
On two combinatorial optimisation
problems involving lotteries

André du Plessis

Thesis presented in partial fulfilment of the requirements for the degree
MComm (Operations Research)

Department of Logistics, Stellenbosch University

Supervisor: Prof JH van Vuuren
Co-supervisor: Dr AP Burger March 2010





Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein
is my own, original work, that I am the owner of the copyright thereof (unless to the extent
explicitly otherwise stated) and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

March 2010

Copyright c© 2010 Stellenbosch University
All rights reserved

i



ii



Abstract

Suppose a lottery draw consists of forming a winning ticket by randomly choosing t ≤ m distinct
numbers from a universal set Um = {1, . . . ,m}. Each lottery participant forms a set of tickets
prior to the draw, each ticket consisting of n ≤ m distinct numbers from Um, and is awarded a
prize if k ≤ min{n, t} or more numbers in at least one of his/her tickets matches those of the
winning ticket. A lottery of this form is denoted by the quadruple 〈m,n, t, k〉, and the prize is
known as a k-prize. The participant’s set of tickets is also known as a playing set.

The participant may wish to form a playing set in such a way that the probability of winning
a k-prize is at least 0 < ψ ≤ 1. Naturally, the participant will want to minimise the cost
of forming such a playing set, which means that the cardinality of the playing set should be
as small as possible. This combinatorial minimisation problem is known as the incomplete
lottery problem and was introduced by Gründlingh [16], who also formulated a related problem
called the resource utilisation problem. In this problem one attempts to select a playing set of
pre-specified cardinality ` in such a way that the probability of winning a k-prize is maximised.

Gründlingh [16] studied the incomplete lottery problem and the resource utilisation problem in
the special case where n = t. In this thesis both problems are considered in the general case
where n 6= t. Exact and approximate solution methods are presented and compared to each other
in terms of solution quality achieved, execution time and practical feasibility. The first solution
method involves a mathematical programming formulation of both problems. Using this solution
method, both problems are solved for small lottery instances. An exhaustive enumeration
solution method, which uses the concept of overlapping playing set structures [5, 16], is reviewed
and used to solve both combinatorial optimisation problems for the same small lottery instances.
The concept of an overlapping playing set structure is further explored and incorporated in an
attempt to solve both combinatorial optimisation problems approximately by means of various
metaheuristic solution approaches, including a simulated annealing algorithm, a tabu search
and a genetic algorithm.

The focus of the thesis finally shifts to a different problem involving lotteries. An investigation
is conducted into the probability, P (N,λ), of λ participants sharing a k-prize if a total of N
tickets are purchased by participants of the lottery 〈m,n, t, k〉. Special attention is afforded in
this problem to the jackpot prize of the South African national lottery, Lotto, represented by
the quadruple 〈49, 6, 6, 6〉 and how the value of P (N,λ) is affected by the way that participants
select their playing sets.

iii



iv



Uittreksel

Gestel ’n lotery-trekking bestaan uit die ewekansige seleksie van ’n wenkaartjie bestaande uit
t ≤ m verskillende getalle uit ’n universele versameling Um = {1, . . . ,m}. Elke lotery-deelnemer
vorm ’n versameling kaartjies voor die trekking, wat elk uit n ≤ m verskillende getalle in Um
bestaan, en wen ’n prys indien k ≤ min{n, t} of meer getalle in minstens een van sy/haar
kaartjies ooreenstem met dié in die wenkaartjie. ’n Lotery van hierdie vorm word deur die
viertal 〈m,n, t, k〉 aangedui, en die prys staan as ’n k-prys bekend. ’n Deelnemer se kaartjies
staan ook as a spelversameling bekend.

’n Lotery-deelnemer mag poog om sy spelversameling só te selekteer dat die waarskynlikheid
om ’n k-prys te wen, minstens 0 < ψ ≤ 1 is. Die deelnemer sal natuurlik die koste wat met
so ’n spelversameling gepaard gaan, wil minimeer, wat beteken dat die kardinaliteit van sy
spelversameling so klein as moontlik moet wees. Hierdie kombinatoriese minimeringsprobleem
staan as die onvolledige lottery-probleem bekend en is vir die eerste keer deur Gründlingh [16]
bestudeer, wat ook die verwante hulpbronbenuttingsprobleem geformuleer het. In laasgenoemde
probleem word daar gesoek na ’n spelversameling van vooraf-gespesifiseerde kardinaliteit wat
die waarskynlikheid om ’n k-prys te wen, maksimeer.

Gründlingh [16] het die onvolledige lottery-probleem en die hulpbronbenuttingsprobleem in die
spesiale geval oorweeg waar n = t. In hierdie tesis word beide probleme in die algemeen oor-
weeg waar n 6= t. Eksakte en heuristiese oplossingstegnieke word vir beide probleme daarge-
stel en met mekaar in terme van oplossingskwaliteit, oplossingstyd en praktiese haalbaarheid
vergelyk. Die eerste oplossingstegniek behels ’n wiskundige programmeringsformulering van
beide probleme. Die probleme word deur middel van hierdie benadering vir klein loterye opge-
los. ’n Uitputtende enumerasietegniek, wat gebruik maak van die konsep van spelversameling
oorvleuelingstrukture [5, 16], word daarna in oënskou geneem en beide kombinatoriese optime-
ringsprobleme word vir dieselfde klein loterye met behulp van hierdie tegniek opgelos. Die
konsep van ’n spelversameling oorvleuelingstruktuur word verder ondersoek en in ’n benaderde
oplossingstegniek vir beide kombinatoriese optimeringsprobleme gëınkorporeer deur gebruik te
maak van verskeie metaheuristiese oplossingsbenaderings, insluitende ’n ge-
simuleerde afkoelingsalgoritme, ’n tabu-soektog en ’n genetiese algoritme.

Die fokus in die tesis verskuif laastens na ’n ander probleem oor loterye. ’n Ondersoek word
geloots na die waarskynlikheid, P (N,λ), dat λ lottery-deelnemers ’n k-prys sal deel indien ’n
totaal van N kaartjies in die lotery 〈m,n, t, k〉 gekoop word. Spesiale aandag word aan hierdie
probleem geskenk in die geval van die boerpot-prys in die Suid-Afrikaanse nasionale lotery, Lotto,
wat deur die viertal 〈49, 6, 6, 6〉 voorgestel word, en hoe die waarde van P (N,λ) bëınvloed word
deur die manier waarop deelnmers hul spelversamelings selekteer.

v



vi



Acknowledgements

I would like to thank the following people:

• My parents, for their love, moral, and financial support throughout my studies.

• My friends and family for their patience and support when I ended up spending more
time with my studies instead of with them.

• My supervisor, Prof Jan van Vuuren, for sharing his broad knowledge with me, for his pa-
tience, and for his belief in me — all factors which inspired me to grow more academically
than I ever expected.

• Prof Stephan Visagie for introducing me to the wonderful field of Operations Research.

• Dr Alewyn Burger for his friendly and invaluable advice.

• Taryn Johnston for her caring love and support throughout the time that this thesis was
written.

The Department of Logistics is hereby thanked for the use of their computing facilities and office
space. The financial support of the South African National Research Foundation (NRF) under
grant number GUN 2072999 is hereby acknowledged. Any opinions or findings in this thesis are
those of the authour and do not necessarily reflect the views of Stellenbosch University or the
NRF.

vii



viii



Table of Contents

List of Figures xiii

List of Tables xv

List of Algorithms xix

List of Reserved Symbols xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Two kinds of lottery isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Isomorphic lotteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Isomorphic playing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 15

2.1 The complete lottery problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Results from graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Bounds on L1(m,n, t, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Known values of L1(m,n, t, k) . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 An ILP approach to the complete lottery problem . . . . . . . . . . . . . 18

2.2 The incomplete lottery and resource utilisation problems . . . . . . . . . . . . . . 20

2.2.1 Known values of Lψ(m,n, t, k) and Ψ`(m,n, t, k) . . . . . . . . . . . . . . 20

2.2.2 An ILP approach to the incomplete lottery problem . . . . . . . . . . . . 21

2.2.3 Approximate methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Overlapping playing set structures . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The number of winners in lottery draws . . . . . . . . . . . . . . . . . . . . . . . 25

ix



x Table of Contents

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A new upper bound from graph theory 27

3.1 Bounds from graph domination theory: The case n = t . . . . . . . . . . . . . . . 27

3.2 Bipartite graph representation of the lottery problem . . . . . . . . . . . . . . . . 29

3.3 A greedy bound on the complete lottery number . . . . . . . . . . . . . . . . . . 30

3.4 A greedy bound on the incomplete lottery number . . . . . . . . . . . . . . . . . 32

3.5 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 A mathematical programming approach 39

4.1 An ILP formulation of the complete lottery problem . . . . . . . . . . . . . . . . 40

4.2 An ILP formulation of the incomplete lottery problem . . . . . . . . . . . . . . . 42

4.3 An ILP formulation of the resource utilisation problem . . . . . . . . . . . . . . . 44

4.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Analysis of results for the incomplete lottery problem . . . . . . . . . . . 50

4.4.2 Analysis of results for the resource utilisation problem . . . . . . . . . . . 53

4.5 Boundaries of feasibility via an ILP approach . . . . . . . . . . . . . . . . . . . . 54

4.6 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Exhaustive Enumeration 59

5.1 The lottery tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Creating the nodes in the lottery tree . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Assigning probability-of-win values to the nodes . . . . . . . . . . . . . . 61

5.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 The lottery 〈6, 3, 3, 2〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 The lottery 〈7, 3, 4, 2〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 The lottery 〈7, 5, 4, 3〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Pruning of the lottery tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Overlapping playing set structures: An approximation approach 83

6.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 A random search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Two local search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Table of Contents xi

6.3.1 The neighbourhood of a solution . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.3 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 A genetic algorithmic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 A classical genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.2 A genetic algorithm combined with a local search . . . . . . . . . . . . . . 101

6.5 Results obtained for small lottery instances . . . . . . . . . . . . . . . . . . . . . 102

6.6 Tabu search applied to larger lotteries . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 On the expected number of lottery winners 107

7.1 A naive analysis of the lottery 〈49, 6, 6, 6〉 . . . . . . . . . . . . . . . . . . . . . . 108

7.1.1 An analytical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.2 A simulation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 . . . . . . . . . . . 110

7.2.1 Popular number choices in the lottery 〈49, 6, 6, k〉 . . . . . . . . . . . . . . 110

7.2.2 An analysis of winners assuming popular number choices . . . . . . . . . 112

7.2.3 Interpretation of simulation results . . . . . . . . . . . . . . . . . . . . . . 115

7.2.4 Expected waiting time between extreme events . . . . . . . . . . . . . . . 126

7.3 An analysis of small lottery instances . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusion 139

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Novel contributions in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

References 145

A Some known lottery numbers 149

B Incomplete lottery problem modelled as an ILP 151

C Resource utilisation problem modelled as an ILP 157

D Programming code 165

E Values of P (N,λ) for small lotteries 177



xii Table of Contents



List of Figures

1.1 Lottery graph representing the lottery 〈7, 5, 4, 3〉 . . . . . . . . . . . . . . . . . . 5

1.2 Graphic representations of the lotteries 〈5, 3, 2, 2〉 and 〈5, 2, 3, 2〉 . . . . . . . . . . 10

1.3 An overlapping playing set structure for a lottery in which m = 6 and n = 3 . . . 11

1.4 Optimal overlapping playing set structures for the lottery 〈10, 5, 4, 3〉 . . . . . . . 11

2.1 The exhaustive enumeration lottery tree for the lottery 〈5, 3, 3, 2〉 . . . . . . . . . 24

3.1 A regular graph representing the lottery 〈6, 3, 3, 2〉 . . . . . . . . . . . . . . . . . 29

4.1 Playing set cardinality as a function of ψ for the lottery 〈9, 4, 4, 3〉 . . . . . . . . 51

4.2 Playing set cardinality as a function of ψ for the lottery 〈10, 5, 4, 3〉 . . . . . . . . 52

4.3 Execution time as a function of ψ for the lottery 〈9, 4, 4, 3〉 . . . . . . . . . . . . . 52

4.4 Execution time as a function of ψ for the lottery 〈10, 5, 4, 3〉 . . . . . . . . . . . . 53

4.5 Ψ`(9, 4, 4, 3) as a function of playing set cardinality . . . . . . . . . . . . . . . . . 55

4.6 Ψ`(10, 5, 4, 3) as a function of playing set cardinality . . . . . . . . . . . . . . . . 56

5.1 The exhaustive enumeration lottery tree for the lottery 〈6, 3, 3, 2〉 . . . . . . . . . 63

5.2 The exhaustive enumeration lottery tree for the lottery 〈7, 3, 4, 2〉 . . . . . . . . . 65

5.3 An example of the second set of children for the lottery 〈7, 3, 4, 2〉 . . . . . . . . . 68

5.4 The exhaustive enumeration lottery tree for the lottery 〈7, 5, 4, 3〉 . . . . . . . . . 69

5.5 An example of the second set of children for the lottery 〈7, 5, 4, 3〉 . . . . . . . . . 70

5.6 Duplicate overlapping playing set structures . . . . . . . . . . . . . . . . . . . . . 71

6.1 Graph of Ψ6(12, 5, 7, 4) as a function of random search iterations . . . . . . . . . 85

6.2 Algorithm 6.3 applied to the vector (3, 1, 0, 0, 1, 0, 1, 2) . . . . . . . . . . . . . . . 88

6.3 The neighbourhood of the solution represented by the vector (4, 1, 0, 0, 0, 0, 1, 2) . 88

6.4 Graph of resource utilisation as a function of simulated annealing iterations . . . 91

6.5 Graph of resource utilisation as a function of tabu search iterations . . . . . . . . 93

6.6 Graphs of resource utilisation as a function of genetic algorithm iterations . . . . 97

xiii



xiv List of Figures

6.6 Graphs of resource utilisation as a function of genetic algorithm iterations . . . . 98

6.6 Graphs of resource utilisation as a function of genetic algorithm iterations . . . . 99

6.7 Resource utilisation as a function of hybrid algorithm iterations . . . . . . . . . . 100

7.1 Physical layout of a lottery ticket for the South African National Lottery . . . . 111

7.2 Six balls and seven urns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 P (7.5M,λ) and P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A tickets only) . . . . 119

7.4 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 120

7.5 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 121

7.6 λ as a function of u and θ for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . 122

7.7 λ as a function of u and θ for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . 123

7.8 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & C(4) tickets) . . . . . . . . . . . 124

7.9 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & C(4) tickets) . . . . . . . . . . . 125

7.10 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & D(4, 4) tickets) . . . . . . . . . 127

7.11 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & D(4, 4) tickets) . . . . . . . . . . 128

7.12 λ as a function of u and θ for the lottery 〈8, 3, 5, 2〉 . . . . . . . . . . . . . . . . . 133

7.13 λ as a function of u and θ for the lottery 〈9, 4, 5, 3〉 . . . . . . . . . . . . . . . . . 136



List of Tables

1.1 Solution to the incomplete lottery problem for the lottery 〈7, 5, 4, 3〉 . . . . . . . 6

2.1 Known values of L1(m,n, n, k) for small lottery instances (2 ≤ m ≤ 10) . . . . . 19

3.1 The greedy bound, (3.14), compared to known upper bounds for small lotteries . 33

3.2 The greedy bound, (3.14), compared to known upper bounds for large lotteries . 34

3.3 The upper bound (3.17) for 6 ≤ m ≤ 8 . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 The upper bound (3.17) for m = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 The upper bound (3.17) for m = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 An analysis of the goodness of a bound for different lottery problem instances . . 38

4.1 Dimensions of the ILP formulation of the complete lottery problem . . . . . . . . 41

4.2 Results from solving for Lψ(6, 4, 3, 2) modelled as an ILP formulation . . . . . . . 44

4.3 Dimensions of the ILP formulations (4.9)–(4.12) and (4.15)–(4.18) . . . . . . . . 45

4.4 Results from solving for Ψ`(6, 4, 3, 2) when modelled as an ILP formulation . . . 47

4.5 The small (non-isomorphic) lottery instances which are investigated . . . . . . . 49

4.6 Isomorphic lotteries (6 ≤ m ≤ 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Results from solving for Lψ(9, 4, 4, 3) when formulated as an ILP . . . . . . . . . 50

4.8 Results from solving for Lψ(10, 5, 4, 3) when formulated as an ILP . . . . . . . . 51

4.9 Results from solving for Ψ`(9, 4, 4, 3) when formulated as an ILP . . . . . . . . . 53

4.10 Results from solving for Ψ`(10, 5, 4, 3) when formulated as an ILP . . . . . . . . . 54

4.11 Results obtained by explicitly fixing variables in an ILP formulation . . . . . . . 57

4.12 Results obtained when solving for Ψ5(10, 5, 4, 3) to completion . . . . . . . . . . . 57

5.1 Participant ticket P1, with all government tickets Gi for the lottery 〈6, 3, 3, 2〉 . . 64

5.2 Participant ticket P1, with all government tickets Gi for the lottery 〈7, 3, 4, 2〉 . . 66

5.3 Participant tickets P1 & P2, with government tickets Gi in the lottery 〈7, 5, 4, 3〉 . 67

5.4 All possible permutations of (5.1) in the children of ~X
(2)

= (1, 2, 2, 1) . . . . . . . 76

xv



xvi List of Tables

5.5 Solutions found via the exhaustive enumeration lottery tree method . . . . . . . 78

6.1 Solutions from the simulated annealing method for various parameter values . . . 91

6.2 Solutions from the tabu search method for various parameter values . . . . . . . 93

6.3 The best resource utilisation achieved via numerical methods . . . . . . . . . . . 102

7.1 The probability of λ participants winning in the lottery 〈49, 6, 6, 6〉 . . . . . . . . 109

7.2 The value, E(N,λ) for the lottery 〈49, 6, 6, 6〉 (N = 7.5M and N = 20M) . . . . 110

7.3 The number of type B(κ) and type C(κ) tickets in the lottery 〈49, 6, 6, k〉 . . . . 112

7.4 E(7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 113

7.5 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 113

7.6 E(20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 114

7.7 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & B(4) tickets) . . . . . . . . . . . 114

7.8 The number of distinct type D(κ, c) tickets in the lottery 〈49, 6, 6, k〉 . . . . . . . 116

7.9 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & C(4) tickets) . . . . . . . . . . . 116

7.10 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & C(4) tickets) . . . . . . . . . . . 117

7.11 P (7.5M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & D(4, 4) tickets) . . . . . . . . . 118

7.12 P (20M,λ) for the lottery 〈49, 6, 6, 6〉 (type A & D(4, 4) tickets) . . . . . . . . . . 118

7.13 Expected number of winners (type A & B(4) tickets, N = 7 500 000) . . . . . . . 122

7.14 Expected number of winners (type A & B(4) tickets, N = 20 000 000) . . . . . . 122

7.15 Expected number of winners (type A & C(4) tickets, N = 7 500 000) . . . . . . . 123

7.16 Expected number of winners (type A & C(4) tickets, N = 20 000 000) . . . . . . 123

7.17 Expected number of winners (type A & D(4, 4) tickets, N = 7 500 000) . . . . . . 126

7.18 Expected number of winners (type A & D(4, 4) tickets, N = 20 000 000) . . . . . 126

7.19 Estimated time between extreme events (type A & B(4) tickets) . . . . . . . . . 130

7.20 Estimated time between extreme events (type A & C(4) tickets) . . . . . . . . . 131

7.21 Estimated time between extreme events (type A & D(4, 4) tickets) . . . . . . . . 132

7.22 Estimated time between extreme events (type A & B(4) tickets, N = 13 718 105) 133

7.23 P (N,λ) for the lottery 〈8, 3, 5, 2〉 (The case of type A & B(4) tickets) . . . . . . 134

7.24 P (N,λ) for the lottery 〈9, 4, 5, 3〉 (The case of type A & B(4) tickets) . . . . . . 135

7.25 Expected number of winners in the lottery 〈8, 3, 5, 2〉 (Type A & B(2) tickets) . . 135

7.26 Expected number of winners in the lottery 〈9, 4, 5, 3〉 (Type A & B(2) tickets) . . 136

A.1 An excerpt from Ben Li’s lotto tables page . . . . . . . . . . . . . . . . . . . . . 149

B.1 Results obtained when solving for Lψ(m,n, t, k) for small lottery instances . . . . 151



List of Tables xvii

C.1 Results obtained when solving for Ψ`(m,n, t, k) for small lottery instances . . . . 157

E.1 P (N,λ) associated with the lotteries 〈6, 3, 3, 2〉–〈8, 3, 4, 2〉 . . . . . . . . . . . . . 177

E.2 P (N,λ) associated with the lotteries 〈8, 3, 5, 2〉–〈9, 3, 3, 2〉 . . . . . . . . . . . . . 178

E.3 P (N,λ) associated with the lotteries 〈9, 3, 4, 2〉–〈9, 4, 4, 2〉 . . . . . . . . . . . . . 179

E.4 P (N,λ) associated with the lotteries 〈9, 4, 4, 3〉–〈10, 3, 3, 2〉 . . . . . . . . . . . . . 180

E.5 P (N,λ) associated with the lotteries 〈10, 3, 4, 2〉–〈10, 4, 3, 2〉 . . . . . . . . . . . . 181

E.6 P (N,λ) associated with the lotteries 〈10, 4, 4, 2〉–〈10, 4, 6, 2〉 . . . . . . . . . . . . 182

E.7 P (N,λ) associated with the lotteries 〈10, 4, 6, 3〉–〈10, 5, 4, 3〉 . . . . . . . . . . . . 183

E.8 P (N,λ) associated with the lotteries 〈10, 5, 5, 2〉–〈10, 5, 5, 4〉 . . . . . . . . . . . . 184



xviii List of Tables



List of Algorithms

3.1 Greedy Covering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Algorithm Main, of the exhaustive enumeration lottery tree method . . . . . . . . 72

5.2 Algorithm calcv, of the exhaustive enumeration lottery tree method . . . . . . . . 72

5.3 Algorithm LevelK, of the exhaustive enumeration lottery tree method . . . . . . . 73

5.4 Algorithm isDuplicate, of the exhaustive enumeration lottery tree method . . . . . 74

5.5 Algorithm toPrune, of the exhaustive enumeration lottery tree method . . . . . . 75

6.1 A random search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The first round of swapping elements in an overlapping playing set structure . . . 86

6.3 The second round of swapping elements in an overlapping playing set structure . . 86

6.4 A simulated annealing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 A tabu search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Classical genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 Mating of two individuals in a genetic algorithm . . . . . . . . . . . . . . . . . . . 95

6.8 Finding a feasible child . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 Genetic algorithm combined with a local search . . . . . . . . . . . . . . . . . . . 101

7.1 Monte Carlo simulation of lottery draws for the lottery 〈m,n, t, k〉 . . . . . . . . . 109

xix



xx List of Algorithms



List of Reserved Symbols

A A
(
m
t

)
×
(
m
n

)
binary adjacency matrix of the lottery graph G〈m,n, t, k〉.

aij A binary variable indicating the presence of an edge between government ticket
i and participant ticket j. The variables aij form the matrix A.

B(κ) A type of lottery ticket in which the difference between any two consecutive
numbers is no less than κ.

C A covering set C ⊆ Φ(Um, n) with the property that, for any element φk ∈
Φ(Um, k), there exists an element c ∈ C such that {φk} ∩ Φ(c, k) 6= ∅.

C(κ) A type of lottery ticket in which exactly κ of the numbers in it are calendar
numbers (i.e. in the range 1, 2, . . . , 31).

C(m,n, t) The optimal solution to the covering problem, known as the covering number.
It represents the minimum cardinality of a covering set C. The covering number
is also the answer to the complete lottery problem for lotteries of the form
〈m,n, t, t〉.

DF A set comprising overlapping playing set structures which fail a so-called dom-
ination test.

DT A set comprising overlapping playing set structures which pass a so-called
domination test.

D(κ, c) A type of lottery ticket in which the difference between any two consecutive
numbers is no less than κ, and exactly c of the numbers are calendar numbers.

E(N,λ) The expected number of government tickets covered λ times by N participant
tickets.

γ(G) The cardinality of a minimum dominating set of graph G.
G〈m,n, n, k〉 A regular graph of order

(
m
n

)
. This graph may represent a lottery of the form

〈m,n, n, k〉. The vertices in this graph represent lottery tickets of cardinality
n, and two vertices are adjacent if the tickets which they represent share a
common k-subset.

G〈m,n, t, k〉 A bipartite lottery graph of order
(
m
n

)
+
(
m
t

)
. There are

(
m
n

)
vertices in this

graph representing the possible participant tickets in a lottery, and the re-
maining

(
m
t

)
vertices in this graph represent the possible government tickets.

A vertex representing a participant ticket is adjacent to a vertex representing
a government ticket if those two tickets share a common k-subset.

k The minimum number of lottery ticket numbers that a participant ticket is
required to have in common with the winning government ticket in order to
win a k-prize in a lottery.

` The cardinality of a participant’s playing set.
λ The number of concurrent winners of a k-prize in a lottery draw.
L`(m,n, t, k) A participant’s playing set of cardinality ` in the lottery 〈m,n, t, k〉.

xxi



xxii List of Reserved Symbols

Lψ(m,n, t, k) The incomplete lottery number, representing the smallest possible playing set
cardinality which guarantees a participant a probability, ψ, of winning a k-
prize in the lottery 〈m,n, t, k〉.

m The cardinality of the universal set Um in the lottery 〈m,n, t, k〉 from which
n numbers may be chosen to be included in a participant’s ticket, and from
which t numbers are chosen in order to form the winning government ticket.

M(~X
(`)

) The multiplicity of an overlapping playing set structure represented by the
vector ~X

(`)
.

n The cardinality of a participant ticket in the lottery 〈m,n, t, k〉.
ηψ(m,n, t, k) The lottery characterisation number of the lottery 〈m,n, t, k〉 denoting the

number of different overlapping playing set structures associated with the op-
timal answer to the incomplete lottery problem and the resource utilisation
problem.

N The number of tickets purchased in total by the participants in a lottery draw.
N [v] The set of government (or participant) tickets which have k or more numbers

in common with participant (or government) ticket v. This set is known as
the neighbourhood of ticket v.

O(g(n)) A function f(n) grows no faster than g(n) as n → ∞ (denoted by f(n) =
O(g(n))), if there exists constants c > 0 and n0 ∈ N such that 0 ≤ f(n) ≤
cg(n) for all n ≥ n0.

θ The proportion of the total participant tickets purchased in a lottery that are
special tickets (i.e. of type A,B(κ), C(κ) or D(κ, c)).

P (N,λ) The probability that λ of the tickets selected by the participants in a lottery
draw are winning tickets, under the assumption that N tickets are selected in
total by the participants.

P (x) The objective function in an ILP formulation of either the incomplete lottery
problem or the resource utilisation problem.

Φ(Um, n) The set of participant tickets consisting of n numbers chosen from Um.
Φ(Um, t) The set of government tickets consisting of t numbers chosen from Um.
ψ The desired probability-of-win value in the incomplete lottery problem.
Ψ`(m,n, t, k) The maximum resource utilisation value associated with a playing set of car-

dinality ` in the lottery 〈m,n, t, k〉.
Rj Given the partite sets V1 and V2 of the bipartite lottery graph G〈m,n, t, k〉,

Rj is the number of vertices remaining in G〈m,n, t, k〉 after the jth iteration
of the greedy covering algorithm (Algorithm 3.1).

t The number of lottery numbers chosen from Um in a government ticket in the
lottery 〈m,n, t, k〉.

T (m,n, t) The Turán number, denoting the smallest number of n-subsets of Um such
that any t-subset of Um contains at least one of these n-subsets.

Ti The ith ticket in a participant’s playing set.
Um The universal set of numbers {1, . . . ,m} in the lottery 〈m,n, t, k〉.
u The number of special participant tickets u ∈ {u1, u2, . . . , uz} covering a win-

ning government ticket.
V1 The vertices representing participant tickets in the bipartite lottery graph

G〈m,n, t, k〉.
V ′1 A bipartite covering of minimum cardinality in the bipartite minimum covering

problem.
V ′′1 The bipartite covering set obtained via the greedy covering algorithm (Algo-

rithm 3.1).



List of Reserved Symbols xxiii

V2 The vertices representing government tickets in the bipartite lottery graph
G〈m,n, t, k〉.

wj The number of government tickets covered by uj special tickets (1 ≤ j ≤ z).
xi A binary variable indicating the presence or absence of participant ticket i in

the participant’s playing set.
~X

(`)
A vector representing an overlapping playing set structure of cardinality `.

x
(`)
(t`t`−1...t2t1)2

The number of elements in a given compartment in a overlapping playing set
structure.

~Y An ancestor vector of a vector ~X
`

in the exhaustive enumeration lottery tree.
yj A binary variable indicating whether government ticket j is covered by the

participant’s playing set.



xxiv List of Reserved Symbols



CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Two kinds of lottery isomorphisms . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Isomorphic lotteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Isomorphic playing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Background

A lottery is defined in the Oxford English Dictionary [40] as “An arrangement for the distribution
of prizes by chance among persons purchasing tickets. Slips or lots, numbered in correspondence
with the tickets, and representing either prizes or blanks, are drawn from a wheel. Usually
intended as a means of raising money for the benefit of the promoters, of the State, or of some
charitable institution.”

The history of lotteries dates back to biblical times where in the book of Numbers, Moses
is instructed by God to divide land amongst different families by drawing lots. Many other
references to drawing lots appear in the Bible. One of the oldest non-biblical records of lotteries
taking place dates back to 200 BC—it is documented that Emperor Cheung Leung invented
the Chinese Lottery, presently known as Keno [35]. The original purpose of the Chinese lottery
was to raise funds for taxes. Funds were also used to support the building of the Great Wall of
China. In Europe, one of the oldest records of a lottery was a raffle held by the painter Jan van
Eyck, in 1446. As from the year of 1465, lotteries gained popularity in Belgium to such an extent
that they were held on a regular basis with the purpose of raising money for the building of
houses, caring for the underprivileged, construction of religious buildings, and the construction
of much needed water canal systems. This method of raising funds, and awarding of prizes to
participants by chance was possibly given its name in Italy. Results from an Italian election
were considered highly controversial, and therefore, in a re-election all the candidates names
were replaced my numbers. This caused the election of a winning candidate to be completely
up to chance. In the Italian language, the word lottery means “unchangeable fate.” In 1539

1



2 Chapter 1. Introduction

King Francis I of France found his kingdom to be in financial debt, and resorted to running
a lottery in order to raise funds. In the year 1567, Queen Elizabeth I established the English
lottery in which 400 000 tickets were for sale to the public. Prizes did not only include cash, but
also included china and tapestries. Originally, the aim of the English lottery was to raise money
for the repairing of harbours. Following the success of the English lottery, the first London
lottery was started by King James I in 1612. The funds raised from this lottery were used for
the building of the colony of Jamestown, the first English colony in America [12]. Lotteries
were also used in many countries to fund cultural activities. In the year 1753, a special lottery
was held to raise funds used to build the British Museum. At the same time, it is documented
that Casanova, a venetian adventurer and author, urged Louis XV to found the Loterie Royale
later to be known as the Loterie National. This lottery was based on the game Keno, where
players could choose one to five numbers between 1 and 90. Lotteries started to gain popularity
in America in the 1700s. Benjamin Franklin was able to finance the construction of cannons
for the Revolutionary War by using some of the money earned from running various lotteries.
It is also documented that George Washington founded a lottery in Virginia in order to finance
the construction of roads to the west of that state. The popularity of lotteries grew even more
in the United States after the constitution was adopted. The funds raised in those lotteries
were used to fund over 300 schools and 200 churches. Universities such as Columbia, Harvard,
Princeton and Yale were also built using funds from popular lotteries in America. The game
was also used to improve civilian life and this included the building of orphanages, libraries,
hospitals, jails and courthouses.

Unfortunately, corruption began to plague lotteries, and big jackpots were often advertised,
but no prizes were awarded to participants [35]. This caused the civilians of North American
regions to start campaigning for the closure and banning of lotteries. Religious organizations
played a significant role in these fights. Together with the prohibition of alcohol, the abolition
of slavery and workers’ rights, the running of lotteries was one of the most controversial topics
of those times. Throughout the remainder of the 19th century and early 20th century, many
groups and organisations fought to ban lotteries which had become associated with criminals
and moral decay in society. In the year 1819, the Province of Quebec in Canada made lotteries
illegal, starting a drastic trend throughout North America and the world. The state of New
York quickly followed suit in 1820. By the year 1856 any form of a lottery was a banned practice
in Canada. The US Supreme Court eventually prohibited all forms of gambling in 1905.

It took many years for lotteries to be reinstated. The Queensland state lottery of Australia was
among the first to be reinstated in 1917. During the next nine decades, lotteries would grow ever
more popular throughout the world. During the 1960s, and 1970s, the United States of America
and Canada reinstated lotteries, respectively. In 1973, the Olympic Lottery Corporation of
Canada was formed with the aim of raising funds for the hosting of the 1976 Olympic Games
which were to be held in Montreal. From those years to the present day, strict laws have been
put in to place throughout the world in order to make lotteries more reliable and trustworthy
to the general public.

Currently, lotteries are present in most major countries throughout the Americas, Europe, Asia,
and Australasia. In Africa, only South Africa and Kenya run legal lotteries. In many countries,
lotteries are controlled by the governments themselves. The existence of on-line lotteries makes
the purchase of tickets more convenient for participants [17]. Some on-line lotteries are operated
privately, while some are linked with major well-known lotteries. In the United States, each
state has it’s own lottery which is operated according to the specific laws of that state. It
is common for the funds raised by lotteries in the United States to be donated to the public
education system. In Canada, there are two nationwide lotteries in operation. In New Zealand,



1.2. Problem descriptions 3

the national lottery is controlled by the government and prizes are often small in comparison
with other countries’ national lotteries. In the United States, participants can choose between
an annuity payment or a much smaller than advertised lump sum. In many countries, lottery
winnings are not taxed. Many lottery draws are overseen by independent auditors in order to
assure participants that no fraudulent activities are involved in the draw. It has been widely
reported that people (even non-participants) are tricked into believing they have won a lottery
jackpot after receiving a hoax e-mail.

In the South African National Lottery, Lotto, a participant forms a playing set of tickets, in
which each ticket consists of 6 numbers chosen from a universal set containing 49 numbers. The
lottery board then forms the winning ticket by also choosing 6 numbers from the same universal
set. A bonus ball is also drawn, which gives participants and additional chance of winning a
prize. The more numbers that a participant’s ticket has in common with the winning ticket,
the higher the financial reward for the participant. A draw takes place every Wednesday and
Saturday. The South African National Lottery is a major source of charity to many beneficiaries,
such as women in technology, rural women, women entrepreneurs, the youth, non-governmental
organizations, and community based organizations [13]. The structure of this lottery implies
that there are

(
49
6

)
= 13 983 816 possible lottery tickets from which the participant may choose.

It may therefore be deduced that if a participant purchases one ticket, he/she will stand a
1

13 983 816 = 0.000 007 15% chance of winning the jackpot. In the South African National Lottery,
the largest prize from a single winning ticket was R30 352 465 [31], while the largest amount won
from a single winning ticket, worldwide, was $365 000 000 in the United States [43]. In South
Africa, a record 33 participants won the jackpot on the 15th of March 2003 [31], and on the
7th of February 2009, 18 players won the jackpot. This led some people to believe that, due to
the extremely small probability of such occurences, there were fraudulent activities taking place
during or after the lottery draw and some called for an independant investigation to be carried
out regarding this issue [14]. Despite criticism from certain sectors of the South African public,
the South African National Lottery remains popular according to 2006 research, in which it was
found that 82 percent of the population played the lottery once a week [44].

1.2 Problem descriptions

Suppose a lottery consists of forming a winning ticket by randomly choosing t distinct numbers
from the universal set Um = {1, . . . ,m}. A participant also forms a set of tickets, each consisting
of n distinct numbers from Um, and is awarded a prize if k or more numbers in at least one of
his/her tickets matches those of the winning ticket. A lottery of this form is denoted by the
quadruple 〈m,n, t, k〉, and the prize is known as a k-prize. The participant’s set of tickets is
also known as a playing set.

The participant may wish to form a playing set which yields a probability of at least 0 < ψ ≤ 1
of winning a k-prize. Naturally, the participant will want to minimise the cost of forming such
a playing set, which means that the cardinality of the playing set should be as small as possible.
This combinatorial minimisation problem is known as the incomplete lottery problem, introduced
in [16]. A related problem is the so-called resource utilisation problem, also introduced in [16].
In this problem one attempts to select a (fixed) playing set of cardinality ` in such a way that
the probability of winning a k-prize is maximised.

These problems may be defined more formally. To this end, suppose A is a finite set of integers
and let Φ(A, a) denote the set of all (unordered) subsets of cardinality a < |A| from the set A.
Each ticket v ∈ Φ(Um, n) in a playing set has a neighbourhood N [v] ⊆ Φ(Um, t) associated with



4 Chapter 1. Introduction

it. This neighbourhood is the set of all tickets from Φ(Um, t) which have at least k numbers in
common with the ticket v, that is N [v] = {u ∈ Φ(Um, t) : Φ(v, k) ∩ Φ(u, k) 6= ∅}.

Definition 1.1 (Incomplete lottery problem) A (1 − ψ)-incomplete lottery set for
〈m,n, t, k〉 is a subset Lψ(Um, n, t, k) ⊆ Φ(Um, n) with the property that⋃

v∈Lψ(Um,n,t,k)

N [v]

has cardinality at least
⌈
ψ
(
m
t

)⌉
. The incomplete lottery problem is: What is the smallest possible

cardinality of a (1− ψ)-incomplete lottery set Lψ(Um, n, t, k)? Denote the answer to this prob-
lem by the incomplete lottery number Lψ(m,n, t, k). An incomplete lottery set Lψ(Um, n, t, k)
of minimum cardinality, Lψ(m,n, t, k), is referred to as an Lψ(m,n, t, k)-set for the lottery
〈m,n, t, k〉. �

Let Φ(Um, n) be known as the set of participant tickets, and let Φ(Um, t) be known as the set of
government tickets. A small instance of the incomplete lottery problem is illustrated in following
simple example.

Example 1.1 Consider the lottery 〈7, 5, 4, 3〉. The set of all unordered sets from which the
winning lottery ticket may be chosen is

Φ(U7, 4) = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7},
{1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 6, 7}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 5, 6},
{1, 3, 5, 7}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 6, 7}, {1, 5, 6, 7}, {2, 3, 4, 5},
{2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 6, 7}, {2, 4, 5, 6}, {2, 4, 5, 7},
{2, 4, 6, 7}, {2, 5, 6, 7}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}},

while the set of all unordered sets from which the participant can chose tickets is

Φ(U7, 5) = {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 7}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 7},
{1, 2, 3, 6, 7}, {1, 2, 4, 5, 6}, {1, 2, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 5, 6, 7},
{1, 3, 4, 5, 6}, {1, 3, 4, 5, 7}, {1, 3, 4, 6, 7}, {1, 3, 5, 6, 7}, {1, 4, 5, 6, 7},
{2, 3, 4, 5, 6}, {2, 3, 4, 5, 7}, {2, 3, 4, 6, 7}, {2, 3, 5, 6, 7}, {2, 4, 5, 6, 7},
{3, 4, 5, 6, 7}}.

The different participant tickets and the government tickets which have at least 3 numbers in
common with them are shown graphically in Figure 1.1. For different values of ψ, the car-
dinality of an optimal playing set changes. For this lottery, the incomplete lottery numbers
Lψ(7, 5, 4, 3) = 1 for all 0 < ψ ≤ 25

35 , Lψ(7, 5, 4, 3) = 2 for all 25
35 < ψ ≤ 34

35 , and Lψ(7, 5, 4, 3) = 3
for all 34

35 < ψ ≤ 1 may be deduced via a brute force approach. �

The resource utilisation problem, mentioned above, is defined formally below.

Definition 1.2 (Resource utilisation problem) The resource utilisation of a playing set
L` = {v1, . . . , v`} ⊆ Φ (Um, n) in the lottery 〈m,n, t, k〉 is defined as the proportion

0 <

∣∣∣⋃`
i=1N [vi]

∣∣∣(
m
t

) ≤ 1,



1.2. Problem descriptions 5

{1,2,6,7}

{1,2,3,4,5}

{3,4,5,6,7}

Figure 1.1: Lottery graph representing the lottery 〈7, 5, 4, 3〉. All the black vertices represent par-
ticipant tickets, and all the white vertices represent government tickets. A vertex which represents a
government ticket is joined to a vertex which represents a participant ticket if the two tickets have at
least three numbers in common. It can be seen that if the participant were to select the playing set
{{1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}}, 34 out of the 35 government tickets are joined by an edge to at least one
of the playing set tickets. The only government ticket which is not joined by an edge to any of the two
tickets in the participant’s playing set is ticket {1, 2, 6, 7}. If this playing set is chosen by the participant,
he/she will have a 34

35 ≈ 0.9714 probability of winning a 3-prize. Note that in this lottery instance,
5 = n 6= t = 4, which implies that the vertices which represent participant tickets have a higher de-
gree than the vertices which represent government tickets, and that explains why the graph seems more
populated with edges nearer to the area where the participant tickets are.

and therefore the resource utilisation problem is: Given a fixed playing set cardinality of 1 ≤ ` ≤
L1 (m,n, t, k), what is the maximum resource utilisation that may be achieved by some playing
set L` of fixed cardinality `? Denote the answer to this problem by the resource utilisation
number,

Ψ` (m,n, t, k) = max
v1,...,v`∈Φ(Um,n)

∣∣∣⋃`
i=1N [vi]

∣∣∣(
m
t

) .

A playing set of cardinality ` that realises this maximum resource utilisation of Ψ` (m,n, t, k) is
referred to as a Ψ` (m,n, t, k)-set for 〈m,n, t, k〉. �

The notion of the resource utilisation problem is illustrated next.

Example 1.2 Suppose a participant in the lottery 〈7, 5, 4, 3〉 wants to buy two tickets and
would like to maximise the associated resource utilisation. If all the playing sets of cardi-
nality 2 are examined, various resource utilisation values are obtained from which a play-
ing set must be chosen that achieves the maximum value, Ψ2〈7, 5, 4, 3〉. For example, the
playing set {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}} yields a resource utilisation of 31

34 , but the playing set



6 Chapter 1. Introduction

{{1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}} yields a resource utilisation of 34
35 . By analysing all the possible

playing sets it is found that no playing set of cardinality 2 yields a resource utilisation larger
than 34

35 , and hence Ψ2〈7, 5, 4, 3〉 = 34
35 . �

Table 1.1: Solution to the incomplete lottery problem for the lottery 〈7, 5, 4, 3〉 presented in Example
1.2. The first column contains all the possible values of ψ. The second column contains a playing set
meeting the desired probability-of-win value in the first column. The third column contains all the
government tickets which have k = 3 or more numbers in commmon with at least one ticket in the
playing set in the second column.

ψ Smallest playing set Matching government tickets
0 < ψ ≤ 25

35 {{1, 2, 3, 4, 5}} {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7},
{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6},
{1, 2, 5, 7}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7},
{1, 3, 5, 6}, {1, 3, 5, 7}, {1, 4, 5, 6}, {1, 4, 5, 7},
{2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6},
{2, 3, 5, 7}, {2, 4, 5, 6}, {2, 4, 5, 7}, {3, 4, 5, 6},
{3, 4, 5, 7}}

25
35 < ψ ≤ 34

35 {{1, 2, 3, 4, 5}, {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7},
{3, 4, 5, 6, 7}} {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6},

{1, 2, 5, 7}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7},
{1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 6, 7}, {1, 4, 5, 6},
{1, 4, 5, 7}, {1, 4, 6, 7}, {1, 5, 6, 7}, {2, 3, 4, 5},
{2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6}, {2, 3, 5, 7},
{2, 3, 6, 7}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 6, 7},
{2, 5, 6, 7}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 4, 6, 7},
{3, 5, 6, 7}, {4, 5, 6, 7}}

34
35 < ψ ≤ 1 {{1, 2, 3, 4, 5}, {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7},

{1, 2, 3, 4, 7}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6},
{3, 4, 5, 6, 7}} {1, 2, 5, 7}, {1, 2, 6, 7}, {1, 3, 4, 5}, {1, 3, 4, 6},

{1, 3, 4, 7}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 6, 7},
{1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 6, 7}, {1, 5, 6, 7},
{2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6},
{2, 3, 5, 7}, {2, 3, 6, 7}, {2, 4, 5, 6}, {2, 4, 5, 7},
{2, 4, 6, 7}, {2, 5, 6, 7}, {3, 4, 5, 6}, {3, 4, 5, 7},
{3, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}}

Gründlingh [16] established the following result which shows that the two problems in Definitions
1.1 and 1.2 are essentially inverses of each other. Although this proof in [16] is for the three-
parameter case where n = t, the proof easily generalises to the four-parameter case.

Proposition 1.1 Let 0 < ψ ≤ 1 be a real number and let ` be any natural number. Then
Lψ(m,n, t, k) ≤ ` if and only if Ψ`(m,n, t, k) ≥ ψ, for all 1 ≤ k ≤ {n, t} ≤ m. �

Both the incomplete lottery problem and the resource utilisation problem have only recently
been introduced into the combinatorial optimisation literature. However, prior to this introduc-
tion, a considerable amount of work had been done on the so-called complete lottery problem
which is the special case of the incomplete lottery problem that arises by taking the win proba-
bility ψ = 1. See, for example, [27] in this regard. The well-known covering problem, and Turán
problem are, in turn, special instances of the complete lottery problem.



1.2. Problem descriptions 7

Definition 1.3 (The covering problem) A t-(m,n, 1) covering set C ⊆ Φ(Um, n) has the
property that, for any element φt ∈ Φ(Um, t), there exists an element c ∈ C such that {φt}∩{c} 6=
∅. The optimal solution to the covering problem is the smallest possible cardinality of such a
covering set C. The solution to the problem is denoted by the covering number, C(m,n, t). �

Definition 1.4 (The Turán problem) The Turán number, T (m,n, t) is defined as the small-
est number of n-subsets of Um such that any t-subset of Um contains at least one of these
n-subsets. �

The lottery problem, with t = k, coincides with the covering problem, and similarly, if n = k,
the lottery problem coincides with the Turán problem. Therefore, L1(m,n, t, t) = C(m,n, t)
and L1(m,n, t, n) = T (m,n, t).

Consider the following example of the 2-(5, 3, 1) covering problem, which is analogous to solving
the 〈5, 3, 2, 2〉-lottery problem.

Example 1.3 (The 2-(5, 3, 1) covering problem) Let U5 = {1, 2, 3, 4, 5}, and consider the
cover C = {{1, 2, 3}, {3, 4, 5}, {1, 2, 4}, {1, 2, 5}}. The set of all unordered pairs from U5 is

A = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The set C is clearly a 2-(5, 3, 1) cover, since it contains each element of A as a subset of one of
its elements. It may be verified that C is, in fact, a minimum cover, and hence C(5, 3, 2) = 4.

�

Consider the following example of the (5, 2, 3) Turán problem, which is analogous to solving the
〈5, 2, 3, 2〉-lottery problem.

Example 1.4 (The (5, 2, 3) Turán problem) Let U5 = {1, 2, 3, 4, 5}. The set of all 2-subsets
of U5 is

A = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The set of all 3-subsets of U5 are

B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Let A′ ∈ A be the smallest set of 2-subsets of U5 such that any 3-subset of U5 contained in B
contains at least one of these 2-subsets. Then |A′| = 4 and such a minimal set of 2-subsets of
U5 is A′ = {{1, 2}, {4, 5}, {2, 3}, {1, 3}}, which yields the Turán number T (5, 2, 3) = 4. �

Bounds on the complete lottery number are established in the following theorem in terms of
the covering and Turán numbers.

Theorem 1.1 (Covering and Turán numbers as bounds [39])

T (m, k, t)(
n
k

) ≤ L1(m,n, t, k) ≤ C(m,n, t)

for all m ≥ {n, t} ≥ k ≥ 1. �



8 Chapter 1. Introduction

Consider the following small example illustrating Theorem 1.1 for a small instance of the lottery
problem.

Example 1.5 Consider the lottery 〈9, 4, 5, 3〉. The covering number for C(9, 4, 3) = 25 is an
upper bound on L1(9, 3, 5, 3). The Turán number T (9, 3, 5) = 12 divided by

(
4
3

)
= 4 is a lower

bound on L1(9, 3, 5, 2). Hence 3 ≤ L1(9, 3, 5, 3) ≤ 25 is a lower bound on L1(9, 3, 5, 3). It is
interesting to note how much closer the bound based on the Turán number is to the complete
lottery number of L1(9, 3, 5, 3) = 5 than the bound based on the covering number. �

The following is a list of growth properties for the complete lottery problem [22].

Theorem 1.2 (Growth properties of L1(m,n, t, k))
(a) L1(m,n, t, k) ≤ L1(m+ 1, n, t, k).
(b) L1(m,n, t, k) ≥ L1(m,n, t+ 1, k).
(c) L1(m,n, t, k) ≥ L1(m+ 1, n+ 1, t, k).
(d) L1(m,n, t, k) ≥ L1(m+ 1, n+ 1, t+ 1, k).
(e) L1(m,n, t, k) ≥ L1(m,n+ 1, t, k).
(f) L1(m,n, t, k) ≤ L1(m,n, t, k + 1).
(g) L1(m,n, t, k) ≤ L1(m+ 1, n+ 1, t+ 1, k + 1).
(h) L1(m,n, t, k) ≤ L1(m+ 1, n+ 1, t, k + 1).
(i) L1(m,n, t, k) ≤ L1(m+ 1, n, t, k + 1).
(j) L1(m,n, t, k) ≤ L1(m,n+ 1, t, k + 1).
(k) L1(m,n, t, k) ≤ L1(m,n, t+ 1, k + 1).
(l) L1(m,n, t, k) ≤ L1(m+ 1, n, t+ 1, k + 1).
(m) L1(m,n, t, k) ≥ L1(m+ 1, n, t+ 1, k).
(n) L1(m,n, t, k) ≥ L1(m,n+ 1, t+ 1, k). �

For the incomplete lottery problem and the resource utilisation problem, the following bounds
were established in [6].

Theorem 1.3 (Growth properties of Lψ(m,n, t, k) and Ψ`(m,n, t, k))
(a) Lψ(m′, n, t, k) ≤ Lψ(m,n, t, k) for all 1 ≤ k ≤ {n, t} ≤ m′ < m and 0 < ψ ≤ 1.
(b) Lψ(m,n′, t, k) ≥ Lψ(m,n, t, k) for all 1 ≤ k ≤ n′ < {n, t} ≤ m and 0 < ψ ≤ 1.
(c) Lψ(m,n, t′, k) ≥ Lψ(m,n, t, k) for all 1 ≤ k ≤ t′ < {n, t} ≤ m and 0 < ψ ≤ 1.
(d) Lψ(m,n, t, k′) ≤ Lψ(m,n, t, k) for all 1 ≤ k′ < k ≤ {n, t} ≤ m and 0 < ψ ≤ 1.
(e) Lψ′(m,n, t, k) ≤ Lψ(m,n, t, k) for all 1 ≤ k ≤ {n, t} ≤ m and 0 < ψ′ < ψ ≤ 1.
(f) Ψ`(m′, n, t, k) ≥ Ψ`(m,n, t, k) for all 1 ≤ k ≤ {n, t} ≤ m′ < m and 0 < ψ ≤ 1.
(g) Ψ`(m,n′, t, k) ≤ Ψ`(m,n, t, k) for all 1 ≤ k ≤ n′ < {n, t} ≤ m and 0 < ψ ≤ 1.
(h) Ψ`(m,n, t′, k) ≤ Ψ`(m,n, t, k) for all 1 ≤ k ≤ t′ < {n, t} ≤ m and 0 < ψ ≤ 1.
(i) Ψ`(m,n, t, k′) ≥ Ψ`(m,n, t, k) for all 1 ≤ k′ < k ≤ {n, t} ≤ m and 0 < ψ ≤ 1.
(j) Ψ`′(m,n, t, k) ≤ Ψ`(m,n, t, k) for all 1 ≤ k ≤ {n, t} ≤ m and 0 < `′ < ` ≤ 1. �

The example which follows illustrates the use of the above-mentioned theorems for the case
where the value of n changes.

Example 1.6 (Incomplete lottery bounds — A change in the value of n) Consider
the lottery 〈10, n, 3, 2〉, for the values of n = 4, and n = 5. If n = 4, an incomplete lot-
tery number is L0.5(10, 4, 3, 2) = 2, while the complete lottery number is L1(10, 4, 3, 2) = 4. If



1.3. Two kinds of lottery isomorphisms 9

n = 5, an incomplete lottery number is L0.5(10, 5, 3, 2) = 1, while the complete lottery number
is L1(10, 5, 3, 2) = 2. This result complies with Theorem 1.2(e) and Theorem 1.3(b). It may
also be seen that L0.5(10, 5, 3, 2) < L1(10, 5, 3, 2), which complies with Theorem 1.3(e). �

1.3 Two kinds of lottery isomorphisms

In this section, the well-known notions of an isomorphism between lotteries and of an isomor-
phism between playing sets are reviewed. These notions have a significant impact on analyses
of both the incomplete lottery problem and the resource utilisation problem. The notion of
an isomorphism between lotteries implies that there are some lotteries which, although they
have different parameters, are structurally the same. This means that if one of the isomorphic
lotteries has been studied in terms of its combinatorial properties, those properties will also
hold for lotteries which are isomorphic to the lottery concerned. Similarly, the concept of iso-
morphic playing sets implies that it is possible for two solutions to the incomplete lottery and
resource utilisation problems to be distinct, yet structurally equivalent in terms of elements of
the universal set Um.

1.3.1 Isomorphic lotteries

A lottery ticket may be identified uniquely by either specifying which elements of Um appear
in the ticket, or by specifying which elements of Um do not appear in the ticket. In the lot-
tery 〈m,n, t, k〉 a playing set ticket may therefore be identified uniquely by specifying either n
numbers or by specifying m−n numbers. Similarly the winning ticket is identified uniquely by
specifying either t numbers or by specifying m − t numbers. This dual view of lottery ticket
identification gives rise to a pair of equivalent lotteries, called isomorphic lotteries and denoted
by writing 〈m,n, t, k〉 ∼= 〈m,m− n,m− t;m+ k − n− t〉, as formalised in the following result.

Theorem 1.4 (Isomorphic lotteries [16]) If m+ k ≥ n+ t, then
(i) Lψ(m,n, t, k) = Lψ(m,m− n,m− t,m+ k − n− t) for all 0 < ψ ≤ 1, and
(ii) Ψ`(m,n, t, k) = Ψ`(m,m− n,m− t,m+ k − n− t) for all 1 ≤ ` ≤ L1(m,n, t, k). �

In the following example it is illustrated how 〈5, 3, 2, 2〉 ∼= 〈5, 2, 3, 2〉.

Example 1.7 Figure 1.2 is a graphical representation of the lotteries 〈5, 3, 2, 2〉 and 〈5, 2, 3, 2〉
in which tickets are represented by vertices, and in which two vertices are adjacent if the
corresponding tickets have two or more numbers in common. In the lottery 〈5, 3, 2, 2〉, the
black vertices represent the participant tickets, while the white vertices represent the govern-
ment tickets and similarly, in the lottery 〈5, 2, 3, 2〉, the white vertices in Figure 1.2 represent
the participant tickets, while the black vertices represent the government tickets. It may be
seen that each black vertex has the same degree as each white vertex. This property enables
the black and white vertex sets to swap participant and government roles in the lottery prob-
lem. Hence 〈5, 3, 2, 2〉 ∼= 〈5, 2, 3, 2〉 from which it follows that Lψ(5, 3, 2, 2) = Lψ(5, 2, 3, 2) and
Ψ`(5, 3, 2, 2) = Ψ`(5, 2, 3, 2) for all 0 < ψ ≤ 1 and all ` = 1, . . . , 4 = L1(5, 3, 2, 2) = L1(5, 2, 3, 2).

�



10 Chapter 1. Introduction

{1,4}

{1,2}

{1,5}

{1,3,4}{1,2,3}

{1,3,5}

{2,3,4}

{3,4,5}

{2,3,5}

{1,2,4}

{1,4,5}

{1,2,5}

{2,4,5}
{1,3} {3,4}

{2,3}

{3,5}

{4,5}

{2,5}

{2,4}

Figure 1.2: Graphic representations of the lotteries 〈5, 3, 2, 2〉 and 〈5, 2, 3, 2〉. For the lottery 〈5, 3, 2, 2〉,
the black vertex set represents the participant tickets, and the white vertex set represents the government
tickets. For the lottery 〈5, 2, 3, 2〉, the white vertex set represents the participant tickets, and the black
vertex set represents the government tickets.

1.3.2 Isomorphic playing sets

As mentioned previously, the existence of isomorphic playing sets imply that it is possible for
two solutions to either the incomplete lottery problem or the resource utilisation problem to be
visually distinct, yet structurally similar as a result of the ubiquity of the symbols attached to
members of the universal set Um. This raises the question of how many structurally different
optimal solutions to the lottery and resource utilisation problems there might be.

Definition 1.5 (The overlapping structure of a playing set) A playing set of cardinality
` partitions the universal set Um into 2` subsets or compartments, known as the inclusion-
exclusion compartments. All the elements of Um that are unique to ticket 1 appear in one
compartment, all elements of Um that are unique to ticket 2 appear in another compartment, all
elements of Um that are members of both tickets 1 and 2 appear in a third compartment, and so
on. �

An overlapping playing set structure allows one to identify which tickets share numbers with
each other, and which tickets contain numbers which are unique to those tickets, irrespective of
the symbols attached to elements of these tickets (numbers in the traditional sense). The notion
of an overlapping playing set structure is illustrated in Figure 1.3. The following definition is
taken from [16].

Definition 1.6 (The lottery characterisation number) Let the set Lψ = {L(1),L(2), . . . ,
L(ηψ(m,n,t,k))} contain all structurally different playing sets for the lottery 〈m,n, t, k〉 (where 1 ≤
k ≤ {n, t} ≤ m, 0 < ψ ≤ 1 and 1 ≤ ` ≤ L1(m,n, t, k)). Then, we refer to ηψ(m,n, t, k) = |Lψ|
as the lottery characterisation number for the lottery 〈m,n, t, k〉. �



1.4. Scope and objectives 11

Figure 1.3: An example of an overlapping playing set structure for a lottery in which m = 6 and
n = 3. There is one number in the compartment shared by neither ticket 1 nor ticket 2, two numbers in
the compartment exclusive to ticket 1, two numbers in the compartment exclusive to ticket 2, and one
number in the compartment shared by ticket 1 and ticket 2. Two distinct playing sets conforming to
this structure are {{1, 2, 3}, {3, 4, 5}} and {{1, 3, 6}, {2, 4, 6}}.

The following example illustrates the notion of a lottery characterisation number for the lottery
〈10, 5, 4, 3〉.

Example 1.8 (The lottery characterisation number of the lottery 〈10, 5, 4, 3〉) The
only two overlapping playing set structures for the lottery 〈10, 5, 4, 3〉 are shown in Figure 1.4.
An example of a playing set conforming to the overlapping playing set structure on the left is
{{1, 2, 3, 4, 5}, {1, 6, 7, 8, 9}}. It may be seen that both tickets share the number 1, that the num-
ber 10 does not appear in either ticket and that the other numbers (2, 3, 4, 5, 6, 7, 8, 9) are each
unique to a specific ticket. An example of a playing set conforming to the overlapping playing set
structure on the right is {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}. For either of these overlapping playing
set structures, Ψ2(10, 5, 4, 3) = 110

210 . Consequently, η 110
210

(10, 5, 4, 3) = 2. �

Figure 1.4: The two different optimal overlapping playing set structures of the lottery 〈10, 5, 4, 3〉 where
` = 2, resulting in η 110

210
(10, 5, 4, 3) = 2.

