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Abstract

We study Monte Carlo methods for pricing American options where the stock price dynamics follow

exponential pure jump Lévy models. Only stock price dynamics for a single underlying are considered.

The thesis begins with a general introduction to American Monte Carlo methods. We then consider two

classes of these methods. The first class involves regression — we briefly consider the regression method of

Tsitsiklis and Van Roy [2001] and analyse in detail the least squares Monte Carlo method of Longstaff and

Schwartz [2001]. The variance reduction techniques of Rasmussen [2005] applicable to the least squares

Monte Carlo method, are also considered. The stochastic mesh method of Broadie and Glasserman [2004]

falls into the second class we study. Furthermore, we consider the dual method, independently studied

by Andersen and Broadie [2004], Rogers [2002] and Haugh and Kogan [March 2004] which generates a

high bias estimate from a stopping rule. The rules we consider are estimates of the boundary between the

continuation and exercise regions of the option. We analyse in detail how to obtain such an estimate in

the least squares Monte Carlo and stochastic mesh methods.

These models are implemented using both a pseudo-random number generator, and the preferred choice

of a quasi-random number generator with bridge sampling. As a base case, these methods are implemented

where the stock price process follows geometric Brownian motion.

However the focus of the thesis is to implement the Monte Carlo methods for two pure jump Lévy

models, namely the variance gamma and the normal inverse Gaussian models. We first provide a broad

discussion on some of the properties of Lévy processes, followed by a study of the variance gamma model

of Madan et al. [1998] and the normal inverse Gaussian model of Barndorff-Nielsen [1995]. We also provide

an implementation of a variation of the calibration procedure of Cont and Tankov [2004b] for these models.

We conclude with an analysis of results obtained from pricing American options using these models.
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Uittreksel

Ons bestudeer Monte Carlo metodes wat Amerikaanse opsies, waar die aandeleprys dinamika die patroon

van die eksponensiële suiwer sprong Lévy modelle volg, prys. Ons neem slegs aandeleprys dinamika vir ’n

enkele aandeel in ag.

Die tesis begin met ’n algemene inleiding tot Amerikaanse Monte Carlo metodes. Daarna bestudeer

ons twee klasse metodes. Die eerste behels regressie — ons bestudeer die regressiemetode van Tsitsiklis

and Van Roy [2001] vlugtig en analiseer die least squares Monte Carlo metode van Longstaff and Schwartz

[2001] in detail. Ons gee ook aandag aan die variansie reduksie tegnieke van Rasmussen [2005] wat van

toepassing is op die least squares Monte Carlo metodes. Die stochastic mesh metode van Broadie and

Glasserman [2004] val in die tweede klas wat ons onder oë neem. Ons sal ook aandag gee aan die dual

metode, wat ’n hoë bias skatting van ’n stop reël skep, en afsonderlik deur Andersen and Broadie [2004],

Rogers [2002] and Haugh and Kogan [March 2004] bestudeer is. Die reëls wat ons bestudeer is skattings

van die grense tussen die voortsettings- en oefenareas van die opsie. Ons analiseer in detail hoe om so ’n

benadering in die least squares Monte Carlo en stochastic mesh metodes te verkry.

Hierdie modelle word gëımplementeer deur beide die pseudo kansgetalgenerator en die verkose beste

quasi kansgetalgenerator met brug steekproefneming te gebruik. As ’n basisgeval word hierdie metodes

gëımplimenteer wanneer die aandeleprysproses ’n geometriese Browniese beweging volg.

Die fokus van die tesis is om die Monte Carlo metodes vir twee suiwer sprong Lévy modelle, naamlik

die variance gamma en die normal inverse Gaussian modelle, te implimenteer. Eers bespreek ons in breë

trekke sommige van die eienskappe van Lévy prossesse en vervolgens bestudeer ons die variance gamma

model soos in Madan et al. [1998] en die normal inverse Gaussian model soos in Barndorff-Nielsen [1995].

Ons gee ook ’n implimentering van ’n variasie van die kalibreringsprosedure deur Cont and Tankov [2004b]

vir hierdie modelle. Ons sluit af met die resultate wat verkry is, deur Amerikaanse opsies met behulp van

hierdie modelle te prys.
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γX0 Drift of Lévy process X equal to γX −
∫
|x|≤1

x νX(dx).

Ka(·) Modified Bessel function of the second kind with index a.

Γ(·) Gamma function.

<(z) Real part of complex number z.
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Introduction

In this thesis we consider the pricing of vanilla American options where the stock price dynamics follow

exponential pure jump Lévy models, using Monte Carlo methods.

Several methods for pricing American options that do not rely on simulation exist for single underlying

assets, such as finite difference methods, binomial trees or other lattice methods; and the QUAD [Andri-

copoulos et al., 2003], CONV [Lord et al., 2008] or COS methods [Fang and Oosterlee, 2009]. Generally

these methods are computationally much faster than methods requiring simulation for a single underlying,

but are not feasible for multidimensional problems. However, the methods and models we consider are

extendable to more than one underlying — as noted by Fu et al. [2001] —“Since the convergence rate of

Monte Carlo methods is generally independent of the number of state variables, it is clear that they be-

come viable as the underlying models (asset prices and volatilities, interest rates) and derivative contracts

themselves (defined on path-dependent functions or multiple assets) become more complicated.”

This thesis presents a comparison between Monte Carlo methods for American options. Despite the

fact that these Monte Carlo methods are able to compete with the methodologies mentioned above only

in the multidimensional case, we consider only the one-dimensional vanilla American case. Our aim is to

present a clear layout of the essential workings of the models and how they compare against each other. We

only consider a single underlying, even though all these models can be extended to multiple underlyings;

and we apply these models to vanilla options, even though they can be implemented for a variety of exotic

options.

A general introduction to American Monte Carlo methods is provided in Chapter 1. In general,

American Monte Carlo methods produce estimates whose expectation is lower or higher than the true

American option price. We refer to these estimates as low or high bias estimates. A formal definition for

bias is given in Chapter 1.

This is not an exhaustive study of American Monte Carlo methods. We do not consider methods such

as random tree methods (see Broadie and Glasserman [1997b] and also Glasserman [2004, §8.3]), state-

space partitioning (see Barraquand and Martineau [1995], Bally and Pagès [2003] and also Glasserman

[2004, §8.4]) or policy iteration (see Kolodko and Schoenmakers [2006] and Bender and Schoenmakers

[2006]).

The American Monte Carlo methods we will study are

• the least squares Monte Carlo method in Chapter 2. The least squares Monte Carlo method was

introduced by Longstaff and Schwartz [2001]. This algorithm is from a class of methods that make

use of regression to approximate the continuation value from simulated paths. Other methods

1
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INTRODUCTION 2

combining regression and Monte Carlo that have been proposed include those given by Carrière

[1996] and Tsitsiklis and Van Roy [1999, 2001]. We briefly mention differences between the least

squares Monte Carlo method and the method proposed by Tsitsiklis and Van Roy [2001] which we

will refer to as the regression method. The regression method produces estimates of the option price

which have a high bias, whereas the algorithm proposed by Longstaff and Schwartz [2001] produces

an approximation of the option price where the bias cannot be quantified — the methodology includes

both high and low biasing factors. The convergence of the least squares Monte Carlo method to the

exact solution was proved by Clément et al. [2002] in the Brownian motion case.

Furthermore, in Chapter 3 we consider some variance reduction techniques discussed in Rasmussen

[2002, 2005] applicable to the least squares Monte Carlo method. Here, we consider a particular

control variate applicable to the least squares Monte Carlo method, as well as a method for finding

a smooth modelled exercise boundary which is referred to as dispersion. These methods improve

the convergence of the least squares Monte Carlo method considerably. Thus, subsequent to this

chapter, whenever we use the least squares Monte Carlo method, it will be in conjunction with these

techniques.

• the stochastic mesh method in Chapter 4. The stochastic mesh method first appeared in Broadie and

Glasserman [1997a]. We will refer to Broadie and Glasserman [2004], which is the revised version

of this working paper, as well as Glasserman [2004, §8.5]. The stochastic mesh method finds high

and low bias estimates of the actual option price. Furthermore, conditions under which the method

converges, as the computational effort increases, are given by Broadie and Glasserman [2004]. The

computational effort required for this method is linear in the number of exercise dates and quadratic

in the number of points in the mesh. This is in contrast with the random tree method shown by

Broadie and Glasserman [1997b] which has an exponential dependence on the number of exercise

dates.

• the dual method in Chapter 5. The dual method, independently studied by Andersen and Broadie

[2004], Rogers [2002] and Haugh and Kogan [March 2004], finds a high bias estimate of an American

option price by extracting a martingale from an existing stopping rule. In this chapter we first provide

an original algorithm that determines an approximation to the free boundary from a stopping rule.

We call this approximation the critical stock price function, and determine a low bias estimate

using this function. Then we discuss how the dual method derives the high bias estimate using this

function. We frequently refer to Glasserman [2004, §8.7] when studying this method.

We applied the dual method to both the least squares Monte Carlo and stochastic mesh methods

and found that it performed very poorly for the stochastic mesh method. On the other hand, when

applying the dual method to the least squares Monte Carlo method (along with the variance reduction

techniques of Rasmussen [2002, 2005]) we obtained better results. We believe this is because the

critical stock price function obtained from the stochastic mesh method is unacceptable, whereas the

critical stock price function of the LSM method is much better.

In the literature on the methods discussed above, the underlying process follows geometric Brownian

motion. In Chapter 7 we review the generation of stock price paths that follow geometric Brownian motion.

We will consider two generators that will help achieve this
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INTRODUCTION 3

• a pseudo-random number generator called Mersenne Twister introduced by Matsumoto and

Nishimura [1998] in §7.3.

• the quasi-random number generator of Sobol’ [1967] in §7.4. Approaches shown by Jäckel [2002],

Joe and Kuo [2003] and Glasserman [2004] on the implementation of the Sobol’ generator are con-

sidered in Appendix B. We also study bridge sampling introduced by Caflisch and Moskowitz [1995]

and Moskowitz and Caflisch [1996] which should always be implemented whenever Sobol’ random

numbers are used.

Our focus in this thesis is to implement the least squares Monte Carlo (including the variance reduction

techniques and high bias from the dual method) and stochastic mesh methods for pure jump Lévy models.

In Chapter 6 we present an introduction to Lévy processes and consider specific properties that apply to

the models we consider. We discuss two pure jump Lévy models, namely

• the variance gamma model in Chapter 8. The variance gamma model was introduced into finance

by Madan and Seneta [1987]. Variance gamma processes form a special case of the CGMY processes

which were first considered in finance by Geman et al. [2001] and Carr et al. [2002]. Further important

references on the variance gamma model include Madan and Seneta [1990] and Madan and Milne

[1991]. We will however be concerned with the variance gamma model as presented in Madan et al.

[1998]. Here, the asymmetric variance gamma model is introduced and shown to be equivalent to a

gamma time-changed Brownian motion with drift. Madan et al. [1998] also deduce formulae for the

variance gamma density in terms of Bessel functions.

• the normal inverse Gaussian model in Chapter 9. The normal inverse Gaussian, along with hy-

perbolic processes, forms a subclass of generalised hyperbolic processes which were proposed by

Barndorff-Nielsen [1977]. The normal inverse Gaussian model was originally applied in finance by

Barndorff-Nielsen [1995] and the hyperbolic processes by Eberlein and Keller [1995] and Eberlein

et al. [1998]. Further references on the normal inverse Gaussian model include Barndorff-Nielsen

[1997, 1998] and Rydberg [1996a,b, 1997]. Barndorff-Nielsen [1997] notes that the log of returns of

asset prices can often be fitted extremely well by the normal inverse Gaussian distribution.

In Chapter 10 we discuss the risk-neutral modelling of the variance gamma and normal inverse Gaussian

processes. We consider the calibration of these models in Chapter 11. This calibration is a variation of the

method of Cont and Tankov [2004b]. We propose a modification which requires moment matching of the

variance gamma and normal inverse Gaussian models. The results obtained from the moment matching

then serve as a prior to the calibration procedure. Some of the material in this chapter is original and

some is joint work with Graeme West.

Finally, in Chapter 12, we implement all the Monte Carlo pricing methods previously considered,

where the underlying follows exponential variance gamma and normal inverse Gaussian processes. Here,

we discuss the results obtained from this implementation and make concluding remarks.

Several appendices which provide technical tools that are required, but are not central to the theme of

this thesis, are included, and will be referred to as they are needed. All of the models considered in this

thesis were implemented in c++ using an x64-bit Intel® Core™ i7 CPU M 620 @ 2.67GHz and 8.00GB

RAM.
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American Monte Carlo Methods
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Chapter 1

Introduction to American Monte

Carlo Methods

An option is a derivative security, that is, a financial contract whose value is derived from that of a more

basic security, such as a bond or stock [Karatzas and Shreve, 1988, §2.1]. A vanilla call (put) option is an

option in which the holder has the right to buy (sell) the underlying security for a contractually specified

price also referred to as the strike price. A European option can only be exercised at its expiration date.

For example, we define a European call option on an underlying security {St}t∈[0,T ] to be a contract with

a payoff IT = max {ST −K, 0} where K > 0 is the strike price and T its expiration date.

Unlike a European option, an American option can be exercised any time up to its expiration. Thus

the option holder is continually faced with the choice to either exercise or hold the option. If we consider

the example of a call option again, this means that at any exercise time t ∈ [0, T ], the option holder

determines whether It = max {St −K, 0} 1 is worth more or less than the value of holding the option to

exercise later. This value of holding is referred to as the continuation value. However the continuation

value is not available in closed form, and so it is estimated using one of several models.

The form of the model is often an estimate of the optimal stopping boundary. This is a function of

time, f(t), which determines exercise behaviour. If St > f(t), then one exercises (holds) if the option

under consideration is a call (put), and if St < f(t), then one holds (exercises) if the option is a call (put).

The existence of such an optimal stopping boundary requires certain technical conditions which we will

briefly mention in §1.2.

The earliest investigation into the pricing of American options is given by McKean [1965] who writes the

American option price explicitly up to knowing the optimal stopping boundary. The study of properties

of the optimal stopping boundary is done further by van Moerbeke [1976]. Later, Bensoussan [1984] and

Karatzas [1988] provide arbitrage arguments which show that the price of an American option is the

solution to the optimal stopping problem.

It is this optimisation problem which causes difficulty when pricing options using Monte Carlo simu-

lation. In particular, substantial computational effort is required. As noted in Fu et al. [2001], standard

1For any t ≤ T , It is referred to as the intrinsic value of the option.

5
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1.1 Assumptions 6

simulation techniques generate sample paths for the underlying forward in time and the majority of path-

dependent options are easily priced by simulating these paths. On the other hand, Fu et al. [2001] observe

that pricing American options requires a backward algorithm (which we discuss in §1.3). Essentially the

complication arises when applying forward simulation to a problem that requires a backward algorithm.

We study two methods which address this problem, namely the least squares Monte Carlo method in

Chapter 2 and the stochastic mesh method in Chapter 4.

In this chapter we will give a general formulation of the problem, notation and concepts of American

Monte Carlo simulation that will be applicable to both methods. We found the introduction given by

Glasserman [2004, §8.1] very informative on this topic.

1.1 Assumptions

We begin our discussion with the well-known assumptions, namely that of efficient markets, that no

transaction costs are incurred when buying or selling assets, the ability to buy and sell fractional parts

of assets, the ability to buy and sell assets as much and as often as one wishes, and that there are no

restrictions on short-selling of assets in the market.

We will consider an American option written on a single underlying stock price process S = {St}t∈[0,T ].

We will also assume the stock price process follows a Markov process, that is, the evolution of the stock

price only depends on its present state and is independent of its history (see for example Shreve [2004,

Definition 2.3.6] for a formal definition). This assumption is an important requirement in the American

Monte Carlo methods which we will consider.

Furthermore, we will assume that the option can only be exercised at discrete times 0 = t0 < t1 <

t2 < . . . < tM = T . The time periods between exercise times are not necessarily equal in length, and we

denote these time intervals by ∆tj := tj − tj−1 for j = 1, 2, . . . , M . Options in which exercise can only

occur at discrete times are known as Bermudan options. However, the value of an option with a finite set

of exercise dates can be viewed as an approximation to an option which allows for continuous exercise;

the greater M (assuming some roughly uniform distribution of the tj), the better the approximation. See

DuPuis and Wang [2005] for a detailed presentation on the convergence of Bermudan prices to American

prices. Also, as noted by Glasserman [2004, §8.1], the valuation of these Bermudan options already poses

a significant challenge to Monte Carlo. Hence we will only consider the valuation of these finite-exercise

options, and from now on refer to them as American options.

Suppose that (Ω,F ,P) is a probability space. Here Ω is the set of all possible realisations of the

financial market, that is, the possible realisations of stock price paths. F is a σ-algebra and P is a

probability measure defined on F . We assume there exists a risk-neutral measure Q equivalent to P under

which all asset prices are martingales relative to a numéraire. This numéraire is the bank account, which

we denote by A, and is given by At = ert where r is the constant continuously compounded risk-free rate.

For the discrete times t0 < t1 < t2 < . . . < tM mentioned above, let {Sj}j=0, 1, ..., M , with Sj := Stj ,

indicate the stochastic process that models the underlying asset price; and let {Aj}j=0, 1, ..., M denote

the numéraire process, with Aj := ertj . Furthermore, suppose {Sj} is adapted to the filtration given by

{Fj}j=0, 1, ..., M , with Fj := Ftj , where Fj models the information available at time tj . Then we have

that the tuple (Ω,F ,P, {Sj} , {Aj} , {Fj}) represents the securities market model.

Unless otherwise specified, when considering a time tj , the index j will always be for j = 0, 1, . . . , M .
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1.2 Optimal Stopping Problem 7

Also, the number of the sample path i under consideration will always be for i = 1, 2, . . . , N unless we

explicitly state otherwise. We refer to a discretised process Xi
j ; thus Xi

j indicates the value of the process

at time tj in sample path i. In particular, we refer to the stock price Sij and the intrinsic value process

Iij := Ij
(
Sij
)
, where Iij = max

{
Sij −K, 0

}
for a call and Iij = max

{
K − Sij , 0

}
for a put.

1.2 Optimal Stopping Problem

As we have discussed previously, the value of an American option is found by determining the value

achieved from exercising optimally. If, at maturity tM , the option is in the money, the option holder

exercises; otherwise lets the option expire. At any exercise time before time tM , the option holder exercises

if the intrinsic value at that time is greater than their model of the continuation value, or waits until the

next exercise time if not, and checks again. It is this continuation value which is approximated by the

least squares Monte Carlo method in Chapter 2 and the stochastic mesh method in Chapter 4.

Thus, in the most general sense, an American contingent claim V is governed by a payoff process

{It}t∈[0,T ]. The holder has the right to exercise at any time t and so Vt ≥ It. The value at time t of

such a claim, Vt, is determined by optimal exercise. Therefore the holder must choose an exercise time,

τ+, at which he or she expects to receive the greatest discounted payoff, and so, as we show below,

Vt = supτ+∈[0,T ] E
[
e−rτ

+

Iτ+

]
.

In our discussion of the optimal stopping problem, we will refer to stopping times. Therefore we briefly

introduce stopping times. A positive random variable τ : Ω→ R+ that represents the time at which some

event is going to take place is known as a random time. Some examples of random times are the first time

a stock price reaches 100 or the time when a stock price reaches its maximum in some time period. The

value of τ is dependent on the path ω ∈ Ω and so the times in the examples above will be different for

different ω’s.

Definition 1.2.1 Stopping Time

Let {Ft}t≥0 be a filtration on (Ω,F ,P). A random time τ is an Ft-stopping time if

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.

for all t ≥ 0 [Varadhan, 2007, Definition 1.4].

Suppose τ is a random time, that is, a random variable giving the time at which some event occurs.

Then τ is a stopping time if and only if for all t ≥ 0, it is known at time t whether or not τ ≤ t, that is,

whether or not that event has occurred. So the first time the stock price reaches a 100 is a stopping time.

However, the time when the stock price reaches its maximum in some time period is not a stopping time,

because only at the end of the time period it is possible to say when the maximum was reached.

The value of the American option at time t0 is given by the solution to the optimal stopping problem

V0 = sup
τ∈T0,M

E
[
e−rτIτ

]
(1.1)

(see for example Björk [2004, §21.2]) where Tj,M is the set of all stopping times with values in

{tj , tj+1, . . . , tM}, {Ij}j=0, 1, ..., M , with Ij := Itj , is the adaptive payoff (intrinsic value) process; and

the expectation is taken under the risk-neutral measure. Consider Figure 1.1 where we assume a known
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1.3 Dynamic Programming Formulation 8

optimal stopping boundary and simulate a single path of the underlying process hitting this boundary at

the optimal stopping time τ .

t0 t1 tM
Time Steps

Single Simulated Path of Underlying Process

Strike

K

τ

Known Optimal Stopping Boundary

Figure 1.1: Consider an American put option with strike K (pink) and suppose the optimal stopping

boundary (green) is known. If the simulated path (blue) for the underlying process is followed, then the

stopping time τ is the optimal time to exercise the option.

As mentioned before, the proof, which allows us to call (1.1) the price of an American option, was

first given in Bensoussan [1984] and Karatzas [1988]. See also Duffie [2001]. Furthermore, if we ignore

discounting, in order to guarantee the existence of E [Iτ ] in (1.1), the following condition is required [see

Peskir and Shiryaev, 2006, §1.1]

E

[
sup

τ∈T0,M
|Iτ |

]
<∞.

Throughout this thesis, we will assume that the above condition holds, that is the existence of optimal

stopping times. For further details see Peskir and Shiryaev [2006, §1.1].

1.3 Dynamic Programming Formulation

The American Monte Carlo methods we will consider all make use of an algorithm called dynamic program-

ming [see Glasserman, 2004, §8.1] to find the value of an American option. This algorithm is a recursive

representation of the Snell envelope (see for example Lamberton and Lapeyre [2008, §2.2], Elliott and

Kopp [2005, §5.4] or Peskir and Shiryaev [2006, §1.1.3]):

Let {Vj}j=0, 1, ..., M , with Vj := Vtj , be the value process of the American option, then

Vj = sup
τ∈Tj,M

E
[
e−r(τ−tj)Iτ

∣∣∣Fj] . (1.2)
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1.3 Dynamic Programming Formulation 9

{Vj}j=0, 1, ..., M is called the Snell envelope of {Ij}j=0, 1, ..., M , with Ij := Itj . Moreover, if we let

Zj := sup
τ∈Tj+1,M

E
[
e−r(τ−tj)Iτ

∣∣∣Fj] (1.3)

then

Vj = sup
τ∈Tj,M

E
[
e−r(τ−tj)Iτ

∣∣∣Fj]
= max

{
Ij , sup

τ∈Tj+1,M

E
[
e−r(τ−tj)Iτ

∣∣∣Fj]}
= max {Ij , Zj} .

This is the dynamic programming principle:

VM = IM (1.4)

Vj = max {Ij , Zj} for j = 0, 1, . . . , M − 1. (1.5)

Zj is known as the continuation or holding value. Using the tower property of conditional expectations,

we may rewrite (1.3) as:

Zj = sup
τ∈Tj+1,M

E
[
e−r(τ−tj+1+tj+1−tj)Iτ

∣∣∣Fj]
= e−r∆tj+1 sup

τ∈Tj+1,M

E
[
e−r(τ−tj+1)Iτ

∣∣∣Fj]
= e−r∆tj+1 sup

τ∈Tj+1,M

E
[
E
[
e−r(τ−tj+1)Iτ

∣∣∣Fj+1

]∣∣∣Fj]
≤ e−r∆tj+1E

[
sup

τ∈Tj+1,M

E
[
e−r(τ−tj+1)Iτ

∣∣∣Fj+1

]∣∣∣∣∣Fj
]

= e−r∆tj+1E [Vj+1| Fj ] . (1.6)

Let us assume, as in §1.2, the existence of an optimal stopping time. Now if τ∗ ≥ tj+1 is the optimal time

in the time period [tj+1, tM ], that is, Vj+1 = E
[
e−r(τ

∗−tj+1)Iτ∗
∣∣Fj+1

]
, then

e−r∆tj+1E [Vj+1| Fj ] = e−r∆tj+1E

[
sup

τ∈Tj+1,M

E
[
e−r(τ−tj+1)Iτ

∣∣∣Fj+1

]∣∣∣∣∣Fj
]

= e−r∆tj+1E
[
E
[
e−r(τ

∗−tj+1)Iτ∗
∣∣∣Fj+1

]∣∣∣Fj]
= e−r∆tj+1E

[
e−r(τ

∗−tj+1)Iτ∗
∣∣∣Fj]

≤ sup
τ∈Tj+1,M

E
[
e−r(τ−tj+1+tj+1−tj)Iτ

∣∣∣Fj]
= Zj

Thus, it follows that Zj = e−r∆tj+1E [Vj+1| Fj ].
When calculating the American option value using Monte Carlo methods, we will begin by setting the

value of the option at time tM equal to the intrinsic value at time tM as in (1.4). In this thesis we will
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consider several models for estimating the continuation value Zj : in Chapter 2 the least squares Monte

Carlo method, in Chapter 3 the least squares Monte Carlo method combined with a control variate and

in Chapter 4 the stochastic mesh method. Then, proceeding backwards in time, the modelled value of the

option at time tj is calculated as the maximum of the intrinsic value and this estimate of Zj at time tj for

j = M − 1, M − 2, . . . , 0 as in (1.5).

1.4 Bias

The bias of an estimator is defined to be the difference between the expected value of this estimator and

the true value of the variable that is being approximated. We will refer to a high bias estimator if its

expected value is greater than or equal to the true value of what is being approximated and a low bias

estimator if the expected value of the estimator is less than or equal to the true value of the quantity

being approximated.

Sources of high and low bias affect all methods for pricing American options by simulation. High bias

results from the max operator used in (1.5), whereas low bias results from following a suboptimal exercise

rule. Separating the sources of bias produces a pair of estimates which in expectation straddles the optimal

value.

We will denote the true value of the American option and continuation value by V and Z respectively

(and thus V ij would indicate the option value at time tj given the stock price is Sij etc.). Estimated values

will be denoted by an accented letter, e.g. V̄ would indicate a modelled option value. In particular, we

will denote high bias approximations by using the hat accent, thus V̂ , Ẑ etc. and low bias approximations

using the breve accent, V̆ , Z̆ etc. The high (or low) bias accents will be used either when we have already

established that the approximation has a high (or low) bias, or as a promise that this will be established

subsequently.

1.4.1 High Bias

Let V̂ =
{
V̂j

}
t=tj

denote an estimator which is found when the decision to exercise or not, and calculating

the continuation estimate, are based on the same finite sample. This is achieved when the decision is made

using an approximation of the continuation value.

Definition 1.4.1 High Bias Dynamic Programming Formulation

Let Ẑj, j = 0, 1, . . . , M − 1, denote a model of the continuation value Zj = e−r∆tj+1E [Vj+1| Fj ] which

is obtained from a finite number of samples. Then the high bias dynamic programming formulation is

given by

V̂M = IM (1.7)

V̂j = max
{
Ij , Ẑj

}
for j = 0, 1, . . . , M − 1 (1.8)

(see Glasserman [2004, §8.1] for example).

An argument relying on Jensen’s inequality shows that V̂ has a high bias at every exercise date of the

option. It should be noted that the high bias does not result from the use of future information in making
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the decision to exercise. If this was the case, a low bias value would result from estimating the price of an

option with a concave payoff.

Theorem 1.4.2

For every tj

E
[
V̂j

∣∣∣Fj] ≥ Vj . (1.9)

Proof.

At time tM (1.9) holds trivially as we have from (1.7) that V̂M = IM and from (1.4) that IM = VM . Next

for any j, j = 0, 1, . . . , M − 1, we have that

E
[
V̂j

∣∣∣Fj] = E
[

max
{
Ij , Ẑj

}∣∣∣Fj]
≥ max

{
Ij ,E

[
Ẑj

∣∣∣Fj]}
= max{Ij , Zj}

= Vj

where the inequality follows from Jensen’s inequality and the second equality follows from the law of large

numbers.

1.4.2 Low Bias

A low bias estimator results from suboptimal exercise. Thus, by following some exercise policy, one obtains

a low bias estimator since no policy is better than an optimal policy.

Such an estimator, V̆ =
{
V̆j

}
t=tj

, can be created by splitting up sample information into two disjoint

groups independent of each other, as in Glasserman [2004, §8.3.2]. One set of information will be used to

determine the exercise policy, while the other set will be used to estimate the continuation value. We will

now show that the estimator obtained in this way results in a low bias.

Suppose that at time tj we want to calculate the low bias estimator V̆j . We set at time tM , as usual,

V̆M = IM . Also, let 1Z̆ :=
{

1Z̆j

}
t=tj

and 2Z̆ :=
{

2Z̆j

}
t=tj

denote the estimated continuation value

determined from the first and second sample sets respectively. Then

V̆j =

Ij if 1Z̆j ≤ Ij

2Z̆j otherwise.
(1.10)

A general argument given by Glasserman [2004, §8.3.2] shows that V̆ is biased low at every exercise

date of the option, that is:

Theorem 1.4.3

For every tj

E
[
V̆j

∣∣∣Fj] ≤ Vj . (1.11)
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1.4 Bias 12

Proof.

As in Theorem 1.4.2, at time tM (1.11) holds trivially as we have by definition that V̆M = IM and from

(1.4) that IM = VM . From (1.10) it follows that for every j = 0, 1, . . . , M − 1

V̆j = max
{
Ij ,2Z̆j

}
= 1{1Z̆j≤Ij}Ij + 1{1Z̆j>Ij}2Z̆j .

Hence, from the law of large numbers, we have that

E
[
V̆j

∣∣∣Fj] = P
(

1Z̆j ≤ Ij
)
Ij +

(
1− P

(
1Z̆j ≤ Ij

))
Zj .

Hence,

E
[
V̆j

∣∣∣Fj] ≤ max {Ij , Zj}

= Vj .

1Z̆ and 2Z̆ can be created by splitting information in many different ways. Broadie and Glasserman

[1997a] make several splits and then the average of the resulting V̆j ’s is taken to be the value at time tj .
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Chapter 2

The Least Squares Monte Carlo

Method

Regression-based methods for pricing American options have been proposed in various papers, in particular

Carrière [1996], Tsitsiklis and Van Roy [1999, 2001] and Longstaff and Schwartz [2001].

Tsitsiklis and Van Roy [1999, 2001] make use of regression to approximate the continuation value from

simulated paths. Furthermore, Tsitsiklis and Van Roy [2001] provide some convergence results on this

method which we will refer to as the regression method. Results obtained by Glasserman [2004, Table 8.1]

show that this method can have a very high bias.

In this chapter we will focus on the least squares Monte Carlo (LSM) method as introduced by Longstaff

and Schwartz [2001]. Longstaff and Schwartz [2001] combine the approximation of the continuation value

obtained by regression with what Glasserman [2004, p.449] refers to as an interleaving estimator. This

estimator mingles the sources of high and low bias and so hopefully the bias of this method (which could

be in either direction) is not too severe. Clément et al. [2002] prove the convergence of the LSM method

to the exact solution.

2.1 The Least Squares Approach of Longstaff and Schwartz

[2001]

The LSM approach approximates the continuation value Zj by using least squares. In fact, the LSM

approach consists of two approximations:

2.1.1 Truncated Series Approximation

As in §1.1, suppose that the underlying stock price process S = {Sj}t=tj follows a Markov process. Let Lk,

k = 0, 1, . . . be functions that form a total system1 of orthogonal polynomials in L2 (R+) (e.g. Laguerre or

1Recall that a total set in a space is one whose linear span is dense. Thus, implying that every square-integrable function

can be approximated arbitrarily closely by a linear combination of Lk.

13
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2.1 The Least Squares Approach of Longstaff and Schwartz [2001] 14

Hermite polynomials2), where L2 (R+) is the set of all square-integrable real-valued functions f : R+ → R.

Longstaff and Schwartz [2001] propose that the continuation value at Sj be written as a series in terms

of the Lk (see also Glasserman [2004, §8.6.1] or Clément et al. [2002])

Zj (Sj) =
∞∑
k=0

kβjLk (Sj) (2.1)

where the kβj are the coefficients in the L2 expansion of Zj(·). Note that here we assume the continuation

value is Fj-measurable, that is, it only depends on Sj at time tj . We also assume that Zj is square-

integrable. Now from the fact that Lk are total in L2 (R+) and using the Doob-Dynkin lemma, we

are able to write the continuation value in this form. Since the Lk are orthogonal, (2.1) may then be

approximated by the projection onto the subspace of L2 (R+) spanned by L0, L1, . . . , Lκ

κZj (Sj) :=

κ∑
k=0

kβjLk (Sj) . (2.2)

Zastawniak [February 2009] calls this approximation the truncated series approximation.

According to Longstaff and Schwartz [2001] the choice of basis functions makes little difference in the

resulting option value. The number of polynomials will typically be about 10. Moreno and Navas [2004]

report that the pricing of a standard American put is very robust with respect to the choice and number of

basis functions. However they show that this is not the case for more complex options. Glasserman [2004,

§8.6] notes that the choice of basis functions of any regression-based method undoubtedly affects how well

the method performs. We found this to be the case in the examples we were considering — see Figure 2.1

which include the value given by a binomial tree3. Here, and in the rest of the thesis, S0 denotes the

spot price of the underlying, K will indicate the strike, as before r denotes the constant continuously

compounded risk-free rate of interest and q the constant continuously compounded dividend yield.

2.1.2 Least Squares Regression Monte Carlo Approximation

In this section, estimators are indicated by a bar accent, since the approximations given here have a mixed

bias, as we will discuss in §2.2.

For the second approximation, Monte Carlo simulations and least squares are used to approximate the

coefficients 0βj , 1βj , . . . , κβj appearing in (2.2). This is achieved as follows:

(i) Generate a matrix of stock prices Sij .

(ii) At the maturity tM of the option under consideration, define the model option value and stopping

time to be

V̄ iM = IiM and τ̄ iM =

tM if IiM > 0,

∞ otherwise
(2.3)

2Orthogonality is defined with respect to an inner product which depends on a measure of integration. Laguerre polyno-

mials are orthogonal over [0,∞) with respect to the exponential distribution and Hermite polynomials are orthogonal over

(−∞,∞) with respect to the normal distribution.
3Here and later the binomial tree is constructed to have the same number of exercise possibilities as the given Bermudan

option, but with steps in between these exercise dates where early exercise is not permitted. The number of steps in-between

exercise opportunities will typically be something like 100, so that the lognormal distribution is well modelled by the binomial

tree. Thus the option price found by using this binomial tree should be very accurate.
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Figure 2.1: Performance of the LSM method using different types and number of polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with S0 = 135, σ = 30%, r = 10% and q = 2%; and we are considering a 1 year put with K = 135.

We generated 4096 sample paths with 20 time steps using techniques we discuss in §7.4 and §7.5. We also

include the approximation given by the binomial tree with 20 exercise opportunities.

In this example we see that the Hermite polynomial produces unacceptable answers and we also observe

that at least 4 polynomials are required for a good approximation. Similar results were obtained when

varying the volatility, term, number of time steps and number of sample paths — in most cases the Laguerre

polynomials performed well, whereas the Hermite polynomials performed poorly. We found that far out-

the-money options produced poor results for all three types of polynomials.

respectively, where we set IiM = 0 if τ̄ iM =∞.

(iii) Step back to time tM−1.

• For each path i, calculate the discounted payoff, that is e−r(τ̄
i
M−tM−1)Ii

τ̄ iM
. Then use least

squares to find the best approximation spanned by the Lk to this discounted payoff. We will

refer to this best approximation as the model continuation value and denote it by κZ̄M−1. Thus,

find the coefficients kβ̄M−1 ∈ R that minimise

N∑
i=1

∣∣∣∣∣e−r(τ̄ iM−tM−1)Iiτ̄ iM
−

κ∑
k=0

kβ̄M−1Lk
(
SiM−1

)∣∣∣∣∣
2

(2.4)

and set

κZ̄M−1

(
SiM−1

)
:=

κ∑
k=0

kβ̄M−1Lk
(
SiM−1

)
. (2.5)
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2.1 The Least Squares Approach of Longstaff and Schwartz [2001] 16

As is well known, the coefficients in this expansion are found using least squares. Zastawniak

[February 2009] refers to this second approximation as the least squares regression Monte Carlo

estimator and Clément et al. [2002] refer to this as the Monte Carlo procedure.

• Now use the model continuation value to decide at time tM−1 whether to exercise or hold the

option: if the model continuation value is greater than the intrinsic value, then hold, otherwise

exercise. Thus, define the model stopping time τ̄ iM−1 and the value of the option (as determined

by the LSM method) V̄ iM−1 as follows: if IiM−1 >κZ̄M−1

(
SiM−1

)
, then set

V̄ iM−1 = IiM−1 and τ̄ iM−1 = tM−1 (2.6)

otherwise set

V̄ iM−1 = e−r(τ̄
i
M−tM−1)Iiτ̄ iM

and τ̄ iM−1 = τ̄ iM (2.7)

and hence we may write

V̄ iM−1 = e−r(τ̄
i
M−1−tM−1)Iiτ̄ iM−1

.

(iv) In general, at time step tj , j = 1, 2, . . . , M − 2 given the values V̄ ij+1 and τ̄ ij+1:

• Determine, as in (2.4), the kβ̄j ∈ R that minimises

N∑
i=1

∣∣∣∣∣e−r(τ̄ ij+1−tj)Iiτ̄ ij+1
−

κ∑
k=0

kβ̄jLk
(
Sij
)∣∣∣∣∣

2

and set, as in (2.5),

κZ̄j
(
Sij
)

:=

κ∑
k=0

kβ̄jLk
(
Sij
)
.

• Again, as in (2.6) and (2.7) define the model stopping time and option value: if Iij >κZ̄j
(
Sij
)
,

then set

V̄ ij = Iij and τ̄ ij = tj

otherwise set

V̄ ij = e−r(τ̄
i
j+1−tj)Iiτ̄ ij+1

and τ̄ ij = τ̄ ij+1

and hence

V̄ ij = e−r(τ̄
i
j−tj)Iiτ̄ ij

.

Note that at time tj , τ̄
i
j will denote the first time ts, j ≤ s ≤ ∞ where we exercise the option on the

ith path. Consider Figure 2.2 where we plot V̄j , Ij and κZj at a particular time step.

(v) Continue in this way until we reach time step t0 where we let

V̄0 = max

{
I0, e

−r∆t1 1

N

N∑
i=1

V̄ i1

}
. (2.8)
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Figure 2.2: We plot 3Z̄5, I5 and V̄5 against the normalised stock at time step 5 of a 20 step method.

The option details are as follows: the underlying stock price process follows geometric Brownian motion

with σ = 20%, S0 = 110, r = 5% and q = 2%; and we are considering a 1 year put option with

K = 90. Here the stock prices have been normalised by the strike. We simulated 512 paths using simulation

techniques we discuss in §7.4 and §7.5.

The model continuation value 3Z̄5 is fitted, using least squares, to the first 3 Laguerre polynomials; hence

the parabolic form of 3Z̄5. Thus 3Z̄5 is the parabola closest to the set of the V̄5’s in the least squares sense.

This inductive procedure is presented in pseudo-code in §2.4.

Longstaff and Schwartz [2001] consider only those paths that are in-the-money at a particular time

step and thus, in their regression equation, do not sum over all N paths. According to Longstaff and

Schwartz [2001] numerical experiments show that more than two or three times as many basis functions

are required when using all the paths to reach the same level of accuracy by the approximated value

obtained from in-the-money paths4. Furthermore, Jonen [2009] notes that for the same number of basis

functions the accuracy of the approximation of the continuation value is higher when regressing at time tj

over in-the-money paths only. Rasmussen [2005] also only includes in-the-money paths at each time step.

However Clément et al. [2002] and Zastawniak [February 2009] consider all N paths as in (2.11). In a

particular example, Glasserman [2004, p.463, 464] notes that using in-the-money paths only led to inferior

results. We found that using in-the-money paths only often had little impact on the resulting prices and

sometimes produced inferior results.

The Regression Method of Tsitsiklis and Van Roy [2001]

Thus far we have considered the LSM method only. We briefly compare this method to the regression

method of Tsitsiklis and Van Roy [2001]. At time tM the model option value is the same as that of the

4Here and in the rest of this thesis, the phrase in-the-money paths, means those paths that are in-the-money at a particular

time step.
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2.2 Mixed Bias 18

LSM method in (2.3). Stepping back in time, at time tj we find the coefficients kβ̄j ∈ R that minimises

N∑
i=1

∣∣∣∣∣e−r∆tj+1 V̄ ij+1 −
κ∑
k=0

kβ̄jLk
(
Sij
)∣∣∣∣∣

2

. (2.9)

This is the first difference between the regression method and the LSM method. Longstaff and Schwartz

[2001] note that if one follows the above approach, the option value may have an upward bias. As we

mentioned before, Glasserman [2004, Table 8.1] reports significant high bias obtained using this method

in a particular example.

After obtaining the regression coefficients, we calculate κZ̄j (Sj) as in (2.5). Instead of having (2.6)

and (2.7) as in the LSM method, the next step in the regression method is to set

V̄ ij = max
{
Iij , κZ̄j

(
Sij
)}
.

As in the LSM method, once we have obtained the V̄ ij , we step back to the next time step tj and repeat

the above procedure. Finally, at time t0 we find the model of the option value under the regression method

as in (2.8).

In Figure 2.3 we plot the performance of the regression method and the LSM method as a function

of the number of sample paths. In Table 2.1, we compare values (for in-the-money, at-the-money and

out-the-money options) and the time taken (in seconds) of these methods. In these examples we see that

the LSM method clearly outperforms the regression method.

2.2 Mixed Bias

In §1.4 we observed that American Monte Carlo methods include sources of either high or low bias. The

LSM method, however, has a combination of both. Glasserman [2004, p.49] notes that this combination in

the LSM method may lead to a more accurate approximation of the American option value since the biases

may offset somewhat. From Definition 1.4.1 and Theorem 1.4.2 we observe that the high bias factor results

from following backward recursion in (2.6) and (2.7). Since the time at which we exercise is determined

by considering κZ̄j (Sj), that is, we exercise at time tj if Iij >κZ̄j
(
Sij
)
, we are using an exercise strategy.

Thus, as we have shown in §1.4.2, this is the source of the low bias factor.

Immediately after their Proposition 1, Longstaff and Schwartz [2001] imply that for sufficiently large

N , estimates increase as κ increases, and because this estimate is bounded above by the true value one

can have a convergence criterion in κ. However, Moreno and Navas [2004] observe that when considering

a particular polynomial basis, estimates do not increase monotonically with κ, and their results show the

difficulty of implementing any intuitively appealing convergence criterion.

Longstaff and Schwartz [2001] suggest a test of convergence for the LSM method in which a different

set of paths are used to calculate the conditional expectation approximation than the set of paths to which

these approximations are applied. We have an accurate estimate if the option value, obtained as in §2.1,

is close to the option value obtained by using the same paths for both estimating the conditional value

and applying them.

Recall that the LSM requires two approximations for the continuation value: first the approximation

using a finite number of basis functions and secondly the approximation by least squares. Therefore the
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Figure 2.3: The performance of the regression and LSM methods as a function of the number of sample

paths using 8 Laguerre polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put with K = 135.

The sample paths were generated with 30 time steps using techniques we discuss in §7.4 and §7.5. We also

include the value given by the binomial tree with 30 exercise opportunities.

In this example we see that the LSM method clearly outperforms the regression method.

convergence of the LSM method is more involved than other American Monte Carlo methods. Clément

et al. [2002] provide an in-depth technical study of the of the LSM method. In particular they prove two

theorems with respect to the convergence of the LSM method.

They prove convergence of the projection of the continuation value to the true continuation value as

the number of basis functions goes to infinity [Clément et al., 2002, Theorem 3.1], that is,

lim
κ→∞

E [κZj | Fj ] = E [Zj | Fj ]

in L2 for j = 1, 2, . . . , M − 1. Furthermore, they also prove that for a given number of basis functions

κ, the approximated projection found by regression converges to the ‘true’ projection as N →∞ [Clément

et al., 2002, Theorem 3.2], that is, as N →∞

1

N

N∑
i=1

κZ̄j
(
Sij
)
→ E [κZj ]

almost surely for j = 1, 2, . . . , M − 1. Results with regard to the rate of convergence of the LSM method

are also given by Clément et al. [2002], but we will not discuss these here.
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Value

K Binomial Tree Regression LSM

85 0.4391 0.9252 0.4434

130 9.6090 10.2102 9.6489

135 11.8490 12.4912 11.9490

140 14.3803 15.0600 14.5279

185 50.0000 50.0000 50.0000

Time (seconds)

K Binomial Tree Regression LSM

85 0.234 244.767 225.706

130 0.234 222.500 207.975

135 0.292 248.287 232.428

140 0.260 229.498 216.415

185 0.234 308.680 273.419

Table 2.1: The performance of the regression and LSM methods for various strikes, 4096 sample paths and

8 Laguerre polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put. The sample

paths were generated with 30 time steps using techniques we discuss in §7.4 and §7.5. We also include the

value given by the binomial tree with 30 exercise opportunities.

In this example we see that the LSM method clearly outperforms the regression method, in particular,

when comparing the far out-the-money put estimates.

2.3 Low Bias

In this section we will show how to find V̆ , that is, a low biased American option value obtained by

following the exercise strategy determined by the LSM method or the regression method. Let Sij denote

the stock prices used to calculate the option value V̄ .

We simulate another set of stock price paths with the stock price in the ith path at time tj denoted by

S̆ij . Let Iij := Ij

(
S̆ij

)
indicate the intrinsic value of the simulated path, given the stock price is S̆ij . Now

for each path i define the time

τ̆ i = min
{
j : Iij ≥ Z̆ij

}
where

Z̆ij :=κZ̆j

(
S̆ij

)
=

κ∑
k=0

kβ̄jLk

(
S̆ij

)
(2.10)

and the coefficients kβ̄j ∈ R are those determined in (2.4) for the LSM method or in (2.9) for the regression
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method (using the original stock price paths Sij). Once τ̆ i is obtained we set

V̆ i = e−r(τ̆
i−t0)Iiτ̆ i .

When we have moved through time for all paths i, the low bias option value is given by

V̆ =
1

N

N∑
i=1

V̆ i.

V̆ is a low bias approximation since the stopping time τ̆ is not necessarily the optimal stopping time.

Thus we may write

E
[
V̆
]
≤ V.

2.4 Pseudo-Code for the Least Squares Monte Carlo Method

• Suppose that we are given the stock price matrix Sij and intrinsic value matrix Iij . We now define

several vectors of length N at time point tj for j = M, M − 1, . . . , 1 which we will use in the

algorithm. Let

– E indicate the vector where the entry Ei is the European value5 whose term is given by tM − tj
and spot by Sij . The strike and style (call or put) of this European option is equal to that of

the American option under consideration;

– EE denote the vector with entry EEi equal to e−r(τ̄
i
j+1−tj)Ii

τ̄ ij+1
, that is, the discounted eventual

exercise value of path i and;

– TV indicate the vector where the entry TV i is the modelled continuation value κZ̄j in (2.5),

that is, the test value used to decide whether we exercise at node Sij .

