cooked breast muscle as a percentage of the uncooked 

breast muscle weight was used to calculate the cooking loss. The cooking loss and thaw loss of the meat 

samples was determined according to the method described by Honikel (1998). 

 

6.2.4 Chemical analysis 

6.2.4.1 Sample preparation 

The offcuts of the cooked chicken breast meat samples of each experimental unit after removal of DSA 

samples were used for chemical analyses. After completion of the DSA test, the meat offcuts per sample 

was homogenised separately then vacuum packed (separately for each analysis) and frozen at -18 °C until 

further analyses. Prior to each analysis the meat samples were removed and defrosted in a 4 °C refrigerator 

for ±12 h. 

 

6.2.4.2 Proximate analysis 

The proximate analysis of the cooked meat samples was analysed according to acceptable standard 

methods as provided by the Association of Official Analytical Chemists International (AOAC) (2002). Refer to 

Chapter 3 for methodological analysis regarding dry matter, crude protein, ash content, amino acid analysis 

and mineral analysis under sections 3.2.4.1, 3.2.4.2, 3.2.4.4, 3.2.4.6, and 3.2.4.9, respectively. It should be 

noted that for dry matter analysis of meat, 2.5 g of the sample was utilized per subsample. Furthermore, 

protein analyses of meat was analysed on defatted meat samples weighing 0.15 g, with the Leco calibrated 

with EDTA (Leco Corporation). The protein percentage used was corrected for moisture and fat content. It 

should be noted that the minerals where eluted at wavelength of 2497 for B, Ca (317.933), Cu (324.754), 

Fe (259.94), K (766.49), Mg (285.213), Mn (257.61), Na (589.592), P (177.495) and Zn (213.856). 

 

6.2.4.3 Crude fat 

The crude fat content of the meat sample was determined according to Lee et al. (1996); using 5 g 

homogenized cooked meat with chloroform/methanol (1:2 vol/vol). The solution was filtered through 

Whatman® No 1 into a separation funnel, following addition of 20 ml of 0.5% sodium chloride and allowed to 

separate. Thereafter, 5 ml of the fat solution was pipetted into a fat glass beaker and placed on a sand bath 

to allow the chloroform/methanol to evaporate. The results obtained were corrected with a 16.7 ml factor 

when total fat percentage was calculated. 

 

6.2.4.4 Long chain fatty acid analysis 

The feed and meat samples fatty acid composition were determined. The fat content of the samples was 

extracted as described by Folch et al. (1957) using 2 g of the samples with addition of chloroform/methanol 

2:1 solution containing 0.01% butylated hydroxytoluene as an anti-oxidant. A 0.5 ml heptadecanoic acid 

(C17:0) was added as an internal standard and the mixture was homogenised using a polytron mixer at 

speed setting C for 40 seconds. The samples were then trans-methylated with methanol/sulphuric acid 19:1 

using 250 µl of the extracted fat solution for 2 h at 70 °C in a water bath. The solution was allowed to cool to 
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room temperature. Subsequently, water and hexane was added and the solution was vortexed, after allowing 

sufficient time for separation, the top hexane solution (fatty acid methyl esters [FAME]) was transferred to a 

clean Kimax tube and dried under nitrogen for ±30 min. After drying, 50 µl of Hexane was added and 1 µl 

injected into the gas chromatography. 

 

A Thermo Finnigan Focus Gas Chromatography apparatus (GC) (Thermo-electron Corporation, Rodano, 

Milan Italy) was used for determining the FAME. The GC column used was BPX70 (60 m × 0.25 mm; ID 0.25 

µm; SGE International Pty Ltd, 7 Argent Place, Ringwood, Victoria 3134, Australia). An initial temperature of 

60 °C for 5 min was used which was allowed to increase at a rate of 1:7 °C /min to a final temperature of 

160 °C, injecting and detecting the sample was at 220 °C and 260 °C, respectively. The split flow of the GC 

was 20:120 with a Hydrogen carrier at 20 ml/min then a sample injection of 1 µl with total run time of 45 min 

eluting the various fatty acids (FA). An internal standard injected into the GC of known FA enabled the 

identification of the FA contained in the samples and the results reported are expressed as a percentage of 

total fatty acids for the feed samples and for the meat samples in mg/g of meat. 

 

6.2.5 Sensory analysis 

6.2.5.1 Sample preparation 

From the eight replicates only six replicates per treatment were used for sensory and subsequently chemical 

analysis. The left breasts of the birds were used for sensory analysis. Prior to conducting sensory analyses 

the samples were defrosted for ±12 h at 4 °C and then blot-dried and weighed. 

 

The blot-dried samples were deboned, skin plus fat removed and weighed. Subsequently, the muscle was 

placed inside a marked oven bag (Glad®). No salt (sodium chloride) nor seasoning additives nor 

preservatives were added to the breast meat used for the sensory analysis. Meat samples in the oven bags 

were placed on stainless steel grids fitted in oven roasting pans. Thermocouple probes attached to a hand 

operated digital temperature monitor (Hanna Instruments, South Africa) were placed in the centre of each of 

the meat samples and sealed in the oven bag to keep the probe in place. 

 

The prepared samples were placed in a conventional oven (Defy, Model 835) connected to a computerized 

monitoring system responsible for regulation of the temperature (Viljoen et al., 2001). The ovens were pre-

heated to 160 °C (American Meat Science Association [AMSA],1995). The meat samples were removed 

from the oven when a core temperature of 75 °C was reached for each sample (AMSA, 1995). The samples 

were cooled for 15 min allowing them to equilibrate to ambient temperature, blot dried and weighed. The 

cooked samples were each cut into 32 sample cubes of 1 cm x 1 cm x 1 cm. The cubes were then 

individually wrapped in aluminium foil (with the shiny side to the food) and placed into glass ramekins coded 

with a randomized three-digit code. The thirty two 1 cm x 1 cm x 1 cm cubes were given to eight judges each 

with four test samples per treatment. The coded ramekins, each containing four wrapped meat cubes were 

placed in a preheated industrial oven (Hobart, France) at 70 °C for 7 min and placed in a water bath 

preheated to 70 °C for the duration of the testing session. 
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6.2.5.2 Descriptive sensory analysis 

Descriptive sensory analysis (DSA) was performed on four meat cubes per treatment with six consecutive 

replications, thus the experimental design: 4 treatments x 6 replications equals 24 breasts (experimental 

units). A panel of eight judges, with previous experience with sensory analysis of meat, were used. The 

panellists were trained according to the guidelines for sensory analysis of meat (AMSA, 1995) and the 

generic descriptive sensory analysis technique as described by Lawless & Heymann (2010) before the 

actual test analysis. 

 

The panel undertook five training sessions and during each of these training sessions the panellists received 

four 1 cm x 1 cm x 1 cm cubes of meat from the four treatments. During the training sessions the panel 

decided on the following sensory attributes: chicken flavour, metallic flavour, chicken aroma, metallic aroma, 

initial and sustained juiciness and tenderness (evaluated on first bite). The definitions for each of the 

attributes are described in Table 6.1. 

 

The re-test method was used for DSA, where the panellists received four 1 cm x 1 cm x 1 cm cubes of each 

of the four treatment samples in a completely randomized order. The panellist carried out DSA on the 

treatment samples while seated in individual tasting booths having computers fitted with Compusense® five 

(Compusense, Guelph, Canada) software programme. On Compusense® five the samples were analysed 

for the respective sensory attributes using an unstructured line scale with zero indicating “low intensity” and 

100 “high intensity”. The sensory analysis sessions took place inside a temperature controlled room at 21 °C 

with artificial daylight in accordance to guidelines set by AMSA (1995). The panellists were availed with 

distilled water (21 °C), apple pieces and water biscuits in order to cleanse and refresh their palates between 

testing of samples. The DSA of the test samples was done over six sessions on 3 different consecutive days, 

with two testing sessions per day. 

