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Abstract 

 

The cardiac isoform of acetyl-CoA carboxylase (ACCβ) produces malonyl-CoA, a 

potent inhibitor of mitochondrial fatty acid (FA) uptake; thus increased ACCβ activity 

decreases fatty acid utilization thereby potentially leading to intracellular myocardial 

lipid accumulation and insulin resistance (IR). Previous studies show that greater flux 

through the hexosamine biosynthetic pathway (HBP) contributes to the development 

of IR.  In light of this, we hypothesize that increased HBP flux induces ACCβ gene 

expression thereby contributing to the onset of IR.  Our initial work focused on ACCβ 

gene promoter regulation and suggest that the HBP modulates upstream stimulatory 

factor 2 (USF2) thereby inducing ACCβ gene expression. Here, we further 

investigated HBP-mediated regulation of ACCβ gene expression by transiently 

transfecting cardiac-derived H9c2 cells with an expression vector encoding the rate-

limiting HBP enzyme (GFAT) ± the full length ACCβ and 4 truncated promoter-

luciferase constructs, respectively. GFAT overexpression increased ACCβ gene 

promoter activity for the full length and 3 larger deletion constructs (p<0.001 vs. 

controls). However, GFAT-mediated and USF2-mediated ACCβ promoter induction 

was blunted when co-transfected with the -38/+65 deletion construct suggesting that 

USF2 binds to the proximal promoter region (near start codon). Further investigation 

proves that USF2 binds to ACCβ promoter and activates it, but that USF2 is not O-

GlcNAc modified even though there is a strong correlation between increased O-

GlcNac levels and USF2 activation of ACCβ. This would suggest that there is another 

O-GlcNac modified factor involved in this regulatory pathway.  Our study demonstrates 

that increased HBP flux induces ACCβ gene promoter activity via HBP modulation of 

USF2. We propose that ACCβ induction reduces fatty acid oxidation, thereby leading 
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to intracellular lipid accumulation (FA uptake>>FA oxidation) and the onset of cardiac 

IR.   
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Uittreksel 

Die kardiale isoform van asetiel-CoA karboksilase (ACCβ) produseer maloniel-CoA, ‘n 

kragtige inhibeerder van mitochondriale vetsuur (VS) opname, en om hierdie rede sal 

verhoogde ACCβ aktiwiteit, vetsuur gebruik verlaag en potensieël aanleiding gee tot 

intrasellulêre miokardiale lipiedophoping en insulienweerstand (IW). 

Vorige studies toon dat groter fluks deur die heksosamienbiosintetiese weg (HBW) 

bydra tot die ontwikkeling van IW.  In die lig hiervan hipotetiseer ons dat verhoogde 

HBW fluks, ACCβ geenuitdrukking induseer, en sodoende tot die onstaan van IW 

bydra.  Ons aanvanglike werk het op ACCβ geenpromotorregulering gefokus, en 

voorgestel dat die HBW die opstroom stimuleringsfaktor 2 (USF2) moduleer en dus 

ACCβ geen uitdrukking induseer. 

Hier het ons verder die HBW-gemedieërde regulering van ACCβ-geenuitdrukking deur 

kortstondige tranfeksie van kardiaalverkrygde H9c2 selle met ‘n uitdrukkingsvektor wat 

kodeer vir die tempo-bepalende HBW ensiem (GFAT) ± die volle lengte ACCβ, en vier 

afgestompte promotor-lusiferase konstrukte onderskeidelik, te ondersoek.  GFAT 

ooruidrukking het ACCβ geenpromotor aktiwiteit vir die volle lengte, en drie groter 

uitwissingskonstrukte verhoog (p<0.001 vs. kontrole). 

Hoewel GFAT-  en USF2-gemedieërde ACCβ promotorinduksie tydens ko-transfeksie 

van die -38/+65 uitwissingskonstruk versag was, is dit voorgestel dat USF2 aan die 

proksimale promotor area (naby die beginkodon) bind. Verdere ondersoek bewys ook 

dat USF2 aan die ACCβ promotor bind en dit aktiveer, maar dat USF2 nie O-GlcNAc 

gemodifiseer word nie ten spyte van ‘n sterk korrelasie tussen verhoogde O-GlcNac 

vlakke en USF2 aktivering van ACCβ.  Dit kan dus voogestel word dat daar ‘n 

alternatiewe O-GlcNac gemodifiseerde faktor betrokke is in hierdie reguleringsweg.  

Ons studie demonstreer dat verhoogde HBW fluks ACCβ geenpromotor aktiwiteit via 
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HBW modulering van USF2 veroorsaak. Ons stel voor dat ACCβ induksie 

vetsuuroksidasie verlaag en so tot intrasellulêre lipiedophoping (VS opname >> VS 

oksidasie) en die onstaan van kardiale IW lei. 
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1.1 Epidemiology 

 

Obesity is defined as an excess of body fat which accumulates in adipose tissue, 

associated with increased fat cell size and number (69). Obesity has become more 

prevalent worldwide, resulting in an increase in related diseases such as type-2 

diabetes (4). Although obesity is especially common in industrialised countries, its 

prevalence is also dramatically increasing in developing countries such as South 

Africa. The movement of populations from a rural type to a more “western-based” 

lifestyle with its increased availability of high-caloric diets is a key factor that has led to 

a higher incidence of obesity. It is believed 346 million people worldwide have 

diabetes and the World Health Organization predicts that diabetes-related deaths will 

double between 2005 and 2030 (126, 130). 

 

Individuals who are obese develop insulin resistance which is characterised as an 

impairment of insulin to mediate glucose uptake and metabolism by muscle and 

adipose tissue. Cardiovascular disease is the primary cause of morbidity and mortality 

in obese individuals and in patients diagnosed with type-2 diabetes mellitus (61, 70, 

115, 131). Although the heart plays a small role in the development of insulin 

resistance throughout the whole body, cardiovascular complications are the main 

causes of death in insulin resistant obese and type-2 diabetes patients (23). Diabetes 

mellitus is a cluster of metabolic perturbations characterized by high blood glucose 

levels or hyperglycaemia, which result from defects in insulin secretion, or action, or 

both. Diabetes mellitus can easily be identified with high glucose levels found in urine, 

and excessive muscle loss (125). There are three types of diabetes. Type 1 diabetes 

mellitus is loss of beta cell function of the islets of Langerhans in the pancreas 
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resulting in the inability of the pancreas to produce insulin. Type 1 diabetes mellitus 

can affect children or adults, but a majority of these diabetes cases are in children and 

can be genetically inherited (125). Type 2 diabetes mellitus is characterized by insulin 

resistance and a failure of the body to use insulin properly or a deficiency in its 

function or availability to the body. Type 2 diabetes can eventually develop into type 1 

diabetes but can be managed by diet and exercise and is mostly linked to the life-style 

of the individual. The other main type of diabetes is gestational diabetes mellitus which 

resembles type 2 diabetes mellitus but is only present in some women during 

pregnancy. It is treatable although the main concern is its effect on the fetus or the 

mother (68). 

 

South Africa has a unique, heterogeneous population originating from a diverse range 

of ethnic backgrounds. The ~ 46 million individuals that reside in South Africa largely 

consist of African (79%), Caucasoid (9.6%), mixed ancestry (“coloured”) (8.9%) and 

Indian backgrounds (2.5%) (4). This diverse cultural and ethnic diversity makes it 

difficult to elucidate trends with respect to changes in diet and health behaviours of the 

entire population. There are also limited studies performed to assess the prevalence of 

metabolic syndrome (a precursor to obesity and diabetes) in South Africa. However, 

recent data show that mortality rates from ischaemic heart disease among whites, 

coloureds and Indians were found to be more than 2x the rate for blacks, while stroke 

death rates among blacks and coloureds were double compared to whites (4).  

 

There are many sociological implications why the prevalence of cardiovascular 

diseases has become more common. For example, for the black community, the 

highest incidences of obesity are observed in black women (4). This may, in part, 
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depend on the cultural background in the black population where obesity is often 

regarded as a reflection of health and wealth (4).  

 

Other associated lifestyle risk factors may also influence the epidemiology of 

cardiovascular diseases. Risk factors such as physical inactivity, increased smoking, 

hypertension and hypercholesterolemia may play an important role in the increase in 

cardiovascular disease and type-2 diabetes (115, 135). For example, although 

measures were adopted to reduce smoking (higher retail prices and a smoking ban) a 

recent South African report found that the prevalence of young smokers (14 years) 

increased by 30% (115). The survey was performed from 1998 to 2003 among a 

population of 15,124 school children in South Africa. Furthermore, the prevalence of 

sedentary behaviour has increased in recent years and is continuing to grow as a 

problem (115). Together these data highlight the increased burden of diabetes and 

cardiovascular diseases faced by developing nations such as South Africa.  

 

In light of this, our laboratory has begun to investigate the basic mechanisms 

underlying the development of diabetes and cardiovascular diseases. In particular, we 

are focusing on the role of altered metabolism in the pathogenesis of type-2 diabetes 

and heart diseases. For the next part of this Introduction, I will now review some 

basics aspects of the heart’s metabolism and thereafter focus on my particular 

interest, i.e. the hexosamine biosynthetic pathway. 
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1.2 Metabolism of the heart 

 

The heart pumps blood continuously for the complete lifespan of an individual. This 

constant workload demands a high and very adaptive capacity for energy production 

in the form of adenosine triphosphate (ATP), produced by mitochondria of the heart. In 

terms of its fuel substrate preferences, the heart is like an omnivore that utilises fatty 

acids, glucose, lactate and ketone bodies. The heart is able to switch substrate priority 

easily depending on each substrate’s availability, and the conditions of stress it is 

placed under (23). The normal adult mammalian heart obtains ~70% of its energy from 

fatty acid oxidation with the remainder provided by glucose and lactate (23). In the 

foetal heart carbohydrates are favoured as major substrates.  

 

The heart utilises ketone bodies as a fuel source during fasting conditions. Metabolism 

of ketones generates NADH2 and FADH2 which can be used to generate energy by 

the electron transport chain (37). It has been shown that ketone bodies are able to 

suppress cardiac fatty acid oxidation during diabetes (47). In support Ruderman et al 

(1974) investigated arteriovenous differences for glucose, lactate, acetoacetate and 3-

hydroxybutyrate in brain tissue of anaesthetized starved and diabetic rats. Here 

glucose represented the sole oxidative fuel of the brain during the fed state. They 

concluded that cerebral glucose uptake is decreased with diabetic ketoacidosis due to 

an inhibition of phosphofructokinase by elevated brain intracellular citrate levels.  
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Studies have shown that under certain conditions e.g. increased exercise, hypoxia, 

and anoxia; excess pyruvate from glycolysis is converted into lactate (37). Moreover, 

Brooks et al. (2000) introduced the hypothesis of a ‘’lactate shuttle’’ (9). This 

hypothesis proposes that lactate formation and its distribution throughout the body can 

act as a mechanism to coordinate metabolism in different tissues. It is also known that 

during intense exercise lactate flux can exceed glucose flux (9, 37). Hashimoto et al 

(2007) hypothesized that in addition to its role as a fuel source and gluconeogenic 

precursor, lactate anion (La–) functions as a signaling molecule. Furthermore, 

polymerase chain reaction (PCR) and electrophoretic mobility shift assays (EMSA) 

showned that lactate can increase reactive oxygen species (ROS) production. It was 

also found to up-regulate 673 genes, of which many are known to be responsive to 

ROS and Ca2+(9, 37). Here, lactate is linked to the regulation of expression of 

monocarboxylate transporter-1 (MCT1) and cytochrome c oxidase (COX) mRNA. 

Increases in COX expression coincided with increased peroxisome proliferator 

activated-receptor γ coactivator-1α (PGC1α) and nuclear respiratory factor (NRF)-2 

levels. These data therefore demonstrate that lactate in itself can have a wide range of 

effects on the regulation of a vast number of intracellular metabolic, signalling and 

transcriptional pathways (9, 37).  
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1.2.1. Fatty acid metabolism 

 

Fatty acids have four major physiological roles in metabolism. Firstly, it forms building 

blocks in the formation of phospholipids and glycolipids; secondly it is involved in the 

modification of proteins that are targeted to the cell membrane; thirdly it can serve as 

hormones and intracellular messengers; and finally fatty acids are utilised as fuel 

substances (116).  Fatty acids are stored as triacylglycerol in adipose tissue until it is 

needed, i.e. then to be broken down by lipolysis (116).  

 

Long-chain fatty acids (LCFAs) enter the circulation in two forms, either in a complex 

with albumin or esterified in a lipid core of very-low density lipoproteins (VLDLs) and 

chylomicrons (23, 112, 122). Free fatty acids (FFA) are released into the bloodstream 

by adipose tissue and taken up by non-adipose tissue via sarcolemmal transporters. It 

was first believed that LCFAs were transported across the sarcolemma into 

cardiomyocytes by passive diffusion, but it is now accepted that most of LCFAs are 

taken up by membrane transporters (40, 74, 75, 94). Two such fatty acid transporters 

are fatty acid translocase, a rat homologue of human CD36 (FAT/CD36) and fatty acid 

binding protein (FABP) (8, 84).  There are also two isoforms of the fatty acid transport 

protein (FATP) family, i.e. FATP1 and FATP6 present in cardiomyocytes (112). Both 

exhibit acyl-CoA synthetase activity. FATP6 is found exclusively and in higher 

abundance in the heart. FATP has been found to colocalise with FAT/CD36 and both 

these LCFA transport proteins act in concert with each other.  
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Once inside the cardiac myocyte, LCFAs bind to a cytoplasmic heart-type fatty acid 

binding protein (H-FABP). This protein transports non-esterified LCFAs towards a site 

where they are converted and activated by acyl-Coenzyme A (acyl-CoA) synthetase to 

form fatty acyl-CoA. Acyl-CoA binding protein (ACBP) then binds to acyl-CoAs and 

can either incorporate them into intracellular lipid pools or shuttle it to the mitochondria 

to be metabolised (Figure 1).  

 

After uptake is complete acyl-CoAs are oxidised by -oxidation producing acetyl-CoA 

as a by-product. Acetyl-CoA from -oxidation enters the citric acid cycle to be 

degraded along with acetyl-CoA from glucose oxidation (23, 34, 105). The result is the 

generation of FADH2 and NADH that enter the mitochondrial respiratory chain.  In 

oxidative phosphorylation, ATP synthesis is coupled to the flow of electrons from 

NADH or FADH2 to oxygen by a proton gradient across the inner mitochondrial 

membrane (116). 

 

A proton gradient is created by pumping protons out of the mitochondrial matrix into 

the inter-mitochondrial membrane space. Thus a proton gradient is formed which 

creates a membrane potential. The protons then flow back into the mitochondrial 

matrix through ATP synthase which drives ATP production (Figure 1).   
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CPT1 

Free fatty acids 

Sarcolemma 

Acyl- CoA synthetase 

Acyl-CoA 

Fatty acid β-oxidation spiral 

Acyl-CoA 

Acetyl-CoA 

Citric acid cycle FADH2 and NADH 

Figure 1: Diagram of fatty acid metabolism.  
(CPT1: carnitine palmitoyl transferase, ACC: acetyl-coenzyme A carboxylase , LCFA: long-chain 
fatty acid). 

ACC 

Acetyl-CoA Malonyl-CoA 

MCD 

FAT/CD36 

LCFA 

Mitochondrion 
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Even though LCFAs are utilised for energy production they also play a role in the 

regulation of genes involved in their own metabolic pathway. LCFAs can induce genes 

that increase fatty acid oxidation by activating a family of ligand-activated nuclear 

receptors called the peroxisome proliferator-activated receptors (PPARs) (117, 121). 

