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Summary

The insulin signalling cascade is one of the most important regulatory and signalling
pathways in humans. Dysregulation or dysfunction of the insulin signalling path-
ways often underlies the molecular @tiology of diseases such as diabetes, obesity, and
Alzheimer’s. In turn, these diseases are the harbingers of various co-morbidities such
as cardio-vascular disease, chronic inflammation, and dementia. The healthcare, eco-
nomic, personal, and mortality burden of these diseases cannot be overstated.

Mathematical modelling of insulin signalling is indispensable in the effort to un-
derstand the dynamics of the insulin signalling cascade and how malfunctions therein
lead to disease. However, despite the availability and complexity of existing models,
few have explicitly connected the signalling cascade, glucose transporter activity, and
metabolism with one another. In order to study these interactions, a ‘three-module’
approach was adopted that defined the signalling cascade, glucose transporter activ-
ity, and metabolism as core, ‘input-output’ modules. The present work is limited to
the signalling cascade and glucose transporter activity modules whereas work by Dr.
Cobus van Dyk is concerned with the metabolic module.

With this in mind, this thesis sets forth three aims. Firstly, to establish standard-
ised culturing conditions which can be used to determine the basal state of insulin
signalling and glucose transporter activity. Secondly, to develop a core, mathemati-
cal model based on Western blotting and radio-labelled glucose -assay data which is
able to describe the concentration- and time-dependence of the signalling cascade and
glucose transporter activity in response to insulin. Thirdly, to determine the clustering
behaviour of GFP-tagged GLUT4 molecules in response to insulin.

The first goal was to standardise culturing conditions. Herein, the ability of high

xii
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(25mM), medium (15mM), and low (SmM) glucose culturing conditions were evalu-
ated with regards to their ability to sensitise or desensitise the insulin signalling cascade
as well as the degree to which they are able to induce the differentiation of C2C12 my-
oblasts into myocytes. The glucose and lactate concentrations in the external media
were used to determine the glucose-lactate flux of the C2C12 cells. This served as
a proxy for the induction of insulin-dependent glucose transport and metabolism. A
modified Ladd staining protocol was used to assess the degree to which C2C12 cells
could differentiate under the culturing protocols.

The second goal was to construct a core, mathematical model of insulin signalling
and glucose transporter activity. The time-dependent phosphorylation and dephos-
phorylation of the insulin receptor and the serine 473 and threonine 308 sites of Akt
in response to varying insulin concentrations was investigated using Western blotting
techniques. The glucose transporter (GLUT4) activity was assayed using radio-carbon
glucose. The data were used to optimise parameters for a core, ODE-based model of
the signalling and glucose transporter modules.

The third goal, to investigate the clustering behaviour of GLUT4 in response to
insulin, was investigated by using confocal microscopy to image GFP-tagged GLUT4
molecules before and after being stimulated with insulin. A hierarchical clustering
algorithm as well as further geometric and statistical analyses were used to determine
the number, size, density, and distribution of GLUT4 clusters pre and post insulin
exposure.

Of the remaining chapters, Chapter 1 discusses the background, context, scope,
and aims of this study as well as further elaborating on the ‘three module’ approach.
The literature review in Chapter 2 provides an overview of the relevant literature as
delineated by the scope and aims of this study. The materials and methods are provided
in Chapter 3, with specific alterations or methodologies being further discussed in the
relevant experimental chapters. The final chapter, Chapter 7, provides the reader with

general discussions, limitations, and final thoughts concerning this work.

Xiil
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Opsomming

Die insulien seinkaskade is een van die belangrikste regulerings- en sein padweé in

mense. Disregulering of disfunksie van die insulien sinweé is dikwels onderliggend

aan die molekulére etiologie van siektes soos diabetes, vetsug en Alzheimers. Verder is

hierdie siektes die draers van verskillende ko-morbiditeite soos hartvatsiektes, chroniese
ontsteking, demensie en ander. Die gesondheids, ekonomiese, persoonlike en sterftes-

las van hierdie siektes kan nie oorskat word nie.

Wiskundige modellering van insulien seinweé is onontbeerlik in die poging om
die dinamika van die insulien seinkaskade te verstaan en hoe wanfunksies daarin tot
siektes lei. Ondanks die beskikbaarheid en ingewikkeldheid van die bestaande mod-
elle, het min die seinkaskade, glukose-vervoerderaktiwiteit en metabolisme egter ek-
splisiet met mekaar verbind. Ten einde hierdie interaksies te bestudeer, is ‘n ‘drie-
module’-benadering aangewend wat die seinkaskade, glukose-vervoerderaktiwiteit en
metabolisme as kernmodules as ‘n ’inset-uitset’ model gedefinieer het. Die huidige
werk is beperk tot die seinkaskade en glukose-vervoerdersaktiwiteitsmodules, terwyl
werk deur dr. Cobus van Dyk gemoeid is met die metaboliese module.

Met die oog hierop stel hierdie proefskrif drie doelstellings. Eerstens, om ges-
tandaardiseerde kweektoestande vas te stel wat gebruik kan word om die basale toe-
stand van insulien seine en glukose-vervoerderaktiwiteit te bepaal. Tweedens, om
‘nkern, wiskundige model te ontwikkel gebaseer op Westerse klad-tegnieke en radio-
toetsdata, wat die konsentrasie en tydafhanklikheid van die seinkaskade en glukosever-
voerder kan beskryf as ‘n gevolg van insulien blootstelling. Derdens, om die groeper-
ingsgedrag van GFP-gemerkte GLUT4-molekules in reaksie op insulien te bepaal.

Die eerste doelwit, met betrekking tot gestandaardiseerde kweektoestande, word

xiv
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aangebied in hoofstuk 4. Hierin is die vermo€ van hoé€ (25mM), medium (15mM)
en lae (5mM) kweektoestande geévalueer met betrekking tot hul kapasiteit om die
insulien seinkaskade te sensitiseer of te desensitiseer, asook die mate waarin hulle
die differensiasie van C2C12-myoblaste in miosiete kan veroorsaak. Die skynbare
glukose-laktaatvloei in die eksterne media dien as ‘n gevolmagtigde maatstaf vir die
induksie van insulienafthanklike glukosevervoer en metabolisme. ‘n Gemodifiseerde
LADD-kleuringprotokol is gebruik om die mate waarin C2C12-selle kan onderskei te
bepaal.

Die tweede doelwit, om ‘n kern, wiskundige model van insulien seinweé en die
glukosevervoerder aktiwiteit te konstrueer, word in hoofstuk 5 nagestreef. Die fos-
forilering en ontfosforylering van die insulienreseptor en die serien 473 en treonien
308-posisies van die intermediére seinmolekule (Akt) in reaksie op wisselende in-
sulienkonsentrasies, sowel as tyd, is met behulp van Westerse klad-tegnieke onder-
soek. Die glukose-vervoerder (GLUT4) -aktiwiteit is met behulp van radio-koolstof
glukose ondersoek. Die data is gebruik om parameters te optimaliseer vir ‘n kern-
GDV-gebaseerde model van die sein en glukose-vervoermodules.

Die derde doelwit, wat die groeperingsgedrag van GLUT4 in reaksie op insulien
ondersoek het, word in hoofstuk 6 aangebied. Konfokale mikroskopie is gebruik
om GFP-gemerkte GLUT4-molekules wat sonder en met insulien gestimuleer is te
analiseer. ‘n Hi€rargiese groeperingsalgoritme sowel as verdere meetkundige en statistiese
ontledings is gebruik om die aantal, grootte, digtheid en verspreiding van GLUT4-
groepe voor en na insulienblootstelling te bepaal.

Van die hoofstukke wat nog nie hier bespreek is nie, bied hoofstuk 1 die agter-
grond, konteks, omvang en doelstellings van hierdie studie, asook die uitwerking van
die ‘drie module’-benadering. Terwyl die literatuuroorsig in hoofstuk 2 bied ‘n onder-
soek van die relevante literatuur soos uiteengesit in die omvang en doelstellings van
hierdie studie. Die materiaale en metodes word in hoofstuk 3 verskaf, met spesifieke
wysigings of metodologie€ wat in die betrokke eksperimentele hoofstukke verder be-
spreek word. Die finale hoofstuk, hoofstuk 7, sal die leser voorsien met algemene

besprekings, beperkings en afsluitende gedagtes rakende hierdie werk.

XV
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Chapter 1

Introduction

Conditions resembling diabetes are described at various points in history - spanning al-
most 3000 years [1]. Serious academic study of these conditions began in the 16" cen-
tury when the Swiss physician Paracelsus first discovered crystalline glucose residue
upon evaporating the urine of patients with ‘irritated kidneys’ [2]. The distinction be-
tween Type 1 and Type 2 diabetes was formally clarified in the latter half of the 1700s
by Matthew Dobson [2]. Type 1 diabetes is an auto-immune disease that destroys the
insulin producing [-cells in the pancreas [3]. Type 2 diabetes (T2D) is a lifestyle dis-
ease. Persistent exposure to insulin steadily desensitises the cellular response to insulin
until the organism becomes insulin resistant [4, 5]. Insulin was discovered in the first
quarter of the 20" century and first used to treat type 1 diabetes in the early 1920s [6].
The successful treatment of comatose diabetics by insulin formally cemented its role
as one of the crucial elements in the @tiology of type 1 and 2 diabetes [7].

Despite centuries of study, diabetes - specifically type 2 diabetes - remains one of
the fastest growing lifestyle diseases globally [8]. It is estimated that nearly 10% of
the global population will be affected by type 2 diabetes by 2045 [9]. However, since
the burden of this disease is increasingly shifting to lower- and middle-income regions
of the world, the true number may be greater as nearly half of the diabetics in these
countries remain undiagnosed [10].

The most-common preventatives or curatives for type 2 diabetes (henceforth T2D)

involve changes in lifestyle. However, three of the greatest risk-factors for T2D -
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1.1. Insulin Signalling: A Three-Module Approach

excessive sugar consumption [11], sedentary lifestyles [12], and stress [13, 14] - have
become ingrained in a plurality of modern lifestyles. Changing them is often a task that
many are unwilling or unable to tackle. Moreover, the rate at which these factors are
affecting people, predominantly in modernising economies, is on the rise [8]. These
data, combined with a near-global inertia to change, are especially concerning in the
light of the healthcare [15], economic [16], and mortality [17, 18] burdens imposed by
the increasing prevalence of T2D.

The failures of ‘top-down’ interventions which focus on better nutrition, more exer-
cise, and less stress have increased interest in ‘bottom-up’ solutions that rely on a keen
understanding of the molecular mechanisms that lead to T2D. Skeletal musculature
accounts for 70 - 90% of mammalian post-prandial glucose clearance [19]. Further,
skeletal muscle is predominant in regulating glucose homeostasis [20]. It therefore

seemed a prudent point of initiation for this study.

1.1 Insulin Signalling: A Three-Module Approach

The canonical insulin signalling cascade is initiated when insulin binds the insulin
receptor (IRS) [21]. This instantiates a phosphorylation cascade among multiple in-
termediate proteins which reaches Akt (previously known as protein kinase B) [22].
Once Akt has been phosphorylated, along with AS160, it sets in motion the trans-
port and eventual fusion of the GLUT4 glucose transporter to the plasma membrane
[23, 24]. Consequently, exposure to insulin increases the concentration of GLUT4 at
the plasma membrane which in turn increases the glucose influx into the cell [25, 26].

The insulin signalling pathway consists of several dozen proteins [21], each of
which interacts with various downstream and upstream proteins. Additional complex-
ity is layered onto this by one of the primary regulatory mechanisms of this pathway
- differential phosphorylation on specific amino acids (primarily serine, threonine, or
tyrosine) of several proteins within the cascade [21]. Lastly, certain proteins - such as
the insulin receptor - can be phosphorylated at multiple amino acid residues simulta-

neously [27].
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The present work shall attempt to model insulin signalling, glucose transporter
(GLUT#4) activity, and glucose metabolism pathways as three distinct modules in an
effort to manage the complexity of these pathways. The goal is not to create a highly-
detailed model or one which can explain the specific dynamics of all the individual
elements in the insulin signalling pathway. Rather, the minimal modelling approach
in this work seeks to link three modules in the insulin signalling cascade; an insulin
signalling module, a glucose transporter module, and a glucose metabolism module.
These modules will be simplified into an ‘input-output’ ODE-based model which links
the main components - the insulin receptor, Akt, and GLUT4 - at the subcellular level.
Smaller, albeit more limited, models such as this one can be more easily parameterised
with a limited data set. Consequently, this model will be parameterised using direct
experimental evidence. This focus on a smaller model and experimental scope signifi-
cantly simplifies experimental and modelling considerations. This work would provide
a platform which future models could expand on a similar basis as one could develop
purpose-built minimal models for each module that could conceivably be integrated
into a single, larger model.

Consequently, the decision was made to focus on ‘nodes’ (components) in insulin
signalling which represent the signalling pathway, the glucose transporter, and glucose
metabolism. A representation of the components that are involved in transmitting the
insulinic signal from the insulin receptor to GLUT4 can be seen in Fig. 1.1. Here, the
insulin signalling cascade has been carved into five distinct clusters centred around the
insulin receptor (IR, green), insulin receptor substrate (IRS, yellow), phosphoinosi-
tide 3-kinase (PI3K, purple), protein kinase B (Akt, red), and the glucose transporter
(GLUTH4, orange). This was further pared down to include only the IR and Akt proteins
since these represent the input and output nodes of the ‘insulin signalling” module and
were therefore considered sufficient for the construction of a minimal model. Sim-
ilarly, GLUT4 was isolated to represent the ‘glucose transporter’ module. In other
words, the diagram in Fig. 1.1 was simplified into three modules - insulin signalling,
glucose transport, and glucose metabolism (Fig. 1.2). Each of these modules could be

assessed by measuring their input and output components. In the case of the insulin
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Figure 1.2: The simplified three module representation of insulin signalling. The
signalling module encompasses the insulin receptor (IR) and Akt as inputs and outputs
respectively. External and internal glucose (black spheres) are the respective inputs
and outputs for the glucose transporter module. This module is assessed by measuring
the activity of the GLUT4 transporter. The metabolism module uses glucose as input
and yields lactate (red spheres) as output.

signalling module this would be the degree to which the insulin receptor and Akt are
phosphorylated. The glucose transporter module would be assayed according to how
much glucose is imported from the external media and the glucose metabolism module
would be assessed by measuring glucose and lactate as input and output respectively.
The insulin signalling module represents the transduction of the signal from in-
sulin through to GLUT4. This means that one can build a representative model of
the dynamics of the signalling cascade without needing to take glucose transport into
account. While a large part of the insulin signalling pathway is already known, the

precise interactions between the components is not fully konwn. Additionally, the in-
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sulin signalling pathway interacts with components from other metabolic or signalling
pathways. This significant complexity meant that the modelling approach explored
in this thesis would not attempt to incorporate every known quantity in the insulin
signalling pathway. The goal was not to create the most-detailed model, rather to de-
termine whether a minimal model which focused on a smaller selection of well-studied
components could generate novel insights into insulin signalling.

The GLUT#4 cluster was relegated to the glucose transport module. Unlike the
insulin signalling cluster which was investigated using Western blotting, the glucose
transport module was investigated by using radiolabelled glucose transporter assays.
Using these assays, one can gain an accurate picture of the fraction of GLUT4 in the
plasma membrane under basal conditions, insulin stimulated conditions, and dysregu-
lated conditions. Therefore, should dysfunction occur at any point throughout insulin
signalling, it will immediately be apparent in the behaviour of the glucose transporter.
This can indicate dysregulation upstream - with Akt or the IR - or in the absence of
such dysregulation, the transporter itself could be at fault.

Finally, the metabolic module is composed of two studies. Firstly, the study con-
tained in this thesis which provides a bird’s eye view of metabolism by tying the overall
glucose consumption and lactate production rates to increases in insulin stimulation.
Should the insulin signalling or glucose transport modules fall prey to dysfunction, this
should be immediately apparent in the initial rates at which glucose is metabolised to
lactate. The second study is a sister-project to the present work which was completed

by Dr. Cobus van Dyk and focuses on the internal glucose metabolism of C2C12 cells.

1.2 Motivation

While a variety of studies exist that independently investigate the behaviour of the
signalling cascade [28, 29], the behaviour of the glucose transporters [30, 31], or the
effects of insulin exposure on metabolism [32, 33], few models link each of these
‘modules’ together in a single kinetic model. The present study will attempt to resolve

this shortcoming, as will the work by Van Dyk et al [34].
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Deepening the understanding of how the various modules within a cell act with and
upon each other may lead to benefits beyond the purely academic. If a disease state is
caused by dysregulation of the insulin cascade, knowing whether this lies with the sig-
nalling network, the GLUT4 protein, or with glycolysis may yield insights into which
pharmaceutical or therapeutic interventions could alleviate the disease state. Further,

such an understanding may assist with the development or targeting of treatments.

1.3 Problem Statement

The “Three-Module’ approach outlined in Section 1.1 can be approached, analytically,
from a mathematical, modelling perspective. Such a construct, albeit simplified, can
compare the ‘normal’ state of insulin signalling with a dysregulated state across all
three modules: signalling, glucose transport, and glucose flux. The current lack of

such a model therefore is the overall problem the present work shall address.

1.4 Aims and Objectives

The overall aim of this study was as follows: to characterise and determine, by way
of a simplified, mathematical model, which of the modules outlined in Section 1.1 are
dysfunctional in a hyperglycaemic, hyperinsulinemic insulin-resistant state. In order
to achieve these aims, the following objectives were developed:

Firstly, to establish the correct physiological conditions wherein the cells are to be
grown. This stems from the hypothesis that ‘standard’ culturing protocols, which often
contain up to five times the glucose content (25 mM)than what is physiological (5.5 -
7 mM in humans), might be inducing pseudo insulin-resistant states. Therefore, as a
proxy-measure of insulin functioning, the glucose-lactate flux will be measured across
a variety of culturing and experimental conditions until an insulin induction of glucose-
lactate flux is determined. Similarly, the degree to which cells under these ‘new’ cul-
turing conditions differentiate will be quantified since the phenotype of myoblasts and

myotubes differs substantially, a factor which could influence any experimental results.
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Secondly, the ‘normal’ or basal kinetic state of insulin signalling will be investi-
gated with respect to the IR and Akt protein phosphorylation as well as the glucose
transport activity. Western Blot analysis will be used to determine the insulin dose and
time dependent phosphorylation and dephosphorylation of the IR and Akt proteins.
The glucose transport will be characterised in terms of the increase or decrease of its
transport capacity (assayed via C'* uptake) in response to the time- and dose-dependent
addition or removal of insulin. The Western blotting and glucose transport data shall
be included in a minimal, ODE-based kinetic model of the insulin signalling cascade.

Thirdly, the behaviour of GFP-tagged GLUT4 proteins in response to insulin will
be determined with regards to their propensity to cluster as well as their distribution
throughout the cell. This investigation necessitates the replicable transfection of my-
oblasts with the GFP-tagged GLUT4 plasmid as well as a method to visualise the
GLUT4 distribution via confocal microscopy. Thereafter a computational workflow
with which to eliminate background noise, deconvolve the images, and isolate the rel-
evant pixel positions will be developed. Lastly, this will lead to the development of a
clustering algorithm that uses the pixel positions as input, divides them into clusters,
has some exclusion criteria, and is able to output the size and density of each cluster.
This will provide insight into the distribution and movement of the GLUT4 module in

a post-insulinic state.

1.5 Scope and Focus

The data gathered during this study apply exclusively to in vitro observations in cul-
tured mouse skeletal muscle (C2C12) cells. The adoption of a core modelling approach
which characterises the insulin signalling cascade as an ‘input-output’ relation is suffi-
ciently broad to encourage similar approaches for insulin resistant states or additional
cell lines. However, such a model is limited with regards to the level of mechanistic
detail it contains. Therefore, while it cannot point to the precise molecular mechanism
which causes insulin insensitivity, it can point to the module chiefly responsible there-

for. This should allow future studies to direct their efforts towards the modules most
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relevant for their aims.
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Chapter 2

On Insulin Signalling, Metabolism,

and Modelling

2.1 Insulin Signalling

The insulin signalling pathway is an important regulator of cellular homeostasis [35].
It regulates many processes such as: glucose metabolism [36], protein synthesis [37],
lipid synthesis [38], exercise metabolism [39], and stress responses [40]. Primarily,
the insulin responsive tissues are skeletal and cardiac muscle as well as adipose tissues
[41]. However, without insulin mediated metabolic and stress responses, cells, tissues,
and organisms would quickly suffer from a host of dysfunctions - not the least of which
are the diabetic conditions.

When pancreatic S-cells detect an increase in blood glucose, they release insulin
into the bloodstream [42]. Circulating insulin will then bind to free insulin receptors
on any of the target tissues (Fig. 2.1). Subsequently, this will trigger the activation of
the insulin signalling cascade (Fig. 2.2) which results in the upregulation of glycogen
synthesis, glycolysis, and fatty acid and lipid synthesis [37, 38, 43]. Similarly, this
will also trigger the downregulation of various catabolic processes such as proteolysis,
fatty-acid breakdown, and glycogenolysis. Since nearly 70% of post-prandial, insulin-
mediated glucose consumption occurs in the skeletal muscle, the present review and

study shall focus thereon.
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Skeletal Muscle

Cardiac Muscle

Pancreas

Adipose Tissue

Figure 2.1: Glucose (black spheres) is sensed by (3-cells on the pancreas which then
release insulin. Increases in insulin concentrations are primarily sensed by skeletal
muscle, cardiac muscle, and adipose tissue. In return, these tissues respond by either
up- or down-regulating anabolic and catabolic processes as necessary.
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2.1. Insulin Signalling

2.1.1 Insulin

Insulin initiates and regulates a signalling cascade that is responsible for a host of
metabolic activities: glucose, lipid, and protein metabolism [38, 44—46], cell growth
and differentiation [47, 48], inflammation and the immune response [49, 50], and neu-
ral signalling [51]. Insulin is a small, 5.8 kDa peptide hormone. Its 51 amino acid
structure is strongly conserved and insulin derived from disparate species is often
cross-reactive [52].

The average circulating concentration of insulin in humans is between 10 and
100pM [53]. This is maintained by the release of insulin from the (-cells every 3
to 15 minutes [54, 55]. Once the blood glucose levels rise above resting physiological
levels, greater quantities of glucose diffuse into the S-cells via the GLUT?2 transporter
[56]. Consequently, insulin is released more frequently [57] insulin levels can rise to

between 6 nM and 42 nM [58, 59].

2.1.2 Insulin Receptor

The insulin receptor (IR) is embedded in the plasma membrane of a cell. The number
of IR proteins found on a cell can range from a few hundred (for example, in ery-
throcytes), to a few hundred thousand in target cells such as adipose or muscle cells
[60—62]. There are two isoforms of the IR: IR-A and IR-B. IR-A appears to primar-
ily regulate growth, development, and IGF signalling whereas IR-B is responsible for
metabolic regulation [63]. After binding to insulin, the IR-A isoform is phosphorylated
at its intracellular tyrosine sites and internalises [64, 65]. In addition to mediating mito-
gensis, this results in the degradation of the IR-A and the subsequent attenuation of the
Akt-dependent signalling cascade [66]. IR-B, however, remains at the cell membrane
after insulin exposure, conducting the insulinic signal into the Akt-dependent pathway
[67]. It is therefore conceivable that myoblasts primarily express IR-A whereas my-
ocytes would express IR-B. The IR-A:IR-B ratio is a predictor of dysregulation in the
insulin signalling pathway. Diabetic patients were found to have elevated IR-A:IR-B
ratios [63]. Considering the mitogenic activity associated with IR-A [65], this could

also be a predictor for dysregulation in the cell cycle, if not tumorigenesis.

13
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Figure 2.3: Insulin (yellow), binds to the a-subunit of the (red) IR. This initiates the
dimerisation of the [-subunits which activates the IR tyrosine kinase domain. The
activated IR tyrosine kinase uses ATP as a substrate to autophosphorylate each (-
subunit which thereby becomes active.

Structurally, the IR isoforms consist of two homodimers: an as juxtamembrane
homodimer and a 3, transmembrane homodimer [68]. An « subunit binds insulin.
The 3 homodimer anchors the IR in the membrane and transmits the signal by phos-
phorylation of its Receptor Tyrosine Kinase (RTK) domains which are located in the
cytoplasmic compartment [69].

After insulin binds to the IR (Fig. 2.3), the two « subunits crosslink with one
another [21]. This leads to conformational changes in the IR which induces further
crosslinking along the 3 subunits [70]. Consequently, the RTK domain of the IR is
activated. The RTK domain sequesters ATP from the intracellular environment and
begins autophosphorylating. There are seven, key tyrosine residues on the IR that can
be autophosphorylated [71], all of them along the 8 domain. Phosphorylation of ty-
rosine residues 1158, 1162, and 1163 in the active loop leads to the stabilisation of
the active site. This allows ATP and IRS1/2 to bind and undergo phosphorylation by
the IR. Phosphorylation of the remaining residues: 965 and 972 in the juxtamembrane
domain and of 1328 and 1334 in the C-terminus are thought to assist with the confor-

mational changes necessary to open the active site of the IR [71].

14
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2.1.3 Insulin Receptor Substrates

Immediately downstream from the IR is a family of four Insulin Receptor Substrate
Proteins (IRS-1 to IRS-4) [72]. IRS-1 through IRS-4 are important for the transmis-
sion of signals from not only insulin, but also from immune, inflammation, and stress
responses as well as growth and metabolism [73]. More specifically, IRS-1 and IRS-
2 have been shown to be the important mediators in insulin and growth signalling.
Knockouts of either gene resulted in insulin resistance and growth retardation in mice
whereas knockouts of IRS-3 and IRS-4 appear to, at most, have mild defects in growth
and neural development [38, 74]. Therefore, for the duration of this review, the use of
IRS will be limited to mean IRS-1/2.

The IRS is a 1242 amino acid protein with a mass of 131 kDa [75]. IRS con-
tains a Pleckstrin Homology (PH) domain and a Phospho-Tyrosine Binding (PTB)
domain [76]. The PTB domain facilitates binding between the IRS-1 and the tyrosine-
phosphorylated IR therefore bringing IRS proteins into near contact with the PM [73].
The PH domain recruits various molecules such as PIP2 to the IRS and consequently
the PM [77]. The IRS-1 is unique in that the PH and PTB domains are arranged ‘back
to back’ which could indicate that the successful binding of the PTB may lead to the
activation of the PH domain [78]. Phosphorylation of C-terminal tyrosine sites recruits
Src 2 Homology (SH2) domain proteins such as PI3K to the IRS and, consequently,
to the PM [38]. IRS functions as a mediator of cell-signalling rather than an instigator
thereof. This review will be limited to the interactions between IR, IRS, PI3K, and
PIP2/3.