 

Table 6.1 Definition and scale of each attribute used for the descriptive sensory analysis on breast portion 

Sensory attribute Description Scale 

Chicken aroma 
Aroma associated with the chicken meat, as soon 

as the aluminium foil is removed 

    0 = None 

100 = Prominent 

Chicken flavour 
Flavour associated with chicken prior to swallowing 

while chewing 

    0 = None 

100 = Prominent 

Metallic aroma 
Aroma associated with raw meat and/or blood-like, 

as soon as the aluminium foil is removed 

    0 = None 

100 = Prominent 

Metallic flavour 
Taste associated with raw meat and/or blood-like 

taste prior to swallowing while chewing 

    0 = None 

100 = Prominent 

Initial juiciness 

Amount of fluid extruded on surface of meat sample 

when pressed between the thumb and forefinger 

(pressed perpendicular to fibres) 

    0 = Dry 

100 = Extremely juicy 

Sustained juiciness 
Amount of moisture perceived during mastication, 

after the first 5 chews using the molar teeth 

    0 = Dry 

100 = Extremely juicy 

Tenderness 
The impression of tenderness perceived after the 

first 5 chews using the molar teeth 

    0 = Tough 

100 = Extremely tender 
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6.2.6 Statistical analysis 

Statistical analysis of carcass, chemical and physical data were analysed using the general linear models 

(GLM) procedure of SAS (2009). The Shapiro-Wilk test for normality of data and homoscedasticity test was 

performed before proceeding with further analyses. The tests were considered significant at P>0.05. A one-

way analysis of variance (ANOVA) with Bonferroni’s post hoc test was used for statistical analysis. Sensory 

analysis data was analysed by multivariate analyses using XLStat software (Version 2012, Addinsoft, New 

York, USA). In the event of significant non-normality values (P<0.05) in the sensory data, outliers were 

identified and residuals greater than three were removed. The correlations coefficients for the sensory, 

physical and chemical data was analysed using the Pearson’s correlation coefficient (r) using XLStat 

software (Version 2012, Addinsoft, New York, USA). The relationship between the sensory, physical and 

chemical data was indicated by performing a principal component analysis (PCA) with correlation matrix, 

combined with discriminant analysis (DA). 

 

The 5% significance level was used for the statistical tests and treatment differences were declared at 

P<0.05. 

 

The statistical model for the ANOVA test is indicated by; Yіϳ = µі + αj + ԑіϳ, where the terms in the model are 

defined as: the treatment effect response (Yіϳ), the overall mean (µі), treatment effect (αj) and the 

unexplained error (ԑіϳ). 

 

6.3 Results  

6.3.1 Carcass characteristics 

The inclusion of black soldier fly pre-pupae meal (BSM) in broiler chicken diets did not (P>0.05) influence live 

slaughter weight, cold carcass weight and dressing percentage (Table 6.2). Neither did treatment (P>0.05) 

influence the commercial portion cut yield of the breast, thigh, drumstick, wing and back of the broiler 

carcasses (Table 6.3). Treatment had an effect (P<0.05) on breast portion percentage yield regarding the 

skin plus fat and muscle, but did not (P>0.05) affect bone percentage (Table 6.4). The chicks receiving the 

15% treatment diet attained a significantly higher skin plus fat percentage of the breast portion than the 

chicks receiving the control diet. However, the treatment Bonferroni’s post hoc (least square means) test 

indicated no treatment differences regarding muscle percentage of the breast portion regardless of the 

ANOVA (P=0.032). 
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Table 6.2 The means (± standard error) of live slaughter weight, cold carcass weight and dressing 

percentage of broilers as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in their diets 

Parameters 
Treatments diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Live slaughter 

weight (g) 
2067.5 ± 10.65 2092.5 ± 24.48 2082.5 ± 34.52 2105.0 ± 28.72 0.776 

Cold carcass 

weight (g) 
1364.5 ± 11.32 1387.5 ± 19.15 1382.1 ± 25.36 1371.5 ± 21.77 0.849 

Dressing 

percentage (%) 
  66.0 ± 0.50   66.3 ± 0.50   66.4 ± 0.50   65.2 ± 0.50 0.307 

 

Table 6.3 The means (± standard error) of broiler carcass portion yield (g) as influenced by inclusion of black 

soldier fly pre-pupae meal (BSM) in their diets 

Portions 
Treatments diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Breast   545.6 ± 14.44   549.0 ± 12.75   520.8 ± 16.67   525.9 ± 12.05 0.409 

Thigh 352.7 ± 5.27 374.2 ± 9.36   386.3 ± 10.86   364.2 ± 10.72 0.093 

Drumstick 195.0 ± 4.82 202.2 ± 6.22 193.7 ± 6.08 209.4 ± 6.98 0.257 

Wing 164.1 ± 4.69 166.9 ± 6.90 175.5 ± 2.58 174.5 ± 4.47 0.307 

Back   93.3 ± 3.37   89.1 ± 3.46   96.9 ± 3.78   91.9 ± 3.90 0.509 

 

Table 6.4 The means (± standard error) for skin, muscle and bone percentage of broiler carcasses breasts 

as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in their diets 

Parameters 
Treatments diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Skin plus fat 5.7
b
 ± 0.38 6.6

ab
 ± 0.43 6.7

ab
 ± 0.32 7.5

a
 ± 0.43 0.028 

Muscle 74.3 ± 0.91  74.2 ± 1.17  73.2 ± 1.30 69.5 ± 1.38 0.032 

Bone 18.5 ± 0.77  17.1 ± 1.13  18.5 ± 1.42 21.6 ± 1.24 0.074 
(a,b)

 Means with different superscripts within the same row differ significantly (P<0.05) 

 

6.3.2 Physical measurements 

The influence of BSM in the broiler diets on initial pH and ultimate pH of breast and thigh, colour, thaw loss 

and cooking loss of the breast muscle are summarised in Table 6.5. Treatment did not (P>0.05) affect initial 

and ultimate pH measurements of the breast and thigh muscles of the broiler carcasses. No treatment 

differences (P>0.05) on colour measurements were observed regarding the L*, a*, b*, hue and chroma 

values of the broiler breast muscle. Furthermore, treatment did not affected (P>0.05) thaw loss nor cooking 

loss of the breast muscle. 
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Table 6.5 The means (± standard error) of physical measurements of broiler carcasses as influenced by 

inclusion of black soldier fly pre-pupae meal (BSM) in their diets 

Parameters 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

pHi breast   6.38 ± 0.044   6.34 ± 0.063   6.32 ± 0.071   6.32 ± 0.044 0.887 

pHµ breast   6.13 ± 0.043   6.14 ± 0.045   6.15 ± 0.033   6.18 ± 0.047 0.830 

pHi thigh   6.65 ± 0.056   6.48 ± 0.054   6.65 ± 0.061   6.63 ± 0.052 0.083 

pHµ thigh   6.65 ± 0.043   6.57 ± 0.047   6.66 ± 0.054   6.55 ± 0.065 0.390 

L* 54.35 ± 0.705 53.93 ± 1.193 55.72 ± 1.439 54.16 ± 0.545 0.616 

a*   0.45 ± 0.125   0.65 ± 0.192   0.60 ± 0.243   0.68 ± 0.167 0.844 

b* 12.31 ± 0.269 12.86 ± 0.488 12.62 ± 0.738 11.37 ± 0.590 0.255 

Hue 86.70 ± 1.251 87.02 ± 0.938 87.38 ± 0.945 86.75 ± 0.751 0.962 

Chroma 12.35 ± 0.283 12.89 ± 0.483 12.72 ± 0.769 11.39 ± 0.596 0.258 

Thaw loss   3.63 ± 0.613   3.79 ± 0.599   4.69 ± 0.567   3.15 ± 0.458 0.302 

Cooking loss 42.20 ± 1.089 40.73 ± 0.771 37.96 ± 2.546 42.96 ± 1.340 0.157 

pHi (Initial pH) 

pHµ (Ultimate pH) 

 

6.3.3 Chemical analysis 

The treatment diets chemical composition results including amino acids are shown in Chapter 4 (Tables 

4.3-4.5), while the fatty acid composition results are depicted in Tables 6.8-6.10 for the starter, grower and 

finisher diets, respectively.  

 

The inclusion of BSM in the broiler chicken diets did not (P>0.05) influence the proximate composition of the 

cooked broiler breast meat regarding moisture, protein, fat and ash percentages (Table 6.6). Furthermore, 

no treatment differences were observed regarding the amino acids of the cooked broiler breast meat (Table 

6.7). Treatment had no (P>0.05) effect on the mineral composition of the cooked broiler breast meat 

regarding P, K, Ca, Mg, Ma, Na, Pb, Zn, Cu, Fe and B (Table 6.12). Amongst all the minerals analysed the 

cooked broiler breast meat was high in Na, K and P, and low in Fe, Zn and Ca, with traces of Cu, Mn and B. 

