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Abstract 

In this thesis, the recovery of RhIII from both synthetically prepared and authentic 

industrial PGM-containing solutions was systematically investigated via organic precipitation 

methods using several commercially available, N-containing organic receptors including 

(amongst others) diethylenetriamine (Deta), triethylenetetramine (Teta), 

tetraethylenepentamine (Tepa) and tris(2-aminoethyl)amine (Tren). These organic receptors 

act as precipitating agents in the presence of an appropriate protonating agent (HCl) by 

lowering the solubility of the PGM chlorido-anions through an ion-pairing mechanism. The 

recovery of RhIII from synthetically prepared PGM (RhIII and PtIV) containing solutions using 

these precipitants was excellent, while poor Rh recovery from authentic industrial process 

solutions was achieved. The poor Rh recovery from these process solutions was ascribed to 

the species distribution of the [RhCln(H2O)6-n]
3-n complexes. In order to validate the 

proposition that RhIII speciation effects are responsible for the poor Rh recovery observed 

during the precipitation studies, attempt were made to describe the species distribution of the 

[RhCln(H2O)6-n]
3-n (n=3-6) by means of high-resolution 103Rh NMR spectroscopy.  

 

A detailed high-resolution 103Rh NMR spectroscopic study of the series of 

[RhCln(H2O)6-n]
3-n (n=3-6) complexes was conducted. During this study, all six RhIII aqua 

chlorido-complexes have unambiguously been characterized by means of high-resolution 
103Rh NMR spectroscopy, proving the powerful analytical capability of this technique. 

Characterization of these complexes is based on the detailed analysis of the 35Cl/37Cl isotope 

effects which is observed in the 19.11 MHz 103Rh NMR resonances of the [RhCln(H2O)6-n]
3-n 

(n=3-6) complexes in aqueous HCl solutions at 292 K. These resonances show that the “fine-

structure” of each of the 103Rh resonances may be understood in terms of its unique 

isotopologue, and in certain cases, the isotopomer distribution of each complex, which 

manifests as a result of its statistically expected 35Cl/37Cl isotopologue and isotopomer 

distributions. As a result, the 103Rh NMR resonance structure serves as a unique “NMR-

fingerprint”, which allows for the unambiguous assignment of [RhCln(H2O)6-n]
3-n (n=3-6) 

complexes, without the reliance on accurate δ(103Rh) chemical shifts.  

 

Furthermore, this study reports the first direct species distribution diagram for the 

[RhCln(H2O)6-n]
3-n (n=3-6) series of complexes (in aqueous HCl solutions at 292 K) as a 
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function of the “free” (unbound) chloride concentration, constructed from 103Rh NMR 

measurements. The need for a revised speciation diagram of [RhCln(H2O)6-n]
3-n (n=3-6) 

complexes is clearly reflected by the vast differences observed in the literature reported 

species distribution diagrams, which makes it difficult to decide which set of experimental 

conditions (if any) is required for the quantitative and “selective” recovery of RhIII from 

aqueous HCl solutions containing associated PGMs (Pt, Pd, Ir, Ru) as well as other transition 

metals. The documented species distribution diagrams for RhIII have been generally 

constructed via data from indirect (kinetic and spectrophotometric) measurements using 

dilute RhIII solutions at relatively high HCl concentrations, which implies that the RhIII:Cl- 

mole ratio is higher than what may be expected in authentic process solutions – an important 

aspect to consider when optimizing RhIII recovery methods. In addition, RhIII kinetic 

investigations reported in this study shows that ionic strength and temperature effects are 

important factors that dramatically influences the rate of RhIII ligand exchange (i.e. RhIII 

aquation reactions) which, in turn, have contributing effects on the species distribution of 

[RhCln(H2O)6-n]
3-n complexes. Notable differences exist between the speciation diagram 

reported in this study and those documented in literature, especially at a “free” chloride 

concentration of 1.0 M. At this “free” chloride concentration, the [RhCl5(H2O)]2- complex 

anion was found to have an abundance of 34%, while literature reports an abundance of 80%. 

 

In order to ascertain its practical relevance, the proposed 103Rh NMR speciation 

method was extended, for the first time, to authentic industrial Rh feed solutions (Anglo 

Platinum PLC). Each of the 103Rh resonances was unambiguously assigned, and each species 

quantified. Moreover, the RhIII species distribution of the industrial Rh feed solution was 

accurately predicted by the “direct” speciation diagram constructed form 103Rh NMR 

measurements.  

 

After careful optimization of the Heraeus industrial feed solutions (optimal chloride 

concentration followed by thermal treatment for enhancing RhIII chloride anation reactions), 

the recovery of Rh via precipitation was repeated. In this instance, Rh recovery improved 

dramatically, with up to 95% of Rh removed from solution. This improvement is ascribed 

primarily to the increased “free” (unbound) chloride concentration. The presence of 

associated PGMs as well as other transition metals would lower the effective “free” chloride 

concentration, since these metals would act as “chloride binders”. By adjusting the total 

chloride concentration, RhIII chloride anation reactions is enhanced which leads to the 
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[RhCln(H2O)6-n]
3-n (n=5,6) complex anions being the dominant species in solution, therefore 

leading to improved Rh recovery. Moreover, it was shown that, under carefully controlled 

conditions, “selective” recovery of Rh is achieved using tris(2-aminoethyl)amine (Tren). 

Considering the fact that Rh is the last precious metal recovered in all PGM refineries, this 

can possibly provide a cost-effective route for the “upfront” (early stage) recovery of Rh from 

industrial PGM feed solutions.  
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Uittreksel 

In hierdie tesis word die herwinning van RhIII uit laboratorium voorbereide sowel as 

ware industriële PGM-bevattende oplossings sistematies ondersoek deur middel van 

organiese neerslag metodes, deur gebruik te maak van verskeie kommersieël beskikbare, N-

bevattende organiese reseptore insluitende dietileentriamien (Deta), tri-etileentetramien 

(Teta), tetra-etileenpentamien (Tepa) en tris(2-aminoetiel)amien (Tren). Hierdie organiese 

reseptore tree op as neerslag-agente in die teenwoordigheid van 'n geskikte protonerings-

agent (in hierdie geval HCl) deur 'n verlaging van die oplosbaarheid van die PGM chloried-

anione deur middel van 'n ioon parings meganisme. Die herwinning van RhIII vanuit 

laboratorium voorbereide PGM (RhIII en PtIV) oplossing met behulp van hierdie organiese 

neerslag-agente was uitstekend, terwyl Rh herwinning vanuit ware industriële oplossings 

swak was. Die onvolledige Rh herwinning uit hierdie industriële oplossings word toegeskryf 

aan die spesie-verspreiding van die [RhCln(H2O)6-n]
3-n komplekse. Ten einde die effek van 

RhIII spesie-verspreiding op die herwinning van Rh te bestudeer, is gepoog om die spesie-

verspreiding van [RhCln(H2O)6-n]
3-n (n=3-6) komplekse, deur middel van hoë resolusie 103Rh 

KMR spektroskopie, te beskryf. 

 

'n Gedetailleerde hoë resolusie 103Rh KMR spektroskopiese studie van die reeks van 

[RhCln(H2O)6-n]
3-n (n=3-6) komplekse was uitgevoer. Tydens hierdie studie was al ses RhIII 

aqua chlorido-komplekse ondubbelsinnig gekarakteriseer deur middel van hoë resolusie 103Rh 

KMR spektroskopie, wat bewys lewer van die kragtige analitiese vermoë van hierdie tegniek. 

Karakterisering van hierdie komplekse is gebaseer op die gedetailleerde analise van die 
35Cl/37Cl isotoop effekte wat waargeneem word in die 19.11 MHz 103Rh KMR resonansies 

van die [RhCln(H2O)6-n]
3-n (n=3-6) komplekse in HCl oplossings by 292 K. Hierdie 

resonansies toon dat die "fyn struktuur" van elk van die 103Rh resonansies verstaan kan word 

in terme van die unieke isotopoloog, en in sekere gevalle, die isotopomeer verspreiding van 

elke kompleks, wat manifesteer as 'n gevolg van die die statisties verwagte 35Cl/37Cl 

isotopoloog en isotopomeer verspreiding. Die 103Rh KMR resonansie-struktuur kan sodoende 

dien as 'n unieke "KMR-vingerafdruk", wat voorsiening maak vir die ondubbelsinnige 

karakterisering van [RhCln(H2O)6-n]
3-n (n=3-6) komplekse, sonder om vertroue op akkurate 

δ(103Rh) chemiese verskuiwings te plaas. 
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Hierdie studie rapporteer verder die eerste direkte spesie-verspreiding-diagram vir die 

[RhCln(H2O)6-n]
3-n (n=3-6) reeks komplekse (in HCl oplossings by 292 K) as 'n funksie van 

die "vrye"(ongebonde) chloried-konsentrasie, verkry van 103Rh KMR metings. Die behoefte 

vir 'n aangepasde spesiasie-diagram vir die [RhCln(H2O)6-n]
3-n (n=3-6) komplekse word 

duidelik weerspieël deur die groot verskille waargeneem in die literatuur gerapporteerde 

verspreidings diagramme, wat dit moeilik maak om te besluit watter stel eksperimentele 

toestande (indien enige) benodig word vir die kwantitatiewe en “selektiewe” herwinning van 

RhIII in HCl oplossings in die teenwoordigheid van gepaardgaande PGM (Pt, Pd, Ir, Ru) 

sowel as ander oorgangsmetale. Die gedokumenteerde spesie-verspreiding-diagramme vir 

RhIII is oor die algemeen verkry via data vanaf indirekte (kinetiese en spektrofotometriese 

metings) deur gebruik te maak van verdunde RhIII oplossings in relatiewe hoë HCl 

konsentrasies, wat impliseer dat die RhIII:Cl mol verhouding hoër is as wat verwag kan word 

in ware industriële proses oplossings - 'n belangrike aspek om te oorweeg gedurende die 

optimalisering van RhIII herwinning-metodes. Verder, die RhIII kinetiese ondersoeke 

gerapporteer in hierdie studie toon dat ioniese sterkte sowel as temperatuur effekte belangrike 

faktore is wat die tempo van RhIII ligand uitruiling (d.w.s. RhIII “aquation” reaksies), wat ‘n 

betekenisvolle invloed hê op die spesie-verspreiding van [RhCln(H2O)6-n]
3-n komplekse. 

Aansienlike verskille bestaan tussen die spesiasie-diagram gerapporteer in hierdie studie en 

dit gedokumenteer in die literatuur, veral by 'n "vrye" chloried-konsentrasie van 1.0 M. By 

hierdie "vrye" chloried-konsentrasie was die [RhCl5(H2O)]2- komplekse anioon gevind om in 

34% teenwoordig te wees (hierdie studie), terwyl die publiseerde verslae 80% rapporteer. 

 

Ten einde die praktiese toepaslikheid van die voorgestelde 103Rh KMR spesiasie-

metode te bepaal, was (vir die eerste keer) ware industriële Rh oplossings (Anglo Platinum 

PLC) gebruik. Elk van die 103Rh resonansies was ondubbelsinnig gekarakteriseer, en elke Rh 

spesie teenwoordig gekwantifiseer. Daarbenewens is die RhIII spesie-verspreiding van die 

industriële Rh oplossing deur die "direkte" spesiasie-diagram saamgestel vanuit 103Rh KMR 

metings akkuraat voorspel. Die berekende RhIII spesie-verspreiding van die industriële Rh 

oplossings was akkuraat voorspel deur die voorgestelde “direkte” spesiasie-diagram soos 

saamgestel vanuit die 103Rh KMR metings.  

 

Na deeglike optimalisering van Heraeus industriële oplossings (optimale chloried-

konsentrasie gevolg deur termiese behandeling vir effektiewe RhIII chloried anasie reaksies), 

is die herwinning van Rh via neerslag metodes herhaal. In hierdie geval, het die Rh 
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herwinning dramaties verbeter, met tot 95% van die Rh uit oplossing verwyder. Hierdie 

verbetering is hoofsaaklik toegeskryf aan die verhoogde "vry" (ongebonde) chloried-

konsentrasie. Die teenwoordigheid van geassosieerde PGM's sowel as ander oorgangsmetale 

sal die effektiewe "vrye" chloried-konsentrasie verlaag, aangesien hierdie metale sou optree 

as "chloried-binders". Deur die aanpassing van die totale chloried-konsentrasie, word RhIII 

chloried anasie reaksies verbeter, wat daartoe lei dat [RhCln(H2O)6-n]
3-n (n = 5,6) komplekse 

anione die dominante spesies in oplossing word, en dus lei tot verbeterde Rh herwinning. 

Daarbenewens word verder aangetoon dat, onder noukeurig gekontroleerde voorwaardes, 

"selektiewe" herwinning van Rh bereik word deur gebruik te maak van 

tris(2-aminoetiel)amien (Tren). Met inagneming van die feit dat Rh die laaste edelmetaal is 

wat verhaal word in alle PGM-raffinaderye, kan dit 'n koste-effektiewe roete word vir die 

"vooraf" (vroeë-stadium) herwinning van Rh vanuit industriële PGM bevattende oplossings. 
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Figure 2.14: The calculated rate constants (k65) for the aquation of [RhCl6]
3- as a function of temperature and 

ionic strength 

 

Figure 2.15: The calculated rate constants (k54) for the aquation of [RhCl5(H2O)]2- as a function of temperature 

and ionic strength 

 

Figure 2.16: Arrhenius plot of ln(k65) as a function of temperature and ionic strength, indicating the temperature 

dependence of the aquation of the [RhCl6]
3- complex anion 
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Figure 2.17: Arrhenius plot of ln(k54) as a function of temperature and ionic strength, indicating the temperature 

dependence of the aquation of the [RhCl5(H2O)]2- complex anion 

 

Figure 3.1: Residual [PtCl6
2-] in the supernatant as a function of increasing [Precipitant]:[PtCl6

2-] ratio. 

[Pt] = 7.011 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%.  

 

Figure 3.2: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[RhCl6
3-] ratio. 

[Rh] = 7.134 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%. 

Figure 3.3: Comparison between the Pt – and Rh –precipitant titrations conducted for all the (poly)amines 

screened. [Pt] = 7.011 mM; [Rh] = 7.134 mM; [HCl] = 6.0 M. 

 

Figure 3.4: Asymmetric unit cell of (TepaH5)[RhCl6]Cl2·2H2O with atomic numbering scheme 

 

Figure 3.5: Extended crystal packing of ions viewed along the direction of the c-axis, from which it is evident 

that water molecules are entrained within the crystal packing arrangement 

 

Figure 3.6: Residual [Pt] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Pt] = 7.813 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%.  

 

Figure 3.7: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 7.956 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values 

was below 7%. 

 

Figure 3.8: Comparison between the Pt – and Rh –precipitant titrations conducted for all the (poly)amines 

screened. [Pt] = 7.813 mM; [Rh] = 7.956 mM; [HCl] = 6.0 M 

 

Figure 3.9: Selectivity factor, β, as a function of increasing precipitant concentration. Typical RSD values was 

below 7% 

 

Figure 3.10: 195Pt NMR spectrum of an authentic industrial feed solution 

 

Figure 3.11: Residual [PtIV] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Pt] = 18.68 mM; [Cl-] = 4.008 M. Typical RSD values was below 7% 
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Figure 3.12: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.871 mM, [Cl-] = 4.008 M. Typical RSD values was below 7% 

 

Figure 3.13: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. Precipitation was repeated after the industrial feed solution was heated for 3 days at 333.1 K. 

[Rh] = 3.871 mM, [Cl-] = 4.008 M. Typical RSD values was below 7% 

 

Figure 4.1: [a] Isotopologues associated with the fac-[Rh35Cl2
37Cl(H2O)3] species; [b] possible isotopomers 

associated with the isotopologue of the mer-[Rh35Cl2
37Cl(H2O)3] species where the 35Cl/37Cl is coordinated trans 

with respect to water in a 2:1 ratio.  = 35Cl;  = 37Cl;  = H2O 

 

Figure 4.2: Experimental 103Rh spectra of [RhCln(H2O)6−n]
3−n (n = 3–6) species recorded at 292.1 K (symbols). 

The least-squares fits (solid lines) between experimental spectra of [RhCl6]
3− [a], trans-[RhCl4(H2O)2]

− [c] and 

fac-[RhCl3(H2O)3] [e] and the isotopologue model; the least-squares fits between the experimental spectra and 

the isotopologue model that includes isotopomers for the [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]
− and mer-

[RhCl3(H2O)3] species are denoted by [b], [d] and [f], respectively 

 

Figure 5.1: Literature documented RhIII species distribution diagrams illustrating the large discrepancies 

existing between proposed diagrams. The dashed blue lines indicate the RhIII species distribution at 1.0 M free 

chloride concentration, while the dashed pink lines indicate the free chloride concentration at which a 1:1 ratio 

of [RhCl6]
3- and [RhCl5(H2O)]2- exists 

 

Figure 5.2: The ratio of the integrated peak area A([RhCl6]
3-)/A([RhCl5(H2O)]2-) as a function of the relaxation 

time applied. The horizontal lines shows the 95% confidence interval (blue dashed lines) of the average peak 

area ratio (solid pink line)  

 

Figure 5.3: Change in the 103Rh NMR resonances of the [RhCln(H2O)6-n]
3-n (n=3-6) complexes as a function of 

free chloride concentration. The assignment of the resonances is based on the 35Cl/37Cl isotope effects, as 

exhibited by the insert figures.  

 

Figure 5.4: Partial species distribution diagram as a function of HCl concentration for all [RhCln(H2O)6-n]
3-n 

(n=3-6) species, including stereoisomers. The open symbols represent data obtained directly after sample 

preparation; the closed (coloured) symbols represent data obtained after the samples have equilibrated at 

298.1 K for a year. 

 

Figure 5.5: The change in the UV-VIS spectrum as a function of time (90 minutes) upon dilution of a 0.1038 M 

RhIII stock solution equilibrated in 10.18 M HCl to a 3.012 M HCl matrix (292.1 K) 
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Figure 5.6: Change in RhIII UV-VIS spectrum as a function of time (90 minutes) upon dilution of a 0.1038 M 

RhIII stock solution equilibrated in 10.181 M HCl to a 0.1018 HCl matrix. [a] Rh solution prepared in the 

absence of MeOH, sodium acetate buffer and TBA+Cl-; [b] Rh solution prepared in the presence of MeOH, Ac 

buffer and TBA+Cl-. [c] Kinetic traces illustrating the change in absorbance at 390 nm; symbols = Expt data, 

Lines = Simulated kinetic fits of the aquation model 

 

Figure 5.7: Chromatographic traces obtained when injecting RhIII stock samples, initially equilibrated in 

varying HCl (0.714 – 5.998 M) concentrations, immediately after the appropriate dilution to a 10 mM HCl 

matrix. Temp = 298.1 K. Several chromatograms were excluded for clarity. 

 

Figure 5.8: Partial [RhCln(H2O)6-n]
3-n species distribution diagram as a function of HCl concentration, derived 

from a modified RP-IP-HPLC-ICP-OES method. The total RhIII concentration of each sample injected was 

0.200 mM and the typical RSD for the mole fraction was below 5.5% 

 

Figure 5.9: Partial [RhCln(H2O)6-n]
3-n (n=4-6) species distribution diagram as a function of HCl concentration 

comparing the data obtained from HPLC-ICP-OES separations (dashed lines & open symbols) to that of the 
103Rh NMR spectroscopic data (solid lines & coloured symbols) 

Figure 5.10: Visual illustration of 5.00 mM RhIII solutions equilibrated at various HCl concentrations (0.00 –

 5.00 M). [a] before addition of (poly)amines, [b] 2 hours after addition of the (poly)amines. The (poly)amine 

concentration added to each solution was always 5 times excess over the Rh concentration, which is sufficient to 

achieve quantitative precipitation of Rh.  

 

Figure 5.11: RhIII precipitation conducted as a function of chloride concentration. The organic (poly)amines 

used are denoted in the legend. [a] Precipitation studies conducted by “in situ” protonation of the (poly)amines, 

which typically occur at [HCl] > 0.100 M; [b] Precipitation studies conducted by protonating the (poly)amine, 

using a 3.0 M HClO4 matrix, prior to addition of the (poly)amine stock solutions to the RhIII containing 

solutions. [Rh] = 5.00 mM, [Amine] = 25.00 mM. All precipitation studies were conducted at 298.1 K and 

repeated in triplicate. Typical RSD values for the [Rh] were below 5%.  

 

Figure 5.12: Partial [RhCln(H2O)6-n]
3-n (n=5,6) species distribution diagram as a function of HCl concentration 

comparing the data obtained from precipitation titrations (dashed lines & open symbols) to that of the 103Rh 

NMR experiments (solid lines and closed symbols) 

 

Figure 5.13: 195Pt NMR spectrum of an authentic industrial feed solution 

 

Figure 5.14: 195Pt NMR spectrum (enlarged), recorded at 293.1 K, of the co-axial reference insert, containing 

pure [PtCl6]
2-, illustrating the 35/37Cl isotopologue induced splitting of the 195Pt resonance signal. The symbols 

illustrate the experimental data while the solid lines illustrate the isotopologue model fitted to the experimental 

data.  = 35Cl;  = 37Cl 
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Figure 5.15: Experimental 195Pt NMR spectrum (enlarged) of an authentic industrial feed solution illustrating 

the “fine-structure” of the 195Pt resonance. The solid lines represent the non-linear least-squares fits of the 

isotopologue model to the experimental 195Pt NMR spectroscopic data. The symbols represent the experimental 

data while the solid lines represent the isotopologue model fits.  

 

Figure 5.16: 103Rh NMR spectrum of an authentic industrial rhodium feed solution recorded at 292.1 K. [Rh]tot 

= 0.2109 M; [Cl-]tot = 2.121 M 

 

Figure 5.17: Experimental 103Rh NMR spectra of the [RhCln(H2O)6-n]
3-n (n=4,5) complex anions recorded at 

292.1 K (symbols). [a] [Rh35/37Cl5(H2O)]2- complex anion; [b] cis-[Rh35/37Cl4(H2O)2]
- complex anion. The non-

linear least-squares fits between the experimental spectra and the isotopologue model that includes isotopomers 

is denoted by the solid lines.  

 

Figure 3.16: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.871 mM, [Cl-] = 4.008 M 

 

Figure 5.18: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. The chloride concentration of the raw feed solution was adjusted to 8.01 M and the solution heated at 

354.1 K for 2 weeks prior to performing precipitation titrations. [Rh] = 3.903 mM, [Cl-] = 8.01 M, Precipitation 

titrations were conducted at 298.1 K.  

 

Figure 5.19: Residual [Pt] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.903 mM, [Cl-] = 8.01 M, Precipitation titrations were conducted at 298.1 K. 

 

Figure 5.20: Comparison between the Pt- and Rh-precipitant titration curves for the organic precipitants used 

throughout this study. [Pt] = 18.79 mM; [Rh] = 3.903 mM, [Cl-] = 8.01 M 

 

Figure A2.1: Change in UV-VIS spectra as a function of time upon diluting a 0.1021 M RhIII solution initially 

equilibrated in 10.181 M HCl to a final HCl concentration of 0.1018 M. The ionic strength was varied from 

0.301 M to 5.012 M, as denoted in the respective figures [a] – [f]. Spectra were recorded at 298 K 

 

Figure A2.2: Change in UV-VIS spectra as a function of time upon diluting a 0.1021 M RhIII solution initially 

equilibrated in 10.181 M HCl to a final HCl concentration of 0.1018 M. The temperature was varied from 

303.1 K – 283.1 K, as denoted in the respective figures [a] – [e]. The denoted spectra were recorded at a 

constant ionic strength of 0.301 M HClO4 
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Chapter 1 

Introduction 

1.1 The history and discovery of rhodium 

Rhodium (derived from the Greek word rhodon – ″rose″) was first isolated by 

William Hyde Wollaston in 1804, of which he wrote: 

 

“another metal, hitherto unknown, which may not be 

improperly distinguished by the name Rhodium, 

from the rose-red colour of a dilute solution of 

the metal containing it” [1] 

 

Wollaston aptly named this element after the rose colour of one of its chloride 

complexes, hexachlororhodate(III), which was produced after the dissolution of platina (a 

concentrated form of platinum ore) in aqua regia [1]. The bulk of the platinum was removed 

as (NH4)2[PtCl6] by the addition of ammonium chloride to this solution. Subsequently, zinc 

was added to the filtrate that resulted in the precipitation of residual platinum, palladium, 

rhodium, copper and lead; the latter two metals that were removed by dissolution in dilute 

nitric acid. The residue was subsequently dissolved by the addition of excess aqua regia and 

with the addition of sodium chloride, the solution was evaporated to near dryness to yield 

Na3[RhCl6]·nH2O. Rhodium metal was produced after extraction of hexachlororhodate(III) 

with hot ethanol to which zinc was added. [1,2] 
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Figure 1.1: An excerpt of one of Wollaston’s notebooks showing the page for 14 June 1804, which details the 

discovery of the new metal rhodium[2] 

 

1.2 Occurrence and natural distribution of rhodium 

Rhodium is a member of the platinum group metals (PGMs – Ir, Pt, Pd, Os, Ru) and 

as befits an element of the platinum metal sextet, it occurs mainly as a minor constituent of 

platinum group metal ores. These metals are occasionally referred to as precious metals due 

to their high economic value and scarcity with respect to worldwide deposits and abundances 

in the earth’s crust (0.001 g/ton) [3]. The major PGM deposits worldwide are located in 

South Africa (Gauteng and North West Province), the Ural range in Russia and in Ontario, 

Canada, Figure 1.2 [4]. 

South Africa
88 %

Russia
8 %

Canada
3 % USA

1 %

 
Figure 1.2: Percentage global production of PGM in 2004 [4] 
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In South Africa, rhodium ore deposits are found mainly in the three-layered intrusion 

of the Bushveld Igneous Complex (BIC). The Bushveld complex is the world’s largest 

intrusion and encompasses the Limpopo and part of the North West Province [5], Figure 1.3. 

The three layers of the intrusion are the Merensky reef (0.3 – 0.9 m in thickness), the Upper 

Ground 2 reef (UG2: 18 – 36 m) and the Plat reef (275 m). The Merensky and UG2 reefs 

collectively contain approximately 90% of the world’s PGM reserves [5]. 

 

 
Figure 1.3: The Bushveld Igneous Complex illustrating the Merensky reef [5] 

 

South Africa contains the world’s largest known PGM deposits and is the principal 

exporter of precious metals, exporting approximately 75% of the world’s supply in 2010[6]. 

The annual world production of rhodium is estimated between 19 000 and 25 000 kg [6].  

 

Rhodium is relatively expensive due to the demand and supply constraint in the 

world’s market. Figure 1.4 shows the average annual Rh price over the last twelve years. 

Since 2003, the average price of Rh has steadily been increasing, Figure 1.4, and in a five-

year span it attained an average price of US$ 3,224.51 per troy ounce, climbing higher than 

US$ 9000 per troy ounce during 2008. This trend is especially important in terms of the 

South African economy, which benefits from increasing Rh prices because of the supply 

shortages and the increasing demand of this commodity. 
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Figure 1.4: Average annual rhodium price for the last 12 years [7] 

 

1.3 Industrial applications of rhodium  

Rh has a number of industrial applications, including its use in homogeneous / 

heterogeneous catalysis in numerous industrial processes, the manufacturing of jewellery (Rh 

plating of Pt or Au in order to improve corrosion resistance), the use in electronic and 

electrical devices and dental applications [8]. However, the most important application of Rh 

is in the emission exhaust control systems of automobiles as a catalytic converter which 

effectively transforms NOx emissions (predominantly NO and NO2) from the engine into 

harmless N2 (g) with little to no ammonia formation [9]. Approximately 83% of the Rh 

consumed worldwide during 2010 (~27,200 kg) was used in the production of catalytic 

converters – paradoxically, only 7.300 kg was recovered from this application [10]. Other 

large consumers of Rh include the chemical industry (7.8%) and the glass industry (6.5%), 

which integrates Rh predominantly for the production of fibreglass and flat-panel glass [10]. 

Furthermore, in the chemical industry, Rh-based catalysts are used for the catalytic 

carbonylation of methanol to form acetic acid, by the Monsanto process [11,12]. Among the 

miscellaneous Rh-catalysed reactions that have received considerable attention are the 

following examples: (i) the hydrogenation of olefins [13] which includes the first commercial 

asymmetric catalytic process for the synthesis of L-3,4-dihydroxyphenylalanine (L-DOPA) – 

a precursor to various physiological neurotransmitters which is also used as part of a 

treatment regimen for Parkinson’s disease [14,15]; (ii) hydrogenation of arenes [16]; (iii) 
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hydroformylation of olefins [17]; (iv) Wilkinson’s catalyst for the hydrogenation of alkenes 

[18] and (v) the hydrogenation of enamides [19]. 

 

1.4 The industrial refining of PGMs 

In the previous section the wide range of applications of Rh was highlighted, from 

which it can be seen that the most important application is its use as a catalyst in catalytic 

converters in automobile exhaust emission control systems. In this regard, there is ever 

increasing evidence that small amounts of Rh (as well as Pd and Pt) used in these exhaust 

systems are being emitted (possibly as metal oxides) at the high temperature at which these 

catalysts work. The discharge of these PGMs into the environment could lead to 

environmental as well as potential health hazards [20,21]. From this perspective, there has 

been increased research specifically focussing on the recovery of Rh as a secondary metal, 

i.e. after its use. However, Rh is still predominantly recovered directly from PGM containing 

ores and hence the remainder of this review will focus on the general refining scheme of 

PGMs from precious metal ore concentrates, as it transpire in the PGM refining industry.  

 

On average, the feed supplied to a precious metal refinery is a concentrate containing 

50 – 70 % of the precious metals, i.e. Pt, Pd, Rh, Ir, Ru, Os, Au and Ag; from which the 

refining of PGMs would proceed according to the following three stages: 

(i) Primary separation – refers to the first instance in which a particular PGM is separated 

from impurities as well as other PGMs. This method of separation seldom produces metal of 

suitable purity.  

(ii) Secondary purification – The stage of refining where the product of the primary 

separation step is processed via a series of techniques, vide infra. 

(iii) Reduction to metal – The stage during which the products of the secondary purification 

(often a metal salt) are reduced to the metal of suitable purity for commercial sale.  

 

The entire separation and purification stages/techniques typically employed in industry can 

be summarized as follow [22]: 

 Dissolution: The stage during which the precious metal ore concentrate is brought into 

solution. Traditionally this was done by means of an oxidizing acid, such as aqua regia, 

and would provide a crude form of separation between the primary (Pt, Pd, Au) and 
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secondary (Rh, Ir, Ru, Os, Ag) precious metals. However, contemporary refining 

methodology does not use dissolution as a separation technique; rather it is preferred to 

dissolve all PGMs in HCl using chlorine gas. This is the most cost-effective manner in 

which all precious metals are simultaneously brought into solution 

 Crystallization and precipitation:  This method of separation exploits the difference in 

solubility of the PGM (aqua) chlorido complexes during the primary and secondary 

stages. Amine-based precipitants (e.g. ammonium chloride) are typically used during this 

process. The solubility of the metal is strongly dependent on the particular PGM chlorido 

complex that is formed as well as the oxidation state of the metal centre. In this respect, 

factors such as pH, redox potential and the free chloride concentration play an important 

role. 

 Hydrolysis: A method principally used for the removal of base metals (e.g. Cu, Ni, Fe). 

The pH of the solution is raised, which facilitates the formation of insoluble metal 

hydroxido complexes.  

 Distillation (oxidative distillation): This is a process designed for the selective removal of 

Ru and Os as their volatile tetroxides, RuO4 and OsO4. The process involves the use of 

strong oxidants such as sodium chlorate or sodium bromate at an elevated temperature. 

Ru and Os are consequently oxidized to the +8 oxidation state, allowing for the selective 

removal of gaseous RuO4 and OsO4 from the other PGMs. In order to separate Ru and Os 

from each other, the volatile tetroxides are scrubbed into a solution containing potassium 

hydroxide and ethanol, facilitating the reduction of Ru to oxidation state +4 and Os to 

oxidation state +6. Under these conditions, Os forms the soluble osmate, [OsVIO2(OH)4]
2- 

while Ru forms the insoluble ruthenium dioxide, RuO2, commonly known as “ruthenium 

black”. Os is subsequently precipitated as the K2[OsVIO2(OH)4] salt by the addition of 

excess potassium hydroxide. In this manner, a highly efficient, if somewhat hazardous 

[RuO4 (s) is highly explosive, while OsO4 is highly toxic], separation process is achieved 

for Ru and Os.  

 Organic precipitation: Various organic compounds are typically used for the selective 

precipitation of PGMs. As an example, Pd is routinely selectively precipitated with 

dimethylglyoxime, effectively removing all Pd during the final Pt purification step.  

Ir and Rh are generally precipitated with diethylenetriamine [22]. Under the appropriate 

conditions (i.e. Ir being present as IrIV and Rh as RhIII) this type of precipitation can be 

used to separate Ir and Rh from each other.  
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 Liquid-Liquid (Solvent) extraction: Au, Pd, Pt and Ir can be separated with great efficacy 

using a range of solvent extraction methodologies. Various high molecular weight organic 

compounds have been successfully used for the solvent extraction of these metals. These 

organic compounds include the Cyanex range (Cyanex 921, 923 and 925) [23], Kelex 100 

[24] and trioctylamine [25] to mention but a few.  

 Ion-exchange separation: Ion-exchange resins are routinely used for the selective removal 

of Au (e.g. Amberlite IRA35 [26]) and Pd (e.g. Amberlite XAd-7 coated with 

dithiocarbamate [27]). 

Figure 1.5 provides an overview the processing of PGMs by utilizing a combination of the 

abovementioned technologies. The refining scheme depicted in Figure 1.5 is adopted from 

that used by Anglo Platinum and does not reflect the schemes used by other refineries.  

 

PGM Concentrate

Total Dissolution
HCl / Cl2

Pt, Pd, Rh, Ir, Ru, Au

Au SX MIBK & 
Reduction with 
Oxalic acid

Pt, Pd, Rh, Ir, Ru

Pd SX
LIX 84 / HCl

Pt, Rh, Ir, Ru

Pt SX
Amine / HCl

Rh, Ir, Ru

Ru Distillation
NaClO3, NaBrO3

Rh(OH)4 (s), Ir(OH)4 (s)

Ir SX
NITTA / HCl

Rh

Rh Precipitation

OsO4 (g) Os Purification
KOH / EtOH

Potassium Osmate
K2[OsO2(OH)4]

Au Au Purification Gold

Strip
Solution

Strip
Solution

Scrub
Solution

Pd Purification
NH4OH

(NH3)2PdCl2 Pd Reduction
N2H4 & calcined

Palladium

Pt Purification
NH4OH

(NH4)2PtCl6 Pt Reduction
N2H4 & calcined Platinum

Ru Purification
NH4Cl

(NH4)2RuCl6 Ru Reduction
cracked NH3

Ruthenium

Strip
Solution

Ir Purification
NH4Cl

(NH4)2IrCl6 Ir Reduction
cracked NH3

Iridium

Rh Purification
DETA Rh Reduction Rhodium

 
Figure 1.5: A detailed overview of the processes involved in the refining of PGMs at Anglo Platinum’s refinery 

in Rustenburg, South Africa [22] 
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Due to its expense and chemical/industrial relevance, it would be highly beneficial to any 

refinery if Rh could be separated and refined at an early stage of the industrial refining 

process. However, the separation and purification of Rh from the other precious metals 

continue to pose the most difficult aspect of PGM refining. This is chiefly due to the poor 

extractability of Rh, which could be attributed to the inert nature of its chlorido-species 

toward ligand substitution reactions , in addition to their labile character toward aquation 

reactions [28]. Because of the difficulties encountered in the separation of Rh, mainly as its 

halide complexes, it is often the last metal recovered and refined in most separation schemes, 

Figure 1.5.  

 

1.5 General coordination chemistry of rhodium 

The platinum group metals can be classified as metals with “soft” to “hard” character, 

depending on the oxidation state of the element [29]. Accordingly, Rh3+ ions can be 

considered as being “harder” than Rh+ ions. In view of the fact that rhodium can adopt 

various oxidation states from -1 to +6, numerous rhodium complexes with various ligands 

have been documented [30]. Table 1.1 provides an overview of some rhodium compounds in 

various oxidation states that have been reported over the last five decades. 

 

Rhodium in oxidation state -1 is typically stabilized by ligands having “B-type” or 

“soft” character, such as carbonyl ligands, while the only non-carbonyl complexes in this 

oxidation state are those of the [Rh(PF3)4]
- complex anion [30]. The oxidation state 0 Rh 

species are often dimeric, with the only monomeric species documented being the highly 

reactive [Rh(diphos)2] complex [30].  

 

The +1 and +3 oxidation states are considered the most common and important 

oxidation states of Rh. In its lower (+1) oxidation state, Rh does not readily form anionic 

complexes; presumably due to the fact that π-acid ligands are usually required to disperse the 

electron density from the metal in neutral or even cationic complexes [30]. Hence, it is not 

unexpected that the few examples of RhI complex anions contain potent π-acid ligands, such 

as [SnCl3]
-, which reduces and coordinates to RhCl3 to form the [RhCl(SnCl3)2]2

4- complex 

anion [30]. Moreover, the d8 (t2g
6 eg

2) electronic configuration favours a 4-coordinate square-

planar geometry [30]. A large amount of Rh-containing catalysts contain Rh in the +1 
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oxidation state (e.g. Wilkinson’s catalyst – [RhCl(PPh3)3]), which owes its catalytic activity 

to the fact that it readily undergoes changes in coordination number and oxidation state 

[31,32].  

 

Despite the existence of a vast number of CoII complexes, the dipositive oxidation 

state is atypical for Rh. All RhII complexes are low-spin species, and the lack of spin 

reorientation required in forming a low-spin RhII complex implies that these are excellent 

reducing agents. A large number of the RhII complexes that have been documented [30] are 

dimeric, with the presence of an Rh-Rh bond. The stability of the Rh-Rh bond in these dimers 

prevents their facile oxidation [30]. To date, the only stable isolatable monomeric RhII 

complexes reported are those containing tertiary phosphines and related group VB ligands 

[30].  

 

The tripositive oxidation state of Rh is considered the most common and its 

coordination chemistry is extensive. Virtually all of the complexes in this oxidation state are 

low-spin, diamagnetic, having an octahedral symmetry and obtaining a t2g
6 electronic 

configuration. Rh complexes in the tripositive oxidation state exemplify high stability since 

the low-spin form of Rh implies a very high ligand field stabilization energy (-2.4∆0) 

[30].This high energy is due to the fact that all the electrons are paired in the lowest d-orbital 

[33]. In the trivalent state, Rh forms octahedral anionic, neutral and cationic complexes with 

oxygen donor ligands (e.g. sulfates, nitrates and carboxylic acids), nitrogen donor ligands 

(e.g. ammonia, amines) and sulfur donor ligands (e.g. sulfites, sulfates, thiosulfates) [30]. 

Depending on the nature of the ligand, it may coordinate in either a monodentate or a chelate 

manner [30].  

 

Beyond the tripositive oxidation state, Rh forms a limited number of complexes in the 

+4, +5 and +6 oxidation states, all of which are presumably octahedral [30]. The +5 and +6 

oxidation states are exclusively stabilized by fluoride anions [30], although there have also 

been reports of less thoroughly characterized oxide complexes [30].  
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Table 1.1: Oxidation states and geometries of common rhodium complexes  

Oxidation State 
Coordination 

number 
Geometry Example of complexes 

-1 (d10) 4 Tetrahedral K[Rh(PF3)4]  

0 (d9) 5 Trigonal bipyramidal [Rh2(PF3)8]  

1 (d8) 

3 

4 

5 

Planar 

Square planar 

Trigonal bipyramidal 

[RhX(PCy3)2], [RhH(PBut
3)2]  

[RhCl(PPh3)3]  

[RhH(PPh3)4]  

2 (d7) 
4 

6 

Square planar 

Octahedral 

[Rh(X′)2(PCy3)2]  

[Rh2(O2CMe4)L2]  

3 (d6) 

5 

5 

6 

Square pyramidal 

Trigonal bipyramidal 

Octahedral 

[RhHCl2(PPh3)2]  

[RhH2Cl(PPh3)2]  

[Rh(acac)3], [RhX′6]Y3, [Rh(en)3]Cl3  

4 (d5) 6 Octahedral M2[RhF6]; M2[RhCl6]  

5 (d4) 6 Octahedral M[RhF6]  

6 (d3) 6 Octahedral [RhF6]  

X = F, Cl, Br, I; X′ = Cl, Br; Y = K, Na, NH4;  L = MeOH, MeCN, H2O, Cl, CO, PF3, PPh3; M = Na, K, Rb, Cs 

 

1.6 RhIII aqua chlorido equilibria and ligand exchange kinetics 

It has been previously highlighted that the separation and purification of Rh remains 

one of the most difficult processes in precious metal refining. This is ascribed mainly to the 

complex solution chemistry of Rh in chloride solutions. The Rh species formed in these 

solutions are of such a nature that liquid-liquid extraction (solvent extraction, SX), which has 

successfully been applied to the recovery of other PGMs (Figure 1.5), cannot easily be 

applied to the recovery of Rh. For this reason, a vast amount of research has been conducted 

on the solution chemistry of RhIII in chloride-rich solutions, with the aim of assessing the 

thermodynamic and kinetic parameters of RhIII chloro-complexes 

 

The existence of hexachlororhodate(III), [RhCl6]
3-, was first documented in 1951 [34] 

and was prepared by mixing finely divided Rh metal with “ignited NaCl” in a combustion 

furnace (700°C) under Cl2 (g) atmosphere. This octahedral anion is generally known to 

undergo a series of consecutive stereochemical aquation reactions in acidic solutions, vide 

infra, but is considered to be unusually photoinert for a RhIII complex [35]; with quantum 

yields for aquation of the low-energy ligand field being an order of magnitude less than the 

higher ligand field strength amine complexes [35]. Hydration of the [RhCl6]
3- complex anion 

leads to the formation of an array of aquachlorido complexes, [RhCln(H2O)6-n]
3-n (n=0-6). 
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Generally, the stereochemical course of successive substitution reactions occurs according to 

the reaction scheme, Figure 1.6. It is interesting to note that the stereochemical course of the 

reactions depicted in Figure 1.6 is dictated almost exclusively by the trans effect of the 

chloride ligands on each reactant species.  
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Figure 1.6: Reaction scheme illustrating the stereochemical course of successive aquation/chloride anation 

reactions, adapted from Palmer and Harris [36] 
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Due to the fact that the [RhCl6]
3- complex is considered to be both thermodynamically 

and kinetically unstable, being especially susceptible to aquation reactions, a number of 

researchers [36,11,14-23] have documented the aquation of Rh chloro-complexes in chloride-

containing matrices. The most prevalent Rh species present in chloride-rich (> 5.0 M) media 

are the [RhCl6]
3- and [RhCl5(H2O)]2- complex anions, although the [RhCl4(H2O)2]

- species is 

also known to exist as a minor component [36]. A decrease in the chloride concentration 

readily leads to an increase in the extent to which aquation takes place. Furthermore, an 

increase in the rate of aquation was also observed upon increasing temperature [37,46].  

 

1.7 High-resolution 103Rh NMR spectroscopy as a tool to study 

RhIII aqua-chlorido complexes 

In recent years, transition metal nuclear magnetic resonance spectroscopy (TM NMR) 

has become a tool of substantial importance for modern-day research in the areas of 

coordination and organometallic chemistry, as well as catalysis. The chemical shift of metal 

nuclei may present constructive information relating to the electron density and the ligand in 

the primary coordination sphere of the metal centre. TM NMR can be considered as having 

several advantages over conventional / routine NMR, for example 1H NMR, due to the fact 

that hydrogen atoms are often located at the periphery of coordination compounds whereas 

the metal atom constitutes the centre of most studies. Moreover, the range of chemical shifts 

is several orders of magnitude larger for TM NMR compared to the scale for 1H or 13C 

(≈12000 ppm for 103Rh) [47]. Furthermore, the sensitivity of the transition metal chemical 

shift toward small disparities in the primary coordination sphere (generally due to minor 

steric and electronic perturbations) is more often than not extremely large, thus rendering TM 

NMR a sensitive tool for the observation of these changes [47].  

 

Rhodium consists of a single naturally abundant isotope (100%), with the 103Rh 

nuclide having a spin of I = ½. This is a very desirable feature in NMR spectroscopy, which 

is unfortunately counterbalanced by the low, negative gyromagnetic ratio, which is a factor of 

31.8 smaller than that of 1H [47]. The low frequency (Ξ = 3.16 MHz) often requires the use 

of a special probe, rendering the technique particularly expensive. Generally, the major 

problems encountered in TM NMR for nuclei with nuclear spin I = ½ are ascribed to long T1 

relaxation times and a low sensitivity; the latter which is due to a low natural abundance or a 
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low gyromagnetic ratio for the magnetically active nuclide of interest, or a combination of 

both these factors. Table 1.2 illustrates the classification of several I = ½ nuclei according to 

their respective elementary magnetic strength, γ(X)/γ(1H) [where γ(1H) = 26.7 × 107 

rad.T-1.s-1] [47]. According to Table 1.2, 103Rh would not necessarily be the most difficult 

nucleus to investigate via NMR spectroscopy, compared to e.g. 187Os, because the natural 

abundance of the 103Rh isotope is 100%.  

 

Table 1.2: Classification of various I = ½ nuclei according to their respective elementary magnetic strength, 

γ(X)/γ(1H) [47] 

Natural Abundance (%) Elementary magnetic 

strength [γ(X)/ γ(1H)] > 90 10 – 90 < 10 

Strong 1H, 19F 205Tl  

Medium 31P 195Pt, 207Pb 13C, 119Sn 

Weak 89Y, 103Rh 108Ag, 183W 57Fe, 187Os 

 

One of the major debates pertaining to 103Rh NMR spectroscopy is the use of a 

reliable referencing method for 103Rh resonance signals. Traditionally, various substances 

were used as referencing compounds. These include the use of Rh metal (this has the 

disadvantage of producing a broad signal which is highly susceptible to small temperature 

variations) as well as [Rh(acac)3] (which has a long T1 relaxation time) [48,49]. Furthermore, 

the set reference frequencies, Ξ, of the reference materials must be rescaled to the SiMe4 

(TMS) reference frequency. Therefore, the use of various reference materials generally leads 

to confusion. In this regard, the use of the calculated accurate frequency, Ξ(103Rh) = 

3.16 MHz, relative to the TMS scale at 100.000 MHz, has been generally accepted [47]. 

However, care should be taken when using / reporting an accurate chemical shift (δ), since 

various chemical shifts have been reported for the simple [RhCln(H2O)6-n]3-n (n=0-6) 

complexes, Table 1.3.  

 

 

 

 

 

 

 

 13

Stellenbosch University http://scholar.sun.ac.za



Table 1.3: Comparison of reported chemical shifts, δ(103Rh), for various [RhCln(H2O)6-n]
3-n (n=0-6) species. For 

convenience, the chemical shifts were recalculated relative to the [RhCl6]
3- resonance  

RhIII species 
Reference [50] 

(35°C) 

Reference [51] 

(3°C) 

Reference [51] 

(35°C) 
Reference [52] 

[RhCl6]
3- 0 0 0 0 

[RhCl5(H2O)]2- 232.0 233.7 222.8 258 

cis-[RhCl4(H2O)2]
- 486.7 484.9 466.6 320 

trans-[RhCl4(H2O)2]
- 551.3 559.7 545.1 630 

fac-[RhCl3(H2O)3] 815.3 751.5 - 570 

mer-[RhCl3(H2O)3] 880.9 815.4 795.5 883 

cis-[RhCl2(H2O)4]
+ 1154.7 1086.4 1066.9 819 

trans-[RhCl2(H2O)4]
+ - 1151.9 1133.3 1140 

[RhCl(H2O)5]
2+ - 1443.2 1428.6 1504 

[Rh(H2O)6]
3+ - 1964.4 1856.2 2017 

 

Table 1.3 shows that the chemical shifts for these complexes are not entirely acceptable for 

the assignment of the 103Rh resonances of these RhIII complexes. This is primarily due to the 

extreme sensitivity of the 103Rh nuclear shielding to numerous effects such as solvent, analyte 

concentration, temperature, pressure as well as other effects [53]. By way of example, it is 

documented that 103Rh chemical shifts can vary between 0.5 – 3.0 ppm K-1, illustrating a 

considerable temperature dependence. This makes comparison of 103Rh chemical shifts 

somewhat uncertain – a subject which will be addressed during the course of this study.  

 

Despite these difficulties, and the low sensitivity of 103Rh NMR spectroscopy, this 

method has numerous advantages for the study, characterisation and speciation of various Rh 

complexes. The advent of reliable and validated computational approaches such as density 

functional theory (DFT) [54-56], in conjunction with NMR spectroscopic data, can result in 

new insights in relation to structural data and other physical / thermodynamic phenomena.  

 

1.8 Research objectives and thesis outline 

The selective separation and recovery of PGMs (PdII, RhIII, IrIII/IV, PtIV) in acidic, 

chloride-rich solutions has been the subject of numerous studies, with most focussing on 

solvent-extraction [23-27] and solid–phase extraction [57-59]. In general, the modern 

separation and recovery techniques of PGMs, on an industrial scale, predominantly depends 
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on the selective distribution of the stable, kinetically inert, anionic chlorido-complexes of 

these elements between the acidic, chloride rich aqueous phase and the organic receptor 

phase; with the general notion that the distribution mechanism involves either an ion-

exchange or ion-association mechanism, or a combination of both. The selectivity of recovery 

of the metal chlorido-anion complexes, in turn, depends on several factors, most importantly 

the chemical speciation of the PGM complexes in solution.  

