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ABSTRACT 

Agricultural intensification can involve the simplification of agroecosystems to crop 

monocultures requiring agrochemicals to maintain soil fertility and control pests. This can have 

negative impacts on the ecosystem services flowing to and from agroecosystems and thus, 

more sustainable management practices are necessary. Broader ecological theories propose 

that ecosystem biodiversity is important for ecosystem function. Within agriculture, increasing 

aboveground diversity through crop rotation, a component of conservation agriculture, can 

enhance the ecosystem services supporting an increase in cash-crop yield. The extent to 

which the belowground microbial diversity can be manipulated through crop rotations and may 

facilitate the yield increase is unclear. This thesis aimed at investigating (1) the relationship 

between above and belowground diversity in crop rotation systems, and (2) the relationship 

between diversity in (1) and agroecosystem function in terms of soil fertility, including nitrogen 

fertility, and crop yield.  

A quantitative review of the literature using a meta-analysis of 27 studies from around the 

world found that soils under a higher diversity of crops in rotation produced higher microbial 

richness (+15.11%) and diversity (+3.36%) scores. This effect was significantly influenced by 

the type of microbial analysis method used, the length of the study trial, and the percentage 

annual ground cover. There was a high between-study heterogeneity and no correlation to soil 

nitrogen fertility.  

A field study at Langgewens Experimental Farm (Western Cape Department of Agriculture’s 

19-year wheat-legume crop rotation trial in the Swartland Local Municipality of South Africa) 

added to the meta-analysis. Community level physiological profiling (CLPP) and automated 

rRNA intergenic spacer analysis (ARISA) were used as measures of functional and genetic 

microbial diversity, respectively. Increasing crop diversity through rotations of wheat with 

medic (Wm) or a combination of medic and clover (Wmc) resulted in greater wheat plant stem 

length and N concentrations when compared to wheat monoculture (WW). This effect seemed 

to be less linked with microbial diversity per se than with the Rhizobium species present 

because both microbial analyses found no differences in soil microbial activity, richness or 

diversity with increasing crop diversity. The lack of relationship between above and 

belowground diversity is likely due to other abiotic drivers of microbial community structure 

such as P availability, Na and K excess, and pH, all of which correlated to microbial activity 

and functional richness in our study. The role that microbial diversity plays in the 
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agroecosystem diversity-function relationship remains complex as revealed by the lack of 

correlation between functional and genetic diversity scores. However, the relation between 

crop diversity and functional components including wheat yield and soil N followed a hump-

shaped curve.  

The results of this thesis suggest that soil biodiversity and function are decoupled in 

agroecosystems. This provides support for the hypothesis that ecosystem function may be a 

product of either specific productive species (selection effect), or the facilitative interaction of 

multiple species (complementarity effect). Further investigation into the role of specific 

functional microbial groups in the yield increase of crop rotation systems using next-generation 

sequencing is required. 
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OPSOMMING 

Die verhoging van landbou intensiteit behels die omskakeling van landbou ekosisteme na 

monokultuur, wat landbou-chemikalieë vereis om grondvrugbaarbeid te handhaag en peste in 

toom te hou. Hierdie praktyke het 'n negatiewe impak op ekosisteemdienste wat vloei van of 

na die landbou-ekosisteme. Dit vereis meer volhoubare landboubestuurspraktyke. Wyer 

ekologiese teorieë stel voor dat ekosisteem biodiversiteit 'n belangrike rol speel in die funksie 

van die ekosisteem. Binne landboupraktyke, kan 'n toename in bogrondse diversiteit deur 

wisselbou, die ekosisteemdienste verbeter, wat lei tot 'n toename in die opbrengs in kontant 

gewasse. Die mate waartoe die ondergrondse mikrobiese diversiteit gemanipuleer kan word, 

is nog onduidelik. Hierdie tesis beoog om (1) die verwantskap tussen die bogrondse en 

ondergrondse diversiteit  in wisselbousisteme, en (2) die verwantskap tussen die diversiteit in 

(1) en die lanbouekosisteem funksie te ondersoek in terme van grondvrugbaarheid, insluitend 

stikstofvrugbaarheid, en gewasopbrengs.  

‘n Kwantitatiewe oorsig van literatuur deur gebruik te maak van ‘n meta-analise van 27 studies 

van regoor die wêreld, het gevind dat grond met 'n hoër diversiteit van gewasse in wisselbou 

gelei het tot ‘n hoër mikrobiese (+15.11%) tellings, terwyl die effek van diversiteit (+3.36%) nie 

beduidend was nie. Die effek van diversiteit was beduidend beïnvloed deur die tipe 

mikrobiese-analitiese metode wat gebruik was, die lengte van die toetsperiode en die 

persentasie van jaarlikse grondbedekking. Die heterogeniteit tussen studies was hoog en daar 

was geen korrelasie met grond stikstofvrugbaarheid nie. 

‘n Veldstudie by Langgewens proefplaas (Weskaap Departement van Landbou se 19-jaar 

koring-peulplant wisselbou toets in die Swartland plaaslike munisipaliteit,Suid-Afrika) is 

bygevoeg tot die meta-analiese. Gemeenskapvlak fisiologiese profiel bepalin (GVFP) en 

automatiese rRNS intergeniese spasie analiese (ARISA) is onderskeidelik gebruik as 

maatstawwe van funksionele en genetiese mikrobiese diversiteit. Toenemende gewas 

diversiteit deur wisselbou van koring met medic (WM) of ‘n kombinasie van medic en klawer 

(Wmc) het ‘n groter koringplant stamlengte en N konsentrasie tot gevolg gehad wanneer dit 

vergelyk word met koring monokultuur (WW). Die effek blyk minder gekoppel te wees met 

mikrobiese diversiteit per se as met die Rhizobium spesies wat betrokke is. Mikrobiese 

analieses van beide sisteme het gevind dat daar geen veranderinge in die grond se mikrobiese 

aktiwiteit, rykdom of diversiteit is, met toename in gewasdiversiteit nie. Die afwesigheid van ‘n 

verhouding tussen die bogrondse en ondergrondse diversiteit is waarskynlik ook as gevolg 

van ander abiotiese drywers van die mikrobiese gemeenskapstruktuur soos beskikbaarheid, 

oormaat in Na en K, en pH, wat alles gekoppel is aan mikrobiese-aktiwiteit en funksionele 

rykdom in die studie. Die rol wat mikrobiese diversiteit speel in die agro-ekosisteem diversiteit 
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funksie bly kombleks soos uitgewys deur die gebrek aan verwantskap tussen die funksionele 

en genetiese diversiteitstellings. Nietemin, die verhouding tussen gewas-diversiteit en 

funktionele komponente, insluitend koringopbrengs en grond N, het ‘n bultvormige kurwe 

gevolg. 

Die resultate van hierdie tesis dui daarop dat biodiversiteit en funksie ontkoppel is in landbou-

ekosisteme. Dit ondersteun die hipotese dat ekosisteem-funksie ‘n produk kan wees van of 

spesifieke produktiewe spesies (seleksie effek), of die fasiliterende interaksie van verskeie 

spesies (komplimentêre effek). ‘n Verdere ondersoek in die rol van spesifiek funksionele 

groepe in die opbrengs toename van wisselbou sisteme word benodig deur gebruik te maak 

van volgende-generasie DNA volgorde bepaling. 
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CHAPTER 1: GENERAL INTRODUCTION AND RESEARCH AIMS 

 

The intensification of conventional agricultural practices has been associated with the 

simplification of cropping systems to monocultures, resulting in a loss of 75% of global 

agricultural crops over the past 60 years (Kotze and Rose, 2015). Instead of incorporating the 

natural ecosystem services resulting from diversifying cropping systems, conventional 

agriculture relies on the use of petrochemicals (pesticides, herbicides and fertilizers) to 

enhance soil fertility and control pests (Karlen et al., 1994). The practices associated with 

monocultures pose a threat to the ecosystem services flowing to and from agroecosystems 

by contributing to soil erosion, pollution of groundwater, release of green-house gases and 

biodiversity loss (Tilman, 2001). Thus, the simplification of agroecosystems may compromise 

their sustainability. 

In response to the negative effects of the agricultural green revolution, there has emerged a 

paradigm shift toward sustainability. The adoption of conservation agriculture in crop systems 

is an example of this shift, and it involves the practice of crop rotation, along with no-till and 

soil cover, as a means of agroecosystem diversification (Hobbs et al., 2008). Historically, the 

adoption of crop rotations was largely motivated by the associated yield increase in the cash 

crop (Bullock et al., 1992). Numerous scientific studies have shown the correlation between 

yield increase and increasing crop diversity (Smith et al., 2008). The causal mechanisms 

through which this yield increase is achieved, generally considered components of 

agroecosystem function, include increased soil fertility (particularly when leguminous plants 

are used in rotation), maintenance of soil structure, disruption of pest cycles and weed 

suppression.  

It is widely understood that the delivery of these services is mediated by the microorganisms 

within the soil as they are responsible for many biogeochemical reactions concerning nutrient 

cycling and climate mitigation (de Vries et al., 2013). Soil microorganisms enhance soil fertility 

through the mineralisation of limiting nutrients such as nitrogen (N) and phosphorus (P) (Dias 

et al., 2015). For example, N2-fixing bacteria and mycorrhizal fungi are responsible for 5 to 

20% N and 75% of P acquired in grassland and savannah plants annually (van der Heijden et 

al., 2008) as well as in the crop plants wheat and carrot (Hawkins et al., 2000). Yet, the extent 

to which the biodiversity of soil microorganisms, in terms of species richness and relative 

abundance, affects nutrient cycling and the other ecosystem services associated with crop 

rotations is unclear.  

Within the broader context of diversity-ecosystem function theory, there are a number of 

hypotheses around the relationship between diversity and function (Figure 1.1). An increase 
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in crop and/or microbial diversity may result in a linear, curvilinear or poorly curvilinear 

relationship with the agroecosystem function (Smith et al., 2008; Vitousek and Hooper, 1994). 

Alternatively, it has been proposed that the well-known hump-shaped relation between 

biodiversity and function in higher plants may as well be true for soil microbial biodiversity 

(Anderson, 2003; Nannipieri et al., 2003).  

 

Figure 1.1: Graphical depiction adapted from broader diversity-ecosystem function theories (Anderson, 

2003; Nannipieri et al., 2003; Smith et al., 2008; Vitousek and Hooper, 1994) and their possible 

mechanisms, indicated in brackets (Hooper et al., 2000; Hooper et al., 2005). 

Studying the relationship between diversity and function requires the understanding of the 

mechanisms involved.  Broader ecological theories suggest the relationship may be governed 

by alternative mechanisms, namely the selection effect or complementarity effect (Figure 1.1; 

Hooper et al., 2000; Hooper et al., 2005). Ecosystem function may be a product of a singular 

key-stone species such as N2-fixing Rhizobia (the selection effect), or due to the facilitation 

and niche differentiation associated with a number of species. Another theory related to the 

complementarity effect hypothesis is that of functional redundancy (Giller et al., 1997). A 

diversity of species within an ecosystem contributes to its resilience to stress or disturbance 

due to multiple taxonomic sub-units that can perform the same function and have variable 

tolerances to stress. For example, experiments have shown that higher microbial diversity 

results in shorter recovery time in pasture soil communities after short-term and long-term 

stress (heat and fumigation), i.e. increased resilience (Griffiths et al., 2000). Within 
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agroecosystems, the aforementioned theoretical mechanisms may be at work in combination, 

thus providing support for both the decoupling and coupling of biodiversity with function.  

Supposing there is a given relationship between biodiversity (aboveground and belowground) 

and agroecosystem function, it becomes important to understand the drivers of biodiversity if 

we want to enhance agroecosystem function. Aboveground diversity in agroecosystems can 

generally be manipulated through increasing or decreasing the number of crops in rotation. 

Belowground diversity (microbial diversity) is, however, not as easily manipulated through 

agricultural management practices as there are abiotic drivers (edaphic variables such as soil 

pH and moisture) which are considered primary drivers (Berg and Smalla, 2009). Yet, plant 

diversity is also now recognised as an important driver of soil microbial diversity and it has 

been posited that increasing aboveground diversity through crop rotations can result in 

corresponding increases in diversity belowground (Hooper et al., 2000). However, there is 

conflicting evidence in the literature on this relationship. For example, studies using molecular-

based methods measuring genetic microbial diversity have shown positive (Yao et al., 2006; 

Guong et al., 2012), negative (Mathimaran et al., 2007; van Elsas et al., 2002; Yin et al., 2010) 

and contrasting effects (Alvey et al., 2003; Azziz et al., 2012) of crop rotations on functional 

microbial diversity.  

To date, there is no comprehensive review of the literature examining the link between crop 

diversity, soil microbial diversity and agroecosystem function. In addition, no studies have 

examined this dynamic within South Africa. For these reasons, the present thesis aims to 

investigate the following and is summarised in Figure 1.2: 

1. The relationship between above and belowground agroecosystem diversity in terms 

of crop rotation and microbial diversity respectively. 

