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Abstract

A Large Design Space Multidisciplinary Optimization
of a Mixed Flow Micro Gas Turbine Compressor Stage

T. Ochabski

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, 7602 Matieland, South Africa.

Thesis: MEng (Mech)

December 2019

This thesis presents a novel method of parametrization and optimization for
a large design space exploration of a micro gas turbine compressor stage. 48
free parameters were used to control the meridional channel, blade camber,
and structural geometric features. The optimization focused on determining
the optimal impeller meridional discharge (mixed flow) angle, αz2, for a pre-
determined set of constraints. The influence of key geometric features on de-
sign performance was assessed using a Pearson correlation coefficient (rp) map.
Stage total-to-static pressure ratio, PR(01−4),DP , and efficiency, η(01−4),DP , were
strongly influenced (| rp |> 0,4) by diffuser outlet passage height and diffuser
vane wrap angle. This was due to their control of flow separation magnitude
at the diffuser hub in the radial-to-axial bend. A multidisciplinary workflow
was scripted to incorporate the CalculiX CrunchiX structural analysis into the
NUMECA FINETM/Design3D aerodynamic optimization package. Structural
feasibility constraints were placed on maximum von Mises stress, blade tip
displacement, and resonance frequencies of the impeller. A three-dimensional
Pareto front was constructed to assist in selection of the final design. The fi-
nal design achieved a PR(01−4),DP of 4,15 and η(01−4),DP of 86,24%, at a design
mass flow rate of 1,089 kg/s. Choke and stall margins of 7,4% and 11,8% were
achieved at the design speed of 73 000 RPM.
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Uittreksel

’n Groot Ontwerpsgebied Multidissiplinêre Optimering
van ‘n Gemengde-Vloei Mikrogasturbine Kompressor

(“A Large Design Space Multidisciplinary Optimization of a Mixed Flow Micro
Gas Turbine Compressor Stage”)

T. Ochabski

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, 7602 Matieland, Suid Afrika.

Tesis: MIng (Meg)

Desember 2019

Hierdie tesis beskryf ’n nuwe metode van parametrisering en optimering vir
groot ontwerpsgebiedontginning van ’n mikrogasturbine kompressor. 48 vrye
parameters word vir die meridionale kanaal, lemkromming, en strukturele ge-
ometriese eienskappe gebruik. Klem word geplaas op die optimale meridionale
rotorhoek, αz2, onderhevig aan ’n stel vooropgestelde beperkings. Die in-
vloed van belangrike geometriese kenmerke word beskryf met ’n Pearson kor-
relasiekoëffisiënt (rp) kaart. Kompressor totaal-tot-statiese drukverhouding,
PR(01−4),DP , en benuttingsgraad, η(01−4),DP , word deur diffusoruitlaathoogte
en diffusorvouhoek bëınvloed met | rp |> 0,4. Hierdie invloed was die ge-
volg van die hoogte en vouhoek se effek op diffusor wegbreking in die radiaal-
tot-aksiale draai. ’n Multidissiplinêre Python kode is geskryf wat die Calcu-
liX CrunchiX strukturele analise kode in die NUMECA FINETM/Design3D
aërodinamiese analise kode inkorporeer. Strukturele uitvoerbaarheidsbeper-
kings is op die von Mises spanning, lem verplasing, en vibrasie toegepas. ’n
drie-dimensionele Pareto grens word gebou om die finale ontwerp te kies. Die
finale ontwerp het ’n PR(01−4),DP en η(01−4),DP van 4,15 en 86,24%, onderskei-
delik, met ’n massavloeitempo van 1,089 kg/s. Die ontwerp het ’n smoor en
staak marge van 7,4% en 11,8%, onderskeidelik, teen ’n spoed van 73 000 RPM.
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Chapter 1

Introduction

1.1 Background

The unmanned aerial vehicle (UAV) industry strives towards the development
of propulsion systems that maximise engine thrust and efficiency but minimise
weight or size and manufacturing cost. UAVs are powered by electric motors,
internal combustion piston engines or gas turbine engines. The latter are
commonly referred to as micro gas turbine (MGT) engines due to their smaller
size, compared to the larger gas turbine engines commonly used in the air
transport industry.

All MGTs are composed of three primary stages; a compressor, combustor
and turbine stage. The compressor stage of a MGT consists of two major
components: a rotating impeller that imparts mainly kinetic energy to the
moving fluid, and a stationary diffuser that converts the kinetic energy to
pressure energy in preparation for combustion. The compressor stage is also
required to remove flow swirl using either a row of de-swirling vanes, or a swept
diffusion passage. The impeller can be classified as either, radial, or mixed flow
(combination of radial and axial) depending on the direction the fluid leaves
the impeller blades relative to the axis of rotation. This paper assesses the
influence that key design parameters have on the overall stage performance of
a mixed flow compressor.

1.2 Motivation and context

This thesis contributes to the existing body of knowledge surrounding MGT
development. This is done by designing an optimized mixed flow impeller and
diffuser for a MGT with a required thrust output of 650 N. Findings related
to parameter influence on design point efficiency and operating mass flow rate
range will aid future designers at selecting compressor geometry for mixed flow
type MGT engines. Of key interest are findings related to the use of a crossover

1
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CHAPTER 1. INTRODUCTION 2

(continuous vane) mixed flow diffuser, since information pertaining to such a
diffuser is currently relatively scarce.

A full workflow for a multidisciplinary, multipoint and simultaneous multi-row
optimization of a MGT compressor stage with large geometric freedom (48
free parameters) is given. The workflow commences by specifying a prelim-
inary design obtained by an analytical mean-line method, and ends with an
aerodynamically optimized, structurally feasible, compressor stage.

This thesis develops a MGT compressor stage design capable of satisfying a
set of design requirements supplied by the Council for Scientific and Industrial
Research (CSIR) and adds to the existing body of MGT work performed by
Stellenbosch University in conjunction with the CSIR. A summary of such
previous research is given below:

Centrifugal compressor development

De Wet (2011) wrote a mean-line code (MLC) to predict the compressor per-
formance of a diesel locomotive turbocharger. The MLC is based on the tur-
bomachinery design theory presented by Aungier (2000).

Van der Merwe (2012) adapted the code developed by de Wet (2011) for the
design of a suitable radial MGT impeller based on predetermined dimensional
constraints of a BMT-120 engine with a 200 N thrust requirement. The code
was validated against existing performance data and computational fluid dy-
namics (CFD) results.

Krige (2013) developed a MLC for use in radial vaned diffuser design. The
MLC was then used in conjunction with CFD analysis to optimize a diffuser
design suitable for use with the impeller previously developed by van der Merwe
(2012).

De Villiers (2014) used the work of van der Merwe (2012) and Krige (2013)
to concurrently optimize a complete radial compressor stage (impeller and
diffuser).

Burger (2016) modified the MLC to investigate the performance of a crossover
diffuser with a swept vaned passage from the impeller outlet up to the combus-
tor inlet. This negated the need for a separate 90◦ bend and axial de-swirlers
as required in purely radial diffusers.

Mixed flow compressor development

Diener et al. (2016) initiated research at Stellenbosch University focused on
mixed flow MGT compressors. Diener performed a CFD optimization of a
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mixed flow impeller for an increased thrust output requirement of 600 N.

Kock (2017) further modified the MLC for the design of a mixed flow crossover
diffuser suited to the impeller developed by Diener et al. (2016). Kock deter-
mined that the crossover diffuser outperforms a vaneless diffuser fitted with
de-swirling vanes. Kock subsequently performed a CFD optimization of only
the diffuser, achieving a compressor total-to-total pressure ratio (PR(01−04)) of
4.44 and total-to-total efficiency (η(01−04)) of 80%.

Bindeman (2019) adapted the MLC for use with mixed flow impellers. This
was done by implementing a new slip model and a new method of calculating
the impeller throat area to better match with CFD results of the impeller
designed by Diener et al. (2016).

Swanepoel (2018) experimentally tested the crossover compressor developed by
Kock (2017) at a reduced speed of 50 000 RPM (design speed of 95 000 RPM)
due to testing facility limitations. Swanepoel found that impeller tip clearance
had a bigger effect on stage performance when used with a crossover diffuser
compared to a vaneless diffuser.

1.3 Research objectives

The objectives stipulated for this research were as follows:

• Perform thorough literature study related to compact compressor design.

• Set up a workflow that is capable of exploring a large geometric diversity
of the compressor.

• Optimize a compressor obtained during the preliminary design phase, to
meet the requirements of the CSIR, with focus placed on determining
the optimal mixed flow angle for the given requirements.

• Identify the influence of various geometry features on stage performance.

The choice to optimize the mixed flow angle was made due a shortcoming iden-
tified from previous literature. All available literature would either assume a
mixed flow angle from the design onset, or optimise only the impeller with lim-
ited geometric diversity. A multi-row optimization of high geometric diversity
was therefore implemented to bridge this identified shortcoming in literature.

1.4 Research Method

The procedure followed in order to achieve the desired objectives is detailed
below.
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Firstly, a thorough literature review of existing research towards mixed flow
compressor development was conducted. This was performed with the aim
of continuing the work of Diener et al. (2016) and Kock (2017) to eventually
optimize Diener’s impeller outlet angle of 74,5◦ for use in conjunction with a
vaned diffuser.

A baseline design geometry was obtained that could satisfy the design require-
ments specified by the CSIR. The design was obtained using the COMPAL R©
and AxCent R© preliminary design tools.

A parametric model was subsequently constructed using AutoBladeTM and
fitted to the baseline geometry. Blade and endwall curve control points were
coupled with user defined parameters to broadly manipulate specific geomet-
ric features while promoting the number of feasible geometries that could be
obtained during the optimization process.

The aerodynamic and structural meshers and solvers were configured for im-
plementation in the optimization process. The impeller developed by Diener
et al. (2016) was used as a validation case to prove the aerodynamic numerical
setup.

A fully automated workflow was scripted in Python for implementation into the
FINETM/Design3D turbomachinery design package. This was done as a non-
standard workflow comprising of a simultaneous multidisciplinary optimization
of two blade rows in the compressor stage.

Two large database and optimization runs were performed using the design
of experiments method. The initial optimization focused on meridional chan-
nel geometry, while the second optimization focused on blade geometry and
structural feasibility.

Finally, links between geometric parameters and stage performance were iden-
tified. A final performance curve comparison was made between the baseline
and final selected designs. The final design was chosen from a Pareto front
which compared stage total-to-static efficiency with operating mass flow range.
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Literature study

2.1 MGT component and flow definitions

Overview

A cutaway view of a typical MGT component assembly is shown in Figure 2.1.
The design shown implements a radial impeller with accompanying radial
wedge type diffuser including a 90◦ bend and axial de-swirler, prior to flow
entering the combustion chamber. Fuel is introduced to the air flow inside
a flame holder (located inside the combustion chamber) which maintains suf-
ficient flow velocity, temperature and flow mixing to sustain the continual
combustion when in operation. The hot combustion gasses impart work onto
the turbine stage as they expand and exit the MGT. The turbine drives the
shaft which powers the impeller. The remaining flow energy provides thrust
as it accelerates through the nozzle. (Oppong et al., 2015)

Figure 2.1: Typical MGT assembly overview (adapted from ESTEQ (2016))

5
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Impeller definitions

The purpose of an impeller is to impart kinetic and pressure energy to the air
entering a MGT. Figure 2.2 shows the velocity triangles at the impeller inlet
and exit. Air enters the impeller predominantly axially (positive z -direction)
with absolute velocity C1, where subscript ’1’ indicates impeller inlet state
conditions and C refers to absolute fluid velocity. U and W are defined as
the absolute impeller, and relative fluid-impeller, velocities, respectively. Flow
angles are defined by α and blade angles by β.

W1

1

U1

C1

Figure 2.2: Impeller front and meridional velocity triangles (adapted from
Diener et al. (2016))

Impeller exit flow (subscript 2) has additional absolute velocity components
in the radial and rotational directions (subscripts r, θ). Flow at the exit is not
aligned with the exit blade angle due to slip which results in a reduction of
tangential velocity by ΔCθ2. Rotational velocity (ω) is defined in the positive
θ-direction. The resulting velocity triangles with and without slip are indicated
by the solid and dashed lines, respectively.

Figure 2.3 shows a meridional view of a mixed flow impeller with accompa-
nying geometric vocabulary. Hub and shroud outlet radii are defined as r2h
and r2s, respectively, with measurement reference being from the z -axis of
rotation. Hub-to-shroud passage height is defined as b2. The impeller merid-
ional discharge angle, αz2, characterizes the compressor as mixed flow when
0 < αz2 < 90.
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r2sr2h
r1s

b2

b1

z2

Splitter blade
leading edge

Main blade
leading edge

Hub

Shroud
Trailing 
edge

Tip gap

Inducer

r

z

Figure 2.3: Impeller meridional view defining geometry vocabulary

Diffuser definitions

The meridional view of a crossover diffuser is shown in Figure 2.4, including
state numbering conventions used in this thesis. A vaned crossover diffuser
can replace a conventional wedge diffuser with accompanying vaneless radial-
to-axial bend and subsequent de-swirling vanes, with a single row of curved or
swept blades (Burger, 2016).

Radial-to-axial bend

Wedge diffuser
De-swirling vane

Vaneless gap

Impeller

Crossover diffuser

Vaneless gap

Impeller

Figure 2.4: Mixed flow wedge diffuser (left), and crossover diffuser (right)

Figure 2.5 gives the diffuser flow angle and magnitude numbering definitions
used in this thesis. Diffuser passage radius and width definitions are also
given. The diffuser leading edge absolute flow, C3, has velocity components in
all three coordinate directions (r,z,θ) due to the mixed flow meridional angle
introducing a z -component, while swirl is imparted by the rotating impeller.
Diffuser incidence is calculated as the difference between the absolute flow
angle and blade angle, idiffuser = αr3−β3. The mean absolute flow magnitude
decreases from impeller discharge, | C2 |, to diffuser leading edge, | C3 |, due
to diffusion in the vaneless gap (Ziegler et al., 2003).
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Cz4

C 4

C4
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r4s

Cr 3

C 3
C3

3
r3r3

r4h

b4

b3

3
3

3

3

r3h

r3s

Figure 2.5: Diffuser velocity triangles

Diffuser discharge is assumed to have negligible radial component and a ro-
tational swirl angle, αz4. Diffuser mean discharge flow is assumed to not be
aligned with the trailing edge blade angle, β4. This is due to high flow turning
(observed by Han et al. (2018)) and possible blade separation (observed by
Kock (2017)) towards the diffuser exit, resulting in the flow not being well
mixed-out at the diffuser trailing edge.

2.2 Compressor stage design considerations

A compressor stage is required to satisfy a set of constraints with respect to flow
discharge as well as structural and geometric feasibility while maximising some
aerodynamic performance indicator (usually stage total-to-static efficiency).
All such design considerations are discussed below.

2.2.1 Operating range

Figure 2.6 shows a typical compressor map with pressure ratio performance
curves at 7 different speeds (nondimensionalized by design speed) across the
mass flow rate range that is constrained by the surge line and choke limit. A
nondimensional operating range parameter, Δm, is defined as the difference
between the highest and lowest attainable mass rate at a constant speed and
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nondimensionalized by the highest efficiency mass flow rate, mHEP ,

Δm =
mstall −mchoke

mHEP

. (2.1)

Typically a high Δm is favourable to allow for greater throttling range of the
engine without incurring either stall or choke conditions (defined below).

Figure 2.6: Typical compressor performance curves (Sayers, 1990)

Compressor choke

Fluid physics determine that volume flow rate cannot increase further once
sonic conditions, C2 = a2 = γRT , occur at the throat of a constrained flow
(Aungier, 2000). A further increase in mass flow rate can therefore only be
achieved though an increase in inlet density. The choke mass flow rate, mchoke

for a compressor inducer is given by Dixon (1998) as

mchoke = A0ρ00a00

(
2

γ + 1

)γ+1/2(γ−1)
(2.2)

where A and a denote the passage throat area and sonic velocity, respectively.
Similarly, the diffuser inlet choke flow rate can be determined using the diffuser
throat area and air density.

Such a sonic constraint limits the possible mass flow rate through an MGT,
thus narrowing the operational mass flow rate envelope. If sonic conditions
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do arise, a sudden compression of the flow occurs across a shock wave (Dixon,
1998). The shock is also associated with energy dissipation from the flow, with
shock magnitude increasing with higher Mach numbers. Typically, compres-
sors operate at a design point on the performance curve which is located with
a sufficient choke margin

Δmchoke =
mchoke −mDP

mDP

(2.3)

to allow for an increase in flow rate through throttling.

Compressor stall

Stall (or surge) is encountered beyond the lowest stable mass flow rate point
on a constant speed curve. Once encountered, a complete flow reversal occurs
through the compressor resulting in a complete loss of compressor speed and
flame-out of the subsequent combustor. Similarly to the choke margin, a well
designed compressor should operate with a sufficient surge margin

Δmstall =
mDP −mstall

mDP

(2.4)

to prevent component damage and avoid unwanted loss of control of turbine
performance (Dixon, 1998).

Rotating stall is a localised flow phenomenon of a few blades; and unlike surge,
which results in a severe and sudden loss of power, rotating stall causes a slight
decrease in overall performance and is not pulsating in nature. Rotating stall
is caused by the impeller wake inducing temporary stall of the diffuser vanes
due to fluctuations in flow magnitude or direction. Rotating stall therefore
proceeds cyclically and can lead to structural damage resulting from fatigue
of the blades that are being repeatedly stalled and un-stalled. Since this flow
phenomenon is time dependent, only an unsteady CFD computation is able to
indicate the presence of rotating stall.

