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Abstract

South Africa is involved in huge mining operations deep in the earth's crust. Stresses

induced by these mining operations may cause seismic events or rockbursts to occur, which

could damage infrastructure and put miners' lives at risk. The e�ect of di�erent mining

layouts are modelled and used by engineers to make design decisions. The frequency at

which models are updated and integrated with the decision making process is not optimal.

These large mining layouts can not be modelled adequately using domain methods, but

they are particularly well suited for the boundary element method (BEM).

This work focuses on the theory and background needed for creating a linear elastic

static stress boundary element solver suited to South African mining layouts. It starts

with linear elastic theory and subsequently describes the physical continuum, governing

equations and the fundamental solutions which are an integral part of the BEM. Kelvin's

solution cannot be applied to crack-like excavations, therefore the displacement disconti-

nuity kernels, which are very well suited to model fractures, are derived. The derivation

is approached from both the direct and indirect BEM's perspectives. The problem is

cast as a boundary integral equation which can be solved using the BEM. Some of the

di�erent specializations of the BEM are discussed. The major drawback of the BEM is

that it produces a dense in�uence matrix which quickly becomes intractable on desktop

computers. Generally a mining layout requires a large amount of boundary elements,

even for coarse discretization, therefore di�erent techniques of representing the in�uence

matrix are discussed, which, combined with an iterative solver like GMRES or Bi-CG,

allows solving linear elastic static stress models.

ii



Ekserp

Suid-Afrika het baie groot myne wat diep ondergronds is. Kragte wat deur hierdie

myn-aktiwiteite veroorsaak word kan seismisiteit en rotsstortings veroorsaak en dit kan

infrastruktuur en mynwerkers se lewens in gevaar stel. Die invloed van verskillende my-

nuitlegte kan deur ingenieurs gebruik word tydens beplanning. Die frekwensie waarteen

modelle opgedateer en met besluitneming geïntegreer word is nie optimaal nie. Die baie

groot mynuitlegte word tans nie goed genoeg met gebiedsmetodes hanteer nie, maar is

wel baie gepas vir die rand-element metode (BEM).

Hierdie werk fokus op die teorie en agtergrond wat nodig is om 'n staties linieêr elastiese

rand-element oplosser vir Suid-Afrika se mynuitlegte te maak. Dit begin met lineêre

elastisiteit, 'n beskrywing van die �siese kontinuum, die bepalende vergelykings en die

fundementele oplossings wat 'n integrale deel van die BEM vorm. Kelvin se oplossing is nie

toepaslik om frakture mee te modelleer nie, dus word kerne vir verplasings diskontinuiteite

afgelei wat wel goed gepas is. Die a�eiding word van beide die direkte en indirekte BEM

se perspektiewe benader. Die probleem word dan omskryf as 'n rand-integraal vergelyking

wat met behulp van die BEM opgelos kan word. Van die verskillende BEMs word dan

bespreek. Die grootste nadeel van die BEM is dat dit 'n digte invloed matriks genereer wat

onhanteerbaar word op persoonlike rekenaars. In die algemeen be nodig mynuitlegte baie

elemente, selfs vir 'n growe voorstelling. Verskillende maniere om die invloed matriks meer

optimaal voor te stel word bespreek. Hierdie voorstellings kan dan saam met iteratiewe

matriks oplossers soos GMRES en Bi-CG gebruik word om die staties lineêr elastiese

modelle op te los.
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Chapter 1

Introduction

In research regarding mining operations there are many unknowns and numerous assump-

tions to be made. Considerable e�ort is made globally to gain more understanding of the

subsurface environment. While the main aim of this understanding should be the im-

provement of safety, this is not always the case; rather improving pro�tability is usually

considered �rst, due to legislation and severe monetary penalties for casualties and in-

juries these two aims frequently coincide. Even if more could be done to improve our

understanding, using the information already obtained and preparing it to be used in

modelling can be di�cult.

Over the years the search for gold has taken us deeper and deeper, and with depth the

dangers increase. Currently there are plans to go even further down and this will continue

with the demand for gold. The same is happening for platinum mines, where mining is

still being done at shallow depths relative to the depths at which gold extraction is taking

place.

A lot of surveying is done to get a good picture of the geological structures, rock

types and in situ stress due to prehistoric loading. Rock samples are taken and tested in

laboratories to determine their properties which can then be used in numerical modelling.

Certain mining practices like back�lling, support systems and layout design also need to

be included in the modelling. It has become common to monitor seismic activity which

could be incorporated to bring the modelling closer to reality.

1.1 Motivation

The initial aim of our project was to develop a tool to solve for the static stress state

given the geometric layout of the mine using the boundary element method (BEM). The

boundary element method is also known as the boundary integral equation method (BIE)

or boundary integral method. The development of this tool contained many pitfalls and

was a big learning experience; because the di�erent parts were developed together it did

1



Chapter 1 � Introduction 2

not make the job any easier. These parts include

� setting up the model,

� discretizing the model boundary,

� integration of kernels,

� constructing a linear system of equations,

� solving the linear system and

� computing results at �eld points.

The �rst two parts were separated into a preprocessing step to generate input for the nu-

merical engine. The numerical engine consists of the remaining parts. The major driving

factors for the engine were speed, storage requirements, accuracy, reliability and �exibil-

ity. This work does not try to explain exactly how such a project can be implemented,

but rather tries to provide the background needed and give a general guideline on what

considerations needs to be made when tackling such a di�cult project.

1.2 Kernel Integration

The most crucial part of implementing the boundary element method is in computing

the in�uence coe�cients. The di�culties associated are probably why boundary element

methods have taken a back seat to more popular and conceptually easier domain methods,

like �nite elements and �nite di�erences. When tackling very large scale problems one

quickly runs into the spatial limitations of domain methods. In these situations BEM is

perfect for supplementing the domain method by providing accurate boundary conditions.

The kernels are derived from the fundamental solution for the linear static stress prob-

lem in an in�nite homogenous domain also known as the Kelvin solution. These kernels

are obtained by di�erentiating the Kelvin solution with respect to space. Integrating the

resulting kernels varies in di�culty since they range from weakly singular through singular

and up to hypersingular. The weakly singular integrals are amenable to simple numeri-

cal quadrature, the singular integrals are a little bit more di�cult and exist as Cauchy

principal value integrals, and lastly the hypersingular integrals can be interpreted in the

Hadamard �nite part sense.

A uni�ed method was sought to compute the kernel integration. The continuation

approach was found to be the most appealing method since it seems to be numerically

robust and simultaneously allows for points which are on, near or far from the element

integrated over. A wide range of integration schemes were tried out before settling on the
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continuation approach. Some of the techniques tried were: analytical integration, subdi-

vision based integration and Gauss quadrature. The continuation approach described in

a later chapter was chosen for its accuracy, reliability and �exibility. Even though the

continuation approach gave very accurate results, it was still too slow to use in the far-�eld

where kernels are amenable to ordinary low order numerical quadrature. To remedy the

speed problem, an adaptive Gauss quadrature scheme was introduced. This was done in

such away as not to compromise the accuracy, reliability or �exibility of the continuation

approach.

1.3 Construct and solve

Constructing the linear system and solving it can be a great and di�cult art. Building the

system requires the evaluation of O(n2) integrals where n is the number of elements used

for describing the boundary. The system can be very large for simple practical problems

and one quickly runs into storage and memory limitations. The choices of matrix solvers

are relatively few, even though many variants exist. The easiest and most reliable are

direct solvers like Gauss elimination which requires O(n3) operations and is not feasible

for relatively small problems.

If one travels along the less reliable route, one arrives at the family of iterative solvers.

The major advantage of iterative solvers is the huge speed improvement obtainable, even

though the cost for this improvement comes at the price of reliability, since iterative solvers

do not guarantee convergence for unsymmetric dense systems obtained from BEM. Iter-

ative solvers are based on successively performing matrix-vector products and in general

do not require the construction of the matrix.

Successive approximations of the solution vector are generated until a speci�ed abso-

lute or relative accuracy is reached. The core of any fast BEM solver exploits the fact

that the in�uence matrix can be substituted with an approximation and then used to

perform the matrix-vector product. The aim is to create such an approximant which does

not need the usual O(n2) operations to create and more importantly, the O(n2) growth in

storage space, but instead performs the matrix-vector product up to a prescribed accuracy

requiring much less resources.

1.4 Compression

Huge primary and secondary storage for desktop computers have become common, but

still it is not enough for even a small to average sized problem. The additional time re-

quired to swap from disk into main memory at the scales required by direct unoptimized

BEM implementations would make using an iterative solver infeasible. Over the years
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many ideas have been researched and applied to elasticity to overcome this obstacle. Ex-

amples are the Fast multipole method (FFM) [3], precorrected FFT methods [4], wavelets

methods [5], panel clustering method [6] and algebraic methods based on the singular

value decomposition (SVD) [7; 8; 9].

An in-house variant based primarily on IES3, because of its simplicity, was imple-

mented. Unfortunately getting it to work for linear elasticity was di�cult and only raised

more questions. The IES3 method is an example of an algebraic method, since it only

concerns itself with algebraically manipulating the in�uence matrix directly. Other meth-

ods are more complicated because they usually require details of the problem's kernel

function. The advantage of IES3 was that it constructed an approximation of the in�u-

ence matrix with which a fast matrix-vector product could be performed. In this text

a matrix-vector product will be considered fast if it can be performed in sub-quadratic

time, but preferably in O(n logδ(n)) operations.

A method to construct the approximation in sub-quadratic time was very brie�y dis-

cussed in the initial [7, IES3] paper, but many of the details were left out. Therefore the

major bottleneck was O(n2) kernel evaluations to construct the approximation, which was

not yet fast enough and could be improved.

The [2, Dual-MGS] method provided the breakthrough needed to get sub-quadratic

construction time. It described a manner of constructing sub-matrices by deterministically

sampling rows and columns using smoothness assumptions to select candidates and also

to provide a stopping criterion. In the paper they applied Dual-MGS to sub-matrices

for capacitance extraction. Dual-MGS was then applied to approximate sub-matrices for

linear elasticity. Dual-MGS iteratively expands the approximation space and will give an

accurate approximation if all the assumptions are applicable.

Later a kernel-independent variant of the FMM [10] proved to be even more general

and successful at producing a compressed approximant of the in�uence matrix, but a

discussion will not be included.

1.5 Preconditioning

Iterative solvers tend to be more robust for smaller problems and generally become un-

stable for larger ones. It has been shown that the number of iterations needed with an

appropriately preconditioned iterative solver for BEM can be bounded by a logarithmic

factor of the problem size [11]. Slow convergence rates do not really a�ect the total so-

lution time too severely for small problem sizes. All the improvements made, to more

e�ciently construct the approximation, allows for much larger problem sizes. Therefore,

slow convergence rates will severely a�ect the total solution time and for some problems

the solver does not even converge.
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The compressed structure from IES3 is very similar to the structure explained in

both [8, Sequentially semi-separable matrices] and [9, H-Matrices] and for both these

representations, ideas on constructing preconditioners were given. In truth, both papers

include algorithms to construct pseudo-inverses that should be applicable to the in-house

variant. A very coarse preconditioner was implemented by borrowing ideas from these

papers and has proved to do the job well enough. Using a preconditioner improved

reliability and reduced the number of iterations needed for convergence by almost and

order of magnitude. This was expected, because the same results have been reported in

many other papers on the topic.

1.6 Numerical Methods

There exist many di�erent methods which can be used to solve problems in the engi-

neering sciences. These methods can be split into two categories, namely domain and

boundary methods. Domain methods are generally �exible, powerful and simple to un-

derstand. They have many advantages, like the possibility to model non-linearity, very

complex geometries and inhomogeneous materials. Their di�culty lies in setting up these

properties, which can be very time consuming and di�cult. The �nite element (FEM),

�nite di�erence (FDM), spectral and particle methods are examples of domain methods,

[4]. Their major disadvantages lie in mesh generation and description of the problem do-

main, which have spawned active research into meshless methods, such as smooth particle

hydrodynamics (SPH), particle-in-cell (PIC) and the material point method (MPM).

Boundary methods are generally more complex, but very powerful. Active research is

underway to make it more �exible and applicable to a wider range of problems. Boundary

methods have been used to solve problems in electromagnetism, acoustics, viscous �ow,

elasticity and other �elds. The complexity in generating a mesh for the boundary of the

problem domain is much less than for the domain itself. This reduction in dimensionality

is probably the main reason for research into boundary element methods. Describing the

problem domain for boundary element methods require much less data because of this. In

general the numerical accuracy that can be achieved is better than with domain methods,

[12].

1.7 Modelling tools

Modelling tools for routine static stress analysis have many requirements to ful�l. They

have to be easy to use, have a quick turn around time, must be feature rich and have to

provide accurate results. The impression the average user will have of such a tool will

be formed by interaction with the graphical user interface. In general though, not much
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thought would be given to the underlying numerical engine. What they would expect are

that the results are accurate and that they would not have to wait excessively long for

them. The easier the user interface is, the larger the problem speci�cation will inevitably

become.

The only way to compete with other tools on the market is to implement algorithms

that perform at optimal or near optimal complexity which can treat larger problem do-

mains. The �nal choice on selecting a tool for routine analysis would probably be based

on features which simpli�es describing the problem domain and minimizes user input,

rather than on how powerful the competing product's numerical engine is. An example of

such a feature could be automatic adaptive discretization with error control. The experi-

enced user might have a feel for where the model need to be re�ned, but usually the job

of building the model is delegated to someone with less experience. The intelligence of

ensuring that the discretization and solution accuracy is achieved should rather be taken

away from the user and incorporated into the engine using strict error bounds and maybe

some kind of re-analysis.

1.8 Layout

Chapter 1: Introduction

Introduces the reader to the problem domain and explains the motivation behind this

work. An overview of the di�culties adresses within this work, namely:

� kernel integration,

� assembling the linear system,

� solving the linear system and

� compressing the linear system

is given. Mention is made of preconditioning although this is not adressed.

Chapter 2: Elasticity

Linear elasticity theory and the governing equations are discussed, covering the necessary

background needed to model a linear elastic continuum.

Chapter 3: Fundamental Solutions

Introduces the fundamental solutions which form the basis of boundary integral equation

methods. The chapter mainly focuses on Kelvin's solution which gives displacement

produced by a point load in an in�nite elastic continuum. Equations for strain, stress

and traction are derived using elasticity theory. Together with Kelvin's solution, these

equations form the kernels for the �ctitious force method (FFM).
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Chapter 4: Cracks

The displacement discontinuity kernels, with which crack-like structures can be modelled,

are derived from Kelvin's solution. This is done for both the direct and indirect method,

but the explicit form of the kernels are derived from the indirect method.

Chapter 5: Boundary Element Method

Discusses the boundary integral equations and approach form solving them numerically.

Chapter 6: Kernel Integration

Discusses the di�culties associated with integrating kernels over boundary elements and

methods how these integrals can be performed.

Chapter 7: Assembly

Discusses how a system of linear equations can be assembled into a matrix and reviews

techniques which can be used to reduce the O(n2) storage and computational requirements

inherent with the BEM when tackling large scale problems.

Chapter 8: Summary and Conclusion

Gives an overview of what was achieved within this work.



Chapter 2

Elasticity

2.1 Introduction

Solids like rubber, rock, steel, etc., exhibit linear elastic behaviour while undergoing small

deformations. The range of deformation for which a linear elastic description of the solid's

behaviour holds, might be very small for a brittle piece of wood or very large for an elastic

band. The deformation is the result of some force applied to the object and if this force is

taken away the object should return to its undeformed shape. If the object fully returns

to its undeformed shape, we say that the deformation was perfectly elastic; if not then

some kind of plastic deformation occurred. If the force applied causes the body to deform

past some critical point, then the material might either fail or become plastic.

There are many di�erent causes for and ways in which a body may undergo deforma-

tions. Some examples are:

� applying pressure on the surface,

� inertial forces,

� inducing magnetic �ux and

� temperature changes.

In continuum mechanics, of which linear elasticity is a branch, it is assumed that the

e�ect of molecules, atoms and other particles are continuously spread over the body and

that there exists no voids. This idealization is obviously not true, but when regarding

processes from a macroscopic perspective it does give good results and simpli�es the

description of the medium. The scales at which we apply the theory is much larger than

the atomic scale, therefore we can have con�dence that in an average sense the response

of the material should correspond well with this theoretical model, [13].

We will only concern ourselves with the linear elastic behaviour of the medium and aim

at a description of the medium in its equilibrium state. This implies that the stress-strain

8
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relationships are linear and time independent. We also assume that induced deformations

will be small enough that we can ignore their e�ect on the boundary of the domain and

that the equilibrium equations may refer to the undeformed boundary, [12].

2.2 Strain

Figure 2.1: The displacement vector ui(x
j) that joins the particle xj in the

underformed body A and the deformed body B.

In [13] the term deformation refers to both the motion of particles within the body as

well as motion of the body itself. Therefore loading a body may cause both rigid body

deformation, like translation and/or rotation of the whole body, or cause straining within

the body, which will make particles move relative to each other within the body and cause

the body's shape to change.

We start o� by studying the arbitrary body A in Figure 2.1 �lled with a homogeneous

material and no forces acting in on it. In the undeformed body, a coordinate system can

be associated. To each point or particle in A we can �x a coordinate xi. Applying a force

on the body will cause the body to deform and we let the coordinate system respond in

such a manner that each particle retains its coordinate. Therefore when we refer to the

same particle in the deformed body B, we can refer to it using the same coordinate xi.

If the medium is described in this way it is said that we are using particle or convected

coordinates and is popularly known as the Lagrange formalism. It is then possible to

de�ne the displacement vector as

u = ui(x
j). (2.1)

The displacement vector is de�ned for every point inside the continuum and therefore

de�nes a displacement �eld. The displacement �eld can be used to describe the strain

experienced by the body. This relationship between the displacement experienced by the

body and the strain is termed the displacement-strain relationship. The strain tensor
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can be derived from the displacement �eld (see Appendix A) which results in the exact

relation

εij =
1

2

(
ui|j + uj|i + uk|iuk|j

)
. (2.2)

This relation can be linearized by assuming that the deformations experienced by

the body are small. Under this assumption the last term uk|iuk|j, which is quadratic in

displacement can be neglected and equation (2.2) reduces to

εij =
1

2
(ui|j + uj|i) , (2.3)

which is the linearized displacement-strain relation. The strain tensor in equation

(2.3) is symmetrical

εij = εji, (2.4)

since interchanging the subscripts yields the same equation. Obviously the same is not

true about the general strain tensor in equation (2.2), since interchanging the subscripts

would not yield the same equation for all coordinate systems, but if Cartesian tensors

were used then uk|i = uk|i therefore the quadratic term can be written as uk|iuk|j from

which it is clear that the general strain tensor would also be symmetric.