2. The relationship between agroecosystem diversity and agroecosystem function in 

terms of soil fertility and crop yield. 

Stellenbosch University  https://scholar.sun.ac.za



4 
 

 

Figure 1.2: Theoretical framework for the research aims of the present thesis. Research aims are 

focused on relationships indicated by arrows. 

Chapter 1 of the thesis will address these aims broadly through a quantitative assessment of 

the effect of increased crop diversity on soil microbial diversity and agroecosystem function in 

terms of soil N fertility. Meta-analysis is used as a tool to look at a broad range of crop rotation 

studies from around the world. 

Chapter 2 focuses on wheat-legume crop rotations in the Swartland Local Municipality of 

South Africa. Data collected from soils and crop under a 19-year wheat-legume crop rotation 

trial will be assessed according to the theoretical framework (Figure 1.2). It is important to note 

that the initial study design for Chapter 2 involved the sampling of Rhizobium diversity in 

legume rotations, as well as an isotope analysis of 15N abundance in the fertilizer, sheep 

dung and plant material. The results from this data would assist in better understanding the 

ecosystem-diversity function relationship by assessing the N cycling within the 

agroecosystem, more specifically, by estimating the proportion of plant N sourced from 

microorganisms. Unfortunately, miscommunication with laboratory staff led to the destruction 

of our sample material and these analyses could not be carried out. 

Throughout the thesis, results will be discussed in terms of the broader diversity-ecosystem 

function relationships (Figure 1.1) and the theoretical framework (Figure 1.2). Understanding 

the relationship between agroecosystem diversity and function by testing if it aligns with 

broader ecosystem theories may assist in identifying more sustainable agricultural 

management practices that enhance agroecosystem function both in terms of yield and 

ecosystem services. It is clear that the causal mechanisms through which crop-legume or 

crop-non legume rotations increase wheat production and economic viability are not fully 

understood. Further insight into beneficial soil ecological factors associated with wheat-
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legume rotations can benefit the wide-spread adoption of conservation agriculture within the 

Western Cape of South Africa. 

  

Stellenbosch University  https://scholar.sun.ac.za



6 
 

CHAPTER 2: THE IMPACT OF CROP ROTATION ON SOIL 

MICROBIAL DIVERSITY AND NITROGEN FERTILITY: A META-

ANALYSIS 

 

Submitted for publication to Applied Soil Ecology (Impact Factor: 2.2) 

Abstract 

Agricultural intensification can involve the simplification of agroecosystems to crop 

monocultures while the practices of crop rotation, intercropping and companion planting 

maintain some crop diversity over time and space, respectively. It is generally postulated that 

reduced diversity can have an impact on ecosystem function. Here we determine whether 

decreased aboveground crop diversity affects belowground microbial biodiversity and 

associated nitrogen fertility by conducting a meta-analysis of studies comparing monocultures 

and crop rotations. Using 26 and 43 individual weighted mean differences, we found that soils 

under a higher diversity of crops in rotation produced higher microbial richness (+15.11%) and 

diversity (+3.36%) scores, respectively. This effect was significantly influenced by microbial 

analysis method where pyrosequencing produced conflicting results to those from 

fingerprinting methods. Longer study trials with lower annual percentage ground cover and no 

legumes produced larger increases in microbial diversity. No correlation between microbial 

diversity and soil nitrogen fertility was found. This provides support for the hypothesis that 

ecosystem function may be a product of either specific productive species (selection effect), 

or the facilitative interaction of multiple species (complementarity effect). It is plausible that 

productive agroecosystems may have high and/or low microbial diversity. Although there is a 

small positive effect of crop rotation on microbial diversity, the link between diversity and 

agroecosystem function remains complicated. A lack of studies incorporating next-generation 

sequencing techniques to elucidate complex microbial community structures and specific 

functional niches in crop rotational agroecosystems highlights scope for future research. 

 

Key Words: 

Agroecosystem; crop rotation; meta-analysis; microbial diversity; nitrogen fertility 
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2.1. Introduction 

The intensification of conventional agricultural practices is threatening ecosystem services 

and agroecosystem sustainability through soil erosion, agro-chemical pollution of 

groundwater, release of green-house gases and biodiversity loss (Tilman, 2001). This is 

causing a paradigm shift toward sustainability, characterized by practices and concepts such 

as organic agriculture (Badgley et al., 2007), conservation agriculture (Hobbs et al., 2008), 

agroecology (Rosset and Altieri, 1997; Thomas and Kevan, 1993) and functional 

agrobiodiversity (Wood and Lenne, 1999). One of the important management practices 

associated with sustainability, which precedes the green revolution, is crop rotation. Before 

the introduction of petrochemicals (pesticides, herbicides and fertilizers), the means by which 

soil fertility was maintained and pests were managed was through the diversification of crops 

over time and in space on the same piece of land (Karlen et al., 1994).  

The historical adoption of crop rotations was largely motivated by the associated yield increase 

in the cash crop (Bullock et al., 1992). The correlation between yield increase and increasing 

crop diversity has been shown through numerous scientific studies and has been attributed to 

enhanced agroecosystem function (Smith et al., 2008). The causal mechanisms through 

which this yield increase is achieved include increased soil fertility (particularly when 

leguminous plants are used in rotation), maintenance of soil structure, disruption of pest cycles 

and weed suppression. These processes are mediated largely by soil microorganisms which 

play an essential role in sustaining productive agroecosystems through their complex 

biochemical processes (Kennedy and Smith, 1995; Kennedy, 1999; Parkinson and Coleman, 

1991). Microbial communities within soils are more diverse and numerous than higher-order 

organisms and the full extent of this biodiversity is still unknown (Schmidt et al., 2015; Torsvik 

et al., 1990). The primary drivers of microbial diversity include edaphic variables such as soil 

pH and moisture, yet plant diversity is also now recognised as an important driver of soil 

microbial diversity (Berg and Smalla, 2009).  

Given that plant diversity is a primary driver of microbial diversity, it has been posited that 

management practices such as crop rotation, through increasing aboveground biodiversity, 

can result in corresponding increases in diversity belowground (Hooper et al., 2000). Different 

crops have associated root exudates of varying composition, which result in plant-specific 

effects on the soil microbial communities in the rhizosphere (Costa et al., 2006; Wardle et al., 

2004). Rhizosphere communities can have an impact on the bulk soil microbiome (Kent and 

Triplett, 2002). In addition, crop rotations lead to a greater abundance and diversity of plant 

litter, which in turn can support a greater diversity of microbial decomposers (Kennedy, 1999). 

Thus increases in microbial diversity may not be due to increased plant diversity per se, but 
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associated increases in soil organic matter caused by increased ground cover in rotations 

(Zak et al., 2003).  

This increase in microbial diversity as a result of incorporating a variety of crops in rotation 

has been shown. For example, Lupwayi et al. (1998) discovered that microbial diversity, based 

on community level substrate utilisation, was significantly higher under a rotation of wheat and 

clover or field peas than under continuous wheat. However, other studies have shown that 

crop rotation has limited or negative effects on microbial diversity. For example, Navarro-Noya 

et al. (2013) found that crop management (continuous maize versus maize-wheat rotation) 

had no effect on soil microbial diversity. Yin et al. (2010) found that incorporating soy beans 

into rotation with wheat decreased richness and Shannon’s diversity indices in conventional 

tilled plots when compared to continuous wheat. Thus, there is conflicting evidence in the 

literature addressing the relationship between above and belowground biodiversity in 

agroecosystems.  

Furthermore, it is difficult to elucidate the relationships between biodiversity (above or 

belowground) and agroecosystem function as they exist within a net-like causal structure with 

non-linear interactions. However, advances in molecular biology such as next-generation 

sequencing (NGS) are allowing for accurate and efficient analyses of complex microbial 

communities and their niche functions (Fakruddin et al., 2013). This allows for the analysis of 

the relationship between crop diversity, functional microbial diversity and ecosystem services 

in the soil. In the current literature there are examples of microbial diversity and 

agroecosystem function being both coupled and decoupled (van der Heijden and Wagg, 2013; 

Wagg et al., 2014; Welbaum, 2004). In addition, the extent to which the diversity function 

relationship varies with temporal (e.g. season) and spatial factors is unclear (van der Putten 

et al., 2009). 

Within the broader context of diversity-ecosystem function theory it is possible that an increase 

in plant species number within a crop rotation system results in a coupled increase in 

agroecosystem function (Smith et al., 2008; Vitousek and Hooper, 1994). However, the 

mechanism behind this positive effect may be attributed to singular key-stone species such 

as N2-fixing legumes (the selection effect) or due to the facilitation and niche differentiation 

associated with a number of species (the complementarity effect) (Hooper et al., 2000). It is 

often the case that both these mechanisms are at work which gives support for the decoupling 

and coupling of biodiversity with function.  

Another theory suggests the diversity of microorganisms within soil can contribute toward 

agroecosystem resilience to disturbance or stress through functional redundancy (Giller et al., 

1997). Experiments have shown that higher microbial diversity results in shorter recovery time 
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in pasture soil communities after short-term and long-term stress, i.e. increased resilience 

(Griffiths et al., 2000). The diversity of endophytic and rhizospheric plant growth-promoting 

microorganisms act as antagonists to plant pathogens and increase tolerance to salinity, 

drought, temperature and nutrient deficiency (Dias et al., 2015). Thus, high microbial diversity 

acts as an insurance against ecosystem malfunctioning due to multiple taxonomic sub-units 

that can perform the same function and have variable tolerances to stress. Yet, for the same 

reason microbial diversity and soil ecosystem function can be largely decoupled in microbial 

communities.  

Evidence also suggests that high microbial diversity is linked to increased nutrient and water 

use efficiency in soil (Brussaard et al., 2007). It is well-known that soil microbes enhance soil 

fertility through the mineralisation of limiting nutrients such as nitrogen (N) and phosphorus 

(P) (Dias et al., 2015). For example, N2-fixing bacteria and mycorrhizal fungi are responsible 

for 5 to 20% N and 75% of P acquired in grassland and savannah plants annually (van der 

Heijden et al., 2008) as well as in the crop plants wheat and carrot (Hawkins et al., 2000). In 

agricultural systems, there are examples of the association between high microbial diversity 

and higher soil N content for crops grown in rotation (Marinari et al., 2015; Murphy et al., 2011), 

although a systematic review of such studies has not yet been performed.  

A quantitative assessment of the literature on the effect of increased crop diversity on soil 

microbial diversity and agroecosystem function in terms of soil N fertility, a major limiting 

element in crop productivity, has not previously been performed. Meta-analysis was used as 

a review tool to quantify this effect. This method measures the impact of a given experimental 

treatment relative to a control based on the research results from multiple independent studies 

(Hedges et al., 1999). Although originally developed for medical and social science reviews, 

meta-analysis has been adapted for application to many ecological and agricultural datasets 

in the literature (e.g., Johnson and Curtis, 2001; McDaniel et al., 2014; Tonitto et al., 2006). 

This technique is used to answer the following two questions: (1) Does increasing diversity of 

crops in rotation result in increased soil microbial diversity, and (2) does increased soil 

microbial diversity result in increased soil N fertility?  

 

2.2. Methods and materials 

2.2.1. Meta-analysis criteria 

As a tool, meta-analysis allows for the quantifying of an effect across broad geographical 

regions including experimental trials of varying lengths, methodologies and crop combinations. 

The analysis requires that studies comprise of experimental treatments that are compared to 
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a control that can be defined consistently across studies. For the purposes of this analysis, 

the control was defined as any annual cash crop that is grown in monoculture every season. 

The experimental treatment/s were defined as any crop rotation including the same cash crop 

and at least one other rotation crop. Studies were included that recorded taxonomic or 

functional measures of soil (free-living) microbial diversity, including the Shannon’s diversity 

index (Zak et al., 1994) and/or richness. These are the most commonly used measures of soil 

microbial diversity in agricultural studies and are often used interchangeably without 

qualification or definition (Spellerberg and Fedor, 2003). For this analysis, species richness is 

defined as the number of unique taxonomic sub-units, and diversity as the richness and 

relative abundance of these sub-units. The inclusion of a measure of soil N fertility was not 

part of the selection criteria, but was analysed for association to microbial diversity post hoc. 

Many studies were excluded because they did not (1) contain the control, experimental 

treatment/s and diversity measures as listed above, (2) contain purely agricultural cash crops, 

or (3) metadata was not available upon request. From the rejected studies, those that reported 

some measure of microbial diversity were collated with accepted studies according to whether 

they detected significant increase, decrease or no change in microbial diversity with an 

increase in crop diversity over time. 