There are three isoforms of PPARs, i.e. PPAR, / and  (117, 121).  PPAR and / 

are the main isoforms expressed in cardiomyocytes and activation of target genes 

results in an increased expression of regulators of fatty acid oxidation and fatty acid 

uptake, i.e. fatty acid transport protein (FAT/CD36) and carnitine palmitoyl transferase 

(CPT1) (35).  

 

Fatty acid oxidation is regulated depending on fatty acid availability, its uptake by 

mitochondria and by its breakdown. Fatty acid uptake is a strongly regulated process 

involving a number of membrane transporters both on the outer membrane and 

mitochondrial membrane. In particular, fatty acyl-CoAs are transported into the 

mitochondrion by the action of three proteins which function as a complex. At the outer 

membrane is CPT1 which catalyses the formation of acylcarnitine (23, 29). Connected 

to CPT1 is carnitine/acylcarnitine transferase (CACT) which transports acylcarnitine 

into the mitochondria. The final enzyme (CPT-II) is found on the inner mitochondrial 

membrane and releases acyl-CoA into the mitochondrial matrix (23).  

 

The process of mitochondrial LCFA uptake is regulated by CPT1 which is the rate-

limiting enzyme for this process. A key molecule responsible for the regulation of 

CPT1 is malonyl-CoA (67, 70, 91, 102, 114, 134). Malonyl-CoA is a potent inhibitor of 

CPT1 and is produced from acetyl-CoA by an enzyme known as acetyl-CoA 
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carboxylase (ACC) (67, 70, 91, 102, 114, 134). Another enzyme, malonyl-CoA 

decarboxylase (MCD) degrades malonyl-CoA into acetyl-CoA (28, 114).  

 

ACC has two isoforms, ACCα and ACC, that have different physiological roles based 

on their distinct subcellular distributions (44). ACC is a cytosolic enzyme (molecular 

mass of 265 kDa) that supplies malonyl-CoA to fatty acid synthase (FAS) and is 

committed to de novo lipogenesis (DNL) in many tissues via subsequent nutritional 

and hormonal regulation (3, 39, 44, 62, 99). In contrast, ACCβ (molecular mass of 280 

kDa) is anchored to the mitochondrial surface via a unique N-terminal domain that 

includes 20 hydrophobic amino acids and an additional 136 amino acids relative to 

ACCα, 114 of which constitute the unique N-terminal sequence of ACCβ (1, 2, 39, 44). 

ACC is responsible for malonyl-CoA production in the heart with ACCα localized to 

the cytosol.  

 

In studies performed with ACCβ knockout mice there was an increase in fatty acid 

oxidation in skeletal muscle and a reduction in body weight fat content. However, mice 

with a mutation in the ACCα gene were embryonic lethal. It has also been shown that 

ACCβ-deficient mice do not develop diabetes when fed a high caloric diet. 

Furthermore, an increased ACCβ gene expression was found in skeletal muscle of 

diabetic patients. Conversely, ACC overexpression increases malonyl-CoA 

production resulting in a decrease in fatty acid uptake (28, 67, 91, 102, 114, 135). 

Since ACC is responsible for malonyl-CoA production, its overexpression increases 

malonyl-CoA production and thereby results in a decrease in fatty acid uptake. These 

data therefore strongly indicate the importance of ACCβ in the development of 
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diabetes. Since the focus of this study is on transcriptional regulation of ACCβ gene 

expression, I will now discuss previous studies in this regard. 

 

.ACCβ is expressed abundantly in heart, skeletal muscle, and liver (1, 62, 89, 138). 

ACCβ transcripts contain two species of 5'-UTRs, which contain either the sequence 

of exon 1a or of exon 1b via the alternative usage of two promoters, i.e. promoter 1 

and promoter 2 (P1 and P2). Exon 1a and exon 1b are located ~ 15 kilobases apart in 

human genome but are both connected to exon 2 in mRNA after splicing. However, 

they both use the same ATG start codon for translation, which is found in exon 2 and 

therefore the two transcripts encode for the same protein (39, 69, 89). A differential 

regulation of ACCβ gene expression originates from alternative usage of promoters, 

such as P1 and P2 in different tissues (89). P1 is the sole promoter found in the heart 

and skeletal muscle of rats, although both P1 and P2 are active in human skeletal 

muscle. Metabolic changes occur rapidly in skeletal and cardiac muscle and therefore 

rapid regulation of enzyme activity by phosphorylation or dephosphorylation is 

important in ACCβ expression. In comparison, the liver’s response to changes in 

environment is less immediate with more emphasis on transcriptional regulation of 

ACCβ. 

 

It was reported that sterol regulatory element-binding protein-1 regulates hepatic 

ACCβ expression through the P2, in response to feeding status. Moreover P2 is also 

regulated by myogenic regulatory factors (MRF’s) in human skeletal muscle (69, 89). 

These include MyoD(myogenic differentiation 1), myogenin, MRF4 and Myf5 

(Myogenic factor 5) which are basic helix-loop-helix transcription factors involved in 

myogenic differentiation. All of these transcription factors recognize the same 
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consensus sequence, i.e. E-box (CANNTG), but are expressed at different times 

resulting in different modes of action and varying regulation patterns of ACCβ (89). 

 

Myogenin and MRF4 play a major role in the expression of muscle genes in fully 

differentiated myotubes, while Myf5 and MyoD establish the myogenic lineage during 

embryogenesis (89, 100, 101, 104, 110). It is important to note that myogenic 

regulatory factor-binding sites found in the human ACCβ P2 are not conserved in rat 

P2. This would contribute to this difference in P2 usage between human and rat 

skeletal muscle (89). 

 

The level of ACCβ expression is higher in the heart than in skeletal muscle. It is 

currently not known which promoter controls ACCβ expression in the heart. 

Cardiomyocyte-specific transcription factors, such as homeobox protein Nkx-

2.5 (Csx/Nkx2.5), transcription factor GATA-4 (GATA4),  myocyte enhancer factor-2 

(MEF2), and Heart- and neural crest derivatives-expressed protein 1  (eHand) have 

been implicated in cardiac development and cardiac gene expression. Unlike in 

skeletal muscle MRFs have not been shown to be involved in ACCβ regulation in the 

heart (59, 64, 86, 89, 90).  

 

The nucleotide sequence of the cDNA of the human liver ACCβ carboxylase has an 

open reading frame of 7,449 nucleotides that encode 2,483 amino acids. The 

nucleotide sequences and the predicted amino acid sequences from the cDNA of 

ACCβ, has ~60 and 80% in similarity to that of ACC, respectively. Ser77 and Ser79 

are critical for the phosphorylation of rat ACC (Ser78 and Ser80 of human ACC) (1, 

89). These amino acids are conserved in ACCβ and are represented as Ser219 and 

Stellenbosch University http://scholar.sun.ac.za



13 

 

Ser221, respectively. Another phosphorylation site, Ser1200, in rat ACC (Ser1201 of 

human ACC) is absent in ACCβ.  

 

Most of the homology between the amino acid sequences of the human ACC isoforms 

is found downstream of residues Ser78 and Ser81 in human ACC and their 

equivalent residues in ACCβ, i.e. Ser219 and Ser22. It has been suggested that the 

first 218 amino acids at the N terminus of ACCβ represents a unique peptide that may 

be responsible for the variation between the two carboxylases. Despite the similarities 

between these two isoforms, studies with rat liver ACC and ACCβ showed that the 

two isoforms do not cross-react immunochemically. It was shown that when the amino 

acid sequences of the human ACC and ACCβ are aligned, an extra 142 amino acids 

can be found in ACCβ (i.e. 426 bp in ACCβ cDNA). It is believed that the extra 142 

amino acids are involved in controlling the localisation of ACCβ in the cell, i.e. to the 

mitochondrion. 

 

AMP-activated protein kinase (AMPK) plays and important role in the regulation of 

CPT1 by phosphorylating and inhibiting ACCβ, resulting in an increase in fatty acid 

oxidation (27, 54). Phosphorylation of ACCβ by AMPK is well documented. It has been 

suggested that MCD is also phosphorylated by AMPK (27, 54). Therefore, AMPK 

plays a distinct and important role in regulating both malonyl-CoA levels and fatty acid 

oxidation in the heart. 
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1.2.2 A description of fatty acid sub classing 

 

A fatty acid is described as a carboxylic acid with a long unbranched aliphatic tail. This 

aliphatic tail is saturated or unsaturated. Most fatty acids that occur naturally contain a 

chain with an even number of carbon atoms that varies from 4 to 28 carbon atoms. 

Fatty acids usually derive from triglycerides or phospholipids. Triglycerides are esters 

which form from glycerol and three fatty acids. Unsaturated fatty acids are typically 

found in vegetable oils, while saturated fats are in abundance in animal fats. By 

contrast, phospholipids are found in cell membranes and play a major role in the 

formation of lipid bilayers. The hydrophillic head contains a negatively charged 

phosphate group while the tail is hydrophobic. When they are not attached to other 

molecules, they are known as "free" fatty acids. 

 

Fatty acids are classed according to the length of its tail and whether it contains a 

double bond. Fatty acids that have double bonds are known as unsaturated fatty acids 

while those without double bonds have hydrogen atoms bound in place of the double 

bonds and are saturated. Fatty acids are divided into categories according to tail 

length as short, medium and long. A short-chain fatty acid is a fatty acid with aliphatic 

tails with fewer than six carbon atoms. Medium-chain fatty acids have tails between six 

and twelve carbon atoms, while long-chain fatty acids have more than twelve carbon 

atoms. Very long chain fatty acids are defined as fatty acids with an aliphatic tail 

longer than 22 carbon atoms.  

 

Unsaturated fatty acids can be divided into two types, namely by the two carbon atoms 

in the chain that are bound next to either side of the double bond which can occur in 
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a cis or trans configuration. Those in cis conformation are found naturally while those 

in trans (known as trans fats) are not found in nature and are the result of human 

processing. Trans fats are known for their ability to clog cell membranes in tissues 

because of the bodies inability to process them. 

 

1.2.3. Glucose metabolism 

 

The uptake of extracellular glucose by myocytes is mediated by glucose transporters 

(GLUTs). There are two glucose transporters that can be found in the heart, i.e. 

GLUT1 and GLUT4 that are located not only in the sarcolemma but also in intracellular 

storage compartments (6, 23, 48-50, 63, 79, 80, 82, 108). GLUT1 is the foetal isoform 

and can be found in less abundance than the adult, insulin-stimulated glucose 

transporter (GLUT4). Insulin regulates glucose uptake into these cells by recruiting 

membrane vesicles containing the GLUT4 glucose transporters from the interior of 

cells to the cell surface. GLUT4 then allows for the uptake of glucose into the cell. 

After an hour of insulin stimulation the GLUT4 is translocated back into the cell in 

vesicles and stored to be reused again. A dysfunction in GLUT4 trafficking is a key 

factor that has been linked to type 2 diabetes mellitus and the development of insulin 

resistance (6, 23, 48-50, 63, 79, 80, 82, 108). After glucose has entered the 

cardiomyocytes it is rapidly phosphorylated by hexokinase into glucose-6-phosphate.  

 

Once converted to glucose-6-phosphate, glucose can be metabolised in six different 

ways (Figure 2). Firstly, glycogen synthesis can take place and glucose-6-phosphate 

can be converted by glycogen synthase (GS) into glycogen for storage. This process 

is reversible and when required glycogen phosphorylase (GP) can convert glycogen 
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back into glucose-6-phosphate (115). Some of the glucose-6-phosphate can enter the 

pentose phosphate pathway (PPP) where it has been proposed that xylulose-5-

phosphate activates a specific isoforms of protein phosphatase 2A which, in turn, 

dephosphorylates the transcription factor carbohydrate response element-binding 

protein (ChREBP) (53, 131). In the liver ChREBP translocates from the cytosol to the 

nucleus where it regulates the expression of glycolytic and lipogenic enzymes (58).  

 

 

 

 

Most of the glucose-6-phosphate enters glycolysis. After the first step of glycolysis, 

phosphoglucose isomerase converts glucose-6-phosphate into fructose-6-phosphate. 

At this point most of the fructose-6-phosphate continues down the glycolytic pathway 

where it is converted to pyruvate after a long series of steps. However, a small 

Figure 2: Diagram representing the different pathways of 
glucose metabolism (reproduced from (53)). 
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percentage of the fructose-6-phosphate is diverted to another pathway responsible for 

nutrient sensing, i.e. the hexosamine biosynthetic pathway  (79, 97).  

 

In the glycolytic pathway, fructose-6-phosphate is converted into fructose-1,6-

bisphosphate by phosphofructokinase which is the rate-limiting enzyme of glycolysis 

(116). The production of pyruvate marks the end of the glycolytic pathway. In the 

absence of oxygen pyruvate can be reversibly converted to lactate. Under aerobic 

conditions pyruvate is transported into the mitochondrion by pyruvate dehydrogenase 

(PDH), the rate limiting enzyme of glucose oxidation, where it undergoes oxidative 

decarboxylation into acetyl-CoA. Acetyl-CoA from glucose metabolism, together with 

acetyl-CoA from fatty acid oxidation, enters the citric acid cycle (Krebs cycle) where it 

is oxidised to carbon dioxide, NADH and FADH2. The NADH and FADH2 produced are 

then used in oxidative phosphorylation to produce ATP after donating their electrons 

to oxygen (116). 

 

Another pathway that utilizes glucose is the polyol pathway. The polyol pathway 

consists of two steps in which glucose is converted to sorbitol and then converted into 

fructose (72). During this process NADPH is converted to NADP+ (72). The polyol 

pathway mainly functions to remove excess glucose from glycolysis and then return it 

to the glycolytic pathway again (72).  

 

The glyoxylate pathway is found mainly in plants and yeast (71). This pathway 

converts acetyl-CoA into oxoloacetate by bypassing the steps in the citric acid cycle. It 

can therefore use fats for the synthesis of carbohydrates (71). 
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The last pathway that utilises carbohydrates is the biosynthesis of oligosaccharides 

and glycoproteins which are then expressed on the surface of cell membranes (20).  

 

Another pathway which can affect glucose metabolism is the phosphatidylinositol 3-

kinase (PI 3-kinase) pathway. PI 3-kinases have been linked to a diverse group of 

cellular functions, including cell growth, proliferation, differentiation, motility, survival 

and intracellular trafficking.  PI 3-kinases are important regulators involved in the 

insulin signaling pathway and play a role in the development in diabetes mellitus. PI 3-

kinase binds to tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1), and this 

step plays a central role in the regulated movement of the glucose transporter, 

GLUT4, from intracellular vesicles to the cell surface. It has been shown that PI 3-

kinase inhibitors, such as wortmannin, and LY294002 inhibit insulin-stimulated glucose 

transport and translocation of GLUT4 to the cell surface (107). 

 

1.2.4 The Randle cycle 

 

The Randle cycle (named after Philip Randle, its first proposer), which has been used 

to explain the reciprocal relationship between fatty acid oxidation and glucose 

oxidation, has long been implicated as a potential mechanism for hyperglycaemia and 

type-2 diabetes mellitus (109). The Randle cycle states that increased fatty acid 

oxidation causes a decrease in glucose oxidation. Thus in the setting of excess FFA 

and glucose supply (insulin resistant state), this is thought to lead to lower glucose 

uptake and eventually lead to hyperglycaemia. Here, acetyl-CoA and NADH derived 

from fatty acid oxidation can suppress pyruvate oxidation by inhibiting pyruvate 

dehydrogenase (33, 87).  Increased fatty acid oxidation has also been shown to result 

Stellenbosch University http://scholar.sun.ac.za

http://en.wikipedia.org/wiki/Diabetes_mellitus


19 

 

in the inhibition of phosphofructokinase and attenuate glycolysis. This would increase 

accumulation of upstream glycolytic metabolites through other glucose pathways and 

result in glucose accumulation (87). In my previous study I had proposed a “reverse 

Randle cycle” where by glucose metabolism could regulate fatty acid metabolism as a 

negative feedback and therefore provide an alternate mechanism for nutrient 

switching within the cell. 