2.3 Stress

Imagine an arbitrarily orientated in�nitesimal cut anywhere within the medium, depicted

in Figure 2.2. It is easiest to think of the cut as a little disc, but the shape may be

chosen arbitrarily. The cut therefore will have two sides. Both sides will be experiencing

a force which would be the force exerted on it by the other side. The force per unit area

experienced by the one face on the other would be the stress in the medium at that point.

Strictly speaking it is not stress, but rather traction on the cut that we would measure.

If we wished to describe the stress that the material experiences at that point, then

we would have to describe the tractions for all possible cuts. How to achieve such a

description of stress in a material puzzled researchers, since there are in�nitely many

orientations. Luckily a very clever mathematician Augustine Cauchy showed in 1823 how

to proceed. Cauchy showed that for a three dimensional continuum we only need three

independent cuts to fully describe the stress state at any point within the medium, [13].

Mathematically we can represent the stress state with a second order tensor, the stress

tensor σij, which is related to traction tj on a small patch with normal ni by the relation

tj = σijni (2.5)
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Figure 2.2: Traction tj experienced on a small patch ∂S with normal ni inside the

continuum

In some texts the traction at a point is de�ned as the limit of the force ∆f j acting on

an in�nitely small patch ∆S, such that [14]

tj = lim
∆S→0

∆f j

∆S
, (2.6)

which is then termed traction on the surface ∆S. Similar arguments are used to relate

traction to strain.

Cauchy also showed, using local equilibrium arguments, that the stress tensor is sym-

metric

σij = σji. (2.7)

Throughout this text, unless explicitly mentioned, the compressive positive stress con-

vention will be used. This is a matter of convenience since compressive normal stresses

are more common that tensile ones in the mining environment. While in mechanical

engineering when working with beams and bars it would be more convenient to use the

compressive negative convention since there tensile stresses are more common.

2.4 Gravity

The gravitational body force will play a very important role in expressing the traction

boundary conditions for the static stress modelling. The e�ects of the surface topology

is relatively small in comparison to the overburden in deep mining applications, even

explicitly taking into account the free surface would have little e�ect and therefore it will

be ignored in the current work. A very simple model for the induced weight will be used

that can only take into account di�erent material zones.

The stress induced by the weight of soil is given by

σzz(z) =

∫ z

0

ρ(z)gdz, (2.8)
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Figure 2.3: Stress due to gravity

where ρ(z) is the soil density function above the point z as shown in Figure 2.3. The

e�ect of the soil can be added to the stress at that point since the superposition principle

applies to linear elasticity. If the topology was provided it would be possible to apply this

model, since it only requires the computation of a line integral.

There are di�erent ways of taking into account the free surface which does not require

special kernels. One such method would be to model the free surface as a very large cave

above the excavation. The modeller would have to make sure that the dimensions of the

cave are much larger than the dimensions of the model. It would be prudent to test such a

layout thoroughly by enlarging the cave and then testing how it in�uences the area where

the model under analysis will be. The e�ect of such an enlargement would have to be

negligible so that the error introduced does not compare to the expected accuracy of the

solution.

Many numerical BEM applications model the in-situ stress state by specifying a locked-

in stress σlocked−in and a depth variational component ∆σvariational. Therefore the stress

state before any mining activity would be given as

σin−situ(z) = σlocked−in + (z − d)∆σvariational (2.9)

where d is the datum at which the variational component should be zero. The z-coordinate

is positive going down and therefore if the mines coordinate system is relative to sea level

and the mine is located 500 meters above sea level, then d = −500. This formulation is

useful when locked-in tectonic stresses are present and stress measurements are available

with which to specify these two components.

2.5 Elastic Moduli

We will assume that tension is positive and compression negative to facilitate the descrip-

tion of the physical meaning of the elastic constants. Consider a homogeneous isotropic

elastic rod, aligned with the x-axis and put under tension by a stress σxx as in Figure 2.4.

The tension experienced by the rod will cause it to lengthen. The extensional strain εxx
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Figure 2.4: Uniaxial tension applied to an elastic rod.

is proportional to the stress and given by

εxx =
1

E
σxx. (2.10)

The proportionality constant E is called the Young modulus and has dimensions of stress.

When stretching a piece of rubber, which is the same as applying tension on it as in the

case of the rod, then one will notice that the rubber also becomes thinner in the lateral

directions relative to the direction in which the tension is applied. This thinning gives

rise to equal lateral extensional strains εyy and εzz which is expressed in terms of the

lengthening εxx through

εyy = εzz = −νεxx (2.11)

= − ν

E
σxx, (2.12)

with the dimensionless Poisson's ratio ν as the proportionality constant. Thus far we have

only expressed the extensional strains in terms of the applied stress σxx.

The shear stresses σij (i 6= j) are related to the shear strains εij (i 6= j), via the shear

modulus G, through the relationships

σij = 2Gεij (i 6= j). (2.13)

The shear modulus G can be expressed in terms of E and ν as

G =
E

2(1 + ν)
. (2.14)

The Lamé parameters λ and µ are related to the Young modulus E and Poisson's

ratio ν by the following set of equations

λ =
νE

(1 + ν)(1− 2ν)
, (2.15)

µ =
1

2

E

1 + ν
. (2.16)

The �rst Lamé parameter λ is used to simplify the equations, but it does not carry any

physical meaning like the other constants. The second Lamé parameter is µ and also called
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the shear modlus G. The bulk modulus K relates the mean stress to the volumetric strain

through

1

3
σm

m = Kεm
m. (2.17)

A very useful Table is found in [13, p. 46] which shows the relationships between the

elastic constants.

2.6 Hooke's Law

Hooke's law relates the components of the strain tensor to the components of the stress

tensor using the stress-strain relations of the material given by a fourth order tensor Eijmn

which contains elastic moduli. Hooke's law for a general linear elastic anisotropic material

can then be written as

σij = Eijmnεmn. (2.18)

The number of entries that Eijmn contains is limited due to the symmetry of both the

stress and strain tensors. The symmetries of Eijmn can compactly be expressed as

Eijmn = Ejimn = Ejinm = Eijnm. (2.19)

The existence of a strain energy density [15, Flügge, p. 51] can be used to further

reduce the number of independent moduli (see Appendix B), the result of which is another

symmetry

Eijmn = Emnij, (2.20)

which in turn brings the total of independent moduli down to 21.

If we impose the additional constraint of isotropy only two moduli are needed to

describe the material. Using the Lamé elastic parameters λ and µ, the stress-strain

relations can be written explicitly as

Eijmn = λgijgmn + µ(gimgjn + gingjm) (2.21)

and for Cartesian coordinates the metric tensors can be replaced by Kronecker deltas

giving

Eijmn = λδijδmn + µ(δimδjn + δinδjm). (2.22)

Inserting the general form of Eijmn into Hooke's law and lowering the appropriate

indices gives

σi
j = λεm

mδ
i
j + 2µεi

j. (2.23)
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Instead of expressing stress in terms of strain we can invert (2.23) and express strain

in terms of stress as

εi
j =

1 + ν

E
σi

j −
ν

E
σm

mδ
i
j (2.24)

in terms of Young's modulus and Poisson's ratio using the relations (2.15) and (2.16).

2.7 Compatibility Conditions

The compatibility conditions express the condition that the body stays continuous when

deformed. This means that no cracks will form or overlaps will occur. If we wanted to

compute the strain tensor at some point from the displacement �eld then, using equa-

tion (2.3), we would have to solve for each of the six strain components. This is very

straightforward, but if we wished to solve for the displacement at some point we end up

with three unknowns and six equations. The compatibility conditions exists to ensure

that for a given set of six functions εij(x
k) there does exist a solution. The compatibility

equations can be compactly expressed by

εij|klε
ikmεjln = 0, (2.25)

which yields six di�erent equations, with εijk the permutation tensor [15]. In Cartesian

coordinates the six compatibility equations, which can be derived from equation (2.25),

are [13]

2
∂2εxy

∂x∂y
=

∂2εxx

∂y2
+
∂2εyy

∂x2
,

2
∂2εxz

∂x∂z
=

∂2εxx

∂z2
+
∂2εzz

∂x2
,

2
∂2εyz

∂y∂z
=

∂2εyy

∂z2
+
∂2εzz

∂y2
,

∂2εxx

∂y∂z
= −∂

2εyz

∂x2
+
∂2εxz

∂x∂y
+
∂2εxy

∂x∂z
,

∂2εyy

∂x∂z
= −∂

2εxz

∂y2
+
∂2εxy

∂y∂z
+
∂2εyz

∂x∂y
,

∂2εzz

∂x∂y
= −∂

2εxy

∂z2
+
∂2εxz

∂y∂z
+
∂2εyz

∂x∂z
.

2.8 Equilibrium

Cauchy's equations of equilibrium for the stress tensor are given by [16; 17; 12]

0 = σij|i + bj, (2.26)
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where bj is the body force per unit volume. These equilibrium equations can be derived

by considering the equilibrium of an in�nitesimal material cube.

If a body is in equilibrium then the internal stresses has to equilibrate the surface

tractions on the boundary. If the outward surface normal is ni, the equilibrium condition

leads to

tj = σijni, (2.27)

where tj are the surface tractions.

The Navier-Cauchy equations of equilibrium are then obtained by substituting Hooke's

law equation (2.18), the displacement-strain relationships equation (2.3) and the homo-

geneous isotropic linear elastic stress-strain relationships equation (2.21) into equation

(2.26)

0 = σij|i + bj

= (Eijmnεmn)|i + bj

=
1

2
[Eijmn(um|n + un|m)]|i + bj

=
1

2
(λgijgmn + µ(gimgjn + gingjm))(um|ni + un|mi) + bj

= µuj|ii + (µ+ λ)ui|ji ) + bj. (2.28)

In Cartesian coordinates equation (2.28) can be written as

µuj,ii + (µ+ λ)ui,ji + bj = 0. (2.29)

2.9 Summary

In this chapter the basic theory describing the physics of a linear elastic continuum in

equilibrium has been discussed. A general equation (2.2) for the strain tensor as a function

of the displacement �eld in covariant form was given. This equation is valid for large

deformations, but is non-linear. The small-strain assumption was used to obtain the

linear displacement-strain relationship (2.3), which form the basis of linear elastic theory.

The concepts of stress and tractions were then introduced, but no equations were given

to relate them to strain. The e�ect of gravitational loading was discussed, because it is

the major contributor to loading in mining. The many elastic constants, which describe

the response of the elastic medium, and their relationships was given.

Then Hooke's law, which relates stress and strain for a general linear elastic anisotropic

medium through the stress-strain relationships, was introduced. The stress-strain rela-

tionships were explicity written for a linear elastic isotropic medium in terms of the

Lamé parameters in both general curvilinear coordinates (2.21) and Cartesian coordiantes

(2.22).
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The continuum has to stay continuous and the compatibility equations (2.25) express

this constraint. Finally all the equations needed to describe a linear elastic continuum

in equilibrium are put together. The constitutive law (2.18), the conservation of energy

or equilibrium equations (2.26) and the continuity or compatibility conditions (2.25) are

called the governing equations.



Chapter 3

Fundamental Solutions

3.1 Introduction

The building blocks of elasticity came from answering simple questions involving how loads

within an elastic medium would cause it to respond, [13]. These solutions are referred

to as fundamental solutions and named after the people who solved them. Fundamental

solutions are solutions to the governing equations and are also called Green's functions

or kernels, [18]. The governing equations are the constitutive law (2.18), the conservation

of energy or equilibrium equations (2.26) and the continuity or compatibility conditions

(2.25). The boundary element method uses these fundamental solutions, which can only

be derived for linear homogeneous continua. This was initially thought to restrict the

boundary element method to these kinds of media. Instead it is possible to model in-

homogeneous media using the multi-region approach and non-linearity using internal cell

division.

The solutions are for a point load within a linear homogeneous isotropic elastic con-

tinuum. In the framework of continuum mechanics this can be achieved, but in practice

applying such a load to soil in an experiment would not be possible. Fundamental so-

lutions are the core of the boundary element method. When applied in the boundary

element method these fundamental solutions are smeared over elements describing the

domain of interest within the continuum.

There also exist other solutions that do not involve point loads, for example the engi-

neer Alfred Flamant used Boussinesq's solution to answer the question of how the contin-

uum would react if a line load was applied normal to the surface of an elastic half-space.

This was done by integrating Boussinesq's solution along an in�nitely long line. These

kinds of solutions are useful if plane strain conditions can be applied to reduce the di-

mensionality of the problem from three to two dimensions.

Kelvin's solution is only applicable for an in�nite continuum, but is useful if the e�ect

of the free surface can be ignored, such as for deep mining applications. Boussinesq's,

18
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Cerrutti's and Mindlin's solutions are useful when the e�ect of the free surface is signi�cant

and has to be taken into account.

3.2 Kelvin's solution

Figure 3.1: Kelvin's solution for a point load f at the source point P and displacement

u at the �eld point Q.

The physicist William Thompson (Lord Kelvin) solved the problem, illustrated in

Figure 3.1, of a point load acting within an in�nite elastic continuum. Let P be the

source point where the load f(P ) = f i(P ) is applied and let Q be the �eld point where we

wish to know the displacement u(Q) = uj(Q). Kelvin's solution in kernel form describes

the displacement �eld in Cartesian coordinates by the equation

uj(Q) = Uij(Q,P )f i(P ). (3.1)

Uij is known as the displacement kernel and relates the load at P with a displacement at

Q and can be expressed in tensor notation as

Uij(Q,P ) =
κu

r
[Bδij + r,iQr,jQ

] (3.2)

where

κu =
1 + ν

8πE(1− ν)
, (3.3)

B = 3− 4ν. (3.4)
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The subscript i in Uij indicates the direction of the load applied at P and the j subscript

indicates the direction of the displacement at the �eld point Q. This is not so important

for the Uij kernel, which is symmetric about i and j, but it is important for the traction

kernel which can be split into a symmetric and anti-symmetric tensor. The vector ri(P,Q)

between the source point P and �eld point Q is given by

ri = xi(Q)− xi(P ). (3.5)

The Euclidean distance r between P and Q will be expressed as

r =
√
riri (3.6)

where the repeated subscript i implies summation over all the whole range (therefore,

r =
√
r2
1 + r2

2 + r2
3). Spatial derivatives are used very frequently in boundary element

formulations and the comma convention used in tensor analysis will be used to indicate

derivatives with respect to a coordinate. Therefore

r,iQ =
∂r

∂xi(Q)
(3.7)

is the spatial derivative of the distance with respect to the �eld point Q and using the

chain rule of di�erentiation, we obtain

r,iQ =
riQ

r
. (3.8)

The spatial derivative with respect to the source point P is obtained in the same manner

and

r,iP = −riP

r
, (3.9)

but with the additional minus sign that comes from the de�nition of ri in equation (3.5).

The spatial derivative with respect to the source P will be used less often and therefore

the subscript for the �eld point Q in equation (3.8) will be dropped, thus

r,iQ = r,i =
ri

r
. (3.10)

These equations are easily veri�ed, but very important, because they are used often in

derivations and when implementing the kernel functions in code. The displacement kernel

(3.2) can be expressed without the derivatives using (3.8) to obtain

Uij(Q,P ) = κu

[
B
δij
r

+
rirj

r3

]
, (3.11)

which more distinctly shows the terms in the kernel.
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The in�uence of the point load vanishes as the distance r between the �eld Q and

source P point is made large. The decay of the kernel is inversely proportional to this

distance

|u| ∝ 1

r
|f |, (3.12)

but as we come closer to the source point we see that the kernel becomes singular. If

we were to integrate over a two dimensional element, we will see that the kernel is only

weakly singular and we can easily remove the singularity. In the BEM the fundamental

solutions exist solely to be used as kernel functions and will be integrated over elements

used to discretize the boundary of some domain. When integrating over an element

we can eliminate the weak singularity using some coordinate transformation like polar

coordinates. The displacement kernel as given by equation (3.11) contains two terms (1/r

and rirj/r
3) which are both inversely proportional to distance. Taking the limit as the

distance goes to zero, we will see that each of the components ri will also have to go to

zero. Factors of the form

lim
r→0

ri

r
= 0 (3.13)

will not cause a singularity at zero, but in both terms there remains a power of r in the

denominator which produces a weak singularity.

The displacement kernel is the simplest kernel in linear elasticity. If we know dis-

placements everywhere we would be able get strains by using the displacement-strain

relationship (2.3), then apply Hooke's law to obtain stress and contract with a normal to

get traction. This recipe can be applied to Uij to derive the strain, stress and traction

kernels which in turn relates a point load to strain, stress and traction everywhere in the

continuum.

The strain kernel

εjk(Q) = Ξijkf
i(P ) (3.14)

is obtained by applying the linearized displacement-strain relationship (2.3) on the dis-

placement kernel (3.11), yielding

Ξijk =
1

2
(Uij,k + Uik,j) (3.15)

in terms of the displacement kernel. Next we focus on one of the two terms and expand

the displacement kernel

Uij,k = κu

[
B
δij
r

+
rirj

r3

]
,k

, (3.16)

now applying the spatial derivative and using the chain rule of di�erentiation we get

Uij,k = κu

[
1

r3
(−Brkδij + rjδik + riδjk)−

3

r5
rirjrk

]
. (3.17)
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The second term in equation (3.15) is the same as the �rst term, except that the indices

are swopped and therefore we get

Uik,j = κu

[
B
δik
r

+
rirk

r3

]
,j

=
κu

r3

[
−Brjδik + rkδij + riδjk − 3

rirjrk

r2

]
. (3.18)

Substituting equations (3.17) and (3.18) back into equation (3.15) and introducing a new

constant

C =
B − 1

2
= 1− 2ν, (3.19)

yields

Ξijk =
−κu

r3

[
C(rjδik + rkδij)− riδjk + 3

rirjrk

r2

]
=

−κu

r2
[C(r,jδik + r,kδij)− r,iδjk + 3r,ir,jr,k] . (3.20)

The strain kernel is symmetric with respect to the indices

Ξijk = Ξikj, (3.21)

because of the symmetry of the strain tensor.