Once the IR has autophosphorylated and its active site has opened to IRS and ATP
(Fig. 2.4), the IRS protein will bind and undergo rapid phosphorylation of various
serine, threonine, and tyrosine residues [79, 80]. Canon has it that phosphorylation
of tyrosine residues is associated with an increase in insulin-related metabolic activity
[81] whereas Ser/Thr phosphorylation results in attenuation of the insulinic signal [82].
Evidence for the latter stems from studies which showed the following: constitutively
high levels of serine phosphorylation under basal conditions [83]; most likely due to

GSK-3 activity [84], elevated levels of serine phosphorylation in insulin resistant pa-

15



Stellenbosch University https://scholar.sun.ac.za

2.1. Insulin Signalling

Figure 2.4: The active IR recruits the insulin receptor substrate (IRS) to the PM. The
membrane-associated IRS is now a target for the IR kinase domain which uses ATP as
a substrate in order to phosphorylate IRS which in turn is activated thereby.

tients [85], and the degradation of IRS in response to greater Ser/Thr phosphorylation
[86].

This ‘on/off’ dichotomy between tyrosine and serine/threonine phosphorylation
does not reflect the entirety of signalling through IRS. However, the broader interplay

of phosphorylation states and phosphorylation sites is beyond the scope of this review.

214 PI3K

Phosphoinositide 3-kinases (PI3Ks) are a family of inositol phosphorylases that pri-
marily act on phosphatidylinositol (PtdIns) in response to upstream signalling [87].
There are currently, four classes (I - IV) of PI3Ks [87, 88]. Each class of PI3K has
differing specificities for PtdIns substrates and, consequently, is involved in separate
cell functions (see Table 2.1). Class IV PI3Ks consist of a group of kinases that are
mechanistically related to PI3Ks such as mTOR or DNAPK [89, 90]. However, their
recognition as bona fide PI3Ks remains controversial. Class I PI3Ks are the most
thoroughly studied molecules due to their direct involvement in or implication for the
PI3K/Akt-dependent pathway of insulin signalling [91].

Class I PI3Ks - hereafter referred to as PI3K - are heterodimeric proteins that con-
sist of an 85kDa regulatory subunit (p85) and a 110kDa catalytic subunit (p110) [92].

The unphosphorylated p85 subunit inhibits the p110 subunit [96]. Upon insulin
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Table 2.1: An overview of the substrates and consequent metabolic processes that are
affected by activation of each class of PI3K

Class of PI3K  Substrate Function Reference

I PtdIns, PIP, PIP2 Signal propagation [92]
in the IRS-PI3K-AKt
pathway

II PtdIns Angiogenesis, cilium [93, 94]
function

11 PtdIns Initiator/Regulator  of [95]
autophagy

v PtdIns Oxygen sensing, DNA [89, 90]
repair, nutrient home-
ostasis

stimulation, the C-terminal tail of IRS becomes tyrosine phosphorylated. This pro-
vides a binding site for proteins with SH2 domains such as PI3K [97]. The binding
between IRS and PI3K occurs at the p85 subunit of PI3K. This brings PI3K into close
proximity with the tyrosine kinase domain of the IR [98]. Thereafter, PI3K undergoes
phosphorylation on tyrosine 688 [99]. Consequently the inhibition of PI3Kp110 by
the p85 subunit is relieved. This implies that under basal, unstimulated conditions, the
ratio of active to inactive PI3K skews towards the latter.

The activation of the catalytic p110 subunit of PI3K opens the kinase domain to
binding by P1(4, 5)P2 and ATP [100]. This facilitates the phosphorylation of P1(4, 5)P2
into PI(3,4,5)P3 [101]. This is a crucial step in furthering the insulin signal from the
IR/IRS complex to downstream actors such as PDK1 and Akt [91, 102]. The PIP

molecules, PDK1, and Akt will be discussed in detail in the following sections.

2.1.5 The Phosphatidyl Inositide Phosphates (PIPs)

Phosphatidylinositides are membrane-associated phospholipid molecules implicated
in a variety of cellular processes necessary for growth, division, and survival [103].
The production of PtdIns and their phosphorylated forms is upregulated during insulin
stimulation - owing in part to the increased activity of PI3K [104, 105]. Phosphatidyli-

nositol can be phosphorylated on the D3, D4, or D5 positions of its inositol ring. This
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Figure 2.5: The binding of PtdIns to the PH domains of active IRS and PI3K results in
the conversion of PtdIns to PI3P, PI3P to PI(4,5)P2, or PI(4,5)P2 PI(3,4,5)P3. In each
case the phosphate donor is ATP. The PIPs act as ‘targeting’ molecules in this instance
whereby they are essential in recruiting other proteins (e.g. PDK1, Akt) to the PM.

generates a phosphatidylinositol mono-, di-, or tri-phosphate (PI3P, PIP2, or PIP3 re-
spectively) [106]. While these PIPs are implicated in several signalling pathways, of
present interest remains their interactions with PDK-1 and Akt. Crucially, PIPs pro-
vide the link between the IR-PI3K (Fig. 2.5) and the PDK1-Akt (Fig. 2.6) arms of the
signalling cascade. Activating PI3K in the absence of the PtdIns substrate does not
induce increase in glucose transport [107, 108]

The PtdIns molecules mediate the induction of glucose transport by binding to PH
domains on phosphoinositide-dependent kinase and Akt proteins [109, 110]. After the
phosphorylation of PtdIns into a PIP by PI3K, the PIP acts as ‘anchor’ proteins to
which PDK1 and Akt proteins bind. These anchor-points for allow for free-floating,
cytosolic PDK1 and Akt to attach to via their PH domain [111]. This process is ac-
celerated during insulin stimulation [112]. However, as will be discussed further, the
functions of PDK1 and Akt are different in nature. While both attach to the PM-PIP
complex, PDKI is a necessary regulator of Akt function whereas the binding of PIP3
to Akt induces the recruitment of GSV-bound AS160 to the PM. All three molecules
- PIP3, PDK1, and Akt - are essential in GLUT4 translocation and eventual fusion
[112]. Finally, the presence of a phospholipid binding site on AS160 which prefer-
entially binds PI3P implicates a PI3P-AS160 interaction in the activation of GLUT4
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[105]. However, the precise mechanism by which this occurs is still unknown.

2.1.6 PDK1

Phosphoinositide-dependent kinase 1 (PDK1) is the downstream effector of PI3K and
the PIPs. It is a 63 kDa, membrane-associating serine/threonine kinase protein and it
consists of an N-terminal kinase domain and a C-terminal PH domain [102]. While
PDKI1 retains greater binding affinity for PI(3,4)P2 and PI(3,4,5)P3, it is nonetheless
able to bind all forms of PIPs [113]. Further, PDK1 interacts with a host of downstream
signalling molecules such as S6-kinase 1 (S6K), protein kinase C (PKC), and protein
kinase A (PKA). Amongst these is Akt - the next direct link to GLUT4 translocation
[113-115].

Upon stimulation by insulin, the PI3K will rapidly convert PIP and PIP2 to PIP3.
These phospholipids remain membrane-associated until they are recognised by the PH
domain of PDK1 [116, 117]. Since PDKI1 is constitutively active - only being recruited
to the PM in greater numbers on insulin stimulation - it needs no further modulation
until it binds with Akt, which has been recruited to the PM via a PH-PIP3 interaction
[118, 119]. The close proximity of Akt and PDK1 will result in Akt being phosphory-
lated at serine 473 and threonine 308 [102]. This makes PDK1 a necessary intermedi-
ate in proper insulin signalling.

The necessity of PDKI is further underscored by studies that seek to disrupt the
normal functioning of PDK1. Bayascas et al (2008) disrupted the PH domain on PDK1
in mice, eliminating the interaction between PDK1 and PIP3 [120]. The mice grew
to be insulin resistant, underweight, and stunted. Similarly, the disruption of PDK1
functioning by inhibiting PI3K - therefore starving PDK1 of substrate - lead to dysreg-
ulation of the insulin signalling cascade [121]. In this study, the 3 cells, being unable
to upregulate glucose transport in the presence of glucose and insulin, steadily released
ever-increasing levels of insulin to compensate. Further studies have shown that dis-
rupting PDK1 will lead to liver failure [122] or a diabetic state due to 3-cell death
[123].
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Figure 2.6: PI(3,4,5)P3 is a target molecule for PDK1 which consequently translocates
to the membrane. Similarly, PI(3,4,5)P3 and PDK1 now act as recruiters for Akt.
Once Akt has translocated to the membrane, it is phosphorylated by PDK1 on several
residues, but most notably Ser473. This, in addition to Thr308 phosphorylation by
mTORC2, results in the ‘active’ form of Akt.

2.1.7 Akt

The family of Akt kinase proteins consists of three isoforms - Aktl, Akt2, and Akt3
(previously Protein Kinase Ba, 3, and ) [124]. All Akt isoforms share a simi-
lar domain structure: an N-terminal PH domain, a central kinase domain, and a C-
terminal, hydrophobic regulatory domain [125]. The PH domain binds PIPs (specifi-
cally PI(3,4)P2 and PI(3,4,5)P3) associated with the membrane-bound PDK1 protein
(Fig. 2.6) [116, 126, 127]. The kinase domain contains a conserved threonine residue
(Thr308) which is responsible for the activation thereof [128]. Similarly, the hydropho-
bic motif contains a conserved serine (Ser473) which acts as a regulatory site for Akt
activity [129].

The functionality of Akt is defined by dual phosphorylation on Thr308 and Ser473
[98]. It has been suggested that phosphorylation of the Thr308 residue by itself is
necessary and sufficient for the induction of Akt kinase activity [91]. However, full
induction of Akt activity appears to require the phosphorylation of Ser473 as well
[98, 120].
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Figure 2.7: Phosphorylated Akt targets AS160 which contains a GTP-ase activating
domain (GAP). The AS160-GAP constitutively hydrolyses the GTP on the Rab-GTP
complex - an action which prevents the translocation of GLUT4 storage vesicles to the
PM. The phosphorylation of AS160 by active Akt inhibits the AS160-GAP activity,
preventing the hydrolysis of Rab-GTP, and ultimately encouraging the translocation of
GLUTH4 to the PM.

Upon insulin induction and the subsequent generation of PI1(3,4)P2 and PI(3,4,5)P3,
Akt co-localises to the PM with PDK1 [77, 130]. Both proteins attach to PIPs by their
PH domains. In Akt this is thought to engender a conformational change that exposes
the central, active site of the kinase domain [91]. This gives PDK1 access to Thr308
which is subsequently phosphorylated, leading to the recruitment and activation of
downstream effectors [91, 129, 131].

The Ser473 residue of Akt is phosphorylated by mMTORC2 which is activated when
binding with PI3P [132, 133]. While less able to induce GLUT4 translocation by
itself, the Serd73 residue nonetheless appears responsible for the modulation of Akt
kinase activity [134]. More specifically, it has been suggested that phosphorylation
of Serd473 ‘stabilises’ the phospho-Thr308 site by preventing dephosphorylation and
thereby extending its half-life [127].

The next - and final - downstream target of Akt is AS160 (Fig. 2.7) [135]. The
Ser/Thr kinase domain of Akt targets as many as six potential phosphorylation sites on
AS160 [136]. However, most commonly the AS160 residues Ser588 and Thr642 are
targeted [137, 138]. AS160 phosphorylation responds strongly to increases in insulin
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concentration and has been shown to be significantly reduced in diabetic patients [135].
AS160 is considered to be a crucial component of the insulin signalling cascade as it
links the IRS-PI3K-Akt axis to the induction of glucose transport [ 139, 140].

The 160kDa AS160 protein contains a constitutively active Rab-GAP (GTP-ase
Activating Protein) domain [141]. The Rab-GAP domain activates innate GTP-ase do-
mains on small G-proteins known as Rabs [142]. In the context of insulin signalling,
Rabs are often found on the surface of GLUT4-storage vesicles (GSVs) [143, 144].
Evidence points to Rab4, Rab8, Rab10, Rab11, and Rab14 mediating functions such
as GLUT4 recycling, internalisation, trafficking, and membrane fusion [143, 145, 146].
This suggests that the Rab-GTP complex is the ‘active’ form of Rab which is responsi-
ble for GLUT4 regulation. Unphosphorylated AS160 would therefore perpetually re-
sult in active GAP domains which hydrolyze GTP, thereby inactivating Rab-mediated
GLUTH4 activity [147]. Phosphorylation of AS160 by Akt inhibits the activity of the
Rab-GAPs which, in turn, preserves the Rab-GTP complex [30, 148]. Therefore, Akt
relieves the persistent inhibition of Rab-mediated GLUT4 trafficking by downregulat-
ing AS160-Rab-GAP activity.

Lastly, owing to the variety of signals that impinge on Akt, it can be viewed as a
molecular ‘switchboard’ which directs incoming signals to their appropriate termini.
On closer analysis, two broad categories of Akt pathways emerge: first, a set of re-
active, stress-related pathways that activate based on factors such as oxidative stress
[149], inflammation [150], psychological stress [151, 152], nutrient stress [153], or
temperature stress [154]. Secondly, and more germane to the present study, a set of
pathways which maintain homeostatic features such as the cell-cycle [155], cellular
energetics [156], and protein synthesis [157]. A non-exhaustive summary of these

pathways can be found in Table 2.2.

2.1.8 Glucose Transporters: Focus on GLUT4

The dynamics of glucose transport, glycolysis, as well as the induction thereof differs
from tissue to tissue. However, there is one common thread - glucose must be imported

into the cell. Glucose import is accomplished by a family of 14 Solute Carrier proteins
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Table 2.2: A brief summary of Akt and its downstream effectors.

Pathway Mediator Function Reference
Hsp90 Protein  folding, cell [158-160]
signalling, regulation of
apoptosis
Reactive KK Modulates anti- [161, 162]
tumorigenic behaviour
of NF-xB
JNK Pro-apoptotic signal [163]
PP2A Tumor-suppressor, cell- [164]
cycle regulation
PHLPP Tumor-suppressor, ab- [165]
rogates  aberrant Akt
activity
TBK1 Induces pro-survival Akt [166, 167]

pathways in response to
immune signalling

GSK3 Activates synthesis of [168, 169]
glycogen
AS160 Regulates GLUT4 traf- [141, 170]
Homeostatic ficking to PM

mTORC1 Regulates protein synthe- [171]
sis and mRNA transcrip-
tion

mTORC2 Activation and feedback [172, 173]
regulation of Akt

FOXO Cell-cycle regulation and [174]
DNA repair

PFK Regulation of glycolysis [175, 176]
and glycogenolysis

(SLC2), more commonly known as glucose transporters or the GLUT family [177].
These proteins facilitate the unidirectional diffusion of (primarily) glucose across the
plasma membrane and into the cell. However, they are also responsible for the import
of polyols, small carbon compounds, and other monosaccharides into the cell.

The GLUTs are divided into three classes (LI, and III) depending on their sequence
homology [178]. However, the structure and sequence of the glucose transporters re-

main highly conserved among species [179]. Generally, a glucose transporter is &= 500
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amino acids large, has 12 trans-membrane domains, and conserved N and C termini.

A brief summary of all 14 glucose transporters is provided in Table 2.3.

Table 2.3: A short overview of the 14 GLUT proteins (including HMIT) as well as
their predominant functions.

Class Name Function Reference
GLUTI Basal glucose uptake in various tissues [180]
I GLUT2 Import of glucose into 3 cells [56]
GLUT3 Low-affinity, inducible transporter in [181]
neurons

GLUT4 Insulin stimulated glucose uptake in [182]
muscle and adipose tissue

GLUT14 GLUTS3 duplicate, primarily active in [183]

testes
GLUTS5 Fructose transporter in the intestine [184]
GLUT?7 Intestinal hexose transporter with low [185]

1 affinity for glucose and fructose

GLUT9 Urate transporter in kidneys and liver [186]
with low glucose affinity

GLUT11 High affinity fructose transporter in [187]
muscle and heart

GLUT6 Inflammation-responsive  lysosomal [188]
monosaccharide transporter

101 GLUTS8 Intracellular hexose transporter found [189]
on endosomes and lysosomes

GLUTI0 Low activity, non specific transporter [177]
found in almost all tissues

GLUTI12 Insulin insensitive glucose transporter [190]
found mainly in the heart

HMIT H*/myo-inonsitol symporter found in [191]
the brain

GLUT4 The GLUT4 glucose transporter is crucial for glucose homeostasis and is in
fact the canonically ‘main’ glucose transporter in insulin sensitive tissues [182, 192].
Under basal conditions, GLUT4 is distributed among the plasma membrane and the

perinuclear space with the balance favouring the latter [193]. Nearly 75% of GLUT4
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is thought to reside in the perinuclear space under basal conditions [194]. At the per-
inuclear space, GLUT4s are stored in specialised ‘storage veiscles’ - GLUT4 Storage
Vesicles or GSVs [31]. GLUT4 storage vesicles are between 50 and 100 nm in di-
ameter and can contain up to 25 GLUT4 molecules [195]. The formation of GSVs is
most-likely preceded by the budding off from an as yet unidentified donor membrane
[196]. Li et al (2009) suggested that the membrane donor for the GSVs may be found
near the perinuclear compartment which suggests that it may be another vesicle or
endosome [197].

The GSVs are clustered around a structure known as the ‘Mictrotubule Organisa-
tional Center’ or MTOC [198]. This structure, located close to the nucleus, is respon-
sible for the tethering of the microtubules (MTs) as well as various endosomes and
smaller organelles that rely on the network of MTs to travel throughout the cell. Once
the insulin signal terminates with the GSVs, these dissociate from the MTOC and,
aided by MyoVa and KIF5B kinesin motor proteins, travel along the MTs to reach the
peri-membrane space [196, 199].

Stimulation by insulin initiates several events simultaneously. The rate at which
GLUT4 undergoes endocytosis is reduced significantly [200]. Under basal conditions,
GLUT4 experiences a steady ‘recycling’ to and from the PM. The insulin signal tilts
the balance of this cycling in favour of the non-excretory exocytotic mechanisms that
deposit GLUT4 in the PM [201]. Simultaneously, the reservoir of GLUT4 present in
GSVs near the MTOC attach to MTs and begin their journey towards the PM. The re-
liance on MTs for translocation results in the GSVs translocating, tethering, and fusing
in distinct clusters. This results in ‘punctate’ clusters of GLUT4 near the membrane
termini of MTs [202].

Once the GSVs have reached the PM, GLUT4 is activated in three distinct stages:
tethering, fusion, and GLUT4 activation [192, 203]. Tethering, the first of these stages,
occurs once the GSV has reached the PM and halted. Here, Myolc, a membrane-
associated motor protein and the exocyst subunits Exo6 and Exo84 tether the GSVs
to the plasma membrane. The precise mechanism by which this occurs is not yet

known, however considering that the exocyst contains a GAP domain, it is likely that
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it interacts with the Rab-GTPs on the surface of the GSV membrane.

The second step, fusion, requires a large assembly of membrane associated pro-
teins: SNARE, Syntaxin-4, Sec1/Munc18-like (SM) proteins, VAMP2, VAMP3, and
VAMPS as well as SNAP23 [201, 204-208]. While the precise nature of their interac-
tions would go beyond the scope of this thesis, one can briefly summarise it as follows
(Fig. 2.8). The SNARE proteins are a family of receptor proteins which associate with
Soluble NSF Attachment Proteins (SNAPs). The SNAPs are directly involved in the
tethering and fusion of vesicle with the PM. Once the GSV and associated SNARE
complexes are between 4 and 8 nm from each other and the PM, what follows is a pro-
gressive ‘unzipping’ of the GSV and the PM. Once sufficiently unzipped, the SNARE
complexes will join the loose ends of the GSVs with those of the PM, completing this
cycle of non-excretory exocytosis [209, 210].

Now that GLUT4 is located within the PM, all that remains is for it to be activated.
The precise nature of GLUT4 activation is yet to be uncovered, however it is certain
that membrane-associated products of PI3K (PI3P and PI(4,5)P2) are involved [108,
203]. Specifically, it appears as if both PI3P and PI(4,5)P2 assist with the unmasking
of the C-terminus of GLUT4. While both products play a role in the insulin-mediated
translocation and activation of GLUT4, it seems as if PI3P alone has the power to
induce GLUT4 into an active conformation. It has been suggested that this is due to

F-actin remodelling of the PM in response to PI3P [211, 212].
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2.1.9 Insulin Signalling: Summary

This signalling cascade is subject to regulation by feedback mechanisms that depend
on the activity of various phosphatase proteins [213]. As to not exceed the scope of
this review, focus is directed on the following three phosphatases by way of illustration:
SHIP2, PTEN, and PHLPP. The Src2 Homology Inositol polyphosphate 5-Phosphatase
(SHIP2), is an important regulator of PI(3,4,5)P3 availability [214]. When it is ac-
tivated by PI(3,4)P2, it hydrolyses the 5-phosphate of PI(3,4,5)P3 [215]. This has
important downstream implications as it prevents the recruitment of Akt to the PM.
This abrogates insulin signalling through Akt and results in fewer GLUT4 molecules
translocating to the PM.

Similarly, PTEN (Phosphatase and TENsin homologue) is a P1(3,4,5)P3 phos-
phatase [216]. However, unlike SHIP2, this enzyme hydrolyses the 3-phosphate of
its target substrate. This inhibits the ability of PDK1 to recruit Akt to the PM and
results in the downregulation of insulin-stimulated glucose update.

Lastly, PH domain Leucine-rich Protein Phosphatase (PHLPP) directly inactivates
Akt by hydrolysing the phosphate on serine 473 [165]. This severely impacts (although
not completely abolishes) the ability of Akt to phosphorylate the AS160-GAP domain.
Consequently, this prevents GLUT4 from being translocated to and integrated with the
PM.

This process is broadly summarised in Fig. 2.9. This presentation shows the insulin
signalling cascade as an ‘input-output’ mechanism which represents only the direct
interactions between the signalling molecules. Herein, the ‘main’ insulin signalling
is highlighted in green while other, secondary pathways that activate (or are activated
by) the insulin signalling cascade are highlighted as blue, dashed lines. Similarly,
pathways which attenuate the Akt-dependent GLUT4 activation are indicated by the

red, dashed lines.
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Figure 2.9: A more simplified schematic of the insulin signalling pathway(s). This
graph highlights the interactions between the activated and inactivated agents in the
signalling cascade. The main, IR-IRS-PI3K-Akt pathway is highlighted with the solid,
green lines. Whereas secondary interactions are indicated with dashed lines. The blue
dashed lines indicate pathways which are not directly activated by or related to the
insulinic state of the organism. The red dashed lines indicate pathways which either
inhibit or downregulate signalling intermediates and therefore attenuate the activation
of GLUT4 via the Akt-dependent pathway.
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2.2 Metabolism and Physiology

Type 2 diabetes manifests on a tissue, organ, and whole-body level. In moving away
from the cellular level, the question arises: how does the human organism respond to
an induction of insulin signalling?

The brain contains insulin, IGF1, and IGF2 receptors [217]. How insulin reaches
the brain is still a matter of debate, however the leading theories include transport via
the cerebrospinal fluid or through the vascular system, or via the hypothalamus which
lacks a selective barrier. In addition to mediating increased glucose uptake through
GLUT1 and GLUTS3, it appears as if insulin directly affects neural signalling and brain
chemistry [218].

In the liver, the effects of insulin signalling are far more significant to metabolic
homeostasis than in the brain. Specifically, the activity of the insulin signalling cascade
has profound implications for the metabolism of lipids, proteins, and glucose. Lipoge-
nesis is stimulated when Akt activates mMTORC1 [219]. Protein synthesis in the liver is
stimulated by insulin through the Akt-GSK3 and Akt-mTORC1 pathways [220].

Upon insulin stimulation, the liver regulates glucose metabolism as follows: in-
hibiting glycogenolysis, stimulating glycogenesis, stimulating glycolysis, and inhibit-
ing gluconeogenesis. Insulin mediates the activation of protein phosphatase 1 (PP1)
via Akt [221]. This results in the dephosphorylation and subsequent inactivation of
glycogen phosphorylase - thus inhibiting glycogenolysis [222]. Simultaneously, in-
sulin mediates the deactivation of glycogen synthase kinase 3 (GSK3) by Akt. As
a result, glycogen synthase remains active and able to further polymerise glycogen
molecules. Further, by effecting the Akt-mediated phosphorylation and inhibition of
FoxO, insulin relieves the inhibition of glucokinase by FoxO [223]. Simultaneously,
this prevents the stimulation of Phosphoenolpyruvate carboxykinase 1 (Pckl) and glu-
cose 6-phosphatase (G6PC) - two regulation points for gluconeogenesis [224]. Con-
sequently, in the insulinic liver, net glycolysis to pyruvate is upregulated while gluco-

neogenesis is downregulated.
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2.2.1 Muscle Physiology

Skeletal muscle primarily subsists on fatty acids at rest, it can account for between
70 and 90% of glucose consumption in the postprandial and exercising states [225].
This is further reflected by skeletal muscle being the primary reservoir for insulin-
responsive GLUT4 transporters [31, 182]. The translocation of GLUT4 can be achieved
either through dietary means, which result in the release of insulin, or through exercise.

Exercise induces insulin-independent translocation of GLUT4 to the PM [226].
These effects can persist as long as 16 hours after the bout of exercise [227]. Woj-
taszewski et al (2000) showed that exercise reduced the half-activation time (¢y5) of
glucose uptake from + 34 minutes to £ 11 minutes [228].

This ligand-independent activation of insulin signalling appears to be mediated pri-
marily through AMPK. It appears as though this molecule is responsible at turns for the
direct activation of insulin signalling through IR, IRS, and AS160-GAP phosphoryla-
tion as well as indirect activation by ‘priming’ skeletal muscle for insulin signalling.
This latter mechanism likely plays a role in the anti-inflammatory effects of exercise
and AMPK signalling.

Insulin and AMPK signalling are important for the proper growth and development
of skeletal muscle tissues [229]. Both ir- and igfr-knockout mice experience extremely
low birthweight, developmental retardation, and ultimately death within days of be-
ing born [230]. Similarly, AMPKa1~/~ mice are unable to regain insulin sensitivity,
whereas knocking out both forms of AMPK is lethal for the embryo [231].

Further, the differentiation of myoblasts to myotubes is associated with a five to
ten-fold increase in surface IR [232]. This is accompanied by an increase in GLUT4
expression [233]. Myoblasts which have been induced to exhibit the diabetic phe-
notype (abrogated insulin signalling) by using excess (25mM) glucose in the growth
medium differentiate into adipose tissue instead of myotubes [234].

In addition to mediating glucose uptake, skeletal muscle is also known for its flex-
ibility in selection. The ability of skeletal muscle to subsist on glucose, fatty acids,
or the products of proteolysis allows the muscle, along with the liver, to regulate the

availability and utilisation of fuel by the organism [235]. Consequently, the skeletal
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muscle tissue is an appropriate target for studies wishing to further examine the role of

insulin or the insulin signalling network in metabolism or disease.

2.2.2 Obesity, Inflammation, and Type 2 Diabetes

One of the metabolic states most-closely associated with dysfunctional insulin sig-
nalling is obesity [236]. Obesity is primarily caused by the interplay of sedentary
lifestyles and overfeeding [237]. However, the contribution of genetic or inflammatory
factors should not be dismissed [238, 239]. Obesity is a physiological state charac-
terised by severe overweight, inflammation, and excess fatty tissue [238, 240, 241].
People who are diagnosed with obesity tend to have a Body Mass Index (BMI) greater
than 30 as well as more than 25 - 33% body fat. Of particular interest is the excess body
fat as it likely contributes to the necessary dysregulation of whole-body metabolism,
inflammation responses, and insulin signalling that lead to type 2 diabetes [242, 243].