 

1.2.5. Hexosamine biosynthetic pathway 

 

Since the focus of my thesis is on the hexosamine biosynthetic pathway (HBP), I will 

now discuss this in more detail. HBP is a relatively small branch glucose utilising 

pathway. Only ~3-5% of the total glucose utilised in the cell enters the HBP depending 

on the tissue or cell type (79, 97). The pathway is catalysed by the rate-limiting 

enzyme glutamine: fructose 6-phosphate amidotransferase (GFAT). During this first 

step, fructose-6-phosphate and glutamine is converted to glucosamine-6-phosphate 

and glutamate (Figure 3). Thereafter, through a series of steps glucosamine-6-

phosphate is converted to glucosamine-1-phosphate. After the addition of uridine, it is 

converted into uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and CMP-sialic 

acid. UDP-GlcNAc is the end product of the HBP pathway and also functions as an 

inhibitor of GFAT (12).  
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UDP-GlcNAc functions as the substrate for O-linked β-N-acetylglucosamine 

transferase (OGT). OGT catalyses the reversible modification of various proteins and 

transcription factors by cleaving UDP from GlcNAc and transferring GlcNAc in O-

linkage to serine/threonine residues on proteins. O-GlcNAc modification has two novel 

mechanisms of action (12, 65, 73).  

 

O-GlcNAc modification is a unique form of glycosylation found in plants and animals 

found to be different to normal glycosylation in that it is not elongated to more complex 

structures and that it is not restricted to only cell surface and luminal faces of secreted 

proteins. It has been shown in lymphocytes that a majority of O-GlcNAc modification 

can be found inside the cell and even localised within the nucleocytoplasm. It has a 

nucleoplasmic distribution instead of being localised to the cell surface like other 

glycoproteins (45, 52). O-GlcNAc modification has been implicated in modulating 

different mechanisms that include (i) regulating protein phosphorylation and function; 

(ii) altering protein degradation; (iii) altering the localisation of proteins; (iv) modulating 

Glucose 

GFAT 

Glc-6-P F-6-P GlcN-6-P UDP-GlcNAc 

OGT O-GlcNAcase 

O-linked GlcNAc modification 

of nuclear proteins 

Glutamine 

Glucosamine 

Figure 3: Description of the hexosamine biosynthetic pathway. 
(GFAT: glutamine:fructose-6-phosphate amidotransferase, OGT: O-linked β-N-acetylglucosaminyl transferase, 
O-GlcNAcase: β-N-acetylglucosaminidase). 
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protein-protein interactions and (v) mediating transcription (135). The modification of 

proteins with O-GlcNAc has been linked to the regulation of a wide variety of protein to 

protein interactions and the localization of these proteins within the cell (12, 129). To 

date all known proteins that are modified by the hexosamine biosynthetic pathway can 

be phosphorylated as well but both forms of modification have been described as 

mutually exclusive with no protein found to possess both modifications at the same 

time. 

 

A decrease in phosphorylation has been shown to increase O-GlcNAcylation (21). In 

one study it was observed that inhibition of protein kinase A and protein kinase C 

resulted in increased O-GlcNAc levels. Also by increasing the overall level of O-

GlcNAc modification by inhibiting O-GlcNAcase expression in NIH-3T3 cells, it was 

shown that the levels of phosphorylation in a majority of regulatory proteins decreased 

drastically (21). Contrary to this, specific phosphorylation sites on some proteins 

actually increased. These findings have suggested a crosstalk between 

phosphorylation and O-GlcNAcylation whereby each process communicates with each 

other to add a new level of intracellular regulation that is dynamic and varies between 

proteins. It is unknown how interplay between these two modifications occurs but at 

the moment there are two theories. The first is that each modification could regulate 

each other’s pathways or cycle times. The second is that phosphorylation and O-

GlcNAcylation compete for proximal or the same target sites (threonine and serine) 

and through steric hindrance can affect each other’s affinity for the protein (24, 26, 

136). This is plausible despite O-phosphate being negatively charged and O-GlcNAc 

moieties being neutral, the latter are larger in size. Interference between 
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phosphorylation and O-GlcNAc modification may arise from their proximity to each 

other in tertiary protein structure. 

 

 The sites of O-GlcNAc modification are often identical or adjacent to known 

phosphorylation sites, suggesting that “O-GlcNAcylation” plays a role in regulation of a 

wide range of pathways. It has been shown that O-GlcNAc regulation can modify 

proteins in competition with phosphorylation. In some instances O-GlcNAc and 

phosphorylation can exist on separate and distinct subsets of a protein (21). For 

example, c-Myc and RNA polymerase both contain threonine or tyrosine sites that can 

be phosphorylated or glycosylated, but although, there has been no proof that the two 

modifications can exist on one protein, there is a possibility that this dual-protein 

modification can occur. In particular, RNA polymerase II exists in two distinct forms, 

i.e. RNA Pol IIA and RNA POL IIO (21, 135). RNA polymerase II contains a highly 

conserved carboxyl-terminal domain (CTD) consisting of 52 tandem repeats of the 

consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (21, 24, 26, 137). The CTD of the 

IIO isoforms is found to be phosphorylated on the serine and threonine residues. In 

contrast, the IIA isoform is non-phosphorylated and exhibits extensive O-GlcNAc 

modification. The existence of both O-GlcNAc and phosphorylation site implies a 

precise regulation of protein activity (21). 

 

The modifications of proteins by OGT with O-GlcNAc are also closely regulated. 

Another enzyme responsible for the regulation of O-GlcNAcylation is β-N-

acetylglucosaminidase (O-GlcNAcase). Although OGT is responsible for binding O-

GlcNAc to serine/threonine residues of proteins, O-GlcNAcase functions to remove O-
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GlcNAc. O-GlcNAc modification is thus regulated in the same manner as 

phosphorylation.  

 

O-GlcNAc modification targets numerous proteins, including transcription factors (21, 

136). For example, Sp1, an important transcription factor in the regulation of several 

target genes, has been shown to have multiple O-GlcNAc residues (12, 21, 137). O-

GlcNAc has been shown to alter protein degradation by two different mechanisms, i.e. 

(i) by altering the targeting of proteins to the proteasome O-GlcNAc modification could 

act as a protective signal against proteasomal degradation by modifying target 

substrates or (ii) by altering the activity of the proteasome. O-GlcNAc modifies 

eukaryotic factor (eIF) 2-p67, Sp1 and estrogen receptor (ER)-β prolonging the half-

life of these proteins (135). Insulin has been reported to increase O-glycosylation and 

nuclear content of Sp1 (76).   

 

Incubation with high glucose or increasing flux through HBP by overexpressing GFAT 

increased the expression of upstream stimulatory factor 1 and 2 (USF1 and 2), 

although these transcription factors are apparently not O-GlcNAc modified (12, 126). 

The gene encoding OGT (O-linked β-N-acetylglucosamine transferase) is essential for 

embryonic and stem cell development in mammals, making it difficult to produce a 

transgenic knockout model to investigate HBP regulation (42). Hanover et al. (2005) 

examined the role of OGT using an ogt-1 deletion strain of Caenorhabditis elegans 

(42). This strain exhibited no obvious developmental phenotype that was found in 

homozygous animals and could be used successfully as a model for nutrient-driven 

insulin resistance. One of the main findings of this model was that homozygous 

(rat/mouse) lacking ogt-1 had increased levels of glucose and glycogen, accompanied 
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by a decrease in fat stores (42). This would imply that the HBP was involved in the 

regulation glycogen synthesis and fatty acid oxidation.  

 

Studies in adipocytes suggest that glucose-induced insulin resistance is caused by 

impaired translocation of insulin-responsive glucose transporters to the cell membrane 

(such as GLUT4) and that an increase in glucose flux through the HBP plays a major 

role in the development of insulin resistance (10-12, 81, 100). There are several 

observations to suggest that the HBP increases the development of insulin resistance 

(6, 13, 18, 47, 48, 55, 79, 83, 108, 124). For example, pre-exposure to glucosamine 

inhibits basal and insulin-stimulated glucose transport and decreases insulin-

stimulated glycogen synthesis in rat muscles without affecting insulin receptor 

signaling (6, 13, 18, 47, 48, 55, 79, 83, 108, 124). Moreover, increasing HBP flux can 

alter glucose uptake due to increased O-GlcNAc modification of proteins involved in 

the regulation of the insulin-signaling cascade, i.e. IRS-1, PI-3 kinase and Akt (31, 92, 

136). 

 

A much lower concentration of glucosamine than glucose is required to elicit insulin 

resistance. The main difference between these two substrates is that glucose is 

utilised by several pathways whereas glucosamine is utilised only by HBP but may 

bypass the rate limiting enzyme GFAT (glutamine:fructose-6-phosphate 

amidotransferase) and increase HBP flux. Glutamine or a mixture of amino acids is 

also an important requirement for the development of glucose-induced insulin 

resistance of glucose transport in adipocytes (55). When transamidases are added to 

adipocytes treated with a mixture of amino acids, the effect is reversed (55). 
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Several studies have shown that by increasing the concentration of extracellular 

glucose and glucosamine, or by increasing glucose uptake by overexpressing glucose 

transporters (GLUTs), this results in insulin resistance (6, 48-50, 63, 79, 80, 82, 96, 

108). For example, it was shown that by blocking GFAT with pharmacological agents 

inhibited glucose-mediated insulin resistance (77). Moreover, other studies found that 

GFAT overexpression mimicked the effect of treating cells or rats with elevated 

glucose/glucosamine(18, 22, 25, 82). Also by increasing O-GlcNAc levels in mice and 

in cell culture genetically or by pharmaceutical intervention, resulted in insulin 

resistance (5, 14, 42, 83, 92, 124). Together these studies therefore support a strong 

link between increased HBP flux and the development of insulin resistance/type-2 

diabetes. 
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1.3. Aims of this study 

 

In my previous study we investigated the link between glucose metabolism and fatty 

acid metabolism. It was revealed that with increased glucose or glutamine there was 

increased flux through the hexosamine biosynthetic pathway which resulted in an 

increase in acetyl CoA carboxylase β promoter expression. It was also shown that 

there is a high level of control of ACCβ expression from HBP flux when we changed 

the level of flux through this pathway by making use of varying levels glutamine, 

various pharmaceutical inhibitors at different points of the pathway and by making use 

of dominant negative inhibitors of GFAT. At the end of the study we identified a novel 

transcription factor that could be involved in the link between HBP flux and ACCβ 

regulation, i.e. upstream stimulatory factor 2 (USF2) (Figure 4). It had also become 

apparent toward the end of the study that this form or regulation became important in 

the development of insulin resistance possibly at the stage of metabolic syndrome. We 

hypothesized that in metabolic syndrome when there is increased glucose there would 

be an increase in flux through HBP and that this would lead to an increase in ACCβ 

expression and the reduction of fatty acid uptake. Glucose metabolism would therefore 

regulate fatty acid metabolism in these conditions. We had already shown that USF2 

was involved in this regulation by responding to HBP flux and upregulating ACCβ 

(Figure 4). In this study we aim to strengthen this finding. We also aim to investigate 

the downstream effects of this change and apply this hypothesis to an animal model of 

high caloric diet induced insulin resistance. We also aim to find the time point for when 

the disregulation of this pathway will become relevant which may provide possible 

therapeutic interventions as diagnostic technique for identifying metabolic syndrome. 

This diagnostic technique could prove useful because it is at this moment of metabolic 
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syndrome that we can still treat patients and prevent insulin resistance from 

happening. Once this time point has been surpassed it is impossible to reverse. In this 

study we aimed to target the site of USF2 binding to ACCβ and prove its 

responsiveness to hexosamine flux. We also want to prove that USF2 is modify buy O-

GlcNAc which would show a mechanism of action. We also aim to measure fatty acid 

metabolism or accumulation, together with ACCβ expression and HBP flux in 

response to a high fat diet in an animal model.  
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2.1.Transfections 

 

2.1.1. Background to principles of the technique 

 

Transfection, i.e. experimental exogenous transfer of DNA into a target cell is a useful 

method to exploit in order to measure gene promoter activity (Appendix 1). Two 

components are required for a successful transfection. Firstly, a transfection reagent is 

required that will bind to plasmid DNA to be transferred into the cytosol of cells. For 

this study Fugene 6 transfection reagent (Roche, Penzberg, Germany) was employed. 

The second requirement is a plasmid DNA that will be transfected together with the 

promoter-luciferase construct. The former is constitutively expressed and used to 

normalise transfection results according to cell number and transfection efficiency.  

We seeded 35, 000 cells per well on day one and let them double over 2 days before 

transfection. Measurements would be taken two days later when they reached 

approximately 80-90% confluency. 

 

The gene promoter of interest is bound to a firefly luciferase gene, allowing promoter 

activity to be measured by the amount of luciferase protein synthesized by the cell. 

The normalising construct employed for this thesis was pRL-CMV (Promega, 

Fitchburg, WI, USA). The luciferin protein expressed by the pRL-CMV construct is 

isolated from Renilla reniformis. After transfection, luciferin protein is extracted by cell 

lysis. Thereafter a substrate called luciferase assay reagent II (LAR II) is added to 

activate the luciferin protein, resulting in light emission. The latter can be measured 

using a luminometer. Since the luciferin protein produced by the normalising agent 

and the promoter construct are different, each can be measured separately from the 
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same sample. Thus, a Dual-Luciferase Reporter Assay Kit (Promega, Fitchburg, WI, 

USA) was used where two substrates were added to the same sample, i.e. Luciferase 

Assay Reagent II (LAR II) (measuring promoter activity) and “Stop and Glo” 

(neutralizes LAR II substrate and activates the Renilla luciferin).   

 

Transfections were performed as a 5-day experiment (Appendix 2). On the first day 

cells were seeded on 12-well plates. On day 2 cells were transfected, while media of 

myoblasts was replaced on day 3. This ensured that myoblasts were supplied with 

sufficient nutrients and also to remove excess transfection reagent. At this stage 

inhibitors/drugs that were being tested were added (to be discussed later).  On day 4, 

after 24 hours treatment, cells were lysed and the lysate stored at -80C.  The 

samples were rapidly thawed on day 5 to further enhance cell lysis. Samples were 

subsequently plated on a 96-well luminometer plate and promoter activity measured 

(Appendix 2). 
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2.1.2. Cell culture 

 

H9c2 rat cardiac-derived myoblasts were chosen for experiments because they are a 

precursor cell line to cardiomyocytes. H9c2 is a subclone of the original clonal cell line 

derived from embryonic BD1X rat heart tissue. These cells do however; exhibit many 

of the properties of skeletal muscle. H9c2 myoblasts can be differentiated to will fuse 

and form multinucleated myotubes (57). Precursor cells are also easier to differentiate 

than terminally differentiated myotubes. This cell line has its weaknesses that although 

it was originally characterised as being closely related to cardiac myocytes lacks some 

morphological properties of cardiomyocytes such as gap junctions caveolae, T 

tubules, or myofibrilsc (57). H9c2 myoblasts were cultured in T75 culture flasks with 

Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, St. Louis, Missouri, USA) with 

10% GibCo foetal calf serum (Invitrogen, Carlsbad, CA, USA) and 4 mM GibCo L-

glutamine (Invitrogen, Carlsbad, CA, USA). Cells were not allowed to grow to a 

confluency greater than 70-80% and were cultured for a maximum of 8 passages 

before growing new cells. We used passages 9-15 for transfection experiments. In our 

initial optimizing experiments passages 9-15 were used and it was decided to continue 

using them in order to ensure consistency between results. In the beginning of our 

experiments cells were checked for viability under light microscope and trypan blue.  