Note that the dependence of these vectors on the time index j is suppressed because we will be

overwriting their entries at every time step.

• At maturity tM we initialise EE:

For i = 1 To N

Set EEi = Ii.

Next i

• Now we step backwards in time:

For j = M − 1 To 1 Step -1

– Set EEi := e−r∆tj+1EEi.

5Here and in the rest of this thesis, we will refer to the value of a European option as a European value.

Stellenbosch University  http://scholar.sun.ac.za



2.4 Pseudo-Code for the Least Squares Monte Carlo Method 22

– Calculate the European option value Ei 6. Note that this step is not included in the original

algorithm. However, when the exercise decision is made, the intrinsic value should not only be

greater than the modelled continuation value, but also greater than the European value.

– Use least squares regression to fit the basis functions to EEi so that we can find β. Then

calculate TV i as in (2.5). Thus we determine 0β̄j , 1β̄j , . . . , κβ̄j in order to realise

min
0β̄j , 1β̄j , ..., κβ̄j

N∑
i=1
Iij>0

∣∣∣∣∣EEi −
κ∑
k=0

kβ̄jLk
(
Sij
)∣∣∣∣∣

2

.

Here Iij > 0 indicates of course that the summation is only taken over in-the-money paths.

β :=
[
0β̄j , 1β̄j , . . . , κβ̄j

]′
is found as the regression solution to what are referred to as the

normal equations

X ′Xβ = X ′Y (2.11)

where [xi,k] = Lk
(
Sij
)

and [yi] = EEi. Here X ′X is a (κ + 1) × (κ + 1) matrix and X ′Y is a

(κ+ 1)× 1 vector with entries

[X ′X]kk′ =

N∑
i=1
Iij>0

xi,kxi,k′ and [X ′Y ]k =

N∑
i=1
Iij>0

xi,kyi

respectively7. In order to determine β, Longstaff and Schwartz [2001] use the double precision

DLSBRR algorithm in IMSL. The approach we will follow is to use singular value decomposition

(SVD) which we discuss in Appendix A.

– We then set TV i :=
∑κ
k=0 kβ̄jLk

(
Sij
)
.

– If Ii > max
{
Ei, TV i

}
Then

Set EEi := Ii.

End If

Next j

6If the underlying stock price follows geometric Brownian motion and we are considering a vanilla payoff, one can use the

Black-Scholes formula. When the underlying stock price follows one of the Lévy models we will consider later, one could

make use of the COS method (see Appendix E.1 for a short discussion on this method).
7The normal equations in (2.11) are derived as follows: let time tj be fixed, then we solve for β such that the sum of the

squared differences is minimised

N∑
i=1

(
yi −

κ∑
k=1

kβ xi,k

)2

.

This is achieved by differentiating the above with respect to lβ, 0 ≤ l ≤ κ and setting the result equal to 0

N∑
i=1

(
yi −

κ∑
k=1

kβ xi,k

)
xi,l = 0⇒

N∑
i=1

yixi,l =
κ∑
k=1

xi,lxi,k kβ

and so we have that [X′Y ]l = [X′Xβ]l implying that X′Y = X′Xβ.
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• The option value as determined by the LSM method at time t0 is then given by

max

{
I0,

e−rt1

N

N∑
i=1

EEi

}
.

Longstaff and Schwartz [2001] note that to prevent a computational underflow they normalise all

cashflows and stock prices by the strike prices. This is also implemented in Moreno and Navas [2004] with

double precision variables. In Figure 2.4 we plot the performance of the LSM method where we have, and

have not, normalised the spot. In this example we see that by normalising the spot the results produced

are far better than otherwise. We found many examples where by not normalising the spot performed just

as well as by normalising, but it was never worse. Including the normalisation is hardly complicated and

does not add to the computation time. Hence we normalise the spot whenever we apply the LSM method.

28 29 210 211 212
25.5

26

26.5

27

27.5

Number of Sample Paths (in log2 scale)

LSM Method

LSM Method with Normalised Spot

Binomial Tree

Figure 2.4: The performance of the LSM method where we have, and have not, normalised the spot as a

function of the number of sample paths and 10 Laguerre polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 28% and S0 = 110, r = 6% and q = 1%; and we are considering a 1 year put with

K = 135. The sample paths were generated with 30 time steps using techniques we discuss in §7.4 and

§7.5. We also include the value given by a 30 step binomial tree.

In this example we see that by normalising the spot, better results are obtained than by not normalising.
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Chapter 3

The Variance Reduction Techniques

Suggested by Rasmussen [2005]

Variance reduction techniques are employed to reduce the variance in the estimate obtained from Monte

Carlo simulation. Thus these techniques increase the efficiency of Monte Carlo simulation. There are

several such techniques such as antithetic variates, stratified sampling, importance sampling and control

variates (see for example Glasserman [2004, Chapter 4] or Jäckel [2002, Chapter 10]).

As discussed in §B.3 we will not consider antithetic variates in our implementation. Rasmussen [2005]

proposes an improvement over the standard method of using control variates which we discuss in §3.1.

Furthermore, [Rasmussen, 2005, §6] proposes an ‘initial dispersion’ method which replaces the importance

sampling and stratified sampling techniques. This method is discussed in §3.2. Thus we discuss the

improved control variate and the initial dispersion methods. In addition to Rasmussen [2005], we will also

refer to Rasmussen [2002] in the following sections.

In this chapter we will continue to use the notation as introduced in Chapter 1.

3.1 Least Squares Monte Carlo Control Variates

Traditionally (see Glasserman [2004, §4.1.1] for various examples on employing control variate techniques

on exotic options), when applying the control variate technique, one would perform the complete Monte

Carlo simulation to obtain the price of the American option, say AMC .

One then uses the same random numbers to determine the European option value, EMC, and finally

make use of the closed-form formula for the European option, ECF. The value of the option is then found

by using the control variate technique

V̄ = AMC + θ (EMC − ECF) .

Observe that when EMC is unbiased, it follows that E
[
V̄
]

= E [AMC] for any value of θ. It is easily shown

(see Glasserman [2004, §4.1.1] or Jäckel [2002, §10.3] for example) that the value of θ, that minimises

the variance, is equal to minus the regression coefficient. Here the American estimate is the dependent

24
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3.1 Least Squares Monte Carlo Control Variates 25

variable and the European estimate is the independent variable i.e.

θ = −Cov [AMC, EMC]

Var [EMC]
= −E [AMCEMC]− E [AMC]E [EMC]

E [E2
MC]− (E [EMC])

2 . (3.1)

θ is almost always unknown, but it is typical to approximate it using the same simulation that determined

V̄ , as the bias it introduces is deemed to be immaterial.

However, Rasmussen [2005] proposes a more sophisticated control variate technique when pricing Amer-

ican options using the LSM method. Here the control variate is applied to every simulation path indi-

vidually, at its exercise time. Rasmussen [2005] suggests sampling the discounted value process at the

time of exercise of the option, instead of sampling the discounted payoff process at the option’s terminal

time. Thus, if we let E = {Ej}t=tj indicate the European option price process, then the model of the

continuation value given in (2.5) becomes

κZ̄j (Sj) :=

κ∑
k=0

kβ̄jLk (Sj) + θj

(
e−r(τ̄

i
j+1−tj)Eiτ̄ ij+1

− Eij
)

(3.2)

where, as before, τ̄ indicates the stopping time at which the American option has been exercised as

determined by the LSM method (see §2.1 for notation). θj will be defined in due course. Since τ̄j+1

is a bounded stopping time it follows from the Optional Sampling Theorem that the expectation of

e−r(τ̄
i
j+1−tj)Ei

τ̄ ij+1
− Eij is 0.

The motivation for this approach becomes apparent when considering the following result, which is a

slight modification of [Rasmussen, 2005, Theorem 1].

Theorem 3.1.1

Let τ1, τ2 ∈ Tj,M be two stopping times such that τ1 ≤ τ2. Suppose that X = {Xj}t=tj is an adaptive

process and Y = {Yj}t=tj is a martingale process. Then

Corr [Xτ1 , Yτ1 | Fj ] ≥ Corr [Xτ1 , Yτ2 | Fj ] .

Proof.

Assume, without loss of generality, that Y0 = 0. Then we have that

Cov [Xτ1 , Yτ2 | Fj ] = E [Xτ1Yτ2 | Fj ]

= E [Xτ1E [Yτ2 | Fτ1 ]| Fj ]

= E [Xτ1Yτ1 | Fj ]

= Cov [Xτ1 , Yτ1 | Fj ]

where the second equality follows from the Tower Property of expectations and the third from the Optional

Sampling theorem. Furthermore Y 2 is a submartingale, because Y is a martingale. That is E
[
Y 2
τ1

∣∣Fj] ≤
E
[
Y 2
τ2

∣∣Fj] and so Var [Yτ1 | Fj ] ≤ Var [Yτ2 | Fj ]. Therefore

Corr [Xτ1 , Yτ2 | Fj ] =
Cov [Xτ1 , Yτ2 | Fj ]√

Var [Xτ1 | Fj ]Var [Yτ2 | Fj ]
≤ Cov [Xτ1 , Yτ1 | Fj ]√

Var [Xτ1 | Fj ]Var [Yτ1 | Fj ]
= Corr [Xτ1 , Yτ1 | Fj ] .
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3.1 Least Squares Monte Carlo Control Variates 26

A good control variate is one that is highly correlated with the variable which one would like to estimate.

Now set X equal to the discounted intrinsic value process I = {Ij}t=tj and Y equal to the chosen control

variate. Then the theorem above shows that applying the control variate at the stopping time τ at which

the option is exercised instead of at maturity of the option, yields a higher correlation and hence a better

control variate.

3.1.1 θ using Simple Linear Regression

In this section we consider the approximation of θ as suggested by Rasmussen [2002, Algorithm 2]. Here

θ is found by performing simple linear regression between the eventual exercise e−r(τ̄j+1−tj)Iiτ̄j+1
and the

European eventual exercise e−r(τ̄
i
j+1−tj)Ei

τ̄ ij+1
. Thus European eventual exercise means the value of the

corresponding European option at the exercise time τ̄ ij+1 of the American option, discounted to time tj .

Using (3.1) we set

θ̄ := −
∑N
i=1A

i
MCE

i
MC −

∑N
i=1A

i
MC

∑N
i=1E

i
MC∑N

i=1 (EiMC)
2 −

(∑N
i=1E

i
MC

)2 .

Calculating θ̄ using the same simulation as that used to calculate V̄ introduces a bias. This may be

overcome by running a separate simulation (much smaller than the main simulation used to calculate

V̄ ) to calculate θ̄. However the magnitude of this bias is negligible in most cases [see Glasserman, 2004,

§4.1.3]. Hence as suggested by Rasmussen [2005] we use the same set of paths to determine θ̄ as V̄ in

favour of efficiency.

We now provide a modified version of the LSM algorithm in §2.4. Here changes to the original algorithm,

that is, the inclusion of the control variate discussed where the calculation of θ̄ is as above, are in red.

• Suppose that we are given the stock price matrix Sij and intrinsic value matrix Iij . We now define

several vectors of length N at time point tj for j = M, M − 1, . . . , 1 which we will use in the

algorithm. Let

– E indicate the vector where the entry Ei is the European value whose term is given by tM − tj
and spot by Sij . The strike and style (call or put) of this European option is equal to that of

the American option under consideration;

– EE denote the vector with entry EEi equal to e−r(τ̄
i
j+1−tj)Ii

τ̄ ij+1
, that is, the discounted eventual

exercise value of path i;

– TV indicate the vector where the entry TV i is the modelled continuation value κZ̄j in (2.5),

that is, the test value used to decide whether we exercise at node Sij ;

– EEE denote the vector with entry EEEi equal to the European eventual exercise, that is, (as

mentioned above) the value of the European option at exercise time τ̄ ij+1 discounted to tj for

path i or e−r(τ̄
i
j+1−tj)Ei

τ̄ ij+1
.

Note that the dependence of these vectors on the time index j is suppressed because we will be

overwriting their entries at every time step.
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• At maturity tM we initialise EE and EEE:

For i = 1 To N

Set EEi = Ii and EEEi = Ii.

Next i

• Now we step backwards in time:

For j = M − 1 To 1 Step -1

– Set EEi := e−r∆tj+1EEi and EEE := e−r∆tj+1EEEi.

– Calculate the European option value Ei .

– Use least squares regression to fit the basis functions to EEi so that we can find β. Then

calculate TV i as in (2.5). Thus we determine 0β̄j , 1β̄j , . . . , κβ̄j in order to realise

min
0β̄j , 1β̄j , ..., κβ̄j

N∑
i=1
Iij>0

∣∣∣∣∣EEi −
κ∑
k=0

kβ̄jLk
(
Sij
)∣∣∣∣∣

2

.

Here Iij > 0 indicates of course that the summation is only taken over in-the-money paths.

β :=
[
0β̄j , 1β̄j , . . . , κβ̄j

]′
is found as the regression solution to

X ′Xβ = X ′Y

where [xi,k] = Lk
(
Sij
)

and [yi] = EEi. Here X ′X is a (κ + 1) × (κ + 1) matrix and X ′Y is a

(κ+ 1)× 1 vector with entries

[X ′X]kk′ =

N∑
i=1
Iij>0

xi,kxi,k′ and [X ′Y ]k =

N∑
i=1
Iij>0

xi,kyi

respectively.

– Calculate θ̄ as

θ̄ := −
N
∑N
i=1EE

i EEEi −
∑N
i=1EE

i
∑N
i=1EEE

i

N
∑N
i=1 (EEEi)

2 −
(∑N

i=1EEE
i
)2 . (3.3)

Thus θ̄ is obtained by performing simple linear regression between EE and EEE.

– We then set TV i :=
∑κ
k=0 kβ̄jLk

(
Sij
)
+θ̄

(
EEEi − Ei

)
.

– If Ii > max
{
Ei, TV i

}
Then

Set EEi := Ii and EEEi := Ei.

End If

Next j
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• The option value as determined by the LSM method combined with the control variate suggested by

Rasmussen [2005] at time t0 is then given by

max

{
I0,

e−rt1

N

N∑
i=1

EEi

}
.

This algorithm is demonstrated by Rasmussen [2002] using three time steps. However, we found when

implementing it for a larger number of time steps, results produced by this method were worse than those

produced by the original LSM method. Probably this is the reason why this algorithm does not appear

in Rasmussen [2005]. Nevertheless, part of this algorithm does have a favourable application in §3.1.2.

3.1.2 θ as a Functional Form

In §3.1.1, θ is calculated as a number, however Rasmussen proposes an improvement where θ is a function

of spot (Rasmussen [2002, Algorithm 3], see also Rasmussen [2005, §5]).

Recall from §2.4 that at a given time step tj , j = 1, 2, . . . , M − 1, β is found as the regression solution

in (2.4) to normal equations given in (2.11)

X ′Xβ = X ′Y.

Here Y is a column vector of length N containing the discounted eventual exercise, that is e−r(τ̄
i
j+1−tj)Iτ̄ ij+1

,

X is a matrix of size N × (κ+ 1) with [xi,k] = Lk
(
Sij
)

and β =
[
0β̄j , 1β̄j , . . . , κβ̄j

]′
is a column vector

of length κ+ 1 where the model of continuation value is given by

κZ̄j (Sj) :=

κ∑
k=0

kβ̄jLk (Sj)

as we have seen in §2.1.2.

Now in order to approximate the θ in (3.2), Rasmussen [2005] proposes that it is calculated as

θ̄ij = −
Cov

[
e−r(τ̄

i
j+1−tj)Ii

τ̄ ij+1
, e−r(τ̄

i
j+1−tj)Ei

τ̄ ij+1

∣∣∣Fj]
Var

[
e−r(τ̄

i
j+1−tj)Ei

τ̄ ij+1

∣∣∣Fj]
= −

E
[
e−r(τ̄

i
j+1−tj)Ii

τ̄ ij+1
e−r(τ̄

i
j+1−tj)Ei

τ̄ ij+1

∣∣∣Fj]− E
[
e−r(τ̄

i
j+1−tj)Ii

τ̄ ij+1

∣∣∣Fj]E [e−r(τ̄ ij+1−tj)Ei
τ̄ ij+1

∣∣∣Fj]
E
[(
e−r(τ̄

i
j+1−tj)Ei

τ̄ ij+1

)2
∣∣∣∣Fj]− (E [e−r(τ̄ ij+1−tj)Ei

τ̄ ij+1

∣∣∣Fj])2

where all expectations above are with respect to the risk-neutral measure. Note that θ̄ij is not a number,

but a functional form, i.e. θ̄ij = θ
(
Sij
)

with

E
[
e−r(τ̄

i
j+1−tj)Iiτ̄ ij+1

∣∣∣Fj] , E [e−r(τ̄ ij+1−tj)Eiτ̄ ij+1

∣∣∣Fj] ,
E
[
e−r(τ̄

i
j+1−tj)Iiτ̄ ij+1

e−r(τ̄
i
j+1−tj)Eiτ̄ ij+1

∣∣∣Fj] and E
[(
e−r(τ̄

i
j+1−tj)Eiτ̄ ij+1

)2
∣∣∣∣Fj]
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approximated using basis functions Lk in the same way as κZ̄j is approximated. θij is then found as part

of the solution to the regression equation. This is achieved by replacing the vector Y in (2.11) with a

matrix of size N × 4 where the columns of the matrix are given by

e−r(τ̄
i
j+1−tj)Iiτ̄ ij+1

, e−r(τ̄
i
j+1−tj)Eiτ̄ ij+1

, e−r(τ̄
i
j+1−tj)Iiτ̄ ij+1

e−r(τ̄
i
j+1−tj)Eiτ̄ ij+1

and
(
e−r(τ̄

i
j+1−tj)Eiτ̄ ij+1

)2

.

Note that the first column is exactly the column vector Y used in the regression without a control variate.

As before, β is then found using SVD, but this time as a matrix of size (κ + 1) × 4 where each column

contains the coefficients of the approximation of

E
[
e−r(τ̄

i
j+1−tj)Iiτ̄ ij+1

∣∣∣Fj] , E [e−r(τ̄ ij+1−tj)Eiτ̄ ij+1

∣∣∣Fj] ,
E
[
e−r(τ̄

i
j+1−tj)Iiτ̄ ij+1

e−r(τ̄
i
j+1−tj)Eiτ̄ ij+1

∣∣∣Fj] and E
[(
e−r(τ̄

i
j+1−tj)Eiτ̄ ij+1

)2
∣∣∣∣Fj]

respectively.

We provide a modified version of the algorithm given in §3.1.1 with the changed calculation of θ̄i

indicated in green.

• Suppose that we are given the stock price matrix Sij and intrinsic value matrix Iij . We now define

several vectors of length N at time point tj for j = M, M − 1, . . . , 1 which we will use in the

algorithm. Let

– E indicate the vector where the entry Ei is the European value whose term is given by tM − tj
and spot by Sij . The strike and style (call or put) of this European option is equal to that of

the American option under consideration;

– EE denote the vector with entry EEi equal to e−r(τ̄
i
j+1−tj)Ii

τ̄ ij+1
, that is, the discounted eventual

exercise value of path i;

– TV indicate the vector where the entry TV i is the modelled continuation value κZ̄j in (2.5),

that is, the test value used to decide whether we exercise at node Sij ;

– EEE denote the vector with entry EEEi equal to the European eventual exercise, that is,

the value of the European option at exercise time τ̄ ij+1 discounted to tj for path i or

e−r(τ̄
i
j+1−tj)Ei

τ̄ ij+1
.

Note that the dependence of these vectors on the time index j is suppressed because we will be

overwriting their entries at every time step.

• At maturity tM we initialise EE and EEE:

For i = 1 To N

Set EEi = Ii and EEEi = Ii.

Next i

• Now we step backwards in time:

For j = M − 1 To 1 Step -1

– Set EEi := e−r∆tj+1EEi and EEE := e−r∆tj+1EEEi.
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– Calculate the European option value Ei .

– Use least squares regression to fit the basis functions to Y i =
[
EEi EEEi EEiEEEi

(
EEEi

)2]
so that we can find β. Then calculate TV i as in (2.5) and θ̄i which we show below. Thus we

determine l
0β̄j ,

l
1β̄j , . . . ,

l
κβ̄j for l = 1, 2, . . . , 4 in order to realise

min
l
0β̄j ,

l
1β̄j , ...,

l
κβ̄j

N∑
i=1
Iij>0

∣∣∣∣∣yi,l −
κ∑
k=0

l
kβ̄jLk

(
Sij
)∣∣∣∣∣

2

.

Here Iij > 0 indicates of course that the summation is only taken over in-the-money paths.

β :=
[
l
0β̄j ,

l
1β̄j , . . . ,

l
κβ̄j
]′

is found as the regression solution to

X ′Xβ = X ′Y

where [xi,k] = Lk
(
Sij
)
. Here X ′X is a (κ+ 1)× (κ+ 1) matrix and X ′Y is a (κ+ 1)× 4 matrix

with entries

[X ′X]kk′ =

N∑
i=1
Iij>0

xi,kxi,k′ and [X ′Y ]k,l =

N∑
i=1
Iij>0

xi,kyi,l

for l = 1, 2, 3, 4 respectively.

Thus
∑κ
k=0

1
kβ̄jLk

(
Sij
)

approximates EEi,
∑κ
k=0

2
kβ̄jLk

(
Sij
)

approximates EEEi,∑κ
k=0

3
kβ̄jLk

(
Sij
)

approximates EEiEEEi and
∑κ
k=0

4
kβ̄jLk

(
Sij
)

approximates
(
EEEi

)2
.

– Calculate θ̄i as

θ̄i := −
∑κ
k=0

3
kβ̄jLk

(
Sij
)
−
∑κ
k=0

1
kβ̄jLk

(
Sij
)∑κ

k=0
2
kβ̄jLk

(
Sij
)∑κ

k=0
4
kβ̄jLk

(
Sij
)
−
(∑κ

k=0
2
kβ̄jLk

(
Sij
))2 .

– We then set TV i :=
∑κ
k=0

1
kβ̄jLk

(
Sij
)

+θ̄i
(∑κ

k=0
2
kβ̄jLk

(
Sij
)
− Ei

)
.

– If Ii > max
{
Ei, TV i

}
Then

Set EEi := Ii and EEEi := Ei.

End If

Next j

• The option value as determined by the LSM method combined with the control variate suggested by

Rasmussen [2005] at time t0 is then given by

max

{
I0,

e−rt1

N

N∑
i=1

EEi

}
.

A different version is given in Rasmussen [2002]. Here at time t0 we calculate θ̄ as in (3.3) using the

vectors EE and EEE obtained at time t1. The model option value is then given by

max

{
I0,

e−rt1

N

N∑
i=1

EEi + θ̄

(
e−rt1

N

N∑
i=1

EEEi − E0

)}
.

We found that by including this technique, a remarkable improvement in the pricing performance

was observed. Hence we believe that the omission of this step in Rasmussen [2005] is anomalous.
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Time step tM−1 is treated differently in [Rasmussen, 2002, Algorithm 3]. Here, instead of discounting

EEiM = IiM back one step to tM−1, EEiM−1 is set to be the maximum of IiM−1 and EiM−1. The reason

for this is that because of the discretisation of the American option, there are no exercise opportunities

between time step tM−1 and time tM and thus the value of the option is either intrinsic or the value of the

European option that terminates at time tM . This special treatment is actually unnecessary and coincides

with the given algorithm. To see this note that the approximations for EEiM−1 and EEEiM−1 are equal

for all i, that is

κ∑
k=0

1
kβ̄M−1Lk

(
SiM−1

)
=

κ∑
k=0

2
kβ̄M−1Lk

(
SiM−1

)
and hence

κ∑
k=0

3
kβ̄M−1Lk

(
SiM−1

)
=

κ∑
k=0

4
kβ̄M−1Lk

(
SiM−1

)
.

Therefore θ̄iM−1 = −1 for every i and so TV iM−1 = EiM−1.

We call the model’s estimate of the optimal stopping boundary the critical stock price function. We

would hope that the critical stock price for a particular time step occurs at the point where TV −I is equal

to 0. Because of its functional form θ is a rational function, and so has vertical asymptotes. Therefore

TV −I also has asymptotes as we can see in Figure 3.1, and so potentially has several zeros. This prevents

us from obtaining the critical stock price at a specific time by simple zero-search methods. A method for

finding the critical stock price at every time step, independent of the Monte Carlo method, is discussed

later in §5.1.

Whenever we refer to the method discussed in this section, we will call it the LSM-Rasmussen method.

3.2 Least Squares Monte Carlo with Initial Dispersion

Recall that when approximating the optimal stopping boundary using the LSM method, we may choose to

only make use of in-the-money paths. Furthermore as noted in Rasmussen [2005, §6], given the variance

of e−r(τ̄−tj)Iτ̄ , the accuracy of κZ̄j (Sj) in (2.5) can only increase if we use more paths in the least

squares regression. These facts suggest that increasing the number of in-the-money paths may improve

the approximation found using the LSM method. Rasmussen [2005, §6] makes this observation and provides

a method which generates enough in-the-money paths for all possible exercise points, in particular for the

longest expiry, to estimate the optimal stopping boundary.

Of course the exercise boundary is independent of the current level of the stock price.

Create an artificial initial time point t−1 < t0 and generate paths from this time point. This point is

chosen so that the risk-neutral drift of St is given by r− q, implying that Ste
−(r−q)t is a martingale. Thus

we have that S0 = S−1e
(r−q)∆t0 and hence, instead of generating paths from S0, we generate paths from

S−1 = S0e
−(r−q)∆t0

which obviously is model independent. Since the discounted stock price process is a martingale under the

risk-neutral measure Q, the distribution at time t0 will reflect the volatility of the stock price process while
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Figure 3.1: We plot the test value (light blue), intrinsic (green), discounted eventual exercise (pink) and

difference between the test value and intrinsic (dark blue) against the normalised stock price at time step

5, 10 and 15 of a 20 step method. All values are plotted against the left vertical axis, except for TV − I
which is plotted against the right vertical axis in dark blue.

The option details are as follows: the underlying stock price process follows geometric Brownian motion

with σ = 20%, S0 = 110, r = 5% and q = 2%; and we are considering a 1 year put option with

K = 130. Here the stock prices have been normalised by the strike. We simulated 512 paths using

simulation techniques we discuss in §7.4 and §7.5.

As mentioned, note the vertical asymptotes of TV −I. Similar results were obtained for an out-the-money

put with K = 90. However even though there were asymptotes present, they did not seem as problematic

as in the case of the in-the-money put.

centered around the spot price for which the option value is sought. By inspecting plots of the exercise

boundary obtained under geometric Brownian motion, Rasmussen [2005] notes that irregularities of the

exercise boundaries occur when the time to expiry is less than half the maturity. Hence Rasmussen [2005]

chooses this initial time point to be t−1 := tM
2 . We found this to be adequate when the underlying follows
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geometric Brownian motion. However, as we shall see later, in the case where the underlying follows an

exponential variance gamma or normal inverse Gaussian process, t−1 needs to be adjusted.

When applying the importance sampling technique, the distribution of the stock price is shifted so that

it covers the region of interest. However when considering American options the region of importance is

around the exercise boundary, which is unknown. As noted by Rasmussen [2005, §6] the method proposed

above serves as a replacement for importance sampling, in the sense that the distribution of the stock

price will include paths containing critical points around the exercise boundary.

One should note that this method of initial dispersion does not produce an approximation for the

American option value, but an approximation of the optimal stopping boundary. Thus one would first

use initial dispersion combined with the LSM method to determine the critical stock price function, and

then run another Monte Carlo simulation to calculate the value of the option using the critical stock price

function determined in the first.

3.3 Results

The improvement to the LSM method by introducing the control variate is remarkable. Consider Figure 3.2

where we have plotted the performance of the LSM and LSM-Rasmussen methods for various number of

Laguerre polynomials. Note that the convergence of the LSM-Rasmussen method is achieved using very

few polynomials.

Rasmussen [2005] suggests using basis functions which require the strike, stock price, European op-

tion price1 and some combination of these, in particular Rasmussen [2005] uses K, Sj , v (Sj ;K,T ) and

Sjv (Sj ;K,T ). However, we found that the choice of basis functions hardly had any effect on the results

we obtained.

Figure 3.3 illustrates again how much better the LSM-Rasmussen method performs compared to the

LSM method. Here we applied the two methods for a varying number of sample paths using the same

inputs as in Figure 2.3. In Table 3.1, we compare values (for in-the-money, at-the-money and out-the-

money options) and the time taken (in seconds) of these methods. We used the same inputs as in Table 2.1,

except for the number of sample paths, which was decreased.

1The European option considered here has the same parameters as the American option we are pricing, but with a term

equal to T − tj and spot price equal to Sj .
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Figure 3.2: The performance of the LSM and LSM-Rasmussen methods for various number of Laguerre

polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put with K = 135.

We used 4096 sample paths with 20 time steps using simulation techniques we discuss in §7.4 and §7.5.

We also plot the approximation of a 20 step binomial tree.

In this example we see how much better the LSM-Rasmussen method performs compared to the LSM

method. Similar results were obtained when varying volatility, term, strike, number of time steps and

number of sample paths. Compared to the LSM method, the LSM-Rasmussen method performed particularly

well for far out-the-money options.
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Figure 3.3: The performance of the LSM and LSM-Rasmussen methods as a function of the number sample

paths with 8 Laguerre polynomials.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put with K = 135.

We simulated paths with 30 time steps using simulation techniques we discuss in §7.4 and §7.5. We also

include the value given by a 30 step binomial tree.

Again we see that the LSM-Rasmussen method performs much better than the ordinary LSM method.
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Value

K Binomial Tree LSM LSM-Rasmussen

85 0.4391 0.4549 0.4364

130 9.6090 10.1323 9.6218

135 11.8490 12.5220 11.8671

140 14.3803 15.0654 14.3891

185 50.0000 50.8100 50.0000

Time (seconds)

K Binomial Tree LSM LSM-Rasmussen

85 0.345 6.004 5.331

130 0.326 4.468 3.941

135 0.234 4.657 4.058

140 0.265 5.112 4.487

185 0.275 5.455 4.849

Table 3.1: The performance of the LSM and LSM-Rasmussen methods for 256 sample paths with 8 Laguerre

polynomials and varied strikes.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put. We simulated

paths with 30 time steps using simulation techniques we discuss in §7.4 and §7.5. We also include the

value given by a 30 step binomial tree.

Again we see that the LSM-Rasmussen method performs much better than the ordinary LSM method.
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Chapter 4

The Stochastic Mesh Method

The stochastic mesh method was originally introduced in Broadie and Glasserman [1997a] (preprint) and

Broadie and Glasserman [2004] (published). We refer to the latter, as well as Glasserman [2004, §8.5]

where a more general version than the original is provided. Beyond what we deal with here, Broadie et al.

[2000] provide a different approach to the previous references and a more recent reference on the stochastic

mesh method is given by Liu and Hong [2009].

4.1 General Methodology

The stochastic mesh method requires the generation of N independent sample paths of a Markov process

Sj =
{
S1
j , S

2
j , . . . , S

N
j

}
for times tj , j = 1, 2, . . . , M (see Figure 4.1) where ln

Sij
Sij−1

are i.i.d. random

samples from the same density for all i.

Once these random vectors have been generated, all nodes at time step tj are connected to all nodes

at time step tj+1 (see Figure 4.2) and so the individual original paths are forgotten.

In the random tree method of Broadie and Glasserman [1997b] (also discussed by Glasserman [2004,

§8.3]) one simulates a Markovian non-recombining tree of paths of the underlying stock price process

{St}t≥0. At each node a small number of paths are simulated to successor nodes. Even though the

number of immediate successor nodes are small, the number of nodes of the tree increases exponentially

as the number of exercise dates increases and hence so does the computational effort.

In contrast, in the stochastic mesh method, the number of nodes is fixed at every time step after time

t0. This is achieved by connecting every node at time tj to every node at time tj+1. In the random

tree method, the immediate successor nodes are generated at random, so we may regard them as equally

likely. However, given a node i at time tj in the stochastic mesh, clearly not all nodes at time tj+1 are

equally likely. Hence we need to assign a weight to each connecting edge. It is reasonable to expect that

even though we have to compute these weights, the computational cost would be linear, thus making the

method computationally feasible.

Let us denote the weight connecting node i at time tj (that is Sij) to node k at time tj+1 (that is Skj+1)

by wi,kj with i, k = 1, 2, . . . , N (see Figure 4.3).

37
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Figure 4.1: Four independent paths where the nodes Sij are generated from the same returns distribution

for j = 1, 2, . . . , 4 and i = 1, 2, . . . , 4.
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Figure 4.2: The figure on the left is a schematic representation of Figure 4.1 of nodes generated from

independent paths. The figure on the right shows how the mesh is constructed by connecting all nodes from

one time step to another. See Glasserman [2004, Fig. 8.7] for similar figures.

The stochastic mesh method provides a way of estimating the value of the American option by solving

a randomly sampled dynamic programming problem. Here the continuation value is estimated by using

the set of weights that connects the stock price nodes. That is, with Z̄ij denoting the modelled continuation

value at time tj ,

Z̄ij = e−r∆tj+1
1

N

N∑
k=1

wi,kj V̄ kj+1

if we are at node Sij , where V̄ kj+1 indicates the modelled value of the option at time step tj+1 at node k,
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Figure 4.3: Connecting node Sij to node Skj+1 using weight wi,kj indicated in bold.

that is at Skj+1.

Thus when applying the stochastic mesh method, calculating the continuation value at time step tj

requires the use of all nodes at time step tj+1 and their weights, and not just the original successor of the

current node as in the random tree method.

As noted by [Glasserman, 2004, §8.5.1], the main difficulty regarding the stochastic mesh method is in

determining these weights.

4.2 Mesh Density Weights

We give here the construction of weights as presented in Broadie and Glasserman [2004] and Glasserman

[2004, §8.5.2] which requires the conditional density of the underlying process to be known. This is not

the only way of constructing weights — an alternative approach in Broadie et al. [2000] entirely avoids

densities.

Glasserman [2004, §8.5.1] imposes three conditions on the mesh construction and the weights. Denote

by Sj the vector of N nodes
[
S1
j , S

2
j , . . . , S

N
j

]
at time tj , j = 1, 2, . . . , M and let S0 = S0.

(i) The first condition requires that, conditional on Sj , the sets {S0, S1, . . . , Sj−1} and

{Sj+1, Sj+2, . . . , SM} are independent for every j = 1, 2, . . . , M − 1. This clearly holds as the

stock price process Sj follows a Markov process.

(ii) The second condition requires that the weights wi,kj are a deterministic function of Sj and Sj+1.

(iii) The third condition is more restrictive. It requires that the weights chosen on average yields the

correct continuation value. That is, for every node i at every time step tj , j = 1, 2, . . . , M − 1

Zij = e−r∆tj+1
1

N

N∑
k=1

E
[
wi,kj V kj+1

∣∣∣Sij] (4.1)

where Zij and V kj+1 indicates the true continuation value and value of the option respectively.

Broadie and Glasserman [2004] do not state these conditions explicitly. However, they do make three

moment assumptions when proving the convergence of the high and low bias. Although the true values

of Zij and V kj+1 are not known, we will show abstractly in the next section that for a particular choice of

wi,kj this condition is satisfied.
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In order to simplify our presentation we will assume that the risk-free rate r = 0 in the rest of this

section. We will however reintroduce a non-zero risk-free rate in our implementation in §4.3.

4.2.1 Deriving Abstract Weights

Suppose that the stock price Sj+1, conditional on Sj = x, has density fj,j+1(x, ·) 1, that is,

P (Sj+1 ≤ α|Sj = x) =

∫ α

−∞
fj,j+1(x, y) dy.

Let gj be any such density function of Sj at tj , j = 1, 2, . . . , M conditional on S0; the gj ’s are generated

independently of each other.

For now we derive weights using abstract gj that satisfy conditions (i), (ii) and (iii) mentioned above.

Consider the following expectation of the option continuation value with respect to fj,j+1(x, ·):

Zj(x) = Efj,j+1
[Vj+1 (Sj+1)|Sj = x] =

∫
Vj+1(y)fj,j+1(x, y) dy

=

∫
Vj+1(y)

fj,j+1(x, y)

gj+1(y)
gj+1(y) dy

= Egj+1

[
Vj+1 (Sj+1)

fj,j+1 (x, Sj+1)

gj+1 (Sj+1)

]
.

Note that the first expectation is with respect to fj,j+1(x, ·) whereas the last expectation is with respect

to gj+1(·). Now, if the mesh points Sj have density gj(·) for j = 1, 2, . . . , M , then we may approximate

the last expectation by

1

N

N∑
k=1

Vj+1

(
Skj+1

) fj,j+1

(
x, Skj+1

)
gj+1

(
Skj+1

)
and so let this be our model of the continuation value:

Z̄j(x) :=
1

N

N∑
k=1

V̄j+1

(
Skj+1

) fj,j+1

(
x, Skj+1

)
gj+1

(
Skj+1

) (4.2)

where V̄j+1

(
Skj+1

)
is the approximated value of the American option at node Skj+1 at time tj+1 already

defined by backwards induction. Let us define the weights by

wi,kj :=
fj,j+1

(
Sij , S

k
j+1

)
gj+1

(
Skj+1

) (4.3)

for j = 0, 1, . . . , M − 1. Then since the convergence

1

N

N∑
k=1

V kj+1w
i,k
j → Egj+1

[
Vj+1 (Sj+1)

fj,j+1

(
Sij , Sj+1

)
gj+1 (Sj+1)

]
as N →∞

is unbiased, we have that

E

[
1

N

N∑
k=1

V kj+1w
i,k
j

]
= Egj+1

[
Vj+1 (Sj+1)

fj,j+1

(
Sij , Sj+1

)
gj+1 (Sj+1)

]
1A general method for finding stock price densities from return densities is given in Appendix F.2.
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and hence we may write

Zij = Egj+1

[
Vj+1 (Sj+1)

fj,j+1

(
Sij , Sj+1

)
gj+1 (Sj+1)

]

=
1

N

N∑
k=1

Egj+1

[
V kj+1

fj,j+1

(
Sij , S

k
j+1

)
gj+1

(
Skj+1

) ]

=
1

N

N∑
k=1

Egj+1

[
V kj+1w

i,k
j

∣∣∣Sij]
which is what we have in (4.1). Therefore, the conditions (i), (ii) and (iii) given in §4.2 holds for gj+1.

4.2.2 Choosing an Appropriate gj

We now provide some derivations which give guidance to making a suitable choice of gj . In particular, we

show that choosing gj to be the seemingly natural choice, f0,j(S0, ·), will not be suitable.

If we approximate the value of a European option, that is, Z̄j = V̄j then

V̄0 (S0) =
1

N

N∑
i1=1

V̄1

(
Si11
) f0,1

(
S0, S

i1
1

)
g1

(
Si11
)

=
1

N

N∑
i1=1

f0,1

(
S0, S

i1
1

)
g1

(
Si11
) [

1

N

N∑
i2=1

f1,2

(
Si11 , S

i2
2

)
g2

(
Si22
) V̄2

(
Si22
)]

=
1

N

∑
i1=1

f0,1

(
S0, S

i1
1

)
g1

(
Si11
) [

1

N

N∑
i2=1

f1,2

(
Si11 , S

i2
2

)
g2

(
Si22
) [

1

N

N∑
i3=1

f2,3

(
Si22 , S

i3
3

)
g3

(
Si33
) V̄3

(
Si33
)]]

(4.4)

where V̄j

(
S
ij
j

)
indicates the European option value at the mesh point S

ij
j at time tj . We can write (4.4)

as

V̄0 (S0) =
1

N

N∑
i1=1

1

N

N∑
i2=1

1

N

N∑
i3=1

f0,1

(
S0, S

i1
1

)
f1,2

(
Si11 , S

i2
2

)
f2,3

(
Si22 , S

i3
3

)
g1

(
Si11
)
g2

(
Si22
)
g3

(
Si33
) V̄3

(
Si33
)

=
1

N

N∑
i3=1

1

N

N∑
i2=1

f2,3

(
Si22 , S

i3
3

)
g3

(
Si33
) 1

N

N∑
i1=1

f1,2

(
Si11 , S

i2
2

)
g2

(
Si22
) f0,1

(
S0, S

i1
1

)
g1

(
Si11
) V̄3

(
Si33
)

(4.5)

where the last equation has been rearranged so that the sum is reversed.

We show by induction that that V̄0(S0) may be written in terms of V̄j for every j = 1, 2, . . . , M : the

approximation of the European option value at time 0 may be written as

V̄0 (S0) =
1

N

N∑
ij=1

1

N

N∑
ij−1=1

. . .
1

N

N∑
i1=1

j∏
m=1

fm−1,m

(
S
im−1

m−1 , S
im
m

)
gm
(
Simm

) V̄j

(
S
ij
j

)
(4.6)

for every j = 1, 2, . . . , M .

We have already seen by (4.5) that (4.6) holds for j = 1 (and 2 and 3) and let us assume that

V̄0 (S0) =
1

N

N∑
ij=1

1

N

N∑
ij−1=1

. . .
1

N

N∑
i1=1

j∏
m=1

fm−1,m

(
S
im−1

m−1 , S
im
m

)
gm
(
Simm

) V̄j

(
S
ij
j

)
.
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From the above and the fact that V̄j

(
S
ij
j

)
is given by (4.2) we have that

V̄0 (S0) =
1

N

N∑
ij=1

1

N

N∑
ij−1=1

. . .
1

N

N∑
i1=1

j∏
m=1

fm−1,m

(
S
im−1

m−1 , S
im
m

)
gm
(
Simm

)
 1

N

N∑
ij+1=1

V̄j+1

(
Sij+1

) fj,j+1

(
S
ij
j , S

ij+1

j+1

)
gj+1

(
S
ij+1

j+1

)


=
N∑

ij+1=1

1

N

N∑
ij=1

1

N

N∑
ij−1=1

. . .
1

N

N∑
i1=1

j+1∏
m=1

fm−1,m

(
S
im−1

m−1 , S
im
m

)
gm
(
Simm

) V̄j+1

(
S
ij+1

j+1

)
where the last equation follows from rearranging the sum.

Similarly to Broadie and Glasserman [2004], let us denote by

L (1, i1) :=
f0,1

(
S0, S

i1
1

)
g1

(
Si11
)

and hence

V̄0 (S0) =
1

N

N∑
i1=1

L (1, i1) V̄1

(
Si11
)
. (4.7)

Inductively define

L (j, ij) =
1

N

N∑
ij−1=1

fj−1,j

(
S
ij−1

j−1 , S
ij
j

)
gj

(
S
ij
j

) L (j − 1, ij−1) (4.8)

for j = 1, 2, . . . , M . Again using induction, we show that V̄0 may be written in terms of L (j, ij):

The approximation of the European option value V̄0 may be written as

V̄0 (S0) =
1

N

N∑
ij=1

L (j, ij) V̄j

(
S
ij
j

)
(4.9)

for every j = 1, 2, . . . , M .

We have already seen in (4.7) that (4.9) holds when j = 1. Now assume that

V̄0 (S0) =
1

N

N∑
ij=1

L (j, ij) V̄j

(
S
ij
j

)
.

Then using (4.2) we may write the above as

V̄0 (S0) =
1

N

N∑
ij=1

L (j, ij)

 1

N

N∑
ij+1=1

V̄j+1

(
S
ij+1

j+1

) fj,j+1

(
S
ij
j , S

ij+1

j+1

)
gj+1

(
S
ij+1

j+1

)


=
1

N

N∑
ij+1=1

1

N

N∑
ij=1

L (j, ij)
fj,j+1

(
S
ij
j , S

ij+1

j+1

)
gj+1

(
S
ij+1

j+1

) V̄j+1

(
S
ij+1

j+1

)

=
1

N

N∑
ij+1=1

L (j + 1, ij+1) V̄j+1

(
S
ij+1

j+1

)
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where the last equation follows from the definition of L (j + 1, ij+1) in (4.8).

A complicated proof in Broadie and Glasserman [2004, Proposition 1] shows that under modest tech-

nical assumptions, the variance of L (j, ij) increases exponentially for an arbitrary gj . This will cause the

variance of the Monte Carlo estimator to grow. Broadie and Glasserman [2004] note that this is true in

particular for f0,j (S0, ·).
However Broadie and Glasserman [2004] make the inspired choice

g1(y) = f0,1 (S0, y) , (4.10)

gj(y) =
1

N

N∑
i=1

fj−1,j

(
Sij−1, y

)
for j = 2, 3, . . . , M. (4.11)

Observe that gj is a density since the average of densities is a density and is referred to as the average

density function in Broadie and Glasserman [2004].

If we choose gj as in (4.10) and (4.11) (with gj conditional only on S0 inductively) then each L (j, ij) = 1,

j = 1, 2, . . . , M , and therefore no explosion in variance occurs for this choice of gj . This follows by

induction: note that from (4.10) L(1, i1) = 1 and suppose that L (j − 1, ij−1) = 1. Then

L (j, ij) =
1

N

N∑
ij−1=1

fj−1,j

(
S
ij−1

j−1 , S
ij
j

)
gj

(
S
ij
j

) L (j − 1, ij−1)

=
1

N

N∑
ij−1=1

fj−1,j

(
S
ij−1

j−1 , S
ij
j

)
gj

(
S
ij
j

)
which follows from the induction hypothesis. Furthermore, we have from (4.11) that

gj(y) =
1

N

N∑
i=1

fj−1,j

(
Sij−1, y

)
and hence L (j, ij) = 1.

Now suppose that hj(·) is the unconditional risk-neutral density used to generate the mesh points Sj

at time tj for each j, then

hj+1(y) =

∫
hj(x)fj,j+1 (x, y) dx

and from (4.10) g1(·) = f0,1 (S0, ·) = h1(·). Furthermore for j = 1, 2, . . . , M − 1, gj+1(y) is approxi-

mately equal to
∫
gj(x)fj,j+1(x, y) dx, that is from (4.11) for j = 1, 2, . . . , M − 1

gj+1(y) =
1

N

N∑
i=1

fj,j+1

(
Sij , y

)
≈
∫
gj(x)fj,j+1(x, y) dx.

So, without being too precise but rather retaining intuition, we see that if gj ≈ hj , then by induction

gj+1 ≈ hj+1 and we would have equality in the limit as N →∞.
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4.3 The Stochastic Mesh Method

As in the case of the LSM method in Chapter 2, we determine the American option value V̂ using the

stochastic mesh method by backward induction

V̂ iM = IiM

V̂ ij = max

{
Iij , e

−r∆tj+1
1

N

N∑
k=1

V̂ kj+1w
i,k
j

}
(4.12)

where we have used (4.2) and (4.3) in §4.2 with a non-zero risk-free rate r to write the approximation of

the American option value at time tj at node i. The weights wi,kj are given by

wi,kj =
fj,j+1

(
Sij , S

k
j+1

)
gj+1

(
Skj+1

)
=

fj,j+1

(
Sij , S

k
j+1

)
1
N

∑N
l=1 fj,j+1

(
Slj , S

k
j+1

) . (4.13)

Below we provide an algorithm for calculating (4.12).