The fatty acid compositions of the cooked breast meat are shown in Table 6.11. Treatment did not (P>0.05) 

influence the fatty acid composition of the cooked broiler breast meat besides C14:0. It was observed that 

the treatment diets fatty acid composition influenced the fatty acid deposition in the cooked broiler breast 

meat. The fatty acids C16:0 and C18:2n6cis were observed to be prominent in the breast meat whilst C14:0, 

C16:1, C18:3n3 were found in low concentrations. The feed was observed to have high polyunsaturated fatty 

acids (PUFA) content across all three feeding stages’ diets. Trace concentrations of the “longer chain” fatty 

acids were deposited in minimal samples attaining insufficient statistical numbers and therefore were not 

included in the statistical analysis, and not reported on. 
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Table 6.6 The means (± standard error) of the proximate analysis (g/100g) of broiler cooked breast meat as 

influenced by the inclusion of black soldier fly pre-pupae meal (BSM) in their diets  

Parameters 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Moisture 67.8 ± 0.37 67.4 ± 0.45 68.1 ± 0.77 67.7 ± 0.42 0.860 

Protein 29.3 ± 0.65 29.2 ± 0.60 29.0 ± 0.85 29.4 ± 0.46 0.975 

Fat   3.4 ± 0.32   3.4 ± 0.34   3.3 ± 0.41   3.7 ± 0.13 0.782 

Ash   1.2 ± 0.02   1.2 ± 0.02   1.2 ± 0.02   1.2 ± 0.02 0.292 

 
Table 6.7 The means (± standard error) of the amino acid composition (g/100g) of cooked breast meat as 

influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets 

Amino acids 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Histidine* 2.6 ± 0.11 2.7 ± 0.07   2.5 ± 0.10   2.6 ± 0.22 0.937 

Serine 3.0 ± 0.17 3.0 ± 0.10   3.1 ± 0.09   3.2 ± 0.13 0.739 

Arginine* 5.0 ± 0.25 5.1 ± 0.14   5.0 ± 0.20   5.3 ± 0.33 0.801 

Glycine 3.3 ± 0.12 3.2 ± 0.06   3.4 ± 0.09   3.3 ± 0.20 0.945 

Aspartic acid 6.0 ± 0.35 6.1 ± 0.32   6.5 ± 0.13   7.0 ± 0.23 0.066 

Glutamic acid 9.6 ± 0.55 9.8 ± 0.48 10.2 ± 0.26 11.0 ± 0.35 0.135 

Threonine* 3.3 ± 0.18 3.3 ± 0.12   3.4 ± 0.09   3.5 ± 0.14 0.623 

Alanine 3.7 ± 0.16 3.8 ± 0.15   4.0 ± 0.07   4.1 ± 0.15 0.113 

Proline 2.6 ± 0.11 2.6 ± 0.06   2.7 ± 0.07   2.7 ± 0.10 0.755 

Cysteine 0.4 ± 0.04 0.4 ± 0.12   0.4 ± 0.02   0.4 ± 0.03 0.934 

Lysine* 5.4 ± 0.34 5.6 ± 0.36   6.0 ± 0.15   6.4 ± 0.21 0.072 

Tyrosine 2.7 ± 0.18 2.9 ± 0.13   2.8 ± 0.20   2.8 ± 0.25 0.922 

Methionine* 2.1 ± 0.15 2.0 ± 0.06   2.0 ± 0.09   2.1 ± 0.12 0.890 

Valine* 3.5 ± 0.14 3.5 ± 0.12   3.5 ± 0.09   3.7 ± 0.14 0.393 

Isoleucine* 3.1 ± 0.12 3.2 ± 0.14   3.3 ± 0.10   3.5 ± 0.13 0.206 

Leucine* 5.7 ± 0.27 5.8 ± 0.20   5.8 ± 0.19   6.1 ± 0.24 0.599 

Phenylalanine* 3.4 ± 0.16 3.4 ± 0.09   3.3 ± 0.18   3.4 ± 0.20 0.910 

* Essential amino acids  
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Table 6.8 The means of long chain fatty acid composition in Starter treatment diets percentage of fatty acids, 

as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets 

Fatty acids 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

SFA
1
     

C14:0   0.3   0.5   4.6   2.8 

C16:0 12.0 11.3 23.5 16.5 

C18:0   5.4   5.0   5.5   4.6 

C20:0   0.7   0.6   0.9   0.6 

Total 18.4 17.5 34.4 24.5 

MUFA
2
     

C16:1   0.2   0.3   2.0   1.7 

C18:1n9cis 23.6 23.1 23.6 25.2 

C18:1n9trans - -   0.6 - 

C20:1   0.7   0.4   0.6   0.4 

C22:1n9   0.3   0.4   0.3   0.4 

Total 25.0 24.1 27.1 27.7 

PUFA
3
     

C18:2n6cis 51.5 52.8 35.7 44.1 

C18:2n6trans - -   0.3 - 

C18:3n3   5.2   5.7   2.5   3.7 

Total 56.6 58.5 38.5 47.8 

PUFA: SFA   3.1   3.4   1.1   2.0 

n-6 51.5 52.8 36.0 44.1 

n-3   5.2   5.7   2.5   3.7 

n-6: n-3   10.0   9.4 14.2 12.1 
1 

Saturated fatty acid  
2
 Monounsaturated fatty acid  

3
 Polyunsaturated fatty acid 
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Table 6.9 The means of long chain fatty acid composition in Grower treatment diets percentage of fatty acids 

as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets 

Fatty acids 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

SFA
1
     

C14:0   0.2   1.3   5.7   5.9 

C16:0 11.4 13.1 32.0 26.2 

C18:0   5.0   5.0   9.4   5.9 

C20:0   0.6   0.6   1.3   0.8 

Total 17.2 20.0 48.4 38.8 

MUFA
2
     

C16:1   0.1   0.5   0.5   1.4 

C18:1n9cis 21.6 24.0 18.1 21.6 

C18:1n9trans - -   4.6   1.8 

C20:1   0.2   0.3 -   0.3 

C22:1n9   0.3   0.3   0.6   0.4 

Total 22.3 25.0 23.8 25.5 

PUFA
3
     

C18:2n6cis 53.5 50.1 25.0 32.6 

C18:2n6trans - -   1.0   0.9 

C18:3n3   7.0   4.9   1.9   2.1 

Total 60.5 55.0 27.8 35.7 

PUFA: SFA   3.5   2.8   0.6   0.9 

n-6 53.5 50.1 26.0 33.5 

n-3   7.0   4.9   1.9   2.1 

n-6: n-3   7.6 10.1 14.0 15.7 
1 

Saturated fatty acid 
2
 Monounsaturated fatty acid 

3
 Polyunsaturated fatty acid 
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Table 6.10 The means of long chain fatty acid composition in Finisher treatment diets percentage of fatty 

acids, as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets 

Fatty acids 
Treatment diets 

Control 5% BSM 10% BSM 15% BSM 

SFA
2
     

C14:0   2.7   0.4   1.9   2.4 

C16:0 16.1 12.0 14.9 16.1 

C18:0   4.0   4.2   4.3   4.0 

C20:0   0.5   0.7   0.5   0.5 

Total 23.3 16.8 21.5 23.3 

MUFA
3
     

C16:1   1.4   0.3   0.9   1.3 

C18:1n9cis 23.7 20.8 22.2 23.2 

C20:1 - - -   0.3 

C22:1n9trans   0.2 -   0.3   0.3 

Total 25.2 21.1 23.4 25.1 

PUFA
4
     

C18:2n6cis 47.1 56.0 49.7 46.9 

C18:3n3   4.4   6.1   5.3   4.8 

Total 51.5 62.1 55.1 51.6 

PUFA: SFA   2.2   3.7   2.6   2.2 

n-6 47.1 56.0 49.7 46.9 

n-3   4.4   6.1   5.3   4.8 

n-6: n-3 10.8   9.3   9.3   9.8 
1 

Saturated fatty acid 
2
 Monounsaturated fatty acid 

3
 Polyunsaturated fatty acid 
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Table 6.11 The means (± standard error) of long chain fatty acid composition of cooked breast meat as 

influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets (mg/g meat) 