1.4 Scope and objectives

The objectives pursued in this thesis are:

I (a) To model lotteries as bipartite graphs in order to graphically represent lottery in-
stances in which n 6= t.

(b) To establish new bounds on the incomplete lottery number from the bipartite graph
representation of lotteries in Objective I(a) above, where n 6= t.

(c) To compare the new bounds to known bounds associated with small and large lottery
problem instances documented in [16].

II (a) To formulate the incomplete lottery problem and the resource utilisation problem as
integer programming problems.

(b) To implement the formulations in II(a) above in a suitable, commercially available
mathematical programming solver and to verify the correctness of these implemen-
tations by comparing results thus obtained with results documented in [16].



12 Chapter 1. Introduction

(c) To investigate the limits of applicability of the implementations in II(a) above, by
exploring the execution time of solving small problem instances in parallel.

(d) To use the implementation in II(b) above to analyse those small lotteries identified
in II(c) above by solving the incomplete lottery problem (for the decimal values ψ =
0.1, 0.2, 0.3, . . . , 1) and the resource utilisation problem exactly (taking into account
the lottery isomorphisms described in §1.3.1), and to document these solutions in an
accessible manner.

III (a) To re-implement the brute force (backtracking) enumeration method in [16], as de-
scribed in §1.3.

(b) To verify the correctness of the implementation in III(a) above by comparing the
results obtained for small lotteries via the enumeration method with the results
documented in [16].

(c) To validate the results in Objective II(d) above by comparing those results with the
results obtained via the enumeration method in III(a)–(b) above.

(d) To use the implementation in III(b) above to find all structurally non-isomorphic
optimal solutions to the largest possible subset of problem instances identified in
Objective II(c)–(d).

IV (a) To formulate a combinatorial optimisation problem involving the distribution of the
elements of the overlapping playing set structures investigated in Objectives III(a)–
(d), amongst the inclusion-exclusion principle compartments into which it is sepa-
rated, as an alternative to the problem of constructing different playing sets from all
the possible tickets in the lottery.

(b) To implement heuristic methods which may be used in an attempt to solve the
problem formulated in Objective IV(a) above and to find good approximate solutions
to the incomplete lottery problem and the resource utilisation problem.

(c) To apply the heuristic methods to the same small lottery instances investigated in
Objectives II(d) and III(c).

(d) To compare the results obtained in Objective IV(c) above to the results obtained via
the method in Objective III(a) in terms of execution time and practical feasibility.

V (a) To compute (analytically) the probability of multiple winners in a given lottery, in
which the numbers in the winning government ticket are drawn randomly according
to a uniform distribution and the numbers chosen by participants to be included in
their playing sets are also randomly chosen according to a uniform distribution.

(b) To compute (by means of simulation) the probability of multiple winners in a given
lottery, in which the numbers in the winning government ticket are drawn randomly
according to a uniform distribution and the numbers chosen by participants to be
included in their playing set tickets are randomly chosen according to a uniform
distribution.

(c) To compute (by means of simulation) the probability of multiple winners in a given
lottery, in which the numbers in the winning government ticket are drawn randomly
according to a uniform distribution and the numbers chosen by some proportion of
participants to be in their playing set tickets are not randomly chosen, but conform
to some pre-defined structure of player preference.



1.5. Thesis organisation 13

1.5 Thesis organisation

Chapter 2 of this thesis contains a concise literature review on the complete lottery problem,
the incomplete lottery problem, and the resource utilisation problem. Various bounds on the
complete lottery number, the incomplete lottery number, and the resource utilisation number
are presented. Exact formulas of the complete lottery number, the incomplete lottery number,
and the resource utilisation number for certain special lottery instances are also presented. The
chapter also contains a concise summary of solution methods adopted in the literature for the
above-mentioned problems.

Chapter 3 contains the formulation of a new bound on the incomplete lottery number for lotteries
in which n 6= t. Known bounds from graph domination are presented and computed for graphs
in which n = t; a process analogous to computing bounds on the complete lottery number.
An upper bound on the cardinality of a so-called covering of a bipartite graph is adapted and
used to establish a new bound on the incomplete lottery number. The newly established bound
is then compared to known bounds on the complete lottery number. Finally, the new bound
on the incomplete lottery number is computed for small lottery instances and the results are
analysed.

Mathematical programming approaches towards solving the incomplete lottery problem and
resource utilisation problem are presented in Chapter 4. The results obtained by solving these
mathematical programming problems are analysed in terms of execution time and solutions
obtained as a function of the possible values of the parameter ψ in the incomplete lottery
problem, and the parameter ` in the resource utilisation problem. An investigation is then
conducted with respect to the boundaries of feasibility of these mathematical programming
approaches when solving the incomplete lottery problem and the resource utilisation problem
in parallel.

In Chapter 5, a previously established exhaustive enumeration lottery tree solution method [5,
16] is reviewed. The working of this solution method is described in detail. An implementation
is presented and applied to the same small problem instances explored in Chapter 4 in order
to compare the mathematical programming solutions to those of the exhaustive enumeration
lottery tree solution method in terms of execution time and practical feasibility.

The overlapping playing set structure of a solution to the incomplete lottery problem and
the resource utilisation problem is further explored in Chapter 6. Methods of distributing the
elements of an overlapping playing set structure amongst its different compartments are explored
in order to find good approximate solutions to the incomplete lottery problem and the resource
utilisation problem in shorter execution time frames than required by the previous methods.

In Chapter 7, the expected number of winners in a lottery draw is investigated. Special focus
is afforded to the probability of 18 or more participants winning concurrently in the lottery
〈49, 6, 6, 6〉 due to occurrences of such extreme events in the recent history of the South African
National lottery, Lotto. This probability is computed under the assumption that participants
select the numbers in their playing set tickets according to a non-uniform random distribu-
tion. The results of the investigation are documented and analysed. A similar investigation is
conducted for the same small lottery instances investigated in Chapters 4 and 5.

Chapter 8 is the conclusion of the thesis. It contains a brief summary of work contained within
as well as a number of ideas with respect to possible future work.



14 Chapter 1. Introduction



CHAPTER 2

Literature Review

Contents
2.1 The complete lottery problem . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Results from graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Bounds on L1(m,n, t, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Known values of L1(m,n, t, k) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 An ILP approach to the complete lottery problem . . . . . . . . . . . . 18

2.2 The incomplete lottery and resource utilisation problems . . . . . . 20

2.2.1 Known values of Lψ(m,n, t, k) and Ψ`(m,n, t, k) . . . . . . . . . . . . . 20

2.2.2 An ILP approach to the incomplete lottery problem . . . . . . . . . . . 21

2.2.3 Approximate methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Overlapping playing set structures . . . . . . . . . . . . . . . . . . . . . 22

2.3 The number of winners in lottery draws . . . . . . . . . . . . . . . . . 25

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In this chapter, a concise summary is presented of known work on the complete lottery prob-
lem, the incomplete lottery problem, and the resource utilisation problem. The earliest work,
based only on the complete lottery problem is presented in the first section, and in the section
that follows, more recent work (on the incomplete lottery problem and the resource utilisation
problem) is presented.

2.1 The complete lottery problem

In this section, a summary of past work on the complete lottery problem is presented. In
general, L1(m,n, t, k) is a nondecreasing function under any one of the following conditions: if m
increases, n decreases, t decreases, or k increases (see Theorem 1.2). Furthermore, L1(m,n, t, k)
is a nondecreasing function under any one of the following conditions: if m and n both increase,
m and t both increase, n and k both increase, or t and k both increase, and L1(m,n, t, k) is
also a non-decreasing function if: m, n and t decrease, or m, n and k increase or m, t and k
increase. Finally, L1(m,n, t, k) is a nondecreasing function if m, n, t, k all increase [27].

15



16 Chapter 2. Literature Review

2.1.1 Results from graph theory

A lottery may be modelled as a graph, known as a lottery graph [16]. The vertices of the
graph represent the tickets in the lottery, and two vertices are adjacent if the tickets which they
represent have a subset of cardinality at least k in common. The degree of each vertex in the
graph is

r =
n−1∑
i=k

(
n

i

)(
m− n
n− i

)
(2.1)

for all 1 ≤ k ≤ n ≤ m. Gründlingh [16] used this lottery graph representation to formulate
and prove a theorem characterising small values of L1(m,n, n, k) and designed an algorithm for
representing a lottery graph graphically, exposing its symmetric nature. Graphs of small lottery
instances are plotted in [16], and values of Lψ(m,n, t, k) are determined through an analysis
of these graphs. By using known properties of lottery graphs, the previously unknown value
L1(10, 6, 6, 5) = 14 was also established by Gründlingh.

2.1.2 Bounds on L1(m,n, t, k)

As mentioned in Chapter 1, the well-known covering problem and Turán problem are analogous
to the complete lottery problem for the lotteries 〈m,n, t, t〉 and 〈m,n, t, n〉, respectively. There-
fore, L1(m,n, t, t) = C(m,n, t), the covering number, and L1(m,n, t, n) = T (m,n, t), the Turán
number. Li & van Rees [24] derived the bound

L1(m,n, t, k) ≥
(
n
p

)
∑min(n,t)

i=k

(
n
i

)(
m−n
t−i
) (2.2)

from work on covering designs by Nurmela & Ostergard [33]. Also in [24], further lower bounds
are stated which are derived from Turán numbers. De Caen [7] showed that

T (m, t, k) ≥
(
m
k

)(
t−1
k−1

) m− t+ 1
m− k + 1

(2.3)

while it is known [3, 4, 39] that

L1(m,n, t, k) ≥ T (m, t, k)(
n
k

) . (2.4)

From (2.3) and (2.4), it follows that

L1(m,n, t, k) ≥
(
m
k

)(
t−1
k−1

)(
n
k

) m− t+ 1
m− k + 1

.

Schönheim’s [38] lower bound for lottery designs states that

L1(m,n, t, t) ≥
⌈m
n
L1(m− 1, n− 1, t− 1, t− 1)

⌉
, (2.5)

while Li & van Rees [24] also established the bounds

L1(m,n, k + 1, k) ≥ min{L1(m,n, k − 1, k − 1), L1(m− k + 1, n− k + 2, 2, 2)}, (2.6)



2.1. The complete lottery problem 17

L1(m,n, k + 2, k) ≥ min{L1(m,n, k, k − 1), L1(m− k, n− k + 2, 2, 2)}, (2.7)

L1(m,n, 6, 3) ≥ min{L1(m,n, 4, 2), L1(m− 4, n− 1, 2, 2)}. (2.8)

They also state that if n ≥ 3, then L1(2n + 1, n, 5, 3) ≥ 5, L1(2n + 2, n, 6, 3) ≥ 4, L1(3n +
1, n, 7, 3) ≥ 6, L1(n+2, n, 4, 3) ≥ 3, L1(3n+2, n, 8, 3) ≥ 5, and if n ≥ 4, then L1(2n+3, n, 9, 4) ≥
4, L1(3n + 2, n, 11, 4) ≥ 5, L1(3n + 3, n, 12, 4) ≥ 5, and if n ≥ 5, then L1(2n + 4, n, 12, 5) ≥ 4
[24].

The bounds presented in Theorem 1.2 were established by Li & van Rees [25] and by Gründlingh
[16].

The bounds (
m
k

)(
t−1
k−1

)(
n
k

) · m− t+ 1
m− k + 1

≤ L1(m,n, t, k) ≤

⌈
min{

(
m
t

)
,
(
m
k

)
}⌊

n
k

⌋ ⌉
(2.9)

are well known [27], while the generalised Schönheim bound,

L1(m,n, t, k) ≥

⌈(
m

n−k+1

)
L1(m− n+ k − 1, n, t, k)(

m
n−k+1

)
−
(

n
n−k+1

) ⌉
, (2.10)

was presented by Li & van Rees [24] as well as in [27].

It is also mentioned in The handbook of combinatorial designs [27] that if m = m1 + m2 and
t = t1 + t2 − 1, then L1(m,n, t, k) ≤ L1(m1, n, t1, k) + L1(m2, n, t2, k) [27]. Another bound by
Li & van Rees [25, 27] is

L1(m,n, t, k) ≤ L1(m1, k, t− r, k) + L1(m1, n1, t− r − 1, t− r − 1), (2.11)

if it is supposed that m, n, t, k, m1, n1 and r are integers satisfying m1 < m, t − r ≥ k,
n1 ≥ k − r − 1 and n1 = n−m+m1.

In 1999, Li & van Rees [26] derived a recursive upper bound on the complete lottery number
for the lottery 〈m,n, t, k〉, namely

L1(m,n, t, k) ≤ L1(m− 1, n− 1, t− 1, k − 1) + L1(m− 1, n, t, k). (2.12)

2.1.3 Known values of L1(m,n, t, k)

In 1978, Bate [3] presented the formula

L1(m,n, t, 1) =
⌈
m− t+ 1

n

⌉
, (2.13)

which may be used to compute the complete lottery number for any lottery instance in which
k = 1. He also showed that

L1(m, 2, t, 2) =
⌈
m2 − (t− 1)m

2(t− 1)

⌉
(2.14)



18 Chapter 2. Literature Review

and that

L1(m, 3, 3, 2) =



⌈
m2−2m

12

⌉
if m ≡ 2, 4, 6 (mod 12),⌈

m2−2m
12 + 1

⌉
if m ≡ 0, 8, 10 (mod 12),⌈

m2−m
12

⌉
if m ≡ 1, 3, 5, 7 (mod 12),⌈

m2−m
12 + 1

⌉
if m ≡ 9, 11 (mod 12).

(2.15)

In addition, Li & van Rees [24] showed that

L1(m,n, t, k) = r + 1 (2.16)

if m− n ≥ t− k + 1, where r =
⌊

t
t−k+1

⌋
.

The following theorem was established by Burger, et al. [5, 27].

Theorem 2.1 For all 1 ≤ k ≤ {n, t} ≤ m,
(a) L1(m,n, t, k) = 1 if and only if n+ t ≥ m+ k.
(b) L1(m,n, t, k) = 2 if and only if 2k − 1 + max{m− 2n, 0} ≤ t ≤ m+ k − n− 1.
(c) L1(m,n, t, k) = 3 if and only if t ≤ min{2k − 2 + max{m− 2n, 0}, n− k + t− 1} and

t ≥
{

3k − 2 + max{m− 3n, 0}, if m ≥ 2n
3
2k − 1 + max{m− 3

2n, 0}, if m < 2n.

Table 2.1 contains known values of L1(m,n, n, k) where 2 ≤ m ≤ 10 [16]. The values
L1(10, 4, 4, 3), L1(10, 5, 5, 4) and L1(10, 6, 6, 4) were all established by Gründlingh [16]. Many
more known values of L1(m,n, n, k) may be found in [5, 6, 20, 22, 25, 27] and also in the online
lottery repository [23].

2.1.4 An ILP approach to the complete lottery problem

Jans & Degraeve [20] proposed an Interger Linear Programming (ILP) formulation of the com-
plete lottery problem for lotteries of the form 〈m,n, n, k〉. They considered lottery instances in
which 5 ≤ m ≤ 16, n ∈ {4, 5, 6}, and k < n < m. Let

xj =
{

1 if participant ticket j is in the playing set
0 otherwise

(2.17)

be a binary decision variable, and ~x = [x1, . . . , x(mn)]. Jans & Degraeve constructed a playing set
Lψ(m,n, t, k) from the set Φ(Um, n) subject to the constraint that at least one participant ticket
j should have at least k numbers in common with the winning ticket drawn randomly from the
set Φ(Um, t). Let the neighbourhood, N [i], of a participant ticket i be the set of government
tickets from Φ(Um, t) which have at least k numbers in common with the participant ticket.
Suppose A is a

(
m
t

)
×
(
m
n

)
matrix whose (i, j)-th entry is

aij =
{

1 if government ticket i is in the neighbourhood of participant ticket j
0 otherwise.

In the complete lottery problem, the union of the neighbourhoods of the tickets in an optimal
playing set must equal the entire set of t-subsets of Um, i.e.,

⋃
i∈Lφ(m,n,t,k)N [i] = Φ(Um, t). Jans



2.1. The complete lottery problem 19

n
1 2

k
1 2 1
2 – 1

(a) L1(2, n, n, k)

n
1 2 3

k
1 3 1 1
2 – 1 1
3 – – 1

(b) L1(3, n, n, k)

n
1 2 3 4

k

1 4 2 1 1
2 – 6 1 1
3 – – 1 1
4 – – – 1

(c) L1(4, n, n, k)

n
1 2 3 4 5

k

1 5 2 1 1 1
2 – 10 2 1 1
3 – – 10 1 1
4 – – – 5 1
5 – – – – 1

(d) L1(5, n, n, k)

n
1 2 3 4 5 6

k

1 6 3 2 1 1 1
2 – 15 2 1 1 1
3 – – 20 3 1 1
4 – – – 15 1 1
5 – – – – 1 1
6 – – – – – 1
(e) L1(6, n, n, k)

n
1 2 3 4 5 6 7

k

1 7 3 2 1 1 1 1
2 – 21 4 2 1 1 1
3 – – 35 4 1 1 1
4 – – – 35 3 1 1
5 – – – – 21 1 1
6 – – – – – 7 1
7 – – – – – – 1

(f) L1(7, n, n, k)

n
1 2 3 4 5 6 7 8

k

1 8 4 2 2 1 1 1 1
2 – 28 5 2 1 1 1 1
3 – – 56 6 2 1 1 1
4 – – – 70 5 1 1 1
5 – – – – 56 4 1 1
6 – – – – – 28 1 1
7 – – – – – – 8 1
8 – – – – – – – 1

(g) L1(8, n, n, k)

n
1 2 3 4 5 6 7 8 9

k

1 9 4 3 2 1 1 1 1 1
2 – 36 7 2 2 1 1 1 1
3 – – 84 9 2 1 1 1 1
4 – – – 126 9 3 1 1 1
5 – – – – 126 7 1 1 1
6 – – – – – 84 4 1 1
7 – – – – – – 36 1 1
8 – – – – – – – 9 1
9 – – – – – – – – 1

(h) L1(9, n, n, k)

n
1 2 3 4 5 6 7 8 9 10

k

1 10 5 3 2 2 1 1 1 1 1
2 – 45 8 3 2 1 1 1 1 1
3 – – 120 14 2 2 1 1 1 1
4 – – – 210 14 3 1 1 1 1
5 – – – – 252 14 3 1 1 1
6 – – – – – 210 8 1 1 1
7 – – – – – – 120 5 1 1
8 – – – – – – – 45 1 1
9 – – – – – – – – 10 1
10 – – – – – – – – – 1

(i) L1(10, n, n, k)

Table 2.1: Known values of the complete lottery number L1(m,n, n, k) for small lottery instances,
where 2 ≤ m ≤ 10.



20 Chapter 2. Literature Review

& Degraeve found an optimal playing set by adopting a set covering problem ILP formulation
approach in which the objective is to

minimise P (x) =
∑

1≤j≤(mn)
xj (2.18)

subject to ∑
1≤j≤(mn)

aijxj ≥ 1, 1 ≤ i ≤
(
m

t

)
(2.19)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
. (2.20)

The objective in (2.18) is to minimise the number of tickets in the participant’s playing set.
Constraint set (2.19) ensures that each government ticket is covered by at least one participant
ticket. Constraint set (2.20) enforces the binary nature of the decision variables in (2.17).

Jans & Degraeve noted that (somewhat superfluously) the ILP approach is valuable because it
allows a participant in the a lottery draw to know exactly how many tickets to select and it
provides participants with an indication of the specific numbers to select in their playing set
tickets. They also claimed that their ILP approach may be extended to lotteries of the form
〈m,n, t, k〉.

Li & van Rees [25] noted that although it is easy to formulate the complete lottery problem
into an ILP, their attempt to solve for L1(m,n, t, k) using an ILP approach was met with little
success, and suggest that a parallel approach may offer an improvement.

2.2 The incomplete lottery and resource utilisation problems

This section contains a summary of known work on the incomplete lottery problem and the
resource utilisation problem. In general, it is known that Lψ(m,n, t, k) is a non-decreasing
function if m increases, n decreases, t decreases, k increases, or ψ increases, and Ψ`(m,n, t, k)
is a non-decreasing function if m decreases, n increases, t increases, k decreases or ` increases
(See theorem 1.3).

2.2.1 Known values of Lψ(m,n, t, k) and Ψ`(m,n, t, k)

The following formulas for Lψ(m,n, t, k) and Ψ`(m,n, t, k) exist [16].

(a) Lψ(m,m,m, k) = 1, for all 1 ≤ k ≤ m and all 0 < ψ ≤ 1.
(b) Lψ(m,n, n, n) =

⌈
ψ
(
m
n

)⌉
, for all 1 ≤ n ≤ m and all 0 < ψ ≤ 1.

(c) Lψ(m,n, n, k) = 1, for all 1 ≤ k ≤ n ≤ m such that 2n ≥ m+ k and all 0 < ψ ≤ 1.
(d) Ψ`(m,n, n, n) = `/

(
m
n

)
, for all 1 ≤ n ≤ m and all 1 ≤ ` ≤

(
m
n

)
.

(e) Lψ(m,n, n, k) = 1, for all 1 ≤ k ≤ n ≤ m and all 0 < ψ ≤ (r + 1)/
(
m
n

)
.

(f) If 1 < ` ≤
⌊
m
n

⌋
, n < 3k and all 1 ≤ k ≤ n ≤ m, then

Ψ`(m,n, n, k) =

[
(r + 1)`−

(
`

2

) n−1∑
t=k

n−1∑
s=k

(
n

s

)(
n

t

)(
m− 2n
n− s− t

)]/(m
n

)
,



2.2. The incomplete lottery and resource utilisation problems 21

where r is given in (2.1).
(g) For all 1 ≤ n ≤ m and 0 < ψ ≤ 1, Lψ(m,n, n, 1) = ` is the smallest integer solution to the
inequality

n−1∏
i=0

(m− `n− i) ≤ m!(1− ψ)
(m− n)!

.

(h) Ψ1(m,m,m, k) = 1, for all 1 ≤ k ≤ m.
(i) Ψ1(m,n, n, k) = (r + 1)/

(
m
n

)
, for all 1 ≤ k ≤ n ≤ m, where r is given in (2.1).

(j) Ψ1(m,n, n, k) = 1, for all 1 ≤ k ≤ n ≤ m such that 2n ≥ m+ k.
(k) L1(m,n, n, 1) =

⌊
m
n

⌋
, for all 1 ≤ n ≤ m.

(l) For all 0 < ψ ≤ 1,

Lψ(m,n, n, 1) =



dψme , if n = 1 ≤ m,⌈
2m−1−

√
1+4m(m−1)(1−ψ)

4

⌉
, if n = 2 ≤ m,⌈

2m−3−
√

5+4
√

1+m(m−1)(m−2)(m−3)(1−ψ)

8

⌉
, if n = 4 ≤ m.

2.2.2 An ILP approach to the incomplete lottery problem

Gründlingh [16] proposed binary programming formulations for the incomplete lottery problem
and the resource utilisation problem for lottery problem instances of the form 〈m,n, n, k〉.
Both formulations contained non-linear elements which led Gründlingh to conclude that the
formulations were practically infeasible. He also deduced that a more efficient solution method
than binary programming is desirable. Gründlingh’s attempt to find the value of Lψ(m,n, n, k)
was to adopt an ILP formulation approach in which the objective is to

minimise P (x) =
∑

1≤j≤(mn)
xj (2.21)

subject to

∑
1≤j≤(mn)

aijxj ≥ 1, 1 ≤ i ≤
⌈
ψ

(
m

n

)⌉
(2.22)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
. (2.23)

In (2.22), only the lexicographic first
⌈
ψ
(
m
n

)⌉
sets are considered. Therefore an optimal solution

to the formulation (2.21)–(2.23) only yields an upper bound on Lψ(m,n, n, k). An additional
attempt by Gründlingh to find the value of Lψ(m,n, n, k) was to adopt an ILP formulation
approach in which the objective was to

minimise P (x) =
∑

1≤i≤(mn)
xi (2.24)



22 Chapter 2. Literature Review

subject to

(mn)∑
p=1

(−1)p+1

 (mn)∑
1≤i1<...<ip

(mn)∑
j=1

p∏
q=1

aiqjxiq


 ≥

⌈
ψ

(
m

t

)⌉
(2.25)

xj ∈ {0, 1}, 1 ≤ i ≤
(
m

n

)
. (2.26)

An optimal solution to the formulation (2.24)–(2.26) indeed yields the value Lψ(m,n, n, k);
however, the non-linear nature of (2.25) renders the formulation practically infeasible. Finally,
Gründlingh also adopted an ILP formulation approach to find the value of Ψ`(m,n, t, k) in
which the objective was to

maximise P (x) =
∑̀
p=1

(−1)p+1

 (mn)∑
1≤i1<...<ip

(mn)∑
j=1

p∏
q=1

aiqjxiq


 (2.27)

subject to

(mn)∑
j=1

aijxj ≥ 1, 1 ≤ i ≤
⌈
ψ

(
m

t

)⌉
(2.28)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
. (2.29)

An optimal solution to formulation (2.27)–(2.29) yields the value Ψ`(m,n, n, k); however, the
non-linear nature of (2.27) again renders the formulation practically infeasible.

2.2.3 Approximate methods

Burger et al. [6] and Gründlingh [16] proposed algorithmic approaches to finding approximate
solutions to the incomplete lottery problem and the resource utilisation problem in the case
where n = t. The solutions are in the form of playing sets constructed from Φ(Um, n). Heuristics
were used to explore different combinations of these sets in search of lower bounds on the
number Ψ`(m,n, n, k) and upper bounds on Lψ(m,n, n, k). Random search methods, a minimal
overlapping algorithm (a method involving the construction of interdependent playing sets), a
neighbourhood removal method (in which vertices with the largest neighbourhood are removed),
a tabu search algorithm, and a genetic algorithm were all employed by Gründlingh in the search
for good approximate solutions. The genetic algorithm was found to be the most effective
algorithm; however, it was also found to be the most computationally expensive.

2.2.4 Overlapping playing set structures

Burger, et al. [5] and Gründlingh [16] proposed that a vector representation of an overlapping
playing set structure may be formed by defining the function

x
(`)
(t`t`−1...t2t1)2

=
∣∣∣∣⋂`

i=1

{
Ti if ti = 1
T
′
i if ti = 0

∣∣∣∣



2.2. The incomplete lottery and resource utilisation problems 23

where (t`t`−1 . . . t2t1)2 denotes the binary representation of an integer in the range {0, 1, . . . , 2`−
1}, Ti denotes ticket i, and T

′
i denotes the complement Um\Ti. This function induces the vector

~X(`) = (x(`)
(000...0), x

(`)
(000...1), . . . , x

(`)
(111...1)), (2.30)

which represents all the information required to describe the n-set overlapping structure of a
playing set. The entries in each vector X(`) add up to m, and imply that
(a) there are x(`)

(000...00) elements in the compartment excluded from all Ti,

(b) there are x(`)
(000...01) elements in the compartment exclusive to T1,

(c) there are x(`)
(000...10) elements in the compartment exclusive to T2,

(d) there are x(`)
(000...11) elements in the compartment shared by T1 and T2, and so on.

A graphical example of a playing set structure for a lottery instance in which m = 6 and
n = 3 is presented in Figure 1.3. Various playing sets may belong to this structure, such
as {{1, 2, 3}, {1, 4, 5}} or {{2, 3, 4}, {1, 2, 5}}. These two playing sets which exhibit the same
overlapping structure are known as isomorphic playing sets, as mentioned in Chapter 1.

The exhaustive enumeration lottery tree method, presented by Burger, et al. [5] and Gründlingh
[16], involves the iterative construction of a rooted tree data structure with the aim of solving
the incomplete lottery problem and the resource utilisation problem simultaneously. Level i in
the tree contains nodes representing overlapping playing set structures of cardinality i. The
nodes on level i of the tree are constructed from the nodes on level i − 1. Each overlapping
ticket structure is represented by a vector X(`), of size 2` such as the vector described in (2.30)
above. In order to compute a probability of win value associated with a node, its children are
constructed. A so-called domination test is conducted on these children: if the newly added
ticket has at least k numbers in common with at least one of the existing tickets, the domination
test is passed (and the vector is placed into set DT ), otherwise the domination test is failed
(and the vector is placed into set DF ). The value,

M(X(i+1)) =
m!

Π2`−1
j=0 x

(i+1)
j !

,

is associated with each child at level i+ 1 and used to compute the probability of win value,

ΨX(i) =

∑
X(i+1)∈DT M(X(i+1))∑

X(i+1)∈DT∪DF M(X(i+1))
,

associated with the parent node.

From the exhaustive enumeration lottery tree associated with the lottery 〈5, 3, 3, 2〉 in Figure
2.1, it may be seen that L 2

3
(5, 3, 3, 2) = 1, L0.9(5, 3, 3, 2) = 2, L1(5, 3, 3, 2) = 2, Ψ1(5, 3, 3, 2) = 2

3

and Ψ2(5, 3, 3, 2) = 1. If a playing set of cardinality 2 conforms to the overlapping playing set
structure (1, 1, 1, 2), it will possess a resource utilisation value of 0.9. The node representing the
overlapping playing set structure (0, 2, 2, 1) possesses a resource utilisation value of 1, because
all its children pass the domination test. The node representing the overlapping playing set
structure (1, 1, 1, 2) possesses a resource utilisation value of less than 1, because one of its
children (the node representing the overlapping playing set structure (0, 0, 0, 2, 1, 1, 1, 0)) does
not pass the domination test.

This exhaustive enumeration solution method is covered more extensively in Chapter 5.



24 Chapter 2. Literature Review

Level 3

(1,1,0,0,0,0,1,2) (0,2,0,0,0,0,2,1)(1,0,1,0,0,1,0,2)(1,0,0,1,0,1,1,1)

(0,0,2,0,0,2,0,1)(0,1,0,1,0,1,2,0)

(0,0,1,1,0,2,1,0)

(0,0,1,1,1,1,0,1) (0,0,0,2,1,1,1,0)

(0,1,0,1,1,0,1,1)(0,1,1,0,1,0,0,2) (0,1,1,0,0,1,1,1)

Level 2

Level 1
(2,3)

(0,2,2,1)(1,1,1,2)
T T

TTT T

T3 T3 T3 T3

T T T T

T F TT

T1 T2

T3

T1 T2

T3
T3

T1 T2 T1 T2

T3

T1 T2

T3 T3

T1 T2T2T1

T3T3

T1 T2

T1 T2 T1 T2 T1 T2 T1

ΨX(1) = 2
3

T1 T2 T1 T2

T1

ΨX(2) = 1

T2

ΨX(2) = 9
10

Figure 2.1: The exhaustive enumeration lottery tree for the lottery 〈5, 3, 3, 2〉. From this tree, it may be
seen that L 2

3
(5, 3, 3, 2) = 1, L0.9(5, 3, 3, 2) = 2, L1(5, 3, 3, 2) = 2, Ψ1(5, 3, 3, 2) = 2

3 and Ψ2(5, 3, 3, 2) = 1.

If a playing set of cardinality 2 conforms to the overlapping playing set structure (1, 1, 1, 2), it will
possess a resource utilisation value of 0.9. The node representing the overlapping playing set structure
(0, 2, 2, 1) possesses a resource utilisation value of 1, because all its children pass the domination test. The
node representing the overlapping playing set structure (1, 1, 1, 2) possesses a resource utilisation value
of less than 1, because one of its children (the node representing the overlapping playing set structure
(0, 0, 0, 2, 1, 1, 1, 0)) does not pass the domination test.



2.3. The number of winners in lottery draws 25

2.3 The number of winners in lottery draws

The average number of winners per draw in the South African national lottery, Lotto (a lottery
of the form 〈49, 6, 6, 6〉), is approximately 1.002 [32]. However, on the dates of October 31st,
2001, March 15th, 2003, and February 7th, 2009, there were 19, 33, and 18 winners, respectively.
After the February 7th draw, members of the public raised questions regarding the legitimacy
of the results [14, 42].

Haigh concluded that the numbers drawn for the winning ticket in the UK Lottery are drawn
randomly with a uniform distribution [18]. Haigh also concluded that the choice of numbers by
participants is not random.

It is widely speculated that participants tend to select their numbers in such a way as to include
calendar numbers, an arithmetic sequence, or spread their n selected numbers out amongst the
m numbers [19, 45].

2.4 Chapter summary

In this chapter, known work on the complete lottery problem, incomplete lottery problem and
the resource utilisation problem was reviewed. The purpose of this chapter was to introduce
the reader to the work which served as inspiration for the work done in the remainder of this
thesis.

This chapter opened with a section on work done with regards to the complete lottery problem.
Known bounds on the complete lottery number for special lottery instances were presented,
followed by formulas for the exact values of the complete lottery number for certain special
lottery instances. The section closed with the presentation of an ILP approach, by Jans &
Degraeve [20], towards solving the complete lottery problem.

The chapter continued with a section on known work done on the incomplete lottery problem and
the resource utilisation problem. Formulas for known values of the incomplete lottery number
and the resource utilisation number were presented for special lottery instances. ILP approaches,
by Gründlingh [16], towards solving the incomplete lottery problem and the resource utilisation
problem were reviewed and discussed. The section on the incomplete lottery problem and
resource utilisation problem closed with a discussion of approximate solution methods employed
by Burger, et al. [6] and Gründlingh, and a brief introduction to the exhaustive enumeration
lottery tree solution method, introduced by Gründlingh.

Finally, a mention was made of the public interest in the problem of determining the number
of winners in a draw of the South African national lottery.



26 Chapter 2. Literature Review



CHAPTER 3

A new upper bound from graph theory

Contents
3.1 Bounds from graph domination theory: The case n = t . . . . . . . . 27

3.2 Bipartite graph representation of the lottery problem . . . . . . . . 29

3.3 A greedy bound on the complete lottery number . . . . . . . . . . . 30

3.4 A greedy bound on the incomplete lottery number . . . . . . . . . . 32

3.5 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

In this chapter, the incomplete lottery problem is modelled as a special kind of domination
problem over bipartite graphs in fulfilment of Thesis Objective I(a). Using this model, a new
upper bound is established on the complete lottery number. The newly established bound is then
generalised to be applicable to the incomplete lottery problem according to Thesis Objective
I(b). The upper bounds on the complete lottery number and the incomplete lottery number
are then finally computed for small and large lottery instances, and the results are compared
to known bounds according to Thesis Objective I(c).

3.1 Bounds from graph domination theory: The case n = t

Given a graph G with vertex set V(G), a dominating set is a subset D ∈ V(G) such that every
vertex in G is either an element of D or adjacent to at least one vertex in D, and a dominating
set of minimum cardinality is called a minimum dominating set. Denote the cardinality of a
minimum dominating set of G by γ(G). Much work has been done with respect to finding
upper bounds on the cardinality of such a dominating set.

Upper bounds on the cardinality of a minimum dominating set of graph G may be used to
derive upper bounds on the complete lottery number L1(m,n, n, k) — note here that n = t —
since a lottery of the form 〈m,n, n, k〉 may be represented by a regular graph G denoted by
G〈m,n, n, k〉 on

(
m
n

)
vertices. Each vertex represents a ticket in 〈m,n, n, k〉 and two vertices are

joined by means of an edge if the corresponding tickets share at least k numbers. The degrees
of the vertices in this graph are

r =
n−1∑
p=k

(
n

p

)(
m− n
n− p

)
. (3.1)

27



28 Chapter 3. A new upper bound from graph theory

Playing a dominating set of the graph will guarantee the player a k-prize, since every possible
winning ticket is adjacent to at least one of the tickets in the participant’s playing set. The
lottery graph G〈6, 3, 3, 2〉 of order

(
6
3

)
= 20 and degree

r =
2∑
p=2

(
3
p

)(
3

3− p

)
=
(

3
2

)(
3
1

)
= 3× 3 = 9

is shown as an example in Figure 3.1.

In 1974, Arnautov [1] obtained an upper bound on the cardinality of a minimum dominating
set for a graph G with p vertices where each vertex has a degree of d. Arnautov showed that

γ(G) ≤ p

d+ 1

(
1 +

1
2

+
1
2

+ . . .+
1

d+ 1

)
. (3.2)

In the same year, he also established the asymptotic result of a well-known theorem stating
that for any graph containing p non-isolated vertices,

γ(G) ≤ p
(

1 + ln(δ(G) + 1)
δ(G) + 1

)
, (3.3)

where δ(G) denotes the minimum degree of G. Thereafter, Payan [34] (in 1975) and Marcu
[29] (in 1986) both proved independently that

γ(G) ≤ (p− δ(G)− 1)(p− δ(G)− 2)
p− 1

+ 2. (3.4)

In 1985, Caro & Roditty [9] showed that

γ(G) ≤ p

[
1− δ(G)

(
1

δ(G) + 1)

)1+ 1
δ(G)

]
. (3.5)

Over ten years later, in 1996, Reed [36] proved a long-standing conjecture that

γ(G) ≤ 3
8
p (3.6)

for graphs of minimum degree 2. Reed’s result was followed two years later by work of Clark,
et al. [11] in which it was shown that

γ(G) ≤ p

1− δ(G)3 + δ(G)
δ(G)3 + 1

δ(G)∏
j=1

(
1 +

1
jδ(G)

)−1
 . (3.7)

As mentioned, the bounds (3.2)–(3.7) may be used to compute upper bounds on the complete
lottery number for lotteries with parameters 〈m,n, n, k〉. In 2004, Gründlingh [16] additionally
deduced the upper bound

γ(G) ≤
2(r + 1) + x+

√
(2(r + 1) + x)2 − 8xp
2x

(3.8)

on the complete lottery number for the lottery 〈m,n, n, k〉 without using the theory of graphs,
where

x =
n−1∑
i=k

n−1∑
j=k

(
n

i

)(
n

j

)(
m− 2n
n− i− j

)
. (3.9)

Note that (3.8) yields the bound ∞ if m− 2n < 0 or n− i− j < 0 or m− 2n < n− i− j. The
above discussion was for lotteries in which n = t. However, if n 6= t, an alternative, so-called
bipartite graph representation of the lottery is required.



3.2. Bipartite graph representation of the lottery problem 29

��

�
�
�
�

��

��

�
�
�
�

����

����

��
��
��
��

��
��
��
��

�
�
�
� ����

����

��
��
��
��

��
��
��
��

����

����

�
�
�
�

��

��
��
��
��

�
�
�
�

{2,3,4}
{1,5,6}

{1,4,5}

{1,3,6}

{1,3,5}

{1,3,4}

{1,2,6}

{1,2,5}

{1,2,4}

{1,2,3} {4,5,6}
{3,5,6}

{3,4,6}

{3,4,5}

{2,5,6}

{2,4,5}

{2,4,6}

{2,3,6}

{2,3,5}
{1,4,6}

Figure 3.1: A regular graph with
(
6
3

)
= 20 vertices, and degree r = 9, representing the lottery 〈6, 3, 3, 2〉.

An example of a dominating set for this graph consists for the vertices labelled {1, 2, 3} and {4, 5, 6}.

3.2 Bipartite graph representation of the lottery problem

A graph G is bipartite if its vertex set V(G) may be partitioned into two sets V1 and V2,
called partite sets, in such a way that no two vertices from the same partite set are adjacent.
In [2], various properties of bipartite graphs are presented. A lottery may 〈m,n, t, k〉 may be
represented by a bipartite graph G, containing partite sets V1 = Ψ(Um, n) and V2 = Ψ(Um, t). A
bipartite graph representation of the lottery 〈7, 5, 4, 3〉 is shown in Figure 1.1. In the figure, the
black vertices represent the partite set V1 = Φ(U7, 5), modelling tickets which may be played
by a lottery participant, while the white vertices represent the partite set V2 = Φ(U7, 4) in
〈7, 5, 4, 3〉, modelling the tickets from which the government selects the winning ticket of the
lottery 〈m,n, t, k〉.

Suppose a connected bipartite graph has partite sets V1 and V2, and that the neighbourhood of
a vertex v ∈ V1 is denoted by N [v] ⊆ V2. Then the elements in N [v] are said to be covered by
v. It may easily be shown that

⋃
v∈V1
N [v] = V2. In the bipartite minimum covering problem a

subset V ′1 ∈ V1 of minimum cardinality is sought such that∣∣∣∣∣∣
⋃
v∈V ′1

N [x]

∣∣∣∣∣∣ = |V2| .

In this problem the set V ′1 is called the covering set (or covering for short), and the partite set
V2 is called the covered set. The aim, therefore, is to find a covering consisting of as few elements
as possible, known as a minimum covering of V2 by V ′1. If the problem is large there may be
a large number of combinations of vertices from V1 from which the set V ′1 may be constructed,
implying that it may be computationally expensive to find a minimum covering. In such cases



30 Chapter 3. A new upper bound from graph theory

an approximation algorithm may be used instead. One of the most common approximation
algorithms is the Greedy Covering Algorithm, a pseudocode listing of which is presented in
Algorithm 3.1.

Algorithm 3.1: Greedy Covering Algorithm
Data: A bipartite graph G of order p with partite sets V1 and V2

Result: A covering V ′′1 ⊆ V1

V ′′1 ← ∅;1

while V2 6= ∅ do2

Choose a vertex v of maximum degree in V1;3

V(G)← V(G)\({v} ∪ N [v]);4

V ′′1 ← V ′′1 ∪ {v};5

end6

The output of Algorithm 3.1 is a covering of vertex set V2 by a subset V ′′1 of V1. It may be
possible, through the use of more advanced algorithms, to compute a covering V ′1 of V2 of
minimum cardinality for small graphs. However, the cardinality of the subset V ′′1 produced
by Algorithm 3.1 is not necessarily of minimum cardinality, implying that |V ′′1 | is an upper
bound on |V ′1|. Therefore, an upper bound on the complete lottery number L1(m,n, t, k) may
be computed by means of the output of Algorithm 3.1 when applied to the bipartite lottery
graph G〈m,n, t, k〉.

In order to compute the degree, s, of each vertex in partite set V2, all the tickets from Φ(Um, n),
or V1, are counted which have k or more numbers in common with a given ticket in Φ(Um, t),
or V2. First, the tickets from V1 are counted which have exactly k numbers in common with a
given ticket in V2. From the t numbers in a government ticket, k numbers may be chosen in(
t
k

)
ways and from the remaining m− t numbers, there are

(
m−t
n−k
)

ways in which to choose the
remaining n − k numbers in the participant ticket. Therefore, there are

(
t
k

)(
m−t
n−k
)

tickets from
V1 which have exactly k numbers in common with a given ticket in Φ(Um, t). If this procedure
is repeated for k+ 1, . . . , min{n, t} instead of k, all the tickets from V1 are counted which have
k or more numbers in common with a given ticket in V2. Therefore,

s =
min{n,t}∑
p=k

(
t

p

)(
m− t
n− p

)
. (3.10)

3.3 A greedy bound on the complete lottery number

In this section, an analytic upper bound on the minimum cardinality of a bipartite covering, is
reviewed from [2]. This bound is then used to compute upper bounds on the complete lottery
number for small and large lottery instances. The upper bounds obtained for those lottery
instances are then compared to the upper bounds presented in §3.1 in the special case where
n = t. The following lemma is used to establish the upper bound on the complete lottery
number.

Lemma 3.1 Let G be a bipartite graph with partite sets V1 and V2, and assume s is the degree
of the vertices in V2. Let Rj be the subset of vertices remaining in V2 after the jth iteration of



3.3. A greedy bound on the complete lottery number 31

Algorithm 3.1 with the convention that R0 = V2. Then

|Rj | ≤ |V2|
j−1∏
i=0

(
1− s

|V1| − i

)
. (3.11)

Proof: In order to prove the inequality in (3.11), it may be seen that after j iterations of
Algorithm 3.1, |Rj |s edges remain in the bipartite graph, while |V1| − j vertices remain in V1.
If all the edges in the graph are distributed amongst the |V1| − j vertices in V1, then there is a
vertex in V1 of degree at least

|Rj |s
|V1| − j

. (3.12)

Therefore,

|Rj+1| ≤ |Rj | −
|Rj |s
|V1| − j

= |Rj |
(

1− s

|V1| − j

)
, (3.13)

from which (3.11) follows inductively for any 0 ≤ j ≤ |V1|. �

In the following theorem, an upper bound on the complete lottery number (obtained from [2])
is established.

Theorem 3.1 Let G be the bipartite graph representation of the lottery 〈m,n, t, k〉 with partite
sets V1 = Φ(Um, n) and V2 = Φ(Um, t). Then

L1(m,n, t, k) ≤ 1 +

(
m
n

)
s

(
1 + log

s
(
m
t

)(
m
n

) ) , (3.14)

where s in (3.10) is the degree of vertices in V2.

Proof: For any value of j ≥ 0, the number of remaining iterations of the while-loop spanning
lines 2–6 in Algorithm 3.1 required to complete the algorithm is bounded from above by |Rj |. It
follows by Lemma 3.1 that

L1(m,n, t, k) ≤ j + |Rj | ≤ j +
(
m

t

)(
1− s(

m
n

))j ≤ j +
(
m

t

)
e
−s×j

(mn) (3.15)

at termination of the algorithm. In order to simplify inequality (3.15), a substitute value for j
is selected which is less than

(
m
n

)
, and a function of

(
m
n

)
,
(
m
t

)
and s. It is known that elog(z) = z,

so by substituting

j =

⌈(
m
n

)
s

log
s
(
m
t

)(
m
n

) ⌉

into (3.15), it follows that

L1(m,n, t, k) ≤ 1 + (mn)
s

(
1 + log

s(mt )
(mn)

)
. �

The following two examples illustrate how Theorem 3.1 may be applied to the lottery 〈8, 4, 3, 2〉
and to the well-known lottery 〈49, 6, 6, 3〉.



32 Chapter 3. A new upper bound from graph theory

Example 3.1 (Greedy bound on L1(8, 4, 3, 2) and L1(49, 6, 6, 3))
For the lottery 〈8, 4, 3, 2〉,

s =
3∑
p=2

(
3
p

)(
5

4− p

)
=
(

3
2

)(
5
2

)
+
(

3
3

)(
5
1

)
= 35.

The greedy bound (3.14) yields

L1(8, 4, 3, 2) ≤ 1 +
70
35

(
1 + log

35× 56
70

)
≈ 5.894.

It is, in fact, known that L1(8, 4, 3, 2) = 2. For the lottery 〈49, 6, 6, 3〉,

s =
6∑
p=3

(
6
p

)(
43

6− p

)
=
(

6
3

)(
43
3

)
+
(

6
4

)(
43
2

)
+
(

6
5

)(
43
1

)
+
(

6
6

)(
43
0

)
= 260 624.

The greedy bound (3.14) yields

L1(49, 6, 6, 3) ≤ 1 +
13 983 816

260 624

(
1 + log

260 624× 13 983 816
13 983 816

)
≈ 345.252.

It is, in fact, known that L1(49, 6, 6, 3) ≤ 163. �

Tables 3.1 and 3.2 contain comparisons of the bounds presented in this chapter. The bounds
(3.4) and (3.6) are weak upper bounds and they are therefore omitted from the tables. In Table
3.1 the bounds in §3.1, together with the bound in (2.12) and best known bounds available in
the online lottery repository [22], are compared to the new greedy bound in (3.14) for small
lottery instances (where 6 ≤ m ≤ 10, m > {n, t} > k ≥ 2 and L1(m,n, t, k) > 1). In Table
3.2, a similar comparison is presented for larger lotteries which are of the form 〈m, 6, 6, 3〉, for
6 ≤ m ≤ 50. Table 3.1 also contains |V ′′1 |, the cardinality of the covering set obtained via
Algorithm 3.1. The value |V ′′1 | is omitted from Table 3.2 due to the computational complexity
involved in applying Algorithm 3.1 to the larger lottery instances.

The values of s,
(
m
n

)
and

(
m
t

)
affect the value of the greedy bound (3.14) — as the values of

(
m
n

)
and

(
m
t

)
increase, so does the value of the greedy bound. However, as the value of s increases,

the value of the greedy bound (3.14) decreases. This makes sense in the context of the greedy
algorithm, because if a participant ticket x is removed from the corresponding graph model, the
neighbourhood set N (x) is also removed from the graph. If the degree of the government tickets
is large, removal of the set N (x) from the graph results in the degrees of a large number of
the remaining participant tickets being decreased, leaving a small number of participant tickets,
each with a relatively larger degree to choose from during the next iteration of Algorithm 3.1.

3.4 A greedy bound on the incomplete lottery number

The bounds presented in §3.1–3.3 are only applicable to the complete lottery problem. However,
the result of Theorem 3.1 may be generalised to hold for the incomplete lottery problem. In
the incomplete lottery problem, it is required that at least a proportion ψ of the government
tickets be covered. If x tickets are removed from the

(
m
t

)
government tickets, a proportion ψ



3.4. A greedy bound on the incomplete lottery number 33

Table 3.1: The greedy bound (3.14), compared to previously known upper bounds (2.12), (3.2), (3.3),
(3.5), (3.7), (3.8) and (3.14), on the complete lottery number for small lottery instances where 6 ≤
m ≤ 10, m > {n, t} > k ≥ 2 and L1(m,n, t, k) > 1. The entries in the column labelled |V ′′1 | represent
the cardinality of the resulting playing set after applying Algorithm 3.1. A “–” indicates that it is not
possible to compute that bound for the specific lottery.

Lottery
(
m
n

) (
m
t

)
s L1 |V ′′1 | (2.12) (3.14) (3.7) (3.2) (3.5) (3.3) (3.8)

〈6, 3, 3, 2〉 20 20 10 2 2 4 5 5 6 6 7 ∞
〈7, 3, 3, 2〉 35 35 13 4 4 5 7 8 9 9 10 ∞
〈7, 3, 4, 2〉 35 35 22 2 2 4 5 − − − − −
〈8, 3, 3, 2〉 56 56 16 5 5 7 9 11 12 12 13 ∞
〈8, 3, 4, 2〉 56 70 28 3 3 4 7 − − − − −
〈8, 3, 5, 2〉 56 56 40 2 2 3 5 − − − − −
〈8, 4, 3, 2〉 70 56 35 2 2 5 6 − − − − −
〈8, 4, 4, 2〉 70 70 53 2 2 4 5 6 6 7 7 3
〈8, 4, 4, 3〉 70 70 17 6 8 8 11 13 14 15 16 ∞
〈9, 3, 3, 2〉 84 84 19 7 9 9 12 14 16 16 17 ∞
〈9, 3, 4, 2〉 84 126 34 3 3 5 8 − − − − −
〈9, 3, 5, 2〉 84 126 50 3 3 4 6 − − − − −
〈9, 3, 6, 2〉 84 84 65 2 2 3 5 − − − − −
〈9, 4, 3, 2〉 126 84 51 4 4 6 8 − − − − −
〈9, 4, 4, 2〉 126 126 81 2 4 4 6 8 8 9 9 4
〈9, 4, 4, 3〉 126 126 21 9 11 11 15 20 22 23 24 ∞
〈9, 4, 5, 2〉 126 126 105 2 2 4 5 − − − − −
〈9, 4, 5, 3〉 126 126 45 5 5 5 9 − − − − −
〈9, 4, 6, 3〉 126 84 75 2 2 4 6 − − − − −
〈10, 3, 3, 2〉 120 120 22 8 10 11 14 19 20 21 22 ∞
〈10, 3, 4, 2〉 120 210 40 5 5 6 10 − − − − −
〈10, 3, 5, 2〉 120 252 60 3 3 5 8 − − − − −
〈10, 3, 6, 2〉 120 210 80 3 3 3 6 − − − − −
〈10, 3, 7, 2〉 120 120 98 2 2 3 5 − − − − −
〈10, 4, 3, 2〉 210 120 70 4 4 8 9 − − − − −
〈10, 4, 4, 2〉 210 210 115 3 3 5 7 10 10 11 11 6
〈10, 4, 4, 3〉 210 210 25 14 17 16 22 30 32 33 35 ∞
〈10, 4, 5, 2〉 210 252 155 2 2 4 6 − − − − −
〈10, 4, 5, 3〉 210 252 55 7 7 8 12 − − − − −
〈10, 4, 6, 2〉 210 210 185 2 2 3 5 − − − − −
〈10, 4, 6, 3〉 210 210 95 4 4 5 8 − − − − −
〈10, 4, 7, 3〉 210 120 140 2 2 4 6 − − − − −
〈10, 5, 3, 2〉 252 120 126 2 2 6 7 − − − − −
〈10, 5, 4, 2〉 252 210 186 2 2 5 6 − − − − −
〈10, 5, 4, 3〉 252 210 66 7 8 9 12 − − − − −
〈10, 5, 5, 2〉 252 252 226 2 2 4 5 7 7 8 8 3
〈10, 5, 5, 3〉 252 252 126 2 2 4 8 11 11 12 12 ∞
〈10, 5, 5, 4〉 252 252 26 14 21 18 25 35 37 39 41 ∞



34 Chapter 3. A new upper bound from graph theory

Table 3.2: The greedy bound in (3.14), compared to previously known bounds (2.12), (3.2), (3.3),
(3.5), (3.7), (3.8) and (3.14) on the complete lottery number for instances of the lottery 〈m, 6, 6, 3〉,
where 6 ≤ m ≤ 50. A question mark indicates that the lottery number does not appear in any online
lottery tables, and is hence not known. The column labelled ‘[22]’ contains best known upper bounds
available in the online lottery repository [22].

Lottery L1 [22] (2.12) (3.14) (3.7) (3.2) (3.5) (3.3) (3.8)
〈6, 6, 6, 3〉 1 1 – 2 1 1 1 1 ∞
〈7, 6, 6, 3〉 1 1 2 2 3 3 3 3 ∞
〈8, 6, 6, 3〉 1 1 2 4 4 4 5 5 ∞
〈9, 6, 6, 3〉 1 1 2 4 5 5 6 6 ∞
〈10, 6, 6, 3〉 2 2 3 5 7 7 7 7 ∞
〈11, 6, 6, 3〉 2 2 4 6 8 8 9 9 ∞
〈12, 6, 6, 3〉 2 2 4 7 10 10 11 11 3
〈13, 6, 6, 3〉 2 2 4 8 13 13 13 13 5
〈14, 6, 6, 3〉 4 4 5 9 15 16 16 16 7
〈15, 6, 6, 3〉 4 4 7 11 19 19 20 20 10
〈16, 6, 6, 3〉 5 5 7 13 23 23 24 24 14
〈17, 6, 6, 3〉 6 6 8 15 27 27 28 28 19
〈18, 6, 6, 3〉 7 7 10 18 32 32 33 33 25
〈19, 6, 6, 3〉 ? 9 11 20 37 37 39 39 32
〈20, 6, 6, 3〉 ? 10 13 23 43 43 45 45 40
〈21, 6, 6, 3〉 ? 13 14 27 50 50 52 52 50
〈22, 6, 6, 3〉 ? 15 19 31 58 58 60 60 61
〈23, 6, 6, 3〉 ? 17 21 35 66 66 69 69 73
〈24, 6, 6, 3〉 ? 20 24 39 75 75 78 78 87
〈25, 6, 6, 3〉 ? 22 28 44 85 85 89 89 103
〈26, 6, 6, 3〉 ? 25 31 50 96 96 100 100 121
〈27, 6, 6, 3〉 ? 27 35 56 108 108 112 113 140
〈28, 6, 6, 3〉 ? 31 38 62 121 121 126 126 162
〈29, 6, 6, 3〉 ? 35 43 69 135 135 140 140 185
〈30, 6, 6, 3〉 ? 39 48 76 150 150 156 156 211
〈31, 6, 6, 3〉 ? 45 53 84 166 166 172 173 239
〈32, 6, 6, 3〉 ? 50 60 93 184 184 190 190 270
〈33, 6, 6, 3〉 ? 55 66 102 202 202 210 210 303
〈34, 6, 6, 3〉 ? 60 72 112 222 222 230 230 338
〈35, 6, 6, 3〉 ? 66 78 122 243 243 252 252 377
〈36, 6, 6, 3〉 ? 72 85 133 266 266 275 275 418
〈37, 6, 6, 3〉 ? 78 92 145 289 289 299 299 462
〈38, 6, 6, 3〉 ? 83 99 157 315 315 326 326 508
〈39, 6, 6, 3〉 ? 89 105 170 341 341 353 353 558
〈40, 6, 6, 3〉 ? 96 112 184 370 370 382 382 612
〈41, 6, 6, 3〉 ? 102 120 199 399 400 413 413 668
〈42, 6, 6, 3〉 ? 109 127 214 431 431 446 446 728
〈43, 6, 6, 3〉 ? 117 135 230 464 464 480 480 791
〈44, 6, 6, 3〉 ? 124 144 247 499 499 516 516 858
〈45, 6, 6, 3〉 ? 131 151 265 536 536 553 553 928
〈46, 6, 6, 3〉 ? 138 160 284 574 574 593 593 1 002
〈47, 6, 6, 3〉 ? 146 168 304 614 614 634 634 1 081
〈48, 6, 6, 3〉 ? 153 178 324 656 656 678 678 1 163
〈49, 6, 6, 3〉 ? 163 186 346 701 701 723 723 1 249
〈50, 6, 6, 3〉 ? 175 198 368 747 747 771 771 1 339



3.4. A greedy bound on the incomplete lottery number 35

of the remaining Rj government tickets together with the x tickets already covered will be at
least as large as a proportion ψ of the

(
m
t

)
government tickets, which implies that

x+ ψ |Rj | =
(
m

t

)
− |Rj |+ ψ |Rj | (3.16)

= ψ

(
m

t

)
+
(
m

t

)
− |Rj | (1− ψ)− ψ

(
m

t

)
= ψ

(
m

t

)
+
(
m

t

)
(1− ψ)− |Rj | (1− ψ)

= ψ

(
m

t

)
+ (1− ψ)

((
m

t

)
− |Rj |

)
≥ ψ

(
m

t

)
,

because
(
m
t

)
≥ |Rj | and 1 ≥ ψ.

This, in turn, implies that if |Rj | government tickets remain after iteration j of Algorithm 3.1,
at least a proportion ψ of all the government tickets may be covered by covering a proportion
ψ of the |Rj | remaining government tickets, together with the remaining

(
m
t

)
− |Rj | tickets.

Therefore, from (3.15),

Lψ(m,n, t, k) ≤ j + ψ |Rj |

≤ 1 +

((
m
n

)
s

)
log

(
s
(
m
t

)(
m
n

) )+ ψ

((
m
n

)
s

)

= 1 +

(
m
n

)
s

(
log

(
s
(
m
t

)(
m
n

) )+ ψ

)
. (3.17)

The following example illustrates how the greedy bound in (3.17) performs.

Example 3.2 (Greedy bound on L0.6(8, 4, 3, 2) and L0.6(49, 6, 6, 3)) Consider the lottery 〈8, 4, 3, 2〉
and let ψ = 0.6. It is known from Example 3.1 that s = 35 in this case. The greedy bound in
(3.17) yields

L0.6(8, 4, 3, 2) ≤ 1 +
70
35

(
0.6 + log

35× 56
70

)
≈ 5.094.

Now consider the lottery 〈49, 6, 6, 3〉, still assuming that ψ = 0.6. It is known from Example 3.1
that s = 260 624 in this case. The greedy bound in (3.17) therefore yields

L0.6(49, 6, 6, 3) ≤ 1 +
13 983 816

260 624

(
0.6 + log

260 624× 13 983 816
13 983 816

)
≈ 323.790,

as an upper bound for the incomplete lottery number L0.6(49, 6, 6, 3). �

Tables 3.3–3.5 contain the greedy bound in (3.17) for small instances of the incomplete lottery
problem where 6 ≤ m ≤ 10, m > {n, t} > k ≥ 2 and L1(m,n, t, k) > 1, along with known
incomplete lottery numbers for break point values1 of ψ as computed in Chapter 4.