2.2.2 Aerodynamic stage performance

The two primary compressor stage performance indicators are pressure ratio
and efficiency, and are assessed at either a set operating point, or a range of
mass flow rates. The stage total-to-total pressure ratio (isentropic),

PR(01−04) =
p04
p01

(2.5)
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must be met to supply the combustion chamber with sufficiently dense air, as
required by the fuel-air ratio to allow for efficient combustion. Stage total-to-
total efficiency (isentropic) is now defined as the ratio of isentropic to actual
energy increase of the fluid as

η(01−04) =
Δh(01−04) isentropic

Δh(01−04)
=

p04
p01

γ−1
γ
−1

T04

T01
− 1

(2.6)

where a higher efficiency is desirable to reduce exhaust gas energy required
to drive the compressor, which increases exhaust energy available for thrust
produced by the MGT engine. The blade-to-blade stage discharge flow angle
(swirl), αz4, is also typically specified as a constraint by the combustor designer
to maximise air-fuel mixing and flame distribution inside the combustor.

2.2.3 Geometric constraints

Compressor design is limited by the physical space limitations of fitting a MGT
into an aircraft. These sizing constraints are set out by the fuselage designers
of the aircraft and typically include the frontal area (compressor maximum
radius) and axial length. Compressor frontal area is usually large for radial
and mixed flow turbines when compared to axial flow compressors. This can
result in considerable aerodynamic pressure drag if fitted to the exterior of
an UAV. Consequently, mixed flow MGTs are usually housed inside a UAV
(Goldstein, 1948). Compressor maximum radial constraint is therefore the
driving factor for the use of compact compressor stages in small UAV aircraft.

2.2.4 Structural feasibility

The impeller of a high rotation speed compressor stage experiences large cen-
trifugal loading. This results in structural feasibility constraints with respect
to maximum von Mises stress, body and tip deformation, and resonance fre-
quencies. A peak and bulk (majority of body) von Mises stress should be lower
than the material yield stress (with accompanying safety factor placed on bulk
stress), to avoid permanent deformation or failure of the impeller. Impeller
displacement should be considered to avoid blade-shroud interference as this
will rapidly damage the blade tips, or cause complete failure of the impeller.
Similarly, resonance speeds should be located away from typical operating
speeds to avoid fatigue and possible failure of the impeller.
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2.3 Compressor design theory

Blade sweep

Impeller main blade sweep, or leading edge meridional lean, is a method of
scaling the blade chord length difference between blade tip and hub side. Blade
sweep can be used to influence the efficiency of an impeller by shifting the
leading edge loading in a spanwise direction which subsequently influences the
effects of shock induced separation at the shroud in transonic compressors (He
and Zheng, 2017). He and Zheng also found that the optimal sweep angle for
transonic impellers typically lies around 10◦ of forward sweep if structurally
feasible. Blade forward sweep, however, increases stress in the leading edge
fillet due to the additional overhang mass supported by the main blade leading
edge. Diffuser sweep can also be used to scale blade chord, but to a smaller
magnitude due to the greatly reduce passage heights in the diffuser (b4, b3)
when compared to the impeller inlet height (b1).

Impeller slip

Impeller slip reduces the impeller tangential discharge velocity by ΔCθ2 which
reduces the work input to the fluid due to a lower absolute discharge veloc-
ity. Slip results due to a relative eddy that forms in the discharge passage
resulting from the pressure difference between the high pressure area across
the leading face of one blade and the low pressure area across the trailing face
of an adjacent blade (Stodola, 1927). Impeller slip prediction is important
to achieve a good preliminary design, but was not well understood for mixed
flow impellers until the research of Qiu et al. (2011). Qiu et al. introduced a
well validated unified slip model that consists of: a radial term (based on the
model of Stodola (1927)) including Coriolis forces, a turning term based on
streamline curvature as continued from research by Carter and Hughes (1946),
and finally a passage variation term. Qiu et al. determined that a lower αz2

results in less slip due to the decrease in Coriolis forces (proportional to sine
of αz2) and subsequent decrease in trailing edge blade loading.

Blade loading

Blade loading, L, is the vane suction-to-pressure side pressure difference, Δp,
nondimensionalized by blade row inlet-to-outlet pressure difference (Aungier,
2000). For the diffuser this is given as

Ldiffuser =
Δp

p3 − p4
. (2.7)

Impeller tip loading influences the losses associated with impeller tip leakage
flow. Denton (1993) approximates that tip leakage flow can account for up
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to 30% of losses incurred in the impeller of an axial compressor stage and
although the effect is reduced in purely radial turbomachinery, the impera-
tive still remains to reduce tip leakage. Tiralap et al. (2017) suggests that
increasing blade loading towards the trailing edge (aft-loading) of the impeller
blade is a good method of reducing tip leakage due to the delay in tip leakage
flow. In a diffuser, diffusion of flow can be achieved by an increase in passage
cross sectional area or fluid turning. In vaned diffusers, de-swirling (a form
of flow turning) increases blade loading and subsequently increases the risk of
separation for highly loaded blades.

Impeller meridional discharge angle

As previously stated, impellers can be categorised as radial, mixed flow or
axial depending on the impeller outlet angle, αz2. Radial impeller compressor
stages (αz2 ≈ 90◦) typically exhibit pressure ratios ranging from 4:1 to 7:1 with
a single impeller. Axial compressor stages (αz2 ≈ 0◦) require multiple blade
rows and cascades to achieve an equivalent pressure ratio. This is due to the
absence of Coriolis effects in axial compressors contributing to a low pressure
rise per each axial stage. As such, axial compressors are typically longer, but
have a smaller frontal area ( r4s), than a comparable radial compressor (Sayers,
1990). Furthermore, radial compressors perform well in a larger range of flow
rates than axial compressors; however, axial compressors usually achieve a 3-
4% better design point efficiency (Dixon, 1998). A compressor stage with a
mixed flow impeller typically exhibits a cross-over between radial and axial
compressor performance.

Vaneless gap

For any vaned or passage diffuser, a vaneless diffusion gap must be placed
between the impeller trailing edge and the diffuser leading edge. This diffuses
the flow in transonic compressors, which reduces the shock at the diffuser lead-
ing edge. The vaneless gap also allows mixing-out of the impeller wake which
reduces incidence oscillations at the diffuser leading edge (Aungier, 2000). The
vaneless gap radius ratio, k, is the ratio of mean diffuser leading edge radius
to mean impeller trailing edge radius,

k =
r3m
r2m

(2.8)

where subscript ‘m’ denotes mean radius. Aungier (2000) suggests a gap ratio
of 1,06 < k < 1,12 but good results for a vaned diffusers with k = 1,15 were
obtained by Marconcini et al. (2010). Bennett et al. (2000) states that higher
values for k result in larger boundary layer formation across the vaneless gap,
which subsequently contributes to blockage at the diffuser leading edge.
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Diffuser discharge flow

Flow entering the combustion chamber is required to meet a specified static
pressure ratio, PR(01−4),DP , and swirl angle, αz4. Additionally, a flow with
low distortion of pressure and velocity in the tangential direction is desired
to simplify the combustor design process (Burger, 2016). Krige (2013) and
de Villiers (2014) noted significant flow irregularities in their respective radial
compressors due to recirculation in the 90◦ vaneless bend.

Burger (2016) states that a crossover diffuser is likely to achieve performance
benefits over conventional type diffusers when the constraint on discharge swirl
is relaxed to above 25◦ due to the absence of de-swirling vanes.

Static pressure recovery coefficient

The diffusion performance of a diffuser is determined with a static pressure
recovery coefficient, Cp, which gives the static pressure rise through the diffuser
as a percentage relative to diffuser inlet kinetic energy as follows:

Cp =
p4 − p3
p03 − p3

. (2.9)

Japikse and Baines (1998) state a typical Cp range from 0,5 to 0,7 for unlimited
radial constraint diffusers due to a longer radial passage length available to
fully diffuse the flow prior to a volute or collector. Japikse and Baines (1998)
further state that for a radially constrained compressor stage, a typical Cp of
between 0,2 and 0,5 can be expected due to its inability to sufficiently diffuse
flow in a short passage without incurring separation losses.

Diffuser blade number

Blade number selection is typically performed early in the design process and
later adapted based on flow and performance observations. Aungier (2000)
states that blade number can affect both operating range by controlling sec-
ondary flows, and efficiency by controlling blade surface viscous losses. Aungier
(2000) suggests that the radial diffuser vane number can be determined using

Zdiffuser =
2π(r4 cos β4 − r3 cos β3)

t4b4 + b3(tan θcLB − t3)
(2.10)

where t and LB are the vane thickness and chord length, respectively. The
passage divergence angle, θc, typically has a value near 5, 5◦ (Aungier, 2000).
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Endwall curvature

Japikse and Baines (1998) describe compressors as prone to separation at any
surface with a high curvature. This is due to the added turning of a flow
which is already unstable due to a positive pressure gradient in the mean flow
direction. Japikse and Baines thus suggest to reduce endwall curvature where
possible in regions of high diffusion.

2.4 Diffuser types

2.4.1 Conventional diffusers

Vaneless diffuser

Vaneless diffusers are comprised of a passage with increasing cross-sectional
area to diffuse flow and obtain a static pressure increase. This type of diffuser
has the widest operating range of all diffuser types due to no occurrence of
vane separation or blockage (Aungier, 2000). However, vaneless diffusers are
not applicable for MGT implementation due to low diffusion rates leading
to large relative size requirement in comparison to any vaned or wedge type
diffuser (Dixon, 1998).

Channel diffuser

Channel diffusers are the most common and well studied diffusers for MGT
application (Japikse, 1996). Channel diffusers have a discrete number of flow
passages separated by a wedge island with straight sidewalls, such as those
investigated by Ziegler et al. (2003) and Krige (2013). If the wedge sidewall is
curved, the flow passages are referred to as ‘pipes’, as investigated by Bennett
et al. (2000). Diffusion rate is controlled by varying channel divergence angle
and wedge sidewall angle (Aungier, 2000). Krige (2013) investigated various
wedge type configurations for MTG application and states that the diffuser
leading edge should be sloped and blade angles varied from hub to shroud to
match impeller discharge flow angle at design point.

Vaned diffuser

Vaned diffusers use aerodynamic blades to achieve a higher efficiency at design
point, but rapidly lose performance in off-design operation when compared
with vaneless equivalent diffusers (Aungier, 2000). Vaned diffusers, unless of
low solidity, are also susceptible to choking in the throat (typically inlet) due
to blade thickness contributing to passage blockage. The inlet blade angle, β3

is typically in the range of 68◦ < β3 < 74◦, and it strongly influences stall
margin and shock losses for transonic flow. (Aungier, 2000).
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Tandem vaned diffuser

Tandem cascade type diffusers are comprised of two or more blade rows prior to
the de-swirling vanes. A tandem vaned diffuser often achieves better operating
range performance in comparison to a single blade row diffuser. This is due
to the reformation of the boundary layer in each successive blade row which
reduces blockage contributed by the boundary layer. This also reduces the
likelihood of flow separation towards the trailing edge (Japikse, 1996).

2.4.2 Compact diffuser

Compact diffusers are of particular interest to the aerospace industry, where
engine frontal area is often constrained and a reduction in either axial or radial
engine size provides a reduction in engine mass. Channel diffusers, such as
those used by Krige (2013), are typically used for UAV application; however,
large losses are incurred in the radial-to-axial vaneless bend in such a radially
constrained compressor. Successful implementation of a compact crossover
type diffuser by Burger (2016), Kock (2017), and Jie and Guoping (2010) have
shown a reduction in losses incurred in the radial-to-axial diffuser bend by
use of a continuous vane to assist in flow turning. Jie and Guoping (2010)
report a static pressure recovery coefficient, Cp, of 0,65 and 11% improvement
in engine thrust when compared to a standard channel diffuser. Similarly,
Han et al. (2018) used a ‘fishtail’ type diffuser to achieve an improvement in
performance over a channel diffuser, but state that a continuous vaned type
diffuser will have a less mixed-out flow distribution at diffuser discharge due
to secondary flows contributed by the vane wake.

2.5 Previous mixed flow and MGT

compressor research

Research towards mixed flow compressors began in the late 1940s with three
papers produced by the National Advisory Committee for Aeronautics regard-
ing the development of a turbojet aircraft engine with a design mass flow of
8,89 kg/s and 356 mm maximum stage diameter. The first paper by Goldstein
(1948), presented design theory for mixed flow impellers with subsequent ex-
perimental results presented by Wilcox (1948). Finally, Wilcox and Robbins
(1951) presented brief supersonic design theory for a vaned diffuser with ac-
companying experimental results for the complete stage. Wilcox and Robbins
found that the thickness of the boundary layers and blade wakes contributed
significantly to blockage, which prevented the diffuser from reaching design
point before choking. Furthermore, it was found that transonic diffuser leading
edge shock significantly affected flow angles in the vaneless gap when compared
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to a fully vaneless diffuser and indicated major shortcomings of available tran-
sonic diffuser design theory. Wilcox (1948) further determined that a mixed
flow impeller will be more compact and simpler than an equivalent axial com-
pressor but will have a reduced operating range.

After the initial mixed flow compressor research, general research focus shifted
to axial multistage compressors due to their reduced weight and much larger
mass flow operating range (favourable for large aircraft turbojet propulsion)
when compared to centrifugal and mixed flow compressors. During the 1980s,
the need for smaller turbojet engines increased with the introduction of UAVs
and lightweight manned turbojet aircraft.

Kano et al. (1984) developed a mixed flow compressor operating at 7,46 kg/s
and a pressure ratio of 2. Kano et al. found that a compressor with an im-
peller meridional discharge angle, αz2, of 60◦, achieved twice the flow rate
of an equivalent purely radial compressor. Furthermore, flow separation was
observed at the convex vaneless gap wall prior to the radially vaned diffuser.
Sarkar (1992) presented a design method based on 2D cascade theory and com-
pared this against experimental results for a subsonic conical impeller with αz2

= 22, 5◦. Sarkar achieved a good design point prediction but noted that short-
comings at stall side prediction were likely due to the slip factor formulation,
developed by Stodola (1927), being for purely radial impellers.

Since the late 2000s, major advances in CFD modelling, specific to transonic
compressor flow, have allowed a much better understanding of shock losses,
shock induced separation and transonic boundary layer development (with as-
sociated blockage effects). Further developments in manufacturing methods
have allowed for more complex centrifugal blade geometries with thinner mini-
mum manufacturable thicknesses. This has increased the viability of transonic
mixed flow small turbojet and MGT engines.

Cevik and Uzol (2011) used the design of experiment method to optimize an
86 mm diameter transonic mixed flow impeller, with αz2 = 50◦, and a 4,35
total-to-total pressure ratio at 0,388 kg/s, requiring a shaft power of 84,1 kW.
Cevik and Uzol encountered issues of separation from the impeller shroud
downstream of the leading edge shock. Zhu et al. (2013) determined that the
interaction between shock and tip leakage vortex results in low momentum (or
even separated) flow regions at the impeller shroud. Zhu et al. successfully
reduced the magnitude of these low momentum flow regions using a grooved
shroud casing, which subsequently improved the stall margin by 2,7%. Rajaku-
mar et al. (2013) verified that the stall margin is strongly influenced by tip
leakage effects which cannot be sufficiently reduced with any practical change
in tip gap size for a mixed flow impeller.
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Jie and Guoping (2010) identified the diffuser and radial-to-axial bend to be
a major performance loss contributor in MGT compressors. This was due to
the high separation and low pressure recovery coefficient resulting from the
small radial space allowance for the diffuser. Jie and Guoping proposed and
successfully tested a novel continuous vane (crossover) diffuser with reduced
endwall curvature. This was introduced by a swept diffusion passage, achieving
a 40% increase in static pressure recovery coefficient to a Cp of 0,65. Successive
optimizations and flow investigations of crossover diffusers were conducted
by Burger (2016) and Kock (2017). A patent was issued for Tarnowski and
Bulot (2018) which describes the crossover diffuser as mentioned above. Han
et al. (2018) and Han (2018) present and assess the performance of a ‘fishtail’
diffuser which is a channel diffuser with a swept meridional passage. Han et al.
achieved a 2,4% efficiency increase and 4,7% surge margin increase compared
to the original radial wedge diffuser with the disadvantage of strong wake
formations in the stage discharge flow. Furthermore, Han et al. found that
the addition of either splitters or de-swirlers did not improve stage performance
due to strong vortices in the ‘fishtail’ channel.

Recently, design strategy has shifted from independent aerodynamic and struc-
tural component optimizations, to multidisciplinary optimizations of a full
stage or even a full engine. Verstraete et al. (2010) performed a multidisci-
plinary optimization of a radial compressor and determined that the blade
hub thickness and blade leading edge lean have considerable impact on von
Mises stress but negligible aerodynamic impact. Verstraete et al. further state
that endwall curvature strongly affects both aerodynamic and structural re-
sults but requires greater sample numbers due to the increased number of free
parameters defining endwall features.