Fatty acids 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

SFA
1
      

C14:0 0.3
b
 ± 0.09 0.4

ab
 ± 0.06  0.7

ab
 ± 0.12  1.0

a
 ± 0.21 0.013 

C16:0  9.5 ± 1.92    7.4 ± 1.40   10.3 ± 1.85   9.6 ± 1.51 0.655 

C18:0  4.2 ± 0.35    3.2 ± 0.18     5.3 ± 0.93   4.5 ± 0.47 0.134 

Total 13.3 ± 1.45  10.4 ± 1.00   16.2 ± 2.74 14.3 ± 1.49 0.173 

MUFA
2
      

C16:1   0.3 ± 0.11    0.6 ± 0.16     0.5 ± 0.20   0.8 ± 0.17 0.307 

C18:1n9cis   5.7 ± 1.14    7.7 ± 1.35     6.1 ± 1.54   7.8 ± 1.45 0.607 

C18:1n9trans   0.8 ± 0.36    0.5 ± 0.23     1.0 ± 0.53   0.7 ± 0.36 0.794 

Total   6.8 ± 1.14    8.7 ± 1.32    7.6 ± 1.49   9.3 ± 1.38 0.571 

PUFA
3
      

C18:2n6cis   7.9 ± 2.71    9.9 ± 2.16     6.1 ± 1.72   8.3 ± 1.94 0.681 

C18:3n3   0.6 ± 0.25    0.6 ± 0.20     0.4 ± 0.13   0.4 ± 0.18 0.801 

Total   8.5 ± 2.75  10.5 ± 2.11     6.5 ± 1.67   8.7 ± 1.99  

PUFA: SFA   0.7 ± 0.27    1.1 ± 0.21     0.5 ± 0.18   0.7 ± 0.19 0.399 

n-6   7.9 ± 2.71    9.9 ± 2.16     6.1 ± 1.72   8.3 ± 1.94 0.681 

n-3   0.6 ± 0.25    0.6 ± 0.20     0.4 ± 0.13   0.4 ± 0.18 0.801 

n-6: n-3   3.9 ± 1.70    5.9 ± 2.22     4.2 ± 2.00   5.8 ± 2.75 0.882 

TFA
4
 28.5 ± 3.25  29.6 ± 3.49   30.3 ± 3.38 32.2 ± 2.44 0.867 

(a,b)
 Means with different superscripts within the same row differ significantly (P<0.05)

 

1 
Saturated fatty acid 

2
 Monounsaturated fatty acid 

3
 Polyunsaturated fatty acid 

4
 Total fatty acids 

 

Table 6.12 The means (± standard error) of mineral composition of cooked breast meat as influenced by 

inclusion of black soldier fly pre-pupae meal (BSM) in broiler chickens diets 

Parameters Units 
Treatment diets 

P-value 
Control 5% BSM 10% BSM 15% BSM 

Phosphorous %   0.67 ± 0.021   0.68 ± 0.017   0.68 ± 0.021   0.65 ± 0.021 0.793 

Potassium %   0.69 ± 0.026   0.68 ± 0.024   0.66 ± 0.024   0.66 ± 0.018 0.759 

Calcium %   0.03 ± 0.002   0.03 ± 0.004   0.03 ± 0.003   0.03 ± 0.006 0.976 

Magnesium %   0.11 ± 0.004   0.11 ± 0.003   0.11 ± 0.004   0.11 ± 0.005 0.961 

Iron mg/kg 28.11 ± 3.037 25.64 ± 1.871 27.85 ± 2.146 25.99 ± 2.180 0.841 

Copper mg/kg   0.46 ± 0.023   0.69 ± 0.085   0.48 ± 0.060   0.52 ± 0.068 0.106 

Zinc mg/kg 29.15 ± 1.940 29.76 ± 1.515 26.75 ± 0.803 26.21 ± 1.241 0.249 

Manganese mg/kg   0.83 ± 0.065   0.72 ± 0.030   0.92 ± 0.055   0.93 ± 0.059 0.069 

Boron mg/kg   0.71 ± 0.049   0.70 ± 0.046   0.63 ± 0.062   0.71 ± 0.078 0.739 

Sodium mg/kg 
768.17 

± 64.953 

678.50 

± 32.146 

657.67 

± 41.277 

655.67 

± 48.912 
0.333 

 

6.3.4 Descriptive sensory analysis and correlations 

Treatment did not (P>0.05) affect chicken aroma and flavour, metallic aroma and flavour, initial and 

sustained juiciness and tenderness of cooked broiler breast muscles (Table 6.13). Minimal relevant 

correlations were found amongst the proximate, physical and chemical results with sensory attributes 
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(Table 6.15). Therefore, for interpretation of the results only relevant positive correlations will be focused on 

as outlined in Table 6.14. Sustained juiciness was found to be positively correlated to tenderness and 

moisture percentage, while the correlation between chicken flavour and protein percentage of the meat 

samples was not significant. The Figures 6.1-6.3 illustrate the DA plots between chemical, proximate and 

sensory attributes as per treatment effects. 

 

Table 6.13 The means (± standard error) of sensory attributes as influenced by inclusion of black soldier fly 

pre-pupae meal (BSM) in broiler chickens diets 

Parameters 
Treatment diets 

P-value LSD 
Control 5% BSM 10% BSM 15% BSM 

Chicken 

aroma 

 68.0 ± 1.43 

 

71.6 ± 1.16 

 

68.4 ± 1.95 

 

70.1 ± 2.15 

 
0.592 5.30 

Chicken 

flavour 

 68.6 ± 1.83 

 

70.5 ± 1.53 

 

68.4 ± 0.82 

 

70.7 ± 2.16 

 
0.395 4.74 

Metallic 

aroma 

  1.8 ± 0.58 

 

  1.9 ± 0.70 

 

  1.9 ± 0.53 

 

  2.2 ± 0.39 

 
0.880 1.78 

Metallic 

flavour 

  6.5 ± 0.82 

 

  5.8 ± 0.70 

 

  5.6 ± 1.32 

 

  6.7 ± 1.85 

 
0.836 3.92 

Initial 

juiciness 

73.3 ± 1.63 

 

73.1 ± 1.96 

 

72.5 ± 2.03 

 

72.0 ± 1.07 

 
0.211 4.45 

Sustained 

juiciness 

70.2 ± 1.36 

 

72.2 ± 1.58 

 

72.6 ± 2.37 

 

71.9 ± 1.90 

 
0.839 5.84 

Tenderness 81.7 ± 2.08 83.1 ± 1.90 81.1 ± 3.00 84.3 ± 2.36 0.941 7.83 

 

Table 6.14 Relevant positive correlation of sensory, physical and chemical attributes of cooked breast meat 

as influenced by inclusion of black soldier fly pre-pupae meal (BSM) in broiler chicken diets 

Parameters 

Tenderness Protein % Moisture % Metallic flavour pHi
3
 breast 

r
1
 

P-

value 
r
1
 

P-

value 
r
1
 

P-

value 
r
1
 P-value r

1
 

P-

value 

Initial 

juiciness 
        0.557 0.005 

Sustained 

juiciness 
0.838 <0.001   0.598 0.002 0.495 0.014   

Chicken 

flavour 
  0.553 0.001       

Chicken 

aroma 
  0.463 0.023       

Moisture % 0.474 0.019         

C18:1n9c       0.411 0.046   

MUFA
2
       0.458 0.024   

1
 Pearson correlation coefficient 

2
 Mono-unsaturated fatty acids 

3 
Initial pH 
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Table 6.15 Correlation matrix showing the Pearson correlation coefficients (r) and the P-values for all the samples as influenced by inclusion of black 

soldier fly pre-pupae meal (BSM) in broiler chicken diets on meat quality 

Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1. Chicken 
aroma 

1 -0.295 0.478 -0.537 -0.088 -0.194 -0.143 -0.528 0.463 -0.20 0.129 0.243 -0.134 -0.144 0.091 -0.041 -0.135 0.000 -0.105 0.233 -0.095 0.026 -0.224 -0.026 0.095 0.174 -0.068 
0 0.161 0.018 0.007 0.684 0.364 0.504 0.008 0.023 0.360 0.547 0.253 0.532 0.502 0.674 0.849 0.529 0.999 0.625 0.272 0.659 0.904 0.293 0.903 0.660 0.416 0.751 

2. Metallic 
aroma 

-0.295 1 -0.117 0.056 0.296 0.045 -0.060 0.323 -0.163 0.085 0.107 0.071 0.181 -0.019 -0.047 -0.049 0.141 -0.174 -0.097 -0.416 -0.248 0.031 -0.155 -0.153 -0.130 0.178 -0.016 
0.161 0 0.585 0.796 0.160 0.833 0.781 0.123 0.446 0.694 0.620 0.742 0.398 0.930 0.826 0.821 0.511 0.416 0.653 0.043 0.243 0.886 0.470 0.476 0.546 0.405 0.940 

3. Chicken 
flavour 

0.478 -0.117 1 -0.593 -0.227 -0.226 -0.193 -0.631 0.553 -0.109 0.074 0.094 0.135 -0.079 -0.242 -0.225 -0.088 -0.196 -0.058 0.331 0.162 -0.155 -0.153 -0.072 -0.039 0.283 -0.285 
0.018 0.585 0 0.002 0.286 0.288 0.367 0.001 0.005 0.612 0.730 0.664 0.530 0.712 0.255 0.291 0.681 0.358 0.789 0.115 0.450 0.470 0.477 0.736 0.858 0.180 0.177 