A primary symptom of obesity is dyslipidemia; elevated levels of free fatty-acids
(FFAs) and triglycerides (TGs) [244]. Dyslipidemia and the associated FFAs and TGs
eventually lead to inflammation [245]. The swelling of the adipocytes constricts the
capillaries and blood flow into adipose tissue [243, 246]. The restriction of blood flow
likely creates hypoxic conditions in the fatty tissue. Hypoxia alters the redox balance
and raises the oxidative stress in affected tissues [247]. The greater oxidative stress
likely leads to the production of free radicals [248, 249]. This rise in free radical levels
induces pro-inflammatory mechanisms [250]. This is the first point of inflammatory
burden.

The second pro-inflammatory mechanism is associated with the increased burden
of free fatty-acids. Fatty acids are well-known inducers of pro-inflammatory signals
[244, 251, 252]. It is likely that this mechanism involves FFAs binding to G protein-
coupled receptors (GPCRs) which then activate the release pro-inflammatory cytokines
TNFa and IL-6 [253]. Additionally, FFAs induce the release of IKK S, IL-1, and JNK
[252]. This places an immense burden of inflammation on any physiology and has
been implicated in various diseases such as: hypertension [254], depression [255],

cardiovascular disease [256], and arthritis [257].
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Triglycerides present the third arm of the pro-inflammatory cascade. While the ef-
fects of elevated levels of triglycerides are seemingly less severe than elevated levels
of FFAs, their effects nonetheless remain contributory to the overall inflammatory re-
sponse in obese individuals [258]. Triglycerides activate the NF-xB and VCAM-1 pro-
inflammatory signalling pathways - most likely through GPCR signalling [258]. Ad-
ditionally, TGs have been associated with vascular inflammation [259] and increased
FFA release [260].

The effects of obesity however do not remain limited to adipose tissue. The release
of pro-inflammatory cytokines from the adipose tissue profoundly affects skeletal mus-
cle cells. Prolonged sedentary periods decrease the mitochondrial content of skeletal
muscle [261, 262]. This in turn depletes the capacity of skeletal muscle to oxidise FFAs
effectively [263]. Under resting conditions, FFAs satisfy the majority of the Gibbs
energy demand in skeletal muscle. A reduction of this capacity, especially in already
obese individuals is likely to further accumulate inflammatory damage. A further effect
on skeletal muscle is found in the consequences of elevated pro-inflammatory cytokine
levels. Inflammatory markers such as TNFa, IL-1, or IKK/ are able to induce insulin
resistance [264-266]. The persistent, supranormal concentrations of pro-inflammatory
cytokines, the depletion of skeletal muscle FFA-oxidative capacity, and the abrogation

of insulin signalling should ultimately result in the development of type 2 diabetes.

2.2.3 Mouse Skeletal Muscle (C2C12) Cells

The C2C12 mouse SKMC, like most SKkMCs begin their lifecycle as precursor my-
oblasts. When given sufficient nutrients, time, and growth factors whether in vivo or in
vitro these cells begin aligning parallel to one another [267]. Thereafter, they begin fus-
ing into multi-nucleated fibres - undergoing further differentiation - until they achieve
morphological parity with muscle fibres or myotubes [268]. The differentiation of
muscle cells is aided by factors such as HsP90 [269], Vitamin D [270], calcium [271],
and insulin [272, 273]. Considering the importance of skeletal muscle in metabolic
homeostasis and its dependence on insulin signalling the choice of an SKMC line for

this study was von selbstsprechend.
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Indeed, the documented use of C2C12 as a model cell line for insulin signalling
[268, 269, 274, 275] as well as the ease with which these cells differentiate [268]
cemented their use for the present study. However, despite the widespread use of
C2C12 cells as a model for insulin signalling and glucose uptake, there remained the
issue of C2C12 cells not having an insulin responsive GLUT4 mechanism [276, 277].
It is likely for this reason that studies choose to use transgenic cell lines [274], glucose
analogues [278, 279], or non-insulinic inducers of the signalling pathway instead [269,
280]. Glucose analogues such as 2-Deoxy Glucose, 2-NBDG, or Fluorodeoxyglucose
accumulate in the cytosol, and inhibit hexokinase, and inhibit glucose transport due to
the accumulation of intracellular glucose [281, 282]. Consequently, these metabolites
are unlikely to provide a bona fide account of glucose transporter activity.

A final aspect to consider is the glucose concentration at which C2C12 cells are
cultured. Work by Luo et al (2019) which suggests that high glucose concentrations
down-regulate Akt signalling [279]. Further, considering that the observed expres-
sion ratio of GLUT1:GLUT4 shifts towards the latter as the cells differentiate [283],
a greater degree of differentiation is desirable when investigating GLUT4. However,
considering negative effects of high glucose concentrations on C2C12 differentiation
[279] as well as the scarcity of reports which mention the degree of SKMC differen-
tiation, it is difficult to draw exact conclusions regarding the functioning of glucose
uptake in these cells. Therefore, determining the basal state of insulin signalling under

conditions that are as physiologically relevant as possible is a priority.

2.3 Systems Biology and Mathematical Modelling

Biological data are being collected at ever more rapid paces, aided by high throughput
methods from fields such as proteomics [284], NMR [285], and bioinformatics [286].
The need for tools which consolidate the available knowledge while providing inter-
active, predictive mechanisms one can use to generate knowledge and meaning from a
dataset is therefore paramount. Systems biology relies on the development of compu-

tational representations - models - of das Ding an sich. While there are innumerable
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models in existence, broadly, there are two approaches: ‘top down’ or ‘bottom up’
models [287]. The modelling approach depends on the available dataset as well as the
research questions one wishes to answer.

The top down approach attempts to find models from large (such as whole genome
or organismal) datasets rather than uncovering it by studying lower-level interactions
[288]. These models often rely on data generated by -omics fields and seek to provide
‘macro-level’ explanations that may ignore details on lower rungs of the hierarchy - es-
pecially if they do not contribute meaningfully to larger scale phenomena [288, 289].
Top down models develop hypotheses based on higher order phenomena which then
seek to be validated through experimentation [290]. For example, the top down ap-
proach may predict protein expression levels or enzyme kinetics based on transcrip-
tomic or metabolomic data respectively. These predictions would then require valida-
tion by directed experimentation. The top down approach therefore seeks to steadily
reduce the data until the most parsimonious explanation of a phenomenon is reached.

Bottom up modelling by contrast attempts to successively integrate low complex-
ity phenomena into more complex systems [291]. Bottom up models rely on detailed
information regarding the parts of a system. The behaviour of the system is then de-
duced based on the functional characteristics and interactions of an artificial subset
of constitutive factors. Whereas top down relies on directed experimentation for hy-
pothesis testing, bottom up models require exploratory experimentation for hypothesis
formulation.

Bottom up modelling often begins with a known molecular mechanism and then
attempts to computationally predict how the system to which the mechanism belongs
might behave. These preliminary predictions would then be used to develop hypothe-
ses which may be tested experimentally or through further computation. Due to the
smaller scale of bottom up modelling, hypotheses can be tested by perturbing the fac-
tors within a system in order to observe how the system reacts. This, fundamentally,
makes bottom up models mechanistic in nature [290].

Top down and bottom up modelling have both been successfully used to decode

the fundamental, functional machinery of cells and organisms. This includes signal
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transduction networks such as insulin signalling [292] and metabolic pathways such as
glycolysis [293]. While the more applied outcomes of systems biology include drug
development [294] or process optimisation [295], fundamentally systems biology is a
tool which is used to uncover and explain natural phenomena from metabolic pathways
to global economies and pandemics [296].

Constructing a model of biological processes is not a trivial task and several ap-
proaches can be considered, each of which depend on the nature of the data, experi-
mental design, and questions the researcher wishes to answer. One such approach is
FBA of large, genome-scale metabolic models. This approach relies on reconstruc-
tions of metabolic networks from genomic data. Based on the stoichiometries of these
metabolic networks, the FBA approach will calculate the fluxes of metabolites through
each reaction and often seeks to answer questions of optimisation; i.e. how to optimise
growth rate or metabolite production [297]. Such an approach was used to tease apart
the metabolism of glucose and glutamine in cancer cells which exhibit the Warburg
effect [298].

Another paradigm is MCA which is based on ODEs much like the approach used
in this thesis. Metabolic control analysis uses a step-wise reconstruction of metabolic
pathways in order to determine how the control of flux is distributed in the network
[299]. This approach is smaller in scale than those which rely on -omics data (such
as FBA), but is probably able to answer more directed questions regarding which en-
zymes or steps in a pathway can be inhibited or activated in order to modulate the flux
of metabolites. Such an approach can be used for signal transduction networks [300].
Other approaches such as domino systems biology [301], supply and demand analysis
[302], and a method by which models are determined from inaccurate or incomplete
data [303] also exist. However, the examination of these and other approaches is be-

yond the scope of this review.

2.3.1 Models of the Insulin Response: An Overview

Possibly the earliest computational model of insulin action dates to the work by Sher-

win et al in 1974 [304]. This work sought to determine the delivery and clearance
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kinetics of insulin in humans. The model divides the insulin delivery and clearance
mechanisms into three distinct compartments: the blood plasma, a small, rapidly equi-
librating compartment, and a larger, more slowly equilibrating compartment. It is
likely that the latter two compartments refer to the peripheral and hepatic vascular
systems respectively [305]. The use of radioionidated insulin, as a tracer molecule,
and an early iteration of Simulation, Analysis, And Modelling software (SAAM), to
derive the deliver and clearance parameters, presented a novel approach to understand-
ing insulin signalling [304].

In the intervening years, the modelling of insulin has advanced significantly and
followed the usual divide between top-down and bottom-up models. An example of
the top-down approach is the model by Dalla-Man et al [33]. Unlike earlier models
which administered GTTs (GTTs), this model used stable isotope tracers in subjects’
meals to gather data regarding the insulin and glucose fluxes in an individual. Herein,
the molecular mechanisms which govern insulin signalling or glucose metabolism are
shunted into so-called ‘black boxes’ as they are neither investigated, simulated, nor
germane to the objectives of the study. The authors set out to measure the glucose and
insulin fluxes in humans in response to a meal [33]. Using these data, the authors con-
structed a limited model which was able to simulate the appearance and disappearance
of glucose and insulin from plasma samples [33, 306]. Similar top-down approaches
are used to simulate insulin and glucose fluxes in response to GTTs where glucose is
administered orally or intravenously and the subjects’ blood plasma is analysed peri-
odically for insulin or glucose levels [307, 308].

In 2002, Sedaghat, Sherman, and Quon published one of the most-comprehensive
bottom-up accounts of the insulin signalling cascade [292]. This model includes nearly
all known effectors downstream of the IR, as well as a preliminary investigation into
the induction of glucose transport. Additionally, the ‘Sedaghat” model includes various
feedback mechanisms through phosphorylases such as PTEN or SHIP1 [292]. Much
like the work of Sherwin et al in 1974, the Sedaghat model presents an important
milestone in the application of systems biology to insulin signalling. However, it is

necessary to note that their over-reliance on second-hand data as well as paucity of pa-
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rameter analysis and lack of rigour when deciding on parameter values compromised
the strength of the model in the prediction of details. Nonetheless, it provided a good
mechanistic overview of the signalling cascade and in the intervening years, certain
predicted behaviours such as the ‘overshoot’ behaviour of autophosphorylation [309],
cell-surface mobilisation of GLUT4 [310], as well as the general mechanism under-
lying this model have been validated [311, 312]. The pioneering work by Sedaghat,
Sherman, and Quon was further used as a baseline in the development of several other
mathematical models of insulin signalling [149, 311, 313, 314].

The molecular models continued being developed, leading to the inclusion of glyco-
gen breakdown and glucose transporter dynamics [310]. The model developed by Liu
et al built on previous work by Sedaghat et al [292]. The novel inclusion of glycogen
phosphorylase, glucose transporters, and insulin secretion enabled the model to accu-
rately reproduce experimental data. However, it too lacked direct validation through
experimental data. Additionally, the underlying assumption that the behaviour of the
signalling cascade was independent of tissue type is not reflected by the physiologies
of skeletal muscle or adipose tissue.

The work of Brannmark et al in 2013 presents the first detailed modelling account
of insulin signalling in the diabetic state [315]. Herein adipose tissue from diabetic
and non-diabetic people are subjected to immunoblotting as well as glucose (2-deoxy)
uptake assays. The results were used to build a mechanistic model of normal and
diabetic-state insulin signalling in human adipocytes. In order to simulate the dia-
betic state, the authors artificially reduced the IR concentration to 55% [315]. Absent
any salient feedback mechanism this was sufficient to explain the altered phosphory-
lation profile of IRS1. However, available evidence does not support a reduction of IR
concentrations in diabetic individuals [316-318]. This suggests, in line with the con-
clusions of Brinnmark et al, that some as yet unknown mechanism might regulate IRS
phosphorylation. Similarly, the authors reduced the available concentration of GLUT4
by 50%. However, it is not clear from their modelling whether this reflects a reduc-
tion of cytosolic GLUT4, GLUT4 at the PM, or inducible GLUT4. Lastly, the authors
attenuated the positive feedback from mTORCI1 on to IRS1 by 85%. While this was
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sufficient to account for the majority of defects seen in the diabetic state, it is unknown
whether the model incorporated feedback inhibition of Akt by mTORCI.

Other models sought to reduce the complexity of the entire cascade by instead fo-
cussing on sub-compartments. An example of such an approach which ignores some
of the complexity in favour of a more focussed scientific question and research design
can be found in the work of Sonntag et al [319]. This model sought to describe the
regulation of AMPK by IRS in response to insulin. AMPK was found to be sensitive
to nutrient levels and insulin in HeLa cells and C2C12 myocytes. The latter being an
important distinction from certain studies which establish findings in immature my-
oblasts. Similarly the work by Dalle Pezze et al [320] in the same group explored the
regulation of mTORC?2, another sub-compartment of the insulin signalling pathway.
These models are both notable for their combination of specific research questions,
models, and experimental data with which the model predictions are tested and the
questions answered.

Work by Kubota et al [321] explored the impact of the insulin-Akt pathway in
response to differences in pulsatile or sustained insulin addition. Sustained, pulsatile,
or combined secretion of insulin contributed to distinct signalling outcomes (in terms
of glucose transport or the phosphorylation of signalling intermediates) in the Akt-
dependent insulin signalling pathway. The authors define these outcomes as ‘temporal
codes’ which feature differences in network structure, ECs values, and time constants.
These temporal codes were present in various regulatory aspects such as feedforward
or feedback behaviour and they allowed Akt greater flexibility with regards to which
signalling intermediates it interacts with and when [321].

Temporal coding and a reduced-complexity insulin signalling model and a gly-
colytic model were used by Noguchi et al [322]. The authors used metabolomic and
immunoblotting techniques as well as a unique approach of stimulating rat hepatoma
cells with insulin in a pulsatile manner. With these approaches, the authors assessed
the glycolytic, gluconeogenic, and glycogenic activity of cells in response to changes
in Akt phosphorylation. However, the use of hepatoma cells may provide results that

are not typically seen in healthy cells.
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The modelling strategy employed in this thesis is that of a ‘minimal model’ (see
Chapter 5). This approach is similar to the ‘domino’ approach discussed in [301] in
that the model consists of several ‘input-output’ modules which describe certain as-
pects of the network. However, in contrast to the domino strategy, the modules used
in the minimal strategy are determined a priori by aligning the research questions,
experimental strategy, and available data with one another. Further, the domino strat-
egy allows for the model to be expanded if necessary - ‘adding more dominoes’ - to
account for shortcomings or blindspots.

A minimal model, was used by Bergman [323] to simulate insulin and glucose
fluxes based on data gathered through a GTT. It relied on creating several metabolic
‘black boxes’ or compartments of each of the organs involved in insulin-glucose metabolism.
Similarly, the minimal model will recreate an ODE-based description of the modules
in Section 1.1. The goal is not to create the best-possible model or the model which
described the insulin signalling cascade in the most detail. The goal is to determine
whether: a) a minimal description of the insulin signalling pathway is possible, b) such
a strategy can provide insights into the normal functioning of the insulin signalling
pathway, and c) if such a model can be used to trace dysregulation to a single module

which would then require more detailed investigation.
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Materials and Methods

3.1 Media and Buffer Formulations

Growth Media Standard C2C12 growth media primarily consisted of LG DMEM
(Sigma: D6046) which contained the following: 1 g/L glucose, 4 mM L-Glutamine,
phenol red, and a variety of vitamins, amino acids, and inorganic salts. The precise
composition may be found on the manufacturer’s website. The DMEM was supple-
mented with a further 1 % v/v 200 g/L glucose solution (Gibco: A2494001) to yield
£ 15 mM of glucose. The media was also supplemented with 10 % v/v of undialysed
FBS (Gibco: 10493106). The final pH of the growth media was pH 7.4 (+ 0.2).

Differentiation Media Standard C2C12 differentiation media consisted of LG DMEM
(Sigma: D6046) supplemented with 1 % v/v 200g/L glucose solution (Gibco A2494001)
and 2 % ES (Sigma: H1270). The final pH of the differentiation media was pH 7.4 (£
0.2).

Cryo-Storage Media Storage media consisted of LG DMEM supplemented with 20
% FBS and 5 % DMSO (Sigma: D2650). The final pH of the storage media was pH
7.4 (£ 0.2).

Phosphate Buffered Saline Two PBS tablets (Gibco : 18912014) were added to 1
L MilliQ water, pH-adjusted to 7.4, and then autoclaved. This yielded a 1x PBS
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buffer.

Tris-Buffered Saline A 10X stock is prepared which contains 200 mM Tris and 1.5
M NaCl in MilliQ water. The pH is adjusted to 7.6 with HCL.

Lysis Buffer This modified version of a RIPA buffer consisted of 50 mM Tris-HCI,
150 mM NaCl, 1 % v/v Triton X-100, in MilliQ and pH-adjusted to +7.4.

RIPA Buffer Every 10 mL of RIPA buffer contained the following: 25 mM Tris-
HCI, 150 mM NaCl, 0.1 % m/v SDS, 1 % v/v Triton X-100, 0.5 % m/v Na.Deoxycholate,
1 cOmplete™ EDTA-Free Protease Inibitor Cocktail tablet (Sigma: 4693132001), and
1 PhosSTOP™ tablet (Sigma: 4906845001) in MilliQ and pH-adjusted to £7.4.

Quenching Buffer This buffer consisted of 1x PBS buffer and 500 mM D-Glucose
at a pH of 7.6.

Sample Buffer Sample buffer refers to an 8:2 mixture of 4x Laemmli concentrate
which contains: 0.25 M Tris base, 0.28 M SDS, 40 % v/v glycerol, and 20 % v/v

2-mercapto-ethanol. This was then supplemented with 500 mM DTT.

Stacking Buffer Stacking buffer is a 0.5 M Tris-HCl and 4 % v/v from a 10 % m/v

SDS solution made up in MilliQ water. Thereafter, pH is adjusted to 6.8.

Resolving Buffer Resolving buffer is a 1.5 M Tris-HCl and 4 % v/v from a 10 %
m/v SDS solution made up in MilliQ water. Thereafter, pH is adjusted to 8.8.

Running Buffer The composition of the running buffer is as follows: 190 mM

glycine, 25 mM Tris-HCI, and 1 % m/v SDS, in MilliQ water.

Transfer Buffer The transfer buffer consists of 50 mM Tris-HCI, 380 mM glycine,
0.1 % m/v SDS, and 20 % v/v methanol in MilliQ water.
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Resolving Gel The 8% resolving gels were created by mixing 3.2 mL of acrylamide
with 3 mL resolving buffer and 5.8 mL dH,O. A further 90 pL trichloroethylene (TCE),
84 puL 10% APS, and 6 pL. Temed were added for a total volume of 12 mL. The
resolving gel was poured and allowed to polymerise for 40 minutes with 1 mL of pure

isopropanol to cover the top.

Stacking Gel The stacking gel (4%) consisted of 400 pL acrylamide, 750 pL stack-
ing buffer, 1.85 mL dH,O0, 14 yLL TCE, and 3 pL. Temed. Once mixed, the isopropanol
was poured off the resolving gel and the stacking gel was poured on top. The comb

was inserted and the gel was allowed to polymerise for another 40 minutes.

3.2 Methodologies

3.2.1 Replicates and Statistical Analyses

Unless otherwise mentioned, all experiments were performed as biological triplicates.
In other words, three independent cell culture flasks or dishes were grown and sub-
jected to the same experimental protocols for each data point. Similarly, unless oth-
erwise stated, these samples were also evaluated as technical duplicates. This meant
that, for example, a single '*C glucose uptake assay data point would have three inde-
pendent samples each of which would be evaluated twice in the scintillation counter.
The average the technical repeats would be viewed as the result of a single biological
sample. The biological samples would then be averaged and used to calculate the SEM
values and n would be set as n = 3.

All data were gathered and transferred into Microsoft Excel spreadsheets which
would be imported into Wolfram™ Mathematica" for further analyses. Where data
were non-normal (i.e. Chapter 6), Mann-Whitney U tests were performed to compare
the means of the data. Further, in Chapter 6, Spearman’s Rank correlation testing
was used for these data since they were non-parametric. When comparing two sample

populations (e.g. Chapter 4), a Student’s T-test was performed.
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3.2.2 Cell Culturing

The materials, reagents, and media necessary for the cell culturing in this study may

be found in Tables 3.6, 3.1, and 3.2.

Cell Thawing, Growth, Maintenance, and Differentiation

Mouse skeletal myoblasts (C2C12) were thawed from LN-stored cryovials and seeded
in T75 (NEST: 708003) vented flasks which contained 10 mL growth medium. The
incubation parameters were: 37°C, 5% CO,, and >85% relative humidity (Nuaire: NU-
5800). Medium was replaced every second day until a confluence between 70% and
80% was obtained. Cells were then sub-cultured in ratios of 1:6 or 1:10 depending on
the needs of the experiment or size of the dish or flask (100 mm or T175; NEST:704001
and 709003). Thereafter the cells were allowed to reach 80% confluence whereupon
the growth media was replaced with differentiation media. The cells were allowed to
differentiate for five days and the media was replaced every second day. On the fifth
day, the cells were prepared for the coming experiments by (unless otherwise stated)
an overnight starvation in serum-free LG DMEM. On the day of the experiment, the
cells were between 80% and 90% differentiated and had covered nearly 100 % of the

surface of the culture flask.

Sub-Culturing and Storage of Cells

Cells were subcultured at 70% confluence by aspirating the growth medium and wash-
ing with 1 mL (100 mm dish, T75) or 2 mL (T175) Trypsin-EDTA (0.025%: 0.01%;
Gibco: R001100) which were subsequently discarded. After washing, a further 4 mL
(100 mm dish, T75) or 8 mL (T175) of trypsin solution were added to the dishes and
incubated at 37°C and 5% CO, for 5 - 8 min and periodically examined under a mi-
croscope. Once sufficient (approx. 90%) numbers of cells had detached, the trypsin
solution was quenched with twice the corresponding volume of growth medium. Sub-
sequently, cells were either sub-cultured as mentioned above or prepared for storage
at -80°C. Cells to be frozen were centrifuged at 750 x g for 5 min. The remaining

media was aspirated and the pellet was dissolved in 3 mL cryo-storage media. From
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this solution, 100 uL. were aliquoted for cell counting. Using a haemocytometer, cells
were counted and appropriately diluted (with growth media) or concentrated (via cen-
trifugation) until a final concentration of 3 x 10° cells/mL was achieved. Thereafter, 1
mL was added to each cryovial and these were immediately stored in liquid nitrogen

(LNy).

3.2.3 Glycolytic Flux and Spectrophotometry

The equipment, reagents, media, and materials for these experiments may be found in
Tables 3.6, 3.1, 3.2, and 3.3. For these and subsequent sections, ‘room temperature’ is

approximately 25 °C.

Sample Collection

Cells were sub-cultured into T175 flasks as per Section 3.2.2. Each flask was seeded
with roughly 400,000 cells. On the morning of the experiment, cells were starved
of serum and glucose in 37°C PBS which was supplemented to 1 mM MgCl, and
1 mM CaCl, for four hours. The cells were then exposed to various concentrations
of insulin; these ranged from 10 pM to 1 uM. Cells were returned to the incubator
and allowed to incubate for 30 minutes. The PBS was removed and each triplicate
of flasks was then given 20 mL of 37°C LG DMEM which was supplemented to the
respective concentration of insulin. Samples were extracted at 100 L. volumes at
various timepoints thereafter (see chapter Chapter 5) and frozen at -20°C for further
use in glucose and lactate determination assays. Once all of the necessary samples had
been collected, the DMEM was removed and the cells were thrice-washed with 37°C
PBS. Thereafter, excess PBS was removed and each flask was given 1 mL of lysis
buffer and scraped until the growth surface was clear. Finally, 1 mL of the scraped

cells was removed and stored at -20 °C for protein determination.

Protein Determination

Relative protein concentrations were determined via the linearised Bradford protocol

as described by [324]. Each sample was diluted 100-, 40-, and 20-fold whereupon 20
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1L of sample were added, in triplicate, to a 96-well Greiner F-bottom microtiter plate
and Bradford solution was added for a 300 pL final volume. Standards were performed
for each instance of protein determination and ranged from 0.5 mg/mL BSA to approx.
0.0039 mg/mL over a series of seven two-fold dilutions with dH,O. The ratio of ODsg
to ODys( yielded, upon blanking, a linear standard curve in the form of y = mx + c.

Sample protein concentrations were calculated at each dilution and averaged.

Glucose Determination

End-point glucose determination assays were prepared as follows: for each 96-well
plate, 10 mL of 0.1 M Tris-HCI buffer (pH +8): 2 mM Mg.ATP (Sigma: A9187),
4 mM NADP™" (Sigma: N3139), 4 mM MgCl, , 100 U hexokinase (HXK) (Sigma:
H6380), and 40 U glucose-6-phosphate dehydrogenase G6PDH (S. cerevisiae; Sigma:
G7877) were prepared. A series of glucose dilutions which ranged from 1 g/L to
0.0078 g/L was established using LG DMEM and MilliQ water. Respectively, 10
pL sample (or standard) and 90 pL of the assay cocktail were added (in triplicate)
to a Greiner F-bottom 96-well plate and reactions were allowed to proceed at room
temperature for 30 minutes. Plates were then read in a spectrophotometer at 340 nm

(BMG Labtech SPECTROstar Nano).

