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ABSTRACT 

Currently the three main algae strains that are manufactured commercially are Chlorella, 

Spirulina and Dunaliela salina, which are produced for biomass and bioproducts. 

Photobioreactors (PBR) allow the exploitation of over 50 000 known microalgae species 

with over 15 000 novel compounds having been chemically identified to date.  Many of 

these algae could be sources of high-value products which are produced using a method 

that delivers them from renewable resources. 

Designing an optimal photobioreactor is a complex process because a large array of 

variables is included in the design, with several of the variables interacting with each other 

directly.  The interactions of most of these variables have not been established.  The initial 

information that is available is inadequate because most photobioreactors have been 

tested on a laboratory scale and the information given does not include the manufacturing 

materials, the size of tubing used and other design variables. 

Before designing a photobioreactor, it is important to understand the best conditions for 

the production of algae because these have a direct influence on the requirements.  In 

order to produce algae biomass under the specific conditions, one has to investigate 

current photobioreactors that have been designed in order to establish whether they are 

capable of optimum production under the production conditions; determine possible factors 

that could influence the production negatively and how they could be prevented; and 

undertake a cost analysis to determine whether the production of algae is an economically 

viable process using the specific reactor.  All of these criteria have to be met for a 

photobioreactor to be viable in the production of algae biomass. 

Currently a Bubble column reactor is considered to be the best design for a 

photobioreactor and also the most scalable.  Due to the limited information available, 

testing was conducted to determine the effect of: 1) different manufacturing materials, 2) 

the gas dispersion unit, 3) the diameters of the tubing and 4) the density.  Bubble column 

reactors were used to test the effects of the four variables and were considered to be the 

most important aspects in the design.  For testing these variables and their interaction, 

Chlorella Vulgaris was used because it is one of the most popular algae species used for 

production currently.  As temperature and the availability of light play a large role in the 

production of algae, all testing was done in a laboratory environment to ensure small 

temperature changes and the constant availability of light. 
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The reactors that were tested were made of PVC couplings, with the clear tubing used 

being made of either PVC or acrylic tubing.  Enriched air was supplied at a 5% volume per 

volume ratio of CO2, with a flow rate of 0.02 volume per volume per minute (vvm) for the 

50 mm diameter reactors and 0.36 vvm for the 90 and 110 mm diameter reactors.  Two 

gas dispersion units were used to determine whether they would have any effect on the 

production.  The gas dispersion units create small bubbles to ensure a high surface area 

to volume ratio and thereby they allow for maximum CO2 and O2 mass transfer. 

A growth rate of 0.14 gram per litre per day was found to yield the best production of all 

the reactors and configurations that were tested.  The 50 mm diameter reactors showed 

the best growth followed by the 110 mm diameter reactors.  The 90 mm diameter reactors 

all had a negative growth rate which appeared to be due to an insufficient gas flow rate.  

The 50 mm reactors had the best growth rate of 0.14 and 0.10 grams per litre per day for 

the acrylic tubing, while 0.08 grams per litre per day was achieved with PVC tubing.  The 

110 mm reactors had a highest growth rate of 0.05 grams per litre per day with PVC 

tubing. 

It was found that the 50 mm and 90 mm reactors showed a better performance with acrylic 

tubing while the 110 mm reactors showed a better performance with PVC tubing.  The gas 

dispersion unit is affected by the gas flow rate, the density, the diameter of the tubing and 

the material that is used.  The gas dispersion units’ effect is dependent on the diameter of 

the reactor seeing that the 50 mm reactor shows better performance with the small unit, 

while the 110 mm reactor shows better performance with the large unit, due to the gas flow 

rate that is required in the reactors.  Because the gas flow rate and gas dispersion unit 

directly affect the agitation, the optimal density is affected directly due to the availability of 

light and therefore the tubing material.  The gas dispersion units should fit properly into the 

reactor and be capable of handling the gas flow rate that is required.  The diameter of the 

tubing does not show any effect but could have an effect under different testing conditions 

and could not be conclusively eliminated.  The density of algae does have an effect, 

although most reactors showed a better production rate at a higher culture density. 

The scale up of the bubble column reactor creates a dead zone when a module is 

constructed.  The scale up of a bubble column reactor could range from increasing the 

vertical tubing length, increasing the diameter of the tubing to adding vertical tubing to a 

module.  The dead zone is formed at the bottom of the reactor where the module 

interconnects the vertical growth tubes, because these fittings are not constructed from a 
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clear material, due to cost of such a construction.  The dead zone that is created causes a 

large portion of algae to form a sediment, which directly affects the production of the 

system because it is in a dark zone of the reactor.  Improved results would be obtained if 

the algae were kept at a homogeneous density that would ensure maximum expose to 

light. 

The ratio of gas flow rate to reactor volume and diameter of the tubing was found to be 

crucial.  It is suspected that the 90 mm tubing reactor had a negative growth rate as this 

ratio was not correct.  The 50 mm reactors had to be run at a much lower reactor volume 

per volume gas flow rate which could consist of air, carbon dioxide enriched air or other 

gases as required.  The inclusion of the tubing diameter in the ratio is of vital importance 

and should be studied further. 

A cost analysis shows that the bubble column reactors under the tested conditions are not 

financially viable.  A large component of the cost is carbon dioxide and medium, which is a 

composition of nutrients.  This could be removed if a free source were obtained, which 

would make the system financially viable.  These sources could include waste water and 

flue gas from industrial processes. 

It is recommended that a gas dispersion tube be positioned at the bottom of the reactor to 

ensure that no sedimentation occurs and that there is a homogeneous culture, and to 

maximise the production capabilities of a bubble column reactor.  It is also recommended 

that the gas flow rate inside the reactor be studied to obtain a ratio where the volume of 

the reactor, the height of the reactor and the diameter of the tubing are included to obtain a 

sufficient rate of flow. 
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OPSOMMING 

Tans is daar drie belangrike alg stamme wat kommersieel geproduseer word, Chlorella, 

Spirulina en Dunaliela salina.  Fotobioreaktors het meegebring dat meer as 50 000 

bekende alg spesies met meer as 15 000 komponente tot op datum chemies 

geïdentifiseer is.  Baie van hierdie alge kan hoë waarde produkte wees, wat met behulp 

van hernubare metodes geproduseer kan word. 

Die ontwerp van 'n optimale fotobioreaktor is 'n komplekse proses aangesien 'n groot 

verskeidenheid veranderlikes ingesluit moet word wat ‘n invloed op mekaar kan hê.  Die 

interaksie van meeste van hierdie veranderlikes is nog nie vasgestel nie. Die inligting oor 

hierdie onderwerp is beperk aangesien die meeste fotobioreaktors in 'n laboratorium 

getoets is en dus nie die vervaardigingsmateriale, die grootte van buise en ander ontwerp 

veranderlikes insluit nie. 

Voordat 'n fotobioreaktor ontwerp kan word, moet die ideale alg produksie toestande 

verstaan word, aangesien dit 'n direkte impak op die produksie vereistes kan hê.  Om alg 

biomassa onder spesifieke omstandighede te produseer, moet die bestaande 

fotobioreaktor ontwerpe ondersoek word.  Daar moet vasgestel word of die bepaalde 

ontwerp oor die kapasiteit beskik om optimale produksie te lewer; identifisering van faktore 

wat produksie negatief kan beïnvloed en hoe dit voorkom kan word; en 'n koste ontleding 

moet gedoen word om te bereken of die produksie van alge met die geidentifiseerde 

ontwerp 'n ekonomies lewensvatbare proses is.  Daar moet aan al die vereistes voldoen 

word om te bepaal of 'n fotobioreaktor lewensvatbaar is vir die produksie van alg 

biomassa. 

'n Borrel-kolom reaktor ontwerp word tans as die beste ontwerp vir 'n fotobioreaktor geag, 

asook die mees aanpasbare ontwerp.  As gevolg van die beperkte inligting wat beskikbaar 

is, is navorsing gedoen om die invloed van verskillende faktore te bepaal, naamlik: 

vervaardigingsmateriaal, gasverspreidingseenheid, buisdeursnee en digtheid.  Borrel-

kolom reaktors is gebruik om die vier belangrikste veranderlikes in die ontwerp te toets.  

Om die veranderlikes en hul interaksie te toets, is Chlorella vulgaris gebruik, aangesien dit 

een van die gewildste alg spesies is vir die produksie van biomassa.  As gevolg van die 

belangrike rol wat temperatuur en lig beskikbaarheid in die produksie van alge speel, is al 

die toetse in 'n laboratorium-omgewing gedoen om temperatuur wisseling te beperk en 

konstante lig beskikbaarheid te verseker. 
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Die reaktors wat getoets is, is vervaardig uit PVC koppelstukke, met die deurskynende 

buise wat uit PVC of akriel vervaardig is.  Verrykte lug is verskaf op 'n 5% volume per 

volume verhouding CO2, met 'n vloei tempo van 0,02 volume per volume per minuut (vvm) 

vir die 50 mm deursnee reaktors en 0,36 vvm vir die 90 mm en 110 mm reaktors.  Twee 

gasverspreidingseenhede is gebruik om hulle invloed op die produksie te bepaal.  Die 

gasverspreidingseenhede skep kleiner borrels, om 'n hoë oppervlak area tot volume 

verhouding te skep en daardeur 'n maksimum CO2 en O2 massa-oordrag te verseker. 

'n Groeikoers van 0,14 gram per liter per dag is gevind as die beste produksie van al die 

reaktors en konfigurasies wat getoets is.  Die 50 mm deursnee reaktors het die beste groei 

getoon, gevolg deur die 110 mm deursnee reaktors.  Die 90 mm deursnee reaktors het 'n 

negatiewe groeikoers getoon, wat moontlik toegeskryf kan word aan onvoldoende gas 

vloei tempo.  Die 50 mm reaktors het die beste groeikoers van 0,14 en 0,10 gram per liter 

per dag vir die akriel buise getoon, terwyl ‘n 0,08 gram per liter per dag behaal is met 'n 

PVC buis.  Die 110 mm reaktors het die hoogste groeikoers aangedui van 0,05 gram per 

liter per dag met 'n PVC buis. 

Daar is bevind dat die 50 mm en 90mm reaktors 'n beter prestasie met akriel buise gehad 

het, terwyl die 110 mm reaktors 'n beter prestasie met 'n PVC buis gehad het.  Die 

gasverspreidingseenheid word beinvloed deur die gas vloei tempo, digtheid, buisdeursnee 

en die vervaardigingsmateriaal wat gebruik word.  Die gasverspreidingseenhede word 

verder beinvloed deur die reaktor se buisdeursnee aangesien die 50 mm reaktor ‘n beter 

prestasie getoon het met die kleiner gas eenheid, terwyl die 110 mm reaktor ‘n beter 

prestasie getoon het met die groter gas eenheid, as gevolg van die gas vloei tempo wat 

vereis is.  Die gas vloei tempo en gasverspreidingseenheid het ‘n direkte invloed op die 

groei van die kultuur, dus is die optimale digtheid afhanklik van die lig beskikbaarheid en 

dus die vervaardigingsmateriaal van die buise.  Die gasverspreidingseenhede moet stewig 

in die reaktor pas en in staat wees om die gas vloei tempo wat vereis word te kan hanteer.  

Hoewel die deursnee van die buise nie 'n invloed getoon nie, kan dit 'n invloed onder 

verskillende toets omstandighede toon en kon nie finaal uitgeskakel word.  Die digtheid 

van die alge het wel 'n effek, hoewel die meeste reaktors ‘n beter produksie tempo op 'n 

hoër kultuur digtheid toon. 

Die groter skaal borrel-kolom reaktor ontwikkel 'n dooie sone indien ‘n module saamgestel 

word.  Die groter skaal borrel-kolom reaktor kan insluit: die verhoging van die vertikale buis 

lengte, 'n toename in deursnee van die buise en toevoeging van vertikale buise in die 
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module.  Die dooie sone het gevorm aan die onderkant van die reaktor waar die module 

se vertikale groei buise met mekaar verbind is.  Hierdie area is uit nie-deurskynende 

materiaal vervaardig as gevolg van die konstruksie koste.  Die dooie sone het veroorsaak 

dat groot hoeveelhede van die alge ‘n sediment gevorm het en ‘n direkte invloed op die 

produksie van die stelsel gehad het aangesien dit 'n donker sone in die reaktor gevorm 

het.  Beter resultate kan verwag word indien die alge op 'n homogeniese digtheid gehou 

kan word om maksimum lig blootstelling te verseker. 

Daar is bevind dat die verhouding van gas vloei tempo tot reaktor volume en buisdeursnee 

deurslaggewend is.  Die negatiewe groeikoers in die 90 mm reaktor word toegeskryf 

daaraan dat hierdie verhouding nie korrek was nie.  Die 50 mm reaktors het op 'n laer 

reaktor volume per volume gas vloei tempo gefunksioneer wat kan bestaan uit die lug, 

verrykte lug of ander gasse soos benodig.  Dit dui daarop dat die insluiting van die buis 

deursnee in hierdie verhouding van kardinale belang is en verder bestudeer moet word. 

'n Koste ontleding toon dat die borrel-kolom reaktors onder hierdie getoets omstandighede 

nie finansieel lewensvatbaar is nie.  'n Groot deel van die koste is die medium, wat 'n 

samestelling van voedingstowwe is, en koolstofdioksied koste.  Om finansieel 

lewensvatbaar te raak, moet hierdie kostes deur 'n gratis bron vervang word.  Die bronne 

kan bestaan uit afval water en oortolige CO2 uit industrie. 

Daar word aanbeveel dat 'n gasverspreidingsbuisie aan die onderkant van die reaktor 

geplaas word.  Dit sal verseker dat geen sediment vorm nie en 'n homogeniese kultuur 

gehandhaaf kan word om maksimum produksie in 'n borrel-kolom reaktor te handhaaf.  

Verder word aanbeveel dat die gas vloei tempo binne die reaktor verder bestudeer word 

om 'n verhouding tussen die volume van die reaktor, die hoogte van die reaktor en die 

deursnee van die buise te bepaal deur sodoende 'n voldoende tempo van vloei te verkry. 
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1. INTRODUCTION 

1.1. Background 

Sustainability is the most important principle in the management of natural 

resources. It involves operational efficiency, and environmental and economic 

impact, which are all interconnected (Singh and Sharma, 2012).  The social, 

environmental and economic pressures of human activity require increasing energy 

resources, with an estimated increase in worldwide energy usage from 533 to 812 

quadrillion (1015) kJ between 2008 and 2035 (Rogers et al., 2014).  Biomass that is 

produced using photosynthesis can potentially become a renewable fuel source 

which will simultaneously use carbon dioxide and thereby reduce current 

greenhouse gas emissions and the carbon footprint.  Microalgae are one of the most 

prolific sources of photosynthetic biomass on Earth and have been promoted as one 

of the most promising third-generation biofuel sources (Rogers et al., 2014), mainly 

due to its rate of production and because it can be produced on non-arable land. 

The first unicellular algae culture was Chlorella Vulgaris which was achieved by 

Beijerinck in 1890.  Research on algae production only started in Stanford in the 

USA, Essen in Germany and Tokyo after 1948.  Hereafter, the commercial 

production of algae biomass began in Japan during the early 1960s with Chlorella, 

and during the 1970s research on Spirulina followed (Borowitzka, 1999). 

The first attempts to grow algae occurred during World War II; algae were grown in 

open-pond systems by the Germans as a food supplement (Ugwu, Aoyagi and 

Uchiyama, 2008).  By 1980 Asia had 46 commercial algae plants which produced in 

excess of 1000 kg of Chlorella monthly (Borowitzka, 1999).  In 1996 the Chlorella 

traded in Japan alone was in the region of 2000 tons (Borowitzka, 1999). 

Currently the three main algae strains produced commercially are Chlorella, 

Spirulina and Dunaliela salina, produced for biomass and bioproducts, although over 

15 000 novel compounds from algae production have to date been chemically 

identified, with three main groups consisting of toxins, bioproducts and chemical 

ecology (Cardozo et al., 2007). 
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Algae are some of the most basic photosynthetic organisms on earth (Demirbas, 

2010; Demirbas and Fatih Demirbas, 2011).  They can live in either saline or fresh 

water and require mainly light energy, water and carbon dioxide for survival 

(Demirbas, 2010).  Algae are part of a diverse group of organisms which can be 

found in simple unicellular to complex multicellular forms and can be found growing 

within most biotopes, due to their ecological diversity and physiological adaptability 

to the specific environments (Pulz, 2001). 

Algae have mostly been seen as a problem: as a result of their rapid growth rate it 

costs millions annually to keep pools, dams, lakes and drinking water clean from 

algal infestation.  Due to their rapid growth rate, algae show potential to produce 

biofuels, food and high-value molecules from a renewable source and supply the 

demand for specific natural and renewable products.  Microalgae are cell factories 

that are sunlight-driven and could potentially produce an array of compounds which 

include polysaccharides, lipids, proteins, carotenoids, pigments, vitamins, steroids, 

pharmaceuticals and biofuels (Choi, Suh and Lee, 2003; Slegers et al., 2013). 

Algae production on an industrial scale is currently expensive when compared to 

fossil fuels: the estimated production cost of algae oil is between $1.40 and $1.81 

per litre and this cost needs to be reduced to around $0.45 per litre in order to 

compete with petrol and diesel (Demirbas and Fatih Demirbas, 2011).  In addition, 

high-value molecules are produced using algae, among them are the dietary 

supplements spirulina (Spirulina), β-carotene (Dunaliela salina), 15N-analine, mixed 

fatty acids and allophycocyanin, to name a few currently produced (Spolaore et al., 

2006).  Worldwide, microalgae are produced at a commercial level with very little or 

no information available on the design, selection of locations, scaling, or constraints 

due to the competitive edge they provide in a commercial plant (Grobbelaar, 2009a).  

Several designs of photobioreactors (PBRs) have been developed.  They would 

enable the production of new species’ biomass and products at a commercial level 

(Borowitzka, 1999) with effective scaling creating the largest problem. 

One of the main driving forces behind the research on algae is to find a replacement 

for the current fossil fuels.  Because the use of algae-based biofuels would create a 

closed carbon system, it would thus have no net effect on the environmental levels of 

carbon dioxide or possibly even reduce the levels of carbon dioxide in the 
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atmosphere.  An additional advantage of using algae is that the algal biomass can 

be produced using runoff, waste, saline or fresh water, depending on the algae.  In 

addition the nutrients in the water may be collected and the water purified before it 

enters the natural ecosystem.  Algae have the ability to deliver a renewable source 

of products with the ability to purify effluent from commercial processes, creating a 

lower carbon footprint and possibly reducing production costs. 

Algae biomass 

production

Biomass 

harvesting

Biomass 

dewatering

Biomass 

processing

Inputs:

water, carbon 

dioxide and 

nutrients

Product

Waste of specific 

process
Recycling of water

 

Figure 1.1: The basic process of algae production 

 

Figure 1.1 shows the basic process for the production and processing of algae 

biomass.  The recycling of water allows algae biomass to be grown with very high 

water efficiency when compared to other energy crops.  This factor is becoming very 

important due to the limited freshwater sources that are available (Borowitzka and 

Moheimani, 2013).  Control of the production system almost eliminates the possibility 

of having a failed harvest, unlike other energy crops which depend on natural 

weather cycles and could be negatively affected by unforeseen circumstances 

(Dominguez-Faus et al., 2009), e.g. drought could cause a complete failure of 

energy crops while algae production would not be affected or the effect could be 

limited by the proper management of the available resources. 

The biggest benefit of algae biomass production is the ability to produce algae 

biomass on non-arable land. This does not directly threaten current food production, 
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while energy crops compete directly with food production for arable land.  Waste 

created by a specific processing method could possibly be reprocessed to obtain 

another product, thus increasing the economical and processing viability of 

producing algae biomass, e.g. if the desired product from the biomass is the lipid 

content, the waste could be processed to obtain protein, carbohydrates or any other 

product that is produced by the specific strain of algae, making it more economical 

and environmentally friendly.  Due to the possibilities for algae biomass, the design 

of a photobioreactor will play an important role. 

Several factors in the design of photobioreactors influence their productivity as seen 

in Figure 1.2.  The circular boxes represent the input into the reactor and the square 

boxes represent the calculations that have to be performed.  The calculations are 

even more complicated by the fact that some of the inputs are interconnected and 

thus could cause problems when something is changed in the system.  Due to the 

large quantity of algae species that are available and the different requirements of 

each species, the design of the reactor has to be modified to meet the specific alga’s 

requirements for optimal production.  Because there are so many variables as seen 

in Figure 1.2, the design of a bioreactor becomes fairly complicated and should be 

compatible with all species and conditions required, while providing high and efficient 

production levels. 
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Figure 1.2: Tubular PBR calculation scheme to determine the productivity of algae 
biomass, redrawn from Slegers et al., 2013 
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1.2. Problem statement and objective 

Currently most of the commercial plants producing algae use open pond systems 

with several closed photobioreactors also being used (Tredici, 2004).  Many different 

designs for photobioreactors are available for the production of algae biomass.  

Many of the proposed designs have been tested on a laboratory scale, but have 

several very important factors that are affected by the scaling up of the design of the 

specific reactor, with light availability, carbon dioxide availability and agitation 

composing the top three factors for producing algae biomass (Molina Grima et al., 

1999).  The economic aspect of the design of the reactor is also important as it 

should be an economically viable process to produce algae biomass and thus the 

focus should not only be concentrated on the environmental aspect. 

A greater difficulty is experienced in algae bioreactors because the effects of several 

external factors – consisting of the light characteristics inside the reactor, the 

temperature and the building materials – influence the design and viability of the 

reactor, because a living biomass is being produced.  In some cases 

uncontaminated algae are required and this aspect complicates the problems 

because it is difficult to maintain certain production systems in a sterile state.  With 

the aid of the knowledge obtained from the literature study (see chapter 2), several 

requirements were identified to be used as the backbone of the design of the 

bioreactor.  The requirements of an optimal photobioreactor are listed below as 

suggested by (Tsoglin et al., 1996): 

 The reactor should be able to produce algae biomass at an optimal growth 

rate constantly. 

 The design must allow the maximum possible light penetration with little 

unilluminated areas and uniform illumination over the reactor. 

 High mass transfer of algae biomass is required during the harvesting 

process, to ensure small disruption in biomass production. 

 High mass transfer of CO2 and O2 is necessary to ensure that optimal growth 

is obtained. 

 The reactor should have little or no mechanical parts. 

 The reactor should be a system that is low cost and easy to maintain. 
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 The reactor should have limited bio-fouling and, in cases when bio-fouling 

does occur, it should be easily cleanable. 

The objectives of the study are: 

 to define the different algae production conditions; 

 to determine the best photobioreactor design; 

 to determine the input requirements for algae biomass production; 

 to anticipate possible factors that influence the production negatively; 

 to assess the influence of different factors and their interactions; and 

 to determine the viability of algae biomass on the tested photobioreactor. 
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2. LITERATURE REVIEW 

2.1. Introduction 

This literature review starts by defining the main conditions of cultivation and the 

systems used in algae production, including the scale up of photobioreactors and 

their obstacles as described in the available literature.  This is followed by 

researching algae’s basic requirements, the growth potential and the cell 

compositions of different algae species.  Specific nutrient requirement and the 

importance of the theory of these requirements will be reviewed.  Potential problems 

that could be encountered and possible solutions to these problems will also be 

reviewed.  The recovery of the algae biomass from its growth medium, including 

further processes to purify the biomass components and the uses of algae biomass 

will be compared. This will be followed by a summary at the end the chapter.  This 

literature review attempts to highlight the engineering requirements of algae 

photobioreactors, including the overall process and to a limited degree the 

biochemistry and chemistry involved in algae production. 

2.2. Algae cultivation conditions 

The conditions under which algae are cultivated have a significant effect on the 

algae’s composition, characteristics and the requirements of the reactor (Chojnacka, 

2004; Chen et al., 2011).  Photoautotrophic, (Chemo) heterotrophic, 

heteroautotrophic and mixotrophic are the four major cultivation conditions for algae 

(Chojnacka, 2004; Chen et al., 2011). 

2.2.1. Photoautotrophic 

The photoautotrophic conditions are the most commonly used cultivation condition 

for the production of microalgae (Chen et al., 2011; Illman, Scragg and Shales, 2000; 

Yoo et al., 2010).  Algae produced using photoautotrophic conditions use light as 

their sole energy source, while inorganic carbon is their sole carbon source, of which 

both are the limiting factors, to utilise during the photosynthesise process as seen in 

Figure 2.10 (Chojnacka, 2004).  The advantage of using photoautotrophic cultivation 

for the production of algae biomass is that CO2 from factories and power plants can 
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be used. This will reduce the carbon dioxide emissions of the factories making them 

more environmentally friendly (Chen et al., 2011). 

Table 2.1: Stoichiometric equations and pH effect of major cultivation conditions  

Condition Stoichiometric equation pH 

Photoauto-

trophic 
         

  
  
              

 

 
          

Increases 

Heterotrophic                                           Decrease 

Mixotrophic      
        

  
                            

       

Minor 

changes 

Source: Chojnacka, 2004 

 

2.2.2. Heterotrophic 

(Chemo) Heterotrophic cultivations are the use of organic compounds as carbon and 

energy sources, eliminating the requirement of light as an energy source 

(Chojnacka, 2004). Microalgae can utilise an array of organic carbon sources 

including monosaccharides, disaccharides, acetates and glycerols (Chen et al., 

2011; Liang, Sarkany and Cui, 2009).  Liang, Sarkany and Cui (2009) find that a 

biomass production rate of 2 g/l/d and a lipid production of 932.0 mg/l/d are possible.  

The use of heterotrophic cultivation provides a lipid production of almost 20 times the 

production of photoautotrophic systems (Chen et al., 2011). 
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Table 2.2: Productivity of algae species under different culture conditions 

Species 
Collection 

number 

Cultivation 

conditions 

Biomass 

productivity 

(g/l/d) 

Lipid 

productivity 

(mg/l/d) 

Botryococcus 

braunii 
UTEX 572 Phototrophic 0.03 5.5 

Chlorella 

protothecoides 
 Heterotrophic 43.0-46.0 1881.3-1840.0 

Chlorella 

protothecoides 
 Heterotrophic 50.3-57.8 1209.6-3701.1 

Chlorella 

protothecoides 
 Heterotrophic 46.1 932.0 

Chlorella 

protothecoides 
 Heterotrophic 43.0-48.7 732.7-932.0 

Chlorella sp.  Phototrophic 0.37-0.53 121.3-178.8 

Chlorella 

vulgaris 
#259 Phototrophic 0.01 4.0 

Chlorella 

vulgaris 
#259 Heterotrophic 0.08-0.15 27.0-35.0 

Chlorella 

vulgaris 
#259 Mixotrophic 0.09-0.25 22.0-54.0 

Chlorella 

vulgaris 
CCAP 211/11B Phototropic 0.17 32.6 

Dunaliella 

tertioleca 
ATCC 30929 Phototrophic 0.1 60.6-69.8 

Nannochloris sp. UTEX LB1999 Phototrophic 0.04-0.35 15.6-109.3 

Nannochloropsis 

oculata 
NCTU-3 Phototrophic 0.37-0.48 84.0-142.0 

Neochloris 

oleoabundans 
UTEX 1185 Phototrophic 0.31-.63 38.0-133.0 

Scenedesmus 

obliquus 
 Mixotrophic 0.1-0.51 11.6-58.6 

Source: Chen et al., 2011 
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Photoheterotrophic cultivation uses light as its energy source and organic 

compounds as its carbon source instead of organic compounds as both energy and 

carbon source, while in mixotrophic cultivation the organic compounds act as the 

energy source (Chen et al., 2011). 

2.2.3. Mixotrophic 

Mixotrophic cultivation exploits the ability of algae to use both organic and inorganic 

carbon sources, or their ability to live under both photoautotrophic or 

photoheterotrophic conditions (Chen et al., 2011).  According to Chojnacka (2004) 

another definition of mixotrophy is the utilisation of organic compounds as a source 

of carbon, while the inorganic compounds merely act as electron donors.  Table 2.2 

shows that the use of mixotrophic systems is very limited, with the main research 

focus occurring on phototrophic and heterotrophic systems. 

2.3. Algae cultivation: systems and designs 

There are two main types of photoautotrophic algae cultivation systems: open ponds 

and closed systems (photobioreactors).  Open ponds will be mentioned to give some 

background, however, the main focus is on photobioreactors. 