1A break point value is the maximum resource utilisation achieved by constructing a playing set of cardinality
Lψ(m,n, t, k).



36 Chapter 3. A new upper bound from graph theory

Table 3.3: The upper bound (3.17) for small instances of the incomplete lottery problem in which
6 ≤ m ≤ 8 at break-point values of ψ.

Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17)
〈6, 3, 3, 2〉 0.5 1 4 〈8, 3, 3, 2〉 0.786 3 8 〈8, 4, 4, 2〉 0.757 1 5
〈6, 3, 3, 2〉 1 2 5 〈8, 3, 3, 2〉 0.893 4 9 〈8, 4, 4, 2〉 1 2 5
〈7, 3, 3, 2〉 0.371 1 5 〈8, 3, 3, 2〉 1 5 9 〈8, 4, 4, 3〉 0.243 1 8
〈7, 3, 3, 2〉 0.743 2 6 〈8, 3, 4, 2〉 0.5 1 6 〈8, 4, 4, 3〉 0.486 2 9
〈7, 3, 3, 2〉 0.914 3 7 〈8, 3, 4, 2〉 0.871 2 6 〈8, 4, 4, 3〉 0.671 3 9
〈7, 3, 3, 2〉 1 4 7 〈8, 3, 4, 2〉 1 3 7 〈8, 4, 4, 3〉 0.857 4 10
〈7, 3, 4, 2〉 0.629 1 5 〈8, 3, 5, 2〉 0.714 1 5 〈8, 4, 4, 3〉 0.914 5 10
〈7, 3, 4, 2〉 1 2 5 〈8, 3, 5, 2〉 1 2 5 〈8, 4, 4, 3〉 1 6 11
〈8, 3, 3, 2〉 0.286 1 7 〈8, 4, 3, 2〉 0.5 1 5
〈8, 3, 3, 2〉 0.571 2 8 〈8, 4, 3, 2〉 1 2 6

Table 3.4: The upper bound (3.17) for small instances of the incomplete lottery problem in which
m = 9 at break-point values of ψ.

Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17)
〈9, 3, 3, 2〉 0.226 1 8 〈9, 3, 6, 2〉 0.774 1 5 〈9, 4, 4, 3〉 0.833 6 14
〈9, 3, 3, 2〉 0.452 2 9 〈9, 3, 6, 2〉 1 2 5 〈9, 4, 4, 3〉 0.913 7 15
〈9, 3, 3, 2〉 0.679 3 10 〈9, 4, 3, 2〉 0.405 1 6 〈9, 4, 4, 3〉 0.96 8 15
〈9, 3, 3, 2〉 0.774 4 11 〈9, 4, 3, 2〉 0.81 2 7 〈9, 4, 4, 3〉 1 9 15
〈9, 3, 3, 2〉 0.893 5 11 〈9, 4, 3, 2〉 0.952 3 8 〈9, 4, 5, 2〉 0.833 1 5
〈9, 3, 3, 2〉 0.952 6 11 〈9, 4, 3, 2〉 1 4 8 〈9, 4, 5, 2〉 1 2 5
〈9, 3, 3, 2〉 1 7 12 〈9, 4, 4, 2〉 0.643 1 5 〈9, 4, 5, 3〉 0.357 1 7
〈9, 3, 4, 2〉 0.397 1 7 〈9, 4, 4, 2〉 1 2 6 〈9, 4, 5, 3〉 0.706 2 8
〈9, 3, 4, 2〉 0.738 2 8 〈9, 4, 4, 3〉 0.167 1 10 〈9, 4, 5, 3〉 0.857 3 9
〈9, 3, 4, 2〉 1 3 8 〈9, 4, 4, 3〉 0.333 2 11 〈9, 4, 5, 3〉 0.976 4 9
〈9, 3, 5, 2〉 0.603 1 6 〈9, 4, 4, 3〉 0.5 3 12 〈9, 4, 5, 3〉 1 5 9
〈9, 3, 5, 2〉 0.929 2 6 〈9, 4, 4, 3〉 0.627 4 13 〈9, 4, 6, 3〉 0.595 1 5
〈9, 3, 5, 2〉 1 3 6 〈9, 4, 4, 3〉 0.738 5 14 〈9, 4, 6, 3〉 1 2 6



3.4. A greedy bound on the incomplete lottery number 37

Table 3.5: The upper bound (3.17) for small instances of the incomplete lottery problem in which
m = 10 at break-point values of ψ.

Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17) Lottery ψ Lψ (3.17)
〈10, 3, 3, 2〉 0.183 1 10 〈10, 4, 4, 3〉 0.362 3 16 〈10, 5, 3, 2〉 1 2 7
〈10, 3, 3, 2〉 0.367 2 11 〈10, 4, 4, 3〉 0.481 4 17 〈10, 5, 4, 2〉 0.738 1 5
〈10, 3, 3, 2〉 0.55 3 12 〈10, 4, 4, 3〉 0.6 5 18 〈10, 5, 4, 2〉 1 2 6
〈10, 3, 3, 2〉 0.667 4 12 〈10, 4, 4, 3〉 0.662 6 19 〈10, 5, 4, 3〉 0.262 1 9
〈10, 3, 3, 2〉 0.767 5 13 〈10, 4, 4, 3〉 0.738 7 19 〈10, 5, 4, 3〉 0.519 2 10
〈10, 3, 3, 2〉 0.85 6 13 〈10, 4, 4, 3〉 0.81 8 20 〈10, 5, 4, 3〉 0.7 3 11
〈10, 3, 3, 2〉 0.917 7 14 〈10, 4, 4, 3〉 0.862 9 20 〈10, 5, 4, 3〉 0.881 4 12
〈10, 3, 3, 2〉 1 8 14 〈10, 4, 4, 3〉 0.919 10 21 〈10, 5, 4, 3〉 0.919 5 12
〈10, 3, 4, 2〉 0.329 1 8 〈10, 4, 4, 3〉 0.952 11 21 〈10, 5, 4, 3〉 0.99 6 12
〈10, 3, 4, 2〉 0.619 2 9 〈10, 4, 4, 3〉 0.971 12 21 〈10, 5, 4, 3〉 1 7 12
〈10, 3, 4, 2〉 0.871 3 10 〈10, 4, 4, 3〉 0.99 13 22 〈10, 5, 5, 2〉 0.901 1 5
〈10, 3, 4, 2〉 0.962 4 10 〈10, 4, 4, 3〉 1 14 22 〈10, 5, 5, 2〉 1 2 5
〈10, 3, 4, 2〉 1 5 10 〈10, 4, 5, 2〉 0.738 1 6 〈10, 5, 5, 3〉 0.5 1 7
〈10, 3, 5, 2〉 0.5 1 7 〈10, 4, 5, 2〉 1 2 6 〈10, 5, 5, 3〉 1 2 8
〈10, 3, 5, 2〉 0.829 2 7 〈10, 4, 5, 3〉 0.262 1 9 〈10, 5, 5, 4〉 0.099 1 16
〈10, 3, 5, 2〉 1 3 8 〈10, 4, 5, 3〉 0.52 2 10 〈10, 5, 5, 4〉 0.21 2 17
〈10, 3, 6, 2〉 0.671 1 6 〈10, 4, 5, 3〉 0.71 3 11 〈10, 5, 5, 4〉 0.31 3 18
〈10, 3, 6, 2〉 0.962 2 6 〈10, 4, 5, 3〉 0.829 4 12 〈10, 5, 5, 4〉 0.409 4 19
〈10, 3, 6, 2〉 1 3 6 〈10, 4, 5, 3〉 0.948 5 12 〈10, 5, 5, 4〉 0.52 5 20
〈10, 3, 7, 2〉 0.817 1 5 〈10, 4, 5, 3〉 0.98 6 12 〈10, 5, 5, 4〉 0.619 6 21
〈10, 3, 7, 2〉 1 2 5 〈10, 4, 5, 3〉 1 7 12 〈10, 5, 5, 4〉 0.671 7 22
〈10, 4, 3, 2〉 0.333 1 7 〈10, 4, 6, 2〉 0.881 1 5 〈10, 5, 5, 4〉 0.762 8 23
〈10, 4, 3, 2〉 0.667 2 8 〈10, 4, 6, 2〉 1 2 5 〈10, 5, 5, 4〉 0.81 9 23
〈10, 4, 3, 2〉 0.867 3 9 〈10, 4, 6, 3〉 0.452 1 7 〈10, 5, 5, 4〉 0.869 10 24
〈10, 4, 3, 2〉 1 4 9 〈10, 4, 6, 3〉 0.829 2 8 〈10, 5, 5, 4〉 0.901 11 24
〈10, 4, 4, 2〉 0.552 1 6 〈10, 4, 6, 3〉 0.971 3 8 〈10, 5, 5, 4〉 0.921 12 24
〈10, 4, 4, 2〉 0.919 2 7 〈10, 4, 6, 3〉 1 4 8 〈10, 5, 5, 4〉 0.94 13 24
〈10, 4, 4, 2〉 1 3 7 〈10, 4, 7, 3〉 0.667 1 5 〈10, 5, 5, 4〉 1 14 25
〈10, 4, 4, 3〉 0.119 1 14 〈10, 4, 7, 3〉 1 2 6
〈10, 4, 4, 3〉 0.238 2 15 〈10, 5, 3, 2〉 0.5 1 6



38 Chapter 3. A new upper bound from graph theory

3.5 Chapter overview

In this chapter, analytic upper bounds were established on the incomplete lottery number
Lψ(m,n, t, k), where 0 < ψ ≤ 1 (see (3.14) and (3.17)). In Tables 3.1 and 3.2, it may be seen
that the greedy bound (3.14) performs well compared to bounds (3.2)–(3.8) for the complete
lottery problem, but it is worse than the bound (2.12). However, it must be noted that the
greedy bound may be computed for any L1(m,n, t, k), while the bound (2.12) by Li & Van Rees
[27] can only be computed if the values of the complete lottery numbers L1(m−1, n−1, t−1, k−1)
and L1(m − 1, n, t, k) are known or if good bounds on these numbers are known. It may also
be seen from Tables 3.1 and 3.2 that the bound (3.8) by Gründlingh [16] is very good for small
lottery instances, but it is comparatively weaker for larger lottery instances.

Table 3.6: An analysis of the goodness of a bound for different lottery problem instances. The second
column contains the degree, s, of each government ticket, while the third column contains the known
complete lottery number, denoted by L1. Finally, the last two columns contain the value of the greedy
bound (3.14) and the difference between the greedy bound (3.14) and the known complete lottery number,
respectively.

Lottery s L1 (3.14) (3.14)−L1

〈10, 4, 6, 3〉 95 4 8 4
〈10, 4, 4, 3〉 25 14 22 8
〈10, 5, 4, 3〉 66 7 12 5

As the degree of government tickets in the bipartite lottery graph model increases, the bound
(3.14) appears to improve. This is illustrated in Table 3.6 in which it may be seen that as
s increases, the difference between the bound and the known value of the complete lottery
number decreases. In Tables 3.3, 3.4 and 3.5 it may be seen that as the value of ψ increases,
the difference between the value of the greedy bound (3.17) and the value of Lψ(m,n, t, k) is
non-increasing, which implies an improvement in the greedy bound as the value of ψ increases.



CHAPTER 4

A mathematical programming approach

Contents

4.1 An ILP formulation of the complete lottery problem . . . . . . . . . 40

4.2 An ILP formulation of the incomplete lottery problem . . . . . . . . 42

4.3 An ILP formulation of the resource utilisation problem . . . . . . . 44

4.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Analysis of results for the incomplete lottery problem . . . . . . . . . . 50

4.4.2 Analysis of results for the resource utilisation problem . . . . . . . . . . 53

4.5 Boundaries of feasibility via an ILP approach . . . . . . . . . . . . . 54

4.6 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

The aim in this chapter is to present, implement and analyse integer programming formulations
of the complete lottery problem, the incomplete lottery problem, and the resource utilisation
problem, in fulfilment of Thesis Objectives II(a) and II(b) in §1.4.

The chapter is organised as follows. After casting the complete lottery problem in an Integer
Linear Programming (ILP) problem setting in §4.1, small lotteries are analysed by solving the
relevant ILP formulation instances. The incomplete lottery problem is similarly considered in
§4.2, analysing the same small lottery instances. Finally the resource utilisation problem is
considered for these same lottery instances in §4.3.

Apart from documenting solutions to the incomplete lottery and resource utilisation problems
for small lottery instances in §4.4, another aim of this chapter is to investigate the boundaries
of feasibility of an ILP approach towards solving these problems in terms of execution times in
§4.5, in fulfilment of Thesis Objective II(c) in §1.4.

ILP formulations are constructed for both the incomplete lottery and resource utilisation prob-
lems associated with small lottery instances, where 6 ≤ m ≤ 10, m > {n, t} > k ≥ 2 and
L1(m,n, t, k) > 1, the problems are solved, and the results are documented in fulfilment of
Thesis Objective II(d). The complete lottery number for each lottery considered is presented in
Table 4.5 and the lotteries implicitly considered through isomorphism, are listed in Table 4.6.

39



40 Chapter 4. A mathematical programming approach

4.1 An ILP formulation of the complete lottery problem

As mentioned in §2.1.4, Jans & Degraeve [20] suggested an ILP formulation for the lottery
problem similar to the general set covering problem [8]. According to the authors, the main
advantage of their method is that it provides a specific solution. This means that a participant
in a lottery may use the solution to know exactly which ticket combinations to select.

Assume that a number may be assigned to each participant ticket (for example, by arranging the
numbers of each participant ticket in increasing order, and subsequently ordering all participant
tickets in lexicographically increasing order). Let

xj =
{

1 if participant ticket j is in the playing set
0 otherwise

(4.1)

be a binary decision variable. A playing set Lψ(m,n, t, k) is constructed from the set Φ(Um, n)
subject to the constraint that at least one participant ticket j should have at least k numbers in
common with the winning ticket drawn randomly from the set Φ(Um, t). Let the neighbourhood,
N [j], of a participant ticket j be the set of government tickets from Φ(Um, t) which have at least
k numbers in common with the participant ticket. Suppose A is an

(
m
t

)
×
(
m
n

)
matrix whose

(i, j)-th entry is

aij =


1 if government ticket i is in the neighbourhood

of participant ticket j
0 otherwise.

In the complete lottery problem, the union of the neighbourhoods of the tickets in a desired
playing set must equal the entire set of t-subsets of Um, i.e.

⋃
i∈Lφ(m,n,t,k)N [i] = Φ(Um, t). An

optimal playing set may be found by adopting a set covering problem ILP formulation approach
in which the objective is to

minimise P (x) =
∑

1≤j≤(mn)
xj (4.2)

subject to ∑
1≤j≤(mn)

aijxj ≥ 1, 1 ≤ i ≤
(
m

t

)
(4.3)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
. (4.4)

The objective in (4.2) is to minimise the number of tickets in the participant’s playing set.
Constraint set (4.3) ensures that each government ticket is covered by at least one participant
ticket. Constraint set (4.4) enforces the binary nature of the decision variables in (4.1).

One computational aspect that may be of interest is the number of decision variables included
in each constraint in (4.3). This number is

min{n,t}∑
p=k

(
t

p

)(
m− t
n− p

)
, (4.5)

which may be found by counting the participant tickets that have at least k numbers in common
with any given government ticket. For each of the small lottery instances investigated in this



4.1. An ILP formulation of the complete lottery problem 41

chapter, the numbers of decision variables, non-trivial constraints and terms per non-trivial
constraint for the complete lottery problem formulation are presented in Table 4.1. To some
extent this identifies the size or scope of the respective ILP problems.

The following example contains the instance of the formulation (4.2)–(4.4) for the lottery
〈6, 4, 3, 2〉, together with a solution.

Table 4.1: Dimensions of the ILP formulation of the complete lottery problem. The column labelled
DV represents the number of decision variables as described in (4.1), the column labelled NC represents
the number of nontrivial constraints in (4.3), and the column labelled TC represents the number of terms
per non-trivial constraint in (4.3), calculated from (4.5).

Lottery DV NC TC Lottery DV NC TC
〈6, 3, 3, 2〉 20 20 10 〈9, 4, 7, 3〉 126 36 105
〈7, 3, 3, 2〉 35 35 13 〈10, 3, 3, 2〉 120 120 22
〈7, 3, 4, 2〉 35 35 22 〈10, 3, 4, 2〉 120 210 40
〈7, 3, 5, 2〉 35 21 30 〈10, 3, 5, 2〉 120 252 60
〈8, 3, 3, 2〉 56 56 16 〈10, 3, 6, 2〉 120 210 80
〈8, 3, 4, 2〉 56 70 28 〈10, 3, 7, 2〉 120 120 98
〈8, 3, 5, 2〉 56 56 40 〈10, 3, 8, 2〉 120 45 112
〈8, 3, 6, 2〉 56 28 50 〈10, 4, 3, 2〉 210 120 70
〈8, 4, 3, 2〉 70 56 35 〈10, 4, 4, 2〉 210 210 115
〈8, 4, 4, 2〉 70 70 53 〈10, 4, 4, 3〉 210 210 25
〈8, 4, 4, 3〉 70 70 17 〈10, 4, 5, 2〉 210 252 155
〈9, 3, 3, 2〉 84 84 19 〈10, 4, 5, 3〉 210 252 55
〈9, 3, 4, 2〉 84 126 34 〈10, 4, 6, 2〉 210 210 185
〈9, 3, 5, 2〉 84 126 50 〈10, 4, 6, 3〉 210 210 95
〈9, 3, 6, 2〉 84 84 65 〈10, 4, 7, 2〉 210 120 203
〈9, 3, 7, 2〉 84 36 77 〈10, 4, 7, 3〉 210 120 140
〈9, 4, 3, 2〉 126 84 51 〈10, 4, 8, 3〉 210 45 182
〈9, 4, 4, 2〉 126 126 81 〈10, 5, 3, 2〉 252 120 126
〈9, 4, 4, 3〉 126 126 21 〈10, 5, 4, 2〉 252 210 186
〈9, 4, 5, 2〉 126 126 105 〈10, 5, 4, 3〉 252 210 66
〈9, 4, 5, 3〉 126 126 45 〈10, 5, 5, 2〉 252 252 226
〈9, 4, 6, 2〉 126 84 120 〈10, 5, 5, 3〉 252 252 126
〈9, 4, 6, 3〉 126 84 75 〈10, 5, 5, 4〉 252 252 26

Example 4.1 (The lottery 〈6, 4, 3, 2〉) Consider the lottery 〈6, 4, 3, 2〉, in which the set

Φ(U6, 4) = {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6},
{3, 4, 5, 6}.

Let x1 represent ticket {1, 2, 3, 4}, x2 represent ticket {1, 2, 3, 5}, . . . , and x15 represent ticket
{3, 4, 5, 6}. The objective in the complete lottery problem for the lottery 〈6, 4, 3, 2〉 is to

minimise
∑

1≤j≤15

xj (4.6)



42 Chapter 4. A mathematical programming approach

subject to the constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x11 + x12 + x13 ≥ 1
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + x14 ≥ 1
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x10 + x11 + x13 + x14 ≥ 1
x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x10 + x12 + x13 + x14 ≥ 1
x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x15 ≥ 1
x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x13 + x15 ≥ 1
x1 + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x13 + x15 ≥ 1
x1 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14 + x15 ≥ 1
x1 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x14 + x15 ≥ 1
x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x13 + x14 + x15 ≥ 1
x1 + x2 + x3 + x4 + x5 + x7 + x8 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x2 + x3 + x4 + x6 + x7 + x9 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x2 + x3 + x5 + x6 + x8 + x9 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x2 + x4 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x3 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x2 + x3 + x4 + x5 + x6 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x2 + x4 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x1 + x3 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1
x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 1

xi ∈ {0, 1}, 1 ≤ i ≤ 15.

If this formulation is solved by means of the commercial software suite LINGO 11 [28], the
optimal solution variables which take the value 1 are x1 and x6. If ticket i is the element
listed in the ith position in the set Φ(U6, 4) above, an optimal playing set for the participant is
{{1, 2, 3, 4}, {1, 2, 5, 6}}. �

4.2 An ILP formulation of the incomplete lottery problem

In this section, an ILP formulation of the incomplete lottery problem is presented. The formu-
lation of the incomplete lottery problem is an extension of the ILP formulation of the complete
lottery problem in §4.1. An additional constraint set, and an additional array of decision vari-
ables are introduced into the formulation.

The formulation for the complete lottery problem states the participant’s playing set (which is
a subset of Φ(Um, n)) must cover all the possible government tickets (which are chosen from
Φ(Um, t)). However, in the incomplete lottery problem, not all of the

(
m
t

)
possible government

tickets need to be covered by the participant’s playing set. The participant merely requires a
certain proportion ψ of the

(
m
t

)
government tickets to be covered. Define the decision variables

yi =


1 if government ticket i is in the neighbourhood

of one of the tickets in the participant′s playing set
0 otherwise.

(4.7)



4.2. An ILP formulation of the incomplete lottery problem 43

The objective is to minimise the number of tickets in the participant’s playing set, subject to
the constraint that at least ψ

(
m
t

)
government tickets must be covered by the playing set, that

is to
minimise P (x) =

∑
1≤j≤(mn)

xj (4.8)

subject to ∑
1≤j≤(mn)

aijxj ≥ yi, 1 ≤ i ≤
(
m

t

)
(4.9)

∑
1≤i≤(mt )

yi ≥ ψ

(
m

t

)
(4.10)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
(4.11)

yi ∈ {0, 1}, 1 ≤ i ≤
(
m

t

)
, (4.12)

where the decision variable xj has the same meaning as in (4.1). Constraint set (4.9) ensures
that at least one of the playing set tickets covering government ticket i is in the playing set.
Constraint set (4.10) ensures that at least ψ

(
m
t

)
government tickets are covered by the playing

set. Constraint sets (4.11) and (4.12) enforce the binary nature of the decision variables in (4.1)
and (4.7), respectively. Note that if ψ = 1, then the incomplete lottery problem formulation
(4.8)–(4.12) reduces to the complete lottery problem formulation (4.2)–(4.4).

The following example contains the instance of the formulation (4.8)–(4.12) for the lottery
〈6, 4, 3, 2〉, together with a solution.

Example 4.2 (The lottery 〈6, 4, 3, 2〉) The objective in the incomplete lottery problem for-
mulation for the lottery 〈6, 4, 3, 2〉 is to

minimise
∑

1≤j≤15

xj (4.13)

subject to the constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x11 + x12 + x13 ≥ y1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + x14 ≥ y2

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x10 + x11 + x13 + x14 ≥ y3

x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x10 + x12 + x13 + x14 ≥ y4

x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x15 ≥ y5

x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x13 + x15 ≥ y6

x1 + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x13 + x15 ≥ y7

x1 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14 + x15 ≥ y8

x1 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x14 + x15 ≥ y9

x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x13 + x14 + x15 ≥ y10

x1 + x2 + x3 + x4 + x5 + x7 + x8 + x11 + x12 + x13 + x14 + x15 ≥ y11

x1 + x2 + x3 + x4 + x6 + x7 + x9 + x11 + x12 + x13 + x14 + x15 ≥ y12

x1 + x2 + x3 + x5 + x6 + x8 + x9 + x11 + x12 + x13 + x14 + x15 ≥ y13



44 Chapter 4. A mathematical programming approach

x1 + x2 + x4 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y14

x1 + x3 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y15

x2 + x3 + x4 + x5 + x6 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y16

x1 + x2 + x4 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y17

x1 + x3 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y18

x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y19

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y20∑
1≤j≤20

yj ≥ 20ψ

xi, yj ∈ {0, 1}, 1 ≤ i ≤ 15,
1 ≤ j ≤ 20.

Solving the formulation above using LINGO 11 [28] yields the results in Table 4.2. Ticket 1
covers exactly 0.8 × 20 = 16 government tickets, because it occurs in 16 of the 20 constraints
associated with the binary covering matrix. Hence Lψ(6, 4, 3, 2) = 1 for all 0 < ψ ≤ 0.8.
However, Lψ(6, 4, 3, 2) = 2 for all 0.8 < ψ ≤ 1. �

Table 4.2: Results obtained from solving of the incomplete lottery problem for the lottery 〈6, 4, 3, 2〉
after being modelled as an ILP formulation.

ψ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Solution variables

x1 x1 x1 x1 x1 x1 x1 x1 x6, x7 x1, x6with a value of 1

4.3 An ILP formulation of the resource utilisation problem

In this section, an ILP formulation of the resource utilisation problem is presented. This ILP
formulation is an adaptation of the ILP formulation of the incomplete lottery problem in the
previous section.

The objective in the resource utilisation problem is to maximise the proportion of government
tickets which have at least k numbers in common with at least one ticket in a participant’s
playing set of fixed cardinality `. Or, more formally, to

maximise P (x) =

∑
1≤i≤(mt )

yi(
m
t

) (4.14)

subject to ∑
1≤j≤(mn)

aijxj ≥ yi, 1 ≤ i ≤
(
m

t

)
(4.15)

∑
1≤j≤(mn)

xj = ` (4.16)

xj ∈ {0, 1}, 1 ≤ j ≤
(
m

n

)
(4.17)

yi ∈ {0, 1}, 1 ≤ i ≤
(
m

t

)
, (4.18)



4.3. An ILP formulation of the resource utilisation problem 45

Table 4.3: Dimensions of the ILP formulations of the incomplete lottery problem, and the resource
utilisation problem. In the columns labelled DV, the number of decision variables in the formulation for
the problem instance shown in the first column are displayed. In the columns labelled NC, the number
of constraints in the formulation is displayed. In the last column labelled TC, the number of terms per
constraint in (4.9) or (4.15) are shown. The value in the final column is calculated via (4.5).

DV NC TC
〈m,n, t, k〉 in (4.1) in (4.7) Total in (4.9) Total
〈6, 3, 3, 2〉 20 20 40 20 21 10
〈7, 3, 3, 2〉 35 35 70 35 36 13
〈7, 3, 4, 2〉 35 35 70 35 36 22
〈7, 3, 5, 2〉 35 21 56 21 22 30
〈8, 3, 3, 2〉 56 56 112 56 57 16
〈8, 3, 4, 2〉 56 70 126 70 71 28
〈8, 3, 5, 2〉 56 56 112 56 57 40
〈8, 3, 6, 2〉 56 28 84 28 29 50
〈8, 4, 3, 2〉 70 56 126 56 57 35
〈8, 4, 4, 2〉 70 70 140 70 71 53
〈8, 4, 4, 3〉 70 70 140 70 71 17
〈9, 3, 3, 2〉 84 84 168 84 85 19
〈9, 3, 4, 2〉 84 126 210 126 127 34
〈9, 3, 5, 2〉 84 126 210 126 127 50
〈9, 3, 6, 2〉 84 84 168 84 85 65
〈9, 3, 7, 2〉 84 36 120 36 37 77
〈9, 4, 3, 2〉 126 84 210 84 85 51
〈9, 4, 4, 2〉 126 126 252 126 127 81
〈9, 4, 4, 3〉 126 126 252 126 127 21
〈9, 4, 5, 2〉 126 126 252 126 127 105
〈9, 4, 5, 3〉 126 126 252 126 127 45
〈9, 4, 6, 2〉 126 84 210 84 85 120
〈9, 4, 6, 3〉 126 84 210 84 85 75
〈9, 4, 7, 3〉 126 36 162 36 37 105
〈10, 3, 3, 2〉 120 120 240 120 121 22
〈10, 3, 4, 2〉 120 210 330 210 211 40
〈10, 3, 5, 2〉 120 252 372 252 253 60
〈10, 3, 6, 2〉 120 210 330 210 211 80
〈10, 3, 7, 2〉 120 120 240 120 121 98
〈10, 3, 8, 2〉 120 45 165 45 46 112
〈10, 4, 3, 2〉 210 120 330 120 121 70
〈10, 4, 4, 2〉 210 210 420 210 211 115
〈10, 4, 4, 3〉 210 210 420 210 211 25
〈10, 4, 5, 2〉 210 252 462 252 253 155
〈10, 4, 5, 3〉 210 252 462 252 253 55
〈10, 4, 6, 2〉 210 210 420 210 211 185
〈10, 4, 6, 3〉 210 210 420 210 211 95
〈10, 4, 7, 2〉 210 120 330 120 121 203
〈10, 4, 7, 3〉 210 120 330 120 121 140
〈10, 4, 8, 3〉 210 45 255 45 46 182
〈10, 5, 3, 2〉 252 120 372 120 121 126
〈10, 5, 4, 2〉 252 210 462 210 211 186
〈10, 5, 4, 3〉 252 210 462 210 211 66
〈10, 5, 5, 2〉 252 252 504 252 253 226
〈10, 5, 5, 3〉 252 252 504 252 253 126
〈10, 5, 5, 4〉 252 252 504 252 253 26



46 Chapter 4. A mathematical programming approach

where the decision variables xj and yi have the same meanings as in (4.1) and (4.7), respectively.
Constraint set (4.15) is exactly the same as constraint (4.9) in the ILP formulation of the
incomplete lottery problem, while constraint set (4.16) ensures that the playing set has fixed
cardinality `. Finally, the constraint sets (4.17) and (4.18) enforce the binary nature of the
decision variables in (4.1) and (4.7), respectively.

The numbers of decision variables, non-trivial constraints and terms per non-trivial constraint
in the resource utilisation problem are exactly the same as those for the incomplete lottery
problem, and may be found in Table 4.3 for small values of m, n, t and k.

The following example contains the instance of the formulation (4.8)–(4.12) for the lottery
〈6, 4, 3, 2〉, together with a solution to the problem instance.

Example 4.3 (The lottery 〈6, 4, 3, 2〉) The objective in the resource utilisation problem for
the lottery 〈6, 4, 3, 2〉 is to

maximise
1
20

∑
1≤j≤20

yj (4.19)

subject to the constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x11 + x12 + x13 ≥ y1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + x14 ≥ y2

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x10 + x11 + x13 + x14 ≥ y3

x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x10 + x12 + x13 + x14 ≥ y4

x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x15 ≥ y5

x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x13 + x15 ≥ y6

x1 + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x13 + x15 ≥ y7

x1 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14 + x15 ≥ y8

x1 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x12 + x14 + x15 ≥ y9

x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x13 + x14 + x15 ≥ y10

x1 + x2 + x3 + x4 + x5 + x7 + x8 + x11 + x12 + x13 + x14 + x15 ≥ y11

x1 + x2 + x3 + x4 + x6 + x7 + x9 + x11 + x12 + x13 + x14 + x15 ≥ y12

x1 + x2 + x3 + x5 + x6 + x8 + x9 + x11 + x12 + x13 + x14 + x15 ≥ y13

x1 + x2 + x4 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y14

x1 + x3 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y15

x2 + x3 + x4 + x5 + x6 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y16

x1 + x2 + x4 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y17

x1 + x3 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y18

x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y19

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ y20∑
1≤j≤15

xj = `

xi, yj ∈ {0, 1}, 1 ≤ i ≤ 15,
1 ≤ j ≤ 20.



4.4. Analysis of results 47

Table 4.4: Results obtained from solving the resource utilisation problem of the lottery 〈6, 4, 3, 2〉
after being modelled as an ILP formulation. The column labelled P(x) represents the optimal resource
utilisation for each possible playing set cardinality.

` Solution variables with a value of 1 P(x)
1 y2, y3, y4, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, x14 0.8
2 y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, 1

y19, y20, x3, x10

Solving the formulation above using LINGO 11 [28] yields the results in Table 4.4. It may
be seen from these results, that when the cardinality of the participant’s playing set is 1, the
largest proportion of government tickets that may possibly be covered is 16

20 = 0.8, while when the
cardinality of the participant’s playing set is 2, the largest proportion of government tickets that
may possibly be covered is 20

20 = 1; this may be achieved by selecting the third and tenth ticket
available for the participant to include into his/her playing set, i.e. {{1, 2, 3, 6}, {3, 4, 5, 6}}. �

4.4 Analysis of results

As mentioned, the problem instances in the numerical examples of the previous sections were
solved by means of LINGO 11 [28], using LINGO script files. There are many advantages of
using LINGO 11 scripts. At the time of writing, LINGO 11 is a relatively new and extremely
powerful tool which may be used to solve ILP problems. LINGO script files support the use
of arrays, which allow for a large formulation to be expressed in a few, relatively short lines of
code. An example of such a script file for the formulation of the resource utilisation problem
for the lottery 〈6, 4, 3, 2〉 is presented in Code Example 4.1.

Code Example 4.1 (LINGO code example)

! Output the solution report generated by LINGO
SET TERSEO 1
! Set a solver time limit of 14400 second=4hrs
SET TIMLIM 14400
! Do not allow dialog screens to appear
SET ERRDLG 0
! Force the solver to use an iteration-based stopping limit
! for heuristics used at each node of the branch and bound tree
apiset 369 int 2
! Set heuristics iteration limit to 100
apiset 334 int 100
! Begins input of a new LINGO model
model:
data:
! The adjacency matrix has dimensions 20x15
numrow=20;
numcol=15;
enddata
! Define y variables to be the associated with the rows
! of the input matrix, and the x variables to be



48 Chapter 4. A mathematical programming approach

! associated with the columns of the of the model
sets:
row/1..numrow/:y; !index i;
col/1..numcol/:x; !index j;
rxc(row,col):bij;
endsets
! Retieve the adjacency matrix from file
data:
bij=@file(’matrix6432.txt’);
enddata
! Objective function declaration
max=@sum(row(i):y(i))/numrow;
! The adjacency constraints
@for(row(i):@sum(col(j):bij(i,j)*x(j))>=y(i));
! The playing set cardinality must be fixed
@sum(col(j):x(j))=1.0;
! All variables in the formulation are binary
@for(col(j):@bin(x(j)));
@for(row(i):@bin(y(i)));
end
! Solve the model
GO
! Open a file
DIVERT 1.TXT
! Send solution to the file
SOLUTION
! Send total solver time to file
TIME
! Close solution file
RVRT
! The playing set cardinality increases by 1
ALTER ALL ’1.0’2.0’
! Solve the model
GO
! Open a file
DIVERT 2.TXT
! Send solution to the file
SOLUTION
TIME
! Close solution file
RVRT
! Restore parameters
SET TERSEO 0
SET ECHOIN 0 �

In the above code, the resource utilisation problem of the lottery 〈6, 4, 3, 2〉 is formulated as an
ILP and is solved for ` = 1, and then for ` = 2. For each value of ` the results are written to a
file, and in each case the execution time is limited to 4 hours (14 400 seconds). This time limit
was also adopted for all 38 lottery instances in Table 4.5.



4.4. Analysis of results 49

Table 4.5: The small (non-isomorphic) lottery instances which are investigated in this chapter, together
with the known complete lottery number, L1, for each instance.

〈m,n, t, k〉 L1 〈m,n, t, k〉 L1 〈m,n, t, k〉 L1 〈m,n, t, k〉 L1 〈m,n, t, k〉 L1

〈6, 3, 3, 2〉 2 〈8, 4, 4, 3〉 6 〈9, 4, 5, 2〉 2 〈10, 4, 3, 2〉 4 〈10, 5, 3, 2〉 2
〈7, 3, 3, 2〉 4 〈9, 3, 3, 2〉 7 〈9, 4, 5, 3〉 5 〈10, 4, 4, 2〉 3 〈10, 5, 4, 2〉 2
〈7, 3, 4, 2〉 2 〈9, 3, 4, 2〉 3 〈9, 4, 6, 3〉 2 〈10, 4, 4, 3〉 14 〈10, 5, 4, 3〉 7
〈8, 3, 3, 2〉 5 〈9, 3, 5, 2〉 3 〈10, 3, 3, 2〉 8 〈10, 4, 5, 2〉 2 〈10, 5, 5, 2〉 2
〈8, 3, 4, 2〉 3 〈9, 3, 6, 2〉 2 〈10, 3, 4, 2〉 5 〈10, 4, 5, 3〉 7 〈10, 5, 5, 3〉 2
〈8, 3, 5, 2〉 2 〈9, 4, 3, 2〉 4 〈10, 3, 5, 2〉 3 〈10, 4, 6, 2〉 2 〈10, 5, 5, 4〉 14
〈8, 4, 3, 2〉 2 〈9, 4, 4, 2〉 2 〈10, 3, 6, 2〉 3 〈10, 4, 6, 3〉 4
〈8, 4, 4, 2〉 2 〈9, 4, 4, 3〉 9 〈10, 3, 7, 2〉 2 〈10, 4, 7, 3〉 2

For each lottery instance, the incomplete lottery problem is formulated as an ILP and solved
for each value of ψ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The resource utilisation problem
is also formulated as an ILP and solved for each possible value of ` ∈ N until a value of
Ψ`(m,n, t, k) = 1 is found for each problem instance. The results appear in Tables B.1 and C.1.
From these tables, 51 problem instances reached the time limit of 14 400 seconds. It was found
through experimental analysis that if the time limit is not enforced, some problem instances
may take many days or even weeks to solve.

Table 4.6: Lottery instances which are isomorphic to the small lottery instances investigated in this
chapter, as listed in Table 4.5. Each entry in this table is of the form 〈m,n, t, k〉 ∼= 〈m,m−n,m− t,m+
k − n− t〉.

〈7, 4, 4, 3〉 ∼= 〈7, 3, 3, 2〉 〈9, 5, 5, 3〉 ∼= 〈9, 4, 4, 2〉 〈10, 6, 6, 4〉 ∼= 〈10, 4, 4, 2〉
〈7, 4, 3, 2〉 ∼= 〈7, 3, 4, 2〉 〈9, 5, 5, 4〉 ∼= 〈9, 4, 4, 3〉 〈10, 6, 6, 5〉 ∼= 〈10, 4, 4, 3〉
〈8, 5, 5, 4〉 ∼= 〈8, 3, 3, 2〉 〈9, 5, 4, 2〉 ∼= 〈9, 4, 5, 2〉 〈10, 6, 5, 3〉 ∼= 〈10, 4, 5, 2〉
〈8, 5, 4, 3〉 ∼= 〈8, 3, 4, 2〉 〈9, 5, 4, 3〉 ∼= 〈9, 4, 5, 3〉 〈10, 6, 5, 4〉 ∼= 〈10, 4, 5, 3〉
〈8, 5, 3, 2〉 ∼= 〈8, 3, 5, 2〉 〈9, 5, 3, 2〉 ∼= 〈9, 4, 6, 3〉 〈10, 6, 4, 2〉 ∼= 〈10, 4, 6, 2〉
〈8, 4, 5, 3〉 ∼= 〈8, 4, 3, 2〉 〈10, 7, 7, 6〉 ∼= 〈10, 3, 3, 2〉 〈10, 6, 4, 3〉 ∼= 〈10, 4, 6, 3〉
〈9, 6, 6, 5〉 ∼= 〈9, 3, 3, 2〉 〈10, 7, 6, 5〉 ∼= 〈10, 3, 4, 2〉 〈10, 6, 3, 2〉 ∼= 〈10, 4, 7, 3〉
〈9, 6, 5, 4〉 ∼= 〈9, 3, 4, 2〉 〈10, 7, 5, 4〉 ∼= 〈10, 3, 5, 2〉 〈10, 5, 7, 4〉 ∼= 〈10, 5, 3, 2〉
〈9, 6, 4, 3〉 ∼= 〈9, 3, 5, 2〉 〈10, 7, 4, 3〉 ∼= 〈10, 3, 6, 2〉 〈10, 5, 6, 3〉 ∼= 〈10, 5, 4, 2〉
〈9, 6, 3, 2〉 ∼= 〈9, 3, 6, 2〉 〈10, 7, 3, 2〉 ∼= 〈10, 3, 7, 2〉 〈10, 5, 6, 4〉 ∼= 〈10, 5, 4, 3〉
〈9, 5, 6, 4〉 ∼= 〈9, 4, 3, 2〉 〈10, 6, 7, 5〉 ∼= 〈10, 4, 3, 2〉

For integer programing problems, it is known that as the number of variables in the ILP formu-
lation increases, the execution time may increase (even exponentially) because more branches in
the branch-and-bound tree may need to be evaluated. A pessimistic indication of the number of
branches contained in the branch-and-bound tree, and hence the number of candidate solutions
which may need to be considered when solving the incomplete lottery problem, is

L1(m,n,t,k)∑
`=1

((m
n

)
`

)( (
m
t

)⌈
ψ
(
m
t

)⌉). (4.20)

The reasoning behind the expression in (4.20) is that, in the worst case, all
((mn)
`

)
possible playing

sets may need to be considered, and each time a playing set is considered, each combination
of
⌈
ψ
(
m
t

)⌉
government tickets may need to be considered. Similarly, a pessimistic indication



50 Chapter 4. A mathematical programming approach

of the number of branches which may have to be traversed in the branch-and-bound tree, and
hence the number of candidate solutions which may need to be considered when solving for the
resource utilisation problem is

(mt )∑
i=1

((m
t

)
i

)((m
n

)
`

)
. (4.21)

The reasoning behind the expression in (4.21) is that, in the worst case, all possible government
tickets which could possibly have k numbers in common with at least one ticket in the playing
set may need to be considered, and each time a set of government tickets is considered, all
possible playing sets of cardinality ` may need to be considered.

4.4.1 Analysis of results for the incomplete lottery problem

As an example, the problem instances involving the lotteries 〈9, 4, 4, 3〉 and 〈10, 5, 4, 3〉 are
formulated as ILP’s and solved. The results are presented in Tables 4.7 and 4.8, respectively.

It may be seen in Figures 4.1 and 4.2 that as the desired win probability of the participant
increases, the number of tickets required in the playing set displays a convex upward trend.
This is an interesting observation for the participant, because it shows a relationship between
the payoff and the participant’s attitude towards risk. If the participant tends to be risk seeking,
he/she participates in a lottery draw without fear of losing and might select a playing set of
low cardinality. If the participant is risk-averse, he/she participates in a lottery draw with a
great fear of losing and therefore would like to increase his/her probability of winning a k-prize.
Therefore, a participant who is risk-averse may select a playing set of larger cardinality. The
convex upward nature of the graph indicates that as the desired probability of winning a k-prize
increases (implying a decrease in risk of losing), the playing set cardinality which achieves this
desired win probability does not decrease.

Table 4.7: Results obtained when solving for the value Lψ(9, 4, 4, 3) when the problem is formulated
as an ILP. The first column contains the value of the required probability-of-win, ψ. The second column
contains an example of a playing set which at least achieves the required probability-of-win value. The
third column contains the actual probability of win value, ψ′, achieved by the playing set in the second
column. The fourth column contains the associated number of branches in the branch-and-bound tree
(bounded above by (4.20)). Finally, the fifth column contains the time in seconds required to find the
solution.

ψ Playing set ψ′ Branches Time
0.1 {{1, 2, 3, 4}} 0.167 0 1.949
0.3 {{1, 2, 5, 6}, {1, 3, 4, 8}} 0.333 0 1.669
0.5 {{1, 2, 3, 9}, {1, 4, 6, 7}, {4, 5, 8, 9}} 0.5 0 0.429
0.6 {{1, 2, 4, 9}, {1, 3, 5, 9}, {2, 3, 7, 8}, {3, 4, 6, 8}} 0.603 61 1.179
0.7 {{1, 2, 5, 9}, {1, 3, 6, 7}, {1, 6, 8, 9}, {2, 3, 4, 8}, 0.738 420 2.039

{4, 5, 6, 7}}
0.8 {{1, 2, 7, 8}, {1, 4, 5, 8}, {1, 4, 7, 9}, {2, 3, 4, 8}, 0.825 781 103 14 400

{2, 5, 6, 9}, {3, 5, 6, 7}}
0.9 {{1, 2, 4, 9}, {1, 3, 5, 7}, {1, 6, 7, 8}, {2, 3, 4, 8}, 0.904 886 618 14 400

{2, 3, 6, 9}, {4, 5, 6, 9}, {5, 7, 8, 9}}
1 {{1, 2, 5, 9}, {1, 3, 4, 5}, {1, 3, 6, 7}, {1, 3, 6, 8}, 1 41 491 4 256.259

{2, 3, 5, 9}, {2, 4, 6, 9}, {2, 4, 7, 8}, {4, 7, 8, 9},
{5, 6, 7, 8}}



4.4. Analysis of results 51

Table 4.8: Results obtained when solving for the value Lψ(10, 5, 4, 3) when the problem is formulated
as an ILP. The first column contains the value of the required probability-of-win value, ψ. The second
column contains an example of a playing set which at least achieves the required probability-of-win value.
The third column contains the actual probability of win value, ψ′, achieved by the playing set in the
second column. The fourth column contains the associated number of branches in the branch-and-bound
tree. Finally, the fifth column contains the time in seconds required to find the solution.

ψ Playing set ψ′ Branches Time
0.2 {{1, 2, 3, 4, 5}} 0.262 0 1.040
0.5 {{1, 2, 3, 4, 8}, {2, 5, 6, 7, 9}} 0.523 2 1.790
0.7 {{1, 3, 4, 6, 9}, {1, 5, 6, 8, 10}, {2, 4, 7, 9, 10}} 0.7 1 2.339
0.8 {{1, 3, 7, 8, 10}, {1, 4, 5, 6, 9}, {2, 3, 4, 5, 7}, 0.8 71 8.979

{2, 3, 5, 8, 10}}
0.9 {{1, 3, 4, 5, 6}, {1, 5, 8, 9, 10}, {2, 3, 7, 8, 9}, 0.919 51 446 14 400

{2, 4, 6, 7, 8}, {2, 4, 6, 7, 10}}
1 {{1, 2, 6, 8, 9}, {1, 3, 4, 5, 7}, {1, 3, 5, 7, 10}, 1 117 287 14 400

{2, 3, 4, 5, 8}, {2, 3, 4, 8, 10}, {2, 6, 7, 8, 9}
{4, 5, 6, 9, 10}}

0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6

7

8

9

0.6 0.7 0.8 0.9 1

P
la

yi
ng

se
t

ca
rd

in
al

it
y

Win probability

Figure 4.1: Playing set cardinality as a function of win probability for the incomplete lottery problem
associated with the lottery 〈9, 4, 4, 3〉.

Another aspect of interest is the execution time required to solve the incomplete lottery problem.
It may be seen in Figures 4.3 and 4.4 that as the participant’s desired win probability increases,
it is often the case that the execution time of solving the problem is longer. One reason for this
is that the number of different ticket combinations comprising the playing set which satisfy the
participant’s desire for a win probability of at least ψ, may become significantly larger (resulting
in a larger number of computations required) as the desired win probability increases. In terms
of solving the problems when modelled as ILPs, the execution time is affected by the number
of branches in the branch-and-bound tree; however, it is also affected by the manner in which
LINGO determines which variables to branch on. Typically, as may be seen in Figures 4.3 and
4.4, as the number of branches in the branch-and-bound tree increases, so does the execution
time. However, this is not always the case. As an example, consider the cases when the optimal
values of L0.5(10, 5, 4, 3) and L0.7(10, 5, 4, 3) are sought. It took approximately 1.8 seconds to
solve for L0.5(10, 5, 4, 3) and the branch-and-bound tree consisted of 2 branches; however, it took
approximately 2.3 seconds to solve for L0.7(10, 5, 4, 3) but the branch-and-bound tree consisted



52 Chapter 4. A mathematical programming approach

Win probability

P
la

yi
ng

se
t

ca
rd

in
al

it
y

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

Figure 4.2: Playing set cardinality as a function of win probability for the incomplete lottery problem
associated with the lottery 〈10, 5, 4, 3〉.

of only 1 branch. The slight discrepancy in the execution time in those cases may be attributed
to the above-mentioned manner in which LINGO determines which variables to branch on.

In Figure 4.3, the execution time taken to find the value of L1(9, 4, 4, 3) is 4 256.3 seconds, but in
Figure 4.4, the execution time required to find the value of L1(10, 5, 4, 3) reaches the time limit
of 14 400 seconds (or 4 hours), indicating that the problem was not solved to completion and
an upper bound on L1(10, 5, 4, 3) was found. This may be explained by noting that only 41 491
branches are required in the branch-and-bound tree in order to find the value of L1(9, 4, 4, 3)
(compared to at least 886 618 branches being required to find the value of L0.9(9, 4, 4, 3)) and at
least 117 287 branches are required in the branch-and-bound tree when the value of L1(10, 5, 4, 3)
is sought (compared to at least 51 446 branches required to find the value of L1(10, 5, 4, 3)). This
explains the difference in the graphs in Figures 4.3 and 4.4.

��
�
�
�
�

���� ����������

��
��
��
��

�
�
�
�

����

 0

 16000

 0.5  0.6  0.8

Win probability
0.1 0.2 0.3 0.4 0.7 0.9 1

2 000

4 000

6 000

8 000

10 000

12 000

14 000

E
xe

cu
ti

on
ti

m
e

Figure 4.3: Execution time as a function of win probability for the incomplete lottery problem associ-
ated with the lottery 〈9, 4, 4, 3〉.



4.4. Analysis of results 53

E
xe

cu
ti

on
ti

m
e

Win probability

16 000

14 000

12 000

10 000

8 000

6 000

4 000

2 000

0.2
0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4: Execution time as a function of win probability for the incomplete lottery problem associ-
ated with the lottery 〈10, 5, 4, 3〉.

Table 4.9: Results obtained when solving for the value Ψ`(9, 4, 4, 3) when the problem is formulated
as an ILP. The first column contains the fixed playing set cardinality `. The second column contains
an example of a playing set which achieves the probability-of-win value Ψ` in the third column. The
fourth column contains the associated number of branches in the branch-and-bound tree. Finally, the
fifth column contains the time in seconds required to find the solution.

` Playing set Ψ` Branches Time
1 {{5, 7, 8, 9}} 0.167 0 0.319
2 {{1, 3, 8, 9}, {3, 4, 6, 7}} 0.333 0 0.368
3 {{1, 3, 5, 7}, {2, 4, 5, 6}, {6, 7, 8, 9}} 0.5 0 0.449
4 {{1, 2, 3, 9}, {1, 2, 6, 8}, {3, 4, 5, 6}, {4, 7, 8, 9}} 0.635 325 782 9 819.239
5 {{1, 2, 7, 9}, {1, 6, 7, 8}, {2, 4, 5, 8}, {3, 4, 6, 9}, 0.738 277 847 14 400
{3, 5, 7, 8}}

6 {{1, 2, 3, 6}, {1, 4, 6, 9}, {2, 4, 6, 7}, {2, 5, 8, 9}, 0.825 353 245 14 400
{3, 4, 5, 8}, {3, 7, 8, 9}}

7 {{1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 8}, {1, 7, 8, 9}, 0.913 428 601 14 400
{2, 3, 4, 9}, {2, 3, 5, 8}, {2, 5, 6, 9}}

8 {{1, 2, 8, 9}, {1, 3, 4, 9}, {1, 5, 6, 7}, {2, 3, 6, 7}, 0.960 657 794 144 00
{2, 4, 5, 6}, {2, 4, 5, 7}, {3, 5, 8, 9}, {4, 6, 7, 8}}

9 {{1, 2, 5, 7}, {1, 3, 4, 7}, {1, 4, 5, 6}, {1, 6, 8, 9}, 1 156 1.559
{2, 3, 4, 9}, {2, 3, 6, 8}, {2, 4, 7, 8}, {3, 5, 8, 9},
{5, 6, 7, 9}}

4.4.2 Analysis of results for the resource utilisation problem

As an example, the results obtained from solving the two resource utilisation problem instances
for the lotteries 〈9, 4, 4, 3〉 and 〈10, 5, 4, 3〉, adopting an ILP formulation approach, are presented
in Tables 4.9 and 4.10, respectively.

The graphs of resource utilisation as a function of playing set cardinality, shown in Figures 4.5
and 4.6, roughly exhibit a concave downward shape. The reason for this shape is that, as the
playing set cardinality increases, the neighbourhoods of those tickets in the playing set overlap
more with each other, and subsequently the improvement in the resource utilisation tends to



54 Chapter 4. A mathematical programming approach

Table 4.10: Results obtained when solving for the value Ψ`(10, 5, 4, 3) when the problem is formulated
as an ILP. The first column contains the fixed playing set cardinality `. The second column contains
an example of a playing set which achieves the probability-of-win value Ψ` in the third column. The
fourth column contains the associated number of branches in the branch-and-bound tree. Finally, the
fifth column contains the time in seconds required to find the solution.

` Playing set Ψ` Branches Time
1 {{1, 2, 3, 4, 5}} 0.262 0 2.359
2 {{1, 2, 3, 5, 6}, {1, 4, 8, 9, 10}} 0.524 0 4.689
3 {{1, 2, 4, 5, 10}, {3, 5, 7, 8, 9}, {4, 6, 8, 9, 10}} 0.7 56 333 14 400
4 {{1, 4, 7, 8, 10}, {1, 5, 6, 7, 9}, {2, 3, 4, 6, 9}, 0.876 82 174 14 400
{2, 3, 5, 8, 10}}

5 {{1, 3, 4, 5, 7}, {1, 3, 6, 9, 10}, {2, 3, 7, 8, 10}, 0.924 104 717 14 400
{2, 4, 6, 8, 9}, {2, 5, 6, 8, 9}}

6 {{1, 2, 5, 6, 9}, {1, 3, 4, 7, 8}, {1, 5, 7, 9, 10}, 0.986 130 990 14 400
{2, 3, 4, 8, 10}, {2, 5, 6, 7, 9}, {3, 4, 6, 8, 10}}

7 {{1, 2, 3, 4, 8}, {1, 4, 5, 9, 10}, {1, 4, 7, 9, 10}, 1 3 1.099
{1, 5, 6, 7, 10}, {2, 3, 5, 7, 8}, {2, 4, 6, 8, 9},
{3, 4, 6, 9, 10}}

decrease. The associated execution time graphs are similar to those observed when solving the
incomplete lottery problem; it is often the case that as the playing set cardinality increases, the
time taken to find an optimal (or near optimal) solution increases. One possible reason for this
phenomenon is that as the playing set cardinality increases, it is possible that more combinations
of participant tickets are assessed. This implies that more iterations are required to build the
branch-and-bound tree, and hence more calculations are carried out by the processor, thus
causing the execution time to increase regardless of the speed of the processor. In Figure 4.6
the graph appears to be linear from point 2 to point 4. This may be explained as follows. The
neighbourhoods of the tickets in the playing set of cardinality 2 have no tickets in common
with each other, however, the neighbourhoods of the tickets of the playing set of cardinality 3
have, in total, 18 tickets in common (an increase of 18 tickets). Also, the neighbourhoods of
the tickets of the playing set of cardinality 4 have, in total, 36 tickets in common (an increase
of 18 tickets). Therefore, the increase in the number of tickets shared by the neighbourhoods of
the tickets in the playing set is linear, hence the linear shape of the graph from ` = 2 to ` = 4.
Also in Figure 4.6, there seems to be a “kink” in the graph where the playing set cardinality is
equal to 5. This may be explained as follows. As mentioned, the neighbourhoods of the tickets
of the playing set of cardinality 4 have, in total, 36 tickets in common. The neighbourhoods of
the tickets in the playing set of cardinality 5 have, in total, 81 tickets in common (an increase of
81−36 = 45), the neighbourhoods of the tickets in the playing set of cardinality 6 have, in total,
123 tickets in common (an increase of 123− 81 = 42), and neighbourhoods of the tickets in the
playing set of cardinality 7 have, in total, 81 tickets in common (an increase of 175− 123 = 52).
Therefore, the increase in the number of tickets shared by the neighbourhoods of the tickets in
the playing set is not linear, hence the non-linear shape of the graph from ` = 4 to ` = 7.

4.5 Boundaries of feasibility via an ILP approach

In this section, the boundaries of feasibility of an ILP approach towards solving the incomplete
lottery problem and the resource utilisation problem are explored. In Tables 4.7–4.10 in §4.4,



4.5. Boundaries of feasibility via an ILP approach 55

����

��
��
��
��

�
�
�
�

�
�
�
�����

����
��

����
��
��
��

Playing set cardinality

R
es

ou
rc

e
ut

ili
sa

ti
on

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
1 2 3 4 5 6 7 8 9

Figure 4.5: Ψ`(9, 4, 4, 3) as a function of playing set cardinality. The values of resource utilisation
associated with playing set cardinalities of 1, 2, 3, 4 and 9 represent the optimal value of Ψ`(9, 4, 4, 3),
and the resource utilisation values associated playing set cardinalities of 5, 6, 7 and 8 represent lower
bounds on the value of Ψ`(9, 4, 4, 3) because execution time reached the predefined time limit of 14 400
seconds.

it may be seen that certain small instances of the incomplete lottery problem and the resource
utilisation problem require more than four hours to solve for an optimal solution. In this
section, a problem instance which reached the four hour time limit is considered, and the ILP
formulation of that problem is altered by fixing variables explicitly in the hope of finding a
globally optimal solution within a relatively small amount of time. The same problem is also
allowed to solve to completion, and the results are documented.

As an example, consider the case where the variables x1 and x2 are fixed explicitly in the
formulation. They may possibly be fixed as x1 = 0, x2 = 0; as x1 = 1, x2 = 1; as x1 = 1, x2 = 0;
or as x1 = 1, x2 = 1. The branch-and-bound algorithm will not be required to branch on these
two variables. This therefore results in fewer branches in the branch-and-bound tree, which may
result in a decrease in the execution time associated with solving instances of the incomplete
lottery problem and the resource utilisation problem. If r variables are chosen to be fixed
explicitly, 2r different formulations have to be solved in order to find the best objective function
value. If more variables are explicitly fixed, a shorter execution time may be required to find
a solution. However, if more variables are explicitly fixed, an exponentially larger number of
formulations have to be solved, which may require more processing time and memory. Due
to time and resource limitations, only four variables are explicitly fixed in the example which
follows. This requires 24 = 16 problem formulations to be solved.

When selecting the four variables to be fixed explicitly, it may not be desirable to select the
variables x1, x2, x3, x4 (which represent the first four tickets, arranged lexicographically)
because it is highly unlikely that all those variables will be included in an optimal playing set
due to the large overlap of their neighbourhoods. Therefore, a better technique would be a
naive partitioning of Φ(Um, n) into four subsets of equal size, and using a variable from each
subset. For example, in the lottery 〈10, 5, 4, 3〉, for which

(
10
5

)
= 252, the variables

x1, x1+ 252
4
, x1+ 252

4
+ 252

4
, x1+ 252

4
+ 252

4
+ 252

4

i.e. x1, x64, x127, x190 may be fixed explicitly. It may be more likely that the set of tickets
represented by these variables will cover more government tickets than the set represented by



56 Chapter 4. A mathematical programming approach

R
es

ou
rc

e
ut

ili
sa

ti
on

Playing set cardinality

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
1 2 3 4 5 6 7

Figure 4.6: Ψ`(10, 5, 4, 3) as a function of playing set cardinality. The values of resource utilisation
associated with playing set cardinalities of 1, 2, and 7 represent the optimal value of Ψ`(10, 5, 4, 3), and
the resource utilisation values associated playing set cardinalities of 3, 4, 5 and 6 represent lower bounds
on the value of Ψ`(10, 5, 4, 3) because execution time reached the predefined time limit of 14 400 seconds.

the variables x1, x2, x3, x4. The above-mentioned partitioning technique will used in the
discussion below.

Example 4.4 (Explicitly fixing a predetermined set of variables) In Table 4.10, the re-
source utilisation problem corresponding to the value ` = 5 was not solved to completion for the
lottery 〈10, 5, 4, 3〉. Therefore, the four variables x1, x64, x127 and x190 are fixed. This implies
that 24 = 16 different problem instances are formulated as ILPs and solved to completion. The
results appear in Table 4.11.