2.2.2. Literature search and data extraction 

The literature was searched using electronic databases, including GoogleScholar, AGRIS, 

ScienceDirect, Elsevier and Wiley by entering the following search terms used in various 

combinations: crop rotation, microbial diversity, microbial richness, function, nutrient cycling, 

nitrogen fertility.  The Boolean operators ‘AND’ and ‘OR’ were used to combine two separate 

searches and include alternative search terms respectively. We initially used the broad search 

string ‘crop rotation AND microbial diversity OR microbial richness’. Following this, we added 

‘OR function’, ‘OR nutrient cycling’, and ‘OR nitrogen fertility’ to the initial search string 

respectively. The following criteria were used to select studies: 1) only peer reviewed articles 

in journals; and 2) studies with sufficient sample size to determine both a mean and standard 

error. In addition, studies were also identified through a ‘snowballing’ technique where 

reference lists of acquired studies were searched for additional relevant studies. For some 

studies, Data Thief® (Tummers, 2006) software was used to extract values from figures within 

studies. In cases where diversity measures or variances were not reported, the corresponding 

authors were contacted to request this information. Where this information was forthcoming it 

was included in the analysis.  

A total of 20 studies met the selection criteria and were entered into a database containing the 

following categorical moderating variables: microbial analysis method (biochemical 
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fingerprinting, molecular fingerprinting and pyrosequencing), number of crops in rotation (2 or 

3), use of legume (yes or no), use of cover crop (yes or no), percentage of year with ground 

covered by crop (~50% or ~100%), and trial length (1-5, 6-15 and >15 years) (Appendix A). 

Here cover crop is defined as a crop that is not harvested but produced to enrich some aspect 

of soil health. To account for differences between NGS  and other microbial analysis methods, 

studies using biochemical fingerprinting [fatty acid methyl ester (FAME) analysis, community-

level physiological profiling (CLPP) and plate enumeration], molecular fingerprinting 

[denaturing gradient gel electrophoresis (DGGE), random amplified polymorphic DNA (RAPD) 

analysis, restriction fragment length polymorphism (RFLP)], and pyrosequencing were 

separated. Differences in categorical moderating variables were analysed using ANOVA. 

From the selected studies, 43 individual Shannon diversity index comparisons and 26 

individual richness comparisons were obtained. From these, eight individual associations 

between diversity and a functional measure (soil N content) were extracted. These studies 

focused on soil N fertility and did not include measures of N uptake in plants. Many studies 

applied multiple treatments with different combinations of crops in rotation at varying lengths 

of time. We treated each unique rotation combination and rotation length as independent 

observations. In addition, where within-treatment effects such as tillage (e.g. Yin et al., 2010), 

fertilization (e.g. Reardon et al., 2014), length of rotation (Bucher and Lanyon, 2005), or 

analysis method (Yao et al., 2006) were recorded in split-plot designs, these factors were 

recorded as independent observations if they were significantly different. In cases where they 

were not significantly different they were averaged and entered as one observation.  

2.2.3. The Quality Effects Model 

The meta-analysis of studies with usable data that investigated the effect of increasing crop 

diversity on soil microbial diversity and soil fertility was performed using the Quality Effects 

Model (Doi and Thalib, 2008) in MetaXL (v. 2.2, Epigear International). In conducting the meta-

analysis, an effect size estimate was calculated for each of the measurable variables to 

quantify the magnitude of the treatment effect (Osenberg et al., 1999). The effect size estimate 

used was the weighted mean difference (WMD), which is the difference in the mean response 

between the treatment (𝑋𝑡
̅̅ ̅) and the control (𝑋𝑐

̅̅ ̅). We calculated this as a percentage difference 

(
𝑋𝑡̅̅ ̅− 𝑋𝑐̅̅̅̅

𝑋𝑐̅̅̅̅
∙ 100) so that positive values indicated an increase in microbial diversity or soil N with 

crop rotation/crop diversity relative to controls/monocultures. Within MetaXL, the quality 

effects model was used with effect size estimates weighted by variance, at 95% confidence 

intervals, as well as a quality score (Qi). If the 95% confidence intervals of effect sizes did not 

overlap with zero or other treatments, they were considered significant at P < 0.05 (Johnson 

and Curtis, 2001). The Qi estimates the likelihood that results of a study are unbiased due to 
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possible flaws in the experimental design (Doi and Thalib, 2008). The heterogeneity in the 

credibility of studies included in the meta-analysis is important to quantify because if the quality 

of an experimental trial is inadequate, it may falsify the conclusions of the review. The Qi is 

calculated based on selected criteria with weighted scores between 0 and 1 representing low 

and high quality respectively (Table 2.1). An additional measure of between-study 

heterogeneity, I2 statistic (percentage variation across studies that is due to heterogeneity 

rather than chance), was also generated by MetaXL (Higgins et al., 2003). 

A few studies (7/20 studies) did not report any measures of variance and metadata could not 

be obtained upon request. Thus the within-study variances that were available were used to 

calculate a pooled variance for the set of studies. This was used to calculate confidence 

intervals for studies lacking variance under the assumption that the variances of the responses 

within these studies were homogenous. The studies which did not calculate variance were not 

discriminated against in the scoring of Qi. 

Table 2.1: Quality scoring system used in the Quality Effects model of the meta-analysis to assess the 

study design and possible bias. Questions and scores are adapted from epidemiology (Doi and Thalib, 

2008) to be relevant to agronomy.   

Question Score 

1. Did the experimental layout use 

randomization or another appropriate 

sampling strategy? 

0 = No or not reported 

0.5 = In part 

1 = Yes 

2. Were the groups being compared 

comparable at the baseline? 

0 = No or not reported 

0.5 = In part 

1 = Yes 

3. Were treatments clear and not 

confounded by e.g. soil type, cultivation 

history, tillage? 

0 = No 

0.5 = In part 

1 = Yes 

4. Was the trial conducted over an 

adequate time period to allow differences 

to emerge? 

0 = 1-5 years 

0.5 = 6-10 years 

1 = 11-20 years 

2 = >20 years 

5. Was the analysis clearly reported and 

appropriate? 

0 = No 

0.5 = In part 

1 = Yes 

6. Were protocol deviations or losses 

during the study acceptable (<20%) 

0 = No or not reported 

0.5 = In part 

1 = Yes 

Quality Score (Qi) =  
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠

7
 

 

2.3. Results 

Of the hundreds of studies screened through the database searches, only 27 reported some 

measure of microbial diversity in response to a change in crop diversity. Overall, there was a 
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net positive effect of rotation on microbial diversity, although 14 studies did not report any 

significant changes (Figure 2.1). Of the initial 27 studies, 7 had to be rejected for meta-analysis 

because they did not (1) report Shannon’s diversity index or richness scores (Chen et al., 

2012; Ferreira et al., 2000; Larkin et al., 2008; Li et al., 2010; Souza et al., 2013), or (2) 

increase crop diversity over time (Dorr de Quadros et al., 2012), or (3) measure free-living 

microbial diversity (Herrmann et al., 2014).  

 

Figure 2.1: Number of studies reporting soil microbial diversity (including studies that did not meet the 

quality criteria for data extraction) that show a significant increase, decrease or no significant effect in 

soil microbial diversity with an increase in crop diversity.  

2.3.1. Diversity and richness 

There were 17 studies retrieved that measured the effect of increasing crop diversity on soil 

microbial diversity using Shannon’s diversity index (H’) and from these, 43 individual WMDs 

were calculated. The meta-analysis revealed that there was on average an increase of 3.36% 

in microbial H’ with increasing crop diversity (p < 0.05, Figure 2.2). There were 13 studies 

retrieved that measured the effect of increasing crop diversity on soil microbial richness and 

from these, 26 individual WMDs were calculated. The meta-analysis revealed that increasing 

crop diversity increased soil microbial richness on average by 15.11% (p < 0.05, Figure 2.3). 

However, both forest plots for microbial H’ and richness revealed moderate levels of 

heterogeneity with an I2 of 35% and 45% respectively (Higgins et al., 2013). 
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Figure 2.2: Forest plot of percentage weighted mean difference (WMD) in soil microbial diversity (H’) 

between crop monocultures (1 crop) and crop rotations (>1 crop)  from 17 studies using the WMD 

method and Quality Effects model (Doi and Thalib 2008; 2009) in MetaXL (v. 2.0, Epigear International). 

Studies are shown on the left with control crop and treatment combinations listed with numbers 

signifying number of years. The Forest plot is shown on the right where studies >0 and <0 showed a 

positive or negative treatment effect, respectively. Treatment effect indicated with squares, which are 
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weighted according to the weight (%) that the study was given based on the quality score (Table 2.1). 

Confidence intervals are indicated by horizontal lines. Overall effect size displayed as a diamond where 

the width thereof indicates 95% confidence intervals. Where these confidence intervals cross the ‘line 

of no effect’ (midline) the overall result indicates non-significance at the P = 0.05 level. I2 measures 

between-study heterogeneity. *Overall effect size with confidence intervals in parenthesis. †Treatments 

separated because of two study sites. ‡Treatments separated based on year. §Treatments separated 

based on analysis method (CLPP/RAPD). #Treatments separated based on tillage (till/no-till). 

 

 

Figure 2.3: Forest plot of percentage weighted mean difference (WMD) in soil microbial richness 

between crop monocultures (1 crop) and crop rotations (>1 crop)  from 13 studies using the weighted 

mean difference (WMD) method and Quality Effects model (Doi and Thalib 2008; 2009) in MetaXL (v. 

2.0, Epigear International). Studies are shown on the left with control crop and treatment combinations 

listed with numbers signifying number of years. The Forest plot is shown on the right where studies >0 

and <0 showed a positive or negative treatment effect, respectively. Treatment effects are indicated 

with squares, which are weighted according to the weight (%) that the study was given based on the 
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quality score (Table 2.1). Confidence intervals are indicated by horizontal lines. Overall effect size 

displayed as a diamond where the width thereof indicates 95% confidence intervals. Where these 

confidence intervals cross the ‘line of no effect’ (midline) the overall result indicates non-significance at 

the P = 0.05 level. I2 measures between-study heterogeneity. *Overall effect size with confidence 

intervals in parenthesis. †Treatments separated because of two study sites. ‡Treatments separated 

based on year. §Treatments separated based on analysis method (CLPP/RAPD). #Treatments 

separated based on tillage (till/no-till). 

For studies which reported both diversity (H’) and richness scores, a regression analysis of 

WMD richness on WMD H’ scores was performed. There is a no significant relationship (R = 

0.063, p = 0.776) between the change in diversity and change in richness after increasing crop 

diversity. 

2.3.2. Categorical moderating variables 

Studies that used pyrosequencing as an analysis method measured an average decrease in 

H’ scores with rotations and this was significantly different to biochemical and molecular 

fingerprinting methods, which revealed increases in H’ scores (p = 0.047, Table 2.2). The 

opposite trend was true for richness scores, as pyrosequencing studies revealed a significantly 

higher increase in microbial richness with rotations compared to that found by studies using 

fingerprinting methods (p = 0.002). Longer study trials (>6 years) contained larger increases 

in microbial richness with rotations (p = 0.010) and a similar trend was observed for diversity. 

Significantly higher increases in diversity was observed in studies with no legumes (p = 0.043) 

and shorter ground cover (50% of the year; p = 0.006). The same trend was observed for 

studies including no legumes, lower percentage ground cover and higher number of crops 

(Table 2.2). 
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Table 2.2: Number of observations (K), mean size effect and ANOVA P values for Shannon's H' 

diversity and richness scores for each of the categorical moderating variables. 

Moderating 
Variable 

Categories (levels) 

Diversity 

  

Richness 

K 
Mean size 

effect 
P K 

Mean size 
effect 

P 

Analysis 
method 

Biochemical fingerprinting 21 12.35 ± 3.38 0.047*  15 10.5 ± 3.83 0.002** 

Molecular fingerprinting 19 7.52 ± 3.64   5 5.85 ± 10.68  

Pyrosequencing 7 -4.98 ± 5.52   6 61.27 ± 15.47  

No. crops in 
rotation  

2 crops 30 6.6 ± 1.1 0.703 

 

19 24.5 ± 8.53 0.582 

3 crops 9 4.82 ± 0.65  5 6.77 ± 3.76  

Legume 
Yes 25 2.03 ± 2.45 0.043* 15 20.52 ± 9.1 0.883 

No 15 11.28 ± 4.24  10 22.61 ± 10.85  

Cover crop 
Yes 25 1.75 ± 1.26 0.058 13 16.05 ± 11.29 0.443 

No 18 10.13 ± 0.68  13 26.59 ± 7.46  

Ground 

cover† 

50% 12 14.6 ± 6.79 0.006** 10 25.24 ± 7.31 0.654 

100% 31 1.64 ± 1.1  16 18.87 ± 10.04  

Trial length 

0-5 years 25 2.88 ± 1.33 0.450 9 -0.146 ± 5.32 0.01* 

6-15 years 8 8.7 ± 5.08  6 50.07 ± 20.57  

>15 years 10 8.46 ± 8.04   11 24.28 ± 6.61   

Notes: * and ** represents significance at p < 0.05 and p < 0.01, respectively. †Rotations including two 

or more crops per year were considered as 100% and rotations including one crop per year were 

considered as 50%.   