2.3.1. Open ponds 

Open ponds are currently the preferred commercial method because they are less 

expensive to construct and easier to operate and build, while at the same time they 

are more durable than commercial photobioreactors.  Open pond systems have 

been designed and tested in a number of ways, utilising a number of different 

configurations and materials (Tredici, 2004).  Natural ponds and raceway ponds will 

be discussed below, although other types of open ponds are also available. 

2.3.1.1. Lakes and natural ponds 

Microalgae will grow under suitable conditions for production – both climatic and 

nutritional.  In certain temporary and permanent lakes, the conditions are suitable for 

the growth of a monospecific culture (Tredici, 2004).  Lake Texcoco in Mexico was a 

near natural pond which produced significant amounts of Spirulina, but it was closed 

in 1994 – 1995 due to contamination.  In Myanmar crater lakes were discovered to 

be suitable for the production of Spirulina.  These are currently becoming 
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increasingly more important (Pulz, 2001).  The biggest problem with the use of 

natural lakes and ponds for the production of algae is that the possible need for the 

addition of nutrients could cause an ecological imbalance in the specific body of 

water and could thus cause a large ecological problem in the area close to the lake. 

2.3.1.2. Raceway ponds 

Raceway ponds are usually closed oval channels that have a depth of between 0.25 

and 0.4 metres, are open to the environment and in which the culture is agitated 

using a paddle-wheel system in order to circulate the algae culture, and prevent any 

sedimentation (Slade and Bauen, 2013).  Raceway ponds are typically constructed 

of concrete or compacted earth and they could be lined with white plastic (Chisti, 

2007) for its reflective properties, in order to increase the light absorption of the 

algae and prevent water loss.  The open design of the raceway pond system allows 

nature to influence the growth of the algae because the growth environment can only 

be controlled in certain areas, while other factors, such as temperature, follow 

natural rhythms.  From a financial point of view, the capital required to produce algal 

biomass in open ponds is low compared to photobioreactors, but open ponds have 

much higher operating costs due to their open design and external influences. 

Stellenbosch University  https://scholar.sun.ac.za



13 
 

Paddle wheels

Flow direction

Baffles

 

Figure 2.1: Schematic of a raceway pond system, redrawn from Chisti, 2007 

 

Figure 2.1 is a schematic that shows the basic requirements and layout of a raceway 

pond system.  Water depths of 0.15 – 0.20 metres are mainly used for operating 

conditions.  These culture depths allow a 1000 mg/l biomass concentration to be 

maintained, allowing a production of 60 to 100 mg/l/day which is the equivalent of 10 

to 25 g/m2/day of biomass.  CO2 diffusion to the atmosphere and evaporation losses 

are significant, with the possible contamination and pollution of the culture being the 

major drawback of the system (Pulz, 2001).  The design of the paddle wheels in a 

raceway pond is very important as aeration would decrease the CO2 levels in the 

system and thus decrease the growth rate of the algae (Grobbelaar, 2009a). 
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Table 2.3: Open culture systems currently used in commercial production of algae 

System Algae Specie Location 

Tanks Aquaculture species World wide 

Open ponds Dunaliella salina, Chlorella spp. 
Australia 

Japan, Taiwan (circular ponds) 

Raceway ponds Chlorella spp., Spirulina spp Japan, Taiwan, Thailand, USA 

 Dunaliella salina 
Chile, China, India, Israel, USA, 

Vietnam 

Cascade system Chlorella spp. Bulgaria, Czech Republic 

Large bags Aquaculture species World wide 

Fermenters Chlorella spp. Indonesia, Japan, Taiwan, USA 

Two-stage system 

(PBR followed by 

open pond) 

Haematococcus pluvialis USA 

Source: Borowitzka, 1999 

 

2.3.2. Photobioreactors 

Photobioreactors (PBR) allow the exploitation of over 50 000 known microalgae 

species, many of which could be interesting sources for high-value products which 

would then be produced using a renewable method.  PBRs can be defined as 

systems where more than 90 % of the light has to enter the PBR through the 

transparent barrier in order to reach the culture medium.  PBRs eliminate, or strongly 

limit, the direct interaction of gases and contaminants between the culture medium 

and the outer environment (Tredici, 2004). 

PBRs enclose the algal broth in transparent tubes or plates with the culture being 

circulated from a reservoir through the reactor (Slade and Bauen, 2013).  The 

available PBRs’ configurations are numerous, but most PBRs can be divided into 

two main groups, namely reactors with either tubular or flat panels.  It is possible to 

categorise PBRs further according to their design, including the orientation of the 

tubes, the mechanism for culture circulation, the lighting method and the construction 

materials, to name a few (Molina Grima et al., 1999). 
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The ability to control the environment of PBRs would ensure the constant optimal 

growth of the algal biomass.  The use of artificial light could become beneficial when 

optimal growth is obtained as opposed to using normal sunlight growth durations, but 

would requiring additional energy and therefore additional costs would be incurred. 

A 

B 

Figure 2.2:  Photobioreactors currently used for experimental purposes:  

A) horizontal, B) vertical PBR, redrawn from Slegers et al., 2013 

 

Closed PBRs have the ability to regulate and control nearly all the biotechnological 

parameters.  PBRs also have fundamental benefits which include a reduced risk of 

contamination, little loss of carbon dioxide, reproducible conditions, flexible designs, 

controllable hydrodynamics and temperatures (Pulz, 2001). 
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PBR efficiencies are determined by the utilisation of light and are defined by the 

ability to capture, transport, distribute and the usage of light energy.  PBRs for 

biomass production should capture all the available light in a specific area to ensure 

both light- and area efficiency (Zijffers et al., 2008). 

In Figure 2.2, the orientation of the PBRs can be seen in two different designs.  By 

changing the designs of two very similar systems, several factors affecting the 

growth of algae biomass are influenced, including the availability of light and the 

hydrodynamics in the system.  The changes in the design also entail additional 

requirements to the systems, for example the system in Figure 2.2B would require 

stronger pumps to circulate the culture around the entire reactor, which would 

increase the energy requirement and could cause damage to the algae cells due to 

pressure changes. 

 

Figure 2.3: A helical tubular photobioreactor, redrawn from Chisti, 2007 
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The shape of PBRs does vary as seen in Figure 2.3 where the use of a very small 

surface area could ensure a high production of biomass when using a PBR instead 

of the raceway pond system. 

Tubular reactors are most likely to be used as the next generation of enclosed algae 

culture systems.  They allow effective illumination, high biomass concentration, 

effective bioreactor sterilisation, high CO2 conversion efficiencies, low contamination 

levels, easy monitoring and easy control of operational parameters (Torzillo, 1997). 

Three known commercial scale PBRs are utilised at full scale although very little 

information can currently be found on these plants.  Two of the commercial scale 

plants were built in Hawaii (USA) by Micro Gaia Inc. and Aquasearch Inc. while the 

third was built in Germany by Ökologische Produkte Altmark GmbH.  A commercial 

scale PBR was built, but operations were stopped after only a few months.  The 

main reasons for the stop of operations were (Tredici, 2004): 

 production process instability; 

 contamination; 

 improper circulation; 

 inadequate degassing; 

 improper management; 

 biofouling; 

 unequal culture distribution; and 

 inadequate materials. 

2.3.2.1. Tubular PBR 

Vertical tubular PBRs are made from clear vertical tubing and use gas transfer to 

agitate the algae growth mixture gently, thus minimising the shear stress.  The height 

is usually limited to four metres because a high concentration of CO2 and pH 

gradients form in the reactor.  The addition of gas (i.e. bubbling from the bottom end 

of the reactor) allows for efficient CO2 utilisation and optimal O2 removal, while 

simultaneously agitating the culture and reducing the energy requirements of the 

reactor (Wang, Lan and Horsman, 2012). 
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Vertical tubular PBRs consist of two types of sub-reactor, namely Bubble column and 

airlift.  The main difference is that a Bubble column PBR has no internal division 

inside the reactor tube, while an Airlift PBR makes use of dividers to create and mix 

the flow inside the reactor tube, as seen in Figure 2.4.  It is also possible to use an 

external loop in an airlift reactor by using the external loop for the returning mixture 

although this system would increase the cost of the PBR due to the extra work 

required during the building process, but the surface area to volume ratio is 

increased substantially (Wang, Lan and Horsman, 2012). 

Tubular PBRs are one of the most preferred designs and can be found as horizontal, 

helical or bent reactors, as seen in Figure 2.2 and Figure 2.3.  The transparent tubes 

are generally made from glass or clear plastic which have an outer diameter of 0.1 m 

or less – generally for optimal light penetration.  The typical arrangement of tubular 

reactors differs in order to collect maximum light (Chisti, 2007). 

Horizontal PBRs’ incident light angle is much better when compared to that of 

vertical PBRs – this angle causes excess heat requiring expensive cooling systems.  

Difficulty arises when scaling up horizontal PBRs due to the excess heat, especially 

when large areas are occupied by the reactor.  The scaling up of tubular PBRs also 

causes other major problems which are explained next (Wang, Lan and Horsman, 

2012). 
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Gas
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Figure 2.4: Diagram of A) bubble column reactor, B) internal loop airlift reactor, and 
C) split airlift reactor, redrawn from Wang, Lan and Horsman, 2012 

 

2.3.2.2. Flat panel PBRs 

Flat panel PBRs normally have a cuboidal shape that is designed to obtain a minimal 

light path to ensure complete penetration.  Transparent materials are used, including 

glass, Plexiglas and polycarbonate.  Similar to vertical tubular PBRs, flat panel PBRs 

have a high surface area to volume ratio and agitation is provided either through gas 

bubbling from the bottom of the reactor or through a mechanical motor (Singh and 

Sharma, 2012). 
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Figure 2.5: Diagram of: A) an airlift flat panel PBR; and B) a pump driven flat panel 
PBR, redrawn from Wang, Lan and Horsman, 2012 

 

(Tredici et al., 1991) constructed a vertical alveolar panel (VAP) reactor that had a 

surface are of 80 m2/m3 with surface areas ranging from 0.5 to 2.2 m2 using bubbling 

gas for agitation and O2 removal.  The Plexiglas sheets used to build the reactor had 

a transparency of 95 %.  However, two problems arose: firstly, the temperature of 

the algae mixture had to be regulated as heat generation occurred rapidly, and 

secondly the gas bubbles filled approximately 2 to 4 % of the reactor.  Both problems 

arose due to the high surface area to volume ratio (Tredici et al., 1991). 

2.3.2.3. Scaling up 

There is no reliable scale up method for photobioreactors.  Models could not predict 

the condition and performance of larger reactors particularly if the diameter of the 

tube was changed substantially.  Other than using multiples of identical tubular 
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modules, the volume could only be enlarged by increasing the length of the tube 

and/or the internal diameter of the tube.  By changing the length or the diameter of 

the tube, the mass transfer and the light regiment are changed and the product is 

thus not a scale up of the original model. Increasing the length of the tube and using 

a constant tube diameter would cause a change in pH at the exit of the tube due to a 

change in the concentrations of O2 and CO2.  A scaled-up reactor should produce 

the same exit composition (oxygen, carbon dioxide and biomass contents) as a 

smaller reactor (Molina Grima et al., 1999) and therefore it is difficult to achieve a 

scale up of a reactor. 

The residence time of a longer tube should be the same as that of a shorter tube 

when using a constant diameter.  In order to obtain the same residence time, the 

flow velocity has to be increased by a factor of the length between the two (Molina 

Grima et al., 1999).  The fact that higher flow velocities could have an increase in 

pressure to obtain the desired velocity should be included in the calculation.  The 

increase in velocity and pressure would also cause the algal culture to experience an 

increase in drag which is not taken into account when increasing the flow rate by the 

ratios of the longer to shorter tubes.  These factors could easily cause damage to the 

algae cells, providing a lower product grade or the loss of a significant amount of the 

product. 

No detailed study has been conducted to determine the effect that design variables 

have on a large scale PBR.  Tubular PBR performance is mainly dependant on the 

light profile internally, which is inturn also dependent on the location, the reactor 

configuration (including tube arrangement, distances and diameter), the biomass 

concentration and the characteristics of the algae growth (Slegers et al., 2013). 
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Table 2.4: Summary of culture systems’ advantages and disadvantages 

Culture Systems Advantage Disadvantage 

Open ponds  Economical 

 Easy to clean 

 Low energy 

 Low maintenance 

 Good for large-scale 

production 

 Little culture control 

 Low productivity 

 Easy contaminated 

 Limited strain potential 

 Occupy large area 

 Poor mixing 

Column photobioreactor  High mass transfer 

 Good mixing  

 Easy to sterilise 

 Compact 

 Potential for scalability 

 Reduce photo inhibition 

and photo-oxidation 

 Low energy 

consumption 

 Small illuminated area 

 Expensive compared 

to open ponds 

 Sophisticated materials 

Tubular photobioreactor  Large illuminated areas 

 Suitable for outdoors 

 Good productivity 

 Relatively cheap 

 Reasonable scalable 

 Easy species control 

 Uniform mixing 

 Good temperature 

control 

 pH gradient 

 Fouling 

 Wall growth 

 Requires large area 

 Hydrodynamic stress 

 Possible low gas 

transfer 

Flat plate photobioreactor  Large illuminated areas 

 Suitable for outdoor 

 Good light path 

 Good productivity 

 Relatively cheap 

 Easy to clean 

 Low oxygen build up 

 Scale up difficult 

 Temperature control 

difficult 

 Wall growth 

 Possible hydrodynamic 

stress 

Source: Borowitzka, 1999; Ugwu, Aoyagi and Uchiyama, 2008; Brennan and 

Owende, 2010 
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2.3.2.4. Consideration for designing PBRs 

It was suggested by Tsoglin et al. (1996) that the following points should be 

considered when designing a PBR: 

 The cultivation of various algae species should be permitted by the reactor. 

 Uniform illuminations and fast mass transfer of CO2 and O2 must be provided. 

 The design should prevent or minimise the fouling of the PBR, especially the 

light-transmitting surface because microalgae are highly adhesive and could 

cause frequent shutdowns of the reactor. 

 Mass should be transferable at high rates without damaging the cell or 

suppressing the growth in the reactor.  

 High rates of mass transfer often cause intensive foaming – a condition in 

which the reactor must be able to work. 

 The PBR should have no or minimal non-illuminated areas. 

Developing a bioreactor requires a detailed knowledge of its key aspects, including 

light distribution, mass transfer, stresses, the ability to scale up and the biological 

requirements of algae.  No single bioreactor has all the properties required for a 

complete bioreactor, but combining reactor designs to form a hybrid reactor could 

combine the strengths of several reactor types to produce a suitable bioreactor for 

the production of algae biomass (Singh and Sharma, 2012). 

2.4. Algae 

Algae are some of the most basic photosynthetic organisms that exist on Earth, and 

microalgae are unicellular organisms.  Algae live in saline or fresh water and require 

energy (mainly in the form of sunlight), water and carbon dioxide as their main 

conditions for survival (Demirbas, 2010). 

Each species of alga produces a different ratio of oils, carbohydrates and proteins 

(Haag, 2007).  The composition of the oil content that is produced is directly affected 

by the temperature at which the algal biomass is grown (Naoki et al., 1979).  Table 

2.5 shows the different amounts of oil that are found in different microalgae species.  

This shows how important the environment and species type are when considering 

the desired final product.  In higher order plants, structural carbohydrates 
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predominate in the biomass, while in microalgae the major components are proteins 

(Ginzburg, 1993). 

Microalgae are aquatic organisms that form part of a large and diversified group.  

Due to their aquatic nature, they lack the complex structures normally seen in higher 

order plants.  Depending on the species of microalgae, useful quantities of 

polysaccharides, triacylglycerides and proteins can be produced (Slade and Bauen, 

2013). 

Table 2.5: Oil content of microalgae species 

Species % dry weight 

Botryococcus braunii 25-75 

Chlorella sp. 28-32 

Crypthecodinium cohnii 20 

Cylindrotheca sp. 16-37 

Dunaliella primolecta 23 

Isochrysis sp. 25-33 

Monallanthus salina N 20 

Nannochloris sp. 20-35 

Nannochloropsis sp.  31-68 

Neochloris oleoabundans  35-54 

Nitzschia sp. 45-47 

Phaeodactylum 
tricornutum  20-30 

Schizochytrium sp.  50-77 

Tetraselmis sueica  15-23 

Source: Chisti, 2007 

 

While the productivity of these organisms makes them look attractive, the complexity 

of the systems required for their cultivation are an obstacle, reflecting the research 

cost, the capital cost for their implementation and the recurring cost for their 

operation (Terry and Raymond, 1985).  It is expected that algae biomass production 

could reach 40 to 80 tons of dry matter production per hectare per year using closed 

systems (Slegers et al., 2013). 
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Figure 2.6:  Possible uses for microalgae biomass, redrawn from Dufossé et al., 
2005 

 

In Figure 2.6 some of the potential uses of algae biomass can be seen.  Algae 

biomass can be used in such a large array of products that it increases the desire to 

use algae as a replacement for fossil fuels and synthetic products.  As will be seen 

later in the review, several factors influence the final yield as well as the cost of 

production. 

2.4.1. Growth rate and composition 

Algae are very sensitive and can be killed by too much sunlight.  The optimum 

growth environment is where temperatures are kept constant and oxygen is removed 

continuously.  In addition, algae cells can be ruptured by carbon dioxide bubbles that 

are present when additional carbon dioxide is added to the culture (Haag, 2007).  

Macroalgae contain a lower concentration of lipids and produce less biomass than 

microalgae, making microalgae a more desirable option for large-scale systems 

(Hossain et al., 2008). 
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By controlling the environment in which the algae biomass is grown, the biochemical 

composition can be manipulated beneficially to produce higher quantities of the 

desired products (Mirón et al., 2003).  By reducing the growth temperature, the 

production of higher-order unsaturated fatty acids increases, while lower-order 

unsaturated fatty acids decrease.  A thin-layer chromatography (TLC) analysis of the 

lipids indicated that monogalactosyldiglyceride, degalactosyldiglyceride, 

sulfoquinovosyldiglyceride and phosphatidyglycerol make up the major lipid 

components of blue-green algae.  Monogalactosyldiglyceride accounts for 

approximately half of the composition of the lipids.  It was noted that unsaturation as 

well as chain length were affected by the growth temperatures of the culture.  At 

higher growth temperatures, the C18 acids increased while the C14 acids decreased 

(Naoki et al., 1979). 

The lipid gas chromatography (GC) profile of P. tricornutum showed that the algae 

contains over 20 different fatty acids.  Four of these fatty acids were at a level of 

above 8 %.  Eicosapentaenoic acid (EPA, 20:5n3) contributed 27 – 30 %; palmetic 

acid (16:0) contributed 16.9 %; palmoleic acid (16:1n7) contributed 14.0 %; and 

myristic acid (14:0) contributed 9.4 % to the total fatty acid content (Mirón et al., 

2003). 
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Table 2.6: Change of lipid concentrations at different temperatures 

 Molar percentage 

Fatty 

acid 

Monogalactosyl-

diglyceride 

Digalactosyl-

diglyceride 

Sulfoquinovosyl-

diglyceride 

Phosphatidyl-

glycerol 

 38°C 28°C 22°C 38°C 28°C 22°C 38°C 28°C 22°C 38°C 28°C 22°C 

16:0 23.1 24.4 51.5 19.8 21.1 18.7 52.2 54.8 51.1 52.3 51.7 50.0 

16:1 27.4 27.1 28.5 32.4 27.4 29.3 3.8 2.7 7.8 2.3 1.9 3.9 

16:2 0.6 1.6 3.8 1.0 2.6 5.86 0.0 0.0 0.5 0.0 0.0 0.0 

18:0 0.1 0.0 0.0 0.2 0.0 0.3 4.4 2.2 0.9 0.4 0.0 0.2 

18:1 23.5 10.2 6.7 18.6 6.1 3.1 27.1 19.2 13.2 30.7 16.2 9.2 

18:2 24.9 20.1 15.3 26.8 19.1 12.7 12.6 13.4 12.5 14.2 19.1 16.9 

18:3 0.6 16.5 24.3 1.1 23.7 30.3 0.0 7.9 14.0 0.0 11.1 19.8 

Average 

double 

bonds 

per lipid 

2.07 2.71 2.92 2.20 2.96 3.20 1.12 1.44 1.78 1.23 1.79 2.12 

C16 51.0 53.1 53.8 53.3 51.1 53.7 56.0 57.5 59.4 54.7 53.6 53.9 

C18 49.0 46.9 46.2 46.7 48.9 46.3 44.0 42.5 40.6 45.3 46.4 46.1 

Source: Naoki et al., 1979 

 

Using a chemostat with artificial light under laboratory conditions, a growth rate was 

obtained in which the doubling time of the biomass was less than two hours.  

Assuming a 14-hour growth day, a 100-fold increase in biomass content may be 

theoretically possible (Ginzburg, 1993). 

An important consideration is the thermodynamics, where hydrocarbons have a heat 

of formation of 11 k.cal/g, while carbohydrates have a heat of formation of 4 k.cal/g.  

The conversion of lipids into hydrocarbons is relatively difficult and high quantities of 

lipids are only found in very old algae, making it undesirable from an economical 

point of view (Ginzburg, 1993). 

Microalgae grow extremely rapidly compared to other energy crops and many algae 

have higher energy potential due to a high oil content as seen in Table 2.5.  

Microalgae commonly double their biomass content within a 24-hour period.  During 

an exponential growth phase, it has been found that a doubling time of around 3.5 

hours is a common occurrence (Chisti, 2007).  Blue-green algae have a proportional 
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relationship between their exhibited growth rate and the effective light duration 

available to the growing culture (Foy, Gibson and Smith, 1976).  The fast doubling 

times in combination with the high oil content of some of the algae species seen in 

Table 2.5 make algae biomass a more viable renewable fuel source than other 

energy crops that only produce once a year and have little to no impact on food 

production. 

Continuous production methods showed a considerable increase in production over 

semi-continuous and batch production methods, including a more constant nutrient 

yield (Terigar and Theegala, 2014; James and Abu-Rezeq, 1989).  The specific 

growth rates and productivity of outdoor cultures are directly dependent on the 

nutrient addition rate, incident light and dilution in the reactor.  Little information is 

available on the effect that dilution rates have on the productivity of microalgae in a 

continuous outdoor growth reactor.  A study indicates that cultures close to their 

physiological cell density limit diverted the incident light more toward the production 

of lipids (Terigar and Theegala, 2014). 

The composition of the algae is mainly affected by the direct environment of the 

culture which includes temperature, pH, the irradiance history and the nitrogen 

present in the culture.  Nitrogen and sulfur are mainly found in the proteins of the 

algae cells.  During the night, the portion of protein in the cells increases because 

some of the carbohydrates are consumed and new proteins are synthesised (Mirón 

et al., 2003).  The increase in protein could be due to the lack of energy during the 

night as the synthesis of carbohydrates and the splitting of cells cease, but the 

production of proteins continues during the night. 

Neochloris oleoabundans is an alga that combines a high specific growth rate at 

optimal growth conditions with an accumulation of lipids and a large content of 

saturated fatty acids during nitrogen starvation conditions (Sousa et al., 2013). 

Nitrogen fixation does occur in certain blue-green algae species.  Observations have 

shown a N2 growth rate of approximately 75 % of that seen on nitrates at both light-

limiting and light-saturating intensities (Kratz and Myers, 1955).  The nitrogen-fixing 

species could have the ability to produce bio-hydrogen.  This will be discussed later. 
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2.4.2. Growth phases 

The algae undergo different growth phases because there are changes in the 

biomass composition or in the environment to which the algae are exposed either 

internally or externally. 

2.4.2.1. Lag phase 

The lag phase is observed when non-viable cells are present in the inocula and so 

little growth is seen in the initial stages.  The lag phase is most commonly observed 

when the cells are introduced to a new environment and have to first undergo 

physiological changes to adapt to the specific environment.  The lag phase could be 

eliminated by using cells that are already in the exponential phase for the specific 

environment (Lee and Shen, 2004). 

2.4.2.2. Exponential phase 

The exponential phase is usually observed after the lag phase.  The cells are fully 

adapted to their new environment and start to grow at such a high rate that they 

create an exponential growth curve as a function of time.  For the algae to remain in 

the exponential phase, it is vital to ensure that the medium and light are at saturated 

levels (Lee and Shen, 2004). 

2.4.2.3. Linear growth phase 

The linear growth phase usually happens when the cell density reaches a point 

where all the light photons are absorbed by the culture.  This would cause the culture 

to be in a linear growth rate up to the point where another factor becomes the limiting 

factor.  A linear growth rate would usually indicate a maximum concentration of 

biomass for the setup of a specific reactor.  By reducing the density of the culture to 

a point where an excess of light photons is available to the culture, the exponential 

phase would resume (Lee and Shen, 2004). 

2.4.2.4. Death phase 

The death phase can be seen as a much more severe form of the linear growth 

phase.  The reason for this is the loss of algae cells and this is usually caused by a 

complete deficiency of any of the factors.  The most common deficiencies are very 
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limited light or a deficiency of the minerals that are required for growth.  The death 

phase is mainly seen in batch cultures as a result of a mineral deficiency because no 

harvesting occurs and therefore no fresh medium is added to the culture. 

2.5. Nutrient requirements: 

The average elemental composition of freshwater algae is CH1.7O0.4N0.15P0.0094, with 

the N content being particularly sensitive to its environment.  To achieve the best 

growth rate, these nutrients have to be supplied in an optimum quantity in order not 

to limit the growth rate in any way.  If saline water is used, the addition of other salts 

may be required for maximum algal growth (Borowitzka and Moheimani, 2013).  

Grobbelaar (2004) suggests that a minimum requirement for balanced nutrition of 

CH1.83O0.48N0.11P0.01 is necessary for the production of microalgae. 

2.5.1. Carbon dioxide 

Algae are photosynthetic organisms that fix carbon from a main source of carbon 

dioxide to produce algal biomass (Demirbas, 2010).  Because carbon dioxide is a 

requirement for the growth of algae biomass, it could potentially be used to reduce 

excess carbon dioxide in the environment (Gavrilescu and Chisti, 2005).  The ability 

of microalgae to remove excess carbon dioxide from the environment could 

potentially allow for the habitation of other planets that are currently too hostile for 

most life forms (Gòdia et al., 2002) or could reduce and manage the increase of 

carbon dioxide levels on Earth in an attempt to decrease global warming and its 

effects. 

Algal biomass contains approximately 50 % carbon which is mainly contained in the 

carbohydrates and lipids.  Carbon is derived from the fixation of carbon dioxide 

through the process of photosynthesis (Chisti, 2007; Mirón et al., 2003).  Mirón et al. 

(2003) calculate that the fixation rate was 2.5 mg carbon per litre per hour in their 

system.  Although this seems low, at a commercial level the fixation could allow 

power plants to become carbon neutral.  It can be calculated that it would require 

approximately 183 tons of carbon dioxide to produce 100 tons of algae biomass 

(Borowitzka and Moheimani, 2013; Chisti, 2007).  Carbon dioxide has to be fed 

continuously during growth periods.  The addition of carbon dioxide requires the 

monitoring of the pH levels of the broth (Chisti, 2007).  The addition of carbon 
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dioxide to the broth would form carbonic acid (H2CO3) because it is in equilibrium.  

The CO2 levels in the broth can be monitored and controlled relatively easily as the 

carbonic acid equilibrium changes the pH of the algae broth, depending on which 

side of the equilibrium has the higher concentration. 

CO2 + H2O ↔ H2CO3 [Equation 2.1] 

H2CO3 ↔ H+ + HCO3
-  [Equation 2.2] 

HCO3
- ↔ H+ + CO3

2-  [Equation 2.3] 

Light transfer is the most important factor for syntheses to occur and for the removal 

of the O2 produced during photosynthesis, followed by the feeding of CO2 to the 

algae culture.  The requirement of CO2 can be calculated from the total carbon 

content in the biomass, using a stoichiometric basis.  The carbon fraction varies 

between species and normally ranges between 0.45 for high carbohydrate algae and 

0.8 for algae with high oil contents.  This gives a minimum requirement of 1.85 g of 

CO2 per gram of biomass that should be fed continuously.  This is similar to the 

previously stated 1.83g CO2 per gram biomass, with the addition of pure CO2 when 

required (Posten, 2009). 

The addition of NaHCO3 as an inorganic carbon source showed an increased 

productivity of Chlorella vulgaris, with an optimal level of 1g/litre.  The addition of 

NaHCO3 could have a double effect because it could serve as both a carbon source 

and act as a buffer in the system, limiting the pH fluctuations and allowing for more 

continuous growth (Yeh, Chang and chen, 2010). 