Giri et al. (2016) designed and optimized an MGT compressor with mixed flow
impeller and diffuser, and axial de-swilring vanes with a maximum diameter of
255 mm and αz2 of 55,5◦, achieving a pressure ratio of 5,0 and 81% efficiency.
Giri et al. note that high pressure ratio MGT compressors will incur signifi-
cant losses in turning the supersonic impeller discharge to the axial discharge
direction. Sadagopan and Camci (2019a,b) completed a design methodology
and flow analysis for a complete mixed flow compressor stage with αz2 ranging
of 47◦-60◦ and target pressure ratio of 6,0 in the 1-10 kg/s mass flow range.
The stage incorporated a supersonic axial tandem diffuser and achieved an
efficiency of 75,7% with a mass flow of 3 kg/s.

Full engine optimizations are inherently computationally expensive and are
mostly performed beyond academic research. One such optimization of a KJ66
MGT engine was completed by Teixeira et al. (2018) with the aim of reducing
fuel burn while maintaining thrust performance.
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Baseline Design

3.1 Design requirements

The compressor stage developed during this research project was to be im-
plemented in a UAV MGT engine. The design was to meet the following
requirements to satisfy the constraint reasoning discussed in section 2.2:

• Stage total-to-static pressure ratio between 4 and 4,5 at a design point
mass flow rate of 1,089 kg/s

• Choke mass flow rate of at least 1,130 kg/s

• Stall mass flow rate of at most 1,00 kg/s

• Blade-to-blade absolute flow angle of 25◦-35◦ entering the combustion
chamber

• The stage is to be structurally feasible for manufacture using 7075-T651
aluminium alloy, which implies:

– A maximum localized von Mises stress of at most 380 MPa with
the majority of stress below 300 MPa

– Acceptable impeller deformation to avoid shroud interference

– No resonance encountered near design speed

• Design point total-to-static stage efficiency of at least 83%, with the
objective of maximizing efficiency.

These requirements were to be met at an operating speed of 73 000 RPM, with
a maximum diameter of 180 mm for the stage.

To conform to available manufacturing methods, the blades were to be flank
milled with a minimum thickness of any blade section of no less than 0,2 mm.
Flank milling implies that the blade shape definition is to be comprised of only

19
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two camber and thickness profiles (in this case at hub and shroud surfaces)
with linear interpolation spanning between the two sections. Such a limita-
tion is often implemented to produce a simple blade geometry that is suitable
for manufacture by the milling process, while reducing the number of blade
parameters and simplifying the early optimization phase.

3.2 Baseline design process

A baseline design was first developed that meets the desired operating range
in order to be used as a starting point and performance reference for the
subsequent optimization process.

Design type choices

The impeller meridional discharge angle, αz2, was chosen to be located be-
tween 50◦ and 90◦. This range was selected based on the relatively well per-
forming mixed flow compressors developed by Giri et al. (2016), Kock (2017)
and Sadagopan and Camci (2019a) for a similar operating mass flow rate. The
lower bound for αz2 was chosen based on the research of Sadagopan and Camci
(2019b), which suggests that more axial designs are not likely to attain the
desired pressure ratio requirements in a single (compact) stage.

A crossover diffuser was chosen for this design to reduce losses associated with
the vaneless bend while maintaining a small frontal area for UAV application.
Frontal area was strictly restricted with the maximum diameter constraint
supplied by the CSIR, while stage discharge into the downstream combustor
was to be axial in the meridional plane. This necessitated a compact diffuser
design of high diffusion rate to fit within the geometric constraint. The relaxed
stage discharge swirl requirement further benefited the decision of using a
crossover diffuser, which was found by Burger (2016) to perform well at higher
discharge swirl angles due to the absence of additional de-swirling vanes.

Mean-line design procedure

An initial estimate of key design parameters was obtained using COMPAL R©,
which is a mean-line state based preliminary design tool that uses semi-empirical
turbomachinery relations such as those described by Dallenbach (1961), Whit-
field (1990), Dixon (1998), and Aungier (2000). This was necessary to obtain
an estimate of design parameters such as impeller leading and trailing edge
blade angles, inducer radius, and impeller discharge radius. For example, im-
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peller inlet blade angles would be determined by

ω2m

πkρ01a301
=

M3
r1 cos(βs1) sin

2(βs1)(
1 + 1

5
M2

r1 cos
2(βs1)

)4 . (3.1)

as described by Dixon (1998) for no prewhirl (Cθ1 = 0) and assuming γ = 1,4
(ratio of specific heats). Dixon states that a well designed inlet will have
transonic conditions at operating point but with allowance for a fluctuation in
mass flow rate without reaching choke.

Limited crossover diffuser design methodology was available at the time of
writing this thesis. This lead the diffuser parameter selection process to be
based on assumptions from theory available for radial vaned, vaneless, and
channel diffusers. Consequently, COMPAL R© also delivered limited capabilities
for a thorough preliminary diffuser design process.

For example, to obtain an initial diffuser vane number, an estimate of crossover
vane length had to be determined. Chord length for an equivalent radially
vaned diffuser as given by

LB =
2(r4 − r3)

cos β3 + cos β4

(3.2)

was first determined. β3 was selected based on the previously stated range
(subsection 2.4.1), while β4 was selected to match the required exit swirl. The
obtained length was subsequently multiplied by a semi-arbitrary value of 1,5
to obtain an estimate of the curved chord length in a crossover diffuser. This
scaled value was subsequently substituted into Equation 2.10, along with a
discharge swirl angle of αz4 = 0,25◦ and inlet passage height equal to the
impeller outlet passage height (obtained from COMPAL R©), such that b3 =
b2. The leading and trailing edge blade thickness was set to the minimum
manufacturable thickness of 0,2 mm. It should be noted that the obtained
value for Zdiffuser was only a coarse estimate of initial main blade number and
was revised later during the optimization process.

After the design requirements and certain geometry parameters were supplied
as input by the user, a full geometry parameter list was received as output.
This parameter list was imported into AxCent R© which builds a full geome-
try by applying Bézier interpolation for blade shape between the state points
determined in COMPAL R©. Additionally, AxCent R© estimates a meridional
geometry using internally calculated flow and pressure coefficients that are
compared against an existing design database. Within AxCent R©, the prelim-
inary design was iteratively adjusted using a combination of both internally
available design tools and implementation of design theory presented in Chap-
ter 2. A comparison of the preliminary and final baseline designs are shown in
Figure 3.1, with key design changes discussed below.
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(a) Preliminary (AxCent) (b) Baseline

Figure 3.1: Preliminary and baseline geometry comparison

3.3 Preliminary-to-baseline design changes

A rounded hub inlet bulb was added to the preliminary design as shown in
Figure 3.2, to represent practical implementation. The preliminary design
achieved a choke margin considerably lower than that which was predicted us-
ing flow estimates substituted into Equation 2.2. To increase the choke margin,
the impeller splitter leading edge was moved significantly further downstream
to reduce blockage contributed by splitter thickness in the region of high blade
solidity (due to lean). Furthermore, both the impeller hub and diffuser shroud
endwalls were adjusted to increase the respective throat area in both blade
rows. The vaneless gap size was also increased to conform with the k value
suggested by Aungier (2000) (see section 2.3) and a splitter was added to the
diffuser due to very low blade solidity towards the preliminary diffuser trailing
edge.

Preliminary (AxCent)

Baseline

Figure 3.2: Preliminary and baseline meridional channel comparison
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Chapter 4

Optimization Setup

4.1 Workflow overview

Once a baseline design geometry was selected, the workflow proceeds from
preliminary design phase to data-gathering and optimization phase. The base-
line geometry was meshed and the flow solver set up for both aerodynamic
and structural computations. A parametric model was chosen and fitted to
the baseline geometry and coupling between various parameters implemented
with corresponding parameter bounds chosen. A database generation was sub-
sequently performed. Results of the database were filtered and imported into
an optimization process to meet the design requirements while maximising the
objectives.

Figure 4.1 describes the full optimization workflow. The workflow was hosted
by the FINETM/Design3D optimization algorithm (’Modelling’ block in the fig-
ure). A Python script (developed by NUMECA Ingenieurbüro) was adapted
for sequencing each step of structural analysis, as well as modelling and mesh-
ing of the aerodynamic analysis. The Python script was implemented to per-
form a simultaneous multi-row optimization. Furthermore, the script was
needed to perform the structural analysis using the CalculiX open source
solver, which was not part of the standard NUMECA workflow. Each aspect
of the optimization process is now discussed.

23
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passage geometries
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Figure 4.1: Workflow process overview

4.2 Operating points

For each design four operating points were computed as shown in Figure 4.2,
namely: one choke point (CP), one design point (DP) and two near stall points
(SP1 and SP2). The points were selected to obtain a set of responses (results)
that can quantify the performance curve range and design point performance
as described in section 2.2.

Two near stall point computations were performed to obtain a near stall sta-
bility quantification,

ΔPR(01−05),stall =
PR(01−05),SP1 − PR(01−05),SP2

mSP1 −mSP2

(4.1)

where the difference in total pressure ratio is divided by the respective dif-
ference in mass flow of each stall point to determine the performance curve
pressure gradient near stall. A more negative gradient implies that the points
are further from the true stall point and thus are more stable at the computed
mass flow rate than a design with a less negative gradient.
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Figure 4.2: Illustration of selected operating points for optimization process

4.3 Parametric model

The parametric modeling was performed using AutoBladeTM which forms part
of the NUMECA FINETM/Design3D turbomachinery design package. Two
separate parametric models were used for the impeller and diffuser blade pa-
rameters, however, the meridional passage parameters were common for both
parametric models. Each model was configured with appropriate endwall de-
scriptions comprising of Bézier curves and straight lines. Blade camber and
thickness descriptions, as well as stacking laws and blade configurations were
also configured before fitting the model to the geometry developed in the base-
line design process. The choices of impeller and diffuser blade description, as
well as meridional description models are discussed below, with a full list of
model settings listed in Table C.1.

4.3.1 Impeller meridional model

The impeller meridional channel consists of two 5-point Bézier curves describ-
ing the hub and shroud curves in the bladed portion of the impeller, with a
Bézier-spline describing the inlet bulb (hub side) and line segment describing
the inducer (shroud side). The inlet bulb geometry was kept constant with
all 4 points fixed in position, while the inducer radius was determined by the
free parameter R IN which defined the radius of the first 3 shroud points as
seen in Figure 4.3. The impeller outlet position was controlled by shifting the
last hub Bézier point with R ITE H (radius impeller-trailing-edge hub) and
Z ITE H (z -coordinate impeller-trailing-edge hub). The impeller outlet size
and orientation was obtained by placing the last shroud Bézier point accord-
ing to the αz2 (meridional angle) and H ITE (height impeller-trailing-edge)
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parameters. Endwall curvature near the outlet was controlled by moving the
point adjacent to the exit, along a line which defines αz2 and also coincides
with the last Bézier point, with the D ITE H and D ITE S parameters. Point
S4 was given freedom of movement within specified bounds, as shown by the
red shaded area, while the remaining Bézier points were each constrained to
linear movement by releasing only one free coordinate parameter, ’R ’ or ’Z ’
respectively. Such reductions in freedom of movement were done to minimize
the number of free parameters while still having control of a large range of
feasible geometries.
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Figure 4.3: Impeller meridional control point description

To ensure manufacturability, no shroud points were allowed to be located at a
radius less than R IN as this would require a shroud casing with lower radius
at certain locations than the inducer radius. Such a casing cannot be fitted to
the impeller due to interference at the impeller leading edge tip.

4.3.2 Diffuser meridional model

The diffuser meridional channel profile was found to have a significant effect
on flow separation at the hub due to flow experiencing both diffusion and a
relatively sharp change in flow direction from near radial to purely axial in the
meridional plane. As such, parameters were introduced to have strong control
over diffuser cross-sectional area and endwall curvature.
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Figure 4.4 describes parameters controlling upstream and downstream portions
of the diffuser and flow domain. All diffuser Bézier points are located relative
to the impeller trailing edge points. The W GAP parameter controls vaneless
diffusion gap width and D GAP controls vaneless gap added expansion relative
to a parallel wall channel at inclination αz2 as shown by the inclined dotted
lines. The added expansion was placed at the hub due to expected separa-
tion at the shroud of the vaneless gap, as observed by Kock (2017). Diffuser
exit channel axial position and height are controlled by W DTE and H DTE
with downstream flow domain geometry kept constant but shifted relative to
the diffuser exit. Reasoning for the domain shape and exit pinch is given in
subsection 5.2.1.
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Figure 4.4: Diffuser meridional outer control point description

Figure 4.5 shows parameters controlling the bladed portion of the meridional
channel. Two sets of parallel lines passing through the impeller and diffuser
trailing edge points restrict Bézier point freedom with all points, excluding S9
and H11, lying on these lines. This was done to ensure endwall slope continuity
from impeller to diffuser and the downstream domain, with the exception of
the discontinuity associated with the vaneless gap expansion. Exact location
of these aforementioned points are controlled by parameters D DLE S (/ H)
and D DTE S (/ H). Points S9 and H11 are both free in the r-z-directions but
are bound to a region with upper radius and lower z-values bound by parallel
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lines to prevent S9 from moving above the diffuser outer radial constraint.
The radial constraint also prevents an ’S ’ shape in either the hub or shroud
curves, while the z-value lower bound was introduced to increase the number
of feasible geometries.

Figure 4.5: Diffuser meridional inner control point description

4.3.3 Meridional parameter coupling

Due to the large number of free parameters, a large range of possible ge-
ometries were constructed (later discussed in subsection 7.1.1). Predicting
all possible parameter combinations and eliminating all unfeasible geometries
was not possible, but measures were implemented to reduce the number of
unfeasible geometries using parametric feature constraints and introducing in-
terdependencies between parameters.

Impeller shroud curvature

Impeller shroud separation is heavily influenced by shroud curvature which can
be controlled by points S3, S4, and S5. To reduce unfeasible impeller shroud
curves (due to inflection or aggressive curvature) obtained with the variation
in impeller axial length, the Possible location for S4 region was coupled to
points S3 and S5. The midpoint of this region was set to coincide with the
mean z -coordinate of points S3 and S5.
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Diffuser passage height

Many designs initially exhibited a choke point below the design mass flow rate
due to a small diffuser throat cross-sectional area. To reduce the likelihood
of this happening, Points S9 and H11 were limited to a minimum proximity
of 5 mm from each other by implementing the min operator in the parameter
description function. Additionally, points S9 and S8 were prevented from
exceeding the diffuser maximum radius. The diffuser trailing edge shroud
radius, R DTE S, was set equal to the maximum allowable radius. Similarly,
points H10 and H11 were prevented from exceeding the diffuser trailing edge
hub radius, as obtained by R DTE S - H DTE.

Meridional angle to axial length coupling

The impeller meridional angle parameter, αz2, and impeller axial length param-
eter, Z ITE H, were coupled to control impeller geometry by pivoting around
a point coinciding between the inducer radius, R IN, tangent line and the
impeller exit hub angle as shown in Figure 4.6. This method of coupling main-
tained axial and meridional angle freedom but reduced the number of designs
with an undesirable ’S ’ shape impeller shroud inflection. Such an inflection
was encountered in designs with a short axial length and high meridional angle.
This coupling method also reduced the number of designs with excessively long
blade length and bad blade angles in the elongated impeller inlet section. Such
an issue was encountered in designs of long axial length and high meridional
angle.

=90° 
=70°
=45°

Inflection point

Figure 4.6: Sample designs with varying of only the αz2 parameter
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4.3.4 Impeller blade model

The impeller main blade camber model consists of two camber descriptions.
The hub side camber description was located at −0,05 times passage height
(blade section 1) and the shroud side camber description was located at 1,05
times passage height (blade section 2). This was chosen due to the flank
milling manufacturing requirement, while blade sections had to intersect the
channel endwall for proper geometry generation. The splitter camber profile
was defined as a symmetric interpolation of the adjacent main blade camber
curves. Main and splitter blade trailing edges were cut to blunt at a constant
DMR (constant meridional distance), while the leading edge was of constant
radius construction. A trailing edge stacking law was also applied. Leading
edge position was obtained by linear interpolation between a point on each
section defined at a constant axial position with main blade forward sweep
controlled by a difference parameter between both respective constants.

To increase the percentage of feasible blade profiles, all Bézier points on section
1 and section 2 were coupled with user-defined parameters as illustrated in
Figure 4.7a. Section 1 blade leading edge was used as a reference for all camber
points. In section 1, the first and last Bézier point offset was controlled by
parameters H1 and H4, where H1 directly influences blade leading edge angle,
while H4 controls blade wrap angle and thus chord length. Due to a large
variation in blade lengths causing many unfeasible blade shapes with non-
coupled points, parameters H2 DELTA and H3 DELTA were introduced to
move the two middle camber points relative to point H4. Furthermore, section
2 was linked to section 1 by parameter H4 DELTA which coupled the final
camber points on both blade sections to reduce unfeasible geometries generated
while maintaining sufficient geometric control.

H3_DELTA

H2_DELTA

H4 (or 'H4_DELTA' for section 2)
H1

(0;0)

(a) Impeller

(0;0)

S_H1

S_H2

S_H3_DELTA

S_H4

(b) Diffuser

Figure 4.7: Camber control point description
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The thickness distributions of the impeller main and splitter blade were con-
trolled independently with a 5-point Bézier-spline, as shown in Figure 4.8a.
The Bézier-spline controls leading edge radius (constant), leading edge half
wedge angle LE HALF ANGLE, impeller maximum blade thickness point T IMID,
and impeller trailing edge thickness T ITE. A geometric spacing ratio of 2 was
applied to place maximum thickness near 30% blade length and a trailing edge
half-angle of zero was set to achieve an approximate airfoil shape. Parameter
bounds were set such that no blade portion contained a thickness less than
the minimum manufacturable thickness. Examples of database geometries are
shown in Figure E.1.