 

Myoblasts were grown as described and plated at 35, 000 cells per well on 12-well 

culture plates (Greiner, Kremsmünster, Austria) in 1 ml of completed DMEM with 10% 

foetal calf serum and 4 mM L-glutamine. The cells were incubated for 24 hours at 5% 

CO2, 20% O2 and 95 % humidity at 37C prior to transfection. The main limitation of 

using a precursor cell line is that it isn’t the same morphologically as differentiated 
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cells or tissue. To generate reliable data cell culture conditions have to remain the 

same for each experiment which can create a challenge depending on reagents, 

media and the skill of the researcher. It is, however, useful at investigating pilot studies 

and investigating direct mechanisms. Precursor cells can be maintained and grown 

which allows for fast generation of results and plenty of available sample and is 

cheaper to maintain than an animal model. 

 

2.1.3. DNA Promoter-luciferase and over-expressing constructs used 

for transfection experiments 

 

pGL3-Control (Promega, Madison, WI, USA) was used in all transfection experiments 

to normalise results according to cell number and transfection efficiency. pGL3-Control 

is a plasmid constitutively expressing luciferase from an SV40 promoter. pGL3-Basic 

is a plasmid lacking a promoter and therefore expresses only baseline levels of 

luciferase. The latter was used to normalise the total amount of DNA used per 

transfection to ensure comparable transfection efficiency between experiments. The 

total amount of DNA transfected for each experiment was 0.75 µg, and pGL3- Basic 

was used to make up the remaining DNA needed. H9c2 myoblasts were transiently 

transfected with a 1,317 bp human ACCβ promoter-luciferase reporter construct 

(pPIIβ-1,317) previously described (Makaula et al., 2006). 0.25 µg of pPIIβ-1,317 was 

transfected ± 0.25 µg of a human pcDNA3-GFAT expression vector. Two dominant 

negative constructs, i.e. pcDNA3-GFAT577 and pcDNA3-GFAT667 were also 

employed in this study. Both dominant negative constructs were separately 

transfected with pPIIβ-1,317 and GFAT. There is a great amount of sequence 

homology between the rat and human isoforms of GFAT (91%) and ACC (90%) and 
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therefore it is unlikely that this would represent a problem when expressing human 

constructs in a rat cardiac-derived cell line.  

 

2.1.4. Preparation of plasmid DNA 

 

Description of plasmid constructs: 

 

1. pcDNA3-GFAT (see Figure 5) contains a full-length human GFAT cDNA 

generated by RT-PCR and cloned into the expression vector pcDNA3.1 (see Figure 6) 

(Invitrogen, Inchinnan, Scotland). The PCR product was verified by sequencing and 

shows identity to human GFAT (also known as GFAT1 = glutamine:fructose-6-

phosphate transaminase 1, GenBank accession number M90516). This construct was 

kindly donated to us by Dr. Cora Weigert (University of Tübingen, Germany). 
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2. pcDNA3-GFAT/577 contains human GFAT1 cloned into the pcDNA3.1 vector 

but with histidine 577 mutated to alanine, resulting in the complete loss of 

GFAT enzyme activity (127). 

 

3. pcDNA3-GFAT/677 contains human GFAT1 cloned into the pcDNA3.1 vector 

but with lysine 667 mutated to alanine, leading to complete loss of GFAT 

enzyme activity (127). 

 

 

Human GFAT 

BamH1 

EcoR1 

P CMV 

pcDNA3-GFAT 

~7.5 kb ~2.1 kb 

Figure 5: Sketch of human GFAT gene cloned into pcDNA3.1 vector. 
 (from Weigert et al., 2003) (pRL-CMV: Vector, GFAT: glutamine:fructose-6-phosphate 
amidotransferase, EcoR1 and BamH1 are restriction splice sites). 
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4. pPIIβ-1,317 is a full-length human ACCβ promoter reporter luciferase construct 

that contains 4 E-boxes (CANNTG) (Figure 7) (76). 

Figure 6: Diagram of pcDNA3 vector (from brochure supplied by Invitrogen, 

Carlsbad, CA, USA). 
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5. TransLucent USF Reporter Vector (USF-L) contains promoter recognition sites 

for both upstream stimulatory factor 1 (USF1) and upstream stimulatory factor 2 

(USF2) cloned into a pTransLucent Vector (catalog number LROO86, 

Panomics, Redwood City, USA) (Figure 8).  

 

 

 

 

 

 

 

Luciferase 

E3 E2 E1 E4 

pPIIβ-1,317  

ACCβ promoter region = 1,317 bp  

Four ‘’E-boxes’’ identified (E1-E4): important regulatory elements for transcription 
factors such as upstream stimulatory factor (USF) 

Figure 7: Diagram of pPIIβ-1,317 construct (modified from Makaula et al., 2006). 
(E1: Ebox 1, E2: Ebox 2, E3: Ebox 3, E4: Ebox 4, pPIIβ-1317: human ACCβ pomoter-reporter construct). 
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Preparation of plasmid DNA 

 

Each expression vector was amplified in Escherichia coli cultures (JM109 competent 

cells, Promega, Madison, WI, USA) and extracted using the Qiagen® Plasmid 

Purification Maxi Kit (Qiagen, Invitrogen, Carlsbad, CA, USA). Purified DNA was 

quantified using a spectrophotometer (wavelengths of 260 nm and 280 nm) and its 

quality checked by restriction enzyme analysis. The DNA was electrophoresed on a 

1% agarose gel to check for the quality of the DNA. 

 

pTransLucent 

4.8 kb 

pUC ori 

Ampr 

F1 ori 

Luciferase 
gene 

USF 

HindIII 

NcoI 

Figure 8: Diagram of pTransLucent construct. (Panomics, Redwood City, USA). 
(HindIII and NcoI are restriction sites where the USF promoter is cloned). 
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2.1.5. Transfection procedures 

 

On Day 2 of transfection experiments (one day after seeding) the cells were 

transfected with the DNA of interest (Appendix 2). Transfections were performed in 

triplicate for each experiment and repeated to generate the necessary numbers for 

statistical analysis. First, a stock solution of pGL3-Control DNA (pRL-CMV) was made 

in media concentration of 10 ng/ml (see step 1 of Appendix 3). The media contained 

DMEM and 4 mM L-glutamine. The stock solution was aliquoted into separate 

microfuge tubes to a final volume of 165 µl for every transfection experiment 

(consisting of three replicates for each experiment) (see step 2 of Appendix 3). DNA 

was aliquoted into its respective microfuge tubes with pGL3-Basic making up the total 

DNA mass to 0.75 µg (step 3 of Appendix 3).  

 

A second stock solution was then prepared with an equal volume of media containing 

Fugene 6 Transfection Reagent (Roche, Penzberg, Germany). Here, a 2:1 ratio of 

Fugene 6: DNA (with DMEM and 4 mM L-glutamine) was used. 165 µl of the Fugene 6 

solution was then added to each of the microfuge tubes containing DNA and 

incubated at room temperature for 15 minutes (steps 4, 5 of Appendix 3).  

 

Meanwhile, 0.9 ml of fresh medium (containing DMEM, 10% FCS and 4 mM L-

glutamine) was added to the H9c2 cells before the transfection. The final volume of 

the DNA/Fugene 6 cocktail therefore equalled 330 l in each microfuge tube for each 

transfection experiment.  
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The DNA/Fugene 6 solution was added to the H9c2 myoblasts (100 µl per well to 

make a final volume of 1 ml per well). The solutions were applied in triplicate (step 6 of 

Appendix 3). The plates were gently rocked and then incubated at 37°C for 24 hours. 

 

 After 24 hours the media on the cells was changed. During this media change, 

various drugs of interest were added to cells. My previous experiments in my master’s 

thesis employed other pharmacological inhibitors which proved the concept for this 

study, thus we chose to employ the most reliable of these. For this study we only 

treated with 40 M Diazo-5-oxo-L-norleucine (DON) (Sigma-Aldrich, St. Louis, 

Missouri). DON is a pharmaceutical inhibitor of GFAT which is the rate-limiting enzyme 

of the hexosamine biosynthetic pathway. Twenty-four hours later cells were lysed, 

protein extracted and expression of luciferase measured using the Glomax 

luminometer (Promega, Fitchburg, WI, USA). 

 

The protocol and reagents used were as stipulated in the manual of the Dual-

Luciferase Reporter Assay Kit (Promega, Fitchburg, WI, USA). First, the cells were 

washed with phosphate buffer saline and then 200 l of Passive Lysis Buffer 

(Promega, Fitchburg, WI, USA) was added to each well. The 12-well plate was then 

incubated on a shaker at room temperature for 15 minutes. The lysis buffer and cells 

from each well were transferred to microfuge tubes. A separate microfuge tube was 

used for each well of the 12-well plate. The microfuge tubes carrying the cells and 

lysis buffer were stored at -80C (Appendix 4). On Day 5 the lysate was thawed in 

water and vortexed. The microfuge tubes were centrifuged at 12,000 rpm at 4C for 2 

minutes with a ALC multispeed refrigerated centrifuge PK 121R (Intergrated Services, 
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New Jersey, USA). 10 l of each sample was aliquoted into a separate well on a 96-

well luminometer plate (Amersham, Buckinghamshire, UK).  

 

Two reagents had to be prepared. Reagent 1 contained Luciferase Assay Reagent II 

(LAR II) and reagent 2 Stop and Glo reagent (Appendix). Both reagents were provided 

with the Dual-Luciferase Reporter Assay Kit (Promega, Fitchburg, WI, USA). The 

luminometer plate, together with the two reagents, was placed in the luminometer. 

Only half the amount of reagent recommended by the kit manual was used in the 

measurements since this was adequate enough to give a very sensitive reading. The 

luminometer was set up to add 50 l of LAR II, delay for 2 seconds and then take a 

reading for 8 seconds. This gave a measurement for human ACCβ promoter (pPIIβ-

1,317) activity. The luminometer then added “Stop and Glo” to the same well and 

delayed for 2 seconds before measuring the light released (for another 8 seconds). 

This yielded the measurement for the Renilla construct (pRL-CMV) of the same 

sample. The process was repeated for each well, providing two readings for each 

sample (Appendix 5).  
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2.1.6. Statistical analyses of transfection results 

 

Luminometer firefly readings for each experiment were normalised against its 

respective Renilla luminometer reading by dividing the firefly reading by its renilla 

reading. Luminometer readings referred to the measurement from the sample when 

the first reagent was added to the sample and is a measure of the amount of luciferin 

protein expressed by the promoter of interest. Renilla readings referred to the 

measurement from the sample when the second reagent was added to the sample 

and is a measure of the amount of renilla protein expressed by a constitutively 

expressed control vector that we use to normalise our results according to cell number 

and transfection efficiency. Each experiment was performed in triplicate each time a 

transfection was carried out. Each replicate of an experiment was added together and 

then divided by three to give a mean value for each experiment. This provided a mean 

value for each experiment that was normalised according to transfection efficiency and 

cell number. To eliminate any vector effects (i.e. in which the construct were cloned) 

on the experiment, each of the mean values were divided by the vector’s mean value. 

 

The transfection experiments were repeated numerous times to provide a larger 

number of replicates for each experiment. Measurements from all the same 

experiments were combined and Graphpad Instat version 3.01 (GraphPad Software 

Inc., San Diego, CA, USA) used to perform statistical analyses of these values. First, 

the mean, standard error of the mean and standard deviation were calculated. A 95% 

confidence interval was also calculated. Replicates of an experiment that were outside 

the 95% confidence interval or were not within two standard errors of the mean were 

discarded. The remaining replicates were used to plot a graph. The Student-Newman 
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statistical test was used to check if there were significant differences between controls 

and the experiments in each set of experiments. Values p< 0.05 were taken as being 

significant. When we began out experiments we calculated both standard deviation 

and standard error of the mean because the statistical program offered this option. We 

chose to go with standard error of the mean because subtle differences in results can 

be detected (that standard deviation ignores). Physiological data is lost and 

overlooked when errors too large. To make sure that there were few outliers, we 

performed numerous experimental repeats and thus increased quality of the data. 

 

2.1.7. Calculation of HOMA index 

 

On the day the animal was sacrificed glucose was measured from gluconometer 

readings and from tail cuts. Insulin was measured from blood plasma. HOMA index 

was calculated as the product of (overnight) fasting insulin and fasting glucose divided 

by a normalising factor. This factor can be 405 or 22.5. The US formula uses 405 

while the accepted international formula uses 22.5. We chose to follow the 

international formula: 

 

HOMA-IR = (fasting Glucose(mmol/L) x fasting Insulin(mU/L)) / 22.5 

 

Animals that were stressed had abnormal values for gluconometer readings and were 

not included in the final results. An n of as high as 7 was used with Student Newman 

Keuls statistical anaylsis used tom calculate standard error of the mean to plot a 

graph. 

 

Stellenbosch University http://scholar.sun.ac.za



42 

 

2.2. Real-time polymerase chain reaction 

 

2.2.1 RNA extraction from Heart tissue Real Time Polymerase chain 

reaction  

 

Tissue was shaven off using a scalpel after being frozen in liquid nitrogen and then 

added directly to the PureZol RNA isolation reagent (Bio-RAD Laboratories, Hercules, 

California, USA) with homogenization beads in each tube. The samples were then 

homogenized for 2 minutes at 30 Hz using a rotor–stator homogenizer (Qiagen, 

Invitrogen, Carlsbad, CA, USA). The tube was then flicked to release the tissue pellet 

from under the bead and then homogenized again for another 2 minutes at 30 Hz. 

RNA was extracted from Wistar rat heart muscle using the Aurum™ Total RNA Fatty 

and Fibrous tissue kit (Bio-RAD Laboratories, Hercules, California, USA) (Appendix 6). 

At the end of the extraction the RNA sample was analysed for integrity and 

concentration using the Experion™ RNA StdSens Analysis Kit (Bio-RAD Laboratories, 

Hercules, California, USA). 2 µl of RNA sample was added to 2 µl of RNase free 

water, heated to 70°C for 2 minutes. An RNA ladder was also heated to 70°C. 1 µl of 

each sample was used to measure RNA concentration and integrity with the Agilent 

RNA 6000 Nano Kit (Bio-RAD Laboratories, Hercules, California, USA). 1 µg RNA was 

reverse transcribed to cDNAusing the iScript™ cDNA Synthesis Kits (Bio-RAD 

Laboratories, Hercules, California, USA) for RT-PCR. 
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2.2.2. Animal model used for RNA experiments 

 

Male Wistar rats were fed a high fat and high glucose diet versus controls (low fat). 