2.5.1.1. Optimal concentration of carbon dioxide 

The growth rate of C. vulgaris was shown to be directly affected by the concentration 

of CO2.  Achieving the best growth through the use of a 5 % (v/v) CO2 to air mixture, 

with an enhancement in growth found in 15 % (v/v) CO2 adaption over air.  The 

addition of CO2-enriched air did cause a sharp initial drop in the pH of the mixture 

compared to when normal air is used (Yun et al., 1997). 
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Table 2.7: Growth rates at different CO2 concentrations using different culture 
densities. 

 Biomass (dry weight, g/l) Growth rate (µg/d) 

Low-density (8x105 cells/ml) 

Air 0.537 ± 0.016 0.230 

2% 1.211 ± 0.031 0.492 

5% 0.062 ± 0.027 0.127 

10% 0.010 ± 0.003 - 

15% 0.009 ± 0.001 - 

High-density (8x106 cells/ml) 

Air 0.682 ± 0.007 0.248 

2% 1.445 ± 0.015 0.605 

5% 0.899 ± 0.003 0.343 

10% 0.106 ± 0.001 - 

15% 0.099 ± 0.001 - 

Source: Chiu et al., 2008 

 

In Table 2.7, Chiu et al. (2008) find that using a 2 % (v/v) for the growth of Chlorella 

sp. obtained the best results.  The use of 10 and 15 % (v/v) inhibited the growth after 

four days.  The process was repeated by first incubating Chlorella sp., previously 

grown at 2 % (v/v), with the respective CO2 concentrations.  This showed that the 

environmental stress of higher CO2 could be overcome.  The initial results also show 

that the cell density is in relationship with the CO2 tolerance (Chiu et al., 2008). 
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Table 2.8: Maximum temperature and CO2 concentration of several algae species 

Algae specie Maximum temperature (°C) Maximum CO2 % (v/v) 

Cyanidium caldarium 60 100 

Scenedesmus sp. 30 80 

Chlorococcum littorale - 70 

Synechococcus elongates 60 60 

Euglena gracilis - 45 

Chlorella sp. 45 40 

Chlorella sp. HA-1 - 15 

Chlorella sp. T-1 35 - 

Endorina sp. 30 20 

Sunaliella tertiolecta - 15 

Chlamydomonas sp. MGA161 35 15 

Nannochloris sp. 25 15 

Tetraselmis sp. - 14 

Monoraphidium minutum 25 13.6 

Spirulina sp. - 12 

Source: Kumar et al., 2011 

 

In Table 2.8, the maximum CO2 concentration of several algae species can be seen.  

This information should therefore be taken into account when deciding which algae 

should be used because, as can be seen in the table, different strains of the 

Chlorella sp. have significantly different CO2 tolerances. 

2.5.1.2. Volume of air supplied 

Chiu et al. (2008) and Chiu et al. (2009) used a flow rate of the previously mentioned 

CO2/air mixture at a rate of 0.25 vvm and used a vertical tubular photobioreactor for 

growing Chlorella sp. and Nannochloropsis oculata.  Figure 2.7 shows the setup 

used to control the flow rate of the gas into the PBR as well as to control the mixture 

of gas that enters the reactor. 

Using a similar system as seen in Figure 2.7, Morris et al. (2010) state that pure CO2 

gas was added for 2 to 5 minutes at a rate of 20 litres per minute, but they do not 

state whether it was for a single tubular reactor or for the entire module of 45 tubular 
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reactors.  The duration of the CO2 addition is controlled by the pH of the growth 

medium to ensure optimal levels for the particular algae species.  The rate at which 

air is bubbled through is not stipulated.  If the flow rate of CO2 is used to calculate 

the flow rate in a vvm, the flow rate will be 0.008 vvm or 0.36 vvm for the module or 

for the single tube reactor respectively (Morris et al., 2010). 
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Figure 2.7: Schematic of the setup to control CO2/air mixture and flow speed of the 
gas, redrawn from Chiu et al., 2008 

 

Zhang, Miyachi and Kurano (2001) used a flow rate of 0.05 vvm on a flat panel PBR 

at a CO2 concentration of 10 % (v/v) while working with Synechocystis aquatilis.  

Similarly a flow rate of 0.5 vvm was used for the production of 14 species, using air 

and 5 % (v/v) CO2 although the type of reactor is not mentioned. 

Anabaena sp. were grown using a bubble column PBR with air bubbling through it 

continuously at a rate of 0.2 vvm (González López et al., 2009).  Little work has been 

done on the optimal flow rate of gas in a reactor.  This is due to the different needs of 

different reactors.  The flow rate is complicated because the gas that enters the PBR 

could have different concentrations of CO2 and this might lead to a lower flow rate.  
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As is reported in the literature, the flow rates that were used were often applied to 

several species to eliminate the specific variable, although the requirements of the 

species were not taken into account and therefore some of the cells could have been 

damaged – and this would reduce the specific production.  Consequently a PBR 

would be required to have a variable flow rate to ensure the optimal conditions for 

production if different species were grown in a reactor at different times. 

2.5.2. Water 

Currently the water requirements of other biofuel sources are between 500 and 

4000 litres, which is enough to produce feedstock for one litre of bioethanol.  

Typically, sugar cane and corn refineries require 2 – 10 litres of water to process the 

feedstock into one litre of bioethanol (Dominguez-Faus et al., 2009).  Water 

requirements for biomass feedstock crops will depend on the type of crop, the 

location where the crop is grown at and how the crops are managed 

(Gopalakrishnan et al., 2009).  These limitations of other biomass crops, give algae a 

solid foundation as they can be produced using waste or saline water and non-

agricultural lands, allowing for food security (Singh and Olsen, 2011). 

The production of energy sources requires water while the production of bioenergy 

sources requires large amounts of water because the biomass has to be produce 

first before it is converted into the desired biofuel.  Since limited fresh water is 

available in the areas where the production of algae using sunlight is at its highest, 

the use of saline water is required.  Due to the limitation of fresh water, the use of 

fresh water algae for biofuel production is highly unlikely.  This shifts the focus to 

algae that can be produced using saline water (Borowitzka and Moheimani, 2013). 

Open pond systems that are situated in regions with high solar irradiation can 

experience a rate of evaporation of up to 1.5 m.  Replacing evaporated water with 

water from a saline water source would be more beneficial than from a fresh water 

source due to the high volume of evaporation in a large-scale plant.  If saline water 

were used to replace the evaporated water in the pond, the saline levels of the pond 

water would increase over time which could cause production problems and 

ultimately the complete loss of production due to the death of the algae.  The range 

of salinity tolerance in many marine algae species is very narrow and would require 

regular, partial or complete discharge of the pond water.  The discharge creates a 
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new problem because the pond water still contains nutrients and thus creates 

addition costs and problems that have to be overcome for the system to operate 

sustainably (Borowitzka and Moheimani, 2013) especially when regular discharges 

are required.  The use of saline water could also affect the nutrient requirements for 

the production of the algae biomass as some of the components in the saline water 

could inhibit the uptake of nutrients due to the complexation of the specific nutrient 

which would require an excess of the nutrient in order to obtain maximum growth. 

The use of fresh water in closed photobioreactors is possible because evaporated 

water can potentially be recovered.  Recycling in closed systems would still require 

the disposal of water because the build-up of undesirable compounds including salts 

may affect the productivity and safety of the biomass, especially if it is used as a 

source in the production of humans and animals foods.  Because discarded water 

may still contain nutrients, the disposal could potentially have a large effect on the 

environment (Borowitzka and Moheimani, 2013). 

If the target of EISA2022 is to be met for the production of 136 million m3 of biofuel, 

the water required for the entire production process will be between 91 and 420 

million m3 of water.  If fresh water are used, these values will be in the range of 0.7 to 

3 times the current usage for grain farming in the US.  The highest water 

requirement is found for the production of bioelectricity, while the lowest is for 

aquaculture production.  The study by Batan, Quinn and Bradley (2013) shows that 

the water requirement for the production of algae-based biofuel is less than for oil-

seed biofuels, similar to most bioethanol production from biomass and higher than 

for petroleum-based fuels.  The water requirements for algae biofuels are directly 

dependant on the usage of the biofuel (Batan, Quinn and Bradley, 2013). 

2.5.3. Phosphates 

Similar to oil, phosphorus is a non-renewable resource, which is currently extracted 

at such rates that the global phosphate reserves will be depleted in as little as 50 – 

100 years.  Algae production would therefore be in direct competition with the 

phosphorous fertilisers that are required for food production.  This increases the 

importance of using phosphorous efficiently in algae production by recycling the 

nutrients in algae production systems wherever possible (Borowitzka and 
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Moheimani, 2013) and possibly using algae to recover phosphorous from run-off 

water. 

Like all living organisms, algae require phosphorous for growth and development.  

Inorganic phosphate is the preferred method for the addition of phosphorus to algae 

culture, although many algae can utilise polyphosphates and organic phosphorous 

sources.  It is possible to use phosphorous from waste water, but reliable growth is 

harder to achieve due to variations in waste water composition and the generally 

high ammonia concentrations (Borowitzka and Moheimani, 2013). 

Alternative sources of phosphorous could include waste water, manure or even 

ashes containing phosphorous from the combustion of biomass.  Bone meal, which 

is rich in both phosphorous and calcium, has been used successfully in cultures 

(Borowitzka and Moheimani, 2013). 

Phosphorus-starved cells take longer to start their growth cycle, as the reparation of 

damaged functional macromolecules has to be completed first.  Phosphorus stored 

intracellularly can mainly be found in the form of a polyphosphate as it forms part of 

the main energy transporter in living cells (Qi, Wang and Wang, 2013). 

Phosphorus is one of the most important nutrients as it regulates both growth and 

metabolism in cells.  It plays a significant role in energy transport, biosynthesis, 

photosynthesis and respiration.  Phosphorus is also a key factor for microalgae to 

accumulate lipids.  Only a few studies have been done, although no common 

conclusion could be drawn since the process appears to be species dependant 

(Liang et al., 2013).  Benning, Huang and Gage (1995) find that algae that are grown 

in a phosphorus-deficient environment showed a rapid decrease in membrane 

phospholipids and replaced the missing phospholipids with non-phosphorous acidic 

glycolipids and ornithine lipids.  This shows how well algae adapt to their 

environments. 

2.5.4. Nitrogen 

Nitrogen in several forms can be added, such as ammonia (NH3), nitrates (NO3), 

urea (CH4N2O) and N2 for nitrogen-fixing species.  The form of nitrogen that is added 

has the possibility of directly affecting the cell’s composition, its growth rate and the 

stability of the culture.  The use of NH3 should be carefully managed as it can react 
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with other components in the culture mixture due to its alkalinity and also because of 

the algae’s sensitivity towards NH3 (Borowitzka and Moheimani, 2013). 

According to Bilanovic et al. (2009), microalgae should be grown in a concentration 

of between 285 and 427 g N/l, irrespective of the CO2 concentrations that are used.  

The high nitrogen requirement for the production of algae biomass makes the 

recycling and conservation of nutrients essential for the sustainable production of 

biomass.  The cost of the production of nitrogen fertiliser is not only financial but also 

environmental because the production of nitrogen generates carbon dioxide and 

other greenhouse gases, with the production of 1 kg of nitrogen producing 2 kg of 

carbon dioxide.  A possible alternative source of renewable nitrogen is the use of 

Anabaena which is a nitrogen-fixing algae.  Cultivation of nitrogen-fixing algae could 

have the potential of producing fertiliser in a sustainable matter for the agricultural 

sector and/or algae culture for biofuel production (Borowitzka and Moheimani, 2013). 

Algae cells that are nitrogen starved can completely or greatly deplete compounds 

such as nitrates, ammonium, amino acids and proteins (Qi, Wang and Wang, 2013).  

Protein forms the major intracellular nitrogen pool and thus the consumption of 

nitrogen directly affects the formation of proteins and could indirectly affect the 

formation of lipids and carbohydrates.  The biochemical composition of proteins 

varies considerably during growth periods.  In nitrogen-limited environments the 

protein content of algae was lower than algae growing in a non-limiting environment 

(Liang et al., 2013). 

It was found that C. vulgaris has a calorific value of 18 kJ/g but it increases to 23 

kJ/g in an environment that was nitrogen limiting.  The limitations of nitrogen have 

been shown in several algae species to cause an increase in lipids.  This suggests 

that the lipid content of the biomass could be increased, by prolonging the cultivation 

period after nitrogen depletion has occurred (Wang et al., 2008). 

The deprivation of nitrogen diverts the flow of fixed carbon from the synthesis of 

protein to the synthesis of either lipids or carbohydrates.  There are indications that 

cellular lipids accumulated during nitrogen deprivation could be derived from newly 

fixed carbon.  It is possible for the level of carbohydrates to be up to 70 % of the dry 

mass without reducing the productivity of lipids, although the productivity of biomass 
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is often affected at the expense of other biological components, mainly proteins 

(Rodolfi et al., 2009). 

Some algae have been found to increase their carbohydrate content while others 

have been found to increase their lipid content under nitrogen deprivation.  In the 

Chlorella genus, it has been found that some strains accumulate large amounts of 

carbohydrates while others accumulated large amounts of lipids.  The accumulation 

of secondary carotenoids is also a main characteristic in many species, combined 

with a reduction in chlorophyll content during nitrogen starvation (Hu, 2004). 

2.5.5. Nutrient sources 

With the expansion of the commercial microalgae-growing industry, competition with 

the agricultural sector for inorganic fertilisers is expected to increase.  Coupled with 

the fact that fossil fuel prices are likely to increase, this could mean that inorganic 

fertilisers may be an economically unviable source of nutrients for microalgal 

production systems.  Approximately 50% of the required fossil energy input for the 

growth of algae for biofuel is linked to inorganic fertilisers (Fenton and Ó 

hUallacháin, 2012). 

Flue gas from thermal power stations and steel-making plants has a carbon dioxide 

concentration that is approximately 500 times higher than that of atmospheric levels.  

The use of waste water from the steel-making plants requires the addition of 

phosphates, while allowing a calculated rate of 23 100 kg of CO2 to be fixed daily 

and the production of 12 430 kg of algal biomass daily.  The use of steel-making 

waste water is likely to cause the algal biomass to be contaminated by heavy metals 

(Yun et al., 1997).  The contamination could have no or little effect on the 

commercial value of the algae but this would depend on the intended use of the 

specific algae biomass that was produced. 

The nutrient content of agriculturally derived organic fertilisers, runoff and drainage 

water have the potential ability to facilitate the growth of algal biomass (Fenton and 

Ó hUallacháin, 2012).  Agricultural waste water characteristically contains a large 

amount of both organic matter and nutrients.  Wetlands have a finite ability for 

nutrients to be recovered and stored by aquatic plants, sedimentation, detritus, 

microbes and fauna.  Removal of both N and P was more efficient here than in 
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unplanted wetlands, when using waste water from a dairy farm.  Studies which 

included unplanted control wetlands found that planted wetlands removed more 

nitrogen from waste water which was rich in ammonia (Tanner, Clayton and Upsdell, 

1995).  The biggest potential problem when using agricultural runoff water is the 

inclusion of pest-control poisons that could kill the algae. 

Using algae to capture the nutrients in waste water is possible and could become a 

viable source not only of cultivated algae but also of agricultural fertiliser.  Benthic 

algae are produced on vertical screens in an ecological water treatment system 

using waste water which is harvested from fish grazing on the benthic algae.  Fish 

faeces are than collected in the conical base of the tank.  Nitrogen and phosphorous 

recovery is achieved by the collection of both the fish and their faeces (Wilkie and 

Mulbry, 2002).  A 23 % reduction in N was found in municipal waste water with a 

reduction of 82 % in P content (Wilkie and Mulbry, 2002; Rectenwald and Drenner, 

2000).  In future the technology could be utilised as an alternative to current tertiary 

treatment for the removal of phosphorus in waste-water facilities (Rectenwald and 

Drenner, 2000). 

2.5.6. Light 

The two major factors that control the productivity of photosynthesis in algae cultures 

are the availability and intensity of the light (Molina Grima et al., 1999; Yeh, Chang 

and chen, 2010).  Cultures that use natural light are subjected to natural cyclic 

changes in irradiation with two or more distinct cycles: a daily cycle and a seasonal 

cycle.  A third cycle should also be included.  It is evident in the movement of the 

fluid between different illumination zones within the biophotoreactor (Molina Grima et 

al., 1999). 

Plants and algae have several mechanisms to manage the fluctuation in both quality 

and intensity of the light that is available.  The number of light-harvesting pigments 

increases in light-limiting conditions, which increase the amount of photosynthetic 

units in the algae cell (Grobbelaar, 2006).  In general, limitations cause a reduction 

of the pigment concentration in the cell and increase the number of photosynthetic 

units and enzymes.  Algae grown at high levels of light generally have lower 

photosynthetic units per cell, but have a higher maximal photosynthetic rate when 

compared to algae grown at low irradiation (Sukenik, Bennett and Falkowski, 1987). 
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Cells at the front surface of the reactor have a very low efficiency because they are 

exposed to the high intensity of sunlight while the dense culture may cause the cells 

at the back surface of the reactor to be in the absence of light.  Theoretical studies 

have shown that intermittent light has an effect on the rate of photosynthesis.  This 

means that high intensities of flashing light can be used with high efficiency by the 

algae cells (Phillips and Myers, 1954).  By using a “two dark, one light” cycle of 10 

ms each, the photosynthetic rate increases 6.7 times on average (Grobbelaar, 

2009b).  Productivity could be increased substantially by utilising light-dark cycles 

and low turbulent biomass mixtures to allow equal light availability and overcome the 

light penetration differences, as seen in Figure 2.8. 
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Figure 2.8: Cross section of the light profile (W/m2) inside a horizontal tubular reactor 
at A) 08:00, B) 12:30 and C) 16:00 using a 0.06m tube diameter, redrawn from 

Slegers et al., 2013 

 

The use of artificial light would allow both the availability and the intensity of the light 

that is required for optimal growth to be controlled.  A major obstacle to the use of 

artificial light is the cost of the electricity required.  A possible compromise would be 

to use sunlight during the day and artificial light at night.  The compromise could 

allow for more cost-effective growth although it could affect the composition of the 

algae biomass in an undesirable way due to the drastic changes in light intensities. 
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Figure 2.9: Shading effects on different PBRs designs, redrawn from Slegers et al., 
2013 

 

In Figure 2.8, the light profile inside a horizontal PBR shows that the deeper the 

penetration, the lower the intensity of the light.  It can be seen that the middle part of 

the PBR only gets light of a very low intensity.  The arrangement of the PBR tubes 

has to allow for maximum penetration.  As seen in Figure 2.9, the design of the PBR 

could limit the light exposure of certain tubes at particular times and this would 

reduce the growth ability of the algae.  In Figure 2.9 C, the bottom tubes would 

receive very little to almost no light. This would affect the light profiles, seen in Figure 

2.8, negatively (Slegers et al., 2013). 

There are three distinct regions on the photosynthetic vs. irradiance response curve.  

The first is the light-limiting region where the photosynthetic rate increases with an 

increase in the irradiance.  The second is a region where saturation has occurred 

and where the photosynthetic rate is independent of the irradiation levels.  The third 

is a photo-inhibition region where the rate of photosynthesis decreases with an 

increase in irradiation (Grobbelaar, 2013).  Simionato et al. (2013) find that high light 

intensities that are well beyond the total saturation limit could be harvested, provided 

that a sufficiently light dark cycle is maintained. 
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The main factor affecting the biomass yield is the light regime that is found in the 

reactor. It consists of three characteristics: 

1. the light intensity on the reactor’s surface; 

2. the duration of light exposure of cell in the light regions of the reactor; and 

3. the frequency that the cell travel between the light and dark regions of the 

reactor (Barbosa et al., 2005). 

Figure 2.10 highlights the path that light energy has to travel during photosynthesis.  

The figure shows that light energy is captured by the light harvesting complex (LHC) 

and used to split water to obtain protons.  The protons allow the formation of adonine 

triphosphate and NADPH, which are both energy carries.  The energy carriers are 

utilised by the Calvin cycle or Hydrogenase  A enzymes to form hydrogen gas, oils, 

charbohydrates and other carbon containing products.  The long path that the 

electrons have to follow can be seen; also evident is the fact that the rate of 

utilisation by the Calvin cycle and Hydrogenase A (HydA) is the limiting factor on the 

amount of light that can be harvested by chlorophyll in the cell. 
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Figure 2.10: Schematic of the photosynthesis process, redrawn from Schenk et al., 
2008 

 

2.5.7. Growth medium 

Many recipes for algae growth nutrients are available, with special formulations often 

being used but not reported due to their value in maintaining a commercial 

competitive advantage.  N, P and C are commonly the limiting nutrients because an 

excess of these nutrients will cause stress to the cells and a decrease in the growth 

rate.  Each type of alga has different requirements and these can be seen in Table 
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2.9 which shows the growth medium recipes that were designed for specific algae 

types or genus (Grobbelaar, 2004). 

Table 2.9: Media recipes commonly used for algae production.  All concentration in 
g/l unless otherwise stated 

Substrate BG11 Modified Allen’s Bold’s Basal 

NaNO3 1.5 1.5 0.25 

K2HPO4.3H2O 0.04 0.039 0.075 

KH2PO4   0.175 

MgSO4.7H2O 0.075 0.075 0.075 

CaCl2.2H2O 0.036 0.025 0.084 

Ca(NO3)2.4H2O  0.02  

Na2SiO3.9H2O  0.058  

Citric acid 0.006 0.006  

Fe-Ammonium citrate 0.006   

FeCl3  0.002  

FeSO4.7H2O   0.005 

EDTA. 2Na-Mg salt 0.001 0.001 0.05 

Na2CO3 0.02 0.02  

NaCl   0.025 

KOH   0.031 

H3BO4 (µg/l) 2.86 2.86 11.41 

MnCl2.4H2O (µg/l) 1.81 1.81 1.44 

ZnSO4.7H2O (µg/l) 0.222 0.222 8.82 

Na2MoO4.2H2O  

(µg/l) 
0.391 0.391  

CuSO4.5H2O  

(µg/l) 
0.079 0.079 1.57 

Co(NO3)2.6H2O  

(µg/l) 
0.0494 0.0494 0.49 

MoO3 (µg/l)   0.71 

Adjust final pH 7.4 7.8  

Source: Grobbelaar, 2004 
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The BG11 is a mixture that is used mainly for the production of green freshwater 

algae.  Cyanobacteria are grown by using both BG11 and modified Allen’s mixture, 

while Bold’s Basal mixture targets most algae species and can be supplemented 

with soil extracts (Grobbelaar, 2004).  As seen in Table 2.9, the makeup of the 

growth medium can differ considerably.  These differences should be taken into 

account when growing the algae biomass. 

2.6. Shortcomings 

2.6.1. Oxygen 

In photo-bioreactors, the oxygen that is produced during photosynthesis 

accumulates and induces processes like photorespiration and photo-inhibition which 

decreases the growth rate and yield (Sousa et al., 2013).  The oxygenase activity of 

the Rubisco enzyme is mainly associated with photorespiration.  An accumulation of 

oxygen in the cells would cause a change in the local O2/CO2 ratios and inhibit the 

carboxylase activity of the Rubisco enzymes and increase their oxygenase activity 

(Sousa et al., 2012). 

Photoinhibition can be defined as the suppression of the process of photosynthesis 

which is caused by light.  It results in a reduction of the maximum carbon dioxide 

uptake, causing a reduction in the maximum total product (Torzillo, Bernardini and 

Masojídek, 1998).  Photoinhibition occurs mainly at highly over-saturated intensities.  

These conditions generate an excess of electrons in the Photosystem II as seen in 

Figure 2.10, which uses energy from the light harvesting complex to spilt water.  The 

excess of electrons react with the oxygen that is produced during the photosynthesis 

process, forming radicals and other reactive oxygen species (ROS) (Sousa et al., 

2013; Sousa et al., 2012; Murata et al., 2007).  Light stimulates the formation of the 

highly reactive singlet oxygen.  Singlet oxygen causes damage to the water-oxidising 

centres and deactivates the electron transport chain, resulting in a loss of 

photosynthetic activity – this could ultimately cause cell death (Sousa et al., 2013).  

The formation of radicals and ROS could also cause substantial damage to the 

reactor over a period of time, destroying it completely or increasing the maintenance 

requirements drastically. 
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Microalgae have developed a mechanism, which is generally referred to as 

photoacclimation, with which to overcome the photo-oxidative damage caused by 

photoinhibition at high light intensities.  Photoacclimation can be recognised by 

changes in the pigmentation.  This will result in a lower chlorophyll content and a 

higher carotenoid content.  Carotenoid content normally increases to dissipate the 

energy of excited chlorophyll and eliminated ROS.  At very high light irradiation, the 

protective mechanism cannot sufficiently deal with the surplus of electrons, singlet 

oxygen and ROS, leading to cell damage (Sousa et al., 2013).  Photoinhibition could 

potentially be induced for the formation of carotenoid production, in the cases where 

carotenoids are the desired product by creating a two part system. 

2.7. Seperation of algal biomass  

The process of harvesting biomass usually requires several solid-liquid separation 

steps.  The small size of an algae cell (3 - 30 µm) causes significant problems with 

the recovery process.  Algae cultures are generally fairly dilute (less than 0.5 kg/m3), 

and so they require a large volume of culture to be processed for the recovery of the 

biomass.  Recovering the biomass from the culture can contribute to between 20 and 

30 % of the costs (Molina Grima et al., 2003). 

Commonly deployed techniques for the recovery of microalgae biomass have proved 

uneconomical, although certain biomass processes do not require the separation of 

the growth medium and the biomass-like hydrothermal liquefaction.  The principle 

harvesting techniques include centrifugation, filtration, flocculation, sedimentation 

and electrophoresis (Coward, Lee and Caldwell, 2013). 

2.7.1. Centrifugal recovery 

It is possible to harvest most microalgae species from suspension using 

centrifugation (Molina Grima et al., 2003).  It is the fastest and most reliable method, 

although an energy input of up to 3000 kWh/t is required (Coward, Lee and Caldwell, 

2013, Molina Grima et al., 2003).  Centrifugation is the method of choice to recover 

algae biomass, especially for the production of extended shelf-life concentrations 

(Molina Grima et al., 2003). 

Biomass recovery, using a sedimenting centrifuge, is directly affected by the settling 

characteristic of the algae, their settling depth and the residence time of the slurry.  
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Proper design of the centrifuge will keep the depth to a minimum, while the 

residence times can be manipulated by the flow rate of the slurry.  Cell viability is 

dependent on the species in question and the method of centrifugation that is used 

(Molina Grima et al., 2003). 

2.7.2. Filtration 

Filtration is common, but is dependent on the size of the microalgae that are 

harvested (Coward, Lee and Caldwell, 2013).  The use of membrane filtration, 

microfiltration and ultrafiltration are alternatives to conventional filtration methods.  

Microfiltration is a suitable option for the recovery of fragile cells, but large scale 

processes generally avoid using a membrane filtration process (Molina Grima et al., 

2003). 

Filtration is very abrasive; it causes the cells to rupture and reduces the quality of the 

cellular content.  Operation costs are also high due to pumping and frequent 

replacement of the filters, coupled with long processing times and low recovery rates 

(Coward, Lee and Caldwell, 2013). 

To increase the filtration ability, the filter cloth was first used to filter diatomaceous 

earth or cellulose to form a precoat to aid the filtration process.  Settled biomass is 

recovered together with the precoat layer.  The recovery of biomass using the 

precoat filtration method is an unsuitable option if the biomass product may not be 

contaminated with filter aid, which is the case if further processing is required or for 

the use of the biomass in animal feed (Molina Grima et al., 2003). 

2.7.3. Flocculation 

Flocculation can be effectively used for the agitation of the microalgae cells, 

increasing their effective “particle” size.  By applying various methods of flocculation, 

the recovery of biomass (using sedimentation, centrifugal or filtration methods) is 

eased significantly (Molina Grima et al., 2003). 

Microalgae have a negative charge which prevents the agitation of cells because 

they repel each other.  The negative charge can be reduced significantly or 

overcome by the addition of a flocculent that includes multivalent cations or cationic 

polymers to the culture.  The factors to consider when using flocculants are that they 
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should ideally be inexpensive, non-toxic (especially for food or feed sources), 

effective in low concentrations and be selective so that downstream processes are 

not adversely affected (Molina Grima et al., 2003). 