It is known that the value of Ψ5(10, 5, 4, 3) is approximately 0.923 810. From Table 4.11 it is
evident that if some variables are fixed explicitly, a solution equal to the known optimal solution
to the problem may be obtained in a very short time. In the case of the lottery 〈10, 5, 4, 3〉 for
` = 5, a solution equal to the optimal solution may be obtained after 0.919 seconds (when the
variables x1, x127 and x190 are fixed to 1, and the variable x64 is fixed to 0). However, it will
only be known that a solution is optimal once all possible values of x1, x64, x127 and x190 have
been considered. This approach is analogous to solving the problem in parallel. �

If the resource utilisation problem for the lottery 〈10, 5, 4, 3〉 when ` = 5 is formulated as an ILP
and solved to completion, without any variables being explicitly fixed, the results documented
in Table 4.12 are obtained.

From Table 4.12 it may be seen that the problem solved to completion in approximately 15.3
days. When the four variables x1, x64, x127 and x190 are explicitely fixed, the total time
execution of solving all 24 = 16 problems is approximately 17.3 days. However, if the variables
x1, x127 and x190 are fixed to 1 and x64 is fixed to 0, a solution equal to the known optimal
solution of approximately 0.923 810 is found in approximately 0.9 seconds. This result either
implies that, should an optimal solution be sought, it is less time consuming to allow the problem
to solve to completion without fixing any variables explicitly, or it may be possible to find an
optimal solution or a near optimal solution, in less time by explicitly fixing a larger number
of variables. In turn, this will require more resources but possibly less total execution time to
find an optimal solution. Regardless, in a worst case scenario, it may yield viable bounds on
Ψ`(m,n, t, k) in a feasible amount of time.



4.6. Chapter overview 57

Table 4.11: Results obtained when explicitly fixing four variables in the ILP formulation of the resource
utilisation problem in which the value Ψ5(10, 5, 4, 3) is sought. The first four columns contain the values
to which each of the four variables are fixed. The fifth column contains the associated number of branches
in the branch-and-bound tree. The sixth column contains the time, in seconds, taken to find an optimal
solution. Finally, the seventh column contains the objective function value achieved, i.e. the proportion
of government tickets covered by the corresponding optimal playing set.

x1 x64 x127 x190 Branches Seconds Objective
0 0 0 0 24 378 296 1 178 321.000 0.924
0 0 0 1 561 160 62 920.080 0.924
0 0 1 0 621 355 80 066.300 0.924
0 0 1 1 113 259 3 033.000 0.924
0 1 0 0 551 994 62 907.770 0.924
0 1 0 1 252 568 12 448.449 0.924
0 1 1 0 92 842 2 920.819 0.924
0 1 1 1 64 1.089 0.919
1 0 0 0 631 642 82 149.550 0.924
1 0 0 1 160 452 5 554.159 0.924
1 0 1 0 11 233 401.919 0.924
1 0 1 1 0 0.919 0.924
1 1 0 0 76 542 1 786.399 0.924
1 1 0 1 104 1.219 0.919
1 1 1 0 0 1.099 0.9
1 1 1 1 0 0.769 0.89

Table 4.12: Results obtained when solving the problem instance for Ψ5(10, 5, 4, 3).

Lottery ` Branches Time (s) Time (days) Objective value
〈10, 5, 4, 3〉 5 29 665 952 1 318 179.27 15.25 0.923 810

4.6 Chapter overview

The mathematical programming approach towards solving the complete lottery problem, the
incomplete lottery problem, and the resource utilisation problem adopted in this chapter is
useful in two situations. Firstly, the mathematical programming approach provides an exact
answer. This means that, by examining the results of this approach, the participant knows
exactly which playing set to construct that meets his/her requirements. Secondly, a feasible
answer may be reached in a short amount of time, and it is often close to the optimal answer.

The mathematical programming approach does, however, have its shortcomings. It has been
found in this chapter that as the parameters in the problems increase, the execution time tends to
increase as well. The ultimate goal, when solving the lottery problem may be to find an optimal
solution for both the incomplete lottery problem and the resource utilisation problem for the
lottery 〈49, 6, 6, k〉. Unfortunately, due to hardware limitations, it is not possible to employ the
mathematical programming approach towards achieving this goal because the execution time
will be too long, and the computers used may run out of memory before an optimal solution is
reached. Also, it should be mentioned that the model presented in this chapter requires a file,
which contains an adjacency matrix, to be provided as input. This file contains all the elements
of the adjacency matrix, with spaces between elements in each row. If it is assumed that an
element, and a space each take up one byte of data, the file for the lottery 〈49, 6, 6, k〉 would



58 Chapter 4. A mathematical programming approach

be
((

49
6

)
× 2
)
×
(

49
6

)
bytes large. This is approximately 356 terabytes large, which no single

computer may store in memory. Currently, in a 32-bit Windows system, the maximum amount
of memory which may be used on the computer is 3.5 gigabytes, and on a 64-bit Windows
system, the maximum amount of memory which may be used by the computer is 16 gigabytes.
Therefore, a feasible answer to Lψ(m,n, t, k) and Ψ`(m,n, t, k) may only be found using the
mathematical programming approach if the file containing the adjacency matrix is within the
physical storage limits of the computer on which it is solved. Consequently, that implies that the
incomplete lottery problem and resource utilisation problem may only be solved to completion
for small lottery instances by using the mathematical programming approach.

It may therefore be concluded that the mathematical programming approach is useful for finding
bounds, or optimal solutions to small instances of the incomplete lottery problem or resource
utilisation problem (currently problems for which m ≤ 10). As computers become more pow-
erful, the limitations on the mathematical programming approach will be less, and it may then
be possible to find optimal solutions to larger problem instances. However, finding the value
of L1(49, 6, 6, k) via a mathematical programming approach seems infeasible for the forseable
future.



CHAPTER 5

Exhaustive Enumeration

Contents

5.1 The lottery tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Creating the nodes in the lottery tree . . . . . . . . . . . . . . . . . . . 60

5.1.2 Assigning probability-of-win values to the nodes . . . . . . . . . . . . . 61

5.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 The lottery 〈6, 3, 3, 2〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 The lottery 〈7, 3, 4, 2〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 The lottery 〈7, 5, 4, 3〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Pruning of the lottery tree . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

In this chapter, an alternative solution method is presented for the incomplete lottery prob-
lem and the resource utilisation problem. In this method, all possible overlapping playing set
structures are constructed. From these constructions the answers to both the incomplete lottery
problem and the resource utilisation problem may be obtained for a given lottery instance. This
exhaustive enumeration solution method was originally proposed by Gründlingh [16] for lottery
instances where n = t. In §5.1 the method is reviewed and implemented for the more general
case where n 6= t in fulfilment of Thesis Objective III(a). In §5.2 a few numerical examples are
presented of how the exhaustive enumeration method works and these examples are used to ver-
ify the correctness of the implementation, in fulfilment of Thesis Objective III(b). Thereafter,
in §5.3, pseudocode examples of the implementation of the exhaustive enumeration method are
presented. Following that, the same problem instances which were solved in Chapter 4 via an
integer programming approach are solved in §5.4, this time using the exhaustive enumeration
method instead. The reason for doing this is to verify the results of Chapter 4 in fulfilment of
Thesis Objective III(c). The method is also used to find as many structurally non-isomorphic
optimal solutions as possible to the problem instances originally investigated in Chapter 4, in
fulfilment of Thesis Objective III(d).

59



60 Chapter 5. Exhaustive Enumeration

5.1 The lottery tree

The exhaustive enumeration lottery tree method involves the iterative construction of a rooted
tree data structure. The aim in this method is to find all non-isomorphic overlapping playing
set structures for a given lottery instance of the incomplete lottery problem or the resource
utilisation problem. Each node in the tree represents a unique overlapping playing set structure.
A probability-of-win value is ultimately assigned to each playing set structure. The answer to
both the incomplete lottery problem and the resource utilisation problem may be obtained by
examining these probability-of-win values.

Level i (1 ≤ i ≤ `) in the lottery tree contains nodes which represent playing set structures
of cardinality i tickets. The root node of the tree exists at level i = 1, and it represents an
arbitrary playing set of cardinality 1. The next level in the tree, i = 2, contains one or more
nodes containing overlapping playing set structures which represent the different ways in which
a second ticket may be added to the playing set. This process of iteratively constructing the
lottery tree continues until either a probability-of-win value of ψ is found to be associated with a
node (in which case the incomplete lottery problem is solved) or until the lottery tree reaches a
level corresponding to a fixed number of ` tickets (in which case the resource utilisation problem
is solved).

5.1.1 Creating the nodes in the lottery tree

Suppose L` = {T1, T2, . . . , T`} is a playing set of cardinality ` in the lottery 〈m,n, t, k〉. The
lottery tree for this playing set has ` + 1 levels, and the nodes on level ` of the tree represent
potential Ψ`(m,n, t, k) playing set structures for the resource utilisation problem, or potential
Lψ(m,n, t, k) playing set structures for the incomplete lottery problem.

Each node in the lottery tree is represented by a vector ~X
(`)

= (x(`)
(000...0), x

(`)
(000...1), . . . , x

(`)
(111...1))

which captures the overlapping ticket structure contained in that node. The entries in each
vector ~X

(`)
may be interpreted as mentioned in §2.2.4. Except for the root node (which is

always represented by the vector ~X
(1)

= (x(1)
0 , x

(1)
1 ) = (m− n, n)), each vector at level i < ` of

the lottery tree is derived from the vector in its parent node at level i according to the following
rules:

1. All the entries in the vector ~X
(i+1)

must add up to m, because there are only m num-
bers available for the participant to include in his/her playing set for any given lottery
〈m,n, t, k〉.

2. The entries

x
(i+1)
(100...0), x

(i+1)
(100...1), . . . , x

(i+1)
(111...1) (5.1)

in the vector ~X
(i+1)

must add up to n. These entries represent all the compartments in
the overlapping playing set structure which include ticket i+1. Each ticket in the playing
set must contain n numbers, therefore all the compartments including ticket i + 1 must
collectively contain exactly n numbers.

3. The entries

x
(i+1)
(000...0), x

(i+1)
(000...1), . . . , x

(i+1)
(011...1)



5.1. The lottery tree 61

in the vector ~X
(i+1)

must add up to m−n. These entries represent all the compartments
in the overlapping playing set structure other than those compartments denoting ticket
i+1. Ticket i+1 must contain n numbers, which implies that all the other compartments
must contain m− n numbers collectively.

4. Entry x
(i+1)
(111...1) of the vector ~X

(i+1)
must be less than n, for otherwise each ticket in the

playing set would contain exactly the same numbers, in which case the playing set would
have the same probability-of-win as a playing set of cardinality 1.

5. Each entry in (5.1) must be less than or equal to the entry corresponding to it in its parent

vector ~X
(i)

. This implies that

x
(i+1)
(100...0) ≤ x

(i)
(000...0), x

(i+1)
(100...1) ≤ x

(i)
(000...1), . . . , x

(i+1)
(111...1) ≤ x

(i)
(111...1). (5.2)

Each entry in (5.1) represents an overlap of ticket i + 1 with the compartment in the

corresponding overlapping playing set structure of the parent vector ~X
(i)

.

5.1.2 Assigning probability-of-win values to the nodes

Once the exhaustive enumeration lottery tree has been constructed, it is possible to compute and
assign a probability-of-win value to each node in the tree. This value represents the probability
of winning a k-prize if that specific overlapping playing set structure were to be selected by the
participant.

The probability-of-win value at a specific node is computed by analysing the children of that
node, because the overlapping playing set structures represented by the children nodes may also
represent the different ways in which a winning ticket, containing t numbers may overlap with
the playing set structure represented by that node. This, together with the process described in
§5.1.1 represents an additional step involved in the construction of the tree if n 6= t. The method
presented in §5.1.1 of building children from a parent node ~X

(`)
results in the construction of

vectors which represent the overlapping of a winning ticket of size n only. If the lottery instance
is such that n 6= t, two sets of children have to be constructed for each node. The first set
is the set of children described in §5.1.1, and these children may spawn new children. The
second set of children represents the potential overlapping of the winning ticket of size t with
the overlapping playing set structure of the parent node, and they are constructed in the same
way as described in §5.1.1 with the value of n replaced by the value of t. From the second set of
children, a test of whether or not a winning ticket of size t has at least k numbers in common
with at least one ticket in playing set structure of the parent node is conducted. In [16], this
is referred to as a so-called domination test. The second set of children are ultimately used to
compute the probability-of-win value for the parent node, and they do not spawn new children.
Once the probability-of-win value for the parent node has been computed, this second set of
children is no longer required in the lottery tree structure.

Each child in the second set of children are assigned a boolean value of true or false, which
is used to calculate the probability-of-win value of the parent node. A child from the second
set of children is assigned the value true (and assigned to a set DT ) if the overlapping winning
ticket has at least k numbers in common with at least one of the tickets in the parent node’s
playing set, which implies that it passes the above-mentioned domination test. The child node
is assigned a value of false (and assigned to a set DF ) otherwise.



62 Chapter 5. Exhaustive Enumeration

The number of ways to overlap a winning ticket with the overlapping playing set structure of the
parent node (when interchanging the roles of the elements of Um) so as to guarantee a k-prize,
divided by the total number of ways to overlap a winning ticket with the overlapping playing
set structure of the parent node (when interchanging the roles of the elements of Um) is equal
to the value of the probability-of-win if a playing set conforming to the overlapping playing
set structure of the parent node is selected by the participant. Therefore, together with these
boolean values, each child node is assigned a value equal to the multiplicity of its vector. The
formula1,

M(~X
(`+1)

) =
m!

Π2`−1
j=0 x

(`+1)
j !

, (5.3)

for the multiplicity of the vector results, because all the m entries in the overlapping playing
structure may be interchanged (there are m! ways to do this). However, the number of entries
in each compartment remains the same and interchanging the entries within a compartment has
no effect on the playing set represented by the overlapping playing set structure. Therefore, the
multiplicity in (5.3) represents the number of structurally different overlappings that are possible
when interchanging the roles of the elements of Um. The number of ways of overlapping a
winning ticket with the overlapping playing set structure of the parent node (when interchanging
the roles of the elements of Um) so as to guarantee a k-prize is∑

~X
(`+1)∈DT

M(~X
(`+1)

),

and the total number of ways of overlapping a winning ticket with the overlapping playing set
structure of the parent node (when interchanging the roles of the elements of Um) is∑

~X
(`+1)∈DT∪DF

M(~X
(`+1)

).

Using these values, the probability-of-win value for the parent node may then be calculated as

Ψ~X
(`) =

∑
~X

(`+1)∈DT
M(~X

(`+1)
)∑

~X
(`+1)∈DT∪DF

M(~X
(`+1)

)
.

This value is assigned to the parent node, and represents the fraction of government tickets
covered by a playing set represented by that overlapping ticket structure. This means that

Ψ~X
(`) =

|
⋃
v∈Lψ(m,n,t,k)N [v]|(

m
t

) ,

where v is a ticket in the overlapping playing set structure represented by the vector ~X
(`)

.

5.2 Numerical examples

Three numerical examples (involving small problem instances) of the use of the exhaustive
enumeration lottery tree method described above are presented in this section.

1In this formula, the convention 0! = 1 is used.



5.2. Numerical examples 63

Level 1
(3,3)

Level 2

(2,1,1,2) (1,2,2,1) (0,3,3,0)(3,0,0,3)

T T F F

Ψ ~X(1) = 10
20

Ψ ~X(2) = 10
20 Ψ ~X(2) = 16

20 Ψ ~X(2) = 1Ψ ~X(2) = 14
20

Figure 5.1: The exhaustive enumeration lottery tree for the lottery 〈6, 3, 3, 2〉. The letter “T” placed
below a node indicates that the corresponding overlapping playing set structure passes the domination
test in §5.1.2, and the letter “F” indicates otherwise.

5.2.1 The lottery 〈6, 3, 3, 2〉

The first aspect that must be noted regarding this problem instance is that since n = t = 3,
there is no need to construct a second set of children for each node in the exhaustive enumeration
lottery tree. The root of the tree is a playing ticket containing 3 numbers, with m−n = 6−3 = 3
numbers remaining. The first two levels of the lottery tree for this problem instance appear in
Figure 5.1. The associated vector and the boolean value appears below each node. That is, the
domination test was performed in Level 2 (by adding a single 3-set, depicting the government
winning ticket, to the playing set structure) and yielded DT = {(2, 1, 1, 2), (3, 0, 0, 3)}, while
DF = {(0, 3, 3, 0), (1, 2, 2, 1)}

It is found that M(~X
(2)

) = 20, M(~X
(2)

) = 180, M(~X
(2)

) = 180 and M(~X
(2)

) = 20. Once

the value of M(~X
(2)

) corresponding to each node’s vector has been computed, it may be used
together with the boolean values associated with each node to compute the probability-of-win
value for the parent node, which is represented by the vector ~X

(1)
= (3, 3), as

Ψ~X
(1) =

∑
~X

(2)∈DT
M(~X

(2)
)∑

~X
(2)∈DT∪DF

M(~X
(2)

)
=

20 + 180
20 + 180 + 180 + 20

=
200
400

= 0.5.

In Table 5.1 ticket P1 represents a single ticket in the participant’s playing set. The remaining
tickets in the table, labelled Gi (1 ≤ i ≤ 20) represent all the tickets from which the government
may choose the single winning lottery ticket. There are 10 tickets (G1, . . . , G7 and G11, . . . , G13)
out of the possible 20 government tickets which have k = 2 or more numbers in common with
the participant’s ticket. Therefore, if the participant wishes to form a playing set of only one
ticket, the chance of winning a 2-prize is 10

20 = 0.5. This verifies the results emanating from
the exhaustive enumeration lottery tree method in Figure 5.1. Note that if the participant
had instead selected a playing set consisting of two tickets, these tickets may be selected in
such a way that all the government tickets have at least k = 2 numbers in common with the
participant’s ticket, implying that L1(6, 3, 3, 2) = 2 and Ψ2(6, 3, 3, 2) = 1.



64 Chapter 5. Exhaustive Enumeration

Table 5.1: Tabular representation of one participant ticket, P1, together with all government tickets
Gi (1 ≤ i ≤ 20) for the lottery 〈6, 3, 3, 2〉. The column labelled O contains values which indicate the
number of overlapping elements each ticket Gi has with ticket P1.

1 2 3 4 5 6 O

P1 × × ×
G1 × × × 3
G2 × × × 2
G3 × × × 2
G4 × × × 2
G5 × × × 2
G6 × × × 2
G7 × × × 2
G8 × × × 1
G9 × × × 1
G10 × × × 1
G11 × × × 2
G12 × × × 2
G13 × × × 2
G14 × × × 1
G15 × × × 1
G16 × × × 1
G17 × × × 1
G18 × × × 1
G19 × × × 1
G20 × × × 0



5.2. Numerical examples 65

(4,3)

(4,0,0,3) (2,2,2,1) (1,3,3,0)(3,1,1,2)

Level 1

Level 2

Ψ ~X(2) = 22
35 Ψ ~X(2) = 28

35 Ψ ~X(2) = 31
35 Ψ ~X(2) = 1

Ψ ~X(1)
22
35

Figure 5.2: The exhaustive enumeration lottery tree for the lottery 〈7, 3, 4, 2〉.

5.2.2 The lottery 〈7, 3, 4, 2〉

Since n = 3 6= 4 = t, two sets of children are constructed for each node in the exhaustive
enumeration lottery tree in this problem instance. The first set of children contains nodes
which represent the overlapping of an additional participant ticket of size n = 3 with respect
to the existing playing set. The second set of children contains nodes which represent the
overlapping of a winning government ticket of size t = 4 with the playing set.

The root node, together with its first set of children is presented in Figure 5.2. This set of
children may spawn new children. The root node, together with its second set of children, is
presented in Figure 5.3. This set of children is used to compute the probability-of-win value of
the root node. Recall that the second set of children does not spawn new children.

It is found that M(~X
(2)

) = 140, M(~X
(2)

) = 630, M(~X
(2)

) = 420 and M(~X
(2)

) = 35. Once

the M(~X
(2)

) value for each node’s vector has been calculated, it may be used together with
the boolean values associated with each node to compute the probability-of-win value for the
parent node, which is represented by the vector (4, 3), as

Ψ~X
(1) =

∑
~X

(2)∈DT
M(~X

(2)
)∑

~X
(2)∈DT∪DF

M(~X
(2)

)
=

140 + 630
140 + 630 + 420 + 35

=
770
1225

≈ 0.629.

In Table 5.2, ticket P1 represents a single participant’s ticket of size n = 3. The remaining rows in
the table, labelled Gi (1 ≤ i ≤ 35), represent all the tickets from which the government chooses
the winning lottery ticket of size t = 4. There are 22 tickets (G1, . . . , G16 and G21, . . . , G26)
out of the possible 35 government tickets which have k = 2 or more numbers in common with
the participant’s ticket. Therefore, if the participant wishes to form a playing set of only one
ticket, the chance of winning a 2-prize is 22

35 ≈ 0.6286. This verifies the results emanating from
the exhaustive enumeration lottery tree in Figure 5.2. Note that if the participant had instead
selected a playing set consisting of two tickets, they may be selected in such a way that all the
government tickets will have at least k = 2 numbers in common with the participant’s ticket.



66 Chapter 5. Exhaustive Enumeration

Table 5.2: Tabular representation of one participant ticket P1, together with all government tickets Gi,
1 ≤ i ≤ 35 for the lottery 〈7, 3, 4, 2〉. The column labelled O contains values which indicate the number
of overlapping numbers each ticket Gi has with ticket P1.

1 2 3 4 5 6 7 O

P1 × × ×
G1 × × × × 3
G2 × × × × 3
G3 × × × × 3
G4 × × × × 3
G5 × × × × 2
G6 × × × × 2
G7 × × × × 2
G8 × × × × 2
G9 × × × × 2
G10 × × × × 2
G11 × × × × 2
G12 × × × × 2
G13 × × × × 2
G14 × × × × 2
G15 × × × × 2
G16 × × × × 2
G17 × × × × 1
G18 × × × × 1
G19 × × × × 1
G20 × × × × 1
G21 × × × × 2
G22 × × × × 2
G23 × × × × 2
G24 × × × × 2
G25 × × × × 2
G26 × × × × 2
G27 × × × × 1
G28 × × × × 1
G29 × × × × 1
G30 × × × × 1
G31 × × × × 1
G32 × × × × 1
G33 × × × × 1
G34 × × × × 1
G35 × × × × 0



5.2. Numerical examples 67

Table 5.3: Tabular representation of participant tickets P1 and P2, together with all government tickets
Gi, 1 ≤ i ≤ 35 in the lottery 〈7, 5, 4, 3〉. The column labelled O represents the maximum amount of
numbers ticket Gi has in common with either ticket P1 or P2. That is, Oi = max{|P1 ∩ Gi|, |P2 ∩ Gi|}
for all i = 1, . . . , 35.

1 2 3 4 5 6 7 O

P1 × × × × ×
P2 × × × × ×
G1 × × × × 4
G2 × × × × 4
G3 × × × × 4
G4 × × × × 4
G5 × × × × 4
G6 × × × × 3
G7 × × × × 3
G8 × × × × 3
G9 × × × × 3
G10 × × × × 4
G11 × × × × 4
G12 × × × × 3
G13 × × × × 3
G14 × × × × 3
G15 × × × × 3
G16 × × × × 4
G17 × × × × 3
G18 × × × × 3
G19 × × × × 3
G20 × × × × 3
G21 × × × × 4
G22 × × × × 3
G23 × × × × 3
G24 × × × × 3
G25 × × × × 3
G26 × × × × 4
G27 × × × × 3
G28 × × × × 3
G29 × × × × 3
G30 × × × × 3
G31 × × × × 3
G32 × × × × 3
G33 × × × × 3
G34 × × × × 3
G35 × × × × 2



68 Chapter 5. Exhaustive Enumeration

(4,3)Level 1

(3,0,1,3) (2,1,2,2) (1,2,3,1) (0,3,4,0)

Level 2
T FFT

Figure 5.3: The root node of the exhaustive enumeration lottery tree, together with the second set of
children for the lottery 〈7, 3, 4, 2〉. The letter “T” placed below a node indicates that the corresponding
overlapping playing set structure passes the domination test in §5.1.2, and the letter “F” indicates
otherwise.

5.2.3 The lottery 〈7, 5, 4, 3〉

The lottery 〈7, 5, 4, 3〉 is not as trivial to analyse as the previous two lotteries. The smallest
playing set yielding a probability-of-win value of 1 has a cardinality of three. Therefore, the
lottery tree possesses three levels, as indicated in Figure 5.4.

The three levels of the exhaustive enumeration lottery tree associated with the lottery 〈7, 5, 4, 3〉
is presented in Figure 5.4. This set of children may spawn new children. The second set of
children of the overlapping playing set structure (0, 2, 2, 3) is presented in Figure 5.5. This
set of children is used to compute the probability-of-win value of their parent node (the node
representing the overlapping playing set structure (0, 2, 2, 3)). Recall that the second set of
children does not spawn new children.

It is found that M(~X
(3)

) = 420, M(~X
(3)

) = 630, M(~X
(3)

) = 420, M(~X
(3)

) = 2 520, M(~X
(3)

) =

1 260, M(~X
(3)

) = 630, M(~X
(3)

) = 1 260 and M(~X
(3)

) = 210. Once the M(~X
(3)

) value corre-
sponding to each node’s vector has been calculated, it may be used together with the boolean
values associated with each node to compute the probability-of-win value for the parent node,
the node corresponding to the vector (0, 2, 2, 3), as

Ψ~X
(2) =

∑
~X

(3)∈DT
M(~X

(3)
)∑

~X
(3)∈DT∪DF

M(~X
(3)

)
=

420 + 630 + 420 + 2 520 + 1 260 + 630 + 1 260
420 + 630 + 420 + 2 520 + 1 260 + 630 + 1 260 + 210

=
7 140
7 350

≈ 0.971.

In Table 5.3 the top two tickets, labelled P1 and P2, represent the tickets in the participant’s
playing set. The remaining rows in the table, labelled Gi (1 ≤ i ≤ 35), represent all the tickets
from which the government may choose the winning lottery ticket. There are 34 tickets out
of the possible 35 government tickets which have at least k = 3 or more numbers in common
with the any of the participants tickets (government ticket G35 is the only ticket which does



5.3. Implementation 69

(1,1,1,4) (0,2,2,3)

Level 1

Level 2

Level 3

(2,5)

Ψ ~X(2) = 34
35Ψ ~X(2) = 31

35

Ψ ~X(1) = 25
35

(0,1,1,0,0,1,1,3)(0,1,1,0,1,0,0,4)
Ψ ~X(3) = 31

35

(1,0,0,1,0,1,1,3)
Ψ ~X(3) = 1Ψ ~X(3) = 34

35

(0,0,0,2,0,2,2,1)
Ψ ~X(3) = 1

Ψ ~X(3) = 34
35

(0,0,0,2,0,2,2,1)

Figure 5.4: The exhaustive enumeration lottery tree for the lottery 〈7, 5, 4, 3〉.

not have at least three numbers in common with any of the participants tickets). Therefore,
if the participant wishes to select a playing set, which consists of two tickets and conforms to
the overlapping playing set structure represented by the vector (0, 2, 2, 3), the probability of
winning a 3-prize is equal to 34

35 ≈ 0.971. This verifies the results which may be computed
from the lottery tree shown in Figures 5.4 and 5.5. Note that if the participant had instead
purchased a playing set consisting of three tickets, they may be selected in such a way that
all the government tickets will have at least k = 3 numbers in common with the participant’s
ticket.

5.3 Implementation

In this section, the implementation of the exhaustive enumeration lottery tree method described
above is presented in the form of pseudocode listings.



70 Chapter 5. Exhaustive Enumeration

T T T T

FTTT
(0,1,0,2,0,1,2,1) (0,0,2,1,0,2,0,2) (0,0,1,2,0,2,1,1) (0,0,0,3,0,2,2,0)

(0,2,1,0,0,0,1,3) (0,2,0,1,0,0,2,2) (0,1,2,0,0,1,0,3) (0,1,1,1,0,1,1,2)

Figure 5.5: The second set of children for the vector (0, 2, 2, 3) in the exhaustive enumeration lottery tree
for the lottery 〈7, 5, 4, 3〉. The letter “T” placed below a node indicates that the associated overlapping
playing set structure passes the domination test in §5.1.2, and the letter “F” indicates otherwise.

5.3.1 Pruning of the lottery tree

If the method described in §5.1.1 is used, some nodes in the exhaustive enumeration lottery
tree are duplicates of each other. As the level of the tree increases, the number of duplicates
increases exponentially. Therefore, many more nodes may be considered for insertion into
the exhaustive enumeration lottery tree than is necessary, rendering the computational cost of
the method unnecessarily large. An example of a set of duplicates from the lottery 〈9, 4, 5, 3〉 is
shown in Figure 5.6. For each overlapping playing set structure containing ` tickets, `! duplicate
overlapping playing set structures exist, and only one of these duplicate structures needs to be
added to the lottery tree. For each of these duplicate vectors, a unique ancestor vector

~Y
(`)

= (

T1︷︸︸︷
x

(1)
(1) ,

T2︷ ︸︸ ︷
x

(2)
(10), x

(2)
(11),

T3︷ ︸︸ ︷
x

(3)
(100), x

(3)
(101), x

(3)
(110), x

(3)
(111), . . . ,

T`︷ ︸︸ ︷
x

(`)
(10...0), x

(`)
(10...1), . . . , x

(`)
(11...1)) (5.4)

is constructed. The length of this vector is 2`−1, and it is used to track the addition of new tickets
at each level of the exhaustive enumeration lottery tree. The only duplicate vector inserted into
the exhaustive enumeration lottery tree is the one with the lexicographically smallest ancestor
vector associated with it.

The lottery tree may be pruned further by applying the following pruning rules, established by
Gründlingh [16], at any level i of the lottery tree:

1. If there are more than t entries in the compartment excluding all tickets, any winning
ticket of size t, which contains t of the numbers not used in any playing set ticket, ~X

(i)

will not represent an L1(m,n, t, k)-set for 〈m,n, t, k〉. In other words, if x(i)
(000...0)2

≥
(L1(m,n, t, k)− i+ 1)t, then the overlapping ticket structure corresponding to the vector
~X

(i)
will not yield any L1(m,n, t, k)-sets in the subtree having ~X

(i)
as root and may

therefore be pruned from the lottery tree.

2. If the sum of all the entries in each exclusive ticket compartment is at least t, a win-
ning ticket of size t may exist which might not have k numbers in common with any



5.3. Implementation 71

(4,0,1,0,0,1,0,3)(4,0,0,1,1,0,0,3)

Figure 5.6: Duplicate overlapping playing set structures from the exhaustive enumeration lottery

tree for the lottery 〈9, 4, 5, 3〉. For the overlapping structure vector ~X
(3)

= (4, 0, 0, 1, 1, 0, 0, 3), the

corresponding ancestor vector is ~Y
(3)

= (4, 0, 4, 1, 0, 0, 3), and for the overlapping structure vector ~X
(3)

=

(4, 0, 1, 0, 0, 1, 0, 3), the corresponding ancestor vector is ~Y
(3)

= (4, 1, 3, 0, 1, 0, 3). It may be seen that
(4, 0, 4, 1, 0, 0, 3) is lexicographically smaller than (4, 1, 3, 0, 1, 0, 3). Hence the vector (4, 0, 1, 0, 0, 1, 0, 3)
is not inserted into the lottery tree, but the vector (4, 0, 0, 1, 1, 0, 0, 3) is inserted into the tree if it passes
further validity tests.

playing set ticket implying that the structure does not represent an L1(m,n, t, k)-set for
〈m,n, t, k〉. In other words, if min{x(i)

(100...0)2
, k−1}+. . .+min{x(i)

(000...1)2
, k−1}+x(i)

(000...0)2
≥

(L1(m,n, t, k)− i+ 1)t, then the overlapping ticket structure corresponding to the vector
~X

(i)
will not yield any L1(m,n, t, k)-sets in the subtree which has ~X

(i)
as root and may

therefore be pruned from the lottery tree.

Of the following pruning rules (also established by Gründlingh), rule (1) may be applied to the
nodes at level ` of the lottery tree, and rules (2) and (3) may be applied to level ` − 1 of the
lottery tree.

1. If min{x(`)
(100...0)2

, k− 1}+ . . .+ min{x(`)
(000...1)2

, k− 1}+ x
(`)
(000...0)2

≥ t, then the overlapping

playing set structure represented by the vector ~X
(`)

are not complete lottery sets, and
may be pruned from the tree.

2. If x(`−1)
0 ≥ n + 1, then all possible overlapping playing set structures represented by the

vector ~X
(`−1)

may be pruned from the tree.

3. If min{x(`)
(100...0)2

, k−1}+ . . .+ min{x(`)
(000...1)2

, k−1}+x
(`)
(000...0)2

≥ (n+ t), then all possible

overlapping playing set structures represented by the vector ~X
(`−1)

are not lottery sets,
and may hence be pruned from the tree.

5.3.2 Pseudocode

The exhaustive enumeration lottery tree method described above was implemented in the pro-
gramming language C#. The nodes in the exhaustive enumeration lottery tree are represented
by a class called Node. In terms of object orientated programming, a class is a custom-made
data structure which may represent a person, place or entity. In this case, the class named Node
represents a node in the exhaustive enumeration lottery tree. A class contains descriptions
of the attributes (known as member variables) and abilities (methods) of the person, place or
entity which it represents. The class named Node has various member variables (a vector, arrX,
representing the overlapping playing set structure, the binary variable and probability-of-win



72 Chapter 5. Exhaustive Enumeration

value associated with the overlapping playing set structure, and a list of the children associ-
ated with that node in the exhaustive enumeration lottery tree) and methods (functions which
retrieve and set the values of the vector arrX, the binary variable, the probability-of-win value
associated with the overlapping playing set structure, and the list of children) associated with
it.

Algorithm 5.1: Main
Data: This algorithm drives the entire program
Result: The resource utilisation for each level of the tree (playing set cardinality) is printed

out.
Initialize values for m, n, t, k and `;1

Construct new object of type Node, called rootNode which consists of two elements. This2

represents the root of the exhaustive enumeration lottery tree. The first element equals m− n,
and the second element equals n;
Call the function, LevelK;3

Print execution time out to screen;4

Print out the tree /* An optional command */5

;6

Print out the best resource utilisation associated with each level of the lottery tree;7

Algorithm 5.2: calcv
Data: arrY, arrX, sz
Result: A boolean value which indicates if a valid child vector has been constructed in array

arrY, from the parent vector which is represented by the array arrX.
/* Fill in values of x

(i+1)
(100...0), x

(i+1)
(100...1), . . . , x

(i+1)
(111...1) for arrY . */

for i = 0; i < sz do1

a = arrX[sz − i] + 1;2

arrY [2× sz − i] = itermoda;3

iter = iter/a;4

end5

/* All possible child vectors for arrX have been created. */
if iter > 0 then6

return false;7

end8

/* Fill in the values of x
(i+1)
(000...0), x

(i+1)
(000...1), . . . , x

(i+1)
(011...1) for arrY . */

for i = 0; i < sz do9

arrY [i] = arrX[i]− arrY [sz + i];10

end11

return true;12

The list of children associated with each node is represented by a variable named children
and is stored as a member variable in Node. This variable is an ArrayList data type. An
ArrayList data type stores references to objects which are used in the implementation. In this
case the references refer to the children of a parent node in the exhaustive enumeration lottery
tree. The vector ~X

(`)
in each node is represented by an integer array named arrX. The binary

value (described in §5.1.2) associated with each node in the tree is represented by a boolean



5.3. Implementation 73

Algorithm 5.3: LevelK
Data: parentNode, sz, max
Result: Builds the lottery tree and stores it in memory.
arrX = array corresponding to parentNode;1

if max = 0 then2

return;3

end4

iter = 0;5

Let arrY be a new array of size sz × 2;6

while calcv(sz, arrY, arrX, iter) do7

sum = sum of all the elements in the second half of arrY;8

if sum = n and Last element of arrY ≤ n then9

isValid=true;10

for Each ticket in the parent node do11

Set kSum = the sum of the elements which the new ticket has in common with the12

current ticket from the parent node;
if kSum >= k then13

Set child node’s boolean value to true;14

end15

if kSum >= n then16

isValid=false;17

end18

level2Vector = ancestor of arrY at level 2;19

if kSum < level2Vector[112] then20

isValid=false;21

end22

end23

if sum == t then24

Call AddTempChild of parentNode;25

end26

if toPrune = false and isValid = true then27

if isDuplicate=false then28

Call LevelK(n, newChild, sz2, max - 1);29

end30

end31

end32

if sum = t and Last element of arrY ≤ n AND n 6= t then33

for Each ticket in the parent node do34

Set kSum = the sum of the elements which the new ticket has in common with the35

current ticket from the parent node;
if kSum >= k then36

Set child node’s boolean value to true;37

end38

end39

Call AddTempChild of parentNode;40

end41

end42

iter = iter + 1;43



74 Chapter 5. Exhaustive Enumeration

Algorithm 5.4: isDuplicate
Data: vector, vectorSize
Result: A boolean value, which has the value true if a duplicate of the received vector is

already in the lottery tree, and false otherwise.
Construct a temporary vector representing the same elements as the received vector, vector;1

while i < Factorial(numtickets) do2

Construct a permuation of length equal to numtickets = log vectorSize/log 2;3

Permute all binary strings (which represent the received vector placeholders) according the4

the values of the permutation;
Construct a new vector D using the permuted binary strings as placeholders. This will be5

a duplicate vector of the received vector;
if GetVectorY(D) lexicograpically less than GetVectorY(receivedvector) then6

return true;7

end8

return false;9

end10

value named TorF. This value is only assigned to a node if it is part of the second set of children
(also described in §5.1.2) of a parent node.

The method AddChild in Node receives a reference to a child node as input and adds it to the
list represented by the variable, children. The method setarrX receives an array as input,
and copies its values one by one to arrX for the given node. The method setTorF assigns a
value to the variable TorF associated with the node, depending on the value of the boolean value
received. The method getTorF returns the variable TorF associated with the node. The method
getArrX returns a reference to the array arrX of the given node, and the method printarrX
outputs the array arrX to the screen. Finally, the method getPsi returns the probability-of-win
value associated with a given node.

Of the many functions in the program that are responsible for its various actions, the ones
presented below in pseudocode form are the most important functions. The function named
Main drives the entire program. This function is responsible for initialising all the necessary
variables which are used in the program, and for calling the function, LevelK, which constructs
the exhaustive enumeration lottery tree.

The function LevelK is recursive. It is responsible for the construction of both sets of children
for each level of the exhaustive enumeration lottery tree as well as for adding both sets of
children to the tree. All the ways in which a ticket of size n or size t may be overlapped with
an overlapping playing set structure are considered. This is achieved by considering all possible
vectors (which represent overlapping playing set structures) of length sz×2 which may emanate
from the vector of length sz. If the sum of the elements in (5.1) equals n, the vector may be
added to the tree, provided that it is not pruned from the tree according to the pruning rules
presented in §5.3.1 and if the sum of those elements equals t; it is added to the second set of
children of the parent node. The function LevelK calls a boolean function which returns the
value true for every possible child vector that it produces, and the value false once it has
produced all the possible child vectors of a given parent vector. This boolean function is named
calcv.

The function calcv computes the different permutations of the values of (5.1), according to
(5.2). If a repeating set {0, 1, 0, 1, 0, 1, 0, 1 . . .} is constructed, the formula i (mod 2) represents



5.3. Implementation 75

Algorithm 5.5: toPrune
Data: vector
Result: A boolean value which has the value true, if the received vector must be omitted

from the lottery tree.
if vector[0] ≥ (`− currentlevel + 1) ∗ t then1

return true;2

end3

if min(vector[10 . . . 0], k − 1) + . . .+ min(vector[0 . . . 01], k − 1) + vector[00 . . . 0] ≥4

(`− currentlevel + 1)× t then
return true;5

end6

if vector.level = ` then7

if min(vector[10 . . . 0], k − 1) + . . .+ min(vector[0 . . . 01], k − 1) + vector[00 . . . 0] ≥ t then8

return true;9

end10

end11

if vector.level = `− 1 then12

if vector[0] ≥ n+ 1 then13

return true;14

end15

if min(vector[10 . . . 0], k − 1) + ...+ min(vector[0 . . . 01], k − 1) + vector[00 . . . 0] ≥ n+ t16

then
return true;17

end18

end19

each element in the repeating set, where i is the zero-based index. Similarly, if the repeating
set {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .} is constructed in which two 1’s always follow two 0’s, then
each element in it is represented by the formula bi/2c (mod 2). Consider the vector (1, 2, 2, 1)
from which children vectors, are constructed. The values, (5.2), of those children appear in
Table 5.4 and are computed in the function calcv by means of the use of an iterator i which
is analogous to a zero-based vector of a repeating set in a column of the table. Each column in
the table is a repeating set and each repeating set contains the possible values of each variable
in (5.1). The possible values, according to (5.1), of x(3)

(111) are 0 or 1, and they appear in Table

5.4 one after the other. The possible values of x(3)
(110) are 0, 1 or 2 and they appear in Table

5.4 in twos. The reason for this is that the value of x(3)
(110) may only be changed once the two

possible permutations of x(3)
(111) have appeared. Likewise, in the column with the heading x(3)

(100),

eighteen 0’s, followed by eighteen 1’s, appear. The reason for this is that the value of x(3)
(100)

may only change once all possible permutations of the values of the variables x(3)
(111), x

(3)
(110) and

x
(3)
(101) appear (from the vector (1, 2, 2, 1), there are (2 + 1) × (2 + 1) × (1 + 1) = 18 possible

permutations of the variables x(3)
(111), x

(3)
(110) and x

(3)
(101)). The values in Table 5.4 are computed

as

x
(3)
(111) = i

(
mod (x(2)

(11) + 1)
)
, (5.5)



76 Chapter 5. Exhaustive Enumeration

Table 5.4: All the possible permutations of the values (5.1) belonging to the child nodes of the vector
(1, 2, 2, 1) in 〈6, 3, t, k〉, according to (5.2) and computed by means of iterator i.

i x
(3)
100 x

(3)
101 x

(3)
110 x

(3)
111 i x

(3)
100 x

(3)
101 x

(3)
110 x

(3)
111

0 0 0 0 0 18 1 0 0 0
1 0 0 0 1 19 1 0 0 1
2 0 0 1 0 20 1 0 1 0
3 0 0 1 1 21 1 0 1 1
4 0 0 2 0 22 1 0 2 0
5 0 0 2 1 23 1 0 2 1
6 0 1 0 0 24 1 1 0 0
7 0 1 0 1 25 1 1 0 1
8 0 1 1 0 26 1 1 1 0
9 0 1 1 1 27 1 1 1 1
10 0 1 2 0 28 1 1 2 0
11 0 1 2 1 29 1 1 2 1
12 0 2 0 0 30 1 2 0 0
13 0 2 0 1 31 1 2 0 1
14 0 2 1 0 32 1 2 1 0
15 0 2 1 1 33 1 2 1 1
16 0 2 2 0 34 1 2 2 0
17 0 2 2 1 35 1 2 2 1

x
(3)
(110) =

 i

(x(2)
(11) + 1)

 (mod (x(2)
(10) + 1)

)
, (5.6)

x
(3)
(101) =

 i

(x(2)
(11) + 1)(x(2)

(10) + 1)

 (mod (x(2)
(01) + 1)

)
, and (5.7)

x
(3)
(100) =

 i

(x(2)
(11) + 1)(x(2)

(10) + 1)(x(2)
(01) + 1)

 (mod (x(2)
(00) + 1)

)
(5.8)

for all 0 ≤ i ≤ (x(2)
(11) + 1)(x(2)

(10) + 1)(x(2)
(01) + 1)(x(2)

(000) + 1)− 1. The expressions (5.5)–(5.8) may
be generalised to

x
(`+1)
(11...1) = i

(
mod (x(`)

(11...1) + 1)
)
, (5.9)

x
(`+1)
(11...0) =

 i

(x(`)
(11...1) + 1)

 (mod (x(`)
(11...0) + 1)

)
, . . . , (5.10)

x
(`+1)
(10...1) =

 i

(x(`)
(11...1) + 1)× . . .× (x(`)

(0...10) + 1)

 (mod (x(`)
(10...1) + 1)

)
and (5.11)



5.4. Results 77

x
(`+1)
(10...0) =

 i

(x(`)
(11...1) + 1)× . . .× (x(`)

(00...1) + 1)

 (mod (x(`)
(00...0) + 1)

)
, (5.12)

for all 0 ≤ i ≤ (x(`)
(11) + 1)× . . .× (x(`)

(001) + 1)− 1.

Due to space constraints, comments are omitted from Algorithm 5.3 and replaced by the follow-
ing description of the algorithm. In line 1, the array named arrX is defined as the array from
the parent node. In lines 2 to 4, the stopping condition for the recursive algorithm LevelK is
specified. In line 6, a new array, named arrY is defined as the array of a child node of the parent
node which contains arrX. In line 8, all the elements in the newly added ticket are counted. In
line 9 it is tested whether n elements occur in the newly added ticket, in which case it represents
a valid ticket in the participant’s playing set (and if n = t, it also represents a valid overlapping
of a government ticket with the playing set in the parent node). In line 13, it is tested whether
the newly added ticket has k numbers in common with at least one participant ticket. If the test
is passed, the boolean value for the node corresponding to the newly created vector is assigned
the value true. In line 16, it is tested whether the new ticket contains the same elements as
any of the other tickets. If this is the case, the overlapping playing set structure represented by
arrY is not valid, and may be omitted from the exhaustive enumeration lottery tree. In lines 20
to 22, it is tested whether the overlapping playing structure has not previously been explored in
the exhaustive enumeration lottery tree. In line 24, it is tested whether the child node should
be added to the second set of children. Furthermore, it is tested in lines 27 to 28, whether the
overlapping playing set structure may be added to the lottery tree as a child in the first set
of children. In line 33, it is tested whether the newly added ticket contains t elements which
implies that it represents the overlapping of a government ticket with the participant’s playing
set in the parent node. In line 40, the child node is added to the second set of children of the
parent node.

Another function which is of interest is a boolean function called isDuplicate. This function
returns the value true if a vector is found to be a duplicate vector, and it returns false other-
wise. This function is mentioned in §5.3.1. The isDuplicate function is defined in Algorithm
5.4. An efficient permutation class is used to construct the permutations for the isDuplicate
function. This class was obtained via the Microsoft Developer Network website [30]. The func-

tion isDuplicate refers to a function GetVectorY which constructs the ancestor vector ~Y
(`)

as

described in (5.4) for the vector ~X
(`)

at level `.

5.4 Results

Solutions (in overlapping structural vector notation) for all non-isomorphic lottery problem in-
stances for m ≤ 10 and using up to ` = 6 tickets, as found by the exhaustive enumeration lottery
tree method described in §5.3 are presented in Table 5.5. Due to space constraints, commas are
omitted from the vector representations of the overlapping playing set structures. Therefore,
in the following table, the vector representation of an overlapping playing set structure is of
the form (x(`)

(000...0)x
(`)
(000...1) . . . x

(`)
(111...1)). A value of 0.000 in the fourth column (which indicates

execution time) implies that the execution time was less than one thousandth of a second.



78 Chapter 5. Exhaustive Enumeration

Table 5.5: Solutions (in overlapping structural vector notation) for all non-isomorphic lottery problem
instances in which m ≤ 10, as found by the exhaustive enumeration lottery tree method described in
§5.3. The entries in the first and second columns represent the lottery instance and the fixed playing set
cardinality, respectively, for which a maximum resource utilisation value is sought. The third column,
labelled “Ψ`” contains the associated resource utilisation number obtained via the exhaustive enumera-
tion lottery tree method. The fourth column contains the required execution time and the fifth column
contains all the non-isomorphic overlapping playing set structures for the problem instance.

Lottery ` Ψ` Time (secs) Overlapping playing set structure
〈6, 3, 3, 2〉 1 0.5 0.000 (33)

2 1 0.000 (0330)
〈7, 3, 3, 2〉 1 0.371 0.000 (43)

2 0.743 0.000 (1330)
3 0.914 0.000 (01301200)
4 1 0.031 (0030010001001100)

(0020020001101000)
〈7, 3, 4, 2〉 1 0.629 0.000 (43)

2 1 0.000 (1330)
〈8, 3, 3, 2〉 1 0.286 0.000 (53)

2 0.571 0.000 (2330)
3 0.786 0.000 (02302100)
4 0.893 0.047 (0030110002001000)
5 1 1.141 (00300100000010000000100002000000)

〈8, 3, 4, 2〉 1 0.5 0.000 (53)
2 0.871 0.000 (2330)
3 1 0.000 (02302100)

〈8, 3, 5, 2〉 1 0.714 0.000 (53)
2 1 0.000 (2330)

〈8, 4, 3, 2〉 1 0.5 0.000 (44)
2 1 0.000 (0440)

〈8, 4, 4, 2〉 1 0.757 0.000 (44)
2 1 0.000 (1331)

(0440)
〈8, 4, 4, 3〉 1 0.243 0.000 (44)

2 0.486 0.000 (1331)
(0440)

3 0.671 0.000 (01211210)
4 0.857 0.094 (0001021001201000)
5 0.914 4.234 (00010010001001000010010001001000)

(00000010012000000001020000001000)
6 1 314.359 (0000000000000100000100000020000000000110010000000000100000000000)

〈9, 3, 3, 2〉 1 0.226 0.000 (63)
2 0.452 0.000 (3330)
3 0.679 0.000 (03303000)
4 0.774 0.063 (0130110011001000)
5 0.893 2.250 (00300100010010000100100010000000)
6 0.952 159.516 (0000010001100000010020000000000000200000100000000000000000000000)

(0000010001100000011010000000000000101000100000000000000000000000)
〈9, 3, 4, 2〉 1 0.405 0.000 (63)

2 0.738 0.000 (3330)
3 1 0.000 (03303000)

〈9, 3, 5, 2〉 1 0.595 0.000 (63)
2 0.929 0.000 (3330)
3 1 0.000 (03303000)

〈9, 3, 6, 2〉 1 0.774 0.000 (63)
2 1 0.000 (3330)

〈9, 4, 3, 2〉 1 0.405 0.000 (54)
2 0.81 0.000 (1440)
3 0.952 0.000 (01401300)
4 1 0.141 (0030020002001010)

(0020021002101000)
(0040010001001200)
(0030020001101100)
(0020030001201000)

〈9, 4, 4, 2〉 1 0.643 0.000 (54)
2 1 0.000 (1440)

〈9, 4, 4, 3〉 1 0.167 0.000 (54)
2 0.333 0.000 (2331)



5.4. Results 79

Table 5.5 – continued from previous page
Lottery ` Ψ` Time (secs) Overlapping playing set structure

(1440)
3 0.5 0.016 (02212110)
4 0.635 0.203 (0011111002101000)
5 0.738 11.672 (00010110001010000010100002000000)

(00010100011010000010101001000000)
(00000110021000000011100000001000)
(00000110011010000011100001000000)

6 0.825 1403.594 (0000000100100000010001000000100000001000011000000010000000000000)
(0000010001100000000100000000100000000010010000000010100000000000)
(0000001002000000000100000000100000000100001000000010100000000000)

〈9, 4, 5, 2〉 1 0.833 0.000 (54)
2 1 0.000 (2331)

(1440)
〈9, 4, 5, 3〉 1 0.357 0.000 (54)

2 0.714 0.000 (1440)
3 0.857 0.016 (02212110)

(02301210)
(01401300)

4 0.976 0.219 (0020030001201000)
5 1 12.250 (00010110001010000010100002000000)

(00000110012000000110010000001000)
(00100010021000000010020000001000)
(00000110021000000020010000001000)
(00000210002000000010100002000000)
(00400000000001000000010001001100)
(00300000001001000000020001001000)
(00100300001000000010000001101000)
(00100200002000000010010001001000)
(00000300002000000020000001001000)
(00000200002010000020010001000000)
(00000200003000000010110001000000)

〈9, 4, 6, 3〉 1 0.595 0.000 (54)
2 1 0.000 (1440)

〈10, 3, 3, 2〉 1 0.183 0.000 (73)
2 0.367 0.000 (4330)
3 0.55 0.000 (13303000)
4 0.667 0.063 (0220210020100000)

(0220300011100000)
5 0.767 2.719 (01103000011000000110000010000000)
6 0.85 217.641 (0010010001001000102000000000000001001000100000000000000000000000)

(0010010010100000011010000000000001001000100000000000000000000000)
(0000110010100000011010000000000001100000100000000000000000000000)
(0000300001100000011000000000000001100000000000000000000010000000)
(0000200001100000011010000000000001100000100000000000000000000000)

〈10, 3, 4, 2〉 1 0.333 0.000 (73)
2 0.624 0.000 (4330)
3 0.871 0.000 (13303000)
4 0.957 0.063 (0130300012000000)
5 1 1.234 (00303000010000000100000011000000)

(00203000020000000110000010000000)
〈10, 3, 5, 2〉 1 0.5 0.000 (73)

2 0.833 0.000 (4330)
3 1 0.000 (13303000)

〈10, 3, 6, 2〉 1 0.667 0.000 (73)
2 0.957 0.000 (4330)
3 1 0.000 (22302100)

(13303000)
〈10, 3, 7, 2〉 1 0.817 0.000 (73)

2 1 0.000 (4330)
〈10, 3, 8, 2〉 1 0.933 0.000 (73)

2 1 0.000 (5221)
(4330)

〈10, 4, 3, 2〉 1 0.333 0.000 (64)
2 0.667 0.000 (2440)
3 0.867 0.016 (02402200)
4 1 0.156 (0040020002002000)

〈10, 4, 4, 2〉 1 0.548 0.000 (64)
2 0.924 0.000 (2440)



80 Chapter 5. Exhaustive Enumeration

Table 5.5 – continued from previous page
Lottery ` Ψ` Time (secs) Overlapping playing set structure

3 1 0.000 (03303001)
(03302110)
(02402200)

〈10, 4, 4, 3〉 1 0.119 0.000 (64)
2 0.238 0.000 (3331)

(2440)
3 0.357 0.000 (12212110)

(03303001)
(03302110)

4 0.476 0.328 (0111111011101000)
5 0.595 23.313 (00010110011010000110100010000000)
6 0.662 3825.359 (0000011000101000001000000100000000010000100000000100100000000000)

〈10, 4, 5, 2〉 1 0.738 0.000 (64)
2 1 0.000 (2440)

〈10, 4, 5, 3〉 1 0.262 0.000 (64)
2 0.524 0.000 (2440)
3 0.714 0.000 (03302110)
4 0.833 0.359 (0111111011101000)
5 0.952 24.875 (0220011001102000)
6 0.976 3920.016 (00010110011010000110100010000000)

(0000000100101000001010000100000000101000010000000100000000000000)
(0000000102000000002000000000100000002000001000000100000000000000)

〈10, 4, 6, 2〉 1 0.881 0.000 (64)
2 1 0.000 (3331)

(2440)
〈10, 4, 6, 3〉 1 0.452 0.000 (64)

2 0.829 0.000 (2440)
3 0.971 0.000 (02402200)
4 1 0.313 (0030111003001000)

(0040110002001100)
(0040020002002000)
(0030120002101000)

〈10, 4, 7, 3〉 1 0.667 0.000 (64)
2 1 0.000 (2440)

〈10, 5, 3, 2〉 1 0.5 0.000 (55)
2 1 0.000 (0550)

〈10, 5, 4, 2〉 1 0.738 0.000 (55)
2 1 0.016 (1441)

(0550)
〈10, 5, 4, 3〉 1 0.262 0.000 (55)

2 0.524 0.000 (1441)
(0550)

3 0.7 0.000 (02211220)
4 0.876 0.625 (0001022002201000)
5 0.924 53.328 (00010010001010100010020002000000)

(00010010002001000010020001001000)
6 0.986 10658.047 (0000000000000100000100000030000000000210010000000000100000000000)

〈10, 5, 5, 2〉 1 0.897 0.000 (55)
2 1 0.000 (2332)

(1441)
(0550)

〈10, 5, 5, 3〉 1 0.5 0.000 (55)
2 1 0.000 (0550)

〈10, 5, 5, 4〉 1 0.103 0.000 (55)
2 0.206 0.000 (2332)

(1441)
(0550)

3 0.31 0.016 (11121220)
(02212111)
(02211220)

4 0.413 0.563 (0011110102101010)
(0011021002101010)
(0001022002201000)

5 0.516 51.125 (00000101011000100011100001001000)
6 0.619 10498.375 (0000000100000010000100000100100000000100011000000010100000000000)



5.5. Chapter overview 81

5.5 Chapter overview

In this chapter, the exhaustive enumeration lottery tree, first presented by Gründlingh [16] for
the case n = t was reviewed and adapted for the case n 6= t. The implementation was also
presented in the form of a pseudocode listing. This solution method was implemented in order
to compare its results to those obtained in Chapter 4. The results in Table 5.5 may be compared
to the results in Table C. The resource utilisation numbers in Table C confirm the results in
Table 5.5. This implies that both methods are viable for solving small instances of both the
incomplete lottery problem and the resource utilisation problem.

It may be seen that the results in Table 5.5 were only solved for values of 1 ≤ ` ≤ 6. The
reason for this is that the exhaustive enumeration lottery tree tends to grow exponentially as
the value of ` increases. If the problem is solved using the exhaustive enumeration lottery tree
method for ` > 6, it would typically take longer than 14 400 seconds to find solutions, which is
longer than the time limit used in the ILP solution method. This presents a limitation on the
exhaustive enumeration lottery tree method, because only playing sets of a limited cardinality
may be considered. It may therefore be useful develop a method in which playing sets of a
larger cardinality may be considered. This is explored in the chapter which follows.



82 Chapter 5. Exhaustive Enumeration



CHAPTER 6

Overlapping playing set structures: An
approximation approach

Contents

6.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 A random search algorithm . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Two local search algorithms . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 The neighbourhood of a solution . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.3 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 A genetic algorithmic approach . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 A classical genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.2 A genetic algorithm combined with a local search . . . . . . . . . . . . . 101

6.5 Results obtained for small lottery instances . . . . . . . . . . . . . . 102

6.6 Tabu search applied to larger lotteries . . . . . . . . . . . . . . . . . . 105

6.7 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

In this chapter, the overlapping playing set structures presented in Chapter 1, and used as the
nodes in the exhaustive enumeration lottery tree in Chapter 5, are considered again. The manner
in which the elements are distributed amongst the compartments of the overlapping playing set
structure is considered to give rise to feasible (or infeasible) solutions to the incomplete lottery
problem and the resource utilisation problem. Good feasible solutions to these problems may
be found by means of (meta)heuristics.

In §6.1, the combinatorial optimisation problem to be solved (approximately) is formulated,
in fulfilment of Thesis Objective IV(a). Various approximation algorithms (such as random
search, simulated annealing, tabu search and genetic algorithms) are presented as possible
solution approaches to the above-mentioned combinatorial optimisation problem in fulfilment
of Thesis objective IV(b). These algorithms are applied to the same small problem instances
considered in Chapters 4 and 5 in fulfilment of Thesis objective IV(c). The chapter closes with
a comparison of the algorithms mentioned above in terms of their performance, in fulfilment of
Thesis objective IV(d).

83



84 Chapter 6. Overlapping playing set structures: An approximation approach

6.1 Problem definition

Consider an overlapping playing set structure representing a playing set of cardinality ` and con-
sisting of 2` compartments denoted by the entries in the vector (x(`)

(000...0), x
(`)
(000...1), . . . , x

(`)
(111...1)).