• Given the stock price matrix Sij and intrinsic value matrix, let NV (new value) and OV (old value)

denote vectors of length N . We will suppress the time index j in these vectors because their entries

will be overwritten at every time step. We begin by setting NV i := IiM for every i at time tM .

• Next we step backwards in time from tM−1 until t1:

For j = M − 1 To 1 Step -1

– Set OV := NV .

– For each k = 1, 2, . . . , N , we would like to calculate the denominator in (4.13). In order to

do this, we make use of a helper vector D of length N , with the kth entry of D denoted byDk.

Set Dk := 0.

For i = 1 To N

∗ Let wi,k be the (i, k)th entry of an N × N matrix. This wi,k will eventually be equal to

(4.13) (again suppressing the time index j for the same reason as before). For now we set

wi,k := fj
(
Sij , S

k
j+1

)
.

∗ Set Dk = Dk + wi,kj .

Next i

Set Dk := Dk/N and hence Dk is equal to the denominator in (4.13).

– Calculate the weights between all nodes i at time tj and all nodes k at time tj+1, that is, we

find (4.13) by setting wi,k := wi,k/Dk.

– For each i, calculate V̂ ij as in (4.12): First set NV i := 0 and calculate the model con-

tinuation value at node i in NV i by setting NV i := e−r∆tj+1 1
N

∑N
k=1OV

kwi,k. Then set

NV i = max
{
Iij , NV

i
}

.
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Next j

• As in the case of the LSM method, we find the approximated value at time 0 as

max

{
I0, e

−r∆t1 1

N

N∑
i=1

NV i

}
.

4.4 High Bias

Let the estimated continuation value be given by

Ẑij = e−r∆tj+1
1

N

N∑
k=1

wi,kj V̂ kj+1 (4.14)

with wi,kj indicating the weight which connects node i at time tj with node k at time tj+1. For the S·j+1

increasing, the values of the weights will increase and then decrease (these values will start decreasing

at the mode of the distribution of Sj+1). Thus there is no reason to expect that even if the V̂ ·j+1 are

monotone, that the model of the continuation value is monotone (even though the real continuation value

is monotone). This undesired feature indeed can occur as is shown in Figure 4.4.
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Figure 4.4: The continuation value (in blue) and intrinsic value (in green) plotted against various stock

prices as determined by the high bias estimator at time steps 14 to 19 of a 20 step grid.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 150. The stock price paths were generated using simulation techniques we discuss in §7.4 and §7.5.

As discussed, notice that the model of the continuation value is not monotone.

We define by backward induction [Glasserman, 2004, 8.5.1]

V̂ iM = IiM (4.15)

V̂ ij = max
{
Iij , Ẑ

i
j

}
for j = 1, 2, . . . , M − 1 (4.16)
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and

V̂0 = e−r∆t1
1

N

N∑
i=1

V̂ i1 .

Thus V̂ ij results from applying dynamic programming to the stochastic mesh. Glasserman [2004, §8.5.1]

and Broadie and Glasserman [2004] refer to V̂ ij as the mesh estimator.

We show in a proof similar to that of Theorem 1.4.2 that for every tj and i, V̂ ij has a high bias. We

proceed by induction: first observe that this statement trivially holds at tM since V̂ iM = IiM = V iM for

every i. Next we assume that E
[
V̂ ij+1

∣∣∣Sj+1

]
≥ V ij+1. From Jensen’s inequality we have that

E
[
V̂ ij

∣∣∣Sj] ≥ max

{
Iij , e

−r∆tj+1
1

N

N∑
k=1

E
[
wi,kj V̂ kj+1

∣∣∣Sj]} .
Using the tower property and condition (ii) we may write

E
[
wi,kj V̂ ij+1

∣∣∣Sj] = E
[
E
[
wi,kj V̂ kj+1

∣∣∣Sj+1

]∣∣∣Sj]
= E

[
wi,kj E

[
V̂ kj+1

∣∣∣Sj+1

]∣∣∣Sj] . (4.17)

Now from the induction hypothesis we have that

E
[
V̂ kj+1

∣∣∣Sj+1

]
≥ V kj+1

⇒ wi,kj E
[
V̂ kj+1

∣∣∣Sj+1

]
≥ wi,kj V kj+1

⇒ E
[
wi,kj E

[
V̂ kj+1

∣∣∣Sj+1

]∣∣∣Sj] ≥ E
[
wi,kj V kj+1

∣∣∣Sj]

and hence from (4.17) and the above it follows that

max

{
Iij , e

−r∆tj+1
1

N

N∑
k=1

E
[
wi,kj V̂ kj+1

∣∣∣Sj]} = max

{
Iij , e

−r∆tj+1
1

N

N∑
k=1

E
[
wi,kj E

[
V̂ kj+1

∣∣∣Sj+1

]∣∣∣Sj]}

≥ max

{
Iij , e

−r∆tj+1
1

N

N∑
k=1

E
[
wi,kj V kj+1

∣∣∣Sj]}
= max

{
Iij , Z

i
j

}
= V ij

where the second last equality follows from condition (iii). This completes the proof.

In a similar proof Broadie and Glasserman [2004, Theorem 1] show the mesh estimator is biased high

without the conditions we gave in §4.1, but there the weights wi,kj are defined in terms of the likelihood

ratio as in (4.3).

Broadie and Glasserman [1997a] show under some conditions, that the high bias estimator V̂ ij converges

in probability to the true option value V ij given the stock price is Sij as N →∞. Glasserman [2004, §8.5.1]

provides some intuition why these conditions were imposed. By applying the contraction property2 and

2The contraction property is given by

|max{a, c1} −max{a, c2}| ≤ |c1 − c2|.
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condition (iii) in §4.1 to the dynamic programming formulation of the high bias estimator given in §4.4

we have that∣∣∣V̂ ij − V ij ∣∣∣
≤

∣∣∣∣∣e−r∆tj+1
1

N

N∑
k=1

wi,kj V̂ kj+1 − e−r∆tj+1E
[
wi,kj V ij+1

∣∣∣Fj]
∣∣∣∣∣

=

∣∣∣∣∣e−r∆tj+1
1

N

N∑
k=1

wi,kj V̂ kj+1 − e−r∆tj+1
1

N

N∑
k=1

wi,kj Vj+1 + e−r∆tj+1
1

N

N∑
k=1

wi,kj Vj+1 − e−r∆tj+1E
[
wi,kj V ij+1

∣∣∣Fj]
∣∣∣∣∣

≤

∣∣∣∣∣e−r∆tj+1
1

N

N∑
k=1

wi,kj V̂ kj+1 − e−r∆tj+1
1

N

N∑
k=1

wi,kj Vj+1

∣∣∣∣∣+

∣∣∣∣∣e−r∆tj+1
1

N

N∑
k=1

wi,kj Vj+1 − e−r∆tj+1E
[
wi,kj V ij+1

∣∣∣Fj]
∣∣∣∣∣

=

∣∣∣∣∣e−r∆tj+1
1

N

N∑
k=1

wi,kj

(
V̂ kj+1 − Vj+1

)∣∣∣∣∣+

∣∣∣∣∣e−r∆tj+1

N∑
k=1

wi,kj Vj+1 − e−r∆tj+1E
[
wi,kj V ij+1

∣∣∣Fj]
∣∣∣∣∣ .

In order for the term on the left in the last equality to go to zero, a sufficiently strong induction hypothesis

for convergence of V̂ kj+1 to V kj+1 is required. For the term on the right to go to zero, it is required that

the sum satisfy the law of large numbers. Broadie and Glasserman [1997a] use these observations to prove

convergence of the high bias estimator.

Glasserman [2004] notes that Avramidis and Matzinger [2004] derive a probabilistic upper bound on

the error in the high bias estimator with a dependence structure that adheres to conditions (i) and (ii) in

§4.1 and then use this bound to prove convergence of the estimator as N →∞.

Assuming conditions on the moments of payoffs, weights and likelihood ratios, Broadie and Glasserman

[2004] prove the convergence of the high bias estimator in the p-norm, that is, for any path i and time tj∣∣∣∣∣∣V̂ ij − V ij ∣∣∣∣∣∣
p
→ 0

as N →∞. This convergence implies convergence of V̂0 → V0 in probability

P
(

lim
N→∞

V̂0 = V0

)
= 1.

We also have that the high bias estimator is asymptotically unbiased since convergence in probability

implies that as N →∞

E
[
V̂0

]
→ V0.

As in the case where the high bias is shown by Broadie and Glasserman [2004], wi,kj is defined in terms of

the likelihood ratio as in (4.3).

4.5 Low Bias

In this section we will show how to find an estimator which has a low bias in the stochastic mesh method

first suggested by Broadie and Glasserman [1997a]. Glasserman [2004, §8.5.1] and Broadie and Glasserman

[2004] also consider this estimator and refer to it as the path estimator because of the way in which it is
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found. The path estimator is found in a very similar way the low bias approximation is found in §2.3 for

the regression or LSM methods.

The path estimator, which we will denote by V̆j is obtained by using a stopping rule on the existing

mesh — we denote the stock prices from this mesh by Sij . We begin by simulating paths at times tj of

the stock price S̆ij . As in §2.3 we define stopping times

τ̆ i = min
{
j : Iij ≥ Z̆ij

}
where Iij := Ij

(
S̆ij

)
indicates the intrinsic value of the simulated path given the stock price is S̆ij . Analogous

to Z̆ij in (2.10), Z̆ij depends on the existing mesh as well as the newly generated mesh and is given by

Z̆ij := Z̆j

(
S̆ij

)
=

1

N

N∑
k=1

wj

(
S̆ij , S

k
j+1

)
V̂ kj+1.

Observe that all values from time step tj+1 are found from the existing mesh, that is, the option values

V̂ kj+1 and the stock prices Skj+1 for the paths k = 1, 2, . . . , N . The low bias estimator for path i is then

given by

V̆ ij = e−r(τ̆
i−tj)Iiτ̆ i .

Taking the average of these then gives the path estimator

V̆j =
1

N

N∑
i=1

V̆ ij .

In Figure 4.5 we plot the performance of the stochastic mesh method as a function of the number

of sample paths used in the high and low bias estimate. We used the same inputs as in Figure 2.3 and

Figure 3.3. These calculations were very slow compared to the LSM-Rasmussen method.

In Table 4.1 we compare the performance of the stochastic mesh high and low bias prices to those

generated by the LSM-Ramsussen method (for in-the-money, at-the-money and out-the-money options)

and the time taken (in seconds) of these methods. We used the same inputs as in Table 3.1. In these

examples we see that the LSM-Rasmussen method clearly outperforms the stochastic mesh method in

computation time and accuracy.

Imposing the same conditions as when proving the convergence of the high bias estimator, Broadie and

Glasserman [2004, Theorem 4] prove that the low bias estimator is asymptotically unbiased, that is, as

N →∞

E
[
V̆0

]
→ V0.
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Figure 4.5: Performance of the high and low bias prices generated using the stochastic mesh method.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 135. The simulation paths were generated with 30 time steps using techniques we discuss in §7.4 and

§7.5. The number of sample paths used in the high bias estimate is given by the first entry in the bracket

and that of the low bias estimate in the second on the horizontal axis. We also include the value given by

a 30 step binomial tree.

Similar convergence results were obtained for in-the-money and out-the-money options.
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Value

K Binomial Tree LSM-Rasmussen High Bias Low Bias

85 0.4391 0.4364 0.4528 0.4405

130 9.6090 9.6218 10.6110 9.4038

135 11.8490 11.8671 12.9573 11.5308

140 14.3803 14.3891 15.4947 13.9470

185 50.0000 50.0000 52.0216 48.1773

Time (seconds)

K Binomial Tree LSM-Rasmussen High Bias Low Bias

85 0.345 5.331 241.149 0.005

130 0.326 3.941 219.393 0.005

135 0.234 4.058 188.121 0.000

140 0.265 4.487 222.395 0.007

185 0.275 4.849 258.797 0.008

Table 4.1: The performance of the high and low bias prices generated using the stochastic mesh method

compared to the LSM-Rasmussen method for varied strikes.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 135. The simulation paths were generated with 30 time steps using techniques we discuss in §7.4 and

§7.5. The high bias and LSM-Rasmussen values were generated using 256 sample paths, whereas the low

bias values were generated using 2048 sample paths. We also include the value given by a 30 step binomial

tree.

Clearly the LSM-Rasmussen method outperforms the stochastic mesh method in computation time and

accuracy.
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Chapter 5

Duality

In this chapter we consider the dual method for generating a high bias estimate when pricing American

options using Monte Carlo simulation, independently suggested by Andersen and Broadie [2004], Rogers

[2002] and Haugh and Kogan [March 2004]. This is achieved by making use of a given stopping rule which

produces a lower bias estimate of the true value of an American option, and then a dual value is defined

by extracting a martingale from the existing exercise rule which complements this low bias with a high

bias estimate. We will frequently refer to Glasserman [2004, §8.7], which provides an excellent summary

of this method.

In the next section we will provide our own algorithm for determining a low bias estimate using an

existing exercise policy. Following this we will discuss the dual method which will make use of the exercise

policy to produce the high bias estimate.

5.1 An Approximation of the Optimal Stopping Boundary

Thus far we have considered the LSM (where we may or may not have incorporated the control variate by

Rasmussen) and regression methods in Chapters 2 and 3, and the stochastic mesh method in Chapter 4

from which we will obtain a stopping rule. Recall from §1.4.2 that if we follow an exercise policy, a low

bias estimate of the American option price is produced.

We provide an algorithm that can be applied to any of these methods that finds an approximation of

the free boundary between the exercise and continuation regions. This algorithm is our own.

We continue to make use of the notation introduced in Chapter 1. In addition to this notation, let η

denote the style of the option under consideration. That is, η = 1 if we are considering a call and η = −1

if we are considering a put.

Let CSP indicate a vector of length M + 1 which eventually will contain the critical stock price for

each time tj , j = 0, 1, . . . , M . CSPj is the approximation of the free boundary at time tj . It is clear

that CSP is a function of the stock price process, but it is not a function of the initial spot price of the

option we are considering, and we will explicitly make use of this fact in due course.

• In the stochastic mesh case, we begin by setting CSPM := K. In the regression or LSM method, we

51
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set CSPM := 1, because we normalise the stock price by the strike of the option in order to prevent

computational underflow (see §2.4).

• Suppose for definiteness that we are considering a put. If, at time tj , we take into account all the

stock prices Sj =
[
S1
j , S

2
j , . . . , S

N
j

]
, then there is a particular index i∗ such that we exercise when

Sij ≤ Si
∗

j and hold if Sij > Si
∗

j . We will likewise find the index for the smallest hold price, that

is we find i′ such that we hold when Sij ≥ Si
′

j and exercise when Sij < Si
′

j . We then approximate

the critical stock price CSPj as a weighted average of Si
∗

j and Si
′

j
1. This is achieved by using a

weight λ that depends on Ij − TVj 2 at the nodes Si
∗

j and Si
′

j . Furthermore, to ensure that we have

a monotone exercise boundary, we compare the critical stock price at the previous time step tj+1,

CSPj+1 with CSPj .

A similar procedure is followed if we are considering a call.

We now consider the technicalities of finding i∗ and i′. We determine the critical stock price function

by performing backward recursion. We will require the following tool: given a vector V , let W be

a vector with the same components as V , but arranged in increasing order. Then, assuming the

elements in V are unique, let rank be a function such that

rank(i) = k ⇔ V i = W k ⇔ i = rank(k).

Furthermore, let index be the inverse function of rank. In actual fact a numerical algorithm usually

determines index first: see indexx in Press et al. [2004, §8.4] for calculating index, and hence rank

as the inverse function.

If we have identified a certain element with index i∗, then the nearest element when ordered (above

or below) has index i′ where rank(i′) = rank(i∗) − η. Hence because index and rank are inverse

functions we have i′ = index(rank(i∗)− η).

For j = M − 1 To 0 Step −1

– We start the search for the critical stock price at time tj at CSPj+1. Append to the array of stock

prices Sj =
[
S1
j , S

2
j , . . . , S

N
j

]
at time tj the previous critical value CSPj+1. Now we define

i∗ := index(N + 1) so that i∗ indicates the position of CSPj+1 in the order (see Figure 5.1).

The functions rank and index are based on the expanded array of stock prices containing the

previous critical value.

– To ensure a monotone optimal stopping boundary, we search for the first point (smaller in the

case of a put or larger in the case of a call) outside the model’s continuation region. Thus, in

the case of a put, we will decrease i∗ until the first point inside the model’s exercise region is

found, that is, until Ii
∗

j ≥ TV i
∗

j . Note that we may decrease (or increase in the case of a call)

the index, since we are considering an ordered array. In order to find this point, we proceed as

follows:

∗ We begin by setting i∗ = index(rank(i∗) + η), then i∗ is the index of the stock price which

is the first candidate to be inside the model’s continuation region in the augmented array

(see Figure 5.2).

1Note that Si
′
j is the smallest Sij such that Sij > Si

∗
j .

2Recall that TVj indicates the modelled continuation value at time step tj .
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I < TV

I > TV

Time Steps

i∗ CSPj+1

tj tj+1

Figure 5.1: Set i∗ at time tj equal to the index of CSPj+1 in the augmented stock price array. The dotted

line indicates the critical stock price function that we are trying to find (a put is illustrated here, but the

process carries over for calls).

I < TV

I > TV

Time Steps

i∗
CSPj+1

tj tj+1

Figure 5.2: Increase (or decrease) i∗ so that it indicates the index of the stock price which is the first

candidate to be inside the modelled continuation region.

∗ Once i∗ is obtained, discard the expanded array of stock prices, thus reverting to the actual

array of stock prices. Crucially i∗ in this array is still the index of the stock price found

above (see Figure 5.3).

∗ We now loop until we find a point at which we exercise, that is, the first point in the
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I < TV

I > TV

Time Steps

i∗
CSPj+1

tj tj+1

Figure 5.3: We discard the expanded array of stock prices, i.e. we remove the index of CSPj+1. Note that

i∗ is still the index of the stock price we found in Figure 5.2.

modelled exercise region (see Figure 5.4):

I < TV

I > TV

Time Steps

i∗

CSPj+1

tj tj+1

Figure 5.4: Set i∗ to be the index of the first stock price in the modelled exercise region.

While Ii
∗

j < TV i
∗

j Do

Set i∗ := index(rank(i∗) + η)

End While

TV ij indicates the modelled continuation value given by κZ̄j
(
Sij
)

in (2.5) when considering

the regression or LSM methods, or (3.2) when considering the LSM-Rasmussen method;
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and Ẑij in (4.14) when considering the stochastic mesh method.

– Let i′ denote the index of the last stock price where we continued, thus we set i′ :=

index(rank(i∗)− η) (see Figure 5.5).

I < TV

I > TV

Time Steps

i∗

CSPj+1

tj tj+1

i′

Figure 5.5: Set i′ to be the index of the first stock price in the modelled continuation region.

We then find the critical stock price for time step tj as the linearly interpolated value at the

point (CSPj , 0) between
(
Si
∗

j , I
i∗

j − TV i
∗

j

)
and

(
Si
′

j , I
i′

j − TV i
′

j

)
. So let

λ :=
Ii
′

j − TV i
′

j

Ii
′
j − TV i

′
j − Ii

∗
j + TV i

∗
j

.

Then we set

CSPj := λSi
∗

j + (1− λ)Si
′

j .

In some cases, in particular when implementing a small number of sample paths, anomalies

may occur. The interpolated value CSPj may be higher than CSPj+1 and hence produces a

modelled free boundary which is not monotone. To ensure this is not the case we actually set

CSPj := ηmax {ηCSPj+1, ηCSPj} .

Further, if λ /∈ [0, 1], then we set

CSPj = CSPj+1.

Next j

Recall the initial dispersion technique suggested by Rasmussen [2005] which we discussed in §3.2. If

we do not implement this technique, the indices i∗ and i′ can very often not be found (the code fails) close
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to time t0. This is because the initial spot price S0 is not close enough to the optimal stopping boundary

and hence none of the simulated paths will cross this boundary. Even when S0 is close to what appears

to be the probable boundary, this problem can still occur. Also, even if it doesn’t, the modelled optimal

stopping boundary is not as smooth as when using the initial dispersion technique. This can be seen in

Figure 5.6. Finally, when we implement the initial dispersion technique, the modelled exercise boundary

starts at t0 and not at t1.

0 2 4 6 8 10 12 14 16 18 20
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Time Steps

Dispersion

No Dispersion

Figure 5.6: The modelled optimal stopping boundary using the LSM-Rasmussen method. The boundary

in blue is found using the initial dispersion technique whereas the other in green is found by choosing a

suitable S0/K.

The option details are as follows: the underlying stock price process follows geometric Brownian motion

with σ = 20%, S0 = 104.25, r = 5% and q = 2%; and we are considering a 1 year put option with K = 130.

We generated 4096 sample paths with 20 time steps using techniques we consider in §7.4 and §7.5.

Note the smoother boundary, found using the initial dispersion technique, compared to the one found by

choosing a suitable S0/K.

In Figure 5.7 we see how the modelled optimal stopping boundary improves when increasing the

number of sample paths. When considering both figures we note that even the modelled optimal stopping

boundary, created with dispersion with the lowest number of sample paths, performs as well (if not better)

as the boundary created without it.

Once we have the critical stock prices, we may calculate the low bias estimate V̆ as follows. We simply

run samples until we hit the boundary and discount the payoff. This is computationally very fast.

• Generate a new sample of N ′ stock price paths S̆ij for times tj . Here the sample size N ′ � N .

• Set V̆ := 0.

• For i = 1 To N ′
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0 2 4 6 8 10 12 14 16 18 20
100

105

110

115

120

125

130

Time Steps

25 Number of Sample Paths

29 Number of Sample Paths

212 Number of Sample Paths

Figure 5.7: The modelled optimal stopping boundary using the LSM-Rasmussen method as a function of

the number of sample paths. These boundaries are found using the initial dispersion technique.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 20%, r = 5% and q = 2%; and we are considering a 1 year American put option with

K = 130. We generated simulation paths with 20 time steps using techniques we discuss in §7.4 and §7.5.

Note how the modelled boundary improves when increasing the number of sample paths.

– While η
(
S̆ij − CSPj

)
< 0 Do

Set j := j + 1.

End While

– Set V̆ := V̆ + e−r(tj−t0)Iij , where Iij := Ij

(
S̆ij

)
.

Next i

• Set V̆ := 1
N ′ V̆ .

5.2 The Dual Method

In this section we refer to Glasserman [2004, §8.7] and Andersen and Broadie [2004]. Suppose that

M̃ =
{
M̃j

}
t=tj

is a martingale process with M̃0 = 0. Furthermore, let τ be a bounded stopping time in

T0,M . Then, from the Optional Sampling Theorem

E
[
e−r(τ−t0)Iτ

∣∣∣F0

]
= E

[
e−r(τ−t0)Iτ − M̃τ

∣∣∣F0

]
≤ E

[
max

j=0, 1, ..., M

{
e−r(tj−t0)Ij − M̃j

}∣∣∣∣F0

]
.
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Therefore by taking the infimum over all martingales M̃ with initial value 0 we have

E
[
e−r(τ−t0)Iτ

∣∣∣F0

]
≤ inf

M̃
E
[

max
j

{
e−r(tj−t0)Ij − M̃j

}∣∣∣∣F0

]
.

Since the above inequality holds for an arbitrary stopping time τ , it also holds for the supremum over all

stopping times and hence from (1.1) it follows that

V0 = sup
τ∈T0,M

E
[
e−r(τ−t0)Iτ

∣∣∣F0

]
≤ inf

M̃
E
[

max
j

{
e−r(tj−t0)Ij − M̃j

}∣∣∣∣F0

]
. (5.1)

The expression on the right hand side of the inequality in (5.1) is the dual problem and the inequality

itself is referred to as the duality gap [see Andersen and Broadie, 2004].

It is possible to find a martingale using the Doob decomposition3 [Shiryaev, 1996, §1.7, The-

orem 2] such that (5.1) holds with equality; thus the duality gap is 0: Note that since Vj =

max
{
Ij , e

−r∆tj+1E [Vj+1| Fj ]
}

it follows that Vj ≥ e−r∆tj+1E [Vj+1| Fj ]. Thus the discounted process{
e−r(tj−t0)Vj

}
t=tj

is a supermartingale. By the Doob decomposition there exist a martingale M̃∗ and a

decreasing adapted process A such that e−r(tj−t0)Vj = V0 + M̃∗j + Aj with M̃∗0 = 0 = A0. Since Aj ≤ 0

and Ij ≤ Vj for all j, it follows that e−r(tj−t0)Ij − M̃∗j = V0 + e−r(tj−t0)(Ij − Vj) + Aj ≤ V0 for all j and

hence

inf
M̃

E
[

max
j

{
e−r(tj−t0)Ij − M̃j

}∣∣∣∣F0

]
≤ E

[
max
j

{
e−r(tj−t0)Ij − M̃∗j

}∣∣∣∣F0

]
≤ V0.

Glasserman [2004, §8.7] remarks that obtaining this martingale, which is referred to as the optimal

martingale, is as difficult to find as the original optimal stopping time. However, if one can find a martingale

which is close to the optimal martingale, we have an estimate of an upper bound of the American option

price [Glasserman, 2004, §8.7].

Suppose that the stopping times τ0, τ1, . . . , τM are specified via a critical stock price function. Here

τj means the exercise time which is optimal amongst those times τ satisfying τ ≥ tj 4. Then define

∆j := E
[
e−r(τj−tj)Iτj

∣∣∣Fj]− E
[
e−r(τj−tj)Iτj

∣∣∣Fj−1

]
. (5.2)

By the tower property E [∆j | Fj−1] = 0 and hence we can define a martingale M̃ by M̃0 := 0 and

M̃j := M̃j−1 + ∆j . Now

E
[
e−r(τj−tj)Iτj

∣∣∣Fj] =

Ij if we stop at time tj , that is, τj = tj ;

E
[
e−r(τj+1−tj)Iτj+1

∣∣Fj] if we do not stop at tj , that is, τj > tj .
(5.3)

Now if τj > tj , then τj = τj+1 and hence if we can estimate the expression

E
[
e−r(τj+1−tj)Iτj+1

∣∣∣Fj]
for j = 0, 1, . . . , M − 1, then using (5.3) we can estimate ∆j as in (5.2).

3Note that one requires an application of the the more complicated Doob-Meyer decomposition in the continuous setting.
4Clearly the optimal τj is unknown, but may be approximated by TVj = min {k ≥ j : Ik ≥ TVk}, where TVk indicates

the modelled continuation value.
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We provide an algorithm for calculating an estimation V̂ of the dual value

inf
M̃

E
[

max
j

{
e−r(tj−t0)Ij − M̃j

}∣∣∣∣F0

]
:

Suppose we have already determined a vector of critical stock prices CSP from a sample of N as in

§5.1. Generate a new sample of stock prices Ŝij , i = 1, 2, . . . , N ′′ where N ′′ � N . The algorithm will

require the generation of subpaths from each Ŝij
5 and hence we choose N ′′ to be small, and the number

of such subpaths to be a very small number P . Glasserman [2004, §8.7, p.476] tests the dual method for

P = 10 and P = 100. In the following section in Figure 5.8, we plot the performance of the dual method

for P = 10, P = 100 and P = 1000.

• Set V̂ := 0.

• For i = 1 To N ′′

– Vmax will be the running maximum of the e−r(tj−t0)Ij − M̃j , so initialise Vmax := 0.

– For j = 0 To M − 1

∗ Simulate P subpaths from Ŝij . Each subpath runs until we reach the stopping time τj , that

is, follow the exercise policy τj determined by the critical stock price function6.

∗ Record the payoffs and calculate the average, that is, calculate the estimate

E
[
e−r(τj+1−tj)Iτj+1

∣∣Fj].
∗ Also determine E

[
e−r(τj−tj)Iτj

∣∣Fj] using (5.3).

∗ Calculate ∆j using (5.2). Also set M̃j := 0 if j = 0 and M̃j := M̃j−1 + ∆j for j > 0.

∗ Set Vmax := max
{
Vmax, e

−r(tj−t0)Ij − M̃j

}
.

Next j

– Set V̂ := V̂ + Vmax.

Next i

• Set V̂ := 1
N ′′ V̂ .

5.3 Results

In Figure 5.8 we plot the performance of the dual method for varying number of subpaths. The results

improve as the number of subpaths increases. However, the increase in computational time from using

P = 100 to P = 1000 subpaths and only a small improvement in the outcome suggest that using P = 100

subpaths is sufficient. These dual values and their corresponding times taken are provided Table 5.1 where

the number of samples paths is 512. In this example we obtained the critical stock price function from

the LSM-Rasmussen method. Similar results were obtained when deriving the critical stock price function

from the stochastic mesh method.

5By subpath we mean a path starting at Ŝij at time tj and stopped according to τj .
6We cannot make use of quasi-random numbers (where bridging is included), since the number of time steps until we

reach the stopping time is unknown in advance. The reason for this will become clearer once Sobol’ random numbers have

been discussed in §7.5. Thus, even if we use quasi-random numbers to generate Ŝij , these subpaths will be generated using

pseudo-random numbers.
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Figure 5.8: We plot the performance of the LSM-Rasmussen method as a function of the number of sample

paths using 8 Laguerre polynomials. We also plot the low bias obtained from the critical stock price function

calculated in the LSM method. Furthermore, we plot the performance of the dual method with subpaths

the number of subpaths P = 10, P = 100 and P = 1000 which is calculated using this critical stock price

function. We also include the value given by a 30 step binomial tree. The number of sample paths used

in the high bias calculations and LSM method is given by the first entry in the bracket and that of the low

bias estimate in the second on the horizontal axis.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 135. Sample paths were generated with 30 time steps using techniques we discuss in §7.4 and §7.5.

Clearly increasing the number of subpaths improves the results produced by the dual method. However,

given the increase in computation time as P increases and the fact that the difference between the outcome

for P = 100 and P = 1000 is small, we conclude that choosing P = 100 is sufficient.

P Dual Value Time (seconds)

10 16.324 17.289

100 14.471 173.895

1000 14.159 1488.003

Table 5.1: Values and time taken when applying the dual method for varying subpaths. These values

correspond to those presented in Figure 5.8 where the number of sample paths is given by 512.

In Figures 5.9 and 5.10, on the left, we plot the performance of the dual method where we have obtained

a critical stock price function from the LSM-Rasmussen method and the stochastic mesh method. We also

Stellenbosch University  http://scholar.sun.ac.za



5.3 Results 61

include the low bias estimate obtained from the critical stock price function and the value given by a

binomial tree.
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Figure 5.9: On the left we plot the performance of the LSM-Rasmussen method as a function of the number

of sample paths using 8 Laguerre polynomials. We also plot the low bias obtained from the critical stock

price function calculated in the LSM method. Furthermore, we plot the performance of the dual method

which is calculated using this critical stock price function with P = 100. We also include the value given

by a 30 step binomial tree. The number of sample paths used in the high bias calculations and LSM method

is given by the first entry in the bracket and that of the low bias estimate in the second on the horizontal

axis.

On the right we plot the corresponding critical stock price function determined from the LSM-Rasmussen

method for a varying number of sample paths.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 135. Sample paths were generated with 30 time steps using techniques we discuss in §7.4 and §7.5.

Furthermore, in Figures 5.9 and 5.10, on the right, we plot the corresponding critical stock price

functions for a varying number of sample paths. Note how the critical stock price function becomes

smoother as the number of sample paths increases in the LSM case. However, the critical stock price

function does not perform well in the stochastic mesh method.
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Figure 5.10: On the left we plot the performance of the high and low bias values using the stochastic mesh

method. We also plot the low bias obtained from the critical stock price function determined by using the

stochastic mesh. Furthermore, we plot the performance of the dual method which is calculated using this

critical stock price function with P = 100. We also include the value given by a 30 step binomial tree.

Clearly the low and high bias determined from the critical stock price function and dual method perform

poorly compared to the original stochastic mesh method. The number of sample paths used in the high bias

calculations is given by the first entry in the bracket and that of the low bias estimate in the second on the

horizontal axis.

On the right we plot the corresponding critical stock price function determined from the stochastic mesh

method for a varying number of sample paths.

Here the option details are as follows: the underlying stock price process follows geometric Brownian

motion with σ = 30%, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year put option with

K = 135. Sample paths were generated with 30 time steps using techniques we discuss in §7.4 and §7.5.
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Chapter 6

Introduction to Lévy Processes

Lévy processes, named after the French mathematician Paul Lévy, form an important class of stochastic

processes. Lévy processes allow for jumps: as shown in the Lévy-Itô decomposition, Lévy processes can be

decomposed into drift, diffusion and jump parts. Brownian motion falls under the class of Lévy processes

— any continuous Lévy process must be a Brownian motion with drift. Lévy processes are both semi-

martingales and Markovian, and they possess many well understood probabilistic and analytical properties,

making them attractive as mathematical tools. There are several references on Lévy processes — Sato

[1999], Applebaum [2004], Kyprianou [August 2007] and Cont and Tankov [2004a] to name but a few.

Lévy models were introduced into mathematics of finance in the 1980s and 1990s and have become

increasingly popular in this field. This is because when using Lévy processes, one is able to capture

distributional characteristics in the stock returns such as fat tails and asymmetry. Furthermore, they

allow for jumps in the price process, which can be interpreted as shocks in the market, and effects due to

trading taking place in ‘business’ time rather than ‘real’ time. Thus Lévy processes might describe the

observed reality of financial markets more accurately than Brownian motion (the traditional Black-Scholes

world)1.

Further arguments in favour of the application of Lévy processes in finance result from the fact that

they are stationary with independent increments2. When modelling price processes in finance, one usually

requires the corresponding returns processes to be stationary. Certainly occasions arise in which station-

arity is undesirable (such as business cycles or changes in risk aversion), but this requirement serves as a

good first approximation. Also, in order to incorporate the efficient market hypothesis, returns processes

are required to have future returns independent of past returns. Thus returns must have independent in-

crements. Note that, if in addition to the above conditions, we require the price process to be continuous,

then the returns process must be arithmetic Brownian motion (by the Lévy-Itô decomposition which is

discussed in §6.5).

For the purpose of this thesis, we will only consider one-dimensional Lévy processes, even though in

many cases the multidimensional process can be defined. However, when a definition only applies to one-

dimensional Lévy processes, we will explicitly state this. We will present an intuitive account of Lévy

1This is the opinion of the school of Madan and Carr, however not of Dupire for example.
2That is, if we require Lévy processes to be almost surely continuous, as in Definition 6.1.1.
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processes, focussing on the meaning and importance of results, but omitting technical details.

6.1 Definition of Lévy Processes

A Lévy process is any càdlàg continuous-time stochastic process that has stationary, independent incre-

ments (see Sato [1999, Definition 1.6], Applebaum [2004, §1.3] and Cont and Tankov [2004a, Definition

3.1] for example).

Definition 6.1.1 Lévy Process

Let (Ω,F ,P) be a probability space. Then a càdlàg stochastic process X = {Xt}t≥0 on (Ω,F ,P) with values

in R is called a Lévy process if

(i) X0 = 0 a.s.;

(ii) for any 0 ≤ s < t ≤ T , Xt −Xs is independent of Fs ( independent increments);

(iii) for any s, t ≥ 0, the law of Xt+s −Xt is independent of t ( stationary increments);

(iv) for every ε > 0 and s, t ≥ 0, lims→t P(|Xt −Xs| ≥ ε) = 0 ( convergence in probability).

Brownian motion and Poisson processes are probably the most well-known examples of Lévy processes;

there are many other examples such as arithmetic Brownian motion, compound Poisson, variance gamma

and normal inverse Gaussian processes.

In the definition above, the càdlàg property is a technical requirement which ensures that the paths

of X do not explode. Conditions (ii) and (iii) characterise Lévy processes from a modelling standpoint.

They show that for any t > s, the distribution of Xt−Xs is dependent only on the time interval t− s and

that Xt − Xs is independent of {Xu}u≤s. Furthermore, conditions (ii) and (iii) enable us to derive the

infinite divisibility of Lévy processes which we discuss in the following section. Condition (iv) in no way

implies that the individual sample paths of X are necessarily continuous. Stochastic continuity does not

preclude large jumps. That is, the probability of knowing that a large jump occurs at a given time t is 0,

and thus processes whose large jumps occur at fixed times are excluded. Note that if stochastic continuity

is extended to path continuity, then the resulting process is arithmetic Brownian motion.

As noted by Kou [2001], “The main empirical motivation of using Lévy processes in finance comes from

fitting asset return distributions.” He mentions that Lévy processes are able to capture the leptokurtic

feature so often seen in financial asset prices. Furthermore, when using Lévy processes to model returns (as

we will later in this thesis), the independent increments can be interpreted as future returns independent

of the past. Thus these conditions could be seen as implying market efficiency, i.e. that current asset prices

reflect all publicly available information. However, independent increments, along with the stationarity

property, prevent Lévy processes from modelling volatility clustering which is another phenomenon of

return distributions. Volatility clustering may be addressed by considering models that combine Lévy

processes with others, but we will not consider such models here.
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6.2 Infinite Divisibility

In this section we frequently refer to characteristic functions — see Appendix C.1 for definitions, properties

and examples.

There exists a one-to-one correspondence between the class of infinitely divisible distributions and the

class of Lévy processes.

Definition 6.2.1 Infinite Divisibility

A probability distribution µ on R is called infinitely divisible if for any n ∈ N, there exists n i.i.d. random

variables X1, X2, . . . , Xn such that X1 +X2 + . . .+Xn has distribution µ (see Applebaum [2004, §1.2.2]

or Cont and Tankov [2004a, Definition 3.2]).

Equivalently, the distribution µX of a random variable X is infinitely divisible if for every n ∈ N there

exist n i.i.d. random variables X1, X2, . . . , Xn such that

X
D
= X1 +X2 + . . .+Xn.

If the distribution of a random variable X is infinitely divisible, we will sometimes say X is infinitely

divisible for short. Note that the distribution of X is given by the convolution of the distributions of

X1, X2, . . . , Xn [see Varadhan, 2001, §3.1, p.36].

Every Lévy process is infinitely divisible. To see this, observe that a Lévy process is a continuous-time

analogue of a random walk (see eg. Cont and Tankov [2004a, §3.1] or Kyprianou [August 2007]): suppose

we sample a Lévy process X at intervals 0, ∆, 2∆, . . . and let Sn(∆) = Xn∆. Then

Sn(∆) =
n∑
i=1

(
Xi∆ −X(i−1)∆

)
,

where, for i = 1, 2, . . . , n Xi∆ − X(i−1)∆, are i.i.d. random variables having the same distribution as

the random variable X∆. So if we sample a Lévy process at different intervals ∆, then we get a family of

random walks Sn(∆). Now, let t = n∆, then for every t > 0 and n ≥ 1 we have that Xt = Sn(∆). Then

as before

Sn(∆) =

n∑
i=1

(
Xi tn

−X(i−1) tn

)
where, for i = 1, 2, . . . , n Xi tn

−X(i−1) tn
, are i.i.d. random variables whose distribution is equal to that

of X t
n

. Therefore, if X is a Lévy process, then for any t > 0, Xt is infinitely divisible. We have shown

that every Lévy process is infinitely divisible. Conversely, given an infinitely divisible distribution µ there

exists a unique Lévy process [see Sato, 1999, Corollary 11.6] X1 with the property that X1
D
= µ.

The characteristic function of an infinitely divisible distribution, and hence a Lévy process, has a useful

form, as is shown in the next proposition. Here, and in the rest of the thesis, we denote the characteristic

function of a random variable X by ΦX .

Proposition 6.2.2 Characteristic Function of a Lévy Process

Suppose {Xt}t≥0 is a Lévy process on R. Then there exists a continuous function ψ : R→ C such that

ΦXt(z) = etψ(z)

for z ∈ R [Sato, 1999, Lemma 7.6].
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The function ψ is called the characteristic exponent, the Lévy symbol or the Lévy exponent of X. As

we will see when discussing the Lévy-Khintchine representation (see Corollary 6.5.2), much can be said

about the form of ψ. The law of X is characterised by ψ in the sense that if two Lévy processes have the

same characteristic exponent, they have the same law. Thus we conclude from Proposition 6.2.2 that the

law of X1 determines the law of Xt.

An outline of the proof for Proposition 6.2.2 is as follows: let X be a Lévy process. Then X1 is infinitely

divisible and hence ΦX1(z) 6= 0 for any z ∈ R [see Sato, 1999, Lemma 7.5]. Since every characteristic

function is continuous, there exists a unique continuous function ψ such that ΦX1(z) = eψ(z) [see Sato,

1999, Lemma 7.6]. Suppose that p, q ∈ N, then

X1 =

q∑
j=1

(
X j

q
−X j−1

q

)
which shows that ΦX 1

q

(z)q = ΦX1(z) and hence ΦX 1
q

(z) = e
1
qψ(z) if we take qth roots. Now given a rational

t = p
q ,

X p
q

=

p∑
k=1

(
X k

q
−X k−1

q

)
so that ΦX p

q

(z) = ΦX 1
q

(z)p = e
p
qψ(z). This then shows that for a rational t, ΦXt(z) = etψ(z). If we let

t ∈ R+ and tn be a sequence of rational numbers such that tn → t, then Xtn → Xt in probability and hence

in distribution. So we have that ΦXtn (z) → ΦXt(z) and thus ΦXt(z) = etψ(z). More rigorous arguments

for the above can be found in Sato [1999, §7].

6.3 Poisson and Compound Poisson Processes

Poisson and compound Poisson processes are crucial to the understanding of Lévy processes. In particular,

there is a close relationship between compound Poisson processes and Lévy processes as we will see in

Proposition 6.3.5. Compound Poisson processes can be seen as a superposition of independent Poisson

processes. In turn, the Poisson distribution is closely connected to the exponential distribution which we

consider next.

Exponential random variables are used to describe the times between events in a Poisson process.

An exponentially distributed random variable τ can take any nonnegative real value and has probability

density function, with parameter λ ∈ R+ given by

f(t) = λe−λt1[0,∞)(t). (6.1)

τ is called the first arrival time. Exponential random variables posses a property called the absence of

memory. That is, knowing the time the last event occurred is in no way helpful in predicting the time of

the next event. If τ is an exponential random variable, then using Bayes’ rule

P(τ > t+ s|τ > t) =

∫∞
t+s

λe−λydy∫∞
t
λe−λydy

=
e−λ(t−s)

e−λt
= e−λs = P(τ > s),
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for every t, s > 0. It is this memoryless property that allows the exponential distribution to be a favourable

model for inter-arrival times of events. A distribution with this property must be an exponential distri-

bution as shown in the next proposition [Cont and Tankov, 2004a, Proposition 2.8]:

Proposition 6.3.1 Characterisation of Exponential Distributions

Let τ ≥ 0 be a random variable. If for all s, t > 0

P(τ > t+ s|τ > t) = P(τ > s)

then τ has an exponential distribution.

In the following we define a Poisson process Nt that counts the number of events or random times

{Tk}k≥1 occurring between 0 and t. In this definition we define the Poisson process as a counting process

of random times where each random time is the sum of i.i.d. exponential random variables [Cont and

Tankov, 2004a, Definition 2.17].

Definition 6.3.2 Poisson Process

Suppose that {τi}i≥1 are independent exponential random variables with parameter λ and that Tk =∑k
i=1 τi. Then the process {Nt}t≥0 defined by

Nt =

∞∑
k=1

1{Tk≤t}

is called a Poisson process with intensity λ.

In the definition above, the {τi}i≥1 are the inter-arrival times, whereas {Tk}k≥1 are the arrival times.

Thus Nt counts the total number of arrivals that have occurred in time t. Furthermore, as shown in

the next proposition, the random variable Nt follows a Poisson distribution [Cont and Tankov, 2004a,

Proposition 2.12].

Proposition 6.3.3

A Poisson process Nt as defined above follows a Poisson distribution with parameter λt, that is,

P(Nt = n) = e−λt
(λt)n

n!
.

Note that a Poisson process N = {Nt}t≥0 is not a martingale. However, the process Ñ =
{
Ñt

}
t≥0

defined by

Ñt := Nt − λt (6.2)

is a martingale. Ñ is called a compensated Poisson process and {λt}t≥0 is called the compensator of N .

Instead of having jumps of size 1, as in the case of the Poisson process, the compound Poisson process

has jumps of random size which are independent random variables with the same distribution [see Cont

and Tankov, 2004a, Definition 3.3].

Definition 6.3.4 Compound Poisson Process

A stochastic process X = {Xt}t≥0, with intensity λ > 0 and jump size distribution f , defined by

Xt =

Nt∑
k=1

Yk =
∞∑
k=1

Yk1{Tk≤t},
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6.4 Jump and Lévy Measures 69

where jump sizes Yk are i.i.d. random variables with distribution f and {Nt}t≥0 is a Poisson process with

intensity λ independent of {Yk}k≥1, is called a compound Poisson process.

As noted by Cont and Tankov [2004a, p.71], the following conclusions can be made from the above:

(i) Each time Nt jumps by 1, Xt jumps by a random size which has distribution f . The jumps at different

instances are independent and Xt inherits the independent and stationary increments property from

Nt. Xt jumps only when Nt does and hence the sample paths of Xt are càdlàg since the sample

paths of Nt are. Also, Xt is piecewise constant because Nt is.

(ii) The jump times {Tk}k≥1 have the same distribution as the jump times of Nt.

A compound Poisson process is a Lévy process with a.s. piecewise constant sample paths as shown in

the next proposition:

Proposition 6.3.5

A process X is a compound Poisson process if and only if it is a Lévy process and its sample paths are

piecewise constant functions [Cont and Tankov, 2004a, Proposition 3.3].

As a consequence Lévy processes, in general, can be adequately approximated by compound Poisson

processes.

6.4 Jump and Lévy Measures

In this section we discuss jump and Lévy measures and how they relate to each other. In order to aid us

in our discussion on jump measures, we consider random measures first.

Let (E, E) be a measurable space and (Ω,F ,P) be a probability space. Then the function M : Ω×E → R
is called a random measure on (E, E) if and only if

(i) for almost all ω ∈ Ω, M(ω, ·) is a Radon measure3 on (E, E).

(ii) for each measurable set A ∈ E , M(·, A) is a random variable on (Ω,F ,P).

A random measure is called a point process if it is integer-valued. Now, a Poisson random measure is

a point process that has independent increments. We say that a random measure M has independent

increments if for disjoint measurable sets A1, A2, . . . , An, then M(·, A1), M(·, A2), . . . , M(·, An) are

independent random variables.

Definition 6.4.1 Poisson Random Measure

Suppose that (Ω,F ,P) is a probability space and µ is a positive Radon measure on (E, E), where E ⊆ R.

A Poisson random measure on E with intensity measure µ is a function

M : Ω× E → N

such that

3If E ⊂ R, then a Radon measure on (E, E) is a measure µ such that for every bounded closed subset A ∈ E, µ(A) <∞.
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(i) for almost all ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E.

(ii) for each measurable set A ∈ E, M(·, A) is a Poisson random variable with parameter µ(A). Thus for

every A ∈ E and every n ∈ N

P (M(·, A) = n) = e−µ(A)µ(A)n

n!
.