2.3.3. Soil N fertility 

From the total study database, four studies recorded some measure of soil fertility (total soil 

N) associated with the changes in soil microbial communities in response to the rotation 

treatments. None of the studies reported any measure of variance for the soil N content, thus 

a weighted meta-analysis could not be performed on this variable. Instead, a regression 

analysis of the percent change in microbial diversity (H’) on the percent change in soil N was 

performed. The relationship between soil N content and microbial diversity was not significant 

(R = 0.0553, p = 0.575).  

 

2.4. Discussion 

The goal of this meta-analysis was to test the hypothesis that increasing crop diversity results 

in increased soil microbial diversity and agroecosystem function in terms of soil fertility 

according to the ecological biodiversity stability relationship (Vitousek and Hooper, 1994). 

More specifically, it has been suggested that increasing aboveground biodiversity can result 

in a proportional increase in belowground biodiversity (Hooper et al., 2000), and that soil 
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microbial diversity can enhance agroecosystem functioning (van der Heijden and Wagg, 2013; 

Welbaum, 2004). Thus it was predicted that increasing crop diversity would result in an 

increase in soil microbial diversity and richness as well as soil N content. Shannon’s diversity 

index and richness of soil microorganisms as well as measures of soil N content were used 

as comparable measures between studies. 

2.4.1. Crop diversity and soil microbial diversity 

The overall effect sizes indicate that increasing crop diversity has a positive effect on soil 

microbial diversity and richness. The results from the meta-analysis confirms what many other 

broader ecological studies report about positive relationships between above and 

belowground biodiversity (Hooper et al., 2005; Zak et al., 2003). This trend has also been 

observed for soil macrofauna. Sileshi et al. (2008) found an increase in soil macrofaunal 

richness and abundance in maize-legume rotations when compared to continuously cropped 

maize.  

The causal mechanisms behind this increase in belowground microbial diversity could involve 

physico-chemical changes in the soil brought about by increased crop diversity (Dias et al., 

2015). Crop rotations are known to influence the physical structure of the soil and enhance 

soil water-use efficiency and temperature stability through increased ground cover and soil 

organic matter content (Kennedy, 1999). The differential root action and niche exploitation 

from successive crops can allow for the proliferation of microbes to a larger extent in the bulk 

soil. These physical changes can create a favorable microclimate for soil microbes to thrive. 

The chemical changes in soil mediated by rotations are caused predominantly by build-up of 

residual root exudates and plant litter from preceding crops (Garbeva et al., 2004). These 

provide a greater diversity of residual carbon (C) substrates in the bulk soil which can support 

the growth of diverse microorganisms. Other studies have shown the host-specificity of 

bacterial and fungal groups in agricultural systems (Berg and Smalla, 2009; Smalla et al., 

2001; Wardle et al., 2004). For example, Costa et al. (2006) detected plant specificity in the 

rhizosphere by bacterial, fungal and group-specific denaturing DGGE profiles for strawberry 

and oilseed rape crop. These plant-specific microbial species are predominantly of soil origin, 

as studies have shown that rhizosphere communities are more similar to bulk soil communities 

than to endophytic communities (Kent and Triplett, 2002). Thus, rather than introducing new 

species into the soil system, rotation crops stimulate the growth of specific microbial 

communities that are latent in the bulk soil. These residual rhizosphere communities from 

antecedent crop can have an impact on the bulk soil microbiome.  

Thus, changes in microbial communities may not be due to increased plant diversity per se. 

Zak et al. (2003) found that microbial communities responded to increased plant production of 
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detritus and C substrates associated with higher plant diversity rather than to the diversity 

itself. In addition, adding legumes to a rotation has been shown to increase bulk soil C pools, 

supporting a greater abundance of microbiota (Carranca et al., 2009; Drinkwater et al., 1998). 

Leguminous plants also harbor host-specific symbiotic bacteria (rhizobia) which cannot exist 

without their hosts. These physico-chemical factors can have positive feedbacks into microbial 

growth and abundance and, as the meta-analysis results suggest, even diversity.  

Despite the overall positive effect of rotation on microbial diversity and richness, there were 

outlier studies which revealed negative relationships. Yin et al. (2010) found that wheat in 

rotation with soybean resulted in a decrease in microbial diversity when compared to 

continuous wheat (Figure 3.2). This may have been caused by the rise in pH associated with 

leguminous rotations which may negatively affect microbial diversity.  Another study on West 

African soils also found that grain-legume rotations increase pH in the bulk and rhizosphere 

soils (Alvey et al., 2001). Reardon et al. (2014) found that wheat in rotation with field pea 

negatively affected microbial richness (Figure 2.3). This value exhibited large error margins 

which may have been attributed to year-to-year variability in the richness scores possibly 

driven by climatic variables. There was no common trend in crop type among studies exhibiting 

negative relationships to suggest host specificity. 

The presence of the outlier studies is evidence of the large heterogeneity between and within 

studies. Further, meta-analysis can be limited by publication biases, inherent problems in the 

design of studies, and the subjectivity related to pooling similar studies (Garg et al., 2008). 

However, within the present study, these were accounted for through the use of the Quality 

Effects Model (Doi and Thalib, 2008). Heterogeneity between studies in terms of study scope 

and methodology was accounted for by analysing data using categorical moderating variables. 

Meta-analysis is an important empirical tool that can assist in the critical review of literature by 

quantifying trends from a large number of articles in an objective manner. 

2.4.2. Microbial diversity vs. richness 

Although there is an overall increase in both diversity and richness with crop diversity, the 

regression analysis reveals that a positive linear relationship between richness and diversity 

is not necessarily the case. For example, Guong et al. (2012) and Davinic et al. (2013) 

produced comparable WMDs in H’ (9.91% and 8.75%, respectively), yet had disproportionate 

WMDs in richness (138.02% and 22.73% respectively). This aligns with other broad ecological 

studies which have shown that species richness and evenness were uncorrelated for different 

taxonomic groups in an American savannah (Bock et al., 2007). To understand this 

relationship it is necessary to note that Shannon’s diversity H’ incorporates both alpha 

(richness) and beta (evenness) diversity as it takes into account the proportional abundance 

Stellenbosch University  https://scholar.sun.ac.za



20 
 

and distribution of different taxonomic sub-units (Peet, 1974). Thus a given increase in the H’ 

value can represent a population shift to higher richness and lower evenness (which may be 

the case with Guong et al., 2012), or a shift to lower richness and higher evenness (which may 

be the case with Davinic et al., 2013). Measures of alpha diversity such as Shannon’s H’ are 

considered more reliable estimates of diversity in terms of ecosystem functioning because 

measuring richness alone can ignore species that are disproportionately abundant, for 

instance pathogens (Hill, 1973). The results of the meta-analysis confirm that diversity and 

richness are not always positively correlated. 

2.4.3. Categorical moderating variables 

Results from pyrosequencing studies differed to those from fingerprinting studies for both 

richness and diversity scores. This may be due to the higher accuracy of NGS compared with 

fingerprinting methods, or due to other study-specific variables. Pyrosequencing revealed an 

average decrease in microbial diversity in response to rotations, yet an increase in richness. 

This suggests that although new species may emerge with crop rotations, the relative 

abundance of microorganisms within species remains homogenous between species. 

However, the low number of studies using pyrosequencing to assess crop rotation may explain 

this heterogeneity and highlight the need for further application of NGS within agroecological 

studies.  

The results also revealed a tendency toward greater increase in microbial diversity and 

richness in study trials spanning greater lengths of time. This has been shown in an ecological 

grassland experiment where the effect of plant diversity on soil microorganisms was most 

pronounced after a lag period of four years (Eisenhauer et al., 2010). A number of studies in 

the meta-analysis reported a decrease in the response of microbial diversity to crop rotations 

after harvest (Guong et al., 2012; Marinari et al., 2015). These studies were based on trials 

shorter than ten years. It could be hypothesized that there is an accumulated increase in the 

residual effect of rotation on soil microbial diversity over time spans exceeding ten years of 

the same treatment through increased soil C.  

The tendency toward decreased microbial diversity and richness associated with longer 

ground cover and presence of legumes and cover crops in rotation is surprising. Many studies 

show that incorporating legumes and cover crops into rotations can boost soil C and thus 

support greater microbial abundance and diversity (McDaniel et al., 2014). Longer periods of 

ground cover enhance soil microclimates and are thus expected to support microbial growth 

(Kennedy, 1999). However, other studies have also shown that key functional plant groups 

like grasses and legumes have inconsistent effects on soil microbial functioning and diversity 

(Eisenhauer et al., 2010).  
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2.4.3. Crop diversity and soil N fertility 

There was no significant correlation between the percentage change in soil microbial diversity 

and the percentage change in soil N content. The strength of this correlation might be 

increased if a larger number of studies that reported soil fertility in combination with microbial 

diversity and richness were available. Alternatively, the weak correlation may reflect that one 

soil element cannot be expected to be functionally related to a complex system with various 

ecological functions.  

Although all studies showed an increase in soil N with increasing crop diversity, the question 

is whether this increase was mediated by an associated increase in microbial diversity or crop 

residue quality or quantity. In a long-term ecological trial on grassland and savanna vegetation, 

increasing plant diversity (1-16 species) was positively correlated with more rapid N 

mineralization (Zak et al., 2003). There was also an associated increase in microbial biomass 

and composition which suggests that plant-microbe interactions are integral in the link 

between plant diversity and ecosystem function. In an agricultural meta-analysis, McDaniel et 

al. (2014) found that increasing crop diversity in rotation, increased soil C and N by 3.6% and 

5.3%, respectively, but when a legume cover crop was included in rotation, these values 

increased to 8.5% and 12.8% (i.e. the addition of one plant more than doubles N and C 

values). This suggests that the functioning of the soil fertility in agroecosystems is largely 

mediated by particular, host-specific and productive genera (e.g. Rhizobia spp.). Thus a 

productive system may well be low in microbial diversity. This is known as the selection effect 

and is different to the complementarity effect where the positive effect of biodiversity is 

achieved through niche differentiation and facilitative interaction (Hooper et al., 2000). It is 

possible that microbial diversity drives soil fertility and thus plant growth through both selection 

and complementarity effects. For example, the diversity of belowground plant-associated soil 

fungi has been shown to improve plant productivity through the selection and complementarity 

effects by up to 82% and 85%, respectively (Wagg et al., 2011). Thus it is clear that, as 

indicated by our results and other literature, increased microbial diversity can facilitate greater 

agroecosystem functioning through enhanced soil fertility but that this relationship is 

sometimes uncoupled and is likely context specific. The future use of NGS and other methods 

that link taxanomic units to their ecological functional niches within agroecosystems may elicit 

further clarity. 

 

2.5. Conclusions 

A review of the literature and a meta-analysis of the data therein showed that increasing the 

diversity of crops in rotation has a positive impact on soil microbial richness (+15.11%) and 
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diversity (+3.36%). However, this effect was highly variable and suggests that the link between 

above and below ground diversity is related to specific functional groups. Furthermore this 

effect was not significantly influenced by the number of crops, presence of legumes or cover 

crops in rotation, percentage of year with ground under living crop, or trial length. Microbial 

diversity was not significantly correlated with soil N fertility, although a larger sample size may 

clarify such correlation. Our results show that, even though it is clear that crop rotation is 

beneficial for soil quality and consequently crop yield, the link between diversity and function 

remains unclear. Thus adopting crop rotations may increase soil microbial diversity, but it is 

not clear whether this will enhance soil N fertility. Future research on the link between above 

and belowground diversity would do well to measure the associated effects on components of 

agroecosystem function (e.g. soil N fertility) as well as the spatial and temporal changes 

therein. In addition, the use of NGS techniques can aid in understanding the role of specific 

functional groups in the yield increase of crop rotation systems.  
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CHAPTER 3: THE IMPACT OF WHEAT-LEGUME CROP ROTATIONS 

ON SOIL MICROBIAL DIVERSITY AND AGROECOSYSTEM 

FUNCTION IN THE SWARTLAND OF SOUTH AFRICA 

 

Proposed journal for publication: PLOS ONE (Impact Factor: 3.2) 

Abstract 

Conservation agriculture incorporates crop rotations as a means of enhancing ecosystem 

services within agroecosystems, which promote their sustainability. This diversification of 

aboveground crops through crop rotations and the resultant changes in rhizosphere 

biochemistry and niche availability can have impacts on belowground microbial communities, 

which are responsible for the bulk of ecosystem processes and services in soils. It is known 

that crop rotation with legumes increases microbial biomass, however little is known about the 

effects on microbial diversity and function. We hypothesize that increased crop diversity that 

includes legumes will result in increased microbial diversity and hence nutrient cycling, 

specifically of N. Community level physiological profiling (CLPP) and automated rRNA 

intergenic spacer analysis (ARISA) were used as measures of functional and genetic microbial 

diversity, respectively, in soils of a 19-year wheat-legume crop rotation trial in the Swartland 

Local Municipality of South Africa. Increasing crop diversity through rotations of wheat with 

medic (Wm) or a combination of medic and clover (Wmc) resulted in greater wheat plant stem 

length and N concentrations when compared to wheat monoculture (WW). This effect seems 

to be less linked with microbial diversity per se than with the Rhizobium species present 

because both microbial analyses found no differences in soil microbial activity, richness or 

diversity with increasing crop diversity. However, cluster analysis did separate WW from 

rotation treatments based on richness and diversity scores in combination. The weak effect of 

crop rotation on microbial diversity and richness is likely due to other abiotic drivers of 

microbial community structure such as P availability, Na and K excess, and pH, all of which 

correlated to microbial activity and functional richness in our study. The role that microbial 

diversity plays in the agroecosystem diversity-function relationship remains complex as 

revealed by the lack of correlation between functional and genetic diversity scores. However, 

the relation between crop diversity and functional components including wheat yield and soil 

N followed a hump-shaped curve, i.e. a rotation with one legume crop was more productive 

than wheat alone or wheat plus two legumes. Considering the bulk soil N was similar between 

treatments this suggests that rhizosphere soil N may be higher where Rhizobium-colonized 

medic provides additional N to the wheat crop. This supports the hypotheses of functional 

redundancy in genetically diverse microbial communities and the selection effect in genetically 
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homogenous ones. Overall, wheat-legume crop rotations may not rely on microbial diversity 

per se for the ecosystem services supporting increased yield. Rather the role of specific 

functional groups in the yield increase of crop rotation systems requires further investigation. 