The stress kernel

σjk(Q) = Σijkf
i(P ) (3.22)

is obtained by applying Hooke's law (equation (2.18)) to the strain kernel equation (3.20),

therefore

Σjk
i = EjkmnΞlmn (3.23)

and substituting the stress-strain relationships yields

Σjk
i = [λδjkδmn + µ(δjmδkn + δjnδkm)] Ξimn

= λδjkΞimm + µ(Ξijk + Ξikj). (3.24)

For the �rst term

Ξimm =
−κu

r2
[C(r,m δim + r,m δim)− r,iδmm + 3r,i r,m r,m ] (3.25)

we use the identities r,m r,m = 1 and δmm = 3 to obtain

Ξimm =
−2κuC

r2
r,i . (3.26)

Back substituting equations (3.26) and (3.20) into (3.24), yields

Σjk
i =

−κt

r2
[C(r,jδik + r,kδij − r,iδjk) + 3r,ir,jr,k] . (3.27)
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with

κt = 2µκu

=
1

8π(1− ν)
. (3.28)

The traction kernel

tj(Q) = Tijf
i(P ) (3.29)

is then obtained by applying the equilibrium condition on the surface equation (2.27) with

normal nk to the stress kernel equation (3.27) which gives

Tij = Σijknk (3.30)

where

Tij =
−κt

r2
[C(r,jδik + r,kδij − r,iδjk) + 3r,ir,jr,k]nk (3.31)

and simplifying where possible

Tij =
−κt

r2
[(Cδij + 3r,ir,j)r,knk + C(r,jni − r,inj)] , (3.32)

and introducing the normal derivative of the distance

Tij =
−κt

r2

[
(Cδij + 3r,ir,j)

∂r

∂n
+ C(r,jni − r,inj)

]
, (3.33)

where

∂r

∂n
= r,knk, (3.34)

we get the same traction kernel as in [14, p. 15].

The strain, stress and traction kernels all exhibit the same behaviour with respect to

distance between the source and �eld point. The traction in�uence kernel vanishes much

faster than the displacement kernel at a rate proportional to the inverse of the square of

the distance

εjk(Q)

σjk(Q)

tj(Q)

 ∝ 1

r2
f i(P ). (3.35)

They produce a strong singularity at the source point P which will give some trouble

when integrating these kernels in the boundary element method.

Table 3.2 summarizes the in�uence functions for the contributions of the �ctitious

force (FF) components to the displacement and stress at the �eld point. This table is

similar to the table provided by [19, p. 166] and is useful for computing and implementing

the boundary element integrals.
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Force along x (f1) Force along y (f2) Force along z (f3)

ux κu(
B
r

+
r2
1

r3 ) κu(
r1r2

r3 ) κu(
r1r3

r3 )

uy κu(
r1r2

r3 ) κu(
B
r

+
r2
2

r3 ) κu(
r2r3

r3 )

uz κu(
r1r3

r3 ) κu(
r2r3

r3 ) κu(
B
r

+
r2
3

r3 )

σxx κt(
Cr1

r3 +
3r3

1

r5 ) κt(−Cr2

r3 +
3r2

1r2

r5 ) κt(−Cr3

r3 +
3r2

1r3

r5 )

σyy κt(−Cr1

r3 − 3r1r2
2

r5 ) κt(
Cr2

r3 +
3r3

2

r5 ) κt(−Cr3

r3 +
3r2

2r3

r5 )

σzz κt(−Cr1

r3 +
3r1r2

3

r5 ) κt(−Cr2

r3 +
3r2r2

3

r5 ) κt(
Cr3

r3 +
3r3

3

r5 )

σxy κt(
Cr2

r3 +
3r2

1r2

r5 ) κt(
Cr1

r3 +
3r1r2

2

r5 ) κt(
3r1r2r3

r5 )

σyz κt(
3r1r2r3

r5 ) κt(
Cr3

r3 +
3r2

2r3

r5 ) κt(
Cr2

r3 +
3r2r2

3

r5 )

σzx κt(
Cr3

r3 +
3r2

1r3

r5 ) κt(
3r1r2r3

r5 ) κt(
Cr1

r3 +
3r1r2

3

r5 )

Table 3.1: Fictitious force kernel contributions for each component.

Constants: κu = 1+ν
8πE(1−ν)

, κt = 1
8π(1−ν)

, B = 3− 4ν, C = 1− 2ν

3.3 Boussinesq's solution

Figure 3.2: Boussinesq's solution for ui and σ
ij at the �eld point Q within the medium

for a load fz normal to the elastic half-space at the source point P .

The mathematician Joseph Boussinesq solved the problem, illustrated in Figure 3.2, of

a point load acting normal to the surface of an elastic half-space. This solution has many

practical applications, especially in the civil engineering industry where the e�ect of piles

and foundations are considered. The in�nite space is divided into two half-spaces by the

free surface. The free surface de�nes a boundary on which the traction is speci�ed to be

zero everywhere. Physically the free surface could be thought of the ground surface and

the half-space underneath as the soil which leaves the half-space above to be the air. It is

easiest to write Boussinesq's solution in cylindrical coordinates with the origin centered

at the source point and using the compressive positive convention.
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In cylindrical coordinates the position vector r and length R = ‖r‖2 is given by

r = xi(Q)− xi(P ) = {r, θ, z},

R =
√

(r2 + z2).

The displacement vector is expressed as

ur =
fz

4πµR

[
rz

R2
− (1− 2ν)r

R + z

]
,

uθ = 0,

uz =
fz

4πµR

[
2(1− ν) +

z2

R2

]
.

The strain tensor can then be derived from the displacement vector using equation

(2.3). Thereafter the stress-strain relationships are applied using Hooke's law (2.18) to

write the following equations for the six components of the symmetric stress tensor:

σrr = − fz

2π

[
(1− 2ν)

R(R + z)− 3r2z
R5

]
,

σθθ = −P (1− 2ν)

2π

[
z

R3
− 1

R(R + z)

]
,

σzz =
fz

2π

[
3z3

R5

]
,

σrz =
fz

2π

[
3rz2

R5

]
,

σrθ = σθz = 0.

3.4 Cerrutti's solution

Figure 3.3: Cerrutti's solution for a point load fx along the surface at the source point

P and displacement u at the �eld point Q.

V. Cerrutti solved the problem, illustrated in Figure 3.3, of a point load fx(P ) acting

along the surface of an elastic half-space. The resulting solution does not exhibit the same
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radial symmetry as either Boussinesq's or Kelvin's problems and have to be written using

Cartesian coordinates.

The displacement �eld is given by

ux =
fx

4πµr

[
1 + (r,x)

2 + (1− 2ν)

(
1

1 + r,z

− (r,x)
2

(1 + r,z)2

)]
,

uy =
fx

4πµr

[
r,xr,y − (1− 2ν)

r,xr,y

(1 + r,z)2

]
,

uz =
fx

4πµr

[
r,xr,z + (1− 2ν)

r,x

1 + r,z

]
and the stress �eld

σxx = −fxr,x

2πr2

[
−3(r,x)

2 +
1− 2ν

(1 + r,z)2

(
1− (r,y)

2 − 2(r,y)
2

1 + r,z

)]
,

σyy = −fxr,x

2πr2

[
−3(r,y)

2 +
1− 2ν

(1 + r,z)2

(
1− (r,x)

2 − 2(r,x)
2

1 + r,z

)]
,

σzz =
3fxr,x(r,z)

2

2πr2
,

σxy = −fxr,y

2πr2

[
−3(r,x)

2 +
1− 2ν

(1 + r,z)2

(
−1 + (r,x)

2 +
2(r,x)

2

1 + r,z

)]
,

σyz =
3fxr,xr,yr,z

2πr2
,

σxz =
3fxr,z(r,x)

2

2πr2
.

Cerrutti's solution together with Boussinesq's solution can be used to obtain the displace-

ment due to a general load applied on the half-space surface.

3.5 Mindlin's solutions

Figure 3.4: Mindlin's solutions for a point load f acting with an elastic half-space at

source point P and displacement u at the �eld point Q.

Raymond Mindlin solved both the problems, illustrated in Figure 3.4, of a point load

acting vertically and horizontally within an elastic half-space. These solutions are quite
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complex and can be written as additional terms to be added to Boussinesq's and Cerrutti's

solutions. For brevity these additional terms will not be given here, but an interested

reader is referred to [13, p. 96].

3.6 Summary

This chapter gave an overview of fundamental solutions available in elasticity and mainly

focused on Kelvin's solution. The fundamental solutions give the response of the contin-

uum for a point load. Kelvin's solution also referred to as the displacement kernel (3.11)

gives the displacement everywhere in an in�nite homogeneous linear elastic medium. The

elasticity theory discussed in the previous chapter was applied to produce kernels for

strain (3.20), stress (3.27) and traction (3.33). A quick mention was given of Boussinesq's

and Cerrutti's solutions with equations for displacements and stress and an even quicker

mention of Mindlin's solution without any equations.
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Cracks

4.1 Introduction

A crack can be modelled as a dislocation in the continuum. Figure 4.1 depicts such a

crack. The sides of the crack are named, top and bottom, respectively. This naming

is dependent of the coordinate system and in rheology it is convenient to choose the z-

coordinate to increase with depth. The other two coordinate axes might be chosen to

point along compass directions to form a right-handed coordinate system. Given such a

coordinate system the top of a crack is reached when taking the limit going down along

increasing z and the bottom when taking the limit coming up along decreasing z. Let n

denote the normal on the top. The bottom face of the crack is parallel to the top and

therefore its normal on the bottom face is −n. Consider a load free continuum without

any cracks or fractures. In such a continuum every point in the continuum would have a

unique coordinate. If a crack is magically created by making an incision without causing

a stress �eld or deformation, then each point on the top will have a matching point on the

bottom face. This means that the top and bottom faces would coincide and that between

the two faces there would be zero dislocation.

Figure 4.1: Elementary crack element.

28
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Figure 4.2: Crack inside an elastic block which is a) unloaded, b) vertically loaded, c)

horizontally loaded in plane and d) horizontally loaded o� plane.

In Figure 4.2 we examine a possible deformation of a crack within an elastic block

under di�erent loading scenarios. The �gure represents four di�erent loading situations:

a) no load at all,

b) a load applied vertically and normal to the face of the crack,

c) a load applied horizontally in the plane of the crack and lastly

d) a load applied horizontally causing the block to shear.

In the �rst two cases no dislocation between the two faces occurs. The relative location

of points on the top and bottom faces remain the same, except that in the second case

the crack might have become elongated. In the third case the crack is compressed and

opening such that the top and bottom faces experiences a relative vertical dislocation. In

the fourth case the crack experiences both opening and relative horizontal dislocation. In

all cases except b), the crack faces experience zero traction boundary conditions, because

they're not touching or pressing against the other side. In b) though, the two faces are

pressing against each other and this crack is considered fully closed. Mathematically it is

possible to allow these two faces to interpenetrate. This might be useful when modelling

very thin cuts with �nite thickness in an elastic continuum. The thickness of tabular

mining depends on the thickness of the reef being mined, which might vary from place

to place, but generally it is of the order of a meter. This thickness known as the stoping

width is much smaller than the panels being mined. The whole mining layout which is

on the order of a couple of kilometers contains many such panels. Therefore it is possible

to approximate the stoping width by using cracks which have no thickness to start with,

allowing interpenetration and then limiting the interpenetration so that it does not go

beyond the stoping width.

The dislocation or displacement discontinuity (DD) will be given as

∆u = u+ − u−, (4.1)

with u+ the displacement on the top side of the crack and u− the displacement on the

bottom side of the crack. Notice that the DD is de�ned as the bottom face's displacement
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minus the top face's displacement of the crack. On the boundary of the crack the regularity

condition is imposed, this means that no discontinuity in the displacements are allowed on

the boundary, therefore ∆u = 0 on dS, which is required by the compatibility equations

(2.25) to ensure a unique solution, [20].

4.2 Betti's reciprocal identity

The reciprocal theorem links the solutions to two di�erent boundary value problems for

the same body Ω bounded by a surface S. The theorem is a direct consequence of the

linearity of the equilibrium equations (2.26) and of the generalized Hooke's law (2.18).

Consider two equilibrium states in the region Ω. The stresses and strains for the two

states are expressed as (σij, εij) and (σ̃ij, ε̃ij) [16]. Multiplying Hooke's law on both sides

by ε̃ij gives

σij ε̃ij = Eijmnεmnε̃ij (4.2)

= (Emnij ε̃mn)εij (4.3)

= (Eijmnε̃mn)εij (4.4)

= σ̃ijεij. (4.5)

First the indices are renamed to produce equation (4.3) and then the symmetry of the

stress-strain relations (2.20), due to the existence of a strain energy function, is used to

write (4.4). Finally, Hooke's law is substituted in the second equilibrium state to get

equation (4.5). Integration over the domain Ω produces the integral statement∫
Ω

σij ε̃ijdΩ =

∫
Ω

σ̃ijεijdΩ. (4.6)

The work done by the stresses of the �rst system on the strains of the second system is

equal to the work done by the stresses of the second system on the strains of the �rst

system [18]. Integrating the left hand side by parts produces∫
Ω

σij ε̃ijdΩ =

∫
Ω

σijũi|jdΩ (4.7)

=

∫
Ω

σijũinjdS −
∫

Ω

ũiσ
ij|jdΩ (4.8)

=

∫
Ω

tiũidS +

∫
Ω

biũidΩ, (4.9)

for which the linearized displacement-strain relations (2.3), traction on the boundary

(2.27) and equilibrium equations (2.26) have been used. The same can be done to the

right hand side to yield∫
Ω

σ̃ijεijdΩ =

∫
Ω

t̃iuidS +

∫
Ω

b̃iuidΩ, (4.10)
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from which Betti's reciprocal identity is obtained by substituting back equations (4.9)

and (4.10) into (4.6)∫
Ω

tiũidS +

∫
Ω

biũidΩ =

∫
Ω

t̃iuidS +

∫
Ω

b̃iuidΩ. (4.11)

4.3 Somigliana identity

The indices in Betti's identity (4.11) are renamed to obtain∫
Ω

tjũjdS +

∫
Ω

bjũjdΩ =

∫
Ω

t̃jujdS +

∫
Ω

b̃jujdΩ. (4.12)

The tractions and displacements are unknown in those parts of the boundary for which

they have not been prescribed as boundary conditions. Let the state (tj, uj) represent

these unknowns. Let the other set (t̃j, ũj) represent the set of known displacements and

traction that should be valid for any geometry in equilibrium [14]. The Kelvin solution

represents such a possible set for displacements and tractions at any surface point due

to a unit load applied at the interior in an in�nite domain. It is important to point out

that using the fundamental solution is not the only possible choice and it might be more

convenient to use simple functions that satisfy the governing equations [12].

The unknown quantities for the �rst state can be expressed in terms of the quantities

of the second state. Let

uj = uj(Q),

tj = tj(Q),

bj = bj(Q),

ũj = Uij(Q,P )ei,

t̃j = T j
i (Q,P )ei,

b̃j = δj
i δ(Q,P )ei

where Q is a �eld point on the boundary surface and a point load is applied at P for

which ei are the components of a unit vector ê in the direction of the point load. δij is

the Kronecker delta and δ(Q,P ) the Dirac delta. Substituting these equations into (4.12)

it can be seen that ei is common to all the integrals. It is therefore possible to write

equations for each component separately [16], yielding∫
Ω

tj(Q)Uij(Q,P )dS(Q) +

∫
Ω

bj(Q)Uij(Q,P )dΩ(Q)

=

∫
Ω

T j
i (Q,P )uj(Q)dS(Q) +

∫
Ω

δj
i δ(Q,P )uj(Q)dΩ(Q). (4.13)
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Figure 4.3: Obtaining the BIE's using a limiting process on the boundary.

Usage of the properties of the Kronecker and Dirac delta function and reshu�ing then

yields

ui(P ) = −
∫

Ω

T j
i (Q,P )uj(Q)dS(Q) +

∫
Ω

Uij(Q,P )tj(Q)dS(Q) (4.14)

+

∫
Ω

Uij(Q,P )bj(Q)dΩ(Q). (4.15)

This equation is called the Somigliana identity for displacements [14]. The equation can

be used to compute a displacement anywhere inside the domain Ω, [21]. The fundamental

solutions become singular on the boundary dΩ and therefore it can not directly be applied

for points on the boundary dΩ. Outside the body the integrals in equation (4.15) are zero.

Integration is carried out with respect to the �eld point Q, the normal in the traction

kernel is associated with the surface at the �eld point Q and that the summation is carried

out over the subscript j and not i.

Boundary integral equations (BIE's) can be obtained by using a limiting process to let

the point P coincide with the boundary surface as shown in Figure 4.3. The normal way

of doing this, is to expand the domain Ω by a small region at the point of the boundary

where the source point P would coincide with the boundary. This region is then shrunk

in a symmetric way using a limiting process to obtain the BIE's. The BIE's can then be

used to form a well posed boundary value problem and calculate the known boundary

parameters [16].

4.4 Boundary Integral Equations For Cracks

Consider the �nite region Ω with a crack inside as show in Figure 4.4. Write Somigliana's

identity, using the stress kernel (3.22) instead of the traction kernel (3.29), assume that
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Figure 4.4: Region Ω containing a crack S1 = S+
⋂
S− and bounded by an outer

surface S2.

body forces are zero and that the crack surface is free from traction, gives

ui(P ) =

∫
S1+S2

(Uij(Q,P )tj(Q)− Σjk
i (Q,P )nk(Q)uj(Q))dS(Q)

=

∫
S2

(Uij(Q,P )tj(Q)− Σjk
i (Q,P )nk(Q)uj(Q))dS(Q)

−
∫

S+

Σjk
i (Q,P )n+

k (Q)u+
j (Q)dS(Q)

−
∫

S−
Σjk

i (Q,P )n−k (Q)u−j (Q)dS(Q). (4.16)

The two crack faces are assumed to be practically coinciding, therefore let S = S− = S+

and write the normals of the bottom in terms of the top surface, n+ = −n− = n and

substitute (4.1) into (4.16) to get

ui(P ) =

∫
S2

(Uij(Q,P )tj(Q)− T j
i (Q,P )uj(Q))dS(Q)

−
∫

S+

T j
i (Q,P )∆uj(Q)dS(Q). (4.17)

This equation is valid for any �nite domain. Letting the outer surface expand to in�nity

produces the solution of a crack in an in�nite elastic space,

ui(P ) = u∞i (P )−
∫

S

T j
i (Q,P )∆uj(Q)dS(Q), (4.18)

where u∞(P ) is the solution without the crack.