T_IMID_HUB (/_SHROUD)

LE_HALF_ANGLE_HUB (/_SHROUD)

T_ITE_HUB (/_SHROUD)

(a) Impeller

Suction-side

Pressure-side

T_MINT_MID_HUB (/_SHROUD)

(b) Diffuser

Figure 4.8: Blade thickness control point description

4.3.5 Diffuser blade model

The diffuser blade parametric model was constructed similarly to the impeller
with a 4-point Bézier controlling the camber profile. Point S H2 (Figure 4.7b)
was uncoupled from the blade wrap parameter, S H4, since blade camber cur-
vature in the first 50% of blade length was deemed a sensitive characteristic
and was thus controlled independently of the latter 50% of the camber profile.
An example of wrap control using only S H4 is shown in Figure E.4. The dif-
fuser blade geometry was interpolated between two constant spanwise height
sections located at −0,05 and 1,05 times passage height. The final diffuser
model consisted of 2 splitter blades with all blades having blunt trailing edges
at a constant axial position. A leading edge stacking point was employed with
a straight leading edge interpolated between the intersections of the hub and
shroud with two constant radius lines. The constant radius lines were coupled
with the W GAP parameter to obtain a diffuser leading edge that is parallel
with the impeller trailing edge in the meridional plane.

The diffuser thickness control points are given in Figure 4.8b with pressure
and suction side Bézier points controlled by T MIN (minimum thickness) and
T MID (maximum thickness). Such a profile was chosen since it was expected
to help control suction side separation occurring at the diffuser hub.
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4.3.6 Impeller solid model

The impeller solid body was modelled as a periodic section (1/9th) with geom-
etry defined by 4 lines and a 4-point Bézier curve in the meridional profile, as
shown in Figure 4.9. Four parameters were implemented to control the back-
face and disk face of the body for the purpose of controlling body stress and
tip displacement. All free points are located relative to the impeller trailing
edge hub point to allow more feasible solid body geometries with impellers
of differing axial lengths. Parameter W OUTER controls the body outer face
width, while W BACK controls the body backface bore shoulder area. Param-
eters W BORE and W CUT control the extruded bore length and disk face
undercut angle, respectively. The undercut angle parameter was introduced
since it was determined by van der Merwe (2012) to influence tip displacement,
while Diener et al. (2016) found that the undercut could be used to control
stress in the bore and blade trailing edge.

W_BORE

W_CUT

W_OUTER

W
_
B

A
C

K

Figure 4.9: Impeller solid body control points

To ensure successful solid body construction in AutoBladeTM, the solid body
control endpoints were set to intersect the hub endwall. Additionally, the solid
body control points were placed 0,5 mm downstream of the impeller trailing
edge to ensure full intersection between blade root and solid domain for the
purpose of successful blade fillet generation. The fillet was modelled as a
‘constant radius’ type with no fillet at the blunt trailing edge.
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4.4 Database generation

4.4.1 Overview

The optimization process consists of first populating the possible design space
by running a database generation that pseudo-randomly scatters free parame-
ters (independent variables) across the design space with the aim of obtaining
trends in responses (dependent variables) and feasibility information of the
entire bounded design space using as few database points as possible. Hilde-
brandt et al. (2009) suggest computing at least three times more successful
database designs than the number free parameters for a good design space
population.

After each design in the database was simulated, a ‘*.plan’ file was appended
with the accompanying design number, parameter values, response values, and
success flag. The success flag indicates whether the design simulation achieved
desired convergence and response values can be assumed valid. The success
flag was only set as valid if no failures occurred during computation and all
convergence requirements, as specified in subsection 5.3.3, were satisfied.

4.4.2 Parameter scattering

Three databases were computed with parameter scattering determined using
the Latin Hypercube Sampling (LHS), Centroidal Voronoi Tessellations (CVT)
and Latinized Centroidal Voronoi Tessellations (LCVT) methods. LHS is the
process of transforming the design space into a set of multidimensional discrete
cubes (Hypercubes) and then moving parameters within the cube in such a
manner as to ensure the greatest possible geometric diversity (spacing) be-
tween each parameter point (Saka et al., 2007). The LHS method is known to
result in clustering of parameters, thus reducing the efficiency of design space
exploration, while the CVT method produces a more uniform distribution of
parameters across a larger area but tends to cluster near coordinate axes. The
LCVT method combines both methods by applying a Latinization (geomet-
ric scattering within a Latin Hypercube) to an initial CVT parameter set to
obtain the most effective design space exploration (NUMECA International,
2019c).

4.4.3 Design space

Selecting free parameters and corresponding upper and lower bounds was an
iterative process relying on a combination of previous research, compressor
design literature and largely personal intuition. A discussion on free parameter
selection and choice of corresponding bounds for each optimization is presented
below.
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Free parameter selection

Two databases and subsequent optimization processes were completed. The
first optimization, OPTI1, included free parameters controlling mostly end-
wall and blade meridional features (see Table 4.1). The second optimization,
OPTI2, froze most meridional parameters and focused on blade camber profile
and thickness distribution. OPTI2 also included impeller body parameters to
control bore stress and body deformation.

Table 4.1: Free parameter list

First Optimization (OPTI1) Second Optimization (OPTI2)

Geometry type Geometry feature Free parameters Geometry type Geometry feature Free parameters

Channel profile Meridional angle 1 Channel profile Vaneless expansion 1
Hub and shroud
curvature

8 Blade profile
(meridional)

Diffuser splitter
(position)

1

Passage heights 3 Camber profile Impeller camber 7
Vaneless expansion 2 Diffuser camber 8

Blade profile
(meridional)

Impeller axial length 1 Thickness profile Impeller main blade 3
Diffuser axial length 1 Impeller splitter 1 (+1 from main)
Impeller inducer radius 1 Diffuser splitter blade 1

Impeller outlet radius 1 Tangential Impeller/Diffuser lean 2

Impeller splitter
(position and angle)

2 Solid body Impeller body 2

Diffuser splitter
(position and angle)

2

Impeller sweep 1
Vaneless gap size 1

Camber profile Impeller camber 8
Diffuser camber 6

Thickness profile Impeller 6
Diffuser 2

Tangential Impeller lean 1

Total: 48 Total: 25

OPTI1 was computed with the aim of exploring a large design space region
and determining the general best region for the current design requirements.
This was achieved by freeing many parameters (mostly meridional) that were
deemed to have a strong response influence. This included R IN, R ITE H,
αz2 and blade edge angles of both blade rows.

OPTI2 was computed with the aim of further optimising the design achieved
in OPTI1 and introducing requirements of structural feasibility. The most
influential parameters of OPTI1 were identified with the analysis of variance
(ANOVA) method and subsequently frozen at the optimal value. This was
done to allow the weaker parameters’ influence to become more evident and
improve the ANOVA for these weak parameters for OPTI2.
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Free parameter bounds

Once a free parameter list was selected, the upper and lower bounds for each
parameter had to be selected to fully define the possible design space. The
bound selection and evolution process is described as follows.

Firstly, parameters present in well-defined design methodology literature are
assessed. For example, inducer shroud radius, R IN, is understood to strongly
influence the inducer choke mass flow as indicated by Equation 3.1, therefore
a desired range of choke mass flow in the inducer can be substituted and corre-
sponding R IN bounds obtained. Table 4.2 lists the bounds chosen for OPTI1
and the optimized (and frozen) value for OPTI2. Similarly, typical ranges for
vaneless gap radius ratio and diffuser leading edge angle were obtained from
literature (see section 2.3) to determine W GAP and S H1 bounds respectively.

Table 4.2: Selected parameter bound evolution between optimizations

Geometry feature Parameter
OPTI1 OPTI2
LB UB LB UB

Meridional angle αz2 50◦ 85◦ 71,2◦

Inducer shroud radius R IN 41,5 mm 44,5 mm 44,45 mm
Impeller wrap (hub) H3 DELTA -1,35 -1,00 -1,25 -1,21
Vaneless added expansion D GAP -0,40 mm 1,00 mm 0,15 mm 0,35 mm
Vaneless gap width W GAP 5,50 mm 8,00 mm 6,20 mm
Diffuser LE angle (shroud) S H1 64◦ 76◦ 70◦ 74◦

Backface undercut W CUT 0 mm -2,00 mm 2,00 mm

Secondly, parameters with limited information in design literature were as-
sessed by use of the preliminary design software in order to obtain coarse
feasible bounds. This method was implemented for the meridional angle and
impeller wrap parameter, H3 DELTA. These parameter bounds were often too
large, producing many unfeasible designs. By plotting design success flag vs
parameter value after OPTI1, the evolved bounds were obtained (see subsec-
tion 7.3.2 for success rate graphs). For example, the range of H3 DELTA was
reduced from 30% to 3,3%. Similarly, meridional passage curvature param-
eters were assessed with this method (for possible geometries see Figure E.2
and Figure E.3).

Finally, parameters with no quantifiable (only observation based suggestions)
design literature were assessed. For example, the effects of impeller undercut
were mentioned by van der Merwe (2012) and used only to guide the semi-
intuitive selection of undercut distance. Undercut was only introduced into
OPTI2 since structural results were not considered in OPTI1.
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4.5 Optimization

4.5.1 Optimization methodology

The optimization process initiates by training a surrogate model (SM) on the
‘*.plan’ file generated during the database process. A SM is a mathemati-
cal estimation of response values, given a set of parameters as input (Bagheri
et al., 2017). The SM uses available responses and accompanying parameters
to perform multidimensional curve fitting and subsequently build a mathe-
matical model of the ‘black-box’ type problem faced when optimizing a design
purely using CFD. The problem is defined as ‘black-box’ type since there ex-
ists only a parameter list as input and a response list as output values for the
CFD chain, without any exact knowledge of how any input parameter con-
trols any response. For this investigation, the Radial Basis Function Network
(RBFN), the Tuned-RBFN, and the Kriging models were compared with a
Leave-One-Out (LOO) analysis with the best being chosen for the optimiza-
tion process. The LOO analysis removes one sample from the training data
and uses remaining data to train the SM, before comparing the difference of
the omitted sample’s response values to the predicted response values obtained
from the SM. This process is repeated for each data point (each design), before
returning a correlation coefficient of the predicted and actual response values.
A strong correlation indicates a good prediction of responses by the SM. The
LOO analysis was performed using the internal MINAMO tool contained in
FINETM/Design3D.

A Genetic Algorithm (GA) optimizer was subsequently applied to the trained
SM to determine the current predicted best design based on the objective
function described in subsection 4.5.2. A GA implements the concept of nat-
ural selection, as found in nature, by selecting a set of parameters and then
repeatedly modifying a set of parameters by either random selection, or spec-
ified mutation, depending on the weighting of probability constants supplied
to the GA by the user (Deb, 1999). The GA proceeds with the aim of re-
ducing the objective function value at each subsequent parameter ‘generation’
until a specified number of generations is reached. Once this pseudo-optimized
design was achieved, the parameters were sent to AutobladeTM for geometry
generation and subsequent continuation of the workflow.

The optimization process (shown in Figure 4.10) continues with each subse-
quent design appended to the ‘*.plan’ file and SM being updated. The SM
used in MINAMO also determines the feasible design space using the success
flag from the ‘*.plan’ file and heavily penalises the objective function of any
design located within a unfeasible region (NUMECA International, 2019c).
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Figure 4.10: Modelling logic process

4.5.2 Objectives

For OPTI1, an initial attempt was made to perform a multi-objective optimiza-
tion on the 48 free parameter database (DB1) using the Pareto front method.
The Pareto front method disregards any weighting applied to each objective
and aims to achieve a set of designs located along a ‘front’ of best performance
relative to each objective and any combination of the specified objectives. A
Pareto method was successfully implemented by Li et al. (2017) to optimize
an impeller with focus on stall performance. In this thesis η(01−4),DP , mchoke

and ΔPR(01−05),stall were chosen as objectives. The optimization attempt was
found to generate a large number of designs with significantly different operat-
ing curve ranges and positions due to themchoke and ΔPR(01−05),stall objectives.
The large variety of operating curves made design point efficiency comparison
unreliable. The optimization algorithm could not converge to a region of best
overall designs, but rather obtained many unconverged designs. The choice
was thus made to rather implement a single objective optimization with the
aim of maximising η(01−4),DP while operating range responses were rather set
as constraints.

For OPTI2, the Pareto optimization method was successfully applied by opti-
mizing the three objectives of maximizing η(01−4),DP ,mchoke and ΔPR(01−05),stall.
A reliable Pareto front comparison was possible since a smaller range in op-
erating curve position for all assessed designs was achieved with the narrower
design space range.
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4.5.3 Constraints

Constraint implementation

The MINAMO optimization algorithm prioritizes all constraint violations over
objective optimization by first searching for designs that least violate the con-
straints and only proceeding to maximize (or minimize) objectives once all
constraints are expected to be satisfied. The constraint penalty, P defined as

P = W

(
Qimp −Q

Qimp

)k

(4.2)

where W , and k are weighting and scaling constants, respectively. Q and
Qimp are the response quantity and imposed target value, respectively. Qimp

is also used to nondimensionalize the penalty term. W and k were both set to
1, since the MINAMO Pareto method disregards weighting provided that all
constraints are satisfied.

Design and choke point constraints

The constraints required to satisfy the design requirements specified in sec-
tion 3.1 are listed in Table 4.3. At design point, stage total-to-static pressure
ratio and diffuser blade-to-blade discharge angle are constrained. Choke mass
flow was the only response constrained from the choke point computation.

Table 4.3: Optimization constraints

Response OPTI Type Qimp

PR(01−4),DP both < 4,5
PR(01−4),DP both > 4,15
αz4 both < 35◦

αz4 both > 25◦

σVM,max 2 < 380 MPa
δz−tip,max 2 < 0,12 mm
mchoke both > 1,13
ΔPR(01−05),stall,PW both > 0,015

Stall point constraint

A stall mass flow design requirement cannot be explicitly implemented since
most designs are likely to not converge if a mass flow boundary condition at
stall were to be applied. This is due to the inherent physical flow instability
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encountered near stall. Stall performance was determined as described in
section 4.2 by Equation 4.1; however, the ΔPR(01−05),stall,PW value supplied to
the SM was manipulated as a piecewise function based on stall point (SP1)
pressure ratio convergence fluctuation, PR ′

(01−05),stall. The piecewise function
was constructed to help the SM with ΔPR(01−05),stall prediction as follows:

ΔPR(01−05),stall,PW = f(PR ′
(01−05),stall)

f(PR ′
(01−05),stall) =

⎧⎪⎨
⎪⎩
ΔPR(01−05),stall PR ′

(01−05),stall < 0,005

−PR ′
(01−05),stall 0,005 < PR ′

(01−05),stall < 0,015

‘unconverged’ PR ′
(01−05),stall > 0,015

where if PR ′
(01−05),stall > 0,015, the design is considered unconverged and re-

sponses are not used for SM training. However, if 0,005 < PR ′
(01−05),stall <

0,015, the design is considered pseudo-converged and responses are used for
SM training but do not satisfy the ΔPR(01−05),stall,PW constraint and the
design is interpreted as converged but unsatisfactory. Only a design with
PR ′

(01−05),stall < 0,015 is considered both converged and satisfactory with re-
spect to the stall pressure ratio gradient constraint.

For the converged but unsatisfactory case described above, ΔPR(01−05),stall,PW

is semi-arbitrarily set equal to −PR ′
(01−05),stall. The resulting value is there-

fore always interpreted by the optimizer as unsatisfactory with increasing con-
straint violation magnitude as −PR ′

(01−05),stall (fluctuation) increases.

Structural constraints

Computational solid mechanics (CSM) results were not considered for OPTI1
since the initial meshing strategy delivered non-physical stress concentrations
due to low fillet mesh refinement near the main blade leading edge. The CSM
meshing strategy was subsequently improved and CSM responses included as
constraints for OPTI2.

Maximum von Mises stress (σVM,max) was required to be below the minimum
yield stress of 380 MPa for 7075-T651 aluminium. This value was deemed
acceptable without any safety factor provided that this is only a localized
peak stress and the majority of the impeller’s stress is below 300 MPa. This
was confirmed by the CSIR and by experimental results of van der Merwe
(2012).

Impeller maximum allowable tip displacement (δz−tip,max) was set to a value of
0,12 mm to ensure no blade-shroud interference with a tip clearance of 0,2 mm.
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Chapter 5

Aerodynamic Numerical Setup

5.1 Computation overview

All aspects of the aerodynamic design process were performed using the NU-
MECA FINETM/Design3D software chain in conjunction with an externally
scripted Python workflow. The script allowed automated parametric modeling
and meshing of both impeller and diffuser blade rows. A geometry generated
by the parametric modeler, as described in section 4.3, was imported into
AutoGrid5TM for meshing according to predetermined meshing template. The
mesh would subsequently be imported into the FINETM/Turbo solver template
with post-processing performed using CFViewTM. The template for each step
is described below.