4. Metallic 
flavour 

-0.537 0.056 -0.593 1 0.135 0.231 0.331 0.495 -0.604 0.351 -0.193 -0.015 -0.155 0.044 0.326 0.411 -0.016 0.375 0.102 -0.070 -0.068 -0.059 0.130 0.017 -0.073 -0.175 0.458 
0.007 0.796 0.002 0 0.529 0.277 0.114 0.014 0.002 0.093 0.366 0.943 0.470 0.838 0.120 0.046 0.939 0.071 0.637 0.744 0.752 0.783 0.544 0.936 0.735 0.412 0.024 

5. Initial 
juiciness 

-0.088 0.296 -0.227 0.135 1 0.234 0.163 0.362 -0.197 -0.168 0.293 -0.094 0.048 -0.039 -0.209 -0.172 0.078 -0.116 -0.120 -0.339 0.027 0.557 0.060 -0.279 0.332 0.154 -0.181 
0.684 0.160 0.286 0.529 0 0.271 0.447 0.082 0.357 0.434 0.165 0.663 0.824 0.856 0.327 0.421 0.719 0.590 0.576 0.105 0.899 0.005 0.782 0.186 0.113 0.473 0.397 

6. Sustained 
juiciness 

-0.194 0.045 -0.226 0.231 0.234 1 0.838 0.598 -0.362 -0.245 -0.009 -0.128 -0.529 -0.437 0.338 0.250 -0.521 0.221 0.010 -0.217 0.183 -0.122 -0.063 -0.493 0.124 -0.190 0.153 
0.364 0.833 0.288 0.277 0.271 0 <0.01

1
 0.002 0.083 0.249 0.967 0.552 0.008 0.033 0.106 0.239 0.009 0.300 0.963 0.309 0.393 0.571 0.769 0.014 0.565 0.374 0.477 

7. Tenderness -0.143 -0.060 -0.193 0.331 0.163 0.838 1 0.474 -0.242 -0.152 0.025 -0.159 -0.441 -0.477 0.396 0.299 -0.535 0.201 -0.037 0.017 0.009 0.051 0.053 -0.429 0.026 -0.276 0.207 
 0.504 0.781 0.367 0.114 0.447 <0.01

1
 0 0.019 0.255 0.478 0.907 0.457 0.031 0.019 0.055 0.155 0.007 0.347 0.862 0.938 0.967 0.814 0.807 0.036 0.903 0.192 0.332 

8. Moisture% -0.528 0.323 -0.631 0.495 0.362 0.598 0.474 1 -0.744 -0.006 0.081 -0.035 -0.147 -0.105 0.084 0.113 -0.065 0.075 0.083 -0.267 -0.171 -0.106 -0.048 -0.162 0.111 -0.211 0.109 
 0.008 0.123 0.001 0.014 0.082 0.002 0.019 0 <0.01

1
 0.977 0.705 0.872 0.492 0.624 0.697 0.598 0.764 0.727 0.699 0.207 0.425 0.623 0.825 0.450 0.607 0.322 0.613 

9. Protein % 0.463 -0.163 0.553 -0.604 -0.197 -0.362 -0.242 -0.744 1 -0.524 -0.004 0.109 0.087 -0.093 -0.229 -0.443 0.004 -0.491 -0.211 0.099 0.235 0.107 0.018 -0.047 0.006 0.289 -0.481 
 0.023 0.446 0.005 0.002 0.357 0.083 0.255 <0.01

1
 0 0.009 0.986 0.611 0.686 0.666 0.282 0.030 0.986 0.015 0.323 0.647 0.269 0.618 0.932 0.826 0.976 0.170 0.017 

10. Fat % -0.195 0.085 -0.109 0.351 -0.168 -0.245 -0.152 -0.006 -0.524 1 0.144 0.055 0.262 0.282 0.392 0.611 -0.017 0.579 0.048 0.034 -0.277 0.021 0.123 0.076 -0.296 -0.068 0.670 
 0.360 0.694 0.612 0.093 0.434 0.249 0.478 0.977 0.009 0 0.501 0.799 0.215 0.182 0.058 0.002 0.939 0.003 0.824 0.875 0.190 0.921 0.567 0.724 0.160 0.754 0.000 
11. Iron 0.129 0.107 0.074 -0.193 0.293 -0.009 0.025 0.081 -0.004 0.144 1 -0.118 0.052 -0.128 0.282 0.194 -0.246 0.062 -0.090 -0.278 -0.241 0.564 0.165 -0.291 0.024 0.114 0.165 
 0.547 0.620 0.730 0.366 0.165 0.967 0.907 0.705 0.986 0.501 0 0.582 0.809 0.551 0.183 0.364 0.246 0.773 0.677 0.188 0.256 0.004 0.442 0.168 0.910 0.597 0.441 
12. C14:0 0.243 0.071 0.094 -0.015 -0.094 -0.128 -0.159 -0.035 0.109 0.055 -0.118 1 0.396 0.498 -0.077 -0.250 0.463 -0.337 -0.183 -0.058 -0.097 -0.298 -0.148 -0.341 0.042 0.161 -0.136 
 0.253 0.742 0.664 0.943 0.663 0.552 0.457 0.872 0.611 0.799 0.582 0 0.055 0.013 0.720 0.239 0.023 0.107 0.393 0.786 0.653 0.157 0.491 0.102 0.847 0.453 0.527 
13. C16:0 -0.134 0.181 0.135 -0.155 0.048 -0.529 -0.441 -0.147 0.087 0.262 0.052 0.396 1 0.657 -0.575 -0.555 0.624 -0.602 0.095 0.070 -0.194 -0.041 0.189 0.058 0.087 0.057 -0.466 
 0.532 0.398 0.530 0.470 0.824 0.008 0.031 0.492 0.686 0.215 0.809 0.055 0 0.000 0.003 0.005 0.001 0.002 0.660 0.744 0.364 0.848 0.376 0.787 0.686 0.792 0.022 
14. C18:0 -0.144 -0.019 -0.079 0.044 -0.039 -0.437 -0.477 -0.105 -0.093 0.282 -0.128 0.498 0.657 1 -0.359 -0.295 0.778 -0.341 0.122 -0.025 -0.242 0.024 0.089 0.043 0.160 0.265 -0.129 
 0.502 0.930 0.712 0.838 0.856 0.033 0.019 0.624 0.666 0.182 0.551 0.013 0.000 0 0.085 0.162 <0.01 0.103 0.570 0.908 0.254 0.910 0.680 0.843 0.456 0.211 0.547 
15. C16:1 0.091 -0.047 -0.242 0.326 -0.209 0.338 0.396 0.084 -0.229 0.392 0.282 -0.077 -0.575 -0.359 1 0.899 -0.624 0.715 -0.175 -0.230 -0.132 0.140 0.179 -0.284 -0.295 -0.125 0.872 
 0.674 0.826 0.255 0.120 0.327 0.106 0.055 0.697 0.282 0.058 0.183 0.720 0.003 0.085 0 <0.01

1
 0.001 <0.01 0.412 0.279 0.538 0.513 0.402 0.178 0.161 0.561 <0.01 

16. C18:1n9cis -0.041 -0.049 -0.225 0.411 -0.172 0.250 0.299 0.113 -0.443 0.611 0.194 -0.250 -0.555 -0.295 0.899 1 -0.577 0.903 -0.130 -0.072 -0.179 0.143 0.091 -0.096 -0.307 -0.096 0.976 
 0.849 0.821 0.291 0.046 0.421 0.239 0.155 0.598 0.030 0.002 0.364 0.239 0.005 0.162 <0.01

1
 0 0.003 <0.01 0.546 0.739 0.404 0.504 0.672 0.656 0.144 0.655 <0.01

1
 

17. C18:1n9t -0.135 0.141 -0.088 -0.016 0.078 -0.521 -0.535 -0.065 0.004 -0.017 -0.246 0.463 0.624 0.778 -0.624 -0.577 1 -0.551 0.129 0.049 -0.272 0.022 -0.064 0.242 0.037 0.081 -0.390 
 0.529 0.511 0.681 0.939 0.719 0.009 0.007 0.764 0.986 0.939 0.246 0.023 0.001 <0.01

1
 0.001 0.003 0 0.005 0.548 0.820 0.198 0.917 0.765 0.255 0.863 0.707 0.060 

18. C18:2n6cis 0.000 -0.174 -0.196 0.375 -0.116 0.221 0.201 0.075 -0.491 0.579 0.062 -0.337 -0.602 -0.341 0.715 0.903 -0.551 1 -0.023 0.000 0.045 0.060 -0.108 0.080 -0.246 -0.111 0.860 
 0.999 0.416 0.358 0.071 0.590 0.300 0.347 0.727 0.015 0.003 0.773 0.107 0.002 0.103 <0.01