The traction kernel in equation (4.18) is not the same as the traction kernel in equation

(3.33) because the spatial di�erentiation is carried out with respect to the �eld point Q

and not the source point P , but they are closely related because di�erentiation of r at the

source and �eld point only di�er by a minus sign. Therefore equation (4.18) is rewritten

as

ui(P ) = u∞i (P )−
∫

S

V j
i (Q,P )∆uj(Q)dS(Q) (4.19)

where

V j
i (Q,P ) = T j

i (Q,P ) (4.20)
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will be used for the DD displacement kernel. Strain at P can be computed from equation

(4.19) using the displacement strain relationship and therefore

εij(P ) = ε∞i (P )−
∫

S

1

2
(V k

i (Q,P )|jP + V k
j (Q,P )|iP )∆uk(Q)dS(Q) (4.21)

which expresses strain in terms of a DD. Stress is derived by applying Hooke's law to the

strain, therefore

σij(P ) = (σ∞(P ))ij −
∫

S

W ijk(Q,P )∆uk(Q)dS(Q), (4.22)

where

W ijk(P ) = Emnij 1

2
(V k

m(Q,P )|nP + V k
n (Q,P )|mP ) (4.23)

is used to denote the DD stress kernel. To obtain traction, equation (4.22) is contracted

with a normal at the source point, thus

ti(P ) = (t∞(P ))i −
∫

S

nj(P )W ijk(Q,P )∆uk(Q)dS(Q). (4.24)

4.5 Displacement Discontinuity Kernels

Kelvin's solution (3.11) gives the response of the continuum due to a concentrated unit FF.

This �ctitious load is also known as a force-discontinuity [19; 22], because the stress near

the point of application jumps from tensile to compressive. The displacements throughout

the continuum are continuous. Another kind of loading which is useful for crack-like

structures are "displacement discontinuities". The term displacement discontinuity (DD)

is due to [21, Crouch and Star�eld], but these loads are also referred to as "double-layer

potentials", "Volterra dislocations", dislocation densities and "double couples", depending

on the �eld in which they are used. In contrast to force-discontinuities which are only

�ctitious forces, the DD represent the actual convergence and ride components of the

material.

The DD kernels can be derived from Kelvin's solution by applying the traction operator

at the source point. Applying the traction operator on a displacement �eld at a particular

point yields the traction at that point. Therefore if Tn is the traction operator, applying

it to a displacement �eld u(x), where x ∈ D is a point in the domain D on which the

displacements are de�ned, then

t(x) = Tnu(x) (4.25)

gives the traction at that point on the plane with normal n. The traction operator is

the linearized displacement-strain relationship (2.3) applied to the displacement �eld ui,

followed by applying the stress-strain relationships (2.23) and then contracted with the
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Figure 4.5: Displacement discontinuity modes.

normal nk. Throughout the rest of this chapter Cartesian coordinates will be assumed to

improve readability and therefore the upper and lower position of the indices is immaterial.

Expanding the traction operator and applying it to a displacement �eld gives

tl = Eijkl 1

2
(ui,j +uj,i )nl. (4.26)

The connection between the DD kernels and Kelvin's solution comes from recognizing

that the FF could be obtained from such a displacement �eld. Therefore applying the

traction operator on Kelvin's solution at the source point is the same as changing the

unknown, the force-discontinuity, to a DD.

Kelvin's fundamental solution (equation (3.2)) gives the displacement due to a �cti-

tious force f i

uj = Uijf
i. (4.27)

Figure 4.5 depicts the di�erent modes of a DD in the local coordinate system for

an in�nitesimal plane. ∆ux and ∆uy is the extent of displacement between two points

in the continuum on the in�nitesimal plane and is also known as the ride components.

The meaning of ∆uz depends whether the value is positive or negative. If positive it is

the amount of convergence, closure or interpenetration between the two surfaces of the

in�nitesimal plane. If it is negative it is the amount of dilation or opening between the two

surfaces of the in�nitesimal plane. Now let us rewrite the previous equation and express

the displacement as the result of a DD (∆uk) and transform the kernel as described. The

displacement is then given by

uj = Eijkm 1

2
(Uij,s +Usj,i )nm∆uk, (4.28)

where nn is the normal of the plane across which the DD is applied. Remember that the

derivatives are taken at the source point and therefore equation (3.9) should be used.

Next we expand the stress-strain relationships

uj =
[
λδisδkm + µ(δikδsm + δimδsk)

] 1

2
(Uij,s +Usj,i )nm∆uk, (4.29)

and contract the appropriate terms to simplify the equation,

uj = (λUij,i δ
km + µ(Ukj,m +Umj,k ))nm∆uk. (4.30)
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The general form for derivatives of Kelvin's solution at the source point is

Uij,k =
1 + ν

8πE(1− ν)

1

r2
[((3− 4ν)r,k δij − r,j δik − r,i δjk) + 3r,i r,j r,k ] . (4.31)

Substituting the subscripts we obtain

uj =
1 + ν

8πE(1− ν)

1

r2

(
λ [((3− 4ν)r,i δij − r,j δii − r,i δji) + 3r,i r,i r,j ] δkm +

µ [((3− 4ν)r,m δkj − r,j δkm − r,k δjm) + 3r,k r,j r,m ] +

µ [((3− 4ν)r,k δmj − r,j δmk − r,n δjk) + 3r,m r,j r,k ]
)
nm∆uk. (4.32)

Let us now use the identities δii = 3, r,i r,i = 1 to obtained a simpli�ed equation

uj =
1 + ν

8πE(1− ν)

1

r2

[
2λ(1− 2ν)r,j δkm +

2µ (((1− 2ν)r,m δjk + (1− 2ν)r,k δjm − r,j δkm) + 3r,j r,k r,m )
]
nm∆uk.(4.33)

Now we substitute the Lamé parameters to obtain displacements as a function of a

DD

uj =
1

8π(1− ν)

1

r2

[
(1− 2ν)(δjkr,m +δjmr,k−r,j δkm) + 3r,j r,k r,m

]
nm∆uk. (4.34)

The DD displacement kernel

Vkj =
1

8π(1− ν)

1

r2
[(1− 2ν)(δjkr,m nm + njr,k−r,j nk) + 3r,j r,k r,m nm], (4.35)

which is equal to the negative of the traction kernel (3.33) for �ctitious forces.

The DD stress kernel can now be derived from the displacement kernel using the same

technique as used for Kelvin's solution. Essentially we apply the traction operator to

the displacement at the �eld point. We use the newly derived Vkj kernel to express the

displacement at �eld point

uj = Vkj∆uk. (4.36)

Using the displacement strain relationship we now express the strain due to the DD

as

εij =
1

2
(Vkj,i +Vki,j )∆uk, (4.37)

and then get the stress using the stress-strain relationship

σmn = Eijmnεij. (4.38)

The traction can be obtained from the stress by contracting with a normal η at the

�eld point

tm = σmnηn (4.39)
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Substituting the displacement kernel (4.35) into equation (4.38) we get

σmn = Ekjmn 1

2
(Vkj,i +Vki,j )∆uk. (4.40)

Next we substitute in the linearized stress-strain relationship to get

σmn = (λδijδmn + µ(δimδjn + δinδjm))
1

2
(Vki,j +Vkj,i )∆uk. (4.41)

The Lamé parameter λ can be expressed in terms of the rigidity as

λ = µ
2ν

1− 2ν
. (4.42)

Therefore we can factor out the rigidity and get

σmn = µ

(
2ν

1− 2ν
Vki,i δ

mn +
1

2
(Vkn,m +Vkm,n )

)
∆uk (4.43)

The general form of the spatial derivative Vki,j is

r3

κu

Vki,j = C (njδik + δjkni − δijnk)− 3C (δkir,j r,m nm + r,k r,j ni − r,j r,i nk)

+ 3 (δjkr,i r,m nm + δijr,k r,m nm + r,k r,i nj)− 15r,i r,j r,k r,m nm, (4.44)

where C = 1− 2ν, therefore we get

r3

2κu

(Vki,j +Vkj,i ) = C (niδjk + δiknj − δijnk) + 3 (δijr,k r,m nm + Cr,i r,j nk)

+ 3ν (δikrjrmnm + δjkr,i r,m nm + r,i r,k nj + r,j r,k ni)

− 15r,i r,j r,k r,m nm (4.45)

and

r3

(1− 2ν)κu

Vki,i = nk − 3r,k r,m nm (4.46)

which we can substitute back into equation (4.43)

σij =
1

κtr3
[2ν(nk − 3r,k r,m nm)δij (4.47)

+ (1− 2ν) (niδjk + δiknj − δijnk)

+ 3 (δijr,k r,m nm + (1− 2ν)r,i r,j nk)

+ 3ν (δikr,j r,m nm + δjkr,i r,m nm + r,i r,k nj + r,j r,k ni)

− 15r,i r,j r,k r,m nm]∆uk, (4.48)

where

κt =
E

8π(1− v2)
. (4.49)



Chapter 4 � Cracks 38

After some simpli�cation we arrive at

σij =
1

κtr3
[3r,m nm((1− 2ν)δijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k )

+ 3ν(r,i r,k nj + r,j r,k ni) + (1− 2ν)(3r,i r,j nk + δiknj + δjkni)

− (1− 4ν)nkδij]∆uk (4.50)

from which the DD stress kernel can be isolated, such that

Wijk =
1

κtr3
[3r,m nm(Cδijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k )

+ 3ν(r,i r,k nj + r,j r,k ni) + C(3r,i r,j nk + δiknj + δjkni)

− (1− 4ν)nkδij]. (4.51)

The DD displacement kernel Vij ∝ 1
r2 has a pole at the loading point which will require

a Cauchy-type integral. The stress kernelWijk ∝ 1
r3 has a higher order pole at the loading

point which will require an integral interpreted in the Hadamard �nite part sense. These

kernels correspond to the equations given on [16, p. 32]. Let ηi be a normal at the �eld

point, then

Wik = Wijkηj

=
1

κtr3
[3(νδik − 5r,i r,k )

∂r

∂n

∂r

∂η

+ 3(Cηir,k +3νr,i ηk)
∂r

∂n
+ 3(Cr,i nk + 3νnir,k )

∂r

∂η

+ (Cδik + 3νr,i r,k )nmηm + Cniηk − (1− 4ν)nkηi] (4.52)

is the equation for the DD traction kernel.

Table 4.5 is obtained by rotating the coordinate system such that the normal nm = δm3

of the DD coincides with the z-coordinate. The DD displacement kernel

Vkj =
1

8π(1− ν)

1

r2
[(1− 2ν)(δjkr,3 +δj3r,k−r,j δk3) + 3r,j r,k r,3 ] (4.53)

and the DD stress kernel

Wijk =
1

κtr3
[3r,3 (Cδijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k )

+ 3ν(r,i r,k nj + r,j r,k ni) + C(3r,i r,j nk + δiknj + δjkδi3)

− (1− 4ν)nkδij]. (4.54)

and using the identity (r,1 )2 + (r,2 )2 + (r,3 )2 = 1, the kernels can be tabulated as in [19].
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Ride along x (∆u1) Ride along y (∆u2) Convergence along z (∆u3)

ux κu(
Cr3

r3 +
3r3r2

1

r5 ) κu(
3r1r2r3

r5 ) κu(−Cr1

r3 +
3r1r2

3

r5 )

uy κu(
3r1r2r3

r5 ) κu(
Cr3

r3 +
3r3r2

2

r5 ) κu(−Cr2

r3 +
3r2r2

3

r5 )

uz κu(
Cr1

r3 +
3r1r2

3

r5 ) κu(
Cr2

r3 +
3r2r2

3

r5 ) κu(
Cr3

r3 +
3r3

3

r5 )

σxx κt(
3r1r3

r5 − 15r3
1r3

r7 ) κt(
3Cr2r3

r5 − 15r2
1r2r3

r7 ) κt(
1+C
r3 − 3Cr2

2

r5 − 15r2
1r2

3

r7 )

σyy κt(
3Cr1r3

r5 − 15r1r2
2r3

r7 ) κt(
3r2r3

r5 − 15r3
2r3

r7 ) κt(
1+C
r3 − 3Cr2

1

r5 − 15r2
2r2

3

r7 )

σzz κt(
3r1r3

r5 − 15r1r3
3

r7 ) κt(
3r2r3

r5 − 15r2r3
3

r7 ) κt(
1
r3 +

6Cr2
3

r5 − 15r4
3

r7 )

σxy κt(
3νr2r3

r5 − 15r2
1r2

3

r7 ) κt(
3νr1r3

r5 − 15r1r2r2
3

r7 ) κt(
3Cr1r2

r5 − 15r1r2r2
3

r7 )

σyz κt(
3νr1r2

r5 − 15r1r2r2
3

r7 ) κt(
1+ν
r3 − 3νr2

1

r5 − 15r2
2r2

3

r7 ) κt(
3r2r3

r5 − 15r2r3
3

r7 )

σzx κt(
1+ν
r3 − 3νr2

2

r5 − 15r2
1r2

3

r7 ) κt(
3νr1r2

r5 − 15r1r2r2
3

r7 ) κt(
3r1r3

r5 − 15r1r3
3

r7 )

Table 4.1: Displacement discontinuity kernel contributions for each component.

Constants: κu = 1
8π(1−ν)

, κt = E
8π(1−ν2)

, C = 1− 2ν.

4.6 Summary

In this chapter, the boundary integral equations were derived using Betti's reciprocal

work theorem and the Somigliana identity. These equations form the basis for the direct

boundary element method. The boundary integral equations were applied to the crack

model to obtain equations for the displacements (4.19), strain (4.21), stress (4.22) and

traction (4.24). The explicit form of the kernels was not given. Section 4.5 derives the

explicit form of the kernels using Kelvin's solution directly. The indirect boundary element

method uses these kernels, but the aim was to highlight the link between the direct and

indirect method.
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Boundary Element Method

5.1 Introduction

Linear elasticity and many other engineering problems are posed as boundary value prob-

lems [21]. There exists a region or body B of interest, bounded by a contour C in

two-dimensions and a surface S in three-dimensions. Physics is used to describe the be-

haviour of the body and expressed as partial di�erential equations. Certain constraints

or conditions are placed on the boundary of the domain and the solution of the relevant

parameters are sought which will describe the state of the body. In a few simple situa-

tions it is possible to solve these partial di�erential equations analytically. In other cases

we are forced to use numerical techniques. There are two classes of numerical methods,

namely domain and boundary methods. The �nite element method and �nite di�erence

method are examples of domain methods. The boundary element method is an example

of a boundary method.

Work on the boundary element method was begun by Jaswon, Ponter and Symm [23]

at the Department of Mathematics at Imperial College, London. This work was done on

Laplace's equation in two dimensions using the direct formulation and the �rst papers

on their work were published in 1963. The boundary element method was shown to

be a promising alternative to the more widespread and simpler �nite element and �nite

di�erence methods.

The boundary element method has the possibility of being computationally signi�-

cantly less expensive than �nite elements which require O(n3) variables within the body.

In contrast the BEM only requires O(n2) variables on the boundary of the body, where n

represents the resolution along a particular dimension under analysis [24].

The domain boundary S could be regarded as the boundary for two separate problems.

The most natural would be the boundary for an interior problem where the body is

bounded by the boundary surface. Instead it could also be the boundary for the exterior

problem which encompasses the rest of the in�nite space and for which the boundary

40
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surfaces delineates cavities within the space. If the same problem was tackled using

a domain method then a su�ciently large region around the cavity would have to be

included. This region would have to be large enough so that the arti�cial boundary

conditions did not in�uence the results around the cavity [21].

Recasting the problem and using the BEM reduces the problem dimensionality by

one. Knowing the solution of the boundary value problem (BVP) on the boundary of

the domain, uniquely determines the solution within the body. The solution to the BVP

can then be used to accurately model the far-�eld with the use of in�uence functions,

which �nite element methods can not do [25]. In the case of elasticity, this could be the

deformation or stress state everywhere inside and on the boundary of the body.

Even though large scale problems have to be tackled, there is still a need to quickly

solve reasonably complicated problems on a routine basis. Better algorithms with less

time and storage complexity allows the user to tackle these problems on common desktop

computers without the need for parallel computing clusters which might involve lots of

legwork by the user.

For large scale underground mining applications spanning kilometers, domain methods

are not feasible, even if huge clusters for parallel computing are available. The popular

method for such problems uses �nite element discretization on adaptive unstructured

meshes [3]. This requires construction of unstructured meshes in 3D, which for huge

volumes of space with high complexity can be very di�cult and computationally intensive.

The boundary element method in 3D does not su�er from this level of di�culty, since only

the boundary surface need to be discretized. It is still possible and common to couple

the two methods. This might be done if it is necessary for a more �ne grained analysis in

certain areas.

5.2 Integral Equations

In contrast to the �nite element method that solves partial di�erential equations, the

BEM solves integral equations. Therefore we �rst have to formulate our problem as an

integral equation. The form of an integral equation can be written as [7]

φ(x) =

∫
S

G(x, y)ρ(y)dS(y) (5.1)

with φ known everywhere on the surface S. G(x, y) is the kernel function and ρ the

unknown density function or loads on S.

The aim is to obtain a solution ρ which will satisfy equation (5.1) everywhere on the

boundary S. The kernels we will consider are those of Kelvin's solution for displacement

(3.11) and traction (3.33) depending whether the prescribed boundary conditions φ are

displacements or tractions. These kernels are only applicable for volumetric excavations,
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Figure 5.1: Mixed boundary conditions.

for crack-like geometries the displacement discontinuity kernels for displacement (4.35)

and traction (4.52) will be used also depending on whether the prescribed boundary

conditions φ are displacements or tractions.

The boundary surface can be expressed as the union S = Su
⋃
St, such that the

intersection Su
⋂
St = �, where Su and St have got prescribed displacement and traction,

respectively.

A mixed system is allowed, but, to guarantee unique solutions and a well posed BVP,

boundary conditions have to be prescribed over the whole boundary. The boundary

surface will have parts on which displacements have been prescribed and other parts

on which tractions have been prescribed, but no part may have both displacement and

traction prescribed. Displacement and traction correspond to Dirichlet and Neumann

boundary conditions respectively for the BVP being solved. Figure 5.1 shows an elastic

medium under gravitational loading with �xed displacements on the left and bottom half

and zero tractions boundary conditions everywhere else.

5.3 Tre�z method

Figure 5.2: Example of the Tre�z method.

The Tre�z method places sources or loads around the object under investigation.

These loads are placed far enough away from the boundary so that a linear system is

well conditioned. Enough loads have to be used to ensure that the combined in�uence of
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all the loads creates a smooth �eld which can reproduce the required physical quantities

inside the body of the object. The loads must be outside the body, which implies that

the problem must have enough room to place these loads. This is not true when studying

cracks, since cracks have almost no space inside by de�nition.

Figure 5.2 shows a side view of a pit where boundary conditions are known at squares

on the boundary and the unknowns are at the circles in the air. The unknown loads can

then be found by solving a linear system, such as

φ(xi) =
∑

j

G(xi, yj)ρ(yj) (5.2)

where φ(xi) are known boundary conditions at xi ∈ ∂Ω on the surface of the domain Ω

and ρ(yj) /∈ Ω are the unknown loads outside the domain. The Tre�z method sounds very

simple, but all numerical techniques have their own di�culties. The number of points

to place, the distance to move loads away from boundary conditions, how to move the

loads and the matrix solver are examples of some of the problems that will have to be

addressed.