5.2 Meshing setup

5.2.1 Meshing template and flow domain

A mesh template was established that contains all mesh settings and was ap-
plied to each successive geometry (provided the geometry contained a match-
ing topology to that specified in the template) to generate the mesh cells and
domain bounds. Impeller and diffuser rows were meshed separately with a
non-matching mesh on the upstream and downstream sides of the impeller-
diffuser interface as shown in Figure 5.1. All meshing software specific settings
are given in Table C.2 with reasoning for certain settings given below.

40
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Nozzle with Z-constant line

Vaneless gap with impeller-diffuser interface

Tip gap with blade edge

Figure 5.1: Meridional view of mesh

First cell height

The first cell height requirement is dictated by the Spalart-Allmaras (SA) tur-
bulence model (section 5.3), which requires a corresponding first cell centroid
y+ of y+1 < 10 (Wilcox, 1998). The first cell height was calculated using

y+1 =
ρμτywall

μ
(5.1)

where friction velocity is expressed as

μτ =
√

0,5(V 2
ref )Cf . (5.2)

The coefficient of friction is obtained by assuming a ‘1/7th’ velocity profile
and substituting the Reynolds number based on an estimated inlet velocity
and inlet radius of Cref = 300 m/s and bref = 0,04 m with an air kinematic
viscosity of ν = 1,57× 10−5 m2/s

Cf =
0,027

Re
1/7
ref

(5.3)

Reref =
Crefbref

ν
. (5.4)

The diffuser first cell height was set equal to that of the impeller. y+ Plots
for the final design and mesh (Figure B.1) show that the y+ requirement is
satisfied for valid turbulence modelling with only a few cells exceeding a y+ of
10 and no cells exceeding a y+ of 15.
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Blade to blade topology

Both blade rows were meshed with blunt trailing edges and rounded leading
edges with grid point topology given in Figure C.1. The first cell height at
the trailing edge was set 3 times greater than the general first cell height since
this greatly improved mesh skewness and expansion ratio near the trailing
edge (see Figure 5.2). This improved mesh quality outweighed the necessity to
properly resolve the trailing edge flow, which was expected to always be fully
separated on the blunt surface. A large number of cells were placed near the
impeller-diffuser interface due to large static pressure and density gradients
expected in this region, originating at the impeller trailing edge and diffuser
leading edge. The near blade ‘O’ mesh was set to a higher conservative value
of 25 layers due to the necessity to resolve possible flow separation in both
rows.

(a) Impeller
(b) Diffuser

Figure 5.2: B2B mesh of both blade rows at 50% span

Upstream domain

The domain upstream of the impeller leading edge was extended roughly 0,5
times impeller chord length (see Figure 5.3). The domain included a rounded
hub bulb geometry formed with a Bézier-spline linking a point at zero radius
upstream of the blade, with the intersection of leading edge and hub. The
bulb grid point topology is given in Figure C.2.
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Outlet

Periodic side 1

Periodic side 2

Impeller-diffuser 
interface

Inlet

Blade surface

Hub

Figure 5.3: Flow domain and boundaries

Bladed domain

The domain surrounding all blades was meshed with ‘H&I’ topology and ‘O’
topology in the boundary layer cells. The impeller blade was meshed with
a constant 0,2 mm tip gap containing 21 cells in the radial direction, while
the diffuser contained no gaps. No blade fillets were included in the CFD
domain due to their negligible influence on stage performance when compared
to the major free parameter influence expected (van der Merwe, 2012). The
impeller-diffuser interface was situated in the middle of the vaneless gap in the
meridional profile with no additional Z-constant lines placed in the vaneless
gap to allow a smoother transition (less angular skewness) from the near blade
mesh to the impeller-diffuser interface. The Z-constant line is defined in the
meridional profile and creates a plane at constant meridional location. Cell
faces are then forced to be located against this created plane. A 3-D mesh
projection onto both the blade and hub surfaces is shown in Figure A.1.

Downstream domain

The domain downstream of the diffuser trailing edge was extended roughly
1,5 times the diffuser chord in the positive z-direction. A pinch (nozzle) was
applied towards the domain exit to reduce cross-sectional area by 15,4% and
increase flow velocity. This resulted in a negative pressure gradient with no
risk of endwall flow separation and subsequent backflow into the domain. A
Z-constant line was placed at the start of the nozzle to capture the abrupt
endwall angle change and to force cells to align perpendicularly to the flow
near the domain exit. Another Z-constant line was placed between the diffuser
trailing edge and the expected evaluation plane position to reduce cell non-
orthogonality with respect to the evaluation plane. This was done to reduce
the interpolation error during post-processing of area weighted values at the
evaluation plane.
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5.2.2 Validity criteria

Two mesh independence studies were performed for the optimization process.
An initial study was performed to establish a mesh template that would be
used for the optimization process. Due to the large variation in geometry from
the baseline to the final design, a second mesh study with mesh improvement
was performed using the final geometry. The second mesh study was performed
to ensure validity of final performance curves results, thus all meshing related
settings and mesh study results pertain to the final mesh template.

Three meshes were compared at the 4 operating points computed during the
optimization phase. The three meshes consisted of 1,8- 2,2- and 4,4-million
cells, with constant near blade cell count and uniform topology setup. The 4,4-
and 2,2-million cell meshes produced a good result correlation with a maxi-
mum η(01−4) difference of 0,05% obtained at the stall point (see Figure A.2). A
comparison of the 1,8- and 2,2-million cell meshes produced a considerable dif-
ference in η(01−4) of 0,7% at the stall point. The 2,2 million cell mesh was thus
accepted as valid, while maintaining a small cell count for less computational
effort.

Final mesh quality values and suggested thresholds by (NUMECA Interna-
tional, 2019a) are shown in Table 5.1. The relatively low percentage of cells
violating the suggested limits was deemed acceptable for valid results. The few
‘bad’ cells did not cause convergence issues, thus the mesh was chosen for all
computations. Additional information for cell count and quality for the inlet
bulb, impeller and diffuser mesh blocks are given in Table A.1.

Table 5.1: Mesh quality criteria

Quality indicator Suggested limit Worst value % cell violation

Angular skewness >20◦ 27◦ 0
Aspect ratio <10 000 570,3 0
Expansion ratio <2,5 3,28 0,090
Spanwise angular deviation <45◦ 94,96◦ 0,047
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5.3 Solver setup

5.3.1 Models and assumptions

All solver software specific settings are listed in Table C.3 with reasoning for
certain settings given below. For all computations, the Spalart-Allmaras tur-
bulence model was used due to it’s successful implementation and validation in
the previous research of He and Zheng (2017), Diener et al. (2016) and Burger
(2016). The standard SA turbulence model was chosen, without extended
wall functions, due to it’s ability to better solve cases with flow separation
which was predicted to occur in the diffuser of certain designs (NUMECA
International, 2019b). This model is also computationally significantly faster
to converge in comparison to the k − ω SST turbulence model which is often
applied to turbomachinery cases (Wilcox, 1998).

Air was modeled as a perfect gas with constant specific heats, while viscosity
was modeled as a function of temperature using Sutherland’s law. The perfect
air assumption was shown by Diener et al. (2016) and Krige (2013) to be
reasonable for compressors with similar impeller discharge temperatures (near
500 K). Air was treated as a compressible fluid due to the large pressure ratios
and shock waves expected in a transonic compressor.

The impeller-diffuser interface was treated as a Non-reflecting 1-D bound-
ary with no localized characteristic correction (LOCCOR) for density, velocity
components or pressure across the upstream and downstream surfaces (LOC-
COR parameter set to 0). This was done to better resolve the shock originating
at either the diffuser leading edge or the impeller trailing edge, and passing
through the impeller-diffuser interface (S Albert 2018, personal communica-
tion, 27 September).

Spatial and temporal discretization was set to central (cell quantity derivative
determined using adjacent cell values) and local time stepping (time step is
determined on a per cell basis depending on cell size), as recommended by
NUMECA International (2019b). Convergence time was significantly improved
by enabling the CPU-booster which allows Courant–Friedrichs–Lewy (CFL)
values of up to 1000. A nearest-to-stall point stable computation was computed
with a CFL of 1000 and compared with a computation with a CFL of 3 as
suggested by Diener et al. (2016), who encoutered convergence issues related
to the CPU-booster. Convergence time was significantly faster with a CFL of
1000, and the stall point mass flow varied negligibly (< 0,001%). The upper
CFL limit of 1000 did therefore not produce non-physical stall results and was
deemed acceptable for use in the optimization.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. AERODYNAMIC NUMERICAL SETUP 46

5.3.2 Boundary conditions

Inlet flow conditions were set to an absolute temperature and pressure of 293 K
and 100 kPa, respectively. A velocity direction was imposed as purely axial
(C1 = Cz1) and turbulent viscosity set to 0.0001 m2/s. Solid walls consisted of
the blade and shroud surfaces as well as hub surface starting from the inlet bulb
and terminating at the domain exit. All walls were modeled as adiabatic with a
non-slip wall condition with negligible surface roughness. A rotational velocity
was applied to the impeller blades, and the impeller hub up to the impeller-
diffuser mesh interface. This resulted in a minor non-physical representation of
the rotating hub surface since the impeller-diffuser mesh interface position did
not coincide with the impeller rotating hub edge position (2 mm difference).
An Area defined rotation could not be applied to the impeller hub due to
a variable trailing edge radius and axial position. A comparison was made
between results obtain using the Area defined and Constant rotation speed
settings with at most a 0,01 kPa difference in PR(01−04) (obtained at stall
point). The Constant rotation speed for the entire impeller hub was deemed
acceptable for valid results. All domain side patches were set as periodic
connections due to the symmetric blade repetition in both blade rows.

Outlet boundary conditions were varied to achieve the desired operating points
as summarised in Table 5.2. For both the stall points and design point, a mean
mass flow across the outlet face was imposed using the Pressure adaptation
method. An initial pressure was applied to the first iteration (as an estimate),
initially obtained using COMPAL R© in the baseline design process. The initial
pressure was later adjusted to help convergence stability by reducing the initial
pressure of both stall points by 10 kPa (2,5%). By reducing the initial outlet
pressure, the early iterations would proceed from a more stable operating point
(closer to the design point) towards the stall side.

Table 5.2: Outlet boundary conditions

Operating point Outlet condition
Initial pressure:
outlet (static)

Initial pressure:
interface (static)

Stall point 1 1,015 kg/s 405 kPa 305 kPa
Stall point 2 1,030 kg/s 400 kPa 303 kPa
Design point 1,089 kg/s 390 kPa 300 kPa
Choke point 260 kPa (static) - 280 kPa

The choke point was reached using an averaged static pressure imposed on
the outlet face. A pressure of roughly 65% of the design point outlet static
pressure was imposed to ensure choked flow. For all operating points, an initial
impeller-diffuser interface pressure was applied.
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5.3.3 Convergence criteria

Convergence for all desired operating points had to be satisfied for each design
to qualify the response set as valid. Convergence quantification issues were
incurred at both stall points and design point. Stall point convergence was
affected by oscillation of responses due to the physically unstable operating
condition. The design point for certain designs attained a non-physical ‘near
convergence’ when choke mass flow rate was located below, or within 1%, of
design mass flow rate. The choke point was a stable operating point due to
the relatively low sensitivity to changes in outlet pressure.

The stall point outlet total pressure was monitored across a set number of
iterations before the predetermined maximum iteration count was reached, as
shown in Figure 5.4. Monitoring was performed between iteration number 450
to 550. A nondimensional fluctuation response, PR ′

(01−05),stall was subsequently
calculated as follows:

PR ′
(01−05),stall =

PR(01−05),stall−max − PR(01−05),stall−min

PR(01−05),stall−mean

(5.5)

with PR ′
(01−05),stall < 0,005 deemed sufficient to satisfy convergence. Choke

point convergence was also assessed using Equation 5.5 but stable convergence
was always observed.
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Figure 5.4: Convergence check using total pressure ratio

Design point convergence was determined using inlet mean mass flow rate,
mDP , with convergence deemed satisfactory when

| mDP − 1,089 |< 0,0005 (5.6)
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where 1,089 kg/s is the desired design point mass flow rate.

A computation was considered as ‘crashed’ if the density and energy residual
requirement of 1 × 10−3 was not satisfied. This was implemented to termi-
nate successive operating point computations for the current design since the
response values would be discarded from SM training. The stall point compu-
tation was thus computed first, as this was the least stable operating point.

5.3.4 Post-processing

Post-processing was performed with two methods, where response variables
were either obtained from an evaluation plane using the final iteration result,
or an average (or fluctuation amplitude) of results was obtained at the domain
outlet over the final 100 (or 50) iterations.

Final iteration results

Responses required to determine compressor performance such as PR(01−4),DP

and η(01−4),DP , were desired near the interface between the compressor stage
and the combustion chamber. An evaluation plane was placed at constant ax-
ial z -coordinate position for each design as shown in Figure 5.5. A study was
performed to determine the effect that evaluation plane location had on perfor-
mance results (see Figure A.3). A linear decrease of η(01−4),DP and PR(01−04)
were observed with increasing evaluation plane distance from diffuser trail-
ing edge with negligible difference in results obtained between the fine and
medium meshes. The decrease of performance was attributed to losses incurred
in mixing-out of the flow and viscous losses at passage walls. The evaluation
plane was thus placed at 4 mm from the diffuser trailing edge (42 mm from
the domain outlet) to allow for partial mixing-out of the flow. The evalua-
tion plane was not placed further downstream in order to be located near the
estimated interface between the compressor and combustion chamber.

42 mm 4 mm

Evaluation plane

Figure 5.5: Evaluation plane location
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All responses were evaluated as absolute mass-flux weighted averages,

Qaveraged =

∫
S
Q ρ | −→C · −→dS |∫
S
ρ | −→C · −→dS |

(5.7)

with Q and ρ being the response and density scalars, respectively, and
−→
C and−→

dS being the flow vector and evaluation surface vector, respectively. Mass-flux
weighting was implemented due to the variation of mass flow rate across the
evaluation plane. Furthermore, absolute values were implemented to avoid
backflow at the evaluation plane ‘subtracting’ from the averaged value (as
would be the case for a non-absolute value weighting).

The total temperature and pressure at domain inlet were also obtained using
the mass-flux weighting method, with the stage performance subsequently cal-
culated between the domain inlet and the evaluation plane downstream of the
diffuser.

Averaged and fluctuating results

Values for convergence criteria responses, as well as averaged domain pressure
ratio, were all obtained from the residual file (*.res). Averaged values could
only be obtained for the full domain (not evaluation plane) due to software
limitations. The responses were taken over the last 100 iterations for both
the stall points, and 50 iterations for the design and choke point simulations
using a Python scripted parser. The total pressure ratio for both stall points,
as required to calculate ΔPR(01−05),stall (Equation 4.1), were obtained as an
average due to many designs fluctuating in response values near the stall region.

Impeller shaft input power, Pshaft, was also obtained as an averaged value and
was determined from the couple moment exerted by the combined rotating
blade and endwall surfaces. This was obtained by computing the surface mo-
ment integral of surface viscous stress, τ , per differential surface element, dS,
as follows:

Pshaft =

∫
S

ω r τ dS. (5.8)

The aerodynamic analysis setup described in this chapter was implemented in
a validation test case as presented in Appendix D. The impeller developed by
Diener et al. (2016) was meshed and appropriate boundary conditions were
applied. The computed performance curve shows good agreement with the
results of Diener et al. (2016), with a 0,3% difference in PR(01−02) at design
point and 0,16% difference in mchoke. The aerodynamic numerical setup was
therefore accepted as sufficiently reliable for use in the subsequent optimization
process.
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Chapter 6

Structural Numerical Setup

6.1 Computation overview

A computational solid mechanics (CSM) workflow chain consisting of the Fi-
nite element method was included for determining the structural feasibility of
designs. Feasibility with respect to the impeller maximum von Mises stress,
blade-shroud interference (deflection), and resonance frequencies, was assessed.
An impeller geometry was exported during the parametric model generation
stage of the workflow, before being imported to a 4-step meshing process with
subsequent solving of both a linear static analysis and a modal analysis. Post-
processing was performed with response values exported for predefined loca-
tions on the impeller surface.

6.2 Meshing setup

CSM meshing was performed as a 4-step process with an initial mixed ele-
ment mesh built in HEXPRESSTM/Hybrid. The mesh consisted of hexahe-
dral elements in the blade volume and the remaining solid body (including
fillets) comprising of tetrahedral elements. The blade volume was meshed
with 3 cells placed in the width of the blade to better solve the suction-
to-pressure side stress distribution. This mesh was then converted using
HEXPRESSTM/Hybrid-Datamapper to a fully tetrahedral element mesh by
splitting any present hexahedral elements. This was done since the CalculiX
(v2.14) solver did not support meshes comprised of varying element types and
meshing the blade with 3 cells in the blade width was not possible with only one
type of element. The resulting tetrahedral mesh was converted to a ten-node
tetrahedral mesh (C3D10), due to the corresponding second order interpola-
tion associated with this element generally producing more accurate results
in comparison with the four-node tetrahedral (C3D4) element (Dhondt, 2014).
The mesh format was then converted with a Python script from ‘*.msh’ to
‘*.inp’ type for compatibility with the CalculiX solver.
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6.3 Solver setup

6.3.1 Models and assumptions

Two successive cases were computed by the CSM solver with a linear static
computation first performed, followed by a modal computation which included
stress and loading computed in the linear static case. The linear static com-
putation inherently assumes that the material behaves isotropically and no
plastic deformation occurs. No aerodynamic loading was applied to the CSM
case and thus blade flutter was not investigated.