(iii) for disjoint measurable sets A1, A2, . . . , An ∈ E variables M(·, A1), M(·, A2), . . . , M(·, An) are

independent.

[see Cont and Tankov, 2004a, Definition 2.18].

A random measure can be associated with every càdlàg process, in particular a compound Poisson

process. Let X = {Xt}t≥0 be a càdlàg process with values in R and let the jumps of X be denoted by

∆Xt = Xt −Xt− 6= 0

where Xt− = lim
s→t,s<t

Xs exists by the càdlàg property. Then define the random jump measure JX :

Ω× B (R+)× B (R)→ N associated with X as

JX(ω, (0, t], A) = # {s : (s,∆Xs(ω)) ∈ (0, t]×A}

=
∑
s>0

1((0,t],A)(s,∆Xs(ω))

where ω ∈ Ω and A ∈ B (R) 4 is bounded away from 0 5,6. Thus JX is a counting measure and JX(·, (0, t], A)

is the number of jumps of X, by time t, whose size is in A. So for any measurable set A ⊂ R, the jump

measure JX(·, (t1, t2], A) of a process X, counts the number of jumps of X in the interval (t1, t2] with jump

sizes in A. The jump measure of a compound Poisson process is a Poisson random measure as shown in

the next proposition.

Proposition 6.4.2 Jump Measure of a Compound Poisson Process

Suppose X is a compound Poisson process with intensity λ and jump size distribution f . Then its jump

measure JX is a Poisson random measure on [0,∞) × R with intensity measure µ(dt × dx) = ν(dx)dt

where ν(dx) = λf(dx) [Cont and Tankov, 2004a, Proposition 3.5].

Proposition 6.4.2 implies that any compound Poisson process X can be represented as

Xt =
∑
s∈[0,t]

∆Xs =

∫ t

0

∫ ∞
−∞

xJX(·, ds, dx) (6.3)

where JX is a Poisson random measure with intensity ν(dx)dt. There are no convergence problems with

the integral in (6.3). This is because compound Poisson processes only have a finite number of jumps in a

4B (R) denotes the Borel algebra, i.e. the σ-algebra generated by all the open subsets of R.
5A ∈ B (R) is bounded away from 0 if and only if 0 is not in the closure of A.
6The requirement for A to be bounded away from 0 is explained as follows: since the process X is càdlàg, it can have at

most finitely many jumps where |∆X·| > ε for any ε > 0. It may, however, have infinitely many jumps where |∆X·| < ε, in

any non-zero time interval.
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finite interval and hence the integral above is a finite sum. Thus compound Poisson processes are of finite

activity as we shall see later in Proposition 6.6.1.

From Proposition 6.3.5, it follows that all piecewise constant Lévy processes can be defined using the

jump measure. Furthermore, the ν in Proposition 6.4.2 is called the Lévy measure of the process X, and

can be interpreted as the average number of jumps per unit time.

Definition 6.4.3

Let X = {Xt}t≥0 be a Lévy process on R. Then for A ∈ B (R) define the measure ν on R by

ν(A) = E [#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}] . (6.4)

ν is called the Lévy measure of X. ν(A) is the expected number of jumps, per unit time, where the jump

sizes are in A [Cont and Tankov, 2004a, Definition 3.4].

From the above and Proposition 6.3.5, associated with every piecewise constant Lévy process, is a

Poisson process M(·, A) counting the number of jumps with size in A. Thus there is a sequence of

independent exponential random variables {TnA}, where TnA is the nth time X has a jump of size in A and

has a mean of 1
ν(A) .

One can extract useful information regarding the structure of the jumps of a Lévy process from its

Lévy measure. By considering the Lévy measure of a process we are able to determine whether it has only

a finite number of jumps on every time interval or infinitely many (see Proposition 6.6.1). Also, whether a

Lévy process has finite variation or not is partly dependent on the Lévy measure (see Sato [1999, Theorem

21.9] or Papapantoleon [2008, Proposition 6.2]).

As we have seen, the Lévy measure describes the expected number of jumps of a certain size per unit

time. More formally, a Lévy measure can be defined as a measure ν on B (R) such that

ν ({0}) = 0 (6.5)

and ∫
R\{0}

(
x2 ∧ 1

)
ν(dx) <∞ (6.6)

(see Papapantoleon [2008] for example). ν has zero mass at the origin, but could have infinite mass near

the origin. Thus infinitely many small jumps can occur close to the origin. On the other hand note that

for 0 < ε ≤ 1

ν ((−∞,−ε] ∪ [ε,∞)) =
1

ε2

∫
(−∞,−ε]∪[ε,∞)

ε2 ν(dx)

≤ 1

ε2

∫
(−∞,−ε]∪[ε,∞)

(
x2 ∧ 1

)
ν(dx)

<∞

which shows that the mass away from the origin is bounded, that is, there is only a finite number of

big jumps. Some texts, such as Schoutens [2003, §5.1] or Applebaum [2004, §1.2.4], define ν on the σ-

algebra B (R\{0}) without condition (6.5). For convenience we have defined ν on B (R) by including this

condition7.
7This is practical, since a ‘jump’ of size 0, is not really a jump and therefore cannot be counted.
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6.5 Lévy-Itô Decomposition

In this section, we present the Lévy-Itô decomposition, the Lévy-Khintchine representation for Lévy pro-

cesses and finally the Lévy-Khintchine formula. The Lévy-Khintchine formula is frequently introduced

before the Lévy-Itô decomposition (see Papapantoleon [2008], Sato [1999] or Applebaum [2004] for exam-

ple). However, we follow the order in which the theorems appear in Cont and Tankov [2004a] so that the

Lévy-Khintchine representation and formula is a consequence of the Lévy-Itô decomposition.

Suppose we have a standard Brownian motion with drift γt+Wt which is independent of a compound

Poisson process (this process is a piecewise constant Lévy process by Proposition 6.3.5)
{
X0
t

}
t≥0

, then

Xt = γt+Wt +X0
t

is another Lévy process and can be written as

Xt = γt+Wt +
∑
s∈[0,t]

∆X0
s = γt+Wt +

∫ t

0

∫ ∞
−∞

xJX0(·, ds, dx), (6.7)

where JX0 is a Poisson random measure on [0,∞)×R with intensity ν(dx)dt (see (6.3)) and ν is the Lévy

measure given in Definition 6.4.3.

A similar decomposition as in (6.7) can be found if we begin with some Lévy process X. The Lévy-Itô

decomposition implies that every Lévy process can be written as a combination of standard Brownian

motion with drift and a, possibly infinite, sum of independent compound Poisson processes (see Cont and

Tankov [2004a, Proposition 3.7] for example).

Theorem 6.5.1 Lévy-Itô Decomposition

Let X = {Xt}t≥0 be a Lévy process on R and ν its Lévy measure as in (6.4). Then X has decomposition

Xt = γt+ σWt +

∫
|x|≥1

∫ t

0

xJX(·, ds, dx) + lim
ε↓0

∫
ε≤|x|<1

∫ t

0

x [JX(·, ds, dx)− ν(dx)ds] , (6.8)

where

(i) the terms are independent;

(ii) γ ∈ R, σ ∈ R with σ ≥ 0 and Wt is standard Brownian motion;

(iii) the convergence in the last term is a.s. and uniform in t on [0, T ];

(iv) JX is a Poisson random measure on [0,∞)× R with intensity measure ν(dx)dt;

Thus for every Lévy process, there exist γ, σ ∈ R, with σ ≥ 0, and a positive measure ν that uniquely

determine its distribution. The triplet (σ2, ν, γ) is called the characteristic triplet or Lévy triplet of X.

Theorem 6.5.1 states that a Lévy process {Xt}t≥0 can be written as

Xt = Xc
t +Xd

t ,

where

Xc
t = γt+ σWt
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is the continuous Gaussian Lévy part, and the discontinuous part

Xd
t =

∫
|x|≥1

∫ t

0

xJX(·, ds, dx) +

∫
|x|<1

∫ t

0

x [JX(·, ds, dx)− ν(dx)ds]

gives the sum of the jumps, where the jumps are described by the Lévy measure ν. Now as we mentioned in

§6.4, ν is not necessarily finite and there can be infinitely many small jumps. Therefore, the discontinuous

part Xd
t is split into two integrals. First, since

∫
|x|≥1

ν(dx) < ∞, there is a finite number of jumps with

size greater or equal to 1 8. As in (6.3) we may write the sum of these jumps as

|∆Xs|≥1∑
0≤s≤t

∆Xs =

∫
|x|≥1

∫ t

0

xJX(·, ds, dx)

which is a compound Poisson process of finite variation. Secondly, for every ε > 0 the integral

ε≤|∆Xs|<1∑
0≤s≤t

∆Xs =

∫
ε≤|x|<1

∫ t

0

xJX(·, ds, dx)

is convergent. However to obtain convergence as ε→ 0, we need to centre the process∫
ε≤|x|<1

∫ t

0

x [JX(·, ds, dx)− ν(dx)ds]

which is a compensated Poisson processes as defined in (6.2). Thus

lim
ε↓0

∫
ε≤|x|<1

∫ t

0

x [JX(·, ds, dx)− ν(dx)ds]

is convergent and is a martingale [see Cont and Tankov, 2004a, Proposition 2.16].

The Lévy-Khintchine representation, which gives a form of the characteristic function in terms of the

characteristic triplet (σ2, ν, γ), now follows easily [Cont and Tankov, 2004a, Theorem 3.1].

Corollary 6.5.2 Lévy-Khintchine Representation

Suppose {Xt}t≥0 is a Lévy process on R with Lévy triplet (σ2, ν, γ). Then for all z ∈ R

ΦXt(z) = etψ(z) (6.9)

with

ψ(z) = − 1
2z

2σ2 + izγ +

∫ ∞
−∞

eizx − 1− izx1{|x|≤1} ν(dx). (6.10)

In § 6.2 we saw that an infinitely divisible distribution is the distribution at time t = 1 of some Lévy

process. This, together with Theorem 6.5.1 and Corollary 6.5.2 gives us the Lévy-Khintchine formula:

Theorem 6.5.3 Lévy-Khintchine Formula

Let µ be an infinitely divisible distribution on R. Then for z ∈ R its characteristic function is given by

Φµ(z) = eψ(z) (6.11)

8Note that the jump size 1 is arbitrary and can be set to any positive constant.
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with

ψ(z) = − 1
2z

2σ2 + izγ +

∫ ∞
−∞

eizx − 1− izx1{|x|≤1} ν(dx), (6.12)

where σ, γ ∈ R with σ ≥ 0 and ν is a Lévy measure on R. Here ν is called the Lévy measure of the

distribution µ.

Let X be a Lévy process with Lévy triplet (σ2, ν, γ) and consider the compensated term in (6.8)∫
|x|≤1

∫ t

0

x [JX(·, ds, dx)− ν(dx)ds] =

∫
|x|≤1

∫ t

0

xJX(·, ds, dx)− t
∫
|x|≤1

x ν(dx).

Recall that we have centred this term because the integral
∫
|x|≤1

∫ t
0
xJX(·, ds, dx) might be infinite. Now

JX is a Poisson random measure with intensity measure ν(dx)dt and hence

E

[∫
|x|≤1

∫ t

0

xJX(·, ds, dx)

]
=

∫
|x|≤1

∫ t

0

x ν(dx)ds.

Therefore, if
∫
|x|≤1

|x| ν(dx) < ∞ we have that
∫
|x|≤1

∫ t
0
xJX(·, ds, dx) < ∞ and thus we do not need a

compensation term in (6.8). So, in this case the Lévy-Itô decomposition of X becomes

Xt = γt+ σWt +

∫ t

0

∫ ∞
−∞

xJX(·, ds, dx)− t
∫
|x|≤1

x ν(dx)

=: γ0t+ σWt +

∫ t

0

∫ ∞
−∞

xJX(·, ds, dx)

and its characteristic function is given by

ΦXt(z) = etψ(z)

with

ψ(t) = − 1
2z

2σ2 + iγ0z +

∫ ∞
−∞

eizx − 1 ν(dx).

Here γ0 = γ −
∫
|x|≤1

x ν(dx) is called the drift of the Lévy process X.

6.6 Infinite Activity and Pure Jump Lévy Processes

In this section we consider infinite activity Lévy models, that is, models that have an infinite number

of jumps in every interval. These models may contain a Brownian component. If they don’t, they are

called pure jump Lévy models. As noted by Cont and Tankov [2004a, §4.1.1], several authors [Madan,

2001b, Carr et al., 2003, Geman, 2002] have considered infinite activity models to be ideal as they are

able to describe the price process at various time scales more realistically. A pure jump process is of finite

(infinite) activity if the number of price jumps in any interval of time is finite (infinite).

Consider the Lévy measure ν as given in Definition 6.4.3 of a Lévy process X. If ν (R) =∞, then an

infinite number of small jumps are expected and X is called an infinite activity process (see Sato [1999,

Theorem 21.3] or Papapantoleon [2008] for example).
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Proposition 6.6.1

Let X be a Lévy process with triplet (σ2, ν, γ).

(i) If ν (R) <∞ then X has a.s. a finite number of jumps on every closed and bounded interval and we

say X has finite activity.

(ii) If ν (R) =∞ then X has a.s. an infinite number of jumps on every closed and bounded interval and

we say X has infinite activity.

For a proof see Sato [1999, Theorem 21.3]. Some remarks regarding the proposition above should be

made: If X is of infinite activity, then X has an infinite number of jumps within any finite interval and

the expected number of jumps in [0, 1] is not finite. Consider the following: let Tε be the first time that X

has a jump of size bigger or equal to ε. Then Tε is an exponential random variable with mean 1
λε

where

λε = ν ({x : |x| ≥ ε}). It is clear that if ε1 ≤ ε2, then Tε1 ≤ Tε2 and so P (Tε ≤ t) = 1 − e−λεt. Since

ν(R) =∞, λε →∞ as ε→ 0. Therefore, for any t > 0

lim
ε→0

P (Tε ≤ t) = 1

and hence lim
ε→0

Tε = 0 a.s. Therefore, X jumps a.s. before any time t > 0. Examples of infinite activity

processes are the variance gamma and normal inverse Gaussian processes, which will be discussed in

Chapters 8 and 9 respectively.

6.7 Subordinators

‘Subordination’ was first referred to by Bochner [1955], who introduced the notion of time-changing a

Markov process by an independent Lévy process which results in another Markov process [see Bertoin,

1998]. Subordinators are increasing pure jump Lévy processes; they can be used to construct Lévy processes

by performing a time-change on Brownian motion. Examples of subordinators include Poisson, gamma

and inverse Gaussian processes.

In finance, popular models of time-changed Brownian motion are the variance gamma (Madan and

Seneta [1990] and Madan et al. [1998]) and normal inverse Gaussian (Barndorff-Nielsen [1997, 1998])

processes, where the subordinators are the gamma and inverse Gaussian processes, respectively. These

subordinators can be seen as replacing the ‘calendar’ time in Brownian motion with what is interpreted

in mathematical finance as ‘business’ or ‘market’ time.

As noted in Madan and Yor [2005] the variance gamma and normal inverse Gaussian processes are

constructed as time-changed Brownian motions. However, some Lévy processes, such as CGMY (see

Koponen [1995] and Boyarchenko and Levendorskĭı [1999], and Carr et al. [2002]) or Meixner processes

(see Schoutens and Teugels [1998], Grigelionis [1999], Schoutens [2000] and Pitman and Yor [2003]), are

defined directly by their Lévy measures and it is not known in advance whether they can be written as

time-changed Brownian motion.

We give a formal definition of subordinators (see Sato [1999, Definition 21.4] or Applebaum [2004,

§1.3.2]).

Definition 6.7.1 Subordinator

A subordinator is a one-dimensional a.s. nondecreasing Lévy process. Thus a subordinator is a Lévy

process {Xt}t≥0, where for t ≥ s, Xt ≥ Xs a.s.
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Since subordinators are Lévy processes, they possess stationary and independent increments. Fur-

thermore, as we shall see in the next proposition, they are pure jump processes (possibly having infinite

activity) with an added deterministic drift.

Proposition 6.7.2

Let X = {Xt}t≥0 be a Lévy process on R. Then X is a subordinator if and only if the characteristic triplet

of X satisfies σ = 0, ν((−∞, 0]) = 0,
∫∞

0
(x ∧ 1) ν(dx) < ∞ and γ0 ≥ 0 where γ0 = γ −

∫
|x|≤1

x ν(dx)

[Cont and Tankov, 2004a, Proposition 3.10].

The intuition behind Proposition 6.7.2 is as follows: if σ 6= 0, then X has a Brownian component

and hence can have downward moves. Since the Brownian and jump components of X are independent,

downward moves originating from the Brownian component will not be offset by positive moves of the

jump component. Again X will be able to decrease. Furthermore, if γ0 is allowed negative values, then

X can have negative drift and will be able to decrease. Finally, if we had ν ((−∞, 0]) > 0, then X could

have downward jumps and hence could decrease.

Since a subordinator is an a.s. nondecreasing process, it is of finite variation9 [see Schoutens, 2003,

§2.2.3]. Furthermore, a Lévy process with σ = 0 and
∫∞

0
(x ∧ 1) ν(dx) <∞ is of finite variation:

Proposition 6.7.3

A Lévy process is of finite variation if and only if its characteristic triplet (σ2, ν, γ) satisfies

σ = 0 and

∫
|x|≤1

|x| ν(dx) <∞

[Cont and Tankov, 2004a, Proposition 3.9].

Hence, the characteristic function of the subordinator X takes the form

ΦXt(z) = etψ(z),

where

ψ(z) = izγ0 +

∫ ∞
0

eizx − 1 ν(dx) (6.13)

with z ∈ R. Since the subordinator Xt is positive for all t, we can describe it using a Laplace transform

instead of a Fourier transform. The moment generating function of Xt is

MXt(u) = etl(u)

where

l(u) = uγ0 +

∫ ∞
0

eux − 1 ν(dx) (6.14)

with u ∈ R. Here l(u) is called the Laplace exponent of X.

The following theorem shows that a Lévy process, time-changed by an independent subordinator,

always results in another Lévy process [Cont and Tankov, 2004a, Theorem 4.2].

9A Lévy process X is of finite variation if every path of X is of finite variation with probability 1. Brownian motion is a

well-known example of a Lévy process that is not of finite variation [Kallenberg, 2001, Corollary 13.10].
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Theorem 6.7.4 Subordination of a Lévy Process

Let (Ω,F ,P) be a probability space and suppose X = {Xt}t≥0 is a Lévy process on R with characteristic

exponent ψ(u) and triplet
(

(σX)
2
, νX, γX

)
. Furthermore, let S = {St}t≥0 be a subordinator with Laplace

exponent l(u) and triplet (0, νS, γS). Then the process Y = {Yt}t≥0 defined for each ω ∈ Ω by

Yt(ω) = XSt(ω)(ω)

is a Lévy process and has Lévy triplet
(

(σY)
2
, νY, γY

)
where

(σY)
2

= γS

0 (σX)
2

νY(B) = γS

0ν
X(B) +

∫ ∞
0

fXs(B)νS(ds), for all B ∈ B (R)

γY = γS

0γ
X +

∫ ∞
0

νS(ds)

∫
|x|≤1

x fXs(dx).

Here fXt is the probability distribution of Xt and γS
0 = γS −

∫
|x|≤1

xνS(dx).

For a proof, see Cont and Tankov [2004a, Theorem 4.2] or Sato [1999, Theorem 30.1]. The time-changed

process Y is said to be subordinate to the process X.
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Chapter 7

Generating Geometric Brownian

Motion Paths

The purpose of this chapter is to serve as a basic reference for path simulation in Chapters 8 and 9.

We discuss the generation of paths where the dynamics of the stock price is assumed to obey geometric

Brownian motion (briefly considered in §7.1). However, unlike Chapters 8 and 9, we do not discuss the

particular properties related to Lévy processes.

Generating geometric Brownian paths requires normal random numbers. We will generate uniform

random numbers and then transform them into normal random numbers using a method we discuss in

§7.2. In order to generate uniform random numbers, we will offer two options, namely

• a pseudo-random number generator. We will make use of the Mersenne Twister of Matsumoto and

Nishimura [1998] (see §7.3).

• a quasi-random number generator. Here we will consider Sobol’ sequences by Sobol’ [1967] which

we introduce in §7.4 and develop in greater detail in Appendix B. Furthermore, as we will see later,

Sobol’ sequences should always be used in conjunction with bridges. Therefore, we will look at

bridge sampling in §7.5 which was introduced by Caflisch and Moskowitz [1995] and Moskowitz and

Caflisch [1996].

7.1 Geometric Brownian Motion

We will assume the existence of an equivalent martingale measure Q equivalent to the real-world measure

P under which discounted asset prices are martingales. In finance, such an equivalent martingale measure

is also known as a risk-neutral measure. Thus, according to the First Fundamental Theorem of Asset

Pricing we have an arbitrage-free model [Shreve, 2004, Theorem 5.4.7].

When we consider Brownian motion, the risk-neutral measure is unique because the Martingale Repre-

sentation Property holds. Thus if the number of underlying assets is greater or equal to the dimension of

the Brownian motion, it follows from the Second Fundamental Theorem of Asset Pricing, that the market

78
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is complete [Shreve, 2004, Theorem 5.4.9]. We construct the unique equivalent martingale measure using

Girsanov’s Theorem by changing the drift so that discounted asset prices become martingales under Q.

When considering the Black-Scholes model, the stock price dynamics of the stochastic process {St}t≥0

under the real-world measure P is given by

dSt = µStdt+ σStdW
P
t (7.1)

where W P
t indicates standard Brownian motion and µ, σ > 0 are real numbers. If we change to the

risk-neutral measure Q using Girsanov’s Theorem (see Etheridge [2002, Theorem 4.5.1] for example) (7.1)

becomes

dSt = (r − q)Stdt+ σStdWt (7.2)

where, as before, r denotes the constant continuously compounded risk-free rate and q the constant

continuously compounded dividend yield. Using Itô’s lemma in (7.2) gives

ln
St+∆t

St
=
(
r − q − 1

2σ
2
)

∆t+ σW∆t. (7.3)

Thus

St+∆t = St exp
[(
r − q − 1

2σ
2
)

∆t+ σW∆t

]
= St exp

[(
r − q − 1

2σ
2
)

∆t+ σ
√

∆tn
]

(7.4)

for n ∼ Normal(0, 1).
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Figure 7.1: Simulation of three geometric Brownian motion paths with S0 = 100, r = 7%, q = 0% where

the values of σ are varied. Note that the scales of the vertical axes are different in each figure.

For later reference, we note that using the probability density function of a normal random variable

Xt with parameters µ and σ > 0

fXt(x) =
1√

2πσ2t
exp

[
−1

2

(
x− µt
σ
√
t

)2
]

(7.5)

for x ∈ R and from (7.3) we find the density of Yt = ln St
S0

under Q

fQYt(x) =
1√

2πσ2t
exp

−1

2

(
x−

(
r − q − 1

2σ
2
)
t

σ
√
t

)2
 . (7.6)
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7.2 Generating Normal Random Numbers from Uniform

Random Numbers

In order to generate random numbers from the standard normal distribution, we will apply the method

given by Moro [1995]. This method provides an approximation to the cumulative inverse of the normal

distribution and so is an inverse transform method (see Appendix H). Moro’s approximation is accurate

to within 12 decimal places and only requires one uniform random number to generate a standard normal

random number.

Other methods for generating standard normal random numbers exist such as those given by Box and

Muller [1958] and Acklam [2004]. However, using Moro’s method seems to be standard practice and is a

fast and accurate approximation. Given a uniform random variable, we will always generate a standard

normal random variable by applying Moro’s method.

7.3 Generating Pseudo-Random Numbers using Mersenne

Twister

Pseudo-random numbers are generated by some deterministic algorithm and are designed to look like

random numbers. These numbers are not random at all as they are completely determined by a relatively

small set of initial values. When given a particular seed a second time, the same sequence will be generated.

Furthermore, these numbers have finite periodicity.

Linear congruential generators, lagged Fibonacci generators, linear feedback shift registers and gen-

eralised feedback shift registers are common examples of pseudo-random number generators. More re-

cent pseudo random algorithms include Blum Blum Shub [Blum et al., 1986] and Fortuna [Ferguson and

Schneier, 2003]. However these generators seem to be focussed on cryptography problems. In fact, Blum

Blum Shub is not appropriate for use in simulations as it is very slow.

We will use the Mersenne Twister which is a pseudo-random number generator with an extremely long

period, is faster than other statistically reasonable generators and has some attractive statistical properties.

The Mersenne Twister (MT), developed in Matsumoto and Nishimura [1998], is a pseudo-random number

generating algorithm based on a matrix linear recurrence over a finite binary field F2. The period length

is chosen to be a Mersenne prime, hence the name Mersenne Twister. There are several variants of the

algorithm. A more commonly used variation is the MT19937 which has a 32-bit word length. Another is

the MT19937-64 which has a 64-bit word length and generates a different sequence.

MT is widely used as it has a far longer period and a higher order of dimensional equidistribution1

than other implemented generators: it has a period of 219937 − 1 and 623-dimensional equidistribution

property. Several c++ and c implementations of MT are available for download at http://www.math.sci.

hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/c-lang.html. We have implemented the version of

Richard Wagner available at http://www-personal.umich.edu/~wagnerr/MersenneTwister.html.

1A high order of dimensional equidistribution means that the serial correlation between successive values in the resulting

sequence is negligible.
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7.3.1 Simulating Sequential Geometric Brownian Motion

We provide an algorithm that generates sequential stock price paths where the stock price follows geometric

Brownian as shown in (7.3). Let σ indicate the volatility of the log returns and let S be a matrix of stock

prices where Sij indicates the stock price at time tj of the ith sample path.

• For each simulation path i, i = 1, 2, . . . , N , we loop through the time steps ∆tj , j = 1, 2, . . . , M .

For i = 1 To N

– For j = 1 To M

∗ Generate a uniform random number uij using the pseudo-random number generator dis-

cussed in §7.3.

∗ Using Moro’s method, calculate nij , the cumulative inverse standard normal random number

of uij .

∗ Calculate Sij using (7.4):

Sij = Sij−1 exp
[(
r − q − 1

2σ
2
)

∆tj + σ
√

∆tjn
i
j

]
.

Next j

Next i

7.4 Generating Quasi-Random numbers using Sobol’ Numbers

Like pseudo-random numbers, quasi-random numbers are not random and are created deterministically.

Pseudo-random numbers suffer from the lack of uniformity which produces inefficient convergence in Monte

Carlo integration. However quasi-random numbers are generated in such a way that they form uniformly

distributed sequences which allow for better convergence in Monte Carlo integration. Quasi-random se-

quences are also called low discrepancy sequences as they are designed to minimise the discrepancy between

sampled points.

According to Acworth et al. [1996], for option pricing, quasi-Monte Carlo methods surpass pseudo-

Monte Carlo methods with and without antithetics, with the exception of cases where the dimension is

very high and the number of points is very small. Dimension can be roughly understood as the number of

different uniform random numbers required to generate an entire sample path. When the process follows

geometric Brownian motion, the dimension will be equal to M , that is, the number of time steps in the

option under consideration (see §1.1). Other processes, such as exponential variance gamma as we will see

in §8.3.1 or normal inverse Gaussian as we will see in §9.3.1, require two or three uniform random numbers

respectively at each time step and hence the dimension in these cases will be 2M or 3M , etc.

There are many examples of quasi-random sequences, such as Halton, Niederreiter, Faure and Sobol’.

It is mentioned in Acworth et al. [1996] that among the various quasi-Monte Carlo methods there is no

uniformly superior method. However, as stated in Acworth et al. [1996], Sobol’ numbers in conjunction with

bridge construction most often has the lowest root mean square relative error and is never noticeably worse

than the other methods. We will only discuss Sobol’ sequences and we will consider bridge construction

in §7.5.
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In Haug [2007], Peter Jäckel points out that of the many types of low discrepancy numbers none of

them are usable in high dimensions apart from properly initialised Sobol’ numbers. When asked about

combining pseudo-random numbers and low discrepancy numbers in Haug [2007], Peter Jäckel notes

that since it became more widely known that properly initialised Sobol’ numbers work extremely well,

publications on mixing approaches have diminished.

The generation of Sobol’ sequences are considered in detail in Appendix B. There we will also discuss

approaches shown by Jäckel [2002], Joe and Kuo [2003] and Glasserman [2004] on the implementation of the

Sobol’ generator. Furthermore, in §B.4 we perform various tests in order to check that our implementation

of Sobol’ sequences is reasonable.

7.5 Bridges and Effective Dimension

When quasi-Monte Carlo techniques are used to perform numerical integration, it is possible to apply some

additional techniques to reduce the variance of the resulting approximation to the integrand. We use a

sampling algorithm called bridge sampling which was introduced in the Brownian motion case in Caflisch

and Moskowitz [1995] and Moskowitz and Caflisch [1996].

Here, together with quasi-Monte Carlo, sample paths are structured as follows: first we simulate

in one step to terminal time (thus a requirement to apply this bridging technique is that the terminal

distribution of the process is known). Discrete paths are then sampled by recursively subdividing the

sampling time period, conditional on the already generated values of the process (assuming that the

mathematical properties of the process are sufficiently well-known to be able to do this). Variations on

this type of restructuring of sampling paths with quasi-Monte Carlo have been suggested in Acworth et al.

[1996] and Åkesson and Lehoczky [2000]. It is noted in Avramidis et al. [2004] that the conclusions made

in Acworth et al. [1996], Åkesson and Lehoczky [2000] and Caflisch et al. [1997] indicate that these path

sampling algorithms outperform pseudo-Monte Carlo very often and sometimes by orders of magnitude.

As noted in Tavella [2002, Chapter 4] the total variance of all the increments of the path does not

depend on the way the path is constructed. Also, in Jäckel [2002, §10.8] it is remarked that the specific

path construction technique does not directly influence the variance of any pseudo-Monte Carlo simulation,

but a good choice of a path construction technique can significantly improve the convergence behaviour

when quasi-random numbers are used rather than pseudo-random numbers. In a personal correspondence

Mark Joshi highlighted this fact.

The reason is as follows: low discrepancy sequences for lower coordinates are better distributed com-

pared with higher coordinates, unlike pseudo-random Monte Carlo which is equally (good or bad) at

sampling in any dimension. Thus it would be sensible to have more efficient coverage of dimensions —

here dimension means the dimension of the integration problem and not that of the low discrepancy se-

quence — with larger variance, and allow the random numbers in which we have less confidence to cover

dimensions of smaller variance.

Bridge sampling more or less redefines the dimensions so that they are in order of decreasing variance,

as opposed to merely in order of occurrence. As noted in Tavella [2002, Chapter 4], the number of

dimensions is not reduced here. The idea of effective dimension first appeared in Paskov and Traub [1995]

and is discussed in detail in Caflisch et al. [1997]. Effective dimension can roughly be understood as the

number of dimensions required to explain a sufficiently large proportion of the variance in the output. The
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proportion used in Caflisch et al. [1997] is 99%, but this is arbitrary.

Quasi-Monte Carlo methods without this restructuring of path sampling will outperform pseudo-Monte

Carlo only by chance. They may also underperform [see Papageorgiou, 2002] even with bridges, although

this type of construction is probably pathological. Joshi [2011, §19.1] notes that quasi-Monte Carlo without

bridges may even converge to the incorrect solution.

We will consider the bridging technique for Brownian motion in §7.5.2, and later for gamma processes

in §8.3.1 and inverse Gaussian processes in §9.3.1.

7.5.1 Bridge Implementation

Let us consider our own general algorithm for constructing a bridge. The algorithms in Glasserman [2004,

§3.1.1, p.85] and Jäckel [2002, §10.8.3] do not allow for unequal time steps, a volatility term structure, or

where the number of time steps is chosen not to be a power of 2; the algorithm we develop here will allow

for these possibilities.

Suppose that we would like to simulate the Wiener process {Wt}t≥0 for discrete times t1, t2, . . . , tM .

Assume we have drawn M i.i.d. standard normal random numbers z1, z2, . . . , zM in order to perform the

simulation (in the case of sequential sampling, the zi correspond to the ti as Wti = Wti−1
+
√
ti − ti−1zi).

First consider the simplest case where M is a power of 2 and the time points are equally spaced.

Generate a single step from t0 to tM using z1. Then, using the fact that we know the end point,

we perform a type of ‘random interpolation’ using the conditional distribution to determine the value of

the process at time tM
2

using z2. Next we find the value of the process at time tM
4

by performing the

‘interpolation’ between times t0 and tM
2

using z3, and similarly for time t 3M
4

using z4. We continue in this

way, finding the values of the process by halving the time steps and performing the ‘interpolation’ using

the conditional distribution until the total number of points is found. This algorithm is implemented in

Jäckel [2002, §10.8.3].

Now suppose the number of time intervals are not necessarily a power of 2, or points are not equally

spaced. One would like bridging points to be chosen in such a way that the maximum of the outstanding

variances is reduced as quickly as possible.

Definition 7.5.1 Outstanding Variance

The outstanding variance of an interval (s, t), where the values of the process at the end points s and t

are known, the value of the process at all interior points is unknown and this set of points is not empty, is

given by ∫ t

s

σ2(u)du

where σ is the instantaneous volatility of the stock price process and is a deterministic function of time.

In the constant volatility case the outstanding variance is proportional to the length of the time interval.

An example is given in Jäckel [2002, §10.8.3] in which 14 time periods are equally spaced. However, the

algorithm which works fine for the case where the number of points is a power of 2, is no longer optimal.

The order in which the bridge points are chosen is given by 14, 7, 3, 10, 1, . . . whereas a minimising

sequence would be 14, 7, 3, 10, 5 or 12, . . . Furthermore, this implementation does not allow for varying

time interval lengths.
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Consider Figure 7.2 where the observation dates of an Asian out option (an option where the averaging

dates are the last few business days before maturity). Clearly, creating a bridge point at time t1 would

minimise outstanding variance. In fact, it is clear, that just knowing the stock price at times t8 and t1,

gives us a pretty good idea of the option payoff. However, the implementation in Jäckel [2002, §10.8.3]

would not choose t1 as the first position at which a bridge point is created, but t4.

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 7.2: Asian out option observation dates.

The algorithm that finds the bridging point which reduces outstanding variance as quickly as possible is

the solution to a minimax problem. Consider an example in which this algorithm is illustrated: Figure 7.3

indicates a flat volatility structure with 8 varying time periods. Suppose that bridge points have been

created at times t1, t4 and t7 in previous inductive steps. Here we have 4 time periods namely (t0, t1),

(t1, t4), (t4, t7) and (t7, t8). We will only consider the intervals (t1, t4) and (t4, t7) as these are the only

intervals containing points for which a bridge point must still be created. Of these two intervals, (t4, t7)

has the greatest variance and thus we would choose a point from this interval to minimise the outstanding

variance.

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 7.3: A flat volatility term structure with 8 varying time periods. Vertical lines indicate that bridging

points have already been created inductively. Since interval (t4, t7) is of greatest variance, we will choose

the next bridging point from this interval.

Once we have determined the interval of maximum variance, we find the point in that interval which,

if chosen, will minimise the outstanding variance.

When considering Figure 7.3, we see that if we choose the next bridging point to be at time t5, the

left Figure 7.4 is produced; whereas choosing to create a bridging point at t6, the right Figure 7.4 results.

Clearly a bridge point at time t6 would be more desirable as the resulting greatest outstanding variance for

the newly created intervals (t4, t6) and (t6, t7) would be smaller than for the intervals (t4, t5) and (t5, t7)

resulting from choosing to create a bridge point at time t5.

Thus we choose the next bridging point to be at time t6, and induct.

Let M be the dimension of the problem under consideration. We now give two algorithms which will

enable us to find a vector of integers BI (bridge index) of length M where BIk, k = 1, 2, . . . , M will

contain the index at which the bridge point is created in step k. Suppose inductively that BI is partially

completed, as well as the vector B of length M + 1 containing boolean entries which indicate whether in

an earlier time step a bridge point has been created for a position or not. Observe that BI1 = M , since
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 7.4: The horizontal lines indicate the resulting outstanding variance in the interval (t4, t7) and when

choosing to create a bridge point at time t5 and t6 on the left and right respectively.

the first bridge point is always created at the last time point. Also, note that B0 = 1 and BM = 1, that

is, bridge points exist at the first and last time point.

The first algorithm finds the left index LL (largest left) of the interval of largest outstanding variance.

Suppose Σ is a vector of length M whose entries are given by Σj =
∫ tj
t0
σ2(s)ds for j = 1, 2, . . . , M .

Furthermore, let L and R be integer variables which will denote left and right indices of a test interval.

Let LV (largest variance) be a variable which will contain the largest outstanding variance that has been

found thus far.

• Set LL := 0, LV := 0, L := 0 and R := 0.

• While L < M Do

– Set R := L+ 1.

– Increment R until BR is equal to 1, that is, until we reach a point at which a bridge point has

been created.

– If R is equal to L+ 1 then set L := R.

– If ΣR − ΣL > LV 2 Then

Set LV := ΣR − ΣL and LL := L.

End If

– Set L := R.

End While

Our second algorithm finds the point that will minimise the outstanding variance of the chosen interval.

Let SV (smallest variance) be a variable containing the smallest variance thus far and let RLV (resulting

largest variance) be a variable that is equal to the largest variance if a bridge point should be created.

Finally, let NBI (next bridge index) be an integer variable which will eventually be equal to the index at

which the next bridge point will be created.

• Set SV := ΣR − ΣLL.

2Several such variance differences can be equal but can have differing decimal representations due to rounding. Thus it is

necessary to replace here LV with LV + ε, for some ε just larger than the level of machine precision.
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• For j = LL+ 1 To R− 1

– Set RLV := max {ΣR − Σj ,Σj − ΣLL}.

– If SV > RLV Then

Set SV := RLV and NBI := j.

End If

Next j

Once we have completed this algorithm, we update the vectors B and BI by setting BNBI := 1 and

BIk := NBI. Then we return to the first algorithm to find the next bridging point.

7.5.2 Brownian Bridge Sampling

Suppose we want to simulate a discretised path of standard Brownian motion {Wti}i=0, 1, ..., M . In order

to simulate the path of Brownian motion, we first simulate Brownian motion at the end of the term tM

as follows

WtM =
√
tMn1 (7.7)

where n1 is the first standard normal random variable in the sequence. Then, using the results of the

algorithm as shown in §7.5.1, we choose the first point tj at which a bridge must be created with bridge

points Wt0 = W0 = 0 and WtM at times t0 and tM . We determine the conditional distribution of the

Brownian motion increment Wtj −Wt0 , using the next standard normal random variable in the sequence

n2, given that we know WtM −Wt0 . We proceed by induction.

The general inductive step will be as follows: consider three consecutive times s < t < u and suppose

that x, y and z are realisations of the Brownian motion increments Wt −Ws, Wu −Wt and Wu −Ws

respectively (see Figure 7.5). Here Ws and Wu are points which have already been determined and t was

determined to be the point at which the next bridge is to be created.

s t u

��
���

���
��:

�
�
�
�
�
��
H
HHHH

HHj

Ws

Wt

Wuz

x

y

Figure 7.5: Brownian Bridge

In order to find the conditional distribution of the Brownian motion increment Wt −Ws = x given

that we know the increment Wu −Ws = z, we will require Bayes’ Theorem. Suppose that X and Z are

Stellenbosch University  http://scholar.sun.ac.za



7.5 Bridges and Effective Dimension 87

the distributions from which x and z are chosen, then

fX|Z=z(x) =
fZ|X=x(z)fX(x)

fZ(z)
. (7.8)

Applying (7.8) gives

f(Wt−Ws|Wu−Ws=z)(x) =
f(Wu−Ws|Wt−Ws=x)(z)fWt−Ws(x)

fWu−Ws
(z)

=
fWu−Wt + x(z)fWt−Ws

(x)

fWu−Ws(z)

=
1√
2π

1√
(u−t)(t−s)

(u−s)

exp

[
−1

2

(
(z − x)2

u− t
+

x2

t− s
− z2

u− s

)]

=
1√
2π

1√
(u−t)(t−s)

(u−s)

exp

−1

2

 x− t−s
u−sz√

(u−t)(t−s)
u−s

2
 .

Thus, conditional on knowing the increment Wu−Ws = z, Wt−Ws is normally distributed with mean
t−s
u−sz and standard deviation

√
(u−t)(t−s)

u−s . Therefore, for a standard normal random variable n, we may

write (see Jäckel [2002, §10.9.2] for example)

Wt −Ws =
t− s
u− s

z +

√
(u− t)(t− s)

u− s
n

=
t− s
u− s

(Wu −Ws) +

√
(u− t)(t− s)

u− s
n

⇒Wt =

(
1− t− s

u− s

)
Ws +

t− s
u− s

Wu +

√
(u− t)(t− s)

u− s
n

=
u− t
u− s

Ws +
t− s
u− s

Wu +

√
(u− t)(t− s)

u− s
n. (7.9)

Thus we have completed the inductive step.

Suppose that we want to simulate arithmetic Brownian motion X = {Xt}t≥0 with drift µ and variance

σ2. Given the Brownian bridge Wt in (7.9), we find its corresponding arithmetic Brownian motion Xt by

multiplying Wt with σ and adding µt

Xt = µt+ σWt

= µt+ σ

(
u− t
u− s

Ws +
t− s
u− s

Wu +

√
(u− t)(t− s)

u− s
n

)

=
u− t
u− s

µs+
t− s
u− s

µu+ σ

(
u− t
u− s

Ws +
t− s
u− s

Wu +

√
(u− t)(t− s)

u− s
n

)

=
u− t
u− s

Xs +
t− s
u− s

Xu + σ

√
(u− t)(t− s)

u− s
n. (7.10)

Thus we may construct our algorithm for creating arithmetic Brownian motion in either of two ways: first

generate Brownian bridges for all times and then find their corresponding arithmetic Brownian motion,

or for each Brownian bridge Wt calculate its corresponding arithmetic Brownian motion Xt immediately.
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Chapter 8

The Variance Gamma Model

The class of variance gamma distributions was originally introduced as a model of stock returns in Madan

and Seneta [1987]. The symmetric variance gamma process was considered in the seminal paper of Madan

and Seneta [1990], showing its applicability as a model for stock returns. The risk-neutral variance gamma

process with skewness was studied in Madan and Milne [1991]. It was shown in Madan et al. [1998]

that the asymmetric risk-neutral process is equivalent to arithmetic Brownian motion which has been

subordinated by a gamma process. Furthermore, the formula for the variance gamma density in terms of

Bessel functions is deduced in Madan et al. [1998], where it is also shown that a variance gamma process

can be written as the difference of two gamma processes. Hence variance gamma processes are of finite

variation.

In Geman et al. [2001] several arguments supporting the use of time-changed Brownian motion as a

model for price processes are presented. Geman et al. [2001] show how the price process may be viewed as

Brownian motion, but only in ‘business’ time which is modelled by a subordinator. We will consider the

asymmetric variance gamma process in Madan et al. [1998], defined as the arithmetic Brownian motion

time-changed by a gamma process, and begin by considering gamma processes.

8.1 Gamma Processes

The gamma distribution was originally referred to as the Pearson Type III distribution and originated

from the work of Pearson (Pearson [1893, 1895]). Only later, in the 1930s and 1940s (see for example

Weatherburn [1946]), it became known as the gamma distribution. In its most general form (see Johnson

et al. [1994, Chapter 17] for example), the gamma distribution is dependent on three parameters and its

probability density is of the form

fG(x) =
βα

Γ(α)
(x− γ)α−1e−β(x−γ) (8.1)

where α, β > 0 and x > γ and Γ(·) indicates the gamma function. The most common definition of the

gamma function is given by Euler’s integral for z ∈ C

Γ(z) =

∫ ∞
0

tz−1e−tdt,

88
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where <(z) > 0. A consequence of the above is [Abramowitz and Stegun, 1974, 6.1.1]

Γ(z) = kz
∫ ∞

0

tz−1e−ktdt (8.2)

for <(k) > 0.

We consider the two-parameter form of the gamma distribution only: if γ = 0, (8.1) becomes

fG(x) =
βα

Γ(α)
xα−1e−βx1{x≥0}. (8.3)

From now on, we refer to the two-parameter gamma distribution as the gamma distribution.

The gamma distribution is closely related to the exponential distribution: if α = 1, (8.3) becomes

the density function of the exponential distribution with parameter β (see (6.1)). Since the exponential

distribution is infinitely divisible, it has a Lévy process associated with it (see §6.2). In the case of the

exponential distribution, the associated Lévy process is given by the gamma process. The exponential

distribution has often been used to model arrival times of events. In particular, gamma processes have

been used to model aggregate insurance claims [see Embrechts et al., 2001, §2]. In a similar way, gamma

processes can be used to model the arrival of information in the market at discrete points in time. Thus,

as a subordinator, a gamma process can be used to model ‘business’ time.

We denote a random variable X that follows a gamma distribution with parameters α > 0 and β > 0

as

X ∼ Gamma(α, β)

where α is referred to as the shape parameter and β as the rate parameter.

Definition 8.1.1 Gamma Process

A gamma process with parameters α, β > 0 is a Lévy process XG = {XG
t }t≥0, where the increments

XG

t+∆t −XG
t
D
= XG

∆t are distributed Gamma (α∆t, β) [Schoutens, 2003, §5.3.3].

In Table 8.1 we list some results concerning gamma processes. These results will be discussed subse-

quently.

Property Expression/Value

Probability Density Function fXG
t

(x) = βαt

Γ(αt)x
αt−1e−xβ1{x>0}

Characteristic Function ΦXG
t

(z) = βαt

Γ(αt)(β−iz)αt (β − iz)αt
∫∞

0
xαt−1e−(β−iz)x dx

Activity Infinite Activity

Lévy Triplet σG = 0

γG
0 = 0 and γG = α

β

(
1− e−β

)
νG(x) = αe−βx

x 1{x>0}

Table 8.1: Results for a gamma process XG with x, z, α, β ∈ R and α, β > 0.

If XG is a gamma process with parameters α > 0 and β > 0, then XG
t has density

fXG
t

(x) =
βαt

Γ(αt)
xαt−1e−xβ1{x>0}.
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The characteristic function of XG
t is calculated for z ∈ R as follows

ΦXG
t

(z) = E
[
eizX

G
t

]
=

βαt

Γ(αt)

∫ ∞
0

xαt−1e−(β−iz)x dx

=
βαt

Γ(αt) (β − iz)αt
(β − iz)αt

∫ ∞
0

xαt−1e−(β−iz)x dx.

Noting that <(β − iz) = β > 0 and <(αt) = αt > 0 we apply (8.2) with k := β − iz and z := αt to get

(β − iz)αt
∫ ∞

0

xαt−1e−(β−iz)x dx = Γ(αt)
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Figure 8.1: In the first row we plot the gamma probability density function for various values of α and

β where one parameter is fixed and the other is varied. The graphs shown in green are the same in both

figures with parameters used in common.