 

Key Words: 

Agroecosystem; ARISA; CLPP; crop rotation; microbial diversity; soil fertility  

 

3.1. Introduction 

Conventional agricultural intensification aimed at increased production regardless of negative 

environmental impacts is not sustainable as it compromises the ecosystem services 

supporting it (Power, 2010). Conservation agriculture, characterised by minimal soil 

disturbance (no-till), permanent soil cover, and crop rotation has evolved as a sustainable 

alternative to conventional agriculture (Hobbs et al., 2008). There is growing recognition in the 

literature that conservation agriculture practices enhance the delivery of regulating and 

supporting ecosystem services within agroecosystems (Palm et al., 2014). Crop rotations are 

one of the under-studied components of conservation agriculture although they have been 

adopted prior to the Green Revolution for their yield enhancing effects (Bullock et al., 1992). 

The yield increase associated with crop rotations has been attributed to ecosystem services 

such as soil fertility, water-use efficiency, maintenance of soil structure, and disruption of pest 

cycles (Smith et al., 2008). It is widely understood that the delivery of these services are 

mediated by the microorganisms within the soil as they are responsible for many 

biogeochemical reactions in soils concerning nutrient cycling and climate mitigation (de Vries 

et al., 2013). Thus, it is important to understand how crop rotation effects rhizosphere 

biochemistry as well as the exploitation of alternative soil niches, and how this links to soil 

microorganisms and agroecosystem function. 

Crop rotations alter soil physico-chemical properties and are thus predicted to alter soil 

biological parameters such as microbial abundance and diversity. In a meta-analysis of 122 

studies, McDaniel et al. (2014) found that adding additional crops in rotation to a monoculture 

increased soil microbial biomass, carbon (C) and N pools. It is, however, unclear, as to 

whether this increased microbial abundance was associated with increased diversity. It has 

been posited that aboveground biodiversity is correlated with belowground biodiversity 

(Hooper et al., 2000). A diversity of root exudates and plant litter build-up from residual crops 

in rotation is predicted to lead to a greater diversity and abundance of microorganisms (Costa 

et al., 2006; Kent and Triplett, 2002). Lupwayi et al. (1998) discovered that microbial diversity, 
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based on community level substrate utilisation (respiration), was significantly higher under a 

rotation of wheat and clover or field peas than under continuous wheat monoculture. However, 

other studies have shown that crop rotation has limited or negative effects on microbial 

diversity. For example, Navarro-Noya et al. (2013) found that crop management (continuous 

maize versus maize-wheat rotation) had no effect on soil microbial diversity. Yin et al. (2010) 

found that incorporating soy beans into rotation with wheat decreased richness and Shannon-

Weaver diversity indices in conventional tilled plots when compared to continuous wheat. 

Therefore, the relationship between increasing crop diversity and soil microbial diversity is not 

clear. Besides this, the relationship between microbial diversity and agroecosystem 

functioning is also poorly understood (Nannipieri et al., 2003; van der Heijden and Wagg, 

2013).  

Microorganisms mediate nutrient cycling delivery through the decomposition of organic 

material, thereby enhancing soil fertility, soil structure and water use efficiency (Kennedy, 

1999). The relative diversity and abundance of microbial taxa can enhance the redundancy, 

resilience and stability of agroecosystems (Giller et al., 1997). High microbial diversity acts as 

an insurance against ecosystem malfunctioning due to multiple genetic sub-units that can 

perform the same function and have variable tolerances to stress. However, other studies 

suggest that increased agroecosystem functioning is influenced by key-stone microbial 

species (e.g. N-fixers, specific pathogens) and not diversity or abundance per se (Sharma et 

al., 2011). Crop rotations which include legumes in rotation enhance soil fertility through the 

symbiotic relationship with Rhizobium bacteria, which fix atmospheric N into the soil (Hansen, 

1994). There are, however, a diversity of free-living bacteria that can also contribute to bulk 

soil N.  Thus it can be expected that bulk soil N responds to changes in total soil microbial 

diversity and not Rhizobium species alone. Within the broader context of diversity-ecosystem 

function theory, an increase in crop and/or microbial diversity may result in a linear, curvilinear 

or poorly curvilinear relationship with the agro-ecosystem function (Smith et al., 2008; Vitousek 

and Hooper, 1994). Alternatively, it has been proposed that the well-known hump-shaped 

relation between biodiversity and function in higher plants may as well be true for soil microbial 

biodiversity (Anderson, 2003; Nannipieri et al., 2003). It could thus be expected that with 

increased microbial diversity there is increased soil fertility until a certain point is reached, 

thereafter the inverse is true. 

Recent advances in molecular and biochemical analytical tools to assess soil microbial 

communities have improved on previous culture-based techniques in assessing and 

comparing genetic and functional microbial community structures (Kent and Triplett, 2002; 

Sharma et al., 2011). These include community-level physiological profiling (CLPP) and 

automated rRNA intergenic spacer analysis (ARISA). CLPP gives an indication of the 
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functional diversity within a soil sample by measuring the potential utilisation of 31 different 

naturally-occurring carbon sources (Garland, 1997). ARISA gives an indication of the genetic 

diversity within a soil by measuring the relative abundance of rRNA intergenic spacer 

amplicons of varying lengths representing separate genetic sub-units or operational taxonomic 

units (OUT’s) (Ranjard et al., 2001). To gain clearer insight into microbial processes in soil 

ecosystems and assess the effect of agricultural practices it is essential to study functional 

and genetic diversity in combination with one another (Kent and Triplett, 2002). To our 

knowledge, no study has used both forms of microbial analysis to look at the effects of crop 

rotation on soil microbial populations and their function. 

This study investigates the links between crop rotation, microbial biodiversity and 

agroecosystem function at a long-term rotation trial in the Swartland Local Municipality of 

South Africa. To do this, (1) CLPP and ARISA were used to assess the impact of wheat-

legume crop rotation on soil microbial activity, richness and diversity, and (2) the associated 

effect of the rotations on soil N content, general soil fertility and wheat plant yield was 

correlated with microbial diversity and function. 

 

3.2. Materials and methods 

3.2.1. Experimental site 

The study was conducted during the winter growing season from August to November 2013. 

Sampling was performed within a 19-year, long-term crop rotation trial initiated in 1996 at 

Langgewens Experimental Farm near Mooreesburg in the Western Cape of South Africa 

(18.700 E, 33.283 S). This important wheat-producing region experiences a Mediterranean 

climate with wet, cool winters and hot, dry summers. Long-term (n = 40 years) mean daily 

minimum and maximum temperatures range between 10.7°C and 22.3°C between August and 

November (P Lombard, Western Cape Department of Agriculture, pers. comm.). Long-term 

average annual precipitation is 394.8 mm per annum, with 473 mm falling during 2014. Soils 

are of the Mispah and Glenrosa soil forms, consisting of shallow (200 to 400 mm) sandy loam 

with a 45% stone content in the A-horizon. A high susceptibility to water-logging was reason 

to “ridge-and-furrow” the trial site prior to the start of the trial.  

3.2.2. Experimental layout 

The long-term trial was set up as an unbalanced randomised block design with a split-plot 

arrangement. Five two-year rotation treatments, consisting of two 2 ha plots each, were 

selected for the study. Treatments selected for this study included two-year crop rotations of 

continuous wheat (WW) (hereafter referred to as ’monoculture’) and a two combinations of 
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wheat/legume-pasture rotation systems (hereafter referred to as ‘rotation’). The wheat cultivar 

used was Triticum aestivum cv. SST 027 and the annual legumes included medic (Medicago 

trunculata cv. Parabinga and Sephi) and clover (Trifolium repens cv. Balansa and Roos). The 

rotations consisted of wheat followed by medic (Wm) and wheat followed by a mixed pasture 

of medic and clover (Wmc). Every year since 1996, two plots for each rotation were planted 

to an annual legume and two were planted to wheat, thus providing an additional two 

treatments of medic followed by wheat (mW) and medic/clover mix followed by wheat (mcW). 

The inclusion of both alternate rotation years within the treatments accounts for climate 

variability. Based on the assumption of soil homogeneity within sampling plots, each plot was 

divided into three sub-plots, creating six replicates per treatment (n=6). In addition to the 

treatments, a protected area of Renosterveld located near the experimental farm was used as 

a reference (Ref) site.  

3.2.3. Crop management 

Principles derived from conservation farming practices were used in the planting, protection 

and harvesting of the crop. Wheat planting is achieved with a no-till planter, which disturbs 

approximately 20% of the soil surface. Pasture crops were planted in 1996 and each 

subsequent pasture production year, the legume plants regenerated from soil-stored seed 

banks or supplemented with plantings if needed. Thus, soil disturbance occurred every year 

in the monoculture plots and every second year in the rotation plots. Soil macro- and trace 

elements were maintained at recommended levels for each crop according to Anon (1990). 

Weeds were controlled post-germination with broad spectrum herbicides including 750 g.kg-1 

Triasulfuron and 360 g.L-1 Glyphosate before planting. Prior to 2001, all residue wheat straw 

was removed from the plots after harvesting. Post 2001, residue crop was retained on the 

plots and sheep were allowed to graze the residue in the rotation plots only. In 2008, the 

monoculture plots were burned post-harvest in an attempt to reduce the herbicide resistant 

ryegrass infestation. Sheep are stocked on the pasture rotation a few weeks after planting and 

remain there for the winter at a stocking density of four ewes per hectare. 

3.2.4. Sampling procedure 

Wheat plants were sampled in the monoculture plots and wheat-phase of the rotation plots 

(WW, Wm and Wmc). Historical yield data for the experimental plots was obtained from 

Langgewens Experimental Farm. This was measured in tonnes per hectare each year after 

harvest with a combine harvester at the point when the water content of wheat grain was less 

than 13%. In addition to the field-based harvest, six plants were randomly selected and tagged 

per sub-plot (i.e. 18 per treatment) and stem length was measured on three occasions at the 

beginning (August), middle (September) and end (October) of the growing season. Tagged 
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plants were removed at the shoot-root base, and weighed for wet mass after the final 

measurement of stem length. The samples were subsequently placed in brown paper bags 

and dried at 70°C in an oven for five days. The shoots were then re-weighed for dry mass and 

analysed for macro- and trace elements using inductively coupled plasma optical emission 

(ICP-OES, ICP 6000 series, Thermo Eloctron Corp.) after dry-ashing. 

Soils were sampled before harvest at the end of October using a rocky soil auger (40 mm in 

width) to a depth of 70 mm and 150 mm for microbial and nutrient analyses, respectively. After 

removing surface organic matter, six samples were collected per sub-plot around the tagged 

plants from within wheat rows and pooled together for the microbial analysis. Each soil sample 

comprised three soil cores which were subsequently mixed. Soil was immediately sieved 

through a 2-mm sieve, collected onto ice and stored at 4°C for subsequent DNA extraction 

and CLPP profiling. For soil nutrient analysis soil samples were air-dried for three days and 

subsequently analysed for macro- and trace elements using ICP-MS as previously described 

where NH4+-nitrogen was analysed using routine Kjeldahl digestion. 

3.2.5. Community-level physiological profile (CLPP) 

Substrate utilisation patterns of culturable soil microbial (bacterial) communities, as a measure 

of functional diversity, were assessed using Biolog-EcoPlateTM (Biolog Inc., Hayward, CA, 

USA) according to a procedure adapted from Garland and Mills (1991). A pre-incubation was 

performed to allow microbial utilisation of residual soluble organic carbon present in the soil. 