The BEM is essentially an extension to the Tre�z method, but instead of placing the

loads outside, the loads are placed on the boundary of the object. Therefore BEM does

not need any room to distribute the loads. Unfortunately the kernel functions are singular

and therefore integrating over them can be di�cult. The Tre�z method does not have

this problem because it side stepped singular integration by moving the load points away

from the boundary conditions.

5.4 Discretization

a) b)

Figure 5.3: a) Volumetric and b) tabular discretization.

To draw a sphere on a computer screen, the sphere, which is an in�nitely smooth

mathematical object, would have to be represented as a set of polygons. Today's computer

hardware only works with triangles and quadrilaterals. Polygons and more complicated
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geometries are all broken up into triangles or quadrilaterals and fed to the hardware. In

some cases even the quadrilaterals are split into triangles. The act of partitioning the

geometry into simpler treatable pieces is called discretization. To discretize something is

to break it up into a countable set of elements.

A very coarse approximation of a sphere is a tetrahedron. The three vertices of the

tetrahedron could have been chosen to lie on the sphere or instead they could have been

chosen such that the tetrahedron has the same volume as the sphere. In both cases

it would be di�cult to convince anyone that the tetrahedron is indeed a sphere. The

next step of re�nement would be a cube and so forth. Ultimately using subdivision

and remapping each vertex onto the sphere will produce something that will look like a

perfect sphere on a users computer screen. For insanely sharp eyed people the dimensions

of the largest triangle will have to be less than the size of a pixel. Therefore by using

enough triangles one would be able to approximate almost any continuous surface to a

predetermined accuracy.

The boundary surface S in a three dimensional space can be approximated in many

ways using di�erent kinds of geometrical elements. The aim of the discretization is twofold.

It can be used to approximate the geometry of the problem. The problem geometry could

be very intricate and it could be di�cult to represent using �at triangles. It can be used

to approximate the unknown density, which might be a �ctitious force or displacement

discontinuity. The geometric and functional discretization does not have to be the same.

Flat elements might approximate the geometry well enough, but it might be a bad approx-

imation of the unknown density. If constant �at elements are used, then the geometric

and functional discretization matches. The geometry might have to be further subdivided

or re�ned until the requirements for functional approximation is met.

The geometry being modelled in mines could be volumetric like caves, as shown in

Figure 5.3 a), shafts and tunnels or tabular, as shown in Figure 5.3 b), like reefs and

stopes. The maps used to build numerical models for mines are sometimes very inaccurate.

Tunnels are winding with rocks jutting out and in no way smooth or straight as shown

on the map. Stopes try to follow the reef, which in many cases are rolling and varies in

thickness. This information is often unknown or ignored and the mine's average stoping

is assumed instead. Therefore what is known on the maps are just an approximation

of what is really underground. The reef and development tunnels are in many cases

delineated by markers which are spaced relatively far appart. It is possible to use very

high order elements which would �t almost any surface to approximate the mine layout,

but most probably using �at or linear elements would �t the known data best. Using a

discretization which interpolates these markers are probably the best that one can hope

for to be able to assume that the model is a su�cient approximation of the actual layout

in the mine. Many times the model is another approximation on top of the survey data.
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Flat triangles are very useful to approximate three dimensional surfaces with. This

is because one can approximate any three dimensional surface using just �at triangles.

The only negative aspect is that in some situations one might require quite a lot of them.

It might be advantageous to use curved elements instead, because one would need fewer

elements to achieve the same accuracy. The number of elements used will determine how

long it will take to solve the problem. Rectangular elements are simpler to integrate over

than other kinds of elements.

5.5 Collocation

a) b)

Figure 5.4: Collocation points could be a) inside an element or b) shared between

elements.

The aim of the collocation method is to �nd a load distribution which will interpolate

the boundary conditions. The boundary conditions are only speci�ed at certain points on

the boundary, called the collocation points. The loads and the boundary conditions are

both put on the boundary, which is where the term collocation comes from. A collocation

point might be contained within a boundary element or it might be shared by more than

one element. The boundary elements associated with a collocation point is called the

support of the collocation point.

Using a �rst-order collocation method it is assumed that the density ρ(xi) = ρi is

piecewise constant over each of the boundary elements. For simplicity it is assumed

that each collocation point is associated with only one boundary element and that the

collocation point is located at the element's centroid. It is known that the solution to the

integral equation is smooth. Therefore it is also known that there is an optimal position

where to place the collocation point. Placing the collocation point inside the element

away from its edges allows the development of integration schemes which can avoid the

collocation point. It is preferable to avoid the collocation point, because when integrating

over the element the kernel function has a pole at the collocation point.
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Figure 5.4 depicts a discretization with constant and linear elements. The collocation

points are the circles placed at the centroids of the constant elements and vertices of the

linear elements. The support for the constant elements is much smaller than the support

of the linear elements.

The collocation method tries to satisfy the boundary conditions exactly at the collo-

cation points. The linear system can then be expressed as

φ(xi) =
N∑
j

(∫
Sj

G(xi, y)dSj(y)

)
ρ(xj) 1 ≤ j ≤ N. (5.3)

The density ρ(xj) was taken out of the integral, because it is constant over the element. If

ρ(xj) represented a displacement discontinuity, then ρ(xj) would have physical meaning

and could be directly interpreted.

De�ne the in�uence matrix A = {aij} as

aij =

∫
Sj

G(xi, y)dSj(y). (5.4)

The linear system can then compactly be written as Aρ = φ. A direct method like

Gauss elimination would require the evaluation of all the kernel functions to construct a

matrix with N2 elements. This system would be dense and semi-diagonally dominant, but

not enough to guarantee convergence using iterative solvers like Jacobi or Gauss-Seidel.

Constant elements have a big disadvantage, because quite a lot of elements are needed

to obtain a decent solution for the boundary conditions. Instead of adding more elements,

it is possible to use higher order elements to represent the density function. This can be

done by introducing linear shape functions. If collocation points are placed at the vertices

then the meshing strategy would have to be able to create discretization without free

internal nodes. Vertices should be shared between elements, because otherwise arti�cial

pillars and structures will be created which could make the linear system unstable. Linear

elements with only internal nodes could also be used. It is preferable to place these internal

nodes wisely, because choosing them at equally spaced points (in squares or triangles) or

on a Gaussian product grid (for triangles) could lead to very bad results [26].

The linear system with shared vertices can then be expressed as

φ(xi) =
N∑
j

∑
k∈Vj

(∫
Sj

G(xi, y)ψjk(y)dSj(y)

)
ρ(xk) 1 ≤ j ≤ N, (5.5)

where Vj is the set of vertices associated with j-th element and ψjk is the shape function

associated with both the j-th element and the vertex xk.

The in�uence matrix A = {aij} for linear approximation of the density function would

then be de�ned as

aij =
∑
k∈Ej

∫
Sj

G(xi, y)ψjk(y)dSj(y), (5.6)



Chapter 5 � Boundary Element Method 47

where Ej is the support of the j-th vertex, which is all the elements associated with the

j-th vertex.

5.6 Galerkin

The Galerkin method or variational approach solves the integral equation in a least squares

sense. It tries to minimize the solution over the whole boundary instead of interpolating

the integral equation at points, which the collocation method aims to do. The Galerkin

method incurs a penalty because it requires an additional surface integration. Even

though the additional integration might be considered bad, it can be used to soften the

singularities which makes the integration easier.

A drawback of the collocation method is that the in�uence matrix is non-symmetric

[27]. The symmetric Galerkin method produces, as the name implies, a symmetric linear

system which is useful for coupling BEM with FEM. The Galerkin method has drawn

much attention and has been studied for a wide range of engineering �elds.

The method tries to solve a system of equations of the form∫
S

φ(x)dS(x) =

∫
S

ψ(x)

∫
S

G(x, y)ψ(y)ρ(y)dS(y)dS(x). (5.7)

5.7 Indirect and direct BEM

The indirect approach tries to solve for unknown physical quantities or loads. In the case

of linear elasticity these quantities are FF or displacement discontinuities. These loads

are related to the constraints prescribed on the boundary surface using singular solutions

and then solved for.

The unknown loads f are expressed in terms of the boundary conditions using the

displacement kernel (3.11)∫
Uij(x, y)f

i = uj(Q),∀Q ∈ Su, (5.8)

and traction kernel (3.33)∫
T j

i (x, y)f i = −tj(Q),∀Q ∈ St, (5.9)

respectively and can then be used to calculate the remaining boundary parameters which

was not speci�ed. This approach is called the indirect method because it uses the indi-

rectly determined loads to express the unspeci�ed parameters on the boundary.

The direct BEM is based on fundamental integral theorems used to eliminate the

intermediate step and express the boundary parameters directly in terms of the unspeci�ed
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parameters. Betti's reciprocal identity (4.2) is used to obtain the Somigliana identity (4.3)

for elastostatic problems and given by

Cij(P )uj(P ) =

∫
S

[Uij(Q,P )tj(Q)− Tij(Q,P )uj(Q)]dS(P ),

∀P ∈ S, (5.10)

in which the uj and tj is the displacement and traction �elds, respectively. It should be

noted that the equation is written in terms of the source point P in stead of the �eld point

Q as is the case for the indirect BEM method. The unknown displacement or traction �eld

which is being solved for is the actual physical quantity, which is also di�erent than the

indirect method. The prescribed boundary condition is substituted into equation (5.10)

and used to solve for the unknown quantity. If the boundary is smooth the free term

coe�cient Cij which contains a solid-angle integral is given by Cij = (1/2)δij, [28].

5.8 Fictitious Force Method

The �ctitious force method (FFM) is also known as the force discontinuity method (FDM).

The unknown quantity solved for is a distribution of forces which when applied to the

boundary will balance the prescribed internal and external forces and produce the required

deformation. This method is particularly suitable for treating volumetric excavation, but

is also known for being numerically unstable for tabular excavations and fractures.

The FFM produces numerical instabilities, because the e�ect of elements placed along

the top side of a crack surface is indistinguishable from the e�ect of elements placed

along the bottom side of the crack surface, even if the two surfaces are separated by

some small distance [29]. From a numerical point of view, it means that the in�uence

matrix contains rows that are practically the same, which results in a badly conditioned

in�uence matrix. Each crack in the system would have both a hanging and footwall

element and would require an equation in the linear system which implies two equations

per crack element. The e�ect of the surrounding elements on the paired elements is almost

identical relatively small distances away which causes this numerical instability and gives

rise to the bad condition number.

5.9 Displacement Discontinuity Method

The displacement discontinuity method (DDM) has become the mining industry's stan-

dard method for treating tabular excavation. The term crack-like element, also called

slit-like openings and cracks by [21], refers to two identical elements separated in the nor-

mal direction by distances that are small compared to the scale of the elements themselves.
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The DDM assumes that the two surfaces of a crack e�ectively coincides and models the

discontinuity of the displacement between the two surfaces.

The FFM breaks down for these kinds of geometry, because the e�ects of elements

placed along the two surfaces of the crack are indistinguishable which produces almost

equal equations in the in�uence matrix. The DDM approximates a relative displacement

distribution between the two surfaces over a crack and uses the DD displacement and

traction kernels to relate the discretized distribution to the prescribed boundary condi-

tions.

Ore seams in the South African mines, for instance, are very thin and it is common

to have stoping widths of one meter. The total excavated regions are also generally very

large, up to a kilometer in some of the larger mines, with pillars scattered throughout.

Therefore, these kinds of structures can be well modelled by such crack like elements.

Other structures that can also be modelled similarly would be faults and dykes.

5.10 Summary

In this chapter, a general overview of the application of the BEM to an integral equation

(5.1) was given. The Tre�z method was brie�y discussed, because it is very similar to the

BEM, but mainly because it is sometimes used to speedup the solution of the BEM. The

discretization of the boundary was also very brie�y discussed. Creating a high quality

discretization of a general problem boundary can be di�cult. This is a very wide �eld

and an important aspect of the BEM. Without a proper discretization the method can

not function and bad discretizations can lead to numerical instabilities. Many di�erent

methods can be used to solve integral equations, like collocation and Galerkin. These

methods both have their merits, but in recent days more papers seem to use the Galerkin

method. Variants of the BEM for elasticity include the indirect and direct method, which

di�er in the form of the equations and the physical quantities they solve for. The FFM

is an indirect method, because the unknown quantity is a FF, but the DDM has roots in

both direct and indirect BEM.
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Kernel Integration

6.1 Introduction

It is important to accurately and e�ciently perform integration of the displacement and

traction kernels for FF and DD over the surface elements of the problem domain. Strate-

gies to compute kernels vary depending on the proximity of the result point and surface

element over which the integration is performed. If the �eld point coincides with or is near

the surface element the e�ect of the singularity might be strong and special techniques

have to be employed to accurately perform the integration. Generally the e�ect of the

singularity becomes easier to treat further away from the surface element.

6.2 Numerical Integration

Integrating over an arbitrary element can be di�cult. It is possible to represent any �at

polygonal shape with triangles.

There exist many numerical integration schemes, Netwon-Cotes, Gauss, Clenshaw-

Curtis etc. The Gauss quadrature scheme has become popular, because it only requires n

function evaluations to integrate polynomials of order 2n− 1 exactly, whereas Clenshaw-

Curtis and Newton-Cotes methods at best integrate polynomials of the order n exactly.

The Newton-Cotes methods use equally spaced knots which simpli�es hand calculations.

It has been pointed out in [26] that using equally spaced points over quadrilaterals or

triangles near the singularity can lead to disaster.

It is simple to create an e�cient adaptive integration algorithm which reuses previous

function evaluations for equally spaced knots, and therefore it is sometimes preferred.

The adaptive integration only needs to be calculated at new knots which are placed in

between existing knots. The result of the integral for the two integration orders can then

be compared to get an error estimate which can then be used as a stopping criterion.

For Gauss quadrature increasing the integration order is not as pro�table, since knots are

50



Chapter 6 � Kernel Integration 51

not reused in successive re�nements of the integration order. Other methods which reuse

function evaluations from Gauss quadrature to provide error estimates do exist.

The Gauss-Kronrod method estimates the error by inserting new points between the

knots of a Gauss-Legendre result to calculate another estimate of the integral. If the

estimate is not yet good enough then the Gauss-Patterson iterative method can be used

to modify the Gauss-Kronrod method by inserting additional points and computing a

new error estimate using revised weights. If the error is still not acceptable then another

set of knots can be added until the error is acceptable. Instead of adding new knots it is

also possible to drop knots to obtain another estimate of the integral. The Gauss-Bond

method starts with the Gaussian quadrature and then for an odd integration order drops

the middle knot, otherwise it drops the middle pair and then recalculates the weights to

obtain the Bond estimate of the integral, [30; 31].

6.2.1 Numerical integration in one variable

A single variable function f(x) can be integrated over the interval [a, b] using numerical

quadrature as

I =

∫ b

a

f(x)dx (6.1)

=

∫ 1

−1

f(x(ξ))J(x, ξ)dξ (6.2)

=
n∑

k=1

wkf(x(ξk))J(x, ξk) + E (6.3)

where

x(ξ) =
1− ξ

2
a+

1 + ξ

2
b (6.4)

maps the coordinate ξ to the interval [a, b],

J(x, ξ) =
∂x(ξ)

∂ξ

=
1

2
(b− a) (6.5)

is the Jacobian of the coordinate transformation, wk are the weights and ξk the knots of

the quadrature scheme and E the error.

6.2.2 Numerical integration in two variables

The one dimensional integration discussed in the previous section can be extended to

surface integration using a tensor product over the two coordinates.
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The surface integrals can then be written as a summation over the knots and weights

of the quadrature scheme

I =

∫
S

f(x)dS(x) (6.6)

=

∫ b1

a1

∫ b2

a2

f(x1, x2)dx2dx1 (6.7)

=

∫ 1

−1

∫ 1

−1

f(x1(ξ1, ξ2))J(x, ξ)dξ2dξ1 (6.8)

=

n1∑
k1=1

n2∑
k2=1

wk1wk2f(x1(ξ1, ξ2), x2(ξ1, ξ2))J(x, ξ) + E1 + E2. (6.9)

If the �eld point is not located on the element then an adaptive technique using

approximation formulas for the Gaussian error terms can be employed [16]. The order mi

of the Gaussian quadrature required to obtain a prescribed accuracy is given by [16, p.

44]

mi = p′[
−1

10
ln(

ei

2
)]

[(
8Li

3R

) 3
4

+ 1

]
, (6.10)

where p′ =
√

2
3
p+ 2

5
and p is the order of the singularity, ei = Ei

I
is the relative error and

Li is the length of the element in the i-th direction.

The formula can be inverted for the element length to get another formula of interest

which gives an estimate for length to use to reach the prescribed accuracy and is given by

Li
3

8
R

(
−10mi

p′ ln( ei

2
)

) 4
3

. (6.11)

This formula can be used to adaptively subdivide the element and therefore to achieve

an e�cient and accurate integration scheme.

6.3 Continuation Approach

The continuation approach, discussed in depth in [32; 33; 34; 35] and only brie�y outlined

here was chosen as the basis of integration, because it is a relatively simple and a well

explained framework for computing a large class of singular and near-singular integrals

which covers the integrals obtained from the FF and DD kernels. The singular integrals

are seen as mere continuations of nonsingular integrals. The singularity of the integrand is

placed outside the integration domain and then the limit is taken, allowing the singularity

to approach the intergation domain.

The surface element integrals are of the form

I(q) =

∫
Ω

G(q − p)ψ(p)dΩ(p) (6.12)
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where Ω is an n-dimensional �nite surface in <n+1. In three dimensions the surface

integrals therefore only have dimensionality n = 2. The boundary of Ω is piecewise

continuously di�erentiable, because triangles and quadrilaterals are the basic elements

used in the boundary discretization, but the continuation is not limited to these basic

elements. The FF and DD kernels will be used to model the physical problem and

therefore these kernels belong to C inf for p 6= q and is in�nite when these points coincide

as required by [35]. The loading function ψ(p) is used to interpolate the unknown density

over the element and will be given by a piecewise polynomial in the parametric coordinates

of the element.

Singular integrals have to be evaluated when the �eld point q is inside the integra-

tion domain. This is needed when calculating self-in�uence integrals, which are required

because it is not always possible to use rigid body motion to compute the self-in�uence

integrals indirectly. These integrals have to be treated specially, because they can not be

evaluated using regular numerical quadrature. Therefore a proper interpretation of these

integrals is required, since the integrand is in�nite on the surface of the element.

When the �eld point q is close to the domain of integration, which implies that the

integration surfaces are near the singularity, ordinary numerical quadrature might fail.