Lactate Determination

End-point lactate determination assays were prepared as follows: for each 96-well
plate, 10 mL of 1x PBS buffer (pH £7.4): 5 mM NAD™ (Sigma: N7004), 2.5 %
v/v Hydrazine, and 40 U LDH (Sigma: L.2625) were prepared. A series of lactate
dilutions ranging from 0.0039 g/L to 0.5 g/LL was established using pure L-Lactate
(Sigma: L7022) and MilliQ water. Respectively, 10 uL. sample (or standard) and 90
pL of the assay cocktail were added (in triplicate) to a Greiner F-bottom 96-well plate
and allowed to react at room temperature for 30 minutes. The samples were then read

in a spectrophotometer at OD349 (BMG Labtech SPECTROstar Nano).
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3.2.4 Radiolabelled Glucose Uptake Determination

These experiments were conducted in order to determine the basal and induced activi-
ties of the GLUT1 and GLUT4 glucose transporters. The premise is that, when starved
of glucose and serum, these cells will exhibit a pronounced increase in glucose up-
take in response to insulin stimulation. Exposure to radiolabeled - '*C - glucose as an
admixture of unlabeled glucose in serum-free DMEM should result in a proportional
uptake of either. Further, washing the cells with ice-cold quenching buffer (containing
500 mM unlabeled glucose), would wash any remaining labeled glucose from the cell
surface and transporters by outcompeting the labeled glucose. Comparing the scin-
tillation counts of each sample to its respective reference sample will therefore yield
the proportion of labeled glucose that entered the cells. Lastly, comparing the samples
from each time, or concentration series would provide information about the time-,
and concentration-dependent activity of the GLUT1 and GLUT4 transporters. Since
GLUT1 does not respond to insulin with an increased transport activity, GLUT4 is as-
sumed to be transporter responsible for the any increase in glucose transport activity.

The relevant materials may be found in Tables 3.6, 3.1, 3.2, and 3.3.

Preparation

Cells were cultured in 100 mm dishes as described in Section 3.2.2. One the day of
the experiment, cells were glucose- and serum-starved for four hours in 37 °C PBS
which had been supplemented to 1 mM MgCl, and 1 mM CaCl,. While the cells were
starving, the glucose solution was prepared by adding 10 xCi of radiolabeled glucose
to 9.99 mL of LG DMEM. This yielded a final concentration of 1 ;Ci/mL which was
then heated to 37 °C. The quenching buffer was aliquoted into an appropriate number
of 15 mL tubes which were promptly placed on ice until needed. Once the four-hour
starving period had expired, the cells were either exposed to a constant concentra-
tion of insulin over a set of timepoints or they were incubated with a range of insulin
concentrations over 30 minutes, at 37 °C. It must be noted that each concentration or

time-point represents an independent, biological triplicate.
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Methodology

Once the respective incubation period was over, the PBS-insulin buffer was quickly
and as completely as possible removed. The radiolabeled glucose-DMEM mixture
was added to the cells for two seconds before being quenched with the ice-cold quench-
ing buffer. The cells were washed by swirling the quenching buffer in each dish and
then disposing of it as completely as possible. Thereafter, the cells were harvested by
adding 500 pL of lysis buffer to each dish and scraping until the growth area was clear.
The cells were then either immediately prepared for scintillation counting or frozen
overnight at -20 °C.

Scintillation counting occurred within 24 hours of each sampling by removing 100
L of the cell mixture and depositing them into a PET scintillation vial — the remainder
would be used for protein determination or repeat scintillations. The cell mixture was
then further supplemented with five mL of scintillation fluid. Scintillation vials were
then placed in a Perkin Elmer Tri-Carb 28 10TR scintillation counter. Each sample was
analysed for 10 minutes and returned an average total count which was representative
of the total amount of radiolabeled glucose present. Lastly, included in each cycle of
the scintillation counter was a blank sample which contained only 5 mL scintillation
fluid and one reference vial for each sample that contained 100 pL of the radiolabeled

glucose-DMEM mixture before it was added to the cells.

3.2.5 Western Blotting

Western blotting was kindly performed by Dr. T. Kouril of Stellenbosch University,
South Africa. The relevant materials may be found in Tables 3.6, 3.2, 3.4, 3.5, and 3.7.

Sample Collection

Cells were cultured in 100 mm culture dishes as per section Section 3.2.2. On the
day of the assay, cells were serum and glucose starved for four hours in 37 °C PBS
which had been supplemented to 1 mM CaCl, and 1 mM MgCl,. Thereafter, the
cells were either exposed to varying insulin concentrations for 30 minutes, or exposed

to a constant insulin concentration for a set of time points. After each time point,
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the PBS was removed, 500 uL. of RIPA buffer was added to each dish, and the cells
were harvested by scraping until the growth area was clear. Finally, 500 pL of the
cell suspension was collected, deposited in a sterile Eppendorf tube, and immediately

submersed in LN, before transfer to long-term storage at -80 °C.

Method

Samples were thawed at room temperature, briefly agitated in a vortex mixer, and then
centrifuged for 5000 x g for 15 minutes. Then, 100 uL of the supernatant is removed
and mixed with 20 yL sample buffer. From this, 50 yL was removed and diluted with
a further 40 pLL of sample buffer and the requisite volume of TBS until the desired
dilution was achieved. The rest was stored at -20 °C.

Each well was loaded with 10 ug of sample. Further, each gel contained marker
proteins as well as a control sample (cells exposed to 100 nM insulin for 30 minutes
concurrent to the experiment). The outer chamber was filled with with 1x running
buffer and electrophoresis ocurred at 25 mA per gel. A Gel Doc was used to evaluate
the success and quality of electrophoresis.

After electrophoresis, gels were equilibrated in transfer buffer for 15 minutes. Dur-
ing this time, the PVDF membrane was activated in absolute methanol for five minutes
after which it was equilibrated in transfer buffer until use. The sandwich was prepared
as follows: sponge - blotting paper - PVDF membrane - gel - blotting paper - sponge,
oriented from anode to cathode respectively. This sandwich was then placed in the
chamber of the transfer system and underwent overnight electrophoresis at 15 - 20 V
and 4 °C.

Once the proteins had transferred onto the membrane, the latter was washed in 1 x
TBS buffer supplemented with 0.1 % v/v Tween®20 (TBS-T), for one, five, and 15
minutes respectively - the spent TBS-T was discarded and new TBS-T was added after
each wash. Gels and membranes were visualised using a Gel-Doc imaging system
to ensure the majority of protein had indeed transferred onto the membrane. Once
confirmed, the membrane was blocked using 5 % v/v skim milk in TBS-T. The specific

regions of interest on each membrane were excised and placed into their corresponding
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antibody solutions overnight at 4 °C. The following day, each membrane strip was
individually washed in TBS-T as previously described. Subsequently, each strip was
incubated in its respective secondary antibody for one hour at RT and washed in TBS-
T as previously described. Lastly, each membrane was incubated with Clarity Western
ECL Substrate (Bio-Rad: 170-5061) for five minutes and then visualised using the
MyECL imager.

The data were then analysed in the ImageLab software suite to determine the nor-
malisation factors for each band. Similarly, ImageJ was used to generate intensity
profiles for each band. The peaks were then manually selected for each band and the
area under each peak was determined. These values were normalised with the factors

determined from the Imagelab software.

3.2.6 GLUT4-GFP Transfections

pB-GLUT4-7myc-GFP was a gift from Jonathan Bogan (Addgene plasmid # 52872)
[325]. The relevant materials may be found in Tables 3.6, 3.1, and 3.2.

Plasmid Amplification

Transformed E.coli (DH5«) cells were purchased from Addgene (52872), innoculated
to: 50 mL LB medium supplemented to 2 pg/mL Ampicillin (Sigma: A9518), and
incubated overnight at 37°C and 180 rpm. Bacterial cultures were then prepared either

for expansion or storage in -80°C as 1:1 glycerol stocks.

Plasmid Isolation

Plasmid DNA was isolated using the GeneJET™Plasmid Midiprep Kit (ThermoFisher:
K0481) according to the manufacturer’s instructions. Briefly: overnight E.coli cultures
were transferred to sterile 50 mL Falcon tubes and centrifuged for at 4°C and 4500 x g
for 10 min. The supernatant was discarded and the pellet was resuspended in 2 mL
proprietary resuspension buffer (containing 4% v/v RNAse) by vortexing. A further 2
mL of proprietary lysis buffer was added and the cells were left to incubate at RT for 3

min before inverting 6 times. This mixture was neutralised with 2 mL of the provided
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neutralisation buffer by inverting 6 times. In order to neutralise endotoxins, 0.5 mL of
endotoxin binding buffer was added, inverted a further six times, and left to incubate
at RT for 5 min. The mixture was washed with 3 mL EtOH (absolute) and centrifuged
for 40 min at 4500 x g. The supernatant was transferred to a fresh 15 mL Falcon tube,
washed with 3 mL. EtOH (absolute), and inverted 6 times. The resulting mixture was
transferred to a provided filtration column and centrifuged for 3 min at 3000 x g. After
the flow-through had been discarded, the column was re-filled with 4 mL of Wash
Solution 1 and centrifuged for 2 min at 3000 x g. Once again the flow-through was
discarded and the column was re-filled with Wash Solution 2 and centrifuged for 2 min
at 3000 x g. This step was once. Thereafter, the column was dry-centrifuged for 5 min
at 3000 x g. Finally, the filter was aseptically removed and placed into a fresh, sterile
15 mL Falcon tube. To this, 0.35 mL of Elution buffer were added, incubated for 2
min at RT, and centrifuged for 5 min at 3000 x g. The filter was discarded and the

remaining dsDNA was aliquoted for quantification or storage at -20°C.

DNA Quantification

Double-stranded DNA was diluted 1:9 in 200 pL sterile MilliQ water before being
transferred to a quartz cuvette (Hellma: 105-201-15-40). After blanking with MilliQ
water, the sample was read in a spectrophotometer (Agilent: Cary 60), and the A,g0/Asg
was determined. Values lower than 1.8 or greater than 2.0 indicated RNA or phenol
contamination respectively. Samples within the acceptable range had their dsDNA
concentration calculated by multiplying the A,q value by 50 pg/mL and the dilution

factor.

Transfection

Cells (C2C12) were seeded into a 100 mm dish and given 24 hours to acclimate in
complete growth media. The following day, the spent culturing media was aspirated
and replaced with 1 mL of unsupplemented, 37°C Opti-MEM (Gibco: 31985070).
Thereafter, 1mL of unsupplemented, 37°C Opti-MEM, 10 pg plasmid, and 15 pL
X-tremeGENE™ transfection reagent (Sigma: 6366236001) were added to a sterile,
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RNAse-free Eppendorf tube and briefly agitated in a vortex mixer. The plasmid mix-
ture was then allowed to incubate for 15 min at room temperature.

The Opti-MEM was aspirated from the cells and replaced, dropwise, by the plas-
mid mixture. The transfection was allowed to proceed overnight before the medium
was replaced. The transfection was confirmed using the EVOS-FL microscope system
(Invitrogen). Subsequently the cells were subcultured into Nunc 8-well glass cover slip
dishes or MaTTek 35 mm glass cover slip dishes at 5 x 103 cells per cm? and given 24

hours to recover.

GLUT4 Translocation Study

The transfected C2C12 myoblasts were starved in 37°C PBS (supplemented with 1
mM MgCl, and 1 mM CaCl, ) for 30 minutes. Subsequently, the cells were exposed to
1 pL CellMask ™ Orange and 10 uL Hoechst stains for a further 10 minutes. The cells
were then washed twice with the 37°CPBS mixture before being imaged in the basal,
unstimulated state. Once imaged, the cells were exposed to 100 nM of insulin for 30

minutes, before undergoing further imaging.

3.2.7 Imaging

The materials, equipment, reagents, and software which were used during these exper-

iments may be found in Tables 3.6, 3.1, 3.2, and 3.7.

LADD Staining

The staining protocol was adapted from [326].

Cells were seeded in several six-well dishes at an initial density of 5x 10* cells/cm?
and then grown and differentiated as described in Section 3.2.2. Each six-well dish rep-
resented a single day along the differentiation time line and was split into three wells
each representing standard and updated culturing conditions respectively.

On the day of the experiment, the cells were twice-washed with 37°C PBS and then
fixed in 1 mL of 100% EtOH for 10 minutes. The EtOH was aspirated and replaced
with 1 mL of the LADD stain (0.27 % m/v tolouidine blue and 0.73 % m/v fuchsin
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dissolved in a 30 % v/v EtOH solution). The stain proceeded for one minute before
being aspirated. The cells were washed with distilled water until the water was clear -
in this instance, three times - and allowed to dry overnight.

Cells were visualised with an Olympus CKX 41 inverted microscope set to phase-
contrast at 200 x magnification. Each well was randomly photographed in six separate
areas. The images were imported into the ImageJ software suite and each image was
further divided into nine quadrants. A random number generator was used to select
three quadrants from each image. These quadrants were further analysed using the
‘Cell Counter’ plugin. Using this plugin, nuclei were assigned to myofibers (three or
more nuclei per cell) or myocytes (a single nucleus per cell). Cells and nuclei near
the edge of each image were ignored. Using these separate nuclei counts, a ratio of
‘differentiated’ nuclei (those in fibers) to ‘undifferentiated’ nuclei (those in myocytes)

was calculated.

Confocal Microscopy

Since C2C12 myoblasts adhere to the material of the cell culture dishes, no chemical
fixing was used in the preparation of the images. The cells were imaged with a Zeiss
LSM 780 confocal microscope. Additionally, the stage temperature, CO, levels, and
humidity were kept constant at 37°C, 5%, and approx. 80% resppectively. Cells were
selected on a ‘“first-found’ basis - in other words the first cell that exhibited GFP activity
during a random scan of the dish. Each cell was imaged with a 63 oil-immersion
objective along the Z-axis - beginning and ending slightly out of focus. Resolution
was set at 1024 x 1024 pixels with a step-size of 700 nm and an overlap of 10 nm with
each vertical slice. The following wavelenghts: 350 nm, 395 nm, and 567 nm were
used to excite the Hoechst stain, GFP, and CellMask " Orange stain respectively. Cells
were not imaged for longer than 60 minutes to ensure minimal photobleaching and dye
cross-reactivity or internalisation. Similarly, laser intensity was kept to a minimum.
The ZEN Lite software output a .Ism file which, when read into FilJi, separated each

colour channel into a separate Z-stack.

53



Stellenbosch University https://scholar.sun.ac.za

3.3. Reagents, Apparatus, and Software

3.3 Reagents, Apparatus, and Software

The reagents, apparatus, and software used for this project are summarised in the fol-

lowing tables.

Table 3.1: General Reagents

Reagent Supplier Catalogue #
Triton X-100 BDH Chemical 30632

Tris Hydroxy Sigma-Merck 1.08382
Aminomethane

PBS Tablets Gibco 18912014
PhosSTOP Tablets Sigma-Merck 4906845001
Na.Deoxycholate Sigma-Merck D6750
cOmplete™  Protease Sigma-Merck 4693132001
Inhibitor

NaCl Sigma-Merck 1.02406
MgCl.6H,O Sigma-Merck 1.05833
CaCl.2H,0 Sigma-Merck 1.02382

1x DPBS Sigma-Merck D8537
Fuchsin Sigma-Merck 47860
Tolouidine Blue Sigma-Merck 89640
Coomassie  Brilliant Sigma-Merck 27815

Blue G250

SDS Sigma-Merck 75746
Na.Ampicillin Sigma-Merck A9518

LB Broth Sigma-Merck L3022
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Table 3.2: Cell Culture Reagents

Reagent Supplier Catalogue #
DMEM Sigma-Merck D6406
Glucose Solution Gibco A2494001
Equine Serum Sigma-Merck H1270
Foetal Bovine Serum Gibco 10500-064
DMSO Sigma-Merck D2650
Insulin Sigma-Merck 19278
x-Treme GeneHP™ Sigma-Merck 6366236001
opti-MEM Gibco 31985070
10x Trypsin-EDTA Sigma-Merck L2153
CellMask " Orange ThermoFisher C10045
Hoechst 33258 abcam ab228550
Table 3.3: Assay Reagents
Reagent Supplier Catalogue #
Hydrazine.H,O Sigma-Merck 207942
G6PDH Sigma-Merck G78717(S. Cerevisiae),
G8404(L. Mesen-
teroides)
Cl-glucose AEC Amersham ARC 0122G
LDH Sigma-Merck L2625
ATP Sigma-Merck A9187
NADP* Sigma-Merck N3139
NAD* Sigma-Merck N7004
Na.L-Lactate Sigma-Merck L7022
BSA Sigma-Merck A7906
HXK Sigma-Merck H6380
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Table 3.4: Western Blotting Components:

Component Manufacturer Catalogue #
Temed Sigma-Merck T9281
Acrylamide Sigma-Merck A3699

TCE Sigma-Merck T54801

DTT Sigma-Merck 11583786001
4x Laemmli concen- Bio-Rad Laboratories 161-0747
trate

Na.Arzide Sigma-Merck S2002
Tween®20 Sigma-Merck P9416
Methanol (absolute) Sigma-Merck 1.06007.2500
Immun-Blot® PVDF Bio-Rad Laboratories ~ 162-0177
membrane

Sponge Bio-Rad Laboratories 170-3932
Blotting Paper Bio-Rad Laboratories 162-0118
Precision Plus Protein™  Bio-Rad Laboratories ~ 161-0373
30% Acrylamide/Bis- Sigma-Merck A3699

Acrylamide Solution

Clarity Western ECL Bio-Rad Laboratories 170-5061
Substrate

Table 3.5: Antibodies: all primary antibodies were diluted 1:999 in their respective
diluents and 3mM sodium arzide. Secondary antibodies were freshly diluted 1:10 000
for each Western blot.

Antibody Diluent Manufacturer Catalogue #

Aktowl 5% BSA Cell  Signaling 9272
Technology®

Anti-Akt13473 5% skim milk Abcam 81283

Anti-Akt1237% 5% skim milk Cell  Signaling 13038
Technology®

[R©@! 5% skim milk Abcam 69508

Anti-Phospho Ty- 5% BSA Cell  Signaling 9411

rosine Technology®

(Goat) Anti- 5% skim milk Abcam ab97051

mouse secondary

(Goat) Anti- 5% skim milk Abcam ab97023

rabbit secondary
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Table 3.6: List of Equipment

Apparatus Manufacturer Model #

Incubator NuAire NU-5800

Spectrophotometer BMG Labtech SPECTROstar Nano

Scintillation Counter Perkin Elmer Tri-Carb 2810TR

Benchtop Centrifuge Eppendorf 5804

Autoclave Steridium SD660

Confocal Miscroscope  Carl Zeiss LSM 780

Haemocytometer Marienfield Neubauer-Improved
0.1 mm (0640010)

Spectrophotometer Agilent Technologies Cary 60

Swing-bucket rotor Eppendorf A-4-44

Fixed angle rotor Eppendorf F 45-30-11

Culture Dishes Nest 708003(T75),
709003(T175),
704001(100 mm)

35 mm glass bottom MaTTek P35G-1.5-14-C

dishes

GeneJET™ kit ThermoFischer K0481

EVOS™-FL  Micro- Invitrogen AMF4300

scope

MilliQ system MerckMilliPore C79625

dH,0 system PurePro EC105

F-bottom  Microtitre Greiner P1PLA024C-000096

96-Well Plates

Rotary Shaker Already Enterprise Inc. LM-575D

Scale Mettler Toledo ME204

pH Meter Crison GLP 21

10 mm Quartz Cuvette  Hellma 105-201-15-40

Gel-Doc™ XR+ Bio-Rad

Mini-PROTEAN®
Tetra Cell Casting
Module

Mini-PROTEAN®
Tetra Vertical
trophoresis Cell

Mini Trans-Blot® Cell
myECL"™ Imager

Elec-

Bio-Rad Laboratories

Bio-Rad Laboratories

Bio-Rad Laboratories

Thermo Scientific'™

165-8016

165-8004

13375071
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Table 3.7: The varieties of software used and their purpose(s)

Purpose

Software

Developer

Initial data analysis and
formatting

Detailed data analysis
as well as the develop-
ment and simulation of
an ODE-based model

Analysis of phase-
contrast  microscope
images as well as
Western blots
Further analysis of
Western blots

Capturing and initial
analysis of confocal mi-
croscope images
Capturing of phase-
contrast images

Excel 365

Wolfram Mathematica

v. 11.x

Fiji (ImageJ) v.1.52

Image Lab

ZEN Lite v.2.1

ScopeTek Devices v.1.2

Microsoft Corporation

Wolfram Research

GPL v.2

Bio-Rad Laboratories

Carl Zeiss AG

Hangzhou  Scopetek
Opto-Electric Co.
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Chapter 4

Optimisation of Growth Conditions

4.1 Introduction

The use of C2C12 cells in studying insulin signalling or glucose metabolism is well-
documented [268, 271, 327]. These cells are widely used as a model for signal trans-
duction pathways as well as muscle metabolism. C2C12 cells can be used in the un-
differentiated stage as myoblasts, or once they have differentiated, as myotubes. Since
myotubes are the dominant form of these cells in adult animals, the cells are often
used in differentiated form. However, few studies attempt to quantify the degree to
which their cells are differentiated. Studies that do track the degree to which cells are
differentiated report values of between 10% [328] and 45% [326].

Although some consensus on medium composition exists (e.g. 25 mM glucose and
10% FBS), studies often neglect to mention the DMEM formulation that is used or
the final glucose concentration of the media being used. Under these hyperglycaemic
conditions, increases in glucose import upon the addition of insulin of up to 10-fold
were reported [329, 330] as well as increases in glycolytic flux that ranged between
1.3- and 2-fold [331, 332]. In this study, evaluating the culturing conditions of C2C12
cells was motivated by the fact that high blood glucose concentrations are indicative,
if not causative, of insulin resistance in vivo [333].

In vivo glucose concentrations in mice vary depending on lineage. However, con-

centrations of 120 - 300 mg/dL (6.6 - 16.7 mM) have been reported [334, 335]. In
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diabetic (db/db) mice the fasting glucose concentrations can be as high as 470 mg/dL
or 26 mM [336]. Similarly, the circulating concentrations of insulin range between 0.5
ng/mL and 1.7 ng/mL (80 - 300 pM) [334, 336]. The standard glucose concentration in
most culture media of 4.5 g/LL more closely resembles those found in the diabetic mice.
Insulin concentrations in sera are generally not evaluated. However, in rat adipocytes
(3T3-L1 cells), Foetal Bovine Serum (FBS) exhibits insulin-like effects on the translo-
cation of GLUT4 to the plasma membrane while also stimulating glucose (2-Deoxy
glucose) uptake [337].

Variations in culturing conditions may affect the insulin sensitivity of the cells.
Firstly, high glucose concentrations are associated with increases in reactive oxygen
species (ROS) [338, 339]. Secondly, the greater levels of glucose and ROS lead to
decreases in cell differentiation in neural cells [340], cardiomyocytes [341], and mes-
enchymal stem cells [342]. Thirdly, in differentiated myotubes GLUT4 is expressed in
greater quantities when compared with myoblasts [233]. Lastly, GLUT4 is the main
insulin-responsive glucose transporter in skeletal muscle cells [343, 344]. Therefore,
how cells are cultured may well affect their responsiveness to insulin. A recent review
of C2C12 cells suggests that hyperglycaemia may indeed affect the insulin sensitivity
of these cells [345].

Common culturing practices - high (>25 mM) glucose concentrations and a mini-
mum of 10% v/v FBS - may therefore induce insulin desensitisation of in vitro C2C12
cells. Therefore, in order to more accurately determine the basal state of insulin sig-
nalling and glucose transport, it was necessary to determine the culturing conditions
which best balanced the physiological state of in situ muscle cells, cells which would
remain insulin sensitive, and a realistic culturing and experimental schedule. Further,
the data from this study would be used to inform studies in Chapter 5 which sought
to offer a proof-of-concept for the induction of insulin resistance in C2C12 cells. In
pursuance of these objectives, the cells were grown at various glucose concentration
and induced with insulin, FBS, or a combination of both and their glucose-lactate flux

was evaluated as a proxy-measure for insulin sensitivity.
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4.2 Materials and Methods

4.2.1 Cell Culture Protocol

Mouse skeletal myoblasts (C2C12, 4= 500,000 cells) were thawed from liquid nitrogen
storage and seeded in vented T75 culturing flasks which contained 10 mL of complete
culturing media. Growth media was replaced every two days until a confluence of +
80% was achieved - by the fifth day. Thereafter, the cells were either split or differ-
entiated. The latter saw culture media supplemented with 2% v/v horse serum instead
of FBS, whereas the former occurred according to protocols discussed in Chapter 3.
Once again, differentiation media was replaced every second day until the cells were
judged to be mostly differentiated - by the fifth day. The media formulations used are
summarised as follows: ‘standard’ media contained 25 mM glucose DMEM and 10%
FBS whereas the ‘updated’ media had the 25 mM glucose reduced to 15 mM. During
differentiation, the 10% FBS was replaced with 2% horse serum (HS).

Differentiated cells were prepared for experimentation by transferring them into
media containing no serum for an overnight (12 to 14 hours) serum-starvation period.
Subsequently the cells were starved of glucose and serum for a further four hours in
PBS which was supplemented to 1 mM MgCl, and 1 mM CaCl,. This last step was
undertaken to put the cells into a ‘zero-glucose’ state which meant that their internal
stores of glucose were mostly depleted. This step was taken in order to ensure that
the glucose flux or 4C glucose-uptake that was observed was due to the ‘actual’ up-
take of the glucose and minimally influenced by feedback inhibition or the internal
concentration of glucose.

Half an hour before each experiment, the cells were stimulated with 100 nM of
insulin, 10 % v/v FBS, or a combination of insulin and FBS for the induction of the
signalling cascade. The cells were induced with FBS in order to determine whether
this (often) undefined mixture of growth factors and proteins has an insulin-like effect
on the glycolytic flux in C2C12 cells. Lastly, details regarding equipment, reagents, as
well as the procedures for the enzymatic determination of lactate and glucose concen-

trations can be found in Chapter 3. While initially, half an hour was chosen based on
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literature [346, 347], subsequent experiments (Chapter 5) will show that 15 minutes

are sufficient.

4.2.2 LADD-staining and Image Analysis

The staining protocol was adapted from [326]. The LADD multiple stain contains a
combination of fuchsin and toluidine blue. This stain is able to differentially stain
the cytoplasm and nuclei of cells, thereby enhancing contrast and identification of
organelles [348].

Cells were seeded in several six-well dishes at an initial density of 5x 10* cells/cm?
and then grown and differentiated as previously described. The cells were split into
seven, six-well dishes. Each six-well dish was divided into three wells which repre-
sented the 25 mM glucose (standard) culturing condition and three wells which rep-
resented the 15 mM glucose (updated) culturing condition. Beginning with the day
before differentiation, each six-well dish was stained (vide infra) and photographed
under a microscope.

Before staining, the cells were twice-washed with warm PBS and then fixed in 1
mL of 100% EtOH for 10 minutes. The EtOH was aspirated and replaced with 1 mL
of the LADD stain (0.27 % m/v tolouidine blue and 0.73 % m/v of fuchsin dissolved
in a 30 % v/v EtOH solution) for one minute, aspirated, and then washed with distilled
water until the water was clear. In this instance, three washes were required. The cells
were then allowed to dry overnight.