 

Over the last five decades, several speciation diagrams for the RhIII aqua chlorido-

complexes, [RhCln(H2O)6-n]
3-n (n=3-6), in HCl media have been reported [28,37,39,40,42,60]. 

The published RhIII species distribution diagrams have generally been constructed using data 

from indirect (kinetic and spectrophotometric) measurements. Furthermore, these 

investigations were conducted using rather dilute RhIII solutions at high HCl concentrations, 

in which the RhIII:Cl- mole ratio is relatively higher when compared to industrial feed 

solutions. Moreover, there is vast differences between the documented RhIII speciation 

diagram, which makes it difficult to establish which set of experimental conditions should be 

used in developing novel extraction protocols for the selective recovery of Rh.  

 

The overarching objectives of the research described in this thesis is the screening and 

application of commercially available N-containing organic receptors as selective precipitants 

in the recovery of Rh from laboratory prepared PGM-containing solutions as well as 

authentic industrial PGM feed solutions. In this regard, the complexities involved in the 

quantitative recovery of Rh from industrial feed solutions is described, with particular 

emphasis on the species distribution of the RhIII aqua chlorido-complexes, [RhCln(H2O)6-n]
3-n 

(n=3-6), and its influence on the recovery of Rh from acidic chloride-rich solutions.  

 

In order to fully comprehend all the factors that may influence the separation and 

recovery of Rh from acidic chloride solutions, the kinetic and thermodynamic properties 

related to RhIII ligand exchange reactions, particularly aquation and chloride anation 

reactions, has to be considered. Chapter 2 provides a detailed account of the kinetics of 

interconversion of RhIII aqua-chlorido complexes. Important factors influencing the rate at 

which aquation/anation reactions occur (e.g. temperature and ionic strength) are discussed. 

The factors which influence the rate at which RhIII aquation reactions occur generally has an 

overbearing effect on the selectivity of a particular extraction/separation technique, which is 
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the rationale for this investigation. Furthermore, a simplistic method for the calculation of 

molar extinction coefficient spectra of several [RhCln(H2O)6-n]
3-n species is presented.  

 

Although methods such as solvent extraction and solid-phase extraction have been 

well documented, a review of available literature reveals that only a few publications deal 

with the “selective” recovery of Rh by means of organic precipitation. The premise of 

Chapter 3 is based on the “upfront” separation of RhIII (i.e. Rh being separated and refined 

before any other PGMs) using organic precipitants. The chapter details the screening of 

various commercially available N-containing organic precipitants for the selective and 

quantitative precipitation of RhIII as its chloro-anionic complexes, from laboratory prepared 

PGM solutions as well as authentic industrial PGM feed solutions. Selective and quantitative 

recovery of Rh is achieved when this separation technique is applied to laboratory prepared 

PGM solutions; however, this is not the case when applied to authentic industrial feed 

solutions. Possible explanations for this phenomenon are provided, with the aim of utilising 
103Rh NMR spectroscopy for the direct speciation of RhIII aqua chlorido-complexes.  

 

In order to utilize 103Rh NMR spectroscopy as a tool for the direct speciation of RhIII 

aqua chlorido-complexes, all the 103Rh resonances observed in a spectrum needs to be 

accurately assigned. Chapter 4 details the use of 35Cl/37Cl isotope effects in the observed 

19.11 MHz 103Rh NMR resonances of [RhCln(H2O)6-n]
3-n (n=3-6) complexes in acidic 

chloride solutions (at 292 K), which shows that the “fine-structure” observed in the 103Rh 

resonances can be understood in terms of the unique isotopologue, and in certain cases the 

isotopomer distribution within each complex. The 103Rh NMR resonance structure thus 

served as a novel NMR-fingerprint, which can be used for the unambiguous assignment of 

[RhCln(H2O)6-n]
3-n (n=3-6) complexes, without the reliance on accurate δ(103Rh) chemical 

shifts.  

 

Chapter 5 describes the use of 103Rh NMR spectroscopy as a powerful analytical tool 

for the detection, unambiguous characterisation and direct chemical speciation of 

[RhCln(H2O)6-n]
3-n (n=3-6) complexes present in acidic chloride-rich media, without altering 

the chemical composition (and thereby the chemical speciation) of a solution. Using this 

method, a revised direct species distribution diagram, as a function of the free chloride 

concentration, has been established for the [RhCln(H2O)6-n]
3-n (n=3-6) complexes using this 

method. The proposed speciation diagram have been compared to that determined through 
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conventional analytical methods, such as reversed-phase ion-pair HPLC-ICP-OES 

techniques, and good correlation between the two methods were established. Furthermore, the 

precipitation of RhIII aqua chlorido-complexes was performed as a function of HCl 

concentration, from which the RhIII species distribution was directly correlated to the 

proposed speciation diagram. Subsequently, the developed 103Rh NMR speciation method 

was extended to authentic industrial PGM feed solutions, and it was observed that the 

proposed speciation diagram accurately predicts the [RhCln(H2O)6-n]
3-n (n=3-6) species 

distribution of these industrial PGM solutions. Using the knowledge obtained from the Rh 

speciation studies, revised experimental conditions were developed for the precipitation of Rh 

from industrial feed solutions from which the Rh was “selectively” and quantitatively 

recovered.  

 

Chapter 6 summarizes the findings presented in the preceding chapters, evaluating the 

proposed speciation techniques and its relevance to industry.  
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Chapter 2 

The aquation kinetics of RhIII aqua chlorido 

complexes† 

2.1 Introduction 

2.1.1 Aquation of [RhCl6]
3- and [RhCl5(H2O)]2- complex anions 

The colour of RhIII aqua chlorido-complexes in aqueous HCl solutions varies from 

yellow to various shades of red, depending on the nature and history of the solution, 

illustrated in Figure 2.1. The gradual change in colour upon varying HCl concentration is 

indicative of the presence of various RhIII species. These colour changes prompted the 

extensive study of the aqua chlorido ligand exchange kinetics of RhIII complexes by various 

authors [1-6]. An overview of the documented reactions is outlined in Figure 2.2.   

 

Increasing [HCl] from 0 - 6.0 M
 

Figure 2.1: RhIII containing solutions as a function of HCl concentration. All solutions contain identical RhIII 

concentrations while the HCl concentration of the solutions were increased from 0 – 6.0 M in the direction 

illustrated 

                                                 
† This Chapter is partially based on the publication: W. J. Gerber, K. R. Koch, H. E. Rohwer, E. C. Hosten and 
T.E. Geswindt, The separation and quantification of [RhCln(H2O)6-n]

3-n complexes, including stereoisomers, by 
means of ion-pair HPLC-ICP-MS. Talanta 82 (2010) 348-358 
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[Rh(H2O)6]3+

[RhCl(H2O)5]2+

trans-[RhCl2(H2O)4]+

cis-[RhCl2(H2O)4]+

fac-[RhCl3(H2O)3]

mer-[RhCl3(H2O)3]

cis-[RhCl4(H2O)2]-

trans-[RhCl4(H2O)2]-

[RhCl5(H2O)]2-

[RhCl6]3-

kt
12 = 3.1 x 10-5 M-1.s-1

k01 = 3.3 x 10-7 M-1.s-1

kt
23= 3.6 x 10-8 M-1.s-1

kct
23 = 1.9 x 10-4 M-1.s-1

ktc
32 = 5.4 x 10-6 s-1

kc
34 = 9.3 x 10-4 M-1.s-1kc

43 = 1.5 x 10-4 s-1

kc
54 = 1.1 x 10-3 s-1

kc
45 = 5.9 x 10-3 M-1.s-1

kt
45 = 1.8 x 10-7 M-1.s-1

k56 = 1.9 x 10-3 M-1.s-1k65 = 4.9 x 10-2 s-1

kt
34 = 5.2 x 10-4 M-1.s-1kt

43 = 2.1 x 10-4 s-1

 
Figure 2.2: Kinetic data for the aquation / anation reactions of [RhCln(H2O)6-n]

3-n species illustrating the 

stereochemical course of successive ligand substitution reactions, adapted from Palmer and Harris [5] 

 

The stereochemical course of these reactions is dominated by the trans-labilizing 

effect of chloride ligands, Figure 2.2. As an example, the aquation of [RhCl5(H2O)]2- 

complex anion leads to the formation of only the cis-[RhCl4(H2O)2]
- complex anion; the latter 

subsequently undergoes aquation yielding only the fac-[RhCl3(H2O)3] species. The fac-

[RhCl3(H2O)3] species is considered to be resistant to further chloride-induced hydrolysis in 

the absence of chloride ligands being trans to each other. In a similar manner, chloride 

anation reactions, when the fac-[RhCl3(H2O)3] species, occur more readily at a site trans to a 

coordinated chloride ligand. These types of regiospecific substitution reactions only occur in 

strongly acidic media where every coordinated aqua ligand is fully protonated [1-6].  

 

Although the RhIII aqua chlorido system has been studied extensively, there is a 

general shortage of reliable speciation, rate and equilibrium data [1-6]. The reliability of the 

 22

Stellenbosch University http://scholar.sun.ac.za



aforementioned data is clearly reflected by the discrepancies observed in the reported RhIII 

aqua/chlorido speciation diagrams, Figure 2.3 [1-7].  
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Figure 2.3: Literature documented RhIII species distribution diagrams illustrating the large discrepancies 

existing between proposed speciation diagrams [1-7] 

 

The large inconsistencies in the documented RhIII speciation diagrams, shown in Figure 2.3, 

could originate from various factors and inaccuracies; one of these being (in the case of UV-

vis based speciation diagrams) the discrepancies between the molar extinction coefficient 

spectra for individual RhIII aqua chlorido-complexes reported in literature [5,8], Figure 2.4 

and Table 2.1. Conventionally, the molar extinction coefficient spectra of the RhIII aqua 

chlorido-complexes were determined by preparing crystals of the desired complex and, 

directly following dissolution of these crystals, recording the absorbance spectrum [8]. The 

isolation of the desired RhIII aqua chlorido-complex by means of resin-based ion-exchange 

columns has also been reported [8]. Directly after isolation of the desired species, the 

absorbance spectrum was recorded. However, Wolsey et al [8] acknowledged that when four 

or more chloride ligands are coordinated to the Rh metal centre, a considerable error 

transpires because of reasonably fast ligand exchange kinetics [8]. 
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Figure 2.4: Comparison of the literature documented molar extinction coefficient spectra for [a] [RhCl6]

3- and 

[b] RhCl5(H2O)]2-, adapted from references [5,8] 

 

Table 2.1: Comparison of literature reported molar extinction coefficients at selected wavelengths [5,8] 

Molar extinction coefficient / L.mol-1.cm-1 

[RhCl6]
3- [RhCl5(H2O)]2- Wavelength / nm 

Reference [5] Reference [8] Reference [5] Reference [8] 

390 52.8 71.5 89.5 69.0 
400 72.9 85.5 102.9 73.7 
410 81.7 92.7 101.7 69.0 
420 81.0 86.7 90.5 59.7 
430 69.4 73.1 71.8 48.5 
440 56.9 54.5 60.0 37.0 
450 49.6 42.6 50.7 34.2 
460 46.5 38.6 52.5 36.7 
470 50.9 42.6 62.5 45.1 
480 64.4 54.2 79.6 54.1 
490 79.5 76.3 91.7 65.3 
500 95.8 95.1 101.3 72.1 

 

In terms of developing targeted liquid-liquid extraction [1,9-11], solid-phase 

extraction [12] or organic precipitation [13] methods for the selective and quantitative 

separation of Rh, it is thus necessary to identify both the specific Rh species present in such 

halide-rich solutions as well as their relative abundances. This is because cationic, anionic 

and neutral Rh species are separated through different mechanisms and with different types 

of extractants. In this respect, an accurate and thus reliable RhIII aqua / chlorido speciation 

diagram would provide this information. Furthermore, the ligand exchange kinetics between 

H2O and Cl- ligands must be considered equally (if not more) important since an equilibrium 

distribution of species is essential for reliable Rh recovery. The data obtained from the kinetic 

studies typically provide information regarding how fast a solution reaches an equilibrium 
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state, which is directly related to whether or not the postulated equilibrium distribution 

diagram will be of use in determining an industrial processing scheme.  

2.1.2 Isosbestic points 

Isosbestic points arise when two or more absorbing species have equal molar 

extinction coefficients at the same wavelength when the total concentration of said species is 

constant. The presence of an isosbestic point is usually ascribed to the presence of only two 

absorbing species, because the probability of more than two species having equal molar 

extinction coefficients at the same wavelength is very small. This is not to say that other 

species are completely absent, but these species might be present in low concentrations such 

that it does not interfere with the absorbance measured at that wavelength. In other instances 

it is possible that multiple species could be present at appreciable concentrations with molar 

extinction coefficients that are similar in magnitude to that occurring at the isosbestic 

wavelength, or the molar extinction coefficients are multiples of each other, or that some 

species have comparatively low molar extinction coefficients. In these cases, isosbestic points 

would not be very useful, and the assumption that only two absorbing species are present in 

appreciable concentrations during the formation of an isosbestic point would be incorrect. 

These cases are normally difficult to evaluate; however, careful experimental and data 

analysis could reveal such anomalies. Throughout this study, it is assumed that only two light 

absorbing species are present in appreciable concentrations when reference is made to an 

isosbestic point. 

2.1.3 Mauser diagrams 

In virtually all aspects of physical chemistry, the kinetics of chemical reactions is 

treated only on the level of concentration equations. Furthermore, most of these chemical 

reactions in liquid phase are investigated via UV-Vis spectrophotometry, where the measured 

output used is absorbance data, which generally obey the Beer-Lambert law. In contrast to 

concentration determinations, absorbance data leads to a loss of kinetic information due to its 

inherent limited sensitivity [14]. 

 

A Mauser diagram is a powerful tool used for the evaluation of absorbance data. 

These diagrams are the collective name given to the absorbance (A), absorbance difference 

(AD) and absorbance difference quotient (ADQ) diagrams. These are typically two-
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dimensional diagrams, with the so-called Mauser space being multidimensional (n ≥ 2) [14], 

which allows for the determination of the number (s) of linearly independent reaction steps of 

a chemical reaction. By definition, a linear reaction system consists of first-order reaction 

steps; while linearly independent reactions are those reactions that are independent of the 

reaction order. Each reaction mechanism consists of a distinct number (s) of linearly 

independent reaction steps that can be determined through Mauser diagrams. Recently it has 

been established that, in addition to obtaining the number of linearly independent reaction 

steps, the geometric analysis of the “Mauser space” (or absorbance space) could provide new 

routes for the kinetic evaluation of chemical reactions. 

 

The absorbance (or absorbance differences) of n wavelengths establishes the axes of 

the absorbance space. A straight line in this space is obtained when the reaction system 

consists of a single linearly independent reaction step (s = 1). A reaction system being 

described by two linearly independent steps (s = 2) would lead to a bent curve in the Mauser 

space, which lies on a single plane. Since the curve lies on a single plane, a two-dimensional 

coordinate system can be introduced which lies in this plane. The coordinates of the Mauser 

curve with regard to the established two-dimensional coordinate system can thus be evaluated 

[14-19]. 

 

The reaction systems described by three linearly independent reaction steps (s = 3) 

also lead to a bent curve in the Mauser space. However, these systems differ from reaction 

systems with two linearly independent reaction steps in that the absorbance curve obtained 

does not lie on a single plane, and thus a two-dimensional coordinate system cannot be 

introduced. These reaction systems are evaluated on the basis of three-dimensional 

absorbance diagrams (i.e. Ai versus Aj versus Ak, where the subscripts refer to the respective 

wavelengths), using the concept of parallel projection [18], during which the three-

dimensional absorbance diagram is geometrically projected onto a two-dimensional 

coordinate system. In this manner, the eigenvalues describing the reaction mechanism can be 

determined. Furthermore, the reaction system s = 3 is reduced to a system which is described 

by only two linearly independent concentration variables [18].  

 

The principles for the evaluation of the n-dimensional Mauser space is generally 

applicable to reactions where s = 1, s = 2 and s = 3 for linear and non-linear reaction systems. 
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The following equations illustrate examples of the reaction systems which could be evaluated 

through geometric analysis of the absorbance space [15-18]: 

for s = 1 A

BA

A + B

A

B

C

C;

 

for s = 2 

C + D E F + D

A

A + B

A

A

B B + C

B

B

C

C

D

D;

;

;

 

for s = 3 

A

F

G

A B C D

A

A
A
A

B

B; C
B; C
B + C; D

B; C

C D

D; E F
D; E F

D

E; F
E

 

 

Mauser diagrams provide particularly attractive routes for the elucidation of reaction models, 

and consequently reduce the number of unknown parameters associated with the reaction. 

This is because knowledge of the molar extinction coefficients of the absorbing species is not 

a prerequisite for the application of the theory. The only requirement for this type of 

evaluation is that a sufficient number of species absorb in the region of interest, i.e. that the 

single reactions of the system are individually registered spectrophotometrically. It should be 

noted that reaction models defined by a specific number of linearly independent steps cannot 

be distinguished from one another by purely spectroscopic means; e.g. for the system s = 3 

the reaction model A → B → C → D cannot be distinguished from the reaction model A → 

B; C → D; E → F.  

 

To elaborate on the evaluation of Mauser diagrams, consider the following general 

consecutive reactions that are described by two linearly independent reaction steps:   

A B C
k1

k-1

k2

k-2  
Model A1 

 

From Model A1 it could be assumed that, at any given time, only two absorbing species are 

present in appreciable concentrations. Figure 2.5 depicts a general Mauser diagram for a 
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reaction system consisting of two linearly independent steps, such as the reaction represented 

by Model A1. The bent curve illustrated in Figure 2.5, consists of two linear regions, denoted 

by regressions [1] and [2]. By taking the aforementioned assumption (i.e. that only two 

absorbing species are present in appreciable concentrations at any given time) into 

consideration, two important conclusions can be derived from Figure 2.5 [20], namely: 

 the linear region denoted by the regression line denoted [1] represents the reaction A 

↔ B 

 the linear region denoted by the regression line denoted [2] represents the reaction B 

↔ C 
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Figure 2.5: Typical 2-dimensional Mauser diagram for the general reaction A ↔ B ↔ C 

 

Extrapolation of the regression lines [1] and [2] results in a point where the two 

regression lines intersect, which is denoted as [3] in Figure 2.5. Effectively, this point 

represents the absorbance of purely species B, at the respective wavelengths, i and j. At this 

point the species in solution exists solely as species B, which implies that the concentration of 

species B at this point would equal the concentration of species A at the start of the reaction 

[20]. Since the concentration of species A at the start of the reaction is usually known, the 

molar extinction coefficient of species B can be calculated (at various wavelengths) using the 

Beer-Lambert law.   
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2.2 Experimental 

2.2.1 Reagents and preparation of RhIII aqua chlorido-complexes  

A 0.1021 M RhIII stock solution was prepared by dissolving 0.2825 g of RhCl3·nH2O 

(Alfa Aesar, Rh 38.5-45.5%) in 10 mL 32% (v/v) hydrochloric acid (Merck chemicals). After 

dissolution, the solution was heated at 60°C for five days. This stock solution was 

subsequently kept at 25°C for three days prior to its use. A 7.012 M stock perchloric acid 

(Saarchem – 72% v/v) solution was prepared in MilliQ water. This solution was used to keep 

the total ionic strength constant for each kinetic experiment.  

 

2.2.2 pH Measurements 

The pH of solutions was measured with a Metrohm 780 pH meter using a Metrohm 

6.0232.100 combined pH glass electrode. The electrode was calibrated with pH 4.00 

(Metrohm 6.2307.100) and pH 7.00 (Metrohm 6.2307.110) buffer solutions.   

 

2.2.3 Standardization of acids 

Acid solutions were standardized with freshly prepared borax solutions (borax was 

used as a primary standard). The precise concentration of the acid and base solutions was in 

the order of 1.0 × 10-3 M. Titrations were performed in triplicate until concordant results were 

attained.  

2.2.4 ICP-OES quantification of metal and chloride concentrations 

The total rhodium and chloride concentrations were determined by means of ICP-

OES (SPECTRO Arcos), equipped with a Schott spray chamber and a cross-flow nebulizer. 

The optimal ICP-OES spectrometer settings used were: RF power = 1400 W, Argon coolant 

flow = 13.0 L.min-1, auxiliary flow = 1.0 L.min-1, nebulizer flow = 0.80 L.min-1.  

A rhodium elemental standard (De Bruyn Spectroscopy - 1000 ± 3ppm, 99.99% 

purity) was used for rhodium determination while dried NaCl (Sigma Aldrich; 99.5% 

UltraPure) was used for total chloride determination. The 343.489 nm and 134.724 nm 

emission lines were used for the detection of Rh and Cl, respectively. Although 

unconventional, ICP-OES was used for quantification of the total chloride concentration. To 
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date, there have been few reports in literature documenting the use of ICP-OES in the 

quantification of halogens [21,22]. This is probably due to the relatively low emissivity of the 

halogen atoms. In addition, the halogen atoms/ions emit well below 160 nm [21], with most 

modern ICP-OES spectrometers not being able to detect elements in these low ultraviolet 

ranges. Nonetheless, it has been shown that Cl, Br and I can satisfactorily be quantified in 

waste oils [21], and more recently in acidic halide-rich aqueous solutions containing PGM 

[23].  

2.2.5 UV-vis Spectrophotometric recording 

UV- Vis spectra were recorded using a Perkin-Elmer Lambda 12, double beam UV-

vis spectrophotometer, interfaced with the UV WinLab (Version 1.22) software package. The 

spectra were recorded using the following settings: 

 cycle time (where applicable): 55 seconds 

 scan rate: 240 nm/min 

 slit width: 1 nm 

A Grant KD100 circulating thermostat controller, mounted onto a Grant W6 water 

bath equipped with a cooling coil, was used to maintain the desired temperature of the 

spectrophotometer sample chamber (± 0.1°C). A pump, attached to the thermostatic water 

bath, was used to circulate water through the rubber tubing, as illustrated in Figure 2.1. The 

tubing extends through the cuvette-containing chamber of the spectrophotometer, and is 

attached to a thermostatic vessel containing the sample solutions. This ensures that the 

contents of the reaction vessel and the cuvettes are maintained at the same temperature.  

 

Thermostatic
Water bath

Magnetic
Stirrer

Beaker

Circulating
Pump

Cuvette
Chamber

UV-Vis
Spectrophotometer

Computer

Aluminium-covered
Rubber Tubing  

Figure 2.6: The experimental setup used to record UV-vis spectra at constant temperatures 
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For the spectrophotometric measurements, the 0.1021 M RhIII stock solution prepared in 

10.181 M HCl was diluted 100 times, such that the final HCl concentration was 0.1018 M. To 

each of these solutions, the appropriate amount of a 7.012 M HClO4 stock solution was 

added, such that the molarity of the HClO4 varied from 0.3011 M to 5.993 M. The kinetic 

measurements for the ionic strengths investigated were repeated at the following 

temperatures: 10, 15, 20, 25 and 30ºC (± 0.1ºC). These experiments were designed to 

investigate the effects of ionic strength and temperature on the aquation rate of 

[RhCln(H2O)6-n]
3-n (n=5,6) complex anions.  

Approximately 40 s was required from the dilution of the RhIII stock solution until the first 

spectrum was recorded. Moreover, the pH of each solution was always < 1.00 in order to 

prevent possible hydrolysis reactions.  

2.3 Results and Discussion 

2.3.1 The aquation of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions in a 

0.1018 M HCl matrix 

Figure 2.7 illustrates the typical change in the RhIII UV-vis spectrum as a function of 

time upon dilution of a 0.1012 M RhIII solution, equilibrated in a 10.181 M HCl matrix, to a 

0.1018 M HCl matrix. Figure 2.7a illustrates the UV-vis spectral changes over the first 90 

minutes, while Figure 2.7b illustrates the spectral changes over a period of 3 days. It is 

evident that the aquation reactions progress with the formation of several isosbestic points, 

indicated by the vertical solid and dashed lines. The first set of isosbestic points occur within 

6 minutes after dilution of the RhIII stock solution, Figure 2.7a (solid vertical lines), which is 

followed by the formation of a second set of isosbestic points (dashed vertical lines). These 

sets of isosbestic points indicate that only two RhIII species exist in predominant 

concentration at any given time during the consecutive aquation reactions denoted by 

equations (2.1) and (2.2). The wavelengths at which these isosbestic points occur are given in 

Table 2.2. 

3- 2- -65
6 2 5 2

56

k

k[RhCl ]  + H O  [RhCl (H O)]  + Cl      (2.1) 

2- - -54
5 2 2 4 2 2

45

k

k[RhCl (H O)]  + H O  -[RhCl (H O) ]  + Clcis    (2.2) 

- -43
4 2 2 2 3 2 3

34

k

k-[RhCl (H O) ]  + H O  [RhCl (H O) ] + Clcis fac -    (2.3) 
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Table 2.2: Wavelengths at which the isosbestic points of the respective aquation reactions occur 

Time interval Wavelength / nm Associated aquation reaction 

10 min 422, 451, 513 [RhCl6]
3- + H2O ⇌ [RhCl5(H2O)]2- +Cl- 

90 min 399, 448. 496 [RhCl5(H2O)]2- + H2O ⇌ cis-[RhCl4(H2O)2]
- +Cl- 

4329 min (3 days) 431, 473 cis-[RhCl4(H2O)2]
- + H2O ⇌ fac-[RhCl3(H2O)3] +Cl- 
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Figure 2.7: Change in the UV-vis spectrum as a function of time upon dilution of a 0.1021 M RhIII stock 

solution equilibrated in 10.18 M HCl 100 times, to a 0.1018 M HCl matrix. (a) the spectral change over 90 min 

(b) the spectral change over 3 days (c) a typical kinetic trace at several wavelengths obtained from (a), the 

symbols are the experimental data and the lines are the least-squares fit of reaction models (2.4)-(2.6). The final 

[Rh] = 1.021 mM 
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It is observed that after 90 minutes following the dilution of the RhIII stock solution, the rate 

at which the UV-vis spectrum changes decreases dramatically, Figure 2.7a. This phenomenon 

is associated with the relatively slower rate of aquation of the cis-[RhCl4(H2O)2]
- complex 

anion. This necessitates that the UV-vis spectrum of the diluted sample should be recorded 

over a period of at least four days, in order to observe the formation of the third set of 

isosbestic points at 431 and 473 nm, Figure 2b and Table 2.2. The formation of a third set of 

isosbestic points is indicative of the fact that aquation of the cis-[RhCl4(H2O)2]
- complex 

anion leads to the formation of the fac-[RhCl3(H2O)3] stereoisomer (equation 2.3), as 

expected from the dominant trans-labilizing effect induced by chloride ligands. The rate laws 

of equations (2.1) – (2.3) are given by:  

 

[ ]
[ ] [ ][ ]-

65 56

d A
 = -k A  + k B Cl

dt
        (2.4) 

[ ]
[ ] [ ][ ] [ ] [ ][ ]-

65 56 54 45

d B
 = k A  - k B Cl  - k B +k C Cl

dt
-

     (2.5) 

[ ]
[ ] [ ][ ]-

54 45

d C
 = k B  - k C Cl

dt
        (2.6) 

where: A = [RhCl6]
3-; B = [RhCl5(H2O)]2-; C = cis-[RhCl4(H2O)2]

-  

 

The rate laws denoted by equations (2.4) – (2.6) were simulated using custom-developed 

software (Kinetic5Ver1) and the non-linear least-squares regression fits was performed at 

several wavelengths, Figure 2.7c. Due to the slow rate of aquation of the cis-[RhCl4(H2O)2]
- 

complex anion compared to the [RhCl5(H2O)]2- complex anion, the stereo-specific aquation 

of the cis-[RhCl4(H2O)2]
- species to yield the fac-[RhCl3(H2O)3] stereoisomer was not taken 

into consideration in the reaction model fitted. There is excellent agreement between the 

experimental and simulated data, Figure 2.7c, which confirms the proposed rate laws. The 

calculated rate constants, an average of at least three repeated experiments, are listed in Table 

2.3. 

 

 

 

 

                                                 
1 This program was developed by Dr. W. J. Gerber using the Visual Basic 6 software package. Further 
information regarding the program can be supplied upon request. 
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Table 2.3: Calculated RhIII aqua chlorido-complexes’ pseudo first-order aquation/anation rate constant. The rate 

constants documented in literature [1,2,24] is included for comparison.  

Aquation / anation rate constants 
Experimental technique 

k65 / s
-1 k54 / M

-1.s-1 

UV-vis 8.79 (± 0.38) × 10-3 2.41 (± 0.12) × 10-4 

HPLC-ICP-MS [24] -a 2.46 (± 0.10) × 10-4 

UV-vis [1,2] 1.83 (± 0.38) × 10-3b 3.72 (± 0.38) × 10-5b 

The corresponding chloride anation reactions are considered to be negligibly small at an ionic strength of 0.1018 M HCl  

a
  The HPLC-ICP-MS study cannot separate [RhCl6]

3- and [RhCl5(H2O)]2- complex anions since these species elute as a single peak 

b
  These rate constants were determined at an ionic strength of 4.0 M, a possible reason for the observed discrepancy  

 

The non-linear least-squares fits of the kinetic data discussed thus far not only allows 

for the determination of the pertinent aquation/anation rate constants, but the Kinetic5Ver 

software also allows for the calculation of the molar extinction coefficients of the 

[RhCln(H2O)6-n]
3-n (n=4-6) complexes. In order to supplement the kinetic analyses, the molar 

extinction coefficients of the [RhCl5(H2O)]2-, cis-[RhCl4(H2O)2]
- and fac-[RhCl3(H2O)2] 

species were independently verified using the principle of Mauser diagrams [14-19]. The 

program Mauser1Ver2 [25] was developed specifically for the geometrical analysis of the 

Mauser diagrams since calculation of all the molar extinction coefficients in the 390-550 nm 

region would require, quite literally, 25600 absorbance (λy) versus absorbance (λx) plots, 

which originate from plotting all the wavelengths against each other. A typical Mauser 

diagram obtained with the program Mauser1Ver is shown in Figure 2.8 and the analysis of 

these diagrams were performed as outlined in section 2.1.3. The molar extinction coefficient 

spectra of the [RhCln(H2O)6-n]
3-n (n=3-5) species are illustrated in Figure 2.9. The agreement 

between the molar extinction coefficients calculated for the RhIII species with the two 

different computational methods is excellent and validate the results of the kinetic analyses. 

Furthermore, the calculated molar extinction coefficient spectra of the [RhCln(H2O)6-n]
3-n 

(n=3-5) species overlap at all the experimentally obtained isosbestic points which is 

indicative of the internal consistency of the aquation / anation reaction models fitted, Figure 

2.9. Regrettably, the molar extinction coefficient spectrum of the [RhCl6]
3- complex anion 

could not be determined from Mauser diagrams. In this instance it was assumed, as 

documented in the reviewed literature [5,8], that the [RhCl6]
3- species is the only predominant 

species present in concentrated (> 9.0 M) HCl. It is interesting to note that although the 

                                                 
2 This program was developed by T. E. Geswindt using the Visual Basic.Net software package. Further 
information regarding this program can be supplied upon request. 
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literature reported [5,8] molar extinction coefficient spectra of the [RhCln(H2O)6-n]
3-n (n=3-6) 

species differ substantially, the molar extinction coefficient spectra calculated in this study is 

consistent with that reported by Harris et al [5].  
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Figure 2.8: A typical example of a Mauser plot obtained in this study for the determination of molar extinction 

coefficients for the [RhCl5(H2O)]2-, cis-[RhCl4(H2O)2]
- and fac-[RhCl3(H2O)3] species 
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Figure 2.9: Molar extinction coefficient spectra of the [RhCln(H2O)6-n]

3-n (n=3-6) aqua chlorido-complexes 

calculated with the program Mauser1Ver. a Reproduced with permission from Gerber et al [24] 
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2.3.2 Effect of ionic strength on the aquation kinetics of [RhCln(H2O)6-n]
3-n 

(n=5,6) complex anions 

In the previous section, the pseudo first-order aquation rate constants calculated were 

found to be considerably larger than that reported in literature [1-6]. This is presumably due 

to the difference in ionic strength between the experiments highlighted in the previous section 

and those reported in literature. As such, the effect of ionic strength on the aquation kinetics 

of [RhCln(H2O)6-n]
3-n (n=5,6) complexes was investigated at a constant chloride concentration 

(0.1018 M), while HClO4 was used to adjust the total ionic strength. The ionic strength is 

generally known to have a profound influence on the activity (or the effective concentration) 

of reacting species in solution. An example of this effect is illustrated in Figure 2.10, which 

exemplifies how the activity of water changes as a function of the HClO4 molality. This 

figure shows that as the HClO4 molality is increased, there is a corresponding decrease in the 

activity of water. It therefore makes sense that a decrease in the activity of water with 

increasing HClO4 concentration would lead to a decrease in the rate at which aquation of 

RhIII aqua chlorido-complexes occur.  
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Figure 2.10: The activity of water as a function of HClO4 molality. Water activities were determined by Wai 

and Yates [26] using a modified isopiestic method.  

 

Figure A2.1 [a] – [f] illustrates the experimental results acquired when the 

concentration of HClO4 was increased from 0.301 M to 5.012 M. These figures demonstrate 
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that an increase in the HClO4 concentration leads to a decrease in the rate of change of the 

UV-vis spectra. This implies that the rate of aquation of RhIII aqua chlorido-complexes has 

decreased, since the effective concentration of water is lowered. The formation of two sets of 

isosbestic points is evident from Figure A2.1 [a] – [c]. However, at ionic strengths > 3.0 M, 

the formation of the second set of isosbestic points becomes progressively less apparent, 

Figure A2.1 [d] – [f]. The absence of the second set of isosbestic points may either imply that 

(i) more than two RhIII species are present in significant concentrations, or (ii) the 

[RhCl5(H2O)]2- complex anion has not undergone aquation, to any significant extent. Non-

linear least-squares simulations (vide infra) was used to resolve this problem.  

 

Although the HClO4 concentration was varied from 0.301 M to 5.012 M, the chloride 

concentration was 0.1018 M, and therefore the aquation model previously proposed by 

equations (2.1) – (2.3) can be used to simulate the experimental results. Due to the low 

chloride concentration, the chloride anation reactions are considered to occur to a negligible 

extent. 

 

3- 2- -65
6 2 5 2

56

k

k[RhCl ]  + H O  [RhCl (H O)]  + Cl      (2.1) 

2- - -54
5 2 2 4 2 2

45

k

k[RhCl (H O)]  + H O  -[RhCl (H O) ]  + Clcis    (2.2) 

- -43
4 2 2 2 3 2 3

34

k

k-[RhCl (H O) ]  + H O  [RhCl (H O) ] + Clcis fac -    (2.3) 

 

The experimental kinetic traces, Figure 2.11, demonstrate that increasing ionic strength leads 

to a decrease in the rate at which aquation occurs. Furthermore, the simulated pseudo first-

order aquation model resulted in exceptional fits to the experimental data, Figure 2.11, thus 

validating the proposed model. The calculated rate constants, k65 and k54, as a function of the 

ionic strengths investigated are shown in Table 2.4; highlighting the profound effect of ionic 

strength on the aquation of RhIII aqua chlorido-complexes. Additionally, the calculated rate 

constants are consistent with that reported in literature [1, 2], Table 2.4. In a similar manner 

as the previous kinetic analyses, the molar extinction coefficient spectra were determined by 

two independent methods, i.e. via kinetic simulation of the applicable rate laws and the 

geometrical analysis of Mauser diagrams. These values are consistent with that highlighted in 

section 2.3.1 thus validating the kinetic analyses. 
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Figure 2.11: Kinetic traces illustrating the change in absorbance as a function of time upon dilution of a 

0.1021 M RhIII solution equilibrated in 10.18 M HCl to a final HCl concentration of 0.1018 M and specified 

HClO4 concentration. The symbols indicate the experimental data while the lines illustrate the exceptional non-

linear least-squares fits of the aquation model denoted by (2.1) – (2.3). [Rh]final = 1.021 mM 
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Figure 2.12: An example of the calculated species concentration profile as a function of time obtained from the 

non-linear least-squares model fits. 
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Table 2.4: Comparison of the aquation rate constants of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions as a function 

of ionic strength at 298.1 K calculated during this study and that documented in literature[24] 

Aquation rate constants 

This study Literature [24] 
Ionic strength  

/ M 
k65 / ×10-3 s-1 k56 / ×10-4 s-1 k65 / ×10-3 s-1 k56 / ×10-4 s-1 

0.301 6.60 ± 0.11 2.56 ± 0.08 - -  

0.986 5.36 ± 0.14 1.96 ± 0.04 5.25 ± 0.28 2.10 ± 0.07 

2.011 3.57 ± 0.21 1.01 ± 0.04 3.38 ± 0.22 1.13 ± 0.06 

3.112 2.49 ± 0.10 0.56 ± 0.01 2.02 ± 0.13 0.40 ± 0.03 

4.013 1.63 ± 0.03 0.38 ± 0.006 1.03 ± 0.05 0.27 ± 0.008 

5.012 1.07 ± 0.01 0.36 ± 0.002 - - 

5.993 0.79 ± 0.02 - 0.77 ± 0.04 - 

 

In conclusion, the aquation rate constants for the [RhCln(H2O)6-n]
3-n (n=5,6) complex anions 

have been calculated as a function of ionic strength. It was observed that the ionic strength 

has a profound effect on the rate at which these species undergo aquation. Furthermore, the 

calculated molar extinction coefficient spectra are consistent with that depicted in Figure 2.9. 

The lack of significant UV-vis spectral changes for the subsequent aquation reactions (i.e. for 

the formation of higher aquated RhIII species) combined with the large period of time 

required for these aquation reactions to take place, render UV-vis spectrophotometry 

unsuitable to study the kinetics of the neutral and cationic RhIII aqua chlorido-complexes. 

 

2.3.3 The effect of temperature on the aquation kinetics of [RhCln(H2O)6-n]
3-n 

(n=5,6) complex anions 

The kinetics of the aquation and chloride anation reactions of RhIII aqua chlorido-

complexes have been a subject of a number of studies [1-6, 24]. To date, however, very few 

studies investigated the effect of temperature on the aquation reactions of RhIII aqua chlorido-

complexes, with Harris et al [2] only investigating the effects of temperature on the chloride 

anation kinetics of the chloropentaaquarhodium(III) cation in aqueous solution. Therefore, it 

was of significant interest to investigate the effects of temperature on the kinetics of the 

aquation of the [RhCln(H2O)6-n]
3-n (n=5,6) complex anions.  

 

Temperature is known to influence the rates at which chemical reactions occur, by 

either enhancing or impeding the reactions. Generally, an increase in temperature would lead 
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to a corresponding increase in the rate of the reaction. This is attributed to the fact that 

increasing temperature leads to an increase in the kinetic energy of reacting molecules, which 

provides the colliding molecules sufficient energy to overcome the energy barrier of a 

reaction. A decrease in temperature generally has an opposing effect.  

 

Figures A2.2 [a] – [e] illustrates the experimental UV-vis spectral profiles obtained 

upon decreasing the reaction temperature from 303.1 K to 283.1 K. All the spectra depicted 

in Figure A2.2 were obtained at a constant ionic strength of 0.301 M. The formation of two 

sets of isosbestic points at high temperatures is evident in Figures A2.2 [a] – [c]. However, at 

temperatures < 20.0°C (293.1 K) the formation of the second set of isosbestic points becomes 

less apparent, Figure A2.2 [d] - [e]. The absence of the second set of isosbestic points implies 

that aquation of the [RhCl5(H2O)]2- complex anion has not taken place to a considerable 

extent. It is thus evident that a decrease in temperature leads to a decrease in the rate of 

aquation of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions.  

 

As in the previous sections, the aquation rate constants of the reactions denoted by 

equations (2.1) – (2.3) were calculated using the program Kinetic5Ver. The non-linear least- 

squares fits of the simulated pseudo first-order rate laws, equations (2.4) – (2.6), are shown in 

Figure 2.13 [a] and [b]. The aquation model least-squares fits (solid lines) are excellent, and 

the calculated aquation rate constants at each of the temperatures (and ionic strengths) are 

illustrated in Figures 2.14 - 2.15. A summary of the effects of ionic strength and temperature 

on the aquation rate constants, k65 and k54, are provided in Table 2.5.  
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Figure 2.13: Kinetic traces illustrating the change in absorbance upon dilution of a 0.1021 M RhIII solution 

equilibrated in 10.18 M HCl to a final HCl concentration of 0.1018 M. Reactions were conducted at several 

temperatures as denoted in the figures. [a] Reactions conducted at an ionic strength of 0.3011 M HClO4; [b] 

Reactions conducted at an ionic strength of 5.012 M HClO4. The symbols indicate the experimental data while 

the lines illustrate the exceptional non-linear least squares fits of the aquation model denoted by (2.1) – (2.3) 

[Rh]final = 1.021 mM 
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Figure 2.14: The calculated rate constants (k65) for the aquation of [RhCl6]

3- as a function of temperature and 

ionic strength 
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Figure 2.15: The calculated rate constants (k54) for the aquation of [RhCl5(H2O)]2- as a function of temperature 

and ionic strength 
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Table 2.5: Summary of the calculated RhIII aquation rate constants, k65 and k54, as a function of ionic strength and temperature 

Aquation rate constant k65 / ×10-3 s-1 Ionic 

Strength / M 283.1 K 288.1 K 293.1 K 298.1 K 303.1 K 

0.301 0.81 ± 0.09 1.83 ± 0.13 3.49 ± 0.09 6.60 ± 0.11 12.33 ± 0.16 

0.986 0.68 ± 0.06 1.40 ± 0.04 2.74 ± 0.08 5.36 ± 0.14 9.91 ± 0.11 

2.010 0.43 ± 0.04 0.89 ± 0.02 1.79 ± 0.08 3.57 ± 0.21 5.86 ± 0.13 

3.112 0.34 ± 0.03 0.60 ± 0.02 1.25 ± 0.04 2.49 ± 0.10 4.04 ± 0.11 

4.013 0.25 ± 0.01 0.46 ± 0.03 0.86 ± 0.03 1.63 ± 0.03 2.88 ± 0.06 

5.012 0.16 ± 0.01 0.31 ± 0.01 0.58 ± 0.03 1.07 ± 0.01 1.88 ± 0.04 

5.993 0.13 ± 0.01 0.24 ± 0.01 0.44 ± 0.02 0.79 ± 0.02 1.37 ± 0.01 
      

Aquation rate constant k54 / ×10-5 s-1 Ionic 

Strength / M 283.1 K 288.1 K 293.1 K 298.1 K 303.1 K 

0.301 2.42 ± 0.02 5.27 ± 0.61 11.62 ± 0.54 25.62 ± 0.81 50.05 ± 1.02 

0.986 1.83 ± 0.01 4.15 ± 0.16 8.52 ± 0.61 19.63 ± 0.43 35.98 ± 1.10 

2.010 0.94 ± 0.01 2.01 ± 0.06 4.41 ± 0.40 10.01 ± 0.44 16.16 ± 0.61 

3.112 0.54 ± 0.01 1.24 ± 0.04 2.42 ± 0.13 5.62 ± 0.11 13.50 ± 0.57 

4.013 0.37 ± 0.01 0.92 ± 0.03 1.76 ± 0.09 3.80 ± 0.06 7.56 ± 0.10 

5.012 0.29 ± 0.01 0.68 ± 0.01 1.51 ± 0.09 3.61 ± 0.02 7.34 ± 0.41 
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It is interesting to note that, according to Figures 2.14 and 2.15, the rate constants k65 

and k54 are not linearly dependent on the reaction temperature. This type of behaviour could 

be explained by the Arrhenius equation, which enables the description of rate constants as a 

function of temperature:  

 

  
E

RTk A 
a

 e         (2.7) 

where k = the relevant reaction rate constant; A = pre-exponential factor (or frequency 

factor); R = the gas constant in J.K-1.mol-1; T = temperature in Kelvin; Ea = the reaction 

activation energy 

 

In order to understand the empirical term activation energy, it would be useful to 

consider how energy changes occur in the course of a chemical reaction beginning with a 

collision between two molecules. As a reaction ensues, two molecules come into contact, 

undergo distortion and start to exchange or discard atoms. During this process, the “potential 

energy” reaches a maximum, the cluster of atoms that correspond to the region “close” to this 

maximum being known as the activated complex. Once the energy maximum has been 

reached, the potential energy decreases exponentially as the atoms in the cluster rearranges, 

and the energy reaches a value characteristic of the products. The maximum reaction 

potential energy corresponds to the activation energy, Ea. At this stage, the two reacting 

species reached such a close proximity and degree of distortion, that any additional distortion 

will result in the formation of the products. Thus, we can define the activation energy as the 

minimum amount of energy required by reacting species in order to form products.  

By taking the natural logarithm of Equation 2.7, the Arrhenius equation can be re-written as:  

  aE
ln (k) = ln(A) - 

RT
       (2.8) 

Thus, a plot of ln(k) versus 1/T would yield a linear trend, with the slope of the regression 

being given by –Ea/R, and the intercept of the y-ordinate yielding the value of ln(A), Figures 

2.16 and 2.17. The magnitude of Ea for the aquation of [RhCl6]
3- was calculated as 89.29 

(± 3.29) J.mol-1, while that for the aquation of [RhCl5(H2O)]2- was found to be 108.15 

(± 2.65) J.mol-1. The fact that the rate of the aquation of [RhCl6]
3- is always faster than that of 

the aquation of [RhCl5(H2O)]2- can thus be understood in terms of the activation energy; with 

the activation energy of the aquation of [RhCl6]
3- being significantly lower than that 

corresponding to the aquation of the [RhCl5(H2O)]2- complex anion. Furthermore, it is 
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interesting to note that the activation energy of the aquation reactions investigated is 

independent of ionic strength, Figures 2.16 and 2.17.  
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Figure 2.16: Arrhenius plot of ln(k65) as a function of temperature and ionic strength, indicating the temperature 

dependence of the aquation of the [RhCl6]
3- complex anion 
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Figure 2.17: Arrhenius plot of ln(k54) as a function of temperature and ionic strength, indicating the temperature 

dependence of the aquation of the [RhCl5(H2O)]2- complex anion 
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2.4 Concluding remarks 

The rate constants, k65 and k54, for the aquation of the [RhCl6]
3- and [RhCl5(H2O)]2- 

complex anions were calculated from UV-vis kinetic data. Simulation of the kinetic traces, 

using the custom developed software Kinetic5Ver, allowed the determination of the molar 

extinction coefficient spectra of the [RhCl5(H2O)]2- and cis-[RhCl4(H2O)2]
2- complex anions. 

This was possible since aquation of the [RhCl6]
3- complex anion is faster than that of the 

[RhCl5(H2O)]2- complex anion which allows for the accurate assessment of the 

[RhCl5(H2O)]2- species’ concentration approximately 8-10 minutes after dilution. 

Furthermore, the program Mauser1Ver, developed for the geometrical analysis of Mauser 

diagrams, was used for the calculation of the molar extinction coefficient spectra of the 

[RhCl5(H2O)]2- and cis-[RhCl4(H2O)2]
- complex anions. It was found that the agreement 

between the two differing computational methods for the calculation of molar extinction 

coefficient spectra was exceptional. Moreover, the calculated molar extinction coefficient 

spectra overlap at all the experimentally observed isosbestic points that are indicative of the 

internal consistency of the aquation/anation models fitted to the kinetic data.  

 

The effect of ionic strength on the aquation rate of the [RhCl6]
3- and [RhCl5(H2O)]2- 

complex anions was investigated, from which the rate constants k65 and k54 were determined 

as a function of ionic strength. The ionic strength at which the reactions were conducted was 

found to influence the rate of ligand substitution dramatically. Typically, an increase in ionic 

strength led to a decrease in the rate of aquation. This is attributed to the lowered water 

activity upon increasing the ionic strength.  

 

Finally, it was shown that temperature has a profound effect on the rate of ligand 

substitution. The transition state activation energy (Ea) for the aquation of the [RhCl6]
3- 

species was calculated as 89.29 ± 3.29 J.mol-1, while that of the [RhCl5(H2O)]2- species was 

calculated as 108.15 ± 3.29 J.mol-1. Furthermore, the activation energies for the aquation of 

both the [RhCl6]
3- and [RhCl5(H2O)]2- complex anions were found to be independent of ionic 

strength 
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Chapter 3 

Screening of commercially available organic 

compounds for the selective precipitation of RhIII 

aqua chlorido-complexes present in chloride-rich 

media 

3.1 Introduction 

The results described in the previous chapter highlight the important parameters 

related to the successive aquation reactions of the [RhCl6]
3- complex anion. These parameters 

allow for the preparation of solutions in which the RhIII aqua chlorido-complexes are well 

defined - an important aspect for the recovery of Rh by methods such as solvent extraction, 

ion exchange or organic precipitation.  