Multivalent metal salts are currently considered to be most effective with ferric 

chloride (FeCl3), aluminium sulfate (Al2(SO3)) and ferric sulfate (Fe2(SO4)3) being the 

most commonly used.  The efficiency of the electrolyte coagulation induction is 

measured by the concentration at which rapid coagulation occurs. This is also known 

as the critical coagulation concentration.  Because prepolymerised metal salts have 

a wider pH range, they are more effective than non-polymerised metal salts.  The 

use of prepolymerised metal salts produces flocs of the product which can be easily 

dewatered (Molina Grima et al., 2003).  This assists in the processing of the biomass 

later. 

Cationic polymers (polyelectrolytes) can be considered as an alternative option to 

the conventional metal salts.  In addition to manipulating the charge of the cells, 

polyelectrolyes can form large chains of particles by creating bridges which connect 

the chains to each other.  Cationic polymers can induce flocculation in fresh water 

algae at concentrations of between 1 – 10 mg/ml.  The marine environment’s high 

salinity can inhibit the flocculation ability of polyelectrolytes.  Effective flocculation is 

possible at a salinity level of 5 kg/m3 or less while seawater has a salinity level of 

approximately 37 kg/m3 (Molina Grima et al., 2003). 

2.7.4. Purification of algal biomass  

Harvesting of algal biomass generally results in an increased concentration of 

between 50- to 200- fold.  Freshly harvested biomass (5 – 15% solids) requires rapid 

processing as degradation can occur in hours, especially in hot climates.  The 

particular post-harvesting process that is used depends on the product that is to be 

obtained (Molina Grima et al., 2003).  The post-harvesting process can be seen in 

Figure 2.11 for the production of eocosapentaenoic acid (EPA) from the microalgae 

P. tricornutum as described by Molina Grima et al., (2003). 
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Figure 2.11:  Production of EPA from the microalgae P. tricornutum, redrawn from 
Molina Grima et al., 2003 

 

2.8. Bioenergy 

Algae biomass can be processed in several different ways.  The different processing 

methods have different harvesting requirements and therefore different design 

requirements, all of which should be taken into consideration. 
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Figure 2.12: Overview of algae biomass conversion into energy sources, redrawn 
from Brennan and Owende, 2010; Tsukahara and Sawayama, 2005 

 

It has been found that microalgae produce between 15 and 300 times more oil for 

the production of biofuel sources than energy crops.  The short life cycle of algae 

compared to energy crops makes it much more favourable because energy crops 

can only be harvested a few times a year (Schenk et al., 2008). 
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Table 2.10: Comparison of the biodiesel production of energy crops and algae 

Plant source 
Biodiesel 

(L/ha/year) 

Area required (ha x 

106) 

Area required of 

arable land (%) 

Cotton 325 15 002 756.9 

Soybean 446 10 932 551.6 

Sunflower 952 5 121 258.4 

Canola 1 190 4 097 206.7 

Oil palm 5 950 819 41.6 

Algae (10g/m2/day at 

30% TAG) 
12 000 406 20.5a 

Algae (50g/m2/day at 

50% TAG) 
98 500 49 2.5a 

a If algae are produced on non-arable land, the required arable land becomes 0% 
Source: Schenk et al., 2008 

 

2.8.1. Hydrothermal liquefaction 

Hydrothermal liquefaction (HTL) is the process of converting a biomass source into a 

liquid bio-crude.  Temperatures ranging from 200 to 350 °C with pressure ranging 

from 15 to 20 MPa (150 – 200 bar) are standard practice for this process.  These 

conditions cause the breakdown of complex molecules and their repolymerisation to 

oily compounds.  HTL eliminates the drying process as it allows the conversion of 

biomass with a high moisture content into bio-crude.  HTL provides four products: 

bio-crude oil, solid residue, processed water and gas.  The gas consists mainly of 

CO2, which can be cleaned and recycled for the cultivation of algae.  Solid residues 

are high in nitrogen and minerals and could be used as a source or supplement to 

the fertiliser.  The processed water is rich in nitrogen and carbon, which can be used 

to provide growth nutrients for microalgae in the growth stage.  Bio-crude oil is ready 

to be separated and refined to obtain the desired products.  The properties and yield 

are largely dependent on the composition of the feedstock as well as the 

temperature and pressure used during the HTL process (Biller et al., 2012). 
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Figure 2.13: Total ion chromatogram of light oil produced at 400 °C using 50 % 
HZSM-5 (aluminosilicate zeolite) catalyst.  Copyright Li and Savage, 2013. 

Reproduced with permission 

 

Figure 2.14: Total ion chromatogram of light oil produced at 450 °C using 50 % 
HZSM-5 (aluminosilicate zeolite) catalyst. Copyright Li and Savage, 2013. 

Reproduced with permission 
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The formation of bio-oil follows the trend of lipids > proteins > carbohydrate seen in 

the results.  Protein and lipid conversions occur most efficiently in the absence of a 

catalyst, while carbohydrate processing showed the best results in the presence of a 

catalyst, Na2CO3.  Bio-oil is generated from all the available components; this gives 

HTL a distinct advantage (Biller and Ross, 2011).  The difference in the composition 

of the oil and processing time can easily be seen in Figure 2.13 and Figure 2.14 

where the only difference is the reaction temperature that was used during 

processing. 

At temperatures of around 300 °C, the hydrothermal liquefaction process produces a 

crude bio-oil that is viscous and contains approximately 10 – 15 wt.% heteroatoms 

(primarily O and N).  The heteroatoms prevent the use of bio-oil as a fuel for 

transportation applications and have to be processed further (Li and Savage, 2013). 

2.8.2. Bioethanol 

The feasibility of using lignocelluloses biomass as feedstock for bioethanol is often 

limited by its low yields.  Algae have the ability use inexpensive raw materials to 

produce large quantities of carbohydrate and this could increase its feasibility for 

bioethanol production.  Certain species use photosynthates in dark anaerobic 

fermentation to produce ethanol naturally (Singh and Olsen, 2011). 

Although macroalgae appear to be similar to land plants, they lack the same lignin 

cross-linking molecules in their cellulose structure, primarily because their aquatic 

environments allow them to use their buoyancy to grow upright.  While macroalgae 

have a low lignin content, they also have a significant sugar content (at least 50 %) 

that could be fermented to produce bioethanol.  The carbohydrate content of certain 

marine algae, including red algae, is influenced by agar, a polymer made from 

galactose and galactopyranose.  These could increase the bioethanol production if 

the polymer could be reduced to its building blocks (Jones and Mayfield, 2012). 

The fermentation changes the carbohydrates in algae biomass to acetone, butanol 

and ethanol (ABE).  This is achieved by using spore-forming anaerobic gram-positive 

bacteria.  The production of valuable industrial solvents like ABE from a waste-water 

source could have beneficial effects in domestic economies, as could the utilisation 

of lagoons or ponds for the treatment of waste water in rural areas (Ellis et al., 2012). 
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2.8.3. Biofuels 

2.8.3.1. Biodiesel 

Biodiesel can be seen as one of the main algae-based biofuels with future 

commercial feasibility because the world is turning to a renewable fuel source.  Many 

algae have the capability of both producing and storing large amounts of lipids. 

These amounts could be as high as 50 – 60%.  From a chemical point of view, upon 

transesterification the biomass lipids are similar to those in the other oil-seed crops 

(Jones and Mayfield, 2012). 

Biodiesel is a sought-after product due to its renewable nature and the increasing 

price of fossil fuels.  Its ability to be grown without interfering with food production 

and because it can be cultivated on non-arable land give it a major advantage over 

oil-seed crops. 

2.8.3.2. Gasification 

Gasification is the partial oxidation of biomass feedstock using high temperatures for 

the production of syngas (Biller and Ross, 2011).  The partial oxidation of the 

biomass occurs in the presence of oxygen and steam from water.  The syngas 

obtained from the process consists mainly of “carbon monoxide (CO), hydrogen (H2), 

carbon dioxide (CO2), nitrogen (N2) and methane (CH4)” and the product becomes 

highly combustible at temperatures between 800 – 1000 °C (Singh and Olsen, 

2011). 

The efficiency can be increased significantly by using higher temperatures, low algae 

concentration and longer residence time.  Using low, supercritical temperatures 

typically results in gas that is rich in CH4 and CO2.  Theoretical calculations estimate 

that algae biomass that has been gasified at a temperature of 1000 °C produces the 

highest methanol yield of 64 % (Singh and Olsen, 2011). 

2.8.3.3. Pyrolysis 

Pyrolysis is a process in which the anaerobic formation of bio-oil, syngas and 

charcoal occurs in a medium to high temperature environment (Biller and Ross, 

2011).  It follows the same principles as gasification, with the only difference being 

the absence of air and halogens. 
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2.8.4. Biohydrogen and biogas 

Hydrogen gas is considered to be a clean-burning fuel source seeing that it emits no 

CO2, only water.  Electricity can be generated by using hydrogen in a fuel cell; 

however, combustion is possible, but highly dangerous.  Hydrogen’s very high 

energy capacity of 122 kJ/g, is approximately 2.75 times the amount present in 

hydrocarbon fuels.  The main obstacles to the use of hydrogen are its high 

production cost and low availability in nature.  The production of hydrogen gas using 

biomass and water would produce a renewable source of hydrogen production 

(Kapdan and Kargi, 2006).  Typical industrial-sized facilities producing solar 

hydrogen require an area of between 500 and 1000 acres (approximately 202 – 405 

ha) for a cost-effective operation according to models (Melis, 2002). 

Under normal photoautotrophic conditions, the microalgae use carbon dioxide, water 

and light to produce an energy-rich organic compound and oxygen.  Under 

anaerobic conditions, microalgae can produce hydrogen gas (H2) through the 

pyrolysis of water, by using light as an energy source to provide H2 and O2.  

Hydrogenase acts as a catalyst, but is extremely sensitive to oxygen which is one of 

by-products of photosynthesis (Singh and Olsen, 2011; Akkerman et al., 2002). 

The ability of nitrogen (N2) fixation is catalysed by the nitrogenase enzyme of the 

photoheterotrophic bacteria, which can also catalyse the production of H2, especially 

in the N2 free environment.  The reaction equation is (Jones and Mayfield, 2012; 

Akkerman et al., 2002): 

                                               (ΔG° = + 1498 kJ) 
[Equation 2.4].   

Similar to the hydrogenase enzyme, the nitrogenase enzyme is oxygen sensitive and 

ammonium ions act as an inhibitor, but this can be overcome by using an anaerobic 

environment which is free of both oxygen and nitrogen.  These conditions allow the 

following example of a reaction to take place (Jones and Mayfield, 2012; Akkerman 

et al., 2002): 

                                                   (ΔG° = + 75 kJ). [Equation 2.5] 

Macroalgae have the potential to act as a production source for biohydrogen and 

biogas due to their high growth rates, their ability to grow in saline environments and 
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their low lignin content.  A high carbohydrate content is one of the main 

characteristics of macroalgae, which in many cases consists of nonglucose 

monosaccharides.  Biogas and biohydrogen are obtained by means of the anaerobic 

fermentation of algal biomass (Jones and Mayfield, 2012).  The anaerobic 

fermentation (digestion) of algae biomass would produce methane gas as its major 

component, with hydrogen gas being produced as a by-product, at less than 5 % of 

the total gas produced.  The majority of studies have shown that the methane portion 

of the biogas ranges from between 69 – 75 % of the total gas produced (Sialve, 

Bernet and Bernard, 2009).  As anaerobic fermentation only uses the volatile solids 

present in the biomass, the post-fermented materials could be used as a source of 

fertiliser.  Post-fermented materials have been concentrated and sterilised so that 

they may reduce the risk of introducing unwanted bacteria into the reactor. 

Table 2.11: The theoretical volume of methane produced from different algae 
species. 

Algae Species Protein (%) Lipids (%) 
Carbo-

hydrates 
(%) 

CH4 
(l(CH4)/g 

(VS))a 

Euglena gracilis 39-61 14-20 14-18 0.53-0.8 

Chlamydomonas 
Reinhardtii 

48 21 17 0.69 

Chlorella Pyrenoidosa 57 2 26 0.8 

Chlorella vulgaris 51-58 14-22 12-17 0.63-0.79 

Dunaliella salina 57 6 32 0.68 

Spirulina maxima 60-71 6-7 13-16 0.63-0.74 

Spirulina platensis 46-63 4-9 8-14 0.47-0.69 

Scenedesmus obliquus 50-56 12-14 10-17 0.59-0.69 
a l(CH4)/g(VS) = litre methane per gram volatile solids. 
Source: Sialve, Bernet and Bernard, 2009 

 

The production of methane in Table 2.11 was calculated by using the specific yield of 

each of the major components as seen in Table 2.12.  The use of anaerobic 

processing after the extraction of lipids for other uses could still produce a valuable 

product, especially when high protein levels are available. 
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Table 2.12: Specific methane yield of major organic components 

Component Composition l(CH4)/g(VS)a 

Protein C6H13.1ON0.6 0.851 

Lipids C57H104O6 1.014 

Carbohydrates (C6H10O5)n 0.415 
a l.(CH4.)/g(VS) = litre methane per gram volatile solids. 
Source: Sialve, Bernet and Bernard, 2009 

 

The cost of drying harvested algae is a major drawback.  When considering an 

anaerobic digestion system which allows for the recovery of energy and nutrients 

from biomass, the drying cost becomes minimal.  The anaerobic digestion would 

also increase the bio-availability of nutrients, the algae production and anaerobic 

digestion combination could have a synergetic effect (Wilkie and Mulbry, 2002). 

If the production of biogas could follow the extraction of lipids, it would allow the 

harvesting of maximum energy as well as the recycling of nutrients (Singh and 

Olsen, 2011).  The production of biogas, biofuel and fewer nutrient requirements 

could make the process more sustainable and cost effective. 

2.9. Uses of algae biomass  

Table 2.13: Uses of algae biomass for non-bioenergy sources 

 Product Uses Relevance 

Human and 

animal nutrition 

 Tables 

 Capsules 

 Liquids 

 Nutritional 

supplements  

 Natural food 

colourant 

Table 2.14 

High quality protein 

and energy source 

Dehydration  Powder  Extraction of 

solvents 

High value product 

extraction from algae 

biomass 

High value 

molecules 

 Fatty acids 

 Pigments 

 Fertiliser 

 PUFAs 

 Colourant 

 Slow releasing 

biofertiliser 

Table 2.15 

Β-carotene production 

Nitrogen fixing algae 
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Table 2.14: Comparison between the compositions of traditional foods and algae 

 Protein Carbohydrate Lipid 

Bakers’ yeast 39 38 1 

Meat 43 1 34 

Milk 26 38 28 

Rice 8 77 2 

Soybean 37 30 20 

Anabaena cylindrica 43-56 25-30 4-7 

Chlorella vulgaris 51-58 12-17 14-22 

Porphyridium cruentum 28-39 40-57 9-14 

Scenedesmus obliquus 50-56 10-17 12-14 

Spirulina maxima 60-71 13-16 6-7 

Source: Spolaore et al., 2006 

Table 2.15: Microalgae PUFA of interest 

PUFA Structure Microorganism 

γ-Linolenic acid 
(GLA) 

18:3 ω6, 9, 12 Arthrospira 

Arachidonic acid (AA) 20:4 ω6, 9, 12 ,15 Porphyridium 

Eicosapentaenoic 
acid (EPA) 

20: 5 ω3, 6, 9, 12, 15 
Nannochloropsis, 
Phaeodactylum, Nitzschia 

Docosahexaenoic 
acid (DHA) 

22: 6 ω3, 6, 9, 12, 15, 
18 

Crypthecodinium, 
Schizochytrium 

Source: Spolaore et al., 2006 

2.10. Conclusions 

The design of a photobiogenerator does not only entail the optimal growth of algae 

biomass but also includes the overall production costs and the overall production 

process.  This means that the design of each type of photobioreactor is unique to a 

certain type of algae and its end product and allows for a photobioreactor that is 

easily adaptable. 

The design of the photobioreactor is based on all the requirements of the algae 

biomass and the post-harvesting processing to obtain the desired product.  The 

photobioreactor has to be designed for optimal efficiency in the entire production 

process as well as for the optimal growth of algae. 
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The choice of algae is based on the decision of what the desired product is.  This is 

followed by the post-harvest processing (it could be several processes) requirements 

in order to obtain the best product, because the process and its conditions could 

result in a different (undesirable) final product.  The harvesting of algae biomass 

should also be considered because the harvesting method could affect the post-

harvesting processes to be used.  The environment and all its variables have to be 

taken into account because different compositions would affect post-harvesting 

processes differently.  By changing the availability of light, nutrients or carbon 

dioxide, the composition of the algae biomass is directly affected and could possible 

increase the production of the final product by changing the environment inside the 

reactor – and this could lead to the more efficient production of the required biomass. 

The use of waste water or the capturing of nutrients in waste water through 

processes like growing benthic algae for N and P collection could reduce the cost 

drastically.  The recycling of nutrients and the use of solar technology to reduce the 

energy requirement of the reactor is a condition for sustainable production – both 

financially and environmentally – of algae biomass. 

The cost of an optimal photobioreactor cannot be calculated because there are too 

many variables involved.  To calculate the cost of operating a photobioreactor at 

optimal levels, all the variables have to be considered as small changes in the 

overall process could have a large effect on the cost and profitability of the system.  

It is therefore only possible to calculate the production cost of the photobioreactor on 

the tested algae species and conditions. 
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3. REACTOR DESIGN 

3.1. Introduction 

The design of the reactor commenced after a through literature study had been done.  

All the advantages, disadvantages and the objectives of this study were taken into 

account when planning the reactor.  The design of a reactor is a very complex 

process because there are a large array of possible combinations.  What is more, the 

literature gives very little information on the construction materials and whether there 

is any difference between them. 

Identify materials 

commercially 

available

Select 

photobioreactor 

designed

Determine which 

variables needs to 

be tested

Create the factorial 

design required for 

experimental 

testing

Build the 

photobioreactor for 

testing purposes
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equipment required 

for collection of 

data

Analysing data 

collected

Evaluation and 

conclusion

 

Figure 3.1: Flow diagram of experimental setup 

 

3.2. Design of the reactor  

The design that was chosen took into consideration the requirements for a good 

bioreactor, the type of algae to be cultivated, the processing requirements and the 

energy usage.  Based on these constraints, it was decided that a Bubble column 
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reactor would be the best option because its system has a fairly simple construction, 

with high surface-area-to-volume ratio.  This type of reactor uses very few 

mechanical components, a factor which is considered beneficial because it does not 

place extra stress on the algae cells and it reduces both the cost and the energy 

required for running the reactor or plant. 

The use of gas to agitate the algae culture is seen as a positive aspect of the 

reactor’s design because it simultaneously removes the O2 from the system and adds 

CO2, thus ensuring that a small or no pH gradient forms in the reactor and because it 

eliminates the need for a mechanical stirrer.  Similarly, the use of gravity allows the 

fast and effective harvesting of biomass with limited damage being caused to the 

harvested and the remaining culture.  The quality of the biomass that is available for 

processing is important from the point of view of the system’s profitability, especially 

when high-value products are produced. 

For the system to work well, only two mechanical components are required: an air 

compressor or air blower to ensure that sufficient air flow can be achieved; and a 

pump to replace the medium that is lost during the harvesting process.  Two major 

problems with the use of a compressor are that the required volume of air could 

surpass the maximum ability of a standard compressor, or that the cost of running a 

compressor could become too high, in which case an air blower would be the 

alternative.  Air blowers provide the volume of air at a low pressure; however, this 

could cause a problem in overcoming the water pressure when too many units are 

supplied by the same air blower.  Because the tubing length is a maximum of 5 

metres (as stated on the pricelist in APPENDIX B), the pressure that has to be 

overcome is 0.5 bar which is easily achievable using an air blower.  If required, 

additional lighting could be added to increase the productivity of the system although 

this would increase the cost and energy requirements of the system. 

One of the major benefits of the reactor is that it is possible to automate the entire 

algae production system.  The inputs and harvesting automation could be achieved 

by using solenoids which would allow the addition of the growth medium as required 

and the harvesting of the algae in chronological order.  This could be beneficial for 

the downstream processing as it would allow the continuous supply of algae biomass 

and reduce the requirement of large holding tanks for the biomass while it is waiting 
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to be processed.  The automation of the system would be particularly beneficial to 

large-scale systems as it would need little human interaction, thus reducing the 

possibility of contaminants’ entering the reactor and lowering the operating cost 

because fewer salaries have to be paid. 

One requirement of the PBR is that it should be able to create several environmental 

conditions for the growth of algae.  As seen in the literature study, there are 

thousands of species, each with its own requirements for optimal growth.  The PBR 

should be able to handle all these requirements in order to be considered efficient for 

the production of algae biomass.  As a result of all these possible requirements, the 

design should allow for a system that can adapt to the specific requirements of a 

species with few or no changes to the design, especially if different species are 

grown at different times during the seasonal calendar. 

Figure 3.2 shows the proposed design of a 36-tube reactor module.  The design is 

compact and easy to maintain because a supporting structure would be built around 

the module. This would provide easy access to most areas of the module.  If a 

reactor taller in height was produced, the need for the support structure would 

become very important because the weight of the culture could cause problems and 

possibly break if stress was placed on the tubing.  The reactor also has a high 

surface-area-to-volume ratio, which could be changed by using different diameters 

and lengths of tubing and would theoretically create a better environment for the 

growth of biomass caused by optimal light conditions. 
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Figure 3.2: Design of the proposed PBR 

 

The PBR can be made from any transparent material, especially glass, acrylic tubing 

and PVC.  Because they cost less than glass tubing and would not break as easily as 

glass, PVC and acrylic tubing are considered a better option for a PBR.  Both 

materials (PVC and acrylic) are very resilient to many chemicals and the chemicals 

which could cause problems are not commonly used for biomass production as they 

are mainly very strong acids, bases, oxidising agents and solvents.  The physical 

characteristics (tensile strength, elasticity, thermal conductivity and friction coefficient 

to name a few) of the tubing (PVC and acrylic) are very similar to each other, with 

one being stronger in a specific area and the other being stronger in another area 

(APPENDIX B).  One of the major obstacles when using glass or acrylic tubing is that 

special fittings or adaptations need to be made to install the available fittings made 

from other materials if different diameters are used.  The second problem that was 

found is the bonding of different materials to each other.  After testing, it was found 
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that acrylic tubing can be glued to PVC fittings using PVC adhesive, but that acrylic 

adhesive did not form a proper bond between the two materials. 

In the event where a reactor has to be disassembled, it would be recommended that 

O-rings be used to create a seal as it would allow for the disassembly of the reactor 

with the ability to reuse all the tubing and fittings for reconstruction.  It has the 

additional advantage that all the tubing and fittings could be used again for 

reconstruction. It would also be advisable to use O-rings when different materials are 

used in order to ensure that a proper seal is formed.  In the case where a single 

material is used for the entire reactor, it is suggested that the best sealing method is 

to determine the requirement of the reactor because a complete PVC reactor, which 

can be PVC welded, glued or O-rings could be used to create a seal between 

components in the system. 

The design seen in Figure 3.2 has the benefit that it can easily be changed to allow 

the use of the reactor in specific areas.  The length of the clear PVC tubing can be 

increased or decreased as required, allowing the system to be used in abandoned 

hot houses or other limited spaces.  The number of tubes that are placed in a module 

can also be altered to allow the PBR to be used in smaller spaces or to increase the 

productivity of a confined space by customising the reactor for the specific space.  

Figure 3.2 shows a module consisting of 36 vertical tubes that are interconnected.  

Theoretically the number of vertical tubes could be infinite – although this might 

create several problems in a commercial plant.  Ideally a commercial plant should 

have as large a number of these modules as possible in order to allow better control 

over the plant, especially when it is necessary to clean the reactor and a problem in 

one module would not affect overall production.  By using modules and having the 

correct setup, a specific module could be replaced with another module and thus will 

not influence the productivity of the plant if cleaning or repairs are required. 

Harvesting will occur through a port on the system which could be fitted with either a 

ball valve or a solenoid valve.  Depending on the size of the plant, it would allow the 

harvesting of individual modules or all the modules through a network of pipes 

leading to the processing plant.  Similarly, a port could be created for replacing the 

medium that was lost through the harvesting process. This is very important in order 

to obtain optimal growth in the reactor.  The medium replacement port could be 
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removed if the system so required to create a more manual system.  Creating these 

networks that interconnect the PBR modules reduces the labour requirements and 

allows for the central processing of both the medium production and algae 

processing or storage.  This would increase the potential productivity of the entire 

system, either by being more efficient or allowing a larger area for modules in the 

plant. 

In the literature study it was noted that some of the commercial plants use a two-

stage process.  This is done primarily to produce the algae biomass; this is followed 

by a stage in which the biomass is placed in a different environment in order to 

produce more of the desired product.  If the algae species that is used requires a 

two-stage system, the module can be altered easily to accommodate the two stages.  

However, this option would only be viable in a small-scale system, because in a large 

scale system separate modules will be utilised for the different stages.  The ability of 

the specific PBR to be manipulated easily gives it an advantage over other PBR 

designs because the other types of PBRs require more complex alterations to obtain 

a two-stage setup and this would increase the cost substantially. 
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Figure 3.3: Side view of PBR 

 

The diameter of clear tubing available can be seen in APPENDIX B.  From this one 

can observe that the PVC tubing corresponds to standard PVC fittings, but that the 

acrylic tubing is only available in a few diameters that are the same diameter as the 

standard PVC fittings.  This limits the use of acrylic tubing as it would require 

expensive fittings.  In this connection, a cost analysis will be done in chapter 6 to 

compare the materials with each other and determine the profitability of the specific 

algae species using a bubble column system, as suggested in Figure 3.2.  The 

costing will, from now on, only compare PVC and acrylic tubing of similar diameters, 

thereby excluding the cost of special fittings which could be required by acrylic tubing 

with another diameter. 

Larger tubing was chosen because, despite the fact that the light would not 

completely penetrate the algae culture, it would allow the algae cells to go through 

light/dark cycles and thereby possibly increase the productivity as stated by 

(Grobbelaar, 2009b).  The light/dark cycles would also have a beneficial effect during 
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high irradiation times, and prevent damage to the algae cells and decrease in the 

productivity.  The 110 mm tubing allows sufficient area between the vertical clear 

tubes for light to reach all of the tubes, as seen in Figure 3.3.  If a larger space 

between the reactor tubes is required, the length of piping between the tees of the 

base can be increased and thereby increase the space between the vertical tubes.  

By using larger diameter tubing to create the base of the module, the productivity on 

the footprint of the PBR is dramatically decreased, but the cost of building the reactor 

increases substantially due to the more expensive materials required.  This is 

especially the case when using tubing with diameters that are larger than 110 mm.  

The tubing that is used can theoretically have any diameter, but the specific 

diameters were chosen as they would show how the diameter of the tubing affects 

the growth in the reactor and they would thereby indicate which would be the better 

option to use in the manufacture of the reactors. 

The PBR use PVC end caps on top of the clear PVC tubing. The reason for this is to 

keep contaminants out of the system and thus ensure that a monoculture is 

maintained.  The end cap could house a filter which would allow the exchange of 

clean gases between the atmosphere and the PBR.  The filter is primarily for a 

system that is switched off at night, allowing the system to breathe as required.  In 

the case where the system is run continuously, the filter can easily be substituted for 

a relief valve because the PBR would always have a higher pressure on the inside.  

This would cause air to flow outward and prevent a large portion of contaminants to 

enter the PBR.  The benefit of using a relief valve is the fact that it does not have to 

be replaced, while the filters have to be replaced regularly.  This would increase the 

running cost of the plant.  Replacing the filters could cause additional problems as 

they could be fairly difficult to put back because of their position on top of the system.  

A solution to the problem would be to have tubing that is connected to every vertical 

tube that would then go through one filter, which could be placed in an area that is 

easily accessible for replacement purposes.  Using one central filter ensures that the 

system is not placed under any additional stress when replacing the filters, as the 

final setup of the reactor could cause problems. 

Due to the limited knowledge concerning the choice of the material and the tubing 

diameter, both PVC and acrylic tubing were employed, using 50 mm, 90 mm and 110 

mm diameter tubing with a length of 500 mm.  These diameters were chosen 
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because they were among those commercially available.  The thicknesses of the wall 

of the tubing are different for some of the diameters but they were chosen in such a 

way as to keep the difference to a minimum.  The tubing with a minimal wall 

thickness was chosen.  This allowed the maximum amount of light to penetrate the 

materials.  All the additional fittings were made out of PVC that is capable of 

withstanding pressure of up to 16 bar, and that had the same dimensions as those of 

the specified clear tubing.  All the tubing and all fittings, excluding the end caps, were 

glued using PVC adhesive.  The end caps were not glued to the tubing, to allow for 

the replacement of the medium after the algae concentrations had been readjusted. 