Cells were visualised with an Olympus CKX 41 inverted microscope set to phase-
contrast at 200 x magnification. Each well was photographed in six, randomly chosen,
areas. The images were imported into the ImageJ software suite and each image was
further divided into nine quadrants. A random number generator was used to select
three quadrants from each image. These quadrants were further analysed using the
‘Cell Counter’ plugin. Using this plugin, nuclei were assigned to the fiber category
(three or more nuclei per cell) or to the myocyte category (a single nucleus per cell).
Cells and nuclei near the edge of each image were ignored. Using these separate nuclei

counts, a ratio of ‘differentiated’ nuclei (those in fibers) to ‘undifferentiated’ nuclei
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(those in myocytes) was calculated.

4.3 Results and Discussion

In tissue culture literature it is not often made explicit at which glucose (or metabolites
such as pyruvate or glutamate) concentration the cells were cultured [349]. The gen-
eral assumption is that, unless otherwise specified, cells are usually cultured at higher
glucose concentrations. While this may be a good approach for the majority of cell
lines, as the present chapter will illustrate, this may not be the best approach for all

cell lines, or for all research questions.

4.3.1 Glycolytic Flux Measurement

Glucose concentrations during cell culturing were evaluated for their potential to gen-
erate cells that were responsive to insulin. This responsiveness was assayed by deter-
mining the glucose consumption and lactate production rates as well as their respective
fold induction by insulin. Cells grown under standard, high glucose conditions were
stimulated with 100 nM insulin, 10% FBS, or a combination of 100 nM insulin and
10% FBS. Water, as the carrier condition, was used for the control experiments. The
glucose consumption and lactate production results are shown in Fig. 4.1. Glucose
consumption remained linear throughout the experiment for all culturing conditions
and no significant differences were observed between cells cultured with high glucose
concentrations (Table 4.1).

However, cells grown under medium or low glucose conditions showed an induc-
tion of glucose consumption in response to insulin, FBS, or a combination thereof.
In other words, these cells retained their insulin sensitivity and were able to upregu-
late glucose transport or glycolysis in response. For example, while the control glu-
cose consumption was 0.025 gmol.min~t.mg~! (+0.002) for all culturing conditions,
adding 100 nM insulin to the medium and low glucose cells increased their glucose
consumption rate to 0.044 gmol.min~!.mg~! (£0.003) and 0.038 ymol.min~*.mg~*

(£0.001) respectively. The difference between these two rates was not significant (p
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= 0.55). In contrast, the glucose consumption rate of insulin stimulated cells grown at
high glucose was essentially the same as the control value at 0.024 gmol.min~!.mg~!
(£0.0005), a difference which was not significant either (p = 0.24). Similarly, insulin
stimulated the production of lactate, which remained linear in time for all culturing
conditions. The induction of lactate production by insulin and FBS is evident under
the medium and low glucose conditions. The rates were normalised to the total protein
concentration in each experimental vessel and are presented in Table 4.1. The results
indicate that in these C2C12 cells grown under standard, high glucose conditions, their
responsiveness to insulin had been greatly diminished. When normalised to the control
condition (high glucose), both glucose consumption and lactate production showed no
induction by the addition of insulin, FBS, or the combination thereof (Table 4.1).

Comparing the glucose consumption and lactate production rates (0.0246 and 0.0514
pmol.min~t.mg~respectively) of the medium glucose control (i.e. cells not induced
with insulin) (Fig. 4.1) yielded no significant difference to the high glucose control
(Table 4.1). However, the insulin-, FBS-, and insulin and FBS-stimulated consump-
tion and production rates showed significant inductions. The insulin-stimulated cells
showed a 1.7-fold induction of glucose consumption and a similar induction of lactate
production. The FBS-only stimulated cells showed a more modest, 1.1-fold induction
of both glucose consumption and lactate production. Lastly, stimulating the cells with
both FBS and insulin had little advantage over stimulating with insulin exclusively,
yielding a 1.61- and 1.55-fold induction of glucose consumption and lactate produc-
tion respectively.

In addition to high and medium glucose culturing conditions, these experiments
were repeated using cells cultured under low, but physiological, glucose (5.5 mM or
1 g/L) conditions. The glucose consumption and lactate production rates (Table 4.1,+
0.025 and +0.047 pgmol.min~!.mg~'respectively), without insulin induction, did not
differ from cells grown under high or medium glucose conditions. Insulin did stim-
ulate glycolytic flux in these cells; consumption and production rates achieved 1.5-
and 1.44-fold induction when compared to the control (Table 4.1). These rates, how-

ever, did not achieve as strong an induction of flux as was seen in cells grown under
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medium-level glucose conditions. A modest induction was seen with FBS-stimulated
cells - approximately 1.2-fold for both glucose consumption and lactate production.
The combination of insulin and FBS showed the greatest induction of glycolytic flux

in these cells.

Normalised Glucose Consumption Rates

-Fold Induction

HGMGLG HGMGLG HGMGLG HGMGLG
Control 100 nM Insulin FBS FBS+Ins

Figure 4.2: Glycolysis in terms of glucose consumption as induced by 100 nM insulin,
10 % v/v FBS, or both. Cells cultured in 25 mM (HG), 15 mM (MG), or 5 mM (LG),
glucose are indicated as grey, green, or blue bars respectively. Error bars indicate SEM,
and each bar represents a biological triplicate (n = 3).

The results further indicated discrepancies between the final glucose and lactate
concentrations as well as their respective consumption and production rates Table 4.1.
Glycolysis degrades one molecule of glucose into two molecules of lactate. Therefore,
one would expect the steady-state rate of lactate production to be approximately twice
that of glucose consumption. While the high glucose and medium glucose control
conditions did achieve this two-fold conversion, the rest of the cells experienced a
conversion of 1.5- to 1.7-fold. Since the rate of glycogen synthesis remains fairly low
in in vitro cells [350], it is unlikely that this discrepancy in glucose-lactate conversion
can be explained by glycogen synthesis. Assuming the &=5pmol.min~!.mg~! glycogen
synthesis rate for C2C12 cells as per Abdelmoez et al (2020) [351], this would yield

approximately 24 nmol or 16 ugof glycogen over the course of a 10 hour experiment.
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Normalised Lactate Production Rates

-Fold Induction

HGMGLG HGMGLG HGMGLG HGMGLG
Control 100 nM Insulin FBS FBS+Ins

Figure 4.3: Lactate production as induced by 100 nM insulin, 10 % v/v, or both.
Lactate production rates normalised to those observed in the high glucose control.
Cells cultured in 25 mM (HG, 15 mM (MG), or 5 mM (LG) glucose are indicated
as grey, orange, or pink bars respectively. Error bars indicate SEM, and each bar
represents a biological triplicate (n = 3).

Reducing glucose concentrations during culturing therefore appears to improve the
ability of cells to respond to insulin with an induction in glycolytic flux. The strongest
induction of glycolytic flux was seen when cells were grown in medium-level glucose
(Fig. 4.2, green) as opposed to more modest induction at low, but physiological, glu-
cose conditions (Fig. 4.2, blue), or none at all under high glucose growth conditions
(Fig. 4.3, grey). The combination of FBS and insulin appeared to have no significant
advantage over only using insulin to induce glycolytic flux. However, it does appear
that the prolonged exposure to the combination of high glucose and FBS attenuates the
ability of C2C12 myotubes to upregulate glycolytic flux in response to insulin. Consid-
ering that, under medium and low glucose conditions FBS has a modest pro-insulinic
effect, it is possible that prolonged exposure to hyperglycaemic conditions and FBS
induces an insulin resistant-like state in these cells.

The glucose-lactate flux was a reliable measure by which the insulin response of
cells could be evaluated. Therefore, insulin dose-dependent induction of glucose con-
sumption and lactate production were subsequently tested in cells grown at medium

glucose concentrations.
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Figure 4.4: Glucose consumption (A) for control (black) cells and cells treated with 1
nM (blue) and 1 M (green) insulin and lactate production (B) for control (red), InM
insulin (purple), and 1 ©M insulin (orange). The biomass yield was similar (8.6 mg
=+ 0.1) for all experiments. Error bars indicate SEM, and each data point represents a
biological triplicate (n = 3).

Glucose consumption is shown in Fig. 4.4 for three insulin concentrations - 0 nM,
1 nM, and 1000 nM. These concentrations were chosen as 1000 nM of insulin would
ensure full-stimulation of the insulin signalling pathway. On the other hand 1 nM of
insulin would ensure a significant insulin response while still within the physiological
range reported in mice [352], albeit at the upper end of the spectrum. A dose-dependent
stimulation was observed with an overall induction of glucose consumption between
control and 1000 nM insulin by a factor of approximately 2.2.

While not conclusive evidence for insulin resistance or type two diabetes, these
results do indicate that, under standard culturing conditionsm, C2C12 cells appear
unable to upregulate glycolytic flux in response to insulin. Taking into consideration
the role of high glucose concentrations in the @tiology of insulin resistance and type
two diabetes, it was decided that further efforts would not evaluate cells grown at 25
mM glucose concentrations. Rather, a concentration of 15 mM glucose was chosen

as is still within the physiological range reported in mice [334, 335] and would not
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deplete as rapidly as a concentration of 5 mM of glucose would.

4.3.2 Quantifying C2C12 Differentiation

In addition to testing the insulin sensitivity as a function of media glucose concentra-
tion, further experiments were necessary to determine the effect of glucose concentra-
tion on cell differentiation. The method developed by McColl et al (2016) was adapted
for this purpose [326].

The modified LADD-staining method, discussed in Section 4.2, resulted in the
images shown in Fig. 4.5. What is apparent prima facie is the greater coverage by
myotubes in cells cultured at 15 mM glucose (Fig. 4.5b) as opposed to cells cultured at
25 mM glucose (Fig. 4.5a). Myotubes cultured at 15 mM are thicker, longer, and more
numerous. Conversely, cells cultured at 25 mM glucose seem less differentiated as
indicated by the numerous, unaligned cells present as single clusters rather than fibres.
Additionally, the LADD stain was present in greater amounts in myotubes as these
had more nuclei and cytoplasmic volume to stain. Since Fig. 4.5b appears to exhibit
stronger pink and purple hues than Fig. 4.5a it seems likely that greater quantities of the
LADD stain have been retained, which in turn implies the presence of more myotubes.
However, for the purposes of this investigation, it is sufficient to enumerate the nuclei
present within distinct myotubes and those that remained as myoblasts.

The images were analysed in the FiJi distribution of ImagelJ. The optional ‘Cell-
Counter’ plug-in was used to manually count the nuclei present in single cells (black
arrows in Fig. 4.5a and 4.5b) or the nuclei present in myotubes (yellow arrows). Cells
that were too close to the edge of the image as well as multi-nucleated cells with fewer
than two discernible nuclei were discounted.

Since, during differentiation, myotubes result from the fusion of several myoblasts,
it stands to reason that the greater the extent of differentiation one sees in these cells,
the more nuclei would be included within myotubes. Similarly, one would expect to
see fewer individual nuclei in individual myoblasts. As seen in Fig. 4.6 cells grown
under high glucose conditions showed a mean of 58% (4 2%) of nuclei that were in-

cluded in myotubes. Greater inclusion of nuclei in myotubes was seen in cell cultured
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Figure 4.5: Phase constrast images of C2C12 cells grown under high glucose con-
ditions (A) and under medium glucose conditions (B). Cells were fixed with 100%
ethanol and stained with fuchsin and toluidine blue to differentiate between the cell
membrane and the nucleus (as described in Section 4.2). Thereafter ImageJ was used
to analyse the images and assign nuclei as belonging either to myoblasts or myotubes.
Yellow arrows indicate nuclei that were assigned to a single myotube whereas black
arrows indicate nuclei in single myoblasts. These images were used to generate the
data found in Fig. 4.6 and Table 4.2.
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Figure 4.6: A box-whisker plot which shows the differences in the fraction of differen-
tiated nuclei among high glucose culturing protocols (green) and the updated, medium
glucose protocol (orange) after six days of culturing. Error bars indicate SEM, n = 9.

under medium glucose conditions. Further, a mean of 82% of nuclei (£ 1.5%) were
included in myotubes in these cells - with one sample showing as many as 93% of nu-
clei included in myotubes (Table 4.2). This accords a significant (p < 0.05) difference
in the degree to which the cells are differentiated. These data therefore indicate that
reducing the glucose concentration in culturing media has a discernible effect on the
degree to which C2C12 skeletal muscle differentiate.

Table 4.2: A comparison of the fraction of nuclei present in differentiated cells cul-
tured according to the high glucose or medium glucose culturing conditions. Values

represent three images taken from each of three biological samples for each culturing
condition (error bars indicate SEM, n =9).

Media Mean Median 25% 75% Min Max
High 0.575 +0.017 056 054 060 051 0.73
glucose
Medium

0.816+0.015 0.82 080 084 068 093
glucose
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4.4 Conclusion

Reducing the glucose concentration from 25 mM to 15 mM in the culturing medium
has marked effects on C2C12 cells. Firstly, cells cultured at the reduced glucose con-
centration appear to regain their insulin sensitivity, or not lose it in the first place.
This is indicated by the increased glucose consumption and lactate production when
these cells are stimulated by insulin. Conversely, cells which were cultured at 25 mM
glucose showed no significant induction of glucose consumption upon stimulation by
insulin, FBS, or both.

Secondly, C2C12 cells cultured at 15 mM glucose differentiate to a greater degree.
Cells which were cultured at 15 mM glucose were 26 % more differentiated than cells
grown in 25 mM glucose. Since the amount of insulin-sensitive GLUT4 correlated
with the degree of differentiation [353], cells which exhibit greater differentiation will
show greater glucose uptake than their hyperglycaemic counterparts.

Inducing a diabetic state in cultured cells often relies on a combination of hy-
perinsulinemia and hyperglycaemia. Current, ‘standard’ cell culture methodology for
C2C12 cells relies on 25 mM glucose in the media which satisfies the hyperglycaemic
condition. Supplementing these cells with 50 to 500 nM insulin before experimen-
tation often leads to perceived insulin insensitivity in C2C12 cells. However, under
in situ conditions, insulin insensitivity is a progressive disease [354, 355]. Therefore,
prolonged exposure to lower, but above normal, concentrations of insulin may result in
an insulin insensitive state. In support of this, data presented in this chapter indicates
that the 10 % v/v FBS supplementation appears to have a mild pro-insulinic effect on
cells. Cells which were cultured either at 15 mM or 5 mM glucose and then induced
with FBS showed above-normal glucose consumption and lactate production. This
indicates that FBS contains either insulin or an insulin-like factor which stimulates
glucose consumption. Since this increase in glucose consumption and lactate produc-
tion was absent in cells cultured at 25 mM glucose and then stimulated with FBS, it
is possible that the combination of persistent FBS and high glucose concentrations in
most standard media may reduce the sensitivity of C2C12 cells to insulin.

One of the challenges in molecular biology is reproducibility [356, 357]. Studies
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often do not make explicit the metabolite concentrations or specific formulations of
DMEM that are being used for cell culture. As this data in this chapter demonstrate,
minor changes such as reducing the glucose concentration in cell culture media, can
drastically affect the outcomes of an experiment. If there is no clarity or uniformity
in how cells are cultured, then there can be no reproducibility in the results which
are obtained. It is therefore imperative that glucose and metabolite concentrations are

made explicit in ongoing and future molecular biological research.
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Chapter 5

Integrating Insulin Signalling and
Glucose Transporter Data:

Constructing a Minimal Model

This chapter presents the results on the insulin concentration and time responses of the
IR and Akt protein phosphorylation as well as the GLUT4 glucose transporter activ-
ity to insulin. Further, this chapter will attempt to construct a minimal model which
integrates these data in order to describe the first and second modules as presented in

Section 1.1.

5.1 The Minimal Modelling Strategy

The minimal modelling strategy is based on the ‘three modules’ approach outlined in
Section 1.1. The model described in this section attempts to describe the dynamics
of the signal transduction and glucose transporter modules. A second project by Dr.
Cobus van Dyk and colleagues will describe the glucose metabolism module.

A minimal, ODE-based modelling approach was best suited to the type of data
which could be gathered given the experimental constraints. The insulin signalling
pathway consists of dozens of proteins each of which interact with components from

other pathways as well which makes studying them in detail prohibitive for a single
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project. Therefore, in order to align the modelling strategy, experimental approaches,
and complexity with one another, several choices were made.

The first choice was made to limit the insulin signalling pathway to those compo-
nents which lead from the IR to GLUT4 by the shortest path (see: Section 2.1.9. This
is not to negate the effect of the various other components which act upon the insulin
signalling pathway or as a result of its activation. Rather this would focus on those
components, leading up to GLUT4, which are most likely to be affected as a result of
insulin stimulation.

The second choice was to further limit the components which were measured in
accordance with the ‘three module’ approach which defined each module as an input-
output relationship between two components. The insulin receptor and Akt proteins
were the respective inputs and outputs for the insulin signalling module as these com-
ponents could be measured through Western blotting, they are crucial to the normal
induction of the glucose transporter in response to insulin [27, 358], they are known
to be defective in insulin resistant states [359, 360], and they are sensitive to insulin
concentrations [361, 362]. The glucose transporter module was defined by the phos-
phorylated Akt as its input and the glucose transporter activity as output. The glucose
transporter activity was assayed by measuring how much “C was internalised by the
cell in response to the given experimental conditions.

Thirdly, the dose response data were used for a steady-state analysis of the model
(Section 5.2)in order to constrain model parameters such as the forward and reverse
reaction constants. These constraints were incorporated into the model which was
then used to fit simulations to the time dynamic experimental data (Section 5.3). This
step was used to validate the steady-state parameter estimations.

This modelling approach may not lead to the best possible fits since the model pa-
rameters were constrained to their steady-state estimations which were in turn based on
mass-action kinetics and a limited data set. This approach does not require large sets
of parameters as one would need for a more detailed model. However, the goal was
not to create a detailed model. The goal with the three-module and minimal modelling

approach was to characterise the ‘normal’ - non insulin-resistant state of the insulin
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signalling and glucose transporter modules. Understanding how these modules react
under normal conditions will help understanding where in the insulin signalling cas-
cade dysregulation occurs, should it occur. In other words, aberrant behaviour could
be traced to the signalling, glucose transporter, or metabolism modules with a small
set of experimental perturbations. This will allow more detailed investigations at the
appropriate module instead of needing to investigate the entire insulin signalling sys-

tem.

5.2 Insulin Response Characteristics of the Insulin
Signalling Pathway

AktS473concThe effect of varying the insulin concentration on the authosphorylation
of the IR as well as the phosphorylation of both Akt serine 473 and threonine 308
was analysed. For this, the cells were grown under the updated, 15 mM glucose,
conditions, starved, and then exposed to different insulin concentrations ranging from
0 nM to 1000 nM (for further details on all methods, see Chapter 3. After 30 minutes
the cells were harvested, lysed, and stored for Western blot analysis. The degree of
phosphorylation of cells exposed to 100 nM insulin after 30 minutes was used as the
reference state and all samples were normalised to this value.

Physiological, basal insulin concentrations in mice can be as low as + 40 pM or as
high as 1.7 nM [334, 336, 352]. Insulin concentrations were chosen to represent the
control at 0 nM of insulin, a minimum at 10 pM of insulin, and a maximum at 1000
nM of insulin. Intermediate ranges were used to determine the insulin dose-dependent
phosphorylation of the insulin signalling intermediates. While some concentrations are
indeed supraphysiological, they were nonetheless useful in parameterising the model.
The 30 minutes, 100 nM state was used as a reference state since it is commonly used
in literature [363-365] as well as reportedly eliciting a maximal response in signalling

[366].
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5.2.1 The Dose-Response Characteristics of the Insulin Signalling

Module

The response of the insulin signalling module (Section 1.1) in response to varying
insulin concentrations is investigated in this section. The insulin receptor is phos-
phorylated in a dose-dependent manner in response to insulin (Fig. 5.1). It achieved
maximal phosphorylation at 100 nM insulin and no increase in phosphorylation was
observed when the insulin concentration was increased to 1000 nM. The decrease in
IR phosphorylation observed at the 1000 nM insulin concentration is likely due to a
combination of insulin and stress induced cytotoxicity [278, 367]. However, this would
need to be tested in future studies. The total level of IR was independent of the insulin
concentration (Fig. 5.1 - black points).

The levels of the phosphorylated proteins, Aktg, and Aktr,, also depended on
insulin over a wide concentration range (Figs. 5.2 and 5.3 respectively). The phos-
phorylation of Aktg showed a linear increase with Log[insulin] up to 1 uM (Fig. 5.2).
Aktr, was not detectable at insulin concentrations below 20 nM, but showed a strong
dependence on insulin at concentrations greater than 100 nM - for example, a nearly
4-fold increase in phosphorylation at 1 M (Fig. 5.3). However, this is likely due to
the artificial constraint of setting the phosphorylation of the 100 nM condition as ‘1’
for the purposes of constructing the model. As observed for the IR, the total Akt levels
were similar across all samples for the different insulin doses.

After the initial observations, a set of rate equations were developed for the for-
ward (phosphorylation) and reverse (dephosphorylation) reactions of the minimal sig-
nalling. The rate equations are based on simple mass-action kinetics which described
the change in concentrations of the IR and Akt proteins as a function of their respec-
tive phosphorylation and dephosphorylation reactions. Afterwards, the rate equations
were rewritten as a single, balanced ordinary differential equation (ODE). Experimen-
tally, the data were gathered in two stages, a dose-response and a time-response. The
dose-response data were assumed to be in steady-state to fit for the ratio of the phos-

phorylation constant (k,) over the dephosphorylation constant (k).
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Insulin Dose-Dependent IR Phosphorylation
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(b) The phosphorylation of the IR at selected insulin concentrations in nM.

Figure 5.1: A semi-log graph of the concentration of total IR (black) and phosphory-
lated IR (blue) as a function of insulin concentration after a 30 minute incubation. The
C2C12 cells were exposed to varying insulin concentrations for 30 minutes, harvested,
and then they underwent Western blotting to determine the relative induction of phos-
phorylation. Error bars indicate SEMs and each data point represents the average of a
biological triplicate (n = 3).

dIR

T —insulin X kyr X IR(t) + kapr X ( Riora — I R(1)) 5.1

dAKTS
d— = _kpAKTS X (IRtotal — IR(t)) X AKTS(t)
t (5.2)

+ kapakts X (AKT o — AKTS(t))
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Insulin Dose-Dependent Akts Phosphorylation
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(b) The phosphorylation of Akt at serine 473 at selected insulin concentrations in nM.

Figure 5.2: The phosphorylation of AKT serine 473 due to increases in insulin con-
centration. The total level of AKT is shown in black while Aktg,is indicated in red.
The C2C12 cells were exposed to varying insulin concentrations for 30 minutes, har-
vested, and then they underwent Western blotting to determine the relative induction of
phosphorylation. Error bars indicate SEMs and each data point represents the average
of a biological triplicate (n = 3).

dAKTT
—_— = _kpAKTT X (]Rtotal — ]R(t)) X AKTT(t)
dt (5.3)

+ kapakrr X (AKT o — AKTT (1))

The Western blotting data allowed for the estimation of the steady-state parame-
ters of the insulin-IR interaction. The steady-state levels of the IR were derived from

Eq. (5.1) as follows:
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Insulin Dose-Dependent Akt Phosphorylation
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(b) The phosphorylation of Akt at threonine 308 at selected insulin concentrations in nM.

Figure 5.3: The levels of Akty, (purple) in relation to the total levels of Akt (black).
At lower concentrations of insulin, Akt7, could not be detected. However, at insulin
levels in excess of 100 nM, Aktr, appears to still have capacity to phosphorylate. The
C2C12 cells were exposed to varying insulin concentrations for 30 minutes, harvested,
and then they underwent Western blotting to determine the relative induction of phos-
phorylation. Error bars indicate SEMs and each data point represents the average of a
biological triplicate (n = 3).

0 = —insulin X kyr X IR+ kapir X (I Riotas — I R) (5.4)
— k IR I Rioa
TR = - <‘1pIR>< total _ ttkl (5.5)
insulin X kpr + Kqpir insulin x “PR g
dpIR
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Further, IR = I Rioy When insulin = 0 and, when insulin = 100, IR = 1. This

leads to the following equations for IR

— I Rioia
1= IRiw = IR = I R — . (5.6)
100 x 2% 41
kdeR
Therefore, solving for IR yields:
]Rtotal =1+ —X kdeR (57)
100 Epr
Lastly, the phosphorylation of IR in response to insulin can be described as:
14+ 1 » Eapir
R ]_ kdeR ]_00 kaR
IR=1+ — X - (5.8)

k
100 ko Rpir x insulin + 1

dpIR
In Fig. 5.4 the dose-reponse fits for the phosphorylation of IR and Aktg are shown.

The fit is not particularly good; two data points for the IR, and one data point for the
Aktg fit have significantly lower experimental levels of phosphorylation than obtained
for the fit. The simplicity of the model, (for this curve only one parameter was fit to
the data), restricts the shape of the response curve strongly, however the advantage
of the small number mean that the fit was considered good enough to allow further
analysis. The Aktg responds stronger to insulin at lower concentrations, for example at
insulin concentrations that elicit 35% of maximal IR phosphorylation, the Aktg is 65%
phosphorylated. This might appear counter-intuitive since AktS phosphorylation is
dependent on IR phosphoryation. However, it should be noted that Fig. 5.4 represents
a steady-state response and not a temporal response (for which one would expect the IR
to phosphorylate more rapidly than Akt). Additionally, the phosphorylation levels are
all relative which means that Aktg and IR responses cannot be compared in absolute
sense. Lastly, it is not unusual to see amplification in signal transduction pathways
[368, 369].

Therefore, the phosphorylation of both Akt sites was expressed as a function of the
phosphorylation of IR (Fig. 5.5). It may seem counter-intuitive to express one variable

as a function of another variable. However, this method of visualising the data allows
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Figure 5.4: Model fits of the insulin concentration-dependent phosphorylation of the
IR (blue) and Aktg (red) data as seen in Figs. 5.1 and 5.2. These curves are predictions
of the phosphorylation of Aktg as determined by the ODEs. Aktg phosphorylation
appears more sensitive to insulin than IR. Error bars indicate SEMs and each data

point represents the average of a biological triplicate (n = 3).

one to directly relate one module (or part thereof) of the insulin signalling cascade to
the preceding module, and in their co-response analysis Hofmeyr and Cornish-Bowden
[370] have shown that this contains much information about control and regulation
and in the absence of a feedback loop, a co-response relation equals a cause effect
relation [369]. When comparing normal cells to insulin resistant cells, it would then
become apparent where in the cascade dysfunctions occur instead of merely showing

the response of each module to insulin.

14 EapaxTs
kpakTs (5.9)

o k
AKTSP _1 + deAKTS _ k
pAKTS VpAKTS X ([Rtom - [R(t)) +1
kdpAKTS
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k i, w
ARTTp =14 05T - o
PAKTT  TPAKTT o (rp o — IR(t)) +1

dpAKTT
The steady-state equations (Eqgs. 5.8, 5.9, and 5.10) and the Western blotting data
were used to parameterise the model in a single optimised fitting step. This yielded
k
values for the k;_p ratios of the I Rp, AKTSp, and AK'TTp steady-state equations.
dp

These values (Table 5.1) were those that best fit the dose-response data for the whole

model.