There are m elements which may be placed inside these compartments in such a way that for
each ticket in the overlapping playing set structure, the sum of the elements in the compartments
which belong to that ticket equals n, i.e.

x
(`)
(0...1) + x

(`)
(0...11) + . . .+ x

(`)
(111...1) = n,

x
(`)
(0...10) + x

(`)
(0...11) + . . .+ x

(`)
(111...1) = n,

...
...

x
(`)
(10...0) + x

(`)
(10...1) + . . .+ x

(`)
(111...1) = n.

The objective is to maximise the probability-of-win value (also known as the resource utilisation
number, Ψ`(m,n, t, k)) of the overlapping playing set structure which is computed in the same
way as described in §5.1.2.

The algorithms in this chapter are implemented with the goal of achieving a high resource
utilisation value, given a fixed playing set cardinality `, within an execution time that is less
than those expended by the methods presented in Chapters 4 and 5. If a resource utilisation
value of 1 is achieved, an upper bound L1(m,n, t, k) ≤ ` on the complete lottery number for
the given lottery instance is found. If a resource utilisation ψ < 1 is achieved, a lower bound
ψ ≤ Ψ`(m,n, t, k) on the resource utilisation number for the given lottery instance is found,
and hence an upper bound Lψ(m,n, t, k) ≤ ` on the incomplete lottery number is also found.

The objective is therefore to find a good approximation of the resource utilisation number
associated with a feasible playing set of cardinality ` for a lottery 〈m,n, t, k〉.

6.2 A random search algorithm

The random search algorithm presented in pseudocode form as Algorithm 6.1 involves the
repeated construction of feasible randomly generated overlapping playing set structures of a
given cardinality `. In Figure 6.1, each point in the graph represents the resource utilisation of
such a random construction, hence yielding a lower bound on the resource utilisation number
Ψ7(12, 5, 7, 4). It may be seen in this graph that the random search never converges to some
solution quality, which is typical behaviour of a random search algorithm. In Figure 6.1, the
highest resource utilisation value achieved by Algorithm 6.1 for ` = 7 tickets in the lottery
〈12, 5, 7, 4〉 is 754

792 ≈ 0.952 at iteration 354.

Assuming the generation of a random overlapping playing set structure has a worst-case com-
plexity of O(2`) and that the computation of a probability-of-win value has a worst-case com-
plexity of

O
((

2` + t− 1
t

))
,

the worst-case complexity of I iterations of the random search algorithm is

O
(

2`
(

2` + t− 1
t

)
I

)
.



6.2. A random search algorithm 85

Algorithm 6.1: Random search
Data: The lottery parameters m, n, t and k, the number of tickets `, and the number of

algorithmic iterations required I.
Result: The highest probability-of-win value found during the I iterations.
for i = 0; i ≤ I do1

CurrentSolution = new random solution;2

if Evaluate(CurrentSolution) > Evaluate(BestSolution) then3

BestSolution = CurrentSolution;4

end5

end6

return BestSolution;7

1

0.95

0.9

0.85

0.8

0.65

0.7

0.75

0 100 200 300 400 500 600 700 800 900 1 000
Iteration

R
es

ou
rc

e
ut

ili
sa

ti
on

Figure 6.1: Resource utilisation as a function of random search iterations. Each point represents a
lower bound on the resource utilisation number Ψ7(12, 5, 7, 4) for each of the 1 000 iterations of the
random search algorithm.



86 Chapter 6. Overlapping playing set structures: An approximation approach

6.3 Two local search algorithms

A local search algorithm involves the exploration of the solution space of a combinatorial op-
timisation problem by traversing small regions of the solution space at a time. In order to
accomplish this, a neighbourhood function is defined for each solution. The neighbourhood
function applies a small transformation to a solution in order to obtain a set of new solutions,
known as the neighbourhood of the original solution.

Some primitive local search algorithms are prone to eventually explore the same neighbourhood
of a solution continually. In this situation, the search algorithm is said to be trapped at a
local optimum. In this section, two local search algorithms (namely simulated annealing, and
tabu search) are presented. Both these algorithms are designed to be able to escape from local
optima. They are used to obtain a lower bound on the resource utilisation number Ψ`(m,n, t, k)
by repeatedly constructing different overlapping playing set structures for the specific lottery
problem instance, keeping track of the best resource utilisation achieved by ` tickets.

Algorithm 6.2: firstSwap
Data: A vector vec, representing an overlapping playing set structure and whose

neighbourhood is to be explored.
Result: A list of neighbourhood vectors of vec.
for i < vec.Length do1

for j < vec.Length do2

Move one element from compartment i to compartment j;3

Call secondSwap(vec);4

Restore vec to its original form;5

end6

end7

Algorithm 6.3: secondSwap
Data: An infeasible vector vec, and the zero-based vector indices i and j representing the

compartments in the overlapping playing set structure in which no elements are added
or removed.

Result: The neighbourhood vectors of vec.
for a < vec.Length do1

for b < vec.Length do2

if a 6= i and a 6= j and b 6= i and b 6= j then3

Move one element from compartment a to compartment b;4

if the new vector is feasible then5

Compute probability-of-win value;6

Add to neighbourhood;7

end8

end9

end10

end11



6.3. Two local search algorithms 87

6.3.1 The neighbourhood of a solution

Local search methods involve the successive exploration of the neighbourhoods of solutions.
These neighbourhoods are formed by applying a so-called neighbourhood function. Given a
feasible overlapping playing set structure, one element from compartment i may be moved to
each compartment j 6= i, according to Algorithm 6.2. This move may cause the overlapping
playing set structure to become infeasible. Therefore, the next step is to move elements between
the compartments in the overlapping playing set structure in order to regain a feasible solution.
Once an element is moved from compartment i or to compartment j according to Algorithm
6.2, for each compartment (except compartments i or j) which contains at least one element,
an attempt is made to move an element from that compartment to all the other compartments
(except compartments i or j), one compartment at a time, according to Algorithm 6.3. All the
resulting feasible overlapping playing set structures make up the neighbourhood of the original
structure.

The following example illustrates how the neighbourhood of the overlapping playing set struc-
ture (represented by the vector (4, 1, 0, 0, 0, 0, 1, 2)) may be constructed.

Example 6.1 (The neighbourhood of (4, 1, 0, 0, 0, 0, 1, 2)) For the lottery 〈8, 3, t, k〉, Algo-
rithm 6.2 results in the construction of the vectors (5, 0, 0, 0, 0, 0, 1, 2), (5, 1, 0, 0, 0, 0, 0, 2), (5, 1,
0, 0, 0, 0, 1, 1), (3, 2, 0, 0, 0, 0, 1, 2), (4, 2, 0, 0, 0, 0, 0, 2), (4, 2, 0, 0, 0, 0, 1, 1), (3, 1, 1, 0, 0, 0, 1, 2), (4,
0, 1, 0, 0, 0, 1, 2), (4, 1, 1, 0, 0, 0, 0, 2), (4, 1, 1, 0, 0, 0, 1, 1), (3, 1, 0, 1, 0, 0, 1, 2), (4, 0, 0, 1, 0, 0, 1, 2),
(4, 1, 0, 1, 0, 0, 0, 2), (4, 1, 0, 1, 0, 0, 1, 1), (3, 1, 0, 0, 1, 0, 1, 2), (4, 0, 0, 0, 1, 0, 1, 2), (4, 1, 0, 0, 1, 0, 0,
2), (4, 1, 0, 0, 1, 0, 1, 1), (3, 1, 0, 0, 0, 1, 1, 2), (4, 0, 0, 0, 0, 1, 1, 2), (4, 1, 0, 0, 0, 1, 0, 2), (4, 1, 0, 0, 0, 1,
1, 1), (3, 1, 0, 0, 0, 0, 2, 2), (4, 0, 0, 0, 0, 0, 2, 2), (4, 1, 0, 0, 0, 0, 2, 1), (3, 1, 0, 0, 0, 0, 1, 3), (4, 0, 0, 0,
0, 0, 1, 3), (4, 1, 0, 0, 0, 0, 0, 3). Each of the above vectors represents an infeasible solution and is
therefore used as input to Algorithm 6.3. As an example, consider the vector (3, 1, 0, 0, 1, 0, 1, 2)
taken as input to Algorithm 6.3. The solutions which result from applying Algorithm 6.3 to
this vector appear graphically in Figure 6.2. In the figure, it may be seen that the only two
feasible solutions which result from applying Algorithm 6.3 to the vector (3, 1, 0, 0, 1, 0, 1, 2) are
the vectors (3, 1, 1, 0, 1, 0, 0, 2) and (3, 1, 0, 1, 1, 0, 1, 1) — denoted by means of bold-faced frames
in Figure 6.2. Likewise, Algorithm 6.3 is applied to all the above vectors which result as output
from Algorithm 6.2. All the feasible solutions which result from applying Algorithm 6.3 are con-
sidered to be in the neighbourhood of the solution represented by the vector (4, 1, 0, 0, 0, 0, 1, 2)
— this neighbourhood is shown in Figure 6.3. �

6.3.2 Simulated annealing

The metaheuristic simulated annealing is based on a cooling process in thermodynamics. In
order to grow a crystal structure, a certain material is heated until is has reached a molten
state. The temperature to which this molten material is exposed, is then reduced in a controlled
manner until the molten material regains a solid state. If cooling takes place at a rate which
is undesirably quick, the resulting structure of the solid material may be unstable; therefore
the material is allowed to cool slowly. Simulated annealing is a metaheuristic that mimics this
cooling process and consists of a mechanism which allows a local search algorithm to escape
local optima. This is achieved by specifying a temperature variable, T ≥ 0, and a cooling ratio,
r (0 < r ≤ 1). At each iteration, the temperature variable is multiplied by the cooling ratio in
order to decrease its temperature value. Given an overlapping playing set structure S1 and its
neighbour S2, if the probability-of-win value associated with S2 is larger than the probability-



88 Chapter 6. Overlapping playing set structures: An approximation approach

(3,0,0,0,1,0,1,3) (3,0,0,0,1,0,2,2) (3,0,0,0,1,1,1,2) (3,0,0,1,1,0,1,2)

(3,0,1,0,1,0,1,2) (3,2,0,0,1,0,0,2) (3,1,1,0,1,0,0,2) (3,1,0,1,1,0,0,2)

(3,1,0,0,1,1,0,2) (3,1,0,0,1,0,0,3) (3,2,0,0,1,0,1,1) (3,1,1,0,1,0,1,1)

(3,1,0,1,1,0,1,1) (3,1,0,0,1,1,1,1) (3,1,0,0,1,0,2,1)

Figure 6.2: “Overlapping playing set structures” for the lottery 〈8, 3, t, k〉 resulting from applying
Algorithm 6.3 to the vector (3, 1, 0, 0, 1, 0, 1, 2).

(5,0,0,0,0,0,0,3) (3,2,0,0,0,0,2,1) (3,1,1,0,1,0,0,2) (3,1,1,0,0,1,1,1)

(4,0,1,0,0,1,0,2) (3,1,0,1,1,0,1,1) (4,0,0,1,1,0,0,2) (4,0,0,1,0,1,1,1)

Figure 6.3: The neighbourhood of the overlapping playing set structure for the lottery 〈8, 3, t, k〉
represented by the vector (4, 1, 0, 0, 0, 0, 1, 2).



6.3. Two local search algorithms 89

of-win value associated with S1, a transition from S1 to S2 is made, otherwise the transition to
the inferior solution S2 from S1 is made with probability

pescape = exp
[

Evaluate(S2)− Evaluate(S1)
T

]
.

This implies that Algorithms 6.2 and 6.3 are not run to completion, but are only used to
find a different overlapping playing set structure whose neighbourhood can be explored. If the
transition occurs, the neighbourhood of the overlapping playing set structure S2 is explored —
and this neighbourhood may be in a vastly different area of the solution space compared to
where the neighbourhood of the current feasible overlapping playing set structure is, thereby
enabling the search to escape from a local optimum.

Algorithm 6.4: Simulated annealing
Data: The lottery parameters m, n, t and k, the playing set cardinality `, the minimum

temperature Tmin, the maximum temperature Tmax, the cooling rate r.
Result: The highest resource utilisation number found via the Simulated annealing heuristic.
StartSolution← A randomly generated solution.1

Initialize T ← Tmax.2

CurrentSolution← StartSolution.3

Evaluate(CurrentSolution).4

for i ≤ I do5

Select NewSolution from the neighbourhood of CurrentSolution.6

if Evaluate(NewSolution) > Evaluate(CurrentSolution) then7

CurrentSolution← NewSolution.
else if Random[0, 1) < e(Evaluate(NewSolution)−Evaluate(CurrentSolution))/T then8

CurrentSolution← NewSolution.9

if T > Tmin then10

T ← r × T .11

else12

T ← Tmax.13

end14

end15

Three parameters are fixed for the simulated annealing algorithm. These are the maximum
temperature, the minimum temperature, and the cooling rate. The values of these parameters
have a significant impact on the performance of the algorithm with regards to how quickly a
good solution is obtained, how widely the solution space is explored, and the actual resource
utilisation of the best solution obtained by the algorithm. These parameters are problem-
specific, which means that an investigation is required for each problem in order to find the
best values for the parameters. In terms of the problem investigated in this chapter, if the
temperature cools at a relatively quick rate, the solution space is more widely searched, because
a transition may occur from a current solution more often to one which is inferior in terms
of resource utilisation. If the value of the temperature cools slowly, the neighbourhood of
each solution is searched more intensively with the result that the solution space is not widely
explored. It is ideal to find a balance between searching the neighbourhood of a solution as
intensively as possible, and searching the solution space as widely as possible. Due to the
large size of the solution space, if an attempt is made to search it as widely as possible, it
may occur that only weak solutions are encountered, because not enough time is allowed to
search the neighbourhood of those solutions for improvements. However, if the neighbourhood



90 Chapter 6. Overlapping playing set structures: An approximation approach

of each solution is searched thoroughly each time a solution is found, it may occur that only
a small portion of the solution space is explored, which is not ideal. In order to decide which
values to use for the variables, the value of the minimum temperature may be fixed at 0.01,
and the values of the maximum temperature and the cooling rate may be varied. From Table
6.1, it may be seen that a value of r = 0.99 is ideal, meaning that the temperature cools
slowly, which implies that the neighbourhood of each solution is explored intensively. As the
number of iterations increases, causing the temperature to drop, the probability of choosing a
neighbouring solution which is inferior to the current solution grows. Also, if d is the difference
between the probability-of-win value associated with a current solution and the probability-of-
win value associated with a neighbouring solution which is less fit than it, as d increases, the
probability of choosing an inferior neighbour increases.

In Figure 6.4, each point represents the resource utilisation associated with the overlapping
playing set structure being considered during an iteration of Algorithm 6.4 when a playing set
of cardinality ` = 7 is considered in the lottery 〈12, 5, 7, 4〉. From iteration 1 to 22, the resource
utilisation value increases while the value of the temperature variable T slowly decreases, causing
the probability of a transition to an inferior solution to slowly increase. Due to the increasingly
higher probability of a transition occurring to an inferior solution, the resource utilisation value
appears to decrease from iteration 58 to 128. Once the temperature variable T reaches its
minimum allowable value, Tmin it is reset to its original maximum value, Tmax. The resulting
increased value of the temperature variable T causes the probability of a transition to an inferior
solution to be close to zero, which leads to the gradual increase of the resource utilisation value
from iteration 182 to 215. This process is repeated several times throughout the 1 000 iterations.
In Figure 6.4 the highest resource utilisation achieved via the simulated annealing algorithm is
0.985.

In the simulated annealing algorithm, the worst-case complexity is achieved if the entire neigh-
bourhood of a solution is explored. This implies that both Algorithms 6.2 and 6.3 are always
executed to completion. Algorithm 6.2 is completed with a worst-case complexity of

O
(

2
(

2`

2

))
and Algorithm 6.3 is similar to Algorithm 6.2, except that for each iteration of Algorithm 6.3,
the solution must be validated. Therefore, the worst-case complexity of Algorithm 6.3 is

O
(

2
(

2`

2

)(
2` + t− 1

t

))
which implies that, the worst-case time complexity of I iterations of the simulated annealing
approach is

O

(
4
(

2`

2

)2(2` + t− 1
t

)
I

)
.

6.3.3 Tabu search

Tabu search is another metaheuristic method incorporating a mechanism which allows a local
search to escape local optima. This method employs a short-term memory structure containing
information on moves whose reversals are not allowed (or are considered tabu) for a prede-
termined number of iterations. A tabu move is defined as follows. Given a transition from a



6.3. Two local search algorithms 91

Table 6.1: Comparison of the largest resource utilisation value ψ obtained using ` = 7 tickets in the
lotteries 〈10, 4, 5, 3〉 and 〈12, 5, 7, 4〉 and the number of iterations I it takes to find that value, under
the conditions that the maximum temperature Tmax and the cooling rate r of the simulated annealing
heuristic are varied.

〈10, 4, 5, 3〉, ` = 7
Tmax = 100 Tmax = 75 Tmax = 50 Tmax = 25

r ψ I ψ I ψ I ψ I

0.25 0.956 5 0.976 82 0.956 3 0.952 34
0.5 0.937 6 1.000 72 0.881 5 0.937 6
0.75 1.000 13 1.000 41 1.000 38 1.000 10
0.99 1.000 15 1.000 19 1.000 179 1.000 13

〈12, 5, 7, 4〉, ` = 7
Tmax = 100 Tmax = 75 Tmax = 50 Tmax = 25

r ψ I ψ I ψ I ψ I

0.25 0.919 4 0.886 4 0.831 5 0.856 2
0.5 0.860 93 0.918 7 0.913 7 0.905 5
0.75 0.944 313 0.948 203 0.902 40 0.878 40
0.99 0.985 22 0.985 34 0.985 23 0.985 24

R
es

ou
rc

e
ut

ili
sa

ti
on

1

0.9

0.8

0.7

0.6

0.5
0 200 400

Iteration
600 800 1 000

Figure 6.4: Lower bounds on the resource utilisation number Ψ7(12, 5, 7, 4) as a function of simulated
annealing iterations. Each point represents the resource utilisation value associated with the overlapping
playing set structure considered during an iteration of Algorithm 6.4.



92 Chapter 6. Overlapping playing set structures: An approximation approach

solution (i.e. an overlapping playing set structure) x1 to a solution x2, it is tabu to make the
transition back from x2 to x1. By classifying these transitions as tabu and accumulating them
in a so-called tabu list, the algorithm is prevented (for a certain number of iterations) from
repeatedly looping through solutions which have already been explored. This results in a more
widespread search of the solution space. It is, however, desirable to search each region of a solu-
tion space thoroughly. Therefore, once the tabu list has reached a certain length (called the tabu
tenure), the entries that have been inside it the longest are removed, one entry per iteration in
a first-in-first-out manner. By removing entries from the tabu list, previously explored sections
of the solution space may be explored again. If the tabu list contains many entries, the search
through the solution space is widely spread, but not thorough, while if the tabu list contains
comparatively few entries, the search through the solution space is thorough, but not necessarily
widespread. It is ideal to achieve a balance between a widespread search and a thorough search
under the restriction that a limited number of search iterations are carried out. In order to
determine an ideal tabu list length, its value was varied between the values {20, 40, 60, 80, 100}
when searching for good approximations of the values Ψ7(10, 4, 5, 3) and Ψ7(12, 5, 7, 4). The
number of distinct solutions found and the largest resource utilisation number uncovered was
recorded. From Table 6.2, the largest number of distinct solutions is encountered with a tabu
list length of 60 for both lottery problem instances. This implies that if a relatively widespread
search is required, a tabu list length of 60 may be used when searching for resource utilisation
numbers of small lottery instances.

Algorithm 6.5: Tabu search
Data: The lottery parameters m, n, t and k, the playing set cardinality `, and the tabu

tenure T .
Result: The highest resource utilisation number found via the tabu search heuristic.
StartSolution = random solution.1

Initialize T .2

CurrentSolution = StartSolution.3

Evaluate(CurrentSolution).4

for i ≤ I do5

Select best neighbour, bestNeighbour, of CurrentSolution from non-tabu neighbours of6

CurrentSolution.
CurrentSolution = bestNeighbour.7

Record the moves bestNeighbour ← CurrentSolution and8

CurrentSolution← bestNeighbour as tabu.
if the tabu list contains more than T items then9

Remove the oldest item from the list.10

end11

end12

In Figure 6.5, each point in the graph represents the resource utilisation associated with an
overlapping playing set structure considered during iteration i of Algorithm 6.5 when a playing
set of cardinality 7 is considered in the lottery 〈12, 5, 7, 4〉. It can be seen in this graph that the
resource utilisation value rapidly converges to a high value, and then fluctuates slightly as the
neighbourhoods of solutions are iteratively explored. The resource utilisation value does not
decrease dramatically because only the most superior neighbour of each solution is considered.
From Figure 6.5, highest resource utilisation number achieved via the tabu search algorithm is
0.985.



6.4. A genetic algorithmic approach 93

Table 6.2: Bounds (ψ) on the resource utilisation numbers Ψ7(10, 4, 5, 3) and Ψ7(12, 5, 7, 4) obtained
via a tabu search, and the number of distinct solutions encountered (I) for different values of the tabu
tenure, T .

Lottery T = 20 T = 40 T = 60 T = 80 T = 100

〈10, 4, 5, 3〉 I 12 18 19 18 18
ψ 1 1 1 1 1

〈12, 5, 7, 4〉 I 15 18 21 18 19
ψ 0.985 0.985 0.985 0.985 0.985

R
es

ou
rc

e
ut

ili
sa

ti
on

1

0.95

0.9

0.85

0.8

0.75

0.7
0 20 40 60 80 100

Iteration

Figure 6.5: Lower bounds on the resource utilisation number Ψ7(12, 5, 7, 4) as a function of tabu search
iterations.

The tabu search is similar to the simulated annealing approach with respect to worst-case
complexity. In the worst-case, the entire neighbourhood of each solution considered may need
to be explored. This implies that the worst-case complexity of I iterations of the tabu search
metaheuristic is

O

(
4
(

2`

2

)2(2` + t− 1
t

)
I

)
.

6.4 A genetic algorithmic approach

Genetic algorithms are based on the theory of evolutionary biology which states that the
strongest individuals in a population typically are the ones that thrive, and the weaker individ-
uals eventually die and are replaced by even stronger individuals thus leading to an increasingly
stronger population as time passes. In this section, a classical genetic algorithm is presented
and applied in search of bounds on resource utilisation numbers for small lottery instances. This



94 Chapter 6. Overlapping playing set structures: An approximation approach

algorithm is then enhanced by means of a hybridisation technique.

6.4.1 A classical genetic algorithm

In the context of the resource utilisation problem, an individual in the population is defined as a
vector representing an overlapping playing set structure, and the fitness (measure of strength or
goodness) of an individual is defined by the probability-of-win value associated with that vector.
The higher the probability-of-win value associated with a given vector, the fitter the individual,
and the higher the chance that the individual may survive as time passes. New individuals are
introduced into the population in two ways. Firstly, a proportion of the population is selected
to breed and produce new offspring by combining certain solutions in the hope of constructing
new solutions in a previously unexplored region of the solution space. Individuals are chosen
for breeding such that it is more likely for the more fit individuals to be chosen than for the
less fit individuals to be chosen. Breeding takes place by considering two vectors from the set
of solutions comprising the population and constructing two solutions (which may initially be
infeasible) by combining randomly selected tickets from the one parent vector ~p1 with randomly
selected tickets from another parent vector ~p2, and visa versa. This process is described in
more detail in Algorithm 6.7. These newly created children vectors may not represent feasible
solutions and if that is the case, Algorithm 6.8 may be applied to the infeasible vectors in order
to find feasible ones. The resulting vectors which represent feasible solutions are then added to
the population in such a way that they replace weaker individuals.

Algorithm 6.6: Classical genetic algorithm
Data: Lottery parameters m, n, t and k, the playing set cardinality `, the probability of a

mutation occurring pmutate, The proportion of the population exposed to breeding
pbreed, and the total number of iterations to be carried out, I.

Result: The highest probability-of-win value found by the classic genetic algorithm.
Generate a population of randomly generated solutions.1

Evaluate the fitness of each individual.2

for i < I do3

Generate value 0 ≤ prandom ≤ 1.4

if prandom ≤ pmutate then5

Select a solution from the population and mutate it.6

else7

Select a proportion pbreed of the solutions in the population and breed new individuals8

from them.
end9

Evaluate the fitness of the new solution(s).10

Replace the worse ranked solutions in the population with new solutions if they are more11

fit.
end12

Return the probability-of-win value of the strongest individual in the population.13

The following example illustrates the mating of two individuals denoted by the vectors ~p1 =
(1, 2, 2, 0, 2, 0, 0, 1) and ~p2 = (3, 1, 1, 0, 1, 0, 0, 2) representing overlapping playing set structures
in the lottery 〈8, 3, t, k〉.

Example 6.2 (Mating of individuals in a lottery 〈8, 3, t, k〉) Assume two individuals in a
population represent overlapping playing set structures in the lottery 〈8, 3, t, k〉 denoted by the



6.4. A genetic algorithmic approach 95

Algorithm 6.7: Mate
Data: Parent vector ~p1, Parent vector ~p2.
Result: Vectors ~c1 and ~c2 representing the children of ~p1 and ~p2, respectively.
Ra = randomly generated list of tickets which ~c1 will inherit from ~p2, and ~c2 will inherit from1

~p1

Rb = list of tickets which ~c1 will inherit from ~p1, and ~c2 will inherit from ~p22

/* For all the tickets listed in Ra, fill ~c1 and ~c2 with elements from the
tickets ~p2 and ~p1, respectively. */

for i = 0; i < Ra.Length do3

for j = 0; j < ~p1.Length do4

if j&2Ra[i] = Ra[i] then5

~c1[j] = ~p2[j]6

~c2[j] = ~p1[j]7

end8

end9

end10

/* For all the tickets listed in Rb, fill ~c1 and ~c2 with elements from the
tickets ~p1 and ~p2, respectively until m elements are contained in ~c1 and ~c2.
*/

for i = 0; i < Rb.Length do11

for j = 0; j < ~p1.Length do12

if j&2Rb[i] = Ra[i] then13

if Sum(~c1) + ~c1[j] ≤ m then14

~c1[j] = ~p1[j]15

else16

~c1[j] = m− Sum(~c1)17

end18

if Sum(~c2) + ~c2[j] ≤ m then19

~c2[j] = ~p2[j]20

else21

~c2[j] = m− Sum(~c2)22

end23

end24

end25

end26

/* If there are still less than m elements in the child overlapping playing

set structure, add the remaining necessary elements to compartment x
(`)
(000...0).

*/
if Sum(~c1) < m then27

~c1[0] = ~c1[0] + (m− Sum(~c1))28

end29

if Sum(~c2) < m then30

~c2[0] = ~c2[0] + (m− Sum(~c2))31

end32



96 Chapter 6. Overlapping playing set structures: An approximation approach

vectors ~p1 = (1, 2, 2, 0, 2, 0, 0, 1) and ~p2 = (3, 1, 1, 0, 1, 0, 0, 2). Ticket 2 is randomly chosen to
be the ticket inherited by child ~c1 from parent ~p2, and by child ~c2 from parent ~p1. Therefore,
every entry in ~p2 which represents a compartment in ticket 2 is copied to the corresponding
entry in ~c1, and every entry in ~p1 which represents a compartment in ticket 2 is copied to the
corresponding entry in ~c2. At this stage, ~c1 = ( , , 1, 0, , , 0, 2) and ~c2 = ( , , 2, 0, , , 0, 1).
Elements still need to be inserted into compartments

x
(3)
(000), x

(3)
(001), x

(3)
(100) and x

(3)
(101) (6.1)

of ~c1 and ~c2. The elements from the compartments in (6.1) of ~p1 are copied to matching
compartments in ~c1, and likewise, the elements from the compartments in (6.1) of ~p2 are copied
to matching compartments in ~c2. The resulting vectors are ~c1 = (1, 2, 1, 0, 2, 0, 0, 2) and ~c2 =
(3, 1, 2, 0, 1, 0, 0, 1). The vector ~c1 is infeasible, and it is not possible to construct a feasible
solution by shifting an element from one of the compartments in (6.1) to another. However, if
an element is shifted from compartment x(3)

(000) to x(3)
(101) of ~c2, a feasible solution in the form of

~c2 = (2, 1, 2, 0, 1, 1, 0, 1) is obtained, and this solution therefore represents a child of the solutions
~p1 and ~p2. �

The second method of introducing new solutions into the population is by way of a mutation
process, meaning that if a solution is changed in some way, the result is a different solution
which may be in a previously unexplored region of the solution space. A mutation operation
is applied to a solution by randomly distributing the elements of a solution in the population,
and this occurs with small probability.

There are three parameters in the classical genetic algorithm which are of interest, namely
pmutate (the probability of a solution being mutated at any given iteration), pbreed (the pro-
portion of solutions in the population which are exposed to breeding), and the population
size. The value of pmutate is typically set to 0.01, which implies that, on average, a mutation
should occur approximately one out of every hundred iterations. However, as may be seen
in Figure 6.6, that may vary depending on the randomly generated value of prandom. As the
value of pbreed increases (Figure 6.6 shows the population maximum/average fitness for values of
pbreed ∈ {20%, 40%, 60%, 80%}), so does the execution time of the algorithm, which implies that
it is ideal for the value of pbreed to be relatively small. However, as may be seen in Figure 6.6,
the bound on the resource utilisation number obtained appears to converge to a relatively high
value quicker as the value of pbreed increases. The population size should be a small fraction of

Algorithm 6.8: Finding a feasible child
Data: Infeasible solution ~ci, resulting from the mating of parent solutions ~pi and ~pj .
Result: Feasible child vectors.
for each compartment a in the structure represented by ~ci inherited from ~pi do1

for each compartment b 6= a in ~ci inherited from ~pi do2

Move an element from compartment a into compartment b.3

if a feasible solution results then4

Add the feasible solution to the population.5

end6

Move an element from compartment b back into compartment a.7

end8

end9



6.4. A genetic algorithmic approach 97
R

es
ou

rc
e

ut
ili

sa
ti

on

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8
0 200 400 600 800 1 000

Iteration
(a) pbreed = 20%

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8
0 200 400

Iteration
600 800 1 000

R
es

ou
rc

e
ut

ili
sa

ti
on

(b) pbreed = 40%

Figure 6.6: Bounds on the resource utilisation number as a function of classical genetic algorithm
iterations when a playing set of cardinality 6 is considered for the lottery 〈17, 7, 5, 3〉. A population size
of 20 is used, with a value of pmutate = 1%. A dot at Ψ = 0.85 indicates that a mutation took place
at that iteration. The black points indicate the best bound on the resource utilisation number achieved
(the fitness of the fittest individual in the population) at that iteration, and the grey points indicate the
average population fitness.



98 Chapter 6. Overlapping playing set structures: An approximation approach
R

es
ou

rc
e

ut
ili

sa
ti

on

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8
0 200 600 800 1 000

Iteration
400

(c) pbreed = 60%

1

R
es

ou
rc

e
ut

ili
sa

ti
on

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8
0 200 400

Iteration
600 800 1 000

(d) pbreed = 80%

Figure 6.6: — continued from the previous page — Bounds on the resource utilisation number as a
function of classical genetic algorithm iterations when a playing set of cardinality 6 is considered for the
lottery 〈17, 7, 5, 3〉. A population size of 20 is used, with a value of pmutate = 1%. A dot at Ψ = 0.85
indicates that a mutation took place at that iteration. The black points indicate the best bound on
the resource utilisation number achieved (the fitness of the fittest individual in the population) at that
iteration, and the grey points indicate the average population fitness.



6.4. A genetic algorithmic approach 99

1

Iteration
1 000800600400200

0.8
0

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
es

ou
rc

e
ut

ili
sa

ti
on

(e) pbreed = 100%

Figure 6.6: — continued from the previous page — Bounds on the resource utilisation number as a
function of classical genetic algorithm iterations when a playing set of cardinality 6 is considered for the
lottery 〈17, 7, 5, 3〉. A population size of 20 is used, with a value of pmutate = 1%. A dot at Ψ = 0.85
indicates that a mutation took place at that iteration. The black points indicate the best bound on
the resource utilisation number achieved (the fitness of the fittest individual in the population) at that
iteration, and the grey points indicate the average population fitness.

the size of the solution space of the problem. If the population size is large, an optimal solution
to the problem may exist in the initial population constructed in line 1 of Algorithm 6.6. If this
occurs, the evolutionary property of the classical genetic algorithm is no longer required, be-
cause an optimal solution has already been found. The population size should be relatively small
because the execution time of the algorithm increases as the size of the population increases.

During each iteration of the classical genetic algorithm, solutions may either undergo a process
of breeding or mutation. The breeding process involves copying values to two vectors of size
`. This occurs with a worst-case complexity of O(2`). Elements are then swapped between the
resulting vectors, which occurs with a worst-case complexity of

O
(

2
(

2`

2

)(
2` + t− 1

t

))
,

implying that the breeding process has a worst-case complexity of

O
(

4`
(

2`

2

)(
2` + t− 1

t

))
.

The mutation process involves changing the value of two elements with a worst-case complexity
of O(2). Following this, elements are swapped between the compartments with a worst-case
complexity of

O
(

2
(

2`

2

)(
2` + t− 1

t

))
,



100 Chapter 6. Overlapping playing set structures: An approximation approach
R

es
ou

rc
e

ut
ili

sa
ti

on

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8
0 200 400 600 800 1000

Iteration
(a) The lottery 〈10, 4, 5, 3〉

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  200  400  600  800  1000

R
e
s
o
u
rc

e
 u

ti
li

s
a
ti

o
n

Iteration

(b) The lottery 〈12, 5, 7, 4〉

Figure 6.7: Bounds on the resource utilisation number as a function of iterations of a genetic algorithm
combined with a local search when a playing set of cardinality 7 is considered for the lotteries 〈10, 4, 5, 3〉
and 〈12, 5, 7, 4〉. A population size of 20 is used, with a value of pmutate = 1%. A dot at Ψ = 0.85
indicates that a mutation took place at that iteration. The black points indicate the best bound on
the resource utilisation number achieved (the fitness of the fittest individual in the population) at that
iteration, and the grey points indicate the average population fitness.



6.4. A genetic algorithmic approach 101

implying that the worst-case complexity of the mutation process is

O
(

4
(

2`

2

)(
2` + t− 1

t

))
.

The maximum probability-of-win value obtained via the classical genetic algorithm for the lot-
tery 〈12, 5, 7, 4〉 is approximately 0.975, compared to the value of approximately 0.985 achieved
via the tabu search and simulated annealing methods with a playing set cardinality of 7, and
approximately 0.963, compared to the value of approximately 1 achieved via the tabu search
and simulated annealing methods, for the lottery 〈10, 4, 5, 3〉 with a playing set cardinality of 7.
Hence the classical genetic algorithm method is not as effective in finding lower bounds on the
resource utilisation number as are the tabu search method and the simulated annealing method.
The following section contains a suggestion for improving the classical genetic algorithm.

6.4.2 A genetic algorithm combined with a local search

It may be assumed that, in a population, individuals are able to observe their neighbours and
learn what their good traits are. By doing this, an individual is able to improve its own fitness.

Algorithm 6.9: Genetic algorithm combined with a local search
Data: Lottery parameters m, n, t and k, the playing set cardinality `, the probability of a

mutation occurring pmutate, The proportion of the population exposed to breeding
pbreed, The maximum number of iterations required, I.

Result: The highest probability-of-win value found by the genetic algorithm.
Generate a population of randomly generated solutions;1

Evaluate the fitness of each individual;2

for i < I do3

Generate value 0 ≤ prandom ≤ 1;4

if prandom ≤ pmutate then5

Select a solution from the population and mutate it;6

else7

Select a proportion pbreed of the solutions in the population and breed new individuals8

from them;
end9

Evaluate the fitness of the new solution(s);10

Replace the worse ranked solutions in the population with new solutions if they are more11

fit;
if i = I × 0.1 then12

for each individual P in the population do13

Select NewSolution from neighbourhood of individual P ;14

if Evaluate(NewSolution) > Evaluate(P ) then15

P ← NewSolution;16

Go to step 13;17

end18

end19

end20

end21

Return the probability-of-win value of the strongest individual in the population;22



102 Chapter 6. Overlapping playing set structures: An approximation approach

This process may be applied in a genetic algorithm in order to enhance the fitness of individuals
over time. That is, after a certain number of iterations, the individuals in the population may
be allowed to examine their neighbours, and if a neighbour is found to have a higher fitness than
the individual, the individual may assume the same properties as its fitter neighbour implying
that the solution will have improved its fitness. Algorithm 6.9 illustrates the steps involved in
this process.

The bounds Ψ7(10, 4, 5, 3) ≥ 1 and Ψ7(12, 5, 7, 4) ≥ 0.985 are found via the genetic algorithm
combined with a local search as shown in Figure 6.7. This implies that by including a local
search into Algorithm 6.6, the performance of the algorithm is improved in terms of solution
quality. Algorithm 6.9 is, however, a more computationally expensive algorithm due to the
addition of the local search, resulting in a worst case complexity of

O
(

4
(

2`

2

)(
2` + t− 1

2

)
(`+ 1) I

)
.

6.5 Results obtained for small lottery instances

In this section, the local search and metaheuristic search techniques presented in this chapter are
applied to the same small lottery problem instances considered in the previous chapters. The
methods are compared to each other with respect to solution quality achieved and execution
time expended. This is done in order to determine which method is best suited to the resource
utilisation problem. Through experimentation, the tabu method (presented in §6.3.3) requires
large average execution times per iteration in comparison to the simulated Annealing method
(presented in §6.3.2), and the genetic algorithms (presented in §6.4). The reason for these large
average execution times per iteration in the tabu search is that, with each solution encountered,
the entire neighbourhood is explored in order to find the best neighbour. In the case of the
simulated annealing local search technique, the entire neighbourhood is not necessarily explored
for each solution encountered, because as time goes by, it becomes more likely for a suboptimal
solution to be selected as the current solution. For this reason, a run of 100 iterations of the tabu
search heuristic is compared to a run of 1 000 iterations of the simulated annealing heuristic,
the classical genetic algorithm and the genetic algorithm combined with a local search. The
results are shown in Table 6.3.

Table 6.3: Lower bounds on the resource utilisation number, Ψ`(m,n, t, k), and the time (in seconds)
taken to complete 100 iterations of the tabu search, and 1 000 iterations of the simulated annealing
algorithm and both genetic algorithms. The entries in the column labelled Algorithm 6.4 result from
the simulated annealing algorithm. The entries in the column labelled Algorithm 6.5 result from the
tabu search algorithm. The entries in the column labelled Algorithm 6.6 result from the classical genetic
algorithm. The entries in the column labelled Algorithm 6.9 result from the genetic algorithm combined
with a local search.

Lottery `
Algorithm 6.4 Algorithm 6.5 Algorithm 6.6 Algorithm 6.9
Ψ` Time Ψ` Time Ψ` Time Ψ` Time

〈6, 3, 3, 2〉 2 1 0.078 1 0.016 1 0.063 1 0.125
〈7, 3, 3, 2〉 2 0.743 0.109 0.743 0.016 0.743 0.109 0.743 0.125
〈7, 3, 3, 2〉 3 0.914 0.906 0.914 0.078 0.914 0.297 0.914 0.547
〈7, 3, 3, 2〉 4 1 5.375 1 1.250 1 0.609 1 2.500
〈7, 3, 4, 2〉 2 1 0.125 1 0.016 1 0.078 1 0.203
〈8, 3, 3, 2〉 2 0.571 0.141 0.571 0.000 0.571 0.141 0.571 0.125



6.5. Results obtained for small lottery instances 103

Table 6.3 – continued from previous page

Lottery `
Algorithm 6.4 Algorithm 6.5 Algorithm 6.6 Algorithm 6.9
Ψ` Time Ψ` Time Ψ` Time Ψ` Time

〈8, 3, 3, 2〉 3 0.786 1.250 0.786 0.109 0.786 0.219 0.786 1.313
〈8, 3, 3, 2〉 4 0.893 6.063 0.893 1.531 0.893 1.531 0.893 4.656
〈8, 3, 3, 2〉 5 1 23.969 1 11.266 0.964 6.766 1 21.672
〈8, 3, 4, 2〉 2 0.871 0.156 0.871 0.000 0.871 0.531 0.871 0.141
〈8, 3, 4, 2〉 3 1 1.359 1 0.125 1 0.563 1 0.922
〈8, 3, 5, 2〉 2 1 0.141 1 0.016 1 0.125 1 0.266
〈8, 4, 3, 2〉 2 1 0.078 1 0.000 1 0.109 1 0.094
〈8, 4, 4, 2〉 2 1 0.281 1 0.016 1 0.141 1 0.188
〈8, 4, 4, 3〉 2 0.486 0.266 0.486 0.000 0.486 0.156 0.486 0.125
〈8, 4, 4, 3〉 3 0.671 4.281 0.671 0.141 0.671 0.500 0.671 0.547
〈8, 4, 4, 3〉 4 0.857 11.656 0.857 2.000 0.857 1.266 0.857 3.563
〈8, 4, 4, 3〉 5 0.914 56.141 0.914 14.078 0.914 2.203 0.914 17.141
〈8, 4, 4, 3〉 6 1 270.859 1 94.063 0.971 3.406 1 109.531
〈9, 3, 3, 2〉 2 0.452 0.188 0.452 0.000 0.452 0.078 0.452 0.234
〈9, 3, 3, 2〉 3 0.679 0.891 0.679 0.125 0.679 1.438 0.679 1.500
〈9, 3, 3, 2〉 4 0.774 16.109 0.774 1.875 0.774 4.359 0.774 11.484
〈9, 3, 3, 2〉 5 0.893 61.219 0.893 15.172 0.893 22.344 0.893 42.563
〈9, 3, 3, 2〉 6 0.952 334.406 0.952 107.047 0.952 38.422 0.952 239.609
〈9, 3, 3, 2〉 7 1 1 861.875 1 849.219 1 126.609 1 1 182.813
〈9, 3, 4, 2〉 2 0.738 0.156 0.738 0.000 0.738 0.172 0.738 0.281
〈9, 3, 4, 2〉 3 1 0.891 1 0.141 1 0.828 1 1.969
〈9, 3, 5, 2〉 2 0.929 0.172 0.929 0.000 0.929 0.109 0.929 0.406
〈9, 3, 5, 2〉 3 1 2.609 1 0.063 1 1.234 1 1.281
〈9, 3, 6, 2〉 2 1 0.141 1 0.000 1 0.141 1 0.125
〈9, 4, 3, 2〉 2 0.81 0.156 0.81 0.016 0.81 0.188 0.81 0.125
〈9, 4, 3, 2〉 3 0.952 1.156 0.952 0.172 0.952 0.453 0.952 0.531
〈9, 4, 3, 2〉 4 1 8.016 1 2.203 1 0.641 1 3.594
〈9, 4, 4, 2〉 2 1 0.172 1 0.016 1 0.094 1 0.109
〈9, 4, 4, 3〉 2 0.333 0.344 0.333 0.016 0.333 0.234 0.333 0.094
〈9, 4, 4, 3〉 3 0.5 6.406 0.5 0.156 0.5 0.234 0.5 1.031
〈9, 4, 4, 3〉 4 0.635 46.953 0.635 2.953 0.635 1.641 0.635 7.531
〈9, 4, 4, 3〉 5 0.738 181.625 0.738 19.656 0.738 3.688 0.738 32.172
〈9, 4, 4, 3〉 6 0.825 578.297 0.825 133.406 0.817 7.141 0.825 179.875
〈9, 4, 4, 3〉 7 0.913 2 365.469 0.913 935.734 0.849 14.516 0.913 920.031
〈9, 4, 4, 3〉 8 0.96 11 601.953 0.96 7 088.859 0.905 62.109 0.96 4 109.625
〈9, 4, 4, 3〉 9 0.992 79 370.781 1 57 678.875 0.937 388.813 0.992 42 970.266
〈9, 4, 5, 2〉 2 1 0.375 1 0.031 1 0.094 1 0.109
〈9, 4, 5, 3〉 2 0.714 0.188 0.714 0.016 0.714 0.141 0.714 0.250
〈9, 4, 5, 3〉 3 0.857 1.875 0.857 0.219 0.857 0.484 0.857 1.234
〈9, 4, 5, 3〉 4 0.976 9.422 0.976 2.297 0.976 2.234 0.976 4.547
〈9, 4, 5, 3〉 5 1 53.563 1 16.813 1 3.281 1 23.484
〈9, 4, 6, 3〉 2 1 0.156 1 0.000 1 0.125 1 0.375
〈10, 3, 3, 2〉 2 0.367 0.172 0.367 0.016 0.367 0.563 0.367 0.438
〈10, 3, 3, 2〉 3 0.55 1.406 0.55 0.109 0.55 3.750 0.55 3.063
〈10, 3, 3, 2〉 4 0.667 18.078 0.667 0.767 0.667 10.547 0.667 20.578
〈10, 3, 3, 2〉 5 0.767 114.156 0.767 18.781 0.767 79.078 0.767 106.750



104 Chapter 6. Overlapping playing set structures: An approximation approach

Table 6.3 – continued from previous page

Lottery `
Algorithm 6.4 Algorithm 6.5 Algorithm 6.6 Algorithm 6.9
Ψ` Time Ψ` Time Ψ` Time Ψ` Time

〈10, 3, 3, 2〉 6 0.85 543.094 0.85 126.594 0.85 768.281 0.85 803.234
〈10, 3, 3, 2〉 7 0.917 2 808.391 0.917 1 033.578 0.917 1 048.984 0.917 2 914.484
〈10, 3, 3, 2〉 8 1 12 988.734 1 8 444.875 0.967 7 142.938 0.967 24 712.563
〈10, 3, 4, 2〉 2 0.624 0.203 0.624 0.016 0.624 0.094 0.624 0.359
〈10, 3, 4, 2〉 3 0.871 1.359 0.871 0.094 0.871 2.672 0.871 2.828
〈10, 3, 4, 2〉 4 0.957 10.078 0.957 1.953 0.957 28.266 0.957 20.859
〈10, 3, 4, 2〉 5 1 60.984 1 15.578 1 54.234 1 109.063
〈10, 3, 5, 2〉 2 0.833 0.188 0.833 0.000 0.833 0.281 0.833 0.328
〈10, 3, 5, 2〉 3 1 1.547 1 0.109 1 1.750 1 4.172
〈10, 3, 6, 2〉 2 0.957 0.172 0.957 0.000 0.957 0.453 0.957 0.047
〈10, 3, 6, 2〉 3 1 3.328 1 0.094 1 3.328 1 7.031
〈10, 3, 7, 2〉 2 1 0.172 1 0.000 1 0.109 1 0.438
〈10, 4, 3, 2〉 2 0.667 0.188 0.667 0.016 0.667 0.250 0.667 0.188
〈10, 4, 3, 2〉 3 0.867 1.922 0.867 0.188 0.867 0.922 0.867 1.469
〈10, 4, 3, 2〉 4 1 6.766 1 2.641 1 2.391 1 5.250
〈10, 4, 4, 2〉 2 0.924 0.219 0.924 0.016 0.924 0.234 0.924 0.109
〈10, 4, 4, 2〉 3 1 2.656 1 0.234 1 1.359 1 1.031
〈10, 4, 4, 3〉 2 0.238 0.516 0.238 0.016 0.238 0.313 0.238 0.234
〈10, 4, 4, 3〉 3 0.357 3.094 0.357 0.141 0.357 1.016 0.357 1.484
〈10, 4, 4, 3〉 4 0.476 69.484 0.476 4.078 0.476 3.641 0.476 10.984
〈10, 4, 4, 3〉 5 0.595 457.688 0.595 32.453 0.595 7.734 0.595 69.078
〈10, 4, 4, 3〉 6 0.662 1 182.031 0.662 192.188 0.662 25.891 0.662 255.266
〈10, 4, 4, 3〉 7 0.743 3 995.625 0.743 1 320.203 0.729 30.813 0.743 1 324.766
〈10, 4, 4, 3〉 8 0.81 15 223.688 0.81 9 149.922 0.762 167.734 0.81 8 833.672
〈10, 4, 4, 3〉 9 0.862 49 910.156 0.862 73 266.906 0.814 1 692.641 0.862 44 787.828
〈10, 4, 5, 2〉 2 1 0.219 1 0.047 0.964 0.172 1 0.344
〈10, 4, 5, 3〉 2 0.524 0.219 0.524 0.000 0.488 0.172 0.524 0.219
〈10, 4, 5, 3〉 3 0.714 4.641 0.714 0.297 0.714 0.625 0.714 2.375
〈10, 4, 5, 3〉 4 0.833 38.031 0.833 3.203 0.833 3.094 0.833 8.828
〈10, 4, 5, 3〉 5 0.952 319.766 0.952 24.156 0.952 5.625 0.952 45.391
〈10, 4, 5, 3〉 6 0.976 909.313 0.976 159.656 0.964 13.641 0.976 254.188
〈10, 4, 5, 3〉 7 1 2 875.984 1 1 208.156 0.992 34.297 1 1 043.734
〈10, 4, 6, 2〉 2 1 0.500 1 0.016 1 0.203 1 0.188
〈10, 4, 6, 3〉 2 0.829 0.203 0.829 0.000 0.743 0.203 0.829 0.281
〈10, 4, 6, 3〉 3 0.971 2.219 0.971 0.281 0.971 1.047 0.971 0.719
〈10, 4, 6, 3〉 4 1 20.141 1 3.063 1 3.344 1 6.500
〈10, 4, 7, 3〉 2 1 0.172 1 0.016 1 0.172 1 0.188
〈10, 5, 3, 2〉 2 1 0.125 1 0.000 1 0.078 1 0.094
〈10, 5, 4, 2〉 2 1 0.344 1 0.000 1 0.188 1 0.172
〈10, 5, 4, 3〉 2 0.524 0.391 0.524 0.016 0.524 0.078 0.524 0.141
〈10, 5, 4, 3〉 3 0.7 7.938 0.7 0.328 0.7 0.969 0.7 1.438
〈10, 5, 4, 3〉 4 0.876 22.844 0.876 3.438 0.876 1.984 0.876 6.344
〈10, 5, 4, 3〉 5 0.924 146.594 0.924 27.625 0.876 2.953 0.924 39.500
〈10, 5, 4, 3〉 6 0.986 380.781 0.986 166.359 0.938 6.734 0.986 147.656
〈10, 5, 4, 3〉 7 1 3 077.766 1 1 157.031 0.971 45.875 1 1 006.766



6.6. Tabu search applied to larger lotteries 105

Table 6.3 – continued from previous page

Lottery `
Algorithm 6.4 Algorithm 6.5 Algorithm 6.6 Algorithm 6.9
Ψ` Time Ψ` Time Ψ` Time Ψ` Time

〈10, 5, 5, 2〉 2 1 0.578 1 0.000 1 0.250 1 0.125
〈10, 5, 5, 3〉 2 1 0.141 1 0.000 0.857 0.047 1 0.078
〈10, 5, 5, 4〉 2 0.206 0.641 0.206 0.016 0.206 0.125 0.206 0.266
〈10, 5, 5, 4〉 3 0.31 15.750 0.31 0.234 0.31 0.516 0.31 1.953
〈10, 5, 5, 4〉 4 0.413 86.531 0.413 5.141 0.413 1.641 0.413 11.391
〈10, 5, 5, 4〉 5 0.516 593.563 0.516 35.578 0.516 3.578 0.516 57.375
〈10, 5, 5, 4〉 6 0.619 1 641.922 0.619 206.719 0.587 9.250 0.619 261.000
〈10, 5, 5, 4〉 7 0.675 5 019.859 0.675 1 290.531 0.659 42.406 0.675 1 549.859
〈10, 5, 5, 4〉 8 0.746 18 644.688 0.762 9 341.703 0.683 641.734 0.762 8 111.516
〈10, 5, 5, 4〉 9 0.806 76 113.703 0.806 73 801.094 0.73 11 701.578 0.802 36 976.766

6.6 Tabu search applied to larger lotteries

Burger, et al. [5] provided a table of larger lottery instances for which the bounds on L1(m,n, t, k)
could not be improved via the exhaustive enumeration lottery tree solution method. Some of
those lottery instances are considered in this section and the tabu search solution method is
applied to them.

It known that 6 ≤ L1(17, 7, 5, 3) ≤ 7 [5]. When applying the tabu search solution method to
the overlapping playing set structure of the lottery 〈17, 7, 5, 3〉 for 6 tickets, the best resource
utilisation value found is approximately 0.995. Hence the tabu search approach also cannot be
used to decide whether the value of L1(17, 7, 5, 3) is 6 or 7. Similarly, for the lottery 〈18, 9, 6, 4〉,
the best resource utilisation value found for 6 tickets via the tabu search approach is approxi-
mately 0.997 so again the tabu search approach also cannot be used to decide whether the value
of L1(18, 9, 6, 4) is 6 or 7.

However, the tabu search solution method was also applied to the lottery 〈20, 10, 4, 3〉, for which
it was previously known that 6 ≤ L1(20, 10, 4, 3) ≤ 8. For ` = 6, the tabu search yields a resource
utilisation value of 1. This implies that L1(20, 10, 4, 3) = 6. An optimal overlapping playing set

structure is given by the vector ~X
(6)

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0).

6.7 Chapter overview

In this chapter, various approximation algorithms were applied to the problem of distributing
the elements of an overlapping playing set structure amongst its compartments in an attempt
to find an overlapping playing set structure that has a high probability-of-win value associated
with it. Firstly, a method of randomly exploring the solution space was investigated. The results
from this solution method are poor, as expected, because a random search method, although
sometimes useful and quick to deliver results, incorporates no search intelligence. Following
the investigation of the random search method, two local search metaheuristics were presented,
namely a simulated annealing algorithm and a tabu search. As expected, these two methods
perform better than the random search method. Finally, two genetic algorithms were presented
in the hope that they may offer improved performance compared to the local search methods.



106 Chapter 6. Overlapping playing set structures: An approximation approach

From Table 6.3, it may be seen that the classical genetic algorithm (presented in §6.4.1) per-
forms worse in terms of solution quality, compared to the other methods, but it is the least
computationally expensive method. If a local search is incorporated into the genetic algorithm
(as described in §6.4.2), the solution quality of the genetic algorithm improves, but the method
is computationally more expensive. The simulated annealing algorithm (presented in §6.3.2)
performs the worst out of the two local search methods presented in terms of solution quality,
but it is computationally less expensive than the tabu search. The tabu search, presented in
§6.3.3, performs the best out of all the methods presented in this chapter in terms of solution
quality, but is by far the most expensive method computationally. It may therefore be concluded
that if a solution is sought within a short timespan, the genetic algorithm may be applied, while
if a good quality solution is sought, the tabu search method should be used.

Furthermore, the exhaustive enumeration lottery tree method, presented in Chapter 5, is a
good method for finding (optimal) solutions to the incomplete lottery problem and the resource
utilisation problem, but it is also a time consuming method, especially for problem instances
in which the playing set cardinality, `, is greater than 6. For example, consider the lottery
〈10, 4, 5, 3〉 in Table 5.5. To find the value of Ψ6(10, 4, 5, 3) ≈ 0.976, the exhaustive enumeration
lottery tree method takes approximately 3 920.02 seconds, but from Table 6.3, the tabu search
method took approximately 159.656 seconds to find that same value. This indicates that an
approximate approach towards finding solutions to the incomplete lottery problem and the
resource utilisation problem may be an attractive alternative. The reason for this is that there
are many different overlapping playing set structures which possess the same probability-of-win
value, implying that not all regions of the solution space have to be explored, as is done in the
exhaustive enumeration lottery tree method.

Finally, it is shown in §6.6 that the solution methods presented in this chapter are indeed useful,
in the sense that they may sometimes be used to compute previously unknown lottery numbers
exactly, such as L1(20, 10, 4, 3) = 6.



CHAPTER 7

On the expected number of lottery winners

Contents
7.1 A naive analysis of the lottery 〈49, 6, 6, 6〉 . . . . . . . . . . . . . . . . 108

7.1.1 An analytical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1.2 A simulation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 . . . . 110

7.2.1 Popular number choices in the lottery 〈49, 6, 6, k〉 . . . . . . . . . . . . . 110
7.2.2 An analysis of winners assuming popular number choices . . . . . . . . 112
7.2.3 Interpretation of simulation results . . . . . . . . . . . . . . . . . . . . . 115
7.2.4 Expected waiting time between extreme events . . . . . . . . . . . . . . 126

7.3 An analysis of small lottery instances . . . . . . . . . . . . . . . . . . 129

7.4 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

On the 15th of March 2003, there were 33 winners of the jackpot prize in the South African
National Lottery, and on the 7th of February 2009, there were 18 winners of the jackpot prize
[32]. Due to the extreme perceived unlikelihood of these events, independent investigations into
alleged irregularities were called for by members of the public [14, 42]. It is the aim of this
chapter to clarify how unlikely the outcomes of the 15th of March 2003 and 7th of February
2009 lottery draws actually are. The following definition of a so-called Type A ticket is adopted
in the remainder of this chapter.

Type A ticket. A lottery ticket containing numbers which are randomly selected according to
a uniform distribution.

In this chapter, the probability is computed that λ ∈ N participants win a lottery draw in which
the winning government ticket is of type A and all the participants’ tickets are also of type A,
in fulfilment of Thesis Objective V(a). Those same probability values are then recomputed by
means of simulation for validation purposes, in fulfilment of Thesis Objective V(b). Following
that, the probability is computed that λ participants win a lottery draw in which the winning
government ticket is still of type A, while the numbers chosen by some proportion θ ∈ (0, 1]
of participants during the construction of their playing sets are not of type A, but conform to
some pre-defined probability distribution, in fulfilment of Thesis Objective V(c).

This chapter proceeds under two assumptions. The first assumption is that each lottery par-
ticipant selects a playing set of distinct tickets. This assumption implies that if the winning

107



108 Chapter 7. On the expected number of lottery winners

government ticket has k or more numbers in common with x participant tickets, then exactly
x participants share the winnings, because no participant selects the same ticket more than
once. The second assumption is that the winning government ticket is a type A ticket. This
assumption is substantiated by Haigh [18], who concluded that statistical tests show no signifi-
cant evidence that the numbers drawn for a government ticket in the United Kingdom national
lottery are not uniformly random1.

In §7.1 an analysis is conducted of the expected number of winners (of the jackpot prize) in the
lottery 〈49, 6, 6, 6〉 under the naive assumption that the playing sets constructed by participants
contain only type A tickets. Further analysis of the number of winners of the jackpot prize in
the lottery 〈49, 6, 6, 6〉 is conducted in §7.2 under the assumption that numbers chosen by some
proportion θ of participants during their playing set constructions are not chosen uniformly,
but are rather chosen according to some pre-defined statistical distribution. An analysis of
the number of winners in the lottery 〈49, 6, 6, 6〉 naturally inspires §7.3, in which an analysis
is conducted of the number of k-prize winners in draws of smaller lottery instances (i.e. not
necessarily the jackpot).

7.1 A naive analysis of the lottery 〈49, 6, 6, 6〉

In this section, the probability that λ participants win (the jackpot prize) in the lottery
〈49, 6, 6, 6〉 is computed, based on the assumption that all participant tickets are of type A.

7.1.1 An analytical approach

The probability, P (N,λ), of λ successes occurring in a sequence of N identical, independent
binary trials, each with a probability p of success, is

P (N,λ) =
(
N

λ

)
pλ(1− p)N−λ, (7.1)

which is the probability mass function of the binomial distribution [37]. If N participant tickets
are selected independently in the lottery 〈49, 6, 6, 6〉, then P (N,λ) in (7.1) is the probability
that the jackpot is shared by λ participants, where p = 1/

(
49
6

)
. Values of P (N,λ) are presented

for N = 7 500 000 and N = 20 000 000 in Table 7.1. These values of N are motivated by the facts
that in draws in which relatively few participants purchase tickets, approximately N = 7 500 000
tickets are purchased, and in draws in which a relatively large number of participants purchase
tickets approximately N = 20 000 000 tickets are purchased [31].