These kinds of integrals are termed near-singular integrals. Their evaluation can be

avoided by subdividing the integration domain, which e�ectively increases the relative

distance to the singularity as a function of the integration domain's dimensions. The con-

tinuation approach provides a uni�ed framework wherein it is possible to integrate these

near-singular integrals more e�ectively. Near-singular integrals might also be encountered

when calculating result points close to the boundary or when variable discretization sizes

or �nely graded meshes are used, where large boundary elements are close to much smaller

elements.

Weakly singular integrals, strongly singular integrals and hypersingular integrals are all

encountered in elastostatics. The displacement kernel for FF produces a weakly singular

integral since it contains a 1
r
pole. Transforming the integral to polar coordinates it

is possible to eliminate the pole and integrate using ordinary Gauss quadrature. The

traction kernel for FF and the displacement kernel for DD both produce strongly singular

integrals since they contain a 1
r2 pole. These integrals have to be interpreted in the Cauchy

principal value (CPV) sense. This is done by excluding a small symmetric neighbourhood

of the integration domain around the singularity and letting it vanish by taking the limit to

produce the CPV of the integral. The traction kernel for DD produces an integral with an

even higher singularity since it contains a 1
r3 pole, these integrals are called hypersingular

integrals and should be treated in a �nite part sense introduced by Hadamard, [36].

An alternative interpretation of singular integrals is to view them as continuations of

nonsingular ones. The singularity is moved outside the domain of integration and then
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Figure 6.1: Flat integration domain.

the limit taken as the singularity is moved towards the integration domain. Integrals

interpreted in this sense will be called continuation integrals, [35].

6.3.1 Continuation Theory

The singular integrals encountered in the BEM can be reduced to the following general

form

I(ẑ) =

∫
Ω

fβ(x, ẑ)dV (6.13)

where the boundary dΩ is piecewise continuously di�erentiable, fβ : <n+1 → < is a

homogeneous function of degree β, x = (x1, x2, · · · , xn) and the volume element is given

by dV = dx1dx2 · · · dxn. The integration domain is a star convex n-�at polygon lying in

the ambient space Rn+1, [32; 33].

In [33], the singular point is de�ned as a point in the ambient space where the integrand

becomes singular. This would be the �eld point in the context of the indirect BEM and

the source point in the direct BEM. The proximate singular point is de�ned as the point

on the integration domain which is closest to the singular point, or the projection of the

singular point on the element hyper-plane. In Figure 6.1, q is the singular and qn is the

proximate singular point. The coordinate system has been chosen with the origin on the

element and oriented such that any point p on the element is given by the coordinate

p = (x, 0), therefore q = (x, z) and qn = (x, 0).

The homogeneity of the integrand is the basis on which the continuation theory rests.

A homogeneous function of degree β satis�es the equation

f(λx, λẑ) = λβf(x, ẑ). (6.14)

This property can also be expressed by the Euler condition which is a di�erential equation
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with respect to the formal derivatives
∂fβ

∂xi
, therefore

βf(x, ẑ) =
n∑
i

xi
∂fβ

∂xi

+ ẑ
∂fβ

∂ẑ
. (6.15)

This leads to the basic continuation linear di�erential equation for I(ẑ)

ẑ
∂

∂ẑ
I(ẑ)− αI(z) = −

∫
∂Ω

f(x, ẑ)x · ds (6.16)

where α = β+n and ds is the directed line segment element on the integration boundary

and for elements in two-dimensional Euclidean space the term x · ds = x1dx2 − x2dx1.

The prototype for integrands can be expressed by

f(x, ẑ) =
xl1

1 x
l2
2 · · ·xln

n ẑ
m

rk
(6.17)

where r is the Euclidean distance function and the exponents l1, · · · , ln,m and k are all

nonnegative integers and satis�es

β =
n∑
i

li +m− k. (6.18)

The linear di�erential equation (6.16) can be solved as an initial value problem with

initial condition I(z0) at z0, therefore

I(ẑ) = −ẑα

∫ ẑ

z0

(
1

ηα+1

∫
∂Ω

f(x, η)x · ds
)
dη +

ẑα

zα
0

I(z0). (6.19)

The integral I(ẑ) is independent of the initial condition z0 and can be chosen arbitrarily

far away from the integration domain. In [35], it is shown that if the initial condition is

set at z0 = ±∞, then for homogeneous integrands

lim
z0→±∞

I(z0)

zα
0

= 0 (6.20)

for all α. Therefore the last term in equation (6.19) disappears. The order of integration

can be interchanged to obtain the boundary-only continuation formula

I(ẑ) = ẑα

∫
∂Ω

(F±∞(x)− F (x, z))x · ds. (6.21)

where

F (x, ẑ) =

∫
1

ẑα+1
f(x, ẑ)dẑ (6.22)

and

F±∞(x) = lim
ẑ→±∞

F (x, ẑ). (6.23)

F (x, ẑ) is called the primitive boundary function (PBF). The surface integration can

be converted into a contour integration using the PBF. These PBFs can be obtained

analytically using a symbolic manipulation tool such as Mathematica.
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6.3.2 Adaptive contour integration

The primitive boundary functions are computed using line integrals along each of the

polygon's edges. The line integral

Ii(ẑ) =

∫
∂Ωi

f(x, ẑ)x · ds (6.24)

is computed for each edge ∂Ωi separately. The total integral for the element is then given

by the sum of

I(ẑ) =
∑

i

Ii(ẑ) (6.25)

the integrals for each of the edges.

An adaptive integration scheme is used which recursively subdivides the domain of

integration. The integral over the interval before subdivision is computed. Then an

integral over each of the subdivided intervals is computed. The sum of the integrals of

the subdivided intervals should be equal to the integral before subdivision. In general

numerical Gauss quadrature does not exactly integrate an arbitrary function, therefore

this assumption does not necessarily hold.

Let [a, b] be the domain of integration in the line segment's intrinsic coordinates. The

relative integration error can then be expressed as

I0 = I([a, b])

I1 = I([a, c]) + I([c, b])

E =
|I1 − I0|

max{|I0|, |I1|})
(6.26)

where c = a+b
2

is the center of [a, b]. If the error is less than the prescribed relative

tolerance or the absolute value of I1 is less than the prescribed absolute tolerance then

the integral over the interval [a, b] is taken as I1, since it should be a better approximation

of the integral, otherwise the recursion continues on each of the subdivided intervals [a, c]

and [c, b]. It should be noted that the denominator in equation (6.26) could be zero, but

in that case the absolute value test would be enough to stop the recursion.

In practice a line integral for each term of the kernel function has to be evaluated. It

is better to compute them simultaneously since they share computations. Therefore the
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relative error can be expressed in terms of all the terms as

I i
0 = I i([a, b])

I i
1 = I i([a, c]) + I i([c, b])

Eabs = max
i
|I i

1 − I i
0| (6.27)

Erms =

√∑
i

(max{|I i
0|, |I i

1|})2 (6.28)

E =
Eabs

Erms

(6.29)

where the index i indicates the term which was integrated, Eabs is the maximum absolute

deviation and Erms the root mean square of the maximum term between the two integrals

I i
0 and I i

1. Therefore the recursion would return if the new relative error is less than the

prescribed relative tolerance or the maximum absolute value of all the terms maxi |I i
1| is

less than the prescribed absolute tolerance and the integral over the interval [a, b] taken

as I1. Lastly to stop the recursion from subdividing too far, a maximum recursion depth

is used to ensure that the algorithm is robust.

6.4 Summary

The evaluation of the in�uence of a surface element requires integration of the kernel

function. If the singularity lies near or within the plane of the element, then ordinary

quadrature can not always accurately compute these integrals. Many integration schemes

exist, but the continuation approach is attractive, because it is a systematic approach

applicable to all kernels in elastostatics. The scheme converts the surface integral into

a contour integral, which can be integrated using a simple adaptive contour integration.

It is possible to apply the continuation approach to curved elements [35] and collocating

the unknowns at the element vertices [25; 37]. The continuation theory discussed only

covered the basic near-singular integration formula. This can be used to compute in�uence

integrals which are close to the boundary or surface of an integral by slightly moving the

in�uence point away. It should be noted that the continuation theory also covers the

proper computation of in�uence integrals on the element surface.
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Assembly

7.1 Introduction

The boundary element method leads to a system of linear equations

Ax = b (7.1)

where x are the unknowns, b are the prescribed boundary conditions and A is a linear

operator expressed here as a matrix.

The naïve assembly of this system would express A as a matrix of dimension n × n,

where n is the number of unknowns and related to the number of boundary elements used

to describe the problem boundary. If few boundary elements are used then this would

not pose to be a big problem and a direct or iterative solver could be used to �nd x.

Unfortunately Mother Nature does not work this way and the problem sizes considered

in mining applications can grow to be very big, especially if the model was built to

represent the whole mining operation. The direct construction of A requires O(n2) kernel

evaluations, has storage requirement of size O(n2) and requires O(n2) operations for a

matrix-vector multiplication. The aim of this chapter is to develop a better representation

for A and algorithms to construct the representation and for performing matrix-vector

multiplication.

There currently exist a couple of di�erent representations which have gained popularity

over the years. They include, but are not limited to:

� the panel clustering algorithm,

� fast multipole method (FMM),

� kernel independent FMM,

� precorrected-FFT,

� wavelet based methods and
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� algebraic techniques (hierarchical matrices).

The panel clustering algorithm has been around for a long time. It constructs a tree-

like representation of the boundary elements and then links clusters (or nodes) with in

the tree to other clusters on the same level in the tree. An admissibility constraint,

which determines whether the e�ect of one cluster on another may be ignored, is used

to determine whether two clusters can be linked. This constraint determines whether

the clusters can be treated as a simple boundary element or whether it is necessary

to subdivide the clusters to meet the speci�ed error tolerance. The method requires

O(nlogd+2n) operations to construct the representation, needs O(nlogdn) of storage and

a matrix-vector multiplication has an operation count of O(nlogd+1n), where d is the

dimensionality of the problem being solved, [6].

The fast multipole method is another popular method and many variants exist. The

mathematics used in constructing such a representation is quite involved and dependent

on the kernel. The FMM's aim is to express the potentials or densities on the boundary

elements using multipole expansions and local expansions at places far away from these

elements. The method then applies translations between these expansions to e�ciently

evaluate the densities. The overall complexity is O(n), but depends on the size of the

expansions used and error tolerances. Even though the complexity is linear, it might still

be more e�cient to use a scheme with a slightly higher complexity, because it might out

perform FMM for even very large cases. Constructing a FMM representation might only

be pro�table if many resolves are required.

Much work has been done to bypass the kernel dependence of the FMM. [3, Ying]

replaced the expansions and translations in the FMM by an equivalent density represen-

tation which only requires kernel evaluations. The idea is akin to the Tre�z method [18,

Beer, p. 84] and used to isolate sections by solving local interior and exterior problems.

The method has similar complexity to the FMM.

The precorrected-FFT method [4, Ding] uses a uniform grid to represent the long-

range interactions. Short-range interactions are then treated specially and therefore the

term "precorrected" in the name of the method. It is also kernel independent, but the

reliance on a uniform grid is a big disadvantage. The methods complexity is due to the

fast Fourier transform which is of O(nlogn).

The wavelet based methods, which are not discussed here, has complexity of O(n), [5].

The algebraic techniques are almost purely focused on compressing A, while possibly

using some geometric information in preparing the problem description before and during

assembly of the representation. The basis of these techniques is that for many problems

involving coe�cient matrices it might be possible to express blocks within the matrix by

low-rank approximations. These low-rank approximations were termed pseudoskeletons in

[38]. The aim of these methods is to �nd the optimal covering of pseudoskeletons for which
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the storage requirement would be optimal. IES3 [39; 7; 2; 40], solvers for sequentially semi-

separable matrices [8; 41; 42] and hierarchical matrices [43; 44; 45; 46; 47] are all examples

of algebraic techniques.

7.2 Ordering

The kernels used in the modelling all exhibit similar spatial behaviour, namely that they

have a singularity at the collocation point and then decrease as the distance from the collo-

cation point increases. The concept of �rst constructing a tree over the element list is core

to hierarchical methods and is similar to multipole, panel clustering and wavelet-based

approaches, [7; 48; 41; 9]. With each element there is associated, a spatial coordinate

as well as a dimension, such as the area covered by the element. With some limited

knowledge of the geometry a better tree can be constructed and some heuristics can be

used to optimize this construction to give better compression results. Nodes and leaves

in the tree are clusters of elements. If we associate a bounding shape with each of these

clusters we can use Saint-Venant's principal as guide to develop some kind of algorithm

which will give us the best compression.

Saint-Venant's Principal states [13, p. 180]:

An equilibrated system of external forces applied to an elastic body, all of

the points of application lying within a given sphere, produces deformations of

negligible magnitude at distances from the sphere which are su�ciently large

compared to its radius.

Physically this means that elements which are spatially close together in�uence each

other more than far away elements. The input elements might not have been labelled

to take into account this spatial relationship. The compression algorithm does not re-

quire that the kernel values go to zero, but only that groups separated by a reasonable

distance from each other exhibit correlated behaviour which can be exploited to approx-

imate their in�uences. The aim of ordering will be to increase the compressibility of the

in�uence matrix, for the simple case of a one dimensional strip of elements, the natural

ordering is usually most optimal, [7]. In two or three dimensions it might not be possi-

ble to achieve optimal ordering given an algorithm of reasonable complexity. A simple

O(n log n) ordering scheme proposed in [7] is used and later adapted to generate addi-

tional spatial information [9], it is similar to the binary space partitioning, KD-tree and

oct-tree algorithms which are very common in computer graphics.

Let T be the set of elements used to discretize the problem boundary. Find the closest

�tting bounding box and transform the elements into the local coordinate system. Next

apply the following recursion on T :
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1. If T is empty or contains one element: stop the recursion.

2. Find the axis of maximal extent.

3. Order all the elements in T along the axis.

4. Split the list such that T
′ ⊂ T , T

′′ ⊂ T , T
′ ∩ T ′′

= ∅ and T ′ ∪ T ′′
= T .

5. Apply the recursion on both T
′
and T

′′
.

The hierarchical structure is retained and for each level a bounding sphere is con-

structed within which all sub elements are fully contained. It is not necessary that

bounding spheres between subsets be disjoint and in general lots will overlap. Order-

ings produced by this algorithm gives good results for tabular mining layouts that have

been tested and it allows for other heuristics that uses intersection and separation distance

between the bounding spheres to control error tolerances.

7.3 Algebraic Method

7.3.1 Review of the IES3 algorithm

IES3 [7] is an algorithm that was �rst developed to exploit the algebraic structure of

matrices that arise from the linearization of integral equations. It is a purely algebraic

method, does not require any knowledge of the model geometry and is kernel-independent.

Compression is controlled by an error tolerance which is used when constructing the low

rank decompositions.

The algorithm exploits the fact that there exists large parts in the matrix which is

numerically low rank just like the mosaic methods [48]. In essense a hierarchical view is

constructed for the matrix, which is analyzed to �nd where low rank decomposition can

adequately approximate the blocks and save on storage and memory usage.

The representation is constructed by recursively splitting the matrix into smaller sub-

matrices until it is not possible to split further or a prescribed minimum dimension is

reached. These sub-matrices are then decomposed using some kind of rank revealing

decomposition method. Then a bottom-up scheme is used to merge each of these sub-

matrices. The aim is to determine whether a sub-matrix can be expressed more e�ciently

by a low rank decomposition which approximates the sub-matrix to a given tolerance. If

the storage requirement of the low rank decomposition is less than the storage requirement

of the sub-matrix then the decomposition is returned and the recursion continues upward.

The most time consuming parts in this recursion are the computation of the kernels

and construction of the decomposition. In theory the decomposition could be obtained



Chapter 7 � Assembly 62

by applying a singular value decomposition and then truncating the representation by

thresholding the singular values.

The algorithm promises storage complexity of O(nlogn) [7] and with clever interpo-

lation techniques, O(nlogn) construction time [7; 2]. Another advantage is that matrix-

vector and matrix-matrix multiplication in the IES3 structure can be performed with the

same O(nlogn) complexity.

if minimum dimension of A is greater or equal to a prescribed number then

split A into sub-matrices

recurse over the sub-matrices

if sub-matrices are all of low rank then

merge sub-matrices

if merged decomposition is more storage efficient than sub-matrices then

return merged decomposition

else

store sub-matrices

return nothing

end

else

store returned sub-matrices

return nothing

end

else

create rank revealing decomposition A

if decomposition is more storage efficient then

return decomposition

else

store A

return nothing

end

end

Figure 7.1: IES3 pseudo-code.

Figure 7.1 shows the pseudo-code for IES3. It is a recursive "divide and conquer" algo-

rithm that starts of with the full coe�cient matrix and subdivides A until the dimension

of A is smaller than some prescribed number. The matrix might be split into sub-matrices
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as follows

A =

(
A1 A2

A3 A4

)
. (7.2)

Each of these matrices are then processed recursively and e�ectively become the full

coe�cient matrix when processed. The divide and conquer method has the advantage of

memory locality. When constructing the decomposition, the algorithm might be clever and

know when the decomposition will not be storage e�cient enough. Instead of continuing

with the decomposition and wasting time, it could continue to construct the full matrix

instead using the kernel evaluations that were already computed.

If the return value is a full matrix, it is stored, otherwise the decomposition would be

returned as normal. When a dense matrix or group of decompositions are stored, then

nothing is returned. Here nothing has meaning and is used in the algorithm to �nd out

the state of particular sub-matrices. A nothing is associated with a sub-matrix and would

indicate that the algorithm has �nished with that sub-matrix.

The decomposition of a sub-matrix is given by

An×m
i = Un×r

i (V T
i )r×m (7.3)

and has a rank r associated with it. The storage requirement for such a decomposition

would be r ∗ (n+m) elements, while the storage requirement of the dense matrix would

be n ∗m. The decomposition's rank would then have to obey

r <
1

2
min{m,n}. (7.4)

When the recursion completes processing all the sub-matrices it goes on to evaluate the

returned sub-matrices. If not all sub-matrices are decompositions then the sub-matrices

which were decompositions are stored and nothing is returned. This could represent the

case where one of the sub-matrices was dense. In any event it will always happen if the list

of returned sub-matrices contained a nothing. If the list contained only decompositions

then the recursion calls a merging procedure. The merging procedure tries to further

decompose the list of decompositions and construct a more e�cient decomposition. If the

new decomposition is more storage e�cient then it is returned, otherwise the decomposi-

tions in the list is stored and a nothing is returned. This continues until recursion returns

to where it started. In the odd event that the algorithm returns a decomposition it will

have to be stored.

The IES3 algorithm can be broken up into four parts:

� the hierarchical matrix traversal which basically controls when to subdivide the

matrix,

� generation of low rank decompositions,
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� merging low rank decompositions and

� storing the dense matrices and decompositions.