The rats were fed a high-fat diet (39.8, Harlan Teklad, WI, Madison, USA). for 86 days 

and compared to matched controls (9.5% fat, TD.06683, Harlan Teklad, WI, Madison, 

USA). Rats were housed in a room with a controlled temperature (22 °C) with a 12 

h/12 h light-dark cycle and free access to food and water (119). On the final day of the 

experiment animals anaesthetised by an intramuscular injection of 3 lL ketamine per g-

1 body weight (119).Tissue was isolated at 14, 56 and 86 days and myocardial RNA 

prepared using standard methods. The number of animals in each group was 14 but 

we used a n of 7 for experiments. The high fat rats were shown to be insulin resistant 

at Day 86 (refer to Results section [HOMA index]). Any rats that might have been 

stressed during the sacrificing procedure were excluded from experimental numbers 

as the insulin measurements changed accordingly, making any data that followed from 

successive experiments unreliable. Due to how small rat hearts are and the number of 

experiments we wanted to test within the same sample, the hearts were crushed 

before use in all in vivo experiments. Results can therefore be defined as that 

compared between whole heart tissue rather than one section of the heart.  

 

2.2.3. Real-time polymerase chain reaction assay 

 

RT-PCR was performed (in duplicate) testing the relative expression of the ACCβ 

gene in isolated male Wistar rat heart tissue. Primers for the ACCβ gene were 

designed to measure the expression of ACCβ gene promoter activity with RT-PCR. 

(Inqaba Biotechnical Industries, Pretoria, South Africa). Three house keeper genes 
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were used to normalize the data namely, ribosomal protein L13 (RPL13), beta-2 

microglobulin (B2M) and ubiquitin C (UBC).House keepers were selected from 8 

possible genes that we expected would not be influenced too greately by our 

experimental conditions. Three were chosen to increase the statistical power of our 

results and were chosen using the geNORM housekeeping gene selection kit 

(PrimerDesign, Southampton, United Kingdom). RT-PCR was perfomed using SYBR® 

green detection on a 96 well iCycler thermal cycler PCR machine (Bio-RAD 

Laboratories, Hercules, California, USA). Results were analysed using new geNORM 

analysis software. 

 

2.3. Flow Cytometry 

 

2.3.1. Cell preparation for flow cytometry 

H9C2 Cells were seeded in T75 flasks in equal numbers and grown to about 60% 

confluency prior to transfection. Cells were transfected as described earlier but in 3 

times the dose used for cells seeded in 12-well plates. The next morning we added 

fresh media ± pharmacological agents or appropriate substrates. Six hours after 

treatment the cells were harvested with trypsin, centrifuged and washed with 

phosphate buffered saline (PBS) with a centrifuge step of 1,500 rpm for 3 minutes. We 

then permeabilized the cell membranes by incubating for 10 minutes with a solution of 

acetone:methanol (1:1 ratio). We centrifuged off the fixing solution and resuspend the 

cells in 5% Donkey serum in PBS, and incubated overnight at 4°C.  
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Cells were thereafter washed with PBS and incubated with primary antibody (1:50 for 

O-GlcNAc or 1:500 for USF2) at room temperature (overnight). The samples were 

then split in half, i.e. into two separate tubes to be treated by primary antibodies of 

interest namely, O-GlcNAc and USF2. The samples were washed and centrifuged with 

PBS and then incubated with 1:200 PE/Alexa Fluor 610 anti-goat secondary antibody 

(Invitrogen, Carlsbad, CA, USA) in PBS for 30 minutes at room temperature. The 

same secondary antibody was used for both primary antibodies used per sample. The 

samples were then washed 2-3 times with PBS before resuspended in 300 µl of PBS 

and measured on the BD FACSAria Flow Cytometer (BD Biosciences, Franklin Lakes, 

New Jersey, USA). To ensure that our antibodies were at a strong enough 

concentration to bind to all available proteins, we titrated it at twice the normal 

concentration. Samples were measured after being excited at 488 nm channel by an 

argon laser. Our results indicated no increase in the titrated samples and thus 

demonstrated enough primary antibody available (data not shown). Samples gated for 

cell debris and dead cells. Experiments were repeated 3 times until a total of 10, 000 

events measured per sample. We took a measure of the geometric mean for all 

samples. 
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2.4. Chromatin immunoprecipitation 

 

2.4.1. Chromatin immunoprecipitation of heart tissue in Wistar rats 

fed a high caloric diet 

100 mg of male Wistar rat heart tissue was fixed using formaldehyde to crosslink 

protein bound to DNA and then washed with PBS before placed in lysis buffer for 

isolation using a Chromatin immunoprecipitation (ChIP) Assay kit (catalog number 17-

295, Millipore, Massachusetts, USA). The samples were sonicated to shear the tissue 

and DNA into appropriate sizes. We optimized the sonication by using varying 

numbers of bursts 4, 8 and 12 and running the lysate on a gel after de-crosslinking to 

ensure that the number of bursts was adequate for our experiments. We found that 8 

bursts at 33% power for 15 seconds was optimum. We pre-cleared the sample with 

Protein A agarose/salmon sperm DNA (catalog number 16-157C, Millipore, 

Massachusetts, USA), then incubate the samples with either USF2 or O-GlcNac 

primary antibody. We isolated from the USF2 samples DNA for PCR of two regions on 

the ACCβ gene. One set of primers was designed for the region inside where USF2 is 

expected to bind called the signal primers, another region was designed to bind to a 

region outside the binding region to be a control (called the control primers). The 

primers were designed and bought from Inqaba biotech (Pretoria, South Africa). For 

the control primers the sequences were: forward 5’ TCAGGGAGGGCATTTAACTT 3’ 

and reverse 5’ CAGAGATAATTAAACTGATGGG 3’. For the signal primers the 

sequences were: forward 5’ AGTAGGGCTAAGTACAGAAA 3’ and reverse 5’ 

ATTCTTGAGTGAGGCTG 3’. The PCR was performed using thermopol taq with 

buffer (catalog number M0267, New England Biolabs, Massachusetts, USA)  and 
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using conditions: initial 95°C 5 mins, 35 cycles of 95°C for 30 seconds, 56°C for 45 

seconds, and 68°C for 1 minute. The PCR product was electrophoresed on a 1% 

agarose gel with loading dye (catalog number R0631, Fermentas, ThermoScientific, 

Massachusetts, USA) and a  O’GeneRuler 1000 bp DNA ladder (catalog number 

SM1143,ThermoScientific, Massachusetts, USA).  

 

2.4.2. Western Blotting of Chromatin immunoprecipitation of heart 

tissue in Wistar rats fed a high caloric diet 

We also isolated from the USF2 samples protein for western blotting for O-GlcNac to 

prove whether USF2 is modified directly by the hexosamine pathway or possibly 

regulated by another protein which is O-GlcNac modified. These protocols for DNA 

ChIP and protein isolation were performed using the Chromatin 

immunoprecipitation(ChIP) Assay kit (catalog number 17-295, Millipore, 

Massachusetts, USA). A Western blot was then performed for the opposing target. 

Firstly USF2 and O-GlcNAc were immunoprecipitated separately from the same 

samples and western blotted for O-GlcNAc. The membrane was then stripped and 

reprobed for USF2. For O-GlcNAc, 2% BSA in PBS - Tween as a blocking agent was 

used and for USF2 we used milk powder in TBS-Tween  a blocking agent. Membranes 

were developed using HRP (catalog number 34077, ThermoScientific, Massachusetts, 

USA) (Appendix 7 and 8).  
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2.5. Measuring fatty acid accumulation in Wistar rats fed a high 

caloric diet 

 

100 mg of male Wistar rat heart tissue was taken from our stored samples in liquid 

nitrogen to preserve the rest of the heart sample for other experiments. The sample to 

be used for fatty acid extraction could then be stored in -20°C or on ice if used 

immediately. The fatty acids were then extracted in collaboration with the Medical 

Research Council (Dr. van Jaarsveld and Johanna van Wyk, Tygerberg, Cape Town, 

South Africa). The method we used is described in Appendix 9.  The samples were 

measured for phospholipids, triglycerides and free fatty acids, as percentage fat and 

per gram of heart tissue. 
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3.1 In Vitro Experiments 

 

3.1.1. Transfections 

 

Carrying on with my hypothesis in my master’s thesis my initial focus was to 

strengthen my assumptions of USF2 as a possible candidate as a transcription factor 

for ACCβ promoter response to hexosamine biosynthetic pathway flux. I transiently 

transfecting H9c2 myoblasts with the human ACCβ promoter-luciferase reporter 

construct (pPIIβ-1317/+65) ± a USF1 and USF2 expression vector. Results showed 

that ACCβ responded to USF2 overexpression but not USF1. The white bar 

represents the empty vector described in the methods section (Figure 5) used as a 

control to normalize against any affects the vector might have on our statistical results. 

The black bar represents cells only treated with ACCβ while the grey bar represents 

samples only transfected with ACCβ and GFAT. I further co-transfected with GFAT 

and this saw no greater increase in ACCβ activity (Figure 9). 
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We further investigated USF-mediated regulation of the ACCβ promoter by proving the 

affects of hexosamine biosynthetic pathway flux on USF2 expression by co-

transfecting a GFAT expression construct together with a USF luciferase reporter 

construct (USF-L = Upstream Stimulatory Factor TransLucent Reporter Vector) that 

contains multiple promoter binding sites for USFs. Here, we found a marked induction 

of the USF-L reporter construct by 80 ± 12% (p<0.001, n=5) compared to the control 

(Figure 10). 
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We then turned out attention to the USF2 and its HBP-mediated mechanisms of 

regulation of the ACCβ promoter. Firstly we identified where the region of ACCβ 

regulation would occur in response to GFAT overexpression with the use of deletion 

constructs of ACCβ promoter (-1317/+65). Here in this experiment GFAT 

overexpression vector was also transfected with various truncated versions of the 

ACCβ and it was found that the affects of GFAT overexpression was lost at -18/+65 

deletion construct. This would indicated that the binding region of transcription factors 

that respond to HBP flux can be found between -38/+65 and -18/+65 on the ACCβ 

promoter (Figure 11). 
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We then repeated this experiment but co-transfected with USF2 instead of GFAT and 

found the same pattern of a binding region in response to USF2 overexpression 

between -38/+65 and -18/+65 on the ACCβ promoter (Figure 12). 
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3.2. Flow Cytometry 

 

In order to strengthen the hypothesis that hexosamine flux was linked to USF2 

expression we transiently co-transfected H9c2 myoblasts with GFAT overexpression 

vector with USF2 expression vector and then co-transfected with a dominant negative 

inhibitor of GFAT (GFAT557). The cells were permeabilised and probed with an O-

GlcNAc primary antibody and a USF2 primary antibody. USF2 and O-GlcNAc 

expression was measured by flow cytometry with a PE/Alexa Fluor 610 anti-goat 

secondary antibody. Results showed per 10000 cells that O-GlcNAc levels rose in 

response to GFAT and USF2 expression and fell when GFAT was inhibited. We also 
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treated cells with 8mM L-glutamine (a substrate of HBP). This rise in L-glutamine 

resulted in increased O-GlcNAc levels, which was ameliorated with the addition of the 

inhibitor (Figure 13). 

 

In the same sample we measured USF2 expression using flow cytometry. The same 

pattern was seen as before in the O-GlcNAc results. Results showed an increase in 

USF2 expression when co-transfected with GFAT (Figure 13 and 14). This effect was 

decreased when co-transfected with dominant negative GFAT. Treatment with 8 mM 

L-glutamine increased USF2 expression greatly (Figure 13 and 14) and this effect was 

lost when co-transfected with the dominant negative GFAT (Figure 13 and 14). This 

gave strong indication that USF2 and O-GlcNAc modification is related but not proof 

that USF2 is being modified by the hexosamine biosynthetic pathway. Later we would 

look to investigate whether USF2 is modified by O-GlcNAc (Figures 13 to 17). 
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It can be noted that with the addition of GFAT to USF2 there was an increase in side-scatter 

(SSC) in the cells. This may indicate a change in morphology or change in response to GFAT 

overexpression. Increased GFAT expression would increase O-GlcNAc modification and 

result in modification of a wide variety of proteins and transcription factors. These cells do not 

appear morphologically different under the microscope; however there must be a 

morphological shift due increased hexosamine flux that we haven’t been able to observe 

without the use of flow cytometry (Figures 15-17). 
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3.3. In Vivo Experiments 

 

3.3.1. Animal model 

 

Heart tissue from male Wistar rats fed a high fat and high glucose diet with added low 

fat diet controls were used in our in vivo experiments. On the day of sacrifice plasma 

glucose was measured from blood of a heart puncture along with glucose measured 

from blood of the same rats tail with a glucometer. Plasma insulin was also measured. 

From this the HOMA index was measured for each group of rats. It was determined 

that the rats were insulin resistant on day 86 of the study (Table 1 and Figure 18). 

Table 1: Measurements of glucose, insulin and HOMA on the day of sacrifice of animals in this 
study 

Time Diet 
rat 
No Glucose* Glucose** INSULIN HOMA index  

      
mmol/l 
plasma 

mmol/l full 
blood 

ng/ml 
plasma with plasma glucose (mg/dl) 

Day 0 LFD 1 3.3 2.1 0.522 0.0762 

  
 

2 4.8 2.2 0.920 0.1979 

  
 

3 4.0 1.7 0.617 0.11078 

  
 

4 4.9 2.7 0.534 0.1158 

  
 

5 4.6 2.4 6.123 1.2557 

  
 

6   2.6   rat died before heart puncture 

  
 

7 3.0 3.8 0.777 0.1046 

  
 

          

Day 7 LFD 1 6.22   0.523 0.1447 

  
 

2 5.77 4.6 0.577 0.1480 

  
 

3 7.17 5 0.495 0.1576 

  
 

4 6.20 5.2 0.654 0.1800 

  
 

5 6.42 4.7 1.255 0.3581 

  
 

6 4.72 4 0.509 0.1068 

    7 3.71 3.9 0.659 0.1087 
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Time Diet rat No Glucose* Glucose** INSULIN HOMA index  

      
mmol/l 
plasma 

mmol/l full 
blood 

ng/ml 
plasma 

with plasma glucose 
(mg/dl) 

Day 7 HFD 1 4.89 3.8 0.523 0.1138 

  
 

2 4.47 5.3 0.662 0.13149 

  
 

3 7.02 5 1.310 0.4089 

  
 

4 7.10 4.1 0.953 0.3008 

  
 

5 5.32 4.1 0.870 0.2058 

  
 

6 4.89 4.4 0.521 0.1133 

  
 

7 6.72 5.7 2.898 0.8649 

  
 

          

Day14 LFD 1 6.18 5.1 1.004 0.2759 

  
 

2 8.26 5.4 2.213 0.8121 

  
 

3 5.25 4 0.502 0.1171 

  
 

4 7.39 3.5 0.799 0.2627 

  
 

5 6.21 4.3 0.509 0.1405 

  
 

6 6.60 6.1 0.740 0.2169 

  
 

7 4.96 3.9 1.506 0.3320 

  
 

          

  HFD 1 6.84 5.4 0.656 0.1992 

  
 

2 5.74 4.7 0.935 0.2387 

  
 

3 7.17 5.1 0.766 0.2439 

  
 

4 6.22 5.2 1.180 0.3264 

  
 

5 9.27 7.2 6.062 2.4970 

  
 

6 6.52 6.1 1.272 0.3685 

  
 

7 5.90 4.9 1.107 0.2905 

       

Day 56  LFD 1 5.12 4.3 3.200 0.7282 

  
 

2 5.49 4.6 2.049 0.5001 

  
 

3 7.41 6.2 2.067 0.6804 

  
 

4 4.84 3.2 1.617 0.3479 

  
 

5 5.64 4.8 1.478 0.3703 

  
 

6 5.16 4.7 2.583 0.5924 

  
 

7 5.78 3.6 1.649 0.4238 

  
 

          

Day 56  HFD 1 8.30 6.4 5.395 1.9898 

  
 

2 5.69 4.8 1.537 0.3888 

  
 

3 6.90 4.3 2.781 0.8529 

  
 

4 6.17 4.3 3.497 0.9591 

  
 

5 6.13 4.7 1.178 0.3208 

  
 

6 9.43 6 2.608 1.0929 

    7 8.32 5.8 3.125 1.1555 
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Time Diet rat No Glucose* Glucose** INSULIN HOMA index  

  
 

  
mmol/l 
plasma 

mmol/l full 
blood 

ng/ml 
plasma 

with plasma glucose 
(mg/dl) 

Day 86 LFD 1 10.199 5.3 13.678 6.2002 

  
 

2 6.662 4.3 1.231 0.3644 

  
 

3 5.944 4.8 2.104 0.5559 

  
 

4 5.771 4.5 0.839 0.2151 

  
 

5 5.612 4.5 0.871 0.2173 

  
 

6 6.596 5.4 1.988 0.5827 

  
 

7 5.612 4.9 1.873 0.4672 

  
 

          

Day 86 HFD 1 6.503 4.6 2.100 0.6069 

  
 

2 9.402 7.3 2.049 0.8563 

  
 

3 8.258 5.7 1.725 0.6331 

  
 

4 10.718 5.6 4.742 2.2588 

  
 

5 7.207 6 2.231 0.7146 

  
 

6 7.221 5.4 2.955 0.9482 

  
 

7 7.979 5.2 13.381 4.7451 
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It can be seen quite clearly a gradual increase in HOMA index with time in the group of 

rats fed the high fat diet versus those fed normal chow (Figure 18). HOMA index 

reaches a significant high level in the day 86 high fat fed rats. 
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3.3.2 Real-Time Polymerase Chain Reaction 

 

The next step was to investigate the time point for when HBP-mediated ACCβ 

expression is activated and lost. We isolated mRNA from rat heart tissue at various 

time points up to the development of insulin resistance and performed real-time PCR 

to measure ACCβ mRNA levels. The data revealed a time point at day 56 when ACCβ 

mRNA levels increased significantly in the high fat diet versus controls (Figure 19). 