The separation of Rh from other transition metals has been the subject of numerous 

investigations, with most focussing on liquid-liquid [1-7] and solid-phase extraction 

techniques [8-10]. Owing to its expense and chemical/industrial relevance, it is highly 

beneficial to any refinery if Rh is separated and refined at an early stage of the PGM refining 

process, i.e. the recovery of Rh before other associated PGMs (Pt, Pd, Ir and Ru). However, 

very few publications document the recovery of Rh from an ore concentrate containing 

associated PGMs as well as other transition metals by means of selective precipitation using 

organic (typically N-containing) compounds. A 1992 patent by Crozier and Grant [11] 

describes the use of the (poly)amine diethylenetriamine (Deta) as an organic precipitant, in 

the presence of an appropriate protonating agent (HCl, H3PO4, HNO3 or H2SO4) for the 

selective precipitation of Rh from an industrial, chloride-rich, ore concentrate. Furthermore, 

these authors documented a dramatic increase in the selectivity toward the removal of Rh 

when using Deta when compared to ethylenediamine (en), with an Rh recovery efficacy 

> 98% reported when using Deta. It should be highlighted, however, that the concentration of 

other associated transition metals was relatively low compared to the Rh concentration, 

suggesting that this method was applied on Rh feed solutions prepared for the final Rh 

purification stage, i.e. the bulk of the associated transition metals had been removed prior to 
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the precipitation stage. However, the separation of Rh from other precious metals continues 

to pose the most difficult aspect of PGM refining. The poor separation of Rh is chiefly 

attributed to the presence of the aquated RhIII species, [RhCln(H2O)6-n]
3-n (n=3-5), combined 

with the labile character of the [RhCl6]
3- complex anion toward aquation reactions, as was 

seen in the previous chapter 

 

From the trends observed by Crozier and Grant [11], it is evident that an increase in 

the chain-length of the aliphatic, N-containing organic precipitant could lead to an increase in 

selectivity of the precipitant toward Rh precipitation. Possible reasons for the increased 

selectivity may include: (i) differing modes of binding of the protonated organic receptor 

(precipitant) to different anionic metal chlorido-complexes, e.g. binding of the organic 

receptor through hydrogen-bonding interactions with either the faces or the edges of the 

hexachlorido octahedron of [RhCl6]
3- or [PtCl6]

2-; (ii) lower solubility of the 

(DetaH3)[RhCl6] (s) precipitate compared to the analogous (DetaH3)[PtCl6]Cl (s) precipitate, 

which may originate from the charge differences between the triply charged cation 

(DetaH3
3+) and the anionic metal chlorido-complex, or the bulky nature of Deta compared to 

ethylenediamine. Therefore, factors that can be exploited to affect the selectivity of the 

precipitation of a single metal chlorido-complex include:  

(a) the charge difference between various anionic metal chlorido-complexes, e.g. [PdCl4]
2-, 

[RhCl6]
3-, [IrCl6]

2/3- and [PtCl6]
2-, and the cationic precipitants 

(b) solvation/desolvation energy differences of the anionic metal chlorido-complexes as well 

as the protonated organic precipitants 

(c) lattice energy differences of the precipitates, which is reflected by the efficacy of the 

packing arrangement between anionic and cationic molecules in the solid state.  

Considering these factors, several commercially available N-containing organic compounds 

were screened for its efficacy in the preferential and quantitative precipitation of Rh from an 

industrial PGM ore concentrate, with the overarching objective being the “upfront” (early) 

recovery of Rh from the ore concentrate. The criteria for selecting appropriate agents as 

precipitants were reasonably straightforward: (i) the precipitating agent should react with the 

analyte (ii) be unreactive towards atmospheric conditions (iii) the compound must be soluble 

and stable in concentrated acidic media (iv) the reagent should be relatively cost-effective; 

thus synthesis of novel organic compounds was not considered as this is often an expensive 

route which does not necessarily yield improved precipitation results compared to relatively 

inexpensive commercially available compounds (v) it should be able to precipitate RhIII, as its 
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chlorido anion(s), quantitatively (i.e. with > 90% efficiency) and preferably selectively from 

acidic aqueous solutions containing RhIII and other PGMs. Table 3.1 lists the commercially 

available precipitants used throughout this study. 

 

Table 3.1: Commercially available, N-containing precipitants used throughout this study 

 Compound name Structure 

diethylenetriamine [Deta] 
H2N

H
N

NH2  

triethylenetetramine [Teta] 
H2N

H
N

N
H

NH2

 

tetraethylenepentamine [Tepa] H2N

H
N

N
H

H
N

NH2

 

ethylenimine oligomer mixture 

(Avg. MW = 423 g.mol-1) 
C
H2

H2
C

N
H

n  

Lupamin® 1595 

(Avg. MW = <10 000 g.mol-1) NH2 NH2 NH2 NH2
n  

L
in

ea
r 

M
ot

if
 

Lupamin® 9030 

(Avg. MW = 340 000 g.mol-1) NH2 NH2 NH2 NH2
n  

tris(2-aminoethyl)amine [Tren] 
N

H2N

H2N

NH2

 

tris[(2-isopropylamino)-ethyl]amine 

[Trien] 

N

NH

HN

HN

 B
ra

n
ch

ed
 M

ot
if

 

1,4,7-triazonane 
H
N

HNNH
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3.2 Experimental 

3.2.1 Preparation of PGM containing stock solutions 

3.2.1.1 Preparation of RhIII and PtIV stock solutions 

A 0.2011 M stock solutions of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions were 

prepared by dissolving ca 1.06 g of commercially available RhCl3·nH2O (Heraeus chemicals 

GmbH) in 20 mL 32% (v/v) HCl (Merck chemicals). This solution was sealed and kept at 

333 K for a week and thereafter allowed to equilibrate at 292 K for a further 5 days. UV-vis 

spectrophotometry conducted on the prepared stock solution (after appropriate dilution with 

32% HCl) yielded a spectrum characteristic to that of (predominantly) [RhCl6]
3- with the 

presence of two maxima, i.e. at 523 nm and 415 nm. The total chloride concentration was 

10.101 M. 

 

A 0.2118 M [PtCl6]
2- stock solution was prepared by dissolving ca 1.74 g of 

commercially available platinic acid (H2[PtCl6] – Heraeus chemicals GmbH) in 20 mL 32% 

(v/v) HCl. UV-vis spectrophotometry conducted on the stock solution after appropriate 

dilution revealed a spectrum characteristic of [PtCl6]
2- with a single peak maximum at 

261 nm. The total chloride concentration was 10.011 M 

 

The total Rh, Pt and chloride concentrations of these stock solutions were determined 

by means of ICP-OES (SPECTRO Arcos); equipped with a Schott spray chamber and cross-

flow nebulizer. The general ICP-OES conditions were: ICP RF power = 1400 W, coolant gas 

flow = 13.00 L.min-1, auxiliary gas flow = 1.00 L.min-1, nebulizer gas flow = 0.80 L.min-1. 

The most sensitive Rh (343.489 nm), Pt (265.945 nm) and chloride (134.742 nm) 

wavelengths were used for these determinations. ULTRASPEC single element Rh and Pt 

standard solutions (De Bruyn Spectroscopic Solutions; 99.998% purity, 10% v/v HCl) were 

used for Rh and Pt standardisation. Dried sodium chloride (Sigma-Aldrich; 99.95% purity) 

was used for chloride standardisation.  
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3.2.1.2 Preparation of synthetic mixed metal (RhIII and PtIV) stock solution  

The single element stock solutions, prepared as outlined in Section 3.2.1.1, were 

mixed in an equimolar ratio and diluted to a final metal concentration of ca 0.1 M with 32% 
v/v HCl. The total metal and chloride concentration, determined by means of ICP-OES 

(Section 3.2.1.1) was: [Rh] = 0.101 M, [Pt] = 0.100 M and [Cl-] = 10.1 M 

3.2.1.3 Authentic industrial feed solutions 

Several industrial PGM process solutions, supplied by Heraeus chemicals GmbH, 

were used to test the efficacy of the screened organic compounds (vide infra) as possible 

"selective" precipitants for the quantitative "upfront" removal of Rh from an ore concentrate 

containing various associated PGMs as well as other transition metals. Table 3.2 shows the 

elements present in a typical industrial feed solution (determined by ICP-OES) and the 

concentration of each element in such a solution. The total chloride concentration of the feed 

solution was at 4.008 M, determined by means of ICP-OES. During the precipitation titration 

experiments, the total chloride concentration of the feed solution was adjusted to 6.0 M by 

the addition of the required volume of 32% v/v HCl. This was done in order to compare the 

results of the process solutions to that of the laboratory prepared RhIII and PtIV containing 

solutions.  

 

Table 3.2: Elemental composition and concentration of the industrial feed solution used throughout this study. 

The highlighted elements are those with the highest concentrations 

Element mg/L M 
Au 1 5 × 10-6 
Ag 95 8.8 × 10-4 
Pt 30646 1.5712 × 10-1 
Pd 12827 1.2054 × 10-1 
Ir 997 5.18 × 10-3 

Rh 3435 3.338 × 10-2 
Ru 273 2.70 × 10-3 
Re < 1 - 
Al 164 6.08 × 10-3 
As 7 9 × 10-5 
Co 203 3.44 × 10-3 
Cr 24 4.6 × 10-4 
Cu 2051 3.228 × 10-2 
Fe 21271 3.8091 × 10-1 
Ni 3514 5.987 × 10-2 
Pb 4235 2.044 × 10-2 
Se < 1 - 
Si 318 1.13 × 10-2 
Te 1468 1.150 × 10-2 
Zn 8 1 × 10-4 
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3.2.2 Preparation of stock precipitant solutions 

All the organic compounds (hereafter called precipitants) listed in Table 3.3 are fully 

miscible with water. Stock solutions of these reagents were prepared in 6.0 M HCl (unless 

otherwise stated), by slow addition of the precipitant to the acid (all of the compounds, 

excluding 1,4,7-triazonane - which is a white chloride salt, react violently upon contact with 

acidic media). Tetraethylenepentamine (0.501 M) stock solutions were prepared in 3.0 M 

HCl due to the precipitation of the amine, as its chloride salt, at high (> 3.5 M) HCl 

concentrations. With the exception of ethylenimine oligomer and Lupamin® polymeric 

solutions, the molar concentration of the prepared stock solutions was ca 0.5 M with respect 

to the precipitant. Stock ethylenimine oligomer (2.16% v/v) and Lupamin® (7.31% v/v) 

solutions were prepared by pipetting the required volume of the reagent into a volumetric 

flask containing the necessary volume of HCl, such that the final HCl concentration upon 

dilution was 6.0 M. The prepared stock solutions were further diluted, with 6.0 M HCl, as 

required for a particular experiment. According to the protonation constants documented in 

literature [12,13], the precipitants are considered to be fully protonated under the conditions 

at which  the solutions were prepared. It is essential that the precipitants are fully protonated 

since (poly)amines are known to coordinate to the metal centre, especially in the case of RhIII, 

PtII/IV and IrIII/IV, under neutral – basic conditions [14-17].  
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Table 3.3: The amine-based organic compounds screened as possible selective precipitants for RhIII 

Reagent Chemical structure % Composition Supplier 

diethylenetriamine [Deta] 
H2N

H
N

NH2  
99 Riedel de Haën 

triethylenetetramine [Teta] H2N

H
N

N
H

NH2

 
98 Fluka 

tetraethylenepentamine [Tepa] H2N

H
N

N
H

H
N

NH2  
98 Fluka 

tris(2-aminoethyl)amine [Tren]  
N

H2N

H2N

NH2

 

98 Fluka 

tris[(2-isopropylamino)-ethyl]amine 

[Trien] 
N

NH

HN

HN

 

98 Sigma-Aldrich 

1,4,7-triazonane  
H
N

HNNH

 

95 Sigma-Aldrich 

ethylenimine oligomer mixture 

(Avg. MW = 423 g.mol-1) 
C
H2

H2
C

N
H

n  
91 Sigma-Aldrich 

Lupamin® 1595 

(Avg. MW = <10 000 g.mol-1) NH2 NH2 NH2 NH2
n  

-a BASF Corporation 

Lupamin® 9030 

(Avg. MW = 340 000 g.mol-1) NH2 NH2 NH2 NH2
n  

-a BASF Corporation 

a Information not available 
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3.2.3 Mole ratio precipitation titrations of precious metal (Rh and Pt) chloride 

anions with several commercially available organic precipitants 

Generally, the screening of possible precipitants involves the titration of a solution 

containing the metal of interest against the precipitant. However, the conventional method of 

precipitation titrimetry is not feasible, since the precipitate formation is not instantaneous. 

Therefore, a typical titration consisted of a series of 25-30 samples in which the total metal 

content of each solution was kept constant while the concentration of the precipitant was 

gradually increased along the series. The precipitation titrations were conducted at a total HCl 

concentration of 6.0 M. A typical precipitant – metal chloride anion titration for a single 

organic compound is shown in Table 3.4.  

 

Table 3.4: An example of a typical RhIII chloride anion versus precipitant titration, conducted at 298.1 K 

Sample Number [L]stock / M [L]final / mM [M] / mM [L] / [M] Ratio 

1 - - 7.011 0.00 

2 0.0100 0.0351 7.011 0.005 

          

10 0.0500 7.010 7.011 1.00 

          

20 0.100 35.01 7.011 4.99 

          

30 0.500 210.1 7.011 29.97 

[L] = Precipitant concentration; [M] = RhIII chloride anion concentration 

 

Titrations were allowed to proceed for 3 days at 298.1 K. Once equilibration was attained, 

each solution was centrifuged at 6500 rpm, the supernatant of each solution removed and 

analysed for its metal content by ICP-OES spectroscopy. All the titrations performed were 

repeated in triplicate to attain concordant results and results presented are an average of these 

repeats. Titrations were performed on HCl solutions containing the single metal chloride 

anions (i.e. RhIII or PtIV), laboratory prepared solutions containing mixed metal chloride 

anions (RhIII and PtIV) and an authentic industrial process solution containing all the metals 

outlined in Table 3.2.  

 56

Stellenbosch University http://scholar.sun.ac.za



Generally, the metal concentration in the solid phase was calculated by means of mass 

balance of the metal content in the aqueous phase before and after precipitation. In order to 

validate this method, total metal mass balance experiments were conducted. After the 

precipitation stage, the salt was washed with aliquots of cold water/HCl mixture and dried 

under vacuum. Dissolution was achieved by slow addition of aqua regia to the dried 

precipitate at 333.1 K, with constant stirring. It is essential that aqua regia is added very 

slowly to the precipitate in order to prevent the possible formation of nitrosamines in the 

presence of concentrated nitric acid. Following complete dissolution of the precipitate, the 

metal containing solution was made up to volume (50 mL) with 3.0 M HCl.  

3.2.4 Crystal structure of isolated (TepaH5)[RhCl6]Cl2·2H2O 

As part of this work, suitable crystals of Tetraethylenepentammonium diaqua 

hexachlororhodate(III) dichloride, (TepaH5)[RhCl6]Cl2·2H2O, were isolated by the drop-wise 

addition of 20 mL tetraethylenepentamine (Tepa – 7.011 mM in 3.0 M HCl) to an aqueous 

solution containing [RhCl6]
3- (20 mL, [Rh] = 7.103 mM in 6.0 M HCl). The solution 

temperature was maintained at 313 K, under constant stirring, in order to prevent rapid 

precipitation of RhIII as the tetraethylenepentammonium salt. Following Tepa addition, the 

solution was slowly cooled to ambient temperature and crystallization allowed to proceed by 

slow evaporation of the solvent (± 3-4 weeks). The resulting crystalline material was washed 

with aliquots of cold ethanol. Light microscopy revealed small red single-crystals that 

illustrated hexagonal, plate-like morphology.  

 

Single crystal X-ray diffraction data were recorded using a Bruker SMART APEX 

diffractometer equipped with a graphite monochromated Mo Kα radiation (λ = 0.71073 Å), at 

105 K. Empirical absorption corrections were applied using SADBS [19]. Crystal structures 

were solved using SHELXS 97 [20] and all ordered non-hydrogen atoms were refined 

anisotropically by full-matrix least-squares of F2 using SHELXL-97 [21] within the X-SEED 

environment [22]. All hydrogen atoms were placed in calculated positions. Hydrogen bond 

and coordination sphere geometric parameters are available in the supplementary section. 
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Table 3.5: Data collection and final refinement parameters for (TepaH5)[RhCl6]Cl2·2H2O 

 (TepaH5)[RhCl6]Cl2 

Empirical formula C8 H29 N5 Cl6 Rh, 2(H2O), 2(Cl), 

Formula weight 617.906 

Temperature / K 105 

Crystal system Monoclinic 

Space group P21/n 

a (Å) 7.1601(4) 

b (Å) 31.9491(17) 

c (Å) 9.8711(5) 

α° 90 

β° 91.057(1) 

γ° 90 

Cell volume (Å3) 2257.7(2) 

ρ (g.cm-3) 1.812 

Absorption coefficient (mm-1) 0.776 

Final R indices [I > 2σ(I)] 0.0365 

0.0921 
R indices (all data): R1, wR2 

0.1602 

Goodness-of-fit on F2 1.040 

Δρmax / Δρmin [e / Å3] 0.368 / -0.416 

 

3.2.5 High-resolution 195Pt NMR spectroscopic study of an authentic 

industrial feed solution 

400 μL (Pt content = 98.867 mM in 4.008 M HCl) of an industrial PGM feed solution 

(Heraeus chemicals GmbH) in 30% (v/v) 
2H2O/1H2O was used for the recording of 195Pt NMR 

spectra.  

 

128.8 MHz 195Pt NMR spectra were recorded (at 293 K ± 0.1 K) using a Varian 

INOVA 600 MHz spectrometer, with a 5 mm broad-band probe. Particular attention to 

temperature equilibration of the sample and optimal shimming is necessary. Although no 

absolute referencing was required, chemical shifts (ppm) are reported relative to the widely 

used external [PtCl6]
2− as reference solution (δ195Pt = 0.0 ppm at 500 mg.ml-1 H2PtCl6·2H2O 

in 30% v/v 
2H2O/1H2O – 1 M HCl) at 303 K, without attempting to adjust for small 

temperature induced changes in δ 195Pt shifts [23]. Spectra were recorded under conditions of 
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optimal resolution using a 2.0 μs excitation pulse (corresponding to a ~20° pulse) at 

maximum practical power, an acquisition time of ca. 1.1 s with no relaxation delay, in an 

attempt to ensure homogeneous and complete excitation over the spectral width. Typical 

resonance line-widths (ν1/2) ranged from 9–12 Hz, and spectra were processed to ensure 

optimal resolution. The measured T1 relaxation times of these platinum complexes ranged 

from 1–1.5 s for the solution, in effect ensuring complete relaxation of all complex species in 

solution. 

 

3.3 Results and discussion 

3.3.1 Description of organic compounds not used as precipitants 

3.3.1.1 tris[(2-isopropylamino)-ethyl]amine 

N

NH

HN

HN

 
Chemical structure of tris[(2-isopropylamino)-ethyl]amine 

 

This amine, at first glance, appears to be a perfect candidate for the precipitation of 

metal chlorido anions from acidic solution. However, no precipitation was observed for any 

of the metals (RhIII, PtIV and IrIV) investigated. The reason for this could be that the bulky 

isopropyl groups coordinated to the nitrogen atoms sterically hinder interaction between the 

protonated nitrogen atoms and the metal chlorido anion, thus impeding the precipitation. It 

could also be that the isopropyl groups improve the solubility of the resulting ion-pair 

between the "precipitant" and the metal complex anion3. Further investigations relating to 

this compound were therefore discontinued.  

 

 

 

 

                                                 
3 The author thanks one of the thesis reviewers for this comment. 
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3.3.1.2 1,4,7-triazonane 

H
N

HNNH

 
Chemical structure of 1,4,7-triazonane 

 

This organic precipitant can be considered a cyclic “analogue” of diethylenetriamine, 

and thus it is not surprising that it is highly efficient in precipitating both [RhCl6]
3- as well as 

[PtCl6]
2- complex anions from aqueous acidic solution, as preliminary observations had 

shown. However, at a price of US$ 88.99 (R 711.99) per 100 mg compared to US$ 23.80 

(R 190.40) per 250 mL for diethylenetriamine, it is too expensive to be regarded as a viable 

precipitating agent, especially considering that the precipitating agents would not necessarily 

be recycled. Further investigations related to this compound were therefore discontinued. 

 

3.3.1.3 ethylenimine oligomer mixture 

C
H2

H
C

N

n  
Repeating unit of the ethylenimine oligomer mixture 

 

Preparation of this precipitant in acidic matrices (> 1.0 M HCl or HClO4) leads to the 

formation of a grey precipitate, albeit approximately four hours after preparation. 

Furthermore, addition of excess ethylenimine oligomer, freshly prepared in 6.0 M HCl, to an 

aqueous solution predominantly containing the [RhCl6]
3- complex anion led to the formation 

of a pink colloidal suspension. Similarly, addition of this compound to an HCl solution 

containing [PtCl6]
2- led to the formation of a yellow colloidal suspension. The formation of a 

colloidal suspension makes the separation of the solid "precipitate" via centrifugation and 

filtration complicated. This, in turn, leads to inconsistent results when analyzing the 

supernatant for its metal content. Hence, due to its instability in acidic solutions combined 

with the formation of a colloidal suspension instead of a precipitate upon addition to PGM 

containing solutions, further investigations were discontinued.  
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3.3.1.4 Lupamin® 1595 and 9030 

NH2 NH2 NH2 NH2
n  

Repeating unit of Lupamin® 1595 and 9030 polymers 
 

The Lupamin® range is tailor-made polymeric compounds prepared by the 

polymerization of the monomer vinylformamide, to produce a linear high molecular weight 

polyvinylamine that is a colourless to yellow solution [18]. According to available literature 

[18], Lupamin® 1595 is greater than 90% hydrolysed, while Lupamin® 9030 is only 30% 

hydrolysed. These polymers are fully miscible in water and acidic media, with no salting 

observed during its preparation in 6.0 M HCl. 

Addition of excess Lupamin® 1595 (freshly prepared in 6.0 M HCl) to an aqueous solution 

containing predominantly the [RhCl6]
3- complex anion led to the formation of a pink colloidal 

suspension. Correspondingly, addition of this polymer to an aqueous HCl solution containing 

the [PtCl6]
2- complex anion led to the formation of a yellow colloidal suspension. 

Furthermore, Lupamin® 9030 polymer did not yield any precipitate or colloid formation 

when added to aqueous HCl solutions containing either the [RhCl6]
3- or [PtCl6]

2- complex 

anions. Consequently, due to the formation of a colloidal suspension (in the case of 

Lupamin® 1595) and the total lack of precipitate formation (in the case of Lupamin® 9030) 

upon its addition to a PGM containing solution, detailed investigations of these compounds 

were discontinued.  

 

The precipitants that were subsequently used for comprehensive investigations 

included diethylenetriamine (Deta), triethylenetetramine (Teta), tetraethylenepentamine 

(Tepa) and tris(2-aminoethyl)amine (Tren); since these (poly)amines produced precipitates 

relatively rapid upon addition to aqueous HCl solutions containing PGMs. Nevertheless, 

reference would be made to a few of the results obtained from the ethylenimine oligomer and 

Lupamin® 1595 studies.  
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3.3.2 Precipitation of PtIV and RhIII chlorido-complexes from laboratory 

prepared solutions 

Various organic compounds are used industrially for the “selective” precipitation of 

PGMs, with Deta routinely used for the precipitation of IrIII/IV and RhIII during the final 

purification steps of these metals. The addition of excess diethylenetriamine (Deta), in the 

presence of an appropriate protonating agent (e.g. HCl or HClO4) to an aqueous chloride-rich 

solution containing [PtCl6]
2- leads to the formation of a fine, yellow crystalline precipitate 

that is stable in air and insoluble in water and ethanol. Comparable observations were made 

upon the addition of protonated triethylenetetramine (Teta), tetraethylenepentamine (Tepa) 

and tris(2-aminoethyl)amine (Tren) to acidic solutions containing [PtCl6]
2-. The precipitate 

formed upon addition of protonated diethylenetriamine has been described by Makotchenko 

et al [24] as the diethylenetriammonium hexachloroplatinate(IV) chloride salt, 

(DetaH3)[PtCl6]Cl. These precipitation reactions are typically (but not wholly) described as:  

 

[PtCl6]
2-

(aq)   +   Cl-   +   (DetaH3)
3+

(aq)   →   (DetaH3)[PtCl6]Cl (s)   (3.1) 

[PtCl6]
2-

(aq)   +   2Cl-   +   (TetaH4)
4+

(aq)   →   (TetaH4)[PtCl6]Cl2 (s)   (3.2) 

[PtCl6]
2-

(aq)   +   3Cl-   +   (TepaH5)
5+

(aq)   →   (TepaH5)[PtCl6]Cl3 (s)  (3.3) 

[PtCl6]
2-

(aq)   +   2Cl-   +   (TrenH4)
4+

(aq)   →   (TrenH4)[PtCl6]Cl2 (s)  (3.4) 

 

However, other reactions are certainly possible, by way of example: 

[PtCl6]
2-

(aq)   +   3Cl-   +   (TepaH5)
5+

(aq)   →   (TepaH5)[PtCl6]Cl3 (s)  (3.3) 

2[PtCl6]
2-

(aq)   +   Cl-   +   (TepaH5)
5+

(aq)   →   (TepaH5)[PtCl6]2Cl (s)  (3.5) 

3[PtCl6]
2-

(aq)   +   H3O
+   +   (TepaH5)

5+
(aq)   →   (TepaH5)[PtCl6]3H (s)  (3.6) 

3[PtCl6]
2-

(aq)   +   4Cl-   +   2(TepaH5)
5+

(aq)   →   (TepaH5)2[PtCl6]3Cl4 (s)  (3.7) 

 

Due to existence of these multiple reactions, no attempt was made to calculate the solubility 

product constants of the reactions depicted by Equations 3.1 – 3.4.  

 

The mole ratio precipitation curves of [PtCl6]
2- as a function of increasing precipitant 

concentration are shown in Figure 3.1. From this figure it can be concluded that [PtCl6]
2- is 

precipitated quantitatively from aqueous chloride-rich solutions with Teta and Tren when in 

> 15× excess. However, Deta and Tepa does not seem to remove PtIV quantitatively from 

solution in the tested precipitant concentration range. The [PtCl6
2-] – Teta titration curve 
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appears very interesting in the sense that it demonstrates two end-points, Figure 3.1. This 

could be explained by considering that upon the addition of Teta to a [PtCl6]
2- containing 

solution, Teta (with four protonated nitrogen atoms) could coordinate with two [PtCl6]
2- 

complex anions. However, as the [PtCl6]
2- complex anions remaining in the supernatant is 

depleted, Teta would instead coordinate with a single [PtCl6]
2- complex anion and two 

chloride ions in order to maintain charge balance.  

 

2[PtCl6]
2-

(aq) + C6H22N4
4+

 (aq) → [C6H22N4][PtCl6
2-]2 (s)         :Ksp = [PtCl6

2-]2×[C6H22N4] 

[PtCl6]
2-

(aq) + C6H22N4
4+

 (aq) + 2Cl-
 (aq) → [C6H22N4][PtCl6

2-][Cl-]2 (s)   :Ksp = [PtCl6
2-]×[C6H22N4]×[Cl-]2 
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Figure 3.1: Residual [PtCl6

2-] in the supernatant as a function of increasing [Precipitant]:[PtCl6
2-] ratio. 

[Pt] = 7.011 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%.  

 

The addition of the (poly)amines utilized during this study (Deta, Teta, Tepa and 

Tren) to an acidic chloride-rich solution (6.0 M HCl) containing RhIII, predominantly in the 

form of the [RhCl6]
3- complex anion, results in the formation of a deep, rose-red, crystalline 

precipitate, that is stable under atmospheric conditions and insoluble in water. The precipitate 

formed upon addition of diethylenetriamine to a RhIII containing solution (6.0 M HCl) was 

formally identified by Frank et al [24] as the diethylenetriammonium hexachlororhodate(III) 

salt, (DetaH3)[RhCl6], while Mandan et al [17] characterized the analogous tris(2-

aminoethyl)ammonium hexachlororhodate(III) salt, (TrenH3)[RhCl6]. In a similar manner to 
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the PtIV precipitation studies, equations 3.10 – 3.13 can be used to describe the general 

precipitation of RhIII by the (poly)amines utilised throughout this study: 

[RhCl6]
3-

(aq)   +   (DetaH3)
3+

(aq)   →   (DetaH3)[ RhCl6](s)    (3.10) 

[RhCl6]
3-

(aq)   +   Cl-   +   (TetaH4)
4+

(aq)   →   (TetaH4)[RhCl6]Cl (s)   (3.11) 

[RhCl6]
3-

(aq)   +   2Cl-   +   (TepaH5)
5+

(aq)   →   (TepaH5)[RhCl6]Cl2 (s)  (3.12) 

[RhCl6]
3-

(aq)   +   Cl-   +   (TrenH4)
4+

(aq)   →   (TrenH4)[RhCl6]Cl (s)   (3.13) 

 

It is pertinent to mention that, as seen in Chapter 2, in a 6.0 M HCl matrix both [RhCl6]
3- and 

[RhCl5(H2O)]2- complex anions are present. Therefore, precipitation may proceed via an 

array of mechanisms, including: 

(i) The exclusive precipitation of the [RhCl6]
3- complex anion. Precipitation of the [RhCl6]

3- 

complex anion leads to a disturbance in the chemical equilibrium depicted by Equation 2.1 

and, according to Le Châtelier’s principle, the reactants and products of the reaction would 

shift to partially undo the effects of the disturbance. This implies that the mono-aquated RhIII 

complex anion would undergo chloride anation as more [RhCl6]
3- is precipitated in order to 

re-establish chemical equilibrium.  

3- 2- -65
6 2 5 2

56

k

k[RhCl ]  + H O  [RhCl (H O)]  + Cl      (2.1) 

 

(ii) The precipitation of both the [RhCl6]
3- and [RhCl5(H2O)]2- complex anions. There is 

crystallographic evidence documented in literature [26,27] that both these anions can be 

precipitated using ammonium chloride.  

Therefore, it is evident that the precipitation of RhIII is much more complicated than that of 

the analogous PtIV and thus no attempt was made to calculate the relevant solubility product 

constants of the respective reactions.  

 

The titration curves for the precipitation of RhIII as a function of increasing precipitant 

concentration are illustrated in Figure 3.2. This figure shows that a 1:1 stoichiometric 

[precipitant]:[RhIII chloride anion] is required to achieve > 90% precipitation of Rh from 

solution. At a stoichiometric ratio of 3.5:1, Rh is quantitatively (> 98%) removed from 

solution, for all the precipitants investigated. Compared to the PtIV titration curves, Figure 

3.1, it is evident that selective removal of RhIII from a solution containing PtIV might be 

plausible using the selected precipitants.  
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Figure 3.2: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[RhCl6

3-] ratio. 

[Rh] = 7.134 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%. 

 

Figure 3.3 [a] – [f] compares the results obtained for the PtIV- and RhIII-precipitant titrations. 

The results of the Lupamin® 1595 and ethylenimine oligomer precipitation studies are also 

included, although these results showed poor reproducibility due to the formation of a 

colloidal suspension instead of a precipitate. It is evident from Figure 3.3 that Deta, Tepa and 

Tren shows the greatest selectivity toward the precipitation of RhIII above PtIV. Teta shows 

the poorest selectivity, as can be seen in Figure 3.3[b]. At a stoichiometric [Teta]:[metal 

chloride anion] ratio of 1, 85.4% of RhIII was removed, while 71.2% of PtIV was removed at 

the corresponding ratio. Preliminary evaluation of the comparative figures, Figure 3.3 [a]-[f], 

show that Tren illustrates the greatest selectivity toward Rh precipitation, with 93.2% of the 

Rh removed at a [Tren]:[metal chloride anion] ratio of 1, while only 6.6% of Pt was removed 

at a corresponding ratio. The selectivity of Deta and Tren toward the precipitation of RhIII 

aqua chlorido-complexes is mainly attributed to the charge balance between the triply 

charged cation (amine) and the triply charged anion ([RhCl6]
3-). This is also the reason why 

Teta is more selective toward the [PtCl6]
2- complex anion rather than the [RhCl6]

3- complex 

anion.  
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Figure 3.3: Comparison between the Pt – and Rh –precipitant titrations conducted for all the (poly)amines 

screened. [Pt] = 7.011 mM; [Rh] = 7.134 mM; [HCl] = 6.0 M. 

3.3.3 Crystal structure of tetraethylenepentammonium diaqua 

hexachlororhodate(III) dichloride, (TepaH5)[RhCl6]Cl2·2H2O 

Structural data for [RhCl6]
3- complexes involving quintuply charged organic cations 

are unknown, even though these compounds are interesting from the perspective of obtaining 

information regarding the stoichiometric types and structures of the complex forms of RhIII 

compounds, especially in acidic, halide-rich matrices. Furthermore, preparation of crystals 
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involving the [RhCl6]
3- complex anion is extremely difficult due to its thermodynamic and 

kinetic instability, especially toward aquation reactions. The aim of the present work is to 

describe the structure of the synthesized (TepaH5)[RhCl6]Cl2·2H2O crystal; where Tepa is 

the quintuply charged protonated tetraethylenepentamine, [H3N((CH2)2NH2)3(CH2)NH3]
5+.  

 

The structure of (TepaH5)[RhCl6]Cl2·2H2O is of an "island type", consisting of 

[TepaH5]
5+ cations, discrete [RhCl6]

3- complex anions, uncoordinated Cl- anions and a water 

of crystallization. Figure 3.4 illustrates the asymmetric structural unit cell with an atomic 

numbering scheme. The Rh atom in the complex anion resides in an octahedral environment 

consisting of six chlorine atoms. The average Rh-Cl bond length was established as 

2.3503 (± 0.0075) Å. This bond length is consistent with that documented by Frank et al [25], 

who reported an average Rh-Cl bond length of 2.3497 (± 0.0071) Å in the 

diethylenetriammonium hexachlororhodate(III), (DetaH3)[RhCl6], crystal structure. The 

maximal deviation of the bond angles from 90° is 1.63° in the cis position and 1.59° in the 

trans position, implying that the Rh atom resides in an octahedral environment. The 

intermolecular contacts between the [RhCl6]
3- complex anions was found to be 6.260 Å.  

 

 
Figure 3.4: Asymmetric unit cell of (TepaH5)[RhCl6]Cl2·2H2O with atomic numbering scheme 

 

In the [TepaH5]
5+ cation, the average values of the N - C and C - C distances were 

established to be 1.490 Å and 1.517 Å, respectively; while the N - C - C bond angles were 
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found to vary from 107.41° to 114.38°, Table 3.7. These values were found to be consistent 

with that documented in literature for diethylenetriammonium hexachlororhodate(III), 

(DetaH3)[RhCl6], [24] and diethylenetriammonium hexachloroplatinate(IV) chloride, 

(DetaH3)[PtCl6]Cl, [25]. The packing arrangement of ions along the c-axis is illustrated in 

Figure 3.5.  

 

a

c b

a

c b

 
Figure 3.5: Extended crystal packing of ions viewed along the direction of the c-axis, from which it is evident 

that water molecules are entrained within the crystal packing arrangement 

 

Table 3.6: Atomic coordinates and equivalent isotropic displacement parameters, Ueq (Å2), of all the non-

hydrogen atoms for (TepaH5)[RhCl6]Cl2·2H2O 

Atom x y z Ueq 
Rh(1) 0.22835(12) 0.15849(13) 0.59312(11) 0.0106(13) 
Cl(1) 0.4596(2) 0.13076(7) 0.73958(13) 0.0133(9) 
Cl(2) 0.19041(2) 0.09376(15) 0.48522(1) 0.017(7) 
Cl(3) -0.00624(4) 0.18688(12) 0.45078(8) 0.0166(9) 
Cl(4) 0.26223(6) 0.22422(3) 0.69944(4) 0.0145(5) 
Cl(5) 0.00213(15) 0.14133(11) 0.75518(15) 0.0137(12) 
Cl(6) 0.46161(9) 0.17517(10) 0.43933(17) 0.0159(10) 
Cl(7) 0.81394(8) 0.07668(4) 0.04317(13) 0.0234(12) 
Cl(8) 0.71505(13) 0.0006(14) 0.72752(12) 0.0193(12) 
O(1) 0.13442(17) 0.28844(18) 0.46693(18) 0.0269(17) 
O(2) 0.76(14) 0.16354(1) 0.16812(10) 0.0386(10) 
N(1) 0.20755(13) 0.28384(10) 1.18763(12) 0.0146(14) 
N(2) 0.26768(12) 0.18123(13) 1.00724(12) 0.0144(12) 
N(3) 0.22539(12) 0.08457(10) 0.96508(11) 0.0134(12) 
N(4) 0.29264(13) -0.01067(12) 0.75151(14) 0.0137(13) 
N(5) 0.24745(16) -0.08182(11) 0.44975(11) 0.0186(11) 
C(1) 0.25547(5) 0.23888(4) 1.17632(8) 0.0147(6) 
C(2) 0.18029(2) 0.22237(4) 1.04275(13) 0.016(10) 
C(3) 0.24177(6) 0.14791(4) 1.11291(8) 0.0163(8) 
C(4) 0.32718(8) 0.10632(5) 1.07853(7) 0.0168(4) 
C(5) 0.30799(5) 0.04363(3) 0.92642(6) 0.0139(7) 
C(6) 0.20698(6) 0.02897(5) 0.79753(7) 0.015(4) 
C(7) 0.21257(2) -0.02629(3) 0.62116(7) 0.0161(8) 
C(8) 0.31969(1) -0.06569(5) 0.58185(8) 0.0184(9) 
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Table 3.7: Selected interatomic distances, d (Å), and angles, ω (deg), for tetraethylenepentammonium aqua 

hexachlororhodate(III) dichloride, (TepaH5)[RhCl6]Cl2·H2O 

Bond d / Å Angle ω / deg Angle ω / deg 

Rh(1) - Cl(1) 2.3512(4) Cl(1) - Rh(1) - Cl(3) 178.73(1) N(2) - C(2) - C(1) 111.51(4) 
Rh(1) - Cl(2) 2.3398(5) Cl(1) - Rh(1) - Cl(2) 91.23(3) N(1) - C(7) - C(2) 108.98(3) 
Rh(1) - Cl(3) 2.3518(8) Cl(1) - Rh(1) - Cl(2) 89.62(3) N(2) - C(3) - C(4) 114.38(3) 
Rh(1) - Cl(4) 2.3582(6) Cl(6) - Rh(1) - Cl(1) 88.95(2) N(3) - C(5) - C(6) 107.41(1) 
Rh(1) - Cl(5) 2.362(2) Cl(5) - Rh(1) - Cl(6) 177.72(5) N(4) - C(6) - C(5) 108.99(4) 
Rh(1) - Cl(6) 2.3391(3) Cl(5) - Rh(1) - Cl(4) 88.37(3) N(3) - C(4) - C(3) 112.63(3) 
N(1) - C(1) 1.4815(1) Cl(5) - Rh(1) - Cl(1) 88.86(1) N(4) - C(7) - C(8) 108.02(3) 
N(2) - C(2) 1.5688(3) Cl(5) - Rh(1) - Cl(3) 90.17(3) N(5) - C(8) - C(7) 109.91(1) 
N(2) - C(3) 1.5043(4) Cl(5) - Rh(1) - Cl(2) 91.59(4)   
N(3) -C(4) 1.496(4) Cl(6) - Rh(1) – Cl(4) 90.98(3)   
N(3) - C(5) 1.4882(8) Cl(4) - Rh(1) – Cl(2) 89.79(2)   
N(4) - C(7) 1.4853(4) Cl(6) - Rh(1) – Cl(3) 91.01(4)   
N(4) - C(6) 1.4821(4) Cl(6) - Rh(1) - Cl(2) 89.11(3)   
N(5) - C(8) 1.4861(7) Cl(4) - Rh(1) - Cl(3) 89.36(3)   
C(1) - C(2) 1.517(5) Cl(4) - Rh(1) - Cl(2) 178.98(2)   
C(3) - C(4) 1.5041(3) C(2) - N(2) - C(3) 113.63(2)   
C(5) - C(6) 1.5255(7) C(6) - N(4) - C(7) 113.41(1)   
C(7) -C(8) 1.52796(2) C(5) – N(3) - C(4) 114.19(4)   

 

3.3.4 Precipitation of PtIV, RhIII chlorido-complexes from synthetic solutions 

containing both metals: Is selectivity possible? 

Figure 3.6 illustrates the results obtained for the precipitation titrations of PtIV, present 

in a solution containing equimolar amounts of PtIV and RhIII, as a function of increasing 

(poly)amine concentration. It is evident that Teta, Tepa and Tren is effective toward the 

precipitation of PtIV from aqueous solution, with 90 – 97% of Pt removed at 

[precipitant]:[metal chloride anion] ratios > 15. However, quantitative precipitation (> 98% 

removal) of Pt is only attained when using Teta as precipitant.  
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Figure 3.6: Residual [Pt] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Pt] = 7.813 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values was 

below 7%.  

 

The trend observed for the precipitation of Rh from a solution containing equimolar 

amounts of PtIV and RhIII is illustrated in Figure 3.7. It is evident from Figure 3.7 that all the 

(poly)amines used in this study are highly efficient toward the precipitation of RhIII, with 

80% of the total Rh removed at a [precipitant]:[metal chloride anion ratio] of 1. Quantitative 

precipitation (> 98%) of Rh can be achieved at a [precipitant]:[metal chloride anion] ratio of 

2.  
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Figure 3.7: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 7.956 mM; [HCl] = 6.0 M. The precipitants used are denoted in the legend. Typical RSD values 

was below 7%. 

 

Figure 3.8[a] - [f] compares the results obtained for the precipitation of PtIV and RhIII from a 

solution containing both these metals in equimolar concentrations. The results of Lupamin® 

1595 and the ethylenimine oligomer mixture are included for comparison, although the 

results cannot be accurately reproduced due to the formation of a colloidal suspension. 

Regarding the selectivity of the amines utilised during this study, only Deta and Tren can be 

considered as being selective toward the preferential precipitation of RhIII above PtIV, Figure 

3.8[a] and [d]. In the case of Teta and Tepa, PtIV is precipitated to a significant extent at a 

[precipitant]:[metal chloride anion] ratio of 2, with almost 50% of [PtCl6]
2- precipitated in 

both instances. However, when utilising Deta or Tren as the precipitating agent, less than 3% 

of the total Pt is precipitated at a [precipitant]:[metal chloride anion] ratio of 2. Furthermore, 

Tren allows for the addition of greater amounts of the precipitant, since Pt is not precipitated 

to any significant extent up to a [precipitant]:[metal chloride anion] ratio of 7, at which point 

Rh is quantitatively removed (> 98%), Figure 3.8[d].  
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Figure 3.8: Comparison between the Pt – and Rh –precipitant titrations conducted for all the (poly)amines 

screened. [Pt] = 7.813 mM; [Rh] = 7.956 mM; [HCl] = 6.0 M 

 

The selectivity factors of the (poly)amines Deta, Teta, Tepa and Tren toward the 

precipitation of RhIII and PtIV were determined as a function of increasing (poly)amine 

concentration. During these precipitation investigations, the [PtIV] / [RhIII] ratio was varied 

while the total metal (Pt + Rh) concentration was kept constant. This enables us to ascertain 

which of the precipitants investigated is more selective toward the preferential precipitation 

of RhIII in solutions containing a mixture of PtIV and RhIII. The selectivity factor, β, is given 
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by β = [PtIV] / [RhIII]. Tren exhibits the greatest selectivity for the preferential extraction of 

RhIII, while Tepa is considered the least selective precipitant, Figure 3.9.  
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Figure 3.9: Selectivity factor, β, as a function of increasing precipitant concentration. Typical RSD values was 

below 7% 
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3.3.5 Precipitation of Pt and Rh from an authentic Heraeus industrial feed 

solution 

The precipitation results presented so far demonstrate that quantitative and selective 

precipitation of RhIII and PtIV is possible with the organic precipitants Deta, Teta, Tepa and 

Tren. However, this was only the case when applied to well-defined solutions, i.e. the 

respective RhIII and PtIV chlorido-complexes are known. In this section, precipitation studies 

involving the use of authentic industrial process solutions containing PGMs as well as an 

array of associated transition metals (Table 3.2) will be examined. In this regard, only the 

relative amounts of each element in the industrial process solution is known, with no 

additional information relating to the chemical speciation of these elements. In spite of the 

lack of speciation information, precipitation studies were performed using an "unaltered" (i.e. 

no additional processing of this solution was performed) PGM-containing industrial feed 

solution 

 

It is well established that the chemical speciation of PGM chlorido-complexes is of 

critical importance for the efficient separation and refining of PGMs [26-29]. In the case of 

Pt, the efficiency of the industrial separation schemes are strictly dependent on the knowledge 

and control of the species distribution of PtIV anionic chlorido-complexes in solution since, 

depending on the conditions, aquated [PtCln(H2O)6-n]
4-n (n=0-6) complexes or even their 

hydrolysis products, [PtCl6-n(OH)n]
2- (n=0-6) might be present. In this context, 195Pt NMR 

spectroscopy was used to evaluate the speciation of PtIV chlorido-complexes present in a 

Heraeus industrial PGM containing feed solution in 4.008 M chloride matrix.   

 

The 195Pt NMR spectrum of the industrial feed solution is shown in Figure 3.10. 

Although various spectral windows were scanned, only one resonance signal was obtained at 

25.5 ppm relative to a standard external Pt reference. The assignment of the signal is based on 

the detailed analysis of the 35Cl/37Cl isotope effects observed in 128.8 MHz 195Pt NMR, 

which shows that the “fine-structure” of this resonance signal can be understood in terms of 

the unique isotopologue distribution of [PtCl6]
2- [26]; a topic that will be discussed in Chapter 

5.  
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Figure 3.10: 195Pt NMR spectrum of an authentic industrial feed solution 

 

Through high-resolution 195Pt NMR studies, it was shown that the Pt present in the 

feed solution exists only as the [PtCl6]
2- complex anion, and it is thus expected that the 

precipitation of Pt from the feed solution should provide similar trends to that observed for 

the laboratory prepared Pt containing solutions. Figure 3.11 illustrates the results obtained for 

the precipitation of Pt using the denoted organic precipitants. These trends are similar to that 

observed for the precipitation of Pt from a laboratory prepared mixed metal solution, Section 

3.3.3. Quantitative precipitation of Pt (> 98%) is only achieved with Teta and Tren, at a 

[precipitant]:[metal chloride anion] ratio > 8. Furthermore, the titration curve obtained for 

Pt – Teta illustrates two end-points, which is consistent with the observations made in 

Section 3.3.1. Although vast excess of precipitant was used (in some instances up to 50 times 

excess) quantitative Pt removal could not be attained when using Deta and Tepa as 

precipitants, with only 85% of Pt removed when using Deta and 78% when using Tepa.  
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Figure 3.11: Residual [PtIV] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Pt] = 18.68 mM; [Cl-] = 4.008 M. Typical RSD values was below 7% 

 

Figure 3.12 illustrates the results obtained for the precipitation of RhIII using the 

denoted organic precipitants. The difference between the titration curves obtained for the 

industrial solutions and that of the laboratory prepared solutions is blatantly visible - 

quantitative precipitation of Rh from the industrial feed solution could not be achieved, 

irrespective of the type of precipitant or the amount thereof used. In all the cases, only 75.4% 

of the total Rh initially present was removed, Figure 3.12. This implies that 8.011 mM 

(824.4 mg.L-1) of the total Rh (33.38 mM, 3435 mg.L-1) initially present remains in the 

supernatant. This is in stark contrast to the results presented in Sections 3.3.1 and 3.3.3. 

These titrations were repeated using an industrial feed solution that was heated at 333.1 K for 

three days, in order to facilitate chloride anation of aquated RhIII species, [RhCln(H2O)6-n]
3-n 

(n=0-4). However, heat treatment did not provide an improvement in Rh precipitation, with 

only 78.6% of the total Rh initially present being removed, Figure 3.13. 
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Figure 3.12: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.871 mM, [Cl-] = 4.008 M. Typical RSD values was below 7% 
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Figure 3.13: Residual [RhIII] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. Precipitation was repeated after the industrial feed solution was heated for 3 days at 333.1 K. 

[Rh] = 3.871 mM, [Cl-] = 4.008 M. Typical RSD values was below 7% 
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This raises the question: What gives rise to the trends observed in Figure 3.12 and 3.13? 

Several explanations for these trends could be hypothesized, including: 

(i) Matrix interferences encountered during the quantification of Rh that may cause 

enhancement of the analyte signal.  

This possibility was easily eliminated by means of standard addition methods, where the 

industrial feed stock solution was “spiked” with known quantities of a standard Rh elemental 

reference. In this method, one portion of the industrial feed solution was measured as usual 

by ICP-OES. To the second portion of the feed solution, a known amount of the Rh elemental 

reference standard was added. The difference between the measured concentrations of the 

first and second portions constantly yielded the amount of Rh reference added to the solution. 

Furthermore, portions of the industrial feed solution were submitted for ICP-MS analysis 

(Central Analytical Facility – Stellenbosch University), the results of which was found to be 

consistent to that reported in this study.  

(ii) RhIII aqua chlorido-species distribution 

A parameter that is very difficult to ascertain due to the complicated nature of the industrial 

feed solution, combined with the limited number of analytical techniques available to conduct 

comprehensive chemical speciation investigations. Although the total chloride concentration 

of the industrial feed solution was determined at 4.008 M, the free (unbound) chloride 

concentration is presumed to be significantly lower than this value; a conclusion validated by 

the indifference in the precipitation results after heat treatment (used to facilitate chloride 

anation) of the industrial feed solution. This lower free chloride concentration would result in 

the formation of higher aquated RhIII chlorido-complexes, [RhCln(H2O)6-n]
3-n (n=0-4), which 

are not precipitated. The low free chloride concentration is attributed to the presence of 

various transition metals Table 3.2, which would exist as their chlorido-complexes. In this 

regard, these metals would effectively act as “chloride binders”, thereby decreasing the 

effective “free” (unbound) chloride concentration.  
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3.4 Concluding remarks 

In summary, a recovery method for Rh and Pt, based on precipitation is proposed 

using various commercially available organic precipitants including Deta, Teta, Tepa, Tren, 

Lupamin® 1595, Lupamin® 9030 and polyethylenimine. Lupamin® 1595, Lupamin® 9030 and 

polyethylenimine produce a colloidal suspension upon addition to PGM containing solutions, 

resulting in poor reproducibility due to inconsistent separation of the aqueous/solid phases. 

The organic precipitants illustrating the greatest selectivity for Rh recovery included Deta 

and Tren, while Teta illustrated greater selectivity toward the precipitation of Pt. Moreover, 

it was found that both Rh and Pt could be recovered quantitatively from laboratory prepared 

RhIII and PtIV containing solutions.  