Thermal expansion effects were included into the workflow by applying an ap-
proximate temperature distribution to each mesh node, using a Python script
developed during the GAMMA research project (Friendship Systems, 2019).
Convective heat transfer theory was employed to assume that a Bessel Func-
tion of the first-kind and zero-order could be used to model an approximate
temperature distribution through the impeller, given three temperatures at
the impeller tip and both bore ends (Pletke and Murphy, 1953).

6.3.2 Boundary conditions

A body force was applied to each finite element as a centrifugal force computed
as follows:

dF = dV ρω2 r (6.1)

at a design speed of 73 000 RPM, where ρ is the density of the 7075-T651 alu-
minium alloy (as required by the CSIR) with properties indicated in Table 6.1.

Table 6.1: 7075-T651 Aluminium material properties with values obtained
from ASM Inc. (2019)

Density
[kg/m3]

Elasticity modulus
[GPa]

Poissant coef.
[-]

Thermal expansion coef.
[10−6 ◦C−1]

2 810 71.7 0.33 25.2

Cyclic symmetry was applied by meshing and computing only one main and
splitter blade section with a periodic connection applied between section faces.
Both periodic faces were established by meshing with matching nodes before
setting the displacement of each node on one face as equal to its partner node
on the other periodic face.
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The impeller was designed to be attached to the shaft by ‘bolting’ between
a nut located at the inlet bulb and a shoulder located at disk backface. To
implement this fixation, each node on the disk backface near the bore was
constrained from displacement in both tangential and axial directions as shown
in Figure 6.1.
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Figure 6.1: CSM boundary conditions (left) and applied temperature distri-
bution (right)

For the temperature distribution script, three temperatures for the impeller
tip and both bore ends were assumed. The temperature on the face located at
the inlet side of the bore was assumed to be atmospheric at 25 ◦C, while the
impeller tip temperature was assumed to be equal to the air temperature at
130 ◦C in this region (obtained from the CFD computation). The disk backface
near the bore was assumed to be at 300 ◦C according to typical observed tem-
peratures in this region due to heat conduction from the combustion chamber
(Bonjin et al., 2015).

6.3.3 Post-processing

A Python script was implemented to obtain all responses related to the CSM
results. The eigenvalues were obtained from the ‘*.out ’ summary file created
by CalculiX, while all remaining responses were obtained from the ‘*.frd ’ nodal
results file.
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Stress analysis

Von Mises stress, σVM , is expressed in terms of the three principle stresses
(x-y-z coordinate system) of any finite element as,

σVM =
√

0,5((σx − σy)2 + (σx − σz)2 + (σy − σz)2) (6.2)

and is used to determine the possibility of yielding in the material (Ilyushin
and Lensky, 1967). The maximum nodal von Mises stress was obtained for the
fillet, pressure side, and suction side of both the main and splitter blade as well
as the disk backface and bore face. Each face was queried individually rather
than a single global maximum response, in order to improve the optimizer’s
prediction of maximum stress for each stress region independently for a specific
design.

Displacement analysis

It was observed that blade-shroud interference was most likely to occur at
the impeller trailing edge due to disk backface deformation. The maximum
blade nodal displacement in the z -direction was therefore obtained at the blade
trailing edge tip (see Figure 6.2). Blade tip radial displacement was also in-
vestigated but found to be acceptable (less that 0,05 mm) in comparison to
the tip gap size for all assessed designs.

Unloaded position

Loaded position

Figure 6.2: Impeller displacement

Resonance analysis

The first 6 eigenvalues, λi, were obtained from the solver output file (‘*.dat ’)
and natural frequencies, ωi, were subsequently obtained by

ωi =
√

−λi , i = 1, 2, .. 6 (6.3)

for direct comparison against engine speed.

Stellenbosch University https://scholar.sun.ac.za



Chapter 7

Results

7.1 Optimization strategy assessment

7.1.1 Parameter scattering method comparison

Two databases were generated for training of the SM used in OPTI1 and
OPTI2. The first database (DB1) was developed by appending three database
computations using the LHS, LCVT, and CVT parameter scattering methods,
while the second database (DB2) was computed using only the LCVT method.

DB1

DB1 was comprised of three smaller databases for the purpose of comparing
scattering methods. Figure 7.1 shows the parameter scattering and success
rate comparison of the three scattering methods by comparing design space
filling of the inlet radius and meridional angle parameters. It can be seen that
the CVT method places parameters away from the extremes (with respect
to parameter bounds), while the LHS and LCVT methods attempt to cover
the entire design space. The overall successful convergence rate of the CVT
(31,4%) database was much higher than with the LHS (12,5%) and LCVT
(15,2%) databases (Table E.1). This difference was primarily attributed to
two reasons:

• Strong parameters shifting the performance curve mass flow so far that
either the stall or the design point mass flow imposed boundary condition
could not be achieved. This can be seen by the large percentage of failed
designs if R IN < 42,8 mm.

• The large number of free parameters resulting in geometrically unfeasible
geometries when multiple parameters were located near their respective
bounds, as seen in the LHS and LCVT databases.
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Figure 7.1: Parameter scattering comparison of three database populating
methods used for DB1

DB2

DB2 achieved a 100% success rate due to the considerably narrower explored
design space, achieved by freezing most strong free parameters and reducing
the remaining parameter bounds. Most meridional parameters such as im-
peller inlet and outlet shroud radius, impeller and diffuser axial length, and
impeller meridional discharge angle were found to have a strong influence and
subsequently frozen for DB2.

7.1.2 Design success filtering

Once DB1 was populated, the ‘*.plan’ training file was filtered by removing
certain design computations, or modifying their success flag for better subse-
quent training of the SM in OPTI1 as described below.

Removed designs

All designs that failed due to meshing issues were removed since these would
steer the optimizer away from what could be a feasible design space. CFD
meshing fails were caused by either a large change in splitter leading edge
position and angle, or an aggressive impeller backsweep, which resulted in
negative cells being present in the impeller tip region. CSM meshing fails were
more likely than CFD meshing failures and were caused by poor triangulation
of the splitter leading edge and fillet.
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Modified success flag of designs

Designs that did not satisfy the convergence criteria, specified in subsec-
tion 5.3.3, had their success flag set to ‘0’. This was done to indicate a failed
design with responses that should not be used for SM training, but should
only be included in the SM feasibility region prediction. Of the 2006 total
designs attempted, 55% crashed or did not attain a maximum residual of at
least 1 × 10−3 at one of the operating points. A further 27% of the designs
were filtered out by modifying the success flag to ‘0’. Finally, 18% of the ini-
tial designs remained as fully converged with reliable response results. This
was expected with the operating mass flow rate range shifting dramatically
with such major variations in geometry. Previous studies with smaller pa-
rameter variations, such as Diener et al. (2016) and Kock (2017), experienced
significantly higher convergence rates.

7.2 Design performance improvement

A performance comparison of the baseline against the best OPTI1 and OPTI2
designs is shown in Figure 7.2. Major performance differences of each opti-
mized design are stated in this section, while the geometry changes responsible
for the performance differences of each optimization step are discussed in sec-
tion 7.3.

Figure 7.2: Design improvement (performance curves)
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The baseline design was accepted by the CSIR with the aim of obtaining a
structurally feasible design of improved stall margin, Δmstall, and choke mar-
gin, Δmchoke, as well as improved η(01−4),DP . The optimizer was stopped when
no notable improvement was observed across 50 design iterations (see Fig-
ure E.5). Design OPTI1 achieved considerable improvements of Δmchoke from
3,5% to 5,9% and η(01−4),DP from 82% to 86,6%, while Δmstall only increased
by 1,5%. The large increase of Δmchoke was achieved through an increase in
diffuser throat area while η(01−4),DP was mainly improved by reducing diffuser
separation losses. The considerable increase in η(01−4),DP allowed the optimizer
to decrease PR(01−04) through a reduction in impeller total pressure rise while
still satisfying the PR(01−4),DP requirement.

OPTI2 was made structurally feasible by an increase in hub blade thicknesses
and changes to the impeller undercut. Furthermore, Δmchoke and Δmstall

were increased to 7,4% and 11,8%, respectively. This was achieved through
a reduction in diffuser main blade number and an increase in splitter number
(two per main blade). η(01−4),DP was decreased by 0,3% from that of OPTI1.

7.3 Aerodynamic geometric feature influence

This section describes how certain geometric features influence the measured
responses by showing a statistical proof of correlation between parameter and
response, before giving a physical explanation for the correlation.

7.3.1 Geometric feature multi-parameter dependencies

Most geometric features were explicitly controlled by a single parameter; how-
ever, some features were controlled by multiple design parameters due to the
parametric model setup. This resulted in a ‘trickle-down’ of influence coef-
ficients to multiple parameters controlling a single geometric feature. Most
influential features with multi-parameter dependencies are discussed below.

Trailing edge backsweep

Blade backsweep was predominantly controlled by the second-to-last Bézier
curve parameter, H3 DELTA, but was also affected by any parameter influ-
encing chord length for each respective blade row. This dependency was due
to the parametric model method in which camber curve is defined, specifically
by the Bézier control point spacing. An increase in axial length increases the
physical distance between camber Bézier control points due to the constant ge-
ometric ratio spacing applied in the parametric model, as shown in Figure 7.3a.
This increase in spacing decreases camber backsweep (and incidence) angle as
shown by the corresponding blade angles in Figure 7.3b.
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Figure 7.3: Impeller length influence on camber angle

Impeller shroud curvature

The endwall curvature of the hub and shroud of either blade row were de-
pendent on multiple parameters for their respective Bézier definitions. It was
found that the impeller shroud controlling parameters significantly influenced
stage performance (discussed further in subsection 7.3.2). The most influential
parameters associated with impeller shroud curvature were: the third shroud
Bézier point parameter (D S3), impeller meridional discharge angle (α), and
impeller axial length (Z ITE).

7.3.2 Parameter influence

The influence of each design parameter, with respect to each important re-
sponse quantity, was assessed by determining the Pearson correlation coeffi-
cient, rp, which quantifies the linear correlation between two variables. A map
was constructed from design space information obtained in DB1 to compare the
parameters with most significant influence on all responses present in the op-
timizer objectives or constraints. Parameters with weak influence (| rp |< 0, 2)
for all responses were omitted from the correlation map shown in Figure 7.4.
The parameters are grouped by their geometric feature control of passage ra-
dius and height, leading edge sweep, endwall curvature, passage axial length,
and camber curve. It can be seen that the passage radius and height param-
eters are the strongest in most aspects of compressor performance. Specific
geometric features are further discussed below.
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Figure 7.4: Aerodynamic Pearson correlation coefficient map

Inducer radius

Inducer radius presented a strong influence of all off-DP responses related to
operating curve mass flow range, with a rp = 0, 18 and rp = 0, 4 with respect
to ΔPR(01−05),stall and mchoke, respectively. The strong influence on mchoke

resulted in many designs reaching choke in the inducer. This resulted in no
convergence at design point if Δmchoke was within 1% of mDP or if mchoke

< mDP . This is illustrated in Figure 7.5, which shows the convergence success
rate with respect to inducer radius, which is divided into seven equal intervals
between the upper and lower parameter bounds. It can be seen that many
designs failed to converge with R IN < 42, 8 mm, which indicates an incorrect
choice of the lower bound value. Furthermore, the optimized design has a
R IN = 44,45 mm, which indicates the upper parameter bound to also have
been incorrectly set too low for OPTI1. Parameter bounds were, however, not
subsequently increased due to the decision to freeze all meridional parameters
for OPTI2.
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Figure 7.5: Convergence success rate with respect to inducer radius

Impeller main blade sweep

Impeller main blade forward sweep was increased from 6,6◦ to 11◦ in OPTI1
in order to increase the blade chord at the shroud. The increase of forward
sweep reduced impeller tip shock severity which subsequently reduced sepa-
ration at the impeller shroud as shown in Figure 7.6. Impeller sweep had a
moderate influence on η(01−4),DP with rp = 0,26. Furthermore, the reduction
in impeller shroud separation significantly reduced the impeller discharge tan-
gential velocity component near the shroud. This subsequently reduced losses
associated with high diffuser incidence at the shroud.
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Figure 7.6: Impeller relative Mach number at 95% span
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Impeller backsweep

To further decrease shock losses associated with high diffuser incidence, the
tangential velocity component entering the diffuser was reduced by an increase
in impeller backsweep by a mean value of 6,5◦ (Table 7.1) from baseline to
OPTI2. The increase in backsweep decreased total pressure rise across the
impeller; however, the improvement in η(01−4),DP allows the design to maintain
a satisfactory PR(01−4),DP .

It is expected that mixed flow impellers of lower αz2 will require a larger
spanwise difference in backsweep angle if the trailing edge does not terminate at
constant radius (such as investigated in this thesis). This is due to the spanwise
difference in trailing edge tangential velocity resulting from a difference in hub
and shroud radii, where U2s

U2h
= r2s

r2h
.

Table 7.1: Blade leading and trailing edge angles

Design
Impeller LE
[◦ (hub)/ ◦ (shroud)]

Impeller TE Diffuser LE Diffuser TE

Baseline 26,5/61,3 14,5/43,3 71/65,9 20/10
OPTI1 36,6/60,7 23,8/44,8 72,1/64,8 32/23
OPTI2 36,3/60,1 25,3/45,8 72,8/66,3 28/10

Impeller meridional discharge angle

The impeller meridional exit angle, αz2, was increased from 60◦ to 71,6◦ as
shown in Figure 7.7 (left). αz2 was found to affect many important blade
and passage geometric features. Endwall curvature was increased with an
increase in αz2, which is subsequently expected to increase impeller shroud
separation losses through the impeller; however, the weak correlation of rp =
−0,15 for η(01−02),DP cannot prove this hypothesis. The chord length of both
blade rows increases with a decrease in αz2 due to the longer passage length
required to reach the diffuser outlet shroud radius. The increase in chord length
subsequently increases the Bézier spacing as described in subsection 7.3.1. This
decreases αz4 (rp = 0,41) and decreases impeller backsweep which subsequently
increases PR(01−02),DP (rp = −0,24). The diffuser flow passage area increase
rate is higher for designs with a higher αz2 due to the more rapid increase in
passage radius when compared to a design of lower αz2.
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Baseline
OPTI1
OPTI2

Figure 7.7: Best design meridional (left) and 50% span B2B (right) comparison

Impeller and diffuser axial length

Blade row axial length was found to affect similar geometric features to αz2,
namely: chord length, endwall surface area, and endwall curvature. Chord
length, and thus backsweep of each blade row, was heavily influenced by row
axial length as described above (αz2 effects). This is proven by the strong
correlation with PR(01−02),DP (rp = 0,44) and αz4 (rp = −0,65) for impeller
and diffuser length parameters, respectively. Endwall curvature is influenced
by the axial length of each blade row due to the endwall length available to
produce a smooth Bézier curve. An increase in axial length also increased
endwall and blade surface areas resulting in higher viscous losses through the
compressor.

Vaneless gap added expansion

The vaneless gap added expansion (hub side) assisted in flow diffusion and
absolute Mach number reduction prior to the diffuser leading edge (Ma3). The
reduction in Ma3 subsequently reduced shock losses associated with transonic
flow at the vaneless gap endwalls and diffuser leading edge. This was indicated
by the slight correlation (rp = 0,15) of η(01−04),DP with respect to W GAP. Fig-
ure 7.8 shows a meridionally averaged near sonic flow of Ma = 0,97 entering
the diffuser at 75% spanwise height for the baseline design (left), while the
OPTI2 design (right) shows a peak averaged inlet Mach number of Ma = 0,9.
The mixing out of spanwise flow differences caused by impeller shroud sepa-
ration can also be observed in front of the diffuser leading edge. Additionally,
the decision to place the added expansion on the hub side (due to separation
at the shroud) was confirmed correct by the presence of shroud separation of
varying magnitudes in the vaneless diffuser in all assessed designs.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. RESULTS 63

A
b
so

lu
te

 M
ac

h
 n

u
m

b
er

 [
M

a]

Baseline OPTI2

Diffuser LE

Impeller TE

1,1

1,0

0,9

0,8

0,7

Diffuser splitter

LE

75% span

0,97

0,9

Figure 7.8: Vaneless gap diffusion increase

Diffuser leading edge angle

Diffuser leading edge blade angle was increased to 72,8◦ at the hub and 66,3◦

at the shroud in OPTI2. The spanwise difference in diffuser leading edge
angle was attributed to the presence of diffuser hub separation (discussed in
more detail below). A lower hub side diffuser incidence angle decreases blade
loading and subsequently delays the onset of hub separation, while a high
shroud side incidence was acceptable due to the low risk of separation at the
diffuser shroud. The large tangential velocity component discharged from the
impeller, due to the aforementioned impeller separation, did cause leading edge
separation in the diffuser between 95% and 100% spanwise height.