As the number of participants in a lottery draw increases, it becomes more likely for a larger
number of participants to share a prize. This explains why P (7 500 000, λ) < P (20 000 000, λ)
for λ ≥ 1; if 20 000 000 tickets are purchased in total, it is more likely that one or more
participants share the jackpot prize than in the corresponding case where only 7 500 000 tickets
are purchased.

1The UK lottery is of the form 〈49, 6, 6, k〉, and the process of drawing numbers for the winning government
ticket is the same as the one used in the South African National Lottery, Lotto.



7.1. A naive analysis of the lottery 〈49, 6, 6, 6〉 109

Table 7.1: The probability, computed from (7.1), of λ participants winning in the lottery 〈49, 6, 6, 6〉
in which N = 7 500 000 and N = 20 000 000 type A tickets are selected by participants.

λ P (7.5M,λ) P (20M,λ)
0 5.849× 10−1 2.393× 10−1

1 3.137× 10−1 3.421× 10−1

2 8.412× 10−2 2.447× 10−1

3 1.504× 10−2 1.167× 10−1

4 2.017× 10−3 4.171× 10−2

5 2.163× 10−4 1.193× 10−2

10 3.174× 10−10 2.361× 10−6

15 3.909× 10−17 3.921× 10−11

18 1.232× 10−21 2.343× 10−14

7.1.2 A simulation approach

The values in Table 7.1 may be verified by means of a Monte Carlo simulation approach. In such
a simulation approach the value E(N,λ), which represents the expected number of government
tickets covered2 λ times by the N participant tickets, is computed. The algorithm used for the
simulation is presented in Algorithm 7.1.

Algorithm 7.1: Monte Carlo simulation of lottery draws for the lottery 〈m,n, t, k〉
Data: The total number of tickets purchased N , the lottery parameters m, n, t and k, and

the number of required iterations I.
Result: Approximations of the values E(N,λ) and P (N,λ)
for i = 1; i ≤ I do1

Create a list L, of N participant tickets of size n2

for Each government ticket Gi do3

Si ← the number tickets in L which have at least k numbers in common with Gi4

end5

for Each λ ≥ 0 do6

Wλ = Wλ+ the number of occurrences of λ in the list S = {S1, S2, . . . ,S(mt )
}7

end8

end9

Output E(N,λ) ≈Wλ/I10

Output P (N,λ) ≈Wλ/[I
(
m
t

)
]11

It may be seen from the results in Table 7.1 that the above simulation should run approximately
1/1.232 × 10−21 ≈ 8.118 × 1020 iterations on expectation for N = 7 500 000 (and 1/2.343 ×
10−14 ≈ 4.268× 1013 iterations for N = 20 000 000) in order for an iteration to occur in which
λ = 18 winners are recorded. The values obtained from the simulation for N = 7 500 000 and
N = 20 000 000 appear in Table 7.2 and they correspond satisfactorily to the values in Table
7.1. It may also be seen in Table 7.2 that, in order to obtain results which are correct to three
decimal places for 0 ≤ λ ≤ 10, a thousand simulation iterations is sufficient. The reason for
this is that, after a thousand simulation iterations, the average value of P (N,λ) resembles the
value of P (N,λ) obtained in §7.1.1.

2Recall that a government ticket is covered by a participant ticket if it has k or more numbers in common
with it.



110 Chapter 7. On the expected number of lottery winners

Table 7.2: The value, E(N,λ), which represents the expected number of government tickets covered λ
times by N = 7 500 000 or N = 20 000 000 participant tickets, respectively, and the probability, P (N,λ),
of λ participants winning a draw of the lottery 〈49, 6, 6, 6〉 in which N = 7 500 000 or N = 20 000 000
tickets are purchased by participants, computed by means of Algorithm 7.1.

λ E(7.5M,λ) P (7.5M,λ) λ E(20M,λ) P (20M,λ)
0 8 178 986.561 5.849× 10−1 0 3 345 742.237 2.393× 10−1

1 4 386 647.152 3.137× 10−1 1 4 785 089.710 3.422× 10−1

2 1 176 339.187 8.412× 10−2 2 3 421 808.674 2.447× 10−1

3 210 329.311 1.504× 10−2 3 1 631 406.761 1.167× 10−1

4 28 198.500 2.017× 10−3 4 583 289.045 4.171× 10−2

5 3 022.829 2.162× 10−4 5 166 846.584 1.193× 10−2

10 0.007 5.006× 10−10 10 32.934 2.355× 10−6

15 0 0 15 0.001 7.151× 10−11

18 0 0 18 0 0

Approximately E(N,λ) out of
(

49
6

)
government tickets are covered λ times by the N purchased

tickets, which implies that the probability, P (N,λ), that a randomly selected government ticket
is covered λ times is E(N,λ)/

(
m
t

)
. From Tables 7.1 and 7.2, it may be seen that the probability

of 18 participants sharing the prize in the lottery 〈49, 6, 6, 6〉 is approximately 2.34×10−14 which
is one million times smaller than the probability that a single participant wins the jackpot with
one ticket. Therefore, by analysing the number of jackpot winners in the lottery 〈49, 6, 6, 6〉 in
such a naive way as in this section, it may seem quite valid that members of the public view the
number of jackpot winners in the South African National Lottery draw on the 15th of March
2003 and the 7th of February 2009 suspiciously.

7.2 A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉

It has often been noted that certain number combinations are more popular than others among
lottery players, in which case the assumption that participants select only type A tickets no
longer holds. In this section, the situation is considered in which the numbers chosen by
participants during construction of their playing set tickets are not chosen uniformly, but where
they are rather chosen according to some pre-defined statistical distribution pattern. The aim
of this section is to show that, under this assumption, the value of P (N,λ) is significantly larger
than the values reported in §7.1 under the previous assumption that participants only select
type A tickets, thereby casting some doubt on the legitimacy of calls for an investigation into
irregularities in the South African National Lottery as a result of the events of the 15th of March
2003 and the 7th of February 2009.

7.2.1 Popular number choices in the lottery 〈49, 6, 6, k〉

Popular techniques employed by lottery participants to choose numbers for inclusion in their
tickets include a variety of methods. It has been speculated that many people base their numbers
on special dates, such as birthdays or well-known holidays [45]. For this reason, the numbers
1, . . . , 31 are referred to as calendar numbers. Other participants may attempt to spread the
6 numbers that they include in a lottery ticket as evenly as possible over the physical ticket
that they fill in during a purchase, because they (incorrectly) assume that it better represents



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 111

a random number selection.

Another method of constructing playing sets is to select tickets containing numbers which form
an arithmetic sequence. The number choices in these tickets either arise from a purposeful
selection of an arithmetic sequence by the participant, or by a selection of numbers which form
some sort of geometric pattern on the physical lottery ticket. To understand this, consider Figure
7.1, which shows the physical layout of a ticket on which a participant in the South African
National Lottery, Lotto, indicates his/her number choices. Some participants may decide to
play the numbers in a specific row, column or diagonal. If a participant were to select ticket
numbers in this way, then the participant’s playing ticket numbers form an arithmetic sequence.
For example, if the participant chooses the numbers in the middle column, from the top, the
ticket {3, 8, 13, 18, 23, 28} results. This is an arithmetic sequence in which the difference between
any two successive numbers is exactly 5.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49

Figure 7.1: Physical layout of a lottery ticket for the South African National Lottery, Lotto, which is
of the form 〈49, 6, 6, k〉, where 3 ≤ k ≤ 6.

Based on the above observations about popular number choices by lottery participants, the
following definitions are adopted in the remainder of this chapter:

Type B(κ) ticket. A lottery ticket in which the difference between any two numbers is no less
than κ.

Type C(κ) ticket. A lottery ticket containing κ calendar numbers and in which the remaining
numbers are non-calendar numbers.

Participants often select type B(κ) tickets in a bid to spread the numbers in their tickets over the
spectrum {1, . . . , 49} as much as possible. Tickets of this form arise when a participant plays the
numbers in a diagonal of the ticket, together with another number, such as {15, 19, 23, 27, 31, 49},
which is a type B(4) ticket.

In order to count the number of type B(κ) tickets in the lottery 〈49, 6, 6, k〉, consider the ordered
set containing the numbers 1 to 49. This set may be partitioned into 13 ordered subsets, namely
C1, T1, C2, T2, C3, T3, C4, T4, C5, T5, C6, T6, C7, where each subset Ti has cardinality 1 and
represents the ith number in the type B(κ) ticket. The cardinality of each subset Ci is at least
κ − 1, for 2 ≤ i ≤ 6 (no such restriction is imposed on C1 and C7), and each number in Ci is
less than the number in Tj , for all 1 ≤ i ≤ j ≤ 6. Furthermore, each number in Ci is greater
than the number in Ti−1, for all 2 ≤ i ≤ 7. The number of ways in which to partition the set
of 49 numbers thus equals the number of ways in which 49− [6 + 5× (κ− 1)] indistinguishable
balls may be placed into 7 distinguishable urns. Here, the balls represent numbers and the urns



112 Chapter 7. On the expected number of lottery winners

represent the sets C1, . . . , C7. To compute this number, consider Figure 7.2 in which C1, . . . , C7

represent the seven urns into which the balls must be placed. If exactly κ− 1 balls are initially
placed into urns C2 to C6, 49− [6 + 5× (κ− 1)] balls remain to be placed inside urns C1, . . . , C7

in any order. There are
(
q+p−1
p

)
ways in which p indistinguishable balls may be placed into q

distinguishable urns [21]. Taking p = 49− [6 + 5× (κ− 1)] and q = 7, it therefore follows that
there are

(
54−5κ
48−5κ

)
distinct ways in which a type B(κ) ticket may be selected.

C3 C4 C5 C6 C7C2C1

Figure 7.2: Six balls (represented by the black dots) and seven urns C1, . . . , C7 which in total contain
43 = (49− 6) balls, under the condition that C2, . . . , C6 each contains at least κ− 1 balls.

Finally, there are
(

31
κ

)
×
(

49−31
6−κ

)
distinct ways in which a lottery participant may select a type

C(κ) ticket.

Table 7.3 contains the number of B(κ) and C(κ) tickets in the lottery 〈49, 6, 6, k〉 for 1 ≤ κ ≤ 10.

Table 7.3: The number,
(
54−5κ
48−5κ

)
, of distinct type B(κ) tickets, and the number,

(
31
κ

)(
18

6−κ
)
, of distinct

type C(κ) tickets in the lottery 〈49, 6, 6, k〉.

κ
Type B(κ) Type C(κ)

tickets tickets
1 13 983 816 265 608
2 7 059 052 1 422 900
3 3 262 623 3 667 920
4 1 344 904 4 814 145
5 475 020 3 058 398
6 134 596 736 281
7 27 132 0
8 3 003 0
9 84 0

10 0 0

7.2.2 An analysis of winners assuming popular number choices

One of the most intuitive participant number choices to investigate is the case where a certain
proportion of participants purchase type B(κ) tickets. The winning ticket from the draw which
took place on the 7th of February 2009 was of the form {3, 13, 17, 28, 37, 49}. In this ticket, the
smallest difference between any two numbers is 4. Therefore, a simulation was conducted under
the assumption that at least a proportion θ of the tickets purchased are constructed as type B(4)
tickets (while the remaining tickets are of type A). There are

(
54−5×4
48−5×4

)
=
(

34
28

)
= 1 344 904 type

B(4) tickets. During each iteration of the simulation, a proportion, θ, of the selected participant
tickets comprise a uniform selection from these 1 344 904 type B(4) tickets, and the remaining
participant tickets comprise a uniform selection of type A tickets. This implies then, that at
least a proportion θ of the tickets purchased by participants in a lottery draw consists of type
B(4) tickets. A sensitivity analysis was conducted by varying the value of θ so as to establish
which values of θ resulted in realistic values for E(N, 18). A realistic value for E(N, 18) would
be one from which it may be deduced that once every few years (say 10) the case where 18
participants share the lottery prize is expected. The results obtained in this sensitivity analysis
are shown in Tables 7.4–7.7.



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 113

Table 7.4: The expected number of government tickets covered λ times, E(7.5M,λ), where it is assumed
that a certain proportion, θ, of participants select type B(4) tickets in the lottery 〈49, 6, 6, 6〉 and where
the remaining proportion 1 − θ of participants select type A tickets, if a total of 7 500 000 tickets are
selected. Results computed via Algorithm 7.1.

E(7.5M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 8 179 037.160 9 071 921.059 9 964 207.330
λ = 1 4 386 555.697 3 515 090.902 2 644 007.257
λ = 2 1 176 379.263 956 930.983 737 558.133
λ = 3 210 324.210 197 641.628 185 204.247
λ = 4 28 202.331 63 589.947 99 084.086
λ = 5 3 024.103 48 175.372 93 336.893
λ = 10 0.006 8 161.263 16 314.057
λ = 15 0.000 122.420 244.819
λ = 18 0.000 4.367 8.607
E(7.5M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 10 858 070.290 11 750 609.396 12 644 001.130
λ = 1 1 771 636.512 900 449.567 28 396.219
λ = 2 518 009.930 298 496.325 79 160.603
λ = 3 172 413.394 159 837.730 147 141.277
λ = 4 134 365.872 169 843.604 205 148.631
λ = 5 138 494.732 183 692.651 228 819.865
λ = 10 24 478.928 32 637.092 40 813.944
λ = 15 366.736 486.947 609.882
λ = 18 12.836 17.195 21.663

Table 7.5: The probability, P (7.5M,λ), of λ participants winning the jackpot prize in the lottery
〈49, 6, 6, 6〉 where it is assumed that a certain proportion, θ, of participants select type B(4) tickets and
where the remaining proportion 1− θ of participants select type A tickets, if a total of 7 500 000 tickets
are selected. Results computed via Algorithm 7.1.

P (7.5M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 5.849× 10−1 6.487× 10−1 7.126× 10−1

λ = 1 3.137× 10−1 2.514× 10−1 1.891× 10−1

λ = 2 8.412× 10−2 6.843× 10−2 5.274× 10−2

λ = 3 1.504× 10−2 1.413× 10−2 1.324× 10−2

λ = 4 2.017× 10−3 4.547× 10−3 7.086× 10−3

λ = 5 2.163× 10−4 3.445× 10−3 6.675× 10−3

λ = 10 4.291× 10−10 5.836× 10−4 1.166× 10−3

λ = 15 0 8.754× 10−6 1.751× 10−5

λ = 18 0 3.123× 10−7 6.155× 10−7

P (7.5M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 7.765× 10−1 8.403× 10−1 9.042× 10−1

λ = 1 1.267× 10−1 6.439× 10−2 2.031× 10−3

λ = 2 3.704× 10−2 2.135× 10−2 5.661× 10−3

λ = 3 1.233× 10−2 1.143× 10−2 1.052× 10−2

λ = 4 9.609× 10−3 1.215× 10−2 1.467× 10−2

λ = 5 9.904× 10−3 1.314× 10−2 1.636× 10−2

λ = 10 1.751× 10−3 2.334× 10−3 2.919× 10−3

λ = 15 2.623× 10−5 3.482× 10−5 4.361× 10−5

λ = 18 9.179× 10−7 1.230× 10−6 1.549× 10−6



114 Chapter 7. On the expected number of lottery winners

Table 7.6: The expected number of government tickets covered λ times, E(20M,λ), where it is assumed
that a certain proportion, θ, of participants select type B(4) tickets in the lottery 〈49, 6, 6, 6〉 and where
the remaining proportion 1 − θ of participants select type A tickets, if a total of 20 000 000 tickets are
selected. Results computed via Algorithm 7.1.

E(20M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 3 345 743.519 5 204 399.123 7 057 888.958
λ = 1 4 785090.071 3 828 019.761 2 876 274.307
λ = 2 3 421 836.583 2 737 512.513 2 053 018.346
λ = 3 1 631 336.593 1 305 128.650 977 866.419
λ = 4 583 325.571 466 836.077 350 112.849
λ = 5 166 855.802 134 063.104 101 542.400
λ = 10 32.958 13 671.408 27 490.540
λ = 15 0.000 27 539.397 54 917.059
λ = 18 0.000 18 494.808 36 879.270
E(20M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 8 918 020.819 10 778 985.129 12 638 912.472
λ = 1 1 918 460.625 958 783.941 6.873
λ = 2 1 368 360.499 684 094.673 51.378
λ = 3 651 877.667 326 201.717 256.015
λ = 4 233 522.385 117 329.149 955.162
λ = 5 68 436.833 35 622.695 2 836.785
λ = 10 41 192.074 54 665.176 68 229.095
λ = 15 82 528.460 110 141.552 137 690.007
λ = 18 55 396.733 73 954.836 92 500.876

Table 7.7: The probability, P (20M,λ), of λ participants winning the jackpot prize in the lottery
〈49, 6, 6, 6〉 where it is assumed that a certain proportion, θ, of participants purchase type B(4) tickets
and where the remaining proportion 1 − θ of participants select type A tickets, if a total of 20 000 000
tickets are selected. Results computed via Algorithm 7.1.

P (20M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 2.393× 10−1 3.722× 10−1 5.047× 10−1

λ = 1 3.422× 10−1 2.737× 10−1 2.057× 10−1

λ = 2 2.447× 10−1 1.958× 10−1 1.468× 10−1

λ = 3 1.167× 10−1 9.333× 10−2 6.993× 10−2

λ = 4 4.171× 10−2 3.338× 10−2 2.504× 10−2

λ = 5 1.193× 10−2 9.587× 10−3 7.261× 10−3

λ = 10 2.357× 10−6 9.777× 10−4 1.966× 10−3

λ = 15 0 1.969× 10−3 3.928× 10−3

λ = 18 0 1.326× 10−3 2.637× 10−3

P (20M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 6.378× 10−1 7.708× 10−1 9.038× 10−1

λ = 1 1.371× 10−1 6.856× 10−2 4.915× 10−7

λ = 2 9.785× 10−2 4.892× 10−2 3.674× 10−6

λ = 3 4.662× 10−2 2.333× 10−2 1.831× 10−5

λ = 4 1.670× 10−2 8.390× 10−3 6.830× 10−5

λ = 5 4.894× 10−3 2.547× 10−3 2.029× 10−4

λ = 10 2.946× 10−3 3.909× 10−3 4.879× 10−3

λ = 15 5.902× 10−3 7.876× 10−3 9.846× 10−3

λ = 18 3.961× 10−3 5.289× 10−3 6.615× 10−3



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 115

A sensitivity analysis was also conducted with respect to the proportion θ of participants who
select tickets which contain calendar numbers. The winning ticket on the 7th of February 2009,
{3, 13, 17, 28, 37, 49}, contains four calendar numbers. Out of the

(
49
6

)
possible tickets from

which the participant may choose, there are
(

31
4

)
×
(

49−31
2

)
= 4 814 145 distinct type C(4) tickets.

Table 7.9 contains estimates of the values of P (7.5M,λ), and Table 7.10 contains estimates of
the values of P (20M,λ). Tables containing approximations of E(7.5M,λ) and E(20M,λ) are
omitted for the sake of brevity.

The following definition is also adopted in the remainder of this chapter.

Type D(κ, c) ticket. A lottery ticket in which the difference between any two numbers is no
less than κ, and exactly c of the numbers are calendar numbers.

The winning ticket in the South African National Lottery draw of the 7th of February 2009 (i.e.
{3, 13, 17, 28, 37, 49}) is a type D(4, 4) ticket. From Table 7.8, there are 671 859 distinct type
D(4, 4) tickets.

A simulation was finally conducted under the assumption that at least a proportion θ of the
tickets purchased are type D(4, 4) tickets for lottery draws in which 7 500 000 or 20 000 000
tickets are purchased in total. Table 7.11 contains estimates of the the values of P (7.5M,λ),
while Table 7.12 contains estimates of the the values of P (20M,λ).

The number of distinct type D(κ, c) tickets in the lottery 〈49, 6, 6, k〉 may be computed via a
direct counting approach [15], yielding

D(κ, c) =
(

31− (c− 1)(κ− 1)− (κ− 1)
c

)(
18− (n− c− 1)(κ− 1)

n− c

)
+
κ−1∑
i=1

(
31− (c− 2)(κ− 1)− (κ− 1 + i)

c− 1

)(
18− (n− c− 1)(κ− 1)− (κ− 1)

n− c

)

which, for n=6, simplifies to

D(κ, c) =
(

31 + c− cκ)
c

)(
23 + c(κ− 1)− 5κ

6− c

)
+
κ−1∑
i=1

(
30 + c− i+ κ− cκ

c− 1

)(
23 + i+ c(κ− 1)− 6κ

6− c

)
. (7.2)

7.2.3 Interpretation of simulation results

In this section, the results in Tables 7.1–7.12 are analysed. Consider the bipartite lottery graph
G〈m,n, t, k〉, with

(
m
t

)
government tickets (each of degree r) and

(
m
n

)
participant tickets (of

which s are special tickets3) as its vertices. In any given draw a government ticket which is
chosen as the winning ticket is covered by u ∈ {u1, u2, . . . , uz} special tickets. Let wj be the
number of government tickets which are covered by uj (1 ≤ j ≤ z) special participant tickets.
Assume that at least a proportion θ of the N tickets purchased in total are special tickets.
Hence the expected number of times that each special ticket is played is

θN

s
+
N − θN(

m
n

) ,

3A special ticket is defined as either a type A, B(κ), C(κ) or D(κ, c) ticket.



116 Chapter 7. On the expected number of lottery winners

Table 7.8: The number of distinct type D(κ, c) tickets in the lottery 〈49, 6, 6, k〉, computed via (7.2).

c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6
κ = 1 18 564 265 608 1 422 900 3 667 920 4 814 145 3 058 398 736 281
κ = 2 1 716 61 347 583 219 2 006 550 2 737 800 1 438 190 230 230
κ = 3 28 7 490 188 535 994 500 1 432 739 585 067 54 264
κ = 4 0 169 40 865 430 459 671 859 193 544 8 008
κ = 5 0 0 3 934 153 254 270 782 46 585 462
κ = 6 0 0 0 40 684 87 444 6 467 1
κ = 7 0 0 0 6 969 19 904 259 0
κ = 8 0 0 0 525 2 478 0 0
κ = 9 0 0 0 0 84 0 0
κ = 10 0 0 0 0 0 0 0

Table 7.9: The probability, P (7.5M,λ), of λ participants winning the jackpot prize where it is assumed
that a certain proportion, θ, of participants purchase type C(4) tickets in the lottery 〈49, 6, 6, 6〉 and
where the remaining proportion 1− θ of participants select type A tickets, if a total of 7 500 000 tickets
are selected. Results computed via Algorithm 7.1.

P (7.5M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 5.845× 10−1 6.136× 10−1 6.422× 10−1

λ = 1 3.137× 10−1 2.735× 10−1 2.334× 10−1

λ = 2 8.412× 10−2 8.490× 10−2 8.566× 10−2

λ = 3 1.504× 10−2 2.117× 10−2 2.730× 10−2

λ = 4 2.017× 10−3 5.170× 10−3 8.327× 10−3

λ = 5 2.163× 10−4 1.282× 10−3 2.348× 10−3

λ = 10 4.291× 10−10 3.350× 10−7 6.786× 10−7

λ = 15 0 0 7.151× 10−11

λ = 18 0 0 0
P (7.5M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 6.709× 10−1 6.995× 10−1 7.282× 10−1

λ = 1 1.933× 10−1 1.532× 10−1 1.129× 10−1

λ = 2 8.643× 10−2 8.720× 10−2 8.798× 10−2

λ = 3 3.342× 10−2 3.955× 10−2 4.568× 10−2

λ = 4 1.148× 10−2 1.463× 10−2 1.779× 10−2

λ = 5 3.412× 10−3 4.476× 10−3 5.544× 10−3

λ = 10 1.006× 10−6 1.337× 10−6 1.694× 10−6

λ = 15 0 0 7.151× 10−11

λ = 18 0 0 0

while the expected number of times that each non-special ticket will be played is

N − θN(
m
n

) .

If a winning ticket is selected which is covered by u special tickets, it is expected that there will
be

u

(
θN

s
+
N − θN(

m
n

) )
+ (r − u)

(
N − θN(

m
n

) )
=
uθN

s
+
r(N − θN)(

m
n

) (7.3)



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 117

winners. The probability that a winning government ticket is selected which is covered by
u = uj special tickets equals wj/

(
m
t

)
. Therefore, the expected number of winners in a lottery

draw is

z∑
j=1

wj(
m
t

) (ujθN
s

+
r(N − θN)(

m
n

) )
. (7.4)

The case of type A tickets only

If it is assumed that each participant constructs only type A tickets, Tables 7.1 and 7.2 are
applicable. From these tables it may be seen that if 7 500 000 tickets are purchased in total,
there is a 1.232 × 10−21 probability of eighteen participants winning the lottery. However, if
20 000 000 tickets are purchased in total, this probability rises to 2.343× 10−14.

If 7 500 000 tickets are purchased in a draw of the lottery 〈49, 6, 6, 6〉, the expected number
of winners per draw, (7.4), is equal to 7 500 000/

(
49
6

)
≈ 0.536. Therefore, in this case, the

highest value of P (7.5M,λ) should occur where λ ≈ 0.536 and the value of P (7.5M,λ) should
decrease as λ increases, depending on the value of (7.3). Likewise, if 20 000 000 tickets were to
be purchased, the expected number of winners per draw would rise to 20 000 000/

(
49
6

)
≈ 1.430.

Therefore, in this case, the highest value of P (20M,λ) should occur where λ ≈ 1.430 and
the value of P (20M,λ) should decrease as the difference between λ and 1.430 increases. These
expected growth patterns of P (7.5M,λ) and P (20M,λ) as a function of λ may be seen in Figure
7.3, which is a plot of the results of Table 7.1.
Table 7.10: The probability, P (20M,λ) of λ participants winning the jackpot prize in the lottery
〈49, 6, 6, 6〉 where it is assumed that a certain proportion, θ, of participants purchase type C(4) tickets
and where the remaining proportion 1 − θ of participants select type A tickets, if a total of 20 000 000
tickets are selected. Results computed via Algorithm 7.1.

P (20M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 2.393× 10−1 3.236× 10−1 4.080× 10−1

λ = 1 3.422× 10−1 2.783× 10−1 2.143× 10−1

λ = 2 2.447× 10−1 2.051× 10−1 1.655× 10−1

λ = 3 1.167× 10−1 1.062× 10−1 9.582× 10−2

λ = 4 4.171× 10−2 4.678× 10−2 5.185× 10−2

λ = 5 1.193× 10−2 2.068× 10−2 2.945× 10−2

λ = 10 2.356× 10−6 4.574× 10−4 9.138× 10−4

λ = 15 0 1.572× 10−6 3.136× 10−6

λ = 18 0 2.074× 10−8 4.562× 10−8

P (20M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 4.923× 10−1 5.768× 10−1 6.611× 10−1

λ = 1 1.505× 10−1 8.640× 10−2 2.245× 10−2

λ = 2 1.259× 10−1 8.624× 10−2 4.663× 10−2

λ = 3 8.541× 10−2 7.499× 10−2 6.457× 10−2

λ = 4 5.692× 10−2 6.120× 10−2 6.706× 10−2

λ = 5 3.820× 10−2 4.696× 10−2 5.572× 10−2

λ = 10 1.368× 10−3 1.825× 10−3 2.281× 10−3

λ = 15 4.690× 10−6 6.314× 10−6 7.796× 10−6

λ = 18 6.829× 10−8 9.382× 10−8 1.1770× 10−7



118 Chapter 7. On the expected number of lottery winners

Table 7.11: The probability, P (7.5M,λ), of λ participants winning the jackpot prize where it is assumed
that a certain proportion, θ, of participants purchase type D(4, 4) tickets in the lottery 〈49, 6, 6, 6〉 and
where the remaining proportion 1− θ of participants select type A tickets, if a total of 7 500 000 tickets
are selected. Results computed via Algorithm 7.1.

P (7.5M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 5.849× 10−1 6.583× 10−1 7.316× 10−1

λ = 1 3.137× 10−1 2.510× 10−1 1.883× 10−1

λ = 2 8.412× 10−2 6.730× 10−2 5.047× 10−2

λ = 3 1.504× 10−2 1.206× 10−2 9.091× 10−3

λ = 4 2.017× 10−3 1.701× 10−3 1.402× 10−3

λ = 5 2.166× 10−4 3.698× 10−4 5.396× 10−4

λ = 10 2.145× 10−10 1.129× 10−3 2.255× 10−3

λ = 15 0 5.432× 10−4 1.084× 10−3

λ = 18 0 1.543× 10−4 3.076× 10−4

P (7.5M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 8.051× 10−1 8.785× 10−1 9.520× 10−1

λ = 1 1.255× 10−1 6.274× 10−2 7.626× 10−6

λ = 2 3.368× 10−2 1.686× 10−2 4.248× 10−5

λ = 3 6.111× 10−3 3.135× 10−3 1.580× 10−4

λ = 4 1.071× 10−3 7.565× 10−4 4.409× 10−4

λ = 5 6.774× 10−4 8.307× 10−4 9.849× 10−4

λ = 10 3.387× 10−3 4.514× 10−3 5.645× 10−3

λ = 15 1.630× 10−3 2.173× 10−3 2.715× 10−3

λ = 18 4.629× 10−4 6.170× 10−4 7.715× 10−4

Table 7.12: The probability, P (20M,λ), of λ participants winning the jackpot prize in the lottery
〈49, 6, 6, 6〉 where it is assumed that a certain proportion, θ, of participants purchase type D(4, 4) tickets
and where the remaining proportion 1 − θ of participants select type A tickets, if a total of 20 000 000
tickets are selected. Results computed via Algorithm 7.1.

P (20M,λ) θ = 0% θ = 20% θ = 40%
λ = 0 2.392× 10−1 3.818× 10−1 5.243× 10−1

λ = 1 3.421× 10−1 2.738× 10−1 2.053× 10−1

λ = 2 2.447× 10−1 1.958× 10−1 1.468× 10−1

λ = 3 1.167× 10−1 9.333× 10−2 7.000× 10−2

λ = 4 4.171× 10−2 3.337× 10−2 2.503× 10−2

λ = 5 1.193× 10−2 9.545× 10−3 7.158× 10−3

λ = 10 2.372× 10−6 2.064× 10−6 1.759× 10−6

λ = 15 0 1.105× 10−5 2.211× 10−5

λ = 18 0 5.968× 10−5 1.194× 10−4

P (20M,λ) θ = 60% θ = 80% θ = 100%
λ = 0 6.669× 10−1 8.094× 10−1 9.520× 10−1

λ = 1 1.369× 10−1 6.844× 10−2 0
λ = 2 9.788× 10−2 4.894× 10−2 0
λ = 3 4.666× 10−2 2.333× 10−2 0
λ = 4 1.669× 10−2 8.344× 10−3 2.145× 10−10

λ = 5 4.774× 10−3 2.386× 10−3 1.073× 10−9

λ = 10 1.468× 10−6 1.166× 10−6 8.548× 10−7

λ = 15 3.327× 10−5 4.441× 10−5 5.543× 10−5

λ = 18 1.789× 10−4 2.388× 10−4 2.984× 10−4



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 119
P

(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

(a) N = 7 500 000

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4

λ
8 106

(b) N = 20 000 000

Figure 7.3: Graphs of P (7.5M,λ) and P (20M,λ) as a function of the number of winners in the lottery
〈49, 6, 6, 6〉 under the assumption that participants purchase type A tickets.

The case of type A and type B(4) tickets

Tables 7.4 and 7.5 contain the values of E(7.5M,λ) and P (7.5M,λ), respectively, for the case
in which at least a proportion θ of the tickets purchased by participants are of type B(4). The
winning government ticket may either be covered by a single type B(4) participant ticket (which
implies that, on expectation, there will be

7 500 000θ
1 344 904

+
7 500 000(1− θ)(

49
6

)
winners), or a single participant ticket which is not of type B(4) (which implies that, on expec-
tation, there will be

7 500 000(1− θ)(
49
6

)
winners). Table 7.13 contains these values for different values of θ, and Figure 7.6 illustrates the
growth patterns inherent to the values in Table 7.13. The values in Table 7.5 are expected to be
distributed around the value in (7.4), taking the possible values of (7.3) into consideration. For
example, for the value of θ = 40%, the largest values of P (7.5M,λ) appear where λ ≈ 0.536,
and they start to decrease rapidly for λ ≥ 2.552, the expected maximum number of winners
from Table 7.13. Of course, values appear for λ > 2.552 because that value is only the expected
maximum number of winners. For example, if 7 500 000 tickets are purchased in total, it is
expected that a type B(4) ticket will be purchased approximately 2.552 times on average.
However, it may occur that one specific type B(4) ticket is purchased many more times than
another one. If a winning government ticket is selected which is covered by that type B(4)
ticket, there may be significantly more winners than expected, which could distort the results
somewhat. The growth patterns of P (7.5M,λ) as a function of λ may be seen in Figure 7.4,
which is a plot of the results of Table 7.5.

A similar analysis may be conducted in order to explain the nature of the values in Tables 7.6
and 7.7. For example, consider the case where θ = 80%. From Table 7.14, it may be seen
that the expected number of winners is 1.430, but the maximum expected number of winners is
12.183 and the minimum expected number of winners is 0.286. Therefore, with a probability of
0.904, there will be approximately 0.286 winners, and with a probability of 0.096 there will be



120 Chapter 7. On the expected number of lottery winners

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

(a) θ = 0

1

P
(7
.5
M
,λ

) 0.8

0.4

0.2

0

0.6

0 1 2 3 4 5 6
λ

(b) θ = 20%

1

P
(7
.5
M
,λ

) 0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7

λ

(c) θ = 40%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12

λ

(d) θ = 60%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 1210

λ

(e) θ = 80%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14

λ

(f) θ = 100%

Figure 7.4: P (7.5M,λ) as a function of the number, λ, of winners of the lottery 〈49, 6, 6, 6〉. From
the results in Table 7.5, under the assumption that a certain proportion, θ, of participants purchase
type B(4) tickets and the remaining proportion, 1− θ, of participants select type A tickets, if a total of
7 500 000 tickets are selected.



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 121
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(a) θ = 0
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4

λ
6 8 10

(b) θ = 20%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14 16 18

λ

(c) θ = 40%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 181614

λ

(d) θ = 60%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14 1816

λ

(e) θ = 80%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 86 10 12 14 16 18

λ

(f) θ = 100%

Figure 7.5: P (20M,λ) as a function of the number, λ, of winners of the lottery 〈49, 6, 6, 6〉. From
the results in Table 7.7, under the assumption that a certain proportion, θ, of participants purchase
type B(4) tickets and the remaining proportion, 1− θ, of participants select type A tickets, if a total of
20 000 000 tickets are selected.



122 Chapter 7. On the expected number of lottery winners

Table 7.13: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed
that at least a proportion θ of the N = 7 500 000 participant tickets played are of type B(4). The bottom
row of the table contains the values from (7.4). The rightmost column contains the probability that a
government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 0.536 0.429 0.322 0.215 0.107 0 0.904
1 0.536 1.544 2.552 3.560 4.569 5.577 0.096

0.536 0.536 0.536 0.536 0.536 0.536

θ

λ

u 1008060402001

0
1

3

5

Figure 7.6: The number of winners λ as a function of the values of u and θ for the lottery 〈49, 6, 6, 6〉 in
the situation where a proportion θ of a total of 7 500 000 tickets purchased are tickets of type B(4). Here,
u denotes the number of special participant tickets which may cover the winning government ticket.

approximately 12.183 winners which explains the increase in the value of P (20M,λ) for values
of λ close to 12.183. As another example, consider the case where θ = 100%. In this case,
if a winning government ticket is purchased which is not covered by a type B(4) participant
ticket, there will be no winners because only type B(4) tickets are played. Because there is
approximately a (

(
49
6

)
−1 344 904)/

(
49
6

)
= 0.904 probability of this occurring, P (20M, 0) ≈ 0.904.

There is a probability of approximately 0.096 that approximately 14.871 participants will share
the winnings. Therefore, the value of P (20M,λ) will be relatively high near λ = 14.871, as may
be seen in Figure 7.16. The growth pattern of P (20M,λ) as a function of λ may be seen in
Figure 7.5, which is a plot of the results of Table 7.7.

Table 7.14: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed that
at least a proportion θ of the N = 20 000 000 participant tickets played are of type B(4). The bottom
row of the table contains the values from (7.4). The rightmost column contains the probability that a
government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 1.430 1.144 0.858 0.572 0.286 0 0.904
1 1.430 4.118 6.807 9.495 12.183 14.871 0.096

1.430 1.430 1.430 1.430 1.430 1.430

The case of type A and type C(4) tickets

Alternatively, assume that a certain proportion of participants in a lottery draw purchase type
C(4) tickets. If N = 7 500 000 and it is assumed that θ = 80%, it follows by Table 7.15 that the



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 123

λ

θ

u

14
10
6
2
0

1 0 20 40 60 80 100

Figure 7.7: The number of winners λ as a function of the values of u and θ for the lottery 〈49, 6, 6, 6〉
in the situation where a proportion θ of a total of 20 000 000 tickets purchased are tickets of type B(4).
Here, u denotes the number of special participant tickets which may cover the winning government ticket.

expected number of winners of the jackpot is 0.536, the expected minimum number of winners
in a draw is 0.107, and the expected maximum number of winners is 1.354. This explains why
the values of P (7.5M,λ) steadily decrease from λ = 0. In the case where 20 000 000 tickets
are purchased, if θ = 20%, and if a winning government ticket is chosen which is not covered
by a participant ticket of type C(4) it is expected that there will be 1.144 winners. With a
probability of 0.656, a government ticket is selected which is not covered by a participant ticket
of type C(4), which explains the relatively high value of P (20M, 0) = 6.136× 10−1. Due to the
value of the expected number of winners, and the expected minimum and maximum number of
winners being very close to each other, the value of P (20M,λ) decreases as λ increases, for all
values of λ ≥ 1.975. The growth patterns of P (7.5M,λ) and P (20M,λ) as functions of λ may
be seen in Figures 7.8 and 7.9, which are plots of the results of Tables 7.9 and 7.10.

Table 7.15: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed
that at least a proportion θ of the N = 7 500 000 participant tickets played are of type C(4). The bottom
row of the table contains the values from (7.4). The rightmost column contains the probability that a
government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 0.536 0.429 0.322 0.215 0.107 0 0.656
1 0.536 0.741 0.945 1.149 1.354 1.558 0.344

0.536 0.536 0.536 0.536 0.536 0.536

Table 7.16: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed that
at least a proportion θ of the N = 20 000 000 participant tickets played are of type C(4). The bottom
row of the table contains the values from (7.4). The rightmost column contains the probability that a
government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 1.430 1.144 0.858 0.572 0.286 0 0.656
1 1.430 1.975 2.520 3.065 3.610 4.154 0.344

1.430 1.430 1.430 1.430 1.430 1.430



124 Chapter 7. On the expected number of lottery winners

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

P
(7
.5
M
,λ

)

(a) θ = 0

λ
6543210

0

0.2

0.4

0.6

0.8

1

P
(7
.5
M
,λ

)
(b) θ = 20%

0.2

0.4

0.6

0.8

1

0
0 1 2 3 4 5 6

λ

P
(7
.5
M
,λ

)

(c) θ = 40%

0.8

1

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

P
(7
.5
M
,λ

)

(d) θ = 60%

0.6

0.8

1

0.4

0.2

0
0 1 2 3 4 5 6

λ

P
(7
.5
M
,λ

)

(e) θ = 80%

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8

λ

P
(7
.5
M
,λ

)

(f) θ = 100%

Figure 7.8: P (7.5M,λ) as a function of the number, λ, of winners of the lottery 〈49, 6, 6, 6〉. From the
results in Table 7.9 under the assumption that a certain proportion, θ, of participants purchase type C(4)
tickets and the remaining proportion, 1 − θ, of participants select type A tickets, if a total of 7 500 000
tickets are selected.



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 125
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(a) θ = 0
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(b) θ = 20%

P
(2

0M
,λ

) 0.8

1

0.6

0.4

0.2

0
4 6 8 1020

λ

(c) θ = 40%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(d) θ = 60%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 108

λ

(e) θ = 80%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2

λ
4 6 8 10

(f) θ = 100%

Figure 7.9: P (20M,λ) as a function of the number, λ, of winners of the lottery 〈49, 6, 6, 6〉. From
the results in Table 7.10 under the assumption that a certain proportion, θ, of participants purchase
type C(4) tickets and the remaining proportion, 1− θ, of participants select type A tickets, if a total of
20 000 000 tickets are selected.



126 Chapter 7. On the expected number of lottery winners

Table 7.17: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed
that at least a proportion θ of the N = 7 500 000 participant tickets played are of type D(4, 4). The
bottom row of the table contains the values from (7.4). The rightmost column contains the probability
that a government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 0.536 0.429 0.322 0.215 0.107 0 0.952
1 0.536 2.662 4.787 6.912 9.038 11.163 0.048

0.536 0.536 0.536 0.536 0.536 0.536

Table 7.18: The expected number of winners in (7.3) for a draw of the lottery 〈49, 6, 6, 6〉 if a winning
government ticket is selected which is covered by u = uj special participant tickets and it is assumed
that at least a proportion θ of the N = 20 000 000 participant tickets played are of type D(4, 4). The
bottom row of the table contains the values from (7.4). The rightmost column contains the probability
that a government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
0 1.430 1.144 0.858 0.572 0.286 0 0.952
1 1.430 7.098 12.765 18.433 24.101 29.768 0.048

1.430 1.430 1.430 1.430 1.430 1.430

The case of type A and type D(4, 4) tickets

In Tables 7.11 and 7.12, values of P (N,λ) appear for the case in which a certain proportion θ
of the tickets purchased by participants are type D(4, 4). The nature of the values in Tables
7.11 and 7.12 may be explained by examining the entries in Tables 7.17 and 7.18. For example,
if N = 7 500 000 tickets are purchased and it is assumed that θ = 60, it may be seen from
Table 7.17 that the expected number of winners is 0.536, the expected maximum number of
winners is 6.912 and the expected minimum number of winners is 0.215. The probability
of approximately 0.536 participants winning is 0.952. This implies that it is likely that a
small number of participants may win simultaneously, which is substantiated by the values of
P (7.5M, 0) and P (7.5M, 1) because P (7.5M, 0) +P (7.5M, 1) ≈ 0.930. The value of P (7.5M,λ)
should decrease as λ increases for λ ≥ 0.215. However, a steady decrease may only occur for
values of λ ≥ 6.912. The growth patterns of P (7.5M,λ) and P (20M,λ) as functions of λ may
be seen in Figures 7.10 and 7.11, which are plots of the results of Tables 7.11 and 7.12.

7.2.4 Expected waiting time between extreme events

In this section, the results of the previous sections are used to establish the expected waiting
time between two successive events of at least 18 participants having to share the jackpot in
the lottery 〈49, 6, 6, 6〉. The event of 18 participants winning the lottery may be perceived to
be unlikely. Therefore this event is called an extreme event.

If 20 000 000 tickets are purchased in total, it follows by Tables 7.1 and 7.2 that, on average,
eighteen participants will win the lottery once every 4.268× 1013 lottery draws. There are two
lottery draws per week in the South African National Lottery, which implies that there are
52× 2 = 104 lottery draws per year. Therefore, if it is assumed that for every draw, 20 000 000
tickets are purchased in total, it may be expected that, on average, eighteen participants will
win the lottery approximately once every 4.104 × 1011 years. Likewise, eighteen participants



7.2. A more realistic analysis of winners in the lottery 〈49, 6, 6, 6〉 127

1

0.8

0.6

P
(7
.5
M
,λ

)

0.4

0.2

0
0 1 32

λ
4 5 6

(a) θ = 0%

1

P
(7
.5
M
,λ

) 0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

(b) θ = 20%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

(c) θ = 40%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0

0.2

0 1 2 3 4 65
λ

(d) θ = 60%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12

λ

(e) θ = 80%

P
(7
.5
M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14

λ

(f) θ = 100%

Figure 7.10: P (7 500 000, λ) as a function of the number, λ, of winners in the lottery 〈49, 6, 6, 6〉. From
the results in Table 7.11, under the assumption that a certain proportion, θ, of participants purchase
type D(4, 4) tickets and the remaining proportion, 1− θ, of participants select type A tickets, if a total
of 7 500 000 tickets are selected.



128 Chapter 7. On the expected number of lottery winners
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(a) θ = 0
P

(2
0M

,λ
)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

λ

(b) θ = 20%

1

P
(2

0M
,λ

) 0.8

0.6

0.4

0.2

0
0 2

λ
4 6 8 10

(c) θ = 40%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

λ
6

(d) θ = 60%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

λ

(e) θ = 80%

P
(2

0M
,λ

)

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2

λ

(f) θ = 20%

Figure 7.11: Graphs of P (20 000 000, λ) as a function of the number, λ, of winners in the lottery
〈49, 6, 6, 6〉. From the results in Table 7.12 under the assumption that a certain proportion, θ, of partic-
ipants purchase type D(4, 4) tickets and the remaining proportion, 1 − θ, of participants select type A
tickets, if a total of 20 000 000 tickets are selected.



7.3. An analysis of small lottery instances 129

are expected to win the lottery once every 7.805 × 1018 years if 7 500 000 tickets purchased in
total for every lottery draw. However, these expectations hold under the assumption that all
participants select tickets of type A.

Table 7.19 contains values of P (N,λ = 18) and P (N,λ ≥ 18) when it is assumed that a certain
proportion θ of the tickets purchased are of type B(4). From this table, it may be seen that if a
small number of tickets (such as 7 500 000) is purchased, then it is unlikely that 18 participants
will win the lottery jackpot. However, if a large number of tickets (such as 20 000 000) is
purchased, it is likely that exactly 18 participants will share the jackpot approximately every
7.27 years if θ = 20%, and within a shorter time span if θ is larger. Also, if θ = 20%, it may be
deduced that at least 18 participants are likely to share the jackpot prize approximately every
2.08 years. This number is close to being a reflection of reality, because on the dates 31 October
2001, 15 March 2003 and 7 February 2009, there were 19, 33, and 18 winners, respectively.
Therefore, in approximately 7.3 years there were 3 occurrences in which at least 18 participants
won the jackpot (7.3/3 = 2.433).

The values in Table 7.20 show that, under the assumption of a certain proportion of the pop-
ulation purchasing tickets which are of type C(4), it is highly unlikely that 18 participants
will win the jackpot in the lottery 〈49, 6, 6, 6〉 within the average person’s lifetime [10]. This
occurrence has, however taken place three times since 31 October 2001, which indicates that
the assumption that a certain proportion θ ∈ {0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1} of participants purchase tickets

of type C(4) may not be an accurate reflection of reality.

The values in Table 7.21 represent the case in which a certain proportion, θ, of the tickets
purchased are of type D(4, 4). From this table, if 7 500 000 tickets are purchased, it is expected
to take between 12.46 (if θ = 100%) and 62.33 years (if θ = 20%) for a draw to occur in which
exactly 18 participants win the jackpot. For draws in which it is assumed that 20 000 000 tickets
are purchased, it may take even longer for a draw to occur in which exactly 18 participants win
the jackpot. However, it may take between 5.52 (if θ = 100%) and 27.62 years (if θ = 20%)
for a draw to occur in which at least 18 participants win the jackpot if 7 500 000 tickets are
purchased, and it may take between 0.20 (if θ = 100%) or 1.01 years (if θ = 20%) for a draw to
occur in which at least 18 participants win the jackpot if 20 000 000 tickets are purchased.

Finally, from data obtained from [32], the average number of tickets purchased per draw is
13 718 105. It therefore follows by Table 7.22, in which it is assumed that a certain proportion,
θ, of the tickets purchased are of type B(4), that it is expected to take between 12.05 (if
θ = 100%) or 60.36 years (if θ = 20%) for a draw to occur in which exactly 18 participants
win the jackpot if 13 718 105 tickets are purchased, while it is expected to take between 5.87 (if
θ = 100%) or 29.43 years (if θ = 20%) for a draw to occur in which at least 18 participants win
the jackpot if 13 718 105 tickets are purchased.

7.3 An analysis of small lottery instances

It is computationally infeasible to conduct a similar investigation to the one in the previous
sections on the lottery 〈49, 6, 6, k〉 where 3 ≤ k ≤ 5. Therefore, in order to investigate the
number of concurrent lottery winners of a k-prize (not necessarily the jackpot prize), small
lottery instances are considered. Tables 7.23 and 7.24 contain values, computed via Algorithm
7.1, of P (N,λ) for the small lotteries 〈8, 3, 5, 2〉 and 〈9, 4, 5, 3〉, respectively, if it is assumed that
at least a proportion θ of the N tickets purchased are type B(2) tickets.

Note that under the assumption of each participant purchasing tickets of type A only and the



130 Chapter 7. On the expected number of lottery winners

winning government ticket also being of type A, the binomial distribution probability mass
function (7.1) may be used to compute the value P (N,λ), where

p =

∑n
i=k

(
t
i

)(
m−t
n−i
)(

m
n

) (7.5)

denotes the probability of a single participant ticket yielding a k-prize.

As mentioned before, the values of P (N,λ) are distributed around the value of (7.4) and depend
on the possible values of the expression in (7.3). From Tables 7.23 and 7.24, it may be seen
that for a given value of θ, the value of P (N,λ) increases as λ increases up to a certain point
after which the value of P (N,λ) decreases as λ increases. This phenomenon may be explained
by examining Tables 7.25 and 7.26 which contain values of λ for each possible value of u and θ
for the lotteries 〈8, 3, 5, 2〉 and 〈9, 4, 5, 3〉, respectively.

Table 7.19: The probability of either exactly 18 participants winning the lottery 〈49, 6, 6, 6〉, or at
least 18 participants winning the lottery 〈49, 6, 6, 6〉 is presented in the second column. Columns three
and four contain the expected number of draws and the expected number of years, respectively, between
successive occurrences of these events. These results hold under the assumption that a proportion θ of
participants purchase tickets of type B(4), and that either 7 500 000 or 20 000 000 tickets are purchased
in total.

θ P (7.5M,λ = 18) Draws Years
0 0 ∞ ∞
20 3.123× 10−7 3 202 151.85 30 789.92
40 6.155× 10−7 1 624 703.29 15 622.15
60 9.179× 10−7 1 089 421.93 10 475.21
80 1.230× 10−6 813 246.15 7 819.67
100 1.549× 10−6 645 515.28 6 206.88
θ P (7.5M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 4.346× 10−7 2 300 726.56 22 122.37
40 8.594× 10−7 1 163 572.64 11 188.20
60 1.291× 10−6 774 340.55 7 445.58
80 1.726× 10−6 579 231.88 5 569.54
100 2.164× 10−6 462 213.79 4 444.36
θ P (20M,λ = 18) Draws Years
0 0 ∞ ∞
20 1.323× 10−3 756.09 7.27
40 2.637× 10−3 379.18 3.65
60 3.961× 10−3 252.43 2.43
80 5.289× 10−3 189.09 1.82
100 6.615× 10−3 151.18 1.45
θ P (20M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 4.622× 10−3 216.36 2.08
40 9.217× 10−3 108.50 1.04
60 1.384× 10−2 72.25 0.69
80 1.848× 10−2 54.12 0.52
100 2.311× 10−2 43.27 0.42



7.3. An analysis of small lottery instances 131

Table 7.20: The probability of either exactly 18 participants winning the lottery 〈49, 6, 6, 6〉, or at
least 18 participants winning the lottery 〈49, 6, 6, 6〉 is presented in the second column. Columns three
and four contain the expected number of draws and the expected number of years, respectively, between
successive occurrences of these events. These results hold under the assumption that a proportion θ of
the participants’ tickets are of type C(4), and that either 7 500 000 or 20 000 000 tickets are purchased in
total.

θ P (7.5M,λ = 18) Draws Years
0 0 ∞ ∞
20 0 ∞ ∞
40 0 ∞ ∞
60 0 ∞ ∞
80 0 ∞ ∞
100 0 ∞ ∞
θ P (7.5M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 0 ∞ ∞
40 0 ∞ ∞
60 0 ∞ ∞
80 0 ∞ ∞
100 0 ∞ ∞
θ P (20M,λ = 18) Draws Years
0 0 ∞ ∞
20 2.074× 10−8 48 219 960.17 463 653.46
40 4.562× 10−8 21 918 192.54 210 751.85
60 6.829× 10−8 14 642 746.28 140 795.64
80 9.382× 10−8 10 658 401.43 102 484.63
100 1.177× 10−7 8 495 671.46 81 689.15
θ P (20M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 2.674× 10−8 37 389 880.19 359 518.08
40 5.749× 10−8 17 392 806.13 167 238.52
60 8.638× 10−8 11 576 006.58 111 307.76
80 1.201× 10−7 8 323 700.01 80 035.58
100 1.504× 10−7 6 646 300.38 63 906.73



132 Chapter 7. On the expected number of lottery winners

Table 7.21: The probability of either exactly 18 participants winning the lottery 〈49, 6, 6, 6〉, or at least
18 participants winning the lottery 〈49, 6, 6, 6〉 is presented in the second column. Columns three and
four contain the expected of draws and the expected number of years, respectively, between successive
occurrences of these events. These results hold under the assumption that in a proportion θ of the
participants’ tickets are of type D(4, 4), and that either 7 500 000 or 20 000 000 tickets are purchased in
total.

θ P (7.5M,λ = 18) Draws Years
0 0 ∞ ∞
20 1.542× 10−4 6 482.48 62.33
40 3.076× 10−4 3 250.76 31.26
60 4.629× 10−4 2 160.23 20.77
80 6.169× 10−4 1 620.80 15.58
100 7.715× 10−4 1 296.15 12.46
θ P (7.5M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 3.4813× 10−4 2 872.21 27.62
40 6.946× 10−4 1 439.53 13.84
60 1.044× 10−3 957.08 9.20
80 1.392× 10−3 718.14 6.91
100 1.740× 10−3 574.42 5.52
θ P (20M,λ = 18) Draws Years
0 0 ∞ ∞
20 5.967× 10−5 16 757.30 161.13
40 1.193× 10−4 8 377.45 80.55
60 1.789× 10−4 5 588.50 53.74
80 2.388× 10−4 4 186.85 40.26
100 2.983× 10−4 3 351.66 32.23
θ P (20M,λ ≥ 18) Draws Years
0 0 ∞ ∞
20 9.531× 10−3 104.92 1.01
40 1.906× 10−2 52.46 0.50
60 2.859× 10−2 34.97 0.34
80 3.812× 10−2 26.23 0.25
100 4.765× 10−2 20.98 0.20



7.3. An analysis of small lottery instances 133

Table 7.22: The probability of either exactly 18 participants winning the lottery 〈49, 6, 6, 6〉, or at least
than 18 participants winning the lottery 〈49, 6, 6, 6〉 is presented in the second column. Columns three
and four contain the expected number of draws and years, respectively, between successive occurrences
of these events. These results hold under the assumption that a proportion, θ, of participant tickets are
of type B(4), and that the average number of tickets (13 718 105) has been purchased.

θ P (13 718 105, λ = 18) Draws Years
0 0 ∞ ∞
20 1.592× 10−4 6 277.89 60.36
40 3.190× 10−4 3 134.52 30.14
60 4.779× 10−4 2 092.31 20.12
80 6.373× 10−4 1 568.88 15.09
100 7.979× 10−4 1 253.21 12.05
θ P (13 718 105, λ ≥ 18) Draws Years
0 0 ∞ ∞
20 3.267× 10−4 3 060.69 29.43
40 6.544× 10−4 1 528.18 14.69
60 9.805× 10−4 1 019.84 9.81
80 1.308× 10−3 764.53 7.35
100 1.637× 10−3 610.84 5.87

In table 7.25, it may be seen that the value of (7.4) decreases as the value of θ increases. However,
the minimum expected number of winners decreases as θ increases, and the maximum expected
number of winners increases as θ increases. This is illustrated graphically in Figure 7.12. As
an example, consider a draw of the lottery 〈8, 3, 5, 2〉 in which 800 tickets are purchased, and
θ = 60%. It is expected that, on average, 537.143 participants will win a 2-prize, the expected
minimum number of winners is 468.571, and the expected maximum number of winners is
612.571. Also, from Table 7.25, there is a probability if approximately 0.232 + 0.268 = 0.5 of
either 516.571 or 540.571 participants winning the lottery draw. Therefore, it is expected that
the value of P (800, λ) is relatively large around the values of λ = 516.571 and λ = 540.571.
From Table 7.23, it may be seen that the larger values of P (800, λ) are indeed between λ = 500
and λ = 600, but the value of P (800, λ) increases as the value of λ moves closer to 600.

u

θ

λ

10080604020016
15

14
13

12
11

10
450
500
550
600

Figure 7.12: The number of winners λ as a function of the values of u and θ for the lottery 〈8, 3, 5, 2〉 in
the situation where a proportion θ of the 100×m tickets purchased are of type B(2). The graph drawn
in solid lines represents the value of λ as θ and u vary, while the graph drawn in dotted lines represents
the expected value of λ.