 

The first [RhCl6]
3- crystal structure involving the quintuply charged 

tetraethylenepentammonium cation, [TepaH5]
5+, has been reported. The tetraethylene-

pentammonium diaqua hexachlororhodate(III) dichloride complex, (TepaH5)[RhCl6]Cl2·2H2O, 

illustrates a monoclinic crystal system with a P21/n space group. Crystal data for the 

C8H31Cl8N5O2Rh complex was found to be a = 7.1601(4) Å, b = 31.9491(17) Å, 

c = 9.8711(5) Å, β = 91.057(1)°, ρcalc = 1.812 g.cm-3, V = 2257.7(2) Å3.  

 

Precipitation of Pt from an unaltered industrial feed solution using the organic 

precipitants Deta, Teta, Tepa and Tren yielded similar results to that of the laboratory 

prepared Pt-containing solutions. This is attributed to the fact that the Pt present in the feed 

solution exists solely as the [PtCl6]
2- complex anion, which was confirmed by means of high-

resolution 195Pt NMR spectroscopy. Assignment of the 195Pt resonance was based on the 

detailed analysis of the 35Cl/37Cl isotope effects observed in the 128.8 MHz 195Pt NMR 

resonance of the [Pt35Cln
37Cl6-n]

2- complex anion. The presence of resonances associated with 

aquated [PtCln(H2O)6-n]
4-n (n=4-6) species were not observed in the 195Pt NMR spectrum that 

was recorded.  

 

Quantitative precipitation of Rh from an industrial feed solution using the 

aforementioned organic precipitants was not attained. The maximum Rh content recovered 

from the feed solution was 78.6% for all the precipitants investigated. This is in stark contrast 

to the results obtained when laboratory prepared Rh-containing solutions were used. Matrix 
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interference as a possible source of inaccurate Rh analysis, and consequently poor recovery 

from the industrial feed solution, was eliminated by the use of spike recovery. The current 

hypothesis for the large discrepancy seen in recovery is attributed to the presence of higher 

aquated Rh species, [RhCln(H2O)6-n]
3-n (n=0-4), in the feed solution due to low free chloride 

concentration. Although the total chloride concentration in the feed solution is 4.008 M, the 

free chloride concentration is significantly lowered due to the presence of various metal ions, 

presumably present as their respective chlorido-complexes. Unfortunately, traditional 

analytical techniques (including polarography, UV-vis and hyphenated HPLC techniques) 

have limited capabilities, especially pertaining to the chemical speciation of metal ion 

complexes in complicated, acidic chloride-rich matrices. Transition metal (103Rh) NMR 

spectroscopy has emerged as a powerful analytical tool for the direct detection, unambiguous 

characterisation and chemical speciation of transition metal complexes, without altering the 

chemical composition of a solution.  
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Chapter 4 

35Cl/37Cl isotope effects in 103Rh NMR of 

[RhCln(H2O)6−n]3−n complexes in hydrochloric acid 

solution as a unique ‘NMR finger-print’ for 

unambiguous characterization† 

4.1 Introduction 

South Africa is the world’s leading primary producer of the platinum group metals 

(PGMs, Pt, Pd, Rh, Ru, Ir and Os), contributing more than three quarters of the world’s 

supply of rhodium (>86%) and platinum (>76%), in addition to a significant proportion of the 

associated metals in 2009 [1]. The strong commercial demand for Rh, used almost 

exclusively in catalytic applications for automobile exhaust emission control systems as well 

as in the chemical industry, has resulted in this metal being one of the most expensive, with 

average prices per troy ounce of Rh ranging between 1592 and 6564 US$ in the years 2006–

2009 [1].  

 

In the context of the PGM refining industry, we have been applying methods for 

chemical speciation [2] to study PGM complexes in aqueous hydrochloric acid solutions as 

relevant to the separation and recovery of these metals as complex anions, inter alia by 

means of high-resolution 195Pt nuclear magnetic resonance (NMR) spectroscopy [3]. Nuclear 

magnetic resonance spectroscopy is a powerful tool for direct speciation of the kinetically 

inert [PtXn(H2O)6−n]
4−n [4], as well as the corresponding hydroxido [PtXn(OH)6−n]

2− (X = Cl− 

and Br−) complex anions [5]. Recently, a novel 195Pt NMR method was developed for the 

unambiguous speciation of [PtCln(H2O)6−n]
4−n (n = 4–6) by exploiting the unique 35Cl/37Cl 

isotope effects visible in the 195Pt NMR resonances obtained at high magnetic fields (14.08 T) 

in acidic solutions [6]. At high magnetic fields and controlled solution temperature, the 195Pt 

NMR resonances of [PtCln(H2O)6−n]
4−n (n = 4–5) show well resolved ‘fine-structure’ due the 

                                                 
† This chapter is based on the publication: T. E. Geswindt, W. J. Gerber, D. J. Brand, K. R. Koch, Analytica 
Chimica Acta, 730 (2012) 93-98 
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various possible isotopologues and isotopomers as a result of the natural 35Cl/37Cl isotopic 

distribution unique to each individual PtIV complex in solution, resulting in an unambiguous 
195Pt NMR ‘finger-print’ for each complex [6].  

 

The nucleus of rhodium naturally occurs only as a single NMR active isotope 103Rh 

(I = (1/2)), which has unfortunately a small negative gyromagnetic ratio (γ), and consequently 

a low resonance frequency Ξ = 3.16 MHz (requiring a special low-frequency NMR probe) 

relative to 1H at 100.00 MHz. Moreover the relatively low overall 103Rh NMR receptivity4 of 

0.186, makes routine 103Rh NMR difficult and it is thus not widely practiced. With the more 

general availability of high magnetic field (>9.04 T) NMR spectrometers with higher 

sensitivity, 103Rh NMR becomes potentially an attractive tool for speciation of complexes in 

process and effluent solutions relevant to the PGM refining industry, in which relatively high 

Rh concentrations may be found, particularly with the aim of developing novel and better 

separation and recovery methods given the high commercial value of rhodium. A survey of 

the literature shows only few NMR studies by directly detected 103Rh NMR, particularly in 

aqueous solutions. On the other hand, if the Rh atom in a given molecule is bound to a 

nucleus with a high NMR receptivity, e.g. 1H or 31P, then modern indirectly detected NMR 

methods make the observation of 103Rh spectroscopy more practically useful. The 

applications of 103Rh NMR in rhodium chemistry have recently been reviewed [7].  

 

Early work involving directly detected 103Rh NMR is limited to the characterization of 

all ten [RhCl6−xBrx]
3− (x = 0–6) anions [8], as well as some of the possible aquated species 

[RhCln(H2O)6−n]
3−n (n = 0–6) by Mann and Spencer [9], as later confirmed by Sandström et 

al. [10]; nevertheless these studies demonstrate that 103Rh NMR may be a viable tool for 

examining solutions of relevance to the refining industry, with potentially useful chemical 

data being obtainable by this means, exemplified by Glaser and Sandström who used 103Rh 

NMR to examine the deceptively simple RhIII chemistry in aqueous solutions rich in bromide 

ions [11]. These authors also examined some octahedral RhIII complexes with sulfur-donor 

ligands, as well as complexes such as [Rh(CN)6]
3− and [Rh(SCN)6]

3− by 103Rh NMR [12]. 

The latter study is interesting in that Glaser and Sandström postulate a direct correlation 

between the δ(103Rh) chemical shift and the relevant thermodynamic formation constants 

(log β6) of such complexes. This suggests 103Rh NMR to be a method for the estimation of 

                                                 
4 Receptivity of 13C at natural abundance is 1, and 1H at 5870 
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the formation constants from δ(103Rh) NMR, a conclusion which in our view, must be treated 

with some caution at this time. While these studies indicate that 103Rh NMR spectroscopy can 

be used to identify various complex species such as [RhCln(H2O)6−n]
3−n and 

[RhBrn(H2O)6−n]
3−n in aqueous solutions by their δ(103Rh) chemical shift, the relatively high 

temperature, concentration and matrix dependence of δ(103Rh) chemical shifts observed in 

these studies [9–12], makes the unambiguous identification (speciation) of rhodium 

complexes in such solutions under differing conditions uncertain, and rapid accurate 

assignments tedious.  

 

In this study it is shown that at high magnetic fields with carefully controlled solution 

temperatures, the 19.11 MHz 103Rh NMR signals of the series of [RhCln(H2O)6−n]
3−n (n = 3-6) 

complexes in equilibrated hydrochloric acid solutions, are well resolved into a distinctive 

‘fine-structure’ due to 35Cl/37Cl isotopologue and isotopomer effects, resulting in a unique 

NMR ‘finger-print’, with which it is possible to uniquely identify all chlorido containing RhIII 

complexes. By this method the identity of the RhIII complex can readily be obtained from the 

fine-structure of the 103Rh peaks, without reference to accurate 103Rh NMR chemical shifts. 

This is potentially a considerable advantage, given the absence of a convenient and universal 

reference compound for 103Rh NMR [7]. Considerable experimental error is encountered 

when attempting to measure δ(103Rh) chemical shifts, which can vary by as much as 

± 129 ppm for even the ‘simple’ [RhCl6]
3− species [10]. Moreover, the relatively small 

δ(103Rh) difference of 66 ppm between two RhIII complex isomers such the 

trans-[RhCl2(H2O)4]
+ and cis-[RhCl2(H2O)4]

+ cations, makes it virtually impossible to 

reliably distinguish between this and other isomers in solution, on the basis of δ(103Rh) 

chemical shifts alone. This emphasizes a need for a rapid additional means of unambiguously 

characterizing [RhCln(H2O)6−n]
3−n (n=0-6) complexes, including possible cis/trans and 

fac/mer isomers, by means of 103Rh NMR in solution. 
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4.2 Experimental 

4.2.1 Preparation of RhIII complex solutions 

Two solutions of 0.86 M [RhCln(H2O)6−n]
3−n (n = 3–6) were prepared by dissolving ca 

0.9 g of commercially available RhCl3·nH2O (Johnson Matthey) in 3.5 mL 29% (v/v) 
2H2O/1H2O containing the appropriate quantity of concentrated (32% v/v) HCl: (solution 1 = 

6.02 M HCl, 0.868 M Rh; solution 2 = 1.03 M HCl, 0.867 M Rh). These solutions were kept 

covered at 333 K for a week and thereafter allowed to equilibrate at 292 K for a further 5 

days. The total rhodium and chloride concentration of these solutions was determined by 

means of ICP-OES (SPECTRO Arcos instrument); equipped with a Schott spray chamber 

and cross-flow nebulizer. The general ICP-OES conditions were: ICP RF power = 1400 W, 

coolant gas flow = 13.00 L min−1, auxiliary gas flow = 1.00 L min−1, nebulizer gas flow = 

0.80 L min−1. The most sensitive rhodium (343.489 nm) and chloride (134.742 nm) 

wavelengths were used for these determinations. An ULTRASPEC single element rhodium 

standard (De Bruyn Spectroscopic Solutions; 99.998% purity, 10% v/v HCl) was used for 

rhodium standardisation, while dried sodium chloride (Sigma–Aldrich; 99.95% purity) was 

used for the chloride standardisation. 

4.2.2 103Rh NMR Spectroscopy 

103Rh NMR spectra at 19.11 MHz were recorded at constant temperature 

(292.1 K ± 0.1 K) using a three channel Varian INOVA spectrometer (14.1 T magnet 

corresponding to 600 MHz 1H resonance frequency) with a 10 mm HX Nalorac Z-spec 15N-
103Rh (18–61 MHz) broad-band probe. It is important to allow sufficient time for the sample 

to achieve temperature equilibrium, following which optimal shimming is required. All NMR 

samples contained ca 30% (v/v) D2O for locking purposes. Since the probe is not equipped for 

modern gradient shimming, together with the low receptivity of the 103Rh nucleus, optimal 

shimming was carried out on FID of the D2O while acquiring a D2O spectrum in the 

conventional pulsed mode; with the X channel pre-tuned to 103Rh. Once the best possible 

shim setting was obtained, the lock channel was used in the conventional mode, and final 

shimming adjusted for each 103Rh NMR sample. In the absence of a suitable reference 

compound, chemical shifts (ppm) are reported to Ξ(103Rh) = 3.16 MHz on the TMS scale at 

100.000 MHz, as proposed by Goodfellow [13]; the high-frequency positive-shift convention 

was used [7]. 103Rh spectra were recorded with a spectral width of 19.11 kHz, using a 15.4 μs 
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excitation pulse at maximum practical power in an attempt to ensure approximately 

homogeneous RF excitation over the entire spectral width, with an acquisition time of 0.5 s 

and a 1.0 s pulse delay to ensure sufficient relaxation, under conditions of optimal resolution. 

A detailed search of the literature yielded no reliable measured estimates of 103Rh T1 

relaxation times, particularly for octahedral RhIII complexes as involved in this work. If the 

reasonable ‘rule of thumb’ by Sanders and Hunter [19] is used which allows for a rough 

estimate of the rotational correlation time τc, (τc / ps ≈ Mr where Mr is the relative molar mass 

of the molecule in question), then for [RhCl6]
3− we estimate a τc ≈ 316 ps. This means that at 

the 103Rh resonance frequency of 19.11 MHz at our magnetic field, the condition 

ωoτc ≈ 0.0190 or ωoτc << 1 is met, suggesting that the extreme narrowing condition for NMR 

is pertinent. In this region T2
* ≤ T2 ≤ T1, so we can estimate the T1 for the best resolved peaks 

of the [RhCl6]
3− species (Figure 4a) which has a line width of ~2.6 Hz, from which T2, and 

thus T1 of ≈ 0.12 s results. Thus, a pulse repetition rate of 5 × 0.12 s ≈ 0.612 s is adequate to 

ensure essentially complete relaxation for these Rh complexes. The very good agreement 

between the experimental and simulated peaks of the isotopologues shown in Figure 4, attest 

to this. Typically, due to the low receptivity of the 103Rh nucleus, NMR spectra normally 

required ca 40,000 transients to achieve satisfactory signal/noise (S/N) ratios resulting in total 

experimental times ≥ 12 h. In the absence of artificial line-broadening (apodization) of the 

accumulated FIDs, the typical 103Rh resonance line-widths (ν½ at half peak-height varied 

from 2.3 to 3.1 Hz at optimal resolution under careful temperature (292.1 ± 0.1 K) control. 

 

SigmaPlot Version 11 (Systat Software Inc.) was used to perform the nonlinear least-

squares fits on the 103Rh experimental data. The SigmaPlot curve fitter uses the Marquardt–

Levenberg algorithm to find the coefficients (parameters) of the independent variable(s) that 

give the best fit between the sum of several Lorentzian functions and the experimental data. 

4.3 Results and discussion 

At high magnetic fields (14.1 T) and carefully controlled conditions, the high-

resolution 195Pt NMR resonance signals of the series of complex anions [PtCln(H2O)6−n]
4−n 

(n = 4–6) are resolved into a secondary structure, due to small chemical-shift differences as a 

result of both isotopologues and, the possible isotopomers5 within each set of 

                                                 
5 Isotopomer(s) with respect to whether a 35Cl or 37Cl is trans to a coordinated water molecule in the 
[MIV/IIICln(H2O)6-n]

4/3-n complex 
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[Pt35Cl/37Cln(H2O)6−n]
4−n isotopologues [6], arising from the natural 35Cl/37Cl isotope 

distribution of the chlorido ligand(s) coordinated to PtIV. The resulting unique line shapes of 

the 195Pt NMR resonances for this series of complexes, essentially constitutes an unequivocal 
35Cl/37Cl isotope resolved ‘fingerprint’ for the identification of all species in this series, 

including stereoisomers such as cis- and trans-[PtCl4(H2O)2], provided at least one chlorido 

ligand remains bound to the PtIV complex and exchanges slowly on the NMR time scale.  

 

Rhodium is separated and recovered on a commercial scale in the form of its chlorido 

[RhCln(H2O)6−n]
3−n complex anions in hydrochloric acid, the available species distribution 

diagram in the literature however suggesting the presence of several species in solution 

depending on the hydrochloric acid concentration [15,16]. Provided at least one chlorido 

ligand is bound to RhIII, these complexes can in principle exist as a set of four 35Cl/37Cl 

isotopologues and isotopomers6 within each set of isotopologues illustrated for fac-

[Rh35Cl2
37Cl(H2O)3] and mer-[Rh35Cl2

37Cl(H2O)3] by way of example, in Figure 4.1.  

 

In the case of the fac-[Rh35Cl2
37Cl(H2O)3] isotopologue, although trans 35Cl/37Cl-Rh-

(OH2) configurations are possible in a statistical 2:1 ratio, these isotopomers are magnetically 

equivalent and result in the same chemical shift δ(103Rh). By contrast for the 

mer-[Rh35Cl2
37Cl(H2O)3] isotopologue, the isotopomer with a trans 37Cl–Rh–(OH2) 

configuration is not magnetically equivalent to the one with trans 35Cl–Rh–(OH2), which is 

twice as abundant than the former, resulting in a small chemical shift difference as 

manifested in the different ‘fine-structures’ of their respective 103Rh NMR resonances. 

Similar considerations apply to the corresponding [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]
− and 

trans-[RhCl4(H2O)2]
− species. Hence 103Rh NMR spectroscopy at high magnetic fields 

(≥14.1 T) is expected to be useful for the investigation of the species distribution of the 

[RhCln(H2O)6−n]
3−n complex anions in hydrochloric acid, and in particular is likely also to 

show 35Cl/37Cl isotope resolved 103Rh resonances, analogous to the PtIV complexes [6], 

referred to above. 

                                                 
6 There is a misunderstanding regarding the usage of the terms isotopologue and isotopomer in the NMR 
literature. Generally, the term isotopomer has been used when in fact isotopologues were inferred. In this study, 
the term isotopologue is used to refer to a chemical species that differ only in isotopic composition of its 
constituent molecules or ions. Isotopomers are isomers having the same number of each isotopic atom, differing 
only in their relative positions in the molecule or ion. 
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Figure 4.1: [a] The isotopologue of the fac-[Rh35Cl2

37Cl(H2O)3] species; [b] Possible isotopomers associated 

with the isotopologue of the mer-[Rh35Cl2
37Cl(H2O)3] species where the 35Cl/37Cl is coordinated trans with 

respect to water in a 2:1 ratio.  = 35Cl;  = 37Cl;  = H2O 

 

As shown in Figure 4.2, these expectations are satisfactorily confirmed by the detailed 

19.11 MHz 103Rh NMR spectra of several [RhCln(H2O)6−n]
3−n (n = 3–6) complexes at 

thermodynamic equilibrium at a fixed total RhIII concentration of ca 0.87 M, obtained in 

solutions with 6.0 M and 1.0 M hydrochloric acid concentrations respectively. Figure 2[a]–[f] 

shows the well resolved fine-structure profile for each of the individual 103Rh NMR 

resonances, recorded at a temperature of 292.1 ± 0.1 K, of the species [RhCl6]
3−, 

[RhCl5(H2O)]2− in 6.0 M HCl and cis-[RhCl4(H2O)2]
−, trans-[RhCl4(H2O)2]

−, fac-

[RhCl3(H2O)3] and mer-[RhCl3(H2O)3] present in solutions in 1.0 M hydrochloric acid. The 

well-resolved fine-structure profile of the 103Rh NMR resonance for each species is due to 
35Cl/37Cl isotope effects. Significantly, the 103Rh resonance of the [RhCl6]

3− anion (Figure 2a) 

is resolved only into five of the seven expected [Rh(35/37Cl)6]
3− isotopologues, very similar to 

what may be observed in the corresponding 195Pt NMR spectrum of the [Pt(35/37Cl)6]
2− 

complex [3].  

 

In view of the relatively poor receptivity# of 103Rh NMR, only five of the seven peaks 

due to the isotopologues [Rh(35Cl)n(
37Cl)r]

3− (n = 6–2, r = 2–6, n + r = 6), may be 

experimentally observed within a reasonable 103Rh NMR acquisition time, since the 

statistically calculated abundance of [Rh(35Cl)(37Cl)5]
3− and [Rh(37Cl)6]

3− isotopologues is 

very low (abundances of 0.38 and 0.02% respectively), Table 4.1. The relative statistical 

probability, P(n), for each possible isotopologue in the series of [Rh35/37Cln(H2O)6−n]
3−n (n = 

3–6) complexes may be calculated as the fractional natural abundance (α) of 35Cl (0.7553) 
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and 37Cl (0.2447) using the binominal probability distribution function7 for n 35Cl and r 37Cl 

chlorido ligands (n + r = 6). From a visual inspection of Figure 4.2[c]–[f], it can be seen 

however that the fine-structure of some of the 103Rh resonances, particularly due to the 

stereoisomer pairs cis-[RhCl4(H2O)2]
−, trans-[RhCl4(H2O)2]

−, fac-[RhCl3(H2O)3] and mer-

[RhCl3(H2O)3], respectively, differ significantly from a model which takes into account only 

the 35Cl/37Cl isotopologue distributions. The experimental 103Rh NMR peak shapes and peak 

intensity ratios observed, suggest additional isotopomer induced fine-structure. The resolved 

fine-structure of the 103Rh NMR resonances (Figure 4.2[b]–[f]) can only be accounted for by 

considering the possible isotopomers2, within each possible set of isotopologues for the series 

of ‘aquated’ complexes [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]
−, trans-[RhCl4(H2O)2]

−, fac-

[RhCl3(H2O)3] and mer-[RhCl3(H2O)3]. The relative statistical probability for each possible 

isotopomer, S(n), in the series of [Rh35/37Cln(H2O)6−n]
3−n (n = 1–5) complexes was deduced as 

illustrated schematically in Figure 4.1. For the fac-[RhCl3(H2O)3] species the trans 35/37Cl–

Rh–(OH2) isotopomers are magnetically equivalent, while for the mer-[RhCl3(H2O)3] species 

two sets of magnetically inequivalent isotopomers are possible in a 2:1 statistical ratio 

(reasonably neglecting any possible 17O/18O isotope effects due to the very low natural 

abundances of these isotopes of oxygen of the coordinated water molecules).  

 

Figure 4.2 shows the ‘simulated’ overall 103Rh NMR line-shape obtained from the 

sum of several Lorentzian peaks of equal half-height peak width (2.64 Hz)8 and fixed isotope 

chemical shift spacing per 35/37Cl isotope. This corresponds to all the possible isotopologues 

with probability P(n), and the statistically likely but magnetically non-equivalent 

isotopomers3 with probability S(n) for each of the complexes listed. An excellent non-linear 

least-squares fit between the experimental and simulated 103Rh NMR spectra using a 5.33 Hz 

(~0.279 ppm) shielding (‘up-field’ isotope shift) per 37Cl- coordinated to the RhIII ion is 

observed. The essentially quantitative agreement of the experimental line-shape, within 

                                                 

7 n r
35 37Cl Cl

(n)= ( )
(n+r)!

n=
(n!r!)

n=0

P α α  

8 In the likely event that 35Cl/37Cl quadrupolar relaxation is a dominant contribution to the overall 103Rh 
relaxation, and thus the line-width, it might be expected that differing line-widths may pertain to differing 
[RhCln(H2O)6-n]

3-n species and their isotopologues. However, for the well-resolved isotopologue peaks for the 
[RhCl6]

3- complex, a constant line-width leads to the best fit between the experimental and simulated peaks. For 
the other species where the 103Rh isotopologue/isotopomer peaks are less-clearly resolved, differing line-widths 
lead to good fits shown in Figure 4.2. 
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experimental error, with the expected statistical isotopologue and isotopomer distributions are 

shown in Table 4.1 for all the [Rh35/37Cln(H2O)6−n]
3−n (n = 3–6) considered in this study.  
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Figure 4.2: Experimental 103Rh spectra of [RhCln(H2O)6−n]

3−n (n = 3–6) species recorded at 292.1 K (symbols). 

The least-squares fits (solid lines) between experimental spectra of [RhCl6]
3− [a], trans-[RhCl4(H2O)2]

− [c] and 

fac-[RhCl3(H2O)3] [e] and the isotopologue model; the least-squares fits between the experimental spectra and 

the isotopologue model that includes isotopomers for the [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]
− and mer-

[RhCl3(H2O)3] species are denoted by [b], [d] and [f], respectively 
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Interestingly, in this context Sadler et al. reported similar resolved 35Cl/37Cl isotope 

effects in the 195Pt NMR spectrum of [PtCl6]
2− complex more than 3 decades ago, at the then 

highest magnetic field spectrometer generally available [14], although these were erroneously 

ascribed to 35Cl/37Cl ‘isotopomers’. As is now clear from this study as well as our recent 

work on the analogous PtIV complexes, in general for [MCl6]
2/3− (M = PtIV or RhIII) species, 

the resolved fine-structure in the 103Rh (and 195Pt) NMR resonances are only due to the 

various isotopologues in these complex anions, and no isotopomer effects are resolved for 

these particular species. To our knowledge no such isotopologues effects have been 

previously reported for the [RhCl6]
3− complex anion to date.  

 

The isotopomer-induced 35Cl/37Cl ‘fine-structure’ effects visible in the 103Rh NMR 

resonance of the isotopologues [Rh35Cl4
37Cl(H2O)]2− and [Rh35Cl3

37Cl2(H2O)]2− etc., are due 

to the possibility of trans 37Cl-103Rh-OH2 and 35Cl-103Rh-OH2 configurations within these 

isotopologues. Evidently, the additional fine-structure observed in the 103Rh resonances of 

these complexes arises from small differences in 103Rh shielding of these isotopomer 

configurations within a given complex. From the least-squares fitting of the experimental 

line-shapes, an effective Δ(δ(103Rh)) of ca 0.141 ppm (2.7 Hz) between the trans- and cis-

[Rh35Cl4
37Cl(H2O)]2− isotopomers can be calculated, depending on whether a 37Cl atom is 

respectively trans or cis to the coordinated water molecule. This finding emphasizes the 

remarkable sensitivity of δ(103Rh) to very subtle effects on the 103Rh shielding within these 

complexes, and the necessity of careful temperature control to achieve optimal NMR 

resolution. While a detailed explanation of the origin of the 35Cl/37Cl isotope effects must 

await a full computational (theoretical) investigation, these effects are likely to result from 

small differences in the vibrational stretching frequencies between the 37Cl-103Rh and 35Cl-
103Rh bonds trans to the relatively weakly bound coordinated water molecules in these (as 

well as the corresponding PtIV [6]) complexes. This is a nice example of the elegant 

theoretical work by Jameson and Jameson on the ‘rovibrational’ averaging of nuclear 

shielding in MX6- type molecules more than two decades ago [17]. In this context we have 

recently found in a density functional theory (DFT) study that, for the series of [PtX6]
2− (X = 

F−, Cl−, Br−, I−) complexes, the calculated 195Pt NMR shielding of these complexes are 

extraordinarily sensitive to average Pt-halide bond distances Δ(Pt-Cl); for example the 

d(δ195Pt)/dΔ(Pt–Cl) for the Pt–Cl case is ca 183 ppm/picometer [18]. 
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Table 4.1: Comparison of the experimental (simulated from Figures 2 [a]–[f]) and statistically expected 

isotopologue and isotopomer distributions for the [Rh35/37Cln(H2O)6-n]
3-n (n = 3–6) series. 

Percent isotopomers 
Sum percent of isotopomers to yield 

isotopologue amount 
35/37 Cl trans to 

H2O 
RhIII isotopologue 

Experimentala Statistical Experimentala Statistical 
      

 [Rh35Cl6]
3- - - 18.69 ± 0.3 18.92 

      

 [Rh35Cl5
37Cl]3- - - 36.96 ± 0.2 36.31 

 

 
 

[Rh35Cl4
37Cl2]

3- 
 

- 
 

- 
 

29.67 ± 0.2 
 

29.03 
 

 
 

[Rh35Cl3
37Cl3]

3- 
 

- 
 

- 
 

11.86 ± 0.2 
 

12.38 
      

 [Rh35Cl2
37Cl4]

3- - - 2.81 ± 0.2 2.97 
     

Not reliably 
quantifiable 

 

 [Rh35Cl37Cl5]
3- - - 0.38 

     

Not reliably 
quantifiable 

 

 [Rh37Cl6]
3- - - 0.02 

      

35Cl [Rh35Cl5(H2O)]2- 24.99 ± 0.2 24.97 24.99 ± 0.2 24.97 
      

35Cl 31.96 ± 0.2 31.94 
  

8.00 ± 0.3 
 

7.99 37Cl 
[Rh35Cl4

37Cl(H2O)]2- 39.96 ± 0.6 39.93 
      

35Cl 15.33 ± 0.2 15.32 
   

37Cl 
[Rh35Cl3

37Cl2(H2O)]2- 
10.23 ± 0.2 10.22 

25.56 ± 0.5 25.54 
      

35Cl 3.27 ± 0.1 3.27 
  

4.90 ± 0.2 
 

4.9 37Cl 
[Rh35Cl2

37Cl3(H2O)]2- 8.17 ± 0.4 8.17 
      

35Cl 0.26 ± 0.2 0.26 
  

1.05 ± 0.1 
 

1.05 37Cl 
[Rh35Cl37Cl4(H2O)]2- 1.31 ± 0.4 1.31 

      

37Cl [Rh37Cl5(H2O)]2- 
Not reliably 
quantifiable 

0.08 
Not reliably 
quantifiable 

0.08 
      

35Cl, 35Cl cis-[Rh35Cl4(H2O)2]
- 30.68 ± 0.3 32.96 30.68 ± 0.3 32.96 

      

35Cl,35Cl 22.56 ± 0.2 21.08 
  

22.59 ± 0.2 
 

21.08 35Cl, 37Cl 
cis-[Rh35Cl3

37Cl(H2O)2]
- 45.15 ± 0.5 42.16 

      

35Cl, 35Cl 3.30 ± 0.2 3.37 
   

35Cl, 37Cl 12.91 ± 0.3 13.48 
  

3.30 ± 0.2 
 

3.37 37Cl,37Cl 

cis-[Rh35Cl2
37Cl2(H2O)2]

- 19.15 ± 0.5 20.22 

   

2.31 ± 0.4 
 

2.16 
  

35Cl, 37Cl 
37Cl, 37Cl 

cis-[Rh35Cl37Cl3(H2O)2]
- 

2.31 ± 0.4 2.16 
4.62 ± 1.0 4.32 

      

37Cl, 37Cl cis-[Rh37Cl4(H2O)2]
- 

Not reliably 
quantifiable 

0.34 
Not reliably 
quantifiable 

0.34 
      

 trans-[Rh35Cl4(H2O)2]
- - - 32.73 ± 0.5 32.96 

      

 trans-[Rh35Cl3
37Cl(H2O)2]

- - - 42.40 ± 0.4 42.16 
      

 
trans-

[Rh35Cl2
37Cl2(H2O)2]

- 
- - 20.85 ± 0.9 20.22 

      

 trans-[Rh35Cl37Cl3(H2O)2]
- - - 3.60 ± 1.0 4.31 

  

trans-[Rh37Cl4(H2O)2]
- 

    

 - - 0.42 ± 0.3 0.34 
      

35Cl mer-[Rh35Cl3(H2O)3] 43.96 ± 0.9 43.50 43.96 ± 0.9 43.50 
      

35Cl 26.48 ± 1.3 27.82 
   

37Cl 
mer-[Rh35Cl2

37Cl(H2O)3] 
14.97 ± 1.0 13.91 

41.45 ± 2.9 41.73 
      

35Cl 3.55 ± 0.8 4.45 
  

10.31 ± 1.0 
 

8.90 37Cl 
mer-[Rh35Cl37Cl2(H2O)3] 13.86 ± 2.2 13.35 

      

37Cl mer-[Rh37Cl3(H2O)3] 0.72 ± 0.5 1.40 0.72 ± 0.5 1.40 
      

35Cl, 35Cl, 35Cl fac-[Rh35Cl3(H2O)3] - - 46.02 ± 1.3 43.50 
      

35Cl, 35Cl, 37Cl fac-[Rh35Cl2
37Cl(H2O)3] - - 39.91 ± 2.5 41.73 

      

35Cl, 37Cl, 37Cl fac-[Rh35Cl37Cl2(H2O)3] - - 12.93 ± 1.3 13.35 
      

37Cl, 37Cl, 37Cl fac-[Rh37Cl3(H2O)3] - - 1.13 ± 0.5 1.42 
a The isotopologue/isotopomer model was fitted by non-linear least-square analysis to the experimental data from which the 95% 

confidence interval was estimated. 103Rh NMR spectra of each solution were acquired three separate times, not in succession. For peaks 

of lower intensity the relative percentage deviation between experimental and fitted resonance intensities naturally is much larger 

compared to the intense 103Rh peaks. Better agreement can only be obtained at the 
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On a more practical level, the 35Cl/37Cl isotope effects will assist in the establishment of a 

direct and definitive chemical speciation-distribution diagram for the full series of 

[RhCln(H2O)6−n]
3−n in halide-rich aqueous solutions of interest to the Rh recovery and 

refining industry, using 103Rh NMR spectroscopy.   

 

Furthermore no observable secondary isotope effects, due to 1/2H isotopes associated 

with the coordinated water molecules, were found upon increasing the 2H2O:H2O ratio from 

10 to 30%(v/v) for the [Rh35/37Cln(
1/2H2O)6−n]

3−n (n = 3–5) complexes. Presumably, the 1H/2H 

exchange of water is rapid in solution, resulting in the averaging of any potential (small) 

isotope effects from this source. Moreover, application of 1H-decoupling during acquisition 

of 103Rh NMR spectra in this study resulted in significant loss of isotopologue/isotopomer 

resolution in the recorded 103Rh resonances, in all probability due to significant RF absorption 

of the high ionic-strength aqueous solutions causing inevitable temperature fluctuations 

and/or convection currents within the 10 mm sample tube. Considering the significant 

temperature dependence of the 103Rh NMR chemical shifts, reported to be in the range (0.5–

3.0 ppm K−1)9 [7–10] compared to those observed for this series of complex anions (e.g. ca 

2.0 ppm.K−1 for [RhCl6]
3−), the importance of careful temperature control to at least ± 0.1 K 

when acquiring high-resolution NMR spectra is highlighted. Moreover, in order to ensure 

complete thermal equilibrium of the sample in the 10 mm NMR tube, a waiting period of at 

least 35 min is recommended to achieve satisfactory thermal equilibrium within the sample. 

A significant deterioration in resolution of the 103Rh NMR resonance signal for 

[RhCln(H2O)6−n]
3−n (n = 3–6) complexes is observed upon exceeding a temperature of 

300.0 K, very similar to that observed previously in the [PtCln(H2O)6−n]
4−n (n = 4–6) 

complexes [6]. The possible reasons for this immense temperature dependence await a more 

detailed 103Rh NMR spectroscopic study of the Rh complexes described here. Intra- and inter-

molecular ligand exchange (35/37Cl− or H2O) is likely to be too slow at temperatures <300 K 

[15–18], to account for the loss of the isotopologue and isotopomer resolution in the 103Rh 

NMR resonance structure. Moreover, such 35Cl/37Cl isotope effects reported here for the 

generally kinetically inert RhIII complexes (and elsewhere for the PtIV complexes) would not 

be visible under conditions of fast chemical exchange on the NMR time scale such as may be 

expected at higher temperatures (>350 K), as can be confirmed by the preliminary 

                                                 
9 Higher temperatures usually result in “down-field” shifts (higher δ) or lower shielding (σ), so that dσ/dT is 
usually reported as a negative value. 
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temperature dependence NMR experiments. The possibility of variable quadrupolar 35Cl/37Cl 

relaxation effects for 103Rh in different species because of the temperature dependence of this 

relaxation mechanism is also likely to affect the observed line-widths of the 103Rh resonance 

at differing temperatures, a topic in need of a more detailed study.  

4.4 Concluding remarks 

The remarkable isotopologue, and for some complexes isotopomer induced fine-

structure of the 103Rh NMR resonances (at high magnetic fields) of the series of aquated 

[Rh35/37Cln(H2O)6−n]
3−n (n = 3–6) complex anions in hydrochloric acid solutions constitutes a 

novel method of direct spectroscopic speciation of [RhCln(H2O)6−n]
3−n (n = 3–6) complexes. 

This is possible without the need for accurate chemical shifts of these species, or the need for 

the comparison of authentic synthetic complexes many of which are not readily available or 

even separately synthesizable. Given the large chemical shift range of ca 12,000 ppm 

observed for diverse rhodium complexes to date [7], together with the extreme sensitivity of 
103Rh nuclear shielding to numerous effects such solvent, concentration, temperature, 

pressure and other effects [3], this makes the comparison of chemical shifts subject to 

considerable uncertainty. The use of 35Cl/37Cl isotope-resolved 103Rh NMR resonance thus 

constitutes a significant advance as a convenient and reliable method for the identification of 

halide containing complexes, provided these are kinetically inert to ligand exchange on the 

NMR time scale. Particularly noteworthy is the possibility of the unambiguous assignment of 

stereoisomers such as the trans- or cis-[RhCl4(H2O)2]
− which differ in chemical shift by only 

ca 76 ± 3 ppm, or the uncharged fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3] isomers differing 

only by ca 63 ± 3 ppm. These can now readily be identified based on their 35Cl/37Cl isotope 

induced ‘NMR fingerprint’, without reference to their accurate 103Rh NMR chemical shifts or 

the need for a suitable reference compound. 
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Chapter 5 

High-resolution 103Rh NMR spectroscopy as a tool for 

the direct speciation of RhIII aqua chlorido-

complexes: A comparative study† 

5.1 Introduction 

Cozzi and Pantani [1], who based their diagram on the stability constants obtained 

from polarographic data - Figure 5.1 [a], reported the earliest postulated speciation diagram 

for RhIII aqua-chlorido complexes. Robb et al [2,3] subsequently conducted UV-vis kinetic 

experiments for the aquation reactions of [RhCln(H2O)6-n]
3-n (n = 4-6) complexes, from which 

they calculated “kinetic-based” stability constants. In 1996, Benguerel et al [4] used the 

stability constants determined by Robb et al [2,3] in order to construct the speciation diagram 

depicted by Figure 5.1 [b]. In their argument, Benguerel et al [4] noted that Robb et al [2,3] 

did not account for the activity of water, which is known to be considerably lower than 1 in 

concentrated HCl solutions. As a result, they constructed a revised speciation diagram, based 

on the data obtained by Robb et al [2.3], in which the activity of water was accounted for [4], 

Figure 5.1 [c]. Both the polarographic method documented by Cozzi and Pantani [1] as well 

as the kinetic studies reported by Benguerel et al [4] suffer from the disadvantage that no 

distinction could be made between any of the stereoisomers. Recently a speciation diagram 

for the [RhCln(H2O)6-n]
3-n (n=0-6) complexes, obtained by means of a hyphenated ion-pair 

HPLC-ICP-MS method was proposed [5], Figure 5.1 [d]. It is evident from Figures 5.1 [a]-

[d] that there are large discrepancies between the literature reported speciation diagrams; 

most notably the composition of species present at 1.0 M and 6.0 M chloride concentration, 

and the chloride concentration at which a 1:1 ratio of [RhCl6]
3- and [RhCl5(H2O)]2- exists, as 

denoted in Figure 5.1. This prompted the re-evaluation of the RhIII aqua-chlorido species 

distribution in an HCl matrix by means of a direct method, i.e. high-resolution 103Rh NMR 

spectroscopy.  

                                                 
† This Chapter is partially based on the publication: T.E. Geswindt, W.J. Gerber and K.R. Koch, High-resolution 
103Rh NMR spectroscopy as an analytical tool for the direct chemical speciation of [RhCln(H2O)6-n]

3-n (n=3-6) 
complexes, Manuscript prepared for publication (2013) 
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Figure 5.1: Literature documented RhIII species distribution diagrams illustrating the large discrepancies 

existing between proposed diagrams. The dashed blue lines indicate the RhIII species distribution at 1.0 M free 

chloride concentration, while the dashed pink lines indicate the free chloride concentration at which a 1:1 ratio 

of [RhCl6]
3- and [RhCl5(H2O)]2- exists 

 

5.2 Experimental 

5.2.1 Reagents and preparation of solutions containing RhIII aqua-chlorido 

species used for 103Rh NMR spectroscopic studies 

A series of 12 RhIII solutions was prepared by dissolving the appropriate amount of 

commercially available RhCl3·nH2O (Heraeus Chemicals GmbH) in 3.5 mL 29% (v/v) 
2H2O/1H2O (Sigma Aldrich) containing the appropriate quantity of concentrated (32% v/v) 

HCl (Merck Chemicals). Each of these solutions contained a different amount of HCl such 

that the free Cl- concentration of the 12 solutions varied between 0.721 and 5.694 M. These 

solutions were sealed and stored at a temperature of 333.1 K for two weeks and thereafter the 

solutions were allowed to equilibrate at 292.1 K for a further two weeks. The ionic strength 
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of these solutions was not kept constant in order to simulate authentic mining feed solution 

conditions. The total rhodium and chloride concentrations were determined by means of 

ICP-OES (SPECTRO Arcos). A rhodium elemental standard (De Bruyn Spectroscopy - 1000 

± 3ppm, 99.99% purity) was used for rhodium determination while dried NaCl (Sigma 

Aldrich; 99.5% UltraPure) was used for total chloride determination. Although 

unconventional, ICP-OES was used for quantification of the total chloride concentration. To 

date, there have been few reports in literature documenting the use of ICP-OES in the 

quantification of halogens [1,2]. This is probably due to the relatively low emissivity of the 

halogen atoms. In addition, the halogen atoms/ions emit well below 160 nm, while most 

modern ICP-OES spectrometers are unable to detect in these low ultraviolet ranges. 

Nonetheless, it has been shown that (Cl), (Br) and (I) can satisfactorily be quantified in waste 

oils [6,7], and more recently in acidic halide-rich aqueous solutions containing PGMs [8]. 

The optimal ICP-OES spectrometer settings used were: RF power = 1400 W, Argon coolant 

flow = 13.0 L.min-1, auxiliary flow = 1.0 L.min-1, nebulizer flow = 0.80 L.min-1. 

 

5.2.2 103Rh NMR spectroscopy 

103Rh NMR spectra at 19.11 MHz were recorded at constant temperature (292.1 K ± 

0.1K) using a three channel Varian INOVA spectrometer (14.1 Tesla magnet corresponding 

to 600 MHz 1H resonance frequency) with a 10mm HX Nalorac Z-spec 15N-103Rh (18 – 61 

MHz) broad-band probe. It is important to allow sufficient time for the sample to achieve 

temperature equilibrium, where after optimal shimming is required. All NMR samples 

contained ca 30% (v/v) D2O for locking purposes. Since the probe is not equipped for modern 

gradient shimming, together with the low receptivity of the 103Rh nucleus, optimal shimming 

was carried out on FID of the D2O while acquiring a D2O spectrum in the conventional 

pulsed mode; with the X channel pre-tuned to 103Rh. Once the best possible shim setting was 

obtained, the lock channel was used in the conventional mode, and final shimming adjusted 

for each 103Rh NMR sample. Recently, we developed a 103Rh NMR method for the 

unambiguous speciation and characterization of [RhCln(H2O)6-n]
3-n (n=3-6) complex anions 

by exploiting the unique 35Cl/37Cl isotope effects visible in the 103Rh NMR resonances 

obtained at high magnetic fields (14.08 Tesla) in acidic chloride solutions [9]. Although this 

method does not require the use of conventional referencing methods, the chemical shifts 

(ppm) are reported Ξ (103Rh) = 3.16 MHz on the TMS scale at 100.000 MHz, as proposed by 
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Goodfellow [10]; the high-frequency positive-shift convention was used [11]. 103Rh spectra 

were recorded with a spectral width of 19.11 KHz (1000 ppm), using a 8.0 µs excitation pulse 

at maximum practical power in an attempt to ensure approximately homogeneous RF 

excitation over the entire spectral width, with an acquisition time of 0.5 s and a 2 s pulse 

delay to ensure relaxation, under conditions of optimal resolution. Typically, due to the low 

receptivity of the 103Rh nucleus, NMR spectra normally required ca 50 000 transients to 

achieve satisfactory S/N ratios resulting in total experimental times  12 h. In the absence of 

artificial line-broadening (apodization) of the accumulated FIDs, the typical 103Rh resonance 

line-width at half peak-height (½ ) varied from 2.3 - 3.1 Hz at optimal resolution under 

careful temperature control (292.1 K ± 0.1K). 103Rh NMR measurements were repeated a 

year after the solutions were prepared in order to verify that no significant changes in the 

original 103Rh NMR spectra were observed. The MestReNova V6.02 software package 

(Mestrelab Research S. L.) was used for the processing of 103Rh NMR spectra and integration 

of the relative peak areas of each resonance peak. 

 

5.2.3 Reversed-phase high-performance liquid chromatography separation of 

[RhCln(H2O)6-n]
3-n (n=5,6) complexes 

5.2.3.1 Reagents utilised 

HPLC grade methanol was obtained from Merck chemicals. All aqueous solutions 

were prepared using ultrapure Milli-Q water. Analytical grade tetrabutylammonium chloride 

(TBA+Cl−), sodium acetate and glacial acetic acid were obtained from Sigma–Aldrich. The 

chromatographic mobile phase was prepared by the addition of methanol to stock solutions of 

0.05 M tetrabutylammonium chloride and 0.1 M acetate buffer (pH = 4.6) to yield a 30% (v/v) 

MeOH:H2O solution. This mobile phase was filtered through 0.45 µm HV filters (Millipore 

Corporation, HVLP04700) under vacuum and degassed for 15 – 20 min in an ultrasonic bath 

before use. The preparation of solutions containing mixed aqua chlorido-species of RhIII was 

previously described in Section 5.2.1.  
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5.2.3.2 High-performance liquid chromatography coupled to ICP-OES for detection 

Chromatographic separations were performed with a Varian Prostar liquid 

chromatograph equipped with a binary 210 delivery module, a 410 auto-sampler operating at 

an optimized mobile phase flow-rate of 0.8 mL.min-1. The column used throughout this study 

was a Gemini C18, 250 mm × 4.6 mm internal diameter, 5 µm particle size, with a mirror-

finish interior wall. The efficiency of the column was examined by the injection of a solution 

comprising of acetophenone, phenol, aniline, caffeine, uracil, pyridine, benzene and 30% (v/v) 

acetonitrile. Column conditioning comprised of the passage of mobile phase through the 

column for 1 hour prior to analysis, followed by a 45 min post-analysis rinse with pure 

methanol. 

 

It is well known that the most important factors in IP-RP-HPLC that influence the 

retention time of anionic analytes are the concentration of the ion-pairing agent (TBA+Cl-) in 

the mobile phase, as well as the eluent composition of the MeOH:H2O (v/v) ratio. For a 

constant eluent composition (MeOH:H2O v/v ratio), increasing the TBA+Cl- concentration 

would result in an increased amount of ion-pairing agent partitioned in the stationary phase, 

resulting in an increase in the retention factor (k) of the analyte [12]. Methanol was used as 

an organic modifier since acetonitrile is known to form, presumably, coordination 

compounds of RhIII [13-15]. Increasing the percentage volume of methanol in the mobile 

phase, at a constant TBA+Cl- concentration, results in a decrease in the retention factor (k) of 

the analyte, as a result of an increased quantity of the analyte partitioned in the mobile phase 

as opposed to the stationary phase. Thus, to retain a balance between resolution and analysis 

time, it was found that a mobile phase composition consisting of 9.0 mM TBA+Cl− and 30% 

(v/v) MeOH:H2O with a 0.01 M sodium acetate buffer (pH = 4.6) was optimal. 

 

Several RhIII solutions, prepared as outlined in section 5.2.1, were diluted such that 

the final Rh concentration was 0.200 mM while the final HCl concentration varied between 

0.401 – 3.451 mM. These samples were prepared in a matrix consisting of 9.0mM TBA+Cl-, 

30% (v/v) MeOH:H2O and 0.01 M sodium acetate buffer, i.e. the composition of the mobile 

phase. The diluted samples were thoroughly mixed for ± 45 s, after which a 20.0 µL aliquot 

of the diluted sample was injected onto the C18 column. The average time elapsed from stock 

sample dilution until injection never exceeded 90 s.  
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Detection of Rh emission at 343.489 nm was performed using a SPECTRO Arcos ICP-OES, 

equipped with a Burgener T2002 nebulizer and a cyclonic spray chamber for homogenous 

sample delivery. The sample was transferred directly from the HPLC column to the nebulizer 

by PEEK tubing with an internal diameter equal to 0.12 mm. The optimal ICP-OES operating 

conditions were: RF power = 1600 W, coolant gas flow = 16.00 L.min-1, auxiliary gas 

flow = 2.00 L.min-1, nebulizer gas flow = 0.60 L.min-1.  

5.2.4 Precipitation of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions using organic 

(poly)amines 

A 0.103 M RhIII stock solution was prepared by dissolving the appropriate amount of 

RhCl3·nH2O (Heraeus Chemicals GmBH) in 25 mL MilliQ water. The vessel was sealed and 

the solution was aged at 333.1 K for a week.  

Diethylenetriamine (Deta - Riedel-de Haën), triethylenetetramine (Teta - Fluka), 

tetraethylenepentamine (Tepa – Sigma-Aldrich) and tris(2-aminoethyl)amine (Tren - Fluka) 

were utilized as the organic precipitants and used without further purification. A stock 

0.100 M solution of each organic precipitant was prepared using MilliQ water as a diluent.  

 

The RhIII stock solution was used to prepare several solutions, each containing 

5.0 mM rhodium. The HCl concentration of each solution was adjusted by the addition of the 

desired amount of 32% HCl (Merck Chemicals). The HCl concentration of these solutions 

ranged from 0 to 4.986 M. These solutions were made up to a pre-determined volume using 

MilliQ water, the vessels sealed and the solutions allowed to age at elevated temperature 

(333.1 K) for a week, and then at 298.1 K for another week. This was done in order to ensure 

“complete” equilibrium of the [RhCln(H2O)6-n]
3-n (n=3-6) complex anions. 