In the second row, we simulate three realisations of three gamma Processes with parameter values

corresponding to the densities in the first row. We see that as the values of α increase the jump frequency

increases. Furthermore, note how the jump sizes decrease as the values of β increase.
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and hence we have

ΦXG
t

(z) =
βαt

Γ(αt) (β − iz)αt
Γ(αt) =

(
β

β − iz

)αt
=

(
1− i z

β

)−αt
. (8.4)

Observe that at t = 1
α , we have that XG

t is exponential with parameter β. Later in §10.2.1 we will make

use of the characteristic function of XG
t in the form1

ΦXG
t

(z) = exp

[
−αt ln

(
1− i z

β

)]
. (8.5)

By inspecting the characteristic function of XG
t , we observe that XG

t is infinitely divisible. Hence, as

we have seen in §6.2, there exists a Lévy process that has characteristic function as in (8.5) with t = 1.

Furthermore, from the stationarity and independence of increments of the gamma process we have that

for 0 ≤ s < t < ∞ XG
t−s

D
= XG

t −XG
s . Now, since XG

t−s is gamma distributed, it is strictly positive with

probability 1 (which follows from (8.3)) and hence XG
t > XG

s a.s. A gamma process is therefore a Lévy

process with a.s. strictly increasing paths and hence, by Definition 6.7.1, is a subordinator.

The moment generating function of XG
t is calculated similarly to its characteristic function

MXG
t

(u) = E
[
euX

G
t

]
=

βαt

Γ(αt)

∫ ∞
0

xαt−1e−(β−u)x dx.

As before, we use (8.2) with k := β− u and z := αt, but here we are restricted to having u < β. Thus, for

u < β

MXG
t

(u) =

(
1− u

β

)−αt
= exp

[
−αt ln

(
1− u

β

)]
. (8.6)

The Laplace exponent of XG
t for u < β is then given by

l(u) = −α ln

(
1− u

β

)
. (8.7)

The following lemma enables us to write the Laplace exponent of XG
t given above in the form of (6.14)

[see Kyprianou, 2006, Lemma 1.7].

Lemma 8.1.2 Frullani Integral

For every α, β > 0 and z ∈ C such that <(z) ≤ 0 we have(
1− z

β

)−α
= exp

[
−
∫ ∞

0

(1− ezx)
αe−βx

x
dx

]
.

1The form in which the ΦXG
t

(z) is expressed in (8.4) may seem ambiguous since we are taking a real-valued power of a

complex number which results in a multi-valued function. This however is incorrect, since the characteristic function of a

Lévy process is unique (see §6.2). The correct single-valued form of (8.12) is given by

ΦXG
t

(z) = exp

[
−αtLn

(
1− i

z

β

)]
where Ln denotes the principal value of the natural logarithm. It is, however, a nontrivial exercise to show that Ln may

indeed be used here (see Lord and Kahl [2010, Theorem 4.1] where this is shown for the variance gamma characteristic

function).
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Thus, for u ≤ 0 < β, (8.7) becomes

l(u) =

∫ ∞
0

(eux − 1)
αe−βx

x
dx.

Comparing the above with (6.14) we find that γG
0 = 0 and the Lévy density of XG is given by

νG(dx) =
αe−βx

x
1{x≥0}dx. (8.8)

Since we have ∫ ∞
0

νG(dx) > α

∫ 1

0

e−βx

x
dx

> α

∫ 1

0

e−β

x
dx

= αe−β
∫ 1

0

1

x
dx

=∞ (8.9)

we see from Proposition 6.6.1 that gamma processes are infinite activity processes, that is, they have an

infinite number of jumps arriving per unit time. We may calculate γG by making use of Proposition 6.7.2

as follows

γG = γG

0 +

∫ 1

0

xνG(dx) =

∫ 1

0

αe−βxdx =
α

β

(
1− e−β

)
. (8.10)

Again using Proposition 6.7.2 we find that σG = 0. Therefore, we conclude that the Lévy triplet of XG is

given by
(

(σG)
2
, νG, γG

)
where

σG = 0, νG(x) =
αe−βx

x
1{x>0} and γG =

α

β

(
1− e−β

)
.

8.2 Variance Gamma Processes

As shown in Madan et al. [1998], a variance gamma process is constructed from Brownian motion and

a gamma process. Suppose that X = {Xt}t≥0 is an arithmetic Brownian motion that has drift θ and

variance σ2, then if Wt is standard Brownian motion, we have

Xt = θt+ σWt.

If we evaluate the Brownian motion Xt at an independent random time which is a gamma process, we

obtain the variance gamma process (see Madan [2001a, (7)], Schoutens [2003, p.58] or Applebaum [2004,

Example 1.3.31] for example).

Definition 8.2.1 Variance Gamma Process

Let {Xt}t≥0 be arithmetic Brownian motion with drift θ and variance σ2. Also, let {XG
t }t≥0 be a gamma
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process with shape parameter 1
ν

2 and rate parameter 1
ν

3. Then a variance gamma (VG) process XVG =

{XVG
t }t≥0 is defined by

XVG

t = XXG
t

= θXG

t + σWXG
t
.

The name ‘variance gamma’ comes from the fact that the XVG
t results from replacing the variance of

the normal random variable by a gamma random variable.

XVG
t can also be expressed as the difference of two independent gamma processes (for details see Madan

et al. [1998]). We will denote the random variable XVG
t distributed VG with parameters θ, σ and ν as

XVG

t ∼ VG
(
θt, σ2t,

ν

t

)
.

As in the gamma case, we list some results for VG processes in Table 8.2 which we will discuss

subsequently.

Property Expression/Value

Probability Density Function fXVG
t

(x) =
2 exp[ θ

σ2
x]

ν
t
ν Γ( tν )

√
2πσ2

(
x2

2σ2

ν +θ2

) t
2ν−

1
4

K t
ν−

1
2

√
x2
(

2σ2

ν +θ2
)

σ2


Characteristic Function ΦXVG

t
(z) =

(
1− ν

(
izθ − 1

2σ
2z2
))− t

ν

Activity Infinite Activity

Variation Finite Variation

Lévy Triplet σVG = 0

γVG
0 = 0 and γVG =

∫
|x|≤1

xνVG(dx)

νVG(x) =
exp

[
θ
σ2
x−
√
θ2+2σ2/ν

σ2
|x|
]

ν|x|

Table 8.2: Results for a VG process XVG with x, z, θ, σ, ν ∈ R, σ > 0 and ν > 0.

The probability density function of the VG process XVG is derived by Madan et al. [1998].

Theorem 8.2.2 Density Function of XVG

The density function of XVG
t is given by

fXVG
t

(x) =
2 exp

[
θ
σ2x
]

ν
t
ν Γ
(
t
ν

)√
2πσ2

(
x2

2σ2

ν + θ2

) t
2ν−

1
4

K t
ν−

1
2


√
x2
(

2σ2

ν + θ2
)

σ2

 (8.11)

where K·(·) is the modified Bessel function of the second kind (see Appendix D for a brief discussion on

the modified Bessel function of the second kind).

2Note that ν is a real number and is unrelated to the Lévy measure mentioned before. This notation, however, seems to

be standard.
3It is desirable that the subordinator, on average, coincide with ‘calendar’ time t. Therefore, the shape and rate parameters

of the gamma process are chosen to be equal, i.e. α = 1
ν

= β and so E [XG
t ] = αt

β
= t.
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Figure 8.2: VG probability density functions (top row) and corresponding process paths (bottom row) where

one parameter is varied, while the other two are fixed. The density functions shown in green are the same

in all three figures with parameters we used in common.

We derive the characteristic function of XVG
t for z ∈ R using conditional expectation:

ΦXVG
t

(z) := E
[
eizX

VG
t

]
= E

[
e
iz
(
θXG

t +σW
XG
t

)]
= E

[
E
[
e
iz
(
θXG

t +σW
XG
t

)∣∣∣∣XG

t = g

]]
=

∫
E
[
e
iz
(
θXG

t +σW
XG
t

)∣∣∣∣XG

t = g

]
P (XG

t ∈ dg)

=

∫
e
g
(
izθ− 1

2 z
2σ2
)
fXG

t
(g) dg

= E
[
e
XG
t

(
izθ− 1

2 z
2σ2
)]

=
(
1− ν

(
izθ − 1

2σ
2z2
))− t

ν 4. (8.12)
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The third equality follows from taking the expectation of eizXt , where Xt is arithmetic Brownian

motion, that is, the characteristic function of arithmetic Brownian motion given in (C.4). The last equality

is found using the characteristic function of the gamma process XG
t , as shown in (8.4) with α = 1

ν = β.

As expected, the VG distribution is infinitely divisible — this is clear from the linearity of the log of the

characteristic function in the time variable.

Using Theorem 6.7.4 we see that σVG = 0, since γG
0 = 0, and hence the VG process has no diffusion

component. The VG process XVG has Lévy measure (see [Madan et al., 1998, (14)])

νVG(x) =

exp

[
θ
σ2x−

√
θ2+2σ2/ν

σ2 |x|
]

ν|x|
.

This is obtained using Theorem 6.7.4 as follows

νVG(x) =

∫ ∞
0

fXg (x)νG(dg)

=

∫ ∞
0

1√
2πσ2g

exp

[
− (x− θg)2

2σ2g

]
1

νg
exp

[
−g
ν

]
dg (8.13)

=

∫ ∞
0

1

σν
√

2πg3
exp

[
− x2

2σ2g
+

xθg

2σ2g
− θ2g2

2σ2g
− g

ν

]
dg

=
exp

[
θ

2σ2x
]

ν

|x|
|x|

∫ ∞
0

1

σ
√

2πg3
exp

[
− x2

2σ2g
− θ2g

2σ2
− g

ν

]
dg

=
exp

[
θ

2σ2x
]

ν|x|

exp

[
−
√
θ2+2σ2/ν

σ2 |x|
]

exp

[
−
√
θ2+2σ2/ν

σ2 |x|
] ∫ ∞

0

x

σ
√

2πg3
exp

[
− x2

2σ2g
− θ2g

2σ2
− g

ν

]
dg

=

exp

[
θ

2σ2x−
√
θ2+2σ2/ν

σ2 |x|
]

ν|x|

∫ ∞
0

x

σ
√

2πg3
exp

[
− x2

2σ2g
− θ2g

2σ2
− g

ν
+

√
θ2 + 2σ2/ν

σ2
x

]
dg

=

exp

[
θ

2σ2x−
√
θ2+2σ2/ν

σ2 |x|
]

ν|x|
,

since we may write

x

σ
√

2πg3
exp

[
− x2

2σ2g
− θ2g

2σ2
− g

ν
+

√
θ2 + 2σ2/ν

σ2
x

]
1{x>0}

=
x/σ√
2πg3

exp

−1

2

x/σ − √θ2+2σ2/ν

σ g
√
g

1{x>0},

4Again, as in the gamma case, the form in which ΦXVG
t

(z) is expressed in (8.12) may seem ambiguous since we are taking

a real-valued power of a complex number which results in a multi-valued function. The single-valued form (see [Lord and

Kahl, 2010, Theorem 4.1]) of (8.12) is given by

ΦXVG
t

(z) = exp

[
−
t

ν
Ln
(
1− ν

(
izθ − 1

2
σ2z2

))]
.
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which we see from (G.6) is the inverse Gaussian density with x := g, η := x
σ and γ :=

√
θ2+2σ2/ν

σ . The

Lévy measure has infinite mass and hence from Proposition 6.6.1 we have that a VG process has infinitely

many jumps in any finite time interval. From Proposition 6.7.3 we see that the VG process is of finite

variation since σVG = 0 and∫ 1

−1

|x|νVG(dx) =
1

ν

∫ 1

−1

exp

[
θ

σ2
x−

√
θ2 + 2σ2/ν

σ2
|x|

]
dx

=
1

ν

∫ 0

−1

exp

[
θ

σ2
x+

√
θ2 + 2σ2/ν

σ2
x

]
dx+

1

ν

∫ 1

0

exp

[
θ

σ2
x−

√
θ2 + 2σ2/ν

σ2
x

]
dx

=
1

ν

∫ 0

−1

exp [ϕ+x] dx+
1

ν

∫ 1

0

exp [ϕ−x] dx

= −1

ν

∫ 0

1

exp [−ϕ+y] dy +
1

ν

∫ 1

0

exp [ϕ−x] dx

=
1

ν

∫ 1

0

exp [−ϕ+y] dy +
1

ν

∫ 1

0

exp [ϕ−x] dx

<∞,

where we have made the same change of variables as above. γVG in the Lévy triplet
(
σ2, ν, γ

)
is found

using Theorem 6.7.4 as follows

γVG =

∫ ∞
0

νG(dg)

∫
|x|≤1

xfXg (dx)

=

∫ ∞
0

exp
[
− g
ν

]
νg

∫
|x|≤1

x
1√

2πσ2g
exp

[
− (x− θg)

2

σ2g

]
dx dg

=

∫
|x|≤1

x

∫ ∞
0

1√
2πσ2g

exp

[
− (x− θg)2

2σ2g

]
1

νg
exp

[
−g
ν

]
dg dx

=

∫
|x|≤1

xνVG(dx),

where the third equality is obtained by using Fubini’s Theorem and the last equality by making use of

(8.13). Thus, the Lévy triplet of a VG process is given by
(

(σVG)
2
, νVG, γVG

)
, where

σVG = 0, νVG(x) =

exp

[
θ
σ2x−

√
θ2+ 2σ2

ν

σ2 |x|

]
ν|x|

and γVG =

∫
|x|≤1

xνVG(dx).

8.3 Bridge Sampling

As in §7.5.2, where we considered Brownian bridge sampling, we now discuss similar bridge sampling

for the gamma distribution. This section requires the generation of standard normal, gamma and beta

random variables. Given a uniform random number, we obtain:

• a standard normal random number by applying Moro’s method, as mentioned in §7.2;
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• a gamma variate by applying the method discussed in Appendix H to the cumulative gamma function

discussed in §G.1; and

• a beta variate by again applying the method discussed in Appendix H but this time to the cumulative

beta function discussed in §G.2.

As noted in §8.2, the VG process can be expressed in two forms — as a gamma time-changed Brownian

motion and as the difference of two gamma processes. And so, when simulating a VG process, either of

these two forms can be used. We will only consider the time-changed Brownian motion case.

8.3.1 Gamma Bridge Sampling

In a similar manner to §7.5.2 we derive the conditional distribution of gamma increments.

As before, consider three consecutive times s < t < u and suppose that x, y and z are realisations of

the gamma increments XG
t −XG

s , XG
u −XG

t and XG
u −XG

s respectively (see Figure 8.3). Here XG
s and XG

u

are points which have already been determined and t is the position at which the next bridge point is to

be created.

s t u

��
���

���
��:

�
�
�
�
�
��
H
HHH

HHHj

XG
s

XG
t

XG
uz

x

y

Figure 8.3: Gamma Bridge

In order to find the conditional distribution of the gamma increment XG
t −XG

s = x given that we know

the increment XG
u −XG

s = z, we make use of the density of the gamma process XG = {XG
t }t≥0

fXG
t

(x) =
x
t
ν−1e−

1
ν x

ν
t
ν Γ
(
t
ν

) 1{x>0}
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and again apply Bayes’ Theorem as in §7.5.2

f(XG
t −XG

s |XG
u −XG

s =z)(x) =
f(XG

u −XG
s |XG

t −XG
s =x)(z)fXG

t −XG
s

(x)

fXG
u −XG

s
(z)

=
fXG

u −XG
t + x(z)fXG

t −XG
s

(x)

fXG
u −XG

s
(z)

=

(z−x)
u−t
ν
−1e−

1
ν

(z−x)

ν
u−t
ν Γ(u−tν )

1{z−x>0}
x
t−s
ν
−1e−

1
ν
x

ν
t−s
ν Γ( t−sν )

1{x>0}

z
u−s
ν
−1e−

1
ν
z

ν
u−s
ν Γ(u−sν )

1{z>0}

=
1

z

Γ
(
u−t
ν + t−s

ν

)
Γ
(
u−t
ν

)
Γ
(
t−s
ν

) (x
z

) t−s
ν −1 (

1− x

z

)u−t
ν −1

1{0< x
z<1}.

We have derived the expression in Ribeiro and Webber [2004, (19)].

The inspired step is to now apply Example F.1.2 by setting λ = 1
z and g(X) = B = X

z , then fB(b) =

fX(zx)z, and

fB(b) =
Γ
(
u−t
ν + t−s

ν

)
Γ
(
u−t
ν

)
Γ
(
t−s
ν

)b t−sν −1 (1− b)
u−t
ν −1

1{0<b<1}.

That is, B has a beta distribution with parameters α := t−s
ν and β := u−t

ν . Thus if we draw a random

variable

b ∼ Beta

(
t− s
ν

,
u− t
ν

)
then we may write

XG
t −XG

s

XG
u −XG

s

=
x

z
= b (8.14)

⇒ XG

t = bXG

u + (1− b)XG

s . (8.15)

Thus, XG
t is interpolated between XG

s and XG
u in a random manner.

8.3.2 Time-Changed Brownian Motion

We begin the gamma bridge sampling by simulating the gamma process at terminal time. This is achieved

by generating a gamma variate

XG

tM ∼ Gamma

(
tM
ν
,

1

ν

)
with the first uniform random number from our quasi random sequence and then generating a time-changed

Wiener process

WXG
tM
∼ Normal

(
0, XG

tM

)
with the second. Next, in a manner similar to Brownian bridge sampling, we use the algorithm of §7.5.1 to

choose the first point tj at which a bridge point must be created with bridge points WXG
0

= 0 and WXG
tM

at times t0 and tM .
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We next proceed as in the Brownian motion case, except that instead of using one random number

from the quasi random sequence, we use two random numbers at each step. For the general inductive

step, let s < t < u be consecutive time steps. Suppose WXG
s

and WXG
u

are known and t is the point at

which the next bridge is to be created. Then, in order to find WXG
t

, we substitute the gamma process at

the appropriate times in (7.9) and obtain

WXG
t

=
XG
t −XG

s

XG
u −XG

s

WXG
u

+
XG
u −XG

t

XG
u −XG

s

WXG
s

+

√
(XG

t −XG
s ) (XG

u −XG
t )

XG
u −XG

s

n, (8.16)

where n is a standard normal random variable.

Now, we use the result (8.15) obtained from deriving the conditional density of gamma increments in

order to write XG
t in (8.16) as a function of a beta variate. We write (8.16) as

WXG
t

= bWXG
u

+ (1− b)WXG
s

+
√

(1− b)b (XG
u −XG

s )n, (8.17)

where b is a draw from a beta distribution with parameters α := t−s
ν and β := u−t

ν . Thus, using the next

two quasi random numbers from our sequence we find b and n in order to calculate WXG
t

. This completes

the inductive step.

The coefficient of n, namely
√

(1− b)b (XG
u −XG

s ), can also be written as
√
b (XG

u −XG
t ), but it is

not in the correct mathematical form. After unpacking the notation, the latter form is that of Fu [2007,

Fig. 2] and Avramidis et al. [2004, Figure 3]. An alternative form is

√
(XG

t −XG
s )(XG

u −XG
t )

XG
u −XG

s
, however if

XG
u −XG

s = 0 (which can occur to machine precision) there will be a division by 0.

In a similar way to finding arithmetic Brownian motion in (7.10), we simulate a VG process XVG =

{XVG
t }t≥0, where XVG

t ∼ VG
(
θt, σ2t, νt

)
, by multiplying WXG

t
in (8.16) with σ and adding θXG

t

XVG

t = θXG

t + σWXG
t

= θXG

t + σ

(
XG
t −XG

s

XG
u −XG

s

WXG
u

+
XG
u −XG

t

XG
u −XG

s

WXG
s

+

√
(XG

t −XG
s ) (XG

u −XG
t )

XG
u −XG

s

n

)

=
XG
t −XG

s

XG
u −XG

s

θXG

u +
XG
u −XG

t

XG
u −XG

s

θXG

s

+ σ

(
XG
t −XG

s

XG
u −XG

s

WXG
u

+
XG
u −XG

t

XG
u −XG

s

WXG
s

+

√
(XG

t −XG
s ) (XG

u −XG
t )

XG
u −XG

s

n

)
= bXVG

u + (1− b)XVG

s + σ
√

(1− b)b (XG
u −XG

s )n. (8.18)

As before we may construct our algorithm for creating a VG process in either of two ways: generate

gamma bridges for all times and then find their corresponding VG process, or for each gamma bridge

WXG
t

calculate its corresponding VG process XVG
t immediately.
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Chapter 9

The Normal Inverse Gaussian Model

The normal inverse Gaussian distribution is a type of generalised hyperbolic distribution which was in-

troduced by Barndorff-Nielsen [1977]. The hyperbolic distribution, which was introduced into finance by

Eberlein and Keller [1995] (see also Eberlein et al. [1998]), is another well-known type of generalised hyper-

bolic distribution. The use of normal inverse Gaussian processes in financial modelling was first proposed

by Barndorff-Nielsen [1995]. Further studies on the normal inverse Gaussian distribution can be found in

Barndorff-Nielsen [1997, 1998] and Rydberg [1996a,b, 1997].

Several authors on the subject comment on how well the normal inverse Gaussian distribution fit the

log returns of stocks. In particular, Rydberg [1997] shows that Danish and German financial data fit

excellently to the normal inverse Gaussian distribution. Korn et al. [2010] mention that the reason for

this is because the normal inverse Gaussian distribution is more flexible than the normal distribution.

Moreover, Korn et al. [2010] note that, while having the same mean and variance, the normal inverse

Gaussian distribution can generate higher peaks and at the same time heavier tails than the normal

distribution.

Like the variance gamma process, the normal inverse Gaussian process satisfies the general property of

being time-changed Brownian motion [see Barndorff-Nielsen, 1998]. Here the time-change may be chosen

as an inverse Gaussian process independent of the directing Brownian motion.

9.1 Inverse Gaussian Processes

The name ‘inverse Gaussian’ was first used in Tweedie [1947] as the inverse relationship between the

cumulant generating functions of these distributions, and those of Gaussian distributions. The density of

the Wald distribution which is a special case of the inverse Gaussian distribution can be seen in Johnson

et al. [1994, Chapter 15, §2]. By performing some substitutions, the standard form of the two-parameter

inverse Gaussian distribution is obtained. This is the distribution we will consider in this section and

we will refer to it as the inverse Gaussian distribution. The inverse Gaussian process describes the

distribution of the time Brownian motion with positive drift takes to reach a fixed positive level (see

Applebaum [2004, Example 1.3.21] or Kyprianou [August 2007, §2.5] for example).

100

Stellenbosch University  http://scholar.sun.ac.za
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Definition 9.1.1 Inverse Gaussian Processes

An inverse Gaussian process X IG = {X IG
t }t≥0 is defined by

X IG

t = inf
s>0
{γs+Ws = ηt} (9.1)

where η, γ > 0 and {Ws}s≥0 is standard Brownian motion.

In Table 9.1 we list some of the results concerning inverse Gaussian processes which will be discussed

subsequently.

Property Expression/Value

Probability Density Function fXIG
t

(x) = ηt√
2πx3

exp

[
− 1

2

(
ηt−γx√

x

)2
]
1{x>0}

Characteristic Function ΦXIG
t

(z) = exp
[
ηt
(
γ −

√
γ2 − 2iz

)]
Activity Infinite Activity

Lévy Triplet σIG = 0

γIG
0 = 0 and γIG = η

γ (2FN(γ)− 1)

νIG(x) = η√
2πx3

e−
1
2γ

2x1{x>0}

Table 9.1: Results for an inverse Gaussian process X IG with x, z, η, γ ∈ R and η, γ > 0; and FN(·)
indicating the standard normal distribution function.

If X IG is an inverse Gaussian process with parameters η, γ > 0, then we write X IG
t ∼ IG(ηt, γ) and

X IG
t has density

fXIG
t

(x) =
ηt√
2πx3

exp

[
−1

2

(
ηt− γx√

x

)2
]
1{x>0} (9.2)

(see Appendix G.3 for a brief discussion on the inverse Gaussian probability density function).

We calculate the moment generating function of the inverse Gaussian process X IG
t as follows

MXIG
t

(u) = E
[
euX

IG
t

]
=

ηt√
2π

∫ ∞
0

eux
1√
x3

exp

[
−1

2

(
ηt− γx√

x

)2
]
dx

=
ηt√
2π

∫ ∞
0

1√
x3

exp

[
−1

2

η2t2 − 2γηtx+ γ2x2 − 2ux2

x

]
dx.

Completing the square in the exponent for
√
γ2 − 2u > 0 gives

−1

2

η2t2 − 2γηtx+ γ2x2 − 2ux2

x
= −1

2

η2t2 − 2γηtx+
(
γ2 − 2u

)
x2

x

= −1

2

(
ηt−

√
γ2 − 2uzx√
x

)2

+ ηtγ − ηt
√
γ2 − 2u
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and hence we may write

MXIG
t

(u) = exp
[
ηt
(
γ −

√
γ2 − 2u

)] ηt√
2π

∫ ∞
0

1√
x3

exp

−1

2

(
ηt−

√
γ2 − 2ux√
x

)2
 dx.

Now,

ηt√
2π

∫ ∞
0

1√
x3

exp

−1

2

(
ηt−

√
γ2 − 2ux√
x

)2
 dx = 1
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Figure 9.1: In the first row we plot the inverse Gaussian probability density functions for various values

of η and γ where one parameter is fixed and the other is varied. The graphs shown in green are the same

in both figures with parameters used in common.

In the second row, we simulate three realisations of three inverse Gaussian processes with parameter

values corresponding to the densities in the first row. We see that as the values of η increase, the frequency

of the jumps increase. Furthermore, the jump sizes decrease and the jump frequencies increase as the

values of γ increase.

Stellenbosch University  http://scholar.sun.ac.za



9.1 Inverse Gaussian Processes 103

since it is the density function of a random variable distributed IG
(
ηt,
√
γ2 − 2u

)
. Thus we have that

MXIG
t

(u) = exp
[
ηt
(
γ −

√
γ2 − 2u

)]
(9.3)

for u < γ2

2 . From (9.3) we get the Laplace exponent of X IG
t for u < γ2

2

l(u) = η
(
γ −

√
γ2 − 2u

)
. (9.4)

Kyprianou [August 2007, Exercise 6] notes that the characteristic function of the inverse Gaussian

process X IG
t can be found by considering

E
[
e−uX

IG
t

]
= exp

[
−ηt

(
−γ +

√
γ2 + 2u

)]
.

If we replace u with a − iz where a > 0 and z ∈ R, then both sides of the equation can be shown to be

analytical functions1 and therefore they agree on the parameter range. Taking limits as a tends to 0 shows

that both functions agree when we replace u with iz, z ∈ R. Thus the characteristic function of X IG
t is

given by

ΦXIG
t

(z) = exp
[
ηt
(
γ −

√
γ2 − 2iz

)]
, (9.5)

where z ∈ R.

As in the case of the gamma process, the linearity of the log of the characteristic function with respect

to t, shows that X IG is infinitely divisible. Thus, as we have seen in §6.2, there exists a Lévy process

{Xt}t≥0 such that the distribution of X1 is determined by the distribution of X IG
1 . It is clear that X IG

has a.s. non-decreasing paths and is therefore by Definition 6.7.1 a subordinator.

The following two results enable us to write the Lévy exponent of X IG
t , that is, η

(
γ −

√
1
2γ

2 − iz
)

in

the form of (6.13): For u > 0 and 0 < α < 1

Γ (−α)uα =

∫ ∞
0

(
e−ux − 1

)
x−α−1 dx (9.6)

[see Kyprianou, August 2007, Exercise 4]. This equation holds when −u is replaced by any complex

number w 6= 0 where <(w) ≤ 0 [see Kyprianou, August 2007, Exercise 4].

Consider the Lévy exponent of X IG
t

η
(
γ −

√
γ2 − 2iz

)
= η

Γ
(
− 1

2

)
Γ
(
− 1

2

)γ − ηΓ
(
− 1

2

)
Γ
(
− 1

2

)√γ2 − 2iz

= −η
Γ
(
− 1

2

)
2
√
π

γ + η
Γ
(
− 1

2

)
2
√
π

√
γ2 − 2iz

= −η
Γ
(
− 1

2

)
√

2π

γ2

√
2

+ η
Γ
(
− 1

2

)
√

2π

√
γ2 − 2iz

2

= − η√
2π

Γ
(
− 1

2

) (
1
2γ

2
)1/2

+
η√
2π

Γ
(
− 1

2

) (
1
2γ

2 − iz
)1/2

= − η√
2π

Γ
(
− 1

2

) (
1
2γ

2
)1/2

+
η√
2π

Γ
(
− 1

2

) (
1
2γ

2 − iz
)1/2

, (9.7)

1A complex function is said to be analytic on a region A if it is complex differentiable at every point in A.
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where we have made use of the identity [Abramowitz and Stegun, 1974, 6.1.8]

Γ
(

1
2

)
=
√
π ⇒

(
1
2 − 1

)
Γ
(

1
2 − 1

)
=
√
π ⇒ Γ

(
− 1

2

)
= −2

√
π.

We now apply (9.6) by setting α := 1
2 , u := 1

2γ
2 for the first term and u := 1

2γ
2 − iz for the last term in

(9.7) and obtain

η
(
γ −

√
γ2 − 2iz

)
= −

∫ ∞
0

η√
2π

(
e−γ

2/2x − 1
)
x−3/2 dx+

∫ ∞
0

η√
2π

(
e−(γ2/2−iz)x − 1

)
x−3/2 dx

= −
∫ ∞

0

η√
2π
e−

1
2γ

2xx−3/2 dx+

∫ ∞
0

η√
2π
x−3/2 dx+

∫ ∞
0

η√
2π
e−( 1

2γ
2−iz)xx−3/2 dx−

∫ ∞
0

η√
2π
x−3/2 dx

= −
∫ ∞

0

η√
2πx3

e−
1
2γ

2x dx+

∫ ∞
0

η√
2πx3

e−
1
2γ

2x+izx dx

=

∫ ∞
0

(
eizx − 1

) η√
2πx3

e−
1
2γ

2x dx.

When comparing the above with (6.13) we find the γIG
0 = 0 and that the Lévy measure of X IG

t is given by

νIG(dx) =
η√

2πx3
e−

1
2γ

2x1{x>0} dx.

From Proposition 6.6.1 we see that the inverse Gaussian process is of infinite activity, since we have that∫ ∞
0

νIG(dx) =

∫ ∞
0

η√
2πx3

e−
1
2γ

2x dx

>

∫ 1

0

η√
2πx3

e−
1
2γ

2

dx

=
η√
2π
e−

1
2γ

2

[
− 2√

x

]1

0

=∞.

The last component of the Lévy triplet γIG is found using Proposition 6.7.2 as follows

γIG = γIG

0 +

∫ 1

0

xνIG(dx)

=

∫ 1

0

x
η√

2πx3
e−

1
2γ

2x dx

=
η√
2π

∫ 1

0

1√
x
e−

1
2γ

2x dx

=
η√
2π

∫ γ

0

γ

y
e−

1
2y

2 2y

γ2
dy

=
2η

γ

∫ γ

0

1√
2π
e−

1
2y

2

dy

=
2η

γ
(FN(γ)− FN(0))

=
η

γ
(2FN(γ)− 1) ,
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where we have made a change of variables in the fourth equality by setting x := y2

γ2 and FN(·) indicates

the standard normal distribution function. Finally, from Proposition 6.7.2 we see that σIG = 0 and hence

the Lévy triplet is given by
(

(σIG)
2
, νIG, γIG

)
, where

σIG = 0, νIG(x) =
η√

2πx3
e−

1
2γ

2x1{x>0} and γIG =
η

γ
(2FN(γ)− 1) .

9.2 Normal Inverse Gaussian Processes

The normal inverse Gaussian process can be defined as an inverse Gaussian time-changed Brownian motion

(see Barndorff-Nielsen [1998] or Applebaum [2004, Example 1.3.32]).

Definition 9.2.1 Normal Inverse Gaussian Process

If we let η = 1 2 in Definition 9.1.1, then we obtain

X IG

t = inf
s>0
{Xs = t}

with Xs = γs + Ws for γ ∈ R. Then the normal inverse Gaussian (NIG) process XNIG = {XNIG
t }t≥0 is

obtained from an inverse Gaussian time-changed Brownian motion with drift µ and volatility σ. That is,

XNIG

t = µX IG

t + σWXIG
t
.

If we let β = µ
σ2 , α2 = γ2

σ2 + µ2

σ4 and δ = σ, XNIG
t can be written as

XNIG

t = βδ2X IG

t + δWXIG
t

(9.8)

with X IG
t having parameters η = 1 and γ = δ

√
α2 − β2. We denote an NIG process XNIG = {XNIG

t }t≥0

with parameters α, β and δ by

XNIG

t ∼ NIG (α, β, δt)

where α > 0, −α < β < α and δ > 0. The parameter α indicates the tail heaviness of steepness, β

indicates symmetry and δ is a scale parameter.

As in the inverse Gaussian case, we list some results concerning NIG processes in Table 9.2 which will

be discussed later.

The density function of XNIG
t is given by Barndorff-Nielsen [1998, 2.2]

fXNIG
t

(x) =
αδt

π
exp

[
δt
√
α2 − β2 + βx

] K1

(
α
√
δ2t2 + x2

)
√
δ2t2 + x2

, (9.9)

where K·(·) indicates the modified Bessel function of the second kind (see Appendix D for a brief discussion

on modified Bessel functions of the second kind).

2As in the VG case, we would like the subordinator XIG, on average, to coincide with ‘calendar’ time t. Thus we choose

η = 1, so that E [XIG
t ] = ηt = t.
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Property Expression/Value

Probability Density Function fXNIG
t

(x) = αδt
π exp

[
δt
√
α2 − β2 + βx

]
K1(α

√
δ2t2+x2)√

δ2t2+x2

Characteristic Function ΦXNIG
t

(z) = exp

[
−δt

(√
α2 − (β + iz)

2 −
√
α2 − β2

)]
Activity Infinite Activity

Variation Infinite Variation

Lévy Triplet σNIG = 0

γNIG
0 = 0 and γNIG = 2δα

π

∫ 1

0
sinh(βx)K1(αx) dx

νNIG(x) = δαeβxK1(α|x|)
π|x|

Table 9.2: Results for an NIG process XNIG with x, z, α, β, δ ∈ R, α > 0, −α < β < α and δ > 0.
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Figure 9.2: NIG probability density functions (top row) and corresponding process paths (bottom row)

where one parameter is varied while the other two are fixed. The density functions shown in green are the

same in all three figures with parameters we used in common.
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As in the VG case, we derive the characteristic function using conditional expectation

ΦXNIG
t

(z) := E
[
eizX

NIG
t

]
= E

[
e
iz
(
µXIG

t +σW
XIG
t

)]
= E

[
E
[
e
iz
(
µXIG

t +σW
XIG
t

)∣∣∣∣X IG

t = g

]]
=

∫
E
[
e
iz
(
µXIG

t +σW
XIG
t

)∣∣∣∣X IG

t = g

]
P (X IG

t ∈ dg)

=

∫
e
g
(
izµ− 1

2 z
2σ2
)
fXIG

t
(g) dg

= E
[
e
XIG
t

(
izµ− 1

2 z
2σ2
)]

= exp

[
−δt

(√
α2 − (β + iz)

2 −
√
α2 − β2

)]
3. (9.10)

Here we applied the same arguments we used when calculating the VG characteristic function in (8.12),

except that we have used the characteristic function of the inverse Gaussian process X IG
t as shown in (9.5)

with η = 1 and γ = δ
√
α2 − β2 for the last equality. From the linearity of the log of the characteristic

function in the time variable, we see that this is an infinitely divisible process with stationary independent

increments.

Again, using Theorem 6.7.4 we observe that σNIG = 0 since γIG
0 = 0 and therefore has no diffusion

component. The Lévy measure of the NIG process is given by Barndorff-Nielsen [1997, (3.15)]

νNIG(dx) =
δαeβxK1(α|x|)

π|x|
dx,

where K·(·) indicates the modified Bessel function of the second kind. As in the VG case, this can be

found using Theorem 6.7.4 as follows

νNIG(x) =

∫ ∞
0

fXg (x)νIG(dg)

=

∫ ∞
0

1√
2πδ2g

exp

[
−
(
x− βδ2g

)2
2δ2g

]
1√

2πg3
exp

[
−
δ2
(
α2 − β2

)
g

2

]
dg (9.11)

=

∫ ∞
0

1

2πδg2
exp

[
− x2

2δ2g
+
βδ2xg

2δ2g
− β2δ4g2

2δ2g
− δ2α2g

2
+
δ2β2g

2
2

]
dg

=
eβx

π

1

2δ

∫ ∞
0

1

g2
exp

[
− (x/δ)

2

2g
− (δα)

2
g

2

]
dg. (9.12)

Using the identity [see Cont and Tankov, 2004a, (A.2)]

2
(c
b

)a
Ka(bc) =

∫ ∞
0

1

g1+a
exp

[
− b

2

2g
− c2g

2

]
dg

3As in the gamma and VG cases, the form in which the ΦXNIG
t

(z) is expressed in (9.10) may seem ambiguous since the

square-root function is multi-valued. The single-valued form of (9.10) is given by

ΦXNIG
t

(z) = exp
[
−δt

(
exp

[
1
2

Ln
(
α2 − (β + iz)2

)]
−
√
α2 − β2

)]
.

This relies on the fact that the term α2 − (β + iz)2 =
(
α2 − β2 + z2

)
− i2βz never crosses the negative real axis (recall that

−α < β < α).
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for bc > 0 and a ∈ Z with a := 1, b := |x|/δ and c := δα, then

νNIG(x) =
eβx

π

1

2δ
2
δ2α

|x|
K1

(
δα
|x|
δ

)
=
δαeβxK1(α|x|)

π|x|
.

As in the VG case, the Lévy measure has infinite mass and hence from Proposition 6.6.1 an NIG process

has infinitely many jumps in any finite time interval.

Unlike the VG process, the NIG process is of infinite variation since∫ 1

−1

|x|νNIG(dx) =∞

(see Sato [1999, Theorem 21.9] or Papapantoleon [2008] for example). To see this we again make use of

the integral form of the Lévy measure given in (9.12) and Fubini’s Theorem∫ 1

−1

|x|νNIG(dx) =

∫ 1

−1

|x|
∫ ∞

0

1

g2
exp

[
− (x/δ)

2

2g
− (δα)

2
g

2

]
dg dx

=
1

2πδ

∫ ∞
0

1

g2
exp

[
1

2
δ2
(
α2 − β2

)
g

] ∫ 1

−1

|x| exp

[
−1

2

(
x− δ2βg

)2
δ2g

]
dx dg.

The above will be equal to ∞ if the integrand is of order O(k) for some k ≤ −1 as g → 0, since for ε > 0,∫ ε
0

1
gk
dg = ∞ if k ≤ −1. Since exp

[
1
2δ

2
(
α2 − β2

)
g
]
→ 1 as g → 0, we only require the integral with

respect to x to have order O(k) for some k ≤ 1. Consider the indeterminant integral∫
x exp

[
−1

2

(
x− δ2βg

)2
δ2g

]
dx

and make the substitution w := x−δ2βg
δ
√
g , then the anti-derivative of the above is given by

G(w) := −δ2ge−
1
2w

2

+ δ3g3/2β
√

2πFN(w),

where FN(·) denotes the cumulative normal distribution function. Therefore∫ 1

−1

|x| exp

[
−1

2

(
x− δ2βg

)2
δ2g

]
dx

= −
∫ 0

−1

x exp

[
−1

2

(
x− δ2βg

)2
δ2g

]
dx+

∫ 1

0

x exp

[
−1

2

(
x− δ2βg

)2
δ2g

]
dx

= −G(x = 0) +G(x = −1) +G(x = 1)−G(x = 0)

= G(x = 1) +G(x = −1)− 2G(x = 0)

= G

(
1

δ
√
g
− δβ√g

)
+G

(
− 1

δ
√
g
− δβ√g

)
− 2G (−δβ√g)

= δ2g exp

[
−1

2
δ2β2g

](
2− exp

[
−1

2

(
1

δ2g
− 2β

)]
− exp

[
−1

2

(
1

δ2g
+ 2β

)])
.
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Since exp
[
− 1

2δ
2β2g

]
→ 1, exp

[
− 1

2

(
1
δ2g − 2β

)]
→ 0 and exp

[
− 1

2

(
1
δ2g + 2β

)]
→ 0 as g → 0, the integral

above is of order O(1) as g → 0, and we are done.

The last component of the Lévy triplet is given by Barndorff-Nielsen [1997, 3.13]

γNIG =
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx

and is found using Theorem 6.7.4 as follows

γNIG =

∫ ∞
0

νIG(dg)

∫
|x|≤1

xfXg (dx)

=

∫ ∞
0

νIG(dg)

∫
|x|≤1

xfXg (dx)

=

∫
|x|≤1

x

∫ ∞
0

1√
2πδ2g

exp

[
−
(
x− βδ2g

)2
2δ2g

]
1√

2πg3
exp

[
−
δ2
(
α2 − β2

)
g

2

]
dg dx

=

∫
|x|≤1

xνNIG(dx),

where the third equality follows from Fubini’s Theorem and the last from (9.11). This can be simplified

further

γNIG =

∫
|x|≤1

x
δαeβxK1(α|x|)

π|x|
dx

=
δα

π

[∫ 0

−1

x

−x
eβxK1 (−αx) dx+

∫ 1

0

eβxK1 (αx) dx

]
=
δα

π

[∫ 0

1

e−βyK1 (αy) dy +

∫ 1

0

eβxK1 (αx) dx

]
=
δα

π

[
−
∫ 1

0

e−βyK1 (αy) dy +

∫ 1

0

eβxK1 (αx) dx

]
=
δα

π

∫ 1

0

(
eβx − e−βx

)
K1 (αx) dx

=
2δα

π

∫ 1

0

sinh(βx)K1(αx) dx,

where we have made a change of variables in the third equality by setting x := −y and made use of the iden-

tity sinh (βx) = 1
2

(
eβx − e−βx

)
in the last equality. Hence the Lévy triplet is given by

(
(σNIG)

2
, νNIG, γNIG

)
with

σNIG = 0, νNIG(x) =
δαeβxK1(α|x|)

π|x|
and γNIG =

2δα

π

∫ 1

0

sinh(βx)K1(αx) dx.

9.3 Bridge Sampling

As in §7.5.2 and §8.3.1, we consider bridge sampling for the inverse Gaussian distribution. In this section,

we require standard normal and Inverse Gaussian random variables. Given a uniform random number,

• a standard normal random variable is found by applying Moro’s method (briefly discussed in §7.2)

and
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• an inverse Gaussian random variable is obtained by applying the method given in Appendix H to

the cumulative inverse Gaussian function which we discuss in §G.3.

9.3.1 Inverse Gaussian Bridge Sampling

As we have done in §7.5.2 and §8.3.1 we derive the conditional distribution of inverse Gaussian increments.

We follow the derivation given by Ribeiro and Webber [2003].

As before, consider three consecutive times s < t < u and suppose that x, y and z are realisations of

the inverse Gaussian increments X IG
t −X IG

s , X IG
u −X IG

t and X IG
u −X IG

s respectively (see Figure 9.3). Here

X IG
s and X IG

u are points which have already been determined and t the position at which the next bridge

point is to be created.

s t u

���
���

���
�:

�
�
�
�
�
��HHH

HHH
Hj

X IG
s

X IG
t

X IG
uz

x

y

Figure 9.3: Inverse Gaussian Bridge

Recall from (9.2) the density of an inverse Gaussian process X IG = {X IG
t }t≥0 with parameters η, γ > 0

is given by

fXIG
t

(x) =
ηt√
2πx3

exp

[
−1

2

(
ηt− γx√

x

)2
]
1{x>0}.

In order to find the conditional distribution of the inverse Gaussian increment X IG
t −X IG

s = x given that

we know the increment X IG
u −X IG

s = z, we again apply Bayes’ Theorem as in §7.5.2 and §8.3.1 and make

use of the density of an inverse Gaussian process.

f(XIG
t −XIG

s |XIG
u −XIG

s =z)(x)

=
f(XIG

u −XIG
s |XIG

t −XIG
s =x)(z)fXIG

t −XIG
s

(x)

fXIG
u −XIG

s
(z)

=
fXIG

u −XIG
t + x(z)fXIG

t −XIG
s

(x)

fXIG
u −XIG

s
(z)

=

η(u−t)√
2π(z−x)3

exp

[
− 1

2

(
η(u−t)−γ(z−x)√

z−x

)2
]
1{z−x>0}

η(t−s)√
2πx3

exp

[
− 1

2

(
η(t−s)−γx√

x

)2
]
1{x>0}

η(u−s)√
2πz3

exp

[
− 1

2

(
η(u−s)−γz√

z

)2
]
1{z>0}

=
η√
2π

(u− t)(t− s)
u− s

√
z3

(z − x)3x3
exp

[
−η

2

2

(
(u− t)2

z − x
+

(t− s)2

x
− (u− s)2

z

)]
1{ xz<1}. (9.13)
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A method for sampling from the distribution above is given in Ribeiro and Webber [2003]. This method

requires the use of a version of Tweedie’s Theorem due to Seshadri [1993] and a result in Michael et al.

[1976]. In Ribeiro and Webber [2003] it is remarked that if X and Z are inverse Gaussian increments as

above, then

Q = η2

(
(u− t)2

Y
+

(t− s)2

X
− (u− s)2

Z

)
∼ χ2

1,

where χ2
1 is the chi-squared distribution with one degree of freedom. The theorem given in Seshadri [1993]

requires that X ∼ IG
(
η(t− s), η−1

)
, Y ∼ IG

(
η(u− t), η−1

)
and Z ∼ IG

(
η(u− s), η−1

)
, however as

noted in Ribeiro and Webber [2003], we are able to apply this theorem since the parameter γ does not

appear in (9.13).

Consider the exponential in (9.13) and suppose we let q(x) = η2
(

(u−t)2
z−x + (t−s)2

x − (u−s)2
z

)
. Then q

can be rearranged so that

q(x) = η2 (u− t)2

z

x

z − x
(t− s)2

(u− t)2
×(

z − x+ x

x

(u− t)2

(t− s)2
+

(z − x+ x)(z − x)

x2
− (u− t)2 + 2(u− t)(t− s) + (t− s)2

(t− s)2

z − x
x

)
.

If we let a = z−x
x , λ = η2(u−t)2

z and µ = u−t
t−s , then substituting a, λ and µ in the above equation yields

q(x) = λ
1

aµ2

(
aµ2 + µ2 + (a+ 1)a− µ2a− 2µa− a

)
= λ

1

aµ2

(
a2 − 2µa+ µ2

)
= λ

(a− µ)2

aµ2
=: g(a). (9.14)

We may rewrite (9.13) as follows

f(XIG
t −XIG

s |XIG
u −XIG

s =z)(x)

=
η√
2π

(u− t)(t− s)
u− s

√
z3

(z − x)3x3
exp

[
−q(x)

2

]
1{ xz<1}

=
1√
2π

η(u− t)√
z

1
u−t
t−s + 1

√
x3

(z − x)3

z

x2

(
z − x
x

+ 1

)
exp

[
−q(x)

2

]
1{ z−xx >0}.

If we let λ = z and g(X) =: A = z−X
X in Example F.1.3, then fA(a) = fX(x)

x2

z
. Hence

fA(a) =
a+ 1

µ+ 1

√
λ

2πa3
exp

[
− λ

2µ2a
(a− µ)2

]
1{a>0}, (9.15)

where we have made the substitutions leading up to (9.14).