1
 <0.01

1
 0.005 0 0.915 0.999 0.833 0.782 0.616 0.712 0.247 0.606 <0.01 

19. C18:3n3 -0.105 -0.097 -0.058 0.102 -0.120 0.010 -0.037 0.083 -0.211 0.048 -0.090 -0.183 0.095 0.122 -0.175 -0.130 0.129 -0.023 1 -0.167 -0.112 -0.139 -0.135 0.136 0.069 0.154 -0.119 
 0.625 0.653 0.789 0.637 0.576 0.963 0.862 0.699 0.323 0.824 0.677 0.393 0.660 0.570 0.412 0.546 0.548 0.915 0 0.435 0.604 0.517 0.529 0.526 0.749 0.473 0.581 
20. Thaw loss 0.233 -0.416 0.331 -0.070 -0.339 -0.217 0.017 -0.267 0.099 0.034 -0.278 -0.058 0.070 -0.025 -0.230 -0.072 0.049 0.000 -0.167 1 -0.062 -0.280 -0.018 0.252 0.104 -0.283 -0.089 
 0.272 0.043 0.115 0.744 0.105 0.309 0.938 0.207 0.647 0.875 0.188 0.786 0.744 0.908 0.279 0.739 0.820 0.999 0.435 0 0.775 0.186 0.932 0.235 0.627 0.180 0.679 
21. Cooking 
loss 

-0.095 -0.248 0.162 -0.068 0.027 0.183 0.009 -0.171 0.235 -0.277 -0.241 -0.097 -0.194 -0.242 -0.132 -0.179 -0.272 0.045 -0.112 -0.062 1 -0.276 -0.068 -0.124 0.284 -0.017 -0.276 
0.659 0.243 0.450 0.752 0.899 0.393 0.967 0.425 0.269 0.190 0.256 0.653 0.364 0.254 0.538 0.404 0.198 0.833 0.604 0.775 0 0.192 0.753 0.563 0.179 0.938 0.192 

22. pH initial 
breast 

0.026 0.031 -0.155 -0.059 0.557 -0.122 0.051 -0.106 0.107 0.021 0.564 -0.298 -0.041 0.024 0.140 0.143 0.022 0.060 -0.139 -0.280 -0.276 1 0.289 -0.155 0.038 0.164 0.171 
0.904 0.886 0.470 0.783 0.005 0.571 0.814 0.623 0.618 0.921 0.004 0.157 0.848 0.910 0.513 0.504 0.917 0.782 0.517 0.186 0.192 0 0.171 0.470 0.862 0.445 0.425 

23.pH ultimate 
breast 

-0.224 -0.155 -0.153 0.130 0.060 -0.063 0.053 -0.048 0.018 0.123 0.165 -0.148 0.189 0.089 0.179 0.091 -0.064 -0.108 -0.135 -0.018 -0.068 0.289 1 -0.233 0.000 -0.418 0.098 
0.293 0.470 0.477 0.544 0.782 0.769 0.807 0.825 0.932 0.567 0.442 0.491 0.376 0.680 0.402 0.672 0.765 0.616 0.529 0.932 0.753 0.171 0 0.273 0.999 0.042 0.649 

24. AL -0.026 -0.153 -0.072 0.017 -0.279 -0.493 -0.429 -0.162 -0.047 0.076 -0.291 -0.341 0.058 0.043 -0.284 -0.096 0.242 0.080 0.136 0.252 -0.124 -0.155 -0.233 1 -0.436 -0.171 -0.066 
 0.903 0.476 0.736 0.936 0.186 0.014 0.036 0.450 0.826 0.724 0.168 0.102 0.787 0.843 0.178 0.656 0.255 0.712 0.526 0.235 0.563 0.470 0.273 0 0.033 0.423 0.758 
25. Aa 0.095 -0.130 -0.039 -0.073 0.332 0.124 0.026 0.111 0.006 -0.296 0.024 0.042 0.087 0.160 -0.295 -0.307 0.037 -0.246 0.069 0.104 0.284 0.038 0.000 -0.436 1 0.199 -0.341 
 0.660 0.546 0.858 0.735 0.113 0.565 0.903 0.607 0.976 0.160 0.910 0.847 0.686 0.456 0.161 0.144 0.863 0.247 0.749 0.627 0.179 0.862 0.999 0.033 0 0.351 0.103 
26. Ab 0.174 0.178 0.283 -0.175 0.154 -0.190 -0.276 -0.211 0.289 -0.068 0.114 0.161 0.057 0.265 -0.125 -0.096 0.081 -0.111 0.154 -0.283 -0.017 0.164 -0.418 -0.171 0.199 1 -0.092 
 0.416 0.405 0.180 0.412 0.473 0.374 0.192 0.322 0.170 0.754 0.597 0.453 0.792 0.211 0.561 0.655 0.707 0.606 0.473 0.180 0.938 0.445 0.042 0.423 0.351 0 0.671 
27. MUFA

2
 -0.068 -0.016 -0.285 0.458 -0.181 0.153 0.207 0.109 -0.481 0.670 0.165 -0.136 -0.466 -0.129 0.872 0.976 -0.390 0.860 -0.119 -0.089 -0.276 0.171 0.098 -0.066 -0.341 -0.092 1 

 0.751 0.940 0.177 0.024 0.397 0.477 0.332 0.613 0.017 0.000 0.441 0.527 0.022 0.547 <0.01
1
 <0.01

1
 0.060 <0.01

1
 0.581 0.679 0.192 0.425 0.649 0.758 0.103 0.671 0 

The numbers in the first row correlates with the numbers of the attributes in the first column 
The first row of each attribute shows the Pearson correlation coefficient (r) and the second row of each attribute shows the P-value. 
All the bolded values they are significant at P<0.05 
t Trans 
1 
<0.001 

2
 Mono-unsaturated fatty acids 
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Figure 6.1 Descriptive analysis (DA) plot illustrating the classification of treatments based on the tested 

parameters 

 

 

Figure 6.2 Descriptive analysis (DA) plot illustrating prominent parameters as per treatment based on 

observation DA plot Figure 6.1 
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Figure 6.3 Principle component analysis (PCA) bi-plot indicating the means for each analysed parameter 

with the sensory attributes as per treatment replications 

 

6.4 Discussion 

6.4.1 Carcass characteristics 

Carcass characteristics are essential attributes determining portion yields for retail. The inclusion of BSM in 

broiler chicken diets did not (P>0.05) influence carcass characteristics regarding live slaughter weight, cold 

carcass weight and dressing percentage. Pieterse et al. (2014) found inclusion of 10% house fly (HF) larvae 

meal in broiler chicken diets had significantly influenced live slaughter and cold carcass weight, with chicks 

fed larvae meal attaining higher weights than chicks on the control diets, but dressing percentage was not 

significantly influenced by treatment. Similarly, Hwangbo et al. (2009) found higher dressing percentage, 

breast muscle and thigh muscle of broiler chickens fed HF meal (included at 5, 10, 15 and 20%). The studies 

by Pieterse et al. (2014) and Hwangbo et al. (2009) are not comparable to this study due to differences in 

insect species used. Even though the studies are not comparable, their results indicate insect meals to be 

potential feed sources yielding meat of similar size portions as those fed diets containing traditional feed 

ingredients. Overall, insect meals have proven to contain nutrients that sustain broiler production. 

 

Although the chicks receiving the 15% treatment diets attained a higher (P>0.05) skin plus fat percentage of 

the breast portion than the chicks receiving the control diet, this might be attributed to increased level of BSM 

in the diet but is not conclusive due to the wide variations found (R
2
=0.27) within each treatment. The 

ANOVA results for muscle percentage of the breast portion indicated treatment differences (P=0.032), but 

the Bonferroni’s post hoc (least square means) test showed no treatment differences. There is no biological 

0 

0 

0 

0 

0 

0 

5 

5 

5 

5 

5 

5 

10 

10 

10 

10 

10 

10 

15 

15 

15 

15 

15 

15 
ChickenAroma 

Metallicaroma 

Chickenflavour Metallicflavour 

Initialjuiciness 

SustainedJuiciness 
Tenderness 

% Moisture % Protein 

% Fat 

% Ash 

phoshorous 

potassium 

calcium 

magnesium 

sodium 

iron copper 

zinc 

manganese 

Boron 

C14:0 
C16:0 

C18:0 
C16:1 

C18:1n9c 

C18:1n9t 

C18:2n6c 

C18:3n3 

SFA 

MUFA 

PUFA n-6 

n-3 

thaw loss 

cooking loss 

phᵢ R breast 

phᵢ R thigh 

phᵤ R breast 

phᵤ R thigh 

AL 

Aa 

Ab 

hue 

Chroma 

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

F2
 (

1
2

.8
0

 %
) 