Once equilibrium had been reached, a specific volume of the stock organic precipitant was 

added to each of the RhIII solutions such that the final precipitant concentration was 25.0 mM 

(5× excess over the rhodium concentration). The added HCl would act as an appropriate “in 

situ” protonating agent. Precipitation was allowed to proceed for three days, after which the 

solutions were centrifuged at 6500 rpm, the supernatant decanted and its Rh content analysed 

by means of ICP-OES.  

 

This experiment was repeated using HClO4 (70% v/v - Fluka) as a protonating agent 

for the precipitants, in the event that the H+ concentration was insufficient to fully protonate 
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the precipitants, particularly at lower HCl concentrations. In this instance, 0.100 M stock 

solutions of the organic precipitants were prepared in 3.0 M HClO4. The precipitation 

reactions were then conducted in a similar manner as previously described.  

5.2.5 RhIII precipitation from a chloride “adjusted” industrial feed solution 

using organic (poly)amines 

The precipitation of RhIII from an industrial feed solution (Heraeus chemicals GmbH) 

was reinvestigated using the organic precipitants diethylenetriamine (Deta – Riedel de Haën), 

triethylenetetramine (Teta - Fluka), tetraethylenepentamine (Tepa – Sigma-Aldrich) and 

tris(2-aminoethyl)amine (Tren - Fluka), in the presence of an appropriate protonating agent, 

viz. hydrochloric acid. The composition of the industrial solution is shown in Table 3.1. Prior 

to precipitation, the total chloride concentration of the industrial feed solution was adjusted to 

8.01 M by the addition of the appropriate volume of 32% (v/v) HCl (reagent grade - Merck 

chemicals). Following the addition of HCl, the “adjusted” feed solution was equilibrated at 

elevated temperature (333.1 ± 0.5 K) for five days; thereafter allowing it to equilibrate for a 

further five days at 298.1 K prior to its use. The total chloride concentration was confirmed 

by ICP-OES analysis, as outlined in Chapter 3.  

The organic precipitants were prepared in 6.0 M HCl, as described in Chapter 3.2.  

 

Table 3.1: Elemental composition and concentration of the industrial feed solution used throughout this study.  

Element mg/L M 
Au 1 5 × 10-6 
Ag 95 8.8 × 10-4 
Pt 30646 1.5712 × 10-1 
Pd 12827 1.2054 × 10-1 
Ir 997 5.18 × 10-3 

Rh 3435 3.338 × 10-2 
Ru 273 2.70 × 10-3 
Re < 1 - 
Al 164 6.08 × 10-3 
As 7 9 × 10-5 
Co 203 3.44 × 10-3 
Cr 24 4.6 × 10-4 
Cu 2051 3.228 × 10-2 
Fe 21271 3.8091 × 10-1 
Ni 3514 5.987 × 10-2 
Pb 4235 2.044 × 10-2 
Se < 1 - 
Si 318 1.13 × 10-2 
Te 1468 1.150 × 10-2 
Zn 8 1 × 10-4 
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The precipitation titration consisted of a series of 25-30 samples in which the same 

volume of the adjusted feed solution was used, while the organic precipitant concentration 

was gradually increased along the series. The precipitation reaction was allowed to proceed 

for three days at 298.1 K, after which the samples were centrifuged at 6500 rpm and the 

supernatant decanted. The metal content of the supernatant was analysed by means of ICP-

OES, and that of the precipitate inferred by mass balance of the metal content in the aqueous 

phase before and after the precipitation reaction.  

 

5.3 Results and discussion 

5.3.1 103Rh NMR spectroscopy – A revised RhIII aqua chlorido speciation 

diagram 

In order to determine the concentration of any particular RhIII species when several 

[RhCln(H2O)6-n]
3-n (n=3-6) aqua-chlorido complexes are simultaneously present, with the 

proposed high-resolution 103Rh NMR spectroscopic speciation technique, it first necessitates 

the characterization of each of the RhIII species present at any given HCl concentration. 

Recently, it was demonstrated that at high magnetic fields (14.1 Tesla) and carefully 

controlled experimental conditions, the high-resolution 103Rh NMR resonance signals of the 

series of complex anions [RhCln(H2O)6-n]
3-n (n=3-6) are resolved into a secondary structure 

due to small chemical shift differences as a result of both isotopologues and the possible 

isotopomers within each set of [Rh35/37Cln(H2O)6-n]
3-n isotopologues [9]. This arises from the 

natural 35/37Cl isotope distribution of the chlorido ligand(s) coordinated to RhIII. The resulting 

line-shapes of the 103Rh NMR resonances for this series of complexes essentially constitute 

an explicit 35/37Cl isotope-resolved “fingerprint” for the characterization of all the species in 

this series including stereoisomers, for instance cis- or trans-[RhCl4(H2O)2]
-, provided that at 

least one chloride ligand remains bound to the RhIII metal-centre and exchanges slowly on an 

NMR time-scale. Therefore, the 35/37Cl isotope resolved 103Rh NMR resonances are 

effortlessly assigned without the need for accurate (103Rh) chemical shifts. The major 

intricacy arising when relying on accurate (103Rh) chemical shifts for species identification 

is that chemical shifts, especially of heavy nuclei, is extremely sensitive toward a variety of 

secondary effects such as concentration, type of solvent, composition of matrix and 

 103

Stellenbosch University http://scholar.sun.ac.za



temperature. These effects essentially render accurate (103Rh) chemical shifts relatively 

tentative in solutions that are of relevance to the PGM refining industry.  

 

Nuclear magnetic resonance, by definition, is a quantitative spectroscopic tool 

because the area of a resonance peak is directly proportional to the number of resonant nuclei 

contributing to the peak. In this regard the longitudinal (spin-lattice) relaxation time (T1) 

measurements play an integral role in establishing whether or not quantitative conditions in 

NMR spectroscopy have been met. However, due to the low receptivity of the 103Rh nucleus, 

it would be unrealistic to conduct elaborate experiments to determine the T1 relaxation time 

of each [RhCln(H2O)6-n]
3-n (n=3-6) species since the time required to obtain a 103Rh NMR 

spectrum with an acceptable S/N ratio is in the order of ≥ 12 hours, depending on the Rh 

concentration of the sample. Moreover, a detailed search of the literature yielded no reliable 

measured estimates of 103Rh T1 relaxation times, particularly for the octahedral RhIII 

complexes involved in this study. In order to crudely ascertain if quantitative conditions of 

the proposed 103Rh NMR speciation method have been met, several 103Rh NMR spectra of a 

single sample were acquired. For each repeat, the relaxation delay between pulses was varied 

from 2 to 13 s, while keeping all other spectrometer parameters constant. It stands to reason 

that if the T1 relaxation time is long, then the area of the resonance peaks for each spectrum 

acquired as a function of increasing relaxation delay would differ substantially. However, it 

was found that the resulting spectra were identical in all regards, and yielded the same 

integrated peak areas (within experimental error) for the [RhCln(H2O)6-n]
3-n (n = 5,6) species 

investigated. This is clearly reflected when the ratio of the integrated peak area, 

A([RhCl6]
3-)/A([RhCl5(H2O)]2-), is plotted as a function of the relaxation delay time applied, 

Figure 1. This figure illustrates a relaxation delay ≥ 2 s would suffice in order to achieve 

quantitative NMR conditions. Furthermore, the rotational correlation time, τc, normally 

determined through relaxation time measurements, was roughly estimated using the guideline 

described by Sanders and Hunter [16]. The rotational correlation time for “small” molecules 

in aqueous phase at room temperature can be given by τc / ps ≈ Mr, where Mr is the relative 

molecular mass. Thus, for [RhCl6]
3-, the correlation time would be ≈ 315.62 ps, implying fast 

molecular motion. In the event of fast molecular motion, it is often assumed that T1 ≈ T2. The 

effective transverse relaxation time, T2
*, can be obtained by the following equation:   

2

1/2

1
T

 
*

 
         (5.1) 
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where ∆ν1/2 is the peak width at half peak height 

 

For [RhCl6]
3-, the average ∆ν½ = 35 Hz and when substituting this value into equation (5.1), 

T2
* = 0.01 s. Therefore, T1 for [RhCl6]

3- can be estimated to be 0.01 s which implies that 

quantitative conditions have been met since a total recycle time of 2.5 seconds, which is 

greater than five times T1, was used throughout this study. 
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Figure 5.2: The ratio of the integrated peak area A([RhCl6]

3-)/A([RhCl5(H2O)]2-) as a function of the relaxation 

time applied. The horizontal lines shows the 95% confidence interval (blue dashed lines) of the average peak 

area ratio (solid pink line)  

 

The 103Rh NMR spectra recorded for several solutions that contain varying HCl 

concentrations illustrate that an increase in the free chloride concentration leads to an 

increase in chloride anation, as the aqua ligands are successively substituted with chlorido 

ligands, Figure 5.210 and equation 5.2. 

3-n - 3-

6-n 2 n 6 2[RhCl (H O) ] ( ) + nCl ( )  [RhCl ] ( ) + n H O ( )   (n=1-6)naq aq aq l  (5.2) 

 

where: 
3-

6
n 3-n - n

6-n 2 n

[RhCl ]
 = 

[RhCl (H O) ][Cl ]
        (5.3) 

 

                                                 
10 A nominal peak area of 1.00 was allocated to the [RhCl5(H2O)]2- species and the peak area of all other species were scaled relative to that 
of the [RhCl5(H2O)]2- species’ peak area, since this species was observed at all the HCl concentrations investigated. 
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Figure 5.3: Change in the 103Rh NMR resonances of the [RhCln(H2O)6-n]

3-n (n=3-6) complexes as a function of free chloride concentration. The assignment of the resonances is based on the 
35Cl/37Cl isotope effects, as exhibited by the insert figures.  

 

 106 

Stellenbosch University http://scholar.sun.ac.za



Quantification of the respective RhIII species was performed by integrating each 

individual 103Rh NMR resonance peak. Division of the individual peak area by the total sum 

of all the RhIII species’ peak areas yields the mole fraction of each individual RhIII species. 

Multiplication of the mole fraction of the RhIII species by the known total rhodium 

concentration yields the individual concentration of each RhIII aqua-chlorido species. The free 

chloride concentration was quantified by multiplying the concentration of the individual RhIII 

species with the number of chloride ligands coordinated to the metal centre and then 

subtracting the sum value of the coordinated chloride ligands from the known total chloride 

concentration.  

 

A partial RhIII speciation diagram was constructed as a function of free chloride 

concentration, Figure 5.4. Comparing the postulated species distribution with that 

documented in literature at selected chloride concentrations, Table 5.1, highlights several 

interesting facts. (i) The documented HCl concentrations at which a 1:1 ratio of [RhCl6]
3- and 

[RhCl5(H2O)]2- species exists varies between 0.04 to 8.3 M [4]. As may be seen from Figure 

5.4, the HCl concentration at which a 1:1 ratio of these species exists is 3.08 M. (ii) The 

higher aquated RhIII species, [RhCln(H2O)6-n]
3-n (n=3-4), persists in appreciable 

concentrations up to approximately 3.0 M HCl [4,5]. However, the most important 

difference, from a solvent- or solid phase extraction perspective, occurs at 1.0 M HCl. At this 

HCl concentration it was found that, based on the postulated species distribution diagram 

(Figure 5.4), the [RhCl5(H2O)]2- species is in 34% abundance. This is in stark contrast to the 

data published by Cozzi and Pantani [1] and Benguerel et al [4] claiming 70 and 80% 

abundances, respectively. It is also in contrast to the recent studies reported by Gerber et al 

[5], that claim a [RhCl5(H2O)]2- species abundance of 8-10% at an HCl concentration of 1.0 

M. Furthermore, the equilibrium constant for the reaction illustrated by equation (5.2), for 

n = 1, calculated in this study was found to vary between 0.67 – 0.82 L.mol-1, which is 

inconsistent with the value of 0.10-0.12 L.mol-1 documented in literature [2-5]. This high 

equilibrium constant can be attributed to the high ionic strength at which the experiments 

were conducted. An increase in the ionic strength implies a decrease in the activity of water 

(as highlighted in Chapter 2), which suppresses the aquation of the [RhCl6]
3- complex anion 

thereby leading to an inherently larger calculated equilibrium constant. It should also be 

noted that the speciation diagram proposed in this study was conducted as a function of HCl 

concentration and no attempt was made to keep the ionic strength of the examined solutions 

constant, as reported in literature [4], so as to better reflect authentic industrial process 
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solution conditions. The RhIII samples prepared in this study thus reflect what can be 

expected in the mining industry for a Rh feed solution, since “all” base and associated PGMs 

are removed prior to rhodium recovery. The validity of the 103Rh NMR spectroscopic method 

was tested by periodically repeating measurements over a period of one year in order to 

ensure (i) that chemical equilibrium has been attained, and (ii) the reproducibility of the 

method under identical experimental conditions, Figure 5.4. It is evident that even after one 

year the measurements were reproducible, which also indicates that chemical equilibrium was 

achieved, Figure 5.4.  
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Figure 5.4: Partial species distribution diagram as a function of HCl concentration for all [RhCln(H2O)6-n]

3-n 

(n=3-6) species, including stereoisomers. The open symbols represent data obtained directly after sample 

preparation; the closed (coloured) symbols represent data obtained after the samples have equilibrated at 

298.1 K for a year. 

 

Further validation for the proposed RhIII speciation diagram, Figure 5.3, is based on 

the aquation kinetics of the [RhCln(H2O)6-n]
3-n (n=5,6) complex anions, Figure 5.4. It is 

evident from Figure 5.4 that at an ionic strength of 3.012 M HCl, minimal aquation of the 

[RhCl5(H2O)]2- complex anion takes place, which is indicated by the absence of the second 

set of isosbestic points commonly associated with the aquation of the [RhCl5(H2O)]2- 

complex anion. At a free chloride concentration of 3.076 M, the species distribution was 

calculated at 51.2% [RhCl6]
2- and 48.8% [RhCl5(H2O)]2-, with no formation of the cis-
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[RhCl4(H2O)2]
- species, Figure 5.4, which is corroborated with the kinetic observations made 

in Figure 5.5.  
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Figure 5.5: The change in the UV-vis spectrum as a function of time (90 minutes) upon dilution of a 0.1038 M 

RhIII stock solution equilibrated in 10.18 M HCl to a 3.012 M HCl matrix (292.1 K) 
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Table 5.2: Comparison of the mole fraction [RhCln(H2O)6-n]
3-n (n=3-6) species at various [Cl-]free between this study and that reported in literature. The [Cl-] of the 

[RhCln(H2O)6-n]
3-n (n=5,6) species’ cross-over points are also included for comparison 

Mole Fraction RhIII species 

[RhCl4(H2O)2]
- [RhCl3(H2O)3] REF [HCl] / M 

[RhCl6]
3- [RhCl5(H2O)]2- 

cis-[RhCl4(H2O)2]
- trans-[RhCl4(H2O)2]

- fac-[RhCl3(H2O)3] mer-[RhCl3(H2O)3] 

[Cl-]free of 

[RhCln(H2O)6-n]3-n 

(n=5,6) cross–over 

point / M 

1 0.32 0.66 0.02a - 

3 0.70 0.30 - - [7] 

5 0.89 0.11 - - 

2.01 

1 0.10 0.80 0.10a - 

3 0.26 0.71 0.03a - [8,9] 

5 0.36 0.62 0.02a - 

8.33 

1 0.13 0.80 0.07a - 

3 0.27 0.70 0.03a - [10] 

5 0.51 0.49 - - 

4.92 

1 0.08b 0.24 0.23 0.05 0.45 

3 0.54b 0.38 0.04 - 0.02 [11] 

5 0.92b 0.03 - - - 

- 

1 0.02 0.31 0.50 0.07 0.03 0.06 

3 0.46 0.51 0.04 - - - 
This 

Study 
5 0.80 0.20 - - - - 

3.05 

a The polarographic and UV-vis methods documented by references [7] and [8,9], respectively, cannot discern between stereoisomers. The mole fraction of the [RhCl4(H2O)2]
- 

species is thus given as a sum mole fraction of the cis/trans stereoisomers 
 
b The hyphenated ion-pair HPLC-ICP-MS method developed by Gerber et al [11] did not allow for the separation of the [RhCln(H2O)6-n]

3-n (n=5,6) species, since these species 
eluted as a single band. The sum of the mole fraction of these two species is presented.  
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5.3.2 Hyphenated reversed-phase ion-pair HPLC-ICP-OES separation and 

chemical speciation of RhCln(H2O)6-n]
3-n (n=3-6) complex anions – correlation 

to 103Rh NMR derived speciation diagram 

Gerber et al [5] recently reported a reversed-phase ion-pair HPLC-ICP-MS method 

for the separation and quantification of [RhCln(H2O)6-n]
3-n (n=0-6) aqua-chlorido complexes. 

Based on these studies, a revised [RhCln(H2O)6-n]
3-n speciation diagram, differing extensively 

from that previously reported in literature [2-5], is proposed. Despite the comprehensive 

investigation pursued by Gerber et al [5], a detailed species distribution of [RhCln(H2O)6-n]
3-n 

(n=5,6) complex anions via this method is still lacking, since the authors could not 

successfully separate these two species from each other. This is attributed to the relatively 

fast aquation of the [RhCl6]
3- species combined with the fact that a 50 µm spherical ODS 

(octadecyl silane) silica gel was used as the HPLC column stationary phase [5]. It was 

therefore of interest to explore the developed chromatographic method in order to establish 

whether an effective separation of these two complex anions could be achieved using 

modified chromatographic conditions. Furthermore, the results obtained could be used for 

further validation of the speciation diagram determined by the 103Rh NMR method (vide 

infra).  

 

A critical requirement for the separation of [RhCln(H2O)6-n]
3-n (n=3-6) complexes 

would be that the RhIII aqua-chlorido complexes do not undergo extensive aquation/anation, 

i.e. the species distribution should not change. This is particularly problematic since the 

aquation of [RhCl6]
3- is known to occur rapidly; with a documented t1/2 = 1.3 min at an ionic 

strength of 0.1 mol.kg-1 HCl at 298.1 K (Chapter 2). Thus, to minimize aquation of the 

[RhCl6]
3- complex anion during a chromatographic run, the chromatographic separation 

should be rapidly completed. It was found that a mobile phase constituency of 9.0 mM 

tetrabutylamonium chloride (TBA+Cl-), 1.0 mM acetate buffer and 30% (v/v) methanol and 

water gave the best results in terms of a ‘relatively’ rapid ion-pair separation; with methanol 

acting as a column modifier leading to decreased retention times of the RhIII complexes. The 

possibility of the formation of RhIII methanolic and/or acetato species, in the given time-

frame during which a chromatographic run was conducted, is negated based on the UV-vis 

spectra recorded as a function of time, Figure 5.6. These figures illustrate (i) that no change 

in the characteristic UV-vis spectra of both [RhCl6]
3- and [RhCl5(H2O)]2- was observed, and 
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(ii) the rate of aquation of [RhCl6]
3- is slower than that observed in the absence of added 

methanol, acetate buffer and TBA+Cl-.  

The slower RhIII aquation kinetics (when diluting a 0.1038 M RhIII stock solution, initially 

equilibrated in 10.181 M HCl, in a matrix consisting of 9.0 mM TBA+Cl-, 1.0 mM acetate 

buffer and 30% v/v methanol) is attributed to the decreased water activity compared to a Rh 

solution prepared in the absence of these reagents, Figure 5.5. The aquation model denoted 

by equations (2.1) and (2.2) was used to simulate the experimental kinetic data. Due to the 

low chloride concentration, the chloride anation reactions are considered to occur to a 

negligible extent.  

3- 2- -65
6 2 5 2

56

k

k[RhCl ]  + H O  [RhCl (H O)]  + Cl      (2.1) 

2- - -54
5 2 2 4 2 2

45

k

k[RhCl (H O)]  + H O  -[RhCl (H O) ]  + Clcis    (2.2) 

The simulated pseudo first-order aquation model resulted in exceptional fits to the 

experimental data, Figure 5.5 [c], thus validating the proposed aquation model. Moreover, the 

calculated rate constants, k65 and k54, are shown in Table 5.3, and demonstrates that the rate 

of aquation of both the [RhCl6]
3- and [RhCl5(H2O)]2- complex anions is significantly slower 

when the RhIII stock solution is diluted in a matrix consisting of TBA+Cl-, acetate buffer and 

methanol when compared to a solution prepared in the absence of these reagents.  
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Diluting the RhIII samples used for 103Rh NMR spectroscopic studies to a 10 mM HCl 

matrix (in the presence of TBA+Cl-, sodium acetate buffer and MeOH – i.e. constitution of 

the chromatographic mobile phase), followed by rapid injection of the diluted sample onto 

the column yields the chromatographic traces depicted in Figure 5.7. From Figure 5.7, it is 

evident that the peak eluting at 418 s demonstrates pronounced tailing which is indicative of 

species interconversion / aquation occurring during the chromatographic run. More 

importantly, the chromatograms in Figure 5.7 illustrate that an increase in the chloride 

concentration leads to an increase in the intensity of the peak eluting at 1220 s; with a 

corresponding decrease in the peaks eluting at 418, 247 and 208 s, respectively. The peak at 

eluting at 1220 s could be due to either the [RhCl6]
3- or [RhCl5(H2O)]2- complex anions, 

based on the presumption that high chloride concentration would lead to an increase in 

chloride anation. Conversely, the decreasing intensity of the peaks eluting at 418, 247 and 

208 s with increasing chloride concentration leads to the assumption that these peaks are 

attributed to the higher aquated species, i.e. [RhCln(H2O)6-n]
3-n (n=3,4); however, definitive 

assignments can only be made upon quantification of each of the eluted RhIII aqua-chlorido 

complexes.  
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Figure 5.6: Change in RhIII UV-vis spectrum as a function of time (90 minutes) upon dilution of a 0.1038 M 

RhIII stock solution equilibrated in 10.181 M HCl to a 0.1018 HCl matrix. [a] Rh solution prepared in the 

absence of MeOH, sodium acetate buffer and TBA+Cl-; [b] Rh solution prepared in the presence of MeOH, Ac 

buffer and TBA+Cl-. [c] Kinetic traces illustrating the change in absorbance at 390 nm; symbols = Expt data, 

Lines = Simulated kinetic fits of the aquation model 
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Table 5.3: Aquation rate constants of [RhCln(H2O)6-n]
3-n (n=5,6) complex anions in (1) the absence of MeOH, 

Acetate buffer (Ac buffer) and tetrabutylammonium chloride (TBA+Cl-), and (2) the presence  of MeOH, Ac 

buffer and TBA+Cl- 

Aquation rate constants 
Sample 

k65 / ×10-3 s-1 k54 / ×10-4 s-1 

(1) RhIII solution prepared without 

MeOH, Ac buffer and TBA+Cl- 
8.75 2.39 

(2) RhIII solution prepared with 

MeOH, Ac buffer and TBA+Cl- 
5.19 1.78 

 

Quantification of the RhIII species was done by integrating the entire transient signal 

as well as the individual peaks. Division of the individual peak area by the total transient 

signal area yields the mole fraction of the particular species. Multiplication of the mole 

fraction of the species with the total known rhodium concentration yields the individual RhIII 

species concentration.  
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Figure 5.7: Chromatographic traces obtained when injecting RhIII stock samples, initially equilibrated in 

varying HCl (0.714 – 5.998 M) concentrations, immediately after the appropriate dilution to a 10 mM HCl 

matrix. Temp = 298.1 K. Several chromatograms were excluded for clarity. 
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Figure 5.8 shows the partial [RhCln(H2O)6-n]
3-n species distribution diagram for the RhIII 

complexes eluting at 1220 and 418 s, respectively. At first glance, it seems that the species 

distribution diagram depicted by Figure 5.8 does not correlate well when compared to that 

depicted in Figure 5.4, with the mole fraction of the RhIII species eluting at 418 s being 

substantially greater than expected.  
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Figure 5.8: Partial [RhCln(H2O)6-n]

3-n species distribution diagram as a function of HCl concentration, derived 

from a modified RP-IP-HPLC-ICP-OES method. The total RhIII concentration of each sample injected was 

0.200 mM and the typical RSD for the mole fraction was below 5.5% 

 

Assignment of the RhIII species eluting at 1220 and 418 s, Figure 5.7, was done by 

comparison of the species distribution of the RhIII aqua-chlorido complexes obtained by the 

hyphenated RP-IP-HPLC-ICP-OES method to that obtained by means of 103Rh NMR 

spectroscopic studies, Figure 5.9. Careful inspection of Figure 5.9 reveals that the RhIII 

species eluting at 1220 s can be ascribed to the [RhCl6]
3- complex anion, as seen from the 

good correlation between the [RhCl6]
3- distribution determined from the 103Rh NMR 

spectroscopic study and that of the hyphenated HPLC-ICP-OES method. The distribution of 

the RhIII species eluting at 418 s can be rationalized by considering that more than one RhIII 

species elute simultaneously, leading to the unexpected high mole fraction calculated for this 

“species”. In this case, the most likely species to elute as a single band would be the 

[RhCl5(H2O)]2- and cis-[RhCl4(H2O)2]
- complex anions. This was confirmed by taking the 

sum of the mole fraction of these two species, obtained from the 103Rh NMR study, and 

comparing it with the species distribution of the RhIII species eluting at 418 s, which shows 

an excellent correlation, Figure 5.9. Therefore, the RhIII species eluting at 1220 s can be 
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attributed to the [RhCl6]
3- complex anion, while that eluting at 418 s is attributed to both the 

[RhCl5(H2O)]2- and cis-[RhCl4(H2O)2]
- complex anions. Furthermore, it should be 

highlighted that this is the first time that the [RhCl6]
3- complex anion was successfully 

separated from the [RhCl5(H2O)]2- complex anion.   
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Figure 5.9: Partial [RhCln(H2O)6-n]

3-n (n=4-6) species distribution diagram as a function of HCl concentration 

comparing the data obtained from HPLC-ICP-OES separations (dashed lines & open symbols) to that of the 
103Rh NMR spectroscopic data (solid lines & coloured symbols) 
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5.3.3 Ion-pair (poly)amine precipitation of [RhCln(H2O)6-n]
3-n (n=5,6) species 

as a function of HCl concentration – The effect of RhIII speciation 

It is well known that PGMs can be separated by solvent extraction as well as 

“selective” precipitation [17]. The “selective” precipitation of RhIII aqua-chlorido species 

from complex PGM-rich media have been highlighted by Crozier and Grant [17]. In this 

regard, it was reported [17] that various (poly)amine compounds, such as diethylenetriamine, 

have been used for the precipitation of RhIII aqua-chlorido complexes. To this extent, the HCl 

concentration at which precipitation should be conducted becomes important for two reasons. 

(i) The H+ concentration should be sufficient in order to ensure complete protonation of the 

(poly)amine in question. (ii) The Cl- concentration should be adequate for the formation of 

predominantly the [RhCl6]
3- complex anion, in view of the fact that only this species is 

presumably precipitated from solution.   

 

In this study the focal point was to use diethylenetriamine, triethylenetetramine, 

tetraethylenepentamine and tris(2-aminoethyl)amine for the precipitation of the RhIII aqua 

chlorido-species to establish the effect of Cl- concentration on not only the precipitation of 

these species from solution, but also to probe the extent of correlation between this study and 

the speciation results obtained from the 103Rh NMR spectroscopic study.  

 

Figure 5.10[a] visually illustrates the effect of the HCl concentration on the speciation of 

RhIII aqua chlorido-complexes. Addition of unprotonated (poly)amine to each of the RhIII 

containing solutions leads to the following observations (with the (poly)amine : RhIII mole 

ratio precipitation titration curves illustrated in Figures 5.11[a] & [b]): 

(i) Addition of unprotonated (poly)amine to RhIII solutions containing less than 0.10 M HCl 

results in the formation of a yellow precipitate, Figure 5.10[b] (solutions 1 and 2) and Figure 

5.11[a]. This is presumably due to hydrolyzed RhIII species, [RhCln(OH)6-n]
3- (n=0-6), which 

is known to be sparingly soluble in aqueous media.  

This was confirmed when repeating the experiments by preparing the (poly)amine stock 

solutions in a 3.0 M HClO4 matrix in order to facilitate complete protonation of the 

(poly)amines. Addition of this stock solution, under identical experimental conditions, is 

associated with the complete absence of (yellow) precipitate formation up to [HCl] > 0.68 M, 

Figure 5.11[b]. It is, however, important to note that the repeated results cannot be directly 

correlated to that observed when the (poly)amines were prepared in the absence of HClO4, 
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since the presence of ClO4
- anions would affect the solubility-product constant (Ksp) of 

formation of the RhIII - (poly)ammonium precipitate.  

(ii) At HCl concentrations ranging from 0.10 to 0.6 M (a factor of 20 - 120 times excess HCl 

over the Rh concentration) no precipitate formation is observed, Figure 5.10[b] (solutions 3 - 

6) and Figure 5.11[a]. Similar observations were made when the (poly)amine stock solutions, 

prepared in a 3.0 M HClO4 matrix, were added to the RhIII containing solutions; thus negating 

the possibility that these trends are due to insufficient / incomplete protonation of the 

(poly)amines, Figure 5.11[b].  

(iii) At [HCl] > 0.60 M the formation of a deep rose-red coloured precipitate is formed 

(Figure 5.10[a] solutions 7 – 10), which is characteristic of the RhIII-(poly)ammonium ion-

pair. Thus, at [HCl] > 0.60 M, the typical (poly)ammonium : RhIII mole ratio precipitation 

titration curves are exhibited, Figure 5.11.  

 

 
Figure 5.10: Visual illustration of 5.00 mM RhIII solutions equilibrated at various HCl concentrations (0.00 –

 5.00 M). [a] before addition of (poly)amines, [b] 2 hours after addition of the (poly)amines. The (poly)amine 

concentration added to each solution was always 5 times excess over the Rh concentration, which is sufficient to 

achieve quantitative precipitation of Rh.  
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Figure 5.11: RhIII precipitation conducted as a function of chloride concentration. The organic (poly)amines 

used are denoted in the legend. [a] Precipitation studies conducted by “in situ” protonation of the (poly)amines, 

which typically occur at [HCl] > 0.100 M; [b] Precipitation studies conducted by protonating the (poly)amine, 

using a 3.0 M HClO4 matrix, prior to addition of the (poly)amine stock solutions to the RhIII containing 

solutions. [Rh] = 5.00 mM, [Amine] = 25.00 mM. All precipitation studies were conducted at 298.1 K and 

repeated in triplicate. Typical RSD values for the [Rh] were below 5%.  
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From Figure 5.11 it becomes evident that the chloride concentration, and hence the 

[RhCln(H2O)]6-n]
3- (n=0-6) species distribution, plays an important role in the quantitative 

recovery of Rh from aqueous chloride solutions. In each of these series of precipitation 

titrations, the quantitative precipitation (> 98%) of RhIII is observed at HCl concentrations 

greater than 4.497 M, Figure 5.11. Since the total RhIII concentration can be accurately 

determined, the total mole fraction of the RhIII aqua-chlorido complex anions can be 

determined as a function of the total HCl concentration, equation (5.4).  

III Precipitated

Total

[Rh]
Mole Fraction Rh   =  1 - 

[Rh]

 

 

      (5.4) 
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Figure 5.12: Partial [RhCln(H2O)6-n]

3-n (n=5,6) species distribution diagram as a function of HCl concentration 

comparing the data obtained from precipitation titrations (dashed lines & open symbols) to that of the 103Rh 

NMR experiments (solid lines and closed symbols) 

 

The species distribution calculated from the precipitation studies however does not 

correlate with that of the [RhCl6]
3- or [RhCl5(H2O)]2- species distributions determined from 

the 103Rh NMR measurements. Thus, the possibility that both the [RhCl6]
3- and 

[RhCl5(H2O)]2- species can be precipitated [20,21] should be taken into account when 

corroborating the precipitation data with that of the 103Rh NMR experiments. By taking the 

sum of the mole fraction of the [RhCln(H2O)6-n]
3-n (n=5,6) anions obtained from the 103Rh 

NMR spectroscopic experiments excellent correlation to the precipitation data is observed, 
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Figure 5.12, substantiating the notion that both the [RhCln(H2O)6-n]
3-n (n=5,6) anions can 

be precipitated from solution. Regarding the latter rationale, the structure of both K3[RhCl6] as 

well as K2[RhCl5(H2O)] have recently been elucidated through X-ray crystallographic studies 

[18]. Moreover, the crystal structure of several (poly)ammonium-RhIII compounds have 

been reported, including diethylenetriammonium hexachlororhodate(III) [19], 

(H3N(CH2)2NH2(CH2)2NH3)[RhCl6], triammonium hexachlororhodate(III) [20], (NH4)3[RhCl6] and 

the diammonium aquapentachlororhodate(III) [21], (NH4)2[RhCl5(H2O)], complexes. From these 

studies it is thus evident that both the [RhCln(H2O)6-n]
3-n (n=5,6) aqua-chlorido species could be 

precipitated from a chloride-rich matrix. Furthermore, there is an unmistakable change in the 

colour of the precipitate, from dark purple to light pink, as the HCl concentration of the solutions 

were increased. In addition, by decreasing the HCl concentration there is a substantial decrease 

in the amount of RhIII precipitated, Figures 5.11 and 5.12, which is attributed to the formation of 

the higher aquated species, [RhCln(H2O)6-n]
3-n (n=0-4), at lower chloride concentrations. These 

findings highlight the profound effect of RhIII species distribution in the determination of 

appropriate conditions for Rh recovery. Furthermore, it aids in the understanding of anomalies 

observed in documented literature [22-25], which would provide insight for the possible 

enhancement of RhIII separation and refining on an industrial scale.  
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5.3.4 Transition metal (195Pt and 103Rh) NMR spectroscopic studies of 

authentic industrial feed solutions 

Up to this point, the speciation of RhIII aqua chlorido-species has been thoroughly 

described and the use of 103Rh NMR spectroscopy as an analytical tool for the unambiguous 

characterisation and speciation has been highlighted. However, these studies were only 

conducted on laboratory prepared RhIII solutions. In this part of the discussion, the practical 

relevance of transition metal (more specifically 195Pt and 103Rh) NMR spectroscopy will be 

extended to authentic industrial feed solutions, as pertinent to the PGM industry.  

 

5.3.4.1 195Pt NMR spectroscopic study of an authentic Heraeus industrial feed solution 

It is well established that the chemical speciation of PGM chlorido-complexes is of 

critical importance for the efficient separation and refining of PGMs [26-29]. In the case of 

Pt, the efficiency of the industrial separation schemes are strictly dependent on the knowledge 

and control of the species distribution of PtIV anionic chlorido-complexes in solution since, 

depending on the conditions, aquated [PtCln(H2O)6-n]
4-n (n=0-6) complexes or even their 

hydrolysis products, [PtCl6-n(OH)n]
2- (n=0-6) might be present. In this context, 195Pt NMR 

spectroscopy was used to evaluate the speciation of PtIV chlorido-complexes present in a 

Heraeus PGM containing industrial feed solution in 4.008 M chloride matrix.   

 

The 195Pt NMR spectrum of the industrial feed solution is shown in Figure 5.13. 

Although various spectral windows were scanned, only one resonance signal was obtained at 

25.5 ppm relative to a standard external Pt reference. The assignment of the signal is based on 

the detailed analysis of the 35Cl/37Cl isotope effects observed in 128.8 MHz 195Pt NMR, 

which shows that the “fine-structure” of this resonance signal can be understood in terms of 

the unique isotopologue distribution of [PtCl6]
2- [26]. These 35Cl/37Cl isotope effects in the 

195Pt NMR resonance of the [Pt35/37Cl6]
2- complex anion manifest only as a result of the 

statistically expected 35Cl/37Cl isotopologues. The 195Pt NMR resonance structure thus serves 

as a unique “finger-print” that can be used for the unambiguous characterization of 

[PtCln(H2O)6-n]
4-n (n=4-6) complexes [26].  
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Figure 5.13: 195Pt NMR spectrum of an authentic industrial feed solution 

 

Figure 5.14 shows the well-resolved fine-structure profile for each individual 195Pt NMR 

resonance, recorded at 292.1 ± 0.1 K, of the [PtCl6]
2- complex anion. This spectrum was 

obtained from the co-axial reference insert. The well-resolved fine-structure profile of the 
195Pt NMR resonance in [PtCl6]

2- is attributed to the 35Cl/37Cl isotope effects. Significantly, 

the [PtCl6]
2- complex anion is resolved only into six of the seven expected [Pt35/37Cl6]

2- 

isotopologues, similar to that obtained by Koch et al [26]. Only six of the seven peaks 

attributed to the isotopologues [Pt35Cln
37Cl6-n]

2- (n=1-6) were observed experimentally since 

the statistically calculated abundance of the [Pt37Cl6]
2- isotopologue occur at a very low 

abundance of 0.02%.  

SigmaPlot Version 11 (Systat Software Inc.) was used to perform the non-linear least-

squares fits on the 195Pt NMR experimental data. The SigmaPlot curve fitter uses the 

Marquardt-Levenberg algorithm to find the coefficients/parameters of the independent 

variable(s) that provide the best fit between the sum of several Lorentzian functions and the 

experimental data. The non-linear least-squares fit between the experimental and simulated 
195Pt spectrum of [Pt35Cln

37Cl6-n]
2- (n=1-6) is excellent, which validates the proposed model, 

Figure 5.14. Furthermore, there is a 22.1 Hz (0.171 ppm) down-field shift upon exchange of a 
35Cl- with 37Cl-, which is consistent with that found by Koch et al [26].  
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Figure 5.14: 195Pt NMR spectrum (enlarged), recorded at 293.1 K, of the co-axial reference insert, containing 

pure [PtCl6]
2-, illustrating the 35/37Cl isotopologue induced splitting of the 195Pt resonance signal. The symbols 

illustrate the experimental data while the solid lines illustrate the isotopologue model fitted to the experimental 

data.  = 35Cl;  = 37Cl 

 

In order to attain optimal correlation between the simulated and experimental data, it is 

important to equilibrate the solution in the spectrometer for at least 20-30 minutes at the 

desired temperature (292.1 ± 0.1 K) and conditions under which the magnetic field 

homogeneity has been optimized. Spectra were recorded at 292.1 K since the [Pt35Cln
37Cl6-n]

2- 

(n=1-6) line-widths are extremely dependent on temperature, with significant loss of 

resolution (due to line-broadening) reported at temperatures below 283.0 K and higher than 

293.0 K [26]. 

 

Figure 5.15 shows the 195Pt NMR spectrum of the authentic industrial feed solution, 

recorded at 292.1 ± 0.1 K. The 195Pt NMR spectrum was subsequently simulated in a similar 

manner to the reference insert. The non-linear least-squares fit between the experimental and 

simulated 195Pt NMR spectrum of the [Pt35Cln
37Cl6-n]

2- (n=1-6) isotopologue model is 

excellent, Figure 5.15, thus confirming the isotopologue model. Furthermore, the relative 

statistical probability, P(n), for each possible isotopologue of the [Pt35Cln
37Cl6-n]

2- (n=1-6) 

complex anion may be calculated at the fractional natural abundance of 35Cl (0.7553) and 
37Cl (0.2447) using the binominal probability function, Equation 3.1, where n and r is the 

number of coordinated 35Cl and 37Cl, respectively; Table 5.4. 

 124

Stellenbosch University http://scholar.sun.ac.za



As may be seen from Table 5.4, the agreement between the experimentally calculated and 

statistically expected isotopologue distribution using the resonance areas is excellent.  

35 37Cl Cl
 = ( ) 

(n+r)!
n = 

n!r!
n r

n = 0

P(n)
       (5.5) 
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Figure 5.15: Experimental 195Pt NMR spectrum (enlarged) of an authentic industrial feed solution illustrating 

the “fine-structure” of the 195Pt resonance. The solid lines represent the non-linear least-squares fits of the 

isotopologue model to the experimental 195Pt NMR spectroscopic data. The symbols represent the experimental 

data while the solid lines represent the isotopologue model fits.  

 

Table 5.4: Comparison between the experimental and statistical isotopologue distributions for the [Pt35/37Cl6]
2- 

complex anion 

Percentage [PtCl6]
2- Isotopologue distribution 

Isotopologue 
Experimentala Statistical Literature [26] 

[Pt35Cl6]
2- 17.82 ± 0.13 18.92 18.78 

[Pt35Cl5
37Cl]2- 35.95 ± 0.09 36.31 36.47 

[Pt35Cl4
37Cl2]

2- 29.53 ± 0.07 29.03 29.03 

[Pt35Cl3
37Cl3]

2- 13.20 ± 0.08 12.38 12.36 

[Pt35Cl2
37Cl4]

2- 3.24 ± 0.02 2.97 2.97 

[Pt35Cl37Cl5]
2- 0.34 ± 0.02 0.38 0.39 

[Pt37Cl6]
2- N. A.  0.02 N. A. 

a The isotopologue model was fitted by non-linear least-squares analysis to the experimental data (195Pt NMR spectrum of the industrial 
feed solution – Fig. 3.13[b]) from which the 95% confidence interval was estimated. 195Pt NMR spectra were acquired three separate 
times, not in succession.  
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It is evident from Figure 5.15 that there is a significant loss in resolution observed in the 195Pt 

NMR resonance for the industrial feed solution. This is not ascribed to temperature effects, 

since the 195Pt resonance observed for the co-axial reference insert displayed well-resolved 

[Pt35Cln
37Cl6-n]

2- (n=1-6) isotopologue resonances. The loss in resolution may be attributed to 

the presence of low levels of paramagnetic species, e.g. IrIV, present in the industrial feed 

solution. However, this is purely speculative as a variety of factors could lead to the loss in 

resolution. These factors include intra- and inter-molecular chloride exchange, solvent 

viscosity effects that may influence the processes dependent on molecular correlation times 

(τc) and spin-rotation relaxation mechanisms. Nevertheless, all the [Pt35Cln
37Cl6-n]

2- (n=1-6) 

could be deconvoluted and each 195Pt resonance was assigned, confirming that the Pt present 

in the feed solution exists exclusively as the [PtCl6]
2- complex anion. The fact that 

quantitative precipitation of Pt is observed for this industrial solution (Chapter 3) can 

therefore be attributed to the exclusive existence of the [PtCl6]
2- complex anion in this 

solution.  

 

5.3.4.2 103Rh NMR spectroscopic study of an authentic Anglo Platinum industrial feed 

solution 

In order to analyze the practical relevance of the developed 103Rh NMR speciation 

method, the 103Rh NMR spectrum of an authentic industrial RhIII feed solution (Anglo 

Platinum PLC) in an HCl matrix was acquired, Figure 5.16. The sample was provided 

without any additional information from the supplier, except that it only contained RhIII, since 

this was a feed solution prepared for final Rh purification (presumably by 

diethylenetriammonium precipitation). ICP-OES analysis of the Anglo Platinum Rh feed 

solution revealed that the total chloride concentration was 2.121 M, and the Rh concentration 

0.2109 M11. The low Rh concentration results in a decrease in the S/N ratio, which is evident 

from Figure 5.16.  

 

 

                                                 
11 It should be noted that the feed solution contained a significantly lower Rh concentration (0.2109 M) than was 
typically used. This is the reason attributed for the decreased S/N ratio, Figure 5.16. Higher resolution (at this 
Rh concentration) could not be obtained, since this would require unrealistically long acquisition times. For the 
spectrum depicted in Figure 5.16, 100.000 transients were acquired, corresponding to a total acquisition time of 
70 hours. 
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Three 103Rh NMR resonances were observed at δ(103Rh) = -84.672 ppm, 159.288 ppm 

and 235.130 ppm, respectively. Assignment of the observed resonances was based on the 
35Cl/37Cl isotope effects (as outlined in Chapter 4) revealing that the solution only contained 

[RhCl5(H2O)]2-, cis-[RhCl4(H2O)2]
- and trans-[RhCl4(H2O)2]

- complex anions in appreciable 

concentrations. An excellent non-linear least-squares fit between the experimental and 

simulated 35Cl/37Cl isotopomer model was obtained for both the [RhCl5(H2O)]2- and 

cis-[RhCl4(H2O)2]
- complex anions, Figure 5.17, confirming the assignment of these species. 

Table 5.5 illustrates the quantitative agreement between the experimentally calculated and the 

statistically expected isotopomer distribution model for the [RhCl5(H2O)]2- and 

cis-[RhCl4(H2O)2]
- complex anions. Due to the low S/N ratio, the trans-[RhCl4(H2O)2]

- 

complex anion [δ(103Rh) = 235.130 ppm] could not be reliably quantified by means of 
35Cl/37Cl isotope effects; however, its assignment was confirmed using 103Rh NMR chemical-

shift trend analysis [29,30].  
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Figure 5.16: 103Rh NMR spectrum of an authentic industrial rhodium feed solution recorded at 292.1 K. [Rh]tot 

= 0.2109 M; [Cl-]tot = 2.121 M 
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Figure 5.17: Experimental 103Rh NMR spectra of the [RhCln(H2O)6-n]

3-n (n=4,5) complex anions recorded at 

292.1 K (symbols). [a] [Rh35/37Cl5(H2O)]2- complex anion; [b] cis-[Rh35/37Cl4(H2O)2]
- complex anion. The non-

linear least-squares fits between the experimental spectra and the isotopologue model that includes isotopomers 

is denoted by the solid lines.  
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Table 5.5: Comparison of the experimental (simulated from Figure 5.17) and statistically expected isotopomer 

distributions for the [Rh35/37Cl5(H2O)]2- and cis-[Rh35/37Cl4(H2O)2]
- complex anions 

Percent isotopomers 
Sum percent of isotopomers to 

yield isotopologue amount 

35/37 Cl 
trans to 

H2O 
RhIII isotopologue 

Experimental Statistical Experimental Statistical 
      

35Cl [Rh35Cl5(H2O)]2- 25.26 24.97 25.26 24.97 
      

35Cl 32.07 31.94 
  

7.93 
 

7.99 
 

37Cl 
[Rh35Cl4

37Cl(H2O)]2- 40.00 39.93 
     

35Cl 15.34 15.32 
  

10.07 
 

10.22 37Cl 
[Rh35Cl3

37Cl2(H2O)]2- 25.41 25.54 
      

35Cl 3.26 3.27 
  

4.81 
 

4.9 37Cl 
[Rh35Cl2

37Cl3(H2O)]2- 8.07 8.17 
      

35Cl 0.33 0.26 
 

  

37Cl 
[Rh35Cl37Cl4(H2O)]2- 

0.93 1.05 
1.26 1.31 

      

37Cl [Rh37Cl5(H2O)]2- 
Not reliably 
quantifiable 

0.08 
Not reliably 
quantifiable 

0.08 
      

35Cl, 35Cl cis-[Rh35Cl4(H2O)2]
- 36.31 32.96 36.31 32.96 

      

35Cl,35Cl 19.66 21.08 
  

22.14 
 

21.08 35Cl, 37Cl 
cis-[Rh35Cl3

37Cl(H2O)2]
- 41.80 42.16 

      

35Cl, 35Cl 2.80 3.37 
   

35Cl, 37Cl 12.53 13.48 
  

2.79 
 

3.37 37Cl,37Cl 
cis-[Rh35Cl2

37Cl2(H2O)2]
- 18.12 20.22 

   

1.39 
 

2.16 
  

35Cl, 37Cl 
37Cl, 37Cl 

cis-[Rh35Cl37Cl3(H2O)2]
- 

1.38 2.16 
2.77 4.32 

     

Not reliably 
quantifiable 

 

37Cl, 37Cl cis-[Rh37Cl4(H2O)2]
- 

Not reliably 
quantifiable 

0.34 0.34 

 

Quantification of the respective RhIII species present in the feed solution was 

performed by integrating each individual 103Rh NMR resonance peak. Division of the 

individual peak area by the total sum of all the RhIII species’ peak areas yields the mole 

fraction of each individual RhIII species. From the mole fraction of the RhIII species and the 

total Rh concentration, the individual concentration of each RhIII species can be calculated. 

The free chloride concentration was quantified by multiplying the concentration of each 

individual RhIII species with the number of chloride ligands presumed to coordinate to the 

metal centre, followed by subtracting the sum concentration of the coordinated chloride 

ligands from the known total chloride concentration. The calculated free chloride 

concentration of the feed solution was 1.188 M. From the proposed species distribution 

diagram, Figure 5.4, the [RhCln(H2O)6-n]
3-n (n=4,5) species distribution was predicted at a 

free chloride concentration of 1.188 M, and compared to that calculated from direct 

measurement of the 103Rh NMR spectrum of the Rh feed solution, Table 5.6. The excellent 

correlation between the predicted and calculated [RhCln(H2O)6-n]
3-n (n=4,5) species 
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distribution, Table 5.6, provides further evidence in support of the postulated species 

distribution diagram, Figure 5.4, proposed in this study. Unfortunately, the industrial PGM 

feed solution obtained from Heraeus chemicals could not be used for direct 103Rh NMR 

spectroscopic studies, since the Rh concentration (33.4 mM) is too low and would thus lead 

to unrealistically long acquisition times.  