Stellenbosch University  http://scholar.sun.ac.za



9.3 Bridge Sampling 112

So, if we have a draw a = z−x
x from the distribution given in (9.15), then we may write

a =
z − x
x

=
X IG
u −X IG

t

X IG
t −X IG

s

⇒ X IG

t =
X IG
u + aX IG

s

a+ 1

=
X IG
u −X IG

s +X IG
s + aX IG

s

a+ 1

=
1

a+ 1
X IG

u +
a

a+ 1
X IG

s . (9.16)

Again, as with gamma bridge sampling, we have a ‘random interpolation’.

Now in order to obtain the draw a, we begin by solving for a in (9.14). There are exactly two solutions

a1 and a2 for any q, namely

a1 = µ+
µ2q

2λ
− µ

2λ

√
4µλq + µ2q2 (9.17)

a2 =
µ2

a1
. (9.18)

As noted in Ribeiro and Webber [2003], a result given in Michael et al. [1976] can be used to sample from

the density of A by sampling a chi-squared random number q ∼ χ2
1 and then choosing root a1 (calculated

from q) with probability

1

1 +
∣∣∣ g′(a1)
g′(a2)

∣∣∣ fA(a2)
fA(a1)

,

where g is defined in (9.14) and fA is the density of A given in (9.15). Using (9.18) we obtain

g′(a1)

g′(a2)
= −µ

2

a2
1

and
fA(a2)

fA(a1)
=
a2

1

µ2

µ2 + a1

1 + a1

and hence the root a1 must be chosen with probability

µ(1 + a1)

(1 + µ)(µ+ a1)
. (9.19)

Therefore, to obtain a sample a from the bridge distribution given in (9.15) we proceed as follows:

• Draw a standard normal number n1 ∼ Normal(0, 1). Then q := n2
1 is a variate from the χ2

1-

distribution.

• Next, calculate the two roots a1 and a2 using (9.17) and (9.18).

• Draw a uniform random number u ∼ Uniform(0, 1). If u < µ(1+a1)
1+µ(µ+a1) , then we set a = a1, else we

set a = a2.

9.3.2 Time-Changed Brownian Motion

We begin the inverse Gaussian bridge sampling by simulating the inverse Gaussian process at terminal

time. This is achieved by generating an inverse Gaussian variate

X IG

tM ∼ IG (tM , γ) (9.20)
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with the first number from our quasi random sequence and then generating a time-changed Wiener process

WXIG
tM
∼ Normal

(
0, X IG

tM

)
with the second.

Next, similarly to Brownian or gamma bridge sampling, we use the algorithm of §7.5.1 to choose the

first point tj at which a bridge point must be created, with bridge points WXIG
0

= 0 and WXIG
tM

at times

t0 and tM .

We next proceed as in the Brownian motion and gamma case, except that instead of using one random

number or two (as in the gamma case) from the quasi random sequence, we use three random numbers

at each step. For the general inductive step, let s < t < u be consecutive time steps. Suppose WXIG
s

and

WXIG
u

are known and t was determined to be the point at which the next bridge is to be created. Then,

in order to find WXIG
t

, we substitute the inverse Gaussian process at the appropriate times in (7.9) and

obtain

WXIG
t

=
X IG
t −X IG

s

X IG
u −X IG

s

WXIG
u

+
X IG
u −X IG

t

X IG
u −X IG

s

WXIG
s

+

√
(X IG

t −X IG
s ) (X IG

u −X IG
t )

X IG
u −X IG

s

n2, (9.21)

where n2 is a standard normal random variable. Thus, using the next three quasi random numbers from

our sequence, we first find a using the algorithm as described in §9.3.1 (and hence two random numbers)

and n in order to calculate WXIG
t

. This completes the inductive step.

In a similar way to finding arithmetic Brownian motion in (7.10) and a VG process in (8.18), we

simulate an NIG process XNIG = {XNIG
t }t≥0 where XNIG

t ∼ NIG (α, β, δt) by multiplying WXIG
t

in (9.21)

with δ and adding βδ2X IG
t

XNIG

t

= βδ2X IG

t + δWXIG
t

= βδ2X IG

t + δ

(
X IG
t −X IG

s

X IG
u −X IG

s

WXIG
u

+
X IG
u −X IG

t

X IG
u −X IG

s

WXIG
s

+

√
(X IG

t −X IG
s ) (X IG

u −X IG
t )

X IG
u −X IG

s

n2

)

=
X IG
t −X IG

s

X IG
u −X IG

s

βδ2X IG

u +
X IG
u −X IG

t

X IG
u −X IG

s

βδ2X IG

s

+ δ

(
X IG
t −X IG

s

X IG
u −X IG

s

WXIG
u

+
X IG
u −X IG

t

X IG
u −X IG

s

WXIG
s

+

√
(X IG

t −X IG
s ) (X IG

u −X IG
t )

X IG
u −X IG

s

n2

)

=
X IG
t −X IG

s

X IG
u −X IG

s

XNIG

u +
X IG
u −X IG

t

X IG
u −X IG

s

XNIG

s + δ

√
(X IG

t −X IG
s ) (X IG

u −X IG
t )

X IG
u −X IG

s

n2.

As before, we may construct our algorithm for creating an NIG process in either of two ways: first generate

inverse Gaussian bridges for all times and then find their corresponding NIG process, or for each inverse

Gaussian bridge WXIG
t

calculate its corresponding NIG process XNIG
t immediately.
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Chapter 10

Risk-Neutral Modelling using the

Variance Gamma and Normal

Inverse Gaussian Models

For any Lévy process other than Brownian motion and Poisson processes — in particular the VG and

NIG models as seen in §8.2 and §9.2 respectively — the Lévy market is incomplete. This follows from the

martingale representation property for Lévy processes as proved by Nualart and Schoutens [2000], as the

Brownian and Poisson cases are the only ones whose representation simplifies to the classical martingale

representation [see Schoutens, 2003, Chapter 5, p.46]. From the Second Fundamental Theorem of Asset

Pricing, it follows that the risk-neutral measure Q is not unique in all other cases.

There are many ways of finding an equivalent martingale measure Q. One way is to use the Esscher

transform. However, according to Schoutens [2003], it is not clear that the market chooses this kind of

(exponential) transform, even though it is sometimes easy to find. More details can be found in Schoutens

[2003, §6.2.2]. We will not discuss this method further. Another way of finding an equivalent martingale

measure, is by changing the drift, in a manner very similar to the way the drift is changed when using

Girsanov’s Theorem. We will take this approach.

10.1 The Drift Term

In a similar way the unique Q is found with Brownian motion, we can construct a risk-neutral measure

for VG or NIG processes. This is done by assuming that the risk-neutral dynamics of the asset have the

same form as in the real-world, except that we adjust the drift so that the expected returns are the riskless

rate. This means that statistical samples of returns will not be used to estimate the drift — the observed

drift is irrelevant.

When we add a drift, say m ∈ R to the VG or the NIG process, the distribution of the processes is being

translated by the value m. This translation does not change the fact that these distributions are infinitely

divisible and is done similar to the way we transform a normal random variable X ∼ Normal
(
0, σ2

)
to

115
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X̃ ∼ Normal
(
m,σ2

)
.

Thus adding a drift m ∈ R to a process Xt results in the process

X̃t = Xt +mt

and its new characteristic function is found using (C.2)

ΦX̃t(z) = eizmtΦXt(z). (10.1)

Only the γ term in the Lévy triplet of X̃t is affected by the translation and the triplet is calculated as

γ̃ = γ +m, σ̃2 = σ2 and ν̃(x) = ν(x).

The density function of X̃t is given by

fX̃t(x) = fXt(x−mt). (10.2)

This follows from

FX̃t(x) = P
(
X̃t ≤ x

)
= P (Xt +mt ≤ x)

= P (Xt ≤ x−mt)

= FXt(x−mt),

where FX̃t(·) and FXt(·) indicate the cumulative distribution functions of X̃t and Xt respectively.

10.2 Risk-Neutral Modelling with Exponential Lévy Processes

Suppose we wish to construct a risk-neutral model using a Lévy process X = {Xt}t≥0 such that

St = S0e
Yt with Yt := (r − q)t+Xt (10.3)

under a risk-neutral measure Q, where r is the constant risk-free rate and q the constant continuous

dividend yield. Such a model is called an exponential Lévy model. In order to guarantee that the discounted

stock price is a martingale, one must have that [Cont and Tankov, 2004a, Proposition 3.18]

(i) E
[
eXt
]
< ∞ which is equivalent to

∫
|x|≥1

exν(dx) < 0 [Cont and Tankov, 2004a, Proposition 3.14];

and

(ii)

1
2σ

2 + γ +

∫ ∞
−∞

ex − 1− x1{|x|≤1} ν(dx) = 0 (10.4)

which can be found by applying Itô’s formula to eXt and setting the resulting drift to 0. Alternatively,

one can show that the process {
eXt

E [eXt ]

}
t≥0
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is a martingale [Cont and Tankov, 2004a, Proposition 3.17]. This implies that eXt is a martingale if

and only if E
[
eXt
]

= 1. However,

E
[
eXt
]

= exp

[
t

(
1
2σ

2 + γ +

∫ ∞
−∞

ex − 1− x1{|x|≤1} ν(dx)

)]
[Eberlein, 2009, §3] and hence (10.4) results.

For more details on martingales relating to Lévy processes, see Cont and Tankov [2004a, §3.9, §8.4.1] or

Eberlein [2009, §3].

In the next sections we derive risk-neutral stock price dynamics where Xt is a VG or NIG process.

Here the equivalent martingale measure Q is determined by following the method discussed in Schoutens

[2003, §6.2.2], where the derived Q is referred to as the mean-correcting martingale measure .

10.2.1 Variance Gamma

Let us assume that the stock price process {St}t≥0 has risk-neutral dynamics

St = S0e
mt+θXG

t +σW
XG
t

⇒ ln
St
S0

= mt+ θXG

t + σWXG
t
. (10.5)

We want the expected value of St to be equal to S0e
(r−q)t and therefore we set

S0e
(r−q)t = E

[
S0e

mt+θXG
t +σW

XG
t

]
⇒ e(r−q)t = emtE

[
E
[
e
θXG

t +σW
XG
t

∣∣∣∣XG

t = g

]]
= emt

∫
E
[
e
θXG

t +σW
XG
t

∣∣∣∣XG

t = g

]
P (XG

t ∈ dg)

= emt
∫
e
g
(
θ+

1
2σ

2
)
fXG

t
(g) dg

= emtE
[
e
XG
t

(
θ+

1
2σ

2
)]

= emt exp

[
− t
ν

ln
(
1−

(
θ + 1

2σ
2
)
ν
)]
.

This is similar to the calculation of the VG characteristic function in (8.12), except this time we use the

moment generating functions of arithmetic Brownian motion given in (C.7) and the gamma process given

in (8.6) with α = 1
ν = β. Solving for m gives

m = r − q + 1
ν ln

[
1−

(
θ + 1

2σ
2
)
ν
]
. (10.6)

Using (8.11) and (10.2) we find the density of Yt = ln St
S0

under Q

fQYt(x) = fYt(x−mt)

=
2 exp

[
(x−mt) θ

σ2

]
ν
t
ν Γ
(
t
ν

)√
2πσ2

[
(x−mt)2

2σ2

ν + θ2

] t
2ν−

1
4

K t
ν−

1
2


√

(x−mt)2
(

2σ2

ν + θ2
)

σ2

 . (10.7)
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Using (8.12) and (10.1) we obtain the risk-neutral characteristic function of X̃VG
t = mt+XVG

t

ΦX̃VG
t

(z) = eizmtΦXVG
t

(z)

= eizmt
(
1− ν

(
izθ − 1

2σ
2z2
))− t

ν (10.8)

In Figures 10.1, 10.2 and 10.3 we consider the probability density functions (top left), implied volatility

skews (top right) and a small sample of stock paths (bottom) for various sets of parameters. The graphs

shown in green are the same in all three figures with parameters used in common. The relative strike

considered (in the figure on the right) is with respect to the forward level of the spot. We considered 1

year options with r = 8% and q = 2% and initial stock price S0 = 100.
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Figure 10.1: VG probability density functions, implied volatility skews and a sample of three stock paths

where we vary θ, while σ and ν are fixed. Observe that when θ is negative we have a downward skew,

whereas a positive θ produces an upward sloping skew. When θ is negative, the jumps are mostly downward,

but we have a positive drift. However, when θ is positive, jumps are mostly upward and we have a negative

drift.

Stellenbosch University  http://scholar.sun.ac.za



10.2 Risk-Neutral Modelling with Exponential Lévy Processes 119
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Figure 10.2: VG probability density functions, implied volatility skews and a sample of three stock paths

where the σ parameter is varied, while θ and ν are fixed. σ is more or less proportional to the general level

of volatility.

10.2.2 Normal Inverse Gaussian

Suppose that the stock price process {St}t≥0 has risk-neutral dynamics

St = S0e
mt+βδ2XIG

t +δW
XIG
t

⇒ ln
St
S0

= mt+ βδ2X IG

t + δWXIG
t
. (10.9)
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Figure 10.3: VG probability density functions, implied volatility skews and a sample of three stock paths

where ν is varied, while θ and σ are fixed. Note that as ν increases, a steeper skew is produced. As ν

increases, the frequency of the large jumps decreases but their magnitude increases.

Again, we require that the expected value of St to be equal S0e
(r−q)t

S0e
(r−q)t = EQ

[
S0e

mt+βδ2XIG
t +δW

XIG
t

]
⇒ e(r−q)t = emtE

[
E
[
e
βδ2XIG

t +δW
XIG
t

∣∣∣∣X IG

t = g

]]
⇒ e(r−q)t = emt

∫
E
[
e
βδ2XIG

t +δW
XIG
t

∣∣∣∣X IG

t = g

]
P (X IG

t ∈ dg)

= emt
∫
e
g
(
βδ2+

1
2 δ

2
)
fXIG

t
(g) dg

= emtE
[
e
XIG
t

(
βδ2+

1
2 δ

2
)]

= emt exp

[
t

(
δ
√
α2 − β2 −

√
δ2 (α2 − β2)− 2

(
βδ2 + 1

2δ
2
))]

.

In a manner similar to the VG case, we have used the moment generating function of arithmetic Brownian
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motion given in (C.7) and the moment generating function of the inverse Gaussian process in (9.3) with

η = 1 and γ = δ
√
α2 − β2. Then solving for m gives

m = r − q + δ
(√

α2 − (β + 1)2 −
√
α2 − β2

)
. (10.10)

Note that in the above we require −α < β + 1 < α. Thus, the final constraint is −α < β < α− 1.

Using (9.9) and (10.2) we find the density of Yt = ln St
S0

under Q

fQYt(α, β, δ;x) = fYt(x−mt)

=
αδt

π
exp

[
δt
√
α2 − β2 + β(x−mt)

] K1

(
α
√
δ2t2 + (x−mt)2

)
√
δ2t2 + (x−mt)2

. (10.11)

The risk-neutral characteristic function of X̃NIG
t = mt+XNIG

t is found using (9.10) and (10.1)

ΦX̃NIG
t

(z) = eizmtΦXNIG
t

(z)

= exp

[
izmt− δt

(√
α2 − (β + iz)

2 −
√
α2 − β2

)]
. (10.12)

In Figures 10.4, 10.5 and 10.6 we consider the probability density functions (top left), implied volatility

skews (top right) and a small sample of stock paths (bottom) for various sets of parameters. The graphs

shown in green is the same in all three figures with parameters used in common. The relative strike

considered (in the figure on the right) is with respect to the forward level of the spot. We considered

1 year options with r = 8% and q = 2% and initial stock price S0 = 100. Unlike the case of the VG

distribution, the meaning of the parameters in the NIG distribution is not always clear.
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Figure 10.4: NIG probability density functions, implied volatility skews and a sample of three stock paths

where we vary α, while β and δ are fixed. Note that as the values of α increase, the size of the bigger

jumps decreases.
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Figure 10.5: NIG probability density functions, implied volatility skews and a sample of three stock paths

where β is varied, while α and δ are fixed. Observe that when β is negative (positive), we have a downward

(upward) sloping skew. As in the previous figure, as the values of β decrease, the size of the bigger jumps

decreases.
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Figure 10.6: NIG probability density functions, implied volatility skews and a sample of three stock paths

where δ is varied, while α and β are fixed.
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Chapter 11

Calibration of the Variance Gamma

and Normal Inverse Gaussian Models

The focus of the thesis is the pricing of American options under the VG and NIG models. The thesis

would, however, be incomplete if we did not consider a calibration methodology that can be applied to

these models.

We now consider the calibration of the VG and NIG models using a variation of the method suggested

by Cont and Tankov [2004b]. They consider the calibration within the class of all Lévy models, but we

will restrict the calibration to the VG and NIG models, which will yield a far more tractable calibration

procedure. Here we will make use of a historical prior and market implied volatilities, and then find the

model parameters by minimising a weighted sum of a measure of the distance between the model and the

prior, and a measure of the distance between the model and the market. The order in which we proceed

with the calibration process is as follows:

(i) Using historical data we perform a technique called block bootstrap (see the references in Lima and

Tabak [2007]), which generates a sample of returns for the period of the option, where some of the

serial properties of the daily data are preserved. We will consider this technique in §11.1. We then

apply kernel smoothing to the new set of data obtained from the block bootstrap and extract its

moments. This is discussed in §11.2.

(ii) We then generate the prior mentioned above. In §11.3 we use simultaneous equation solving to find

the parameters of the Lévy model that has the same second, third and fourth moments as those

found in the previous step. This model is made risk-neutral (see §10.2) and we denote the measure

associated with it by Q0. A continuous dividend yield is required as input here.

(iii) We then turn our attention to the market implied model. Using the Black-Scholes option pricing

formula, we price the options and calculate the Black-Scholes vega using the skew volatilities. A

continuous dividend yield is required as input here as well.

(iv) Using the risk-neutral Lévy model with measure Q, we then price the options on the skew and

find some measure (the vega-weighted `2-distance for example) between these prices and the market

125
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prices. That is, we define

δ (Q,Market) :=
∑
i

VMarket

i

∣∣∣PQ
i − P

Market

i

∣∣∣2 (11.1)

where PMarket
i indicates the premium obtained from the market using the ith point on the skew, VMarket

i

indicates the corresponding Black-Scholes vega, and PQ
i indicates the premium determined by the

model with measure Q using the COS method as discussed in §E.1.

(v) We estimate the Kullback-Leibler discrepancy [Cont and Tankov, 2004b] (also referred to as the

relative entropy of fQ with respect to fQ0) between Q and Q0 given by

ε (Q,Q0) :=

∫ ∞
−∞

fQ(x) ln
fQ(x)

fQ0(x)
dx. (11.2)

The technique for estimating this integral is discussed in §11.4.

The Kullback-Leibler discrepancy in (11.2) provides a type of measure of the distance between Q
and Q0. Note that even though the discrepancy possesses some properties of a metric, it is not

a metric. The motivation for including the Kullback-Leibler discrepancy in our calibration is that

otherwise a solution to the calibration may be very difficult to find: solutions to the same calibration

problem might produce parameter values that are dramatically different but skews generated from

these parameter values are very similar.

(vi) The error is a weighted sum of δ (Q,Market) and ε (Q,Q0) determined in (iv) and (v) respectively.

The relative importance of the two factors is determined by a technique called the Morozov discrep-

ancy principle Morozov [1966]. A detailed account of this last step is provided in §11.5.

11.1 Block Bootstrap

Sample statistics are often calculated using daily returns, which then need to be annualised. In this case,

annualisation would be achieved by applying (C.24) and (C.25) to the sample mean, variance, skewness

and kurtosis.

However, by considering daily returns, one finds that the resulting returns distribution is like that of

the normal (with a skewness and excess kurtosis of 0). As an example we considered the South African

Top40 index over 10 years and obtained an annual variance of 0.0577, skewness of -0.0076 and excess

kurtosis of 0.0107: the distribution has similar properties to the normal distribution and hence there is

no skew. The reason for this is that the way in which we have obtained the annual parameters creates

normal behaviour in the data because of the law of large numbers: the serial features of the data are lost.

Thus in order to preserve the serial properties of the data, we employ the technique of block bootstrap.

We divide the log returns into blocks of a specified size (we chose the number to be about 60). Then we

sample blocks, with replacement, at random from our data until we have enough points with which we

can perform our analysis, e.g. for a 1 year option we required 250 days. Note that this may involve only

sampling a part of a terminal block, which is often referred to as a stub. We then sum the returns of the

total points sampled. The entire procedure is repeated (with replacement) a large number of times and

the annual variance, skewness and excess kurtosis are determined from this new set of data. We found by
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performing this procedure on the Top40 index mentioned above, that the annual variance was given by

0.0569, the skewness by -1.0540 and the excess kurtosis by 3.5295 which is much more reasonable than the

moments obtained directly from the daily data.

11.2 Kernel Smoothing

As noted in Schoutens [2003, §4.1.2], when approximating an empirical density, we make use of kernel

density estimators. Kernel density estimation is a data smoothing technique where we make conclusions

about the empirical density based on a finite set of data. Here we follow the kernel density estimation

method as in Schoutens [2003, §4.1.2].

Suppose that the returns of the stock for the option period are calculated and denoted as

x1, x2, . . . , xN . We imagine that the return xi actually observed is a draw from a normal distribu-

tion with mean xi, with the variance to be determined and denoted by h2. Thus, the probability density

function for the ith draw is the Gaussian kernel,

ki(x) =
1√
2πh

exp

[
− 1

2

(
x− xi
h

)2
]
. (11.3)

Let the distribution of interest be X. The kernel density estimator for the probability density function fX

of X at the point x is given by

f̂X(x) =
1

N

N∑
i=1

ki(x), (11.4)

where N is the sample size, and h = 1.06σN−1/5 is the bandwidth (here σ is the sample standard deviation

of the log price ratios).

Given this, we can calculate any number of raw moments of the distribution whose probability density

function is f̂X exactly. Let this distribution be X̂. Then

E
[
X̂n
]

=
1√

2πhN

N∑
i=1

∫ ∞
−∞

xn exp

[
− 1

2

(x− xi)2

h

]
dx

=
1√

2πN

N∑
i=1

∫ ∞
−∞

(hw + xi)
ne−

1
2w

2

dw

=
1√

2πN

N∑
i=1

n∑
j=0

hjxn−ji

∫ ∞
−∞

wje−
1
2w

2

dw

=
1

N

N∑
i=1

n∑
j=0

hjxn−ji aj ,

where a0 = 1, a1 = 0, aj = (j − 1)aj−2 for j > 1.

Here we use the key fact (from integration by parts) that, for n ≥ 2,∫
wne−

1
2w

2

dw = −wn−1e−
1
2w

2

+ (n− 1)

∫
wn−2e−

1
2w

2

dw.

We now transform from these raw moments to the mean, variance, skewness and kurtosis. This routine

procedure is described in Appendix C.3.
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11.3 Moment Matching

We now show how to calculate the parameters of the VG and NIG models from a given variance, skewness

and excess kurtosis.

11.3.1 Variance Gamma

We believe the solution provided in this section is new.

As we have shown in Appendix C.3, we may calculate the mean, variance, skewness and excess kurtosis

of a VG process XVG
t using the moment generating function

E [XVG

t ] = θt

Var [XVG

t ] =
(
θ2ν + σ2

)
t (11.5)

s (XVG

t ) =
θν
(
2θ2ν + 3σ2

)
(θ2ν + σ2)

3
2 t

1
2

(11.6)

κ̄ (XVG

t ) = 3

(
2
ν

t
− νσ4

(θ2ν + σ2)
2
t

)
(11.7)

where θ ∈ R, ν > 0 and σ > 0. Note that

κ̄ (XVG

t ) =
3ν

t

[
2− σ4

(θ2ν + σ2)
2

]
≥ 3ν

t
> 0,

i.e. the excess kurtosis is positive. It is a stylised fact that market data displays excess kurtosis.

We derive the parameters θ, σ and ν in terms of the model variance, skewness and excess kurtosis

using moment matching. For simplicity in the derivations below we set t = 1 in the above equations which

means that the parameters we extract are annual. For ease of notation we denote Var [XVG
t ] by Σ and

suppress the symbol of the process XVG
t when considering s (XVG

t ) and κ̄ (XVG
t ).

Observe that we now ignore the mean of XVG
t as we discussed in §10.1. In the above (11.5), (11.6) and

(11.7) provide three equations in the unknowns θ, σ and ν. We solve for these unknowns as follows: firstly

using (11.5) we may write

θ2ν = Σ− σ2

and then using (11.6) and the above gives

θν =
s
(
θ2ν + σ2

) 3
2

(2θ2ν + 3σ2)
=

sΣ
3
2

(2Σ + σ2)
. (11.8)

Then we have

ν =
(θν)2

θ2ν
=

s2Σ3

(2Σ + σ2)
2

(Σ− σ2)
. (11.9)
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Now let

L :=
κ̄
3

= 2ν − νσ4

(θ2ν + σ2)
2

=
s2Σ3

(2Σ + σ2)
2

(Σ− σ2)

(
2− σ4

Σ2

)
=

s2Σ
(
2Σ2 − σ4

)
(2Σ + σ2)

2
(Σ− σ2)

.

If we set x := σ2, then we may write

L =
s2Σ

(
2Σ2 − x2

)
(2Σ + x)

2
(Σ− x)

and rewriting this we obtain a cubic in x

−Lx3 +
(
−3LΣ + Σs2

)
x2 +

(
4LΣ3 − 2Σ3s2

)
= 0

x3 +

(
3Σ− Σs2

L

)
x2 +

(
−4Σ3 + 2

Σ3s2

L

)
= 0. (11.10)

We write this in the form p(x) = x3 + ax2 + bx + c = 0 where the coefficients a, b and c of the cubic are

given by

a = 3Σ− Σs2

L
, b = 0 and c = −4Σ3 + 2

Σ3s2

L
.

We see that s2

L is a key quantity in this equation and consider three cases:

(i) Suppose 0 ≤ s2

L < 2. In this case a > 0, c < 0, so the polynomial p(x) has one coefficient sign change.

Hence using Descarte’s rule of signs, the polynomial has exactly one positive root.

(ii) Suppose 2 ≤ s2

L ≤ 3. In this case a > 0, c > 0, so there is no coefficient sign change and no positive

root.

(iii) Suppose 3 < s2

L . In this case a < 0, c > 0, so there are two coefficient sign changes and hence either

two positive roots or none.

Thus for definiteness we restrict attention to the case where s2

L < 2. When considering historical data, we

found it is possible that this ratio is larger than 2, depending on the block bootstrap parameters chosen.

Under this condition it might be impossible to find a VG distribution that matches these moments, or

there may be exactly two different distributions which match these moments.

We determine the roots x (if they exist) of the cubic (11.10) using the algorithm in Press et al. [2004,
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§5.6]. Then we are able to calculate σ, ν and θ

σ =
√
x

ν =
s2Σ3

(2Σ + x)
2

(Σ− x)

θ =
1

ν

sΣ
3
2

(2Σ + x)

=
(2Σ + x)

2
(Σ− x)

s2Σ3

sΣ
3
2

(2Σ + x)

=
(2Σ + x)(Σ− x)

sΣ
3
2

,

where we have made use of (11.8) and (11.9).

11.3.2 Normal Inverse Gaussian

Subsequent to performing this derivation, we found that similar results appear in Eriksson et al. [2004].

Recall from §10.2.2 that the parameters of the NIG process have the following constraints

α > 0

−α < β < α− 1

δ > 0.

The parameters α and β are scale invariant, whereas δ is not. Thus it is necessary to indicate whether

the δ parameter has been annualised or not. For example, the δ values provided in Rydberg [1997, Table

2] are per period, and hence to annualise these numbers we need to multiply them by the number of

observations per year which we have taken to be 250. In our presentation all parameters will always be

the annualised version.

As shown in Appendix C.3 we may determine the mean, variance, skewness and excess kurtosis of an

NIG process XNIG
t

E [XNIG

t ] =
βδt√
α2 − β2

Var [XNIG

t ] =
α2δt

(α2 − β2)
3
2

(11.11)

s (XNIG

t ) =
3β

α (α2 − β2)
1
4 (δt)

1
2

(11.12)

κ̄ (XNIG

t ) = 3
α2 + 4β2

α2
√
α2 − β2δt

.

Observe that the excess kurtosis κ̄ (XNIG
t ) of the NIG process is always positive. As in the VG case, this

is empirically not a problem.

We would like to write these expressions so that the parameters α, β and δt are the subjects of the

equations using moment matching. As in the VG case we denote Var [XNIG
t ] with Σ, and when referring

Stellenbosch University  http://scholar.sun.ac.za



11.4 The Kullback-Leibler Discrepancy Approximation 131

to s (XNIG
t ) and κ̄ (XNIG

t ) we suppress the symbol of the process XNIG
t . Also we set t to be equal to 1. We

derive these equations as follows:

Consider

s2 =
9β2

α2
√
α2 − β2δ

⇒ Σs2 =
9β2

(α2 − β2)
2 (11.13)

κ̄
3

=
α2 + 4β2

α2
√
α2 − β2δ

⇒ κ̄
s2

=
α+ 4β2

9β2
.

Furthermore, let

A :=
κ̄

3s2
− 5

9
=
α2 − β2

9β2
,

then using the above and (11.13) we obtain

A2Σs2 =

(
α2 − β2

)2
(9β2)

2

9β2

(α2 − β2)
2

=
1

9β2

⇒ β2 =
1

9A2Σs2
.

From (11.12) we observe that the sign of β is the same as the sign of s. Thus

β =
1

3A
√

Σs
.

Having obtained β we can then determine α using (11.13)

(
α2 − β2

)2
=

9β2

Σs2

⇒ α2 − β2 =
3β√
Σs

⇒ α =

√
3β√
Σs

+ β2.

Finally, using (11.11) we calculate δ as

δ =
Σ(α2 − β2)

3
2

α2
.

11.4 The Kullback-Leibler Discrepancy Approximation

We determine the Kullback-Leibler discrepancy in (11.2) by applying the following approximations:
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(i) truncate the domain of integration using the interval [a, b] in (E.2) (which is applied in the COS

Method in Appendix E.1). We only calculate one interval [a, b] for all choices of Q and use Q0 for

this calculation with an at-the-money option. Typical parameter sets produced intervals more or less

equal to [−6, 6].

(ii) we attempted to apply Gauss-Kronrod quadrature Kronrod [1965] to this interval.

However, only using Gauss-Kronrod quadrature fails because the function fQ(x) ln fQ(x)
fQ0 (x)

oscillates

rapidly in the area concentrated around 0 for typical parameter sets (see Figure 11.1). Since this func-

tion has turning points which occur in unknown positions, the Gauss-Kronrod quadrature produces

spurious results. If we knew where these turning points occurred, we could apply the Gauss-Kronrod

quadrature to intervals between the turning points.

-6 -4 -2 0 2 4 6
-2

-1

0

1

2

3

4

5

fQ(x)

fQ0(x)

fQ(x) ln fQ(x)
fQ0(x)

Figure 11.1: A candidate density function fQ(x) in our calibration procedure, along with the prior density

fQ0(x) and the function fQ(x) ln fQ(x)
fQ0 (x)

. Observe the rapid oscillation of fQ(x) ln fQ(x)
fQ0 (x)

in the area around

0.

Therefore, we changed this approximation by estimating the integral using the Trapezoid Rule for

the interval [−1, 1] and the Gauss-Kronrod quadrature separately for the intervals [−6,−1] and [1, 6].

Although this increases the duration of the calibration procedure, it is still acceptable.

11.5 The Morozov Discrepancy Principle

In this section we discuss how the Morozov discrepancy principle is applied to obtain the relative weights

of the two distance functions given in (11.1) and (11.2); and use this to determine the parameters of the

calibrating Lévy model.
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Let M indicate all possible realisations of the Lévy model under consideration with Qm denoting the

measure of model m ∈M. We begin by defining the intrinsic model error

ε0 := inf
m∈M

δ (Qm,Market) ,

where δ (Qm,Market) is the vega-weighted `2 distance between the Lévy model with measure Q and the

market prices as shown in (11.1). Furthermore, define

g(λ) := inf
m∈M

λε (Qm,Q0) + δ (Qm,Market) , (11.14)

where ε (Qm,Q0) is the Kullback-Leibler discrepancy between Qm and Q0 as in (11.2). In the equation

above, δ (Qm,Market) becomes a function of λ since it falls under the infimum that is being taken and

hence we may write h(λ) := δ (Qm,Market). The Morozov discrepancy principle says that λ should be

chosen in such a way that h(λ) ≈ 1.1ε0. If we let

f(λ) := h(λ)− 1.1ε0 (11.15)

then the Morozov discrepancy principle requires that f(λ) = 0. Note that even though g(λ) is increasing,

h(λ) (and hence f(λ)) is not necessarily increasing (see Figure 11.2). However they will be more or less

increasing and so a standard root-finding algorithm should suffice. In order to find the λ which solves

this equation, we may use some root-finding algorithm such as Brent’s method which we discuss in §H.2.

Also, since h(0) = ε0, we know what f(0) = −0.1ε0. Thus we may use a modified version of the algorithm

BrentWithGuess (discussed in §H.2) which takes the known left point of the interval containing the root

and guesses the right point.

Observe that for each iteration of this root-finding algorithm, we minimise the error, i.e. determine g(λ)

by searching over the space of all Qm’s using methods such as Nelder and Mead [1965] or Particle Swarm

Optimisation Kennedy and Eberhart [1995]. Once we have found λ we return to minimising (11.14), but

with λ fixed (thus this expression is no longer a function of λ). The model parameters obtained from this

last minimisation yield the final calibrated model we require.

Note that if, in the definition of f(λ) (11.15), we increase the number 1.1, then the λ for which f(λ) = 0

is higher. We will refer to this number as the perturbation factor. We found that setting the perturbation

factor to 1.1 produced λ’s very close to 0. In such a case the market information given in the form of

δ (Qm,Market) dominates the outcome of the calibration, since λ determines how important a role the

Kullback-Leibler discrepancy plays in our calibration (as we see in (11.14)). Thus, when applying the

Morozov discrepancy principle, this perturbation factor needs to be adjusted according to how close one

believes one should be to the market. Consider Figure 11.2 where we have plotted f(λ), g(λ) and h(λ) for

various values of λ.

Consider the skews obtained from the market, from the prior distribution obtained from historical data,

and the calibrated skew for the the NIG model in Figure 11.3. Here we plot calibrated skews for various

values of λ. Note how steep the market skew is compared to the skew obtained from the prior distribution.

The market data implied an annual variance of 0.0954, skewness of -2.5161 and excess kurtosis of 12.2083.

As we have noted in §11.1, after performing the block bootstrap and kernel smoothing of the historical

data we obtained an annual variance of 0.0569, skewness of -1.0540 and excess kurtosis of 3.5295. The

higher skewness obtained from the market compared to that of the historical data, implies that the market

prices in more downside protection. Furthermore, the market prices in much fatter tails than is found in

historical data.
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Figure 11.2: f(λ), g(λ) and h(λ) for various values of λ. Here the perturbation factor is set to 2.1.

18000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000
0

5%

10%

15%

20%

25%

30%

35%

40%

K

σ
B
S

Market
Prior
λ = 307.78

λ = 116.71
λ = 23.46
λ = 5.14

Figure 11.3: We plot the market, prior and several calibrated skews for the South African Top40 index,

where the λ’s are varied for the calibrated skews. Here the market parameters are given by α = 6.5690, β =

−4.9166, δ = 0.1828 and the prior parameters by α = 6.1928, β = −2.6331, δ = 0.2613.
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Chapter 12

Results and Conclusion

In this chapter we consider the results produced by the Monte Carlo methods presented in Chapters 2, 3,

4 and 5, where the underlying follows an exponential VG or NIG process. We also provide a summary of

our findings in §12.2 and conclude the thesis.

12.1 Results

When considering the VG and NIG models, we compare the approximations obtained from our Monte

Carlo methods with the value produced by the Bermudan COS method [see Fang and Oosterlee, 2009].

12.1.1 LSM and LSM-Rasmussen Methods

We begin by comparing the LSM method with the LSM-Rasmussen method as a function of the number

of polynomials used as in Figure 3.2; and as a function of the number of sample paths as in Figure 3.3.

In Figures 12.1 and 12.2 we give the results obtained using the VG model for two parameter sets. The

results obtained from the NIG model appear in Figures 12.3 and 12.4.

We also compare values (for in-the-money, at-the-money and out-the-money options) and the time

taken (in seconds) of the LSM and LSM-Rasmussen methods as we have done in Table 3.1. The VG

results are given in Table 12.1 and the NIG results in Table 12.2. We used the same inputs as in Table 2.1.

As in the GBM case, the LSM-Rasmussen method performs remarkably better than the ordinary LSM

method in both the VG and NIG cases. Note that when using the second set of parameters, the Monte

Carlo methods perform much better than when the first set of parameters is used. We found that when

parameter sets produced steep skews (which is the case of the first set of parameters), the LSM method

and LSM-Rasmussen method did not perform as well as parameter sets which produced less steep skews

(which is the case of the second set of parameters). However, the error is not severe.

135
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Figure 12.1: The performance of the LSM and LSM-Rasmussen methods as a function of the number of

Laguerre polynomials used.

The option details are as follows: the underlying stock price process follows an exponential VG process

where the parameters are indicated in the titles of the figures, S0 = 135, r = 10% and q = 2%; and we

are considering a 1 year put with K = 135. We used 4096 sample paths with 20 time steps using Sobol’

random numbers with bridging. We include the value given by the COS method with 20 time steps.

Compared to the GBM case in Figure 3.2, the LSM method performs worse, in particular for the

parameter set on the left (a parameter set that produces a steeper skew). As in the GBM case, the LSM-

Rasmussen method clearly outperforms the LSM method. We obtained similar results for both parameter

sets when varying strike, number of time steps and number of sample paths.

12.1.2 Stochastic Mesh Method

Next, we plot the performance of the high and low bias estimates obtained from the stochastic mesh

method as we did in Figure 4.5 for the GBM case. We only consider the NIG case, since the computation

time of these estimates in the VG case was infeasible. This is because the weights that need to be calculated

in the stochastic mesh method given in (4.13) involves the calculation of the probability density function

of the VG process given in (10.7). The calculation of the modified Bessel function of the second kind

in the VG probability density function is very slow, because it is of fractional order and not of integer

order as in the NIG case (see Appendix D for a brief discussion on modified Bessel functions of the second

kind). A possible improvement in speed of this calculation would be to construct the weights without

using densities as suggested by Broadie et al. [2000].

As in the GBM case in Table 4.1, we compare in Table 12.3 the performance of the stochastic mesh high

and low bias prices to those generated by the LSM-Ramsussen method (for in-the-money, at-the-money

and out-the-money options) and the time taken (in seconds) of these methods. We used the same inputs
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Figure 12.2: The performance of the LSM and LSM-Rasmussen methods as a function of the number of

sample paths used, with 8 Laguerre polynomials.

The option details are as follows: the underlying stock price process follows an exponential VG process

where the parameters are indicated in the titles of the two figures, S0 = 135, r = 10% and q = 2%; and we

are considering a 1 year put with K = 135. We simulated paths with 30 time steps using Sobol’ random

numbers with bridging. We include the value given by the COS method with 30 time steps.

As before, when comparing to the GBM case in Figure 3.3, the LSM method performs worse, in particular

for the parameter set on the left (a parameter set that produces a steeper skew). As in the GBM case, the

LSM-Rasmussen method clearly outperforms the LSM method.

as in Table 3.1. Again, we see that the LSM-Rasmussen method clearly outperforms the stochastic mesh

method in computation time and accuracy.

12.1.3 Initial Dispersion

Recall from §3.2, that when considering the initial dispersion technique, t−1 was set to tM
2 . In §5.3 we

saw that this choice of t−1 was adequate in the geometric Brownian motion case. However, as we see in

Figures 12.6 and 12.7, this number needs to be adjusted. In the case of the VG model in Figure 12.6 we

see that only when t−1 is set to about 2.0 years for the first parameter set and 1.4 years for the second

parameter set, the modelled optimal stopping boundary becomes smooth. Note that we are considering a

1 year option. When considering the NIG model in Figure 12.7 we see that t−1 needs to be set to about

0.9 years for the first parameter set and about 0.3 for the second parameter set.
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Figure 12.3: The performance of the LSM and LSM-Rasmussen methods as a function of the number of

Laguerre polynomials used.

The option details are as follows: the underlying stock price process follows an exponential NIG process

where the parameters are indicated in the titles of the figures, S0 = 135, r = 10% and q = 2%; and we

are considering a 1 year put with K = 135. We used 4096 sample paths with 20 time steps using Sobol’

random numbers with bridging. We include the value given by the COS method with 20 time steps.

Compared to the GBM case in Figure 3.2, the LSM method performs worse, in particular for the

parameter set on the left (a parameter set that produces a steeper skew). As in the GBM case, the LSM-

Rasmussen method clearly outperforms the LSM method. We obtained similar results for both parameter

sets when varying strike, number of time steps and number of sample paths.

12.1.4 Dual Method

Finally, we consider the performance of the dual method. We plot similar figures to those given in §5.3 for

the VG and NIG models. Here we only consider the LSM-Rasmussen method as the results obtained from

the stochastic mesh method were as poor for the VG and NIG models as those for the GBM case in §5.3.

As before, we calculate the critical stock price function for each model using the LSM-Rasmussen method

and then calculate the dual value from the critical stock price function (see the first row of Figures 12.8

and 12.9). We also plot the critical stock price functions as a function of the number of sample paths (see

the second row of Figures 12.8 and 12.9). When considering VG parameter sets that produce steep skews,

the critical stock price function produced poor results as we observe in Figure 12.8 for the first parameter

set.

Stellenbosch University  http://scholar.sun.ac.za



12.2 Conclusion 139

25 26 27 28 29 210 211 212
9.7

9.8

9.9

10.0

10.1

10.2

10.3
α = 6.5668, β = −4.9164, δ = 0.1828

Number of Sample Paths (in log2 scale)

LSM-Rasmussen Method

LSM Method

COS Method

25 26 27 28 29 210 211 212
9.1

9.2

9.3

9.4

9.5

9.6

9.7
α = 10.5042, β = −2.0013, δ = 0.6122

Number of Sample Paths (in log2 scale)

LSM-Rasmussen Method

LSM Method

COS Method

Figure 12.4: The performance of the LSM and LSM-Rasmussen methods as a function of the number of

sample paths used with 8 Laguerre polynomials.

The option details are as follows: the underlying stock price process follows an exponential NIG process

where the parameters are indicated in the titles of the two figures, S0 = 135, r = 10% and q = 2%; and we

are considering a 1 year put with K = 135. We simulated paths with 30 time steps using Sobol’ random

numbers with bridging. We include the value given by the COS method with 30 time steps.

As before, when comparing to the GBM case in Figure 3.3, the LSM method performs worse, in particular

for the parameter set on the left (a parameter set that produces a steeper skew). As in the GBM case, the

LSM-Rasmussen method clearly outperforms the LSM method.

12.2 Conclusion

We have considered various American Monte Carlo methods for the VG and NIG models, namely the LSM

method in Chapter 2, the LSM-Rasmussen method in Chapter 3 (here variance reduction techniques are

applied to the LSM method), and the stochastic mesh method in Chapter 4. We also considered the dual

method in Chapter 5, which was applied to both the LSM and stochastic mesh methods.

From the results provided above, it is clear that the LSM-Rasmussen method not only outperforms

the LSM method remarkably well under GBM, but also under the VG and NIG models. Furthermore,

when applying the initial dispersion technique to approximate the optimal stopping boundary, satisfactory

results were obtained for both the VG and NIG models by adjusting t−1 accordingly.

The stochastic mesh method did not perform as well as the LSM-Rasmussen method. In fact, the

computation time of this method under the VG model was found infeasible and only results for the NIG

model were reported. As noted before, a possible improvement to the tractability of this method is to

construct the weights without considering densities [see Broadie et al., 2000]. A further improvement can

be achieved by incorporating variance reduction techniques [see Broadie and Glasserman, 1997a].
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θ = −0.1732, σ = 0.2196, ν = 1.2014

Value

K COS LSM LSM-Rasmussen

85 1.2035 1.6825 1.2364

130 8.3693 10.8044 8.2288

135 10.1000 12.8954 9.6792

140 12.0543 15.4617 11.4235

185 50.0000 50.0000 50.0000

Time

K COS LSM LSM-Rasmussen

85 0.000 12.415 12.725

130 0.000 13.730 13.979

135 0.000 10.090 10.239

140 0.000 9.745 9.719

185 0.000 10.621 10.687

θ = −5637, σ = 0.3102, ν = 0.042

Value

K COS LSM LSM-Rasmussen

85 0.8927 0.9051 0.8850

130 11.0823 12.0281 11.0549

135 13.3349 13.6872 13.3642

140 15.8426 16.7008 15.9186

185 50.0000 52.7276 50.0000

Time

K COS LSM LSM-Rasmussen

85 0.000 10.732 10.774

130 0.000 10.415 10.432

135 0.000 10.754 10.929

140 0.000 10.882 10.794

185 0.000 10.550 10.847

Table 12.1: The performance of the LSM and LSM-Rasmussen methods for 256 sample paths with 8

Laguerre polynomials and varied strikes.

Here the option details are as follows: the underlying stock price process follows an exponential VG

process where the parameters are indicated in the table headings with S0 = 135, r = 10% and q = 2%; and

we are considering a 1 year put. We simulated paths with 30 time steps using Sobol’ random numbers with

bridging. We include the value given by the COS method with 30 time steps.

Again we see that the LSM-Rasmussen method performs much better than the ordinary LSM method.

Note that both methods perform better for the second parameter set.

The results obtained from applying the dual method to the stochastic mesh method were poor. Hence

we only reported the results obtained when applying the dual method to the LSM-Rasmussen method.

Both the VG and NIG models produced satisfactory results.

Thus we conclude that when pricing American options using Monte Carlo simulation, the LSM-

Rasmussen method outperforms the other methods considered here; and can be used under both the

VG and NIG models, producing excellent results.
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α = 6.5668, β = −4.9164, δ = 0.1828

Value

K COS LSM LSM-Rasmussen

85 1.4239 1.5860 1.4064

130 8.2535 8.3071 8.2398

135 9.8616 10.0844 9.7617

140 11.8139 12.3991 11.6192

185 50.0000 50.0000 50.0000

Time (seconds)

K COS LSM LSM-Rasmussen

85 0.000 12.747 12.764

130 0.000 13.178 13.117

135 0.000 12.417 12.487

140 0.000 13.615 13.643

185 0.000 12.411 12.441

α = 10.5042, β = −2.0013, δ = 0.6122

Value

K COS LSM LSM-Rasmussen

85 0.2497 0.3038 0.2478

130 7.1248 7.2374 7.1155

135 9.1524 9.6856 9.1450

140 11.5451 12.0767 11.5207

185 50.0000 50.0000 50.0000

Time (seconds)

K COS LSM LSM-Rasmussen

85 0.000 13.535 13.716

130 0.000 12.446 12.556

135 0.000 12.277 12.519

140 0.000 12.369 12.565

185 0.000 12.466 12.368

Table 12.2: The performance of the LSM and LSM-Rasmussen methods for 256 sample paths with 8

Laguerre polynomials and varied strikes.