To do this, 5 g dry weight soil samples were moistened to 40% water holding capacity and 

incubated for 6 days at 25°C. Samples were covered in Parafilm® to allow for CO2 and O2, 

but not H2O exchange. After incubation, samples were shaken with 40 mL of 0.8% NaCl buffer 

solution for 30 minutes on an orbital shaker. After sediment had settled, 5 mL of supernatant 

was removed and centrifuged softly at 300 g to pelletize remaining sediment. Thereafter, 125 

μL aliquots of the supernatant were used to inoculate each well of the Biolog-EcoPlatesTM. Six 

EcoPlates were used per treatment (one per replicate), which contained internal triplicates of 

31 different carbon sources suitable for soil microbes (Choi and Dobbs, 1999). Plates were 

stored on an orbital shaker at 25°C. The utilisation of the carbon sources (indicated by a 

reduction of the tetrazolium dye) was then recorded on a Bio-Rad Micro Plate Reader at 590 

nm at 24, 48, 72 and 96 h after inoculation. Absorbance values were corrected by subtracting 

the control well from the actual reading. Any negative results after correction were recorded 

as zero.  

Total microbial activity is expressed as average well colour development (AWCD), calculated 

as AWCD =  
∑ 𝑂𝐷𝑖

31
, where ODi is the ratio of the corrected optical density value of each well. 

Microbial diversity was determined using measures of richness and evenness by comparing 
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plates that most approximate an AWCD of 0.75 (Garland, 1997). The threshold for a positive 

test was determined as any value, after background correction, exceeding 0.25. Richness (S) 

was determined as the count of positive testing absorbance values. Evenness was determined 

using the Shannon-Weaver index (H) as 𝐻 =  − ∑ 𝑝𝑖(ln𝑝𝑖), (Shannon and Weaver, 1969) 

where 𝑝𝑖 is the ratio of the corrected absorbance value of each well to the sum of the 

absorbance value of all wells at a wavelength of 590 nm. Comparisons of the pattern of carbon 

source utilisation between treatments were achieved using Principle Components Analysis 

(PCA). 

3.2.6. Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

Total microbial DNA was extracted from soils within a week of field sampling. The bacterial 

ARISA, as a measure of genetic diversity, involved the extraction of total community DNA from 

soil samples, PCR amplification using fluorescence-tagged oligonucleotide primers targeting 

the intergenic spacer region transcribed from between the small (16S) and large (23S) subunit 

of the rRNA, laser detection of fluorescent DNA fragments, and analysis of banding patterns. 

Total DNA was extracted from 0,35 g of moist soil using ZR Soil Microbe DNA kit (Zymo 

Research, California, USA) following the manufacturer’s instructions and stored at -18°C until 

further analysis. 

The PCR reactions were carried out using Bacterial specific primers, ITSReub and FAM 

(carboxy-fluorescein) labelled ITSF (Cardinale et al., 2004). For each treatment, consisting of 

six samples, the reaction mixture contained 40 µL of 2X KapaTaq Readymix 

(KapaBiosystems, South Africa) master mix, 24 µL of ultrapure water (Milli-Q®), and 4 µL of 

each primer. Amplification was performed on a GeneAmp® PCR System 9700 machine using 

the following cycling parameters: 5 min at 94°C, 30 cycles of 30 s at 94°C, 45 s at 56°C, 1 min 

10s at 72°C, and a final 5 min at 72°C. This was repeated three times for each sample set so 

as to create triplicate results which were then pooled into one Eppendorf sample tube. PCR 

samples were separated on a 1% agarose gel, stained with ethidium bromide and visualized 

using ultraviolet light. The amplicons from bacterial specific PCR were run on an ABI 3010xl 

Genetic analyser to obtain an electropherogram of the different fragment lengths and 

fluorescent intensities. ARISA samples were run with ROX 1.1 size standard which varied 

from 20 to 900 bp (Slabbert et al., 2010). ARISA data was analysed using Genemapper 4.1 

software, which converted fluorescence data to an electropherogram representing fragments 

of different sizes. Only fragment sizes larger than 0.5 % of the total fluorescence, ranging from 

120 to 1000 base pairs in length was considered for analysis. A bin size of 3 bp for fragments 

below 700 bp and 5 bp for fragments above 700 bp was employed to minimise the inaccuracies 
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in the ARISA profiles (Ranjard and Nazaret, 2000; Slabbert et al., 2010). Shannon-Weaver 

and richness scores were calculated using data OTU's as determined from the ARISA data.    

3.2.7. Statistical analysis 

Differences in treatments based on measured variables were calculated using analysis of 

variance (ANOVA, cut-off for significant p < 0.05) with Statistica v.12 (StatSoft, Dell Inc. USA). 

There was no significant difference between blocks for any of the tests performed, thus blocks 

were pooled per treatment and not included as a categorical factor. A cluster analysis using 

Euclidean distances was performed using diversity and richness scores as factor variables for 

the CLPP and ARISA data separately to assess the grouping relationships between 

treatments. A PCA was used to analyse the CLPP data after substrates were divided into six 

groups and the average absorbance per category was calculated (Zak et al., 1994). 

Meaningful loading variables (> 0.5) were considered as significant in the interpretation of 

principle components (Manly, 1994). Regression analyses were performed on richness and 

diversity scores, as well as CLPP and ARISA results. Correlation matrices were constructed 

using microbial diversity, richness and activity scores, plant and soil nutrient levels, and yield 

data.  

 

3.3. Results 

3.3.1. Yield 

Wheat plant stem length was higher in rotation treatments compared to WW (p < 0.0001), 

however historical wheat yield did not differ between treatments (p = 0.257, Figure 3.1). 

Biomass data from tagged plants showed that there was no difference in individual plant leaf 

(p = 0.935) or grain (p = 0.202) mass between treatments. 
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Figure 3.1: Accumulative wheat stem length measured at three time points during the 2013 growing 

season (A), and total wheat grain yield for the past 10 years (B). Whiskers indicate standard error. 

Different letters above the bars indicate least squared means of treatments from a repeated measures 

ANOVA at the P < 0.05 level. Abbreviations: WW, wheat/wheat; Wm, wheat/medic; Wmc, 

wheat/medic&clover 

3.3.2. Functional diversity (CLPP) 

Cluster analysis based on microbial activity, richness and diversity scores revealed a 

separation in microbial community function in response to rotation treatments (Figure 3.2A). 

The WW monoculture was clearly separated from rotation treatments and the Ref site at the 

highest Euclidean distance. The crop rotations as a whole were more similar to the natural 

(Ref) site than to the monoculture (WW) although this was at a relatively high level (2nd order). 

The mW and Wmc treatments containing legumes were most similar with the lowest Euclidean 

distances. 
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Figure 3.2: Cluster analysis of community-level physiological profiles (CLPP) and automated rRNA 

intergenic spacer analysis (ARISA) of soils. The dendrogram was based on Euclidean distances 

calculated from richness (S) and Shannon-Weaver diversity (H) scores. Monte Carlo permutation 

testing on all six field replications was used to determine significant branching in the dendrogram. 

Abbreviations: WW, wheat/wheat; Wm, wheat/medic; mW, medic/wheat; Wmc, wheat/medic&clover; 

mcW, medic&clover/wheat; Ref, reference. 

The overall microbial activity, as measured by utilisation of C substrates (AWCD), was not 

significantly different between rotation treatments when the Ref site was excluded from the 

model (p = 0.142, Figure 3.3). However, the highest average level of microbial activity occurred 

in the Wmc rotation (optical density of 0.744), whereas WW monoculture produced the lowest 

value for microbial activity (optical density of 0.581) amongst the treatments. When Ref was 
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added to the model, a post-hoc Tukey HSD test revealed significant differences between Ref 

and mW (p = 0.036) and Wmc (p = 0.002). The AWCD (microbial activity) generally followed 

the same pattern between treatments as it increased with incubation time (Figure 3.3).  

  

Figure 3.3: Average well colour development over a 96 hour time course, measured as optical density 

(OD), from community-level physiological profiles obtained by Biolog-EcoPlateTM inoculation of 

treatment soil samples with data showing averages    standard errors (A); and least squared means 

of treatments from a repeated measures ANOVA where a significant difference is indicated by differing 

letters above bars at the P < 0.05 level (B). Abbreviations: WW, wheat/wheat; Wm, wheat/medic; mW, 

medic/wheat; Wmc, wheat/medic&clover; mcW, medic&clover/wheat; Ref, reference. 

Increasing crop diversity through wheat-legume rotations did not significantly affect the 

microbial community functional richness (p = 0.5127) or diversity (p = 0.263) as measured by 

CLPP. Rotations of wheat with medic tended to have the highest average richness (S = 69) 

and diversity (H = 4.21) scores for the mW and Wm treatments, respectively. Rotation 

treatments sampled in the legume phase of the rotation (mW, mcW) also tended to have 

higher average richness scores than those in the wheat phase (Wm, Wmc), while the same 

was not the case for diversity scores. The Ref consistently produced the lowest average 

microbial activity, richness and diversity scores with the highest levels of variability between 

replicates.  

The PCA showed no distinct separation of treatments, nor any specific correlations between 

treatments and types of substrate utilisation (loading variables comprising of six groups of 

carbon substrates, Figure 3.4). The proportion of variation explained by PC1 was 72.9% and 

the loading variables, comprising of six categories of Biolog-EcoPlateTM C substrates, 

contributed toward the spread of variables along PC1 and PC2. Microbial substrate utilisation 

of all substrates was significant (factor co-ordinates > +/-0.5) in separating the treatments on 

the PC1 axis. On the PC2 axis, amide and miscellaneous substrate metabolising bacteria had 

the greatest influence on the treatments with factor co-ordinates of -0.418 and 0.537 
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respectively. The Ref treatment replicates were negatively correlated with the loading 

variables, whereas Wmc replicates were positively correlated. 

 A B 

P
C

2
 (

1
3
.6

%
) 

  

PC1 (72.9%) 

Figure 3.4: Principle Components Analysis of the absorbance data from Biolog-EcoplateTM community-

level physiological profiles inoculated with soils. Abbreviations: WW, wheat/wheat; Wm, wheat/medic; 

mW, medic/wheat; Wmc, wheat/medic&clover; mcW, medic&clover/wheat. Loading variables based on 

rotation treatments include six categories of carbon substrates. Treatment scatterplot (A) and loading 

variables (B) on PC1 and PC2 axis. 

3.3.3. Genetic diversity (ARISA) 

Similarly to CLPP, cluster analysis based on ARISA richness and diversity scores revealed a 

separation in microbial community structure in response to rotation treatments (Figure 3.2B). 

The WW monoculture was clearly separated from other rotation treatments and the Ref site 

at the highest Euclidean distance, although Ref was still differentiated from the rotation 

treatments at a relatively high Euclidean distance. Also similar to the CLPP data, Wm and mW 

treatments were most similar with the lowest Euclidean distances. 

As indicated by CLLP, ARISA indicated that there was no significant difference between 

rotation treatments in microbial genetic richness (p = 0.563) and diversity (p = 0.454). This 

result did not change when the Ref was included in the model. The WW monoculture tended 

to produce the lowest average genetic richness (S = 41.5) and diversity (H = 3.24) scores, 

while the Ref site produced the highest (S = 46.3, H = 3.57). Rotation treatments in the legume 

phase of the rotation (mW, mcW) tended to produce lower average richness and diversity 

scores than those in the wheat phase (Wm, Wmc).  
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3.3.4. Methodological comparison 

The relationship between richness and diversity scores showed a significant positive 

correlation for both CLPP (p < 0.0001, R = 0.493) and ARISA (p < 0.0001, R = 0.851) data, 

representing functional and genetic diversity respectively. Regression analysis on the CLPP 

and ARISA data revealed no correlation for richness scores (p = 0.11, R = 0.078) and diversity 

scores (p = 0.528, R = 0.012).  

3.3.5. Nutrient cycling 

Soil N and C did not differ between treatments (p = 0.469, p = 0.167, Table 3.1). As expected 

for a soil of the Fynbos Biome, soil phosphorous levels were lower at the reference site 

compared to the agricultural sites (p < 0.001) where the latter had been regularly fertilized. 

Post hoc Tukey HSD tests revealed that Wmc treatment produced significantly higher wheat 

plant N (p < 0.001), P (p < 0.001) and Mg (p < 0.001) levels and lower grain N (p < 0.01) and 

P (p < 0.001) levels relative to WW (Table 3.1).  
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Table 3.1: Soil, wheat plant and grain average nutrient levels for rotation treatments at Langgewens Experimental Farm. Abbreviations: WW, wheat/wheat; 

Wm, wheat/medic; mW, medic/wheat; Wmc, wheat/medic&clover; mcW, medic&clover/wheat. Numbers are averages  standard error, with significant 

differences indicated by differing letters at the P < 0.05 level. 