 

Table 5.6: Comparison of the mole fraction [RhCln(H2O)6-n]
3-n (n=4,5) species, at [Cl-]free = 1.188 M, predicted 

by the proposed speciation diagram (Fig. 5.4) with that calculated from the 103Rh NMR spectrum of an authentic 

Rh feed solution 

Mole fraction [RhCln(H2O)6-n]
3-n (n=4,5) species 

RhIII species 
Predicted  Expt. obtained 

[RhCl5(H2O)]2- 0.39 0.42 

cis-[RhCl4(H2O)2]
- 0.45 0.47 

trans-[RhCl4(H2O)2]
- 0.070 0.10 

 

5.3.5 Reinvestigation of RhIII precipitation from an “adjusted” industrial feed 

solution – The importance of chemical speciation 

It is evident, from the results discussed thus far, that the speciation of the 

[RhCln(H2O)6-n]
3- (n=0-6) complexes in chloride solutions is the most likely cause for the 

poor recovery of Rh from a Heraeus PGM feed solution, Figure 3.16 (Chapter 3). However, 

this could not be established directly by means of high-resolution 103Rh NMR, due to the low 

levels of Rh present in these PGM feed solutions, Table 3.1. In order to substantiate this 

hypothesis, the precipitation of RhIII from these feed solutions was re-investigated, as a 

function of amine concentration, by “adjusting” the total chloride concentration of the feed 

stock solution to 8.01 M. Furthermore, this solution was heated at 354.1 K (65°C) for 

approximately two weeks in order to facilitate chloride anation of possible higher aquated 

RhIII species, [RhCln(H2O)6-n]
3-n (n=0-4).  

 

Figure 5.18 illustrates the mole ratio precipitation curves of RhIII as a function of 

increasing organic precipitant (Deta, Teta, Tepa and Tren) concentration, obtained from a 

chloride “adjusted” industrial feed solution. It is evident that adjusting the chloride 

concentration of the feed solution, followed by heat treatment to facilitate chloride anation, 

increased the amount of Rh precipitated by up to 98%, Figure 5.18.  
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Figure 3.16: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.871 mM, [Cl-] = 4.008 M 
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Figure 5.18: Residual [Rh] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. The chloride concentration of the raw feed solution was adjusted to 8.01 M and the solution heated at 

354.1 K for 2 weeks prior to performing precipitation titrations. [Rh] = 3.903 mM, [Cl-] = 8.01 M, Precipitation 

titrations were conducted at 298.1 K.  
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 132

The mole ratio precipitation curves illustrated in Figure 5.18 provides further support in 

favour of the hypothesis that [RhCln(H2O)6-n]
3-n (n=0-6) speciation effects is responsible for 

the poor recovery of Rh from an “unaltered” industrial feed solution. Although the total 

chloride concentration of the “unaltered” industrial feed solution was in significant excess 

compared to the Rh concentration ([Cl-] = 4.008 M; [Rh] = 33.38 mM), the effect of other 

transition metals present in this solution should also be taken into account. By way of 

example: from 195Pt NMR spectroscopic studies, it is known that Pt exists only as the 

[PtCl6]
2- complex anion in the “unaltered” industrial feed solution. The concentration of Pt in 

this solution is 0.1511 M (Table 5.1), implying that the concentration of chloride ligands 

coordinated to the Pt metal centre is 0.9426 M (6 × 0.1511 M). Therefore, the presence of Pt 

lowers the total chloride concentration by 0.9426 M. This rationale can be extended for all 

the metals present in solution, if the speciation of all the metal chlorido-complexes is 

accurately known. The presence of other metals would therefore significantly lower the total 

chloride concentration, and thus the free chloride concentration. The lowered free chloride 

concentration, in turn, would enhance the extent at which aquation of the [RhCln(H2O)6-n]
3-n 

(n=5,6) species occur, thus leading to the poor Rh recovery as the higher aquated, 

[RhCln(H2O)6-n]
3-n (n=0-4) species is more prevalent. Furthermore, chloride anation reactions 

would be negligible due to the low chloride concentration. However, upon increasing the 

chloride concentration, coupled with thermal treatment of the solution to enhance chloride 

concentration of the higher aquated RhIII species, [RhCln(H2O)6-n]
3-n (n=0-4), the recovery of 

Rh by organic precipitation of Rh is significantly enhance, Figure 5.18. Moreover, at a 

[precipitant]:[metal chloride anion] ratio of 1, quantitative precipitation (> 95%) of Rh is 

achieved for all the organic precipitants investigated.   

 

Figure 5.19 shows the [precipitant]:[metal chloride anion] mole ratio precipitation 

titration curves of Pt, obtained from a chloride adjusted feed solution, using the denoted 

organic precipitants. It is evident that quantitative precipitation (> 98%) is achieved for 

triethylenetetramine (Teta) and tris(2-aminoethyl)amine (Tren) at [precipitant]:[metal 

chloride anion] ratios greater than 3 and 4, respectively. Furthermore, 95% of Pt was 

recovered using diethylenetriamine and tetraethylenepentamine, which is an improvement 

when compared to the results obtained from an “unaltered” industrial feed solution 

(Chapter 3, Figure 3.14). This is attributed to the increased chloride concentration used to 

maintain charge balance in the crystal lattice.  
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Figure 5.19: Residual [Pt] in the supernatant as a function of increasing [Precipitant]:[Metal chloride anion] 

ratio. [Rh] = 3.903 mM, [Cl-] = 8.01 M, Precipitation titrations were conducted at 298.1 K. 
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Figure 5.20: Comparison between the Pt- and Rh-precipitant titration curves for the organic precipitants used 

throughout this study. [Pt] = 18.79 mM; [Rh] = 3.903 mM, [Cl-] = 8.01 M 
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Consider the following two equations (5.6) and (5.7): 

 

[PtCl6]
2- (aq) + [DetaH3]

3+ (aq) + Cl- (aq) → (DetaH3)[PtCl6]Cl (s)  (5.6) 

[PtCl6]
2- (aq) + [TepaH5]

5+ (aq) + 3Cl- (aq) → (TepaH5)[PtCl6]Cl3 (s)  (5.7) 

 

In order to precipitate Pt using the organic precipitants denoted in equations (5.6) and (5.7), 

chloride anions is required to maintain charge balance. However, in the “unaltered” industrial 

feed solution, the free chloride concentration is too low and thus no chloride anions is 

incorporated into the crystal lattice, leading to a decrease in Pt recovery for these precipitates. 

In contrast, triethylenetetrammonium is highly efficient for the precipitation of Pt, mainly due 

to its +4 charge. In this instance, two [PtCl6]
2- anions can form an ion-pair with a single 

triethylenetetrammonium cation, thereby conserving charge balance.  

 

Figure 5.20[a]-[d] compares the [precipitant]:[metal chloride anion] mole ratio 

precipitation titration curves of Rh and Pt obtained from an industrial feed solution. 

Comparing the various organic precipitants used, at a [precipitant]:[metal chloride anion] 

ratio of 1, it is evident that tris(2-aminoethyl)amine (Tren) shows the greatest selectivity 

toward the precipitation of RhIII above [PtCl6]
2-, Figure 5.20[d]; while triethylenetetramine is 

considered to be the least selective, Figure 5.20[b]. At a [precipitant]:[metal chloride anion] 

ratio of 1, for the tris(2-aminoethyl)amine precipitation curve, 95% Rh is precipitated as 

opposed to 4.7% for Pt, illustrating that tris(2-aminoethyl)amine could, under carefully 

controlled conditions, be used as a highly selective organic precipitant for the “upfront” 

recovery of Rh, i.e. before the recovery of Pt, and possibly other associated PGMs – Pd, Ir 

and Ru.  
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5.4 Concluding remarks 

A 103Rh NMR spectroscopic technique was developed for the unambiguous speciation 

of the RhIII aqua chlorido-complexes, [RhCln(H2O)6-n]
3-n (n=3-6), present in acidic, chloride-

rich media. Under optimal NMR conditions, it was possible to unambiguously characterize 

and quantify all six [RhCln(H2O)6-n]
3-n (n=3-6) species, including the mer- & 

fac-[RhCl3(H2O)3] as well as the cis- & trans-[RhCl4(H2O)2]
- species, present in a 0.721 M 

chloride matrix. An advantage of the developed technique, compared to previously reported 

speciation studies [1-5], is that it was possible to identify and quantify the [RhCln(H2O)6-n]
3-n 

(n=3,4) stereoisomers. Moreover, cationic [RhCln(H2O)6-n]
3-n (n=0-4) species was not 

observed, presumably due to the slow aquation of the mer-[RhCl3(H2O)3], trans-

[RhCl2(H2O)4]
+ and [RhCl(H2O)5]

2+ species; with negligibly small aquation rate constants 

documented for these cations [31].  

RhIII containing solutions, equilibrated in differing HCl concentrations for a year at 298 K, 

was analyzed by means of 103Rh NMR spectroscopy. The analysis provided a partial 

[RhCln(H2O)6-n]
3-n (n=3-6) species distribution diagram as a function of free chloride 

concentration. It was found that highly aquated [RhCln(H2O)6-n]
3-n (n=3,4) species may 

persist up to free chloride concentrations of 3.0 M. Furthermore, at a free chloride 

concentration of 1.0 M, the abundance of [RhCl6]
3- and [RhCl5(H2O)]2- was found to be 2% 

and 31%, respectively; which is in stark contrast to that previously documented in literature 

[1-5]. In addition, the [RhCl6]
3- complex anion only becomes abundant (> 80%) at free 

chloride concentrations > 5.0 M.  

 

The reversed-phase (C18) ion-pair (TBA+Cl-) HPLC-ICP-OES method developed by 

Gerber et al [5] was adapted and used to separate and quantify the RhIII aqua chlorido-

complexes present in an acidic, chloride-rich matrix (i.e. the solutions prepared for 103Rh 

NMR studies). Under optimal chromatographic conditions it was possible to separate and 

quantify the [RhCl6]
3-, [RhCl5(H2O)]2- and the cis-[RhCl4(H2O)2]- complex anions, with the 

latter species eluting as a single band. Although further studies on this subject is required to 

separate all the RhIII aqua chlorido complexes, it is noteworthy to mention that, for the first 

time, the [RhCl6]
3- complex anion has been successfully separated from the [RhCl5(H2O)]2- 

complex anion. Assignment of the eluted species was based on the correlation of the species 

distribution of the RhIII aqua chlorido-complexes obtained through HPLC investigations to 
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that proposed by 103Rh NMR studies. Excellent correlation between the two studies was 

obtained.  

 

The precipitation of RhIII aqua chlorido-complexes (by the organic precipitants 

diethylenetriamine, triethylenetetramine, tetraethylenepentamine and tris(2-aminoehtyl)amine) 

was performed as a function of HCl concentration. It was observed that the percentage Rh 

recovered from these solutions increased upon increasing HCl concentration. From the 

precipitation studies, the mole fraction RhIII aqua chlorido-complexes precipitate was 

determined as a function of increasing HCl concentration. It was established that the 

speciation trends calculated from the precipitation studies could only be understood by 

considering that both the [RhCl6]
3- and [RhCl5(H2O)]2- species are precipitated from solution. 

An excellent correlation between the species distribution of the RhIII aqua chlorido-

complexes calculated from the precipitation studies was obtained when compared to the sum 

of the mole fractions of the [RhCl6]
3- and [RhCl5(H2O)]2- complex anions determined by 

means of high-resolution 103Rh NMR spectroscopy, Figure 5.12.  

 

High-resolution 195Pt and 103Rh NMR spectroscopic studies were performed on 

authentic industrial feed solutions. Assignment of the 195Pt and 103Rh resonances was based 

on the 35Cl/37Cl isotope effects, which manifest only as a result of the statistically expected 
35Cl/37Cl isotopologues and, in some cases, isotopomers within each class of isotopologues – 

as highlighted in Chapter 4. These studies revealed that in a Heraeus PGM feed solution, Pt 

exists exclusively as the [PtCl6]
2- complex anion, exemplified by the excellent comparison 

between the experimental and statistical isotopologue distributions calculated for the 

[Pt35/37Cl6]
2- complex anion, Table 5.4. Unfortunately, the industrial PGM feed solution 

obtained from Heraeus chemicals could not be used for direct 103Rh NMR studies, since the 

Rh concentration was found to be too low.  

 

In order to validate the practical relevance of the developed speciation method derived 

by means of high-resolution 103Rh NMR spectroscopy, the 103Rh NMR spectrum of an 

authentic industrial RhIII feed solution, supplied by Anglo Platinum PLC, was recorded. 

Three 103Rh resonances were observed at δ(103Rh) = -84.6, 159 and 235 ppm, which was 

assigned to the [RhCl5(H2O)]2-, cis-[RhCl4(H2O)2]
- and trans-[RhCl4(H2O)2]

- species, 

respectively; Figure 5.17 and Table 5.5. Furthermore, the concentration of free chloride and 

all the RhIII aqua chlorido-complexes were quantified, from which it was determined that the 
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abundance of the RhIII species were 39.3% for the [RhCl5(H2O)]2- species, 45.4% for the cis-

[RhCl4(H2O)2]
- and 6.9% for the trans-[RhCl4(H2O)2]

- species; all of which were accurately 

predicted by the RhIII species distribution diagram developed by means of 103Rh NMR 

spectroscopy, Table 5.6. 

 

From the results discussed throughout this study, it becomes more evident that the 

speciation of RhIII aqua chlorido-complexes is the most likely cause for the poor recovery of 

Rh from a Heraeus PGM feed solution - as highlighted in Chapter 3. The low concentration 

of Rh in this feed solution renders high-resolution 103Rh NMR spectroscopy unfeasible in this 

instance. In order to validate the hypothesis that speciation of RhIII aqua chlorido-complexes 

is responsible for the poor Rh recovery from a Heraeus PGM feed solution, the precipitation 

of Rh, by several organic precipitants, was re-evaluated. The chloride concentration of the 

PGM feed solution was increased and the solution was treated thermally for several days in 

order to increase the rate of chloride anation of RhIII aquated species. Under the revised 

precipitation conditions, the percentage Rh recovered from the PGM feed solution increased 

from 78% (from an unaltered feed solution) to > 95%, validating the hypothesis that 

speciation effects were responsible for the poor Rh recovery, Figure 5.18. Moreover, tris(2-

aminoethyl)amine (Tren) was highlighted as the most selective organic precipitant for the 

recovery of Rh, removing 95% of the Rh initially present, compared to 4.7% Pt  at a 

[precipitant]:[metal chloride anion] ratio of 1. It is therefore evident that, under carefully 

optimized conditions, tris(2-aminoethyl)amine, Tren, could be used as a highly selective 

organic precipitant for the upfront recovery of Rh.  
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Chapter 6 

Conclusions 

In this thesis, high-resolution 103Rh NMR spectroscopy was used as an analytical tool for the 

detection, unambiguous characterisation and direct chemical speciation of [RhCln(H2O)6-n]
3-n 

(n=3-6) complexes, without the necessity to alter the chemical composition of the aqueous, 

chloride-rich Rh-containing solutions. The associated results obtained throughout this study 

was necessitated to substantiate arguments in favour of the revised [RhCln(H2O)6-n]
3-n (n=3-6) 

species distribution diagram, obtained by direct 103Rh NMR spectroscopic measurements. 

Furthermore, these studies were required for the correct interpretation of phenomena typically 

encountered in the industrial separation and recovery of Rh.  

6.1 RhIII ligand exchange kinetics  

The aquation kinetics of [RhCl6]
3- and [RhCl5(H2O)]2- were investigated as a function 

of ionic strength and temperature. Under the experimental conditions defined in this study, 

the aquation (and chloride anation) reactions of the [RhCl6]
3- and [RhCl5(H2O)]2- complex 

anions follow pseudo first-order kinetics. Furthermore, the aquation rate constants for the 

[RhCl6]
3- and [RhCl5(H2O)]2- species were determined as a function of ionic strength and 

temperature. The aquation rate constants determined at an ionic strength of 4.0 M HClO4 and 

298.1 K were consistent with those reported in literature. Moreover, it was found that a 

change in the ionic strength influenced the observed pseudo first-order aquation rate 

constants more than was reported in literature. This is presumably due to the changes in the 

activity coefficients of the reagents, i.e. H2O, Cl- and RhIII. An increase in the charge density 

of the respective RhIII species would lead to an increase in the extent to which ionic strength 

influences the rate of ligand exchange. This implies a decrease in the rate of aquation for the 

[RhCln(H2O)6-n]
3-n (n=4-6) complex anions upon increasing ionic strength.  

 

Temperature has a profound effect on the rate of ligand substitution, with an increase 

in temperature leading to an increase in the rate of aquation of the [RhCln(H2O)6-n]
3-n (n=5,6) 

complex anions. Furthermore, the transition state activation energies (Ea) for the aquation of 

the [RhCl6]
3- and [RhCl5(H2O)]2- species were calculated, from which it was found that these 
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activation energies are independent of the ionic strength. Ionic strength and temperature thus 

have profound effects on the species distribution of [RhCln(H2O)6-n]
3-n (n=0-6) complexes 

which would have to be accurately accounted for prior to reporting a “kinetic based” RhIII 

speciation diagram. Errors in the reported RhIII speciation diagrams would have a profound 

(negative) effect on RhIII recovery studies such as liquid-liquid extraction, solid-phase 

extraction or organic precipitation studies, since most of these studies optimize experimental 

conditions according to the data reported in proposed speciation diagrams.  

6.2 Recovery of Rh and Pt by means of organic precipitation  

Several commercially available N-containing organic compounds were used as 

organic precipitants for the “selective” recovery of Rh from aqueous, chloride-rich media. 

These compounds included Deta, Teta, Tepa, Tren, polyethylenimine, Lupamin® 1595 and 

Lupamin® 9030, of which only Deta, Teta, Tepa and Tren were subsequently used for 

further study. Applied to laboratory prepared PGM (Pt and Rh) containing solutions, in which 

the species distribution of the respective metal-chlorido complexes are accurately known, all 

of the precipitants illustrated quantitative recovery of Rh. Furthermore, preferential recovery 

of Rh, rather than Pt, was attained when using Deta and Tren, with Tren exhibiting the 

greatest selectivity toward the recovery of Rh. Regarding the selectivity of the organic 

precipitants toward the preferential recovery of Rh, no trend was observed upon increasing 

the chain-length (and thus the formal charge from +3 to +5) of the organic precipitants. 

Moreover, no recovery trends could be observed when using organic precipitants having a 

linear motif as opposed to those having a branched motif.  

 

Quantitative recovery of Rh from an authentic Heraeus industrial feed solution was 

not obtained with any of the precipitants used, while Pt was recovered quantitatively using 

Teta and Tren. The fact that Pt could be recovered quantitatively from this feed solution was 

attributed to the Pt present in the industrial feed solution existing solely as the [PtCl6]
2- 

complex anion, which was confirmed by means of high-resolution 195Pt NMR spectroscopy. 

The poor recovery of Rh from an Heraeus industrial feed solution was hypothesized to be due 

to [RhCln(H2O)6-n]
3-n (n=0-6) species distribution, with the decrease in recovery attributed to 

the dominance of higher aquated RhIII species, [RhCln(H2O)6-n]
3-n (n=0-4). 

 

 141

Stellenbosch University http://scholar.sun.ac.za



Traditional analytical techniques (polarography, UV-vis spectrophotometry and 

hyphenated HPLC techniques) have limited capabilities when investigating the chemical 

speciation of metal-chloride complexes in complicated, acidic chloride-rich media. In this 

regard, 103Rh NMR spectroscopy was used as an analytical tool for the detection, 

unambiguous characterisation and chemical speciation of [RhCln(H2O)6-n]
3-n (n=3-6) 

complexes.  

6.3 Characterisation of 103Rh resonances observed in high-

resolution 103Rh NMR spectra 

The application of 103Rh NMR spectroscopy as an analytical tool for the direct 

speciation of [RhCln(H2O)6-n]
3-n (n=3-6) first necessitated the characterization of each of the 

103Rh resonances. A detailed analysis of the 35Cl/37Cl isotope effects observed in the 

19.11 MHz 103Rh NMR resonances of [RhCln(H2O)6−n]
3−n complexes (n = 3–6) in acidic 

solution at 292.1 K, showed that the ‘fine structure’ of each 103Rh resonance can be 

understood in terms of the unique isotopologue and, in certain instances, the isotopomer 

distribution in each of these complexes. These 35Cl/37Cl isotope effects in the 103Rh NMR 

resonance of the [Rh35/37Cl6]
3− species manifest only as a result of the statistically expected 

35Cl/37Cl isotopologues, whereas for the aquated species such as the [Rh35/37Cl5(H2O)]2−, cis-

[Rh35/37Cl4(H2O)2]
− as well as the mer-[Rh35/37Cl3(H2O)3] complexes, additional fine-structure 

due to the various possible isotopomers within each class of isotopologues, is visible. Of 

particular interest was the direct identification of stereoisomers cis-[RhCl4(H2O)2]
−, 

trans-[RhCl4(H2O)2]
−, fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3], based on the 103Rh NMR 

line shape, rather than on the basis of their very similar δ(103Rh) chemical shift, which differ 

by only ca 76 ± 3 ppm for the anionic trans- and cis-[RhCl4(H2O)2]
− isomers and by ca 

63 ± 3 ppm for the uncharged fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3] isomers. The use of 
35Cl/37Cl isotope-resolved 103Rh NMR resonance thus constitutes a significant advance as a 

convenient and reliable method for the identification of halide containing complexes, 

provided these complexes are kinetically inert to ligand exchange on the NMR time scale. 

These complexes are therefore readily identified based on their 35Cl/37Cl isotope induced 

‘NMR fingerprint’, without reference to their accurate 103Rh NMR chemical shifts or the need 

for a suitable reference compound. 
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6.4 Direct speciation of [RhCln(H2O)6-n]3-n complexes by means 

of high-resolution 103Rh NMR spectroscopy 

A 103Rh NMR spectroscopic technique was developed for the direct speciation of RhIII 

aqua chlorido-complexes, [RhCln(H2O)6-n]
3-n (n=3-6), present in acidic, chloride-rich media. 

In order to ascertain if quantitative NMR conditions have been met, the rotational correlation 

time, τc, normally obtained through relaxation time measurements, was estimated using the 

guideline outlined by Sanders and Hunter (in “Modern NMR Spectroscopy”, 2nd Ed., Oxford 

University Press, 1993). This guideline allows for the estimation of the longitudinal 

relaxation time, T1, from which it was ascertained that a total recycle time of 2.5 s was 

sufficient to obtain quantitative NMR conditions.  

 

The 103Rh NMR spectroscopic measurements conducted on concentrated RhIII 

solutions allowed for the construction of a partial [RhCln(H2O)6-n]
3-n species distribution 

diagram, as a function of the “free” (unbound) chloride concentration. This speciation 

diagram is considered to be the most accurate currently available, mainly because published 

species distribution diagrams for RhIII aqua chlorido-complexes have been generally 

constructed using data from indirect (kinetic and spectrophotometric) measurements in dilute 

RhIII solutions, at nominally higher HCl concentrations, for which the RhIII:Cl- mole ratio is 

far greater than that expected in authentic process solutions. Furthermore, in order to analyze 

the practical relevance of the developed 103Rh NMR spectroscopic technique, the 103Rh NMR 

spectrum of an authentic industrial Rh feed solution (Anglo Platinum PLC) was recorded. 

Detailed analysis of this spectrum revealed that the solution contained only the 

[RhCl5(H2O)]2- and cis-[RhCl4(H2O)2]
- complex anions in appreciable concentrations (i.e. 

39.3% and 45.4%, respectively), while the trans-[RhCl4(H2O)2]
- complex anion was present 

at considerably lower abundance, 6.9%. The proposed RhIII species distribution diagram 

accurately predicted these abundances, at a “free” chloride concentration of 1.188 M.  

 

The reason for the poor Rh recovery from an authentic Heraeus industrial feed 

solution can therefore be attributed to RhIII speciation effects, with the presence of other 

metals (often present in higher concentrations than Rh) decreasing the “free” (unbound) 

chloride concentration, by acting as chloride “binders”. The decrease in the “free” chloride 

concentration would consequently lead to an increase in the extent to which aquation of RhIII 
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occurs. This implies that the higher aquated RhIII chlorido-complexes, [RhCln(H2O)6-n]
3-n 

(n=0-4), would be the dominant RhIII species present in these process solutions. 

Subsequently, the organic precipitation conditions were optimized by adjusting the total 

chloride concentration of the industrial feed solution to 8.01 M, followed by thermal 

treatment to enhance chloride anation of the higher aquated RhIII complexes. Under these 

conditions, the recovery of Rh improved dramatically, with up to 95.8% of the Rh initially 

present recovered. Furthermore, it was concluded that tris(2-aminoethyl)amine (Tren), under 

very carefully controlled conditions, was a more “selective” precipitant toward the 

preferential recovery of Rh, when compared to the recovery of Pt.  

 

 

In summary, it is evident that 103Rh NMR spectroscopy is a powerful spectroscopic 

technique for investigating the chemistry of RhIII aqua chlorido-complexes in solutions which 

are pertinent to the refining industry. The understanding of the speciation of metal-chloride 

complexes as a function of the chloride ion concentration can potentially result in the 

optimization of Rh recovery by careful speciation control, as exemplified in this study. 

However, 103Rh NMR spectroscopy does have limitations, which include primarily the high 

cost associated with high-field NMR spectrometers combined with the fact that these 

instruments are not readily available within the industrial setting. Furthermore, due to its low 

receptivity, the relative sensitivity of 103Rh NMR spectroscopy is low, which implies that 

lower levels of detection of species concentrations are limited to the (milli)molar 

concentration levels. Therefore, comparably higher Rh concentrations (> 0.2 M) combined 

with extended acquisition times (> 12 hours) are required to attain optimal S/N ratios.  
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Figure A6.1: Change in UV-vis spectra as a function of time upon diluting a 0.1021 M RhIII solution initially 

equilibrated in 10.181 M HCl to a final HCl concentration of 0.1018 M. The ionic strength was varied from 

0.301 M to 5.012 M, as denoted in the respective figures [a] – [f]. Spectra were recorded at 298 K 
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Figure A2.2: Change in UV-vis spectra as a function of time upon diluting a 0.1021 M RhIII solution initially 

equilibrated in 10.181 M HCl to a final HCl concentration of 0.1018 M. The temperature was varied from 

303.1 K – 283.1 K, as denoted in the respective figures [a] – [e]. The denoted spectra were recorded at a 

constant ionic strength of 0.301 M HClO4 
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a b s t r a c t

A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC–ICP-MS
method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for
anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum
chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted
as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2]−, trans-[RhCl4(H2O)2]− and [RhCln(H2O)6−n]3−n (n = 5,
6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the rela-
tively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover,
the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly
lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activ-
ity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6)
species can be chromatographically separated. In addition, aquation/anation rate constants were deter-
mined for [RhCln(H2O)6−n]3−n (n = 3–6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of
spectrophotometry and independently with the developed ion-pair HPLC–ICP-MS technique for species
assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8
years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua
chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the
distribution of the cis- and trans-[RhCl4(H2O)2]− stereoisomers have been obtained. Furthermore, it was
found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0–4) species persist in up
to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8–10% of
the total, far from the 70–80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion
occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted
from the column is below 0.147 mg L−1.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Separation and refining of platinum group metals (PGM) is based
predominantly on the subtle difference between their anionic
chlorido-complexes such as [PtCl6]2−, [PdCl4]2−, [RhCl6]3− and
[IrCl6]2/3−, while Ru and Os are generally separated by means of
oxidative distillation [1,2]. Currently, rhodium is recovered last
from PGM mining feed streams in South Africa using either solvent-
extraction or ion-exchange followed by precipitation [2]. A possible
reason for the ‘late’ recovery of Rh(III) is presumably due to the
presence of aquated species, [RhCln(H2O)6−n]3−n (n = 3–5), even
in strong chloride media [2,3]. To design more efficient refining
methods, chemical speciation and the quantification of Rh(III) aqua
chlorido-complexes in process solutions is of critical importance.

∗ Corresponding author. Tel.: +27 021 808 2699; fax: +27 021 808 3342.
E-mail address: wgerber@sun.ac.za (W.J. Gerber).

The need for a detailed investigation of the species distribution
of Rh(III) aqua chlorido-complexes in an HCl matrix is clearly
reflected by the large differences between proposed species dis-
tribution diagrams, e.g. the reported HCl concentrations where a
1:1 ratio of [RhCl6]3− and [RhCl5(H2O)]2− species exist varies from
0.04 to 8.3 mol L−1 HCl [3]. These large differences between pro-
posed species distribution diagrams are indicative of the difficulty
involved to develop an analytical technique for the separation and
quantification of Rh(III) aqua chlorido-complexes present in an HCl
matrix.

Sandström and co-workers [4,5] was able to characterize all
[RhXn(H2O)6−n]3−n (X = Cl−, Br− and n = 0–6) complexes, while
Mann and Spencer [6] characterized the series of [RhClnBr6−n]3−n

(n = 0–6) complex anions by means of 103Rh NMR. Unfortunately
the relatively low magnetogyric ratio of the 103Rh nucleus pre-
cludes 103Rh NMR for relatively rapid speciation and quantification,
particularly in dilute solutions [4–7]. Recent capillary electrophore-
sis (CE) speciation studies of Rh(III) present in several acidic

0039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.talanta.2010.04.049
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matrices (HCl, HNO3, H2SO4) illustrated that several Rh(III) species
could be separated with some peaks tentatively assigned to par-
ticular species [8–11]. However, separation and unambiguous
assignment of in particular [RhCln(H2O)6−n]3−n (n = 2–4) stereoiso-
mers has not yet been reported using any chromatographic
technique. UV–VIS spectroscopy is of ‘limited’ use for speciation
of Rh(III) aqua chlorido-complexes when more than two species
are simultaneously present, due to the relatively small difference in
molar extinction coefficient spectra of [RhCln(H2O)6−n]3−n (n = 0–6)
species coupled with discrepancies between reported molar extinc-
tion coefficient spectra [12,13]. Matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF) does not
reflect the species distribution in solution and cannot differentiate
between stereoisomers, e.g. cis- or trans-[RhCl4(H2O)2]− [11].

As part of our interest in developing speciation techniques
for PGM [14–16] complexes present in HCl solutions similar to
mining feed and effluent streams, we aimed to develop an ion-
pair reversed phase (C18) chromatographic speciation method for
[RhCln(H2O)6−n]3−n (n = 0–6) species including stereoisomers, fol-
lowed by detection by means of inductively coupled plasma mass
spectrometry (ICP-MS). Despite the relatively ‘uncomplicated’ sam-
ple matrix (water and hydrochloric acid) the chromatographic
separation and identification of these complexes is challenging due
to the difference in the net charge, the kinetic lability of Rh(III) com-
plexes and presence of stereoisomers which might be expected to
exhibit only subtle retention differences in a chromatographic sep-
aration. Moreover, the mobile phase composition for a reversed
phase ion-pair chromatographic separation is inevitably different
from the HCl sample matrix which may lead to the interconversion
of kinetically labile Rh(III) aqua chlorido-complexes [17–23] dur-
ing a chromatographic run. This matter is exemplified by Salvadó
and co-workers [11] who argued that the relatively rapid aquation
of [RhCl6]3− made it impossible to observe a peak for [RhCl6]3−

using CE, whereas Aleksenko et al. [10] claims the contrary. In this
regard, we re-investigated the anation/aquation kinetics of Rh(III)
aqua chlorido-complexes to evaluate the extent of species inter-
conversion that might be expected during a chromatographic run.
In particular, the rate of aquation at low ionic strength (0.1 mol L−1

HCl) conditions was studied since previous investigations [17–23]
were conducted at relatively high ionic strengths (≥2.0 mol L−1 HCl
or HClO4); such conditions are not compatible with the intended
reversed phase ion-pair chromatographic separation. The assign-
ment of eluted Rh(III) aqua chlorido-complexes by this means
entailed a detailed kinetic study utilizing the developed reversed
phase chromatographic speciation method and when possible
results were compared for validation with an independent UV–VIS
study conducted in parallel. This paper describes the development
of an ion-pair HPLC–ICP-MS method for the separation and the
quantification of [RhCln(H2O)6−n]3−n (n = 0–6) complexes present
in an HCl matrix without the need for chelation of the metal cation
[24] by ligands such as dithiocarbamates and 8-hydroxyquinoline
prior to separation.

2. Experimental

2.1. Apparatus

The HPLC instrumentation used comprises of a Shimadzu LC-9A
pump coupled to a Perkin-Elmer Sciex Elan 6100 ICP quadrupole
MS detector (for breakthrough curve determination a Shimadzu
CDD-6A conductivity detector was used) and steel tubing with
inner diameter of 0.20 mm. The injection valve used was a Rheo-
dyne (model number 7125) mounted with a 20 �L sample loop.
The flow rate (u) of the mobile phase was 1.0 mL min−1. The cylin-
drical steel columns had lengths (L) varying between 5 and 25 cm

and an inner diameter (DC) of 0.5 cm with mirror-finish interior
walls. The room temperature was regulated at 25 ± 1 ◦C. The gen-
eral ICP-MS operating conditions used were; nebulizer argon gas
flow 0.97 L min−1, ICP RF-Power 1100 W, isotope used: m/z 103,
nebulizer type: cross flow. UV–VIS spectra were recorded with
a Perkin-Elmer Lambda 12 double-beam UV–VIS spectrometer.
Quartz cuvettes were used and the slit width was set at 1 nm. The
room temperature was regulated at 25 ± 1 ◦C. A Grant KD100 circu-
lating thermostatic controller, mounted on a Grant W6 tank with
cooling coil, was used to regulate the temperature when the sample
is prepared and within the sample chamber of the spectrometer at
25.0 ± 0.1 ◦C. pH measurements were performed using a Metrohm
691 pH-meter and a Metrohm 6.0232.100 combined glass pH
electrode. Potentiometric standardization titrations were recorded
and performed using a Metrohm 716 DMS Titrino with Metrohm
728 stirrer. A Metrohm 6.0404.100 combined massive silver elec-
trode was used for argentiometric determination of chloride and
bromide anions.

2.2. Reagents

0.1 mol L−1 stock solutions of tetrabutylammonium chloride
(TBACl), tetrabutylammonium bromide (TBABr), potassium bro-
mide (KBr) and tetrabutylphosphonium bromide (TBPBr) (Fluka)
were prepared and used for subsequent dilutions. All solu-
tion preparations used Milli-Q water with resistivity levels of
18.1 M� cm. The stationary phase was Silica gel 100 C18 (Fluka
60757, CAS 112926-00-8). The C18 surface coverage is 17–18% or
4.0 �mol m−2 and the remaining surface hydroxyl groups are end-
capped with methyl. The silica column material has an average
diameter of 50 �m and the pore diameter is approximately 100 Å.
Ethanol absolute, CH3CH2OH (Saarchem), was used as discussed
in the column preparation section. Several stock Rh(III) solutions
of approximately 1 mmol L−1 and 0.1 mol L−1 were prepared by
dissolving [RhCl3]·x(H2O) (Alfa Aesar) in water at the desired HCl
concentration. Total Rh concentration was determined using the
ICP-MS and calibration was done with a certified multi-element
PGM standard (Spectrascan 8313).

2.3. C18 column packing and conditioning

The “tap-fill” dry-pack method [25] was used for column pack-
ing. Evidence that the columns were properly packed was inferred
from the ‘perfect’ Gaussian peak shape of eluted analytes, Fig. 1a,
which implies no column voids and upon opening the columns no
bed compression was found after weeks of use.

The reversed phase column was initially conditioned by passage
of an ethanol/water (80:20, v/v) mixture through the column for at
least 40 min, after which elution of the EtOH was affected by pas-
sage of a mobile phase that contained ion-pair reagent dissolved in
water at the desired concentration for approximately 3 h [26]. After
these conditioning steps the columns were ready for use. When a
column was not used for an extended time period it was stored in
100% EtOH.

2.4. Chromatographic injection procedure for all Rh(III) samples

As an example, 1.0 mL of a ∼1.0 × 10−3 mol L−1 Rh(III) stock sam-
ple was first diluted, 100-fold, to a total volume of 100.00 mL, such
that the matrix of the diluted sample was 0.1 mol L−1 HCl at 298 K.
The diluted sample was thoroughly mixed by means of a magnetic
follower for ±45 s, after which a 20 �L aliquot of the diluted sample
was injected onto the C18 column. The time taken from stock sample
dilution until injection was, on average, approximately 114 s.
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Fig. 1. (a) Typical iodide test sample Gaussian chromatographic traces as a
function of mobile phase TBACl concentration. Column length = 5.0 cm, mobile
phase = distilled water + (0.01, 0.015, 0.02, . . ., 0.05 M) TBACl + 0.01 mol L−1 HCl. (b)
Ion-pair adsorption isotherms obtained by means of frontal analysis and the corre-
sponding Langmuir model fits. The composition of the mobile phases consisted of
the relevant ion-pair reagent dissolved in water.

2.5. Adsorption isotherm measurements by means of frontal
analysis

One pump of the HPLC instrument was used to deliver a mobile
phase that consists of water. A second pump delivered a mobile
phase that consisted of ion-pair reagent (either TBABr or TBPBr or
TBACl) dissolved in water. The break through curves shown in the
supplemental information, Fig. S1a, were recorded successively at
a flow rate of 1.0 mL min−1, with an adequate delay between each
break through curve to establish the re-equilibration of the column
with the mobile phase that consists only of water. Using a set of KBr
solutions of known concentration, the conductivity signal response
was shown to be proportional to the injected KBr concentration. KBr
is not retained at all in the column and effectively takes the column
hold-up volume into account, Fig. S1b.

3. Computational details

3.1. The Langmuir isotherm

The Langmuir model [27] relates the amount of ion-pair reagent
adsorbed, qo, to the mobile phase concentration of ion-pair reagent,
C, Eq. (1); where qs is the monolayer saturation capacity and Kad is
the adsorption equilibrium constant:

qo = qs

(
KadC

1 + KadC

)
(1)

The amount of ion-pair reagent adsorbed is given by Eq. (2),
where Veq, Va and C are the elution volume, volume of the stationary
phase and ion-pair mobile phase concentration, respectively:

qo = CVeq

Va
(2)

3.2. Kinetic data analysis

The program Kinetic5Ver [28] (Visual Basic 6) was written for the
least-squares fitting of rate law(s), derived from reaction models,
to experimental data (spectrophotometric and chromatographic).
The program has two main components that work in tandem; a
routine to numerically integrate the differential equations using
a Runge–Kutta algorithm [29] and a routine to execute the least-
squares fitting using the Simplex algorithm [30]. Validation of
program, Kinetic5Ver, was performed by generating artificial data
via analytical integration of several rate models in varying complex-
ity with chosen rate constants and molar extinction coefficients.
The artificial data sets were then manipulated with the aid of a
random number generator such that each data point had an abso-
lute error varying from 0 to 3%. These augmented data sets were
then analyzed with program Kinetic5Ver and in all cases the cal-
culated parameters with Kinetic5Ver agreed within 2% with the
chosen parameters used in the analytical integration.

3.3. Mauser plots

The theory of Mauser space diagrams has been extensively dis-
cussed by Polster and co-worker [31,32]. In particular, we were
interested in the absorbance triangle plot for a linear reaction sys-
tem (e.g. relation (3)) with two consecutive reactions in order to
calculate the molar extinction coefficients from UV–VIS spectra for
several Rh(III) species:

A → B → C (3)

To obtain all the molar extinction coefficients in the wavelength
region (390–550 nm) would require literally, 25,600 absorbance
(�y) versus absorbance (�x) plots. This large amount of graphs
results from plotting all wavelengths against each other. To achieve
this task, a program called Mauser1Ver was written in VB.Net [33].

4. Results and discussion

4.1. Ion-pair C18 HPLC column capacity and column overload

The extent of separation or resolution between Rh(III) aqua
chlorido-complexes can be controlled by varying the surface con-
centration of ion-pair reagent, column length and competing
ion-pair reactions. The surface concentration of ion-pair reagent
(TBACl, TBABr, TBPBr) at a specific mobile phase ion-pair reagent
concentration and the column monolayer saturation capacity, qs,
were determined by means of frontal analysis. The adsorption
isotherms obtained and the least-squares fits with the Langmuir
model, Eq. (1), are shown in Fig. 1b. The good least-squares fits,
Fig. 1b, combined with the agreement in the calculated column
monolayer saturation capacity, Table 1, using different ion-pair
reagents and column lengths validate the Langmuir model. The
calculated adsorption constants, Kad, are listed in Table 1.

Relatively rapid interconversion of Rh(III) aqua chlorido-
complexes (due to aquation or anation) during a chromatographic
run as well as column overload [34], will result in non-Gaussian
peak shapes. To estimate at what ion-pair reagent concentration
column overload occurred in this ion-pair HPLC system, sodium
iodide test samples were injected as a function of mobile phase
ion-pair concentration, Fig. 1a. The sample matrix of the iodide test
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Table 1
From the Langmuir model fits the C18 monolayer saturation capacity, qs, and ion-pair
reagent adsorption constants, Kad, at 298 K were calculated. The internal diameter
of these columns was 0.2 cm. L = column length.

Ion-pair reagent Kad (L g−1) qs (g L−1) L (cm)

TBABr 1.03 (±0.04) 120 (±5) 7.0
TBABr 0.99 (±0.06) 132 (±4) 5.0
TBPBr 1.43 (±0.04) 137 (±8) 7.0
TBACl 0.78 (±0.05) 128 (±8) 7.0

samples were the same as for the injected Rh(III) samples and the
highest concentration of iodide was 20 times that of the total Rh(III)
concentration injected in this study. As ‘perfect’ iodide Gaussian
peaks (Fig. 1a) were obtained, column overload can be ruled out
as a possible cause for non-Gaussian peak shapes obtained in this
study (vide infra). Moreover, to monitor column degradation and to
measure the efficiency of newly packed columns, daily injection of
the iodide test samples were carried out.

4.2. Kinetic based speciation of [RhCln(H2O)6−n]3−n (n = 3–6) at
low HCl ionic strength

The difficulty of assigning Rh(III) aqua chlorido-complexes
that elute during a chromatographic separation is due, in
part, that several Rh(III) species are simultaneously present
even at relatively high HCl concentrations [2]. This problem
was addressed by exploiting the well documented trans effect
[17–23,35] when Rh(III) aqua chlorido-complexes undergo lig-
and exchange reactions. Of particular interest in this study was
the possible stereo-specific substitution of successive aqua-
tion of the [RhCl6]3− complex anion based on the trans effect,
i.e. [RhCl6]3− → [RhCl5(H2O)]2− → cis-[RhCl4(H2O)2]− → fac-
[RhCl3(H2O)3] [12]. This reaction sequence was exploited for
Rh(III) species assignment since it is relatively easy to carry out
practically, by diluting a Rh(III) sample equilibrated in concen-
trated HCl (>9.0 mol L−1) to a 0.1 mol L−1 HCl matrix and following
this process by UV–VIS spectroscopy. Harris and co-workers
[12,17–19] conducted extensive kinetic studies concerning the lig-
and exchange rates of Rh(III) aqua chlorido-complexes. However,
the ionic strength at which these investigations were conducted
varied from approximately 2 mol kg−1 (HCl or HClO4) upwards
and are not suitable (vide infra) for an ion-pair reversed phase
chromatographic separation. As the ionic strength can significantly
alter the rate of ligand exchange, we re-investigated the aquation
rates of [RhCln(H2O)6−n]3−n (n = 4–6) species in a relatively low
ionic strength environment of 0.1 mol kg−1 HCl. A 0.1 mol L−1 ionic
strength was chosen since it closely resembles the mobile phase
composition used in this study and the kinetic study is likely to
establish the extent by which Rh(III) species interconversion might
occur during a chromatographic run. In addition, comparison of the
kinetic data (vide infra) obtained with the UV–VIS study and inde-
pendently with the developed ion-pair HPLC–ICP-MS study, enable
the correct assignment of the Rh(III) aqua chlorido-complexes
separated chromatographically.

Available species distribution diagrams suggest that in a
9.5 mol L−1 HCl matrix only [RhCl6]3− and [RhCl5(H2O)]2− species
are present in significant quantities [3]. Dilution of a stock Rh(III)
sample equilibrated in 9.464 mol L−1 HCl to a 0.101 mol L−1 HCl
matrix results in relatively rapid successive aquation reactions of
the Rh(III) species. The ensuing UV–VIS spectral change was mon-
itored as a function of time at 298.1 K, Fig. 2a. The first set of
isosbestic points formed within 6 min, indicated by the solid verti-
cal lines in Fig. 2a, after which a second set of isosbestic points was
observed as indicated by the vertical dashed lines. The two sets of
isosbestic points confirm that only two Rh(III) species are predom-
inant at a time during the sequential aquation reactions (4) and (5),

Fig. 2. The UV–VIS spectral change as a function of time when diluting a
0.1963 mol L−1 Rh(III) sample equilibrated in 9.464 mol L−1 HCl, 100-fold, to a
0.101 mol L−1 HCl matrix, (a) represents the first 90 min and (b) 3 days of
recording after dilution. Solid, dashed and dotted vertical lines indicate the
three sets of isosbestic points observed and are associated with the succes-
sive aquation reactions [RhCl6]3− → [RhCl5(H2O)]2− → cis-[RhCl4(H2O)2]− → fac-
[RhCl3(H2O)3], respectively.

respectively. Moreover, the second set of isosbestic points corrob-
orate that aquation of [RhCl5(H2O)]2− is most likely to yield only
the cis-[RhCl4(H2O)2]− stereoisomer, as a result of the higher trans
effect of the coordinated chloride ion compared to water [17].

From Fig. 2a it is observed that 90 min after dilution the rate
by which the UV–VIS spectrum change decrease considerably. This
is associated with the relatively slower rate of aquation of the cis-
[RhCl4(H2O)2]− complex and it was therefore necessary to record
the UV–VIS spectrum of the diluted sample over a period of at least
4 days to observe the formation of the third set of isosbestic points
at 431 and 478 nm, Fig. 2b. The third set of isosbestic points confirm
the stereo-specific substitution route of successive aquation reac-
tions, leading to the conclusion that aquation of cis-[RhCl4(H2O)2]−

yields the fac-[RhCl3(H2O)3] stereoisomer, relation (6):

[RhCl6]3− + H2O�
k56

[RhCl5(H2O)]2− + Cl− (4)

[RhCl5(H2O)]2− + H2O
k54�
k45

cis-[RhCl4(H2O)2]− + Cl− (5)

cis-[RhCl4(H2O)2]−(aq) + H2O
k43�
k34

fac-[RhCl3(H2O)3] + Cl− (6)

For the calculation of the relevant aquation/anation rate con-
stants from the data, of which Fig. 2a is a typical example, the
same rate laws, Eqs. (7)–(9), proposed by Harris and co-workers
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Table 2
Comparison of the calculated Rh(III) aqua chlorido-complexes pseudo-first-order aquation and anation rate constants by means of UV–VIS spectroscopy and independently
with the ion-pair HPLC method at 298.1 K and 0.101 mol kg−1 HCl ionic strength.

Aquation/anation rate constants Experimental technique

UV–VIS Ion-pair HPLC–ICP-MS Literaturea

k65 (min−1) 5.52 (±0.23) × 10−1 – 1.1 × 10−1b

k54 (min−1) 1.51 (±0.07) × 10−2 1.48 (±0.06) × 10−2c 2.32 × 10−3b

cis–fac k43 (min−1) 1.24 (±0.04) × 10−4 1.31 (±0.05) × 10−4d –
1.28 (±0.06) × 10−4e

1.26 (±0.07) × 10−4f

fac–cis k34 (M−1 min−1) 3.46 (±0.11) × 10−4 3.52 (±0.14) × 10−4d –
3.49 (±0.17) × 10−4f

trans–mer k43 (min−1) – 4.28 (±0.21) × 10−4e –
4.32 (±0.23) × 10−4f

mer–trans k34 (M−1 min−1) – 1.42 (±0.03) × 10−4f –

The corresponding pseudo-first-order anation rate constants calculated were negligibly small at 0.1 mol kg−1 HCl ionic strength experimental conditions.
a Refs. [3,17].
b Aquation rate constants determined at 4.0 mol kg−1 ionic strength.
c Fig. 4c.
d Fig. 5c.
e Fig. 8c.
f Fig. 8d.

[12,17] three decades ago were used. Due to the significant lower
rate of aquation of cis-[RhCl4(H2O)2]− compared to [RhCl5(H2O)]2−,
the aquation of cis-[RhCl4(H2O)2]− was not included in the reac-
tion model fitted. Using the program Kinetic5Ver the rate laws,
Eqs. (7)–(9), were simulated and non-linear least-squares regres-
sion fits at several wavelengths were carried out. The agreement
between the experimental and simulated data is excellent and the
fit at 550 nm is shown in Fig. 3a. The good least-squares fits validate
the rate laws and the calculated rate constants listed in Table 2 are
the average of at least four separate experiments:

d(A)
dt

= −k65(A) + k56(B)(Cl−) (7)

d(B)
dt

= k65(A) − k56(B)(Cl−) − k54(B) + k45(E)(Cl−) (8)

d(E)
dt

= k54(B) − k45(E)(Cl−) (9)

A = [RhCl6]3−, B = [RhCl5(H2O)]2− and E = cis-[RhCl4(H2O)2]− .

We find that the pseudo-first-order aquation rate constants,
k65 and k54, are much larger compared with those reported in
literature [3,17], Table 2. As ionic strength is the only difference
between our experiments and that reported in the literature [17],
the effect of ionic strength on the rate of aquation was investigated
at a fixed chloride concentration of 0.1 mol L−1. This was done by
diluting a Rh(III) sample equilibrated in 9.464 mol L−1 HCl such that
the matrix of the diluted sample contained 0.101 mol L−1 HCl and
the desired concentration of HClO4, which was varied from 0.1 to
5.6 mol L−1. From Fig. 3a it is observed that as the ionic strength
increase, the rate of aquation associated with reactions (4) and
(5) decreases substantially. The least-squares fits obtained using
program Kinetic5Ver are shown in Fig. 3a and the computed rate
constants are listed in Table 3. The calculated aquation rate con-
stants, k65 and k54, Table 3 at an ionic strength of 4.0 mol kg−1 HClO4
agree satisfactorily with those reported by Harris and co-worker
[17] (Table 2) and validates our kinetic analyses. The relatively large
decrease of the aquation rates with an increase in ionic strength can
be attributed to a decrease of the activity of water and the Rh(III)
aqua chlorido-complexes.