Here the option details are as follows: the underlying stock price process follows an exponential NIG

process where the parameters are indicated in the table headings with S0 = 135, r = 10% and q = 2%; and

we are considering a 1 year put. We simulated paths with 30 time steps using Sobol’ random numbers with

bridging. We include the value given by the COS method with 30 time steps.

Again we see that the LSM-Rasmussen method performs much better than the ordinary LSM method.

We also note that the LSM-Rasmussen is more accurate for in-the-money options and that both methods

perform better for the second parameter set.
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Figure 12.5: Performance of the high and low bias prices generated using the stochastic mesh method.

The option details are as follows: the underlying stock price process follows an exponential NIG process

with the parameters indicated in the titles of the two figures, S0 = 135, r = 10% and q = 2%; and we are

considering a 1 year put option with K = 135. The sample paths were generated with 30 time steps using

Sobol’ random numbers with bridging. The number of sample paths used in the high bias estimate is given

by the first entry in the bracket and that of the low bias estimate in the second on the horizontal axis. We

also include the value given by the COS method with 30 time steps.

Both parameter sets produced similar convergence results for in-the-money and out-the-money options.
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α = 6.5668, β = −4.9164, δ = 0.1828

Value

K COS LSM-Rasmussen High Bias Low Bias

85 1.4239 1.4064 2.3920 1.4401

130 8.2535 8.2398 13.8563 8.1096

135 9.8616 9.7617 16.3485 9.5407

140 11.8139 11.6192 19.1730 11.4801

185 50.0000 50.0000 62.8713 42.8717

Time (seconds)

K COS LSM-Rasmussen High Bias Low Bias

85 0.000 12.764 639.289 0.158

130 0.000 13.117 651.895 0.143

135 0.000 12.487 645.484 0.140

140 0.000 13.643 640.927 0.141

185 0.000 12.441 649.041 0.141

α = 10.5042, β = −2.0013, δ = 0.6122

Value

K COS LSM-Rasmussen High Bias Low Bias

85 0.2497 0.2478 0.2859 0.2415

130 7.1248 7.1155 8.8234 6.8159

135 9.1524 9.1450 11.2420 8.7407

140 11.5451 11.5207 13.9842 10.9040

185 50.0000 50.0000 53.8459 43.9904

Time (seconds)

K COS LSM-Rasmussen High Bias Low Bias

85 0.000 13.716 649.275 0.157

130 0.000 12.556 636.825 0.157

135 0.000 12.519 633.814 0.160

140 0.000 12.565 651.025 0.156

185 0.000 12.368 646.432 0.157

Table 12.3: The performance of the high and low bias prices generated using the stochastic mesh method

compared to the LSM-Rasmussen method for varied strikes.

Here the option details are as follows: the underlying stock price process follows an exponential NIG

process with parameters as indicated in the titles of the table, S0 = 135, r = 10% and q = 2%; and we are

considering a 1 year put option with K = 135. The sample paths were generated with 30 time steps using

Sobol’ random numbers with bridging.. The high bias and LSM-Rasmussen values were generated using

256 sample paths, whereas the low bias values were generated using 2048 sample paths. We also include

the value given by the COS method with 30 time steps.

Clearly the LSM-Rasmussen method outperforms the stochastic mesh method in computation time and

accuracy.
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Figure 12.6: The critical stock price function determined from the LSM-Rasmussen method with 8 Laguerre

polynomials for various dispersion terms.

The option details are as follows: stock price process follows exponential VG with the parameter sets

indicated in the title of the graphs. Also, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year

put option with K = 135. Here the number of sample paths used is 4096 with 20 time steps using Sobol’

random numbers with bridging an.

We see that to obtain a smooth model of the optimal stopping boundary, we require t−1 to be about 2.0

years for the parameter set on the left and about 1.4 years for the parameter set on the right.
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Figure 12.7: The critical stock price function determined from the LSM-Rasmussen method with 8 Laguerre

polynomials for various dispersion terms.

The option details are as follows: stock price process follows exponential NIG with the parameter sets

indicated in the title of the graphs. Also, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year

put option with K = 135. Here the number of sample paths used is 4096 with 20 time steps using Sobol’

random numbers with bridging an.

We see that to obtain a smooth model of the optimal stopping boundary, we require t−1 to be about 0.9

years for the parameter set on the left and about 0.3 years for the parameter set on the right.
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Figure 12.8: In the first row, we plot the performance of the LSM-Rasmussen method as a function of the

number of sample paths used with 8 Laguerre polynomials. We also plot the low bias obtained from the

critical stock price function calculated in the LSM method. Furthermore, we plot the performance of the

dual method which is calculated using this critical stock price function. The number of sample paths used

in the high bias calculations and LSM method is given by the first entry in the bracket and that of the low

bias estimate in the second on the horizontal axis. We also include the value given by the COS method

with 20 time steps.

In the second row, we plot the corresponding critical stock price function determined from the LSM-

Rasmussen method for a varying number of sample paths.

The option details are as follows: the underlying stock price process follows exponential VG with param-

eters indicated in the titles of the figures, S0 = 135, r = 10% and q = 2%; and we are considering a 1 year

put option with K = 135. Here, sample paths were generated with 20 time steps using Sobol’ numbers with

bridging.
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Figure 12.9: In the first row, we plot the performance of the LSM-Rasmussen method as a function of the

number of sample paths used with 8 Laguerre polynomials. We also plot the low bias obtained from the

critical stock price function calculated in the LSM method. Furthermore, we plot the performance of the

dual method which is calculated using this critical stock price function. The number of sample paths used

in the high bias calculations and LSM method is given by the first entry in the bracket and that of the low

bias estimate in the second on the horizontal axis. We also include the value given by the COS method

with 20 time steps.

In the second row, we plot the corresponding critical stock price function determined from the LSM-

Rasmussen method for a varying number of sample paths.

The option details are as follows: the underlying stock price process follows exponential NIG with

parameters indicated in the titles of the figures, S0 = 135, r = 10% and q = 2%; and we are considering

a 1 year put option with K = 135. Sample paths were generated with 20 time steps using Sobol’ numbers

with bridging.
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Singular Value Decomposition

A näıve attempt at solving for β in a regression equation such as (2.11) is to try to calculate the inverse

of X ′X so that

β = (X ′X)
−1
X ′Y.

One can also solve for β by performing LU decomposition and then forward reduction and back sub-

stitution (see Press et al. [2004, §2.3] for example) without explicitly calculating the inverse of X ′X. This

will be faster and produce a more accurate result. But this will work well only if the number of columns

of X is small (which is the number of basis functions chosen).

However, the number of basis functions will typically not be small. As noted in Longstaff and Schwartz

[2001], some basis functions are highly correlated with each other, which will result in a cross-moment

matrix that is almost singular as soon as the number of basis functions is not small. That is, the columns

of X are close to being colinear and so X ′X is close to being singular. In this case either of the above

methods will be numerically unstable because the matrix manipulation involves numbers which might be

flirting with machine precision issues. However, a technique known as singular value decomposition (SVD)

may be used to solve this problem. According to Press et al. [2004, §2.6], SVD is the method of choice for

solving most linear least-squares problems.

Suppose that X is an N×κ matrix with κ < N , then X has at most κ nonzero singular values and these

are real and positive. Let these singular values be denoted by λk, k = 1, 2, . . . , κ which without loss of

generality can be arranged in decreasing order. According to a theorem in linear algebra (see Mehrmann

[2003] or Shores [2007, §5.6] for example) X may be written as

X = UΣV ′

where U and V are N × N and κ × κ unitary matrices respectively. Here Σ is an N × κ matrix where

nonzero entries only occur on the ‘diagonal’:

Σik =

λi for 1 ≤ i = k ≤ κ

0 otherwise.
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We then calculate the Moore-Penrose pseudoinverse of X

X+ = V Σ+U ′

where Σ+ is an κ×N matrix with

Σ+
ki =

 1
λi

for 1 ≤ i = k ≤ κ, λi 6= 0

0 otherwise.

Thus, X+ is κ×N . The Moore-Penrose pseudoinverse satisfies the following four properties

XX+X = X (A.1)

X+XX+ = X+

(XX+)′ = XX+ (A.2)

(X+X)′ = X+X.

A matrix with these properties is unique1. This characterisation and uniqueness was proved in Penrose

[1955].

Consider (2.11) again and choose β = X+Y , then

X ′Xβ = X ′XX+Y

= X ′
(
XX+

)′
Y

=
(
XX+X

)′
Y

= X ′Y

where the second equality follows from (A.2) and the last from (A.1). It can be shown with this choice

the `2-norm of Xβ − Y is minimised (see [Gentle, 2003, §6.7.3]).

Note that calculating β requires the multiplication of four matrices, i.e.

β = X+Y = V Σ+U ′Y.

Since matrix multiplication is associative, we can choose the order in which these matrices are multiplied

together. However the order of multiplication chosen will affect the efficiency of our code. The problem

of choosing the most efficient way to multiply matrices together is in general called matrix chain multi-

plication. The problem here is slightly different because of the presence of many zeros in the Σ+ matrix.

To see this, suppose that Σ+ was fully populated, then calculating Σ+U ′ results in KN2 multiplicative

operations. However, since Σ+ only has entries on its ‘diagonal’, calculating Σ+U ′ can be done with only

KN multiplicative operations.

We determined the five different ways in which these matrices may be multiplied together:

(i) V Σ+, U ′Y → V Σ+U ′Y which gives 2κ2 +N2 multiplicative operations;

(ii) V Σ+ → V Σ+U ′ → V Σ+U ′Y which gives κ2 + κ2N +KN multiplicative operations;

1A pseudoinverse or generalised inverse of a matrix is one that only satisfies (A.1). A generalised inverse is not unique.
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(iii) Σ+U ′ → V Σ+U ′ → V Σ+U ′Y which gives 2KN + κ2N multiplicative operations;

(iv) U ′Y → Σ+U ′Y → V Σ+U ′Y which gives N2 + κ+ κ2 multiplicative operations;

(v) Σ+U ′ → Σ+U ′Y → V Σ+U ′Y which gives 2KN + κ2 multiplicative operations.

Clearly (v) results in the most efficient algorithm. Furthermore, since Y is a vector of size N and Σ+ can

be represented by a vector of size κ we may calculate

[
Σ+U ′Y

]
k

=

[
N∑
i=1

1

λk
ui,kyi

]
k

.
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Sobol’ Sequences

Sobol’ sequences were originally introduced in Sobol’ [1967]. We present here the algorithm appearing

in Bratley and Fox [1988] using the modification as given in Antonov and Saleev [1979]. We find Šelić

[2006, §4.2.1], who prices using Monte Carlo in high dimensions — in the Libor Market Model — to have

a very instructive presentation on these matters. Another useful account of Sobol’ sequences is given in

Glasserman [2004, §5.2.3].

B.1 Sobol’ Sequences in Multiple Dimensions

Generating Sobol’ numbers for more than one dimension requires the selection of a different primitive

polynomial modulo 2 for each dimension.

Definition B.1.1 Primitive Polynomial of Degree d Over Z2

A primitive polynomial of degree d over Z2 is irreducible and is given by

p(x) = xd + a1x
d−1 + . . .+ ad−1x+ 1 (B.1)

where ak ∈ Z2 = {0, 1} for k = 1, 2, . . . , d− 1 and d is the smallest integer such that p(x)|x2d−1 + 1.

Clearly the leftmost bit of a primitive polynomial is always 1. However, note that this is also the case

for the rightmost it, otherwise the polynomial is divisible by x, and therefore not irreducible.

A list of all the primitive polynomials modulo 2 up to degree 27 (which is equal to 8, 129, 334 primitive

polynomials) is provided in Jäckel [2002, accompanying CD] (see Table B.1 for a list of polynomials up to

degree 8). Here each polynomial is encoded as a decimal number whose binary representation indicates the

coefficients of the specific polynomial but with the leftmost and rightmost bits removed. The rightmost

bit is removed simply by shifting the binary representation right.

The list in Jäckel [2002, accompanying CD] is ordered so that for each degree, the numbers appearing in

decimal representation are in increasing order. To pick a primitive polynomial, we choose a decimal number

from the list, and simply convert it into its binary representation which is in the form of a1a2 . . . ad−1 as

in (B.1).
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Example B.1.2.

Consider the polynomial x3 + x2 + 1. Its binary representation is given by 11012. Removing the leftmost

bit gives 1012. Shifting this to the right removes the rightmost bit which yields 102 and this is the decimal

number 2 in the list.

It is recommended in Jäckel [2002, Accompanying CD] to only compile as many polynomials as ever

will be needed since 8,129,334 longs compile into an object file of at least 32,517,336 byte size. In fact,

just having this c file open caused our fairly powerful computer to hang frequently and therefore we have

deleted all polynomials of degree 15 and higher. Thus we are left with all polynomials up to degree 14

which gives 1867 polynomials.

A list of the 53 polynomials of lowest degree is given in Glasserman [2004, Table 5.2] which is shown

in Table B.2. These polynomials are from Bratley and Fox [1988]. Unlike the polynomials provided by

Jäckel [2002, Accompanying CD], the first polynomial is given by 1 not x + 1. Also, the leftmost and

rightmost bits have not been removed1. One should note carefully that the ordering of the polynomials

in Glasserman [2004, Table 5.2] is different to that of Jäckel [2002, Accompanying CD]. Consider, for

example, the second polynomial of degree 5 from Table B.1, that is 4. Its representation in Table B.2 is

given by

25 + 2.4 + 1 = 41

which is the last polynomial of degree 5 in Table B.2. The order of these polynomials plays an important

role, especially when using specific initialisation numbers.

Degree Decimal Encoding of Primitive Polynomials Jäckel [2002, Accompanying CD]

0 N/A

1 0

2 1

3 1 2

4 1 4

5 2 4 7 11 13 14

6 1 13 16 19 22 25

7 1 4 7 8 14 19 21 28 31 32 37 41 42 50 55 56 59 62

8 14 21 22 38 47 49 50 52 56 67 70 84 97 103 115 122

Table B.1: Polynomials up to degree 8 as provided in Jäckel [2002, Accompanying CD].

A list of 1111 polynomials used in Joe and Kuo [2003] can be found at http://web.maths.unsw.

edu.au/~fkuo/sobol/joe-kuo-old.1111. Here the polynomial encoding is given in the form provided

1Thus to translate between Table B.1 and Table B.2 we have the following formulae

g = 2d + 2j + 1 and j = (g − 2d − 1)/2. (B.2)

Here g and j indicates the decimal encoding of the polynomials given in Glasserman [2004, Table 5.2] and Jäckel [2002,

Accompanying CD] respectively, and d denotes the polynomial’s corresponding degree.
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Degree Decimal Encoding of Primitive Polynomials Glasserman [2004, Table 5.2]

0 1

1 3

2 7

3 11 13

4 19 25

5 37 59 47 61 55 41

6 67 97 91 109 103 115

7 131 193 137 145 143 241 157 185 167 229 171 213 191 253 203 211 239 247

8 285 369 299 425 301 361 333 357 351 501 355 397 391 451 463 487

Table B.2: Polynomials up to degree 8 as found in Glasserman [2004, Table 5.2].

in Jäckel [2002, Accompanying CD]. Also, the ordering of the polynomials up to dimension 40 agree with

that of Glasserman [2004, Table 5.2], but for higher dimensions primitive polynomials of the same degree

are arranged in increasing order of the decimal representation of these polynomials.

A list of polynomials up to dimension 19000 used in Joe and Kuo [2008] can also be found at http:

//web.maths.unsw.edu.au/~fkuo/sobol/joe-kuo-6.19000. These primitive polynomials coincide with

Jäckel [2002, Accompanying CD].

As we have mentioned before, each dimension requires the selection of a primitive polynomial. We

have warned that the order in which polynomials are chosen is important. It is suggested in Joe and Kuo

[2003] that the chosen polynomial is of the lowest degree possible. Thus, for each dimension, we select the

polynomial of lowest degree, but which polynomial with a specific degree shall we choose? The selection

within a degree depends on the specific initialisation numbers implemented and will be discussed later.

Once our choice of polynomial has been made, generating Sobol’ sequences for multidimensional prob-

lems is reduced to generating Sobol’ sequences, for single dimensions, in each dimension.

B.2 Generating a Sobol’ Sequence in 1 Dimension

Given the primitive polynomial the algorithm generates W direction numbers v1, v2, . . . , vW ∈ (0, 1).

The number W represents the number of bits in an unsigned integer on the given computer and will

typically be 32 2. In order to obtain these direction numbers, we will generate a sequence mk ∈ Z for

2In our c++ code we have set W to 32. It should be noted that if an integer instead of an unsigned integer is used, then

W needs to be set to 31 as the first bit is used for the sign and so the 32nd number will be some nonsense resulting from

overflow.
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k = 1, 2, . . . , W , and put3

vk =
mk

2k
. (B.3)

The way in which these mk are generated is split into two groups. For k ≤ d there are many alternative

approaches to determine the mk. Furthermore it is important to carefully choose the approach and hence

we spend some time in discussing the various options. For k > d, there is only one way in which the mk

are obtained — see the recursion formula (B.4).

B.2.1 Finding mk when k ≤ d

Let d indicate the degree of the polynomial. Then for k = 1, 2, . . . , d, choose mk to be odd integers

such that 0 < mk < 2k. In Jäckel [2002, §8.3.4] the mk are referred to as initialisation numbers since the

direction numbers constructed from the mk initialise the entire construction of the sequence.

There is some freedom in the choice of the initialisation numbers. However care should be taken when

selecting the initialisation numbers as the performance of the Sobol’ sequence is very dependent on the

choice of these numbers.

Additional uniformity properties, called Property A and Property A′, provided in Sobol’ [1976] in order

to choose the appropriate initialisation numbers, are discussed in Bratley and Fox [1988], Joe and Kuo

[2003] and Jäckel [2002, §8.3.4].

We give here the definitions of Properties A and A′ as presented in Glasserman [2004, §5.2.3].

Definition B.2.1 Property A

An M -dimensional sequence s0, s1, . . . , sM−1 satisfies Property A if for every j = 0, 1, . . . , M − 1

precisely one of the si where j2M ≤ i < (j + 1)2d is located in each of the 2M cubes given as

M∏
j=1

[
aj
2
,
aj + 1

2

)

where the aj ∈ {0, 1}.

Definition B.2.2 Property A′

An M -dimensional sequence s0, s1, . . . , sM−1 satisfies Property A′ if for every j = 0, 1, . . . , M − 1

precisely one of the si where j4M ≤ i < (j + 1)4d is located in each of the 4M cubes given as

M∏
j=1

[
aj
4
,
aj + 1

4

)

where the aj ∈ {0, 1, 2, 3}.
3Dividing by 2k implies that in the binary representation of mk, the bits are shifted k places to the right. In our c++

code, the vectors containing the values of mk and vk are unsigned integers as the bitwise XOR does not apply to floating

point numbers. Now in c++, when applying the shift operators � and � on unsigned integers, the result is a logical shift.

This means that bits which are discarded, are shifted out and zeros are shifted in (the direction depends on which way the

shift occurs). Therefore, in order to prevent the loss of information when shifting, we have also multiplied the entries of the

vector containing mk by 2W as well as dividing by 2k.
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A table of these initialisation numbers appears in Press et al. [2004, §7.7] (not the numbers in brackets

which are calculated later using (B.4), but the numbers before them) and are named starting values. It is

not shown how these numbers were chosen, and it is noted in Glasserman [2004, §5.2.3] that these numbers

fail the test for Property A in dimension 3, 5 and 6.

An implementation for the initialisation numbers up to 40 dimensions is provided in Bratley and Fox

[1988]. However, it is remarked in Glasserman [2004, §5.2.3] that Property A does not consistently hold

for these numbers for dimensions greater than 19. These initialisation numbers (up to dimension 19) are

also given in Glasserman [2004, Table 5.3] which we present in Table B.3. It is noted in Glasserman [2004,

Dimension m1 m2 m3 m4 m5 m6 m7 m8

0 1 (1) (1) (1) (1) (1) (1) (1)

1 1 (3) (5) (15) (17) (51) (85) (255)

2 1 1 (7) (11) (13) (61) (67) (79)

3 1 3 7 (5) (7) (43) (49) (147)

4 1 1 5 (3) (15) (51) (125) (141)

5 1 3 1 1 (9) (59) (25) (89)

6 1 1 3 7 (31) (47) (109) (173)

7 1 3 3 9 9 (57) (43) (43)

8 1 3 7 13 3 (35) (89) (9)

9 1 1 5 11 27 (53) (69) (25)

10 1 3 5 1 15 (19) (113) (115)

11 1 1 7 3 29 (51) (47) (97)

12 1 3 7 7 21 (61) (55) (19)

13 1 1 1 9 23 37 (97) (97)

14 1 3 3 5 19 33 (3) (197)

15 1 1 3 13 11 7 (37) (101)

16 1 1 7 13 25 5 (83) (255)

17 1 3 5 11 7 11 (103) (29)

18 1 1 1 3 13 39 (27) (203)

19 1 3 1 15 17 63 13 (65)

Table B.3: Initialisation values provided in Glasserman [2004, Table 5.3]. Values in brackets are obtained

from (B.4).

§5.2.3], whether or not Property A holds for a set of initialisation numbers depends on whether mk is

equal to 1 for all k in dimension 0.

In Lemieux et al. [2002], an implementation for initialisation numbers for up to 360 dimensions is

provided. In Glasserman [2004, §5.2.3.] it is noted that their values do not necessarily satisfy Property A,

but they are the result of a search for good values based on a resolution criterion used in design of random

number generators.

Initialisation numbers for up to 1111 dimensions used in Joe and Kuo [2003] are provided at

http://web.maths.unsw.edu.au/~fkuo/sobol/joe-kuo-old.1111, satisfying Property A. The initiali-
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sation numbers of the first 20 dimensions agree with the values given in Glasserman [2004, Table 5.3].

Furthermore, it is advised in Joe and Kuo [2003] (see also Glasserman [2004, §5.2.3]) that the values

for these initialisation numbers should be chosen differently for any two primitive polynomials of the same

degree.

The use of a separate pseudo-random number generator for generating the initialisation numbers is

suggested in Jäckel [2002, §8.3.4]: for k = 1, 2, . . . , d, draw a uniform random number u from a pseudo-

random number generator and set

mk := bu2kc

if bu2kc is odd, otherwise keep drawing until bu2kc is odd.

It is noted in Joe and Kuo [2003] that Property A alone does not ensure the absence of bad correlations

between pairs of dimensions. For details see Morokoff and Caflisch [1994]. A new set of initialisation

numbers to help improve the problem of poor two-dimensional projections can be found at http://web.

maths.unsw.edu.au/~fkuo/sobol/joe-kuo-6.19000. These initialisation numbers, given in Table B.4

are found using the search algorithm given in Joe and Kuo [2008] and satisfy Property A up to dimension

1111.

Dimension m1 m2 m3 m4 m5 m6 m7 m8

0 1 (1) (1) (1) (1) (1) (1) (1)

1 1 (3) (5) (15) (17) (51) (85) (255)

2 1 3 (3) (9) (29) (23) (71) (197)

3 1 3 1 (5) (31) (29) (81) (147)

4 1 1 1 (11) (31) (55) (61) (157)

5 1 1 3 3 (25) (9) (43) (251)

6 1 3 5 13 (11) (37) (31) (227)

7 1 1 5 5 17 (9) (9) (45)

8 1 1 5 5 5 (53) (53) (113)

9 1 1 7 11 19 (37) (69) (91)

10 1 1 5 1 1 (27) (79) (35)

11 1 1 1 3 11 (43) (75) (43)

12 1 3 5 5 31 (35) (113) (51)

13 1 3 3 9 7 49 (33) (163)

14 1 1 1 15 21 21 (77) (157)

15 1 3 1 13 27 49 (35) (133)

16 1 1 1 15 7 5 (123) (103)

17 1 3 1 15 13 25 (27) (109)

18 1 1 5 5 19 61 (87) (187)

19 1 3 7 11 23 15 103 (65)

Table B.4: Initialisation values found using the search algorithm given in Joe and Kuo [2008]. Values in

brackets are obtained from (B.4).
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B.2.2 Finding mk when k > d

Now for d < k ≤W , the mk are found by using the ak in (B.1) as follows

mk = 2a1mk−1 ⊕ 22a2mk−2 ⊕ . . .⊕ 2d−1ad−1mk−d+1 ⊕ 2dmk−d ⊕mk−d (B.4)

where ⊕ indicates the bitwise exclusive-or (XOR) 4.

B.2.3 Generating the Sobol’ Sequence

Finally, the Sobol’ sequence x1, x2, . . . , xN is generated recursively according to the method suggested

in Antonov and Saleev [1979] that makes use of Gray codes which enable the generation of a new unique

integer for each new draw (see Press et al. [2004, 20.2], Glasserman [2004, §5.2.3] or Jäckel [2002, §8.3.3]

for more on Gray codes):

x0 = 0 (B.5)

xi+1 = xi ⊕ vc(i) (B.6)

for 0 ≤ i ≤ N − 1 and c(i) is the position of the least significant zero in the binary expansion of i 5. The

construction in (B.5) and (B.6) ensures that the zeroth draw is the only draw that can be zero.

B.3 Our Implementation

Source code to construct Sobol’ sequences in 6 dimensions is provided in Press et al. [2004]. Besides the fact

that this code is difficult to understand and hence to extend or modify, it appears to be appropriate only for

Monte Carlo simulation for European options as it generates random numbers for Monte Carlo simulation

path by path. This is not suitable for American Monte Carlo methods: here we require dimension by

dimension. Therefore we have written our own code (not using Press et al. [2004] at all) which, given the

sample size and dimension, generates Sobol’ numbers dimension by dimension.

It is mentioned in Joe and Kuo [2003] that in order to avoid the problems caused by a bad choice of

initialisation numbers, one should skip the initial part of the Sobol’ sequence. In Acworth et al. [1996]

it is noted that standard low discrepancy sequences are known to perform better if an initial portion of

the sequence is removed. A strategy is given in Acworth et al. [1996], also implemented in Joe and Kuo

[2003], which drops the largest power of two smaller than N number of points, that is, 2blnN/ ln 2c points.

As noted in our introduction, quasi-Monte Carlo methods usually outperform pseudo-Monte Carlo

methods with antithetics. We do not use antithetics in conjunction with Sobol’ numbers — Mark Joshi

comments (on the Wilmott forum, July 2008) that it would be unwise because “antithetic gives you certain

properties that are already present when doing Sobol”. Similarly, Jäckel [2002, §20.1] notes that using the

antithetic method along with low discrepancy numbers is unlikely to improve the accuracy and may lead

to incorrect results.

In order to make full use of the ‘antithetic property’ that comes free of charge with Sobol’ sequences,

one should choose N and the number of points to discard carefully. What is meant by the ‘antithetic

4That is, 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1. Thus 12⊕ 10 = 11002 ⊕ 10102 = 1102 = 6.
5For example, c(5) = c(1012) = 2 and c(7) = c(1112) = 4.
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property’ is that a Sobol’ sequence consists of consecutive sets where for every number u occurring in the

set, 1− u also occurs. Such a set has a size which is a power of two. These sets start in positions 1, 2, 4,

8, 16, etc. (Counting starts at the 0th index, with initialisation number 0.)

Thus we should insist thatN is a power of two, sayN = 2T . We choose the set x2T , x2T+1, . . . , x2T+1−1

which is antithetic and is found by discarding x0, x1, . . . , x2T−1, that is we discard the first 2T entries

from the original sequence6. This justifies the unexplained strategy in Acworth et al. [1996]. On the other

hand, if one does not discard any Sobol’ numbers, then one takes a union of the first occurring antithetic

sets, so the Sobol’ sequence that will be used is given by x1, x2, . . . , x2T−1, that is, the first 2T − 1

numbers excluding 0.

B.4 Tests

We compare the Sobol’ numbers generated using polynomials and initialisation numbers found in three

sources, namely Jäckel [2002, §8.3], Joe and Kuo [2003] and Joe and Kuo [2008]. We do not use the Sobol’

numbers generated from the polynomials and initialisation numbers provided in Glasserman [2004, §5.2.3]

as these are identical to those in Joe and Kuo [2003].

We first consider plots of 3 dimension pairs from each source in Figures B.1 and B.2. Observe the

grouping of Sobol’ numbers and white space, or ‘chessboard’-pattern occurring for at least one dimension

pair from each source.

In the following sections we perform 2 tests to determine which source produces the best quasi random

numbers.

B.4.1 Integral Test

As in Joe and Kuo [2003, §4], we approximate the integral taken from Wang and Fang [2003]∫
[0,1]M

M∏
j=1

|4xj − 2|+ cj
1 + cj

dx (B.7)

for large M which makes the integration problem harder. Note that this integral has value 1 since

dimensions are independent and
∫ 1

0
|4u − 2|du = 1 for a uniform (0, 1) random number u. The cj in the

above integral determine the difficulty of the integration problem. In Bratley and Fox [1988], the cj were

all set to 0. However, as noted in [Joe and Kuo, 2003, §4], the results obtained in Bratley and Fox [1988]

and the discussion in Fox [1986] show that difficulty already occurs with this integration by dimension 40.

In Wang and Fang [2003], cj were chosen to be j or j2, but integrals there had a much lower effective

dimension. In Joe and Kuo [2003, §4] {cj} is chosen to be a slower growing sequence and the cj is set to

j1/3 in order to obtain a test integral which is reasonable in high dimensions. We have chosen to take this

approach.

A comparison between Sobol’ sequences, Faure sequences and shifted lattice rules of the approximation

of (B.7) for various dimensions and number of simulations is given in a table in Joe and Kuo [2003, §4].

However no integral test is given in Joe and Kuo [2008] for the new numbers appearing here.

6Since 1 +
∑T−1
i=0 2i = 2T .
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Figure B.1: Dimension pairs of 210 = 1024 Sobol’ numbers generated using the polynomials and initialisa-

tion numbers from Jäckel [2002, §8.3], Joe and Kuo [2003] and Joe and Kuo [2008] with discard.

In Table B.5 we have approximated (B.7) using the Sobol’ numbers generated from the polynomials

and initialisation numbers as discussed in Jäckel [2002, §8.3], Joe and Kuo [2003] and Joe and Kuo

[2008] respectively. We approximate the integral where the number of simulations, N , are powers of 2:

210 = 1024, 211 = 2048, . . . , 215 = 32768; and the dimensions, M , vary from 50 to 1100 in steps of 50.

The results of Joe and Kuo [2008] appears to be the best. The results in all cases without the discard

were significantly worse.

Stellenbosch University  http://scholar.sun.ac.za



B.4 Tests 160

0 0.5 1
0

0.5

1

Dimension 10

D
im

en
si
on

28
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Figure B.2: Dimension pairs of 213 = 8192 Sobol’ numbers generated using the polynomials and initialisa-

tion numbers from Jäckel [2002, §8.3], Joe and Kuo [2003] and Joe and Kuo [2008] with discard.

Even though the integral (B.7) provides a good idea of how well the various generated Sobol’ numbers

perform, it can fail to pick up gross errors. Suppose we have a uniform random number U ∼ Uniform
(
0, 1

2

)
,
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then (B.7) over 1 dimension is given by

E
[
|4U − 2|+ c

1 + c

]
=

E [|4U − 2|] + c

1 + c

=
2
∫ 1

2

0
|4u− 2|du+ c

1 + c

=
1 + c

1 + c

= 1.

Thus the integral using uniform random numbers that have an incorrect distribution can give the correct

answer.
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Jäckel [2002, §8.3] Joe and Kuo [2003] Joe and Kuo [2008]

@
@
@M

N
1024 2048 4096 8192 16384 32768 1024 2048 4096 8192 16384 32768 1024 2048 4096 8192 16384 32768

50 0.9904 0.9946 0.9902 0.9923 0.9977 0.9989 1.0161 0.9994 0.9939 0.9983 0.9972 0.9974 1.0179 1.0012 1.0024 1.0012 1.0034 0.9997

100 0.9441 0.9959 0.9907 1.0067 1.0110 1.0088 1.0083 0.9794 0.9675 0.9658 0.9931 0.9958 1.0700 1.0266 1.0346 1.0097 1.0148 1.0102

150 0.9381 0.9358 0.9706 0.9921 1.0080 1.0080 1.0914 0.9904 0.9800 0.9567 0.9878 0.9834 0.9540 0.9836 1.0290 1.0170 1.0352 1.0136

200 0.8770 0.8831 0.9261 0.9522 0.9845 0.9914 1.0983 0.9710 0.9454 0.9512 0.9745 0.9726 0.9421 0.9980 1.0542 1.0180 1.0308 1.0112

250 0.8305 0.8762 0.9641 0.9710 0.9848 0.9838 1.2467 1.0480 0.9437 0.9633 0.9782 0.9741 0.8619 1.0290 1.0576 1.0247 1.0188 1.0076

300 0.8576 0.8833 0.9801 0.9824 0.9934 0.9982 1.1034 0.9456 0.8789 0.9156 0.9534 0.9645 0.8297 1.0947 1.0748 1.0453 1.0502 1.0252

350 0.9540 0.9642 1.0091 1.0192 1.0011 0.9938 1.0569 0.9153 0.8469 0.9005 0.9327 0.9598 0.8368 1.1238 1.2031 1.1394 1.0840 1.0432

400 0.9213 0.9641 1.0266 0.9955 1.0273 1.0047 1.1944 0.9588 0.8843 0.9260 0.9346 0.9660 0.7885 1.0590 1.1930 1.1046 1.0631 1.0332

450 0.8186 0.8874 0.9893 0.9523 1.0182 1.0006 1.2661 1.0318 0.9101 0.9111 0.9164 0.9575 0.8049 0.9965 1.0523 1.0472 1.0487 1.0363

500 0.8797 0.9239 0.9521 0.9250 1.0026 0.9877 1.3290 1.0762 0.9177 0.9332 0.9463 0.9738 0.8370 1.0240 1.1109 1.0425 1.0492 1.0232

550 0.8638 0.9302 0.9617 0.9494 1.0181 0.9945 1.1427 0.9706 0.8530 0.9181 0.9564 0.9781 0.9848 1.2200 1.1437 1.0635 1.0282 1.0128

600 0.8185 0.9614 0.9664 0.9366 1.0219 0.9954 0.9866 0.8887 0.7979 0.8724 0.9058 0.9390 0.8981 1.1905 1.0858 1.0655 1.0695 1.0434

650 0.8185 0.9597 1.0042 0.9667 1.0415 0.9908 1.0255 0.9489 0.8308 0.9092 0.9275 0.9473 0.8374 1.2770 1.0662 1.0291 1.0780 1.0609

700 0.7853 0.9248 0.9857 0.9447 1.0090 0.9890 0.9906 0.8921 0.7754 0.8510 0.8890 0.9340 0.8607 1.1901 1.0393 1.0154 1.1114 1.0984

750 0.7812 0.9848 0.9354 0.9316 0.9761 0.9582 0.9761 0.8876 0.7778 0.8697 0.8876 0.9259 0.9269 1.2404 1.0390 1.0433 1.1535 1.1604

800 0.6964 0.9334 0.9036 0.9079 0.9801 0.9532 0.8740 0.8082 0.7578 0.8481 0.8762 0.9266 0.8516 1.2196 0.9965 1.0460 1.0891 1.1497

850 0.6385 0.9949 0.8901 0.8951 0.9690 0.9284 0.9348 0.8545 0.7747 0.8511 0.8575 0.9190 0.8519 1.0878 0.9219 1.0088 1.1253 1.2072

900 0.6723 1.0935 0.9274 0.8884 0.9472 0.9521 1.1839 0.9615 0.8326 0.8497 0.8589 0.9258 0.7815 1.0048 0.9211 1.0562 1.0990 1.1485

950 0.6347 1.2583 0.9784 0.9096 0.9192 0.9444 1.1837 0.9348 0.8177 0.8266 0.8338 0.9246 0.7822 1.1317 1.0198 1.1903 1.1174 1.1232

1000 0.6635 1.3945 1.0511 0.9614 0.9390 0.9676 1.2447 0.9881 0.8468 0.8876 0.8571 0.9301 0.7403 0.9893 0.9633 1.1711 1.0962 1.0620

1050 0.6474 1.2901 1.0590 0.9639 0.9268 0.9267 1.1112 0.9200 0.8028 0.9080 0.8696 0.9493 0.8184 1.1086 1.0487 1.1844 1.1013 1.1318

1100 0.6418 0.9705 0.8794 0.8568 0.8655 0.8799 1.0568 0.8885 0.7855 0.8635 0.8376 0.9499 0.6897 0.8790 0.9552 1.0961 1.0801 1.1159

Table B.5: Approximating (B.7) with Sobol’ numbers generated using the methods of Jäckel [2002, §8.3], Joe and Kuo [2003] and Joe and

Kuo [2008] with discard.
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B.4.2 Covariance Test

In this section we consider a test of Joshi [2011, 22.2].

We begin by generating uniform random numbers using the polynomials and initialisation numbers of

Jäckel [2002], Joe and Kuo [2003] and Joe and Kuo [2008] with discard. In addition we also generate uni-

form random numbers using the Mersenne Twister pseudo-random number generator. We then calculate

the cumulative normal inverses of these numbers and calculate the covariances of the dimension pairs. We

have chosen to calculate these covariances for dimensions up to 50, 100 and 150 even though the various

methods above are able to produce many more dimensions. This is because we will at most be considering

50 time steps in our Monte Carlo simulation (where in some cases we will require 3 random draws per time

step per simulation). We then determine the minimum and maximum covariances as shown in Table B.6

and Table B.7.

Minimum Maximum
XXXXXXXXXXXXSource

Dimensions
50 100 150 50 100 150

Jäckel [2002] -0.6369 -0.6385 -0.6385 0.2316 0.6383 0.6383

Joe and Kuo [2003] -0.6415 -0.6415 -0.6415 0.2241 0.6398 0.6440

Joe and Kuo [2008] -0.0748 -0.2276 -0.2276 0.0750 0.0767 0.0972

Mersenne Twister -0.1070 -0.1070 -0.1198 0.1152 0.1152 0.1297

Table B.6: The maximum and minimum covariances of dimension pairs using 210 = 1024 number of

simulations with discard for the Sobol’ random numbers.

Minimum Maximum
XXXXXXXXXXXXSource

Dimensions
50 100 150 50 100 150

Jäckel [2002] -0.0832 -0.6367 -0.6367 0.0175 0.6370 0.6370

Joe and Kuo [2003] -0.0735 -0.0735 -0.2236 0.0075 0.6371 0.6371

Joe and Kuo [2008] -0.0232 -0.0233 -0.0736 0.0063 0.0229 0.0247

Mersenne Twister -0.0293 -0.0393 -0.0393 0.0344 0.0405 0.0405

Table B.7: The maximum and minimum covariances of dimension pairs using 213 = 8192 number of

simulations with discard for the Sobol’ numbers.

Observe that from the results shown in Table B.6 and Table B.7 it clearly follows that the Sobol’

numbers generated using Joe and Kuo [2008] are superior. In Figure B.3 we have plotted the 20 minimum

and 20 maximum covariances along with their corresponding dimensions when considering 150 dimensions.

Here the results obtained from using the Mersenne Twister and Joe and Kuo [2008] look much better than

the results obtained using Jäckel [2002] or Joe and Kuo [2003]. Joe and Kuo [2008] ultimately produce

the best results compared to the other three sources.
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Figure B.3: The 20 minimum and 20 maximum covariances from the various sources where we have

considered 150 dimensions. The results produced by Mersenne Twister and Joe and Kuo [2008] are much

better compared to the other sources. The results from Joe and Kuo [2008] are superior to Mersenne

Twister — note that the results from the Mersenne Twister are more clustered than that produced by Joe

and Kuo [2008].
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Appendix C

Characteristic and Generating

Functions

C.1 Characteristic Functions

Characteristic functions play an important role in the analysis of distributions. We shall see in this section

that the characteristic function of a random variable completely defines its distribution function. It

provides an alternative (and often simpler way) to working directly with probability density or cumulative

distribution functions when deriving properties of the distribution.

Definition C.1.1 Characteristic Function

The characteristic function of a real-valued random variable X is the Fourier transform of µX , i.e. the

function ΦX : R→ C defined by

ΦX(z) =

∫ ∞
−∞

eizxµX(dx) = E
[
eizX

]
(C.1)

for all z ∈ R (see Sato [1999, §1.2], Applebaum [2004, §1.1.6] or Varadhan [2001, §2.1]).

When considering a distribution µ with the random variable X not explicitly stated, we will denote

the characteristic function as Φµ. If we let (E, E , µ) be a measure space with µ ≥ 0 and f : E → C a

measurable complex-valued function, then ∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ
where | · | indicates the complex modulus [Cohn, 1980, Proposition 2.6.4]. Now for θ ∈ R,

∣∣eiθ∣∣ = 1 so that

eizx is bounded for every z ∈ R and hence

|Φµ(z)| =
∣∣∣∣∫ eizxµ(dx)

∣∣∣∣ ≤ ∫ ∣∣eizx∣∣µ(dx) =

∫
µ(dx) = 1

if µ is a probability measure. Thus the the integral in (C.1) always exists, that is, the characteristic

function is always well-defined.

165
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We determine the characteristic functions of the standard normal and Poisson distributions in the

following examples.

Example C.1.2 Characteristic Function of the Poisson Distribution.

An integer valued random variable N is said to follow a Poisson distribution with parameter λ > 0, λ ∈ R
if

P(N = n) = e−λ
λn

n!
.

The characteristic function of N for every z ∈ R is calculated as

E
[
eizN

]
=
∞∑
n=0

eizne−λ
λn

n!

= e−λ
∞∑
n=0

(eizλ)n

n!

= e−λee
izλ

= eλ(eiz−1).

Example C.1.3 Characteristic Function of the Standard Normal Distribution.

Let X be a standard normal random variable, then

µX(dx) = P(X ∈ dx) =
1√
2π
e−x

2/2 dx.

Then the characteristic function for z ∈ R is given by

ΦX(z) =

∫ ∞
−∞

eizx µX(dx)

=
1√
2π

∫ ∞
−∞

eizxe−x
2/2 dx

=
1√
2π

(∫ ∞
−∞

e−x
2/2 cos zx dx+ i

∫ ∞
−∞

e−x
2/2 sin zx dx

)
.

But
∫∞
−∞ e−x

2/2 sin zx dx = 0 because e−x
2/2 sin zx is an odd function and hence

ΦX(z) =
1√
2π

∫ ∞
−∞

e−x
2/2 cos zx dx.

Differentiating with respect to z gives

Φ′X(z) =
1√
2π

∫ ∞
−∞
−xe−x

2/2 sin zxdx

(we may differentiate inside the integral sign as the function has zero limit at ±∞). Then integration by

parts yield

Φ′X(z) = − z√
2π

∫ ∞
−∞

e−x
2/2 cos zxdx = −zΦX(z)

Stellenbosch University  http://scholar.sun.ac.za



C.1 Characteristic Functions 167

which is a first-order separable differential equation with solution

ΦX(z) = ΦX(0)e−z
2/2.

Since ΦX(0) = 1, we have that

ΦX(z) = e−z
2/2.

Note that the characteristic function of a+ bX is given by eizaΦX(bz), z ∈ R:

Φa+bX(z) = E
[
eiz(a+bX)

]
= E

[
eizaeizbX

]
= eizaE

[
eizbX

]
= eizaΦX(zb). (C.2)

Example C.1.4 Characteristic Function of Arithmetic Brownian Motion.

Let X = {Xt}t≥0 denote arithmetic Brownian motion, then

Xt = µt+ σWt

where µ, σ > 0 are real numbers and Wt is standard Brownian motion. Since Wt ∼ Normal(0, t) we have

from Example C.1.3 that

ΦWt
(z) = e−

1
2 z

2t (C.3)

where z ∈ R. Then from (C.3) and using (C.2) the characteristic function of X is given by

ΦXt(z) = exp
[
izµt− 1

2z
2σ2t

]
(C.4)

for z ∈ R. In particular, the risk-neutral characteristic function of X̃t =
(
r − q − 1

2σ
2
)
t+ σWt is given by

ΦX̃t(z) = exp

[
iz

(
r − q − 1

2
σ2

)
t− 1

2z
2σ2t

]
(C.5)

where r indicates the risk-free rate and q the continuous dividend yield.

Finally, we state an important property of characteristic functions, namely that if the characteristic

function of the random variable is known, we also have its distribution function.

Theorem C.1.5

The distribution of a random variable is uniquely determined by its characteristic function.

The above theorem is a consequence of Lévy’s inversion formula which provides the link between

the characteristic function and distribution function of a random variable (see Williams [1991, §16.6] or

Varadhan [2001, §2.1]).
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C.2 Moment Generating Functions

The kth moment about the origin or raw moment, if the expectation exists, of a random variable X on R
is defined as

mk(X) = E
[
Xk
]
, (C.6)

and its kth central moment by

m̄k(X) = E
[
(X − E [X])

k
]

(see Grimmett and Stirzaker [2001, §3.3] or Casella and Berger [1990, Definition 2.3.1]).

Certain distributions do not possess a moment generating function since some of their moments do

not exist. For example the Student’s t distribution with n degrees of freedom has only n − 1 moments

and moments of the F distribution up to twice the degrees of freedom of the denominator do not exist.

We give a formal definition of the moment generating function next (see Varadhan [2001] or Casella and

Berger [1990, Definition 2.3.6]).

Definition C.2.1 Moment Generating Function

The moment generating function of a real-valued random variable X is the Laplace transform of µX , i.e.

the function M : R→ R defined by

MX(u) =

∫ ∞
−∞

eux µX(dx) = E
[
euX

]
for those u ∈ R for which this integral exists. Note that MX(0) = 1.

Example C.2.2 Moment Generating Function of Arithmetic Brownian Motion.

Let X = {Xt}t≥0 denote arithmetic Brownian motion with Xt = µt+σWt where µ, σ > 0 are real numbers

and Wt is standard Brownian motion. Then we calculate the moment generating function as

MXt(u) = E
[
euXt

]
=

1√
2πσ2t

∫ +∞

−∞
euxe−(x−µt)2/(2σ2t) dx

=
1√

2πσ2t

∫ +∞

−∞
exp

[
−(x2 − 2µtx+ µ2t2 − 2σ2tux)

2σ2t

]
dx.

Completing the square yields

x2 − 2µtx+ µ2t2 − 2uσ2tx = x2 − 2(µt+ uσ2t)x+ µ2t2

= (x− (µt+ uσ2t))2 − (µt+ uσ2t)2 + µ2t2

= (x− (µt+ uσ2t))2 − 2µtuσ2t− u2σ4t2.

Hence

MXt(u) =
1√

2πσ2t

∫ +∞

−∞
exp

[
−((x− (µt+ uσ2t))2 − 2µtuσ2t− u2σ4t2)

2σ2t

]
dx

= exp

[
u2σ4t2 + 2µtuσ2t

2σ2t

] ∫ +∞

−∞

1√
2πσ2t

exp

[
−(x− (µt+ uσ2t))2

2σ2t

]
dx

= exp
[
µtu+ 1

2u
2σ2t2

] ∫ +∞

−∞

1√
2πσ2t

exp

[
−(x− (µt+ uσ2t))2

2σ2t

]
dx.