Diffuser splitter position

Diffuser splitter leading edge position was moved from 40% to 70% main blade
chord length in OPTI1, thus placing the splitter fully in the axial portion of
the diffuser. The splitter thus functions primarily as a de-swirling vane rather
than contributing to diffusion. Diffusion is mostly achieved in the first 50% of
the diffuser, as shown in Figure 7.9, where 88% of diffuser static pressure rise
occurs before the splitter leading edge.
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Figure 7.9: Static pressure distribution in the diffuser of OPTI1
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Diffuser throat area

The diffuser throat for all three designs was located between the diffuser main
blade leading edge and the nearest adjacent blade surface. Figure 7.10 shows
the absolute Mach number comparison for the three designs under the same
outlet static boundary condition. Choke is observed in all designs, but with de-
creased shock magnitude in OPTI2. Diffuser throat area was found to heavily
influence mchoke as shown by the throat area increase of 12% from Baseline to
OPTI1, and further 16% increase from OPTI1 to OPTI2 increasing Δmchoke

in each optimization. Parameters controlling diffuser outlet passage height
and diffuser wrap angle had mchoke correlation coefficients of rp = 0,20 and
rp = −0,15, respectively, as further discussed below.
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Figure 7.10: Diffuser choke absolute Mach number at 50% span

Diffuser outlet passage height

Diffuser outlet passage height, H DTE, was found to strongly influence stage
total-to-total pressure ratio (rp = −0, 47) and subsequently also stage total-to-
static pressure ratio (rp = −0, 42) and accompanying stage efficiencies. Fig-
ure 7.11 shows the scatter of fully converged designs with accompanying linear
regression curves with respect to mchoke and PR(01−4),DP . It should be noted
that although the mchoke correlation is not strong, the increase in maximum
possible mchoke (upper portion of the scatter) does increase significantly with
an increase in H DTE. This was attributed to an increase in diffuser throat
area. A further discussion of the significant design point influence of H DTE
is continued below in conjunction with the diffuser wrap parameter.
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Figure 7.11: Diffuser outlet passage height regression

Diffuser wrap

The diffuser wrap parameter (trailing edge camber Bézier control point), S H4,
has a very strong influence on stage pressure ratio and efficiency, with the
highest influence on PR(01−4),DP of rp = 0,64. The corresponding 1st and 2nd

order regression curves of η(01−4),DP are shown in Figure 7.12, with the general
trend of increasing design point performance. The scatter does appear to reach
a highest possible efficiency value at S H4 = 0,46 with no further improvement
to the upper parameter bound as shown by the 2nd order regression curve. It
should be noted that the root mean error (RME) of the 2nd order curve is 5%
greater than the 1st order curve so it cannot be explicitly stated as a better
scatter trend. Reasoning for the 2nd order trend hypothesis is discussed below.

Figure 7.12: Diffuser wrap regression
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As shown above, parameters S H4 and H DTE exhibit similar influence trends
on response values, which implies that a similar flow phenomenon is being
controlled. Both parameters exhibit strong influence on PR(01−04),DP , which
is strongly affected by losses through the diffuser row. It was identified that
diffuser hub separation occurs in all designs to varying magnitudes, such as
shown for the final design in Figure 7.13 by the low velocity (Ma < 0,15)
flow region. The separation initiates at the point of highest hub curvature in
the radial-to-axial bend and near the main blade suction surface. Parameters
S H4 and H DTE are controlling the separation magnitude and thus losses
associated with the separated flow. Reasoning for this flow control is given
below.
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Figure 7.13: Diffuser hub separation of OPTI2

As mentioned in section 2.3, diffusing flow is prone to separation. The magni-
tude and onset of separation in a diffuser can be controlled by either the rate
of increase in flow passage cross sectional area (controlled by passage height
and radius), or a change in blade and endwall loading. From this theory, it
can be interpreted that a reduction in H DTE will decrease the rate of flow
passage area increase and subsequently decrease separation losses. This theory
agrees well with the result trends presented above. Similarly, an increase in
S H4 reduces flow passage area increase rate due to the longer chord length.
Additionally, mean blade loading is decreased through the increase in chord
length.
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Figure 7.14 compares the diffuser discharge Mach number of both optimized
designs against two best η(01−4),DP DB1 designs of high and low diffuser wrap
and similar H DTE (circled in blue on Figure 7.12). Both DB1 designs exhibit
fully separated flow from the main blade suction side at the trailing edge, but
the low wrap design (S H4 = 0,37) experiences a larger magnitude of separation
which contributes to blockage and higher peak Mach number of Ma = 0,68.
Both optimized designs have significantly smaller regions of separation, with
OPTI1 achieving a 6% η(01−4),DP increase over the ‘low wrap’ DB1 design.
Both optimized designs show only hub separation while flow remains fully
attached to the main blade suction side. Furthermore, the larger separated
region of OPTI2 contributed to a 0,75% η(01−4),DP decrease from OPTI1.
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Figure 7.14: Diffuser discharge absolute Mach number comparison

Diffuser main and splitter blade number

For OPTI2, the number of main blades in the diffuser was reduced from 20
to 17 to increase mchoke, through a reduction of blockage contributed by main
blade thickness. Furthermore, the diffuser splitter number per passage was
doubled, to 2 splitters per main blade, to reduce blade loading and improve
ΔPR(01−05),stall. The onset of compressor stall was suspected to originate at the
diffuser hub (at the point of highest curvature) and progress to diffuser main
blade suction side. Figure 7.15 shows a more constant splitter and main blade
loading for OPTI2, from 80% main blade chord length at near stall conditions,
which subsequently improves the stall side operating range for OPTI2.
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Figure 7.15: Diffuser blade loading at 50% span; near onset of stall (m = 0,985
kg/s)

Diffuser camber thickness and backsweep

The aforementioned differences in blade loading were achieved by moving the
diffuser main blade mean maximum camber point from 57% to 72% chord
length, while diffuser backsweep was reduced by 4◦ to 28◦ at the hub and
significantly reduced by 13◦ to 10◦ at the shroud. Although there was an
increase in operating range, the diffuser static pressure recovery coefficient,
Cp, decreased from 0,613 to 0,584, which contributed to the 0,3% decrease in
η(01−4) near stall point. The decrease in Cp could be attributed to increased
viscous losses associated with the increase of blade surface area contributed by
the second splitter.

7.4 Structural geometric feature influence

Figure 7.16 shows the parameters with significant influence (rp > 0,3) on
CSM responses. Responses are grouped into main and splitter blade σVM,max,
as well as bore σVM,max and δz−tip,max, due to their respective similarities in
parameter correlations. Impeller thickness, camber and lean parameters are
grouped, as are the two body parameters, W BORE and W CUT. It should
be noted that dark blue and red blocks indicate strong positive and negative
correlations, respectively, while white blocks indicate no notable correlation.
Certain geometric features are discussed below.
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Figure 7.16: Structural Pearson correlation coefficient map

Backface undercut

The impeller backface undercut, W CUT, has a very strong influence on both
bore σVM,max (rp = −0,76) and δz−tip,max (rp = −0,87). W CUT was reduced
and inverted (to a positive value) to eliminate overhang of the disk backface as
shown in Figure 7.17. An undercut was found to reduce bore stress due to the
decreased body mass; however, the undercut also introduced higher trailing
edge displacement in the negative z -direction, which leads to blade-shroud
interference.

OverhangExaggerated displacement

OPTI2

OPTI1

Figure 7.17: Impeller undercut and resulting overhang
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Bore length

The bore length parameter, W BORE, was found to have a strong influence
on σVM,max (rp = −0,42), by controlling the bore surface area. An increase of
bore length was thus used to decrease the higher bore stress associated with
no undercut.

Camber thickness

An increase in the section 1 (hub side) camber thickness parameter of either
main or splitter blade decreases the σVM,max in the respective blade and fillet
due to the increased blade root cross-sectional area. Contrary to this, an in-
crease in main blade tip camber thickness, T MID SHROUD, rapidly increases
blade and fillet stress in the main blade due to the increase in blade mass under
centrifugal loading.

Blade lean

Impeller lean, βi, strongly affected splitter blade and fillet stresses near the
trailing edge due to the transverse overhang control introduced by βi. Impeller
lean magnitude was therefore reduced from -28◦ to -7◦ during OPTI2 to reduce
splitter blade and fillet stresses. Additionally, βi had a strong influence on
δz−tip,max but a reason for this correlation was not determined.

7.5 Pareto front

An estimated Pareto surface was constructed using results from OPTI2 by cre-
ating a triangulated surface with edges comprising of best performing designs
with respect to each of the independent optimization objectives (ΔPR(01−05),stall,
η(01−4),DP , and mchoke). Subsequently, any designs that perform best at any
weighting between the three objectives were added to the surface to create a
Pareto dome as shown in Figure 7.18.
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Figure 7.18: Pareto front 3-D dome

The 3-D Pareto dome was projected onto the mchoke vs ΔPR(01−05),stall plane,
as shown in Figure 7.19, with η(01−4),DP introduced as a filled contour plot.
In this figure, the relation between mchoke and ΔPR(01−05),stall can be seen by
the ‘Best stall Pareto edge’ curve. This curve represents the operating range
shift of a designs’ performance curve to either better choke performance at
the cost of stall performance or vice versa. It should again be noted that
ΔPR(01−05),stall is only used to estimate the true stall mass flow rate based on
an extrapolation from pressure gradient.

Figure 7.19: Pareto surface projection onto mchoke vs ΔPR(01−05),stall plane
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The shift of operating range is shown by the performance curves of the best
stall and choke performing designs in Figure 7.20. By comparing these two
curves it can be seen that a 0,03 kg/s decrease in mchoke corresponds to a
0,025 kg/s decrease in mstall but an increase of 2% in PR(01−04),stall. This
indicates that for a shift in operating curve left or right, the optimizer would
also shift the curve up or down to achieve the necessary design point pressure
ratio.

Figure 7.20: Performance curves of selected designs

The effect of operating range shift on design point efficiency is illustrated by
the mchoke vs η(01−4),DP projection of the Pareto surface in Figure 7.21. When
the operating curve is shifted towards the lower mass flow, η(01−4),DP decreases
due to increasing shock losses associated with Δmchoke decreasing. As Δmchoke

increases, the efficiency performance curve gradient is less severe than towards
the choke side. Subsequently, η(01−4),DP of the best choke design and best
overall design differ by only 0,09%.
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Figure 7.21: Pareto surface projection onto mchoke vs η(01−4),DP plane

7.6 Final selected design

The best overall design selected after OPTI2 is discussed with respect to aero-
dynamic performance and structural feasibility when operated under various
rotation speeds.

7.6.1 Aerodynamic performance

A compressor map for engine speeds ranging from 43 000 RPM to 80 000 RPM
is given in Figure 7.22. The ‘Choke line’ links points of highest PR(01−04) at
the highest mass flow observed for each constant speed curve. The choke
line was extrapolated between known points with termination at zero speed
( m = 0 kg/s and PR(01−04) = 1). The ‘Estimated stall line’ was obtained
in similar fashion to the choke line, but passes through the lowest mass flow
points on each respective constant speed curve that converges successfully with
oscillations within the acceptable tolerance as defined in subsection 5.3.3.
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Figure 7.22: Final design compressor map

The efficiency curves of the compressor map show that the design point, ‘DP’,
of the selected design lies at the highest efficiency point of all plotted perfor-
mance curves. A gradual decline in peak efficiency is observed at decreasing
speeds, while a large decrease in peak efficiency (2,5%) is seen at the higher
speed of 80 000 RPM. Furthermore, the operating range at 80 000 RPM is only
8,3%, while the operating range at design speed is 19,3%. The significant de-
crease in operating range and peak efficiency from 73 000 RPM to 80 000 RPM
indicates that the design point is located near the highest efficiency point for
this compressor.

The feasibility of the startup-to-design speed operating envelope can only be
validated with further numerical and experimental investigation, when paired
with an appropriate turbine and startup motor. However, simulation of the
full engine assembly falls beyond the scope of this thesis.

A design point shaft power input of 208 kW was internally calculated using
Equation 5.8 for the purpose of turbine matching and specifying test bench
requirements for future experimental testing.
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7.6.2 Structural feasibility

The final design fulfils the design requirement of a σVM,max of less than 380 MPa
throughout the impeller. A maximum stress of 351,44 MPa was observed in
the bore near the impeller backface (see Figure 7.23). It was observed that
designs with a lower mixed flow angle would experience larger bore stresses
due to the increased body mass under centrifugal loading; as such, the final
design has a protruding bore from the backface to increase surface area and
distribute the body force across the bore surface. A main blade peak stress
of 319,31 MPa was obtained on the suction surface near the trailing edge (at
the intersection of the fillet and blade surface). This stress was likely a re-
sult of both body displacement inducing stress in the blade root, and blade
tangential lean creating a bending moment around the blade root. Blade lean
induced stress can also be seen at roughly midspan in the main blade due to
blade thickness tapering from thickest at the hub, to thinnest at the shroud.
The splitter peak stress of 283,71 MPa was located in the fillet at the lead-
ing edge due to the splitter forward sweep introducing a bending moment in
the blade root. A maximum z -displacement of 0,09 mm was obtained at the
impeller trailing edge tip, which was considered acceptable in order to avoid
blade-shroud interference issues with a tip gap size of 0,2 mm.
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Figure 7.23: Von Mises stress results for the final selected design
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An investigation of possible resonance was conducted under the CSM work-
flow. A Campbell diagram of the first 6 eigenfrequencies and 4 engine order
lines are plotted in Figure 7.24. The first eigenfrequency is encountered at
2831 Hz and induces a combined oscillation of both main blade and impeller
backface. Eigenfrequencies 2 to 6 range from 3258 Hz to 8047 Hz and induce
only main blade oscillations of increasing mode number (further description
given below). Further eigenfrequencies were not assessed since it is generally
accepted that the first 3 eigenmodes have the greatest displacement influence
on any given design. Higher frequencies result in significantly diminished dis-
placement excitation magnitude and are thus often dampened out entirely by
the system Diener et al. (2016).

Figure 7.24: Final design Campbell diagram

The engine order lines represent duplicate component numbers; for example,
the computed periodic body consists of only one main and splitter blade and
is thus of engine order 1. Resonance points indicate running speeds that could
experience excessive displacement excitation, which could lead to structural
failure from cyclic stress fatigue or blade-shroud interference. The resonance
points are located at intersection points of engine order lines and eigenfre-
quency lines and should be located away from the design speed line.
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It can be seen that an impeller with a periodicity of 6 would encounter vibra-
tion problems near design speed, whereas an impeller periodicity of 9, such as
this design, passes through all problematic frequencies at much lower operat-
ing speeds. An engine order of 17 line was included due to possible excitation
induced by diffuser shock and flow oscillations originating at the diffuser lead-
ing edge with a periodicity of 17 main blades. Overall, the final design passes
through the first 3 (most significant) eigenfrequency resonance points between
10 000 RPM and 35 000 RPM and should be safe to operate near design point.

The main blade first modal shape (second system modal frequency) is similar
to a cantilever beam, with fixed support at the blade root and a ‘flapping’
type oscillation of the full blade in a tangential direction. Modes 2 to 5 of the
blade induce further mode shapes along the blade tip. Figure 7.25 shows the
5th mode shape of the impeller.

Tip - Mode 0
Tip - Mode 5

Node

Figure 7.25: Main blade 5th vibration mode shape

7.6.3 Closing remarks

Images of the final design are given in Figure F.1, while a list of important
meridional and blade geometry parameters are given in Table F.1 and Ta-
ble F.2, respectively. The design achieves the design requirements specified by
the CSIR as indicated by the final design performance indicators in Table F.3.
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Conclusions and
Recommendations

8.1 Research objectives outcomes

Optimization strategy

A full workflow was successfully set up for a large design space optimization
of a micro gas turbine. A large range of geometric diversity was achieved by
coupling many meridional and camber Bézier control points with user-defined
parameters to increase feasible design rate and to reduce the number of free pa-
rameters required to control all significant geometric features. Two optimiza-
tions were performed, with the first (OPTI1) consisting of 48 free parameters
that controlled mainly the meridional blade and endwall features. The second
optimization (OPTI2) consisted of 25 free parameters that controlled blade
camber, blade thickness, and impeller body geometry to ensure structural fea-
sibility. Parameter bound ranges in OPTI2 were greatly reduced compared to
OPTI1 due to the low design convergence rate of 17,7%, which subsequently
improved to 100% in OPTI2.

Structural feasibility was ensured by including stress and displacement con-
straints into the objective function, while resonance feasibility was manually
checked for the final design. A non-standard workflow was used to incorporate
the CalculiX CrunchiX CSM analysis into the NUMECA FINETM/Design3D
CFD chain. This was achieved by implementing and adapting a Python script
developed by NUMECA Ingenieurbüro as part of the GAMMA research project
(Friendship Systems, 2019).

A method of filtering and manipulating response data that is used for surrogate
model (SM) training was developed and successfully implemented. A design’s
responses were not used by the SM if any operating point failed to converge
within the predetermined tolerances. A design was considered as unconverged

78

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 79

if design point computation mass flow (averaged) differed from the imposed
outlet boundary mass flow by more than a specified tolerance, or if the stall
point pressure ratio fluctuation, PR ′

(01−05),stall, exceeded a specified tolerance
across the final 100 iterations. This method prevented the SM training on
non-physical response values, but did allow the SM to train its prediction of
the feasible design space.

To further improve SM prediction, the stall side pressure ratio gradient re-
sponse, ΔPR(01−05),stall, was defined as a piecewise function of PR ′

(01−05),stall.
Designs with intermediate stall fluctuations represented physically unstable de-
signs at the assessed mass flow, but response values averaged across 100 itera-
tions were still deemed valid for SM training; however, ΔPR(01−05),stall was ma-
nipulated to a negative value (undesirable based on optimization constraints)
to give the SM information about the instability.