In order to calculate the relevant aquation/anation rate con-
stants for reaction (6) from the data, of which Fig. 2b is a typical
example, the rate laws, Eqs. (7), (8) and (10), were used. Similar as
before, using the program Kinetic5Ver Eqs. (7), (8) and (10) were

Fig. 3. (a) The symbols represent the absorbance change as a function of time when
diluting 0.1963 mol L−1 Rh(III) samples equilibrated in 9.464 mol L−1 HCl, 100-fold,
to a 0.101 mol L−1 HCl and specified concentration of HClO4. The aquation model
least-squares fits (solid lines) are excellent and the concentrations of HClO4 used
in each case are listed in Table 3. (b) Calculated molar extinction coefficients for
[RhCln(H2O)6−n]3−n (n = 3–5) complexes using the program Mauser1Ver.
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Table 3
Calculated pseudo-first-order aquation rate constants for the [RhCln(H2O)6−n]3−n

(n = 5, 6) complex anions as a function of ionic strength (perchloric acid) at 298.1 K.

Ionic strength Aquation rate constants

HClO4 (mol kg−1) k65 (min−1) k54 (min−1)

0.109 5.42 (±0.21) × 10−1 1.53 (±0.05) × 10−2

0.912 3.15 (±0.17) × 10−1 1.26 (±0.04) × 10−2

1.84 2.03 (±0.13) × 10−1 6.77 (±0.33) × 10−3

2.34 1.62 (±0.08) × 10−1 4.94 (±0.19) × 10−3

2.66 1.21 (±0.08) × 10−1 4.01 (±0.16) × 10−3

3.41 8.78 (±0.29) × 10−2 2.40 (±0.07) × 10−3

4.12 6.19 (±0.31) × 10−2 1.64 (±0.05) × 10−3

5.66 4.66 (±0.23) × 10−2 –

simulated and non-linear least-squares regression fits at several
wavelengths resulted in excellent agreement between the exper-
imental and simulated data illustrated for 490 and 520 nm in the
supplementary information, Fig. S2. The calculated aquation and
anation rate constants, k43 and k34, are listed in Table 2:

d(E)
dt

= k54(B) − k43(E) + k34(G)(Cl−) − k45(E)(Cl−) (10)

B = [RhCl5(H2O)]2−, E = cis-[RhCl4(H2O)2]− and G = fac-
[RhCl3(H2O)3].

The least-squares fits to the kinetic data discussed above not
only yield the relevant aquation/anation rate constants but also
the molar extinction coefficients of the Rh(III) aqua chlorido-
complexes at several wavelengths. To further validate the kinetic
analyses, the molar extinction coefficients of [RhCl5(H2O)]2−,
cis-[RhCl4(H2O)2]− and fac-[RhCl3(H2O)3], were independently
re-calculated using Mauser diagrams, Fig. 3b. A typical Mauser
diagram obtained with program Mauser1Ver is shown in the
supplementary data, Fig. S3. The agreement between the molar
extinction coefficients calculated for the Rh(III) complexes with
the two differing computational methods is excellent and con-
firm the results from the kinetic analyses performed. The molar
extinction coefficient spectrum for [RhCl6]3− could not be cal-
culated from the Mauser plots and it was assumed as in the
literature [12,13], that in concentrated (>9 mol L−1) HCl essentially
only the [RhCl6]3− species is present. The calculated molar extinc-
tion coefficient spectra for the [RhCln(H2O)6−n]3−n (n = 3–5) species
intersect at all the experimentally found isosbestic points and indi-
cates that the aquation/anation model used is internally consistent,
Fig. 3b. Interestingly, the UV–VIS molar extinction coefficients for
the [RhCln(H2O)6−n]3−n (n = 3–6) species reported by Kleinberg and
co-workers [13] and Harris and co-worker [12] differ substantially
from one another, but our calculated ε data agree well with those
reported by Harris and co-worker [12].

4.3. Chromatographic separation and the assignment of
[RhCl6]3−, [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]− and
fac-[RhCl3(H2O)3] complexes

The need for a speciation analysis of Rh(III) aqua chlorido-
complexes in an HCl matrix is clearly reflected by the large
differences between proposed species distribution diagrams [3].
In order to measure the concentration of a Rh(III) species when
several [RhCln(H2O)6−n]3−n (n = 0–6) aqua chlorido-complexes are
simultaneously present with the proposed ion-pair HPLC–ICP-MS
speciation method, it is first necessary to assign the separated
Rh(III) species. Utilizing the kinetic results obtained from the
UV–VIS study above, which confirmed a stereo-specific substi-
tution course of successive aquation of the [RhCl6]3− complex
anion, assignment of several of the Rh(III) aqua chlorido-complexes
of interest separated with the ion-pair HPLC method (vide infra)
becomes possible. A crucial component of the separation ‘step’

is that the Rh(III) aqua chlorido-complexes speciation must not
change. This is potentially problematic for the separation of
[RhCl5(H2O)]2− and [RhCl6]3− species since the t1/2 for aquation of
the [RhCl6]3− species was found to be 1.3 min at 0.1 mol kg−1 HCl
ionic strength and 298 K in contrast to 4.5 min [17] at 4.0 mol kg−1

HCl ionic strength. Hence to minimize aquation of the [RhCl6]3−

complex anion during a chromatographic run, the intended sepa-
ration should be completed as rapidly as possible and at ‘high’ ionic
strength. It was found that a 5.0 cm column and a mobile phase of
0.1 mol L−1 TBACl, 0.01 mol L−1 HCl and water gave the best results
in terms of a relatively rapid ion-pair HPLC separation. Diluting a
Rh(III) sample equilibrated in 9.464 mol L−1 HCl to a 0.101 mol L−1

HCl matrix, followed by injection of the diluted sample as a func-
tion of time yields the chromatographic traces shown in Fig. 4a and
b. From the UV–VIS data it can be confidently inferred that 10 min
after dilution the sample only contains the [RhCl5(H2O)]2− and cis-
[RhCl4(H2O)2]− complex anions to any significant extent. It is thus
reasonable that the Rh(III) species which elutes at 90 s (Fig. 4b),
10 min after dilution can be assigned to the [RhCl5(H2O)]2− species.
Quantification of the Rh(III) species was done by integrating the
entire transient signal and individual peaks. Division of individual
peak area by the total transient signal area yields the mole fraction
of a Rh(III) species. Multiplication of the mole fraction of a species
with the known total Rh concentration yields the individual Rh(III)
species concentration. A plot of ln([RhCl5(H2O)]2−) versus time,
Eq. (11), yields a linear trend (Fig. 4c) confirming a pseudo-first-
order aquation reaction. The aquation rate constant, k54, obtained
from the slope of the linear regression fit in Fig. 4c agree quan-
titatively with the k54 calculated for the [RhCl5(H2O)]2− species
from the UV–VIS data (Table 2) confirming the assignment here.
Moreover, when the diluted sample was injected 5.4 h after prepa-
ration, which is sufficient time for all the [RhCl5(H2O)]2− species to
undergo aquation to form the cis-[RhCl4(H2O)2]− species, no Rh(III)
eluted at 90 s and proves that [RhCln(H2O)6−n]3−n (n = 0–4) species
do not elute at 90 s. It is now apparent that the relatively broad
peak in Fig. 4a at 90 s is due to a combination of [RhCl5(H2O)]2−

and [RhCl6]3− species. The relatively fast aquation of [RhCl6]3− and
the fact that a dilution step before injection is necessary makes
it difficult or nearly impossible to choose chromatographic con-
ditions with this system such that peaks for both [RhCl6]3− and
[RhCl5(H2O)]2− species can be observed in agreement with the CE
study done by Salvadó and co-workers [11]:

ln([B]o) = −k54t + ln ([B]i) (11)

The chromatographic conditions used to separate cis-
[RhCl4(H2O)2]− and [RhCl5(H2O)]2−, Fig. 4b, is clearly not
appropriate for the separation of [RhCln(H2O)6−n]3−n (n = 3, 4) com-
plexes including stereoisomers. The optimum chromatographic
parameters found for such a separation of [RhCln(H2O)6−n]3−n

(n = 3, 4) complexes was determined to be a column of length
25.0 cm and the mobile phase consisted of water, 0.05 mol L−1

TBACl and 0.01 mol L−1 HCl. Diluting a stock Rh(III) sample
equilibrated in 9.464 mol L−1 HCl to a 0.101 mol L−1 HCl matrix,
followed by injection of the diluted sample as a function of time
yielded the chromatographic traces shown in Fig. 5a and b. The
pronounced tailing observed beyond 600 s in Fig. 5a for the sample
injected 2.5 min after dilution suggests that only [RhCl5(H2O)]2−

and [RhCl6]3− complex anions are present shortly after dilu-
tion and considerable aquation of these species occurs during
the chromatographic run. The second injection of the diluted
Rh(III) sample (Fig. 5a) was 61 min after dilution and exhibit
much less tailing compared to the first injection. The decrease in
tailing is expected since 61 min after sample dilution all of the
[RhCl6]3− and approximately 66% of the [RhCl5(H2O)]2− species
had undergone aquation to yield the cis-[RhCl4(H2O)2]− species
and therefore contains much less [RhCl5(H2O)]2− species that can
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Fig. 4. Chromatographic traces obtained when diluting a 2.983 mmol L−1 Rh(III)
sample equilibrated in 9.464 mol L−1 HCl, 100-fold, to a 0.101 mol L−1 HCl matrix
and (a) injecting the sample immediately after dilution (114 s) and (b) as a func-
tion of time. (c) A plot of ln([RhCl5(H2O)]2−) versus time yielded a linear trend
confirming pseudo-first-order aquation kinetics. Mobile phase = water + 0.1 mol L−1

TBACl + 0.01 mol L−1 HCl, column length = 5.0 cm. The RSD (relative standard devia-
tion) for peak area determination was below 5%.

aquate during the chromatographic run. In Fig. 5b the peak at
550 s initially intensify due to further aquation of [RhCl5(H2O)]2−

and subsequently decreased in intensity with time. At the same
time a peak at 180 s appears and only intensifies with time. These
trends are consistent with the stereo-specific substitution course
of successive aquation of the [RhCl6]3− complex anion and it
is thus reasonable to conclude that the peaks at 180 and 550 s
are due to the fac-[RhCl3(H2O)3] and cis-[RhCl4(H2O)2]− species,
respectively. Simulation of the rate laws Eqs. (7), (8) and (10) using
program Kinetic5Ver resulted in an excellent least-squares fit to

Fig. 5. Chromatographic traces (a) and (b) obtained when diluting a 0.1123 mol L−1

Rh(III) sample equilibrated in 9.464 mol L−1 HCl, 100-fold, to a 0.101 mol L−1

HCl matrix after which the diluted sample was injected as a function of
time; (c) excellent aquation/anation model fit. Column length = 25.0 cm, mobile
phase = water + 0.05 mol L−1 TBACl + 0.01 mol L−1 HCl.

the data in Fig. 5b shown in Fig. 5c. The quantitative agreement
between the calculated k43 and k34 rate constants, relation (6),
determined chromatographically and independently with UV–VIS
(Section 4.2 and Table 2) confirms the peak assignments.

In summary, the stereo-specific substitution course of succes-
sive aquation of the [RhCl6]3− complex anion relations (4)–(6),
were monitored using UV–VIS spectroscopy and independently
with the ion-pair HPLC–ICP-MS method. The agreement between
the UV–VIS and ion-pair HPLC data is excellent, Fig. 6, and the rate
of each successive aquation reaction decreases by approximately
an order of magnitude.
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Fig. 6. Diluting a Rh(III) sample equilibrated in 9.462 mol L−1 HCl to a 0.101 mol L−1

HCl matrix results in successive aquation reactions. The calculated species concen-
tration profiles from the UV–VIS data agree quantitatively with that determined
‘directly’ with the developed ion-pair HPLC speciation method and illustrate the
internal consistency of the chromatographic peak assignments made.

4.4. ‘Equilibrium’ species distribution of [RhCln(H2O)6−n]3−n

(n = 0–6) complexes as a function of HCl concentration

For the reaction conditions chosen in Sections 4.2 and 4.3,
several of the Rh(III) aqua chlorido-complexes (cationic, mer-
[RhCl3(H2O)3] and trans-[RhCl4(H2O)2]−) are not present in these
solutions due to the stereo-specific substitution course of suc-
cessive ligand exchange and the relatively slow aquation of the
cis-[RhCl4(H2O)2]− and fac-[RhCl3(H2O)3] species. Hence several
stock Rh(III) samples were prepared with differing HCl concentra-
tion matrices (0.1–9.5 mol L−1 HCl) and allowed to equilibrate for
±2.8 years at 298 K. Injection of these Rh(III) stock samples resulted
in the chromatographic traces shown in Fig. 7a and b. Before injec-
tion of a Rh(III) stock sample it is necessary to rapidly dilute it to
a 0.1 mol L−1 HCl matrix, the time taken from dilution to injection
was approximately 114 s for each sample.

For increasing HCl concentration in the stock samples, the area
of the peak at 90 s (Fig. 7a) associated with the [RhCln(H2O)6−n]3−n

(n = 5, 6) complex anions is seen to increase and for the stock
sample with a 9.5 mol L−1 HCl matrix no peak is observed at
30 s. Despite the difficulty to obtain a clean baseline chromato-
graphic separation of the [RhCl6]3− and [RhCl5(H2O)]2− species,
the chromatographic traces illustrated in Figs. 4a and 7a how-
ever represents an accurate technique to quantify the combined
concentration of these complex anions present in a sample. Dur-
ing the dilution step and chromatographic run only approximately
5% of the [RhCl5(H2O)]2− species undergo aquation which slightly
changes the species abundance relative to the undiluted sample,
based on the rate of aquation data in Table 2.

The chromatographic traces shown in Fig. 7b exhibit sev-
eral interesting features: (i) an un-retained peak at 120 s which
decreases relatively fast in intensity as the chloride concentration
in the Rh(III) stock solutions increase and above 4.0 mol L−1

chloride it was no longer observed. Although the manufacturer
states that “all” residual surface silanol groups are endcapped with
methyl, a relatively small percentage remain which can potentially
act as cation-exchange sites. To obtain confirmation that cationic
species is not retained several chloride salts Li+, Na+, Cs+ and Ba2+

were injected separately under the same chromatographic condi-
tions and concentration as done for the Rh(III) samples. All of the

Fig. 7. Chromatographic traces (a) and (b) obtained when injecting the Rh(III)
stock samples that were equilibrated in differing HCl matrices immediately
(114 s) after dilution to a 0.101 mol L−1 HCl matrix. Total Rh(III) concentration
for each sample was 1.283 mmol L−1. Chromatographic conditions for (a) column
length = 5.0 cm, mobile phase = water + 0.1 mol L−1 TBACl + 0.01 mol L−1 HCl and (b)
column length = 25.0 cm, mobile phase = water + 0.05 mol L−1 TBACl + 0.01 mol L−1

HCl. The RSD for peak area determination in (a) and (b) was below 5 and 4%, respec-
tively.

cationic metal ions eluted as Gaussian profiles at 120 s. Moreover,
the TBA+ concentration in the mobile phase is in 5000 times excess
compared to the total Rh(III) concentration or the group 1 and
2 cationic metal ions injected and will strongly compete for the
possible cation-exchange sites. As cationic species are not retained
under the above-mentioned chromatographic conditions the peak
at 120 s is assigned to cationic Rh(III) aqua chlorido-complexes.
(ii) It was established that the Rh(III) species eluting at 180 s is
due to the fac-[RhCl3(H2O)3] complex, Fig. 5b. During the 2.8
years that the Rh(III) stock solutions were aged it is accepted
that the mer-[RhCl3(H2O)3] species will be present in addition to
fac-[RhCl3(H2O)3]. These Rh(III) complexes are not charged and it
is possible that they are retained due to adsorption on the neutral
C18 stationary phase. Another possible retention mechanism could
be ascribed to partial hydrolysis of these species at the mobile
phase pH of 2 to form [RhCl3(H2O)2(OH)]− complex anions that
can “ion-pair” with TBA+. However, the reported pKa values by
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Fig. 8. Chromatographic traces obtained (a) when diluting a Rh(III) sample equilibrated in 9.464 mol L−1 HCl to a 0.998 mol L−1 HCl matrix and injecting the diluted sample
as a function of time, (b) is an enlargement of the cis- and trans-[RhCl4(H2O)2]− species elution profiles, (c) pseudo-first-order aquation model fits and (d) model fits that
take into account anation in addition to aquation for the relevant species. Column length = 25.0 cm, mobile phase = distilled water + 0.05 mol L−1 TBACl + 0.01 mol L−1 HCl. The
RSD for peak area determination is below 4%.

Harris and co-worker [12] of 7.31 and 6.96 for the fac and mer
species respectively suggest that only a negligibly small fraction of
these species are hydrolyzed at a pH of 2. Moreover, increasing the
pH of the mobile phase to 7 (by replacing the added 0.01 mol L−1

HCl with 0.01 mol L−1 NaCl in the mobile phase) did not influence
the retention times of eluting species. The intensity of the peak at
180 s decreases slower as the chloride concentration in the Rh(III)
stock solutions increase compared to the peak at 120 s. This can be
rationalized when considering that the fac- and mer-[RhCl3(H2O)3]
species will increase relative to cationic Rh(III) species at higher
chloride concentrations. For now, we tentatively assign the peak
at 180 s to be a combination of fac- and mer-[RhCl3(H2O)3] and
confirm this assumption below. (iii) It was conclusively shown that
the cis-[RhCl4(H2O)2]− species elutes at 550 s, Fig. 5b. To assign the
peak at 400 s, Fig. 7b, the following should be noted; it is unlikely
that the mer-[RhCl3(H2O)3] complex would exhibit such a large
difference in retention behavior compared to the fac-[RhCl3(H2O)3]
species, [RhCln(H2O)6−n]3−n (n = 5, 6) species undergo aquation
during the chromatographic run which is the cause of the tailing
beyond 600 s, the pKa of cis-[RhCl4(H2O)2]− species is larger than
7 ensuring negligible hydrolysis at a pH of 2 and the concentration
of Rh(III) in the stock samples (∼1.0 mmol L−1) is to low for
dimerization to occur. The only plausible species that remains is
the trans-[RhCl4(H2O)2]− complex anion and the peak at 400 s,
Fig. 7b, is assigned as such. The trans-[RhCl4(H2O)2]− species
is present at highest concentration in a 1.0 mol L−1 HCl matrix

taking several months to form when Rh(III) equilibrated in a
9.464 mol L−1 HCl is diluted to a 1.0 mol L−1 HCl matrix at 298 K.
The relatively long time required for the formation of the trans-
[RhCl4(H2O)2]− species can be explained by the stereo-specific
course of ligand substitution due to the trans effect, as proposed by
Harris and co-worker [12], i.e. [RhCl6]3− → [RhCl5(H2O)]2− → cis-
[RhCl4(H2O)2]− → fac-[RhCl3(H2O)3] → cis-[RhCl2(H2O)4]+ → mer-
[RhCl3(H2O)3] → trans-[RhCl4(H2O)2]−.

According to the study by Harris and co-worker [12] the trans-
[RhCl4(H2O)2]− species undergoes aquation more rapidly than the
cis-[RhCl4(H2O)2]−. In order to confirm the mer-[RhCl3(H2O)3] and
trans-[RhCl4(H2O)2]− peak assignments we measured the rate of
aquation of the cis- and trans-[RhCl4(H2O)2]− species. For these
kinetic experiments, the Rh(III) stock solution equilibrated in a
0.995 mol L−1 HCl matrix for 2.8 years was diluted to a 0.101 mol L−1

HCl matrix, followed by injection of the diluted sample as a func-
tion of time. The results for one of these experiments are shown
in Fig. 8a and b, from which it is observed that the peak at
550 s (cis-[RhCl4(H2O)2]−) initially increase due to the aquation
of [RhCl5(H2O)]2− (first 150 min) after which the peaks at 400
and 550 s both decrease in intensity with time due to aquation
of the trans- and cis-[RhCl4(H2O)2]− species, respectively. The cis-
and trans-[RhCl4(H2O)2]− aquation products are the fac- and mer-
[RhCl3(H2O)3] species respectively and it is observed (Fig. 8a)
that only the peak at 180 s increase in intensity as a function
of time, consistent with the assignment that the fac- and mer-
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Fig. 9. [RhCln(H2O)6−n]3−n species distribution diagram as a function of HCl con-
centration. The total Rh(III) concentration for each sample was 1.283 mmol L−1. The
RSD for species abundance is below 5%.

[RhCl3(H2O)3] species elute as a single band at 180 s. Moreover,
up to approximately 5000 min after dilution anation of mer- and
fac-[RhCl3(H2O)3] is negligible and therefore plots of ln([cis- or
trans-[RhCl4(H2O)2]−]) versus time, Eq. (11), were done and is illus-
trated in Fig. 8c. The good linear least-squares regression fits, Fig. 8c,
confirmed pseudo-first-order aquation reactions and the calculated
cis and trans k43 aquation rate constants are listed in Table 2. After
5450 min, anation of mer- and fac-[RhCl3(H2O)3] species must be
taken into account and it was therefore necessary to do a non-linear
least-squares fit with the rate model given by Eqs. (8), (10) and
(12), as shown in Fig. 8d. The aquation rate constants calculated
with the linear and non-linear least-squares fits, Table 2, agree
quantitatively. Furthermore, the aquation rate constant for the
cis-[RhCl4(H2O)2]− complex agrees quantitatively with that deter-
mined previously using UV–VIS, Fig. S2, and chromatographically,
Fig. 5, shown in Table 2. In addition, due to the trans-[RhCl4(H2O)2]−

species having two sites for chloride exchange compared to the
one chloride site for the cis-[RhCl4(H2O)2]− species, aquation of
the trans stereoisomer is slightly faster than the cis stereoisomer.

d(F)
dt

= −k43(F) + k34(H)(Cl−) (12)

F = trans-[RhCl4(H2O)2]− and H = mer-[RhCl3(H2O)3].
A partial Rh(III) species distribution diagram as a function of HCl

concentration, Fig. 9, was constructed by integrating the respective
peaks in Fig. 7a and b. Due to the relatively fast aquation of [RhCl6]3−

only the combined amount of [RhCln(H2O)6−n]3−n (n = 5, 6) can
be determined. Moreover, aquation of the [RhCln(H2O)6−n]3−n

(n = 0–5) species is slow enough such that the speciation of the
Rh(III) system do not change in the time taken to dilute and
inject the stock samples. In addition, the chloride concentration
in the diluted sample and in the mobile phase is always lower or
equal to the Rh(III) stock samples and anation of Rh(III) species is
therefore of no concern and will not change the species amounts
during the dilution step or chromatographic run. Comparing our
proposed speciation diagram with those shown in the review by
Benguerel et al. [3] several differences are observed. Firstly, highly
aquated [RhCln(H2O)6−n]3−n (n = 0–4) complexes persist in appre-
ciable amounts up to 3.0 mol L−1 HCl. From a solvent- or solid phase
extraction perspective [2,3] the most important difference occurs
at 1.0 mol L−1 HCl where it was found that the [RhCl5(H2O)]2−

species is only in 8–10% abundance which is in stark contrast
to the data of Cozzi and Pantani [37] and Benguerel et al. [3]
that claim 70 and 80% abundance, respectively. This large discrep-
ancy was easily resolved with the following kinetic experiments.

When Rh(III) equilibrated in 9.464 mol L−1 HCl was diluted to a
1.0 mol L−1 HCl matrix the UV–VIS spectral change as a function
of time, Fig. S4a, clearly indicate that [RhCl5(H2O)]2− undergo
significant aquation. From the kinetic model fit it is calculated,
Fig. S4b, that only 44% of [RhCl5(H2O)]2− species remains after
90 min and it can be seen from Fig. S4b that significant aquation
will continue to occur with time. Confirmation of these results
were obtained by diluting Rh(III) equilibrated in 9.464 mol L−1 HCl
to HCl matrices which varied from 0.1 to 6.5 mol L−1, Fig. S5. The
kinetic analyses performed on the data set shown in Fig. S5 clearly
indicate that even in a 2.8 mol L−1 HCl matrix significant aquation
of [RhCl5(H2O)]2− occurs. Interestingly only above a HCl concen-
tration of 6 mol L−1, no UV–VIS spectral change is observed as a
function of time. This suggests that the [RhCl6]3− species is in 95%
or higher abundance when present in 6.0 mol L−1 HCl. These exper-
iments confirm our chromatographic speciation data, Fig. 9, and
also explains several anomalous Rh(III) extraction results found by
Schmuckler and co-worker [1,36]. Moreover, the kinetic-based spe-
ciation diagram proposed by Benguerel et al. [3] only take into
account [RhCln(H2O)6−n]3−n (n = 4–6) species thereby neglecting
further aquation and stereoisomers. It should also be noted that
our proposed species distribution diagram is as a function of HCl
concentration and no attempt was made to keep ionic strength
constant as done in literature [3,17,37], to better reflect actual
industrial process solution conditions. Metal ions such as copper
and strontium are not present in the samples prepared in this study
and hence possible polyatomic interferences caused by 40Ar63Cu+

and 86Sr16OH+ are absent. The Rh(III) samples prepared in this
study reflect what can be expected in the mining industry, since
“all” base and platinum group metals are ‘removed’ prior to Rh
recovery [2]. Moreover, the HPLC separation step can minimize
polyatomic interference since each possible interfering species will
presumably have a different retention time compared to the Rh(III)
species and hence minimize possible peak overlap. In addition,
metal ions present in group 1 and 2, such as 86Sr in particular, will
not form negatively charged chlorido complexes and will elute as
an un-retained peak with no peak overlap with [RhCln(H2O)6−n]3−n

(n = 3–6) species.
In addition to the Rh(III) species reported in several CE [9–11]

studies, it was possible with the ion-pair HPLC technique to obtain a
baseline separation of the [RhCl4(H2O)2]− stereoisomers and assign
them as well. In effect, more information regarding the speciation
of Rh(III) aqua chlorido-complexes present in an HCl matrix, Fig. 9,
was gained using the ion-pair HPLC technique compared to CE stud-
ies. Lastly, the ion-pair HPLC method has considerable scope for
improvement by decreasing the column material particle size from
50 �m currently used to 5 �m or smaller and of course selecting
different types of ion-pair reagents.

5. Conclusions

We developed an ion-pair (TBACl) reversed phase (C18)
HPLC–ICP-MS speciation method for Rh(III) aqua chlorido-
complexes present in an HCl matrix. Under optimum chromato-
graphic conditions it was possible, to separate and quantify
cationic Rh(III) species (eluted as one band), [RhCl3(H2O)3],
cis-[RhCl4(H2O)2]−, trans-[RhCl4(H2O)2]− and [RhCln(H2O)6−n]3−n

(n = 5, 6). The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted
as one band due to the relatively fast aquation of [RhCl6]3−

(t1/2 = 1.3 min) in a low ionic strength (0.1 mol kg−1) chloride
matrix. It was found that the t1/2 for [RhCl6]3− aquation decreased
significantly from 6.5 to 1.3 min when decreasing the ionic strength
from 4.0 to 0.1 mol kg−1 HClO4. In this context ionic strength or
the activity of water is a key parameter that determines whether
[RhCln(H2O)6−n]3−n (n = 5, 6) complex anions can be chromato-
graphically separated. An advantage of the developed ion-pair HPLC
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speciation method compared to previous CE speciation studies
[9–11] is that it is possible to separate, quantify and identify the
cis- and trans-[RhCl4(H2O)2]− stereoisomers.

The Rh(III) samples that was equilibrated in differing HCl
concentrations for 2.8 years at 298 K was analyzed with the ion-
pair HPLC method. This analysis yielded a partial Rh(III) aqua
chlorido-complex species distribution diagram as a function of HCl
concentration. This diagram for the first time show the distribution
of the cis- and trans-[RhCl4(H2O)2]− stereoisomers. Furthermore,
it was found that relatively large amounts of ‘highly’ aquated
[RhCln(H2O)6−n]3−n (n = 0–4) species persist in up to 3.0 mol L−1 HCl
and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species
is only 8–10% far from the 70–80% proposed previously [3]. Interest-
ingly a 95% abundance of the [RhCl6]3− complex anion occurs only
when the HCl concentration is above 6 mol L−1. Work on extending
the analysis of Rh(III) aqua halido-complexes speciation and to the
other PGM are currently under way.
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A kinetic and thermodynamic study of the unexpected comproportionation
reaction between cis-[OsVIIIO4(OH)2]2- and trans-[OsVIO2(OH)4]2- to form a
postulated [OsVIIO3(OH)3]2- complex anion†
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A kinetic study of [OsO4] reduction by aliphatic alcohols (MeOH and EtOH) was performed in a 2.0 M
NaOH matrix at 298.1 K. The rate model that best fitted the UV-VIS data supports a one-step, two
electron reduction of OsVIII (present as both the [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species in a
ratio of 0.34 : 0.66) to form the trans-[OsVIO2(OH)4]2- species. The formed trans-[OsVIO2(OH)4]2- species
subsequently reacts relatively rapidly with the cis-[OsVIIIO4(OH)2]2- complex anion to form a postulated
[OsVIIO3(OH)3]2- species according to: cis-[OsVIIIO4(OH)2]2- + trans-[OsVIO2(OH)4]2-

k

k

+

−

2

2
� ⇀���↽ ����

2[OsVIIO3(OH)3]2-. The calculated forward, k+2, and reverse, k-2, reaction rate constants of this
comproportionation reaction are 620.9 ± 14.6 M-1 s-1 and 65.7 ± 1.2 M-1 s-1 respectively. Interestingly, it
was found that the postulated [OsVIIO3(OH)3]2- complex anion does not oxidize MeOH or EtOH.
Furthermore, the reduction of OsVIII with MeOH or EtOH is first order with respect to the aliphatic
alcohol concentration. In order to corroborate the formation of the [OsVIIO3(OH)3]2- species predicted
with the rate model simulations, several OsVIII/OsVI mole fraction and mole ratio titrations were
conducted in a 2.0 M NaOH matrix at 298.1 K under equilibrium conditions. These titrations
confirmed that the cis-[OsVIIIO4(OH)2]2- and trans-[OsVIO2(OH)4]2- species react in a 1 : 1 ratio with a
calculated equilibrium constant, KCOM, of 9.3 ± 0.4. The ratio of rate constants k+2 and k-2 agrees
quantitatively with KCOM, satisfying the principle of detailed balance. In addition, for the first time, the
molar extinction coefficient spectrum of the postulated [OsVIIO3(OH)3]2- complex anion is reported.

Introduction

There is extensive literature dealing with the use of [OsO4]
as a homogenous catalyst for the oxidation of several organic
compounds, of which the [OsO4] catalyzed Sharpless asymmetric
dihydroxylation of alkenes to form vicinal diols is probably the
best known example.1,2 Remarkably, the oxidation of olefins
is considerably accelerated by ligation of tertiary amines to
the [OsO4] metal centre3 to form [OsO4Ln] type complexes.
Recently, Mayer et al.4 demonstrated that the rate of [OsO4]
reduction with molecular hydrogen significantly increases as a
function of aqueous solution pH. This was attributed to co-
ordination expansion of [OsO4] to form the [OsVIIIO4(OH)]- and
cis-[OsVIIIO4(OH)2]2- complex anions at relatively high hydroxide

aResearch Group of PGM Chemistry, Dept of Chemistry and Polymer
Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602,
Western Cape, South Africa. E-mail: wgerber@sun.ac.za; Fax: +2721 808
3342; Tel: +2721 808 2699
bDept of Chemistry, Nelson Mandela Metropolitan University, PO Box
77000, Port Elizabeth, 6031, South Africa
† Electronic supplementary information (ESI) available: Supplemen-
tary UV-VIS spectra, kinetic traces and derivations. See DOI:
10.1039/c1dt10290g

concentration. Moreover, experimental results5a–e as well as density
functional theory calculations2,4,5a,b,6 favour a concerted [3 + 2]
addition of ‘organic’ substrate across two oxo groups of OsVIII,
Scheme 1, as an integral part of the mechanism of OsVIII catalysis,
in contrast to a [2 + 2] or an oxidative addition reaction.2,5a,b,e7

Scheme 1 Cartoon representation of possible substrate oxidation
pathways.

The reduction of [OsO4] in aqueous basic media by the addition
of ethanol is routinely performed in the mining industry after the
separation of [OsO4] from solutions containing platinum group
metals (PGMs) by means of oxidative distillation.8–10 Reported
kinetic investigations in the past four decades4,11–21 pertaining to
the reduction of [OsO4] with molecular hydrogen, alcohols, diols

This journal is © The Royal Society of Chemistry 2011 Dalton Trans., 2011, 40, 8581–8588 | 8581
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and a-hydroxy acids in aqueous basic media are in agreement that
OsVIII is reduced to the trans-[OsVIO2(OH)4]2- complex anion in
a single, two-electron transfer step. Furthermore, the reduction
of OsVIII with the mentioned reducing agents is reported4,11–21 to
be first order with respect to the reducing agent and the total
OsVIII concentration in a relatively low hydroxide concentration
matrix. However, EPR (electron paramagnetic resonance)22,23 and
polarographic24 data obtained in the late 1960’s, in a relatively
high hydroxide concentration matrix, support the formation of
an uncharacterized OsVII species during the reduction of [OsO4]
in basic media, which contradicts the observations reported by
4,11–21.

If an OsVII species is present in appreciable amounts during the
reduction of [OsO4] it might have possible ramifications for the
PGM refining process and also for the mechanistic interpretation
of OsVIII catalytic reactions or alternatively “poisoning” of a
catalytically ‘active’ OsVIII species. As part of our interest in
examining the chemistry of PGM in well defined industrial
solutions,25,26 we report here a detailed kinetic study concerning
the reduction of OsVIII by aliphatic alcohols in basic media.‡ The
aim of this study is to establish whether OsVII species exist in
appreciable amounts in basic media and to measure the kinetic
and thermodynamic parameters that define the formation of such
a species. In this context we also present chemical equilibrium
modelling of OsVIII/OsVI mole fraction and mole ratio titrations
in order to support the results of our OsVIII reduction kinetic
investigation.

Experimental

Materials

Batches of high purity potassium osmate crystals,
K2[OsVIO2(OH)4], were obtained from Anglo Platinum Ltd
(South Africa). Thiourea and sodium hydroxide salts (SMM
Instruments) were of analytical grade. Analytical grade
orthophosphoric acid (H3PO4), hydrogen peroxide (H2O2) and
carbon tetrachloride (CCl4) (Merck Chemicals) were used in
the preparation of osmium tetroxide [OsO4] stock solutions.
Spectroscopic grade methanol and ethanol (Merck Chemicals)
were used in the kinetic investigations. Potassium hydrogen
phthalate was used for the standardization of all NaOH stock
solutions. All aqueous solutions were prepared and diluted to a
desired concentration using MilliQ water with a resistivity of 18.2
MX cm.

Instrumentation

UV-VIS spectra were recorded with a Perkin-Elmer Lambda 12
double beam spectrophotometer using a slit width setting of
1 nm. Quartz cuvettes with a 1.0 cm path length were used.
The room temperature was regulated at 298.0 ± 1.0 K. A Grant
KD100 circulating thermostatic controller, mounted on a Grant
W6 tank with cooling coil was used to regulate the temperature
during sample preparation and within the sample chamber of the
spectrophotometer at 298.1 ± 0.1 K. Mole ratio titrations were

‡ Note: OsVIII in our study refers specifically to a combination of
the [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- complex anions that are
simultaneously present in a 2.0 M NaOH matrix.

performed using a Metrohm 716 DMS titroprocessor, connected
to a Metrohm 662 photometer. The photometer light path was
1.0 cm.

Preparation of OsVIII and OsVI stock solutions

[OsO4] solutions were prepared by oxidative distillation of the
pure K2[OsVIO2(OH)4] salt using 10% (v/v) H2O2 in an aque-
ous 45% (v/v) H3PO4 matrix. The evolved [OsO4] vapour was
trapped in CCl4. The UV-VIS spectrum of the [OsO4] in CCl4

was identical to that reported in literature,29a,b supplementary
information Figure S1,† and confirmed that only [OsO4] is
present in the CCl4. Aqueous [OsO4] solutions were prepared by
extraction of [OsO4] from the CCl4 stock solution into MilliQ
water. Stock trans-[OsVIO2(OH)4]2- solutions were prepared by
dissolving the pure K2[OsVIO2(OH)4] salt in a standardised 2.0 M
NaOH matrix under inert Ar(g) conditions. In all cases the total
Os concentration was determined by the thiourea colorimetric
method.30

OsVIII reduction kinetic experiments

The rate of OsVIII reduction was investigated as a function of
aliphatic alcohol (methanol, ethanol) concentration in a 2.0 M
NaOH aqueous matrix. In these experiments the reactants were
mixed thoroughly in a thermostatic reaction vessel maintained
at 298.1 K under inert Ar(g) conditions and the final reaction
mixture volume was 25.0 mL in a 2.0 M NaOH matrix. Prior
to each kinetic reaction, a reaction “blank” was obtained, where
the OsVIII spectrum in a 2.0 M NaOH matrix was recorded in the
absence of aliphatic alcohol. This was required in order to obtain
the initial UV-VIS OsVIII spectrum at time equals zero. No more
than 30 s elapsed from initiating the reaction to the first spectral
recording being made.

OsVIII/OsVI mole fraction and mole ratio titrations

OsVIII/OsVI mole fraction experiments were conducted by prepar-
ing a series of solutions in which the total Os concentration was
kept constant, while the mole fraction ([OsVI]/([OsVIII]+[OsVI]))
was varied. Constant reaction volume, 25.0 mL, and hydroxide
concentration, 2.0 M NaOH, were maintained for each solution
in the series under inert Ar(g) conditions at 298.1 K. Each
solution was allowed to equilibrate for approximately 60 s prior
to recording UV-VIS spectra. The OsVIII/OsVI mole fraction
experiment was done using several total Os concentrations up to
7.003 ¥ 10-4 M.

The mole ratio titrations were performed by titrating an OsVIII

solution, prepared in a standardized 2.0 M NaOH matrix, against
a trans-[OsVIO2(OH)4]2- solution also prepared in 2.0 M NaOH.
These titrations were performed under inert Ar(g) conditions at
298.1 K and were done using several total OsVI and OsVIII con-
centrations. The reaction solution was continuously agitated, but
not vigorously, so as to prevent splashes and the formation of air
bubbles in the light path of the photometer probe. Following each
addition of potassium osmate dispensed from the titroprocessor,
the reaction solution was allowed to equilibrate for 60 s, after
which its absorbance at 400 nm was recorded.

8582 | Dalton Trans., 2011, 40, 8581–8588 This journal is © The Royal Society of Chemistry 2011
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Computational details

The program Mol1Frak is a set of routines developed in-house
using Matlab 7.0.1 in order to calculate equilibrium constants
and species molar extinction coefficients. This was done by means
of simulating a reaction model and performing non-linear least-
squares fits to mole fraction and mole ratio UV-VIS spectroscopic
data. The general workflow of program Mol1Frak is similar to
that described by Meloun et al.31 The Newton–Raphson method
for a non-linear system of equations32 is used to calculate the
free concentration of the relevant chemical species and for the
minimization of the respective non-linear least-squares objective
functions.

The program Kinetic5Ver was developed in-house in the Visual
Basic 6 environment in order to calculate reaction rate constants
and species molar extinction coefficients. This was done by means
of simulating reaction rate law(s) and performing non-linear least
squares fits to UV-VIS spectroscopic data.25 The Runga–Kutta
algorithm was used to solve the set of differential equations while
the Simplex algorithm33 was used for the minimization of the
respective non-linear least-squares objective functions.

Results and discussion

Several studies4,34,35 have reported the relatively slow, spontaneous
reduction of [OsO4] in an aqueous alkaline matrix to form
the osmate, trans-[OsVIO2(OH)4]2-, complex anion. To obtain an
indication of the actual time-frame of OsVIII reduction in an
aqueous alkaline matrix, [OsO4] was extracted from CCl4 into
water. After separation of the two phases, a NaOH solution was
added to the aqueous [OsO4] aliquot such that the final NaOH
concentration was 2.0 M. The UV-VIS spectrum of this aqueous
solution was subsequently monitored over a period of six days at
298.1 K, Fig. 1.

Fig. 1 Change in the OsVIII UV-VIS spectrum as a function of time in a
2.0 M NaOH matrix. The insert figure illustrates the absorbance maximum
at 370 nm after 6.39 h. [Os]T = 1.772 ¥ 10-4 M.

It is apparent from Fig. 1 that even after six days not all of the
OsVIII was reduced to the trans-[OsVIO2(OH)4]2- species (vide infra).
However, it is interesting to note that in the wavelength region of
305 to 480 nm, Fig. 1, the absorbance initially increases until a
maximum is reached and subsequently decreases as a function

of time. Considering that the ‘osmium complexes’ are the only
species that absorb light in this wavelength region the observed
absorbance maximum, Fig. 1, suggests two possible scenarios (i)
relatively slow interconversion between [OsVIIIO4(OH)]- and cis-
[OsVIIIO4(OH)2]2- species during the reduction of OsVIII to OsVI or
(ii) that at least one high oxidation state osmium species that has
not been characterized before, is present during the reduction of
OsVIII.

In order to substantiate that a hitherto unknown Os complex
is formed during the reduction of OsVIII to OsVI, it must first be
established that the speciation of OsVIII and OsVI in a 2.0 M NaOH
matrix is not responsible for the observed absorbance maximum,
Fig. 1. Numerous studies4,21 have shown that the reduction of OsVIII

results in the formation of only the trans-[OsVIO2(OH)4]2- complex
anion. Moreover, it is well documented4,34 that [OsO4], in alkaline
media, reacts with hydroxide to only form the [OsVIIIO4(OH)]- and
cis-[OsVIIIO4(OH)2]2- species, depicted by reactions 1 and 2. These
reactions occur rapidly as is evident from the immediate solution
colour change from colourless to bright yellow when hydroxide
is added to [OsO4]. Moreover, after the time, approximately 30 s,
between adding hydroxide to [OsO4] and making the first UV-VIS
spectral recording no change in absorbance occurs.

[Os O ] + OH  [Os O (OH)]VIII
4

- VIII
4

-K1� ⇀��↽ ��� (1)

[Os O (OH)]  + OH  -[Os O (OH) ]VIII
4

- - VIII
4 2

2-K
cis2� ⇀���↽ ���� (2)

As the OsVIII speciation studies in alkaline media4,34 are in good
agreement over a relatively wide range of solution ionic strengths,
we took the average of the reported stepwise equilibrium constants
for reactions 1 and 2 (K1 = 135 ± 11, K2 = 0.93 ± 0.07) in order
to calculate the OsVIII species distribution diagram as a function
of hydroxide concentration, Fig. 2. At a hydroxide concentration
of 2.0 M the ratio of the [OsVIIIO4(OH)]- : cis-[OsVIIIO4(OH)2]2-

species is approximately 0.34 : 0.66 and the amount of [OsO4]
present is negligible. Furthermore, since reactions 1 and 2 are
relatively rapid, especially when compared to the duration over
which the data in Fig. 1 was recorded, and the hydroxide
concentration is in large excess (2.0 M) compared to the total OsVIII

Fig. 2 OsVIII species distribution diagram as a function of hydroxide
concentration. Matlab 7.0.1 was used to calculate the species distribution.

This journal is © The Royal Society of Chemistry 2011 Dalton Trans., 2011, 40, 8581–8588 | 8583
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concentration (1.772 ¥ 10-4 M) used, it was assumed that during
the reduction of OsVIII, Fig. 1, the ratio of [OsVIIIO4(OH)]- and
cis-[OsVIIIO4(OH)2]2- species remains constant (vide infra). As the
ratio of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species remains
constant, combined with the fact that there is only one OsVI species
present in 2.0 M NaOH during the reduction of OsVIII, Fig. 1, it
was anticipated that the absorbance change at a wavelength would
either only increase, decrease or remain constant as a function of
time. It is therefore evident, if our assumption holds, that the
speciation of OsVIII and OsVI in a 2.0 M NaOH matrix cannot
account for the observed absorbance maximum, Fig. 1.

To investigate why an absorbance maximum occurs during the
reduction of OsVIII in a systematic manner, the rate of OsVIII

reduction was monitored as a function of organic substrate
(MeOH or EtOH) concentration in a 2.0 M NaOH matrix at
298.1 K, Fig. 3a and 3b. When comparing Fig. 1 and 3 it is clear
that the rate of OsVIII reduction increases by orders of magnitude
when MeOH or EtOH is added to the 2.0 M NaOH matrix.
If the reduction of OsVIII is allowed to proceed to completion,
by addition of an excess amount of aliphatic alcohol, only
the trans-[OsVIO2(OH)4]2- species remains. This was confirmed
by comparing the resultant UV-VIS spectrum obtained when

Fig. 3 Kinetic traces depicting the change in absorbance as a function
of time for the reaction between OsVIII and varying aliphatic alcohol
concentrations at 298.1 K. (a) [Os] = 2.631 ¥ 10-4 M; [OH-] = 2.0 M;
[MeOH] shown in the legend. (b) [Os] = 2.590 ¥ 10-4 M; [OH-] = 2.0 M;
[EtOH] shown in the legend. Symbols = expt data; solid lines = model fits
of eqn (9)–(11) using the parameters listed in Tables 1 and 2.

dissolving potassium osmate, K2[OsVIO2(OH)4], crystals in 2.0 M
NaOH and comparison with the spectra reported in literature.4,21

Several reaction models can be envisaged which could account
for the observed kinetic traces illustrated in Fig. 3a and 3b. The
first of several models considered was two consecutive one-electron
reduction reactions according to; OsVIII + RCH2OH → OsVII +
RCH2OH → OsVI. However, this model, as well as more elaborate
variations failed to fit the experimental data. The simplest model
that satisfactorily fitted all the data accumulated during this study
is given by reactions 1–5.

[Os O (OH)]  + RCH OH + OH   -[Os O (OH) ]VIII
4

-
2

- VI
2 4

2-k
transx⎯ →⎯   + RCHO

(3)

cis
k

transy-[Os O (OH) ]  + RCH OH  -[Os O (OH) ]VIII
4 2

2-
2

VI
2 4

2-⎯ →⎯   + RCHO

(4)

cis trans
k

k
-[Os O (OH) ]  + -[Os O (OH) ]  VIII

4 2
2- VI

2 4
2- +2

2-

� ⇀���↽ �����  2 [Os O (OH) ]VII
3 3

2-

(5)

The assumptions made in our proposed model are summarized
below. As there is no evidence to the contrary, we assume that both
the [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- complex anions oxi-
dize aliphatic alcohols to produce the corresponding aldehyde and
the trans-[OsVIO2(OH)4]2- species, as depicted in reactions 3 and
4.4,36 However, the formed aldehydes can also be further oxidized
to their corresponding carboxylic acids.11–18 We justify not taking
this reaction into account two-fold; the alcohol concentration is
always in relatively large excess compared to the corresponding
aldehyde concentration during the kinetic run, and preliminary
experimental results indicate that the observed rate for aldehyde
oxidation is of the same order of magnitude as the oxidation of
the corresponding alcohol.§ Furthermore, it is assumed here that
only the cis-[OsVIIIO4(OH)2]2- and not the [OsVIIIO4(OH)]- species
reacts with the trans-[OsVIO2(OH)4]2- complex anion, reaction 5.
In support of this assumption the rate of OsVIII reduction was
measured as a function of hydroxide concentration (0.1–3.0 M
NaOH) at 298.1 K and 1.0 ¥ 10-2 M EtOH, Fig. 4. No attempt
was made to keep the ionic strength constant for these explorative
experiments. From Fig. 4 it is observed that the rate of OsVIII

reduction and the absorbance maximum value attained during the
kinetic run increases considerably when the hydroxide concentra-
tion is varied from 0.1 to 3.0 M. If our assumption is valid that
only the cis-[OsVIIIO4(OH)2]2- and not the [OsVIIIO4(OH)]- species
reacts with the trans-[OsVIO2(OH)4]2- complex anion, it is expected
that an increase in the hydroxide concentration would produce
a corresponding increase in the amount of cis-[OsVIIIO4(OH)2]2-

species, Fig. 2, which in turn leads to an increase in the extent of
[OsVIIO3(OH)3]2- species formation, reaction 5, and consequently
an increase in the absorbance maximum value. The significant
increase of the absorbance maximum value correlates well with
the large increase in the mole fraction of the cis-[OsVIIIO4(OH)2]2-

species from 0.08 in 0.1 M NaOH to 0.73 in 3.0 M NaOH,
Fig. 2, which suggests that the cis-[OsVIIIO4(OH)2]2- and not the

§ If necessary the oxidation of aldehydes can easily be incorporated in the
rate model at a later stage for a better approximation
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Table 1 The ratio of the absorbance maximum value at 370 nm (Amax) as a function of total osmium concentration

[OsVIII]tot/M Amax at 370 nm Amax : [OsVIII]tot/M-1

Fig. 1 1.772 ¥ 10-4 0.4118 2324
Fig. 3ab 2.631 ¥ 10-4 0.6118, 0.6088, 0.6088, 0.5999, 0.5964, 0.5927 2325, 2314, 2314, 2280, 2266, 2253
Fig. 3bb 2.590 ¥ 10-4 0.6007, 0.6014, 0.6014, 0.5992, 0.6001, 0.5956, 0.5889 2319, 2322, 2322, 2313, 2316, 2299, 2273
Fig. 5a [1]a 3.485 ¥ 10-4 0.7814 2242
Fig. 5a[2]a 7.003 ¥ 10-4 1.5957 2279

a Infer that the total osmium concentration was used. b The data is listed from the lowest to highest alcohol concentration

Table 2 Comparison of the calculated and experimental high oxidation state Os species’molar extinction coefficients at 370 nm

Kinetic Data

Expt Mole fraction Mole ratio MeOH EtOH Literature4,21

etrans-[OsVI O2 (OH)4 ]2
-/L mol-1 cm-1 210.6 ± 6.4 203.4 ± 12.9 211.2 ± 9.4 188.4 ± 13.4 203.6 ± 16.5 231.2

e([OsVIII O4 (OH)]- + cis-([OsVIII O4 (OH)2- ]/L mol-1 cm-1 1159.7 ± 7.1 1201.3 ± 15.6 1213.7 ± 17.1 1217.8 ± 15.4 1266.1 ± 14.8 1165.6
e[OsVII O3 (OH)3 ]2- /L mol-1 cm-1 — 5798.8 ± 56.3 5746.7 ± 61.5 5824.1 ± 57.6 5850.9 ± 49.6 —

Fig. 4 Kinetic traces depicting the change in absorbance as a function of
time and varying hydroxide concentration at 298.1 K. NaOH concentra-
tion is denoted in the legend. [Os] = 5.231 ¥ 10-4 M and [EtOH] = 1.0 ¥
10-2 M.