 

 

 

We further investigated our previous experiments with transfection by looking at RT-PCR of 

cells transfected with USF1 and USF2 with GFAT and ACCβ. We found similar results to 

what was discovered in luciferase assays, with USF2 inducing ACCβ in the presence of 
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GFAT and this effect being lost with the addition of an inhibitor of GFAT, namely DON (6-

diazo-5-oxo-l-norleucine) (Figure 20).  
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3.3.3. Chromatin immunoprecipitation of heart tissue 

 

In optimizing the technique chromatin immunoprecipitation it was necessary to optimize 

sonication of samples. Bursts of 4, 8 and 12 tested with 8 bursts giving the best 

fragmentation of DNA (Figure 21). 

 

Heart tissue was sonicated and USF2 protein was isolated cross-linked to any DNA that 

was bound to it. The resulting DNA was PCR for a control primer set outside USF2 binding 

region of interest and a signal primer set that amplifies only the region of DNA we expect 

USF2 to bind. The input sample was used alongside the immunoprecipitation sample (IP) 

as a comparison between whole DNA of a sample before and after immunoprecipitation. 

We expected to find the control primers to work in the input sample and not the 
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immunoprecipitated sample. It was found that the control primers did not amplify any region 

in the IP sample (Figure 22). 

 

Compared to the signal primers it was seen that USF2 does bind to ACCβ in the region we 

expected (Figure 23). This region coincided with the region shown in our luciferase deletion 

constructs that was shown to be regulated by USF2 and GFAT (shown in figures 11 and 

12). There was more DNA expression seen in high fat day 56 samples compared to low fat. 

Although, the amount of protein used between samples was normalised for protein 

concentration, until we perform RTPCR, this difference is relative. It is however reflected 

consistently in our ChIP analysis (Figure 23). 
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3.3.4. Measuring USF2 O-GlcNAcylation with Immunoprecipitation 

and Western blotting 

 

To determine if USF2 is regulated directly by O-GlcNacylation of the hexosamine 

biosynthetic pathway or indirectly via another factor we immunoprecipitated USF2 and 

O-GlcNAc separately from high fat and low fat cardiac Wistar rat tissue. A Western 

blot was then performed for the opposing target, namely O-GlcNAc for USF2 IP and 

USF2 for O-GlcNAc IP. It was discovered that USF2 was present in the USF 2 blot but 

not in the O-GlcNAc IP and conversely O-GlcNAc was present in the O-GlcNAc blot 

but not in the USF2 IP. This would suggest that USf2 is not O-GlcNac modified in 

these samples (Figure 24). The significance of this was that USF2 is upregulating 
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ACCβ in response to hexosamine biosynthetic flux but not by O-GlcNAc modification 

of USF2. 
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3.3.5. Fatty acid measurements 

 

Next we investigated downstream effects of the fatty acid diet on our animal model. 

Here we isolated total fats from the heart tissue at various time points and then 

measured different amounts of each fat and its carbon forms. We first analysed the 

totals of each fat in the samples. There was a 40% reduction in phosphatidylcholine 

fatty acids in the low fat diet rats versus the high fat diet (p<0.05) but no differences 

were seen in the rest of the time points (Figure 25).  

 

 

 

Interestingly, no significant differences were seen in the measurements of total 

phosphatidylethanolamine fatty acids in any of the samples (Figure 26). 
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There was a large trend for phospholipid levels to be higher than controls in the day 

86 high fat diet group but this was not found to be statistically significant due to lack of 

numbers in the low fat day 86 group (figure 27). 
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Fatty acid measurements of triacylglycerol were found to be higher in the high fat diet 

group than in the low fat diet group. This was seen on all the time points (Figure 28). 

Finally, we measured the levels of free fatty acids in the heart tissue samples. The 

level of free fatty acids was found to be higher in the high fat diet groups versus their 

controls in each time point (Figure 29). Results showed a trend towards higher fat 

content in the high fat hearts versus the low fat but not statistically significantly higher. 
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Fatty acid data also revealed results on the various carbon forms of each fatty acid. This 

data was reorganised into groups of the sum of all the saturated fatty acids (SFA – those 

with no double bond; x:0), sum of all monounsaturated FAs (MUFA – those with only one 

double bond; x:1), sum of all polyunsaturated FAs (PUFA – those with two and more 

double bonds; x:2), total n-6 fatty acids (Tn-6; sum of all the n-6 FAs) and total n-3 fatty 

acids (Tn-3; sum of all the n-3 FAs) (Table 2). This was first performed for each fatty acid 

and then to simplify we combined all this data into one table with just these individual 

groups of sums as shown in (Table 3). 
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Table 2: Quantitative fatty acid composition: µg FA/gram heart (tissue) 
 

      Total Phospholipid Fatty Acids (µg FA/g heart tissue) 
  Day saturated FA monounsaturated FA polyunsaturated FA total n-3 FAs total n-6 FAs 

  X:0 X:1 X: 2 or more n-3 n-6 

L14 4750.24 1143.19 7714.20 1736.43 5977.77 

H14 4689.38 1253.51 8031.80 2192.04 5839.76 

L56 4822.24 1223.06 8204.02 1709.55 6494.48 

H56 4194.11 1150.94 7101.84 1965.10 5136.73 

L86 3874.96 1060.46 6320.05 1289.38 5030.67 

H86 4733.58 1270.41 8991.39 2497.38 6494.01 

      Free Fatty Acids (µg FA/g heart tissue) 
   Day saturated FA monounsaturated FA polyunsaturated FA total n-3 FAs total n-6 FAs 

  X:0 X:1 X: 2 or more n-3 n-6 

L14 534.49 325.18 447.18 69.94 377.24 

H14 654.88 421.24 644.42 122.32 522.10 

L56 463.77 263.57 405.49 59.59 345.89 

H56 565.32 327.75 525.79 91.01 434.78 

L86 367.42 248.73 360.76 56.32 304.44 

H86 466.95 342.45 460.06 89.85 370.20 

      Triacylglycerol Fatty Acids (µg FA/g heart 
tissue) 

   Day saturated FA monounsaturated FA polyunsaturated FA total n-3 FAs total n-6 FAs 

  X:0 X:1 X: 2 or more n-3 n-6 

L14 664.81 511.02 309.51 27.98 281.53 

H14 801.35 878.64 485.54 43.88 441.66 

L56 421.75 397.83 241.70 15.23 226.47 

H56 606.07 566.93 376.80 29.57 347.24 

L86 545.34 636.34 341.01 31.86 309.16 

H86 1031.14 1291.35 759.06 63.74 695.32 

      Phosphatidylcholine (PC) Fatty Acids (µg FA/g heart tissue) 
  Day saturated FA monounsaturated FA polyunsaturated FA total n-3 FAs total n-6 FAs 

  X:0 X:1 X: 2 or more n-3 n-6 

L14 2683.40 631.39 2904.60 393.27 2511.33 

H14 2635.72 630.62 3020.56 538.38 2482.18 

L56 2514.51 644.80 2711.88 311.21 2400.67 

H56 2513.55 610.97 2961.17 569.44 2391.73 

L86 1776.61 543.28 1333.21 143.98 1189.24 

H86 2734.04 704.31 3208.62 582.54 2626.07 

      Phosphatidylethanolamine (PE) Fatty Acids (µg FA/g heart tissue) 
  Day saturated FA monounsaturated FA polyunsaturated FA total n-3 FAs total n-6 FAs 

  X:0 X:1 X: 2 or more n-3 n-6 

L14 1779.28 357.70 2881.22 1149.32 1731.90 

H14 1505.73 364.10 2904.88 1353.53 1551.35 

L56 1599.34 341.01 2840.30 1169.90 1670.40 

H56 1616.95 356.64 2756.84 1383.24 1373.60 

L86 1486.88 349.13 2742.05 1142.17 1599.88 

H86 1528.68 399.55 2908.51 1499.47 1409.03 
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The data from table 3 is represented in figure 30 and it can be seen how the levels of 

these different carbon forms changes over time with treatment of a high fat diet versus 

a low fat diet (Figure 30). 

 

 

 

Table 3: Total sum of each carbon form of fatty acids for each time point of 

high fat vs low fat diet (measured FA/gram heart tissue) 
 

Day 
Sum of saturated 

FA 
Sum of monounsaturated 

FA 
Sum of polyunsaturated 

FA 
total n-3 

FAs 
total n-6 

FAs 

  X:0 X:1 X:2 or more n-3 n-6 

L14 10412.22 2968.48 14256.70 3376.93 10879.77 

H14 10287.07 3548.12 15087.20 4250.15 10837.05 

L56 9821.61 2870.27 14403.38 3265.48 11137.90 

H56 9496.00 3013.23 13722.44 4038.36 9684.08 

L86 8051.21 2837.95 11097.09 2663.71 8433.38 

H86 10494.39 4008.08 16327.63 4732.99 11594.64 
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Results show that the total level of saturated fats (X:0), polyunsaturated fats (X:2 or 

more) and total n-6 fatty acids (n-6) is lower in the day 86 low fat group but doesn’t 

change in the other groups. In contrast the level of monounsaturated fats and n-3 fatty 

acids is consistently higher in the high fat diet versus controls (figure 26). The results 

from fatty acid gives a lot of insight into the outcome influences of high fat diets on 

fatty acid accumulation in heart tissue and together with RNA results links ACCβ 

levels with HOMA index values to strengthen our hypothesis that with high glucose 

there is an increase in flux through HBP and increase in O-GlcNAc modification of 

target proteins which results in ACCβ upregulation via USF2. This in turn results in a 

decrease in free fatty acid uptake and its accumulation in the cytosol of cells in the 

heart. 
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Chapter 4 

Discussion 
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4.1. Discussion 

In my previous study I showed that increased flux through the hexosamine 

biosynthetic pathway (HBP) induces cardiac ACC gene expression. At the end of that 

study we had made a novel finding that not only did HBP flux regulate ACC promoter 

activity, but that this flux was linked by a transcription factor named USF2. In this study 

we found that: 

 

1. GFAT overexpression increased ACCβ promoter activity by ~75% in cardiac 

myoblasts. This would suggest that increased HBP flux results in O-GlcNAc 

modification of transcriptional targets thereby inducing ACCβ promoter activity.  

 

2. ACCβ gene promoter activity was induced in a dose-responsive manner to 

increasing glutamine concentrations (glutamine being an HBP substrate). As noted 

when we were performing that study we had to be very specific with our growing 

conditions because a change in L-glutamine concentrations can influence results. 

 

3. The regulation of ACCβ HBP-mediated promoter activity can be manipulated with 

the use of two dominant negative constructs (competitive inhibitors of GFAT which 

attenuate GFAT-mediated ACCβ promoter induction and two specific pharmaceutical 

inhibitors of GFAT, i.e. azaserine and 6-Diazo-5-oxo-L-norleucine, which attenuated 

GFAT-induced upregulation of ACCβ.  

 

Increased flux through the hexosamine biosynthetic pathway has been linked to an 

increase in glucose and glucosamine availability. An increase in HBP flux results in 

higher UDP-GlcNAc production and an increase in O-GlcNAc modification of a large 
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number of proteins and transcription factors. Researchers have continued to find more 

factors that are modified by this pathway. O-GlcNAc has been shown to operate in 

opposition to phosphorylation, glycosylating proteins that are dephosphorylated and 

vice versa. Studies have proposed that the hexosamine biosynthetic pathway 

functions as a cellular nutrient sensor and numerous papers have showed a 

correlation between increased flux through the HBP and insulin resistance. For 

example, Marshall et al. (1991) first proposed a role for glucose flux via the HBP in 

insulin resistance from a series of experiments performed in isolated rat adipocytes 

(78). Other studies found a correlation between the HBP and insulin resistance in 

rodents treated with glucose/glucosamine. Recently, increased O-GlcNAc modification 

has been attributed to altered glucose uptake resulting in insulin resistance. A study 

investigating overexpression of OGT in adipose and muscle of mice resulting in 

increased O-GlcNAcation showed insulin resistance and hyperleptinaemia. These 

studies would suggest that increased HBP flux and increased O-GlcNAcation can 

impact on fatty acid and glucose pathways. 

 

 In this study our aim was to investigate this mechanism and prove that this novel 

regulatory pathway plays a role in the development of insulin resistance in a high 

caloric western lifestyle. Having already established that upstream stimulatory factors 

(USF’s) are involved in this mechanism we set up a transfection experiment to 

measure ACCβ response to USF1 and USF2 overexpression and found there to be a 

large response to USF2 but USF1 had no effect. Upstream stimulatory factors have 

been shown to upregulate the ACCβ gene promoter (77). However, this result was not 

strengthened when co-transfected with an overexpression vector of GFAT. This could 

be because of a threshold level of ACCβ response or the result of a lack of another 
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binding factor which dimerizes or binds to USF2 in a complex (Figure 5). 

Overexpressing USF2 would therefore have a limited response in binding due to lack 

of this other factor. Other studies have shown that USF’s do dimerize in their mode of 

action (59).  

 

To confirm that USF2 would respond to HBP flux we co-transfected a GFAT 

overexpressing vector with a USF luciferase reporter construct (USF-L = Upstream 

Stimulatory Factor TransLucent Reporter Vector) that contains multiple promoter 

binding sites for USFs. Results confirmed USF2 to be responsive to HBP flux (Figure 

6). A similar result was seen by Erwin D. Schleicher et al. in 2004 where increasing O-

GlcNAc modification of proteins with streptozotocin treatment, thereby increasing HBP 

flux, resulted in an increased mRNA and nuclear protein levels of USF-2 (127). 