Table 5.1: Fitted parameters. ke,q, refers to the rate constant of GLUT4 endocytosis
from the PM into the cell. ke, is the rate constant for GLUT4 exocytosis from the cell

k
into the PM. The value for the —-PAKTT

ratio was constrained to be equal to or less than
. kpakrt o .
10 since it was unable to determine a value for this ratio without such a constraint. The

endo ratio was fit to data which took into account the effect of both the Akt and Akt

€X0

phosphorylation sites.

Parameter Value
k
ZaoR 7.62
kaR
IRtotal 1 08
k
dpAKTS 018
kpAKTS
dpAKTT 10.0
EpakTT
AKT o 1.18
kendo
1.01
k [(9.(¢]

The Aktg (red) and Akty (purple) phosphorylation responses as a function of IR
phosphorylation are shown in Fig. 5.5. The Aktg site responds more strongly to IR
phosphorylation and achieves maximum phosphorylation once the IR is fully phos-
phorylated. The Aktr, however appears to not to be maximally phosphorylated. It re-
sponds linearly to an increase in IR phosphorylation. However, given the data in Figs.
5.1 and 5.3, Aktr phosphorylates quite strongly in response to insulin concentrations

beyond 100 nM - which is already several times the physiological concentration. Sim-
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ilarly, since the IR seemingly dephosphorylates at such high insulin concentrations,
it might be that the phosphorylation of Akty at such high concentrations of insulin
is due to an IR-independent mechanism. It is possible that the spare phosphorylation

capacity of Akt at high insulin concentrations is an adaptive mechanism which could

ameliorate the consequences of insulin resistance.
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Figure 5.5: The phosphorylation of Akts (red) and Aktr (purple), in response to
increases in IR phosphorylation. The fitted equations (Eq. (5.9) and 5.10) are shown
with dashed lines. The C2C12 cells were exposed to varying insulin concentrations
for 30 minutes, harvested, and then they underwent Western blotting to determine the

relative induction of phosphorylation (as seen in Figs. 5.1, 5.2, and 5.3). Error bars
indicate SEMs and each data point represents the average of a biological triplicate (n

=3)
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5.2.2 The Dose-Reponse Characteristics of the Glucose

Transporter Module

The first set of C'* glucose-uptake experiments sought to establish the relationship be-
tween glucose transporter activity and insulin concentration. The cells were grown
under the previously established conditions and starved as indicated in Chapter 3.
The cells were then exposed to insulin at concentrations which ranged from 0 nM
to 1000 nM for 30 minutes. Thereafter a 2 second “C glucose-uptake assay was per-
formed. When no insulin has been added to the cells, basal glucose uptake of 0.81
pmol.min~!.mg~! was measured. An almost linear relationship between insulin con-
centration and glucose uptake was observed on a semi-log scale (see Fig. 5.6). The
maximum glucose transport rate was 1.91 gmol.min ! .mg_lpmtein at 1000 nM insulin.

Induction of GLUT4 activity was modelled using mass-action kinetics which de-
pended on the Akt phosphorylation. In this case, ‘Akt phosphorylation’ was described
by combining the Aktg and Akt phosphorylation states. Since the precise role of
either phosphorylation site is not known in detail, the assumption was that they both
contribute to the induction of glucose transport activity.

Mass-action kinetics is the simplest form with which to model the induction of
GLUT4 activity by insulin and follows the same principles that were used in mod-
elling the signal transduction pathway. When insulin, and therefore AKT phosphory-
lation are set to 0, there will still be basal glucose uptake owing to insulin-independent
transporter activity such as that of GLUT1. The maximum induction level of glucose
transporter was assumed equal to the maximum activity of 1.91 gmol.min~!.mg~!.
Consequently, if ‘1’ is the maximum normalised glucose transport, then 0.42 is the
basal normalised glucose transport. This then leads to the fraction of inducible glu-
cose transporter being 1 —0.42 = 0.58. In order to describe glucose transporter activity,
Kexo 18 the rate constant for the exocytosis of GLUT4 from the intracellular space to the
PM whereas k4, is used to describe the endocytosis of the GLUT4 from the PM into
the cell. Since the mass action kinetics apply to the inducible or ‘responsive’ elements
in the insulin signalling cascade, they were adapted as follows to take into account the

different dynamics of glucose transport:
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Figure 5.6: Glucose transport activity (in pgmol.min~!.mg~!) as a function of in-
sulin concentration.The C2C12 cells were exposed to varying insulin concentrations
for 30 minutes and then subjected to a '*C glucose uptake assay to determine the dose-
dependent induction of glucose uptake by insulin-stimulated glucose transporters. Er-
ror bars indicate SEMs and each data point represents the average of a biological trip-
licate (n = 3)

LUTM
AGLUTM o % GLUTM(#) + ke X (AK T — AKT[])
dt (5.11)

X (GLUTmax — GLUTM]t])

Where GLUTM represents the portion of glucose transporter at the membrane.

Solving for the steady-state levels of GLUTM yields the following:

N 1+ :exo
GLUTM = (1+ kexo y endo ) x 0.5759 + 0.4241 (5.12)
endo endo +m

€X0

Where AK'T), represents the sum of AKT serine and Akt threonine phosphoryla-

tion and the numbers refer to the basal and inducible activities as determined previ-
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€X0

ously. Fitting the

ratio yields a value of 1.01 (Table 5.1). This was used to sim-
ulate the glucose traerr;dsz)orter activity as a function of Akt phosphorylation as shown in
Fig. 5.7.

In Fig. 5.7, the fraction of total glucose transporter in the plasma membrane is
given as a function of various Akt phosphorylation states. Insulin does not directly
affect the glucose transporter, rather it leads to the activation of a phosphorylation cas-
cade which culminates in the phosphorylation of Akt residues. Therefore, the activity
of the glucose transporter is shown as a function of Akt phosphorylation. Figure 5.7
shows the effect that Aktg (red), Aktr (purple), or the combination of Aktg and Aktr
(black) would have on the glucose transporter. Since the response of the glucose trans-
porter under the influence of both Akt sites was sensitive to the Akt site, the glucose
transporter would be fit to the data which incorporates both Akt phosphorylation sites.

The Aktg site should not be ignored since at lower levels of IR phosphorylation (i.e.

lower insulin concentrations), Aktg is phosphorylated whereas Akt is not (Fig. 5.5).

After Fexo was fit to the data, the complete model was used to predict glucose
transporter earllc(if[)ivity in response to insulin concentration by varying kyr and kpakrs.
The sigmoidal graph in Fig. 5.8 constituted the best fit of the complete model of IR and
Aktg phosphorylation as well as glucose transport to the glucose transport data. The
GLUT4 transporter may not conform strictly to mass-action kinetics, however given

the available data and the modelling strategy, this represents the best approximation of

the GLUT4 transport activity.
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Figure 5.7: The fitted functions for Aktg, (red, dashed), Aktr, (purple, dashed), and
the combined effect of the phosphorylation sites (black, dashed) and their effect on
glucose transporter activity. Error bars indicate SEMs and each data point represents
the average of a biological triplicate (n = 3).
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Figure 5.8: The simulated induction of glucose transport (dashed line) overlaid with
the data used to generate this fit (circles). The C2C12 cells were exposed to varying
insulin concentrations for 30 minutes and then subjected to a '*C glucose uptake assay
to determine the dose-dependent induction of glucose uptake by insulin-stimulated
glucose transporters. Error bars indicate SEMs and each data point represents the
average of a biological triplicate (n = 3).
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5.3 Time Dynamics of the Insulin Signalling Pathway

5.3.1 Investigating Time-Dependent Phosphorylation of the
Insulin Signalling Module

The time-dependent behaviours of IR phosphorylation, Akt serine phosphorylation,
and glucose transport under 100 nM insulinic conditions were investigated. The first
phase of experiments established the ‘on’ behaviour of the insulin signalling cascade.
Cells were cultured as before, starved, and stimulated with 100 nM insulin for a given
period. Thereafter cells were harvested, frozen in liquid nitrogen, and stored until
Western blot analysis. These experiments were repeated with 1 nM insulin for the IR
and Akt proteins. The datapoints in Figs. 5.9a and 5.10a were scaled according to the
dose-response dose-response experiments discussed in Section 5.2 which showed that
when IR and Aktg, were exposed to 1 nM of insulin, they only achieved 12% and
57% of their maximal phosphorylation (i.e. when compared to the 100 nM condition).
Therefore, the IR and Aktg, data for the timecourse experiments in Figs. 5.9a and
5.10a were scaled by 12% and 57% respectively. Neither IR nor Aktp.. showed
an increase in their concentrations for the duration of these experiments (Figs. 5.9a
and 5.10a, solid, black circles).

There is a marked difference in the speed with which the IR and Akt serine phos-
phorylate. The IR achieves near-maximal phosphorylation by the earliest measured
time point (1 minute). It is likely therefore, that the IR achieves 50% of its maximum
phosphorylation in under a minute. The Akt serine achieves its half-maximum phos-
phorylation at the two-minute mark. The levels of IRy, and AKT,, remain constant
for the duration of either experiment. As a result, it is unlikely that observed increases

in IR or Akt phosphorylation are due to increases in the expression of total IR or Akt.
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Figure 5.9: The time-dependent phosphorylation of the IR under 100 nM (blue) and
1 nM (green) insulinic conditions. The IRy, is shown in black and appears to remain
relatively constant throughout the experiment. The data for the 1 nM insulinic condi-
tion (green) are scaled to 12% of their observed values. This was done since directly
comparing ‘full’ induction of IR phosphorylation exposed to 100 nM or 1 nM insulin
after 30 minutes showed that the 1 nM condition only achieved 12% of the phospho-
rylation of the 100 nM condition. The C2C12 cells were exposed to 100 nM insulin
varying time points, harvested, and then they underwent Western blotting to determine
the relative induction of phosphorylation. The IR, values were obtained at 100 nM
insulin exposure. Error bars indicate SEMs and each data point represents a biological
triplicate (n = 3).

5.3.2 Determining the Time-Dependent Activity of Glucose
Transporter Module

A set of time course experiments were performed for glucose transport. Once starved,
the cells were exposed to 100 nM insulin for time points ranging from 1 to 45 minutes.
The cells then underwent a 2 second '4C glucose-uptake assay as described in Chap-
ter 3. These samples were then analysed in a scintillation counter and the data were
used to calculate the glucose uptake rate in gmol.min~*.mg~!. At time-point 0 min -
much in during the absence of insulin - the cells exhibited some level of basal glucose

transport activity (Fig. 5.11). However, the longer incubations with insulin elucidated
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Figure 5.10: Akt serine 473 phosphorylation over 90 minutes in response to 100 nM
(red) and 1 nM (orange) insulin. The reponses by Akt serine vis a vis 1 nM insulin
has been scaled to 57% of the maximal response at 100 nM insulin as per Fig. 5.2.
The C2C12 cells were exposed to 100 nM insulin varying time points, harvested, and
then they underwent Western blotting to determine the relative induction of phospho-
rylation. The Akt values were obtained at 100 nM insulin exposure. Error bars
indicate SEMs and each data point represents a biological triplicate (n = 3).

the temporal behaviour of glucose transport activity. The induction of glucose trans-
port closely mirrored that of Akt serine phosphorylation in that both increase more
slowly when compared to the phosphorylation of the IR and both glucose import and
Akt serine phosphorylation achieve their relative maxima after 15 minutes at 100 nM
insulin and then remain constant.

The most-commonly investigated aspect of insulin signalling is the ‘on’ behaviour.
In other words, the effect that insulin has on the phosphorylation of signalling interme-
diates or on the induction of glucose transport or other molecular activity. However,
considering the pulsatile nature of insulin release in vivo, the ‘off’ behaviour - de-
phosphorylation of signalling molecules or reduction of glucose transport - must be

investigated as well. If dysregulation of the insulin signalling cascade can occur dur-
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ing phosphorylation or transport induction, then it is possible that such dysregulation
would present itself during dephosphorylation or transport reduction.

Therefore, the second phase of experiments was set up as follows: the cells were
grown and exposed to 100 nM insulin as previously detailed. Once the 30 minute in-
sulin stimulation was over, the cells were carefully washed, thrice, with warm PBS,
supplemented with 1 mM of CaCl, and 1 mM of MgCl, . The cells were then left
to incubate in warm, supplemented PBS for time points ranging from O to 60 min-
utes whereafter they were either subjected to a 2 second **Cglucose-uptake assay or
harvested for Western blotting.

As one can see in Fig. 5.12, the phosphorylation of the IR dropped by approxi-
mately 90% (0.08 £ 0.05 of maximum) in the first sample, taken two minutes, after
washing off the insulin. It maintained this low level for the remainder of the experi-
ment. The dephosphorylation of Aktg, occured somewhat more slowly; after 2 min-
utes it had only reduced by approximately 40% (0.6 £ 0.1 of maximum). It reached
its minimum by the 135 minute mark (0.06 £ 0.028 of maximum) which it then main-
tained for the duration of the experiment (Fig. 5.12, red). The IR therefore dephospho-
rylates faster than it phosphorylates.

The changes in glucose transporter activity in response to the removal of insulin
were also assayed. Upon removing insulin from the cells, the glucose import activity
decreased rapidly from its maximum steadily until it returned to basal levels 60 minutes
after the insulin was removed (Fig. 5.11). The glucose transport dynamics, particularly
the endocytosis of GLUT4, are thereby slower than the IR and Akt phosphorylation
dynamics.

The steady-state analysis in Section 5.2 yielded the ratios of the phosphorylation
and dephosphorylation constants for the IR and Akt molecules as well for as the endo-
and exocytosis constants for glucose transporters (shown in Table 5.1). The dynamic
data for the 100 nM insulin exposure were used to fit the individual rate constants. The
values were constrained so as to be consistent with the ratios that had been determined
during the dose-response experiments. Owing to the rapid phosphorylation of the IR

(Fig. 5.9a), it was not possible to estimate an upper bound for k;,jr, which was therefore
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Figure 5.11: After the removal of insulin at 45 minutes, glucose transporter activity
steadily decreases over time until it reaches basal levels at 60 minutes. The increase
in glucose transporter activity in response to insulin stimulation occurs within the first
15 minutes of the experiment. However, the reduction in transporter activity requires
nearly 60 minutes after insulin has been removed in order to return to basal levels. The
C2C12 cells were exposed to 100 nM insulin varying time points and after 45 minutes,
the insulin was removed. At each timepoint, the cells underwent a '*C glucose assay
to determine their insulin-stimulated glucose transport rate. Error bars indicate SEMs

and each data point represents a biological triplicate (n = 3).

fixed at an arbitrary value of 10.
Equations 5.1, 5.2, and 5.11 were fit to the available data. These fits determined the

‘off’/‘on’ ratios shown in Table 5.1. The ratio for Akt was constrained to a value of 10
since this was the lowest value at which no change in the fit of the curve was observed.
These ratios were used to parameterise the model and obtain steady state solutions for
the phosphorylation and dephosphorylation of the IR and Aktg (Fig. 5.12). The same
ratio values were used for the 100 nM and 1 nM simulations (Fig. 5.12 red and orange
respectively). The model was also able to adequately simulate the behaviour of the

glucose transporter in response to the addition or removal of insulin.
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This model integrates data from modules one and two of the ‘three module’ ap-
proach which is described in Section 1.1. It is therefore possible use this model to
simulate the phosphorylation of the insulin signalling cascade (module one) and the
activation of glucose transporter activity (module two) in response to both insulin con-

centration and time.

5.4 Inducing Insulin Resistance in vitro: A Proof of
Concept

The idea that persistent insulinemia and hyperglycemia might lead to insulin-resistant
states was first explored in Chapter 4 where such culturing conditions led to an abbro-
gation of insulin induction of glucose flux. The link between over-exposure to insulin
and high circulating glucose concentrations on the one hand and insulin resistance on
the other is further supported by literature [371, 372]. This section therefore presents
a preliminary exploration of insulin signalling and glucose transport behaviour under
culturing conditions that were designed to mimic insulin resistance.

In order to examine a pseudo insulin resistant state to compare against the refer-
ence state of insulin signalling, the cells were grown and differentiated in either ‘high’
glucose (25 mM) or ‘medium’ glucose (15 mM) conditions with perpetual exposure to
I nM insulin. The cells were grown under these two glycaemic conditions in order to
assess whether the media glucose concentration had any effect on the insulin sensitiv-
ity of the cells. Similarly, the addition of 1 nM of insulin to the growth medium was to
simulate perpetual hyperinsulinaemia and consequently to examine whether this would
induce an insulin resistant state.

Subsequently, the cells were starved as before (see Chapter 3) and then stimulated
with 100 nM insulin and either 5 mM (reference condition) or 25 mM (experimental
condition) glucose in order to assess the phosphorylation behaviour of the IR and Akt.
Cells that had been grown at 15 mM glucose and without perpetual insulin were used
as controls - in other words, these cells yield the reference state of insulin signalling.

The phosphorylation levels of the IR or the Akt serine site after 30 minutes of exposure
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Figure 5.13: The kinetic behaviour of IR phosphorylation in response to 100 nM in-
sulin, under 5 mM glucose and insulin resistant conditions (squares), 25 mM glucose
and insulin resistant conditions (diamonds), and under control conditions (circles).
Control cells (circles) were grown and differentiated as described in Section 3.2.2.
Cells that were challenged with 5 mM glucose and 100 nM insulin (squares) were
grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM insulin. Cells
that were challenged with 25 mM glucose and 100 nM insulin (diamonds) were grown
and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin. At each time
point, the cells were harvested and subjected to Western blotting in order to determine
their relative phosphorylation state. The experimental conditions reflect data from a
single experiment.

of these cells to 100 nM insulin were set to 1 (see Fig. 5.13, Fig. 5.14, and Fig. 5.15).
This value was used to normalise all other results and will serve as the reference value
for IR and Akt phosphorylation. The dynamic phosphorylation results of the insulin-
resistant cells were normalised to and expressed as a fraction of the reference value. In
order to control experimental error, the samples for each were loaded on the same gel
and at the same total protein concentration.

The first set of experiments assessed the phosphorylation of the IR and Akt in
pseudo insulin resistant cells by stimulating the cells with 100 nM of insulin and either
5 mM or 25 mM of glucose. Under both glucose conditions, the IR phosphorylated
in a similar manner to the control cells. The cells cultured under low-glucose insulin-
resistant conditions (Fig. 5.13, squares) perhaps even hyperphosphorylating (to 1.5-
fold of control) within the first 10 minutes. Under hyperglycaemic conditions, the IR

in pseudo-insulin resistant cells exhibited phosphorylation dynamics similar to those
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Figure 5.14: The phosphorylation of Aktg, in pseudo insulin-resistant cells after 100
nM insulin exposure. Control cells (circles) were grown and differentiated as described
in Section 3.2.2. Cells that were challenged with 5 mM glucose and 100 nM insulin
(squares) were grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM in-
sulin. Cells that were challenged with 25 mM glucose and 100 nM insulin (diamonds)
were grown and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin.
Both insulin resistant states showed altered dynamic behaviour of Aktg, phosphory-
lation with a peak occurring at 30 minutes, and a final phosphorylation state between
60 and 70% of control. At each time point, the cells were harvested and subjected to
Western blotting in order to determine their relative phosphorylation state. The exper-
imental conditions reflect data from a single experiment.

of the reference state (Fig. 5.13, diamonds).

Similarly, in cells grown with low glucose and 1nM insulin, Aktg, appears to hy-
perphosphorylate after 30 minutes to nearly 1.5-fold of normal induction (Fig. 5.14,
squares), after which it returned to consistent below-reference ranges of phosphoryla-
tion (0.66 to 0.72-fold of reference) for the duration of the experiment. However, given
the trend of the remaining data as well as the data from those cells cultured under high
glucose insulin-resistant conditions, it is likely that this is an outlier.

The phosphorylation of Aktg, in cells that had been exposed to 25 mM glucose
and persistent InM insulin (Fig. 5.14, diamonds), also achieved its maximum phospho-
rylation after 30 minutes, however the peak was substantially subdued when compared
to the dynamic behaviour of control cells (Fig. 5.14, circles) and low glucose, insulin
resistant cells (Fig. 5.14, squares).

The phosphorylation of Akty,was significantly diminished in cells which had been
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Figure 5.15: The phosphorylation dynamics of Aktr, under control (circles), low
glucose pseudo insulin-resistant (squares), and high glucose pseudo insulin-resistant
(diamonds), states. Control cells (circles) were grown and differentiated as described
in Section 3.2.2. Cells that were challenged with 5 mM glucose and 100 nM insulin
(squares) were grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM in-
sulin. Cells that were challenged with 25 mM glucose and 100 nM insulin (diamonds)
were grown and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin. At
each time point, the cells were harvested and subjected to Western blotting in order
to determine their relative phosphorylation state. The experimental conditions reflect
data from a single experiment.

incubated in the presence of insulin. Hyper- and normo-glycaemic states showed a
marked reduction in phosphorylation (Fig. 5.15, squares and diamonds respectively).
After 60 minutes, neither insulin-resistant condition were able to maintain much of
a phosphorylated state. This is in stark contrast with the normal Akty, signalling
which was able to maintain maximal posphorylation for at least 60 minutes (Fig. 5.15,
circles). However, given that these experiments which explore the signalling cascade
have yet to be repeated, it is not possible to draw any strong inferences from these data.

The behaviour of the glucose transporter under insulin resistant states was deter-
mined. First, the cells were grown under insulin resistant and 15 mM or 25 mM glucose
states and then they were exposed to 100 nM insulin and low (5 mM) or high (25 mM)
glucose for 30 minutes before undergoing a *C glucose-uptake assay. These results
are shown in Fig. 5.16. Both the high and low glucose experiments showed some in-

duction in glucose transporter activity, however neither achieved the 2-fold induction
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Figure 5.16: The fraction of total glucose transport rate in high (red) and low (grey)
glucose insulin resistant cells. After the cells were exposed to 100 nM insulin for 30
minutes, they were subjected to a '*C glucose uptake assay in order to determine their
glucose transporter activity. The initial glucose transporter activity (before the addition
of insulin) are elevated above normal (0.4) for both glycemic conditions. However,
their induction response of glucose transport is severely impaired, with only minor
increases in glucose transport being recorded in response to insulin induction. Error
bars indicate SEMs and each experiment represents a biological triplicate (n = 3).

thereof as one sees with control cells.

Based on the results in Fig. 5.16, the next experiments explored the time dynamics
of the glucose transporter activity when exposed to 100 nM insulin and either 5 mM
or 25 mM of glucose. The cells for the ‘low glucose’ experiments were cultured at
15 mM of glucose, 10% v/v FBS, and 1 nM of insulin until fully differentiated upon
which they were washed with 37°CPBS (inclusive of 1 mM of both CaCl, and MgCl,
). Thereafter the cells were challenged with 5 mM of glucose and 100 nM of insulin.
Conversely, the cells for the ‘high glucose’ experiments were cultured at 25 mM of
glucose, 10% v/v FBS, and 1 nM of insulin until fully differentiated whereupon they
were washed with 37°CPBS (inclusive of 1 mM of both CaCl, and MgCl, ). The cells

were then challenged with 25 mM of glucose and 100 nM of insulin.
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Figure 5.17: The glucose transport dynamics in pseudo insulin resistant cells which
were challenged with 100 nM of insulin and either 5 mM of glucose (blue) or 25 mM
of glucose (red) after which they underwent a '*C glucose uptake assay to determine
their glucose transporter activity. The cells in blue were grown and differentiated at 15
mM of glucose, 10% v/v/ FBS, and 1 nM of insulin whereas the cells in red had their
glucose concentration increased to 25 mM. Control cells are shown in black. Error
bars indicate SEMs and all data points represent three biological repeats (n = 3).
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Figure 5.18: The ratios of the 60 minute changes in Aktg (blue) and Akt (red) phos-
phorlation to IR phosphorylation, in control, low glucose (LG) diabetic, and high glu-
cose (HG) diabetic cells. The change across 0 and 60 minutes was chosen as it spans
a period before insulin was added to after the glucose transporter activity and Akt
phosphorylation had stabilised.

The initial glucose transporter activity (before the addition of 100 nM insulin), for
both the high and low glucose insulin resistant cells was elevated when compared to
the control cells (Fig. 5.17 red, blue, and black, respectively). However, unlike the
control cells, the insulin resistant cells are unable to respond to insulin by upregulating
glucose import to the degree (= 2-fold) that was established in Section 5.3). The
glucose transporter induction in insulin resistant cells is also more temporary than that
of control cells. Glucose transporter activity remains induced for at least two hours in
control cells whereas insulin resistant cells appear to lose their glucose induction after

20 to 30 minutes.
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Once the preliminary data were collected, the next was to determine with which
module the error lay. In order to to this, the ratios of the changes (from 0 to 60 minutes)
in Akt phosphorylation to IR phosphorylation and glucose transporter activity to Akt
phosphorylation were graphed as seen in Figs. 5.18 and 5.19. This does bear the
risk that incredibly small changes in the independent variable (i.e. the denominator)
can bias the ratios. However, in Figs. 5.14, 5.15, and 5.17 one can see that Akt
phosphorylation and the induction of glucose transporter activity changes from the 0
to 60 minute point are both low. Therefore, since both Akt and glucose transporter
activity are significantly diminished and display similarly small changes, such ratios
can be useful when determining which of these modules respond differently to the
control values.

Larger ratios indicate that the independent variable is more sensitive to the depen-
dent variable whereas smaller values indicate a loss of sensitivity to the independent
variable. In other words, in Fig. 5.18 one can see that the ratio of IRp to Aktg, is
1.7. This indicates that Aktg, increases at disproportionately higher levels in response
to IR phosphorylation. Similarly, in the pseudo insulin-resistant condition, the phos-
phorylation of Aktg is seemingly nearly entirely diminished. The levels of Akty, are
reduced as well, although not as strongly as the Aktg, levels.

In Fig. 5.19 one can see that glucose transporter activity is moderately sensitive to
Aktg, and Aktr,. However, in the pseudo insulin-resistant cells, there is a marked
reduction in glucose transporter sensitivity to Akts, whereas the sensitivity to Aktr,
remains unchanged, with perhaps a slightly reduced sensitivity to Akty, in pseudo
insulin-resistant cells cultured under high glucose conditions.

This does not mean that glucose transporter activity has become uncoupled from
Akt phosphorylation. Rather, taking the data in Figures 5.14, 5.15, and 5.17 into ac-
count, one can see that under pseudo insulin-resistant conditions, glucose transporter
activity is significantly diminished. Akt phosphorylation at the 60 minute mark is sim-
ilarly reduced whereas there appears to be no significant change in IR phosphorylation
at the same timepoint (Fig. 5.13).