 

Figure 3.4: 110 mm tubing reactors used for testing purposes 

 

PVC ball valves were installed for use when sampling and adjusting the 

concentration of the algae, but they could not be used because the valves were too 

stiff to use in the small laboratory-scale systems that were being tested.  The ball 

valve would be usable when used in a fullscale reactor module as it would have a 

higher weight and would therefore be easier to use.  The ball valves were also 
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required to simulate the area between the vertical tubes in a module setup.  Due to 

the problems with the ball valves, the reactors were removed from their stands and 

emptied using the top of the tube after the end cap had been removed. 

The end caps fitted tightly on most of the tubes and required some effort to be 

removed to empty and refill the reactor.  A hole was drilled into the centre of the 

dome of the end caps through which the gas supply could enter.  The drilled hole 

was slightly larger than the gas supply tubing, allowing the excess gas to escape 

from the reactor.  The extra space from the hole was not closed because the gas 

supply was only stopped for sampling and adjustments.  It was decided not to add a 

filter because unnecessary holes would be created and, with the continuous gas 

supply, this would create unnecessary problems.  In the case of the end cap in the 50 

mm tubing, the space for a filter was very limited and would probably not have fitted if 

it had been slightly oversized. 

3.3. Gas mixing and supply  

To achieve optimal growth, the system should be fed CO2 continuously.  The CO2 

feed should be adjusted according to the specific algae’s needs for CO2.  As seen in 

Table 2.8, each species has the highest level of CO2 (v/v) that it can survive.  The 

continuous feed of CO2 will provide optimal growth conditions because of the higher 

availability of carbon for fixation and a better mass transfer.  It would also limit the pH 

fluctuations that are obtained through the batch addition of CO2. 

It has been found in other living organisms, especially dairy cows, that a higher 

feeding frequency with lower quantities gave better control of the internal pH which 

results in higher and more economical productivity, while a low pH also causes a 

decrease in the energy intake and health problems (Krause, Combs and 

Beauchemin, 2002).  A similar effect should be seen in algae due to the sensitivity of 

the algae cell to its environment and the need to add CO2 to ensure growth 

throughout the growth period.  By continuously supplying CO2, the running cost of the 

plant can be decreased substantially as the requirement for additional labour would 

be reduced (because the need to test the pH to determine CO2 levels in the algae 

medium is eliminated).  The cost would be reduced especially when several modules 

are in operation or in a commercial plant. 
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If it is necessary to add batches of CO2, this can be done without any modification as 

the setup will remain the same.  The addition of the CO2 and air will be controlled by 

valves which allow only air or CO2 to be bubbled through the system at a given time.  

In Figure 3.5 it is seen that the gas is mixed by using a flow meter with the gas at the 

same pressure.  To obtain a batch addition of one of the gases, the valves can 

simply be altered and thus enable not only a specific gas to be added continuously, 

but also allow the increase of a specific gas if required during continuous addition. 

The setup in Figure 3.5 was considered to be the best as it should have the smallest 

change in pressure after mixing has occurred.  If the pressure did change after 

mixing, it could change the composition of the gas dramatically and would over- or 

undersupply the reactor leading to incorrect gas compositions and directly affect the 

growth of the biomass.  The position of the pressure regulators in front of the flow 

meters should be set to have identical pressures.  This will allow the calculation of 

the volume required by each flow meter.  The main reason for having the gas at the 

same pressure when it reaches the flow meters is that, in the case of a change in 

pressure after mixing has occurred, it would have the smallest effect on the 

composition.  If one gas was added at a higher pressure, it would increase the 

pressure of the downstream system in the case of a problem and could completely 

stop the flow of the other gas.  This could kill all the algae if only pure CO2 had been 

added for a long time.  Downstream of the gas filter the addition of a CO2 analyser 

would ensure that any error in either the pressure regulators or gas flow meters can 

be monitored to ensure the most accurate gas composition.  This would also allow for 

more economical production conditions in the reactors. 
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Figure 3.5: A schematic of the gas-mixing unit 

 

The gas delivery system has to allow for the efficient agitation of the medium as well 

as for a high mass transfer of CO2 and O2.  To ensure the optimal growth of algae, 

this is one of the most important aspects of the reactor’s design.  The gas delivery 

lines would enter the vertical tubing from the top end.  By entering from the top end, 

they will allow the entry point to be above the algae medium and therefore eliminate 

the formation of any possible of leaks and allow for easier maintenance. 

Due to the high gas flow rate that is required, the air supply has to be taken into 

consideration because it is the major component of the design.  Taking the mass 

balance (APPENDIX C) and the values obtained in the literature study into 

consideration, it was calculated that a maximum gas flow rate of 600 litres per minute 

could be required for a 1200 litre reactor.  To obtain an adequate air-flow rate, a 

compressor was considered.  Although it is possible to obtain a compressor capable 

of supplying sufficient air flow, the size of the compressor motor would be a very 

large three-phase motor requiring a large amount of electricity because it would run 

continuously.  An alternative is the use of an air blower which has the air capacity 

and is able to produce enough pressure to overcome the water pressure while using 

a smaller, single-phase motor.  The supply of air should be considered carefully as 

the requirements of the reactors could cause either the compressor or air blower to 

have an insufficient supply for the specific reactor’s setup. 

The air component used in the mixture was obtained from a compressed air supply.  

The air pressure was reduced by means of a regulator because the initial 8 bar was 
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too high for the valves of the manifold that was being used.  CO2 was mixed directly 

into the air supply by using a tee piece.  This was done at a specific volumetric flow 

rate which was controlled using a flow meter.  The CO2 used was obtained from 

Afrox (CO2 Technical RC-40 dry).  The CO2 pressure was reduced from the bottle 

pressure to 1 bar and passed through a flow meter at the required flow rate before 

entering the air supply through the tee piece to ensure that the enriched air had the 

correct concentration (% v/v) and that the concentration could be reproduced. 

The air pressure was reduced from the 8 bar of the compressed air supply, as the 

metering valves (seen in Figure 3.7) could not handle the high pressure effectively.  It 

was found that the high pressure closed the valve a fair amount and in the case 

when pressure was reduced, the valves increased the flow rate through them, 

causing a sudden increase of flow inside the reactors.  The sudden large increase in 

the gas flow rate caused a large volume of the algae culture to blow out of the top of 

each reactor, thereby influencing the results of the test.  The blowout could also 

potentially damage the cells in the reactors as it increased the pressure drastically.  

The excess flow was corrected after the pressure of the air supply had been reduced 

while still supplying sufficient volume of gas to each reactor. 

The gas was bubbled through air dispersion units to create smaller bubbles and to 

allow for a higher surface-area-to-volume ratio and therefore a better mass transfer 

between the culture and the gas.  To keep uniformity, it has been decided to use air 

stones that are commonly used in fishponds because their design allows a large 

number of small bubbles to be created.  These air stones are easily available and are 

fairly cheap.  Two types of air stone were compared and, although a large variety are 

available, these covered the spectrum the best.  Figure 3.6 shows that the large air 

stone (A) has a much larger surface area for the formation of bubbles compared to 

the small air stone (B).  These differences could have benefits for the tubing sizes of 

the specific reactor.  The reason for using different gas dispersion units was to 

determine whether the shape size of the units had any effect on the growth rate of 

the culture. 

Stellenbosch University  https://scholar.sun.ac.za



74 
 

 

Figure 3.6: Gas dispersion units that were used during testing, A) large air stone, B) 
small air stone. 

 

The gas supply entered a manifold after having been mixed.  Each reactor was 

connected to the manifold individually using flexible 6 mm tubing.  The flow rate was 

calibrated for every reactor and checked daily to ensure that a constant flow rate was 

being maintained.  When the air stones were changed, the flow rates were checked 

and adjusted to ensure that the correct flow rate was supplied to the reactors.  The 6 

mm tubing provided sufficient gas flow for the test reactors, but if larger reactors were 

used they might require tubing with a larger diameter for the gas supply. 

 

Figure 3.7: Two valves extruding from the manifold that was used to ensure a 
constant gas flow rate 
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4. MATERIALS, METHODS AND 

EXPERIMENTAL 

4.1. Materials 

As discussed in Chapter 3, PVC and acrylic tubing will be used for the construction of 

the PBR.  It was decided to use these materials because of their durability and 

comparability to each other.  It also allowed for easy assembly.   

Compressed air was enriched with carbon dioxide and distributed using a manifold 

with needle valves to control the gas flow rate to each reactor.  The gas was bubbled 

through air stones as per Figure 3.6, consisting of a large and a small air stone, 

because air stones create smaller gas bubbles.  

The specie of algae that was used will be discussed in section 4.3.  All experimental 

procedures were repeated four times to ensure reproducibility of the results.  The 

experiments were done in a batch setup as the use of natural light does not allow the 

continuous production of algae due to change in light availability and intensity as 

discussed in Chapter 2.  Due to the effect of light over harvesting will occur during 

the continuous harvesting of algae biomass and would therefore affect the production 

dramatically. 

Continuous light were supplied to the reactors using fluorescent lights, placed at 

equidistance from the reactors to obtain comparable results.  Enriched air was 

supplied at a volume per volume percentage of 5%. 

4.2. Factorial design 

A factorial design was chosen because it would allow the researcher to see which 

interactions were most important.  From the literature it is clear that a large range of 

conditions can cause problems in the design of an efficient PBR. The reason for this 

is that there are several standard designs that can be used. 

It was initially decided to use a factorial design of four on two levels and one on three 

levels.  The three-on-two-level variables are density, gas dispersion units and 

materials of the clear tubing.  The three-level variables are the tubing diameters that 
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were used.  The testing conditions that were used, was to determine if the 

parameters had an effect on the growth as limited information was available in 

literature, these are not limits for the reactor design. 

Table 4.1: Variables and their possibilities that were used in testing the factorial 
design 

Variable Low Medium High 

Gas dispersion unit Small  Large 

Culture density 0.5 g/l  1.0 g/l 

Material PVC  Acrylic 

Tubing diameter 50 mm 90 mm 110 mm 

 

The 50 mm tubing was tested using a factorial design which included the following 

factors from Table 4.1: gas dispersion units, density and material.  The 50 mm tubing 

was not compared to the other diameters because the change in flow rate would 

cause a change in the available carbon dioxide which could affect the growth rate 

and would thus not be a fair comparison.  The 90 mm and 110 mm tubes were tested 

on the following factors: gas dispersion units, density, material and tubing diameter.  

It was decided to use a gas flow rate of 0.36 vvm for the 90 mm and 110 mm 

diameter reactors and 0.02 vvm for the 50 mm diameter reactors. 

The experimental work for the factorial designs were done in a laboratory.  The main 

reason was to ensure a constant illumination of the reactor’s surface area, which 

would vary if natural light were used.  The laboratory also allows the temperature to 

remain fairly constant, while outdoor cultures would experience large temperature 

fluctuations.  As these two factors are known to have a large influence on the growth 

of algae, it is necessary to keep them as stable as possible.  Some experimental 

work was done using natural light to see how it would affect the growth of the algae. 

4.3. Algae cultivation 

For testing the photobioreactor, the algae specie C. Vulgaris was used.  The C. 

Vulgaris CCAP 211/11B strain was obtained from the Culture Collection of Algae and 

Protozoa, Dunbeg, Scotland. 
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The strain was obtained in EG:JM medium and was further grown using Bold’s Basal 

Medium (see APPENDIX D).  The medium was replaced because the algae 

concentration was readjusted for testing purposes.  After each run, the algae were 

allowed to form a complete sediment and additional medium with its small amount of 

algae in suspension were removed.  After this new dilutions were created to ensure 

that sufficient medium was available for the algae and to allow for accurate results, in 

case a specific reactor had too little medium or if there was another problem (e.g. 

algae cells which were dying or in a dormant state) which could affect the results. 

The algae were grown using continuous artificial light with the addition of pure CO2 

added for five minutes, twice a day at the same flow rate as tested in the specific 

reactor.  Due to large changes in pH and the death of large amount of algae, the 

addition of CO2 was changed to two minutes four times a day, although this still led to 

the death of a large amount of algae.  These experiments were done to determine if 

a continuous supply of CO2 have an advantage over batch addition. 

It was then decided to buffer the culture using sodium bicarbonate as suggested by 

Grobelaar, JU (APPENDIX E), with a continuous supply of CO2. at a 10 % (v/v) CO2 

concentration.  It was observed that production was negatively affected and it was 

decided to add a 5 % (v/v) CO2 concentration for testing the factorial design.  The 

algae were allowed an adaption period of several days before results were taken.  

This was done to ensure that the cells had climatised to their new culture conditions. 

4.4. Operation the UV-Vis spectrometer 

A Varian Cary E1 UV-Vis spectrometer (Palo Alto, California, USA) was used. The 

spectrometer was switched on approximately one hour before use in order to ensure 

that all the components had sufficient time to warm up.  Once the spectrometer had 

had sufficient time to warm up, the 690 nm wavelength was selected, as Chlorella 

vulgaris shows the best response at that specific wavelength.  Before any 

measurements were taken the spectrometer had been zeroed, using two cuvettes 

filled with reverse osmosis water. 

The 690 nm wavelength was chosen because it is the only individual peak as is seen 

in Figure 4.1.  It is clear that the lower wavelength region has several peaks that 

interconnect and could easily cause a large error.  Moreover, the 690 nm wavelength 
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was used in the available literature and so it was chosen in this case (Yeh, Chang 

and Chen, 2010). 

 

Figure 4.1: Scanning absorption curve between 370 and 700 nm to determine algae 
growth 

 

To prepare samples for analysis, the content of each algae culture used was mixed 

to ensure uniform cell distribution in the culture before initial samples were taken.  

The sample taken of a given culture was mixed using a vortex mixer before taking 

the sample to be used in the spectrometer.  The samples used in the spectrometer 

were diluted to obtain more accurate readings from the correlation curve.  The ideal 

absorbance for the case in point is between 0.0000 and 1.0000.  A dilution factor of 

1:4 of algae to reverse osmosis water was used because this placed both cell 

densities in the ideal range of the correlation curve and allowed for easy calculation 

during experimental work.  All samples volumes were accurately measured using a 

micropipette to ensure that little error is introduced when preparing the dilution and in 

creating the correlation curve. 
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4.5. Correlation curve 

The correlation curve was created so that Beer-Lambert’s law could be applied, i.e. 

the absorption of a sample is equal to its concentration, multiplied by a specific factor 

and its path length, as is shown in Equation 3.1. 

A = εcl   [Equation 4.1] 

As the path length of the cuvette is one centimetre, it can be eliminated.  This allows 

the creation of the correlation curve to obtain ε because the absorbance and 

concentration of algae were known. 

To create the correlation table, 30 ml of algae culture were used.  This is important 

because it is required in order to calculate the initial concentration of algae that were 

in the culture.  Dilutions were made using reverse osmosis water and the product 

was then added to an oven-dried and pre-weighed piece of glassware.  After all the 

dilutions had been done and all the dilution information recorded, the specific cultures 

were oven-dried overnight at 100 °C and reweighed to obtain the mass of the algae 

in the culture. 

The initial 30 ml of algae culture was used to make several dilutions because it was 

found that this reduces any error in the weighing process.  The major problem was 

that, when working at very low concentrations, small errors in the absorbance values 

and in the weighing are multiplied significantly and this renders the results unusable.  

Because reverse osmosis water was used to create the dilutions, it would simply 

evaporate and so not affect the results obtained, while simultaneously creating a very 

accurate set of results for the plotting of the correlation curve. 
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Figure 4.2: Correlation curve of absorbance vs. cell density 

 

It is seen that, at an absorbance over 1.0000 units, the sensitivity of the curve is 

reduced and that the reading errors become substantial.  This area has a correlation 

function of y = 1.1276 x + 0.8492 and has a R2 value of 0.8285 which is not very 

accurate.  It was therefore decided to use absorbance values of less than 1.0000 

units and make dilutions as previously mentioned. 

As is seen from Figure 4.3, the sensitivity of the correlation curve is higher when 

working at lower concentrations.  The R2 value of 0.9906 could be considered to be 

very good, especially when 122 was used, and it would therefore be the only option 

to use in conjunction with Beer-Lambert’s law to obtain the culture density. 
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Figure 4.3: Correlation curve used for determination of algae culture density 

 

4.6. Method for testing biomass density 

The density of the biomass culture was measured, which allowed the researcher to 

calculate the volumetric growth, the specific growth and the aerial growth, by taking 

samples of the suspension.  The samples were analysed using a UV-Vis 

spectrometer at 690 nm. By applying Beer Lambert’s law to the correlation curve 

(Figure 4.3), the density of the biomass was determined. 

4.7. Method for testing pH 

The pH measurements were taken using a Hanna (Woonsocket, Rhode Island, USA) 

HI 8424 pH meter (Figure 4.4).  The pH meter was used in conjunction with an 

automatic temperature control, which adjusted the pH to the changes in temperature 

of the culture.  A Hanna HI1286 pH probe was used. It is compatible with algae and 

other salts found in the culture.  The pH meter was calibrated before each usage by 

using a pH buffer of 4.01 (HI7004L) and 7.0 (HI7007L).  After use, the probe was 

stored in a storage solution (HI70300L) to ensure accurate results. 
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Figure 4.4: Hanna pH meter used for pH testing 

 

Before sample readings were taken, the probe was rinsed using reverse osmosis 

water and dried before placing it in the sample.  The probe was used to stir the 

solution as recommended by the pH meter’s user manual and left to obtain a reading.  

The reading was taken only after the hourglass image had disappeared.  After the 

readings had been taken, the probe was rinsed and dried before placing it in the 

storage solution. 

pH readings were taken at the start of each run followed by every six hours.  During 

the addition of pure carbon dioxide, pH readings were taken before and after the 

addition of carbon dioxide to determine the change in pH caused by the carbon 

dioxide. 

4.8. Performance evaluation 

The performance was evaluated by determining the volumetric growth rate, the aerial 

growth rate and the specific growth rate.  The volumetric growth rate was obtained 

from the difference between the initial and final concentration of biomass in the 

reactor using Equation 4.2..   

   
   

     
    [Equation 4.2] 

The aerial growth rate was calculated using Equation 4.3 (Converti et al., 2009).   
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  [Equation 4.3] 

where dmx is the change in biomass weight in grams over a given time period dt, with 

Ag representing the area required by the reactor. 

The specific growth rate was calculated using Equation 4.4 (Converti et al., 2009). 

         
  

  
    [Equation 4.4] 

where Xm represents the end concentration of biomass and X0 the initial 

concentration of biomass, with t representing the duration of the run. 

The volumetric growth rate is the production of biomass in a given volume of the 

reactor.  This allows the productivity of a reactor to be compared to other reactor 

design as it does not discriminate against the shape of the reactor.  The aerial growth 

rate determines the productivity per area used by the reactor.  Discrimination is 

created as a horizontal reactor would occupy a smaller area than a vertical reactor of 

the same volume.  The aerial growth is to compare the production of algae biomass 

to other energy crops which are produced on a specific area of land.  The specific 

growth rate determines the effective productivity of the algae culture as it uses the 

ratio between the initial and final concentration of biomass in the culture.  The 

volumetric growth rate would be suggested as it allows for the best comparison in 

productivity although the other growth rates will be calculated. 

4.9. Agitation evaluation 

To evaluate the rate of agitation in the reactors used for testing purposes, the 

reactors were placed under testing condition and filled with water.  Food colourant 

was used to determine the agitation rate to obtain a homogenous system.  The 

duration it took from the addition of two drops of food colourant to the point where a 

homogenous system was obtain and repeated. 
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5. RESULTS AND DISCUSSION 

Initial testing was done in a laboratory to keep the temperature and the light availability 

constant, while establishing the importance of the variables, because these are two of the 

most important factors in algae production.  The reactors were placed equidistantly from 

the light source, while the temperature remained at between 15 and 18 °C during the 

testing period.  It must be noted that testing using an outside environment is difficult 

because changes in temperature, light intensity and light duration are experienced 

constantly.  This affects the results directly and make a factorial comparison very difficult. 

5.1. pH 

A stable pH in the algae culture is one of the most important factors to consider because 

drastic changes in the pH could cause production problems.  These difficulties could 

include cell damage, changes in the cell composition or contamination of the culture by 

other species.  As seen in the literature review, the main reason for changes in the pH is 

the formation of H2CO3 from the equilibrium reaction between water and CO2.  The 

equilibrium shifts to form carbonic acid very fast, as seen in Figure 5.1, where the two-

minute and five-minute CO2 show the same change in pH – although the two-minute 

addition has slightly higher values.  Readings were taken directly before and after CO2 

additions. 

The two-minute-addition culture is affected more than the five-minute-addition culture 

because it repeats the change in pH four times (the graph only shows this two of these for 

comparison purposes) compared to twice daily.  These pH changes of approximately 1.5 

units create a drastic change in the culture conditions and this affects the algae negatively.  

This will be discussed later.  However, it does appear that, if sufficient light enters the 

reactor, the algae can recover from the drastic change in the pH of the culture, but that 

some damage is done.  The fact that the timed addition has a higher pH than the 

continuous addition which is basically buffered shows that all the CO2 that was in the 

culture had been used and that it could have stopped the growth because no CO2 was 

available.  Rapid depletion of the CO2 levels would cause a large problem when high 

irradiation levels are introduced and a large amount of ROS forms.  This could easily kill 

the algae and cause severe damage to the photobioreactor.  The depletion of CO2 would 
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also stop the production of biomass and reduce the efficiency and directly diminish the 

profitability of the reactor. 

Due to the large changes in the pH during the timed addition of CO2, this addition of CO2 

was changed into a continuous addition and buffered using NaHCO3 at 1 g/l as 

recommended by Grobberlaar, JU (APPENDIX E).  Figure 5.1 shows that both the 

continuous additions of cultures showed a steady pH throughout the reading and 

eliminated the drastic changes in culture conditions.  The addition of 10 % CO2 (v/v) 

enriched air provided a pH of approximately 7.25.  This is a very good value for the growth 

of C. vulgaris, although it could be approaching the maximum CO2 tolerance for the 

specific strain.  The 5 % CO2 (v/v) enriched air provided a pH of approximately 7.5, which 

is within the desired range – albeit just barely.  The pH of 7.5 can easily be managed by 

reducing the concentration of the buffer because the buffer that was used is slightly basic 

– which also increased the pH of the system. 

The CO2 solubility in water at the operation temperatures of 15 to 18 ⁰C are between 

0.1789 and 0.1970 grams per 100 ml of water.  The maximum solubility is at 0 ⁰C at 

0.3346 grams per 100 ml of water.  The sorption rate of CO2 is difficult to determine as it is 

affected by the partial pressure of the gas, the concentration of CO2 in solution and the 

interaction time between the gas and the solution.  Once equilibrium has been reached 

while using enriched air, the sorption will be equal to the rate of fixation by the algae 

(Lange and Dean, 1973). 

Although buffered, the continuous addition of CO2 showed a much smaller difference in 

the pH, even when double the volume of CO2 was added.  This would suggest that the 

large air component of the gas mixture creates a balance that removes excess CO2 and 

O2.  As the excess CO2 is removed in conjunction with the buffer, the system can maintain 

a constant pH and thereby provide better conditions for the culture’s optimal growth. 
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Figure 5.1: pH of the algae culture before and after the addition of CO2 

 

When one compares the continuous and timed addition of CO2, it is seen that the 

conditions for the culture are more suitable when a continuous addition was made.  In the 

literature, a timed addition setup is often used, with intermediate additions to control the 

pH of the culture.  The main problem of adding CO2 to control the pH of the culture is the 

requirement that the pH of the culture should be measured continuously.  This can be 

achieved easily in a laboratory but on a commercial scale its cost and practical constraints 

cause a serious problem.  A better mass transfer is obtained by adding enriched air 

continuously. 

5.2. Agitation inside the reactors 

The agitation inside the reactors is of high importance to ensure a good mass transfer and 

allow for maximum exposure to light.  By using food colourant, the rate of agitation can be 

determined visually. 

5.5 

6 

6.5 

7 

7.5 

8 

1 2 3 4 5 

p
H

 

pH reading intervals 

5 min 

2 min 

Continuous 10 % 

Continuous 5 % 

Stellenbosch University  https://scholar.sun.ac.za



87 
 

5.2.1. Agitation rate inside the reactor 

The mixing rate of the reactors was tested using water and food colourant to measure the 

time it takes to form a homogeneous system.  This gives a good estimate of how the 

reactor would perform with an algae culture and provides a visual representation of the 

mixing effect as seen in Figure 5.2.  Because the mixing rate was high, the process was 

repeated several times and the average values used.  The RTD-based study was not done 

in this study and should be included in future studies as it would allow for the comparison 

with space time and determine dead and bypassing zones. 

Table 5.1: Mixing rate using food colourant, showing average time values (in seconds) 

Reactor diameter 
Gas dispersion 

unit used 
Gas flow rate Gas flow rate 

110 mm  1 litre per min 2.5 litre per minute 

Small 8 7 

Large 8 5 

90 mm  0.7 litre per minute 1.5 litre per minute 

Small 6 5 

Large 6 5 

50 mm  10 millilitre per 

minute 

20 millilitre per 

minute 

Small 25 12 

Large 25 12 

 

A homogeneous system is reached very fast, irrespective of the flow rate in most cases.  It 

was noted that, using the 50 mm tubing at 10 ml/min, it took a long time to reach a 

homogeneous state.  The flow rate in the system was in such a state that the mixing 

occurred mainly on the surface and slowly continued down the length of the tubing.  This 

shows that testing a reactor to ensure a good mixing rate is vitally important in order to 

ensure that the mass transfer meets the requirements. 
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A B C 

Figure 5.2: Mixing test, showing how the food colourant is mixed through the system to 
reach a homogenous system 

 

5.2.2. The effect of the gas dispersion unit 

It was noted that the gas dispersion units used had different effects depending on the 

diameters of the specific reactor.  The 50 mm reactors allowed the smaller units to be 

positioned lower in the reactor, allowing for a larger mixable volume when compared to the 

larger units.  The larger unit did not fit into the reactor as deeply as the smaller unit and 

was noted as a mixing dead space was created in the clear tubing area.  This is a result of 

the low flow rate required which caused bubbles to be formed at the top of the dispersion 

units.  Even though a small difference is seen between the mixing times of the two units, 

the larger dead space that is created in the reactor will allow faster sedimentation to occur 

in the reactor and could thereby negatively affect the growth of the algae.  The 

sedimentation area could benefit other algae species or especially in the case when a 

mixotrophic system is used. 
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Figure 5.3: A cut-away view showing the gas traveling patterns and the dead zone inside 
the reactor 

 

The 90 mm tubing did not show any significant visual difference between the different 

dispersion units.  This could be due to the flow rate.  Even though the volume per volume 

per minute flow rate was the same as that in the 110 mm reactors, it was at such a rate 

that both the units were capable of handling the flow rate with ease.  Visually the flow rate 

did appear to be fairly low, which could have been caused by a sufficient volume per 

volume flow rate, but an insufficient volume per surface area flow rate or a volume per 

diameter flow rate.  The dead space created by the ball valves increases the need to look 

at the volume per surface area and the volume per diameter flow rate.  The flow rate for 

the specific volume where bubbles were present was substantially higher than the 

expected flow rate because a smaller volume was exposed to the bubbles. 

The 110 mm tubing showed a clear advantage for the larger gas dispersion unit.  Both 

units fitted into the reactor at the same level.  The larger unit created a better overall 

distribution of bubbles in the reactor, while the smaller unit created a vertical set of bubbles 

in the reactor.  This could be explained by the fact that the larger unit has a larger surface 
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area on which to create the bubbles and, in this way, it uses less pressure to obtain the 

same flow rate.  The smaller units require a higher pressure than the larger unit.  This 

makes the bubbles expand faster as a result of the lower pressure in the culture, causing 

them to rise to the surface at a higher rate and reducing the distribution of bubbles in the 

reactor.  This suggests that the smaller unit has surpassed its maximum capacity. In 

addition, the 110 mm tubing required 56 % more gas flow than the 90 mm tubing. 