7.3.2 Compression

A compression technique is needed to optimize the amount of storage required to represent

the linear system. The aim for the compression algorithm is also to transform the problem

into a representation which facilitates fast matrix-vector multiplication. The algorithm

developed is based on the algorithm described in IES3 [39; 7] and used to construct the

matrix. The compression algorithm was improved by including ideas from [8; 41; 43;

44] and others, which are all similar, but somewhat more advanced than IES3 in their

theoretical treatment.

The development of the algorithm was done in phases. First the focus was placed

primarily on constructing the compressed representation of the matrix, disregarding the

time it takes to evaluate the kernels. The resulting algorithm followed the IES3 algorithm

closely, the only di�erences being in the stopping criterion for splitting and the merging

scheme.

A prescribed small number, the size of the smallest sub-matrix, was still present, but

only for completeness. What this small number should be set to was not described in

[7] and varying this number did e�ect IES3's performance. Therefore the new algorithm

was developed with this prescribed number set to two kernel elements. This means that

the average block the algorithm would try to decompose would be a matrix of dimension

2× 2.

The other di�erence was that the IES3 merging algorithm was replaced by a merging

algorithm based on Lanczos bidiagonalization. The Lanczos bidiagonalization process

described in [49] requires only matrix vector products and exploits the structure of the

already compressed sub-matrices, which in turn speeds up the process. An additional

truncated SVD of the bidiagonal matrix was also done to further reduce the rank. The

reason for using Lanczos bidiagonalization was to improve the compression, since it was

noted in [7] that the modi�ed Gram-Schmidt merging sometimes overestimated the rank

of the decomposition. Where the IES3 algorithm would stop as soon as one or more of

the sub-matrices were not a decomposition, the new algorithm would try and continue

until the depth of the sub-matrix representation exceeded a prescribed number.

The second stage of development focused on faster assembly of the representation

and to reduce the number of kernel evaluations. [7] gave promise of an alternative faster

interpolation scheme that did exactly that, but their description was too vague and only

hinted at how this might be achieved. After much searching, two di�erent algorithms

looked promising, a method called Dual-MGS [2] and it's variant IE-QR [40] and another
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called Adaptive Cross Approximation (ACA) [50] and it's variant ACA+ [45]. Even

though ACA promises faster compression and does not require solving a least squares

system, Dual-MGS's performance does not lag far behind and gives a somewhat better

approximation.

Figure 7.2: Sampling the source elements and �eld points.

Fast assembly can only be achieved if less kernel evaluations are performed. The

Dual-MGS and ACA methods described later on does exactly this. The only problem is

that if the traversal used in the IES3 process is used, then the power of these methods

would not be fully utilized. This is because both these methods construct a decomposition

based on the assumption that the in�uence matrix between the set of source elements and

�eld points are of low rank and most importantly, that these sets are not to small. If the

prescribed number for the IES3 method is too small then the number of evaluations which

are saved might not be optimal.

Figure 7.2 shows two sets of source elements X and �eld points Y . The aim is to

build an approximation of the sub-matrix X ×Y of interactions between the sets by using

samples from SX ⊂ X and SY ⊂ Y . These fast incomplete decomposition algorithms use

di�erent selection strategies to grow their sample spaces and construct their decomposi-

tions. There exists a relationship between the spatial separation δ(X ,Y) and spread of

the source element and �eld point sets which determines how big these samples should be

to achieve a given accuracy. These algorithms adaptively discover this and therefore are

not reliant on de�ning such a relation.
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7.3.3 Traversal

The resulting hierarchical structure can be used e�ciently to perform matrix-vector mul-

tiplication. Let A be a general m× n matrix, then

b = Ax (7.5)

with x a vector of length n and b a vector of length m. Suppose A has the form given in

equation (7.2), then(
ba×1

1

bc×1
2

)
=

(
Aa×b

1 Aa×d
2

Ac×b
3 Ac×d

4

)(
xb×1

1

xd×1
2

)
(7.6)

where a+ c = m and b+ d = m. Therefore the vector x is multiplied in such that

b1 = A1x1 + A2x2, (7.7)

b2 = A3x1 + A4x2. (7.8)

Matrix-vector multiplication of the larger matrix A can now be written as the combination

of the result of the four smaller matrix-vector multiplications A1x1, A2x2, A3x1 and A1x2.

If the sub-matrix Ai = UiV
T
i is in pseudoskeleton form then �rst y = V T

i xj is performed

followed by bk = Uiy.

The hierarchical tree structure is traversed in a bottom-up fashion, multiplying sub-

matrices as they are encountered at the leaves and combining the results as the traversal

bubbles up.

7.3.4 Decompositions

The basis of our method requires some technique with which a storage e�cient represen-

tation might be constructed which also facilitates faster matrix-vector multiplication of a

matrix. In the algebraic sense, this can be achieved by a low rank decomposition, which

has for a given matrix A the form

A = UV T (7.9)

with the dimensions of A being m× n, U being m× r and V being n× r, where r is the

rank of the decomposition and

r <
1

2
min{m,n}. (7.10)

Given that equation (7.10) holds we can see that the storage of A requires m∗n values

while for the decomposition UV T only r ∗ (m + n) values are needed which guarantees
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that r ∗ (m+n) < m∗n and that the decomposition is more storage e�cient. Multiplying

a vector with the decomposition is also faster than multiplying it with A, for example

UV Tx = U(V Tx)

= Uy

= z. (7.11)

Multipling a vector x with a matrix A requires m ∗ n operations while multiplying with

the decomposition only requires r ∗ (m+ n) operations.

Nowhere, except maybe during the construction of the decomposition, does the algo-

rithm require that the matrices U or V be orthonormal or orthogonal. The only constraint

is that the decomposition should approximate the original matrix with respect to some

error tolerance and a given norm. The matrix norm of preference and used throughout is

the Frobenius norm. The Frobenius norm of a matrix is de�ned by [1] as:

‖A‖F =

(
m∑
j

n∑
i

|aij|2
) 1

2

. (7.12)

Singular Value Decomposition

The singular value decomposition is described by the following theorem [51]:

Theorem 7.3.1 Any N×N matrix A can be written as a product of an N×N orthogonal

matrix U , an N×N diagonal matrix S with positive or zero elements (the singular values)

and the transpose of an N ×N orthogonal matrix V , i.e.,

A = U · S · V T (7.13)

where

U · UT = V · V T = I, (7.14)

and I is the N ×N identity matrix.

The singular values {σ1, σ2, . . . , σN} of the matrix are usually ordered from largest to

smallest. The rank of A is then equal to the number of positive singular values.

The truncated SVD can be obtained from A by applying a threshold on the singular

values such that all σi < εσ1, for a given small positive ε, are considered to be zero. The

truncated SVD is given by

Ã = Ũ · S̃ · Ṽ T , (7.15)

where Ũ and Ṽ has dimensions N × r and S̃ has dimensions r × r, with r ≤ N the rank

of Ã. Ã is an approximation of A with the approximation error bounded by ε, such that∥∥∥A− Ã
∥∥∥

2
< ε. (7.16)
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The SVD is rank revealing and can be used as a decomposition method in the compres-

sion algorithm. It is easy to get the SVDs into the desired form of equation (7.9). This can

be done by either multiplying out the diagonal matrix containing the singular values into

column basis U or row basis V , because equation (7.9) does not require either of the two

matrices to be orthonormal or even orthogonal to each other. Unfortunately calculating

an SVD is very expensive and is considered here only for theoretical completeness and to

clarify the mechanism on which the following algorithms are based.

Modi�ed Gram-Schmidt

The modi�ed Gram-Schmidt method is the preferred practical method for computing a

basis of orthogonal vectors instead of the standard Gram-Schmidt method, since it is

numerically stable and does not su�er as much from loss of orthogonality. Figure 7.3

shows the pseudo-code for the modi�ed Gram-Schmidt method which is used to generate

an orthogonal basis from a set of vectors A = {x1,x2, . . . ,xr}. The resulting factorization
is then expressed as

A = QR, (7.17)

where Q is the orthogonal basis and R is an r × r upper triangular matrix and called a

QR decomposition.

However, in some cases a second reorthogonalization step might well be required to

recover orthogonality. Many modi�ed Gram-Schmidt steps will need to be performed

during merging in the IES3 algorithm. If the needed corrections are not performed then

the numerical error might grow too large and cause the approximation to deviate too

much. It is common to also introduce pivoting into the Gram-Schmidt algorithms as was

proposed in [7] for the merging scheme. This is done to bypass premature breakdown of

the process which might occur, because of linearly dependent vectors in the set of vectors

to be orthogonalized. Figure 7.4 shows such a method which combines the classical Gram-

Schmidt with modi�ed Gram-Schmidt and adds pivoting.

In Figure 7.5 the pseudo-code for another variant of the Modi�ed Gram-Schmidt

algorithm, based on Arnoldi's procedure is given. This method requires the multiplication

of some vector with the matrix A for which we wish to construct the orthogonal basis,

instead of constructing the basis directly by using the entries within A. The method

constructs an orthogonal basis for the Krylov subspace Km

Km = span{v1, Av1, . . . , A
m−1v1}. (7.18)

The resulting decomposition is then expressed as

A = VmHm, (7.19)
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define r11 := ‖x1‖.
if r11 = 0 then

stop

else

q1 := x1/r11

end

for j = 2, . . . , r do

define q̂ := xj

for i = 1, . . . , j − 1 do

rij := q̂ · qi
q̂ := q̂ − rijqi

end

compute rj,j := ‖q̂‖2

if rj,j = 0 then

stop

else

qj = q̂j/rj,j

end

end

Figure 7.3: Modi�ed Gram-Schmidt pseudo-code [1, p. 11].

find the index of the column vector uk with largest norm

keep the norm τ = τ1 = ‖uk‖ to determine when to stop

while τ > ετ1 do

chalk up one rank and save the column index

orthogonalize against the previous set of orthogonal vectors and normalize

for all the remaining vectors

orthogonalize against the new orthogonal vector

for the index k of the remaining vector with largest norm

compute the norm τ = ‖uk‖ of the newly selected vector

end

Figure 7.4: Modi�ed Gram-Schmidt with partial pivoting [2].

where Vm is the orthogonal basis for Km and Hm is the upper triangular Hessenberg

matrix.
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choose a vector v1 such that ‖v1‖2 = 1

for j = 1, 2, . . . ,m do

compute wj := Avj

for i = 1, . . . , j do

hij := wj · vi

wj := wj − hijvi

end

hj+1,j = ‖wj‖2

if hj+1,j = 0 then

stop

end

vj+1 = wj/hj+1,j

end

Figure 7.5: Arnoldi Modi�ed Gram-Schmidt pseudo-code [1, p. 156].

Lanczos bidiagonalization

The Lanczos bidiagonalization technique described in [49] tries to e�ciently construct a

good approximation Ã of the original matrix A. It provides a recursive formula for the

stopping criterion and orthogonality of the left and right Lanczos vectors and discusses

di�erent reorthogonalization methods. The approximation is constructed iteratively and

therefore meets the requirement of a rank revealing decomposition, even though the com-

puted rank might not be as tight as possible.

Where the merging scheme proposed in [39; 7] requires that the list of sub-matrices all

be decompositions, the Lanczos method only requires that matrix-vector multiplication be

de�ned on the sub-matrices. Fast matrix-vector multiplication was the whole aim of the

compression algorithm and therefore the bidiagonalization procedure can take advantage

of the structure in which the sub-matrices are cast. This extends the applicability of the

merging scheme, because it does not require all the sub-matrices to be decompositions.

IES3 required some prescribed value which was used to control the recursion depth or

resolution at which we analyzed the matrix. Using bidiagonalization for merging removes

this requirement, because now it is possible to recurse until we reach the kernel resolution

and merge up from there. In [2] it is mentioned that the Lanczos bidiagonalization was

used to perform block-factorization, but no mention was made of using it for merging.

The aim of the method is to construct an approximation Ãk of A such that∥∥∥A− Ãk

∥∥∥ ≤ ε (7.20)

where ε ∈ <+ controls the absolute accuracy of the approximation and k is the number of

iterations needed to obtain the required accuracy. The approximation Ãk is constructed
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in the form

Ãk = UkBkV
T
k (7.21)

where Uk = {u1,u2, . . . ,uk} is the orthogonal left Lanczos vectors, Vk = {v1,v2, . . . ,vk}
is the orthogonal right Lanczos vectors and Bk is a bidiagonal matrix with entries

Bk =


α1

β2 α2

. . . . . .

βk αk

 . (7.22)

The procedure is started with some arbitrary vector u1, such that ‖u1‖ = 1. Multi-

plying this vector with the transpose of A gives the �rst entry in B1 as

α1v1 = ATu1. (7.23)

The consecutive approximations i = 1, 2, . . . are then de�ned by

βi+1ui+1 = Avi − αiui, (7.24)

αi+1vi+1 = ATui+1 − βivi. (7.25)

A full derivation of the error estimation is done in [49], here we will note that there

exists a formula which recursively expresses the error in terms of αk+1 and βk+1. Let

wk =
∥∥∥A− Ãk

∥∥∥
F
be the error in the Frobenius norm after k iterations. Then the error

for the next iteration can be expressed as

w2
k+1 = w2

k − α2
k+1 − β2

k+1. (7.26)

The loss of orthogonality in either the left or right Lanczos vectors can cause the matrix

Bk to become ill-conditioned. An e�cient reorthogonalization is needed to monitor the

loss of orthogonality.

Two methods are discussed in the paper namely, partial and one-sided reorthogona-

lization. The partial reorthogonalization method uses the recurrence formulae

εleft = εM
√
m

εright = εM
√
n

ωii = δii = 1 (7.27)

ωi+1,k = (αkδi,k + βkδi,k−1 − αiωi,k + εleft)/βi+1

δi+1,k = (βk+1ωi+1,k+1 + αkωi+1,k − βi+1δi,k + εright)/αi+1

where k = 1, . . . , i, δi = 0 and εM is the machine's precision, to determine when loss of

orthogonality becomes too large. The algorithm checks that max1≤j≤i ωi+1,j <
√
εM , if not
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then the last two of left Lanczos vectors are reorthogonalized against the previous vectors

and the recurrence for ωi+1,j reset to εleft. Next it checks that max1≤j≤i δi+1,j <
√
εM , if

not then the last two of right Lanczos vectors are reorthogonalized against the previous

vectors and the recurrence for δi+1,j reset to εright.

The one-sided reorthogonalization, reorthogonalizes either the left or right Lanczos

vectors. From the numerical results it seems that due to the coupled two term recurrence

keeping only one side orthogonal controls the orthogonality in the other. If the matrix

being approximated is very skinny this result implies that only the smaller of the two

Lanczos vectors need to be reothogonalizated.

The resulting bidiagonalization can cheaply be converted into a singular value decom-

position, by factorizing the bidiagonal B matrix. The B matrix is small relative to the

input matrix A, which we assume is of low rank and therefore applying the SVD on B is

not too costly. There are methods which can be used to construct the SVD more cheaply

than the conventional methods given a bi-diagonal matrix, but we have not implemented

or researched that yet. In general a further reduction of one extra rank is achieved when

applying and truncating the SVD.

Dual-MGS

The kernel in the far-�eld is smooth and it is expected that it should be possible to con-

struct a low rank approximation which is similar to an interpolation of the kernel between

the source and target (�eld points) elements. Kernel evaluations are computationally ex-

pensive and if it was possible to build a low rank decomposition by only sampling a few

kernels then subquadratic construction time could be achieved. In [52] a proof is given

that for the electrostatic problem, the reduction in rank between groups is a function of

their separation distance. The same applies for elastostatic problems as can be judged by

looking at numerical results.

In [2; 40] a block-QR-factorization algorithm is presented that samples the kernels and

does not require all the entries of the sub-matrix to be computed. The method uses a

dual-row-column-MGS approach which only require r columns and rows of the original

matrix. It is very similar to the pivoted Gram-Schmidt algorithm in Figure 7.4, but selects

rows and columns in such a way which does not require the full matrix.

Let A be the n × m matrix we wish to decompose and let the columns be given by

A = {u1, . . . um} and the rows by A = {v1, . . . vn}. As in the previous algorithms we

wish to construct the decomposition A ≈ QR with error tolerance given by ε ∈ <+ where

Q = {q1, . . . qr} is an orthogonal n× r matrix, R is a r×m matrix and r the rank of the

decomposition.

Figure 7.6 shows the pseudo-code for the Dual-MGS algorithm and the �rst part is

on how to compute Q. The last two lines' description is very compact and shows how
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to �nd the matrix R using a co-location approximation. Only the previously generated

row vectors are used as well as the indices that were stored in rows(:). These are used to

select only the rows in Q that correspond to the row vectors V (:, rows(:)) = {v1, . . . , vr}
and used in the approximation of R. The inverse Q−1 can be found by applying a LU-

decomposition onQ(rows(:), :) and then solving for R as in the last line of the pseudo-code.

The complexity of the LU-factorization is O(r3/3) and O(nr2) solving for R, [2].

let r = 1 compute the first row vr

store the first row index in rows(r)

let pr = vr/‖vr‖
find the index k of the largest absolute entry in pr

compute the kth column uk

save the column index k

let qr = uk/‖uk‖
keep the norm τ = τ1 = ‖uk‖ to determine when to stop

while τ > ετ1 do

find the index k of the largest absolute unused row entry in qr

chalk up one rank and save the row index in rows(r)

compute vk

let pr be vk orthogonalized against the previous row vectors

normalize pr

find the index k of the largest absolute entry in pr

compute the kth column uk

save the column index k

let qr be vk orthogonalized against the previous row vectors

let tau = ‖qr‖ and normalize qr

end

reduce the rank by one

let Q−1 be the inverse of Q(rows(:), :)

let R = Q−1V (:, rows(:))

Figure 7.6: Dual-MGS pseudo-code.
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7.3.5 Merging

The merging scheme is the hart of the IES3 method, but the same idea works well in our

algorithm, since it can be used to improve the compression where heuristics, that focus on

the geometric separation of the source elements and �eld points, might fail. A thorough

time complexity analysis might show that there exists a problem dimension where kernel

evaluations might be cheap enough to consider merging smaller decompositions.

IES3 Merging

The merging scheme can be applied either horizontally or vertically �rst, the diagram

shows the general idea where the matrices are merged horizontally �rst.

U1V
T
1 U2V

T
2 → A12 = U12V

T
12 ↘

A = UV T

U3V
T
3 U4V

T
4 → A34 = U34V

T
34 ↗

(7.28)

First we try to express the column space U2 of A2 in terms of the column space U1

of A1. The ideal is that U2 is linearly dependent on all the vectors in U1, because then

U12 = U1, but in general U12 would need to include those vectors which could not be

represented up to a given error by the vectors in U1. The algorithm described in [39]

was to construct a matrix X = [U1U2] and to obtain the new column basis U12 using the

pivoted Gram-Schmidt method.