Additionally, with Fig. 5.18 these data implicate the signalling module as the com-
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Figure 5.19: The ratios of the 60 minute changes in glucose transporter activity to
Aktg, (red) and Aktr, (purple) in control, low glucose (LG) diabetic, and high glu-
cose (HG) diabetic cells. The change across 0 and 60 minutes was chosen as it spans
a period before insulin was added to after the glucose transporter activity and Akt
phosphorylation had stabilised.

ponent responsible for reduced glucose transporter activity in pseudo insulin-resistant
cells. More specifically, the fault could be within one of the intermediates between
IR and Akt since the signal from IR to Akt is already diminished. This would lead
to a lower output of the signalling module - in other words, lower Akt phosphoryla-
tion which in turn impacts glucose transporter activity as seen in Fig. 5.19. However,
despite these initial results, more conclusive data is required before these data can be

used for reliable model simulations.
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5.5 Discussion

The insulin receptor and Akt proteins both phosphorylate in response to stimulation by
insulin (Section 5.2). The Aktg site responds more strongly at lower concentrations of
insulin than the insulin receptor does. At an insulin concentration of 10 pM, the Akt
serine site is already phosphorylated to 25% of its maximum value (Fig. 5.2) whereas
the insulin receptor only achieves approximately 5% of its maximum phosphorylation
(Fig. 5.1). Similarly, at insulin concentrations of 1 nM, 10 nM, 20 nM, and 50 nM,
Aktg is consistently phosphorylated to a greater degree of its maximum than the IR is.

However, in reality, Akt does not directly phosphorylate in response to insulin since
these molecules do not interact. Rather, Akt is phosphorylated by upstream agents
such as MTORC1/2 or PDKI. In this study, the insulin receptor is used as a proxy
for these intermediates. While not entirely accurate, these data indicate that relatively
small increases in the degree of phosphorylation of the IR are amplified downstream
and ultimately lead to a stronger response from molecules such as Akt. This is further
evidenced by phosphorylation of the Akt site (Fig. 5.3). While this site does not
appear to detectably phosphorylate at insulin concentrations under 20 nM, it does seem
to have significant capacity for phosphorylation at insulin concentrations beyond 100
nM. While the IR and Aktg sites both exhibit slight decreases in phosphorylation,
the Aktr site phosphorylates to between two and three times its control value. This
possibly indicates that the phosphorylation of Aktr could be a mechanism by which
the cell attempts to regulate extreme hyperinsulinemia and hyperglycaemia. It is also
likely that this could be a mechanism through which the cell seeks to compensate
for the apparent desensitising of the IR and Aktg at extremely high concentrations of
insulin.

The glucose transporter reacts to concentration increases of insulin in a similar,
dose-dependent manner as the phosphorylation of the IR and Akt proteins (Fig. 5.6).
However, much like Akt does not react directly to insulin, neither does the glucose
transporter. The glucose transporter will react to increases in upstream intermediaries
(notably AS160) for which the Akt will serve as a proxy. With this in mind, the re-

sponse of the glucose transporter activity to Akt phosphorylation is shown in Fig. 5.7.
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Since Aktg and Aktr may be responsible for the activation of glucose transporter
translocation, the combined effect of these phosphorylated sites is shown in addition
to their singular effects. It appears that the combined impact of Akts and Aktr phos-
phorylation closely resembles that of Aktr on its own. This possibly indicates that
Akt is a stronger determinant of glucose transporter induction - especially at greater
insulin concentrations - than Aktg phosphorylation.

The full phosphorylation and dephosphorylation of the IR occur rapidly - within
one minute of either adding or removing the insulin (Fig. 5.12). The Akt protein how-
ever phosphorylates and dephosphorylates much slower, requiring at least 15 minutes
to fully phosphorylate and nearly an hour to dephosphorylate. These dynamics are mir-
rored by the induction and reduction of glucose transporter activity (Fig. 5.11). This
may indicate that the IR is more sensitive to in sifu oscillations in insulin concentration.
Should the IR be too strongly induced or induced for too long, this may over-activate
glucose transporter activity with respect to the metabolic demands or available glu-
cose at that time. Therefore, given the ‘amplification’ of the IR phosphorylation on
to the Akt phosphorylation, it is likely that the rapid ‘on-off” dynamics of the IR are
a mechanism by which the Akt-dependent pathways and glucose transporter activities
are regulated.

The data from the insulin dose-dependent experiments were used to estimate the
stead-state parameters of the forward and reverse reactions which constituted the ODEs.
These steady-state parameters were used as model constraints in order to simulate the
time dynamic phosphorylation and dephosphorylation of the signalling module com-
ponents as well as the induction and reduction of glucose transporter activity. The
goal at the outset of this chapter (Section 5.1) was to develop a minimal mathematical
model which is able to simulate the phosphorylation and glucose transporter activity
dynamics of the insulin signalling and glucose transporter modules. This approach,
by its nature, is limited in that it does not account for the significant complexity and
numerous parameters that the entire insulin signalling system would contain.

However, the model was able to produce predictions for the ‘on-off’ behaviour of

the insulin signalling and glucose transporter modules. In contrast to the complex-
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ity of models such as those of Sedaghat [292] or Brannmark et al [315], this model
can provide insight into the signalling and glucose transporter modules by perturbing
one or two carefully selected molecules and examining the systemic behaviour of the
signalling cascade. The fits generated herein are not the best-possible fits for such a
system, but they offer an experimentally and computationally straightforward method
by which one can assess the functioning of each module.

The pseudo insulin-resistant cells the phosphorylation responses of the IR, Aktg
and Akt upon insulin induction in pseudo insulin-resistant cells were compared with
those of control cells. For the IR there was no significant difference, or even a small
increase in the phosphorylation, while both the Aktg and particularly the Akt seemed
to have a lower induction level then the control cells. However, it does appear as if
those cells grown with 25 mM have a consistently lower degree of phosphorylation
than cells grown with 15 mM glucose.

The effect of insulin resistance on glucose transporter activity is shown in Figs.
5.16 and 5.17. In Fig. 5.16, the pseudo insulin-resistant cells indicated an inability to
induce glucose transport activity in response to 100 nM insulin. Similarly, the dynamic
induction of glucose transporter activity in insulin resistant cells differed significantly
from control cells (Fig. 5.17). While glucose transporter activity can be induced with
100 nM insulin, it does not achieve the expected two-fold induction, nor are insulin
resistant cells able to maintain this induction of glucose transport activity for as long

as control cells.
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Chapter 6

Insulin Induced GLUT4 Clustering

6.1 Introduction

In mature, insulin-sensitive tissues, GLUT4 is the primary insulin-responsive glucose
transporter [182]. The exposure of skeletal muscle or adipose tissue to insulin results
in the translocation of GLUT4-containing vesicles such as endosomes or, the more
specialised, GLUT4 storage vesicles (GSVs), from the perinuclear and perimembrane
spaces to the plasma membrane (PM) [31]. Exposure to insulin also alters the dynamics
of GLUT4 endo- and exocytosis. Typically, when the cells are at rest, there is a slow,
yet persistent recycling of GLUT4 between the endosomes and the plasma membrane
[201]. This ‘recycling’ - rate by which GLUT4 enters and exits the PM - increases by
as much as 60-fold whereas the retention of GLUT4 in the PM can increase by as much
as ten-fold in response to insulin [201, 373, 374]. However, since evidence suggests
that the translocation of GLUT4 and its activation are distinct processes, an increase in
GLUTH4 at the PM does not imply an increase in glucose import [375]. In support of
this, experiments by Ishiki et al (2005) showed that while either P1(3,4,5)P; and PI3P
are sufficient for the mobilisation of GLUT4 to the membrane, the former mediates
fusion without activation whereas the latter mediates activation, but not fusion with the
PM [108].

Under basal conditions, GSVs are localised to the apex of the perinuclear space

and are thereby found in relatively dense clusters [108, 376]. Due to the rapid decay
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or degradation of solitary GLUT4 molecules, it is mostly distributed among larger
endosomes, smaller GSVs, and the trans-Golgi network [377-379]. The balance of
this distribution shifts from a mostly-endosome to a mostly GSV distribution as the
cells mature and differentiate [380]. The location of these vesicles coincides with the
the microtubule organising center (MTOC) [374, 381]. This centrosomal structure
forms a hub where actin and tubulin filaments attach to and nucleate from [382].

The translocation of GSVs to the PM has been shown to co-localise with micro-
tubules in undifferentiated cells [374]. Here a problem is that many studies that rely on
fluorescent microscopy to reach these conclusions are unable to differentiate between
GSVs that are near the membrane and those that are within the membrane. While
the cytoskeleton may not be necessary for the translocation of GSVs, it may play an
important role in the direction or targeting of GSVs to specific sites on the PM [374].

This question - whether MTs aid in the directing of GSVs - was explored by
Stenkula et al (2010). They found that the distribution of GLUT4 in response to in-
sulin (70 nM, 30 min), was inhomogenous and organised in clusters along the plasma
membrane [373]. Later work by Dawicki-McKenna et al (2012) showed that such
clusters occur near the membrane-associated ends of microtubules [374]. Lastly, super-
resolution microscopy of 3T3-L1 adipocytes indicated that exposure to insulin results

in more, but smaller clusters distributed along the PM [202].

6.1.1 Clustering Methods: An Overview

While no strict definition of a ‘cluster’ has been agreed on, a cluster - or set thereof -
can be identified by at least three features [383]. Firstly, data within a cluster should be
as similar as possible. In practical terms, for this study, this similarity was determined
by calculating the euclidean distances between each point and every other point, the
distances between each point and the cell nucleus, and the variances across those dis-
tances. The second feature suggests that data in different clusters should be as different
as possible. For any cluster this was assured by excluding data that was displaced from
the centre of the emerging cluster by more than three times the mean euclidean distance

of the points already in the emerging cluster. The third feature requires that the simi-
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larity and dissimilarity measures are explicit and transparent and that these measures
can be quantified and implemented computationally [383].

Three clustering methods were considered for the analysis of the data: K-means
methods, density-based methods, and hierarchical methods. K-means clustering was
an initial candidate due to its lower computational intensity and time-dependence [384].
However, this type of clustering requires foreknowledge of the numbers of clusters one
wishes to find [385]. K-means methods are useful for partitioning data according to
a specific aim or design. Since the data in this study provided no indication as to the
number of clusters one expected to find and in an effort to avoid bias, K-means, and
partitioning methods in general, were put aside.

Density-based algorithms such as DBSCAN were considered as they rely on nearest-
neighbour density of data points [386]. The data generated in Section 6.3 appeared
sufficiently densely populated to warrant density-based clustering. However, density-
based methods suffer when presented with data of highly uneven densities [383].
This meant that data with punctate clusters dispersed across an arbitrary space might
compromise the algorithm. Additionally, such methods are computationally intensive
[387].

Hierarchical clustering methods were selected by relating the data back to a bio-
logical context. Current theory holds that GLUT4 not at the PM is primarily found
in GSVs and endosomes. These vesicles are, in turn, co-located around the MTOC
in the perinuclear region [388]. Therefore, GLUT4 is already present in a ‘cluster
of clusters’. Bottom up hierarchical clustering methods assume that each individual
data point is a cluster [389]. The algorithm then seeks to merge clusters based on the
distances between each cluster and the density within each cluster until a minimum

number of clusters has been achieved.

6.1.2 Motivation and Aim

The data generated by overexpressing a GLUT4-GFP construct in C2C12 cells, stain-
ing the nucleus and membrane, and confocal microscopy were kindly used by Prof.

J. L. Snoep of Stellenbosch University to generate the images in Fig. 6.1. In these
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images, one can see that in the pre-insulinic cells, the GFP signal is located in the
perinuclear region (Fig. 6.1a). More specifically, it is concentrated to one apex of the
nucleus. It is likely that this is where the MTOC is located, since GSVs are known to
concentrate here [374]. Conversely, in the post-insulinic cell, the GFP signal is more
distributed throughout the cell (Fig. 6.1b).

These observations led to the development of two aims: firstly, to investigate
whether clustering analyses can be applied to the types of images and data generated
from the imaging studies. Secondly, to examine whether such analyses could lead to
novel, meaningful insights into the clustering behaviour of GLUT4 between pre- and
post-insulinic C2C12 myoblasts.

In order to fulfil the demands of the first aim one would need to know whether there
are differences in the number of clusters between the pre- and post-insulinic cells and
whether the number of GFP signals (pixels) had an impact on the number of clusters
that were identified. Once these questions are answered, focus shall shift on to the

second aim where the following questions may be addressed:

1. Are the differences in cluster quantity between the different insulinic conditions

a real phenomenon or due to chance?

2. Do the post-insulinic clusters differ from the pre-insulinic clusters with regards

to the number of pixels they contain?

3. Is there a difference in the proportion of pixels that are assigned to clusters be-
tween the insulinic conditions? This would establish whether insulin has an

effect on the dispersion of pixels throughout a cell.

4. If insulin has a dispersive effect on the GFP-tagged GLUT4, can this be de-
termined both on a cluster and on an individual pixel level? In other words, are
clusters and pixels in post-insulinic cells more distant from the perinuclear space

than in post-insulinic cells?

5. What are the differences in cluster densities between pre- and post-insulinic

cells?
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(b)

Figure 6.1: Three-dimensional reconstructions of pre-insulinic (Fig. 6.1a) and post-
insulinic (Fig. 6.1b) cells from GLUT4-GFP, Hoechst stain, and membrane-staining
data. The GLUT4-GFP signal is shown in green whereas the nucleus and membrane
are shown in blue and yellow respectively. The pre-insulinic cell (Fig. 6.1a) has di-
mensions of 160 x 280 x 90 pixels which corresponds to a length of 21 pm, a breadth
of 37 pm, and a height of 12 ym. Similarly, the post-insulinic cell (Fig. 6.1b) has di-
mensions of 410 x 360 x 90 pixels which corresponds to a length of 54 ym, a breadth
of 47 pm, and a height of 12 pm.
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The C2C12 myoblasts were transfected as discussed in Chapter 3. Images were ac-
quired as described in Chapter 3. Myoblasts were used for these experiments since the
plasmid was rejected during differentiation and myofibers did not transform. Two sets
of images were acquired: those representing a pre-insulinic state, and those represent-
ing a post-insulinic state. The images were pre-processed in the FiJi implementation
of ImageJ. The .Ism files were separated into individual .tiff files according to colour
channel and Z-position. Further, the background for each image was subtracted with
the ‘Rolling Ball’ method. The images were then imported into Mathematica where
they were deconvoluted using Mathematica’s ‘ImageDeconvolve’ function. The im-
ages were then manually examined and a rectangular border was drawn around each
cell. All further analyses occurred within these pre-determined boundaries.

For the purposes of these analyses, the pixel intensity values were used. Mathe-
matica was tasked with finding the 2-dimensional coordinates of every green pixel in
every image for every cell. This was performed for various intensities of green. The
software categorised these intensities according to a ‘dissimilarity’ score where 1 is
the most dissimilar to green and a null value is the most similar. For the purpose of
this study, values from 0.5 to 0.99 - in other words 50% to 99% - were used.

The dimensions of each pixel were calculated to be 136 nm by 136 nm since each
1024 x 1024 image was 139.8 um x 139.8 um according to the instrumentation.
Similarly, since each Z-slice represented a depth of 690 nm, each slice was calculated
to be approximately 5 pixels deep. However, since each image is two-dimensional, the
three dimensional position of each pixel had to be estimated. In order to do this, the
highest and lowest possible position for a pixel in each Z-stack were estimated. For
example, the lowest point for the first slice was set to ’0’ whereas the highest point was
set to 5 pixels. Thereafter, within each pixel range for any z-slice, the position of each
pixel was assigned a random z value based on Mathematica’s ‘RandomReal’ function
and the depth constraint of 5 pixels since the z value was not known for the pixels.

After the 3-dimensional pixel positions were identified, they were fed into a custom

algorithm that calculated the number of clusters and defined certain exclusion criteria
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by which ‘true’ clusters were identified. The clustering made use of Mathematica’s
‘FindClusters’ function and it was specified to calculate the Euclidean distances be-
tween each pixel in each image. Based on the distances between each pixel in each
image, the function then made use of the ‘Agglomerate’ option which determined the
number of clusters based on a hierarchical algorithm.

Hierarchical clustering was appropriate for this problem from a biological view-
point. GLUT4 is already arranged into ‘mini’-clusters of up to 25 molecules per
GSV [31]. These GSVs are in turn clustered around the perinuclear space - more
specifically, the MTOC [390]. Further, once translocation of the GSVs occurs, they
move along the cytoskeleton. Since there are a limited number of cytoskeletal filaments
in a cell in relation to the number of GSVs, this will further contribute to clustering of
GSVs along the cytoskeleton. This has been observed in [202] who show that, not only
do GLUT4 molecules co-locate with the ends of microtubules, the density of GLUT4
decreases significantly with increasing distance from the MTs. This led to the decision
that, since GSVs appeared to be organised as clusters within clusters which translocate
as clusters, using hierarchical clustering function was appropriate (see Section 6.1.1).

The algorithm was further designed to exclude certain pixels or clusters from the
final results based on certain criteria. In both the pre-insulinic and post-insulinic cells,
clusters with fewer than the median number of members (3 and 11 respectively) were
excluded in order to control for skew in the data. Additionally, due to the inefficient
transformation, blebbing, or lysis of some cells it was possible for small quantities of
GFP-tagged GLUT4 to present beyond the boundaries of the cell under investigation.

In order to account for these outliers, the Euclidean distances between each pair of
pixels were calculated and pixels which were more than three times the mean distance
were excluded. Lastly, the logarithm of the total variance of the Euclidean distances
between the pixels within a cluster was calculated in order to account for skewed data.
This was then normalised to the total number of members of the cluster to serve as
a proxy measure for the density of a cluster. Clusters which had a density of three
standard deviations from the mean density of the clusters within a cell were excluded

from further analysis.
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Considering that, at this point, each experimental condition was defined by a set
of Z-stacks for each pixel intensity value, the question arose: at which pixel intensity
value was the data most significant? Since the data were non-normally distributed, a
Mann-Whitney U test was used to compare the numbers of clusters in the pre-insulinic
cells with those in post-insulinic cells in order to determine whether the differences
in cluster numbers were statistically significant. Similarly, Spearman Rank correlation
tests were applied to each set of 3-dimensional points to test whether the number of
clusters depended on the number of pixels in a set of images. This was important since
the numbers of pixels differed by as much as a factor of three between some images.

The final set of 3-D positions were selected according to p-values and the spread
of the Euclidean distances within each cluster. The latter was assessed using the vari-
ances, standard deviations, mean deviations, and numbers of outliers for each experi-
mental condition and pixel intensity values. Using these 3-dimensional pixel positions
as well as their clustering characteristics, Mathematica was asked to discretise these
into distinct regions with the ‘ConvexHullMesh’ function. Thereafter, the center point
of each cluster was determined using ‘RegionCentroid’. This served a two-fold pur-
pose. Firstly, the Euclidean distances between the centers of each combination of
clusters were determined and the total variance among these distances was used as
a proxy for the overall dispersion of the clusters. Secondly, the center point of each
nucleus was determined by manually defining the nuclear region and using ‘Convex-
HullMesh’ and ‘RegionCentroid’. These data were then used together with the center
points of each cluster in order to determine whether the Euclidean distances between

each cluster and the nucleus had increased in response to insulin.

6.3 Results

The following section discusses the results in two separate phases of analysis. First it
was necessary to determine which pixel intensities were suitable for further analysis
and then sort these into clusters. These intensities are inverse to how strongly the GFP

fluoresced and represent a threshold which excludes pixels above the designated value
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(as discussed in Section 6.2). Larger values would therefore include more pixels and
lower values would include fewer pixels. The number of pixel positions that are sub-
sequently analysed by the algorithm has an effect on the accuracy of the analyses that
are generated. Therefore, before delving into the analyses of the clusters themselves,
it is important to ensure that the data are appropriate for such analyses. Secondly, the
clusters themselves will be analysed with regards to their density and distribution in
order to determine whether there are differences between pre- and post-insulinic cells.

Mathematica was used to determine the clusters by using its integrated ‘FindClus-
ters’ function. This function made use of the ‘Agglomerate’ method and evaluated the
Euclidean distances between each pixel in order to determine the numbers of clusters.
Agglomerative methods are a subset of a hierarchical clustering method that make use
of a ‘bottom-up’ approach. Each cluster begins as a single observation and is then itera-
tively sorted into ever larger clusters [389]. This method allowed a blind determination
of clusters whereas methods based on K-means clustering requires foreknowledge of

the numbers of clusters one expected to find and was therefore not used.

6.3.1 Determining the Number of GFP Clusters in C2C12
Myoblasts

Images were captured from two sets of 12 cells that were equally divided among the
pre-insulinic and post-insulinic experimental groups. The data generated by the imag-
ing analyses and clustering algorithm were binned as follows: first they were cate-
gorised according to pre- or post-insulinic conditions. Thereafter, within each experi-
mental condition, the pixel positions were binned according to the pixel intensity that
was used to generate them. These data were then used to generate box plots of the pre-
and post-insulinic cells (Figs. 6.2 and 6.3 respectively) which indicate the spread of
data, the medians of each set of data, and the number of outliers (five number sum-
maries can be found in Table 6.1). The pre-insulinic cells showed greater variability
in the number of clusters as the pixel intensity increased above 75% (Fig. 6.2). The
variability in cluster numbers for the post-insulinic cells remained stable for pixel in-

tensities between 70% and 85% (Fig. 6.3). Including too many or too few pixels
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Figure 6.2: Box whisker plots of the clustering data in pre-insulinic cells which indi-
cate the five number summaries of the clustering data: smallest clusters, largest clus-
ters, median number of clusters, and the 25" and 75" quartiles. Pixel intensities above
75% resulted in greater variability in the data. Therefore values of 75% and lower were
considered for further analysis. Outliers are presented as gray dots. See Table 6.1 for
the relevant five number summaries of these data. These data were gathered from 12
individual cells (n = 12).
resulted in less reliable data. Therefore, taking the variability of all data into account,
this limited the range of acceptable pixel intensities to between 65% and 75%.
Barring a single outlier in the pre-insulinic condition at 100% pixel intensity, the
median number of clusters that was identified for each experiment and intensity value,
remained fairly constant (Figs. 6.2 and 6.3). This further mitigated any impact that

the choice of pixel intensity may have had on the number or the distribution shift of

the clusters in either experimental condition. Similarly, a disconnect between pixel
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Figure 6.3: The spread of clustering data in post-insulinic cells as visualised using
box whisker plots. These pots indicate the five number summaries of the clustering
data: smallest clusters, largest clusters, median number of clusters, and the 25" and
75" quartiles. Lower (50 and 60) as well as higher (95 and 100) percent pixel values
present with greater variability in the data. Despite this, however, the median values
remained relatively constant. Values between 65 and 90% were considered for further
analysis. Gray spots represent outliers in the data. The relevant five number summaries
of each percent pixel intensity can be found in Table 6.1. These data were gathered
from 12 individual cells (n = 12).

intensity and median numbers of clusters further reduced the impact of any bias that
could be present in the analysis. The final decision to use the 75% value was based
on the observation that this had the fewest outliers (2), compared to the 70% and 65%
values (4 and 8 respectively) as seen in Table 6.2.

Since the pixel intensities correlated positively with the number of pixels that were

ultimately analysed, the need arose to investigate whether pixel intensities correlated
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with the number of clusters. In other words, does a greater number of pixels to be
analysed, result in the identification of more clusters? In order to test whether the
number of points influenced the number of clusters, a Pearson’s correlation test was
used. The test showed very weak correlation among the post-insulinic cells. At a
correlation coefficient of 0.067, this indicated that approximately 7% of the increase
in the number of clusters could be attributed to the greater numbers of pixels. The pre-
insulinic cells however, showed greater - albeit weak - correlation between their pixel
numbers and the number of clusters. The correlation coefficient in this instance was
0.33. This indicates that the number of clusters somewhat dependent on the number of
pixels used for the analysis. The number of clusters in pre-insulinic cells may therefore
be slightly overestimated.

Insulin might stimulate the synthesis of new GLUT4 proteins. However, previous
studies have shown that exposure to insulin shows no significant increase in GLUT4
mRNA or protein levels [391, 392]. Additionally, the plasmid is constitutively ex-
pressed and the promotor is insensitive to insulin. Finally, no change in overall flu-
orescence was noticed throughout the experiment. It was therefore assumed that the
differences in the amount of GFP signal were due to either the greater dispersion of
GFP-tagged GLUT4 or due to inherent biological variation in the cells. A Mann-
Whitney U test was used to determine whether the differences in GFP signal between
pre- and post-insulinic cells could be due to chance or whether they represented a sta-
tistically significant difference. The results indicated that the differences in GFP signal
were a real - biological - phenomenon, and not due to chance (p < 0.01). The dif-
ferences in pixel number is thought to be due to the greater dispersion of GFP-tagged
GLUT4 as a consequence of insulin exposure. More dispersed GFP signal could give
the impression that more GFP-tagged GLUT4 is present in a cell since the diffraction
limit of the confocal microscope would obscure more densely clustered GFP-tagged

GLUTA4.
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6.3.2 Analysing the Cluster Characteristics: Differences,

Dispersion, and Densities

The cluster data lead to the development of several questions. Firstly, are the differ-
ences between the number of clusters found in pre- and post-insulinic cells significant?
Secondly, do these clusters, on average, differ significantly with regards to the number
of pixels included within them? Thirdly, is there a difference between the proportion of
pixels that have been included and excluded from clusters among the different insulinic
conditions? Fourth, are the clusters and pixels more dispersed - distant from the nu-
cleus - in post-insulinic cells than in pre-insulinic cells? Finally, are there differences
with regard to the densities of the clusters in pre- and post-insulinic cells?

Table 6.2 shows the differences among the numbers of clusters between pre- and
post-insulinic cells. However, the question arose whether these differences were bio-
logical features, whether they were systematic artefacts of the imaging or data analysis,
or whether they were due to random error. In order to test whether these differences
were real or due to chance, a Mann-Whitney U test was used to compare the numbers
of clusters with one another. The Mann-Whitney U test compared the numbers of clus-
ters in the pre- and post-insulinic cells across the range of pixel intensities. The 75%
value displayed the lowest p-value at 9.73E-05 which further supported this as being
the appropriate pixel value to use. Therefore, the differences in the numbers of clusters
was due to the effect of insulin. The only instances where the differences in cluster
numbers between the insulinic states was not significant (p>0.05), was with the 95%
and 100% pixel intensities. This is most likely due to the large degree of ‘noise’ that is
included in the data when using these values.

Another question that emerged from comparing the two data-sets was whether the
differences in cluster numbers between the two insulinic states was due to the effect of
the insulin or due to random, biological variation in the cells.

The sizes of the clusters, in terms of the number of pixels included as members of
a cluster, did not differ significantly (p > 0.05) among the pre-insulinic (205 + 448)
and post-insulinic (237 £ 375). These numbers may indicate that the cluster size is

not impacted by insulin. However, there are several caveats to consider. Firstly, both
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insulinic conditions showed correlation coefficients greater than 0.98 between the total
number of pixels and the number of pixels found within clusters. Secondly, the total
number of pixels identified in post-insulinic cells is nearly thrice that of those identi-
fied in pre-insulinic cells. Thirdly, it is very likely that the number of clusters in the
pre-insulinic cells has been overestimated by as much as 33%. Lastly, the diffraction
limited nature of confocal microscopy means that it is likely that a portion of the GFP
signals were not identified in the pre-insulinic cells due to the lower dispersion of the
signal. Therefore, it is quite likely that the numbers of pixels per cluster in pre-insulinic
cells has been underestimated in pre-insulinic cells. This would indicate that the real
number of pixels per cluster may in fact be greater than what the data indicates.
Whether the ratio of clustered to unclustered pixels differed significantly between

pre- and post-insulinic cells (Fig. 6.6) was tested by calculating the ratio of included vs.