In Table 7.26, the situation is slightly different in the sense that the value of (7.4) remains



134 Chapter 7. On the expected number of lottery winners

Table 7.23: The probability, P (N,λ), of λ participants winning a 2-prize in the lottery 〈8, 3, 5, 2〉 in
which a proportion θ of the tickets purchased are type B(2) tickets. Computed from Algorithm 7.1

λ θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100%
N = m

0 4.566× 10−5 4.738× 10−5 5.743× 10−5 7.875× 10−5 1.161× 10−4 1.729× 10−4

1 8.852× 10−4 9.335× 10−4 1.077× 10−3 1.320× 10−3 1.708× 10−3 2.239× 10−3

2 7.787× 10−3 7.993× 10−3 8.653× 10−3 9.789× 10−3 1.138× 10−2 1.340× 10−2

3 3.884× 10−2 3.934× 10−2 4.074× 10−2 4.302× 10−2 4.596× 10−2 4.948× 10−2

4 1.214× 10−1 1.216× 10−1 1.221× 10−1 1.229× 10−1 1.238× 10−1 1.249× 10−1

5 2.429× 10−1 2.420× 10−1 2.392× 10−1 2.348× 10−1 2.290× 10−1 2.221× 10−1

6 3.036× 10−1 3.024× 10−1 2.989× 10−1 2.933× 10−1 2.857× 10−1 2.764× 10−1

7 2.168× 10−1 2.171× 10−1 2.181× 10−1 2.196× 10−1 2.211× 10−1 2.222× 10−1

8 6.779× 10−2 6.863× 10−2 7.108× 10−2 7.525× 10−2 8.123× 10−2 8.912× 10−2

N = 10×m
0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
10 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
20 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
30 ≈ 0 ≈ 0 ≈ 0 3.214× 10−7 3.357× 10−6 2.623× 10−5

40 2.550× 10−5 5.302× 10−5 1.900× 10−4 6.573× 10−4 1.816× 10−3 3.838× 10−3

50 2.086× 10−2 2.264× 10−2 2.650× 10−2 3.025× 10−2 3.242× 10−2 3.304× 10−2

60 7.937× 10−2 7.782× 10−2 7.331× 10−2 6.645× 10−2 5.861× 10−2 4.286× 10−2

70 3.522× 10−4 5.206× 10−4 1.208× 10−3 3.017× 10−3 6.787× 10−3 1.249× 10−2

80 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.786× 10−8 2.321× 10−7

N = 100×m
0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
100 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
200 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
300 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
400 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.929× 10−5

500 3.571× 10−8 5.679× 10−6 5.115× 10−4 1.965× 10−3 2.622× 10−3 2.836× 10−3

600 2.508× 10−3 6.469× 10−3 9.126× 10−3 8.161× 10−3 7.791× 10−3 8.211× 10−3

700 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.161× 10−6 3.876× 10−4

800 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0



7.3. An analysis of small lottery instances 135

Table 7.24: The probability, P (N,λ), of λ participants winning a 3-prize in the lottery 〈9, 4, 5, 3〉 in
which a proportion θ of the tickets purchased are type B(2) tickets. Computed from Algorithm 7.1

λ θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100%
N = m

0 1.875× 10−2 1.989× 10−2 2.321× 10−2 2.894× 10−2 3.778× 10−2 5.060× 10−2

1 9.379× 10−2 9.593× 10−2 1.017× 10−1 1.106× 10−1 1.216× 10−1 1.329× 10−1

2 2.083× 10−1 2.080× 10−1 2.070× 10−1 2.048× 10−1 2.004× 10−1 1.931× 10−1

3 2.701× 10−1 2.666× 10−1 2.573× 10−1 2.430× 10−1 2.253× 10−1 2.057× 10−1

4 2.250× 10−1 2.226× 10−1 2.157× 10−1 2.051× 10−1 1.918× 10−1 1.773× 10−1

5 1.250× 10−1 1.255× 10−1 1.264× 10−1 1.274× 10−1 1.276× 10−1 1.264× 10−1

6 4.635× 10−2 4.780× 10−2 5.185× 10−2 5.790× 10−2 6.519× 10−2 7.273× 10−2

7 1.104× 10−2 1.187× 10−2 1.430× 10−2 1.834× 10−2 2.409× 10−2 3.130× 10−2

8 1.531× 10−3 1.743× 10−3 2.392× 10−3 3.628× 10−3 5.690× 10−3 8.849× 10−3

9 9.579× 10−5 1.139× 10−4 1.847× 10−4 3.407× 10−4 6.406× 10−4 1.199× 10−3

N = 10×m
0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.190× 10−7

10 3.175× 10−8 5.952× 10−7 1.350× 10−5 2.065× 10−4 1.811× 10−3 7.272× 10−3

20 2.148× 10−3 4.089× 10−3 1.051× 10−2 1.944× 10−2 2.433× 10−2 2.507× 10−2

30 7.946× 10−2 7.236× 10−2 5.831× 10−2 4.515× 10−2 3.540× 10−2 2.850× 10−2

40 1.982× 10−2 2.405× 10−2 2.953× 10−2 2.946× 10−2 2.633× 10−2 2.305× 10−2

50 5.605× 10−5 2.331× 10−4 1.559× 10−3 5.757× 10−3 1.121× 10−2 1.352× 10−2

60 ≈ 0 6.349× 10−8 2.175× 10−6 5.301× 10−5 5.801× 10−4 2.986× 10−3

70 ≈ 0 ≈ 0 ≈ 0 1.587× 10−8 3.016× 10−7 1.203× 10−5

80 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
90 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

N = 10×m
0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
100 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 3.138× 10−4

200 ≈ 0 ≈ 0 1.724× 10−5 1.852× 10−3 3.117× 10−3 1.041× 10−3

300 9.217× 10−3 1.191× 10−2 7.704× 10−3 4.944× 10−3 4.761× 10−3 4.930× 10−3

400 1.587× 10−8 1.740× 10−4 3.006× 10−3 2.876× 10−3 4.063× 10−3 1.740× 10−3

500 ≈ 0 ≈ 0 ≈ 0 1.574× 10−5 1.868× 10−3 9.157× 10−4

600 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 4.365× 10−7

700 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
800 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
900 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 7.25: The expected number of winners in a lottery draw for all possible values of u and θ for
the lottery 〈8, 3, 5, 2〉. The bottom row of the table contains the values from (7.4). It is assumed that
at least a proportion θ of the tickets purchased are of type B(2). The rightmost column contains the
probability that a government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
10 571.429 537.143 502.857 468.571 434.286 400 0.054
11 571.429 545.143 518.857 492.571 466.286 440 0.125
12 571.429 553.143 534.857 516.571 498.286 480 0.232
13 571.429 561.143 550.857 540.571 530.286 520 0.268
14 571.429 569.143 566.857 564.571 562.286 560 0.179
15 571.429 577.143 582.857 588.571 594.286 600 0.107
16 571.429 585.143 598.857 612.571 626.286 640 0.036

571.429 560.000 548.571 537.143 525.714 514.286



136 Chapter 7. On the expected number of lottery winners

constant as θ increases. The reason is that for this problem instance, (7.4) reduces to

rN(
m
n

) , (7.6)

a value independent of θ. Also, from Table 7.26, the minimum expected number of winners de-
creases as θ increases, and the maximum expected number of winners increases as θ increases.
This is illustrated graphically in Figure 7.13. As an example, consider a draw of the lottery
〈9, 4, 5, 3〉 in which 900 tickets are purchased, and θ = 20%. The expected number of winners is
321.429, the minimum expected number of winners is 281, and the maximum expected number
of winners is 365. This implies that the value of P (900, λ) should be largest where λ is approx-
imately 321.429 and the value of P (900, λ) decreases as λ decreases from 321.429 to 281 or as
λ increases to 365. As λ decreases from 281 or increases from 365, the value P (900, λ) should
converge to zero.

Table 7.26: The expected number of winners in a lottery draw for all possible values of u and θ for
the lottery 〈9, 4, 5, 3〉. The bottom row of the table contains the values from (7.4). A certain proportion
θ of the participants are assumed to purchase tickets of type B(2). The rightmost column contains the
probability that a government ticket is selected which is covered by u = uj special participant tickets.

u θ = 0 θ = 20% θ = 40% θ = 60% θ = 80% θ = 100% wj/
(
m
t

)
2 321.429 281.143 240.857 200.571 160.286 120 0.056
3 321.429 293.143 264.857 236.571 208.286 180 0.119
4 321.429 305.143 288.857 272.571 256.286 240 0.206
5 321.429 317.143 312.857 308.571 304.286 300 0.175
6 321.429 329.143 336.857 344.571 352.286 360 0.143
7 321.429 341.143 360.857 380.571 400.286 420 0.151
8 321.429 353.143 384.857 416.571 448.286 480 0.079
9 321.429 365.143 408.857 452.571 496.286 540 0.071

321.429 321.429 321.429 321.429 321.429 321.429

θ

u

λ

500
400
300
200

2
3

4
5

6
7

8
9 0 20 40 60 80 100

Figure 7.13: The number of winners λ as a function of the values of u and θ for the lottery 〈9, 4, 5, 3〉 in
the situation where a proportion θ of the 100×m tickets purchased are of type B(2). The graph drawn
in solid lines represents the value of λ as θ and u vary, while the graph drawn in dotted lines represents
the expected value of λ.

In the lottery 〈8, 3, 5, 2〉, Ψ1(8, 3, 5, 2) ≈ 0.714, and in the lottery 〈9, 4, 5, 3〉, Ψ1(9, 4, 5, 3) ≈
0.357. Therefore, because it is easier for a participant in the lottery 〈8, 3, 5, 2〉 to win a 2-prize
with a single ticket than it is for a participant to win a 3-prize in the lottery 〈9, 4, 5, 3〉 with a
single ticket, the expected number of winners in a draw of the lottery 〈8, 3, 5, 2〉 is larger than
the expected number of winners in a draw of the lottery 〈9, 4, 5, 3〉. This is confirmed in Tables
7.25 and 7.26.



7.4. Chapter overview 137

It is useful for the participants in a small lottery to know what the probabilities are of them
having to share a k-prize with λ−1 other participants. This information may be used to provide
the participant with an estimate of the prize money that they may receive should they win the
k-prize. If the values of P (N,λ) and Tk (the total value of the prize pool for the k-prize) are
known, they may be used by participants in a lottery draw to compute their expected return
if they were to construct playing sets conforming to a certain overlapping playing set structure
which guarantees a probability-of-win value of Ψ`(m,n, t, k). In general, a participant’s expected
return in a lottery 〈m,n, t, k〉 is

Ψ`(m,n, t, k)
N∑
λ=1

P (N,λ)
Tk
λ
. (7.7)

Example 7.1 (Expected winnings in draw of the lottery 〈10, 4, 5, 3〉) Assume a partic-
ipant purchases a playing set of cardinality 4. If the playing set conforms to the overlapping
playing set structure (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0), then the participant has a probability
of approximately 0.83 of winning a k-prize. However, assume it is known that approximately
1 000 tickets are purchased altogether by participants in this particular draw. Let T3 denote the
prize pool for the 3-prize. From (7.7), the participant’s expected return may be computed as

0.83
1 000∑
λ=1

P (1 000, λ)
T3

λ
.

If the prize pool for the 3-prize, T3 equals R100 000, it may be computed from (7.7) that the
expected return is approximately R317.81. �

7.4 Chapter overview

This chapter commenced with the computation, by means of an analytical approach and by
a simulation approach, of the probability that λ participants win a lottery draw under the
assumptions that the winning government ticket is of type A and all the participants’ tickets
are also of type A. Specific attention was afforded to the probability, P (N,λ = 18), that λ = 18
participants win a draw of the lottery 〈49, 6, 6, 6〉. It was found that if N = 7 500 000 type
A tickets are purchased in total, P (7.5M, 18) = 1.232 × 10−21, and if N = 20 000 000 type A
tickets are purchased in total, P (20M, 18) = 2.343× 10−14. These values are so small that the
event of eighteen participants winning a draw of the lottery 〈49, 6, 6, 6〉 may be perceived to be
unlikely.

The chapter then proceeded under the assumption that a certain proportion θ of tickets pur-
chased in a draw of the lottery 〈49, 6, 6, 6〉 are type B(4) tickets and the other tickets pur-
chased are type A tickets. It was found that 1.323 × 10−3 ≤ P (20M, 18) ≤ 6.615 × 10−3 for
20% ≤ θ ≤ 100%. This led to the deduction that, under the assumption that a proportion
θ of the tickets purchased are type B(4) tickets, the event of eighteen participants winning a
draw is much more likely, than when it is assumed that only type A tickets are purchased by
participants, and that the assumption made may be a close reflection of reality.

A further analysis was conducted in this chapter under the assumption that a certain proportion
θ of tickets purchased are type C(4) tickets and the other tickets purchased are type A tickets.
The values of P (N,λ) were not found to be a close reflection of reality. Finally, an analysis



138 Chapter 7. On the expected number of lottery winners

was conducted under the assumption that a certain proportion θ of tickets purchased are type
D(4, 4) tickets and the other tickets purchased are type A tickets. The resulting values of
P (N,λ) were also found to not be a reflection of reality.

From the analyses conducted on the expected number of winners in the lottery 〈49, 6, 6, 6〉 it
may be concluded that the event of 18 or more participants winning a draw concurrently is likely
under the assumption that a certain proportion θ of tickets purchased are type B(4) tickets and
the other tickets purchased are type A tickets.

Finally, it was also demonstrated in this chapter that the value P (N,λ) is useful in the sense that
it may be used to compute a participant’s expected win per draw. This allows the participant
to know whether or not partaking in a lottery draw is financially viable.



CHAPTER 8

Conclusion

Contents
8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Novel contributions in this thesis . . . . . . . . . . . . . . . . . . . . . 142

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

This chapter contains a summary of the work contained in the previous chapters of this the-
sis. Novel contributions to the literature on the two problems considered in this thesis are
highlighted, and the scope for future work is discussed.

8.1 Thesis summary

The focus in this thesis is on two combinatorial optimisation problems involving lotteries. These
problems are known as the incomplete lottery problem (see Definition 1.1) and the resource
utilisation problem (see Definition 1.2). In Chapter 2, a concise summary was given of previous
work on these two problems. More specifically, the work by Burger et al. [5, 6], Gründlingh
[16] and Li & van Rees [22, 24, 25] constitute a significant contribution to the study of these
two problems and has formed the foundation upon which this thesis was built.

In Chapter 3, lotteries were modelled as bipartite graphs and from this model, an upper bound
in (3.14) on the complete lottery number for problem instances in which n 6= t was established.
This upper bound is analogous to the upper bound on the cardinality of a minimum covering set
of a bipartite graph, obtained via the greedy covering algorithm (Algorithm 3.1) by Astratian, et
al. [2]. The bound in (3.14) was computed for small and large lottery instances and compared to
bounds mostly obtained via graph domination theory [16], for small and large lottery instances
in which n = t. The bound in (3.14) was also computed for small lottery instances in which
n 6= t and compared to the known values of the complete lottery number L1(m,n, t, k) of those
lottery instances. The bound in (3.14), was generalised in (3.17) for the case of the incomplete
lottery number and was compared to known values of Lψ(m,n, t, k) for small lottery instances.
It was found that this new upper bound performed well for lotteries in which n = t, compared to
the upper bounds obtained via graph domination theory, but it did not improve on the recursive
bound for lotteries in (2.12) by Li & van Rees [27]. However, it was noted in Chapter 3 that the
greedy bound (3.14) may be computed for any lottery 〈m,n, t, k〉, while the bound (2.12) by
Li & van Rees [27] can only be computed for L1(m,n, t, k) if the values of the complete lottery

139



140 Chapter 8. Conclusion

numbers L1(m − 1, n − 1, t − 1, k − 1) and L1(m − 1, n, t, k) are known or if good bounds on
these numbers are known. The difference between the bound in (3.17) on the incomplete lottery
number and the value of Lψ(m,n, t, k) was found to be larger for small values of ψ, and as ψ
increased, the difference was non-increasing, indicating that the bound improves as ψ increases.

In Chapter 4, a mathematical programming approach towards solving the incomplete lottery
problem and the resource utilisation problem for the general case where n 6= t was presented,
building on previous work by Gründlingh [16] and by Jans & Degraeve [20] in which mathemat-
ical programming formulations were derived for the complete lottery problem, the incomplete
lottery problem and the resource utilisation problem for lottery instances of the form 〈m,n, n, k〉.
The new formulations were applied to small lottery instances in order to compute the values
of Lψ(m,n, t, k) and Ψ`(m,n, t, k), and to compute bounds on the values of Lψ(m,n, t, k) and
Ψ`(m,n, t, k) in cases where it was not practically feasible to obtain exact values. A data file
containing the adjacency matrix (with dimensions

(
m
t

)
×
(
m
n

)
) used in the formulations was

required, and the size of this file increased dramatically, to such an extent that it was not prac-
tically feasible to solve problems with large parameters. The conclusion from this chapter was
that, although a mathematical programming approach is a viable solution method, it is only
practically feasible for small lottery instances — it is, for example, highly unlikely that exact
values of Lψ(49, 6, 6, k) and Ψ`(49, 6, 6, k) will be found using this solution method in the near
future.

Chapter 5 contained a review of work by Gründlingh [16] on an exhaustive enumeration method,
based on the iterative construction of a rooted tree data structure in which nodes represent
overlapping playing set structures for the case where n = t. In that chapter, the exhaustive
enumeration lottery tree was generalised to the general case in which n 6= t. The solution
method was described in detail, and the description was followed by three practical examples.
The exhaustive enumeration lottery tree solution method was applied to the same small lot-
tery instances investigated in Chapter 4. This was done in order to compare the mathematical
programming solution method to the exhaustive enumeration lottery tree solution method in
terms of execution time and practical feasibility and to validate the results of Chapter 4. It was
found in Chapter 5 that the exhaustive enumeration solution method performs better than the
mathematical programming approach in terms of execution time. The exhaustive enumeration
lottery tree approach is also preferable because from it, all the overlapping playing set struc-
tures resulting in an optimal resource utilisation are determined, while only one playing set
structure is determined via the mathematical programming approach. It was found in Chapter
5, however, that as the playing set cardinality exceeds 6, the exhaustive enumeration lottery
tree solution method takes many hours, or even days, to find a solution, which leads to the con-
clusion that the exhaustive enumeration solution method is practically infeasible as a solution
method for problem instances involving large playing set cardinalities. For the small lottery
instances investigated, solutions to both the incomplete lottery problem and the resource utili-
sation problem were found via the mathematical programming approach for problems involving
larger playing set cardinalities. It was therefore concluded that the mathematical programming
approach is an appropriate exact solution method for lottery problem instances in which the
parameters are small, but the cardinality of an optimal (or near optimal) playing set is relatively
large, while the exhaustive enumeration lottery tree solution method is appropriate for lottery
problem instances in which the cardinality of an optimal (or near optimal) solution is small,
but the parameters are relatively large.

As mentioned, the execution time of the exhaustive enumeration lottery tree solution method
presented in Chapter 5 increases dramatically as the associated playing set cardinality in the
problem instance increases. Therefore, various (meta)heuristic approaches towards solving the



8.1. Thesis summary 141

incomplete lottery problem and the resource utilisation problem were considered in Chapter 6.
Gründlingh [16] also considered (meta)heuristic approaches towards solving these problems by
investigating how a playing set of pre-specified cardinality may be constructed by iteratively
adding different tickets to the playing set. In Chapter 6, an alternative method was presented
in which a solution is represented by an overlapping playing set structure instead of by specific
playing set tickets and the associated probability-of-win value depends on the manner in which
the elements in the overlapping playing set structure were distributed amongst its compart-
ments. A total of five (meta)heuristics were implemented, which resulted in the construction
of different overlapping playing set structures by exploring the different ways in which the ele-
ments in the overlapping playing set structure may be redistributed amongst its compartments.
The (meta)heuristic which performed the best in terms of solution quality was the tabu search
method. This method was, however, found to be computationally expensive. The method that
was computationally the least expensive was a genetic algorithm; however, the solution quality
achieved via this method was not good. The solutions achieved for small problem instances
via the tabu search method were the same in terms of the probability of win value obtained,
but they were found in much shorter execution times compared to the exhaustive enumeration
lottery tree solution method presented in Chapter 5. Hence the solution methods presented in
Chapter 6 are good alternatives to the solution methods presented in Chapters 4 and 5 when
a solution that is close to optimal is sought within a relatively short execution time. In some
cases, the solution methods presented in Chapter 6 did not achieve optimal solutions, but they
provided good bounds on the values of Lψ(m,n, t, k) and Ψ`(m,n, t, k). However, in other
cases involving larger problem instances, optimal solutions were found — such as the newly
established result that L1(20, 10, 4, 3) = 6.

A relatively new contribution to the literature on lotteries was presented in Chapter 7. In this
chapter, an investigation into the value of the probability P (N,λ) of λ participants concurrently
winning a k-prize in a lottery draw was conducted. As a case study, the jackpot prize in
the South African National Lottery, a lottery of the form 〈49, 6, 6, 6〉, was considered. In the
draw which took place on the 7th February 2009, 18 participants shared the jackpot prize, a
seemingly unrealistic number compared to the average number, 1.002, of jackpot winners per
draw. The probability P (N,λ = 18) was found to be extremely small under the assumption that
participants construct their playing sets from numbers which are randomly selected according
to a uniform distribution. An alternative assumption was, however, made that not all players
construct their playing sets from numbers which were randomly selected according to a uniform
distribution [18, 19, 45], but rather that at least a proportion θ of the participants construct
their playing sets from a pool of special tickets — an example of which is tickets constructed in
such a way that the difference between any two numbers in the ticket is at least κ (a so-called
type B(κ) ticket) — the value of P (N,λ = 18) thus increased dramatically for κ = 4, compared
to its value under the original assumption. From an analysis of the entries in Table 7.19 it
is expected that 18 or more players may win the jackpot concurrently once every 7.27 years
under the assumption that 20 000 000 tickets are purchased in total for every draw and at least
a proportion θ = 20% of the tickets bought are type B(4) tickets. Following the analysis of the
lottery 〈49, 6, 6, 6〉, an analysis of the value of P (N,λ) associated with smaller lottery instances,
in which the k-prize is not the jackpot prize, was conducted. It was found that if the winning
government ticket is covered by a special ticket, a relatively large number of participants are
expected to share the k-prize, while if the winning goverment ticket is not covered by a special
ticket, a relatively small number of participants are expected to share the k-prize. In this
chapter, the value P (N,λ) was also used to compute a participant’s expected return per lottery
draw if the prize pool for a k-prize is known.



142 Chapter 8. Conclusion

8.2 Novel contributions in this thesis

In Chapter 3, a new bound on the incomplete lottery number was established. This bound is
not computationally expensive to compute and it may be applied to lotteries in which n 6= t.
It performs well compared to bounds obtained via graph domination theory for small and large
lotteries.

In Chapter 4, the incomplete lottery problem and the resource utilisation problem were modelled
as integer programming models, and solved. Using this solution approach, optimal solutions to
the incomplete lottery problem and the resource utilisation problem for small problem instances
were computed. However, due to current limits on the computational ability of computers, it
was found that a mathematical programming approach may not be practically feasible when
used to seek answers to incomplete lottery and resource utilisation problem instances in which
the parameters are relatively large (i.e. when m > 10).

In Chapter 5, the exhaustive enumeration lottery tree solution method of Burger, et al. [5] and
Gründlingh [16] was generalised to the case where n 6= t and it was compared in terms of exe-
cution times and practical feasibility with respect to the mathematical programming approach
of solving the incomplete lottery problem and the resource utilisation problem. It was found
that the exhaustive enumeration lottery tree solution method is suitable for finding (optimal)
solutions to problem instances in which the value of the associated playing set cardinality is
relatively small and the parameters of the problem are relatively large (m > 10). In contrast,
it was found that the mathematical programming solution method is a better solution method
for problem instances when an optimal solution is sought in which the playing set cardinality
is relatively large, but the parameters in the problem are small (m ≤ 10).

In Chapter 6, various metaheuristic approaches towards solving the incomplete lottery problem
and the resource utilisation problem were presented. These solution methods involve the dis-
tribution of the elements in an overlapping playing set structure amongst its compartments. It
was shown that this approach may be used to find previously unknown (optimal) solutions to
the incomplete lottery problem and the resource utilisation problem, such as the novel result
that L1(20, 10, 4, 3) = 6.

It was shown in Chapter 7 that the event of 18 (or more) participants winning a draw of the
South African National Lottery, Lotto, is possible and indeed likely under the assumption that
participants do not select the numbers in their playing sets randomly according to a uniform
distribution. The probability P (N,λ) of λ participants winning a lottery draw concurrently
was also computed for various lottery problem instances and it was shown how this value may
be used to compute a participant’s expected return per lottery draw.

8.3 Future work

This section contains a list of options for future work involving improvements or elaborations
based on the work done in this thesis:

1. As mentioned, the difference between the upper bound on the incomplete lottery number
(3.17) and the actual value of Lψ(m,n, t, k) is large for small values of ψ and it is non-
increasing as ψ increases. Therefore scope for future work exists with respect to the
formulation of an upper bound on the incomplete lottery number in which the difference
between the upper bound and Lψ(m,n, t, k) is closer to zero for small values of ψ.



8.3. Future work 143

2. From Chapter 3, the bound in (3.17) does not improve on the recursive bound, (2.12),
by Li & van Rees [26]. Therefore, further scope with respect to future work involves the
formulation of a bound which improves on that bound by Li & van Rees.

3. In Chapter 4 it was found that a major drawback of the mathematical programming ap-
proach is the large execution time required to find values of Lψ(m,n, t, k) or Ψ`(m,n, t, k)
for large lottery problem instances on a single computer. Therefore, scope for future work
entails the use of a large number of computers in parallel for solving the incomplete lottery
and resource utilisation problems for larger problem instances upon setting a large set of
variables explicitly.

4. Another major drawback of the mathematical programming solution approach in Chapter
4 is that a file containing the adjacency matrix used in the integer programming formula-
tions is required to be stored in memory. For large problem instances, it is not practically
feasible to store this file in memory. Possible future work may involve investigations into
the possible compression of the size of the adjacency matrix, or a more efficient storage
of the information contained in the matrix.

5. In Chapter 5, a major drawback of the exhaustive enumeration lottery tree solution
method was found to be its execution time which increased exponentially as the depth of
the tree increases. This limits the solution method to only being able to achieve a solu-
tion within a feasible time frame if the cardinality of the playing set is small. Scope for
future work exists with regards to investigations into the incorporation of further pruning
rules, such as those described in §5.3.1, which may lead to a decrease the number of nodes
constructed in the exhaustive enumeration lottery tree.

6. In Chapter 6 methods were described which involved determining bounds on the incom-
plete lottery number and the resource utilisation number algorithmically. It was found
that, by applying these methods to certain lottery instances, previously unknown incom-
plete lottery and resource utilisation numbers may be found. Future work may entail
using these or similar metaheuristic solution methods, or improvements thereof, in order
to find currently unknown incomplete lottery, and resource utilisation numbers.

7. In Chapter 7, the value of P (N,λ) was computed for the lottery 〈49, 6, 6, 6〉. Using
Algorithm 7.1, it was found that an investigation into the value of P (N,λ) for the lottery
〈49, 6, 6, k〉 (3 ≤ k < 6) was too computationally expensive. Scope for future work involves
formulating improved methods of computing or estimating the value of P (N,λ) for the
lottery 〈49, 6, 6, k〉 (3 ≤ k < 6).

8. Chapter 7 also included an investigation into how participants select the numbers included
in their playing sets. It is not known exactly how participants select the numbers in
their playing sets because, in most countries, that information is classified as confidential.
Therefore, assumptions were made in Chapter 7, based on findings in the literature, as
to how lottery participants choose their playing sets. Simon Cox, from the University of
Southampton, analysed data originating from 113 draws of the UK lottery and compared
the winning numbers from each draw with the number of participant tickets which had
four, five or six numbers in common with that winning ticket [41]. From that analysis, he
was able to determine which numbers appear to be most popular amongst the participants
of the UK lottery. Scope for future work exists with regards to a similar investigation to
the one conducted by Cox, and using the results from that investigation to reconstruct
the N tickets purchased in simulations of the South African National Lottery draw. This
may provide a more insightful analysis of the value of P (N,λ).



144 Chapter 8. Conclusion



References

[1] Arnautov VI, 1947, Estimation of the exterior stability number of a graph by means of
the minimal degree of the vertices (Russian), Prikladnaya Matematika i Programmirovanie,
11, pp. 3–8.

[2] Astratian AS, Denley TMJ & Häggkvist R, 1998, Bipartite graphs and their applica-
tions, Cambridge University Press, Cambridge.

[3] Bate JA, 1978, A generalized covering problem, PhD Thesis, University of Manitoba,
Manitoba.

[4] Brouwer AE & Voorhoeve M, 1979, Turan theory and the lotto problem, Mathematical
Center Tracts, 106, pp. 99–105.

[5] Burger AP, Gründlingh WR & Van Vuuren JH, 2004, Towards a characterisation of
lottery set overlapping structures, Ars Combinatoria, 84, pp. 105–128.

[6] Burger AP, Gründlingh WR & Van Vuuren JH, 2006, Two combinatorial problems
involving lottery schemes: Algorithmic determination of solution sets, Utilitas Mathemat-
ica, 70, pp. 33–70.

[7] Caen D, 1983, Extension of a theorem of Moon and Moser on complete subgraphs, Ars
Combinatoria, 16, pp. 5–10.

[8] Caprara A, Toth P & Fischcetti M, 1998, Algorithms for the set covering problem,
Annals of Operations Research, 98, pp. 352–371.

[9] Caro Y & Roditty Y, 1985, On the vertex-independence number and star decomposition
of graphs, Ars Combinatoria, 20, pp. 167–180.

[10] Central intelligence agency, 2009, The world factbook, [Online], [Cited Oc-
tober 1st, 2009], Available from https://www.cia.gov/library/publications/the-
world-factbook/rankorder/2102rank.html

[11] Clark WE, Fisher DC, Shekhtman B & Suen S, 1998, Upper bounds for the domination
number of a graph, Congressus Numerantium, 132, pp. 99–123.

[12] Encyclopædia britannica, 2009, Lottery, [Online], [Cited October 1st, 2009], Available
from http://www.britannica.com/EBchecked/topic/348555/lottery

[13] Gidani, 2009, Gidani, the National Lottery’s operator, [Online], [Cited October 1st, 2009],
Available from http://www.gidani.co.za/home.asp

[14] Gilfillan D, 2009, 18 Winners suggests a lotto scam, Cape Argus, 16 February, p. 14.

145



146 References

[15] Gründlingh WR, 2009, Past student of Stellenbosch University, [Personal Communica-
tion], Contactable at wgrundlingh@gmail.com.

[16] Gründlingh WR, 2004, Two new combinatorial problems involving dominating sets for
lottery schemes, PhD Thesis, University of Stellenbosch, Stellenbosch.

[17] GTECH Corporation, 2009, Lottery, [Online], [Cited October 1st, 2009], Available from
http://www. gtech.com/products services/lottery.asp

[18] Haigh J, 2007, The statistics of the National Lottery, Journal of the Royal Statistical
Society (Series A), 160(2), pp. 187–206.

[19] Henze N & Riedwyl H, 1998, How to win more: Strategies for increasing a lottery win,
Illustrated Edition, A K Peters Ltd, Natick (MA).

[20] Jans R & Degraeve Z, 2007, A note on a symmetrical set covering problem: The lottery
problem, European Journal of Operations Research, 186, pp. 104–110.

[21] Johnson JL, 2008, Probability and statistics for computer science, Illustrated Edition,
Wiley-IEEE, Hoboken (NJ).

[22] Li PC, 1999, Some results on lotto designs, PhD Thesis, University of Manitoba, Manitoba.

[23] Li PC, 2007, Ben Li’s lotto tables page, [Online], [Cited October 16th, 2009], Available
from http://www.cs.umanitoba.ca/∼lipakc/lottotables.html

[24] Li PC & Van Rees J, 1999, Lower bounds on lotto designs, Congressus Numerantium,
141, pp. 5–30.

[25] Li PC & Van Rees J, 2002, Lotto design tables, Journal of Combinatorial Designs, 10,
pp. 335–359.

[26] Li PC & Van Rees J, 2004, New constructions of lotto designs, Utilitas Mathematica, 58,
pp. 45–64.

[27] Li PC & Van Rees J, 2007, Lotto designs, pp. 512–519 in Colbourn CJ & Dinitz JH
(EDS), Handbook of combinatorial designs, CRC Press, Boca Raton (FL).

[28] LINDO Systems, 2008, LINGO 11.0 — Optimization modeling software for linear, non-
linear, and integer programming, [Online], [Cited October 21st, 2009], Available from
http://www.lindo.com

[29] Marcu D, 1986, An upperbound on the domination number of a graph, Mathematica
Scandinavica, 59(1), pp. 41–44.

[30] McCaffrey J, Using permutations in .NET for improved systems security, [Online],
[Cited October 1st, 2009], Available from http://msdn.microsoft.com/en-us/library
/aa302371.aspx

[31] National Lottery, 2009, Facts and figures, [Online], [Cited October 1st, 2009], Available
from http://www.nationallottery.co.za/lotto home/facts figures.asp

[32] National Lottery, 2009, Lotto results, [Online], [Cited October 1st, 2009], Available
from http://www.nationallottery.co.za/lotto home/results.asp?type=1



References 147

[33] Nurmela KJ & Österg̊ard PRJ, 1993, Upper bounds for covering designs by simulated
annealing, Congressus Numerantuim, 96, pp 93–111.

[34] Payan C, 1975, Sur le nombre d’absorption d’un graphe simple (French), Cahiers du Centre
d’Etudes de Recherche Operationnelle, 17, pp. 307–317.

[35] Ray R, 2008, The history of the lottery, [Online], [Cited October 1st, 2009], Available from
http://www.winningwithnumbers.com/lottery/history/

[36] Reed BA, 1996, Paths, stars and the number three, Combinatorics, Probability and Com-
puting, 5(3), pp. 277–295.

[37] Ross S, 2002, A first course in probability, 6th Edition, Prentice-Hall, Upper Saddle River
(NJ).

[38] Schönheim J, 1964, On coverings, Pacific Journal of Mathematics, 14, pp. 1405–1411.

[39] Schrijver A, 1979, Packing and covering in combinatorics, Mathematisch Centrum, Am-
sterdam.

[40] Soanes C & Stevenson A, 2003, Oxford dictionary of English, 2nd Edition, Oxford
University Press, Oxford.

[41] Thomson H, 2009, What’s luck got to do with it?, New Scientist, August, pp 35–39.

[42] Tromp B, 2009, Probe into Lotto player’s luck, The Star, 16 February, p. 3.

[43] Wikipedia, 2009, Lottery, [Online], [Cited October 1st, 2009], Available from http://en.
wikipedia.org/wiki/Lottery

[44] Wikipedia, 2009, South African National Lottery, [Online], [Cited October 1st, 2009],
Available from http://en.wikipedia.org/wiki/South African National Lottery

[45] Zaman A & Marsaglia G, 1990. Random selection of subsets with specified element
probabilities, Communications in Statistics: Theory and Methods, 19, pp. 4419–4434.



148 References



APPENDIX A

Some known lottery numbers

Table A.1: An excerpt from Ben Li’s lotto tables page [23]. In this table, all known complete lottery
numbers, denoted by the symbol L1, are presented for lotteries in which m > {n, t} > k and 5 ≤ m ≤ 10.

m n t k L1 m n t k L1 m n t k L1 m n t k L1 m n t k L1

5 3 3 2 2 8 5 5 3 2 9 5 8 3 1 10 3 9 2 1 10 7 7 5 3
5 3 4 2 1 8 5 5 4 5 9 5 8 4 1 10 4 3 2 4 10 7 7 6 8
5 4 3 2 1 8 5 6 2 1 9 6 3 2 2 10 4 4 2 3 10 7 8 2 1
5 4 4 2 1 8 5 6 3 1 9 6 4 2 2 10 4 4 3 14 10 7 8 3 1
5 4 4 3 1 8 5 6 4 3 9 6 4 3 3 10 4 5 2 2 10 7 8 4 1
6 3 3 2 2 8 5 7 2 1 9 6 5 2 1 10 4 5 3 7 10 7 8 5 1
6 3 4 2 2 8 5 7 3 1 9 6 5 3 2 10 4 6 2 2 10 7 8 6 3
6 3 5 2 1 8 5 7 4 1 9 6 5 4 3 10 4 6 3 4 10 7 9 2 1
6 4 3 2 2 8 6 3 2 2 9 6 6 2 1 10 4 7 2 2 10 7 9 3 1
6 4 4 2 1 8 6 4 2 1 9 6 6 3 1 10 4 7 3 2 10 7 9 4 1
6 4 4 3 3 8 6 4 3 3 9 6 6 4 3 10 4 8 2 1 10 7 9 5 1
6 4 5 2 1 8 6 5 2 1 9 6 6 5 7 10 4 8 3 2 10 7 9 6 1
6 4 5 3 1 8 6 5 3 1 9 6 7 2 1 10 4 9 2 1 10 8 3 2 2
6 5 3 2 1 8 6 5 4 3 9 6 7 3 1 10 4 9 3 1 10 8 4 2 1
6 5 4 2 1 8 6 6 2 1 9 6 7 4 1 10 5 3 2 2 10 8 4 3 3
6 5 4 3 1 8 6 6 3 1 9 6 7 5 3 10 5 4 2 2 10 8 5 2 1
6 5 5 2 1 8 6 6 4 1 9 6 8 2 1 10 5 4 3 7 10 8 5 3 1
6 5 5 3 1 8 6 6 5 4 9 6 8 3 1 10 5 5 2 2 10 8 5 4 3
6 5 5 4 1 8 6 7 2 1 9 6 8 4 1 10 5 5 3 2 10 8 6 2 1
7 3 3 2 4 8 6 7 3 1 9 6 8 5 1 10 5 5 4 14 10 8 6 3 1
7 3 4 2 2 8 6 7 4 1 9 7 3 2 2 10 5 6 2 2 10 8 6 4 1
7 3 5 2 2 8 6 7 5 1 9 7 4 2 1 10 5 6 3 2 10 8 6 5 4
7 3 6 2 1 8 7 3 2 1 9 7 4 3 3 10 5 6 4 7 10 8 7 2 1
7 4 3 2 2 8 7 4 2 1 9 7 5 2 1 10 5 7 2 1 10 8 7 3 1
7 4 4 2 2 8 7 4 3 1 9 7 5 3 1 10 5 7 3 2 10 8 7 4 1
7 4 4 3 4 8 7 5 2 1 9 7 5 4 3 10 5 7 4 2 10 8 7 5 1
7 4 5 2 1 8 7 5 3 1 9 7 6 2 1 10 5 8 2 1 10 8 7 6 4
7 4 5 3 2 8 7 5 4 1 9 7 6 3 1 10 5 8 3 1 10 8 8 2 1
7 4 6 2 1 8 7 6 2 1 9 7 6 4 1 10 5 8 4 2 10 8 8 3 1
7 4 6 3 1 8 7 6 3 1 9 7 6 5 4 10 5 9 2 1 10 8 8 4 1
7 5 3 2 2 8 7 6 4 1 9 7 7 2 1 10 5 9 3 1 10 8 8 5 1
7 5 4 2 1 8 7 6 5 1 9 7 7 3 1 10 5 9 4 1 10 8 8 6 1

149



150 Appendix A: Some known lottery numbers

Table A.1 – continued from previous page
m n t k L1 m n t k L1 m n t k L1 m n t k L1 m n t k L1

7 5 4 3 3 8 7 7 2 1 9 7 7 4 1 10 6 3 2 2 10 8 8 7 5
7 5 5 2 1 8 7 7 3 1 9 7 7 5 1 10 6 4 2 2 10 8 9 2 1
7 5 5 3 1 8 7 7 4 1 9 7 7 6 4 10 6 4 3 4 10 8 9 3 1
7 5 5 4 3 8 7 7 5 1 9 7 8 2 1 10 6 5 2 2 10 8 9 4 1
7 5 6 2 1 8 7 7 6 1 9 7 8 3 1 10 6 5 3 2 10 8 9 5 1
7 5 6 3 1 9 3 3 2 7 9 7 8 4 1 10 6 5 4 7 10 8 9 6 1
7 5 6 4 1 9 3 4 2 3 9 7 8 5 1 10 6 6 2 1 10 8 9 7 1
7 6 3 2 1 9 3 5 2 3 9 7 8 6 1 10 6 6 3 2 10 9 3 2 1
7 6 4 2 1 9 3 6 2 2 9 8 3 2 1 10 6 6 4 3 10 9 4 2 1
7 6 4 3 1 9 3 7 2 2 9 8 4 2 1 10 6 6 5 14 10 9 4 3 1
7 6 5 2 1 9 3 8 2 1 9 8 4 3 1 10 6 7 2 1 10 9 5 2 1
7 6 5 3 1 9 4 3 2 4 9 8 5 2 1 10 6 7 3 1 10 9 5 3 1
7 6 5 4 1 9 4 4 2 2 9 8 5 3 1 10 6 7 4 2 10 9 5 4 1
7 6 6 2 1 9 4 4 3 9 9 8 5 4 1 10 6 7 5 4 10 9 6 2 1
7 6 6 3 1 9 4 5 2 2 9 8 6 2 1 10 6 8 2 1 10 9 6 3 1
7 6 6 4 1 9 4 5 3 5 9 8 6 3 1 10 6 8 3 1 10 9 6 4 1
7 6 6 5 1 9 4 6 2 2 9 8 6 4 1 10 6 8 4 1 10 9 6 5 1
8 3 3 2 5 9 4 6 3 2 9 8 6 5 1 10 6 8 5 3 10 9 7 2 1
8 3 4 2 3 9 4 7 2 1 9 8 7 2 1 10 6 9 2 1 10 9 7 3 1
8 3 5 2 2 9 4 7 3 2 9 8 7 3 1 10 6 9 3 1 10 9 7 4 1
8 3 6 2 2 9 4 8 2 1 9 8 7 4 1 10 6 9 4 1 10 9 7 5 1
8 3 7 2 1 9 4 8 3 1 9 8 7 5 1 10 6 9 5 1 10 9 7 6 1
8 4 3 2 2 9 5 3 2 2 9 8 7 6 1 10 7 3 2 2 10 9 8 2 1
8 4 4 2 2 9 5 4 2 2 9 8 8 2 1 10 7 4 2 2 10 9 8 3 1
8 4 4 3 6 9 5 4 3 5 9 8 8 3 1 10 7 4 3 3 10 9 8 4 1
8 4 5 2 2 9 5 5 2 2 9 8 8 4 1 10 7 5 2 1 10 9 8 5 1
8 4 5 3 2 9 5 5 3 2 9 8 8 5 1 10 7 5 3 2 10 9 8 6 1
8 4 6 2 1 9 5 5 4 9 9 8 8 6 1 10 7 5 4 3 10 9 8 7 1
8 4 6 3 2 9 5 6 2 1 9 8 8 7 1 10 7 6 2 1 10 9 9 2 1
8 4 7 2 1 9 5 6 3 2 10 3 3 2 8 10 7 6 3 1 10 9 9 3 1
8 4 7 3 1 9 5 6 4 4 10 3 4 2 5 10 7 6 4 3 10 9 9 4 1
8 5 3 2 2 9 5 7 2 1 10 3 5 2 3 10 7 6 5 5 10 9 9 5 1
8 5 4 2 2 9 5 7 3 1 10 3 6 2 3 10 7 7 2 1 10 9 9 6 1
8 5 4 3 3 9 5 7 4 2 10 3 7 2 2 10 7 7 3 1 10 9 9 7 1
8 5 5 2 1 9 5 8 2 1 10 3 8 2 2 10 7 7 4 1 10 9 9 8 1



APPENDIX B

Incomplete lottery problem modelled as an ILP

Table B.1: Results obtained when solving for the value Lψ(m,n, t, k) when the incomplete lottery
problem is formulated as an ILP. The first column contains the value of the required probability-of-win
value, ψ. The second column contains an example of a playing set which at least achieves the required
probability-of-win value. The third column contains the actual probability of win value, ψ′, associated
with the playing set in the second column. The fourth column contains the associated number of branches
in the branch-and-bound tree. Finally, the fifth column contains the time in seconds required to find the
solution.

ψ Playing set ψ′ Branches Time
〈6, 3, 3, 2〉

0.5 {{1, 2, 3}} 0.5 0 0.019
1 {{1, 4, 6}, {2, 3, 5}} 1 0 0.009

〈7, 3, 3, 2〉
0.3 {{1, 2, 3}} 0.371 0 0.029
0.7 {{1, 4, 5}, {2, 3, 7}} 0.743 0 0.039
0.9 {{1, 2, 4}, {2, 4, 5}, {3, 6, 7}} 0.914 10 0.109
1 {{1, 2, 3}, {1, 3, 7}, {2, 3, 7}, {4, 5, 6}} 1 9 0.199

〈7, 3, 4, 2〉
0.6 {{1, 2, 3}} 0.629 0 0.029
1 {{1, 4, 5}, {2, 3, 6}} 1 0 0.009

〈8, 3, 3, 2〉
0.2 {{1, 2, 3}} 0.286 0 0.029
0.5 {{1, 7, 8}, {2, 4, 5}} 0.571 0 0.049
0.7 {{1, 2, 7}, {2, 6, 8}, {3, 4, 5}} 0.786 4 0.109
0.8 {{1, 2, 3}, {1, 5, 7}, {4, 6, 8}, {5, 7, 8}} 0.857 151 1.869
1 {{1, 3, 5}, {1, 3, 6}, {1, 3, 8}, {2, 4, 7}, {5, 6, 8}} 1 11 0.389

〈8, 3, 4, 2〉
0.5 {{1, 2, 3}} 0.5 0 0.029
0.8 {{1, 2, 4}, {3, 6, 7}} 0.871 0 0.099
1 {{1, 2, 3}, {4, 5, 8}, {4, 6, 7}} 1 0 0.079

〈8, 3, 5, 2〉
0.7 {{1, 2, 3}} 0.714 0 0.069
1 {{1, 3, 5}, {2, 4, 7}} 1 0 0.099

〈8, 4, 3, 2〉
0.5 {{1, 2, 3, 4}} 0.5 0 0.069
1 {{1, 2, 4, 8}, {3, 5, 6, 7}} 1 0 0.079

151



152 Appendix B: Incomplete lottery problem modelled as an ILP

Table B.1 – continued from previous page
ψ Playing set ψ′ Branches Time

〈8, 4, 4, 2〉
0.7 {{1, 2, 3, 4}} 0.757 0 0.109
1 {{1, 3, 7, 8}, {2, 3, 4, 5}} 1 0 0.069

〈8, 4, 4, 3〉
0.2 {{1, 2, 3, 4}} 0.243 0 0.079
0.4 {{1, 2, 5, 6}, {1, 3, 4, 7}} 0.486 0 0.059
0.6 {{1, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 7, 8}} 0.671 31 0.169
0.8 {{1, 4, 5, 6}, {1, 5, 6, 8}, {2, 3, 4, 8}, {2, 3, 6, 7}} 0.8 17 0.219
0.9 {{1, 2, 3, 5}, {1, 4, 6, 7}, {2, 3, 7, 8}, {2, 4, 5, 6}, 0.9 315 2.979
{3, 5, 7, 8}}

1 {{1, 2, 3, 5}, {1, 4, 5, 6}, {1, 4, 7, 8}, {2, 3, 6, 7}, 1 221 3.189
{2, 3, 6, 8}, {4, 5, 7, 8}}

〈9, 3, 3, 2〉
0.2 {{1, 2, 3}} 0.226 0 0.049
0.4 {{1, 2, 3}, {1, 4, 5}} 0.405 0 0.079
0.6 {{1, 3, 5}, {2, 3, 7}, {4, 6, 9}} 0.631 9 0.319
0.7 {{2, 3, 7}, {4, 5, 6}, {4, 5, 8}, {6, 8, 9}} 0.726 27 0.249
0.8 {{1, 2, 3}, {2, 4, 7}, {4, 8, 9}, {5, 6, 8}, {5, 7, 9}} 0.869 1 870 660 14 400
0.9 {{1, 4, 6}, {1, 4, 9}, {2, 3, 8}, {2, 5, 7}, {3, 7, 8}, 0.952 1 628 839 14 400
{5, 6, 9}}

1 {{1, 3, 9}, {1, 7, 9}, {2, 4, 8}, {2, 5, 8}, {2, 6, 8}, 1 1245 11.849
{3, 7, 8}, {4, 5, 6}}

〈9, 3, 4, 2〉
0.4 {{1, 2, 3}} 0.405 0 0.219
0.7 {{1, 2, 4}, {5, 7, 8}} 0.738 5 0.529
1 {{1, 3, 4}, {2, 5, 9}, {6, 7, 8}} 1 0 0.169

〈9, 3, 5, 2〉
0.5 {{1, 2, 3}} 0.595 0 0.109
0.9 {{2, 5, 9}, {6, 7, 8}} 0.929 2 0.599
1 {{1, 3, 4}, {2, 5, 9}, {2, 6, 8}} 1 33 2.979

〈9, 3, 6, 2〉
0.7 {{1, 2, 3}} 0.774 0 0.109
1 {{1, 3, 4}, {2, 5, 9}} 1 0 0.119

〈9, 4, 3, 2〉
0.4 {{1, 2, 3, 4}} 0.405 0 0.089
0.8 {{1, 2, 3, 5}, {4, 6, 7, 8}} 0.810 0 0.189
0.9 {{1, 5, 8, 9}, {2, 3, 4, 6}, {6, 7, 8, 9}} 0.929 3 0.429
1 {{1, 2, 3, 9}, {1, 4, 5, 8}, {2, 3, 8, 9}, {4, 5, 6, 7}} 1 800 9.329

〈9, 4, 4, 2〉
0.6 {{1, 2, 3, 4}} 0.643 0 0.189
1 {{1, 2, 6, 9}, {3, 5, 7, 8}} 1 0 0.379

〈9, 4, 4, 3〉
0.1 {{1, 2, 3, 4}} 0.167 0 1.949
0.3 {{1, 2, 5, 6}, {1, 3, 4, 8}} 0.333 0 1.669
0.5 {{1, 2, 3, 9}, {1, 4, 6, 7}, {4, 5, 8, 9}} 0.5 0 0.429
0.6 {{1, 2, 4, 9}, {1, 3, 5, 9}, {2, 3, 7, 8}, {3, 4, 6, 8}} 0.603 61 1.179
0.7 {{1, 2, 5, 9}, {1, 3, 6, 7}, {1, 6, 8, 9}, {2, 3, 4, 8}, 0.738 420 2.039



153

Table B.1 – continued from previous page
ψ Playing set ψ′ Branches Time
{4, 5, 6, 7}}

0.8 {{1, 2, 7, 8}, {1, 4, 5, 8}, {1, 4, 7, 9}, {2, 3, 4, 8}, 0.825 781 103 14 400
{2, 5, 6, 9}, {3, 5, 6, 7}}

0.9 {{1, 2, 4, 9}, {1, 3, 5, 7}, {1, 6, 7, 8}, {2, 3, 4, 8}, 0.904 886 618 14 400
{2, 3, 6, 9}, {4, 5, 6, 9}, {5, 7, 8, 9}}

1 {{1, 2, 5, 9}, {1, 3, 4, 5}, {1, 3, 6, 7}, {1, 3, 6, 8}, 1 41 491 4 256.259
{2, 3, 5, 9}, {2, 4, 6, 9}, {2, 4, 7, 8}, {4, 7, 8, 9},
{5, 6, 7, 8}}

〈9, 4, 5, 2〉
0.8 {{1, 2, 3, 4}} 0.833 0 0.369
1 {{1, 3, 6, 9}, {2, 5, 6, 7}} 1 0 0.269

〈9, 4, 5, 3〉
0.3 {{1, 2, 3, 4}} 0.357 0 0.249
0.7 {{1, 4, 7, 8}, {3, 5, 6, 9}} 0.714 0 0.289
0.8 {{1, 2, 3, 4}, {1, 2, 3, 5}, {6, 7, 8, 9}} 0.857 187 1.049
0.9 {{1, 2, 3, 6}, {1, 3, 4, 8}, {2, 5, 6, 8}, {4, 5, 7, 9}} 0.968 37 610 776.399
1 {{1, 2, 3, 8}, {1, 2, 4, 5}, {2, 3, 5, 8}, {3, 6, 7, 9}, 1 5 750 162.759
{6, 7, 8, 9}}

〈9, 4, 6, 3〉
0.5 {{1, 2, 3, 4}} 0.595 0 0.109
1 {{1, 3, 6, 9}, {4, 5, 7, 8}} 1 0 3.779

〈10, 3, 3, 2〉
0.1 {{1, 2, 3}} 0.183 0 0.199
0.3 {{1, 9, 10}, {2, 5, 7}} 0.367 0 0.169
0.5 {{2, 7, 9}, {3, 4, 5}, {6, 8, 10}} 0.55 1 0.249
0.6 {{1, 2, 3}, {1, 8, 9}, {4, 5, 9}, {6, 7, 8}} 0.633 1 0.239
0.7 {{1, 2, 5}, {1, 3, 9}, {2, 3, 8}, {4, 6, 9}, 0.758 471 987 14 400
{6, 7, 10}}

0.8 {{1, 4, 10}, {1, 5, 7}, {2, 3, 8}, {3, 4, 9}, 0.85 433 376 14 400
{5, 6, 10}, {6, 7, 9}}

0.9 {{1, 2, 3}, {1, 3, 9}, {2, 3, 9}, {4, 5, 8}, {4, 6, 7}, 0.9 753 363 14 400
{5, 7, 10}, {6, 8, 10}}

1 {{1, 2, 10}, {1, 3, 10}, {1, 7, 10}, {2, 3, 7}, 1 1 317 35.090
{4, 5, 6}, {4, 5, 8}, {4, 5, 9}, {6, 8, 9}}

〈10, 3, 4, 2〉
0.3 {{1, 2, 3}} 0.333 0 0.439
0.6 {{1, 2, 6}, {4, 8, 9}} 0.624 143 1.419
0.8 {{1, 4, 7}, {2, 3, 6}, {8, 9, 10}} 0.871 376 4.269
0.9 {{1, 2, 9}, {3, 4, 7}, {3, 6, 10}, {5, 8, 10}} 0.943 242 745 14 400
1 {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 7, 10}, 1 1 193 84.389
{6, 8, 9}}

〈10, 3, 5, 2〉
0.5 {{1, 2, 3}} 0.5 0 0.229
0.8 {{2, 4, 10}, {7, 8, 9}} 0.833 475 10.749
1 {{1, 6, 10}, {2, 4, 8}, {3, 5, 9}} 1 0 2.709

〈10, 3, 6, 2〉
0.6 {{1, 2, 3}} 0.667 0 0.549



154 Appendix B: Incomplete lottery problem modelled as an ILP

Table B.1 – continued from previous page
ψ Playing set ψ′ Branches Time
0.9 {{1, 5, 6}, {4, 8, 9}} 0.957 1 1.419
1 {{1, 2, 5}, {1, 3, 4}, {7, 9, 10}} 1 53 11.249

〈10, 3, 7, 2〉
0.8 {{1, 2, 3}} 0.817 0 0.199
1 {{1, 3, 4}, {2, 7, 10}} 1 0 0.309

〈10, 4, 3, 2〉
0.3 {{1, 2, 3, 4}} 0.333 0 0.239
0.6 {{1, 3, 4, 9}, {2, 5, 6, 10}} 0.667 0 0.529
0.8 {{1, 3, 4, 9}, {2, 6, 7, 10}, {4, 5, 6, 8}} 0.85 5 0.859
1 {{1, 2, 3, 5}, {4, 6, 8, 9}, {4, 7, 8, 10}, {6, 7, 9, 10}} 1 0 0.719

〈10, 4, 4, 2〉
0.5 {{1, 2, 3, 4}} 0.548 0 0.809
0.9 {{1, 2, 6, 9}, {3, 5, 7, 8}} 0.924 91 4.459
1 {{1, 2, 3, 8}, {2, 4, 5, 6}, {2, 7, 9, 10}} 1 65 90.379

〈10, 4, 4, 3〉
0.1 {{1, 2, 3, 4}} 0.119 0 0.299
0.2 {{1, 2, 3, 4}, {4, 6, 7, 10}} 0.238 0 0.689
0.3 {{1, 3, 4, 7}, {2, 5, 6, 9}, {6, 7, 8, 10}} 0.357 0 0.759
0.4 {{1, 3, 7, 8}, {1, 5, 6, 10}, {2, 6, 8, 9}, {3, 4, 5, 9}} 0.476 0 0.809
0.5 {{1, 2, 7, 8}, {1, 3, 5, 8}, {1, 4, 6, 7}, {2, 3, 4, 9}, 0.5 37 1.089
{2, 4, 6, 8}}

0.6 {{1, 2, 5, 6}, {1, 3, 4, 9}, {1, 5, 7, 9}, {2, 3, 7, 8}, 0.619 181 1.589
{4, 6, 7, 8}, {6, 7, 9, 10}}

0.7 {{1, 2, 3, 4}, {1, 2, 7, 8}, {1, 4, 5, 6}, {1, 6, 9, 10}, 0.719 117 214 14 400
{2, 5, 8, 9}, {3, 6, 7, 8}, {4, 7, 9, 10}}

0.8 {{1, 2, 3, 4}, {1, 3, 5, 10}, {1, 6, 7, 8}, {2, 5, 7, 9}, 0.81 148 392 14 400
{2, 6, 8, 10}, {3, 6, 7, 9}, {4, 5, 6, 9}, {4, 7, 8, 10}}

0.9 {{1, 2, 4, 9}, {1, 3, 9, 10}, {1, 4, 5, 8}, {1, 7, 8, 10}, 0.924 117 420 14 400
{2, 3, 5, 7}, {2, 3, 6, 8}, {2, 5, 6, 10}, {3, 4, 6, 7},
{4, 8, 9, 10}, {5, 6, 7, 9}}

1 {{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 5, 7, 9}, {1, 6, 7, 10}, 1 178 558 14 400
{1, 8, 9, 10}, {2, 3, 7, 8}, {2, 4, 6, 8}, {2, 5, 9, 10},
{2, 6, 7, 9}, {3, 4, 6, 9}, {3, 4, 7, 10}, {3, 5, 6, 8},
{3, 5, 6, 10}, {4, 5, 7, 8}}

〈10, 4, 5, 2〉
0.7 {{1, 2, 3, 4}} 0.738 0 0.719
1 {{1, 3, 8, 9}, {2, 4, 7, 10}} 1 0 5.249

〈10, 4, 5, 3〉
0.2 {{1, 2, 3, 4}} 0.262 0 0.390
0.5 {{1, 2, 8, 9}, {3, 4, 6, 7}} 0.524 0 0.790
0.7 {{1, 5, 6, 10}, {2, 3, 6, 8}, {4, 7, 9, 10}} 0.714 399 11.780
0.8 {{1, 2, 4, 8}, {2, 3, 7, 9}, {3, 8, 9, 10}, {4, 5, 6, 10}} 0.825 366 10.110
0.9 {{1, 2, 4, 9}, {1, 5, 6, 10}, {2, 3, 8, 10}, {3, 4, 7, 9}, 0.937 86 679 14 400
{5, 6, 7, 8}}

1 {{1, 2, 3, 6}, {1, 5, 7, 9}, {2, 4, 8, 10}, {3, 4, 5, 9}, 1 103 263 14 400
{3, 7, 8, 10}, {4, 6, 7, 8}, {5, 6, 9, 10}}

〈10, 4, 6, 2〉



155

Table B.1 – continued from previous page
ψ Playing set ψ′ Branches Time
0.8 {{1, 2, 3, 4}} 0.881 0 0.619
1 {{1, 2, 3, 10}, {2, 4, 5, 6}} 1 0 2.579

〈10, 4, 6, 3〉
0.4 {{1, 2, 3, 4}} 0.452 0 0.419
0.8 {{1, 5, 6, 7}, {3, 8, 9, 10}} 0.829 0 1.469
0.9 {{1, 4, 9, 10}, {2, 5, 9, 10}, {3, 6, 7, 8}} 0.971 3 767 2 128.359
1 {{1, 2, 3, 5}, {1, 2, 3, 6}, {2, 4, 5, 6}, {7, 8, 9, 10}} 1 4 442 1 063.409

〈10, 4, 7, 3〉
0.6 {{1, 2, 3, 4}} 0.667 0 0.489
1 {{1, 3, 4, 7}, {2, 8, 9, 10}} 1 0 11.459

〈10, 5, 3, 2〉
0.5 {{1, 2, 3, 4, 5}} 0.5 0 0.219
1 {{1, 4, 6, 8, 10}, {2, 3, 5, 7, 9}} 1 0 0.199

〈10, 5, 4, 2〉
0.7 {{1, 2, 3, 4, 5}} 0.738 0 0.609
1 {{1, 3, 4, 8, 10}, {5, 6, 7, 9, 10}} 1 0 50.979

〈10, 5, 4, 3〉
0.2 {{1, 2, 3, 4, 5}} 0.262 0 1.040
0.5 {{1, 2, 3, 4, 8}, {2, 5, 6, 7, 9}} 0.523 2 1.790
0.7 {{1, 3, 4, 6, 9}, {1, 5, 6, 8, 10}, {2, 4, 7, 9, 10}} 0.7 1 2.339
0.8 {{1, 3, 7, 8, 10}, {1, 4, 5, 6, 9}, {2, 3, 4, 5, 7}, 0.8 71 8.979
{2, 3, 5, 8, 10}}

0.9 {{1, 3, 4, 5, 6}, {1, 5, 8, 9, 10}, {2, 3, 7, 8, 9}, 0.919 51 446 14 400
{2, 4, 6, 7, 8}, {2, 4, 6, 7, 10}}

1 {{1, 2, 6, 8, 9}, {1, 3, 4, 5, 7}, {1, 3, 5, 7, 10}, 1 117 287 14 400
{2, 3, 4, 5, 8}, {2, 3, 4, 8, 10}, {2, 6, 7, 8, 9}
{4, 5, 6, 9, 10}}

〈10, 5, 5, 2〉
0.8 {{1, 2, 3, 4, 5}} 0.897 0 0.909
1 {{1, 2, 3, 5, 7}, {1, 3, 4, 6, 10}} 1 0 3.159

〈10, 5, 5, 3〉
0.5 {{1, 2, 3, 4, 5}} 0.5 0 0.469
1 {{1, 2, 5, 6, 8}, {3, 4, 7, 9, 10}} 1 0 0.459

〈10, 5, 5, 4〉
0.1 {{1, 2, 3, 4, 5}} 0.103 0 0.749
0.2 {{1, 2, 3, 4, 5}, {1, 4, 6, 7, 10}} 0.206 0 1.099
0.3 {{1, 2, 6, 7, 10}, {1, 3, 7, 8, 9}, {2, 3, 4, 5, 6}} 0.310 23 1.379
0.4 {{1, 2, 6, 7, 9}, {1, 3, 5, 6, 10}, {1, 4, 5, 7, 8}, 0.413 0 1.089
{2, 3, 4, 8, 9}}

0.5 {{1, 2, 4, 6, 8}, {1, 3, 5, 7, 8}, {1, 4, 7, 9, 10}, 0.516 65 3.029
{2, 3, 6, 7, 10}, {5, 6, 8, 9, 10}}

0.6 {{1, 2, 3, 4, 10}, {1, 3, 7, 8, 9}, {1, 4, 5, 6, 8}, 0.619 263 8.489
{2, 4, 6, 7, 9}, {2, 5, 7, 8, 10}, {3, 5, 6, 9, 10}}

0.7 {{1, 2, 4, 7, 10}, {1, 2, 5, 8, 9}, {1, 3, 5, 6, 7}, 0.714 106 521 14 400
{1, 4, 6, 8, 9}, {2, 3, 4, 7, 9}, {2, 3, 7, 9, 10},
{2, 4, 5, 6, 10}, {3, 4, 5, 8, 10}}

0.8 {{1, 2, 3, 5, 8}, {1, 2, 4, 8, 10}, {1, 2, 6, 7, 9}, 0.802 50 636 14 400



156 Appendix B: Incomplete lottery problem modelled as an ILP

Table B.1 – continued from previous page
ψ Playing set ψ′ Branches Time
{1, 3, 4, 5, 7}, {1, 3, 6, 9, 10}, {2, 4, 5, 6, 10},
{2, 5, 7, 9, 10}, {3, 6, 7, 8, 10}, {4, 5, 6, 8, 9}}

0.9 {{1, 2, 4, 7, 8}, {1, 2, 6, 7, 9}, {1, 3, 4, 5, 10}, 0.905 47 069 14 400
{1, 3, 4, 6, 7}, {1, 4, 6, 9, 10}, {1, 5, 6, 8, 9},
{2, 3, 4, 5, 9}, {2, 3, 6, 8, 10}, {2, 5, 6, 7, 10},
{3, 7, 8, 9, 10}, {4, 5, 6, 7, 8}, {5, 7, 8, 9, 10}}

1 {{1, 2, 3, 4, 6}, {1, 2, 4, 8, 10}, {1, 2, 5, 6, 10}, 1 59 592 14 400
{1, 3, 5, 7, 8}, {1, 3, 7, 9, 10}, {1, 4, 5, 7, 9},
{1, 6, 7, 8, 9}, {2, 3, 4, 8, 9}, {2, 3, 5, 6, 9},
{2, 5, 8, 9, 10}, {3, 4, 5, 7, 10}, {3, 6, 7, 8, 10},
{4, 5, 6, 7, 8}, {4, 6, 7, 9, 10}}



APPENDIX C

Resource utilisation problem modelled as an
ILP

Table C.1: Results obtained when solving for the value Ψ`(m,n, t, k) when the resource utilisation
problem is formulated as an ILP for small lottery instances. The first column contains the fixed playing
set cardinality `. The second column contains an example of a playing set which achieves the probability-
of-win value Ψ` in the third column. The fourth column contains the associated number of branches in
the branch-and-bound tree. Finally, the fifth column contains the time in seconds required to find the
solution.