[OsVIIIO4(OH)]- species is involved in the comproportionation
reaction.

In addition, the relatively slow reduction of OsVIII in 2.0 M
NaOH in the absence of aliphatic alcohol, Fig. 1, will have a
negligible influence on the calculated results. Lastly, it is assumed
that reactions 1 and 2 occur so rapidly compared to OsVIII

reduction that equilibrium is maintained at all times with respect
to these two reactions. To support this assumption consider the
following. If the ratio of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2-

species changes during OsVIII reduction to OsVI then it stands to
reason that when the rate of OsVIII reduction to OsVI increase
the observed absorbance maximum value must decrease since the
time that [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species have to
interconvert decreases. Now consider the data presented in Fig. 1,
3 and Table 1. The data in Fig. 1 was collected over six days whereas
the data in Fig. 3 was collected in 30 min, a fraction of the time.
In both cases the ‘same’ ratio of Amax : Total Os concentration,
Table 1, is observed. The fact that essentially the same ratio
of Amax : Total Os concentration is found, irrespective of the

time available for [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species
interconversion, implies that the observed absorbance maximum
value as a function of time is not due to slow [OsVIIIO4(OH)]- and
cis-[OsVIIIO4(OH)2]2- species interconversion. Moreover, it can be
inferred that the ratio of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2-

species remains, to a good approximation, constant during the
reduction of OsVIII to OsVI or else the ratio of Amax : Total Os
concentration would vary, Table 1.

The derivation of the rate model corresponding to reactions
1–5 in a 2.0 M NaOH matrix is given by eqn (6)–(11). The
[OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- concentrations are first
expressed in terms of the total OsVIII concentration in 2.0 M NaOH,
eqn (6) and 7, respectively.

[ ]
[ ]

[ ]
E

A

OH-
=

+K 2 1
(6)

[F
OH A

OH

-

-
]

[ ][ ]

[ ]
=

+
K

K
2

2 1
(7)

[A] = [OsVIII]T = [OsVIIIO4(OH)-] + [cis-OsVIIIO4(OH)2
2-] = [E] + [F]

[E] = [OsVIIIO4(OH)-]

[F] = [cis-OsVIIIO4(OH)2
2-]

Taking reactions 3–5 into account, the change in the total OsVIII

concentration as a function of time can be expressed as:

d

d

d

d

d

d
k k k kx y

[ ] [ ] [ ]
[ ][ ][ ] [ ][ ] [ ][ ]

A

t

E

t

F

t
OH E S F S F B-= + = − − − ++ −2 2[[ ]C 2

(8)

[B] = [trans-OsVIO2(OH)4
2-]

[S] = [MeOH] or [EtOH]

[C] = [OsVIIO3(OH)3
2-]
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Substituting eqn (6) and 7 into 8 and rearranging yields
relationship 9:

d

d

k k K
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kx y[ ] [ ] [ ]

[ ]
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− +2

2 1
22 2

2
2

2

1
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k o
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OH
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- +
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⎝
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In a similar manner, eqn (10) and 11 can be derived.
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Using the program Kinetic5Ver, the rate model eqn (9)–(11)
were simulated and the non-linear least-squares fits obtained for
the MeOH and EtOH data, Fig. 3a and 3b, are excellent.¶ The
calculated Os species molar extinction coefficients and reaction
rate constants are listed in Tables 1 and 2 respectively. The excellent
non-linear least-squares fits, coupled with the quantitative agree-
ment of the calculated comproportionation forward and reverse
reaction rate constants, k+2 and k-2, for both the MeOH and
EtOH cases and the good agreement of calculated molar extinction
coefficients with reported literature values validate the proposed
kinetic model. The reduction rate of OsVIII increases approximately
five-fold with an increase in the alkyl chain length from methyl to
ethyl. Moreover, the reduction of OsVIII is first order with respect
to aliphatic alcohol (MeOH or EtOH) concentration, Fig. S3.†
The good fits and agreement between the calculated OsVII species
molar extinction coefficients for both the MeOH and EtOH cases
coupled with the fact that an absorbance maximum occurs, Fig.
1, in the absence of aliphatic alcohols implies that an Os–alcohol
adduct is not responsible for the observed absorbance maximum,
Fig. 1 and 3, during the reduction of OsVIII. Interestingly, from
the simulations performed it can be deduced that the postulated
[OsVIIO3(OH)3]2- complex anion does not react with MeOH or
EtOH. Furthermore, the comproportionation reaction 5 severely
impedes the rate of the overall conversion of [OsVIIIO4(OH)]-

and cis-[OsVIIIO4(OH)2]2- to trans-[OsVIO2(OH)4]2- by lowering
the OsVIII concentration. In this context care should be taken
when interpreting previous kinetic study results, in particular
the free hydroxide concentration under which experiments were
performed,4,11–21 regarding OsVIII reduction in basic media.

The analysis of OsVIII reduction rates led to the inference that
cis-[OsVIIIO4(OH)2]2- reacts with trans-[OsVIO2(OH)4]2- to yield
the [OsVIIO3(OH)3]2- complex anion, reaction 5. To corroborate
that this comproportionation reaction occurs, OsVI/OsVIII mole
fraction (Job’s method of continuous variation) and mole ratio

¶ Interestingly, when considering the possible permutations of the com-
proportionation reaction 5, all yield a mathematical equivalent rate
law (compare equations 9, 10 and 11 with equations shown in the
supplementary information†); apart from the fact that the composite rate
constants (kobs) would naturally differ.

titrations, were performed, Fig. 5a and 5b, in a 2.0 M NaOH
matrix at 298.1 K under equilibrium conditions. The relatively
slow reduction of OsVIII in a 2.0 M NaOH matrix made these
experiments viable with freshly prepared osmium and NaOH
solutions. The Job diagrams, Fig. 5a, are not simply an addition of
the respective trans-[OsVIO2(OH)4]2- and OsVIII species’ absorbance
(Fig. S2†) and therefore imply that a reaction is occurring. The
intersection of the least-square fits to the “linear” regions of the
Job curves occur at mole fractions of 0.54 and 0.53, Fig. 5a. This is
indicative of a 1 : 1 reaction between the trans-[OsVIO2(OH)4]2- and
cis-[OsVIIIO4(OH)2]2- species. The formation of a 2 : 2 complex was
negated based on the fact that the “sides” of the Job plot would
be concave.37 Furthermore, the intersection of the least-square fits
to the “linear” regions of the mole ratio titration curves is 1.05
(± 0.04), Fig. 5b, and corroborate the conclusions drawn from the
Job diagrams.

In order to calculate the equilibrium constant for reaction 5 and
Os species molar extinction coefficients, the program Mol1Frak
was used to simulate reactions 1, 2 and 5 and perform non-linear
least-squares fits. The non-linear least squares fits obtained for
both the Job plots and mole ratio titration curves, Fig. 5a and 5b,
are excellent. The calculated OsVIII, OsVII and OsVI molar extinction
coefficients and the equilibrium constant, KCOM, are listed in Tables
1 and 2, respectively. The calculated osmium species distribution
corresponding to the mole fraction data is shown in Fig. 5c. The
osmium species’ molar extinction coefficients, Table 2, calculated
from the kinetic and equilibrium investigations together with the
values reported in literature agree quantitatively. Moreover, it
was possible to calculate, for the first time, the molar extinction
coefficient spectrum of the postulated [OsVIIO3(OH)3]2- complex
anion, Fig. 6. Note, the molar extinction coefficient spectrum of
the [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species is represented
as a composite spectrum in Fig. 6; since, by maintaining the [OH-]
at 2.0 M, the ratio of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2-

species (0.34 : 0.66) remains constant.
The quantitative agreement of the calculated comproportion-

ation reaction equilibrium constant, KCOM, listed in Table 3 and
Os species molar extinction coefficients, Table 2, together with the
excellent model fits of the mole fraction and mole ratio data, Fig.
5a and 5b, substantiate the proposed comproportionation reaction
between the trans-[OsVIO2(OH)4]2- and cis-[OsVIIIO4(OH)2]2- com-
plex anions. From the mole fraction data (Fig. 5a), where kinetics
are of no concern, we would like to emphasize the following point:
Since the separate solutions of OsVI and OsVIII both have a 2.0 M
NaOH matrix there is no thermodynamic reason that the ratio
of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species will change
when mixing the two solutions, hence the absorbance maximum
observed at a mole fraction of 0.5, Table 1, is not due to a change
in the [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- species ratio but
rather due to a reaction between OsVIII and OsVI as the mole
fraction and mole ratio data unmistakably illustrate. Furthermore,
the Amax : Total Os concentration ratio, Table 1, is the same as that
found for the data in Fig. 1 and 3 excluding the possibility for an
Os–alcohol adduct. The ratio of the forward, k+2, and reverse, k-2,
rate constants (reaction 5) obtained from the kinetic simulations
agrees quantitatively with KCOM, Table 3, and satisfies the principle
of detailed balance. The remarkable agreement between the diverse
methods to calculate the comproportionation reaction equilibrium
constant, KCOM, and molar extinction coefficients of the various

8586 | Dalton Trans., 2011, 40, 8581–8588 This journal is © The Royal Society of Chemistry 2011
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Fig. 5 (a) Job diagrams and (b) mole ratio titrations between OsVIII and
OsVI in a 2.0 M NaOH at 298.1 K. (a):,1 [OsVI] + [OsVIII] = 3.485 ¥ 10-4

M;,2 7.003 ¥ 10-4 M; (b) The initial OsVIII concentrations are denoted in
the legend. Symbols = expt data, solid lines = model fit of reactions 1, 2 and
5. (c) Calculated Os species distribution for the mole fraction experiment
at a total [Os] = 7.003 ¥ 10-4 M.

Os species indicate that the proposed equilibrium and kinetic
model are internally consistent. From Fig. 5c it is evident that
the proposed [OsVIIO3(OH)3]2- species is present in relatively high
concentration. However, it could not be determined whether the
[OsVIIO3(OH)3]2- complex is the fac or mer stereoisomer or rule out

Table 3 Calculated rate and equilibrium constants for reactions 3–5

Kinetic data

MeOH EtOH Mole ratio Job’s method

kobs1/M-1 s-1 0.29 ± 0.02 1.36 ± 0.09 — —
k+2/M-1 s-1 621.2 ± 14.6 620.8 ± 11.8 — —
k-2/M-1 s-1 65.8 ± 1.2 65.7 ± 0.98 — —
KCOM 9.44 ± 0.4 9.45 ± 0.3 9.25 ± 0.3 9.18 ± 0.2

Fig. 6 Symbols = calculated molar extinction spectra for ([OsVIIIO4(OH)]-

+ cis-[OsVIIIO4(OH)2]2-), trans-[OsVIO2(OH)4]2- and [OsVIIO3(OH)3]2-. Solid
lines = experimental molar extinction spectra.

the possibility that both stereoisomers are present. Unfortunately,
numerous attempts to obtain suitable crystals for single crystal
X-ray diffraction failed to date, thus direct structural support for
the [OsVIIO3(OH)3]2- complex anion is lacking at present.

Lastly, preliminary EPR (at 298 K) and 189Os NMR (at 292 K
and 14.1 T) measurements yielded no further evidence for the
[OsVIIO3(OH)3]2- complex anion. In both cases it is thought that
fast relaxation (electronic and nuclear respectively) could be
responsible for the lack of observed resonance signals.

Conclusion

In conclusion, the OsVIII and OsVI mole fraction and mole ratio
titration data are only consistent with a comproportionation reac-
tion between the cis-[OsVIIIO4(OH)2]2- and trans-[OsVIO2(OH)4]2-

species in a 1 : 1 ratio to form a postulated [OsVIIO3(OH)3]2-

complex anion with an equilibrium constant, KCOM, of 9.3 ± 0.3 in a
2.0 M NaOH matrix at 298.1 K. The comproportionation forward,
k+2, and reverse, k-2, reaction rate constants of 620.9 ± 14.6 M-1 s-1

and 65.7 ± 1.2 M-1 s-1, respectively, were calculated from the kinetic
investigation of OsVIII reduction with aliphatic alcohols (MeOH
and EtOH) in a 2.0 M NaOH matrix at 298.1 K. The ratio of k+2

and k-2 agrees quantitatively with KCOM and satisfies the principle
of detailed balance. Moreover, for the first time it was possible
to calculate the molar extinction coefficient spectrum (245–
495 nm) of the postulated [OsVIIO3(OH)3]2- complex anion using
the equilibrium and the kinetic data. The model that best fitted
the kinetic data support previous findings4,11–20 that the reduction
of OsVIII to OsVI is a one step, two-electron transfer process.
Additionally, it was found that the [OsVIIO3(OH)3]2- species does

This journal is © The Royal Society of Chemistry 2011 Dalton Trans., 2011, 40, 8581–8588 | 8587
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not react with MeOH or EtOH. However, the formation of the
[OsVIIO3(OH)3]2- complex anion during the reduction of OsVIII

with aliphatic alcohols significantly impedes the overall rate of
conversion of [OsVIIIO4(OH)]- and cis-[OsVIIIO4(OH)2]2- to the
trans-[OsVIO2(OH)4]2- species. In this context care should be taken
when interpreting previously reported kinetic studies4,11–21 that did
not account for the formation of an OsVII species, at high enough
hydroxide concentration (>0.1 M NaOH), during the reduction
of OsVIII in basic media.
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31 M. Meloun, J. Havel and E. Högfeldt, Computation of Solution

Equilibria – A Guide to Methods in Potentiometry, Extraction and
Spectrophotometry, Ellis Horwood, Chichester, 1987.

32 R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole
Publishing Company, Boston, USA, 6th edn, 1997.

33 J. A. Nelder and R. Mead, Comput. J., 1965, 7, 308.
34 Z. M. Galbacs, A Zsednai and L. J. Csányi, Transition Met. Chem.,
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a  b  s  t  r  a  c  t

A  detailed  analysis  of  the 35Cl/37Cl isotope  effects  observed  in the  19.11  MHz 103Rh  NMR  resonances  of
[RhCln(H2O)6−n]3−n complexes  (n =  3–6) in acidic  solution  at 292.1  K,  shows  that  the ‘fine structure’  of
each 103Rh  resonance  can  be understood  in  terms  of  the  unique  isotopologue  and  in  certain  instances  the
isotopomer  distribution  in each  complex.  These 35Cl/37Cl isotope  effects  in the 103Rh  NMR  resonance
of  the  [Rh35/37Cl6]3− species  manifest  only  as  a result  of  the  statistically  expected 35Cl/37Cl isotopo-
logues, whereas  for  the aquated  species  such  as for  example  [Rh35/37Cl5(H2O)]2−,  cis-[Rh35/37Cl4(H2O)2]−

as  well  as  the  mer-[Rh35/37Cl3(H2O)3] complexes,  additional  fine-structure  due to the  various  possible

Stellenbosch University http://scholar.sun.ac.za
5Cl/37Cl isotope effects in
RhCln(H2O)6−n]3−n complexes
irect 103Rh NMR  speciation

sotopologues  and isotopomers in NMR

isotopomers  within  each  class  of  isotopologues,  is visible.  Of interest  is  the  possibility  of  the  direct
identification  of  stereoisomers  cis-[RhCl4(H2O)2]−, trans-[RhCl4(H2O)2]−, fac-[RhCl3(H2O)3]  and  mer-
[RhCl3(H2O)3] based  on  the 103Rh  NMR  line  shape,  other  than  on  the  basis  of their very similar  �(103Rh)
chemical shift.  The 103Rh NMR  resonance  structure  thus  serves  as  a novel  and unique  ‘NMR-fingerprint’

us  as 3−n

al  shi

leading  to the  unambiguo
accurate  �(103Rh)  chemic

. Introduction

South Africa is the world’s leading primary producer of the plat-
num group metals (PGMs, Pt, Pd, Rh, Ru, Ir and Os), contributing

ore than three quarters of the world’s supply of rhodium (>86%)
nd platinum (>76%), in addition to a significant proportion of the
ssociated metals in 2009 [1]. The strong commercial demand for
h, used almost exclusively in catalytic applications for automobile
xhaust emission control systems as well as in the chemical indus-
ry, has resulted in this metal being one of the most expensive, with
verage prices per troy ounce of Rh ranging between 1592 and 6564
S$ in the years 2006–2009 [1].

In the context of the PGM refining industry, we have been
pplying methods for chemical speciation [2] to study PGM com-
lexes in aqueous hydrochloric acid solutions as relevant to the
eparation and recovery of these metals as complex anions, inter
lia by means of high-resolution 195Pt nuclear magnetic resonance
NMR) spectroscopy [3]. Nuclear magnetic resonance spectroscopy
s a powerful tool for direct speciation of the kinetically inert

PtXn(H2O)6−n]4−n [4], as well as the corresponding hydroxido
PtXn(OH)6−n]2− (X = Cl− and Br−) complex anions [5]. Recently,
e developed a novel 195Pt NMR  method for the unambiguous

∗ Corresponding author. Tel.: +27 21 808 3020; fax: +27 21 808 2344.
E-mail  address: krk@sun.ac.za (K.R. Koch).

003-2670/$  – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2012.02.009
signment  of [RhCln(H2O)6−n] complexes  (n  = 3–6),  without  reliance  on
fts.

© 2012 Elsevier B.V. All rights reserved.

speciation of [PtCln(H2O)6−n]4−n (n = 4–6) by exploiting the unique
35Cl/37Cl isotope effects visible in the 195Pt NMR  resonances
obtained  at high magnetic fields (14.08 T) in acidic solutions [6].
At high magnetic fields and controlled solution temperature, the
195Pt NMR  resonances of [PtCln(H2O)6−n]4−n (n = 4–5) show well
resolved ‘fine-structure’ due the various possible isotopologues and
isotopomers as a result of the natural 35Cl/37Cl isotopic distribution
unique to each individual PtIV complex in solution, resulting in an
unambiguous 195Pt NMR  ‘finger-print’ for each complex [6].

The  nucleus of rhodium naturally occurs only as a single NMR-
active isotope 103Rh (I = (1/2)), which has unfortunately a small
negative gyromagnetic ratio (�), and consequently a low reso-
nance frequency � = 3.16 MHz  (requiring a special low-frequency
NMR probe) relative to 1H at 100.00 MHz. Moreover the relatively
low overall 103Rh NMR  receptivity1 of 0.186, makes routine 103Rh
NMR difficult and it is thus not widely practiced. With the more
general availability of high magnetic field (>9.04 T) NMR spectrom-
eters with higher sensitivity, 103Rh NMR  becomes potentially an
attractive tool for speciation of complexes in process and effluent
solutions relevant to the PGM refining industry, in which relatively

high Rh concentrations may  be found, particularly with the aim
of developing novel and better separation and recovery methods
given high commercial value of rhodium. A survey of the literature

1 Receptivity of 13C at natural abundance is 1, and 1H NMR at 5870.

dx.doi.org/10.1016/j.aca.2012.02.009
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:krk@sun.ac.za
dx.doi.org/10.1016/j.aca.2012.02.009
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hows only few NMR  studies by directly detected 103Rh NMR, par-
icularly in aqueous solutions. On the other hand, if the Rh atom in

 given molecule is bound to a nucleus with a high NMR receptivity,
.g. 1H or 31P, then modern indirectly detected NMR  methods make
he observation of 103Rh spectroscopy more practically useful. The
pplications of 103Rh NMR  in rhodium chemistry have recently
een reviewed [7].

Early  work involving directly detected 103Rh NMR  is limited to
he characterization of all ten [RhCl6−xBrx]3− (x = 0–6) anions [8], as
ell as some of the possible aquated species [RhCln(H2O)6−n]3−n

n = 0–6) by Mann and Spencer [9], as later confirmed by Sand-
tröm et al. [10]; nevertheless these studies demonstrate that 103Rh
MR may  be a viable tool for examining solutions of relevance

o the refining industry, with the potentially useful chemical data
eing obtainable by this means, exemplified by Glaser and Sand-
tröm who used 103Rh NMR  to examine the deceptively simple
hIII chemistry in aqueous solutions rich in bromide ions [11].
hese authors also examined some octahedral RhIII complexes with
ulphur-donor ligands, as well as complexes such as [Rh(CN)6]3−

nd [Rh(SCN)6]3− by 103Rh NMR  [12]. The latter study is interesting
n that Glaser and Sandström postulate a direct correlation between
he �(103Rh) chemical shift and the relevant thermodynamic for-

ation constants (log �6) of such complexes. This suggests 103Rh
MR to be a method for the estimation of the formation con-

tants from �(103Rh) NMR, a conclusion which in our view, must be
reated with some caution at this time. While these studies indicate
hat 103Rh NMR  spectroscopy can be used to identify various com-
lex species such as [RhCln(H2O)6−n]3−n and [RhBrn(H2O)6−n]3−n

n aqueous solutions by their �(103Rh) chemical shift, the rela-
ively high temperature, concentration and matrix dependence of
(103Rh) chemical shifts observed in these studies [9–12], makes
he unambiguous identification (speciation) of rhodium complexes
n such solutions under differing conditions uncertain, and rapid
ccurate assignments tedious.

We show in this contribution that at high magnetic fields
ith carefully controlled solution temperatures, the 19.11 MHz

03Rh NMR  signals of the series of [RhCln(H2O)6−n]3−n (n = 3–6)
omplexes in equilibrated hydrochloric acid solutions, are well-
esolved into a distinctive ‘fine-structure’ due to 35Cl/37Cl
sotopologue and isotopomer effects, resulting in a unique NMR
finger-print’, with which it is possible to uniquely identify all chlo-
ido containing RhIII complexes. By this method the identity of the
hIII complex can readily be obtained from the fine-structure of
he 103 Rh peaks, without reference to accurate 103Rh NMR chem-
cal shifts. This is potentially a considerable advantage, given the
bsence of a convenient and universal reference compound for
03Rh NMR  [7], resulting in considerable experimental error in
easuring �(103Rh) chemical shifts, which can vary by as much

s ±129 ppm for even the ‘simple’ [RhCl6]3− species [10]. More-
ver, the relatively small �(103Rh) difference of 66 ppm between
wo RhIII complex isomers such the trans-[RhCl2(H2O)4]+ and cis-
RhCl2(H2O)4]+ cations, makes it virtually impossible to reliably
istinguish between such and other isomers in solution, on the
asis of �(103Rh) chemical shifts alone. This emphasizes a need
or a rapid additional means of unambiguously characterizing
RhCln(H2O)6−n]3−n including possible cis/trans and fac/mer iso-

ers by means of 103Rh NMR  in solution.

.  Experimental

.1. Preparation of Rh complex solutions
Two solutions of 0.86 M [RhCln(H2O)6−n]3−n (n = 3–6) were pre-
ared by dissolving ca 0.9 g of commercially available RhCl3·nH2O
Johnson Matthey) in 3.5 mL  29% (v/v) 2H2O/1H2O containing the
ica Acta 730 (2012) 93– 98

appropriate  quantity of concentrated (32% v/v) HCl: (solution
1 = 6.02 M HCl, 0.868 M Rh; solution 2 = 1.03 M HCl, 0.867 M Rh).
These solutions were kept closed at 333 K for a week and there-
after allowed to equilibrate at 292 K for a further 5 days. The total
rhodium and chloride concentration of these solutions was deter-
mined by means of ICP-OES (SPECTRO Arcos instrument); equipped
with a Schott spray chamber and cross-flow nebulizer. The gen-
eral ICP-OES conditions were: ICP RF power = 1400 W,  coolant gas
flow = 13.00 L min−1, auxiliary gas flow = 1.00 L min−1, nebulizer
gas flow = 0.80 L min−1. The most sensitive rhodium (343.489 nm)
and chloride (134.742 nm)  wavelengths were used for these deter-
minations. An ULTRASPEC single element rhodium standard (De
Bruyn Spectroscopic Solutions; 99.998% purity, 10% v/v HCl) was
used for rhodium standardisation, while dried sodium chloride
(Sigma–Aldrich; 99.95% purity) was used for the chloride standard-
isation.

2.2. 103Rh NMR spectroscopy

103Rh NMR  spectra at 19.11 MHz  were recorded at constant
temperature (292.1 K ± 0.1 K) using a three channel Varian INOVA
spectrometer (14.1 T magnet corresponding to 600 MHz 1H res-
onance frequency) with a 10 mm HX Nalorac Z-spec 15N-103Rh
(18–61 MHz) broad-band probe. It is important to allow sufficient
time for the sample to achieve temperature equilibrium, following
which optimal shimming is required. All NMR  samples contained ca
30% (v/v) D2O for locking purposes. Since the probe is not equipped
for modern gradient shimming, together with the low receptivity
of the 103Rh nucleus, optimal shimming was carried out on FID
of the D2O while acquiring a D2O spectrum in the conventional
pulsed mode; with the X channel pre-tuned to 103Rh. Once the
best possible shim setting was obtained, the lock channel was  used
in the conventional mode, and final shimming adjusted for each
103Rh NMR  sample. In the absence of a suitable reference com-
pound, chemical shifts (ppm) are reported to � (103Rh) = 3.16 MHz
on the TMS  scale at 100.000 MHz, as proposed by Goodfellow
[13]; the high-frequency positive-shift convention was used [7].
103Rh spectra were recorded with a spectral width of 19.11 kHz,
using a 15.4 �s excitation pulse at maximum practical power in an
attempt to ensure approximately homogeneous RF excitation over
the entire spectral width, with an acquisition time of 0.5 s and a
1 s pulse delay to ensure sufficient relaxation, under conditions of
optimal resolution. A detailed search of the literature yielded no
reliable measured estimates of 103Rh T1 relaxation times, particu-
larly for octahedral RhIII complexes as involved in this work. If the
reasonable ‘rule of thumb’ by Sanders and Hunter (in “Modern NMR
Spectroscopy”, (2nd edn), Oxford University Press, (1993)) is used
which allows for a rough estimate of the rotational correlation time
�c, (�c/ps ≈ Mr where Mr is the relative molar mass of the molecule
in question), then for [RhCl6]3− we estimate a �c ≈ 316 ps. This
means that at the 103Rh resonance frequency of 19.11 MHz at our
magnetic field, the condition ωo�c ≈ 0.0190 or ωo�c � 1 is met, sug-
gesting that the extreme narrowing condition for NMR is pertinent.
In this region T2* ≤ T2 ≤ T1, so we  can estimate the T1 for the best
resolved peaks of the [RhCl6]3− species (Fig. 2a) which has a line
width of ∼2.6 Hz, from which T2, and thus T1 of ≈0.12 s results. Thus
a pulse repetition rate of 5 × 0.12 s ≈ 0.612 s is adequate to ensure
essentially complete relaxation for these Rh complexes. The very
good agreement between the experimental and simulated peaks
of the isotopologues shown in Fig. 2, attest to this. Typically, due
to the low receptivity of the 103Rh nucleus, NMR  spectra normally

required ca 40,000 transients to achieve satisfactory S N−1 ratios
resulting in total experimental times ≥12 h. In the absence of arti-
ficial line-broadening (apodization) of the accumulated FIDs, the
typical 103Rh resonance line-widths (�½ at half peak-height varied
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Fig. 1. (a) Isotopologues associated with the fac-[Rh35Cl237Cl(H2O)3] species;
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inequivalent isotopomers are possible in a 2:1 statistical ratio (rea-
sonably neglecting any possible 17O/18O isotope effects due to the

Stellenbosch University http://scholar.sun.ac.za
b)  possible isotopomers associated with the isotopologue of the mer-
Rh35Cl237Cl(H2O)3] species where the 35Cl/37Cl is coordinated trans with respect
o  water in a 2:1 ratio (35 = 35Cl, 37 = 37Cl, O = H2O).

rom 2.3 to 3.1 Hz at optimal resolution under careful temperature
292.1 ± 0.1 K) control.

SigmaPlot  Version 11 (Systat Software Inc.) was used to perform
he nonlinear least-squares fits on the 103Rh experimental data. The
igmaPlot curve fitter uses the Marquardt–Levenberg algorithm to
nd the coefficients (parameters) of the independent variable(s)
hat give the best fit between the sum of several Lorentzian func-
ions and the experimental data.

. Results and discussion

At  high magnetic fields (14.1 T) and carefully controlled con-
itions, the high-resolution 195Pt NMR  resonance signals of the
eries of complex anions [PtCln(H2O)6−n]4−n (n = 4–6) are resolved
nto a secondary structure, due to small chemical-shift differences
s a result of both isotopologues and, the possible isotopomers2

ithin each set of [Pt35Cl/37Cln(H2O)6−n]4−n isotopologues [6], aris-
ng from the natural 35/37Cl isotope distribution of the chlorido
igand(s) coordinated to PtIV. The resulting unique line shapes of
he 195Pt NMR  resonances for this series of complexes, essentially
onstitutes an unequivocal 35/37Cl isotope resolved ‘fingerprint’ for
he identification of all species in this series, including stereoiso-

ers such as cis- and trans-[PtCl4(H2O)2], provided at least one
hlorido ligand remains bound to the PtIV complex and exchanges
lowly on the NMR  time scale.

Rhodium is separated and recovered on a commercial scale
n the form of its chlorido [RhCln(H2O)6−n]3−n complex anions in
ydrochloric acid, the available species distribution diagram in the

iterature however suggesting the presence of several species in
olution depending on the hydrochloric acid concentration [15,16].
rovided at least one chlorido ligand is bound to RhIII, these com-
lexes can in principle exist as a set of four 35/37Cl isotopologues
nd isotopomers‡ within each set of isotopologues illustrated
or fac-[Rh35Cl237Cl(H2O)3] and mer-[Rh35Cl237Cl(H2O)3] by way
f example, in Fig. 1. In the case of the fac-[Rh35Cl237Cl(H2O)3]
sotopologue, although trans 35/37Cl-Rh-(OH2) configurations are
ossible in a statistical 2:1 ratio, these isotopomers are magnet-
cally equivalent and result in the same chemical shift �(103Rh).
y contrast for the mer-[Rh35Cl237Cl(H2O)3] isotopologue, the

sotopomer with a trans 37Cl–Rh–(OH2) configuration is not

2 Isotopomer(s) with respect to whether a 35Cl or 37Cl ligand is trans to a coordi-
ated  water molecule in the [MIV/IIICln(H2O)6−n]4/3−n complex.
ica Acta 730 (2012) 93– 98 95

magnetically equivalent to the one with trans 35Cl–Rh–(OH2),
which is twice as abundant than the former, resulting in a small
chemical shift difference as manifested in the different ‘fine-
structures’ of their respective 103Rh NMR resonances. Similar
considerations apply to the corresponding [RhCl5(H2O)]2− cis-
[RhCl4(H2O)2]− and trans-[RhCl4(H2O)2]− species. Hence 103Rh
NMR spectroscopy at high magnetic fields (≥14.1 T) is expected
to be useful for the investigation of the species distribution of
the [RhCln(H2O)6−n]3−n complex anions in hydrochloric acid, and
in particular is likely also to show 35/37Cl isotope resolved 103Rh
resonances, analogous to the PtIV complexes [6], referred to above.

As shown in Fig. 2, these expectations are satisfactorily con-
firmed by the detailed 19.11 MHz 103Rh NMR  spectra of several
[RhCln(H2O)6−n]3−n complex anions (n = 3–6) at thermodynamic
equilibrium  at a fixed total RhIII concentration of ca 0.87 M,  obtained
in solutions with 6 M and 1 M hydrochloric acid concentrations
respectively. Fig. 2a–f shows the well resolved fine-structure profile
for each of the individual 103Rh NMR  resonances, recorded at a tem-
perature of 292.1 ± 0.1 K, of the species [RhCl6]3−, [RhCl5(H2O)]2−

in 6.0 M HCl and cis-[RhCl4(H2O)2]−, trans-[RhCl4(H2O)2]−, fac-
[RhCl3(H2O)3] and mer-[RhCl3(H2O)3] present in solutions in
1 M hydrochloric acid. The well resolved fine-structure pro-
file of the 103Rh NMR  resonance for each species is due to
35Cl/37Cl isotope effects. Significantly, the 103Rh resonance of
the [RhCl6]3− anion (Fig. 2a) is resolved only into five of the
seven expected [Rh(35/37Cl)6]3− isotopologues, very similar to what
may be observed in the corresponding 195Pt NMR  spectrum of
the [Pt(35/37Cl)6]2− complex [3]. In view of the relatively poor
receptivity2 of 103Rh NMR, only five of the seven peaks due to
the isotopologues [Rh(35Cl)n(37Cl)r]3− (n = 6–2, r = 2–6, n + r = 6),
may be experimentally observed within a reasonable 103Rh NMR
acquisition time, since the statistically calculated abundance of
[Rh(35Cl)(37Cl)5]3− and [Rh(37Cl)6]3− isotopologues occur at very
low abundances of 0.38 and 0.02% respectively (see Table 1).
The relative statistical probability, P(n), for each possible isotopo-
logue in the series of [Rh35/37Cln(H2O)6−n]3−n (n = 3–6) complexes
may  be calculated at the fractional natural abundance (˛) of
35Cl (0.7553) and 37Cl (0.2447) using the binominal probabil-
ity distribution function3 for n 35Cl and r 37Cl chlorido ligands
(n + r = 6). From a visual inspection of Fig. 2c–f, it can be seen
however that the fine-structure of some of the 103Rh resonances,
particularly due to the stereoisomer pairs cis-[RhCl4(H2O)2]−,
trans-[RhCl4(H2O)2]−, fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3]
respectively differ significantly from a model which takes into
account only the 35Cl/37Cl isotopologue distributions. The experi-
mental 103Rh NMR  peak shapes and peak intensity ratios observed,
suggest additional isotopomer induced fine-structure. The resolved
fine-structure of the 103Rh NMR  resonances (Fig. 2b–f) can only
be accounted for by considering the possible isotopomers3, within
each possible set of isotopologues for the series of ‘aquated’ com-
plexes [RhCl5(H2O)]2−, cis-[RhCl4(H2O)2]−, trans-[RhCl4(H2O)2]−,
fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3]. The relative statistical
probability for each possible isotopomer, S(n), in the series of
[Rh35/37Cln(H2O)6−n]3−n (n = 1–5) complexes was deduced as illus-
trated schematically in Fig. 1; for the mer-[RhCl3(H2O)3] species the
trans 35/37Cl–Rh–(OH2) isotopomers are magnetically equivalent,
while for the mer-[RhCl3(H2O)3] species two sets of magnetically
3 P(n) =
n=((n+r)!)/(n!r!)∑

n=0

(˛n
35Cl

˛r
37Cl

).
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ig. 2. Experimental 103Rh spectra of [RhCln(H2O)6−n]3−n (n = 3–6) species recorded
RhCl6]3− (a), trans-[RhCl4(H2O)2]− (c) and fac-[RhCl3(H2O)3] (e) and the isotopolog

odel that includes isotopomers for the [RhCl5(H2O)]2− , cis-[RhCl4(H2O)2]− and m

ery low natural abundances of these isotopes of oxygen of the
oordinated water molecules).

As shown in Fig. 2, the ‘simulated’ overall 103Rh NMR  line-
hape obtained from the sum of several Lorentzian peaks of

qual half-height peak width (2.64 Hz)4 and fixed isotope chem-
cal shift spacing per 35/37Cl isotope, each corresponding to all
he possible isotopologues with probability P(n), and the statis-

4 In the likely event that the 35Cl/37Cl quadrupolar relaxation is a dominant con-
ribution  to the overall 103Rh relaxation and thus line-width, it might be expected
hat  differing line-width may  pertain to differing [RhCln(H2O)6−n]3−n species and
heir  isotopologues. However for the clearly resolved isotopologues peak for the
RhCl6]3− complex we find a constant line-width leads to the best fit between
xperimental  and simulated peaks. For the other species where the 103Rh isotopo-
ogue/isotopomer  peaks are less clearly resolved with differing line-widths lead to
he good fits as shown in Fig. 1.
.1 K (symbols). The least-squares fits (solid lines) between experimental spectra of
del; the least-squares fits between the experimental spectra and the isotopologue

Cl3(H2O)3] species are denoted by (b), (d) and (f), respectively.

tically likely but magnetically non-equivalent isotopomers3 with
probability S(n) for each of the complexes listed, leads to an
excellent non-linear least-squares fit between the experimental
and simulated 103Rh NMR  spectra using a 5.33 Hz (∼0.279 ppm)
shielding (‘up-field’ isotope shift) per 37Cl− coordinated to the
RhIII ion. The essentially quantitative agreement of the experi-
mental line-shape within experimental error with the expected
statistical isotopologue and isotopomer distributions are shown in
Table 1 for all the [Rh35/37Cln(H2O)6−n]3−n (n = 3–6) considered in
this study.

Interestingly, in this context Sadler et al. reported similar
resolved 35Cl/37Cl isotope effects in the 195Pt NMR  spectrum of

[PtCl6]2− complex more than 3 decades ago, at the then high-
est magnetic field spectrometer generally available [14], although
these were erroneously ascribed to 35/37Cl ‘isotopomers’. As is now
clear from this study as well as our recent work on the analogous
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Table 1
Comparison of the experimental (Fig. 2a–f) and statistically expected isotopologue and isotopomer distributions for the [Rh35/37Cln(H2O)6−n]3−n (n = 3–6) series of complex
anions observable in these solutions.

35/37Cl trans to H2O RhIII isotopologue Percent isotopomers Sum percent of isotopomers to yield
isotopologue amount

Experimentala Statistical Experimentala Statistical

[Rh35Cl6]3− – – 18.69 ± 0.3 18.92
[Rh35Cl537Cl]3− – – 36.96 ± 0.2 36.31
[Rh35Cl437Cl2]3− – – 29.67 ± 0.2 29.03
[Rh35Cl337Cl3]3− – – 11.86 ± 0.2 12.38
[Rh35Cl237Cl4]3− – – 2.81 ± 0.2 2.97
[Rh35Cl37Cl5]3− – – Not reliably quantifiable 0.38
[Rh37Cl6]3− – – Not  reliably quantifiable 0.02

35Cl [Rh35Cl5(H2O)]2− 24.99 ± 0.2 24.97 24.99 ± 0.2 24.97
35Cl [Rh35Cl437Cl(H2O)]2− 31.96 ± 0.2 31.94 39.96 ± 0.6 39.93
37Cl 8.00 ± 0.3 7.99
35Cl [Rh35Cl337Cl2(H2O)]2− 15.33 ± 0.2 15.32 25.56 ± 0.5 25.54
37Cl 10.23 ± 0.2 10.22
35Cl [Rh35Cl237Cl3(H2O)]2− 3.27 ± 0.1 3.27 8.17 ± 0.4 8.17
37Cl 4.90 ± 0.2 4.9
35Cl [Rh35Cl37Cl4(H2O)]2− 0.26 ± 0.2 0.26 1.31 ± 0.4 1.31
37Cl 1.05 ± 0.1 1.05
37Cl [Rh37Cl5(H2O)]2− Not reliably quantifiable 0.08 Not reliably quantifiable 0.08
35Cl, 35Cl cis-[Rh35Cl4(H2O)2]− 30.68 ± 0.3 32.96 30.68 ± 0.3 32.96
35Cl, 35Cl cis-[Rh35Cl337Cl(H2O)2]− 22.56 ± 0.2 21.08 45.15 ± 0.5 42.16
35Cl, 37Cl 22.59 ± 0.2 21.08
35Cl, 35Cl cis-[Rh35Cl237Cl2(H2O)2]− 3.30 ± 0.2 3.37 19.15 ± 0.5 20.22
35Cl, 37Cl 12.91  ± 0.3 13.48
37Cl,37Cl 3.30 ± 0.2 3.37
35Cl, 37Cl cis-[Rh35Cl37Cl3(H2O)2]− 2.31 ± 0.4 2.16 4.62 ± 1.0 4.32
37Cl, 37Cl 2.31 ± 0.4 2.16
37Cl, 37Cl cis-[Rh37Cl4(H2O)2]− Not reliably quantifiable 0.34 Not reliably quantifiable 0.34

trans-[Rh35Cl4(H2O)2]− – – 32.73 ± 0.5 32.96
trans-[Rh35Cl337Cl(H2O)2]− – – 42.40 ± 0.4 42.16
trans-[Rh35Cl237Cl2(H2O)2]− – – 20.85  ± 0.9 20.22
trans-[Rh35Cl37Cl3(H2O)2]− – – 3.60 ± 1.0 4.31
trans-[Rh37Cl4(H2O)2]− – – 0.42 ± 0.3 0.34

35Cl mer-[Rh35Cl3(H2O)3] 43.96 ± 0.9 43.50 43.96 ± 0.9 43.50
35Cl mer-[Rh35Cl237Cl(H2O)3] 26.48 ± 1.3 27.82 41.45 ± 2.9 41.73
37Cl 14.97 ± 1.0 13.91
35Cl mer-[Rh35Cl37Cl2(H2O)3] 3.55 ± 0.8 4.45 13.86 ± 2.2 13.35
37Cl 10.31 ± 1.0 8.90
37Cl mer-[Rh37Cl3(H2O)3] 0.72 ± 0.5 1.40 0.72 ± 0.5 1.40
35Cl, 35Cl, 35Cl fac-[Rh35Cl3(H2O)3] – – 46.02 ± 1.3 43.50
35Cl, 35Cl, 37Cl fac-[Rh35Cl237Cl(H2O)3] – – 39.91 ± 2.5 41.73
35Cl, 37Cl, 37Cl fac-[Rh35Cl37Cl2(H2O)3] – – 12.93 ± 1.3 13.35
37Cl, 37Cl, 37Cl fac-[Rh37Cl3(H2O)3] – – 1.13 ± 0.5 1.42

a The isotopologue/isotopomer model was fitted by non-linear least-square analysis to the experimental data from which the 95% confidence interval was estimated. 103Rh
NMR  spectra of each solution were acquired three separate times, not in succession. For peaks of lower intensity the relative percentage deviation between experimental
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nd fitted resonance intensities naturally is much larger compared to the intense 103

03Rh NMR  acquisition time to obtain higher S N−1 ratios, although this is superfluo

tIV complexes, in general for [MCl6]2/3− (M = PtIV or RhIII) species,
he resolved fine-structure in the 103Rh (and 195Pt) NMR  resonances
re only due to the various isotopologues in these complex anions,
nd no isotopomer effects are resolved for these particular species;
o our knowledge no such isotopologues effects have been previ-
usly reported for the [RhCl6]3− complex anion to date.

The  isotopomer-induced 35/37Cl ‘fine-structure’ effects
isible in the 103Rh NMR  resonance of the isotopologues
Rh35Cl437Cl(H2O)]2− and [Rh35Cl337Cl2(H2O)]2− etc., are due
o the possibility of trans 37Cl-103Rh-OH2 and 35Cl-103Rh-OH2

onfigurations within these isotopologues. Evidently this addi-
ional fine-structure observed in the 103Rh resonances of these
omplexes arises from small differences in 103Rh shielding of
hese isotopomer configurations within a given complex. From
he least-squares fitting of the experimental line-shapes gives
ise to an effective �(�(103Rh)) of ca 0.141 ppm (2.7 Hz) between

he trans- and cis-[Rh35Cl437Cl(H2O)]2− isotopomers, depending
n whether a 37Cl atom is respectively trans or cis to the coordi-
ated water molecule. This finding emphasizes the remarkable
ensitivity of �(103Rh) to very subtle effects on the 103Rh shielding
aks. Better agreement can only be obtained at the expense of an unreasonably long
en the overall good fit of the experimental data without exception.

within  these complexes, and the necessity of careful temperature
control to achieve optimal NMR  resolution. While a detailed
explanation of the origin of the 35/37Cl isotope effects must await
a full computational (theoretical) investigation, these effects are
likely to result from small differences in the vibrational stretching
frequencies between the 37Cl-103Rh and 35Cl-103Rh bonds trans to
the relatively weakly bound coordinated water molecules in these
(as well as the corresponding PtIV [6]) complexes, and is a nice
example of the elegant theoretical work by Jameson and Jameson
on the ‘rovibrational’ averaging of nuclear shielding in MX6-type
molecules more than two decades ago [17]. In this context we have
recently found in a DFT study that for the series of [PtX6]2− (X = F−,
Cl−, Br−, I−) complexes, the calculated 195Pt NMR  shielding of
these complexes are extraordinarily sensitive to average Pt-halide
bond distances �(Pt-Cl); for example the d(�195Pt)/d�(Pt–Cl) for
the Pt–Cl case is ca 183 ppm/picometer [18]. On a more practical

level, the 35/37Cl isotope effects will assist in the establishment of
a direct and definitive chemical speciation-distribution diagram
for the full series of [RhCln(H2O)6−n]3−n in halide-rich aqueous
solutions of interest to the Rh recovery and refining industry,
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sing 103Rh NMR  spectroscopy, something which is currently in
rogress.

We do not find any observable secondary isotope effects pos-
ible due to 1/2H isotopes associated with the coordinated water
olecules, when increasing the 2H2O:H2O ratio from 10 to 30%(v/v)

or the [Rh35/37Cln(1/2H2O)6−n]3−n (n = 3–5) complexes; presum-
bly  the 1H/2H exchange of water is rapid in solution, resulting
n the averaging of any potential (small) isotope effect from this
ource. Moreover application of 1H-decoupling during acquisi-
ion of 103Rh NMR  spectra in this study, resulted in significant
oss of isotopologue/isotopomer resolution in the recorded 103Rh
esonances, presumably due to significant RF absorption of the
igh ionic-strength aqueous solutions, causing inevitable temper-
ture fluctuations and/or convection currents within the 10 mm
ample tube. Considering the significant temperature dependence
f the 103Rh NMR  chemical shifts reported to be in the range
0.5–3.0 ppm K−1)5 [7–10], and those observed for this series of
omplex anions (e.g. ca 2.0 ppm K−1 for [RhCl6]3−), underlines the
mportance of careful temperature control to at least ±0.1 K when
cquiring high resolution NMR  spectra; moreover in order to ensure
omplete thermal equilibrium of the sample in the 10 mm NMR
ube, a waiting time of at least 35 min  is recommended to achieve
atisfactory thermal equilibrium within the sample. We  observe a
ignificant deterioration in resolution in the 103Rh NMR  resonance
ignal for [RhCln(H2O)6−n]3−n (n = 3–6) complexes above 300.0 K,
ery similar to that observed previously in the [PtCln(H2O)6−n]4−n

n = 4–6) complexes [6]. While the reasons for this very high tem-
erature dependence must await a more detailed study of the 103Rh
MR of the complexes described here. Intra- and inter-molecular

igand exchange (35/37Cl− or H2O) is likely to be too slow at temper-
tures <300 K [15–18], to account for the loss of the isotopologue
nd isotopomer resolution in the 103Rh NMR  resonance structure;
n any event such 35/37Cl isotope effects reported here for the gen-
rally kinetically inert RhIII complexes (and elsewhere for the PtIV

omplexes) would not be visible under conditions of fast chemi-
al exchange on the NMR  time scale such as may  be expected at
igher temperatures (>350 K), as can be confirmed by preliminary
emperature dependence NMR  experiments. The possibility of vari-
ble quadrupolar 35Cl/37Cl relaxation effects for 103Rh in different
pecies as a result of the temperature dependence of this relaxation
echanism is also likely to affect the observed line-widths of the

03Rh resonance at differing temperatures, something in need of
ore detailed study.6

. Conclusions
The remarkable isotopologue, and for some complexes
sotopomer  induced fine-structure of the 103Rh NMR  reso-
ances (at high magnetic fields) of the series of aquated
Rh35/37Cln(H2O)6−n]3−n (n = 3–6) complex anions in hydrochloric

5 Higher temperature usually results in down-field shifts (higher ı) or lower
hielding  (lower �), so that d�/dT is usually reported as a negative value.

6 We  appreciate this suggestion by one of the reviewers.

[

[
[
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acid solutions constitutes a novel method of direct spectroscopic
speciation of [RhCln(H2O)6−n]3−n (n = 3–6) complexes. This is pos-
sible without the need for accurate chemical shifts of these species,
or the need for the comparison of authentic synthetic complexes
many of which are not readily available or even separately syn-
thesizable. Given the large chemical shift range of ca 12,000 ppm
observed for diverse rhodium complexes to date [7], together
with the extreme sensitivity of 103Rh nuclear shielding to numer-
ous effects such solvent, concentration, temperature, pressure and
other effects [3], this makes the comparison of chemical shifts sub-
ject to considerable uncertainty. The use of 35/37Cl isotope-resolved
103Rh NMR  resonance thus constitutes a significant advance as a
convenient and reliable method for the identification of halide con-
taining complexes, provided these are kinetically inert to ligand
exchange on the NMR  time scale. Particularly noteworthy is the
possibility of the unambiguous assignment of stereoisomers such
as the trans- or cis-[RhCl4(H2O)2]− which differ in chemical shift by
only ca 76 ± 3 ppm, or the uncharged fac-[RhCl3(H2O)3] and mer-
[RhCl3(H2O)3] isomers differing only by ca 63 ± 3 ppm. These can
now readily be identified based on their 35/37Cl isotope induced
‘NMR fingerprint’, without reference to their accurate 103Rh NMR
chemical shifts or the need for a suitable reference compound.
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