Stellenbosch University  http://scholar.sun.ac.za



C.3 Cumulant Generating Functions 169

But
1√

2πσ2t
exp

[
−(x− (µt+ uσ2t))2

]
is the probability density function of a continuous normal random

variable with mean µt+ uσ2t and variance σ2t. Therefore the moment generating function of Xt is given

by

MXt(u) = exp
[
µtu+ 1

2u
2σ2t

]
(C.7)

for u ∈ R.

Note that one may write the integral above (if it exists) as

MX(u) =

∫ ∞
−∞

eux µX(dx)

=

∫ ∞
−∞

∞∑
k=0

(ux)k

k!
µX(dx)

=

∞∑
k=0

uk

k!

∫ ∞
−∞

xk µX(dx)

=
∞∑
k=0

uk

k!
mk(X)

where the last equation follows from (C.6). If MX is defined on a neighbourhood of 0, then all moments

of X are finite and can be found as follows

mk(X) =
∂kMX

∂uk
(0). (C.8)

The central moments may obviously be written in terms of the raw moments using the binomial

expansion

m̄k(X) =
n∑
k=0

(
n

k

)
(−1)n−kmk(X)mn−k

1 (X).

For convenience, the second, third and fourth central moments in terms of the raw moments are given

below:

m̄2(X) = m2(X)−m2
1(X) (C.9)

m̄3(X) = m3(X)− 3m2(X)m1(X) + 2m3
1(X) (C.10)

m̄4(X) = m4(X)− 4m3(X)m1(X) + 6m2(X)m2
1(X)2 − 3m4

1(X). (C.11)

C.3 Cumulant Generating Functions

We define the cumulant generating function in terms of the moment generating function as follows (see

Casella and Berger [1990, §2.6.2] or Spanos [1999, §3.7]):

Definition C.3.1 Cumulant Generating Function

The cumulant generating function of a random variable X is defined as

ΨX(u) = lnMX(u)
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whenever the moment generating function MX is well-defined at u ∈ R. Note that ΨX(0) = 0 since

MX(0) = 1.

The cumulants or semi-invariants of X are obtained by partially differentiating the cumulant gener-

ating function with respect to u and setting u equal to 0:

ck(X) =
∂kΨX

∂uk
(0). (C.12)

Then the cumulant generating function can be written in terms of the cumulants as follows

ΨX(u) =
∞∑
k=1

uk

k!
ck(X).

From the definition of the cumulant generating function we have that for a random variable X and

u ∈ R

MX(u) = eΨX(u).

Differentiating the above partially with respect to u yields

M ′X(u) = Ψ′X(u)eΨX(u) = Ψ′X(u)MX(u). (C.13)

Then setting u = 0 gives

M ′X(0) = Ψ′X(0)MX(0) (C.14)

⇒ m1(X) = c1(X) = E [X] (C.15)

using (C.8). In order to obtain the relationship between the second moment and cumulants we differentiate

(C.13) partially with respect to u as before

M ′′X(u) = Ψ′X(u)M ′X(u) + Ψ′′X(u)MX(u) (C.16)

and setting u = 0 gives

M ′′X(0) = Ψ′X(0)M ′X(0) + Ψ′′X(0)MX(0)

⇒ m2(X) = c1(X)m1(X) + c2(X) = m2
1(X) + c2(X)

⇒ c2(X) = m2(X)−m2
1(X) = m̄2(X) =: Var [X] (C.17)

which follows from (C.15) and (C.9). Similar to before we differentiate partially (C.16) with respect to u

M ′′′X (u) = Ψ′X(u)M ′′X(u) + Ψ′′X(u)M ′X(u) + Ψ′′X(u)M ′X(u) + Ψ′′′X(u)MX(u) (C.18)

and setting u to 0 yields

m3(X) = c1(X)m2(X) + 2c2(X)m1(X) + c3(X)

= m1(X)m2(X) + 2
(
m2(X)−m2

1(X)
)
m1(X) + c3(X)

⇒ c3(X) = m3(X)− 3m2(X)m1(X) + 2m3
1(X) = m̄3(X) (C.19)
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using (C.15), (C.17) and (C.10). Finally we differentiate (C.18) partially with respect to u and obtain

M
(4)
X (u) = Ψ′X(u)M ′′′X (u) + Ψ′′X(u)M ′′X(u) + Ψ′′X(u)M ′′X(u) + Ψ′′′X(u)M ′X(u)

+ Ψ′′X(u)M ′′X(u) + Ψ′′′X(u)M ′X(u) + Ψ′′′X(u)M ′X(u) + Ψ
(4)
X (u)MX(u)

= Ψ′X(u)M ′′′X (u) + 3Ψ′′X(u)M ′′X(u) + 3Ψ′′′X(u)M ′X(u) + Ψ
(4)
X (u)MX(u).

Then setting u equal to 0 in the above leads to

M
(4)
X (0) = Ψ′X(0)M ′′′X (0) + 3Ψ′′X(0)M ′′X(0) + 3Ψ′′′X(0)M ′X(0) + Ψ

(4)
X (0)MX(0)

⇒ m4(X) = c1(X)m3(X) + 3c2(X)m2(X) + 3c3(X)m1(X) + c4(X)

= m3(X)m1(X) + 3
(
m2(X)−m2

1(X)
)
m2(X) + 3

(
m3(X)− 3m2(X)m1(X) + 2m3

1(X)
)
m1(X) + c4(X)

⇒ c4(X) = m4(X)− 4m3(X)m1(X)− 3m2
2(X) + 12m2(X)m2

1(X)− 6m4
1(X)

= m̄4(X)− 3m̄2
2(X) (C.20)

using (C.15), (C.17), (C.19) and (C.11).

The skewness coefficient of X is defined as

s(X) =
c3(X)

c2(X)3/2
=

m̄3(X)

m̄2(X)3/2
. (C.21)

If s(X) > 0 then X is positively skewed. The excess kurtosis of X is defined by

κ̄(X) =
c4(X)

c2(X)2
=
m̄4(X)− 3m̄2(X)2

m̄2(X)2
=

m̄4(X)

m̄2(X)2
− 3. (C.22)

X is called leptokurtic if κ̄(X) > 0. The kurtosis of X is defined in terms of the central moments by

κ (X) =
m̄4(X)

m̄2(X)2
. (C.23)

C.4 Changing Time Frames

Suppose that we have the theoretical mean, variance, skewness and kurtosis of a Lévy process Xt for a

time t1 > 0 and would like to know these values for a time t2 > 0. We may write the cumulant generating

function of Xt for u ∈ R as

ΨXt(u) = tΨX1
(u).

Furthermore, recall that we obtain cumulants from the cumulant generating function as in (C.12). Using

these two facts we have that

ck (Xt) =
∂kΨXt

∂uk
(0) = t

∂kΨX1

∂uk
(0) = tck (X1)

which implies that for t1, t2 > 0

1

t2
ck (Xt2) = ck (X1) =

1

t1
ck (Xt1)

ck (Xt2) =
t2
t1
ck (Xt1) .
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Thus, from (C.15) and (C.17) we have that

E [Xt2 ] =
t2
t1
E [Xt1 ] and Var [Xt2 ] =

t2
t1
Var [Xt1 ] (C.24)

and from (C.21) and (C.22)

s (Xt2) =

√
t1
t2
s (Xt1) and κ̄ (Xt2) =

t1
t2
κ̄ (Xt1) . (C.25)
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Appendix D

Modified Bessel Functions of the

Second Kind

Modified Bessel functions of the second kind have also been referred to as Basset functions, modified

Bessel functions of the third kind or Macdonald functions. The modified Bessel functions of the second

kind Kν(z), is one of the solutions to the modified Bessel differential equation

z2 d
2w

dz2
+ z

dw

dz
−
(
z2 + ν2

)
w = 0

[National Institute of Standards and Technology, 2010, 10.25.1] with z ∈ C and ν ∈ R. Kν(x) can be

expressed in terms of the modified Bessel function of the first kind I·(·)

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)

[Abramowitz and Stegun, 1974, 9.6.2] where I−ν(z) and Iν(z) form a fundamental set of solutions of the

modified Bessel’s equation for noninteger ν.

Modified Bessel functions are equivalent to the ordinary Bessel functions evaluated for purely imaginary

arguments. Unlike the usual Bessel functions that have sinusoidal behaviour, the modified functions have

exponential behaviour.

In the case of the NIG probability density function given in (9.9) we will consider the modified Bessel

function of the second kind and index 1, that is, K1(·). As noted in Press et al. [2004, §6.6], once the

exponential factor is removed, the smoothness of the modified Bessel functions enables one to approximate

I0(·), I1(·), K0(·) and K1(·) suitably with a simple polynomial of a few terms. In our implementation of

the NIG density function we will be using the function bessk1 as in Press et al. [2004, §6.6] in order to

calculate K1(·).
When considering the VG probability density function in (8.11) we will require an algorithm for com-

puting the modified Bessel function of the second kind of fractional order. Calculating these functions

requires a complicated algorithm which is discussed in Press et al. [2004, §6.7]. We have implemented the

function bessik in Press et al. [2004, §6.7] in order to calculate the modified Bessel function of the second

kind and fractional order namely K t
ν−

1
2
(·) which appears in the VG density function. Complications arise

173
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in the calculation of the probability density function when x = 0. Thus when |x| < ε for some ε > 0 we

will implement the limit as x tends to 0 instead of (8.11). Consider the limit

lim
x→0

fXVG
t

(x) = lim
x→0

2 exp
[
θ
σ2x
]

ν
t
ν Γ
(
t
ν

)√
2πσ2

(
x2

2σ2

ν + θ2

) t
2ν−

1
4

K t
ν−

1
2


√
x2
(

2σ2

ν + θ2
)

σ2


=

2

ν
t
ν Γ
(
t
ν

)√
2πσ2

(
1

2σ2

ν + θ2

) t
2ν−

1
4

lim
x→0

x
t
ν−

1
2K t

ν−
1
2


√
x2
(

2σ2

ν + θ2
)

σ2

 (D.1)

Now from National Institute of Standards and Technology [2010, 10.25.1] we have that

lim
x→0

xaKa (bx) = lim
x→0

xa
1

2
Γ(a)

(
1

2
bx

)−a
=

1

2
Γ(a)

(
2

b

)a

for a, b ∈ R . Thus if we set a = t
ν −

1
2 and b =

√
2σ2t
ν +θ2

σ2 , then (D.1) becomes

2

ν
t
ν Γ
(
t
ν

)√
2πσ2

(
1

2σ2

ν + θ2

) t
2ν−

1
4

1

2
Γ

(
t

ν
− 1

2

) 2σ2√
2σ2

ν + θ2

 t
ν−

1
2

=
Γ
(
t
ν −

1
2

)
Γ
(
t
ν

) 1

ν
t
ν

√
2πσ2

(
1

ν
+

θ2

2σ2

) 1
2−

t
ν

.
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Appendix E

Pricing European Options under

Lévy Models

The LSM method in Chapter 2 and Rasmussen’s modification of the LSM method in Chapter 3, requires

the European option price for a given stock price at each exercise date of the Bermudan discretisation of the

American option. When the underlying follows geometric Brownian motion, we may use the Black-Scholes

formula. In the case of the VG model, Madan et al. [1998] derive a closed-form formula in terms of the

modified Bessel function of the second kind and the confluent hypergeometric function of two variables.

However as noted in http://demonstrations.wolfram.com/OptionPricesInTheVarianceGammaModel/

these special functions require complicated implementations due to the presence of a singularity in one

of the special functions. Furthermore, we were unable to find any implementation for the confluent

hypergeometric function of two variables. There are no known closed-form formulae if the underlying

follows an exponential NIG process.

The VG process (or NIG process respectively), conditional on knowing the random time change g

(which has an independent gamma (or inverse Gaussian) distribution), is normally distributed as we have

seen in §8.2 (or §9.2). This suggests another way of calculating the European option price under VG (or

NIG) risk-neutral dynamics — integrate a conditional Black-Scholes type formula over g with respect to

the gamma density (inverse Gaussian density). Madan and Milne [1991] obtained the option price in the

VG case in this way by using numerical integration. Joshi [2003, §17.2] shows how the option price is

found in the VG case using an integral over Black-Scholes prices.

The QUAD method by Andricopoulos et al. [2003] approximates option prices by considering the

risk-neutral valuation formula

v (x;K, t) = e−r∆t
∫ ∞
−∞

v (y;K, t+ ∆t) fXt (y|x) dy

where K indicates the strike of the option, Xt = lnSt, fXt(·|·) indicates the conditional density of Xt

and v (x;K, t) indicates the option value at time t. In the QUAD method v (y;K, t+ ∆t) is found by

backward recursion and the integral is then approximated using a particular quadrature technique. If the

conditional density of the model under consideration is known, this method may be used to price a wide

variety of options.
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Another way of pricing options makes use of Fourier transform methods. Carr and Madan [1999] first

applied Fourier transform methods to price options in the VG model. Lewis [2001] provides a Fourier

method allowing for a much easier approximation of the integral at infinity than the method given by

Carr and Madan [1999]. Lord et al. [2008] provide yet another Fourier method called the CONV method.

A Fourier method, called the COS method, shows the strongest convergence results and is given by Fang

and Oosterlee [2008]. We briefly discuss the last method.

E.1 The COS Method

The main idea of the COS method is to replace the density function with its Fourier Cosine series expansion.

As before, let K be the strike, p(·,K) indicate the payoff function and v (S0;K, t) be the value of the

European option at time t0 = 0 with maturity t, then

v (S0;K, t) = e−rt
∫ ∞
−∞

p (x,K) fXt (x|S0) dx (E.1)

where Xt = lnSt.

As noted by Fang and Oosterlee [2008], since the density rapidly decreases to 0 as x → ±∞ in

(E.1), a truncation of the infinite integration range can be made without losing significant accuracy. The

truncation range, which according to Fang and Oosterlee [2008] is accurate with a truncation error of

10−12 for maturities between 0.1 to 10 years, is given by

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
(E.2)

where L = 10 and c1, c2 and c4 are the cumulants of ln St
K . In Table E.1 we provide the cumulants c̄1 c̄2

and c̄4 when the underlying follows geometric Brownian motion, exponential VG and exponential NIG.

These may be obtained by using (C.15), (C.17) and (C.20). Then we find the cumulants of ln St
K

1 from

Cumulant X1 XVG
1 XNIG

1

c̄1 µ θ βδ√
α2−β2

c̄2 σ2 σ2 + νθ2 α2δ
(α2−β2)3/2

c̄4 0 3
(
σ4ν + 2θ4ν3 + 4σ2θ2ν2

) 3α2(α2+4β2)δ
(α2−β2)7/2

Table E.1: Cumulants of arithmetic Brownian motion, VG and NIG processes at time 1.
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those in the table as follows

c1 = c̄1t+mt+ ln
S0

K
, c2 = c̄2t and c4 = c̄4t

where m is given by r − q − 1
2σ

2 and µ = 0 in the geometric Brownian case and by (10.6) and (10.10) in

the exponential VG and NIG cases respectively.

Thus (E.1) may be approximated by

v (S0;K, t) ≈ e−rt
∫ b

a

p (x,K) fXt (x|S0) dx. (E.3)

As noted by Fang and Oosterlee [2008], fXt (x|S0) is often unknown2 and therefore Fang and Oosterlee

[2008] replace the density function by its Cosine expansion

fXt (x|S0) =

∞∑′

k=0

Ak (S0) cos

(
kπ
x− a
b− a

)
(E.4)

where

Ak (S0) :=
2

b− a

∫ b

a

cos

(
kπ
x− a
b− a

)
fXt (x|S0) dx

and as in Fang and Oosterlee [2008]
∑′

indicates that the 0th term in the summation is weighted by a

factor of 1
2 . Thus (E.3) becomes

v (S0;K, t) ≈ e−rt
∫ b

a

p (x,K)

∞∑′

k=0

Ak (S0) cos

(
kπ
x− a
b− a

)
dx

=
b− a

2
e−rt

∞∑′

k=0

Ak (S0)
2

b− a

∫ b

a

p (x,K) cos

(
kπ
x− a
b− a

)
dx

where the summation and integration has been interchanged in the equality [see Fang and Oosterlee, 2008,

(16)].

1Recall from (C.15) that

m1 = c1 = E
[
ln
St

K

]
= E

[
lnS0e

mt+X·t
]
− lnK

= E
[
ln emt+X

·
t

]
+ ln

S0

K

= E [X·t] +mt+ ln
S0

K

= c̄1 +mt+ ln
S0

K

where X·t indicates a VG or NIG process.
2Even though this is not strictly true in the VG or NIG case, the probability density functions (see (10.7) and (10.11)

respectively) in these cases are in terms of modified Bessel functions of the second kind which can be difficult to implement

and are computationally inefficient.
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Now Ak may be approximated as

Ak ≈
2

b− a
<
(

ΦXt

(
kπ

b− a

)
exp

[
−i kaπ
b− a

])
[Fang and Oosterlee, 2008, (9)]. If the characteristic function ΦXt(·) is known, as in the case where the stock

price process follows geometric Brownian motion (C.4), exponential VG (10.8) or exponential NIG (10.12),

this approximation allows for another approximation which will enable us to compute an approximation of

the European option price. Looking further afield, we note that the characteristic function of the Heston

model is known [see Heston, 1993] and hence it is possible to calculate an approximation of European

options under this model as well using the COS method [Fang and Oosterlee, 2008].

Since the coefficients in the Fourier Cosine series decay rapidly, a further approximation involves

truncating the series in (E.4). This approximation along with the approximation of Ak produces

v (S0;K, t) ≈ e−rt
N−1∑′

k=0

<
(

ΦXt

(
kπ

b− a
exp

[
−i kaπ
b− a

]))
2

b− a

∫ b

a

p (x,K) cos

(
kπ
x− a
b− a

)
dx. (E.5)

2
b−a

∫ b
a
p (x,K) cos

(
kπ x−ab−a

)
dx can be obtained analytically for vanilla and digital options [see Fang and

Oosterlee, 2008, §3.1 & §3.2]. When considering Lévy models, (E.5) may be written as

v (S0;K, t) ≈ Ke−rt<

N−1∑′

k=0

ΦXt

(
kπ

b− a

)
Uk exp

[
ikπ

x− a
b− a

]
[Fang and Oosterlee, 2008, (30)] where

Uk =
2

b− a
η (χk(0, b)− ψk(0, b))

[Fang and Oosterlee, 2008, (29)] where η = 1 indicates a call and η = −1 indicates a put; and

χk(c, d) =
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec
]

ψk(c, d) =


[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ for k 6= 0

d− c for k = 0

[Fang and Oosterlee, 2008, (22) & (23)].
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Appendix F

Change of Variables

The following result is well known and is often stated in the literature. However proofs are not as plentiful,

so we give one.

Proposition F.1.1

Let X be a random variable with density function fX(·) and g(·) a strictly monotone function that is

differentiable. Then the random variable Y := g(X) has density function

fY (y) = fX
(
g−1(y)

) 1

|g′ (g−1(y))|
. (F.1)

Proof.

First consider the case where g(·) is increasing, then the cumulative distribution function of Y

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P
(
X ≤ g−1(y)

)
=

∫ g−1(y)

−∞
fX(x) dx.

If we let z = g(x), then dz = g′(x)dx and x = g−1(z). Furthermore, if x ≤ g−1(y) then since g is increasing

z = g(x) ≤ y. Performing the substitution z = g(x) in the above we obtain

FY (y) =

∫ y

−∞
fX
(
g−1(z)

) 1

g′ (g−1(z))
dz.

By the Fundamental Theorem of Calculus FY (·) is differentiable at y and

fY (y) = F ′Y (y) = fX
(
g−1(y)

) 1

g′ (g−1(y))
.
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If g is decreasing then

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P
(
X ≥ g−1(y)

)
=

∫ ∞
g−1(y)

fX(x) dx.

A similar substitution as before gives

FY (y) =

∫ ∞
y

fX
(
g−1(z)

) 1

g′ (g−1(z))
dz

= 1−
∫ y

−∞
fX
(
g−1(z)

) 1

g′ (g−1(z))
dz.

Differentiating yields

fY (y) = F ′Y (y) = −fX
(
g−1(y)

) 1

g′ (g−1(y))
.

Therefore since g is decreasing g′ will be negative and hence we may write for any strictly monotone g

fY (y) = fX
(
g−1(y)

) 1

|g′ (g−1(y))|
.

We give three examples:

Example F.1.2.

Consider the random variable Y = λX. If we let g(x) = λx, then g′(x) = λ and g−1(y) = y
λ . From (F.1)

we have

fY (y) = fX

( y
λ

) 1

λ

since g′
(
g−1(y)

)
= λ.

Example F.1.3.

Consider the random variable Y = λ−X
X . If we let g(x) = λ−x

x , then g′(x) = − λ
x2 and g−1(y) = λ

y+1 . From

(F.1) it follows that

fY (y) = fX

(
λ

y + 1

)
λ

(y + 1)2

since g′
(
g−1(y)

)
= − (y+1)2

λ .

Example F.1.4.

Consider the random variable Y = λeX . If we let g(x) = λex, then g′(x) = λex and g−1(y) = ln y
λ .

Therefore from (F.1) we have

fY (y) = fX

(
ln
y

λ

) 1

y

since g′
(
g−1 (y)

)
= y.
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F.2 Returns vs. Prices

The density of the stock price process is found using the transformation

S = seY := g(Y ) (F.2)

where s is a known stock price at time t1, S indicates the stock price at some future time t2 > t1 and

Y the return for the period t2 − t1. The function g(·), as well as its inverse g−1(·), is differentiable and

increasing.

In §7.1, §10.2.1 and §10.2.2 we provide the risk-neutral density functions of the returns at a time t

that follow arithmetic Brownian motion, VG and NIG processes respectively. However, in some cases we

might require the density of the stock price process at t. Here all density functions are risk-neutral, but

we suppress the superscript Q for ease of notation.

Consider (F.2) again where S = St2 is a random variable representing the stock price at a future time

t2, St1 is a realised value of the stock price at time t1 < t2 and let t := t2 − t1. We can find the density of

S from the density of Y using Example F.1.4, as

fS (St2) = fY

(
ln
St2
St1

)/
St2 . (F.3)

Using (F.3) along with the risk-neutral density of arithmetic Brownian motion (7.6) we obtain the

risk-neutral density of the stock price process under geometric Brownian motion

fS(St2) =
1

St2
√

2πσ2t
exp

−1

2

 ln
St2
St1
−
(
r − q − 1

2σ
2
)
t

σ
√
t

2
 .

Similarly, using the risk-neutral density of VG (10.7) we obtain the risk-neutral density of the stock price

process under an exponential VG process

fS(St2) =
2 exp

[(
ln

St2
St1
−mt

)
θ
σ2

]
St2ν

t
ν Γ
(
t
ν

)√
2πσ2


(

ln
St2
St1
−mt

)2

2σ2

ν + θ2


t
2ν−

1
4

K t
ν−

1
2


√(

ln
St2
St1
−mt

)2 (
2σ2

ν + θ2
)

σ2


where m is given by (10.6). Finally from (F.3) and the risk-neutral density of the NIG (10.11) we find the

risk-neutral density of the stock price process under an exponential NIG process

fS(St2) =
αδt

St2π
exp

[
δt
√
α2 − β2 + β

(
ln
St2
St1
−mt

)] K1

(
α

√
δ2t2 +

(
ln

St2
St1
−mt

)2
)

√
δ2t2 +

(
ln

St2
St1
−mt

)2

where m is given by (10.10).
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Appendix G

Cumulative Distribution Functions

In the next sections we will discuss the cumulative distribution functions of the gamma and inverse

Gaussian and beta distributions and how we will implement them.

We will denote the cumulative distribution functions of the normal, gamma, inverse Gaussian and beta

distributions by FN(·), FG(·), FIG and FB(·) respectively. When we refer to the cumulative distribution

function of a specific random variable X we will also denote it by FX(·).

G.1 The Gamma Distribution

Let X ∼ Gamma(α, β) with α > 0 and β > 0, then the cumulative gamma distribution function is given

by

FG(x) = P (X ≤ x)

=
βα

Γ(α)

∫ x

0

tα−1e−βtdt

=

∫ βx
0

tα−1e−tdt

Γ(α)

= P (α, βx).

Here P (·, ·) is known as a regularised gamma function and is given by

P (α, x) =
γ(α;x)

Γ(α)

[see Press et al., 2004, 6.2.1] where for α > 0 the numerator γ(α;x) =
∫ x

0
e−ttα−1dt is called the lower

incomplete gamma function and can be expressed as a series

γ(α;x) = e−xxα
∞∑
n=0

Γ(α)

Γ(α+ 1 + n)
xn (G.1)

as shown in Press et al. [2004, 6.2.5]. As noted in Press et al. [2004], Γ(α + 1 + n) does not need to be

computed for each n. Instead we can use the recurrence relation Γ(z + 1) = zΓ(z) for z ∈ C. Thus we
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may write (G.1) as

γ(α;x) = e−xxα
[

1

α
+

1

α(α+ 1)
x+

1

α(α+ 1)(α+ 2)
x2 + · · ·+ 1

α(α+ 1) · · · (α+ n)
xn + · · ·

]
. (G.2)

Now (G.2) converges rapidly for x less than about α + 1 [Press et al., 2004, §6.2]. When x is greater

than α+ 1, we will rather use a rapidly converging continued fraction instead of the series given in (G.2)

[Press et al., 2004, §6.2]. Continued fractions often converge much faster than power series expansions

[Press et al., 2004, §5.2]. We first note that the complement of P (·, ·), also known as a regularised gamma

function, is given by

Q(α, x) := 1− P (α, x)

=
Γ(α;x)

Γ(α)

as found in Press et al. [2004, 6.2.3]. Here Γ(α;x) =
∫∞
x
e−ttα−1dt with α > 0 is known as the upper

incomplete gamma function and can be written as the continued fraction1 given below

Γ(α;x) = xαe−x
1

x+

1− α
1+

1

x+

2− α
1+

2

x+

3− α
1+

· · · (G.3)

To evaluate this continued fraction we will be using the modified Lentz method [Lentz, 1976] as shown

in Press et al. [2004, §5.2]. Furthermore, instead of using (G.3), we will be implementing the continued

fraction given by

Γ(α;x) = e−xxα
1

x+ 1− α−
1− α

x+ 3− α−
2(2− α)

x+ 5− α−
3(3− α)

x+ 7− α−
4(4− α)

x+ 7− α−
· · · (G.4)

which is the even part of (G.3) and converges twice as fast as (G.3) ([Press et al., 2004, §5.2]).

According to Press et al. [2004, §6.2], (G.2) and (G.4) each requires at most k
√
α terms to converge for

some k, and this many only when x is close to α+ 1, where the incomplete gamma functions are varying

most rapidly. Thus when x is far away from α+ 1, we have very fast convergence and when x is close to

α+ 1 there is a bound on the number of terms required for convergence. We will use (G.2) when x is less

than α+ 1, that is, compute P (α, x) for x < α+ 1. When x is greater or equal to α+ 1 we will use (G.4),

that is, compute 1−Q(α, x) for x ≥ α+ 1.

1 A continued fraction has the form

f(x) = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
a5

b5 + . . .

and is denoted

f(x) = b0 +
a1

b1+

a2

b2+

a3

b3+

a4

b4+

a5

b5+
· · ·

[Press et al., 2004, §5.2].
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Figure G.1: Gamma cumulative distribution functions for various values of α and β where one parameter

is fixed and the other is varied. The graphs shown in green is the same in both figures with parameters

used in common. These figures corresponds to the density functions shown in Figure 8.1.

G.2 The Beta Distribution

The beta distribution has real parameters α, β > 0 which are known as the shape parameters. We will

denote a random variable X that follows a beta distribution with parameters α, β as X ∼ Beta (α, β).

The beta probability density function and cumulative distribution function can be written in terms of the

incomplete beta function.

Definition G.2.1 Incomplete Beta Function

The incomplete beta function is defined by

B(α, β;x) =

∫ x

0

tα−1(1− t)β−1dt

for α, β > 0, α, β ∈ R and 0 ≤ x ≤ 1. The beta function, which is also known as the Euler integral of the

first kind, can be written in terms of the incomplete beta function as follows

B(α, β) := B(α, β; 1).

From the definition of the beta function, it is clear that the following defines a probability density

function:

Definition G.2.2 Beta Probability Density Function

The beta probability density function with parameters α, β > 0 is defined as

fB(x) =
xα−1(1− x)β−1

B(α, β)

for 0 ≤ x ≤ 1.

Observe that the distribution is symmetric when α and β are equal and when α = β = 1 we have the

density of the uniform distribution.
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Figure G.2: Beta probability density functions for various values of α and β where one parameter is fixed

and the other is varied. The graphs shown in green is the same in both figures with parameters used in

common.

Definition G.2.3 Cumulative Beta Distribution Function

The cumulative beta distribution function is given by

FB(x) =
B(α, β;x)

B(α, β)

where α, β > 0 and 0 ≤ x ≤ 1.
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Figure G.3: Beta cumulative distribution functions for various values of α and β where one parameter is

fixed and the other is varied. The graphs shown in green is the same in both figures with parameters used

in common. These figures correspond to the probability density functions shown in Figure G.2.

In our implementation of the beta function we have made use of the expression

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

as given by National Institute of Standards and Technology [2010, 5.12.1] where Γ(·) is the gamma function.

We will determine the value of the gamma function using Press et al. [2004, §6.1]. This is an implementation
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of the approximation derived in Lanczos [1964]. Furthermore, as noted and implemented in Press et al.

[2004, §6.1], we will calculate the log of the gamma function instead of the gamma function itself since the

latter will overflow many computers’ floating-point representation at quite modest values of z.

When implementing the incomplete beta function we will make use of its continued fraction represen-

tation [Press et al., 2004, §6.4]

B(α, β;x) =
xα(1− x)β

α

(
1

1+

d1

1+

d2

1+
· · ·
)

where for m = 0, 1, . . .

d2m+1 = − (α+m)(α+ β +m)x

(α+ 2m) (α+ 2m+ 1)
and d2m =

m(β −m)x

(α+ 2m− 1)(α+ 2m)
.

As noted in Press et al. [2004, §6.4], this continued fraction converges rapidly for x ≤ α+1
α+β+2

2. However

for x > α+1
α+β+2 we can use the symmetry relation as shown by Press et al. [2004, §6.4]

B(α, β;x)

B(α, β)
= 1− B(β, α; 1− x)

B(β, α)
.

As in §G.1 we will evaluate the continued fraction for incomplete beta function using the modified Lentz

method as it appears in Press et al. [2004, §5.2].

G.3 The Inverse Gaussian Distribution

Similarly to an inverse Gaussian process (see §9.1), an inverse Gaussian random variable τ with parameters

η, γ ∈ R follows the hitting time distribution of a Brownian motion with drift

τ = inf
t>0
{γt+Wt = η}

where η > 0, γ > 0 and W = {Wt}t≥0 is standard Brownian motion. We will denote an inverse Gaussian

random variable with parameters η and γ by τ ∼ IG (η, γ).

The probability density and cumulative distribution functions of an inverse Gaussian random variable

is used to find the value of a digital option in the Black-Scholes economy. The derivation of this probability

density and cumulative distribution functions can be found in West [2011, Chapter 5] which are lecture

notes expanding Wystup [2002]. Thus the density function of an inverse Gaussian random variable τ with

parameters η > 0 and γ > 0 is given by

fτ (t) =
η√
2πt3

exp

[
−1

2

(
η − γt√

t

)2
]
. (G.5)

This parameterisation was given in Barndorff-Nielsen [1998]3,4.

2Actually Press et al. [2004, §6.4] specifies that x < α+1
α+β+2

, but then the case where x = α+1
α+β+2

is not dealt with in the

symmetry argument which follows. This case certainly arises eg. when α = β and x = 0.5.
3We have used the symbol η instead of δ as in Barndorff-Nielsen [1998], because δ is used in §9.2.
4Using another parameterisation, the density of an inverse Gaussian variable can be written as

fIG(λ, µ; t) =

√
λ

2πt3
exp

[
−

λ

2µ2t
(t− µ)2

]
1{t>0} (G.6)

where µ > 0 is called the mean and λ > 0 is called the shape parameter with µ, λ ∈ R. The density given in (G.5) can be

obtained from (G.6) by substituting µ = η
γ

and λ = η2.
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By using the density function in (G.5) and letting

e±(t) =
∓η − γt√

t

we find the cumulative inverse Gaussian distribution

Fτ (t) = e2ηγFN (e+(t)) + FN (−e−(t)) .
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Figure G.4: Inverse Gaussian cumulative distribution functions for various values of η and γ where one

parameter is fixed and the other is varied. The graphs shown in green is the same in both figures with

parameters used in common. These figures correspond to the probability density functions shown in Fig-

ure 9.1.
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Appendix H

Inverse Transformation Methods

In §7.3 and §7.4 we have investigated the generation of uniform random numbers. In this appendix we will

show how to use these uniform random numbers in order to produce random numbers from the various

distributions we will consider.

For random draws from distributions other than the normal distribution, we will apply a method called

inverse transform sampling. Here we will apply the inverse probability integral transform or the inverse

transformation method which generates numbers from any probability distribution given its cumulative

distribution function.

There are other methods with which one can generate samples from a given distribution. However,

these methods will require more than one uniform random number. For example the Box-Muller method

uses two uniform random numbers to generate one normal random number. Thus the Sobol’ dimensions

are used up sooner, and we run into the problem of the deterioration of the random numbers that much

quicker. When the number of random numbers needed is not known in advance, we have an even bigger

problem when using Sobol’ random numbers. In this case, Joshi [2003] notes that the particular structure

of the sequences is destroyed.

In the §H.2 we will make use of a root-finding algorithm called Brent’s method. This method is a

generic method and can be applied to find any random number from a single uniform sample, as long as

its cumulative distribution function can be calculated. As we have seen in Appendix G, this is the case

for the cumulative distribution functions of the gamma, beta and inverse Gaussian distributions.

H.1 Evaluating the Inverse Transform

Definition H.1.1 Inverse Transform

Let U be a Uniform(0, 1) random number. Then the inverse transform of U is defined by

X = F−1
X (U)

where FX(·) is the cumulative distribution function of X.

If we let u be a draw from Uniform(0, 1) and x a draw from the distribution of X, then x = F−1
X (u)

and so FX(x) = u. In order to calculate the cumulative inverse of a distribution, we will apply Brent’s

188
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method to

FX(x)− u = 0. (H.1)

Brent’s method finds the root of (H.1). When calculating the cumulative inverse of a distribution we will,

with the exception of the normal distribution, always make use of Brent’s method.

H.2 Brent’s Method

Brent’s method [Brent, 1973] is an improvement on an algorithm developed in the 1960’s by Dekker [1969].

It is a root-finding algorithm that combines the bisection and secant methods along with inverse quadratic

interpolation. The algorithm makes use of the secant method or inverse quadratic interpolation because

of faster convergence, but switches to the bisection method when necessary. Brent guarantees that the

method will converge as long as the function can be evaluated within the initial interval known to contain

a root.

In our implementation of Brent’s method we have made use of the algorithm provided in Press et al.

[2004, §9.3] and created a templated function in a header file as shown in Joshi [2004, §9.3] (the advantages

and disadvantages of this approach are also discussed in Joshi [2004, §9.6]). As discussed in Joshi [2004,

§9.3], templatisation allows code that handles many different classes simultaneously, where these classes

have to contain certain operations defined with the same syntax. In this case, classes that make use of

Brent should have the overloaded operator () defined:

double operator()(double ) const

Thus the syntax f(u) is well-defined for an instantiated object f of a class (below it is indicated by T)

and a double u. Since the type of the object T is unknown one cannot precompile the template code in a

source file and the function must be in a header file.

template<class T>

double Brent(T myFunction, double x1, double x2)

The function root is known to lie in the interval [x1, x2]; if it does not, the code will fail. Here the

function of which we want to find the root is myFunction.

We have also created an improved version BrentWithGuess of the above function in which the user

provides a guess of the root guess; the guess does not have to be particularly good. The code creates an

interval in which the root lies; the interval is found by suitable multiplicative scaling near the guess. This

method relies on the assumption that myFunction is monotone at least in the area of interest — this is

certainly the case for most financial applications. Also, x cannot be 0 in this method.

template<class T>

double BrentWithGuess(T myFunction, double guess)

H.3 Implementation

When computing the cumulative inverse, we will make use of the version of Brent’s method that requires

an interval containing the root as input. The interval given will be [DOMAINMINIMUM, DOMAINMAXIMUM],
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where DOMAINMINIMUM and DOMAINMAXIMUM are double values representing the practical lower and upper

domain bounds respectively of the distribution under consideration. A way of speeding up the calculation

of the cumulative inverse is by performing some precalculation.

At the end of this section we will provide a numerical example, Example H.3.1, to illustrate our

implementation.

We use an array for the lookup table, called table, containing MAXIMUMINDEX + 1 entries. The ele-

ment with index 0 is the cumulative inverse of u = 0 and the entry with index MAXIMUMINDEX contains

DOMAINMAXIMUM. The remaining entries are the cumulative inverses of u’s which have been evenly divided

between 0 and MAXIMUMINDEX.

void calculateTable()

{
double u;

Instantiate the Distribution class, with parameters parameter1, parameter2, ... and false which

indicates that the lookup table is not in use for this object.

Distribution distributionObject(parameter1, parameter2, ..., false);

for (int i = 0; i < MAXIMUMINDEX; i++)

{

Find MAXIMUMINDEX number of evenly divided u’s.

u = i/static_cast<double>(MAXIMUMINDEX);

Find the cumulative inverse of u.

table[i] = distributionObject.cumulativeInverse(u);

}
table[MAXIMUMINDEX] = DOMAINMAXIMUM;

Set the boolean flag which indicates the table has been created.

tableCalculated = true;

}

Since we are making use of the templated function Brent as discussed in the previous section, we

will require a class that has the () operator as one of its functions [see Joshi, 2004, §9.2]. This function

will allow us to write cumulativeInverseFunction(u) for an object cumulativeInverseFunction of the

class ErrorInCumInverseGuess shown below and a double u in the function Brent. We create a class

and not just a function because the class is able to contain extra information. In this case, the extra

information is in the form of the parameters of the distribution under consideration, as well as u for which

the cumulative inverse is to be calculated.

ErrorInCumInverseGuess::ErrorInCumInverseGuess

(double aParameter1, double aParameter2, ..., double aU):
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parameter1(aParameter1), parameter2(aParameter2), ..., u(aU)

{

This is the constructor for the class ErrorInCumInverseGuess that has private members parameter1,

parameter2, . . . and u.

}

double ErrorInCumInverseGuess::operator()(double x)

{
Distribution distributionObject(parameter1, parameter2, ..., false);

return distributionObject.cumulativeFunction(x) - u;

Effectively this is the function for which a zero is found using Brent’s method.

}

Note that in the () operator function we need to be able to calculate the cumulative distribution function

of the given distribution.

Finally, we present the code which calls the function Brent to calculate the cumulative inverse for a

given u.

double cumulativeInverse(double u)

{

The cumulative distribution is truncated at the DOMAINMINIMUM and DOMAINMAXIMUM.

if (u == 0) return DOMAINMINIMUM;

else if (u == 1) return DOMAINMAXIMUM;

else

{
ErrorInCumInverseGuess

cumulativeInverseFunction(parameter1, parameter2, ..., u);

If the lookup table exists, use it.

if (lookup == true)

{

If the lookup table has not been calculated, do so.

if (tableCalculated == false) calculateTable();

Find the indices containing entries for the smaller interval.
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int low = static_cast<int>(u*MAXIMUMINDEX);

int high = low + 1;

return Brent(cumulativeInverseFunction, table[low], table[high]);

}

The lookup table does not exist or is not used, so we use extreme (and inefficient) lower and upper bounds.

else

return Brent(cumulativeInverseFunction, DOMAINMINIMUM, DOMAINMAXIMUM);

}
}

Example H.3.1.

Consider the beta distribution (a discussion on this distribution can be found in §G.2). Suppose that

α = 2 and β = 2. Thus, parameter1 and parameter2 are set to 2 when we create the Distribution

object distributionObject. Since the beta distribution has domain [0, 1], we set DOMAINMINIMUM to 0 and

DOMAINMAXIMUM to 1. In our example, we will set MAXIMUMINDEX equal to 10, but in our implementation

we have set it to 100 or even 1000 depending on the specific distribution.

Consider Table H.1 where we have calculated the cumulative beta inverses for values u = 0, 0.1, . . . , 1.

Index Cumulative Inverse

0 0.0000

1 0.1958

2 0.2871

3 0.3633

4 0.4329

5 0.5000

6 0.5671

7 0.6367

8 0.8667

9 0.9333

10 1.0000

Table H.1: The lookup table with cumulative beta inverses calculated for values 0, 0.1, ..., 1.

This is achieved when the subroutine calculateTable is run. Each entry in the table is found by

calling Brent with the [0, 1] as the interval containing the root. Now suppose we would like to calculate

the inverse of u = 0.43 after the table has been created. This requires the function cumulativeInverse

which calculates low to be the floor of 0.43× 10 = 4.3, that is 4, and high to be 4 + 1 = 5. Therefore the

routine Brent is called with [0.4329, 0.5000] as the interval containing the root.
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Application

The application American Monte Carlo Pricer, developed during the course of this thesis, has the following

fields which are to be completed:

(i) In the Stock Price Process Details section

• Stock Price Process — choose one of GBM, VG or NIG.

• Enter the values of the parameters corresponding to the selected stock price process. Percentages

should be entered in decimal form, e.g. enter 0.3 and not 30 if the input is 30%. If the selected

stock price process is GBM, the only parameter to be entered is σ, which must be positive.

If the selected stock price process is VG, enter values for θ, σ and ν. Both σ and ν must be

positive. Finally, if the selected stock price process is NIG, enter values for α, β and δ. δ must

be positive and −α < β < α− 1.

• Spot — enter the current stock price.

• Risk-Free Rate — enter the constant continuously compounded risk-free rate. As before,

percentages should be entered in decimal form.

• Dividend Yield — enter the constant continuously compounded dividend yield. Again, per-

centages should be entered in decimal form.

(ii) In the Option Details section

• Term — enter the term of the option in years.

• Strike — enter the strike of the option under consideration.

• Style — choose either Call or Put.

(iii) In the Monte Carlo Details section

• Monte Carlo Method — choose one of Regression, LSM, Rasmussen, Rasmussen Low Bias,

Rasmussen Dual, Stochastic Mesh Low Bias or Stochastic Mesh High Bias. Note that computa-

tion time for the Stochastic Mesh Low Bias and Stochastic Mesh High Bias is much higher than
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the other methods. The computation becomes increasingly expensive as the number of time

steps and simulations are increased. If the selected stock price process is VG, the Stochastic

Mesh Low Bias option is removed from the Monte Carlo method list in order to avoid slow

computation time. Likewise the selected Monte Carlo method is Stochastic Mesh Low Bias,

then the VG option is removed from the stock price process list.

• Polynomial — select the type of basis functions used in the regression type Monte Carlo

methods. This option is greyed out when the selected Monte Carlo method is either Stochastic

Mesh Low Bias or Stochastic Mesh High Bias. Choose one of Laguerre, Hermite, Chebyshev or

Rasmussen. Rasmussen indicates the polynomials we mention in §3.3. Note that when selecting

the Hermite polynomial as basis, erratic results for varying number of time steps and number

of polynomials may be obtained.

• Number of Polynomials — select the number of basis functions used in the regression type

Monte Carlo methods. In this application we have restricted the number of polynomials to 10

in order to avoid long computation times. Again, this option is greyed out when the selected

Monte Carlo method is either Stochastic Mesh Low Bias or Stochastic Mesh High Bias.

• Number of Time Steps — select the number of time steps as a multiple of 2.

• Random Number Generator — select either the pseudo-random number generator Mersenne

Twister or the quasi-random number generator Sobol’ with Bridging.

• Seed — enter an integer which is used as the seed if the random number generator selected is

Mersenne Twister, the initial dispersion technique is applied or the dual method is employed. If

this field is not populated, an integer produced by the pseudo-random number generator native

to C# is used.

• Number of Sample Paths — choose a power of 2 for the number of sample paths. In order to

avoid long computation times, several restrictions have been made. If the selected Monte Carlo

method is Regression, LSM, Rasmussen, Rasmussen Dual or Stochastic Mesh Low Bias, the

number of simulations range from 25 to 212. If the selected Monte Carlo method is Rasmussen

Low Bias, the number of simulations range from 25 to 215. Finally, if the selected Monte Carlo

method is Stochastic Mesh High Bias, the number of simulations range from 25 to 210.
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Figure I.1: A screen shot of the application.
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Mathematical Finance, 13(3):345–382, 2003. 74

Jacques F. Carrière. Valuation of the early-exercise price for options using simulations and nonparametric

regression. Insurance: Mathematics and Economics, 19(1):19–30, 1996. 2, 13

George Casella and Roger L. Berger. Statistical Inference. Wadsworth and Brooks/Cole, 1990. 168, 169

Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least squares regression

method for American option pricing. Finance and Stochastics, 6:449–471, 2002. 2, 13, 14, 16, 17, 19

Donald L. Cohn. Measure Theory. Birkhäuser, 1980. 165
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//www.maths.bath.ac.uk/~ak257/Levy-sonderborg.pdf. Sønderborg Denmark Lecture notes. 64,

66, 100, 103

Damien Lamberton and Bernard Lapeyre. Introduction to Stochastic Calculus Applied to Finance. Chap-

man & Hall, second edition, 2008. 8

Cornelius Lanczos. A Precision Approximation of the Gamma Function. SIAM Journal on Numerical

Analysis: Series B, 1:86–96, 1964. 186

Christiane Lemieux, Mikolaj Cieslak, and Kristopher Luttmer. RandQMC user’s guide: a package for

randomized quasi-Monte Carlo methods in C, 2002. Technical Report 2002-712-15, Department of

Computer Science, University of Calgary, Calgary, Canada. 155

William J. Lentz. Generating Bessel Functions in Mie Scattering Calculations using Continued Fractions.

Applied Optics, 15(3):668–671, 1976. 183

Alan L. Lewis. A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Pro-

cesses. Working paper, 2001. URL http://www.optioncity.net/pubs/ExpLevy.pdf. 176

Eduardo J. A. Lima and Benjamin M. Tabak. Building Confidence Intervals with Block Bootstraps for

the Variance Ratio Test of Predictability. Working Paper Series 151, 2007. URL http://www.bcb.gov.

br/pec/wps/ingl/wps151.pdf. 125

Guangwu Liu and L. Jeff Hong. Revisit of stochastic mesh method for pricing american options. Operations

Research Letters, 37(6):411–414, 2009. 37

Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulation: a simple least-

squares approach. Review of Financial Studies, 14(1):113–147, 2001. ii, iii, 1, 2, 13, 14, 17, 18, 22, 23,

148

R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee. A Fast And Accurate FFT-Based Method For
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