F1 (20.35 %) 

Biplot (axes F1 and F2: 33.15 %) 

Stellenbosch University  https://scholar.sun.ac.za



 
 

106 
 

explanation to these statistical results obtained but these may be attributed to the cutting method, causing 

differences in cut portions since a desk deboning method was used. The deboning method might have led to 

more meat remaining on the bone or skin plus fat bringing about the huge variations within each treatment 

as indicated by the low R
2 

value of
 
0.27. No treatment differences were obtained regarding the bone 

percentage of the breast portion (R
2
=0.22). The coefficient of determination (R

2
) value indicates the extent at 

which the results are explained by the statistical model with a R
2
 ≥75% considered as a good fit for the 

model. The lack of treatment differences attained regarding the carcass characteristic parameters 

investigated might be attributed to an adequate amino acid content of the BSM (Table 2.8) supporting normal 

meat development in broiler chickens. The use of BSM have been researched mainly in fish, with Sealey et 

al. (2011) reporting no significant treatment influence on fish muscle ratio and Kroeckel et al. (2012) noting a 

decrease in slaughter body weight with increased levels of BSM in the diets fed to juvenile turbot. There is, 

however no supporting literature found on effect of BSM or larvae meal on carcass characteristics when fed 

to poultry. 

 

6.4.2 Physical measurements 

Treatment did not (P>0.05) influence the physical measurements analysed. Meat colour is considered by 

consumers as an important quality cue at point of purchase (Qiao et al., 2002; Hoffman & Cawthorn, 2012). 

The paleness of meat is indicated by the L* value of the meat, with a high L* value being an indicator of poor 

meat quality (Chen et al., 2013). Meat colour is defined by the hue angle while the Chroma value indicates 

extent of colour intensity and saturation of a muscle. An increased hue angle will mean less red colour in the 

meat, while an increased Chroma value will mean redder meat colour. In this study, the L*, a*, b*, hue and 

Chroma values were not significantly affected by treatment; attaining similar colour to muscles yielded from 

chicks fed the control diet which resemble commercially sold chicken meat. According to Barbut (1997) and 

Allen et al. (1998), dark broiler breast fillets have a high muscle pH with a low lightness (L*) value and a high 

water-holding capacity (low drip loss and low cooking losses) than light breast fillets. The L* value of the raw 

breast meat was observed to be above 53.93, just meeting the threshold value of pale soft exudate (PSE) of 

L*≥54 set by Barbut (1997), while Van Laack et al. (2000) states normal broiler meat colour have L* values 

ranging between 50 and 56. Therefore, according to Van Laack et al. (2000), the L* values indicate that no 

PSE or dark firm dry meat was found which was further confirmed by the absences of the sensory attributes 

of mealiness and toughness from the meat samples as tested by DSA.  

 

Research has shown that there is a positive correlation between water-holding capacity and pH values of 

fresh meat (Barbut, 1997; Allen et al., 1998). The initial pH value of the breast muscle in this study 

decreased 24 h later to reach an ultimate pH of 6.13-6.18 with no treatment differences found (P>0.05). Van 

Laack et al. (2000) reported normal broiler breast meat to have an ultimate pH of 5.96, which is lower than 

that obtained in this study. The initial and ultimate pH of the thigh muscle for birds receiving the control diet 

remained the same while that of the 10% BSM increased with 0.01 units attaining an ultimate pH of 6.66. 

The ultimate pH measured was slightly higher than the normal range as indicated by Laack et al. (2000) but 

this was however acceptable and did not affect the water holding capacity (thaw and cooking loss) and 

colour of the meat. The 5% BSM treatment diet broiler chickens thigh portion’s ultimate pH value increased 
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while that of the 15% decreased 24 h later. However, no treatment differences were found (P>0.05) 

regarding initial and ultimate pH of the thigh muscle. Despite the slightly high ultimate breast pH obtained, it 

was not observed to affect colour, water retention and texture of the meat, which were in optimal ranges and 

also further substantiated by the lack of correlations found (Figure 6.3). No treatment differences were found 

regarding thaw loss, cooking loss, initial and sustained juiciness and tenderness, which are indications of 

water retention of the meat samples. The meat samples attained thaw loss of ±3.5% and ±40% cooking loss, 

translating into high initial and sustained juiciness (both above 70%) and high tenderness (above 80%) as 

generated by DSA. Therefore, the use of BSM in broiler diets did not influence the physical measurements of 

the meat. 

 

6.4.3 Chemical analysis 

Treatment effects on cooked breast meat proximate analysis and amino acids results revealed no (P>0.05) 

differences. The broiler cooked meat was observed to contain percentage moisture, protein, fat and ash 

similar to that of commercial broilers as analysed by Geldenhuys et al. (2013) and the control utilised in this 

study. This was expected due to the adequate nutritional content of BSM (Chapter 3) and its proven effects 

on the meat quality of various fish species investigated (St-Hilaire et al., 2007; Sealey et al., 2011; Kroeckel 

et al., 2012). 

 

The identified fatty acid content of the cooked breast meat was directly influenced by the fatty acid content of 

the treatment diets. This is confirmed by various authors, reporting fatty acid composition of the feed to pre-

determine the fatty acid composition of the meat produced in monogastric animals (Coetzee & Hoffman, 

2002; Cao et al., 2012). The feed was found to be particularly high in all the identified fatty acids deposited in 

the meat. The cooked breast meat was found to be high in palmitic acid (C16:0) and linoleic acid 

(C18:2n6cis) and low in palmitic acid (C16:1) and myristic acid (C14:0). Furthermore, the treatment diets 

were high in C18:2n6cis and contained traces of C18:1n9trans, C20:1, C22:1n9 and C18:2n6trans. 

 

The meat samples were observed to be high in SFA followed by PUFA then MUFA, while the feed samples 

were high in PUFA; over 50% across all three feeding stages diets. The recommended PUFA/SFA for 

humans is >0.45 (Raes et al., 2004). The ratios of PUFA/SFA in the cooked meat were 0.52-1.05, higher 

than that recommended, although they were not significantly different from each other as pertaining to diet. 

The PUFA/SFA was noted to be lower than that found by others in cooked broiler chicken meat (Geldenhuys 

et al., 2013). Meat fatty acid content results however, are not entirely comparable as they are pre-determined 

by diet and may differ significantly. Polyunsaturated fatty acids are considered vital in human diets as they 

are responsible for various functions in the body as precursors of cellular function molecules especially those 

involved in reproduction, blood coagulation, inflammation and cardiac physiology (Durand et al., 2005). 

Kroeckel et al. (2012) observed BSM to be high in SFA (Table 2.7) which might have led to the high SFA 

content of the meat observed in this study (Table 6.11). The C14:0 fatty acid compound of the breast meat 

was influenced (P<0.05) by treatment, with the 15% diet being significantly higher than the control diet. A 

similar trend was observed in the C14:0 content of the feed where it was observed to be higher in the 15% 

treatment diets and lower in the control diets, which may explain the significant differences observed in the 
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meat content. However, the reason for this specific fatty acid being higher in this diet is unclear as the same 

raw materials were used during the mixing of the diets. 

 

The cooked broiler chicken meat as influenced by inclusion of BSM was found to be low in the omega-3 and 

omega-6 fatty acids, which is expected in poultry meat. The omega-3 fatty acids are important in human 

diets as mammals cannot convert omega-6 to omega-3, which is found to modulate and prevent coronary 

heart diseases and cardiovascular diseases (Simopoulos, 2002). A dietary omega-6/omega-3 ratio value not 

>5 is recommended for human consumption (Legrand, 2002), as an increase intake of omega-6 in human 

diets can cause an increase in high-density lipoprotein cholesterol causing potential health risks 

(Simopoulos, 2002). Therefore, poultry meat contain an amount of n-6/n-3 sufficient to sustain daily 

requirements without concerns of consuming more than required for health related reasons. 

 

No published data was found documenting the chemical composition of broiler chicken meat as affected by 

inclusion of BSM in their diets. However, Pieterse et al. (2014) reported the use of HF in broiler chicken diets 

produced meat with an acceptable chemical composition comparable to those fed soya bean and fish meal 

diets. Therefore, it can be concluded that insect meals used in broiler chickens have the potential to produce 

meat with similar chemical composition as those fed diets containing traditional feed ingredients. 