Design improvement and Pareto front

A baseline design was obtained that satisfied the aerodynamic performance
requirements of the CSIR, which was subsequently optimized in two steps as
described above. The first optimized design (OPTI1) achieved a considerable
improvement in choke margin from 3,5% to 5,9% and design point total-to-
static stage efficiency, η(01−4),DP , improvement of 4,6% to 86,6%, from the
baseline design. The second optimization further increased the choke margin
to 7,4% and considerably increased the stall margin to 11,8% but reduced
η(01−4),DP to 86,24% from OPTI1.

The final design was selected after the second optimization sequence, since the
optimizer obtained no significant design improvements across the final 100 it-
erations. The selected design achieved a PR(01−4),DP of 4,15 and stall, design,
and choke mass flows of 0,96 kg/s, 1,089 kg/s, and 1,17 kg/s, respectively, at
the design speed of 73 000 RPM. A full compressor map was computed to
determine the operating envelope of the compressor. A peak von Mises stress,
σVM,max, of 352 MPa was obtained at the impeller bore and a maximum blade
z -displacement of 0,09 mm (tip gap of 0,2 mm) was obtained at the trailing
edge tip. The compressor, with 9 main impeller blades and 17 diffuser vanes,
passes through the most significant resonance points between 10 000 RPM
and 35 000 RPM with no resonance issues near design speed. The final design
therefore satisfied all the requirements of the CSIR.

A Pareto front was computed with respect to the three optimization ob-
jective responses to be maximized, namely: mchoke (choke mass flow rate),
ΔPR(01−05),stall, and η(01−4),DP . A dome structure was created by triangulat-
ing a surface comprising of the best performing designs with respect to the
three objectives. A pseudo-linear relationship was observed between mchoke
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and ΔPR(01−05),stall, which corresponds to a translation of performance curve
operating range to either higher or lower mass flow. This translation in op-
erating range corresponded to a pseudo-hyperbolic change in η(01−4),DP as the
peak efficiency point shifts away from the design mass flow.

Geometric feature influence

Inducer radius was found to heavily influence operating mass flow range which
caused many designs to fail when mchoke < mDP , as a result of the incor-
rectly chosen lower bound. Inducer radius was therefore identified as a strong
parameter for shifting the performance curve to higher or lower mass flows.

Mixed flow impellers with the trailing edge terminating at a variable radius
were found to be optimized with a high spanwise difference in impeller trail-
ing edge backsweep, due to the difference in trailing edge tangential velocity
resulting from the varying radius.

An added expansion was incorporated in the vaneless gap to assist in flow
diffusion and reduce peak Mach number by 7% prior to the diffuser leading
edge, thus reducing shock losses for the optimized design. The expansion was
placed on the hub side due to separation at the shroud downstream of the
impeller trailing edge.

Diffuser outlet passage height and wrap angle contributed significant influence
on stage mchoke and η(01−4),DP , as determined by the use of Pearson correlation
coefficients. Both parameters heavily influenced rate of increase in diffuser
flow passage area, which affected the diffuser throat area and subsequently
mchoke. However, these two parameters also strongly influenced the onset and
magnitude of diffuser separation from the hub in the radial-to-axial bend which
subsequently affected η(01−4),DP .

Diffuser splitter blades were found to improve stall margin by distribution of
blade loading in the de-swirling portion of the diffuser, thus delaying major
hub separation. Splitter blades also helped achieve a more mixed-out diffuser
discharge, due to the relatively low solidity of main blades at the trailing edge.
For this design, the addition of a second splitter blade further improved stall
margin with a slight reduction in η(01−4),DP due to increased viscous losses
associated with a larger blade surface area.

The optimization of the impeller meridional discharge angle (αz2) was achieved,
given a strict (difficult to achieve) compressor stage outer diameter constraint
and a requirement that stage discharge should be axial. The meridional angle
parameter was allowed to vary from 50◦ to 85◦ in the database, with the best

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 81

optimizer designs located between 66◦ and 74◦. The final optimized design
had an impeller meridional discharge angle of 71,59◦.

8.2 Recommendations

It is suggested that a method of determining parameter-response influence us-
ing linear regression be implemented early in the database generation process.
For example, it is recommended that computing multiple small databases with
iterative manipulation of bounds be performed in conjunction with the use of
a Pearson correlation coefficient map to assist in determining parameter im-
portance. Furthermore, the use of scatter plots with valid design responses
should be used to determine parameter bounds for the final large database.

If a parameter is found to strongly shift the operating range and leads to oper-
ating point ill-convergence, it is recommended to either reduce the parameter
bound range or to shift the parameter bound into a more feasible region. Such
a procedure will improve design convergence rate and improve the correlation
coefficient of remaining free parameters.

The parametric model in this thesis was set up with a 4-point Bézier curve
defining blade camber, which has the drawback of no explicit control over
leading and trailing edge blade angles. Furthermore, changes in blade chord
also affect Bézier control point placement which influences blade angle. It is
suggested that camber be either defined with explicitly specified blade edge
angles, or a macro script be implemented into the post-processing to enquire
the blade edge angles. Such information could allow chord controlling param-
eters to be assessed independently from backsweep and incidence with respect
to response influence.

8.3 Suggestions for future research

Experimental testing of the compressor stage designed in this thesis should
be conducted to verify the claimed CFD and CSM results. Testing could be
conducted on a blow-down type test bench such as used by van der Merwe
(2012) and Burger (2016), but at the time of writing this thesis there exists
no blow-down facility at either Stellenbosch University or the CSIR capable of
supplying 208 kW of shaft power at 73 000 RPM to the compressor. Alterna-
tively, the stage could be tested with an accompanying combustor and turbine
(still to be designed) on a full MGT test bench.

Successive research to continue the implementation of this compressor stage
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into a functional MGT engine would be to design and manufacture the com-
bustor and turbine stages that could power this compressor. The full operating
map given for this compressor should serve as a basis for matching the turbine
design requirements. Furthermore, the diffuser discharge flow, specifically the
swirl component αz4, should be used to design an appropriate combustor for
the MGT engine.

An unsteady CFD analysis should be conducted to ensure that no rotating
stall will occur under normal operation. It is suggested that three diffuser
passages be stepped past one impeller passage to reduce computational expense
associated with a full passage computation. It is expected that the strong
impeller wake might result in oscillations of the separation zone identified at
the diffuser hub due to fluctuations in absolute Mach number entering the
diffuser.

The geometric feature influence on responses and flow observations suggest
that for a crossover type diffuser, there exists a design methodology link be-
tween impeller meridional discharge angle, αz2, and blade row axial length
with respect to diffuser outer radius constraint. The radial passage distance
available to diffuse and turn the flow in both blade-to-blade and meridional
planes strongly affects separation losses at the diffuser hub. As such, a lower
αz2 can allow for a longer diffuser passage and a lower blade loading required
to turn flow to discharge the stage axially in the meridional plane. Suggested
future research would thus be to develop a mathematical design guideline for
αz2 and blade axial length ratio (impeller and diffuser) as a function of stage
maximum radius constraint.
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Appendix A

Mesh and evaluation plane
validity study

(a) Impeller (b) Diffuser

Figure A.1: Mesh surface projection

Table A.1: Mesh quality

Mesh block Cell count Min. skewness
Max. aspect
ratio

Max. expansion
ratio

Spanwise angular
deviation

Spanwise expansion
ratio

Inlet bulb 96 579 47◦ 337,8 1,71 17, 5◦ 1,71
Impeller 1 044 930 27◦ 570,3 2,97 20, 8◦ 1,39
Diffuser 1 076 483 28◦ 386,9 3,28 94, 96◦ 2,20
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Figure A.2: Mesh independence study

Figure A.3: Evaluation plane location study
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Appendix B

y+ plots
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Figure B.1: y+ of hub and blades (top), and shroud (bottom)
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Appendix C

Software specific settings

Table C.1: Parametric modeller software settings

Grouping Software setting Impeller value (or selection) Diffuser value (or selection)
Endwalls Hub curve construction sequence

(type[point count])
B spline[4]-Bézier[5]-Line-
-Bézier[5]-Line

-Same as impeller-

Shroud curve construction sequence
(type[point count])

Line-Bézier[5]-Line-Bézier[5]-
-Line-Line

-Same as impeller-

Stream surfaces Surface type Hub-to-shroud interpolation -Same as impeller-
Section spanwise location [-0,02 1,02] * passage height [-0,05 1,05] * passage height

Stacking laws Stacking point and type Trailing edge, line Leading edge, line
Leading edge definition
(intersect coordinate, interpolation)

Hub/shroud: Z, linear Hub/shroud: R, linear

Trailing edge definition
(intersect coordinate, interpolation)

Hub/shroud: R, linear Hub/shroud: Z, linear

Main blade Construction plane dmr, theta -Same as impeller-
Camber curve type and spacing Bézier with 4 points and

twice geometric [2,5 1,5] spacing
Bézier with 4 points and
geometric [1,4] spacing

Thickness model Symmetric addition
(from camber curve)

Suction addition
(from camber curve)

Thickness curve type B spline with 5 points and
[2] geometric spacing

Bézier with 6 points and [0,6 1]
twice geometric spacing

Edge control (leading, trailing edge) Rounded, blunt at (constant dmr) -Same as impeller-
Splitter blades Number per passage 1 2

Camber curve From main blade -Same as impeller-
Thickness curve type B spline with 5 points and

double spacing
B spline with 3 points and
[2] geometric spacing

Tip gap Size 0,2 mm none
Solid body Body curve construction sequence

(type[point count])
Line-Bézier[4]-Line-Line-Line -

Fillet type Constant radius -
Sector curve range [0,06 0,7] -
Sector positioning (main/splitter) [0,6 0,4] -
Transition factor 0,3 -
Loft profile and extensions Along reference curve -
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Table C.2: Meshing software settings

Blade row Setting grouping Software setting Value (or selection)
Impeller 3-D control Inlet bulb smoothing steps 2

Meridional control Tip gap 0.2 mm
Optimization Fine grid steps 350

Gap steps 100
Multigrid steps 0

Flow paths control Number of flow paths 73
First cell height 5× 10−06 m
Control points 100
Intermediate points 10
General/endwall smoothing steps 0 / 10

Blade to blade control Inlet topology ‘I’ at high angle
Expansion ratio 1.18
Clustering relaxation 3
Trailing edge cell width 1,5× 10−05 m
Relax inlet clustering Enabled
Points in clearance O-mesh 5

Diffuser Optimization Fine grid steps 200
Multigrid steps 0

Flow paths control Number of flow paths 53
First cell height 5× 10−06 m
Control points 350
Intermediate points 10
General/endwall smoothing steps 20 / 200

Blade to blade control Inlet topology ‘I’ low angle
Expansion ratio 1.18
Clustering relaxation 1
Trailing edge cell width 1,5× 10−05 m
Points in clearance O-mesh 17

Both rows Blade to blade control Outlet topology ‘H’ normal angle
High stagger Enabled
Free inlet/outlet angle Enabled/enabled

3-D control Span interpolation 5 %
Untwist inlet/outlet Disabled/disabled
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(a) Impeller main blade (b) Impeller splitter blade

(c) Diffuser main blade (d) Diffuser splitter blade

Figure C.1: Grid point topology of each blade type

Figure C.2: Hub bulb grid point topology
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Table C.3: Solver software settings

Setting grouping Software Setting Value (or selection)

Fluid model Fluid type AIR (perfect)

Flow model

Flow mathematical model Turbulent Navier-Stokes (steady)
Turbulence model Spalart-Allmaras
Characteristic Reynolds length 0.07 m
Characteristic Reynolds velocity 250 m/s
Characteristic Reynolds density 1.2 kg/m3

Reference temperature 293 K
Reference pressure 100 kPa

Rotating machinery
Rotating block speed 73 000 RPM
Impeller-diffuser interface 1-D non-reflecting

Boundary conditions

Inlet boundary ‘Total quantities imposed’ & ‘velocity direction’
(Vz1 = V , P00 = 100000 Pa, T00 = 293 K, μ = 0,0001m2/s)
at ‘Subsonic’ flow with ‘Cylindrical’ coordinates

Outlet boundary (Design point) ‘Mass flow imposed’ by ‘Pressure adaptation method’
(mass-flow = 1.089 kg/s, initial pressure = 400 000 Pa)
at ‘Zero-order’ extrapolation

Periodic boundary Rotation periodicity with ‘matching’ mesh
Rotor blade and hub solid Adiabatic with constant rotation speed (73 000 RPM)
Remaining solid patches Adiabatic with constant rotation speed (0 RPM)

Numerical model

CFL number 1000
Number of grid levels 3 with coarse grid initialization
CPU booster Enabled
Initialization iterations 50
Initialization convergence level -5.0
Initialization CFL number 100 (CPU booster enabled)
Spatial discretization scheme Central
Time stepping technique Local time stepping

Initial solution
(design point)

Calculation method From turbomachinery
Estimated pressure 84 800 kPa (inlet) and 305 000 kPa (interface)
Turbulent viscosity 0.0001 m2/s

Computed variables
(additional)

From thermodynamics Static/total both temperature/pressure, Density
From velocities Vr, Vm, Vt, Absolute/relative Mach numbers
Solid data Static pressure and y+ values in first cell

Control variables
(design point)

Fine grid iterations 450 (stall), 400 (design), 120 (choke)
Fine grid convergence level -7.0
Solver precision Single
Expert parameters LOCCOR = 0, MUCLIP = 100 000, IWRIT = 1
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Appendix D

Validation case

A mixed flow impeller (αz2 = 74,5◦) developed by Diener et al. (2016) was
chosen as a validation case for the aerodynamic numerical setup described
above. The *.geomturbo geometry for blade and meridional profile was meshed
and the solver configured with the setup as described in section 5.3, with
exception of the diffuser specific settings. Inlet and outlet properties were set
as required to obtain the performance curve comparison seen in Figure D.1.
A maximum near design point difference of 0,3% in PR(01−02) and 0,4% in
η(01−02) was obtained at a mass flow rate of 0,825 kg/s. A choke mass flow
difference of 0,16% was obtained between the results quoted by Diener et al.
(2016) and the computed numerical results. The efficiency and pressure ratio
near the stall point (m = 0,76 kg/s) was still oscillating after 500 iterations and
thus differed by a greater amount from the Diener results than the remainder
of the curve. The remaining differences in results were attributed to errors
in mass flow weighting and cell property interpolation across the evaluation
plane due to the strong wake present near the evaluation plane. The evaluation
plane was placed in relatively close proximity (2,5 mm) of the rotor trailing
edge. The difference in results was deemed acceptable to prove validity of the
aerodynamic numerical setup.
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Figure D.1: Validation performance curves
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Appendix E

Database generation and design
samples

Impeller main blade

Impeller splitter blade

Diffuser splitter blades

Diffuser main blade

Figure E.1: Blade profiles (section 1) of random database designs
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Z_ITE_H

Z_DTE

D_GAP

Figure E.2: Sample designs with varying only axial length parameters
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Figure E.3: Sample designs with varying only impeller endwall curvature pa-
rameters (left) and varying only passage height parameters (right)

Figure E.4: Diffuser wrap possible range
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Table E.1: Database design validity count

DB1 (48 parameters) DB2 (25 parameters)
LHS LCVT CVT Total LCVT

Attempted designs 818 739 449 2006 60
Valid designs 101 112 141 354 60
Valid design percentage
(of total DB samples)

12,3 % 15,2 % 31,4 % 17,7 % 100 %

Figure E.5: Optimized design convergence
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Appendix F

Final design

Side view Front view

Isometric view

Figure F.1: Final design geometry
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Table F.1: Final design important meridional geometry parameters

Parameter Value

Inducer shroud radius, r1s 44,45 mm
Inducer hub radius, r1h 8,27 mm
Impeller forward sweep 11,18◦

Impeller mean outlet radius, r2m 68,90 mm
Impeller outlet meridional angle, αz2 71,59◦

Impeller outlet passage height, b2 6,65 mm
Vaneless gap radius ratio, k 1,09
Diffuser maximum radius, r4s 90,00 mm
Diffuser outlet passage height, b4 3,92 mm

Table F.2: Final design important blade geometry parameters

Parameter Value

Impeller blades (main/splitter) 9/9
Diffuser blades (main/splitter) 17/34
Impeller LE angle (shroud), β1s 60,67◦

Impeller LE angle (hub), β1h 36,25◦

Impeller TE angle (shroud), β2s 45,82◦

Impeller TE angle (hub), β2h 25,33◦

Diffuser LE angle (shroud), β3s 66,31◦

Diffuser LE angle (hub), β3h 72,77◦

Diffuser TE angle (shroud), β4s 10,32◦

Diffuser TE angle (hub), β4h 27,87◦

Table F.3: Final design aerodynamic performance parameters

Performance parameter Value

Design point total-to-static stage pressure ratio, PR(01−4),DP 4,15
Design point total-to-total stage pressure ratio, PR(01−04) 4,79
Design point total-to-total impeller pressure ratio, PR(01−02),DP 5,18
Design point total-to-static stage efficiency, η(01−4),DP 86,24%
Design point total-to-total stage efficiency, η(01−4),DP 87,23%
Design point total-to-total impeller efficiency, η(01−4),DP 89,59%
Design point stage B2B discharge angle, αz4 26◦

Design point shaft power input, Pshaft 208 kW
Design point mass flow, mDP 1,089 kg/s
Choke mass flow (and choke margin), mchoke 1,170 kg/s (7,4%)
Stall mass flow (and stall margin), mstall 0,960 kg/s (11,8%)
Operating speed, N 73 000 RPM
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