 

 

A B 

Figure 5.4: Cut-away view of the proposed gas tubing at the bottom of the reactor to 
eliminate dead zones 

 

The rate of sedimentation was fairly high and unexpected during the initial stages of 

testing.  The sedimentation caused a large amount of algae cells to be deposited in the 

ball valve region of the reactor.  Due to the sedimentation, the algae were mixed twice 

daily to ensure their maximum exposure to light.  Visually it appears that, when the cells 

are mixed through the agitation of the gas flow rate, a uniform concentration of the culture 

is achieved.  Once the cells get close to the dead space in the bottom of the reactor, they 

start to move slowly from a higher to a lower concentration up to the point where the 

concentration of algae exposed to light becomes minimal.  The sedimentation of algae is 
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clearly visible in Figure 5.5 where the reactor on the right-hand side has almost no algae 

cells in the clear tubing.  To ensure maximum growth, it is suggested that some method is 

added which can continuously or periodically agitate the entire culture to ensure a uniform 

cell culture throughout the entire reactor.  It is suggested that a diffuser hose (Alita 

Industries, 2011) be placed in the bottom of the reactor (in Figure 5.4), which could be 

used to add gas continuously or just periodically, eliminating the sedimentation of cells in 

the reactor, and allowing for better growth. 

 

Figure 5.5: The 50 mm and 90 mm reactors used for testing purposes 

 

The rate at which gas is bubbled through the reactor is directly dependant on the diameter 

and length of the tubing.  The 50 mm tubing was operated at a 0.02 vvm flow rate while 

the 90 mm and 110 mm tubing were operated at a 0.36 vvm flow rate.  The difference in 

flow rates shows that it is important to take the diameter to height ratio of the reactor into 

consideration.  Due to the lower flow rate in the 50 mm tubing and the higher availability of 

light inside the reactor, it appears that a less enriched air supply could become a limiting 

factor in production, because there is a limited availability of CO2.  This creates a massive 

problem because a higher flow rate would reduce the volume of growth to accommodate 

the gas volume in the reactor, and increasing the CO2 enrichment could surpass the 
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species’ threshold for enriched air.  The low flow rate would also create pH gradients in the 

reactor because the CO2 enrichment would be utilised at the bottom of the reactor and 

would not be able to supply any CO2 to the top of the reactor.  This would cause the top of 

the reactor to become unproductive and thereby limit the length of the tubes that could be 

used.  This problem could increase drastically when a high level of illumination is available 

because it would increase the growth rate and thereby use the available CO2 at a much 

higher rate.  The best way to overcome the problem would be to add a chemical that 

reacts with CO2 (e.g. sodium hydroxide or bicarbonate) and prevents it from exceeding the 

species’ limit and changing the pH as little as possible. 

5.3. The addition of CO2 at different rates 

The addition of CO2 is one of the most important controlling factors in growing algae and 

the literature reports that it is mainly done using a batch addition process.  In the cases 

where CO2 is added continuously, the air enrichment is controlled at levels of between 1 

and 5 % (v/v).  Grobbelaar, JU (APPENDIX E) recommends that a concentration of 

between 2 and 5 % (v/v) be used for the growth of C. vulgaris.  Following the literature, we 

used a timed batch addition of CO2 initially. 
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Table 5.2: Factorial design configuration used in figure representations 

Reactor 
configuration 

Reactor 
diameter 

Density Gas Dispersion Material Reference 

50-1 

50 mm 

0.5 g/l Large unit PVC 

Figure 5.6 
 
 

Figure 5.7 
 
 

Figure 5.8 

50-2 1.0 g/l Small unit PVC 

50-3 0.5 g/l Small unit Acrylic 

50-4 0.5 g/l Large unit Acrylic 

90-1 

90 mm 

0.5 g/l Small unit PVC 

90-2 0.5 g/l Large unit PVC 

90-3 1.0 g/l Large unit Acrylic 

90-4 0.5 g/l Small unit Acrylic 

110-1 

110 mm 

1.0 g/l Large unit PVC 

110-2 1.0 g/l Small unit PVC 

110-3 1.0 g/l Large unit Acrylic 

110-4 1.0 g/l Small unit Acrylic 

 

 

 

Figure 5.6: Comparison of the volumetric growth rate from the addition of CO2 at five-
minute and two-minute intervals 

 

As stated in the discussion on the changes in the pH, it appears that the smaller reactors 

that obtain sufficient light could reduce the damage done by the pH changes.  It was 

suggested in the literature that higher density cultures could handle a higher concentration 
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of CO2 much better than lower density cultures could.  From the results that were 

obtained, one may conclude that sufficient light is required to recover from large 

fluctuations in pH and that the density could play a role in the severity of the damage that 

is done to the culture.  In considering Figure 5.6, it appears that the configuration of the 

density with the gas dispersion unit has a very large effect on the growth rate.  The growth 

also fluctuates severely between configurations in the two-minute additions when 

compared to the configurations in the five-minute additions, showing that the increase in 

pH fluctuations causes different effects in different reactors. 

 

 

Figure 5.7: Comparison of the continuous addition of CO2 at levels of 5 and 10% (v/v) 

 

The continuous addition of CO2, seen in Figure 5.7, shows a positive biomass production 

in most of the reactor configurations which are being compared.  From the results one can 

see that the 110 mm tubing (configuration 9–12) at high density performed the best at 

10 % enrichment, while the 90 mm tubing at low density (configuration 5,6 and 8) 
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performed the best at 10 % enrichment.  This shows that there could be a correlation 

between the density of the culture and the gas flow rate (vvm). 

The 50 mm tubing (1–4) has a higher growth rate, showing that the light availability inside 

the reactor does play a large role.  The 10 % enrichment shows very little difference in 

configuration 2-4, while the PVC tubing shows a slight decrease in production at 5 % 

enrichment.  The 50 mm acrylic tubing (3,4) shows a large increase in production at 5 % 

enrichment which correlates with the suggested range of enriching of between 1 and 5 % 

for optimal growth.  From the results it appears that the 5 % enrichment is only viable on a 

laboratory-scale reactor and that industrial reactors would require a higher enrichment 

level to obtain the desired production. 

 

Figure 5.8: A comparison between continuous CO2 addition and timed batch addition 

 

The continuous addition of CO2 is beneficial to the production of algae.  By comparing the 

growth data in Figure 5.8, it is clear that the continuous addition gives a better production 

of biomass in all but one reactor configuration.  In reactor configuration 4, the results of all 

the CO2 addition methods are very close although the 5 % enrichment still performed best.  

-0.200 

-0.150 

-0.100 

-0.050 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

5
0

-1
 

5
0

-2
 

5
0

-3
 

5
0

-4
 

9
0

-1
 

9
0

-2
 

9
0

-3
 

9
0

-4
 

1
1

0
-1

 

1
1

0
-2

 

1
1

0
-3

 

1
1

0
-4

 

G
ro

w
th

 in
 (

g/
l/

d
) 

Reactor configuration  

5 min CO2 2 min CO2 10% CO2 Continuously 5% CO2 continuously 

Stellenbosch University  https://scholar.sun.ac.za



96 
 

When one considers the growth and the consistent pH in Figure 5.1, it is evident that the 

use of continuous CO2 addition is the only choice for the production of algae in a PBR. 

5.4. Results for the 50 mm diameter reactor 

The two 50 mm reactors were tested by using their own factorial design because the flow 

rate of the gas inside the reactor was only 0.02 vvm which is significantly different from the 

0.36 vvm used in the 90 mm and 110 mm reactors.  Due to this difference it was decided 

that the 50 mm reactors would not be compared directly with the other tubing diameters as 

the effect of the gas flow rate is unknown. 

Table 5.3: Factorial design configurations used for illustration purposes in the figures used 
for comparisons 

Configuration 
50 mm 

Density 
Gas 

Dispersion 
Material Reference 

1 0.5 g/l Small Unit Effect of 
construction 

material 
evaluation 

 
Figure 5.9 

 
 

2 1.0 g/l Small Unit 

3 0.5 g/l Large Unit 

4 1.0 g/l Large Unit 

1 0.5 g/l 
Effect of gas 

dispersion unit’s 
size evaluation 

PVC  
Figure 5.10 

 
 

2 1.0 g/l PVC 

3 0.5 g/l Acrylic 

4 1.0 g/l Acrylic 

1 
Effect of algae 

density 
evaluation 

Small Unit PVC  
Figure 5.11 

 
 

2 Large Unit PVC 

3 Small Unit Acrylic 

4 Large Unit Acrylic 
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Figure 5.9: Comparison of the volumetric growth rate between PVC and acrylic tubing with 
a diameter of 50 mm 

 

The results of the 50 mm reactor show that the acrylic tubing has an advantage over the 

PVC tubing because three-quarters of the configurations have a higher volumetric growth 

rate.  The PVC tubing has a blue tint to it which would absorb a large portion of light 

compared to the acrylic tubing.  The tint in the PVC (seen in Figure 5.5) could be beneficial 

when over-saturated light conditions are prevalent because this would decrease the 

amount of photons that enter the reactor and thereby reduce the possibility of cell damage. 

In a light-saturated environment, the acrylic tubing would be a better option because it 

would allow better light penetration.  It can be seen in configuration 2 and 4 that the acrylic 

tubing allows more light photons through for better production when using higher 

concentrations.  In both cases the PVC allowed better production at lower algae 

concentrations.  This shows that the intensity of the light which is blocked by the blue tint is 

either fairly high or that the specific wavelengths which are blocked have an important 

influence on the growth of the algae and, by increasing the algae concentration, 

insufficient light is available for the production of biomass. 

At an algae concentration of approximately 0.5 g/l, both materials show a similar growth 

rate.  When considering the cost of the materials, a higher production of biomass is 

desired because it would increase production for the same capital cost.  From the results, 

it is recommended that testing be done on the site where the PBR will be situated in order 

to determine which material would provide the best production capacity for the specific 
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environmental conditions because it is fairly difficult to reproduce all the possibilities in a 

laboratory environment.  The specific conditions under which the materials were tested 

lead one to the conclusion that the acrylic tubing is the superior choice when constructing 

a reactor of 50 mm tubing. 

 

Figure 5.10: Comparison of volumetric growth using different sizes of gas dispersion units 
in a 50 mm reactor 

 

The results show that in the 50 mm reactor it is beneficial to use a small gas dispersion 

unit.  This is due to the low gas flow rate required for adequate mixing, while having the 

maximum amount of the culture possible exposed to a light source.  In Figure 5.3, the 

mixing dead zone is shown by a yellow oval.  This refers to when a large gas dispersion 

unit is used in the 50 mm tubing.  This dead zone is increased in the vertical tube because 

the bubble formation does not start low enough and reduces the mixing ability.  As the 

mixable volume is reduced, the ability of the algae to form a sediment at the bottom of the 

reactor is increased.  The increase in the sedimentation rate reduces the time that the 

algae are exposed to light and thereby directly affects the production. 

The increase in the sedimentation rate could be reduced by using longer tubing because 

this would allow for bubbles to form a lower point in the gas dispersion unit, which would 

increase the mixable volume and would thus give the same or better results when 

compared to the small gas distribution unit. 
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Both of the small gas dispersion units have higher production than the larger units with an 

increase in algae density, while the large gas dispersion unit shows an increase in 

production for only the PVC reactor.  This could be due to the higher concentration in this 

unit because it required a longer time period before the algae concentration which had 

been exposed to light dropped to a level where production was significantly reduced.  

Because the gas dispersion units were not used to their maximum flow capacity, it seems 

that the placement of the gas dispersion unit is of vital importance.  Therefore it is 

recommended that a gas dispersion unit should be situated at the bottom of the reactor to 

prevent the sedimentation – even if it is very low as suggested in Figure 5.4. 

 

Figure 5.11: Comparison of volumetric growth at different densities in 50 mm reactors 

 

Figure 5.11 indicates that the production of algae at a concentration of 0.5 g/l is similar, 

irrespective of the material or gas dispersion unit that is used.  An increase in algae 

concentration to 1.0 g/l shows a major difference in the production of biomass.  The acrylic 

tubing has a production of more than double that of the PVC tubing – and in both tubes a 

clear preference is seen for the smaller gas dispersion unit. 

From the results obtained for the growth of C. vulgaris using 50 mm tubing, the best 

combination is the use of acrylic tubing with a small gas distribution unit and a biomass 

concentration of 1.0 g/l.  The growth rate on the combination compares very well with the 

growth rate shown in Table 2.2 which has a growth rate of 0.17 g/l/d.  This shows that the 
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production rate of the reactor is in a comparable range to the values indicated in the 

literature. 

5.5. Results for the 90 mm diameter reactor  

The 90 mm reactors have much smaller volume than the 110 mm reactor, which has a 

similar foot print.  The overall results of the 90 mm tubing showed a negative growth.  As 

stated previously, it appears that insufficient mixing of the culture occurred as the 0.36 vvm 

flow rate was insufficient for the surface area to volume ration.  It is thus suggested that 

the tubing and diameter-to-flow rate be studied to ensure enough mixing and CO2 addition 

to the culture is achieved. 

Table 5.4: Configurations of graphs produced for 90 mm reactors 

Configuration 
90 mm Density Gas dispersion Material Reference 

1 0.5 g/l Small Unit Effect of 
construction 

material 
evaluation 

 2 1.0 g/l Small Unit Figure 5.12 

3 0.5 g/l Large Unit 

 4 1.0 g/l Large Unit 

 1 0.5 g/l 
Effect of gas 

dispersion unit’s 
size evaluation 

PVC 

 2 1.0 g/l PVC Figure 5.13 

3 0.5 g/l Acrylic 

 4 1.0 g/l Acrylic 

 1 
Effect of algae 

density 
evaluation 

Small Unit PVC 

 2 Large Unit PVC Figure 5.15 

3 Small Unit Acrylic 

 4 Large Unit Acrylic 

  

If the gas flow rate had been at an incorrect level for the diameter and length of the tubing, 

it could have caused a higher rate of sedimentation.  This would also suggest that, due to 

an incorrect flow rate, the mixing dead zone was increased dramatically.  Even though the 

results in Table 5.1 show similar mixing times for the food colourant, the effect that mixing 

has on the living algae cells is unknown and the culture might not have been mixed 

sufficiently enough to obtain reliable results. 
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Figure 5.12: Comparison of the materials used in 90 mm reactors 

 

Similar to the 50 mm reactors, the 90 mm reactors show an advantage when the acrylic 

tubing is used.  Only the first configuration in Figure 5.12 performed better using PVC.  

The negative growth, in conjunction with the incorrect gas, indicated that the flow rate error 

could be attributed to the lower light penetration in the reactor as well as the blue tint on 

the PVC tubing which appeared to have had an effect on the growth in the 50 mm 

reactors. 

In configuration rates 3 and 4 in Figure 5.12, a dramatic increase is seen in the acrylic 

tubing.  This would suggest that the blue tint found in the PVC tubing does have a large 

effect on the growth rate of C. vulgaris when the environmental conditions are appropriate. 
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Figure 5.13: Comparison of gas dispersion unit size for 90 mm reactors 

 

The results in Figure 5.13 show the size of the preferred gas dispersion unit for each 

material.  Configurations 1 and 2 (which use the PVC tubing) show a clear preference for 

the smaller unit, while 3 and 4 show a preference for the large unit. 
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Figure 5.14:  Suggested flow pattern in the 90 mm PVC reactors with a small gas 
dispersion unit 

 

The only possible explanation for this is that the light availability in the reactor is such that 

the PVC tubing preferred a smaller column of gas that created a circular flow inside the 

reactor, as seen in Figure 5.14.  The acrylic tubing prefers the mixing inside the reactor to 

be complete (as in Figure 5.3) because it allows for the fast transition between the light 

and dark areas of the reactor. 
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Figure 5.15: Comparison of the growth rate using different culture densities in 90 mm 
reactors 

 

The 90 mm reactors show a preference for a lower concentration of culture as seen in 

Figure 5.15.  This may be due to the mixing patterns and light availability because the 

higher concentration of culture does not obtain sufficient light and so the production is 

lower. 

From the overall results for the 90 mm reactors, it can be concluded that the acrylic tubing 

with a low density and a large air dispersion unit would provide the best results.  

Nevertheless, this could change if the gas flow rate was increased to provide a better flow 

rate in comparison to the tubing diameter and length that is used. 

5.6. Results for the 110 mm diameter reactors  

The 110 mm tubing is the tubing with the largest diameter that can be obtained for a fair 

comparison between it and the acrylic tubing.  The PVC tubing continues up to a diameter 

of 160 mm, as seen in APPENDIX B.  The acrylic tubing is available in a many larger 

diameters but they require the manufacture of special fittings to be used in the building of 

PBRs and so the capital cost of larger diameter acrylic tubing in PBRs would increase 

substantially and could make them too expensive for the use in biomass production. 
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Table 5.5: Configurations of data used in the graphs produced for 110 mm reactors 

Configuration 
110 mm Density Gas dispersion Material Reference 

1 0.5 g/l Small Unit Effect of 
construction 

material 
evaluation 

 2 1.0 g/l Small Unit Figure 5.16 

3 0.5 g/l Large Unit 

 4 1.0 g/l Large Unit 

 1 0.5 g/l 
Effect of gas 

dispersion unit’s 
size evaluation 

PVC 

 2 1.0 g/l PVC Figure 5.17 

3 0.5 g/l Acrylic 

 4 1.0 g/l Acrylic 

 1 
Effect of algae 

density 
evaluation 

Small Unit PVC 

 2 Large Unit PVC Figure 5.18 

3 Small Unit Acrylic 

 4 Large Unit Acrylic 

  

The 110 mm reactors are very close in diameter to the 90 mm reactors but, as seen in the 

results, the small difference in diameter does allow for a large difference in production.  

The interaction between the variables and the tubing diameter plays a large role in the 

productivity of the PBR and the profitability of the system.  It is therefore only possible to 

compare the interactions for the PBRs but ultimately the PBR has to be tested for 

optimisation purposes because it would be in its finished state when used in a pilot, small-

medium scale or large scale plant. 

 

Figure 5.16: Comparison of tubing materials in 110 mm reactors 
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Figure 5.16 shows that acrylic tubing gives a better result than PVC when a small gas 

distribution unit is used, while PVC gives a better result when using a large gas distribution 

unit.  When one compares these results to those in Figure 5.12, the opposite is seen 

because the acrylic preferred the larger unit and a small difference is seen when using the 

small unit.  This shows that the factors are influenced by what is considered to be a 

constant factor i.e. the gas flow rate.  It can be concluded that the tubing diameter to 

volume-to-gas flow rate ratio is of utmost importance, with the gas distribution unit being of 

secondary importance as it mixes the culture in a different orientation. 

 

Figure 5.17: Comparison of gas dispersion units in 110 mm reactors 

 

The gas distribution unit plays a larger role as the gas flow rate is increased.  Figure 5.17 

indicates that a preference is starting to show for the larger gas dispersion unit.  In the 4th 

configuration, the smaller unit is preferred.  This could be due to preferred circular mixing 

pattern, similar to what was seen in the 90 mm reactors which were illustrated in Figure 

5.14.  It was observed that the gas flow rate was at such a level that the large gas 

dispersion unit produced bubbles from its entire surface, while the small unit produced 

bubbles from its entire surface in the 90 mm reactors.  The small units produced a higher 

pressure bubble column which travelled at a higher rate to the surface of the culture, 

almost creating a small fountain.  The large unit, on the other, created a large number of 

small bubbles with large surface areas, with bubbles present in the entire visible area of 

the column, allowing for better mixing and mass transfer.  If higher flow rates were 

required, the small gas dispersion unit would be under even higher pressure and could 
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possible start to damage the cells in the culture.  Depending on the PBR configuration, the 

tubing length and the diameter, the large unit which was tested could start to experience 

the same problems currently experienced by the small unit. 

 

Figure 5.18: Comparison of different culture densities in 110 mm reactors 

 

Both materials in the 110 mm reactors show a preference for lower culture densities.  The 

high tubing diameter would start to influence the availability of the photons inside the 

reactor.  Coupled with the higher density, a smaller percentage of cells would be exposed 

to light and would therefore have a high production in one area and a high death rate in 

another area.  Figure 2.8 shows how the light intensity inside the reactor changes 

according to the penetration distance and the side that is illuminated.  By increasing the 

culture density inside the reactor, the profile changes and could become very small at a 

small penetration distance. 

5.7. Growth per area 

Table 5.6: Configurations used for figure generation in growth rate per area and specific 
growth rate 

Configuration per 
diameter and 

material 
Density Gas Dispersion Reference 

1 0.5 g/l Small unit Figure 5.19 
2 1.0 g/l Small unit Figure 5.20 
3 0.5 g/l Large unit  
4 1.0 g/l Large unit  
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The growth per area is calculated to determine the viability of the production of algae 

biomass on a given surface area in order to compare it with other sources of biomass 

energy because this is the norm, with most other energy crops being represented in terms 

of ton per hectare.  One problem with using this type of calculation is that it is a relative 

value and the results would differ if the height were changed.  By using larger diameter 

tubing, a small change made to the area required for the reactor would make a large 

difference to the volume of the reactor.  As the ground area of the reactors with the same 

tubing diameter is the same, the results would reach the same conclusion as the growth 

rate per volume which has been discussed – because the volumes were kept the same for 

the purpose of comparison. 

 

Figure 5.19: Comparison of all the reactors’ growth rate per surface area in g/m2 

 

The larger diameter reactors have shown a much lower growth rate per area, while the 

growth rate per volume of the 50 mm and 110 mm reactors in configuration 3 is very 

similar.  The main reason for the lower growth per surface area is the addition of the 

valves or base in the case of a module and this adds a large ground area.  In this case the 

ground area is much lower than it would be in a module because the entire space required 

by the module would be used for calculation purposes. 

When one compares Figure 5.19 and Figure 5.20, it is seen that the volumetric growth rate 

has the exactly some curve shapes but that they are enhanced, especially for the larger 

diameter reactors.  As stated previously, the diameter of the reactor makes a small 

difference to the area that is required but a large difference to the volume, as the 
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volumetric growth does not take into consideration any space that is not used for 

production purposes.  The error is increased when calculating the ground area because 

the area between the reactor and light sources has to be taken into account.  This would 

not be the case if sun light were used.  By adding this area, the ground area production of 

a PBR is significantly reduced and the addition affects the larger diameter reactors more 

negatively than a smaller diameter reactor because a large area is added to the 

calculation. 

 

Figure 5.20:  Comparison of all the reactors’ growth rate per volume in (g/l/d) 

 

The use of growth per area is more suitable for open pond type systems. Because the 

area they cover is important, a high surface area to volume ratio is sought.  PBRs obtain a 

high surface area to volume ratio by manipulating the surface area and volume of the 

tubing to obtain the same effect.  It is therefore a better choice to compare production per 

volume when considering PBRs, especially when an area is unproductive as a result of the 

design of the reactor or the light source that was used.  The fact that the depth of an open 

pond and energy crops remain fairly constant also contributes to a better comparison, 

while the height of PBRs are changed constantly.  This makes comparison unfair because 

the height can be manipulated to make the results obtained seem more impressive, while 

the volumetric production remains the same. 

5.8. Specific growth rate 

Table 5.7: Configurations used for figure generation in specific growth rate per diameter 
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Configuration per 
diameter 

Density Gas Dispersion Reference 

1 0.5 g/l Small unit Figure 5.21 
2 1.0 g/l Small unit Figure 5.22 
3 0.5 g/l Large unit Figure 5.23 
4 1.0 g/l Large unit  

 

The specific growth rate is a measurement of the ratio of production per day because the 

natural log of the end concentration is divided by the initial concentration.  Using the 

specific growth rate one can determine whether or not the biomass production at a specific 

concentration is at its best level.  The specific growth rate is very important for the costing 

of the reactor because the costing is directly affected by the growth of the biomass. 

 

Figure 5.21: Specific growth rate comparison of 50 mm reactor materials 

 

The acrylic curve in Figure 5.21 shows that three of the four configurations have a same 

specific growth rate, while the acrylic curve in Figure 5.9 shows that only configurations 1 

and 3 have a similar growth rate.  This shows that the production of biomass is the same 

in these three cases even though the biomass is at a different concentration in one of the 

configurations.  By using the specific growth rate, it is clear that configuration 2 provides 

the best production and that configuration 4 has a similar production rate to configuration 1 

and 3 when comparing cell productivities.  The specific growth rate also allows for a fair 

comparison between different materials as it removes the culture density from the 

equation.  It is seen that the PVC reactor with configuration 1 and acrylic reactor with 
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configuration 2 have similar results and would be the best configurations for further 

research or scale up. 

 

Figure 5.22: Specific growth rate of 90 mm reactors comparing materials 

 

The 90 mm reactors all had a negative growth rate and even though negative production is 

undesired, the use of specific growth rates shows which configurations are most likely to 

have a positive production.  From Figure 5.22 the reactors that are most likely to have a 

positive production are configuration 1 of the PVC and configurations 3 and 4 of the acrylic 

reactors.  By using this information, researchers may use these reactors to explore the 

cause of the negative production and thereby allow changes to be made for a viable plant. 

-0.160 

-0.140 

-0.120 

-0.100 

-0.080 

-0.060 

-0.040 

-0.020 

0.000 

1 2 3 4 

Sp
e

ci
fi

c 
gr

o
w

th
 r

at
e

 in
 (

d
ay

s-
1

) 

Configuration 90 mm 

PVC 

Acrylic 

Stellenbosch University  https://scholar.sun.ac.za



112 
 

 

Figure 5.23: Specific growth rate of 110 mm reactors comparing material 

 

When the specific growth rates of the 110 mm reactors are compared, it is seen that the 

figure allows for the same conclusions that were made from the volumetric growth rate.  

The change from positive to negative production with an increase in density allows the 

specific growth rate to have the same shape as the volumetric growth rate.  It is thus only 

comparable when a completely positive or negative production is obtained. 

The specific growth rate would show which reactor has the best production under a given 

set of conditions.  As the specific growth rate shows which of the reactors or in this case 

which configurations have the best production.  The information should be used to obtain 

the best culture conditions, configuration or design and therefore the best production 

possible. 

5.9. Interaction between parameters 

The factorial design of testing was done in order to determine which interaction had a 

significant influence on the results.  As mentioned previously, the factorial design was split 

into two parts due to a difference in the gas flow rate which was considered to have a large 

impact on the results: firstly the 50 mm reactors; and secondly, the 90 mm and 110 mm 

reactors. 

-0.090 

-0.070 

-0.050 

-0.030 

-0.010 

0.010 

0.030 

0.050 

0.070 

0.090 

1 2 3 4 

Sp
e

ci
fi

c 
gr

o
w

th
 r

at
e

 in
 (

d
ay

s-1
) 

Configuration 110 mm 

PVC 

Acrylic 

Stellenbosch University  https://scholar.sun.ac.za



113 
 

Fitted Surface; Variable: Growth

2**(3-0) design; MS Residual=.0027063

DV: Growth
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Figure 5.24: Visual representation of the interaction between the culture density and 
materials used in the 50 mm reactor 

 

Figure 5.24 shows a visual representation of the interactions between two variables i.e. 

culture density and materials that were used.  The bigger the interaction between the two 

variables are, the larger the slope of the graph.  The highest part (redest) shows the most 

favourable interaction while the lowest part (greenest) shows the least favourable 

interactions. 

The results of the analysis differed to an extent and were mainly caused by the biological 

nature of algae, which caused slight difference in production rates.  As a result of these 

differences, the R2 values on both factorial analyses are low and would therefore need a 

large volume of results to increase these values. 

                                            [Equation 5.1] 

Equation 4.1 was used to model the response of growth with a varied variable.  The β0 

represents the intercept with βi (i = 1, 2, 3 and 4) representing the regression coefficients 
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and xi the factors.  Βij, βijk, xij and xijk represent the two-way and three-way interaction’s 

regression coefficients and interaction factors.  If a factor is insignificant, its value on the 

equation will become 0 and is thus not stated in the equation. 

Analysis of the 50 mm reactors (Figure 5.25) showed that three parameters had an effect 

on the results, with a confidence level of 90 %.  The material and density-material 

interactions showed the biggest effect, with the gas dispersion having the smallest effect 

with a p-value of less than 0.1.  As the remaining effects have a p-value of above 0.1, they 

are considered to be insignificant and are therefore not included in the model. 

The visual representation in Figure 5.24 shows that the effect of density has the opposite 

interaction with the two materials and with Figure 5.25, showing that the interaction is the 

most important factor for the reactors.  The visual representation highlights the interaction 

and shows why the use of the acrylic tubing at a high density is very important to achieve 

the best growth rate. 