Rotation NH4
+-N P K Mg Na Ca pH C S 

  (%) (mg kg-1) (mg kg-1) (cmol kg-1) (mg kg-1) (cmol kg-1)   (%) (%) 

 Soil 

WW 0.11 ± 0.01 a 80.33 ± 3.89 a 143.97 ± 16.96 a 0.95 ± 0.16 a 18.5 ± 1.41 a 5.84 ± 0.75 a 6 ± 0.2 ab 1.41 ± 0.11 a - 

Wm 0.13 ± 0.01 a 92.17 ± 3.31 a 110.67 ± 11.44 ab 1.11 ± 0.07 a 22.83 ± 3.17 a 9.22 ± 1.93 ab 6.43 ± 0.12 a 1.47 ± 0.1 a - 

mW 0.11 ± 0.01 a 76.33 ± 8.85 a 119.33 ± 10.98 ab 1.09 ± 0.16 a 22 ± 1.13 a 5.59 ± 0.56 a 6.18 ± 0.11 a 1.26 ± 0.14 a - 

Wmc 0.13 ± 0.01 a 92.33 ± 8.22 a 95.5 ± 17.64 ab 1.25 ± 0.32 a 17.33 ± 0.92 a 6.17 ± 0.92 a 6.17 ± 0.2 a 1.54 ± 0.17 a - 

mcW 0.11 ± 0.01 a 94.83 ± 11.8 a 155.83 ± 33.49 a 0.64 ± 0.07 a 23.17 ± 0.83 a 4.71 ± 0.24 ac 5.88 ± 0.14 ab 1.28 ± 0.11 a - 

Ref 0.12 ± 0.01 a 29.17 ± 3.36 b 217 ± 28.3 ac 1.43 ± 0.23 a 35.5 ± 4.71 b 3.24 ± 0.42 ac 5.38 ± 0.18 ac 1.73 ± 0.16 a - 

 Plant 

WW 0.43 ± 0.02 a 0.06 a 1.73 ± 0.06 a 0.07 a 240.38 ± 14.61 a 0.21 ± 0.01 a - - 0.1 ± 0.01 a 

Wm 0.58 ± 0.04 a 0.07 a 2.17 ± 0.15 b 0.09 ± 0.01 b 376.19 ± 21.16 b 0.27 ± 0.01 b - - 0.14 ± 0.01 b 

Wmc 1.18 ± 0.22 b 0.2 ± 0.05 b 1.34 ± 0.35 c 0.1 ± 0.01 c 242.14 ± 37.03 a 0.18 ± 0.03 a - - 0.1 ± 0.01 a 

 Grain 

WW 1.47 ± 0.07 a 0.3 ± 0.01 a 0.66 ± 0.04 a 0.11 a 155.18 ± 8.57 a 0.08 ± 0.01 a - - 0.1 a 

Wm 1.66 ± 0.05 b 0.34 ± 0.01 a 0.71 ± 0.05 a 0.12 b 145.55 ± 10.25 a 0.09 a - - 0.1 ± 0.01 b 

Wmc 1.19 ± 0.22 c 0.21 ± 0.06 b 1.19 ± 0.21 b 0.1 ± 0.01 a 265.56 ± 67.06 b 0.18 ± 0.04 a - - 0.1 c 
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3.3.6. Agroecosystem relationships 

Yield was positively correlated to crop diversity and genetic microbial diversity (Figure 3.5). 

However, yield was negatively influenced by the functional diversity of microbes with a 

significant negative correlation to richness scores at p < 0.005 (r = -0.89). Increased soil N 

positively correlated to yield and grain N, however, neither genetic nor functional diversity had 

any influence on soil N or, correspondingly on grain N (Figure 3.5). Microbial activity was 

negatively correlated to other soil nutrients including Na (r = -0.524) and K (r = -0.53), yet 

positively correlated to P (r = 0.433). Furthermore functional microbial diversity was negatively 

correlated to Na (p = -0.499). 

 

Figure 3.5: Diagram indicating possible relationships as well as correlation coefficients for various 

agroecosystem diversity and function components across all treatments in this study. Arrow weight 

indicates strength of correlation with dashes representing negative relationships. 

 

3.4. Discussion 

The objective of this study was to investigate the links between crop rotation, microbial 

biodiversity and agroecosystem function in terms of soil fertility and yield. Different wheat-
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legume crop rotation treatments and a wheat monoculture at a long-term trial in the Western 

Cape of South Africa were assessed for microbial functional and genetic diversity using CLPP 

and ARISA techniques respectively. Soil and plant nutrient levels, and wheat yield were also 

sampled as measures of agroecosystem function.   

3.4.1. Yield 

Wheat-legume rotations resulted in higher plant production (stem length) than wheat 

monoculture. Although rotations did not produce significantly higher grain yields, at the farm 

level, historically higher yields and economic gains per hectare from wheat-legume rotations 

has encouraged the adoption of crop rotation within the region (Hardy and Strauss, 2011). 

Yield was positively correlated to soil N and grain N which confirms the positive plant 

physiological response to soil nutrients. Further, this confirms the broadly-recognised 

beneficial yield effect of crop rotations (Bullock, 1992; Smith et al., 2008).  

3.4.2. Soil microbial diversity 

The role that soil microbial diversity played in mediating the increase in plant production 

remains complicated based on our results. The cluster analysis did separate wheat 

monoculture from the rotation treatments for both CLPP and ARISA when richness and 

diversity scores were combined (Figure 3.2A). However, the independent ANOVAs of richness 

and diversity scores revealed that rotations did not significantly alter the functional (CLPP) or 

genetic (ARISA) microbial diversity of the soil.  

The weak and conflicting effects of crop diversity on functional microbial diversity are reflected 

in the literature as reviewed in Chapter 1 of this thesis. Previous studies employing CLPP as 

a method have shown positive (Lupwayi et al., 1998; Murphy et al., 2011) or non-significant 

(Marais et al., 2012; Navarro-noya et al., 2013) effects of crop rotations on functional microbial 

diversity. Although fungal diversity was not measured in this study (EcoPlateTM tetrazolium 

dye is not metabolised by fungi), fungal diversity in soils may also be unaffected by crop 

rotation (Stefanowicz, 2006; Mathimaran et al., 2007). In these studies, other abiotic factors 

such as soil moisture and pH were found to be driving factors. Given that the Ref site had 

lower levels of microbial activity yet similar levels of diversity in comparison to the diversified 

cropping systems, it is possible that latent microbial biodiversity is unaffected by 

anthropogenic impacts, yet the activity and functioning of that biodiversity is. 

Conflicting evidence is also found in studies employing molecular-based methods, such as 

ARISA, measuring genetic diversity in crop rotations. Guong et al. (2012) and Yao et al. (2006) 

found lower microbial diversity in soils under monoculture compared to those under rotation. 

However, other studies on genetic diversity show a lower microbial diversity in soils under 
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grain-legume rotations than under grain monocultures (Mathimaran et al., 2007; van Elsas et 

al., 2002; Yin et al., 2010). There are also studies revealing contrasting effects of grain-legume 

rotations on microbial diversity depending on the study trial location and rotation length (Alvey 

et al., 2003; Azziz et al., 2012). 

3.4.3. Methodological comparison 

The results of the methodological comparison revealed no significant relationship between 

functional diversity (measured with CLPP) and genetic diversity (measured by ARISA). The 

results are counter to other studies comparing CLPP and phospholipid fatty acid analysis 

(PLFA, as a measure of species composition) which found that the degrading capacity of a 

community (CLPP) reflects the species composition (PLFA) (Söderberg et al., 2004). 

Functional diversity is a function of both genetic variability and phenotypic expression 

influenced by the ecological interactions between organisms and the environment (Zak et al., 

1994). Thus, one possible explanation for the results in this study is that the ecological 

relationships between microbial species complicates the effect of genetic diversity on 

functional diversity. For example, at low levels of genetic diversity there can be higher-than-

expected levels of functional diversity because of functional redundancy where there are 

multiple taxonomic sub-units that can perform the same function (Nannipieri et al., 2003). Thus 

although WW had lower genetic diversity, this may not have impaired the associated functional 

diversity of the soil microbial communities.  

The weak relationship between CLPP and ARISA may also be due to problems intrinsic to the 

methodology. CLPP only measures the activity of a part of the total microbial community, 

probably mainly fast-growing bacteria, yeast and fungi, and may misrepresent the diversity of 

actual carbon sources in the soil (Stefanowicz, 2006). ARISA is vulnerable to 

underrepresenting taxonomic diversity due to the overlapping size classes among unrelated 

populations (Ranjard et al., 2001). Furthermore, microbial community composition may differ 

with crop rotations, yet this would not be identified with CLPP or ARISA unless further detailed 

genetic analysis is performed. Nevertheless, these methods used in combination can give 

important reliable and repeatable insights into soil microbial diversity (Torsvik & Øvreås, 2002).  

3.4.4. Nutrient cycling 

The conflicting evidence for a rotation effect on functional or genetic microbial diversity across 

the literature and within our study suggests that there are multiple abiotic and biotic factors 

driving diversity which differ over time and space. One mechanistic hypothesis for an increase 

in microbial diversity suggests that crop rotations increase soil organic matter quantity and 

quality, which in turn stimulates microbial abundance and functional diversity. Soil nutrient 

analyses revealed no differences in N and C across treatments, which could explain the 
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similarity in microbial diversity. McDaniel et al. (2014) found in a meta-analysis that studies 

including cover crops in rotation resulted in increased bulk soil C which had an associated 

increase in microbial biomass. Other studies have found functional links between the changes 

in quality and quantity of soil organic matter and microbial composition (Bird et al., 2011; 

Cusack et al., 2011). Thus, if our study found differences in soil C, perhaps this may have 

increased microbial biomass and possibly diversity. In terms of soil organic matter quality, our 

study found higher N and lower P levels in wheat plants (residue) under the Wmc treatment 

when compared to WW. It could be expected that if this plant material becomes residue that 

is incorporated into the soil, the quality of soil organic matter and subsequently the microbial 

diversity could change significantly, yet this was not the case.  

Microbial activity was correlated to soil nutrients other than N and C, where significantly lower 

P levels in the Ref site correlated to lower microbial activity. Significantly higher Na and K 

levels in the Ref site also correlated to lower microbial activity and functional diversity. In 

addition, although not correlated with microbial diversity, pH was significantly lower in Ref site 

compared to WW and mcW. Thus P availability, Na and K excess, and pH may be drivers of 

microbial activity and possibly diversity. This supports a broad-scale study on bacterial 

abundance and diversity patterns along precipitation gradients in Mediterranean, semi-arid 

and arid sites, which showed that bacterial abundance in soil is correlated with water 

availability, but the richness and diversity of communities were influenced by nutrient 

availability and pH (Bachar et al., 2010).  

3.4.5. Agroecosystem relationships 

It is difficult to determine whether soil physico-chemical factors drive microbial diversity or 

whether the inverse is true. One of the challenges within microbiology is to understand the link 

between diversity and function (Torsvik & Ovreas, 2002). Within agroecosystems, crop 

diversity and microbial diversity may be linked with functional traits such as soil fertility and 

yield. Broader ecological theories suggest that agroecosystem function may be related to 

diversity through linear, curvilinear, poorly curvilinear (Smith et al., 2008; Vitousek and Hooper, 

1994), or hump-shaped relationships (Anderson, 2003; Nannipieri et al., 2003). In terms of soil 

N fertility, our study partially aligned with this theory and partially did not: the presence of one 

additional legume in the crop diversity did correlated with increased plant N, while there was 

no link between this increased plant N concentration and the microbial diversity. Underlying 

this is the fact that there was no correlation between crop diversity and microbial diversity. In 

terms of crop diversity, and crop function in terms of yield and N concentration, our results 

seemed to follow a hump-shaped or poorly curvilinear curve with rotations of wheat with 

legumes resulting in higher yields than wheat monoculture (Figure 3.1). This aligns somewhat 
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with a study by Smith et al. (2008) which shows that over three years, corn yield increased 

linearly with the number of crops in rotation. It also confirms the recognised positive 

relationship between crop yields and crop rotation (Bullock et al., 1992).  

The extent to which microbial diversity mediated this relationship was not clear as no 

significant correlation between microbial diversity (functional or genetic) and wheat yield was 

found (Figure 3.5). However, CLPP richness scores were negatively correlated with yield 

which contradicts the broader diversity-function theories mentioned above. This suggests that 

lower functional richness of soil microbes may result in increased agroecosystem function. 

This provides support for the selection effect hypothesis where ecosystem function is a 

product of specific productive species, as opposed to the complementarity effect involving the 

facilitative interaction of a diversity of species (Hooper et al., 2000). Wheat-legume rotations 

may have lower functional richness, yet the presence of N2-fixing symbiotic bacteria (Rhizobia 

spp.) results in higher than expected agroecosystem function. Considering the bulk soil N was 

similar between treatments, yet the wheat plant N was higher in Wmc, it is possible that soil 

rhizosphere N is patchy, with Rhizobium-colonized medic providing additional N to the wheat 

crop. 