 

Flow cytometry confirmed this result by showing a strong correlation between HBP 

flux, O-GlcNac modification, and USF2 expression. This was seen with modifications 

in L-glutamine substrate concentration and in GFAT expression with the use of a 

dominant negative inhibitor. 

 

Our next focus was to find the binding sight for out regulation of the ACCβ promoter. 

Co-transfection of the GFAT overexpression vector with truncated ACCβ promoter 

constructs revealed a region of region of interest where the ACCβ promoter was 

regulated by this pathway. To strengthen our hypothesis of USF2 as the transcription 

factor that mediates this regulation a USF2 overexpression vector was co-transfected 

with these same truncated ACCβ promoter constructs and it was shown that the same 

region of interest was being regulated by USF2. 

Stellenbosch University http://scholar.sun.ac.za

http://www.jbc.org/search?author1=Erwin+D.+Schleicher&sortspec=date&submit=Submit


79 

 

 

Our focus turned further downstream of this interaction to investigate the effects of 

modified ACCβ activity and HBP flux on fatty acid uptake and regulation in the 

mitochondria in the heart. It has also been shown that an increase in O-GlcNAcation is 

linked to insulin resistance (5, 14, 42, 83, 92, 123). To investigate this we acquired 

heart tissue from an animal model of male Wistar rats fed a high fat and high glucose 

diet with added low fat diet controls and sacrificed at weekly time points. Day 28 rats 

immediately eliminated from the study as the puberty stage of a rat’s growth stage 

would provide unreliable data. Animals stressed at the time of sacrificed would also be 

eliminated as we found the insulin and glucose levels to be different from non-stressed 

animals of the same group. Glucose and insulin measurements taken at the time of 

sacrifice showed the rats to be insulin resistant at day 86.  

 

The advantage of this animal model is that we can investigate the development of 

metabolic syndrome. Our hypothesis asked a question as to when this effect of high 

glucose regulation of fatty acid pathways begin and when does it stop. Our initial 

assumptions were that in the event of insulin resistance glucose uptake would 

decrease thus a loss of HBP flux would result. This would mean that ACCβ activity 

would decrease unless intervened by another pathway. When we measured ACCβ 

mRNA levels with RT-PCR we found that at day 56 ACCβ activity was significantly 

higher in the high fat diet group but not in the low fat diet. At day 86 ACCβ activity the 

level was maintained but not significantly higher than its control. Since we don’t have a 

time point after insulin resistance its’ hard to know whether the effect was for ACCβ 

activity to decrease gain or maintain its level. The data from this result does however 
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highlight a significant correlation of time point where ACCβ activity increases at the 

same time where we would expect the high fat diet rats to be in metabolic syndrome. 

 

Using RT-PCR we also investigated our previous result with luciferase assays which 

showed that USF2, and not USF1 is involved in the regulation of ACCβ activity by the 

hexosamine biosynthetic pathway. Results from this experiment supported previous 

results showing an increase in ACCβ activity in response to USF2 expression in the 

presence of GFAT and that this effect could be reduced with the addition of an 

inhibitor of GFAT (6-diazo-5-oxo-l-norleucine).  

 

The next step was to prove that USF2 was binding to the ACCβ promoter. Deletion 

construct luciferase assay experiments showed a region close to the start codon of the 

ACCβ promoter where activity was lossed in response to both GFAT overexpression 

and USF2 expression. Chromatin immunoprecipitation USF2 from high fat and low fat 

diet fed Wistar rat heart muscle revealed that USF2 binds to the ACCβ promoter. We 

investigated an hypothesis that USF2 was modified by O-GlcNAc before binding to the 

ACCβ promoter using flow cytometry. When experiments were performed for the flow 

cytometry the data was combined and measured together. Technically it can be seen 

as a n=1 or it can be seen as a measurement of 10000 cells. We are aware that more 

experiments need to be performed with this section. We were trying to find a link 

between O-GlcNAcylation and were under the assumption that USF2 was O-

GlcNAcylated. Later the ChIP western blots proved this theory incorrect so it wasn’t 

found to be viable to further explore this avenue. We proved thatO-GlcNac 

modification and USF2 expression is increased in the same cell but this can be shown 

in western blotting just as easily. Since USF2 isn’t the protein modified there was no 
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need to explore this in flow cytometry. Further analysis with Western blotting showed 

that, although USF2 regulates ACCβ promoter activity by the hexosamine biosynthetic 

pathway, USF2 itself is not O-GlcNac modified. This would indicate that there is 

another factor involved in the regulation of ACCβ and USF2 that is modified by HBP. 

Other studies have shown that USF2 is upregulated by high glucose, glycated albumin 

and NF-кB (131). Many studies have shown increased expression of USF2 by O-

GlcNAc modification but none have yet focused on USF2 modification so we are 

unable to compare this result with other studies. 

 

Our next step was to investigate further downstream and see whether the increase in 

ACCβ activity would reduce fatty acid uptake via the inhibition of CPT1 by malonyl-

CoA (67, 70, 91, 102, 114, 135). Our experiments focused more on the time point’s 

day 14, 56 and 86, i.e. time points before and after day 56 where we saw the increase 

in ACCβ activity. We obtained data for total fat content of saturated fatty acids, 

unsaturated fatty acids and phospholipids as percentage of fat and as percentage fat 

per gram of heart tissue, but we decided to focus more on mass of fatty acids gram of 

heart tissue which would make the data more normalised and comparable to 

eachother. Phospholipid and triacylglycerol levels were generally higher in the high fat 

diet group indicating their uptake was skewed from being broken down by the 

mitochondrion. However at day 56 phospholipids were slightly lower in the high fat diet 

group than the low fat diet but not significantly. No differences were seen in the total 

phosphatidylethanolamine of these samples. The level of phosphatidylethanolamine 

remained level with time. This would be expected since both phospholipids and 

phosphatidylethanolamine fatty acids are involved in membrane structures. An 

interesting finding was in our low fat diet group at day 86 phosphatidylcholine levels 
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were at their lowest. We did have rather lower numbers of hearts compared to the 

other groups in the day 86 low fat group but the result is still significant. This is 

especially significant since this fatty acid is required for the formation of membranes 

too and because recent studies point to the many potential benefits of 

phosphatidylcholine for liver repair and found to prevent hepatocyte dystrophy and 

necrosis development, activate macrophage response and stimulate reparation 

inducing synthesis and secretion of the tumor necrosis factor.  

 

Our data also showed a trend towards an increase in free fatty acids which is what we 

expected to find since in our hypothesis ACCβ activity increases malonyl-CoA 

production which would reduce fatty acid uptake via CPT1 into the mitochondria. This 

however was not significant in some groups of fatty acids. This was unexpected given 

the rats were fed a high fat high glucose diet. When we look at the different carbon 

forms of fatty acids it was the small fatty acids of n-3 and monounsaturated fats that 

were higher in the high fat diet groups compared to controls while the larger bulkier 

fatty acids showed little change. We would have expected there to have been a great 

increase of total fatty acids in the heart tissue given the increase in the various carbon 

forms but we only get a trend when we combine all the fatty acids together.  
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4.2 Conclusion 

Our data reveal a novel finding, i.e. that increased flux through the hexosamine 

biosynthetic pathway activates USF2 and increases its expression allowing it to bind 

between -38/+65 and 18/+65 of the ACC promoter and activate it in cardiac-derived 

myoblasts. This increases ACC promoter activity seen in cardiac-derived myoblasts 

and mRNA levels seen in heart tissue. This effect can be seen to occur at day 56 in 

heart tissue during metabolic syndrome and results in insulin resistance at day 86 of 

male Wistar rats. We have shown that USF2 binds to the ACC promoter and 

activates it in response to the hexosamine biosynthetic pathway in a high fat and high 

glucose diet. This is, however, in response to another unknown regulator of USF2 

which is O-GlcNAc modified or a protein which helps for a complex which regulates 

ACC as a whole. With an increase in ACC there is an increase in malonyl-CoA and 

an increase in free fatty acids due to a reduction of fatty acid uptake into the 

mitochondrion. This leads to intracellular lipid accumulation due to a mismatch 

between sarcolemmal FA uptake and mitochondrial FA oxidation. Our data shows that 

fatty acids are higher in the high fat diet individuals during metabolic syndrome (day 

56). Subsequently, we propose that intramyocardial lipid accumulation triggers 

signaling pathways resulting in cell death, insulin resistance and contractile 

dysfunction (Figure 31).  
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Data from this study can be useful in the development of drug targets in the treatment 

of diabetes during metabolic syndrome before insulin resistance. This novel finding 

also provides us with a possible target for identifying metabolic syndrome early in 

individuals. The main weakness to treatment of diabetes is once a patient is insulin 

resistant it is very difficult or impossible to rectify. It would be so much easier to treat a 

patient before they became insulin resistant but identifying this stage can be a 

challenge. We have proposed the increase flux of hexosamine pathway to be a major 

stepping stone during metabolic syndrome and if we can use it as a diagnostic tool to 

identify this stage treatment can begin before insulin resistance. It is not practical to 

isolate heart tissue from patients to perform this diagnosis. With this in mind, our next 
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focus will be to move this knowledge to skeletal muscle where insulin resistance first 

takes place and discover if this is present. 

 

4.3. Limitations of this study 

 

Despite a lot of data and techniques imployed there is a large amount of work that still 

needs to be done. Being a novel hypothesis with the hexosamine biosynthetic 

pathway, this study has few studies with which to compare itself. Some experiments 

need to be repeated a few times to ensure a higher statistical value. RT-PCR of ACCβ 

on cell samples would have been better over just USF2 mRNA measurements. These 

are being measured currently but did not make it into this thesis. Pharmaceutical 

inhibitors are becoming less and less reliable as more studies are published. We tried 

to add as much variability in our experiments to support our hypothesis but relying on 

dominant negative inhibitors, substrates such as glucosamine and the use of deletion 

constructs. This study could have used something more potent such as silencing RNA 

for cell work and the inclusion of oxygraphs to measure fatty acid oxidation and 

growing cells in a high fat and high glucose environment. Unfortunately measuring 

fatty acid oxidation in frozen heart tissue isn’t a viable option so we couldn’t measure 

fatty acid oxidation in tissue. A good knock out animal model of GFAT could have 

given us more options as well but they are very expensive to breed and there is 

currently only one group in the world that has one. 
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Appendix 2: Outline of transfection schedule. 
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Appendix 4: Outline of day 4 lysate extraction 
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Appendix 5: Performing the luciferase assay on day 5 
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Appendix 6: Procedure for extraction of RNA using Aurum total RNA 

fatty and fibrous tissue kit (Protocol from Bio-RAD Laboratories, Hercules, 

California, USA) 

 

1. Measure the amount of starting material. Note that the Aurum total RNA fatty and 

fibrous tissue kit is designed to process up to the amounts indicated below (per 

column):  

 

(i) 1 x 107 cultured mammalian cells grown in suspension 

(ii) One 102 cm plate mammalian cultured cells grown in monolayer 

(iii) 2.4 x 109 of Gram-positive or Gram-negative bacteria  

(iv) 3.0 x 107 of yeast  

(v) 100 mg of animal tissue (a 4 mm cube of most animal tissue weighs 70–85 mg) 

(vi) 100 mg of plant tissue 

(vii) 50 mg filamentous fungi 

 

Warning: Processing larger amounts of starting material may lead to column clogging 

and reduced RNA purity. It is crucial that the appropriate amount of starting material 

be used. For samples that are known to be rich in RNA, it is highly recommended that 

less than the maximum amount of starting material be used so that the binding 

capacity of the column is not exceeded. In addition, complete disruption and 

homogenization of the starting material is critical to prevent column clogging and 

reduced RNA yields. 
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2. Disrupt and homogenize the sample. Below are recommended procedures for 

disruption and homogenization. 

 

Note: Incomplete disruption will clog the column in subsequent steps and result in 

reduced yields of total RNA.  

 

Fresh Tissue 

 

Fresh tissues can be processed in PureZOL immediately after dissection. 

Alternatively, freshly dissected tissue can be immediately frozen in liquid nitrogen and 

processed using instructions for frozen tissue. Transfer up to  100 mg of freshly 

dissected tissue into a 2.0 ml microcentrifuge tube and add 1 ml of PureZOL. Disrupt 

the sample for 30–60 seconds using a  rotor-stator or bead mill homogenizer (refer to 

manufacturer instructions for details). Although not as effective, passing the tissue 

sample through an 18-gauge needle and syringe can be used for sample disruption if 

a homogenizer is not available. Pass the sample through the needle and syringe until 

no more solid tissue is left in the lysate. The sample volume should not exceed 10% of 

the volume of PureZOL used for disruption. Proceed to step 3. 

 

Frozen Tissue  

 

Grind the frozen tissues to a fine powder with a mortar and pestle under liquid 

nitrogen. Avoid thawing the sample by periodically adding liquid nitrogen to the mortar. 

Weigh up to 100 mg of tissue and transfer the sample into a 2.0 ml microcentrifuge 

tube. Add 1 ml of PureZOL and disrupt for 30-60 seconds using a rotor-stator or bead 
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mill homogenizer (refer to manufacturer's instructions for details). Alternatively, take a 

small chunk of the frozen tissue (up to 100 mg) and drop it into 1 ml of PureZOL 

reagent and immediately homogenize the sample. Although not as effective, passing 

the tissue sample through an 18-gauge needle and syringe can be used for sample 

disruption if a homogenizer is not available.  Pass the sample through the needle and 

syringe until no more solid tissue is left in the lysate. The sample volume should not 

exceed 10% of the volume of PureZOL used for disruption. Proceed to step 3. 

 

Cells grown in a monolayer should be lysed with PureZOL directly in the culture dish. 

Aspirate the culture medium and immediately add 1 ml of PureZOL to a 10 cm2 dish. 

Pass the lysate through a pipette several times. The amount of PureZOL added is 

dependent on the area of culture dish (1 ml per 10 cm2) and not on cell number. 

Insufficient volumes of PureZOL may result in DNA contamination. Proceed to step 3. 

 

Note: Do not wash cells prior to the addition of PureZOL as this could increase the 

possibility of mRNA degradation.  

 

Suspension Cells (Mammalian, Plant, Bacterial, or Yeast) 

 

Pellet the cells by centrifuging at 3,000-5,000 x g for 2 minutes. Immediately lyse by 

adding 1 ml of PureZOL to 1 x 107 cultured mammalian and plant cells, 2.4 x 109 of 

Gram-positive or Gram-negative bacteria, or 3.0 x 107 of yeast (equivalent to 3 OD•ml 

of yeast). Pass the lysate through a pipet or an 18-gauge needle and syringe several 

times. To improve the efficiency of the cell lysis process, a rotor-stator homogenizer or 

a bead mill homogenizer is recommended to disrupt the cell walls of yeast and 
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bacteria. Bacteria and yeast lysate can also be heated to 55°C for 10 minutes prior to 

adding chloroform to increase the effectiveness of lysis by PureZOL. Proceed to step 

3. 

 

Note: Do not wash cells prior to the addition of PureZOL as this could increase the 

possibility of mRNA degradation.  

 

3. Once the sample has been disrupted in PureZOL, incubate the lysate at room 

temperature for 5 minutes to allow the complete dissociation of nucleoprotein 

complexes. 

 

Note: Following the disruption step, the sample can be stored at -70°C for at least 1 

month. To process frozen lysates, samples should be thawed at room temperature. If 

necessary, heat samples to 37°C in a water bath for 5–10 minutes to completely 

dissolve salts. Avoid extended treatment at 37°C, which can cause chemical 

degradation of the RNA.  