 

Stellenbosch University  https://scholar.sun.ac.za



115 
 

Pareto Chart of Standardized Effects; Variable: Growth

2**(3-0) design; MS Residual=.0027022

DV: Growth

p=.1

Standardized Effect Estimate (Absolute Value)

2by3

1*2*3

(1)Density

1by2

(2)Gas Dispersion

(3)Material

1by3

.532297

-.636187

1.288851

-1.30099

-1.97677

2.850276

2.927241

 

Figure 5.25: Pareto chart of effects for the 50 mm reactors 

 

The density does not have any effect on the overall regression model.  As was seen in the 

results previously discussed, the PVC reactors had a preference for a lower density while 

the acrylic had a preference for a higher density culture.  Due to these contradicting 

results, the model does not include the density, but rather the interaction between the 

density and material that was used.  The importance of this interaction is seen in Figure 

5.25 and it is placed at the top of the list.  By refining the model to the significant factors, 

the following model equations were calculated: 

                                             [Equation 5.2] 

The regression model considers all the data that is available and calculates the 

significance of the variables.  By removing certain variables, e.g. the material that is used, 

different interactions could be seen and therefore change the results.  As the aim of the 

testing is to see which of these factors has the largest affect, the analysis will not be done 

to determine the individual effect if some of the variables are reduced.  An example of this 

is the fact that density is considered a significant factor for the 90 mm and 110 mm 
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reactors, but not for the 50 mm reactors and could become completely insignificant if all 

the data are analysed. 

Pareto Chart of Standardized Effects; Variable: Growth

2**(4-0) design; MS Residual=.000837

DV: Growth

p=.05

Standardized Effect Estimate (Absolute Value)

2by3

1by2

1*2*4

1*3*4

1by3

(2)Gas Dispersion

2by4

1by4

1*2*3

(3)Material

3by4

2*3*4

(1)Density

(4)Size

-.241095

-.272204

-1.03262

-1.06379

1.20253

1.537998

2.020664

-2.23216

-2.58936

2.841892

-2.91304

-3.85257

-5.36135

5.945688

 

Figure 5.26: Pareto chart of effects for the 90 mm and 110 mm reactors 

 

The 90 mm and 110 mm reactors (Figure 5.26) showed eight significant factors and 

interactions with a 95 % confidence level and a p-value of 0.05.  In contrast to the 50 mm 

reactors, the gas dispersion unit is not considered a significant factor in the 90 mm and 

110 mm reactors, although two of the three-way interactions do consider that the gas 

dispersion unit’s interaction is significant in these interactions.  The size or diameter of the 

reactors is considered to be the most significant interaction.  This is due to the large 

amount of negative growth seen in the 90 mm reactors.  The regression model was refined 

to the significant factors and the following model was obtained: 

                                                                   
                                     [Equation 5.3] 
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For the mathematical model, it is clear that most of the interactions have a negative effect 

on the growth rate, with very few of the factors or interactions having a positive effect.  The 

two interactions between variables can be found in a visual representation for the 90 mm 

and 110 mm reactor combination in APPENDIX F. 

Pareto Chart of Standardized Effects; Variable: Growth

2**(3-0) design; MS Residual=.0006486

DV: Growth

p=.05

Standardized Effect Estimate (Absolute Value)

(3)Material

1by3

1by2

(2)Gas Dispersion

2by3

(1)Density

-.057116

.1114363

-1.04809

2.858496

-3.28826

-6.09952

 

Figure 5.27: Pareto chart of effects of the 110 mm reactors 

 

The 110 mm reactors (Figure 5.27) show three significant factors at a 95 % confidence 

level and a p-value of 0.05.  This includes the density and gas dispersion units.  The 

material was considered to be significant in the other analysis (50 mm, 90 mm and 90-110 

mm reactors) while for the specific reactors (110 mm) it shows that the material used for 

the design is insignificant.  The regression model for the 110 mm reactors have a 

mathematical equation of: 

                                              [Equation 5.4] 

Stellenbosch University  https://scholar.sun.ac.za



118 
 

Fitted Surface; Variable: Growth

2**(3-0) design; MS Residual=.0006049

DV: Growth
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Figure 5.28: Visual representation of the interaction between the gas dispersion unit and 
materials used in the 110 mm reactor 

 

The 90 mm reactors (Figure 5.29) have three significant factors at a 90 % confidence level 

and a p-value of 0.1.  The 90 mm reactors show the strongest effect for the material that is 

used, compared to the material used in the 110 mm reactor which has the weakest effect.  

The analysis of the 90 mm and 110 mm reactors together shows that the materials have a 

significant effect.  In addition, the analysis shows that the addition of a variable could 

influence the regression model substantially.  The regression model for the 110 mm 

reactors has the following mathematical equation: 

                                              [Equation 5.5] 

The interaction between the gas dispersion units and the materials shows an interesting 

result as it is placed second on both the 90 mm and 110 mm reactors’ Pareto charts.  

However, in the combined Pareto chart, it is found right at the bottom of the list.  This could 

mean that the interaction has a large effect on the growth of each reactor but when the 

Stellenbosch University  https://scholar.sun.ac.za



119 
 

reactors are analysed together, the effects are cancelled out as they have opposite effects 

and suddenly become an insignificant factor. 

Pareto Chart of Standardized Effects; Variable: Growth

2**(3-0) design; MS Residual=.0012163

DV: Growth

p=.1

Standardized Effect Estimate (Absolute Value)

(2)Gas Dispersion

1by2

1by3

(1)Density

2by3

(3)Material

-.283117

.4460222

1.32934

-1.83545

2.118364

3.375632

 

Figure 5.29: Pareto chart of effects of the 90 mm reactor 

 

The interaction between the gas dispersion unit and the material used is represented 

visually in Figure 5.28 and Figure 5.30.  The graphs show that for both the reactors’ 

diameters, the larger unit is preferred although different materials are preferred.  Due to 

the preference for different materials, the combined analysis would be expected to show 

no interaction between the two variables because they cancel each other out. 
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Fitted Surface; Variable: Growth

2**(3-0) design; MS Residual=.0011749

DV: Growth
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Figure 5.30: Visual representation of the interaction between the gas dispersion unit and 
the materials used in the 90 mm reactor. 
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6. COSTING 

The cost of each reactor’s material and the size of the tubing used were calculated with 

the configuration which provided the best growth.  For each calculation the capital cost and 

the running cost were calculated and the result was used to calculate the profit or loss on a 

single module or on a plant consisting of 60 modules. 

For calculation purposes, all the reactors consisted of a 36 tube module see Figure 3.2, 

with a vertical tube length of 1.66m.  Due to the high capital cost of a reverse osmosis 

plant and an additional cost which is size dependant, the water cost of normal tap water 

was used for calculation purposes.  The medium was calculated by using the growth rate 

and the required volume of the medium that had to be replaced after harvesting. 

The cost of the electricity was based on the assumption that the air blower would be on for 

24 hours per day and that the pump would only be on for the duration of medium 

replacement at the given flow rate.  The CO2 cost was calculated per bottle required for 

the enrichment of air at 5 % v/v.  The flow rate was taken at 0.36 vvm with continuous CO2 

enrichment occurring 24 hours a day, 365 days a year. 

Table 6.1: Growth rates, culture density and reactor volumes used for costing calculations 

  
50 mm 

PVC 
50 mm 
acrylic 

90 mm 
PVC 

90 mm 
acrylic 

110 mm 
PVC 

110 mm 
acrylic 

Growth rate (g/ld) 0.0833 0.1030 0.0000 0.0000 0.0248 0.0345 

Density (g/l) 0.5 1.0 0.0 0.0 1.0 1.0 

Total volume (l) 399 399 1394 1330 2078 2039 

 

The suggested cost of spray drying by Pulse Combustion Systems (2014) is $2.00 dollar 

per pound of water.  Pulse Combustion Systems (2014) states that the capital cost on their 

systems ranges between $300 000 and $3 million, although second-hand and smaller 

systems are available.  None of the drying costs was included in the costing because the 

cost of production using the specific PBRs exceeds the value of the product.  The value of 

the algae product was taken as a product that could be purchased by consumers, with the 

production cost still too high to be profitable. 

The capital cost was calculated as the annual loan instalment, based on a 9.25 % interest 

rate over a five-year period.  All the costing was done for the period of a year.  A 
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breakdown of the capital and running costs is available in APPENDIX G.  For the 60 

module calculations, only the required components were increased as items such as the 

storage tank and pump could be used on all the reactors. 

The cost of medium production is very high and, in addition to the staff salaries, very few 

staff members were included in the cost analysis, the operating cost of the PBRs is too 

high.  Profitability can only be achieved when using an inorganic medium, if higher 

production capacities can be achieved in the system.  The running cost could be reduced 

by using waste water and flue gas from a plant, although this would increase the capital 

cost required. 

6.1. 50 mm reactor costing 

Table 6.2: Profitability of 50 mm diameter PVC reactors 

  Description Price per unit Quantity Total 

1 module plant         

Price of dried Chlorella  per 100g  R 153.51  121.25  R 18,613.52  

Annual operating cost 
 

     R 71,112.31  

Capital cost 
 

     R 5,283.98  

Profit/loss annually 
 

     R -57,782.77  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  7275.17  R 1,116,811.07  

Annual operating cost 
 

     R 2,214,738.37  

Capital cost 
 

     R 196,483.94  

Profit/loss annually        R-1,294,411.24  

 

Table 6.3: Profitability of 50 mm diameter acrylic reactors 

  Description Price per unit Quantity Total 

1 module plant         

Price of dried Chlorella  per 100g  R 153.51  149.98  R 23,024.21  

Annual operating cost 
 

     R 63,514.59  

Capital cost 
 

     R  5,503.92  

Profit/loss annually 
 

     R - 45,994.30  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  8999.10  R 1,381,452.77  

Annual operating cost        R 1,758,875.59  

Capital cost        R 209,860.37  

Profit/loss annually        R – 587,103.19  
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If one compares the 50 mm reactors, the capital cost of the acrylic reactor is slightly higher 

than the PVC reactor, but the higher production and operation at a higher culture density 

make the running cost much lower.  The lower running cost is due to the fact that less 

medium and electricity are required because the pumps run for shorter periods of times.  

In a larger plant, a bigger pump could reduce the running cost as it would replace the 

medium at a much faster rate, thus reducing running time. 

6.2. 90 mm reactor costing 

Table 6.4: Profitability of 90 mm diameter PVC reactors 

  Description Price per unit Quantity Total 

1 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  0.00  R 0.00 

Annual operating cost 
 

     R 67,621.95  

Capital cost 
 

     R 8,340.70  

Profit/loss annually 
 

     R -75,962.65  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  0  R 0.00 

Annual operating cost 
 

     R 2,005,317.12  

Capital cost 
 

     R 379,886.95  

Profit/loss annually        R-2,385,204.06  

 

Table 6.5: Profitability of 90 mm diameter reactors acrylic reactors 

  Description Price per unit Quantity Total 

1 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  0.00  R 0.00 

Annual operating cost 
 

     R 66,432.23  

Capital cost 
 

     R 9,636.74  

Profit/loss annually 
 

     R -76,068.97  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  0.00  R 0.00 

Annual operating cost 
 

     R 1,933,933.81  

Capital cost 
 

     R 457,649.37  

Profit/loss annually        R-2,391,583.18  

 

The 90 mm tubing was not calculated as the median growth for all the combinations 

provided a negative growth.  The running cost that is shown consists of the cost of 
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salaries, electricity and CO2, assuming that the plant was running continuously but not 

producing anything. 

6.3. 110 mm reactor costing 

Table 6.6: Profitability of 110 mm diameter PVC reactors 

  Description Price per unit Quantity Total 

1 module plant         

Price of dried Chlorella  per 100g  R 153.51  188.22  R 28,894.79  

Annual operating cost 
 

     R 99,728.46  

Capital cost 
 

     R 10,650.30  

Profit/loss annually 
 

     R -81,483.97  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  11293.64  R 1,733,687.29  

Annual operating cost 
 

     R 3,931,707.65  

Capital cost 
 

     R 518,462.99  

Profit/loss annually        R-2,716,483.36  

 

Table 6.7: Profitability of 110 mm diameter acrylic reactors 

  Description Price per unit Quantity Total 

1 module plant         

Price of dried Chlorella  per 100g  R 153.51  256.46  R 39,369.70  

Annual operating cost 
 

     R 105,786.24  

Capital cost 
 

     R 11,650.18  

Profit/loss annually 
 

     R -78,066.72  

  
 

      

60 module plant 
 

      

Price of dried Chlorella  per 100g  R 153.51  15387.81  R 2,362,182.06  

Annual operating cost 
 

     R 4,295,174.17  

Capital cost        R 578,455.78  

Profit/loss annually        R-2,511,447.89  

 

Similar to the 50 mm reactors, the acrylic reactor has a higher capital cost, but also a 

higher running cost.  The running cost of the acrylic reactor is higher due to the larger 

medium replacement required because the ratio of the production and the culture density 

are much bigger as a result of the same culture density, while the 50 mm PVC reactor has 

a lower culture density.  These higher costs of the acrylic reactor are overturned by the 

increase in production which is 36 % higher than the production of the PVC reactor, while 

the cost is only 9.5 % higher when it is compared to the 60 module plant. 
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6.4. Summary 

The costing of all the reactors shows that an annual loss is made.  The growth rate is 

important, but it appears that the ratio between the growth rate and culture density is more 

important for the profitability of a PBR. 

The cost of the medium, the CO2 and the salaries are very high.  To ensure that the 

production of algae is profitable when this type of reactor is used, a different source of 

nutrients is of high importance as it would reduce the production cost by a fair amount.  

Because the CO2 contributes to the largest portion of the running cost per reactor, it would 

thus be crucial to obtain a low cost or free source of CO2.  If the cost of the medium and 

the CO2 were removed from the calculations, almost all the reactors would turn a profit. 

The cost of salaries is very difficult to determine because the work required cannot be 

calculated.  It is advised that a single person should be in charge as many modules as 

possible.  This would reduce the labour cost per module and if the system were properly 

laid out, one person could take control of more than the 20 modules such as those used in 

the calculations. 

By increasing the production factor and reducing the cost of the medium, the CO2 and the 

salaries, the production of algae biomass could become a very profitable business.  

However, this would also depend on the cost of post-production processing. 
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7. CONCLUSION 

Algae can be grown under phototrophic, heterotrophic or mixotrophic conditions.  

Phototrophic conditions use light and CO2 as the sources of energy and carbon 

respectively.  Phototrophic conditions are mainly used for the production of algae biomass 

as they could help to reduce the CO2 levels in the atmosphere.  Heterotrophic conditions 

refer to the utilisation of organic compounds as sources of energy and carbon, although 

light could also be used as an energy source.  The use of heterotrophic conditions shows 

a much higher production of algae biomass and oil content, with heterotrophic production 

yielding 0.08 – 0.15 g/l of biomass daily and 27.0 – 35.0 mg/l of oil daily compared to 

phototrophic productions’ yield of 0.1 g/l of biomass daily and 4 mg/l of oil daily (Chen et 

al., 2011).  Mixotrophic production is a combination of phototrophic and heterotrophic 

production, but research is limited on this specific condition because the main research is 

focused on photo- and heterotrophic production. 

The design of a PBR is a very complex process as each species of algae has its own 

requirements which can range from CO2 tolerance to specific pH requirements.  All of 

these conditions have to be met for the design of an optimal photobioreactor.  Several 

types of bioreactors have been designed, but major challenges have also been 

experienced.  Scaling of the reactor introduced several challenges caused by changes in 

the culture’s environment when pH gradients develop in the reactor, gas flow rates vary 

too much as the optimal gas flow rate is unknown, and there is insufficient agitation of the 

culture and all of these effect the cost of producing a large-scale plant is too high. 

The required inputs for algae biomass production have to be considered carefully as the 

algae cells are very sensitive to their environment.  Because the phototrophic system was 

utilised, the surface area to volume ratio of the cultivation reactor was important to ensure 

that maximum light photons were available to the culture.  To ensure that the maximum 

amount of light penetrates the clear tubing, a thin tubing wall is required.  The availability 

of light inside the reactor is an essential factor because chlorophyll requires adequate light 

to ensure its production is at an optimal level. 

After light, carbon dioxide is considered to be the most crucial factor because it is used in 

the Calvin cycle to produce the desired products.  If the available level of carbon dioxide is 

too low, the light-harvesting complexes could capture too much energy which would cause 
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photo-inhibition and, ultimately, reactive oxygen species.  This would destroy the cells and 

reduce production in the reactor.  When sufficient carbon dioxide is supplied, the potential 

of reaching photo-inhibition is limited drastically and the production of biomass would 

increase to optimal levels.  For optimal production, it is crucial to keep the oxygen and 

carbon dioxide ratios at the correct level.  Although algae have developed mechanisms to 

survive incorrect CO2 levels.  Because incorrect levels of CO2 could affect their growth rate 

negatively, this condition should be avoided at all cost. 

The nutrient composition used for algae production differs according to the desired 

products and species that are produced.  In addition, the composition of waste water 

sources may differ and this could cause fluctuations in the growth rate.  Chlorella biomass 

is mainly grown in laboratory environments using Bold’s Basal medium, which was 

formulated to achieve an optimal growth rate.  The nutrient supply also directly affects the 

cell composition that is obtained and, by changing the nutrient composition, the production 

of oils, proteins or carbohydrates could be altered.  By using a modified composition of the 

nutrients, algae production is usually separated into a two-step process: firstly, to produce 

large quantities of biomass; and secondly, to change the cell composition. 

In order to design an optimal photobioreactor, it is necessary to know the effects of each of 

the variables have on the production abilities of the algae.  The literature does not reach 

consensus in their information on the effect of these variables have on the production of 

algae biomass.  The gas flow rate reported in the literature ranges from 0.05 volume per 

volume per minute (vvm) Zhang, Miyachi and Kurano (2001) to 0.5 vvm Li et al. (2011).  In 

addition, as these ranges for the gas flow rate are used, irrespective of the reactor design, 

the determination of an optimal reactor is made almost impossible because a change in 

the gas flow rate could possibly influence the production of biomass. 

It was concluded that a bubble column reactor would be the best base from which to start 

doing research because it is considered to be the best design available for the production 

of algae biomass.  Testing was done to investigate the effect of several variables on the 

growth rate of C. vulgaris and to determine whether the production would be profitable.  

The variables that were tested were the materials used for the clear tubing, gas dispersion 

unit sizes, culture density and tubing diameter. 

The results showed that each of these variables has a significant effect on the growth rate 

of the algae.  The effect of the variables differs across configurations that were tested with 

some variables showing a larger effect on a specific combination and little to no effect on 
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other combinations.  A problem that was found with the bubble column design is the rate of 

sedimentation which causes a large portion of the algae cells to settle in the dark region of 

the reactor, resulting in a reduction in the productivity of the reactor.  It is suggested that a 

small pipe be placed at the bottom of the reactor to overcome this specific problem to 

ensure all the algae cells have light exposure for optimal production from the reactor.  

Future studies should include the determination of the light profile inside the reactors as 

this is a very important variable. 

To evaluate the interaction of the variables, a regression model was build for each of the 

reactor diameters tested.  It was found that factors considered significant for a specific 

reactor’s diameter could be insignificant for another.  When comparing two different 

reactors’ diameters to each other for interaction, the researcher observed that some of the 

interactions caused them to change from significant to insignificant.  Both the 90 mm and 

110 mm diameter reactors show a large interaction between the material used and the gas 

dispersion unit but when analysed together the effect becomes insignificant as the reactors 

have opposite interactions individually.  It appears that the volume per volume flow rate is 

insufficient in some instances.  The norm of using the suggested volume per volume per 

minute system does not take into consideration the reactor volume to tubing diameter ratio 

or the length of the tubing.  As a bubble column reactor becomes longer, the flow rate of 

gas has to decrease, otherwise the gas volume inside the reactor would become so large 

that the culture volume would have to be reduced, making the reactor insufficient.  The gas 

flow rate between the 90 mm and 110 mm reactors was kept constant at 0.36 vvm, but the 

90 mm reactor did not obtain sufficient gas flow rate because the diameter of the tubing is 

very close to each other, but a 56 % difference in volume was found.  The 56 % increase 

in volume provided the 110 mm with a 56% increase in gas flow rate which allowed for 

sufficient gas flow through the reactor. 

A feasibility costing was done to determine whether a bubble column reactor that was run 

under test conditions would be a viable process.  From the costing it was found that the 

running cost of a plant would exceed its annual income for all the reactors.  Given a free or 

low cost source for both nutrients and CO2, an economically viable production is possible, 

depending on the processing cost of the biomass.  By utilising a source of waste water that 

is nutrient rich, the cost could be reduced drastically, because the addition of only the 

required compounds needs to be added for optimal growth.  Waste CO2 from flue gas 

produced in large quantities by power stations and other plants could be used.  This would 

consequently reduce the reactor’s carbon footprint and be a free source of CO2. 
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The design of an optimal photobioreactor requires that the effect of the gas flow rate be 

studied.  Firstly, it should be considered how the flow rate affects the algae growth rate 

with different tubing diameters, lengths and volumes.  The gas flow rate would determine 

whether other variables, for example the CO2, could be supplied in sufficient quantities for 

optimal growth as well as whether the adequate agitation of the culture was achieved.  In 

photobioreactors where gas is used for agitation, the gas flow rate is as influential as the 

light characteristics and CO2 availability because it directly affects the production rate. 

The building of a photobioreactor is currently not a viable option for the production of algae 

biomass.  The production cost of algae is too high and only viable for a very small niche 

market looking for high-value products.  The production of algae requires a reduction in 

operating cost and a better understanding of the interaction of different design aspects and 

materials that are used before algae biomass could become a truly viable and renewable 

source of products. 
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9. APPENDIX A 

 

Figure 9.1: Copyright permission for total ion chromatograms 
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10. APPENDIX B 

 

Figure 10.1: Product and price list for clear PVC by Maizey plastics 
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Figure 10.2: Specifications of clear PVC tubing, provided by Maizey plastics 
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Figure 10.3: Product and price list for acrylic tubing by Maizey plastics 
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Figure 10.4: Specifications of acrylic tubing provided by Maizey plastics 
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Figure 10.5: Specifications of acrylic tubing provided by Maizey plastics, continued 
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11. APPENDIX C 

The minimum requirement of CO2 is 1.83 g for the production of 1g of algae biomass 

(Chisti, 2007; Posten, 2009).  Using a biomass density of 2g/l and a volume of 1200 litre 

for calculation purposes.  Assuming a growth rate of 1 g biomass growth per gram of 

biomass, the minimum amount of CO2 required for the reactor is 4 392 g.  Because CO2 

has a density of 19.8 kg/m3 at atmospheric pressure, therefore 2.22 m3 is required daily.  

Using a 2 % (v/v) ratio of air and carbon dioxide over a 12-hour day, 111 000 litres of gas 

are required per day which is equal to 154 l/min.  Using a 5% (v/v) of a 12 hour day, 44 

000 litres of gas is required per day, which is equal to 62l per min. 

The mass balance does not take into account the fact that some CO2 will not be used and 

therefore the required CO2 would increase.  As this is calculated according to the minimum 

requirement, some species may require up to double the quantity of CO2. 
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12. APPENDIX D 

EG:JM 

1:1 Mixture: Mix then autoclave at 15 psi for 15 minutes 

The autoclaving of the EG:JM medium is very important because it destroys the yeast 

extract which could still have some yeast.  The yeast or other microorganisms could attack 

and destroy the algae cells.  When using only inorganic salts in a medium, the requirement 

for autoclaving is reduced drastically, but it is still recommended, especially when a 

monoculture is required.  The major problem with autoclaving is the requirement of large 

amounts of energy which would increase production cost. 

Table 12.1: EG (Euglena gracilis medium) 

(1) Stock Per litre 

CaCl2 1.0 g 

Medium Per litre 

Sodium acetate trihydrate (CH3COONa.3H2O) 1.0 g 

“Lab-Lemco” powder (Oxoid L29)* 1.0 g 

Tryptone (Oxoid L42)* 2.0 g 

Yeast extract (Oxoid L21)* 2.0 g 

CaCl2 stock solution (1) 10.0 ml 

Add constituents above and make up to 1 litre with deionised water. 

According to CCAP all the * components were supplied by Unipath Ltd, Wade Road, 

Basingstoke, Hants RG24 0PW, UK.  These were not explored further as the medium was 

not used.  However, it was noted that these compounds are extracts containing minerals 

and amino acids (Oxoid Limited). 
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Table 12.2: JM (Jaworski’s Medium) 

Solution number Stock Per 200 ml (in grams) 

1 Ca(NO3)2.4H2O 4.0 

2 KH2PO4 2.48 

3 MgSO4.7H2O 10.0 

4 NaHCO3 3.18 

5 EDTAFeNa 0.45 

EDTANa2 0.45 

6 H3BO3 0.496 

MnCl2.4H2O 0.278 

(NH4)6Mo7O24.4H2O 0.2 

7 Cyanocobalamin 0.008 

Thiamine HCL 0.008 

Biotin 0.008 

8 NaNO3 16.0 

9 Na2HPO4.12H2O 7.2 

Add 1 ml of each stock solution (1-9) and make up to 1 litre using deionised water.   

  

Stellenbosch University  https://scholar.sun.ac.za



147 
 

Table 12.3: Bold’s Basal Medium constituents and formulation 

Stock Solution 

Number 
Chemical Name 

Chemical 

Formula 
Weight (g) 

Distilled Water 

(ml) 

1 Di-potassium 

hydrogen 

orthophosphate 

K2HPO4 1.875 250 

2 Potassium di-

hydrogen 

orthophosphate 

KH2PO4 4.375 250 

3 Magnesium 

sulphate 

MgSO4.7H2O 1.875 250 

4 Sodium nitrate NaNO3 6.250 250 

5 Calcium chloride CaCl2.2H2O 0.625 250 

6 Sodium chloride NaCl 0.625 250 

7 EDTA 

tetrasodium salt 

EDTA-Na4 5.000 100 

Potassium 

hydroxide 

KOH 3.100 

8 Ferrous sulphate FeSO4.7H2O 0.498 100 

Sulphuric acid 

conc. 

H2SO4 0.1 mL (weight 

per mL = 1.84g) 

9 Boric acid H3BO3 1.142 100 

10 Zinc sulphate ZnSO4.7H2O 0.353 25 

11 Manganese 

chloride 

MnCl2.4H2O 0.058 25 

12 Cupric sulphate CuSO4.5H2O 0.063 25 

13 Cobaltous nitrate Co(NO3)2.6H2O 0.020 25 

14 Sodium 

molybdate 

Na2MoO4.2H2O 0.048 25 

Source: Connon, 2007 

To prepare 1 L of medium 10 ml of stock solution 1 – 6 were added, 1 ml of stock solution 

7-9 were added and 0.1 ml of stock solution 10 – 14 were added to a beaker and filled to 

make 1 L.  To ensure that the culture remained sterile the medium were autoclaved during 

the stockpiling stage. 
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13. APPENDIX E 

 

 

 

Figure 13.1: Comminication with Prof Johan Grobbelaar on CO2 concentrations and buffer 
to be used
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14. APPENDIX F 

Due to the large amount of data the median and standard deviation of the values is shown for the pH.  The growth results show the 

actual volumetric growth results with the median and standard deviation, which will be used for graphs.  The values were calculated using 

the median and stdev functions available in Microsoft Excel. 