Figure 6.4: An overlay of the accepted pixel data and confocal images in pre-insulinic
cells. Each set of 2-dimensional pixel positions was overlayed with its corresponding
z-slice of a sample set of confocal images for C2C12 myoblast. What is apparent is the
typical clustering of GLUT4 molecules in the perinuclear region in cells which have
not been insulin-stimulated. Each image is 600 x 400 pixels which corresponds to a
length of 79 pm and a height of 52 pm. For more images, please see Chapter A.
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Figure 6.5: An overlay of the accepted pixel data and confocal images in post-insulinic
cells. Similar to Fig. 6.2, the pixel positions were superimposed on each z-slice confo-
cal image of the corresponding post-insulinic C2C12 myoblast. In these cells, the GFP
signal (and thus the GLUT4) appears more dispersed within the internal volume of the
cell after insulin stimulation. Each image is 640 x 520 pixels which corresponds to a
length of 84 ym and a height of 68 pm. For more images, please see Chapter A.

excluded pixels for each cell and comparing these values by using a Mann-Whitney U
test. Pre-insulinic cells showed a significantly (p < 0.01) higher percentage of pixels in
clusters (74% + 6%) when compared to post-insulinic cells (62% =+ 7%). Therefore,
the dispersion of GFP signals in post-insulinic cells was significantly greater than pre-
insulinic cells. Together with the greater number of fotal signals and clusters in post-
insulinic cells this indicates that insulin may have a marked effect on the distribution
of GSVs within a cell. GSVs in pre-insulinic cells tend to be found mostly in clusters
as opposed to those in post-insulinic cells. This is likely due to the MTOC-associated
‘superclusters’ splintering into smaller, more distributed clusters throughout the cell.
In order to test whether the dispersion of the clusters within a cell differed among
pre- and post-insulinic cells, the two-dimensional positions of the pixels were super-
imposed on their original images. Sample images can be seen in Fig. 6.4 and Fig. 6.5

which describe the pre-insulinic and post-insulinic cells respectively. Further images
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Figure 6.6: The differences between pre-insulinic (green) and post-insulinic (orange)
cells with regards to the fraction of GFP signal that could be assigned to a cluster.

may be found in Appendix A. However, what is apparent from these images already
is that the post-insulinic cell (Fig. 6.5) exhibits much greater dispersion of GFP when
compared to the pre-insulinic cell (Fig. 6.4). This suggests that GLUT4 itself has
moved from the perinuclear space to the perimembrane space, if not having fused with
the membrane itself.

Further, each cluster was defined as a three-dimensional region. Thereafter, the
central point of each cluster was determined and the Euclidean distances between the
centers of each cluster within each cell were then calculated. A greater mean distance
would indicate that, on average, the cluster centers are further apart from one another.
In turn this would suggest that clusters have moved from a localised formation, to
a more decentralised formation within a cell. In post-insulinic cells, clusters were a

mean distance 117 pixels (&= 85) apart from one another. Pre-insulinic cells were, on
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average, 53 pixels (£ 34) apart from one another. These differences were significant
(p < 0.05). Therefore, taking into account previous results that indicate the significant
biological action of insulin on these cells, these results suggest that insulin is the causal
agent for the greater dispersion of clusters within a cell.

However, these data suggest only that the center of a cluster has moved. This
does not mean that the cluster members themselves are more dispersed. In order to
test this, the Euclidean distances between each pixel and the center of their respective
nuclei (Section 6.2) were calculated. Greater mean distances between pixels and nuclei
would indicate that the GFP signal has dispersed more widely within the cell from its
initial, peri-nucleic location. The pixels in the pre-insulinic cells were closer to the
nuclear region (81 pixels, + 31) when compared to those in post-insulinic cells (94
pixels £ 59). This further supports a significant (p < 0.05) effect of insulin on the
dispersion of GSVs within the cell.

Lastly, the cluster densities were evaluated across pre- and post-insulinic cells. The
same clustering score that was used in Section 6.3.1 was used in order to determine the
density of each cluster. The motivation for this was to determine whether the density
of clusters changed in response to insulin exposure. The results indicate that pre-
insulinic clusters were less dense (0.079 4 0.0035). This represented an almost 1.5-
fold greater dispersion within a cluster than in post-insulinic clusters (0.053 £ 0.0024).
This supports previous analyses that indicate smaller clusters splitting off from larger
super clusters. Further, this is in line with previous observations in literature which

indicate that GSVs translocate to punctate clusters around the termini of MTs [202].

6.4 Conclusion

The aim of this chapter was two-fold. First, to determine whether clustering algorithms
could be applied to the types of confocal images generated herein. Secondly, to estab-
lish what types of questions could be answered by the resulting data and whether these
questions yielded novel, meaningful insights to the clustering behaviour of GLUT4

molecules in pre- and post-insulinic cells.
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In service of the first aim, Section 6.3.1 explored several aspects of the clustering
algorithm itself. The first finding was that there was a difference in the number of
clusters between cells which where stimulated with insulin and those which were not.
Further, considering that the post-insulinic cells appeared to present more GFP signal,
it was important to determine whether the quantity of GFP signal would affect the
number of clusters. The number of clusters weakly correlated with the amount of GFP
signal in pre-insulinic cells and could be overestimated by as much as 33%. However,
in post-insulinic cells, this overestimation dwindled to 6.7%.

Considering that there was a marked increase in the number of pixels identified in
post-insulinic cells over the pre-insulinic cells it was necessary to determine whether
this was due to chance or a real phenomenon. The results detailed in Section 6.3.1 in-
dicate that the difference in GFP signal was a real phenomenon and not due to chance.
However, there are several caveats to these findings. Firstly, despite the difference be-
ing real, it is unknown whether this represents a difference in the quantity of signal. In
other words, whether one cell expresses GFP-tagged GLUT4 over another is currently
unknown. It is unlikely that insulin induces greater expression of GFP-tagged GLUT4
since it does not induce GLUT4 expression. Secondly, the diffraction limited nature of
the confocal microscope makes isolating individual GLUT4 molecules unlikely in this
study. This means that when the GFP-tagged GLUT4 was densely clustered, it was not
possible to isolate individual signals. There may have been loss or overlap of signal
which would obscure the true number of GFP signals in pre-insulinic cells. Therefore,
if insulin induces greater dispersion among GLUT4 molecules, it is likely that this may
appear like a real difference in GFP signal among pre- and post-insulinic cells.

In order to fulfil the second aim, several aspects of the clusters identified in Sec-
tion 6.3.1 were analysed. It was determined that the amount of clusters was signif-
icantly different between pre-insulinic and post-insulinic cells. Where the previous
analysis dislocated the number of clusters from the number of pixel, this result sup-
ports the notion that insulin effects the splintering of a few clusters into more. Next,
the size of these clusters with regard to the number of pixels they contained was in-

vestigated. The results in Section 6.3.2 indicate that there is no significant difference
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among the sizes of the clusters. However, in light of the limitations of the confocal
microscope and the highly localised nature of pre-insulinic clusters, the reliability of
this result is not sure.

In light of this, the next step was to determine whether the proportions of pixels
included or excluded from clusters different between the insulinic cells. It was found
that post-insulinic cells had fewer pixels which could be assigned to a cluster. Based
on this, the next step was to determine whether this was due to the greater dispersion
of the clusters and pixels in post-insulinic cells. Considering the exclusion criteria
discussed in Section 6.2, greater dispersion of the pixels would mean that fewer pixels
would be included in clusters as they would be too distant to their nearest neighbours.
The results indicated that the clusters in post-insulinic cells more dispersed - in other
words more distant from the nucleus. Similarly, the pixels within the post-insulinic
cells are also more distant from the nucleus. This means that it is indeed likely that the
difference in the proportions of pixels assigned to clusters is likely due to the greater
dispersion of the GFP signal in post-insulinic cells.

Lastly, the densities of the clusters was examined. The post-insulinic clusters were
denser than the pre-insulinic clusters. As discussed in Section 6.3.2, this is likely due
to the nature of GSV translocation. Smaller clusters of GSVs break away from the
larger, perinuclear clusters and travel along the microtubule network to ultimately fuse
in denser, punctate clusters at the terminus of each microtubule [202]. However, once
again one cannot ignore that, due to the diffraction limit, it is likely that the true num-
ber of pixels within each cluster is not fully known. It could very well be that the
pre-insulinic clusters are denser, but since the true number of pixels is not known, this
remains speculation. It may be possible to overcome this hindrance through the use of
super-resolution microscopy such as a STORM (stochastic optical reconstruction mi-
croscopy) or a combined confocal and scanning electron microscopy based approach
which would provide the necessary resolution and more detailed 3-dimensional infor-
mation on the location of individual molecules [393-395].

In conclusion, this study demonstrated that cluster analysis is a viable method with

which to investigate certain aspects of biological imagery. Further, it determined that

129



Stellenbosch University https://scholar.sun.ac.za

6.4. Conclusion

insulin has a notable effect on the number, dispersion, and density of GLUT4 clusters
in C2C12 myoblasts. This means that one can use clustering data to generate novel,
meaningful answers with respect to certain biological phenomena. This knowledge
could assist investigations which wish to determine how different states such as disease
or stress affect the behaviour of certain molecules.

Further work would investigate the time-dependent movement of GSVs in response
to insulin stimulation. It would also be important to investigate the clustering behaviour
of GSVs under conditions where the cytoskeleton has been disrupted. This would need
to be paired with glucose transport or flux data in order to elucidate the effect that GSV
clustering may have on glucose dynamics in cells. Additionally, repeating these experi-
ments in differentiated muscle tissue would provide insight into the behaviour of GSVs
in mature cells. Lastly, super-resolution microscopy would be necessary to better de-
fine the number of GLUT4 molecules within the membrane as well as determine their

clustering charactersistics.
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Conclusion and Final Remarks

The present work examined insulin signalling from a variety of perspectives. Firstly,
the impact that so-called standard cell culturing practises has on the differentiation and
insulin sensitivity of C2C12 myotubes. Secondly, this work integrates the insulin sig-
nalling and glucose transport modules (Section 1.1) into a data-driven, minimal math-
ematical model. Thirdly, the impact that insulin has on the clustering and distribution

of GLUT4 in C2C12 myoblasts.

7.1 Concerning the Optimisation of Growth
Conditions

The first aim of this study was to re-establish, standard, physiologically relevant cul-
turing conditions upon which all further experiments would be based. High glucose
concentrations (25 mM) have been linked to the development of insulin resistance
[396, 397], metabolic dysfunction [398], or reduced differentiation [279]. Therefore,
it was necessary to determine fo what degree these impacts were present in C2C12
cells and what steps could be taken to remedy this.

In Chapter 4, it was shown that standard, high glucose culturing protocols dysreg-
ulated the glucose metabolism and differentiation of C2C12 myoblasts. Cells cultured
with 25 mM glucose showed a consistently lower induction of glucose-lactate flux in

response to insulin stimulation than cells cultured with 15mM or 5 mM of glucose
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(Fig. 4.1). Cells that were cultured with 15 mM or 5 mM glucose in their media re-
sponded to insulin induction and showed a greater glucose-lactate flux when compared
to their respective controls. This indicates that persistent, high glucose culturing condi-
tions have an adverse effect on either the insulin signalling or the glycolytic machinery.
However, since these studies only evaluated the glucose-lactate flux, it is unclear from
these results with which of these aspects the dysregulation lies.

A clue may be found in the second aspect of this particular study. The degree to
which C2C12 myoblasts differentiate to myotubes in media which contained either
25 mM or 15 mM glucose was investigated. As seen in Fig. 4.6 and Table 4.2, cells
which were grown with 15 mM of glucose showed an approximately 1.4-fold increase
in differentiation when compared to those cultured in 25 mM of glucose. Considering
the greater expression of GLUT4 [233] in differentiated cells, a greater degree of dif-
ferentiation is desirable when investigating aspects of insulin signalling and glucose
transport. Despite this, the lack of direct evidence of GLUT4 expression in Chapter 4
remains its most obvious shortcoming. However, future studies such as the image and
cluster analyses presented in Chapter 6 could be used to elucidate this.

The standard culturing conditions were evaluated with the specific aim of ensuring
their suitability for the insulin signalling and glucose transport studies which followed.
In doing so it was discovered that lower glucose concentrations in the culturing and
differentiation media resulted in cells that exhibited a greater degree of differentiation

and were more sensitive to insulin induction of glucose transport and flux.

7.2 Concerning the Integration of Insulin Signalling
and Glucose Transporter Data: the Construction

of a Minimal Model

The second aim of this study was to develop a kinetic description of the phosphory-
lation of the IR and Akt proteins as well as the induction of GLUT4 activity. These

data, which represented the insulin signalling and glucose transporter modules (Sec-
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tion 1.1) respectively, were then included in a minimal model. Further, while not part
of the original aims, Chapter 5 included a preliminary investigation of the IR, Akt, and

GLUTH4 activities under a pseudo insulin-resistant state.

7.2.1 Characterisation of the Insulin Signalling and Glucose

Transport Modules

The first two modules - signalling and glucose transport - in the ‘three module’ module
framework (outline in Section 1.1) were characterised. The signalling and glucose
transport responses of C2C12 cells were characterised according to their insulin dose
responses as well as their temporal dynamics.

How the IR and Akt phosphorylation dynamics and GLUT4 activity change in
response to insulin concentrations between 10 pM and 1 M was tested (Chapter 5).
The phosphorylation of the IR and Akt achieved their maxima at 100 nM and 1 M
respectively. The Thr308 site on Akt displayed greater responsiveness to insulin at
concentrations greater than 20 nM, and showed a remarkable 4-fold induction at 1 M
insulin. This is in contrast with the IR and Akt Ser473 whose phosphorylation state
only increased two-fold in response to insulin concentrations of 100 nM and above.
Similarly, the activity of the GLUT4 transporter (as measured by the uptake of radio-
carbon glucose) increased linearly (on a logarithmic scale) with insulin concentration
until it achieved a maximal induction of approximately 2-fold at insulin concentrations
of 100 nM or greater. While no increase in total IR or Akt signal was observed, similar
data was lacking for the GLUT4 transporter.

Secondly, the dynamic behaviour of IR, Akt, and GLUT4 activity were examined
in response to a 100 nM insulin pulse (Chapter 5). The first component to achieve
its maximum of a 2-fold induction of phosphorylation is the IR after two minutes.
Thereafter, both the levels of Aktg, and GLUT4 activity reach their maxima after 15
minutes. In each case, these levels are maintained for the duration of the experiment.
This represents the ‘on’ dynamics of insulin signalling. The ‘off” dynamics were deter-
mined by a series of experiments which evaluated the dephosphorylation and reduction

of GLUT4 activity as described in Chapter 5. With the exception of the IR, the ‘switch-
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ing off” of Akts, and GLUT4 activity was slightly slower than the switching on. The
konandk,s constants determine the insulin signalling dynamics and they need to be
balanced with similar values in the glucagon system since it is not likely that cells
would operate two antagonistic pathways at a maximum rate. Similarly, other possible
explanations for these ‘on - off’ dynamics could be that they are an emergent feature
or specific dynamics which are adapted to the pulsatile release of insulin as seen in situ
[305, 399]. Whether the ‘off” dynamics are altered in pseudo insulin-resistant cells or
whether they are dependent on the culturing conditions will be the subject of future

work.

7.2.2 Integration of Insulin Signalling and Glucose Transport

Modules: A Minimal Mathematical Model

A minimal, ODE-based model was built which incorporated the two modules - insulin
signalling and the GLUT4. The insulin signalling module was represented by IR and
Akt phosphorylation dynamics as outputs and insulin as an input. The GLUT4 module
used phosphorylated Akt as an input and yielded the glucose transport activity as an
output which was measured by '*C uptake assays.

Each of these components was described with a set of reversible mass-action equa-
tions. The experimental data were used to determine the ratios of the ‘on’ and ‘off’
constants for each equation in a single optimisation step. The division of the insulin
signalling cascade into three distinct modules (as discussed in Section 1.1) meant that
one could portray this pathway as a series of input-output relationships which relegated
much of the complexity to so-called ‘black boxes’.

When one compares this approach to those discussed in Section 2.3 several as-
pects stand out. The model presented here is less complex than the approach favoured
by Sedaghat et al [292] or Brannmark et al [315]. However, despite this, the model
could successfully simulate the normal state of insulin signalling. Further, this ‘core’
modelling approach attempts to blend a top-down approach (as described in [33]) with
molecular data. In other words, insulin signalling and glucose transport modules were

defined as functions on their inputs and outputs. The model relied on two sets of exper-
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imental data: insulin dose-response data and the time dynamics in response to 100 nM
insulin exposure. The complete model fit the dose-response and time-dynamic data
of the IR and Akt phosphorylation as well as the glucose transporter activity to the
available data. The fits for the dose-response data were less precise than those for the

time-dynamic data.

7.2.3 Disruptions in Insulin Signalling, Which Module is

Responsible?

The final component in Chapter 5 was a preliminary investigation into a dysfunc-
tional insulin signalling pathway. Based on work in Chapter 4, the glucose-lactate
flux responses were used to determine which cell culturing conditions would lead to
an insulin resistant-like state. If neither glucose consumption nor lactate production
increased in response to insulin, the cells were considered insulin insensitive.

Once the cells were grown to mimic insulin resistant states their IR and Akt phos-
phorylation dynamics as well as their GLUT4 transporter activity were determined.
The response of the IR was counter-intuitive if one thinks that excess insulin would
down-regulate the expression or activity of the IR (Fig. 5.13). Those cells which were
grown with high-glucose, insulin resistant conditions showed a normal IR phosphory-
lation response to insulin. The insulin resistant cells grown at 15 mM glucose seem-
ingly phosphorylated to a greater degree than control cells. These experiments need
to be repeated in order to confirm these results. However, it does seem likely that the
insulin resistant state induced in these cells had little effect on the phosphorylation of
the IR.

A greater effect of insulin resistance on Akt phosphorylation is seen in Figs. 5.14
and 5.15 and more specifically in Fig. 5.18. This indicates that, while IR phosphory-
lation may proceed normally (Fig. 5.13), the signal from the phosphorylated IR does
not result in adequate Akt phosphorylation. This in turn has the knock-on effect of
abrogating glucose transporter activity (Fig. 5.19).

In pseudo insulin-resistant cells there is a clear reduction in Akt phosphorylation at

the 60 minute mark and the reduction in glucose transporter activity appears to coincide
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with the reduction in Aktg phosphorylation. Conversely, Akty, does appear to be
similarly impacted by the pseudo insulin resistance since, glucose transporter activity
does not appear to respond strongly to this decrease. However, both Aktg, and Aktr,
levels are diminished by the ‘loss’ of signal coming from the phosphorylated IR.

While the data are incomplete, this analysis indicates that the reduced glucose
transporter activity seen in pseudo insulin-resistant cells may originate from a fault
in the signalling module, and more specifically one which occurs between IR and Akt.
While it may be tempting to consider Aktg, the culprit for the reduced glucose trans-
porter activity, it is not certain from these data whether the reduced Aktg, levels are
the cause for this diminished activity or whether they are the result of a fault which lies
further upstream.

The direct relationship between Akt phosphorylation and glucose transport activ-
ity induction discussed in Chapter 5 indicates that a reduction in Akt phosphorylation
should bring about a decrease in glucose transporter induction. This likely has a knock-
on effect which results in the reduced glucose-lactate flux as seen in Chapter 4. Since
the signalling module is the first to respond to insulin, the reduced Akt phosphory-
lation indicates that the observed reduction in activity of the glucose transport and
metabolism modules may originate with the apparent dysregulation of the signalling
module.

Future work should focus on further exploring the dynamics of insulin resistant
cells in order to strengthen the applications of the minimal model approach. Similarly,
work that examines faults or dysregulation in the insulin signalling pathway may make
use of this model to determine which module specifically was dysfunctional thereby
focussing further efforts on that module or components thereof. Further, it would be
worthwhile to expand the dataset used by the minimal model to incorporate one or
more of the ‘nodes’ as shown in Fig. 1.1. Lastly, determining the concentration of
GLUT4 as well as the expression levels of IR and Akt may shed further light on the

long-term consequences of insulin exposure in C2C12 cells.
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7.3 Concerning Insulin Induced GLUT4 Clustering

This aspect of the study investigated how GFP-tagged GLUT4 responded to insulin
exposure. Specifically, focus was drawn to the clustering and distribution of these
molecules within cells either before or after they were exposed to insulin.

Chapter 6 explored several questions with regard to the clustering of GLUT4 in
response to insulin in C2C12 myoblasts. Firstly, does insulin stimulation increase the
number of GLUT4 clusters? Cells that were exposed to 100 nM insulin for 30 minutes
had more than twice the number of clusters when compared to cells not stimulated with
insulin (Table 6.2). Secondly, are there differences among the pre- and post-insulinic
cells in regard to the size and density of their clusters? While differences in cluster size
- as determined by the number of members - were not evident, post-insulinic cells had
clusters which were more dense than their pre-insulinic counterparts. Thirdly, does
insulin stimulation results in the greater distribution of clusters? Cluster in insulin-
stimulated cells were more distant from the nucleus and from each other. Considering
that GSVs originate in the perinuclear space, this evidences that, not only are clusters
further away from each other, they are further away from their point of origin. This
indicates that insulin induces not only the translocation of GSVs and GLUT4, but
also the dispersion throughout the plasma membrane into greater numbers of denser
clusters. This chapter therefore highlights two aspects: the viability of an image and
cluster-based analysis of GLUT4 in living cells and the ability of this approach to
generate insights into the mechanisms by which insulin distributes GLUT4 throughout
the cell.

Future work would need to address several shortcomings of this approach, specif-
ically with regards to the scope of this project. Firstly, one would need to clarify
whether this clustering behaviour is tied to an increase in GLUT4 activity. Secondly, it
would be prudent to repeat this study in myocytes instead of myotubes. Lastly, videos
which capture the translocation of GLUT4 from the perinuclear to the perimembrane

space would further assist in correlating these results with those in Chapter 5.
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7.4 Limitations and Possibilities

In conclusion, the present work considered several key aspects:

The importance of evaluating standard experimental protocols for their applicabil-
ity to the research question(s) at hand. Investigating insulin signalling and GLUT4
activity in cells that are insulin resistant or sub-optimally differentiated may yield re-
sults that are not entirely accurate. Similarly, when doing such studies, it is important
to include, in the methodologies glucose concentration in the cell culturing medium
and degree of differentiation that was used for the ongoing experiments.

Throughout this thesis a core modelling technique was applied to describe the three
modules of the system under study: the insulin signalling pathway, glucose transporter
induction, and metabolism. An advantage of such a minimal modelling technique is
that only a few parameters must be determined, since very simple rate equations are
used. However these rate equations are not necessarily mechanistic and this can result
in non-optimal fits. In particular for the insulin dose response curves the description of
the model for the system was not very good. However, the functional relation between
Akt phosphorylation and insulin concentration, for example, is not described directly
by the model, but indirectly since the IR is the component which links the two. For
the model the direct input-output relations are more important, and these could be de-
scribed reasonably well by the core model, (with the exception of the insulin induced
phosphorylation of IR). In other words the IRp induced AktS and AktT phosphory-
lation, and the Aktp induced glucose transport induction were described quite well.
Moreover the time response of insulin induction was well described by the model,
and it is noteworthy that these dynamic experiments obey the steady state constrained
parameter relations as determined for the dose response experiments. The good de-
scription is therefore a partial validation for the kg /k,, rate constants. On the basis of
these considerations it was decided that the core model was good enough to use it for
further analysis of the system.

Such an approach can, in future, be rapidly adapted for other signalling path-
ways, other organisms, or it could be expanded into a more complex model. Fur-

ther, the data gathered in Chapter 5 suggests more modest increases in glucose uptake
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when compared to the rather large increases sometimes reported in literature. The
use of metabolisable glucose as well as the rapidity of the assay is likely to provide
a more accurate estimate of glucose transporter activity than methods which use non-
metabolisable glucose analogues such as 2-Deoxy-glucose. Glucose analogues such
as 2-Deoxy-glucose are metabolised by hexokinase only. This means that the product
is often not a substrate for phosphoglucose isomerase or phosphofructo-kinase. How-
ever, these molecules still act as inhibitors for hexokinase. Consequently, methods
which rely on glucose analogues likely measure a interplay of glucose transport, dwin-
dling hexokinase activity, and the eventual equilibration of analogue concentrations
across the membrane.

Lastly, this work further supports the use of imaging studies to investigate the
behaviour of specific elements in signalling pathways. Additionally, the clustering
and dispersion behaviour of GLUT4 molecules in response to insulin remains a little-
studied phenomenon. However, despite more work still being necessary, the study
presented in Chapter 6 was able to partially explain and quantify the degree to which

the clustering and motile behaviour of GLUT4 molecules is affected by insulin.
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Supplementary Figures: Imaging

Study
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Figure A.1: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 650 x 750 pixels which
corresponds to a length of 85 pm and a height of 98 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.2: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 400 x 750 pixels which
corresponds to a length of 52 ym and a height of 98 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.3: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 650 x 630 pixels which
corresponds to a length of 85 ym and a height of 83 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.4: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 710 x 400 pixels which
corresponds to a length of 93 um and a height of 52 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.5: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 400 x 900 pixels which
corresponds to a length of 52 pm and a height of 118 pum. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.6: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 480 x 750 pixels which
corresponds to a length of 63 ym and a height of 98 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.7: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 370 x 670 pixels which
corresponds to a length of 48 ym and a height of 88 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these

pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.8: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 490 x 824 pixels which
corresponds to a length of 64 um and a height of 108 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.

148



Stellenbosch University https://scholar.sun.ac.za

Figure A.9: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 500 x 1024 pixels which
corresponds to a length of 66 um and a height of 134 yum. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.10: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 850 x 550 pixels which
corresponds to a length of 111 pm and a height of 72 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.11: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 850 x 450 pixels which
corresponds to a length of 111 pm and a height of 59 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.12: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 1400 x 10 pixels which
corresponds to a length of 183 pm and a height of 131 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.13: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 350 x 400 pixels which
corresponds to a length of 46 um and a height of 52 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.14: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 250 x 500 pixels which
corresponds to a length of 33 ym and a height of 66 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.15: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 320 x 500 pixels which
corresponds to a length of 42 yum and a height of 66 um. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.16: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 520 x 300 pixels which
corresponds to a length of 68 ;m and a height of 39 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.17: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 400 x 520 pixels which
corresponds to a length of 52 pum and a height of 68 yum. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.18: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 750 x 450 pixels which
corresponds to a length of 98 ym and a height of 59 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.19: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 600 x 650 pixels which
corresponds to a length of 79 pm and a height of 85 pm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these

pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.20: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 700 x 550 pixels which
corresponds to a length of 92 ym and a height of 72 ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.21: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 500 x 750 pixels which
corresponds to a length of 66 ym and a height of ym. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.22: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 650 x 600 pixels which
corresponds to a length of 85 pm and a height of 79 pm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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