 

3.5. Conclusion 

Increasing crop diversity through rotating wheat with legumes positively impacted cash-crop 

production. Although crop diversity can also impact microbial communities due to changes in 

agroecosystem properties such as water-use-efficiency and C substrate quality and quantity, 

this study revealed no significant impact of the diversity of wheat-legume crop rotations on 

functional and genetic microbial diversity. However, when richness and diversity scores were 

considered in combination, cluster analysis produced a separation between wheat 

monoculture and rotations. These results together seem to reflect the conflicting evidence that 

is also found in the literature on the effect of crop rotation on microbial diversity, suggesting 

that there are multiple abiotic and biotic factors mediating this effect which differ over time and 

space. Within our study, likely drivers included P availability, Na and K excess, and pH due to 

significant correlations with microbial activity and functional richness. Another possible driver 

is soil organic matter quantity and quality, yet no differences in soil C and N levels with 

increasing crop diversity were found, which may explain the similarity in microbial diversity 

across treatments. Further research on crop rotations that significantly alter soil organic matter 

content may find differences in microbial diversity. Components of agroecosystem function 

(soil N and yield) did not correlate linearly with components of agroecosystem diversity (crop 

and microbial diversity). Soil N was not correlated to crop or microbial diversity. Yet the 
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relationship between crop yield and crop diversity produced a hump-shaped curve, thus 

aligning with broader ecological theories and suggesting that rotations with one legume crop 

such as medic are most productive. The extent to which microbial diversity mediated this 

relationship remains complex as revealed by the lack of significant correlation between CLPP 

and ARISA scores. This supports the hypotheses of functional redundancy in genetically 

diverse microbial communities and the selection effect in genetically homogenous 

communities, where the increased wheat plant N was likely mediated by local-scale increased 

soil N availability due to N2-fixing Rhizobia in the legumes.  

Overall, wheat-legume crop rotations may not rely on microbial diversity per se for the 

ecosystem services supporting increased yield. Rather the role of specific functional groups 

in the yield increase of crop rotation systems requires further investigation. 
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CHAPTER 4: GENERAL CONCLUSION AND FUTURE RESEARCH 

 

The sustainability of our earth’s ecosystems appears to be intrinsically linked to the immense 

biodiversity and its associated variety of functional ecosystem services. Within 

agroecosystems, post-green revolution conventional agriculture practices do not mimic natural 

ecosystems in terms of their levels of biodiversity. The simplification of cropping systems 

through monocultures and the intensification of chemical inputs poses a threat to the 

sustainability of ecosystem services flowing to and from agroecosystems. It is proposed that 

adoption of sustainable practices such as conservation agriculture, which promote 

diversification through crop rotations, may sustain the ecosystem services supporting 

agroecosystem function particularly in terms of cash crop yield and soil nutrient fertility. It is 

also proposed that belowground biodiversity has a role to play in mediating the effect of crop 

rotations on agroecosystem function. This thesis aimed at investigating (1) the relationship 

between above and belowground diversity in crop rotation systems, and (2) the relationship 

thereof to agroecosystem function in terms of soil fertility and crop yield. 

Results from Chapter 1, revealing trends at a global level, generally agreed with results from 

Chapter 2, revealing trends within the local context in the Swartland of South Africa. Although 

the meta-analysis revealed an overall positive impact of crop diversity on soil microbial 

diversity, the effect was highly variable between different studies suggesting that other 

context-specific drivers may be overriding the effect. Indeed, within the context of wheat-

legume rotations in the Swartland, there was no significant relationship between above and 

belowground diversity. This is likely due to other abiotic drivers of microbial community 

structure such as P availability, Na and K excess, and pH, all of which correlated to microbial 

activity and functional richness in the soils from the Swartland rotation trial. Furthermore, 

literature also includes soil moisture (Marais et al. 2012) and soil organic matter (Zak et al., 

2003) as important drivers of soil microbial community structure. Thus, any relationship 

between above and belowground diversity may be confounded by abiotic components. 

Agricultural practitioners wishing to boost soil microbial diversity need to consider the net-like 

causal structure of agroecosystem, and adopt a range of management practices facilitating 

the growth of microorganisms where crop rotations may be one of them. This is, however, 

based on the assumption that increased microbial diversity is beneficial for agroecosystem 

function. 

The results from this thesis reveal that the link between agroecosystem diversity and function 

remains complicated. The meta-analysis revealed no correlation between crop or microbial 

diversity, and soil fertility, although the number of studies involved was low. This aligned with 
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the results from Chapter 2 which showed no correlation between functional and genetic 

microbial diversity scores, as well as no correlation between microbial diversity and soil N 

fertility and wheat yield. These results do not align with any one of the broader diversity-

ecosystem function relationships depicted in Figure 1.1. This decoupling of agroecosystem 

diversity and function does provide support for the hypothesis that ecosystem function may 

be a product of either specific productive species (selection effect), or the facilitative interaction 

of multiple species (complementarity effect). For instance, a particular patch of soil may 

contain high microbial diversity and maintain its functionality through functional redundancy, 

or contain low microbial diversity and maintain functionality through specific productive 

species. Likewise, a particular patch of soil may have its functionality compromised by a 

specific pathogenic species independent of whether it has high of low levels of microbial 

diversity.  

The one result that did buck the trend was the correlation between crop diversity and functional 

components including wheat yield and soil N in Chapter 2. The relationship followed a hump-

shaped curve, supporting the broader ecological theory (Anderson, 2003; Nannipieri et al., 

2003) and suggests that a rotation with one legume crop was more productive than wheat 

alone or wheat plus two legumes. Further research incorporating a variety of crops would need 

to be performed before a crop diversity of two crops could be claimed as optimal for production. 

These conflicting results on the diversity-ecosystem function relationship challenge the broad 

assumption that soil biodiversity, and biodiversity in general, is beneficial for ecosystem 

function (Brussaard et al. 2007).  Without specific knowledge about the species composition 

of a given agroecosystem, it is difficult to understand how the biodiversity related to function. 

It may be the case that for soil biodiversity, community-level microbial diversity measurements 

are too broad to make any statements about functionality. This highlights the need for research 

into the specific functions of microbial taxa within agroecosystems using techniques like 

pyrosequencing and other next-generation sequencing methods (Fakruddin et al., 2013). 

Furthermore, the spatio-temporal changes in microbial diversity and ecosystem function need 

to be further examined. For example, within wheat-legume crop rotations, bulk soil diversity-

function measurements may produce different results to those of the rhizosphere, and the 

same may be true of measurements during winter and summer. 

Overall this thesis supports the claim that diversifying agroecosystems through wheat-legume 

crop rotations is beneficial for cash crop production. The extent to which soil biodiversity and 

agroecosystem function, in terms of N cycling and yield, are linked may be further clarified 

with focused research in the following two areas; (1) the relative impact of various drivers of 

microbial diversity, and (2) the species composition and specific functional roles of taxa within 
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soil microbial communities. This thesis indicated that crop rotation (through the meta-analysis) 

and soil chemical characteristics are important drivers of microbial diversity, however research 

into the relative impact of these factors and others (biotic and abiotic) is necessary (Powell et 

al., 2014). For instance, it may be possible that other factors associated with crop rotations 

may be complicating the effect on soil microbial communities. These may include soil organic 

matter quantity and quality, differing tillage practices, fertilization rates, and biocide chemical 

usage. However, further to knowing what influences microbial communities, research on the 

functional role of specific microorganisms in crop rotation and other agroecosystems is 

necessary. For this, next-generation sequencing techniques are required to link specific 

keystone taxa to their functions (both beneficial and negative). These findings may increase 

our ability to manipulate microbial populations for agroecosystem sustainability in the future.  
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APPENDIX 

Appendix A 

Database of studies included in the meta-analysis.  

Study name 
Entry 
differentiator 

Measured variable Differentiator label Control Treatment 

Categorical Moderating Variables 

Variance 
reported 

No. 
crops in 
rotation 

Legume 
presence 

Cover 
crop 
presence 

Ground 
cover (% 
of the 
year) 

Trial 
length 
category 
(years) 

Analysis 

method
‡

 

Alvey et al. 2003 
Rotation type & 
Location 

Diversity 
Gaya Rotation 1 1millet 1(control/1cowpea) y† 2 y n 100 

1-5 MF 
Kaboli Rotation 2 1maize 1(control/groundnut) y 2 y n 100 

Azziz et al. 2012 Rotation length Diversity 
Short Rotation 1sorghum 2control/2pasture mix y 6 y y 100 

6-15 MF 
Long Rotation 1sorghum 2control/4pasture mix y 8 y y 100 

Bernard et al. 2012 Location Diversity & Richness 
Aroostook Farm 1potato 1(control/rapeseed) n 3 n y 100 

1-5 BF 
Wood Prairie Farm 1potato 1(control/rapeseed) n 3 n y 100 

Bossio et al. 2005 Location Diversity 

Luero 1maize 1(control/Tephrosia candida) y 2 y y 100 

1-5 MF Ugunja 1maize 1(control/Tephrosia candida) y 2 y y 100 

Teso 1maize 1(control/Tephrosia candida) y 2 y y 100 

Bucher & Lanyon 2005 Rotation type Diversity & Richness 

Rotation 1 1 maize 2(control/soybean) n 2 y n 50 

6-15 BF Rotation 2 1 maize 4control/4alfalfa n 2 y n 50 

Rotation 3 1 maize 1control/1oats/1wheat/2clover n 4 y n 50 

Davinic et al. 2013 - Diversity & Richness - 1cotton 1(control/millet) y 2 n y 100 1-5 BF 

González-Chávez et al. 2010 - Richness - 1wheat 2(control/sorghum/soybean) y 3 y n 100 >15 BF 

Guong et al. 2012 Rotation type Diversity & Richness 

Rotation 1 1rice 1(control/maize/control) y 2 n n 100 

6-15 P Rotation 2 1rice 1(control/mugbean/control) y 2 y y 100 

Rotation 3 1rice 1(control/mugbean/maize) y 3 y y 100 

Lupwayi et al. 1998 Rotation type Diversity & Richness 
Rotation 1 1wheat 1(control/red clover) y 2 y y 100 

1-5 BF 
Rotation 2 1wheat 1(control/fieldpea) y 2 y y 100 

Marais et al. 2012 Year Diversity & Richness 

2007 1wheat 2(control/medic) y 2 y y 100 

>15 BF 2008 1wheat 2(control/medic) y 2 y y 100 

2009 1wheat 2(control/medic) y 2 y y 100 

Marinari et al. 2015 Rotation type Diversity 
Rotation 1 1tomato 1(control/lacy phacelia) y 2 n y 100 

1-5 BF 
Rotation 2 1tomato 1(control/white mustard) y 2 n y 100 
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Rotation 3 1tomato 1(control/hairy vetch) y 2 y y 100 

Mathimaran et al. 2007 - Diversity & Richness - 1maize 1(control/crolataria) y 2 y y 100 1-5 BF 

Murphy et al. 2012 Rotation type Diversity 
Rotation 1 1wheat 4(control/canola/wheat/fieldpea) n 4 y n 50 

1-5 BF 
Rotation 2 1wheat 2(control/medic) n 2 y n 50 

Nair & Ngouajio 2012 Rotation type Diversity & Richness 
Rotation 1 1tomato 1(control/rye) y 2 n y 100 

1-5 BF 
Rotation 2 1tomato 1(control/rye+vetch) y 3 y y 100 

Navarro-Noya et al. 2013 - Richness - 1maize 2(control/wheat) y 2 n n 50 >15 P 

Reardon et al. 2014 - Richness - 1wheat 1(control/fieldpea) n 2 y y 100 >15 MF 

van Elsas et al. 2002 - Diversity - 1maize 1oats/1control/1potato n 3 n n 50 >15 MF 

Wu et al. 2011 Rotation type Diversity 

Rotation 1 1cucumber 1.33(tomato/bean/control) y 3 y y 100 

1-5 MF 

Rotation 2 1cucumber 1.33(tomato/celery/control) y 3 n n 100 

Rotation 3 1cucumber 1.33(bean/tomato/control) y 3 y y 100 

Rotation 4 1cucumber 1.33(bean/celery/control) y 3 y y 100 

Rotation 5 1cucumber 1.33(control/bean/control) y 2 y y 100 

Rotation 6 1cucumber 1.33(control/celery/control) y 2 n n 100 

Rotation 7 1cucumber 1.33(control/tomato/control) y 2 n n 100 

Yao et al. 2006 
Rotation type & 
method used 

Diversity & Richness 

CLPP Rotation 1 1cucumber 2(control/tomato) n 2 n n 50 

>15 BF & MF 
RAPD Rotation 1 1cucumber 2(control/tomato) n 2 n n 50 

CLPP Rotation 2 1cucumber 2(control/wheat) n 2 n n 50 

RAPD Rotation 2 1cucumber 2(control/wheat) n 2 n n 50 

Yin et al. 2010 Tillage method Diversity & Richness 
Tillage 1wheat 2(control/soybean) n 2 y n 50 

>15 P 
No-tillage 1wheat 2(control/soybean) n 2 y n 50 

†
Yes (y) and No (n). 

‡
Biochemical fingerprinting (BF), molecular fingerprinting (MF) and pyrosequencing (P) 
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