Table 14.1: Median and standard deviation pH values at 5 min CO2 twice daily 

Reading 1 2 3 4 5 

Median 7.515 6.06 7.705 5.98 7.685 

Std. deviation 0.177 0.237 0.127 0.212 0.123 

 

Table 14.2: Median and standard deviation pH values of 2 min CO2 four times daily 

Reading 1 2 3 4 5 6 7 8 9 

Median 7.87 6.42 7.98 6.22 7.96 6.30 7.99 6.34 7.99 

Std. Deviation 0.395 0.365 0.119 0.256 0.099 0.262 0.093 0.315 0.128 

 

Table 14.3: Median and standard deviation pH values of continuous CO2 at 10 % (v/v) 

Reading 1 2 3 4 5 

Median 7.27 7.24 7.275 7.245 7.25 

Std. Deviation 0.0397 0.0284 0.0460 0.0288 0.0353 
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Table 14.4: Median and standard deviation pH values of continuous CO2 at 5 % (v/v) 

Reading 1 2 3 4 5 

Median 7.485 7.475 7.515 7.520 7.510 

Std. Deviation 0.0530 0.0529 0.0559 0.0757 0.0530 

 

Table 14.5: Results of 5 min and 2 min addition of CO2 using the same reactor configurations in g/l/d 

Density 
Gas 

Dispersion 
Material Size 5 min CO2 Median 2 min CO2 Median 

-1 1 -1 50 mm -0.007835 -0.030706 -0.019271 -0.013553 -0.025624 -0.019588 

1 -1 -1 50 mm 0.010377 0.026471 0.018424 0.045953 -0.000635 0.022659 

-1 -1 1 50 mm -0.018635 -0.029647 -0.024141 -0.019271 -0.135954 -0.077612 

-1 1 1 50 mm 0.157977 0.065436 0.111706 0.164965 -0.017788 0.073589 

-1 -1 -1 90 mm -0.056753 -0.031765 -0.044259 -0.051247 -0.049977 -0.050612 

-1 1 -1 90 mm -0.072847 -0.045741 -0.059294 0.022659 -0.121342 -0.049341 

1 1 1 90 mm -0.034518 -0.011012 -0.022765 0.014188 0.054847 0.034518 

-1 -1 1 90 mm -0.073483 -0.029859 -0.051671 -0.013553 -0.068400 -0.040977 

1 1 -1 110 mm -0.011647 -0.040447 -0.026047 -0.030918 0.041294 0.005188 

1 -1 -1 110 mm -0.030494 -0.038753 -0.034624 -0.137224 -0.174495 -0.155860 

1 1 1 110 mm -0.017577 0.006141 -0.005718 -0.069671 0.034518 -0.017577 

1 -1 1 110 mm 0.015882 -0.040871 -0.012494 -0.031553 -0.038965 -0.035259 
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Table 14.6: Results of continuous CO2 addition using the same reactor conditions as in Table 14.5 for comparison in g/l/d 

Density 
Gas 

Dispersion 
Material Size 10% CO2 continuously Median 5% CO2 continuously Median 

-1 1 -1 50 mm 0.015671 0.030494 0.023082 -0.041506 0.076659 0.017577 

1 -1 -1 50 mm 0.158189 0.020965 0.089577 0.046588 0.097836 0.072212 

-1 -1 1 50 mm 0.148236 0.047224 0.097730 0.154801 0.332472 0.243636 

-1 1 1 50 mm 0.212613 -0.037059 0.087777 0.131295 0.112024 0.121659 

-1 -1 -1 90 mm -0.030282 0.031130 0.000424 -0.063530 0.052941 -0.005294 

-1 1 -1 90 mm 0.020330 0.067130 0.043730 -0.113506 0.091906 -0.010800 

1 1 1 90 mm 0.090424 0.006777 0.048600 0.048071 0.163907 0.105989 

-1 -1 1 90 mm -0.038753 0.102071 0.031659 -0.061836 0.020753 -0.020541 

1 1 -1 110 mm 0.059930 0.089365 0.074647 0.012918 0.061836 0.037377 

1 -1 -1 110 mm 0.015882 0.088518 0.052200 -0.005718 0.048918 0.021600 

1 1 1 110 mm 0.102918 0.031977 0.067447 -0.029012 0.042141 0.006565 

1 -1 1 110 mm -0.003600 0.078565 0.037483 -0.001906 0.052518 0.025306 

Table 14.7: Results of 50 mm diameter reactors from factorial experiments showing the growth rate in g/l/d 

Density 
Gas 

Dispersion 
Material Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 0.096989 0.038394 0.079624 0.086952 0.083288 0.025735 

1 -1 -1 0.046588 0.097836 0.015656 0.070306 0.058447 0.034933 

-1 1 -1 0.046377 0.033887 0.026628 0.059486 0.040132 0.014450 

1 1 -1 -0.041506 0.076659 -0.020118 -0.017971 -0.019044 0.052678 

-1 -1 1 0.085275 0.053055 0.012652 0.059418 0.056236 0.030057 

1 -1 1 0.154801 0.332472 0.041225 0.134259 0.144530 0.121675 

-1 1 1 0.041083 0.050873 0.062313 0.092352 0.056593 0.022228 

1 1 1 0.131295 0.112024 0.094024 0.076812 0.103024 0.023433 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



152 
 

Table 14.8: Results of 90 and 110 mm diameter reactors from factorial experiments, showing the growth rate in g/l/d 

Density 
Gas 

Dispersion 
Material Size Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 -1 -0.021600 -0.020193 -0.009739 -0.039388 -0.020897 0.012302 

1 -1 -1 -1 -0.063530 -0.098895 -0.078818 -0.069459 -0.074139 0.015483 

-1 1 -1 -1 -0.119859 -0.053943 -0.017509 -0.081742 -0.067842 0.043301 

1 1 -1 -1 -0.113506 -0.091906 -0.082377 -0.077671 -0.087142 0.015904 

     
  

 
  

 
  

-1 -1 1 -1 -0.087247 -0.067295 -0.007929 0.026308 -0.037612 0.052474 

1 -1 1 -1 -0.061836 0.017365 -0.053342 -0.043624 -0.048483 0.035928 

-1 1 1 -1 -0.001694 -0.046461 -0.009995 0.032194 -0.005845 0.032297 

1 1 1 -1 0.048071 -0.045318 -0.015337 -0.058024 -0.030327 0.047329 

     
  

 
  

 
  

     
  

 
  

 
  

-1 -1 -1 1 -0.001271 -0.009529 0.010588 0.032814 0.004659 0.018399 

1 -1 -1 1 -0.069247 -0.072212 -0.055694 -0.064328 -0.066788 0.007224 

-1 1 -1 1 0.012918 0.061836 0.048918 0.059930 0.054424 0.022714 

1 1 -1 1 -0.019116 0.009189 -0.000117 0.040334 0.004536 0.024815 

     
  

 
  

 
  

-1 -1 1 1 -0.001906 -0.004024 0.016922 0.025835 0.007508 0.014544 

1 -1 1 1 -0.029012 0.042141 -0.031854 -0.014234 -0.021623 0.034464 

-1 1 1 1 0.034886 0.036635 0.049547 0.046165 0.041400 0.007154 

1 1 1 1 -0.060777 -0.049553 -0.066626 -0.017365 -0.055165 0.021983 
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Table 14.9: Results of 50 mm diameter reactor showing the growth rate in g/m2/d 

Density 
Gas 

Dispersion 
Material Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 3.007072 1.190369 2.468688 2.695890 2.582289 0.797883 

1 -1 -1 1.444445 3.033334 0.485401 2.179799 1.812122 1.083073 

-1 1 -1 1.437879 1.050658 0.825593 1.844339 1.244269 0.448002 

1 1 -1 -1.286869 2.376768 -0.623738 -0.557165 -0.590451 1.633245 

   
            

-1 -1 1 2.643899 1.644927 0.392260 1.842202 1.743564 0.931887 

1 -1 1 4.799496 10.308084 1.278166 4.162628 4.481062 3.772445 

-1 1 1 1.273738 1.577285 1.931983 2.863314 1.754634 0.689157 

1 1 1 4.070708 3.473233 2.915152 2.381502 3.194193 0.726511 

 

Table 14.10: Specific growth rate of 50 mm diameter reactors in (days-1) 

Density 
Gas 

Dispersion 
Material Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 0.162596 0.071428 0.148655 0.146871 0.147763 0.041244 

1 -1 -1 0.046520 0.091169 0.016178 0.073762 0.060141 0.032786 

-1 1 -1 0.083525 0.055443 0.048352 0.104891 0.069484 0.026100 

1 1 -1 -0.045357 0.082226 -0.020637 -0.018686 -0.019662 0.056545 

   
            

-1 -1 1 0.145860 0.079106 0.024862 0.111603 0.095355 0.051472 

1 -1 1 0.199544 0.328237 0.041633 0.134182 0.166863 0.120462 

-1 1 1 0.059290 0.079592 0.116814 0.156407 0.098203 0.042824 

1 1 1 0.118845 0.091310 0.091819 0.059115 0.091564 0.024431 
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Table 14.11: Results of 90 and 110 mm diameter reactors showing the growth rate in g/m2/d 

Density 
Gas 

Dispersion 
Material Size Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 -1 -0.316912 -0.296272 -0.142886 -0.577899 -0.306592 0.180486 

1 -1 -1 -1 -0.932095 -1.450961 -1.156405 -1.019090 -1.087747 0.227163 

-1 1 -1 -1 -1.758552 -0.791444 -0.256894 -1.199295 -0.995370 0.635298 

1 1 -1 -1 -1.665343 -1.348430 -1.208616 -1.139576 -1.278523 0.233345 

    
        

 
  

-1 -1 1 -1 -1.280077 -0.987334 -0.116331 0.385979 -0.551833 0.769886 

1 -1 1 -1 -0.907239 0.254773 -0.782625 -0.640038 -0.711332 0.527131 

-1 1 1 -1 -0.024856 -0.681661 -0.146644 0.472341 -0.085750 0.473861 

1 1 1 -1 0.705285 -0.664894 -0.225023 -0.851313 -0.444959 0.694403 

    
        

 
  

    
        

 
  

-1 -1 -1 1 -0.013761 -0.103207 0.114674 0.355386 0.050457 0.199267 

1 -1 -1 1 -0.749970 -0.782079 -0.603187 -0.696691 -0.723331 0.078236 

-1 1 -1 1 0.139903 0.669698 0.529796 0.649057 0.589426 0.245995 

1 1 -1 1 -0.207030 0.099523 -0.001270 0.436828 0.049127 0.268752 

    
        

 
  

-1 -1 1 1 -0.020641 -0.043576 0.183275 0.279805 0.081317 0.157515 

1 -1 1 1 -0.314208 0.456404 -0.344985 -0.154159 -0.234183 0.373255 

-1 1 1 1 0.377822 0.396773 0.536614 0.499980 0.448377 0.077484 

1 1 1 1 -0.658231 -0.536676 -0.721579 -0.188066 -0.597453 0.238082 
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Table 14.12: Specific growth rate of 90 and 110 mm reactors in (days-1) 

Density 
Gas 

Dispersion 
Material Size Run 1 Run 2 Run 3 Run 4 Median 

Standard 
deviation 

-1 -1 -1 -1 -0.04819 -0.04955 -0.03048 -0.1193 -0.048873 0.039251 

1 -1 -1 -1 -0.07141 -0.0995 -0.08951 -0.06735 -0.080457 0.015158 

-1 1 -1 -1 -0.24349 -0.15179 -0.04518 -0.14737 -0.149581 0.081036 

1 1 -1 -1 -0.11737 -0.09607 -0.1002 -0.11128 -0.105740 0.009818 

    
  

 
  

 
    

-1 -1 1 -1 -0.18032 -0.16677 -0.02257 0.074029 -0.094673 0.121748 

1 -1 1 -1 -0.07027 0.018688 -0.06086 -0.12068 -0.065568 0.057645 

-1 1 1 -1 -0.00401 -0.12226 -0.02772 0.087629 -0.015867 0.086237 

1 1 1 -1 0.050822 -0.05513 -0.01982 -0.05186 -0.035838 0.049195 

    
  

 
  

 
    

    
  

 
  

 
    

-1 -1 -1 1 -0.002218 -0.016179 0.017960 0.053033 0.007871 0.030056 

1 -1 -1 1 -0.068544 -0.070375 -0.071585 -0.094265 -0.070980 0.012113 

-1 1 -1 1 0.022252 0.100152 0.090990 0.123226 0.095571 0.043440 

1 1 -1 1 -0.029981 0.013085 -0.000190 0.056286 0.006448 0.035842 

    
  

 
  

 
    

-1 -1 1 1 -0.003971 -0.006386 0.029808 0.057863 0.012919 0.030544 

1 -1 1 1 -0.030682 0.044264 -0.052164 -0.024581 -0.027632 0.041748 

-1 1 1 1 0.063439 0.067171 0.079896 0.078684 0.072927 0.008232 

1 1 1 1 -0.079312 -0.085641 -0.099985 -0.016286 -0.082477 0.037037 
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Table 14.13: Regression coefficient and 90 % confidence limits for 50 mm reactors 

Factor 

Regr. Coefficients; Var.:Growth; R-sqr=.42351; Adj:.36174 (Design: 2**(3-0) design (Design: 2**(4-0) design ([No active dataset]) in 50.stw) in 
50.stw) 2**(3-0) design; MS Residual=.0027063 DV: Growth

Regressn 
Coeff. 

Std.Err. t(28) p 
-90.% 

Cnf.Limt 
+90.% 

Cnf.Limt 

Mean/Interc. 0.069679 0.009196 7.57688 0.000000 0.054035 0.085323 

(2) Gas Dispersion -0.018165 0.009196 -1.97530 0.058167 -0.033809 -0.002521 

(3) Material 0.026192 0.009196 2.84815 0.008149 0.010548 0.041836 

1 by 3 0.026899 0.009196 2.92506 0.006756 0.011256 0.042543 

Table 14.14: Regression coefficient and 90 % confidence limits for 90 mm reactors 

Factor 

Regr. Coefficients; Var.:Growth; R-sqr=.41582; Adj:.35323 (Design: 2**(3-0) design ([No active dataset]) in Workbook3) 2**(3-0) design; MS 
Residual=.0011749 DV: Growth 

Regressn 
Coeff. 

Std.Err. t(28) p 
-90.% 

Cnf.Limt 
+90.% 

Cnf.Limt 

Mean/Interc. -0.044197 0.006059 -7.29401 0.000000 -0.054505 -0.033889 

(1) Density -0.011316 0.006059 -1.86754 0.072328 -0.021624 -0.001008 

(3) Material 0.020812 0.006059 3.43464 0.001868 0.010504 0.031119 

2 by 3 0.013060 0.006059 2.15539 0.039875 0.002753 0.023368 
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Table 14.15: Regression coefficient and 95 % confidence limits for 110 mm reactors 

Factor 

Regr. Coefficients; Var.:Growth; R-sqr=.6827; Adj:.64871 (Design: 2**(3-0) design ([No active dataset]) in Workbook2) 2**(3-0) design; MS 
Residual=.0006049 DV: Growth 

Regressn 
Coeff. 

Std.Err. t(28) p 
-95.% 

Cnf.Limt 
+95.% 

Cnf.Limt 

Mean/Interc. -0.001194 0.004348 -0.27460 0.785638 -0.010100 0.007712 

(1) Density -0.027460 0.004348 -6.31592 0.000001 -0.036367 -0.018554 

(2) Gas Dispersion 0.012869 0.004348 2.95991 0.006202 0.003963 0.021775 

2 by 3 -0.014804 0.004348 -3.40492 0.002017 -0.023710 -0.005898 

Table 14.16: Regression coefficient and 95 % confidence limits for 90 and 110 mm reactor combination 

Factor 

Regr. Coefficients; Var.:Growth; R-sqr=.66864; Adj:.62045 (Design: 2**(4-0) design ([No active dataset]) in 90-11.stw) 2**(4-0) design; MS 
Residual=.0008391 DV: Growth 

Regressn 
Coeff. 

Std.Err. t(55) p 
-95.% 

Cnf.Limt 
+95.% 

Cnf.Limt 

Mean/Interc. -0.022695 0.003621 -6.26778 0.000000 -0.029952 -0.015439 

(1) Density -0.019388 0.003621 -5.35445 0.000002 -0.026645 -0.012132 

(3) Material 0.010277 0.003621 2.83824 0.006342 0.003021 0.017534 

(4) Size 0.021501 0.003621 5.93804 0.000000 0.014245 0.028758 

1 by 4 -0.008072 0.003621 -2.22929 0.029898 -0.015329 -0.000816 

2 by 4 0.007307 0.003621 2.01807 0.048473 0.000051 0.014564 

3 by 4 -0.010534 0.003621 -2.90929 0.005218 -0.017791 -0.003278 

1*2*3 -0.009364 0.003621 -2.58603 0.012387 -0.016621 -0.002107 

2*3*4 -0.013932 0.003621 -3.84762 0.000313 -0.021189 -0.006676 
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Figure 14.1: Visual representation of the interaction between the reactor size and materials 
used in the 90 and 110 mm combined analysis. 

Figure 14.2: Visual representation of the interaction between the reactor size and culture 
density used in the 90 and 110 mm combined analysis 
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Figure 14.3: Visual representation of the interaction between the reactor size and the gas 
dispersion unit used in the 90 and 110 mm combined analysis 

The interactions seen in Figure 14.1, Figure 14.2 and Figure 14.3 show the effects of the 

main interactions.  These interactions all show that the diameter or size of the tubing is 

very important. As stated previously, this is due the negative growth seen in the 90 mm 

reactors. 
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15. APPENDIX G 

Name Formula 
SKU-Pack 
size 

Desciption 
Price per 
unit 

Cost to make 
1 litre of 
medium 

Di-potassium hydrogen 
orthophosphate K2HPO4 P3786-1KG ACS reagent, ≥98% 972.19 0.0729 

Potassium di-hydrogen 
orthophosphate KH2PO4 P9791-1KG molecular biology, ≥98.0% 851.49 0.1490 

Magnesium sulphate MgSO4.7H2O 230391-1KG ACS reagent, ≥98% 796.02 0.0597 

Sodium nitrate NaNO3 S5022-1KG ≥99.0%, plant cell  931.42 0.2329 

Calcium chloride CaCl2.2H2O C7902-1KG BioReagent, ≥99.0% 1004.81 0.0251 

Sodium chloride NaCl S7653-1KG BioXtra, ≥99.5% 362.13 0.0091 

EDTA tetrasodium salt EDTA-Na4 03699-1KG BioUltra, ≥99.0%  1497.44 0.0749 

Potassium hydroxide KOH P5958-1KG BioXtra, ≥85% 858.02 0.0266 

Ferrous sulphate FeSO4.7H2O 215422-1KG ACS reagent, ≥99.0% 758.51 0.0038 

Sulphuric acid conc. (1.84g/ml) H2SO4 320501-1L ACS reagent, 95.0-98.0% 316.45 0.0032 

Boric acid H3BO3 B6768-1KG BioReagent, ≥99.5%  649.22 0.0074 

Zinc sulphate ZnSO4.7H2O Z0251-500G BioReagent 1109.22 0.0031 

Manganese chloride MnCl2.4H2O M5005-500G BioReagent 1089.64 0.0005 

Cupric sulphate CuSO4.5H2O C8027-500G BioReagent, ≥98% 548.09 0.0003 

Cobaltous nitrate Co(NO3)2.6H2O 239267-500G ACS reagent, ≥98% 2128.72 0.0003 

Sodium molybdate Na2MoO4.2H2O M1003-500G ≥99.5% 2039.00 0.0008 

            

    
Sub-total  R 0.6695  

    
VAT  R 0.0937  

    
Total:  R 0.7633  

Source: Sigma-Aldrich, 2014 
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Table 15.1: Capital and running cost of a 50 mm PVC reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 50 90° Elbow 18.00 2.00 36.00 

TID 50 90° Tee 26.00 46.00 1,196.00 

CAD 50 End cap 15.00 36.00 540.00 

uPVC 50 Pipe class 4 pm 27.00 3.00 81.00 

CHD 50 Ball valve 52.00 2.00 104.00 

PVCTC050046I Clear PVC 
tubing 

114.33 60.00 6,859.80 

PVC adhesive 1 litre 360.00 1.00 360.00 

PVC cleaner 500 millilitre 77.00 2.00 154.00 

Gas tubing 6 mm per metre 6.00 80.00 480.00 

Gas dispersion 
units 

Large 12.00 36.00 432.00 

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00 1.00 1,967.00 

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00 1.00 4,143.00 

Gas flow meters 
V10420 0-24.68 l/min 

2,691.00 1.00 2,691.00 

Medium 
Storage tank 1000 liter tank 

2,045.00 1.00 2,045.00 

     Sub-total     R 21,088.80  

     Vat     R 2,952.43  

Capital cost    Total     R 24,041.23  

          

          

40-RC CO2 Tec Dry 270.78 27.34 7,404.27 

Medium   0.67 20,787.81 13,917.44 

Electricity kW/h 1.64 8,246.22 13,513.08 

Salaries 1 person per 20 
modules 

3,000.00 12.00 36,000.00 

Water kl 13.35 20.79 277.52 

     Sub-total     R 71,112.31  

     Vat     R 9,955.72  

Running cost    Total     R 81,068.03  
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Table 15.2: Capital and running cost of a 50 mm acrylic reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 50 90° Elbow 18.00 2.00 36.00 

TID 50 90° Tee 26.00 46.00 1,196.00 

CAD 50 End cap 15.00 36.00 540.00 

uPVC 50 Pipe class 4 pm 27.00 3.00 81.00 

CHD 50 Ball valve 52.00 2.00 104.00 

AXT050046 Acrylic Tubing 128.96 60.00 7,737.60 

PVC adhesive 1 litre 360.00 1.00 360.00 

PVC cleaner 500 millilitre 77.00 2.00 154.00 

Gas tubing 6 mm per metre 6.00 80.00 480.00 

Gas dispersion 
units 

Large 12.00 36.00 432.00 

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00 1.00 1,967.00 

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00 1.00 4,143.00 

Gas flow meters 
V10420 0-24.68 l/min 

2,691.00 1.00 2,691.00 

Medium 
Storage tank 1000 litre tank 

2,045.00 1.00 2,045.00 

     Sub-total     R 21,966.60  

     Vat     R 3,075.32  

Capital cost    Total     R 25,041.92  

          

          

40-RC CO2 Tec Dry 270.78 27.34 7,404.27 

Medium   0.67 13,597.63 9,103.61 

Electricity kW/h 1.64 6,605.96 10,825.18 

Salaries 1 person per 20 
modules 

3,000.00 12.00 36,000.00 

Water kl 13.35 13.60 181.53 

     Sub-total     R 63,514.59  

     Vat     R 8,892.04  

Running cost    Total     R 72,406.64  
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Table 15.3: Capital and running cost of a 90 mm PVC reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 90 90° Elbow 82.00  2.00  164.00  

TID 90 90° Tee 110.00  46.00  5,060.00  

CAD 90 End cap 66.50  36.00  2,394.00  

uPVC 90 Pipe class 4 pm 52.20  3.00  156.60  

CHD 90 Ball valve 243.00  2.00  486.00  

PVCTC090086I Clear PVC 
tubing 

204.03  60.00  12,241.80  

PVC adhesive 1 litre 360.00  2.00  720.00  

PVC cleaner 500 millilitre 77.00  4.00  308.00  

Gas tubing 6 mm per metre 6.00 80.00 480.00  

Gas dispersion 
units 

Large 12.00 36.00 432.00  

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00  1.00  1,967.00  

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00  1.00  4,143.00  

Gas flow meters 
V10420 

0-24.68 l/min 2,691.00  1.00  2,691.00  

Medium 
Storage tank 

1000 litre tank 2,045.00  1.00  2,045.00  

     Sub-total     R 33,288.40  

     Vat     R 4,660.38  

Capital cost    Total     R 37,948.78  

          

40-RC CO2 Tec Dry 270.78  95.58  25,879.95  

Medium   0.67  46,259.21  30,970.54  

Electricity kW/h 1.64  14,056.88  23,035.01  

Salaries 1 person per 20 
modules 

3,000.00  12.00  36,000.00  

Water kl 13.35  46.26  617.56  

     Sub-total     R 116,503.06  

     Vat     R 16,310.43  

Running cost    Total     R 132,813.49  
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Table 15.4: Capital and running cost of a 90 mm acrylic reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 90 90° Elbow 82.00  2.00  164.00  

TID 90 90° Tee 110.00  46.00  5,060.00  

CAD 90 End cap 66.50  36.00  2,394.00  

uPVC 90 Pipe class 4 pm 52.20  3.00  156.60  

CHD 90 Ball valve 243.00  2.00  486.00  

AXT090084 Acrylic Tubing 290.24  60.00  17,414.40  

PVC adhesive 1 litre 360.00  2.00  720.00  

PVC cleaner 500 millilitre 77.00  4.00  308.00  

Gas tubing 6 mm per metre 6.00 80.00 480.00  

Gas dispersion 
units 

Large 12.00 36.00 432.00  

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00  1.00  1,967.00  

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00  1.00  4,143.00  

Gas flow meters 
V10420 

0-24.68 l/min 2,691.00  1.00  2,691.00  

Medium 
Storage tank 

1000 litre tank 2,045.00  1.00  2,045.00  

     Sub-total     R 38,461.00  

     Vat     R 5,384.54  

Capital cost    Total     R 43,845.54  

          

40-RC CO2 Tec Dry 270.78  91.18  24,690.23  

Medium   0.67  44,132.64  29,546.80  

Electricity kW/h 1.64  13,571.76  22,240.04  

Salaries 1 person per 20 
modules 

3,000.00  12.00  36,000.00  

Water kl 13.35  44.13  589.17  

     Sub-total     R 113,066.24  

     Vat     R 15,829.27  

Running cost    Total     R 128,895.51  
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Table 15.5: Capital and running cost of a 110 mm PVC reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 110 90° Elbow 135.00 2.00 270.00 

TID 110 90° Tee 170.00 46.00 7,820.00 

CAD 110 End cap 112.00 36.00 4,032.00 

uPVC 110 Pipe class 4 pm 73.40 3.00 220.20 

CHD 110 Ball valve 400.00 2.00 800.00 

PVCTC110105I Clear PVC 
tubing 

276.30 60.00 16,578.00 

PVC adhesive 1 litre 360.00 2.00 720.00 

PVC cleaner 500 millilitre 77.00 4.00 308.00 

Gas tubing 6 mm per metre 6.00 80.00 480.00 

Gas dispersion 
units 

Large 12.00 36.00 432.00 

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00 1.00 1,967.00 

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00 1.00 4,143.00 

Gas flow meters 
V10420 

0-24.68 l/min 2,691.00 1.00 2,691.00 

Medium 
Storage tank 

1000 litre tank 2,045.00 1.00 2,045.00 

     Sub-total     R 42,506.20  

     Vat     R 5,950.87  

Capital cost    Total     R 48,457.07  

          

40-RC CO2 Tec Dry 270.78 142.47 38,578.48 

Medium   0.67 18,366.97 12,296.68 

Electricity kW/h 1.64 7,693.96 12,608.10 

Salaries 1 person per 20 
modules 

3,000.00 12.00 36,000.00 

Water kl 13.35 18.37 245.20 

     Sub-total     R 99,728.46  

     Vat     R 13,961.98  

Running cost    Total     R 113,690.45  
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Table 15.6: Capital and running cost of a 90 mm acrylic reactor 

Product 
number 

Description Price per unit Quantity Total 

GOD 110 90° Elbow 135.00 2.00 270.00 

TID 110 90° Tee 170.00 46.00 7,820.00 

CAD 110 End cap 112.00 36.00 4,032.00 

uPVC 110 Pipe class 4 pm 73.40 3.00 220.20 

CHD 110 Ball valve 400.00 2.00 800.00 

AXT110104 Acryllic Tubing 342.81 60.00 20,568.60 

PVC adhesive 1 litre 360.00 2.00 720.00 

PVC cleaner 500 millilitre 77.00 4.00 308.00 

Gas tubing 6 mm per metre 6.00 80.00 480.00 

Gas dispersion 
units 

Large 12.00 36.00 432.00 

Pressure pump 
SM 100 

0.75kW 20-
90l/min 

1,967.00 1.00 1,967.00 

Air blower 
B02A02 

0.4 kW 
1.3m3/min 

4,143.00 1.00 4,143.00 

Gas flow meters 
V10420 

0-24.68 l/min 2,691.00 1.00 2,691.00 

Medium 
Storage tank 

1000 litre tank 2,045.00 1.00 2,045.00 

     Sub-total     R 46,496.80  

     Vat     R 6,509.55  

Capital cost    Total     R 53,006.35  

          

40-RC CO2 Tec Dry 270.78 139.77 37,847.15 

Medium   0.67 24,791.92 16,598.19 

Electricity kW/h 1.64 9,159.66 15,009.93 

Salaries 1 person per 20 
modules 

3,000.00 12.00 36,000.00 

Water kl 13.35 24.79 330.97 

     Sub-total     R 105,786.24  

     Vat     R 14,810.07  

Running cost    Total     R 120,596.31  
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Figure 15.1: Quotation for variable flow meters from Gosair instruments  
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Figure 15.2: Afrox CO2 (40 - RC) cylinder cost 
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Figure 15.3: Booklet front page which acted as source for the PVC fittings prices 

 

Stellenbosch University  https://scholar.sun.ac.za



170 
 

Table 15.7: Prices and references form where it was obtains 

Product number Description 
Price per 

unit   

Pressure pump SM 
100 

0.75kW 20-
90l/min 

1,967.00 (Stewards and Lloyds, 
2014) 

Air blower B02A02 0.4 kW 1.3m3/min 4,143.00 (Ecotao Enterprises, 2014) 

Medium storage tank 1000 litre tank 2,045.00 (Water Rhapsody, 2014) 

Electricity kW/h 1.64 (City of Cape Town, 2014) 

Water kl 13.35 (City of Cape Town, 2013) 

Price of dried Chlorella  per 100 g 153.51  (Chlorella Africa, 2014) 

Gas tubing 6 mm per metre 6.00 (Seal Water tech, 2014) 

Gas flow meter   Figure 15.1 

Afrox CO2  Figure 15.2 

Fittings PVC fitting  Figure 15.3 

Clear tubing PVC and acrylic  APPENDIX  
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