 

It is recommended that lysate from tissues that are rich in fat, polysaccharides, 

proteins, and extracellular material be centrifuged at 12,000 x g for 10 minutes at 4°C 

following the 5 minute incubation at room temperature. This step removes any solid 

insoluble debris that was left after the disruption step. Transfer the supernatant into a 

new 2.0 ml microcentrifuge tube without aspirating the pellet, then proceed to step 4. 

For lipid-rich samples, avoid transferring the excess fat that collects as a top layer. 

Carryover of the solid debris can cause column clogging and affect RNA sample 

purity. 
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4. Add 0.2 ml of chloroform to the lysate, then cover and shake vigorously for 15 

seconds. Do not vortex! 

 

5. Incubate for 5 minutes at room temperature while periodically 

mixing the sample.  

 

6. Centrifuge at 12,000 x g for 15 minutes at 4°C. 

 

Following centrifugation, the mixture will separate into 3 phases: an upper,colorless 

aqueous phase; a white interphase; and a lower, red organic phase. RNA is found 

exclusively in the aqueous phase, while DNA and proteins remain in the interphase 

and organic phase. The volume of the aqueous phase should be approximately 600 

µl, or 60% of the volume of PureZOL used in the initial disruption. 

 

If removal of contaminating DNA is a requirement, prepare DNase I enzyme by 

following steps a-b below while centrifuging the samples for phase separation: a. 

DNase I is provided as a lyophilized powder. If the DNase has already been 

reconstituted, skip to step b. Otherwise, reconstitute the DNase I by adding of 250 µl 

of 10 mM Tris, pH 7.5 (not provided) to the vial and mix by pipetting up and down 

briefly. Do not vortex! See Section 5, Materials and Equipment Required (Not Provided 

in the Kit), on how to prepare 10 mM Tris, pH 7.5. b. For each column to be 

processed, mix 5 µl of reconstituted DNase I with 75 µl of DNase dilution solution in a 

1.5 ml microcentrifuge tube. Scale up proportionally if processing more than one 

column. Once diluted with DNase dilution solution, do not refreeze for later use. 
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7. Without disturbing the interphase, immediately transfer the aqueous phase to a 2.0 

ml microcentrifuge tube.  

 

Note: It is crucial that none of the interphase or organic phase be transferred with the 

aqueous phase. Some of the aqueous phase should be left behind to avoid the risk of 

contaminating the RNA with contaminants such as phenol, which can interfere with 

downstream applications. 

 

8. Add an equal volume (approximately 600 µl) of 70% ethanol (not provided) to the 

tube and mix thoroughly by pipetting up and down. 

 

9. At this time, warm the elution solution to 70°C in a water bath for use in step 19.  

 

10. Attach an Aurum total RNA binding mini column to a luer fitting of the column 

adaptor plate on the Aurum vacuum manifold or to a compatible vacuum manifold. 

Refer to Figures 4B and 4C for setup. The vacuum source should be turned off, and 

the vacuum regulator should be completely open. 

 

11. Pipet 700 µl of the RNA sample into the RNA binding mini column. Turn the 

vacuum on and adjust to –20" to –23" Hg by closing the vacuum regulator. Continue to 

apply vacuum until all of the RNA sample have passed through the column. Open the 

vacuum regulator until the gauge indicates 0" Hg. 
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12. Repeat step 11 for the remainder of the sample. The Aurum total RNA fatty and 

fibrous tissue kit supplies RNase-free DNase I to be used to treat samples for 

complete removal of contaminating genomic DNA. If removal of genomic DNA is not a 

requirement, proceed directly to step 15. Otherwise, perform on-column DNase I 

digest by proceeding to step 13.  

 

13. Add 700 µl of low-stringency wash solution (already supplemented with ethanol) to 

the RNA binding column and close the vacuum regulator dial until the gauge indicates 

–20" to –23" Hg. Continue to apply the vacuum until the low-stringency wash solution 

has passed through the column. Open the vacuum regulator until the gauge indicates 

0" Hg.  

 

14. Remove any contaminating genomic DNA from the RNA sample  using steps a–c 

described below. 

  

a. Add 80 µl of the diluted DNase I to each column processed, making sure to add 

the DNase to the center of the membrane stack at the bottom of each column.  

b. Allow the DNase digest to incubate at room temperature for 15 minutes. 

c. When the DNase digestion is complete, centrifuge columns for  30 seconds at 

>12,000 x g. Discard the digest buffer from the wash tube and place the column 

back into the same wash tube. 

 

15. Add 700 µl of high-stringency wash solution to the RNA binding mini column and 

close the vacuum regulator dial until the gauge indicates –20" to –23" Hg. Continue to 
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apply the vacuum until the high-stringency wash solution has passed through the 

column. Open the vacuum regulator until the gauge indicates 0" Hg.  

 

16. Add 700 µl of low-stringency wash solution (already supplemented with ethanol) to 

the RNA binding column and close the vacuum regulator dial until the gauge indicates 

–20" to –23" Hg. Continue to apply the vacuum until the low-stringency wash solution 

has passed through the column. Open the vacuum regulator until the gauge indicates 

0" Hg.  

 

17. Transfer the RNA binding mini column to a 2.0 ml capless tube (provided). 

Centrifuge for 2 minutes at >12,000 x g to remove the residual wash solution.  

 

Note: The elution solution should be at 70°C before proceeding with the elution step. 

 

18. Transfer the RNA binding column to a 1.5 ml microcentrifuge tube (provided). 

 

19. Pipet 40 µl (or 30 µl)† of the warmed elution solution onto the center of the 

membrane at the bottom of the RNA binding column.  

 

† Note: When isolating total RNA from small amounts of starting material (<10 mg of 

tissue or 500,000 cells), perform a single elution with 30 µl of warmed elution solution. 

Do not perform step 22.  

 

20. Incubate 1 minute for complete soaking and saturation of the membrane. 
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21. Centrifuge for 2 minutes at >12,000 x g to elute the total RNA.  

 

22. Repeat steps 19 and 20 using 40 µl of the elution solution if the starting amount of 

starting material is more than 10 mg of tissue or 500,000 cells. 

 

Note: The eluted total RNA samples can be used immediately in downstream 

applications. Alternatively, the RNA sample can be aliquoted and stored at –20°C for 1 

month or at –70°C for 1 year 
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Appendix 7: Normal antibody Western blotting and detection 

 

Buffers used: 

 

10x Tris Buffer Saline (TBS): (5 litres) 

121 g Tris 

40 g NaCl 

pH solution to 7.6 

 

TBS-T Wash Buffer: Add 10 ml of 10x TBS to 90 ml of ultrapure or distilled 

water and then add 1 ml of Tween-20. 

 

Blocking Buffer: Add 5 mg of milk powder (Elite skim milk powder) to 100 ml 

of TBS-T. 

 

Procedure: 

 

1. Remove PVDF (Millipore, Billerica, USA) membrane from the transfer 

apparatus and wash the membrane 3 times with TBS-T for 5 minutes. 

 

2. Block nonspecific sites on the membrane by completely immersing the 

membrane with the blocking membrane (approximately 50 ml) at room 

temperature (RT) overnight at 4C. 

 

3. Prepare a 1:3,000 dilution of the GFAT antibody in blocking buffer.  
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4. Incubate the blot overnight at 4C. We used 17 ul of primary antibody in 5 ml of 

blocking buffer in a 50 ml Falcon tube and left the membrane to incubate 

overnight at 4C. 

 

5. Wash the membrane six times by completely immersing in TBS-T wash buffer 

(approximately 50 ml) and agitating for 5 minutes. 

 

6. Prepare approximately 1:2,000 dilution of goat anti-rabbit-horse radish 

peroxidase in blocking buffer. For 5 ml of blocking buffer we added 5 µl of 

secondary antibody. 

 

7. Remove wash buffer, add the diluted secondary antibody and incubate for 1 

hour at room temperature with gentle shaking.  

 

8. Wash the membrane six times by completely immersing the membrane in TBS-

T wash buffer (approximately 50 ml) and shaking for 5 minutes. 

 

9. Wash the membrane for 15 minutes with TBS. 

 

10.  Add 0.5 ml of ECL Reagent 1 to the membrane and then add ECL reagent 2 to 

the membrane. Make sure to spread the ECL reagents over the whole 

membrane. Incubate for 1 minute at room temperature while continuously 

washing the ECL reagent mixture over the membrane. 
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11. Remove membrane from ECL reagent and place in a plastic membrane 

protector (we used two pieces of acetate).  

 

12. Place the protected membrane in a film cassette with the protein side facing up.  

 

13. The membrane was exposed to Hyperfilm (Amersham, Buckinghamshire, UK) 

in a dark room for up to ± 7 minutes and then placed in developer for ± 30 

seconds. The film was washed and fixed.   
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Appendix 8: Stripping protocol 

 

1. Make up the following solution: 

100 mM β-Mercaptoethanol: 700 ml/100 ml 

2% SDS: 20 ml/100 ml (from 10% stock) 

62.5 mM Tris-HCl pH 6.7: 0.757 g/100 ml 

Make up to 100 ml with H20 

  

2. Incubate membrane in solution at 60C for 30-60 min with occasional agitation. 

 

3. Wash the membrane in TBS-Tween before blocking in 5% milk. 
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Appendix 9: 

 

Chloroform/ methanol extraction of tissue samples - (Quantitative) 

for the determination of lipid, total protein, total phospholipid and 

phospholipid fractions: 

  

This method can be used for liver, artery and aorta intima and heart muscle tissue 

samples 

 

Reagents: 

 

1. 0.9% Saline 

2. Chloroform +0.01% BHT 

3. Methanol + 0.01% BHT 

4. Saline saturated with CMS (0.9%; m/v in H2O) 

5. Distilled methanol 

6. Liquid nitrogen 

7. Distilled water 
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Equipment and instruments needed: 

 

1.   Mortar and pestle 

2.   Scalpel and tweezers 

3.   Filter paper (Whatman no.1) 

4.   Extraction tubes 

5.   Gilson (1ml) 

6.   Blue tips 

7.   Whirly machine 

8.   Mechanical shaker 

9.   Analytical scale 

10. Nitrogen evaporator 

 

Method: 

 

1. Resuspend sample in normal saline on ice. 

2. Rinse with clean saline and dry with filter paper. 

3. Cut into small pieces and blot dry. Use a sample size of approximately ±150 mg. 

4. Freeze-dry sample with liquid nitrogen in the mortar and grind with a pestle until it 

forms a powder. 

5.   Weigh out ± 100 mg sample in extraction tube and record exact weight. 

6. Add 500 μL saline to sample and mix slowly. 

7. Add 3 ml a methanol and butylated hydroxytoluene (BHT) solution and mix slowly. 

8. Add 6 ml a chloroform and BHT solution and mix slowly. 
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9.   Tighten caps well. Do not expose the sample to air as this will oxidise the fatty 

acids in the sample. 

10. Shake for 30 minutes on a mechanical shaker at room temperature. 

11. Place the tube with the sample on a test tube rack in a heated water bath and 

blow nitrogen in tube until the liquid is evaporated away, replace cap careful not 

to expose the sample to air and store at 4oC. 

 

Lipid determination: (for neutral and phospholipid classes) 

 

Reagents: 

 

1. Saline saturated with CMS 

2. CMS+BHT 

3. Distilled methanol 

4. BBOT 

5. C:M (2:1)+BHT 

 

Equipment and instruments needed: 

  

1. Whirly machine 

2. Pipette (2 ml) 

3. Pipette (10 ml) 

4. Pasteur pipettes 

5. Round bottom flasks 
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6. Filter paper (Whatman no.1) using small, medium and large according to 

funnel. 

7. Stand 

8. Glass funnels 

9. Buchi vacuum rotary (45oC) 

10. Pipette aids 

11. Vacuum pump 

12. Tweezers 

13. Mechanical shakers 

14. Spotting tubes 

15. Nitrogen evaporator 

 

Method: 

 

1. Attached round bottomed flask and funnel to a stand. 

2. Place two filter papers in funnel and wet with methanol. 

3. See that they fit snugly onto the bottom. 

4. Transfer the extracted sample in CM 2:1 by means of a pasteur pipette into the 

funnel and apply vacuum pressure.    

5. Rinse the stopper into the funnel with 5ml CM (2:1), and apply vacuum pressure. 

6. Replace the top filter back into the extraction tube with a tweezer. 

7. Add 3 ml methanol+BHT and whirly. 

8. Add 6 ml chloroform+BHT and whirly. 

9. Cap and shake on a mechanical shaker for 10 minutes. 
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10. Pour contents of tube over onto funnel, rinse the stopper with 5 ml CM (2:1) and 

apply vacuum pressure.  

11. Pipette 5 ml CM (2:1) into extraction tube, washing down the sides. Transfer the 

contents to the funnel with a pasteur pipette and apply vacuum pressure. Repeat 

once more. 

12. Finally rinse inside of funnel with 2 ml methanol and apply vacuum pressure. 

13. Remove the round bottomed flask from the funnel and dry extract on a buchi 

apparatus. 

14. When extract is dry, cool off shortly in a ice bath. 

15. Add 2 ml of CMS ,  disolve lipids by swirling the flask, and transfer over into a  

spotting   tube with a pasteur pipette. 

16. Repeat step 15 - four times. 

17. Add 2ml saline saturated with CMS, fill tube with nitrogen, cap and mix the 

contents of tube by turning the tube upside down 15 times. 

18. Leave to stand until phases separates and then discard top layer with a pasteur 

pipette. 

 

For storing: Fill the tube with nitrogen, cap and store  at 40C. 

 

Spotting : 

 

Reagents: 

 

Solvent 1-  SOP: GC/20/08 

Solvent 2-  Boric acid solvent   SOP: GC/20/08 
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Transmethylating solution 

Hexane 

 

Equipment and instruments needed: 

 

Waterbath (45oC) 

Hamilton syringe (100 μL,500 μL) 

TLC-plates (silica jel 60, Merck art no 5721) -activate the plates before use. 

Glass tubes 

Block (70oC) 

Glass tank 

Nitrogen evaporator 

Method: 

 

1. Evaporate sample in a waterbath under nitrogen. 

2. Wash down inside of tube with 1 ml CMS, dry under nitrogen and repeat once 

more. 

3. Put tubes on ice, and make up to x μL with syringe (x = number of samples). 

4. Pre-equilibrate a filter paper lined separation tank with solvent 1 for at least 10 

minutes before use. 

5. Spot x μL for neutral and phospholipids and develop the spotted plate in solvent 

1 for 15 minutes (x = number of samples). 

6. Dry the plate under nitrogen for 10 minutes. 

7. Pre-equilibrate a filter paper lined separation tank with solvent 2 for at least 25 

minutes before use. 
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8. The separated neutral lipids are located by spraying the plate with BBOT 

(dissolved in chloroform /methanol, 1:1, v/v). 

9. Mark the separated components, with the help of the appropriate standard, under 

an UV-light and scrape of the spots into glass tubes. 

10. Add 2 ml trans-methylating solution to samples, cap and put in the block (70°C) 

for 2 hours. 

11. After scraping of the neutral lipids, dry the plate for 30 minutes under nitrogen. 

12. For the separation of the phospholipids, develop the same plate in a separate 

tank with solvent 2 for 30 minutes. 

13. Dry the plate for at least 25 minutes under nitrogen. 

14.   Mark the phospholipids spots and scrape off carefully. 

14. After transmethylation of the neutral lipids cool samples at room temperature. 

15. Add 2 ml hexane, apply nitrogen and store at 200C. 

16. Samples are now ready to be processed for GC analysis, except for the CE that 

has to be spotted again for the methyl esters. 
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