 

6.4.4 Descriptive sensory analysis and correlations 

No treatment differences were observed (P>0.05) regarding sensory attributes analysed for chicken aroma 

and flavour, metallic aroma and flavour, initial and sustained juiciness and tenderness of broiler meat. Similar 

effects of BSM on fish meat were observed by Bondari & Sheppard (1981) and Sealey et al. (2011). In a 

study by Pieterse et al. (2014), broiler chickens fed HF larvae and pupae meal produced breast meat that 

was high in metallic flavour compared to those fed soya-bean and fishmeal based diets and warranted 

further research on iron uptake of insect larvae and pupae. In this study the use of BSM in broiler chicken 

diets led to no treatment differences regarding cooked breast meat iron content (Table 6.12), metallic flavour 

and metallic aroma (Table 6.13). Furthermore, no correlations were found regarding metallic flavour and 

aroma to the iron content of the cooked breast meat (Table 6.15). 

 

The results obtained from the physical, chemical and proximate analysis were analysed for correlations with 

sensory attributes, however minimal significant correlations were found (Table 6.15). Due to minimal 

meaningful significant correlations, those to be discussed are shown in Table 6.14. The principle component 

analysis (PCA) bi-plot and descriptive analysis (DA) plot illustrates the respective correlation of the physical, 

chemical, proximate and sensory attributes as affected by treatment. The DA plot (Figure 6.2) further 

classified into treatment effects by Figure 6.1 illustrating the specific attributes that were found dominant in 

each treatment. Firstly, the DA plot indicates the 15% treatment diet chicken’s yielded meat associated with 

C14:0, C16:1, ash percentage, metallic aroma and flavour and Iron. Secondly, the 10% treatment diet 

samples are associated with SFA, C181n9trans, Chroma, cooking loss and moisture percentage, whilst the 

0% treatment diet (control) yielded breast portions associated with omega-3 fatty acids, sodium, calcium, 

phosphorous, L* and initial juiciness. Lastly, the chicks receiving the 5% treatment diet produced meat 
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associated with chicken aroma and flavour, PUFA, MUFA, hue and tenderness. The association of attributes 

found in each treatment samples illustrated by the DA plot, were however not significant as no treatment 

differences were observed. 

 

The PCA bi-plot illustrates the sensory attributes associated with each sample. The extent of each line as 

indicated in Figures 6.2 and 6.3 show the correlation (r) strength and weakness, which are clearly weak. The 

PCA bi-plot generated is complex to explain as no general trend in treatment groupings was obtained as the 

observations were scattered across the plot. It can, however be observed that fat percentage is positively 

correlated to most of the fatty acids but negatively correlated to protein percentage, chicken aroma and 

metallic aroma. It is expected for the intramuscular fat in meat to be positively correlated to tenderness 

(Warriss, 2000) and flavour (Geldenhuys et al., 2014), although no strong correlations were found for fat 

percentage to tenderness and flavour in this study; this may be attributed to the low fat content of the meat 

(Table 6.6). Tenderness was rather observed to be positively correlated to moisture percentage and 

sustained juiciness. The correlations were both significant and stronger (r=0.838) in sustained juiciness and 

weak (r=0.474) in moisture percentage. No specific fatty acid was correlated to flavour. Lack of literature on 

effects of BSM on meat sensory attributes of broiler chickens resulted in minimal comparison to substantiate 

the results obtained. However, the results obtained are promising to the broiler industry confirming BSM to 

be a viable protein source in broiler chickens producing meat equivalent in sensory quality to the control 

birds. 

 

6.5 Conclusion 

The viability of BSM as an alternative protein source in broiler chickens is not only proven on basis of its 

ability to maintain growth but also on its meat quality. The inclusion of BSM in broiler diets did not influence 

the quality of the meat produced nor compromise the meat eating quality as no taste discrimination was 

observed by DSA utilising trained panellists. However, it is of interest to study the acceptability of meat 

protein sources produced from non-traditional feed sources to consumers. This is of significance as some 

consumers might regard the use of insect meals as feed sources in animal diets to be organic and some not, 

which can be a major determinant of the commodity price and thus a possible marketing strategy. 

Furthermore, the larvae of black soldier fly has the advantage of re-utilising waste products and is therefore 

more “green” and thus suitable for consumers’ demands. This will enable reduction of organic waste and in 

the process producing pre-pupae usable for broiler chicken production that is proven to not compromise the 

quality of meat produced. 
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Chapter 7 

General conclusion and recommendations 

 

The objectives of this study were fourfold, strategized into investigating the potential of black soldier fly pre-

pupae meal (BSM) as a protein source in the production of broiler chickens. Firstly, the coefficients of total 

intestinal tract digestibility (CTTD) values of nutrients in various processed BSM’s in broiler chickens were 

obtained. The results indicated that BSM’s were digestible in broiler chickens attaining CTTD’s higher than 

70%. The removal of fat from BSM significantly increased digestibility of nutrients as compared to the full fat 

BSM dried at 65 °C (BSM65) diet. In this study the nutrient composition of the BSM used was not analysed 

which would have shed more light on its specific nutritional composition. Further research is also 

recommended to investigate the effects of the defatted BSM dried at 65 °C (DF-BSM) meal since it attained 

the highest CTTD of analysed nutrients. This will enable the quantification of the bioavailability of nutrients in 

DF-BSM for broiler production. 

 

In the second part of the study BSM dried at 65 °C (BSM) was tested for its effects on production of broiler 

chickens as a protein source included at 0, 5, 10 and 15%. The results of the production study indicated 

BSM inclusion in broiler chickens diets as a protein source sustained and support normal bird growth, since 

no major treatment differences were observed. The use of insect meals in animal diets will also lead to an 

increase in organic waste vermi-composting, thereby minimizing waste effects, and in the process yield 

larvae, pupae or pre-pupae which will increase protein availability for animal use. This will contribute to food 

security as it will minimize usage of specific crop products, also used for human consumption, in broiler diets. 

 

Thirdly, the study investigated the effects of BSM on organ, gut and skeletal parameters of broiler chickens. 

The organ size, small intestine pH and histomorphology measurements were analysed and no key treatment 

differences were observed. Furthermore, the breaking strength, ash percentage and mineral composition of 

the tibia bone were evaluated and no treatment differences were observed as compared to the control. 

Treatment differences were, however found between the 5% and 15% treatment diets regarding Ca content 

of the tibia bones; indicating an increase in BSM inclusion to have led to an increase in tibia bone Ca 

content. This indicates that the Ca content within the BSM might have a high bioavailability to the birds given 

that the treatment diets were formulated for equal Ca levels. Therefore, it is recommended to research 

further the effects of different supplementation levels of Ca in diets containing 15% BSM on broiler chicken 

production to quantify the bioavailability of Ca in BSM to broiler chickens and their effects on bone strength. 

 

The last objective was to determine the quality of meat produced from broiler chickens fed BSM included at 

0, 5, 10 and 15%. The quality of the meat of the chickens fed the different diets was determined by physical 

measurements (colour, pH, thaw and cooking loss), carcass portion yields, nutrient composition (proximate, 

amino acids and fatty acids), mineral content and sensory analysis (flavour, tenderness and juiciness) with 

no significant treatment differences observed. Therefore, it can be concluded that the inclusion of BSM in 

broiler chickens diets produced meat without compromising its quality. It was of interest to determine the 
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effect of the BSM iron content on the meat metallic flavour and aroma as suggested by previous authors 

based on the high iron uptake by insect larvae. However, no treatment differences were observed regarding 

all sensory attributes investitaged. Further research is warranted on iron uptake of various insects’ larvae fed 

different sources of organic waste. This will enable the quantification of iron intake by insects which can be 

used to produce meat and products with low or high iron content, depending on nutritional requirements in 

various geographical regions across the globe. Research is warranted on the consumer perception and 

acceptability of meat products produced from animals fed diets containing insect meal as a feed ingredient. 

 

It can, therefore, be concluded that BSM is a viable protein source suitable for use in broiler chicken 

production, without compromising the production efficiency. Also, the study showed that BSM has the ability 

to sustain broiler chickens growth and subsequently produce meat without compromising its physical, eating 

and chemical quality. Depending on the economies of scale and availability of BSM, it can be included in 

broiler chicken diets as a protein source up to 15% (the maximum inclusion level tested in these 

experiments), without affecting production of broiler chicken or quality of meat produced. The use of BSM in 

broiler chicken diets can enhance the broiler feed industry by contributing to the reduction of protein shortage 

for use in poultry diets. The challenge is therefore to produce BSM in sufficient quantities and of similar 

quality utilisable in broiler chicken production. Further research is recommended on the cost-benefit analysis 

of producing insect meals and their use in animal diets on both small and large scale production. 

 

Lastly, the effects of BSM on the production efficiency of layers, aquaculture, the production of pigs and 

ruminant animals are lacking and research is required to quantify these effects. 
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