Then it is easy to obtain the row basis by V T
12 = UT

12 · [U1V
T
1 U2V

T
2 ] with which we

can express the new matrix A12. The same is then done to get A34. In the next step

matrices A12 and A34 need to be merged vertically. To do this we need to construct the

row basis for the matrix A. This is done similarly to the horizontal merge, except that

now a matrix Z = [V12V34] is constructed from the row basis vectors of A12 and A34 and

pivoted Gram-Schmidt applied to obtain the row basis V for A.

From this the column basis U is computed using U = [U12V
T
12U34V

T
34]·V . This completes

the merge of the four sub-matrices. The major advantage of using the merge scheme is

the reduced complexity of computing a low rank decomposition of a large matrix which

is known to be of low rank compared to using a conventional Gram-Schmidt method.

Suppose that all four sub-matrices were square and of dimension k×k and of rank r, then

the merge scheme has complexity O(kr2), while Gram-Schmidt would have complexity

O(k2r) [39].
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Figure 7.7: Direct in�uence of distant elements used to evaluate at result points.

Lanczos Merging

Let us now suppose that the sub-matrix we wish to merge does not only contain decompo-

sitions, but that it could be expressed by a tree or in hierarchical matrix form. It might be

possible that even though a sub-matrix could not be expressed as a low rank decomposi-

tion on its own, it could still be linearly dependent on its neighbours. Merging it together

with its neighbours might then give a more storage e�cient decomposition. When using

the IES3 merging scheme the assumption is that sub-matrices are all decompositions and

that fact is also used in the algorithm.

The matrix-vector and matrix-matrix multiplication operations are de�ned for the

sub-matrices. Therefore it would be possible to either apply the Arnoldi MGS in Figure

7.5 or the Lanczos bidiagonalization to do the merge, since these methods only use the

matrix-vector multiplication operation. The complexity of these techniques under the

same assumptions used to determine the complexity of the IES3 merging scheme also is

of O(kr2) if it assumed that the most time is spent on the matrix-vector multiplication.

7.4 The Tree Method

The tree method will be described as the predecessor of the fast multipole method (FMM).

The panel clustering method is essentially a variant of the tree method. The tree method

(and FMM) requires the expansion of kernels in terms of spherical harmonics. The tree

method only requires one type of expansion, called the multipole expansion, while FMM

also uses another expansion called the local expansion to speed up the tree method. The

construction of the multipole moment expansion often requires di�cult mathematical

manipulations to get analytical expressions for the expansion coe�cients.

The expansion coe�cients capturing the in�uences of elements are computed at the

expansion point like in Figure 7.8. The number of coe�cients used in the expansion de-
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Figure 7.8: Multipole moment expansion of distant elements used to evaluate at result

points.

Figure 7.9: Illustrating when multipole expansion and direct expansion will be used.

termines how accurately the in�uences of the elements can be captured. This expansion

is similar to the Taylor expansion. Formulae can be derived on the accuracy of the expan-

sion based on the radius of the sphere enclosing all the elements used in the expansion,

the distance to the result point and the number of coe�cients used in the expansion. The

required accuracy might not be reachable if the result point lies to close to where the

expansion was computed. If that is the case the in�uences for each element will have to

be computed directly, like in Figure 7.7. Figure 7.9 illustrates the categories used to de-

termine whether to use direct in�uence or the multipole expansion coe�cients to calculate

results at the �eld points.

Sometimes the number of coe�cients used to construct an expansion is �xed and for
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Figure 7.10: Depicts a quad-tree of the elements in the problem domain.

this discussion we will assume that this is the case. We are aiming to use the expan-

sion rather than directly computing in�uences, because evaluation using the expansion is

much faster than direct kernel evaluation. This is only true if the expansion represents

a reasonable, but small, number of elements. We will aim to always have at least the

optimal number of elements for each expansion. This will reduce the number of direct

kernel evaluations which we assume to be the most expensive part of the solution.

The elements which describe the problem will then be grouped such that the radii of

the closest �tting spheres around these groups are a minimum. In practice constructing

such a grouping might be di�cult. We will approximate such a grouping by using a

quad-tree in two dimensions and an oct-tree in three dimensions, which is similar to

the tree structured described in Section 7.2 and depicted in Figure 7.10. The tree will

then represent a partitioning of the space enclosing the problem domain, grouping nearby

elements together as shown in Figure 7.11. The leaves contain the element groupings

and the expansion coe�cients for each group will be computed at the enclosing sphere's

centroid. There are many issues that will have to be resolved when constructing the tree.

We will not focus on these issues, but encourage the reader to look at e�cient ways of

constructing, traversing and possible balancing the tree.

Evaluating these expansions and direct kernel evaluations where necessary, as shown

in Figure 7.12, it is possible to accurately compute the in�uence of the problem domain at

any point faster than just using direct evaluations. We deliberately use a tree to construct

the element groups, because at each node at any level of the tree it is possible to �nd a

sphere which will enclose all the elements contained in the children of that node.

Suppose that the result point is far enough away from the problem domain that using

an expansion at the center of the whole problem domain we would achieve the desired

accuracy or better. Then it would make sense to use that expansion rather than all the
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Figure 7.11: Illustrating how elements are split using a quadtree and then grouped into

overlapping spheres on di�erent levels.

expansions which was created at the leaves of the tree.

It would be much faster to calculate using only one set of expansion coe�cients rather

than all expansions at the leaves of the tree. For a two dimensional problem and for which

we use a quad-tree each node will have four children. It would then be four times less

work to use one set of coe�cients centered at the node's center rather than each child's

coe�cient set.

The result point could be anywhere and generally we will want to place many result

points almost everywhere. Therefore we would want to have coe�cients available at

almost every node in the tree to minimize the number of calculations we have to perform

when calculating the in�uences at those points.

The tree method which is the father of FMM tackles this problem very elegantly.

Instead of calculating the coe�cients at every node in the tree separately, instead the work

done to compute the coe�cients at children in the tree is used to compute coe�cients

at the nodes in the tree. Formulae are derived which move the expansion coe�cients at

each child's expansion point to their parent expansion points. These translation formulae

are much cheaper than directly constructing the expansions for the child elements, which

become more the higher the node is in the tree.

When calculating at many result points we determine for each result point the least

number of coe�cients and direct evaluations by traversing the tree and using the �rst set

of expansions for each branch with which we will achieve the desired accuracy. This is a

huge gain compared to direct kernel evaluations. Still this is just how the tree method

works.
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Figure 7.12: Illustrating which multipole moments and direct evaluations might be used

to evaluate at the yellow result point.

7.5 Fast Multipole Method

FMM improves the tree method by recognizing the fact that not just one result point will

be computed, but rather a set of result points which might be clustered in space. The

multipole expansion works on the basis that the in�uence of everything within a sphere

with a �xed radius can be expressed in terms of the multipole coe�cients.

These coe�cients can then be used to compute a result point to a prescribed accuracy

if it is far enough away. We could have approached this di�erently by asking whether it

is possible to have another expansion which is computed from elements far enough away,

which can be used to locally compute their e�ect to result points locally to a prescribed

accuracy. Fortunately such an expansion, called the local expansion, does exist.

The local expansion exhibits all the same properties as the multipole expansion except

that now we are focusing on computing result points locally using coe�cients which

describe far away elements. The local expansions are linear and therefore we can sum

the contribution of each far away element and produce the local expansion coe�cients

which describes the contributing elements' e�ect. The local expansion can be translated

from the parent node to its children. This is opposite to the multipole expansion where

multipole coe�cients are translated upward from the children to their parents.

On each level of the tree we update the coe�cients to take into account nearer elements

which fall outside of the smaller local expansion enclosing sphere. When we reach the leaf

we then evaluate the local expansion to compute the e�ects of all far away elements and

add the e�ect of close elements which have to be computed directly. The local expansion

could be used to compute a large set of result points contained within the local expansion's

enclosing sphere from elements which are far enough away very e�ectively and accurately.
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The last missing ingredient converts the multipole expansion into a local expansion. This

completes the tree method and produces the FMM.

7.6 Summary

In this chapter, techniques for representing the in�uence matrix were reviewed. The

importance of ordering the discretized elements was discussed. Elements which are in

close proximity spatially should also have labels which are close together to ensure that

the in�uence matrix contain in�uences between large clusters of spatially disjoint well

separated elements. A quick description of the KD-tree structure was given, which can

be used to construct such an ordering.

The IES3 method, which was introduced by [7], was explained. The aim of com-

pression and how such a compression can be obtained using pure algebraic methods,

was described. Then, assuming that a compressed hierarchical matrix structure exists, a

method of traversing the structure to compute a matrix-vector multiplication was given.

Decomposing matrices e�ciently and accurately is essential to the algebraic approach.

Many di�erent ways are available. They are all based on the SVD which is accurate, but

not e�cient at all.

The modi�ed Gram-Schmidt method, is acceptably less accurate, but still very in-

e�cient, because it requires the input matrix to exist a priori. Still the Gram-Schmidt

method is useful, since it can be used to merge decompositions. The Lanczos bi-diagona-

lization technique is an iterative method of constructing a reduced SVD. Since it is an

iterative method, it can be used to merge arbitrary matrix representations as long as

matrix-vector multiplication is de�ned.

The Dual-MGS method is useful when constructing decompositions without evaluating

the whole input matrix. Instead rows and columns are evaluated as needed, which allows

this method to construct a decomposition much more e�ciently than previously mentioned

techniques. Algorithms of this kind include IE-QR [40], ACA [50] and ACA+ [45], but

descriptions of these algorithms were not given. Merging decompositions is useful, because

it can reduce the storage requirements and in turn improve the e�ciency of the matrix-

vector multiplication. Two methods, one using modi�ed Gram-Schmidt and another using

bi-diagonalization were discussed.

Lastly a quick description is given of the tree and fast multipole methods which have

been succesfully applied to elastostatics, of which [20; 53; 54; 10] are only a few examples.



Chapter 8

Summary and Conclusion

The aim was to research and give an overview of the main concepts needed to create an

e�cient linear elastic static stress boundary element solver which can be used to solve

problems in the South-African mining environment. The gold and platinum ore bodies are

very much planar and thin, compared to the extent of the mining. These ore bodies are

accessed by shafts and development tunnels which are very expensive to create and which

does not in general contain ore. They provide access ways and much needed ventilation for

the mine, therefore it is in the interest of the mines to know when mining activities or fault

movement are causing excessive stress which could cause damage to these tunnels. The

theory to handle the di�erent kinds of geometries using the BEM had to be researched.

8.1 General Summary

An overview of the theory of linear elasticity was given; covering the important aspects

needed. The �rst important item was how strain in an elastic body relates to the displace-

ment �eld and how the linearized theory is obtained from the general displacement-strain

relationship. This was followed by a brief description of stress and a discussion on rep-

resenting the in situ stress state, which was later used to de�ne boundary conditions.

Then the elastic moduli which describes the continuum and used in Hooke's law, which

relates strain and stress through the stress-strain relationships, was covered. Finally the

compatibility equations, which ensure continuity in the continuum and the conditions for

elastic equilibrium, followed.

The fundamental solutions, which form the cornerstone for solving problems in elas-

ticity using the BEM was discussed. Even though only Kelvin's solution was used in

subsequent chapters, similar techniques can be applied to the other solutions to cre-

ate applications to solve useful engineering problems. A whole section was devoted to

modelling thin excavations as fractures or cracks. This included the derivation of the

displacement discontinuity kernels for use in the indirect BEM.
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Integral equations are solved by the boundary element method. The BEM only re-

quired the boundary of the domain to be discretized and therefore reduces the dimension-

ality of the problem by one. There are many di�erent ways of constructing and solving

the BEM. The unknowns could be collocated with the boundary and solved for exactly

(collocation) or solved for in a least squares sense (Galerkin). The unknowns could rep-

resent the actual physical quantities being solved for (direct BEM) or �ctitious quantities

which could be used to �nd the unknown physical quantities which were not prescribed

(indirect BEM).

The BEM requires integration of the singular kernel functions over the boundary

surface elements. These integrals are regular and tractable using ordinary numerical

quadrature when the �eld point is far away from the integration domain, but when the

�eld point is on or near the integration domain, then special care have to be taken to

interpret these integrals in a meaningful way. The continuation approach provides a

uni�ed framework which can be used to integrate the kernels in an e�cient, robust and

accurate way.

The �nal step is to quickly build an e�cient representation of the in�uence matrix

which can then be fed to an iterative solver like Bi-CG or GMRES. The IES3 method

seemed to be a very understandable and easily implementable method and promised to

deliver a quick, robust and e�cient solver. The �ow of the method was explained and

various algorithms needed to implement each part of the method were discussed. Other

methods like the tree and fast multipole methods were investigated and a quick outline

of these methods was given.

8.2 Conclusion

The BEM can be used as a tool to model large mining layouts. The derivations of the

elasticity kernels are useful in understanding the fundamentals needed to devise accurate

integration algorithms to use in implementing the BEM. The FFM coupled with the

DDM can be used to model both volumetric (development tunnels) and tabular (planar

ore bodies) geometry. The BEM can be coupled to a domain method if more detailed

analysis of a speci�c region in a mine is required. If such an analysis is required, then

using the symmetric Galerkin method is the most common approach in recent articles,

because it can be coupled with the FEM. The algebraic representation of the in�uence

function contains many numerical pitfalls and it is di�cult to handle all the special cases

that might arise. A method based on the relatively recent article on a kernel-independent

FMM [10] seems to give better results. The BEM �eld is actively being researched and

promises exciting new developments and applications.
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Appendix A

Strain

This appendix supplements Section 2.2 and covers the derivation of the strain tensor

using tensor notation and a similar approach as was taken in [15, Flügge, pp. 23-28].

Let us assume a convected coordinate system and describe the undeformed body with

basis vectors ĝi and metric tensor ĝij. A line element can then be written as

dŝ = ĝidx
i (A.1)

and its metric, which is the square of equation A.1, by

dŝ · dŝ = ĝijdx
idxj. (A.2)

After deformation the line element ds can have a di�erent length or orientation and can

be written as

ds = gidx
i (A.3)

and its metric by

ds · ds = gijdx
idxj, (A.4)

where the basis vectors gi are for the deformed body's coordinate system.

The measure of deformation of the body is given by the change in metric tensor γij,

γij = gij − ĝij. (A.5)

To show that γij is indeed a tensor we transform the line segments dŝ and ds in the

undeformed and deformed coordinate systems to another coordinate system

ĝi′ = β̂i
i′ĝi

gi′ = βi
i′gi

Using the initial assumption of convected coordinates we have that

β̂i
i′ =

∂x̂i

∂x̂i′
=

∂xi

∂xi′
= βi

i′ (A.6)
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Figure A.1: Displacement during deformation.

from which it is clear that both ĝi and gi transform similarly and therefore

γi′j′ = gi′j′ − ĝi′j′

= βm
i′ β

n
j′gmn − β̂m

i′ β̂
n
j′ ĝmn

= βm
i′ β

n
j′(gmn − ĝmn)

= βm
i′ β

n
j′γmn

from which we can see that γij is indeed a tensor. The metric tensor is symmetric which

implies that the strain tensor is also symmetric, i.e.

γij = γji. (A.7)

Next we wish to express this tensor in terms of the displacement vector u = giui which

connects particles in the undeformed body with particles in the deformed body. We will

need to di�erentiate this vector

du = u,j = ui|jgidxj. (A.8)

Taking the derivative of a general vector v with respect to some basis we may write

v,j = (vi
j + vkΓi

jk)gi = vi|jgi (A.9)

where Γi
jk is called the Christo�el symbols and for Cartesian coordinates Γijk = Γi

jk = 0.

Let Â and B̂ be two points inside of the undeformed material. When the material is

deformed the points' relative distances changes as shown in Figure A.1. Applying vector

arithmetic to get from A to B̂ gives

u + ds = dŝ + u + du (A.10)

ds = dŝ + ui|jĝidxj (A.11)
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ds · ds = (ĝidx
i + uk|iĝkdxi) · (ĝjdx

j + ul|jĝldxj)

= (ĝi + uk|iĝk) · (ĝj + ul|jĝl)dxidxj

= (ĝij + uk|iĝj · ĝk + ul|jĝi · ĝl + uk|iul|jĝk · ĝl)dxidxj

= (ĝij + uj|i + ui|j + ĝkluk|iul|j)dxidxj

= (ĝij + ui|j + uj|i + ul|iul|j)dxidxj.

Therefore from (A.4)

gij = ĝij + ui|j + uj|i + ul|iul|j. (A.12)

Using equation (A.2) and (A.5) we get

γij = uj|i + ui|j + ul|iul|j. (A.13)

For small displacements the last term, which is quadratic in displacement, can be

ignored and thus (A.13) reduces to the linearized form

γij = uj|i + ui|j. (A.14)

These two equations have only to do with the geometry of the deformation and is called

the kinematic relations.

The measure commonly used for strain is given by

εij =
1

2
γij (A.15)

=
1

2
(ui|j + uj|i + uk

i uk|j) (A.16)

and for small deformations

εij =
1

2
(ui|j + uj|i) (A.17)

can be used.



Appendix B

Strain Energy Density

In [15, Flügge, p. 51] the existence of a strain energy density function is used to show

that

Eijmn = Emnij. (B.1)

Let the strain energy density a be expressed by

a =
1

2
σijεij. (B.2)

The di�erential da is given by

da =
∂a

∂σij
dσij +

∂a

∂εij

dεij. (B.3)

Since stress is a function of strain the di�erential can be written as

dσij =
∂σij

∂εmn

dεmn. (B.4)

The chain rule is applied to the �rst term of equation (B.3), by renaming indices in

equation (B.4) and substituting into equation (B.3), such that

da =
∂a

∂σmn

∂σmn

∂εij

dεij +
∂a

∂εij

dεij. (B.5)

Applying the partial di�erentiations with respect to equation (B.2) it follows that

da =
1

2

(
εmn

∂σmn

∂εij

+ σij

)
dεij. (B.6)

Di�erentiating the stress-strain relations

σij = Eijmnεmn, (B.7)

which are constant with respect to stress and strain and substituting the result into

equation (B.6) gives

da =
1

2

(
εmnE

mnij + σij
)
dεij. (B.8)

91
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The strain energy increment da for a small increment of stress and strain can be

approximated to �rst order accuracy by the work incremented for a small increment in

strain done on the existing stress and expressed as,

da = σijdεij. (B.9)

Equating (B.8) and (B.9) gives

σij =
1

2

(
εmnE

mnij + σij
)

(B.10)

whence

σij = εmnE
mnij. (B.11)

Comparing equation (B.11) with equation (B.7) shows that equation (B.1) holds.
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