` Playing set Ψ` Branches Time (secs)
〈6, 3, 3, 2〉

1 {{1, 2, 3}} 0.5 0 0.009
2 {{1, 2, 6}, {2, 3, 5}} 1 0 0.019

〈7, 3, 3, 2〉
1 {{3, 5, 7}} 0.371 0 0.029
2 {{1, 2, 4}, {3, 5, 7}} 0.743 0 0.039
3 {{1, 3, 4}, {1, 3, 7}, {2, 5, 6}} 0.914 156 0.669
4 {{1, 3, 5}, {1, 4, 7}, {2, 3, 6}, {4, 5, 7}} 1 0 0.029

〈7, 3, 4, 2〉
1 {{4, 5, 7}} 0.629 0 0.049
2 {{1, 2, 3}, {4, 6, 7}} 1 0 0.039

〈8, 3, 3, 2〉
1 {{5, 7, 8}} 0.286 0 0.059
2 {{1, 3, 4}, {2, 7, 8}} 0.571 0 0.089
3 {{1, 5, 7}, {2, 4, 6}, {3, 7, 8}} 0.786 19 0.409
4 {{1, 4, 5}, {2, 3, 6}, {2, 7, 8}, {3, 7, 8}} 0.893 1 508 5.589
5 {{1, 2, 5}, {1, 4, 5}, {1, 5, 8}, {2, 4, 8}, {3, 6, 7}} 1 0 0.059

〈8, 3, 4, 2〉
1 {{2, 3, 8}} 0.5 0 0.099
2 {{1, 4, 7}, {2, 6, 8}} 0.871 12 0.969
3 {{1, 3, 8}, {2, 5, 7}, {4, 6, 7}} 1 0 0.069

〈8, 3, 5, 2〉
1 {{3, 5, 6}} 0.714 0 0.079
2 {{1, 5, 8}, {3, 4, 7}} 1 0 0.059

157



158 Appendix C: Resource utilisation problem modelled as an ILP

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)

〈8, 4, 3, 2〉
1 {{4, 5, 7, 8}} 0.5 0 0.089
2 {{1, 2, 5, 6}, {3, 4, 7, 8}} 1 0 0.079

〈8, 4, 4, 2〉
1 {{3, 4, 6, 8}} 0.757 0 0.109
2 {{1, 2, 6, 8}, {3, 4, 5, 6}} 1 0 0.089

〈8, 4, 4, 3〉
1 {{4, 5, 7, 8}} 0.243 0 0.109
2 {{1, 2, 5, 8}, {3, 4, 6, 7}} 0.486 0 0.109
3 {{1, 2, 3, 4}, {1, 3, 5, 8}, {4, 6, 7, 8}} 0.671 12 776 76.799
4 {{1, 2, 5, 6}, {1, 3, 4, 8}, {2, 3, 4, 7}, {5, 6, 7, 8}} 0.857 1 685 15.859
5 {{1, 2, 3, 8}, {1, 2, 6, 7}, {3, 4, 5, 6}, {4, 5, 6, 8}, 0.914 34 210 131.859
{4, 5, 7, 8}}

6 {{1, 2, 3, 6}, {1, 4, 7, 8}, {1, 5, 7, 8}, {2, 3, 4, 5}, 1 14 0.209
{2, 4, 5, 6}, {3, 6, 7, 8}}

〈9, 3, 3, 2〉
1 {{1, 2, 9}} 0.226 0 0.119
2 {{2, 3, 4}, {5, 7, 8}} 0.452 0 0.119
3 {{1, 2, 4}, {3, 5, 6}, {7, 8, 9}} 0.679 2 0.269
4 {{1, 2, 5}, {2, 3, 8}, {4, 7, 9}, {5, 6, 8}} 0.774 77 226 753.929
5 {{1, 2, 4}, {1, 3, 6}, {2, 3, 5}, {4, 5, 6}, {7, 8, 9}} 0.893 43 161 386.869
6 {{1, 2, 3}, {1, 3, 6}, {2, 6, 8}, {4, 5, 9}, {4, 7, 8}, 0.952 85 587 491.509
{5, 7, 9}}

7 {{1, 2, 8}, {1, 3, 8}, {1, 5, 8}, {2, 3, 5}, {2, 4, 7}, 1 0 0.069
{4, 6, 9}, {6, 7, 9}}

〈9, 3, 4, 2〉
1 {{2, 3, 8}} 0.405 0 0.439
2 {{2, 3, 6}, {5, 7, 8}} 0.738 2 133 78.029
3 {{1, 2, 3}, {4, 8, 9}, {5, 6, 7}} 1 0 0.079

〈9, 3, 5, 2〉
1 {{2, 5, 9}} 0.595 0 0.319
2 {{1, 6, 8}, {5, 7, 9}} 0.929 16 1.989
3 {{1, 5, 8}, {2, 3, 4}, {6, 7, 9}} 1 0 0.089

〈9, 3, 6, 2〉
1 {{2, 4, 6}} 0.774 0 0.139
2 {{1, 5, 6}, {2, 3, 4}} 1 0 0.069

〈9, 4, 3, 2〉
1 {{3, 4, 8, 9}} 0.405 0 0.299
2 {{1, 2, 3, 8}, {4, 5, 6, 9}} 0.810 0 0.249
3 {{1, 5, 6, 8}, {2, 3, 4, 9}, {2, 3, 7, 9}} 0.952 438 10.139
4 {{1, 2, 3, 4}, {1, 2, 3, 8}, {1, 2, 4, 8}, {5, 6, 7, 9}} 1 0 0.079

〈9, 4, 4, 2〉
1 {{3, 5, 6, 9}} 0.643 0 0.509
2 {{1, 3, 5, 7}, {2, 4, 8, 9}} 1 0 0.129

〈9, 4, 4, 3〉
1 {{5, 7, 8, 9}} 0.167 0 0.319
2 {{1, 3, 8, 9}, {3, 4, 6, 7}} 0.333 0 0.368



159

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)
3 {{1, 3, 5, 7}, {2, 4, 5, 6}, {6, 7, 8, 9}} 0.5 0 0.449
4 {{1, 2, 3, 9}, {1, 2, 6, 8}, {3, 4, 5, 6}, {4, 7, 8, 9}} 0.635 325 782 9 819.239
5 {{1, 2, 7, 9}, {1, 6, 7, 8}, {2, 4, 5, 8}, {3, 4, 6, 9}, 0.738 277 847 14 400
{3, 5, 7, 8}}

6 {{1, 2, 3, 6}, {1, 4, 6, 9}, {2, 4, 6, 7}, {2, 5, 8, 9}, 0.825 353 245 14 400
{3, 4, 5, 8}, {3, 7, 8, 9}}

7 {{1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 8}, {1, 7, 8, 9}, 0.913 428 601 14 400
{2, 3, 4, 9}, {2, 3, 5, 8}, {2, 5, 6, 9}}

8 {{1, 2, 8, 9}, {1, 3, 4, 9}, {1, 5, 6, 7}, {2, 3, 6, 7}, 0.960 657 794 144 00
{2, 4, 5, 6}, {2, 4, 5, 7}, {3, 5, 8, 9}, {4, 6, 7, 8}}

9 {{1, 2, 5, 7}, {1, 3, 4, 7}, {1, 4, 5, 6}, {1, 6, 8, 9}, 1 156 1.559
{2, 3, 4, 9}, {2, 3, 6, 8}, {2, 4, 7, 8}, {3, 5, 8, 9},
{5, 6, 7, 9}}

〈9, 4, 5, 2〉
1 {{2, 4, 6, 8}} 0.833 0 0.459
2 {{1, 2, 3, 6}, {1, 4, 5, 7}} 1 0 0.139

〈9, 4, 5, 3〉
1 {{4, 5, 6, 7}} 0.357 0 0.409
2 {{2, 4, 8, 9}, {3, 5, 6, 7}} 0.714 0 0.469
3 {{1, 3, 6, 9}, {2, 5, 7, 8}, {3, 4, 5, 8}} 0.857 54 186 1 144.269
4 {{1, 6, 7, 8}, {2, 3, 7, 8}, {2, 4, 5, 9}, {3, 4, 5, 9}} 0.976 18 238 271.479
5 {{1, 2, 3, 4}, {1, 4, 5, 8}, {2, 3, 5, 6}, {2, 6, 7, 9}, 1 3 0.229
{3, 7, 8, 9}}

〈9, 4, 6, 3〉
1 {{1, 3, 4, 6}} 0.595 0 0.289
2 {{1, 3, 7, 9}, {2, 4, 5, 8}} 1 0 0.159

〈10, 3, 3, 2〉
1 {{4, 5, 8}} 0.183 0 0.439
2 {{1, 5, 9}, {2, 7, 8}} 0.367 0 0.389
3 {{2, 5, 7}, {3, 4, 8}, {6, 9, 10}} 0.55 0 0.439
4 {{1, 3, 4}, {2, 4, 8}, {2, 6, 9}, {5, 7, 10}} 0.667 394 983 14 400
5 {{1, 5, 6}, {2, 3, 7}, {2, 8, 9}, {3, 4, 8}, {7, 9, 10}} 0.767 312 622 14 400
6 {{1, 3, 5}, {1, 6, 7}, {2, 9, 10}, {3, 4, 7}, {4, 5, 6}, 0.85 417 227 14 400
{8, 9, 10}}

7 {{1, 2, 3}, {1, 8, 9}, {2, 4, 5}, {3, 4, 10}, {5, 6, 10}, 0.917 799 315 14 400
{5, 7, 9}, {6, 7, 8}}

8 {{1, 2, 3}, {1, 3, 9}, {1, 3, 10}, {2, 9, 10}, {4, 5, 7}, 1 0 0.339
{4, 6, 8}, {5, 6, 8}, {6, 7, 8}}

〈10, 3, 4, 2〉
1 {{3, 5, 6}} 0.333 0 1.039
2 {{1, 3, 7}, {5, 6, 9}} 0.624 8 142 1 585.749
3 {{1, 5, 8}, {2, 7, 9}, {4, 6, 10}} 0.871 151 803 14 400
4 {{1, 2, 3}, {4, 6, 9}, {5, 7, 10}, {5, 8, 10}} 0.957 27 230 1 316.078
5 {{1, 2, 6}, {1, 3, 5}, {3, 8, 10}, {4, 7, 9}, {5, 8, 10}} 1 0 0.198

〈10, 3, 5, 2〉
1 {{2, 5, 10}} 0.5 0 0.968
2 {{3, 5, 9}, {4, 7, 10}} 0.833 111 722 2 686.248



160 Appendix C: Resource utilisation problem modelled as an ILP

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)
3 {{1, 2, 3}, {4, 5, 10}, {6, 7, 9}} 1 0 0.258

〈10, 3, 6, 2〉
1 {{1, 3, 6}} 0.667 0 1.109
2 {{1, 5, 6}, {3, 8, 10}} 0.957 26 6.249
3 {{1, 4, 6}, {2, 5, 9}, {7, 9, 10}} 1 0 0.209

〈10, 3, 7, 2〉
1 {{1, 2, 8}} 0.817 0 0.389
2 {{1, 5, 6}, {3, 4, 10}} 1 0 0.129

〈10, 4, 3, 2〉
1 {{1, 4, 6, 9}} 0.333 0 0.859
2 {{1, 4, 6, 8}, {3, 5, 9, 10}} 0.667 0 1.149
3 {{1, 6, 7, 8}, {2, 3, 4, 9}, {5, 6, 8, 10}} 0.867 59 099 2 260.909
4 {{1, 2, 5, 7}, {3, 4, 6, 8}, {3, 8, 9, 10}, {4, 6, 9, 10}} 1 0 0.229

〈10, 4, 4, 2〉
1 {{2, 3, 4, 10}} 0.548 0 2.069
2 {{1, 3, 7, 9}, {4, 6, 8, 10}} 0.924 36 133.439
3 {{1, 7, 8, 9}, {2, 4, 7, 10}, {3, 4, 5, 6}} 1 0 0.489

〈10, 4, 4, 3〉
1 {{5, 8, 9, 10}} 0.119 0 1.249
2 {{1, 3, 7, 9}, {5, 8, 9, 10}} 0.238 0 1.259
3 {{1, 2, 7, 9}, {3, 6, 8, 9}, {4, 7, 8, 10}} 0.357 1 2.099
4 {{1, 3, 6, 9}, {1, 4, 5, 10}, {2, 3, 8, 10}, {5, 7, 8, 9}} 0.476 1 2.029
5 {{1, 2, 4, 5}, {1, 3, 6, 8}, {2, 3, 7, 10}, {4, 6, 9, 10}, 0.595 6 2.999
{5, 7, 8, 9}}

6 {{1, 2, 3, 10}, {1, 6, 7, 9}, {2, 4, 7, 8}, {3, 5, 8, 9}, 0.662 90 150 14 400
{4, 6, 9, 10}, {5, 6, 7, 10}}

7 {{1, 2, 3, 7}, {1, 3, 6, 9}, {1, 4, 8, 10}, {2, 4, 5, 6}, 0.743 69 869 14 400
{2, 5, 8, 9}, {4, 5, 7, 9}, {6, 7, 8, 10}}

8 {{1, 2, 4, 9}, {1, 2, 6, 8}, {1, 5, 8, 9}, {2, 3, 5, 7}, 0.810 57 677 14 400
{2, 3, 8, 10}, {3, 4, 7, 8}, {4, 5, 6, 10}, {6, 7, 9, 10}}

9 {{1, 2, 3, 4}, {1, 3, 8, 9}, {1, 5, 6, 9}, {1, 5, 7, 10}, 0.862 81 900 14 400
{2, 3, 9, 10}, {2, 4, 7, 9}, {2, 6, 7, 8}, {3, 4, 6, 7},
{4, 5, 8, 10}}

10 {{1, 2, 5, 7}, {1, 3, 5, 6}, {1, 4, 6, 7}, {1, 8, 9, 10}, 0.910 146 793 14 400
{2, 3, 4, 8}, {2, 3, 4, 9}, {2, 6, 9, 10}, {3, 5, 7, 10},
{4, 5, 8, 10}, {6, 7, 8, 9}}

11 {{1, 2, 4, 6}, {1, 3, 5, 8}, {1, 3, 7, 9}, {1, 4, 5, 9}, 0.948 136 449 14 400
{1, 7, 8, 10}, {2, 3, 4, 10}, {2, 5, 6, 7}, {2, 5, 9, 10},
{3, 6, 8, 9}, {4, 5, 6, 10}, {4, 7, 8, 9}}

12 {{1, 2, 5, 7}, {1, 3, 8, 9}, {1, 4, 6, 7}, {1, 5, 9, 10}, 0.971 210 837 14 400
{2, 3, 6, 10}, {2, 4, 6, 9}, {2, 4, 8, 10}, {2, 5, 7, 9},
{3, 4, 5, 8}, {3, 4, 7, 10}, {3, 5, 6, 8}, {6, 7, 8, 10}}

13 {{1, 2, 5, 9}, {1, 2, 7, 8}, {1, 3, 6, 10}, {1, 4, 5, 6}, 0.990 204 147 14 400
{1, 4, 8, 9}, {2, 3, 4, 10}, {2, 5, 6, 8}, {2, 6, 7, 9},
{3, 4, 6, 7}, {3, 5, 7, 9}, {3, 5, 8, 10}, {4, 5, 7, 10},
{6, 8, 9, 10}}

14 {{1, 2, 3, 8}, {1, 4, 5, 7}, {1, 4, 6, 10}, {1, 5, 6, 9}, 1 543 32.199



161

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)
{1, 5, 7, 10}, {1, 7, 9, 10}, {2, 3, 4, 9}, {2, 3, 5, 9},
{2, 4, 5, 10}, {2, 6, 7, 8}, {3, 4, 5, 8}, {3, 6, 7, 10},
{4, 7, 8, 9}, {6, 8, 9, 10}}

〈10, 4, 5, 2〉
1 {{1, 4, 5, 9}} 0.738 0 2.009
2 {{1, 2, 6, 9}, {2, 3, 5, 9}} 1 0 0.319

〈10, 4, 5, 3〉
1 {{3, 4, 8, 10}} 0.262 0 5.579
2 {{1, 4, 8, 10}, {2, 3, 5, 7}} 0.524 0 2.599
3 {{1, 2, 6, 9}, {3, 5, 8, 10}, {4, 5, 7, 9}} 0.714 71 736 14 400
4 {{1, 5, 7, 9}, {2, 3, 4, 5}, {3, 6, 7, 8}, {4, 8, 9, 10}} 0.833 47 849 14 400
5 {{1, 2, 3, 6}, {1, 7, 9, 10}, {2, 4, 8, 9}, {3, 5, 8, 10}, 0.952 79 900 14 400
{4, 5, 6, 7}}

6 {{1, 2, 4, 7}, {1, 2, 9, 10}, {3, 4, 5, 10}, {3, 5, 7, 9}, 0.976 127 812 14 400
{4, 6, 8, 9}, {6, 7, 8, 10}}

7 {{1, 2, 7, 8}, {1, 3, 5, 10}, {1, 4, 6, 9}, {2, 3, 6, 9}, 1 18 3.240
{2, 4, 5, 9}, {4, 7, 8, 10}, {5, 6, 7, 8}}

〈10, 4, 6, 2〉
1 {{1, 4, 6, 8}} 0.881 0 3.059
2 {{1, 2, 3, 5}, {3, 4, 6, 7}} 1 0 0.639

〈10, 4, 6, 3〉
1 {{2, 3, 5, 6}} 0.452 0 2.760
2 {{1, 4, 7, 8}, {3, 5, 6, 9}} 0.829 77 522 10 260.720
3 {{1, 2, 5, 6}, {2, 3, 5, 7}, {4, 8, 9, 10}} 0.971 40 478 2 844.430
4 {{1, 2, 3, 7}, {1, 2, 5, 6}, {1, 3, 5, 6}, {4, 8, 9, 10}} 1 0 0.340

〈10, 4, 7, 3〉
1 {{1, 4, 5, 7}} 0.667 0 1.069
2 {{1, 2, 4, 5}, {3, 7, 8, 10}} 1 0 0.389

〈10, 5, 3, 2〉
1 {{1, 2, 4, 6, 10}} 0.5 0 1.169
2 {{1, 2, 5, 6, 8}, {3, 4, 7, 9, 10}} 1 0 0.519

〈10, 5, 4, 2〉
1 {{1, 5, 6, 7, 9}} 0.738 0 3.389
2 {{1, 2, 3, 8, 10}, {2, 4, 5, 7, 9}} 1 0 0.729

〈10, 5, 4, 3〉
1 {{1, 2, 3, 4, 5}} 0.262 0 2.359
2 {{1, 2, 3, 5, 6}, {1, 4, 8, 9, 10}} 0.524 0 4.689
3 {{1, 2, 4, 5, 10}, {3, 5, 7, 8, 9}, {4, 6, 8, 9, 10}} 0.7 56 333 14 400
4 {{1, 4, 7, 8, 10}, {1, 5, 6, 7, 9}, {2, 3, 4, 6, 9}, 0.876 82 174 14 400
{2, 3, 5, 8, 10}}

5 {{1, 3, 4, 5, 7}, {1, 3, 6, 9, 10}, {2, 3, 7, 8, 10}, 0.924 104 717 14 400
{2, 4, 6, 8, 9}, {2, 5, 6, 8, 9}}

6 {{1, 2, 5, 6, 9}, {1, 3, 4, 7, 8}, {1, 5, 7, 9, 10}, 0.986 130 990 14 400
{2, 3, 4, 8, 10}, {2, 5, 6, 7, 9}, {3, 4, 6, 8, 10}}

7 {{1, 2, 3, 4, 8}, {1, 4, 5, 9, 10}, {1, 4, 7, 9, 10}, 1 3 1.099
{1, 5, 6, 7, 10}, {2, 3, 5, 7, 8}, {2, 4, 6, 8, 9},



162 Appendix C: Resource utilisation problem modelled as an ILP

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)
{3, 4, 6, 9, 10}}

〈10, 5, 5, 2〉
1 {{1, 6, 7, 8, 10}} 0.897 0 5.419
2 {{1, 2, 3, 6, 7}, {2, 4, 5, 7, 10}} 1 0 0.919

〈10, 5, 5, 3〉
1 {{2, 3, 4, 5, 9}} 0.5 0 2.049
2 {{1, 2, 3, 6, 7}, {4, 5, 8, 9, 10}} 1 0 0.799

〈10, 5, 5, 4〉
1 {{1, 3, 6, 8, 10}} 0.103 0 1.999
2 {{2, 4, 6, 8, 10}, {3, 4, 6, 7, 9}} 0.206 0 3.599
3 {{1, 2, 3, 8, 9}, {1, 2, 5, 6, 10}, {4, 6, 7, 9, 10}} 0.31 0 1.819
4 {{1, 2, 4, 8, 9}, {1, 3, 4, 6, 10}, {2, 5, 6, 7, 10}, 0.413 1 3.929
{3, 5, 7, 8, 9}}

5 {{1, 2, 5, 8, 9}, {1, 3, 4, 5, 7}, {1, 6, 7, 8, 10}, 0.516 1 5.989
{2, 3, 6, 7, 9}, {4, 5, 6, 9, 10}}

6 {{1, 2, 4, 8, 9}, {1, 3, 7, 8, 10}, {1, 5, 6, 9, 10}, 0.619 0 5.999
{2, 3, 5, 6, 8}, {2, 4, 5, 7, 10}, {3, 4, 6, 7, 9}}

7 {{1, 2, 3, 4, 7}, {1, 4, 5, 8, 9}, {1, 6, 7, 9, 10}, 0.675 49 712 14 400
{2, 3, 6, 8, 9}, {2, 4, 5, 6, 10}, {3, 5, 7, 8, 10},
{4, 5, 6, 7, 9}}

8 {{1, 2, 4, 5, 10}, {1, 2, 6, 8, 9}, {1, 3, 4, 6, 9}, 0.746 38 233 14 400
{1, 3, 7, 8, 10}, {2, 3, 4, 5, 8}, {2, 3, 5, 6, 7},
{2, 4, 7, 9, 10}, {5, 6, 8, 9, 10}}

9 {{1, 2, 7, 8, 9}, {1, 3, 4, 9, 10}, {1, 3, 6, 7, 8}, 0.806 30 816 14 400
{1, 4, 5, 8, 10}, {1, 5, 6, 9, 10}, {2, 3, 5, 7, 10},
{2, 3, 5, 8, 9}, {2, 4, 6, 8, 10}, {4, 5, 6, 7, 9}}

10 {{1, 2, 4, 5, 7}, {1, 2, 5, 6, 8}, {1, 3, 4, 8, 9}, 0.873 73 107 14 400
{1, 3, 5, 9, 10}, {1, 6, 7, 8, 10}, {2, 3, 4, 8, 10},
{2, 3, 6, 7, 9}, {2, 4, 6, 9, 10}, {3, 4, 5, 6, 7},
{5, 7, 8, 9, 10}}

11 {{1, 2, 3, 5, 8}, {1, 2, 4, 8, 9}, {1, 2, 6, 7, 9}, 0.897 77 725 14 400
{1, 3, 5, 7, 9}, {1, 3, 6, 8, 10}, {1, 4, 5, 7, 10},
{2, 3, 4, 5, 6}, {2, 3, 4, 9, 10}, {2, 5, 7, 8, 10},
{3, 4, 6, 7, 8}, {5, 6, 8, 9, 10}}

12 {{1, 2, 3, 9, 10}, {1, 2, 4, 7, 8}, {1, 2, 5, 6, 9}, 0.929 85 107 14 400
{1, 3, 4, 6, 7}, {1, 4, 5, 8, 10}, {1, 5, 6, 7, 10},
{2, 3, 4, 5, 7}, {2, 3, 6, 8, 10}, {2, 4, 6, 9, 10},
{3, 4, 5, 8, 9}, {3, 6, 7, 8, 9}, {5, 7, 8, 9, 10}}

13 {{1, 2, 3, 6, 7}, {1, 2, 4, 5, 9}, {1, 2, 7, 8, 10}, 0.96 88 888 14 400
{1, 3, 4, 9, 10}, {1, 4, 6, 7, 8}, {1, 5, 6, 9, 10},
{2, 3, 4, 8, 9}, {2, 3, 5, 7, 10}, {2, 4, 6, 9, 10},
{2, 5, 6, 8, 9}, {3, 4, 5, 6, 7}, {3, 6, 8, 9, 10},
{4, 5, 7, 8, 10}}

14 {{1, 2, 3, 5, 7}, {1, 2, 3, 6, 8}, {1, 2, 6, 7, 10}, 1 6 486 741.550
{1, 3, 4, 5, 8}, {1, 4, 5, 7, 10}, {1, 4, 6, 8, 10},
{1, 5, 6, 7, 8}, {2, 3, 4, 9, 10}, {2, 4, 5, 6, 9},
{2, 4, 7, 8, 9}, {2, 5, 8, 9, 10}, {3, 4, 6, 7, 9},



163

Table C.1 – continued from previous page
` Playing set Ψ` Branches Time (secs)
{3, 5, 6, 9, 10}, {3, 7, 8, 9, 10}}



164 Appendix C: Resource utilisation problem modelled as an ILP



APPENDIX D

Programming code

This appendix contains the C# programming code for the implementation of the exhaustive
enumeration lottery tree presented in Chapter 5.

using System;

using System.Collections;

using System.Linq;

using System.Text;

using System.IO;

namespace permutations

{

public class Node

{

public ArrayList children; //list of children in the node

public ArrayList tempchildren; //2nd list of chuildren

public int[] arrX; //Vector X representing an overlapping playing set structure

public int sz;// size of the array

public bool TorF; //binary value of the node

public ArrayList MListT; //D_T

public ArrayList MListF; //D_F

public static int count = 0;

public static Node New(int size)

{

return new Node(size);

}

public Node(int size)

{

//initialise the member variables of the Node

count++;

sz = size;

arrX = new int[sz];

children = new ArrayList();

tempchildren = new ArrayList();

MListT = new ArrayList();

MListF = new ArrayList();

TorF = false;

}

//add a child to the 1st list of children

public void AddChild(Node child)

{

children.Add(child);

}

//add a child to the 2nd list of children

public void AddTempChild(Node child)

{

if (child.getTorF() == true)

{

MListT.Add(M(child));

}

else

{

165



166 Appendix D: Programming code

MListF.Add(M(child));

}

tempchildren.Add(child);

}

//set the value of vetor X

public void setarrX(int[] newArray)

{

int i;

for (i = 0; i < sz; i++)

{

arrX[i] = newArray[i];

}

}

//set binary flag of node

public void setTorF(bool boolval)

{

TorF = boolval;

}

//retrieve binary flag of node

public bool getTorF()

{

return TorF;

}

//retrieve vector X

public int[] getArrX()

{

return arrX;

}

//output vector X

public void printarrX()

{

int i;

Console.Write("(");

for (i = 0; i < sz; i++)

{

if (i > 0)

{

Console.Write(", ");

}

Console.Write("{0}", arrX[i]);

}

Console.WriteLine(")");

}

//print the 2nd set of children

public void printTempChildren()

{

int j;

for (j = 0; j < tempchildren.Count; j++)

{

Console.Write("tempchild: ");

Node tempNode = (Node)tempchildren[j];

tempNode.printarrX();

Console.WriteLine("{0}",tempNode.TorF);

}

}

//print 1st set of children

public void printChildren()

{

int j;

for (j = 0; j < children.Count; j++)

{

Console.Write("child: ");

Node tempNode = (Node)children[j];

tempNode.printarrX();

Console.WriteLine("{0}", tempNode.getPsi());

}

}

//retrieve the number fo children

public int getNumChildren()

{



167

return children.Count;

}

//retrieve the probability-of-win value associated with the node

public double getPsi()

{

double numerator, denominator;

numerator = 0;

denominator = 0;

for (int i = 0; i < MListT.Count; i++)

{

numerator += (double)MListT[i];

}

for (int i = 0; i < MListF.Count; i++)

{

denominator += (double)MListF[i];

}

if (numerator == 0)

{

return 0;

}

else

{

return numerator / (numerator + denominator);

}

}

//the function M(X) defined in Ch5

public double M(Node X)

{

int i;

double product=1;

for (i = 0; i < X.sz; i++)

{

product *= Program.factorial(X.arrX[i]);

}

return (Program.factorial(Program.m)/ product);

}

}

class Program

{

public static int m;

public static int n;

public static int t;

public static int k;

public static int ell;

public static int ell1;

public static double[] probabilities;

public static int[] numStructures;

public static void Main(string[] args)

{

//initialise the parameters of the lottery <m,n,t,k>

m = 5;

n = 3;

t = 3;

k = 2;

//The fixed playing set cardinality

ell = 3;

//The complete lottery number L_1(m,n,t,k)

ell1 =3;

//output the lottery parameters

Console.WriteLine("<{0},{1},{2},{3}> l <= {4}", m, n, t, k, ell);

probabilities = new double[ell]; //a list of the highest probability of win value at each level of the tree

numStructures = new int[ell + 1];//a list of the value of the lottery charactersation number at each level of the tree

for (int p = 0; p < probabilities.Length; p++)

{

probabilities[p] = 0;

numStructures[p] = 0;

}

DateTime startTime = DateTime.Now; //initialise the start time of execution



168 Appendix D: Programming code

//initialise the root node of the lottery tree

int[] arr = new int[2];

Node rootNode = Node.New(2);

arr[0] = m - n;

arr[1] = n;

rootNode.setarrX(arr);

//Build the lottery tree

LevelK(n, rootNode, 2, ell);

//Record the execution time

DateTime stopTime = DateTime.Now;

TimeSpan duration = stopTime - startTime;

//Output the results

printTree(rootNode);

Console.WriteLine("\n\n\n");

for (int p = 0; p < numStructures.Length; p++)

{

Console.WriteLine("Nodes at level {0}: {1}",p+1, numStructures[p]);

}

for (int p = 0; p < probabilities.Length; p++)

{

if (p == 0)

{

Console.WriteLine("Tickets: {0}, Probability: {1}", p + 1, probabilities[p]);

}

if (p > 0 && probabilities[p - 1] != 1)

{

Console.WriteLine("Tickets: {0}, Probability: {1}", p + 1, probabilities[p]);

}

}

Console.WriteLine("\n\n{0}", duration);

Console.WriteLine("\n\nDone");

Console.ReadLine();

}

// |arrY| = 2* |arrX|, |arrX| = sz

private class CalcV

{

public int sz;

public int[] arrY;

public int[] arrX;

private int iter;

public CalcV(int sz, ref int[] arrY, ref int[] arrX)

{

this.sz = sz; this.arrY = arrY; this.arrX = arrX;

this.iter = 0;

}

//Build all possible child vectors from the parent vextor arrX

public bool get()

{

int iter2 = iter;

for (int i = 1; i <= sz; i++)

{

int a = arrX[sz - i] + 1;

arrY[2 * sz - i] = iter2 % a;

iter2 /= a;

}

if (iter2 > 0)

{

return false;

}

for (int i = 0; i < sz; i++)

{

arrY[i] = arrX[i] - arrY[sz + i];

}

iter++;

return true;

}

}

static void LevelK(int n, Node parentNode, int sz, int max)

{



169

if (max == 0)

{

return;

}

int sz2 = sz*2;

int[] arrX = parentNode.getArrX();

int[] arrY = new int[sz2];

CalcV calcv = new CalcV(sz, ref arrY, ref arrX);

while (calcv.get()) //calculate the values for array Y from the values in array X.

{

int sum = 0;

for (int i = sz; i < sz2; i++)

{

sum += arrY[i];

}

if (sum == n && arrY[sz * 2 - 1] <= n) //add a new child

{

Node newChild = Node.New(sz2);

newChild.setarrX(arrY);

int totest=-1;

if (arrY.Length >= 8)

{

totest= getL2Parent(arrY);

}

bool boolval = false;

bool isValid = true;

int l;

int kSum;

kSum = 0;

int cntr;

//explore every element in the new vector and sum all its elements where the

//extra ticket overlaps one of the other tickets. If the sum>=k, then

//the extra ticket has more than k numbers in common with one of the tickets

//in the current playing set, and it is a valid overlapping of a winning ticket

//with the playing set.

for (l = sz + 1; (l < sz2); l++)

{

if(isValidBinary(l))

{

kSum = 0;

for (cntr = l; cntr < sz2; cntr++)

{

if ((int)(l & cntr) == l)

{

kSum = kSum + newChild.arrX[cntr];

}

}

if (kSum >= k) //the child vector passes the domination test

{

boolval = true;

}

if (kSum >= n) //the new ticket in the child vector overlaps exactly

{ //with one of the original tickets, meaning the child

//vector does not need to be added to the tree

isValid = false;

}

//check for redundant structures which may be omitted from the tree

if ((totest >= 0) && isValid)

{

if (kSum < totest)

{

isValid = false;

}

}

}

}

//set binary flag of node

if (boolval == true)

{

newChild.setTorF(true);



170 Appendix D: Programming code

}

//add new child to 2nd list of children

if (sum == t)

{

parentNode.AddTempChild(newChild);

}

if (arrY.Length <= Math.Pow(2, ell))

{

//apply pruning rules

if (isValid && !toPrune(arrY))

{

if (arrY.Length <= 4)

{

parentNode.AddChild(newChild);

LevelK(n, newChild, sz2, max - 1);

}

//ensure vector is not a duplicate before adding to the tree

else if (!isDuplicate(arrY))

{

parentNode.AddChild(newChild);

LevelK(n, newChild, sz2, max - 1);

}

if ((parentNode.getPsi() == 1) || (arrY.Length >= Math.Pow(ell, 2)))

{

max = 0;

}

}

}

}

if (sum == t && arrY[sz * 2 - 1] <= t && n != t) //overlap a winning ticket of size t.

{

Node newChild = Node.New(sz2);

newChild.setarrX(arrY);

bool boolval = false;

int l;

int kSum;

kSum = 0;

int cntr;

for (l = sz + 1; (l < sz2) && (boolval == false); l++)

{

if (isValidBinary(l))

{

kSum = 0;

for (cntr = l; cntr < sz2; cntr++)

{

if ((int)(l & cntr) == l)

{

kSum = kSum + newChild.arrX[cntr];

}

}

if (kSum >= k) //the domination test is passed

{

boolval = true;

}

}

}

//set the binary value of the node

if (boolval == true)

{

newChild.setTorF(true);

}

parentNode.AddTempChild(newChild);

}

}

}

//compute the number of elements in compartment x11 of

//the parent node at level 2 of the tree

static int getL2Parent(int[] vector)

{

ArrayList arr1 = new ArrayList();



171

ArrayList arr2 = new ArrayList();

foreach (int j in vector)

{

arr1.Add(j);

}

while(true)

{

for (int i = 0; i < arr1.Count/2; i++)

{

arr2.Add((int)arr1[i] + (int)arr1[i + arr1.Count/2]);

}

if (arr2.Count == 4)

{

return (int)arr2[3];

}

else

{

ArrayList tmp = arr1;

arr1 = arr2;

arr2 = tmp;

arr2.Clear();

}

}

}

//test if an entry in a child vector needs to be considered

//used in LevelK(..)

public static bool isValidBinary(int myNum)

{

char[] toTest = ToBinary(myNum);

int sum = 0;

for (int i = 0; i < toTest.Length; i++)

{

if (toTest[i] == ’1’)

{

sum++;

}

}

if (sum == 2)

{

return true;

}

else

{

return false;

}

}

static void printVector(int[] vector)

{

Console.Write("(");

for (int cnt = 0; cnt < vector.Length; cnt++)

{

if (cnt > 0)

{

Console.Write(", ");

}

Console.Write("{0}", vector[cnt]);

}

Console.WriteLine(")");

}

static void printTree(Node root)

{

int i;

if (root.getPsi() != 0)

{

if (root.getPsi() > probabilities[(int)(Math.Log(root.arrX.Length) / Math.Log(2)-1)])

{

probabilities[(int)(Math.Log(root.arrX.Length) / Math.Log(2)-1)] = root.getPsi();

}

}

numStructures[(int)(Math.Log(root.arrX.Length) / Math.Log(2) - 1)]++;



172 Appendix D: Programming code

for (i = 0; i < root.getNumChildren(); i++)

{

printTree((Node)root.children[i]);

}

}

static void printBest(Node root)

{

int i;

if (root.getPsi() == probabilities[ell-1])

{

printVector(root.arrX);

root.printTempChildren();

}

for (i = 0; i < root.getNumChildren(); i++)

{

printBest((Node)root.children[i]);

}

}

//return the value of n!

public static double factorial(int n)

{

if (n <= 1) return 1;

return n * factorial(n - 1);

}

//a binomial coefficient function

public static double choose(int n, int k)

{

return factorial(n) / (factorial(k) * factorial(n - k));

}

//convert an integer to a binary array

public static char[] ToBinary(int myInt)

{

char[] BinaryArray;

int mybase = 2;

string binary = Convert.ToString(myInt, mybase);

BinaryArray = binary.ToCharArray();

return BinaryArray;

}

//apply the pruning rules

public static bool toPrune(int[] vector)

{

if (vector.Length <= 4 || k==1)

{

return false;

}

int sum;

if (vector[0] >= (ell1 - (int)(Math.Log(vector.Length) / Math.Log(2)) + 1) * t)

{

return true;

}

sum = 0;

for (int i = 0; i < vector.Length; i++)

{

for (int j = 0; j < Math.Log(vector.Length) / Math.Log(2); j++)

{

if (i == Math.Pow(2, j))

{

sum += Math.Min(vector[i], k - 1);

}

}

}

if ((sum >= (ell1 - (int)(Math.Log(vector.Length) / Math.Log(2)) + 1) * t))

{

return true;

}

if (vector.Length == Math.Pow(2, ell1))

{

sum = 0;

for (int i = 0; i < vector.Length; i++)

{



173

for (int j = 0; j < Math.Log(vector.Length) / Math.Log(2); j++)

{

if (i == Math.Pow(2, j))

{

sum += Math.Min(vector[i], k - 1);

}

}

}

if (sum >= t)

{

return true;

}

}

if (vector.Length == Math.Pow(2, ell1 - 1))

{

if (vector[0] >= n + 1)

{

return true;

}

sum = 0;

for (int i = 0; i < vector.Length; i++)

{

for (int j = 0; j < Math.Log(vector.Length) / Math.Log(2); j++)

{

if (i == Math.Pow(2, j))

{

sum += Math.Min(vector[i], k - 1);

}

}

}

if (sum >= n + t)

{

return true;

}

}

return false;

}

//check if the child vector is a duplicate

public static bool isDuplicate(int[] vector)

{

int[] vecX = vector;

int[] tempvecX = new int[vector.Length];

for (int l = 0; l < vector.Length; l++)

{

tempvecX[l] = vecX[l];

}

int i, j, k, size;

String myString;

Permutation p4;

char[] charArrTemp, charArr;

int numTickets = (int)(Math.Log(vector.Length)/Math.Log(2));

int numCombos = (int)factorial(numTickets);

for (i = 0; i < numCombos; i++)

{

p4 = new Permutation(numTickets, i);

for (j = 0; j < vector.Length; j++)

{

charArr = new char[numTickets];

charArrTemp = ToBinary(j);

String charArrTempStr = new String(charArrTemp);

size = charArrTempStr.Length;

for (k = numTickets - 1; k >= 0; k--)

{

if (size <= 0)

{

charArr[k] = ’0’;

}

else

{

charArr[k] = charArrTemp[size - 1];



174 Appendix D: Programming code

}

size--;

}

myString = new String(p4.ApplyTo(charArr));

vecX[j] = tempvecX[Convert.ToInt32(myString, 2)];

}

int[] vec1 = buildVector(vector);

int[] vec2 = buildVector(tempvecX);

//returns TRUE if arr1 < arr2, lexicographically

//public static bool isLess(int[] arr1, int[] arr2)

if (isLess(vec2, vec1))

{

return true;

}

}

return false;

}

//Create ancestor vector

//This function looks at the second half of input parameter "vector"

//and builds a string containing its second half elements, and it’s

//parent’s second half elements, and it’s parent’s parent’s second half

//elements etc...

public static int[] buildVector(int[] vector)

{

int returnVecSize = 0;

for(int i = (vector.Length) / 2; i > 0; i /= 2)

{

returnVecSize += i;

}

int[] vectorToReturn = new int[returnVecSize];

ArrayList tempVector = new ArrayList();

ArrayList tempVector2 = new ArrayList();

for (int i = 0; i < vector.Length; i++)

{

tempVector.Add(vector[i]);

}

int placeholder = returnVecSize-1;

for (int j = 0; j <= (int)(Math.Log(vector.Length) / Math.Log(2) - 1); j++)

{

//fill values from 2nd half of tempVector into vectorToReturn, from the BACK

for (int k = tempVector.Count - 1; k >= tempVector.Count / 2; k--)

{

vectorToReturn[placeholder] = (int)tempVector[k];

placeholder--;

}

//change tempVector to contain elements of it’s parentNode

if (tempVector2.Count > 0)

{

tempVector2.Clear();

}

for (int cnt = 0; cnt < tempVector.Count/2; cnt++)

{

tempVector2.Add((int)tempVector[cnt]+(int)tempVector[cnt+tempVector.Count/2]);

}

if (tempVector.Count > 0)

{

tempVector.Clear();

}

for (int cnt = 0; cnt < tempVector2.Count; cnt++)

{

tempVector.Add((int)tempVector2[cnt]);

}

}

return vectorToReturn;

}

public static void printArrayList(ArrayList AL)

{

Console.Write("(");



175

for(int i=0;i<AL.Count;i++)

{

if (i > 0)

{

Console.Write(", ");

}

Console.Write("{0}", (int)AL[i]);

}

Console.WriteLine(")");

}

//returns TRUE if arr1 < arr2, lexicographically

public static bool isLess(int[] arr1, int[] arr2)

{

int i;

for (i = 0; i < arr1.Length; i++)

{

if (arr1[i] < arr2[i])

{

return true;

}

else if (arr1[i] > arr2[i])

{

return false;

}

}

return false;

}

//returns TRUE if arr1 = arr2

public static bool isEqual(int[] arr1, int[] arr2)

{

int i;

for (i = 0; i < arr1.Length; i++)

{

if (arr1[i] != arr2[i])

return false;

}

return true;

}

}

//An efficient permuation class obtained online

class Permutation

{

private int[] data = null;

private int order = 0;

public Permutation(int n, int k)

{

this.data = new int[n];

this.order = this.data.Length;

// Step #1 - Find factoradic of k

int[] factoradic = new int[n];

for (int j = 1; j <= n; ++j)

{

factoradic[n - j] = k % j;

k /= j;

}

// Step #2 - Convert factoradic to permuatation

int[] temp = new int[n];

for (int i = 0; i < n; ++i)

{

temp[i] = ++factoradic[i];

}

this.data[n - 1] = 1; // right-most element is set to 1.

for (int i = n - 2; i >= 0; --i)

{

this.data[i] = temp[i];

for (int j = i + 1; j < n; ++j)

{



176 Appendix D: Programming code

if (this.data[j] >= this.data[i])

++this.data[j];

}

}

for (int i = 0; i < n; ++i) // put in 0-based form

{

--this.data[i];

}

} // Permutation(n,k)

public override string ToString()

{

System.Text.StringBuilder sb = new System.Text.StringBuilder();

sb.Append("(");

for (int i = 0; i < this.order; ++i)

{

sb.Append((this.data[i]+1).ToString() + "");

}

sb.Append(")");

return sb.ToString();

}

public char[] ApplyTo(char[] arr)

{

if (arr.Length != this.order)

return null;

char[] result = new char[arr.Length];

for (int i = 0; i < result.Length; i++)

{

result[i] = arr[this.data[i]];

}

return result;

}

}

}



APPENDIX E

Values of P (N, λ) for small lotteries

Table E.1: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈6, 3, 3, 2〉,
〈7, 3, 3, 2〉, 〈7, 3, 4, 2〉, 〈8, 3, 3, 2〉 or 〈8, 3, 4, 2〉 for N = m, 10×m, or 100×m.

λ 〈6, 3, 3, 2〉 〈7, 3, 3, 2〉 〈7, 3, 4, 2〉 〈8, 3, 3, 2〉 〈8, 3, 4, 2〉
N = m

0 1.563× 10−2 3.877× 10−2 9.753× 10−4 6.776× 10−2 3.906× 10−3

1 9.375× 10−2 1.604× 10−1 1.155× 10−2 2.168× 10−1 3.125× 10−2

2 2.344× 10−1 2.843× 10−1 5.866× 10−2 3.036× 10−1 1.094× 10−1

3 3.125× 10−1 2.800× 10−1 1.654× 10−1 2.429× 10−1 2.188× 10−1

4 2.344× 10−1 1.654× 10−1 2.800× 10−1 1.214× 10−1 2.734× 10−1

5 9.375× 10−2 5.866× 10−2 2.843× 10−1 3.886× 10−2 2.188× 10−1

6 1.563× 10−2 1.155× 10−2 1.604× 10−1 7.771× 10−3 1.094× 10−1

7 − 9.753× 10−4 3.877× 10−2 8.881× 10−4 3.125× 10−2

8 − − − 4.441× 10−5 3.906× 10−3

N = 10×m
0 8.674× 10−19 7.671× 10−15 7.785× 10−31 2.041× 10−12 8.272× 10−25

10 6.539× 10−8 1.579× 10−5 5.950× 10−17 3.523× 10−4 1.362× 10−12

20 3.636× 10−3 3.345× 10−2 4.678× 10−9 7.932× 10−2 2.924× 10−6

30 1.026× 10−1 5.937× 10−2 3.081× 10−4 2.087× 10−2 7.338× 10−3

40 3.636× 10−3 3.081× 10−4 5.937× 10−2 2.652× 10−5 8.893× 10−2

50 6.539× 10−8 4.678× 10−9 3.345× 10−2 2.295× 10−10 7.338× 10−3

60 8.674× 10−19 5.950× 10−17 1.579× 10−5 9.589× 10−18 2.924× 10−6

70 − 7.785× 10−31 7.671× 10−15 4.683× 10−28 1.362× 10−12

80 − − − 2.982× 10−44 8.272× 10−25

N = 100×m
0 2.410× 10−181 7.051× 10−142 8.179× 10−302 1.252× 10−117 1.500× 10−241

100 2.678× 10−65 2.052× 10−41 1.182× 10−155 6.862× 10−28 5.116× 10−112

200 6.039× 10−17 3.575× 10−7 1.022× 10−75 2.497× 10−3 1.159× 10−47

300 3.256× 10−2 2.491× 10−4 3.536× 10−27 1.073× 10−8 3.097× 10−13

400 6.039× 10−17 3.536× 10−27 2.491× 10−4 1.570× 10−37 2.820× 10−2

500 2.678× 10−65 1.022× 10−75 3.575× 10−7 2.770× 10−88 3.097× 10−13

600 2.410× 10−181 1.182× 10−155 2.052× 10−41 0 1.159× 10−47

700 − 8.179× 10−302 7.051× 10−142 0 5.116× 10−112

800 − − − 0 1.500× 10−241

177



178 Appendix E: Values of P (N,λ) for small lotteries

Table E.2: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈8, 3, 5, 2〉,
〈8, 4, 3, 2〉, 〈8, 4, 4, 2〉, 〈8, 4, 4, 3〉 or 〈9, 3, 3, 2〉 for N = m, 10×m, or 100×m.

λ 〈8, 3, 5, 2〉 〈8, 4, 3, 2〉 〈8, 4, 4, 2〉 〈8, 4, 4, 3〉 〈9, 3, 3, 2〉
N = m

0 4.441× 10−5 3.689× 10−3 1.210× 10−5 1.080× 10−1 9.947× 10−2

1 8.881× 10−4 2.993× 10−2 3.018× 10−4 2.771× 10−1 2.617× 10−1

2 7.771× 10−3 1.063× 10−1 3.293× 10−3 3.111× 10−1 3.060× 10−1

3 3.886× 10−2 2.156× 10−1 2.053× 10−2 1.996× 10−1 2.087× 10−1

4 1.214× 10−1 2.734× 10−1 8.002× 10−2 8.002× 10−2 9.150× 10−2

5 2.429× 10−1 2.219× 10−1 1.996× 10−1 2.053× 10−2 2.675× 10−2

6 3.036× 10−1 1.125× 10−1 3.111× 10−1 3.293× 10−3 5.212× 10−3

7 2.168× 10−1 3.261× 10−2 2.771× 10−1 3.018× 10−4 6.530× 10−4

8 6.776× 10−2 4.135× 10−3 1.080× 10−1 1.210× 10−5 4.772× 10−5

9 − − − − 1.550× 10−6

N = 10×m
0 2.982× 10−44 4.662× 10−25 6.731× 10−50 2.159× 10−10 9.486× 10−11

10 4.683× 10−28 8.854× 10−13 9.614× 10−33 4.097× 10−3 2.471× 10−3

20 9.589× 10−18 2.193× 10−6 1.791× 10−21 1.014× 10−1 1.003× 10−1

30 2.295× 10−10 6.348× 10−3 3.898× 10−13 2.934× 10−3 6.031× 10−3

40 2.652× 10−5 8.875× 10−2 4.098× 10−7 4.098× 10−7 2.443× 10−6

50 2.087× 10−2 8.448× 10−3 2.934× 10−3 3.898× 10−13 1.112× 10−11

60 7.932× 10−2 3.884× 10−6 1.014× 10−1 1.791× 10−21 5.696× 10−19

70 3.523× 10−4 2.086× 10−12 4.097× 10−3 9.614× 10−33 1.965× 10−28

80 2.041× 10−12 1.462× 10−24 2.159× 10−10 6.731× 10−50 1.004× 10−40

90 − − − − 7.993× 10−59

N = 100×m
0 0.000× 10+00 4.846× 10−244 0.000× 10+00 2.199× 10−97 5.897× 10−101

10 0.000× 10+00 1.563× 10−221 0.000× 10+00 7.089× 10−80 2.454× 10−83

100 0.000× 10+00 6.898× 10−114 0.000× 10+00 3.108× 10−17 2.124× 10−19

200 0.000× 10+00 6.519× 10−49 0.000× 10+00 2.916× 10−2 3.070× 10−2

300 2.770× 10−88 7.271× 10−14 5.542× 10−116 3.229× 10−17 5.809× 10−14

400 1.570× 10−37 2.763× 10−2 1.218× 10−55 1.218× 10−55 1.105× 10−47

500 1.073× 10−8 1.266× 10−12 3.229× 10−17 5.542× 10−116 0
600 2.497× 10−3 1.977× 10−46 2.916× 10−2 0 0
700 6.862× 10−28 3.642× 10−110 3.108× 10−17 0 0
800 1.252× 10−117 4.455× 10−239 2.199× 10−97 0 0
900 − − − − 0



179

Table E.3: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈9, 3, 4, 2〉,
〈9, 3, 5, 2〉, 〈9, 3, 6, 2〉, 〈9, 4, 3, 2〉 or 〈9, 4, 4, 2〉 for N = m, 10×m, or 100×m.

λ 〈9, 3, 4, 2〉 〈9, 3, 5, 2〉 〈9, 3, 6, 2〉 〈9, 4, 3, 2〉 〈9, 4, 4, 2〉
N = m

0 9.380× 10−3 2.916× 10−4 1.550× 10−6 9.103× 10−3 9.453× 10−5

1 5.741× 10−2 3.859× 10−3 4.772× 10−5 5.617× 10−2 1.531× 10−3

2 1.561× 10−1 2.270× 10−2 6.530× 10−4 1.540× 10−1 1.103× 10−2

3 2.478× 10−1 7.790× 10−2 5.212× 10−3 2.464× 10−1 4.631× 10−2

4 2.527× 10−1 1.718× 10−1 2.675× 10−2 2.534× 10−1 1.250× 10−1

5 1.718× 10−1 2.527× 10−1 9.150× 10−2 1.738× 10−1 2.251× 10−1

6 7.790× 10−2 2.478× 10−1 2.087× 10−1 7.942× 10−2 2.701× 10−1

7 2.270× 10−2 1.561× 10−1 3.060× 10−1 2.334× 10−2 2.083× 10−1

8 3.859× 10−3 5.741× 10−2 2.617× 10−1 4.000× 10−3 9.376× 10−2

9 2.916× 10−4 9.380× 10−3 9.947× 10−2 3.047× 10−4 1.875× 10−2

N = 10×m
0 5.274× 10−21 4.446× 10−36 7.993× 10−59 3.905× 10−21 5.699× 10−41

10 6.378× 10−10 1.203× 10−21 1.004× 10−40 5.128× 10−10 1.164× 10−25

20 1.202× 10−4 5.072× 10−13 1.965× 10−28 1.049× 10−4 3.704× 10−16

30 3.354× 10−2 3.168× 10−7 5.696× 10−19 3.179× 10−2 1.746× 10−9

40 6.306× 10−2 1.333× 10−3 1.112× 10−11 6.489× 10−2 5.545× 10−5

50 1.333× 10−3 6.306× 10−2 2.443× 10−6 1.489× 10−3 1.980× 10−2

60 3.168× 10−7 3.354× 10−2 6.031× 10−3 3.843× 10−7 7.947× 10−2

70 5.072× 10−13 1.202× 10−4 1.003× 10−1 6.681× 10−13 2.149× 10−3

80 1.203× 10−21 6.378× 10−10 2.471× 10−3 1.721× 10−21 8.610× 10−8

90 4.446× 10−36 5.274× 10−21 9.486× 10−11 6.904× 10−36 5.374× 10−18

N = 100×m
0 1.666× 10−203 0 0 8.253× 10−205 0
10 3.218× 10−182 0 0 1.731× 10−183 0
100 2.786× 10−85 0 0 3.142× 10−86 0
200 1.870× 10−31 3.360× 10−115 0 4.803× 10−32 0
300 1.643× 10−6 9.298× 10−57 0 9.611× 10−7 2.404× 10−79

400 1.452× 10−3 2.587× 10−20 0 1.933× 10−3 4.013× 10−34

500 2.587× 10−20 1.452× 10−3 1.105× 10−47 7.845× 10−20 1.351× 10−8

600 9.298× 10−57 1.643× 10−6 5.809× 10−14 6.421× 10−56 9.176× 10−3

700 3.360× 10−115 1.870× 10−31 3.070× 10−2 5.283× 10−114 6.265× 10−19

800 0 2.786× 10−85 2.124× 10−19 0 5.600× 10−64

900 0 1.666× 10−203 5.897× 10−101 0 2.009× 10−173



180 Appendix E: Values of P (N,λ) for small lotteries

Table E.4: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈9, 4, 4, 3〉,
〈9, 4, 5, 2〉, 〈9, 4, 5, 3〉, 〈9, 4, 6, 3〉 or 〈10, 3, 3, 2〉 for N = m, 10×m, or 100×m.

λ 〈9, 4, 4, 3〉 〈9, 4, 5, 2〉 〈9, 4, 5, 3〉 〈9, 4, 6, 3〉 〈10, 3, 3, 2〉
N = m

0 1.938× 10−1 9.923× 10−8 1.875× 10−2 2.916× 10−4 1.320× 10−1

1 3.489× 10−1 4.465× 10−6 9.376× 10−2 3.859× 10−3 2.962× 10−1

2 2.791× 10−1 8.931× 10−5 2.083× 10−1 2.270× 10−2 2.993× 10−1

3 1.302× 10−1 1.042× 10−3 2.701× 10−1 7.790× 10−2 1.792× 10−1

4 3.907× 10−2 7.814× 10−3 2.251× 10−1 1.718× 10−1 7.038× 10−2

5 7.814× 10−3 3.907× 10−2 1.250× 10−1 2.527× 10−1 1.896× 10−2

6 1.042× 10−3 1.302× 10−1 4.631× 10−2 2.478× 10−1 3.547× 10−3

7 8.931× 10−5 2.791× 10−1 1.103× 10−2 1.561× 10−1 4.550× 10−4

8 4.465× 10−6 3.489× 10−1 1.531× 10−3 5.741× 10−2 3.830× 10−5

9 9.923× 10−8 1.938× 10−1 9.453× 10−5 9.380× 10−3 1.911× 10−6

10 − − − − 4.290× 10−8

N = 10×m
0 7.476× 10−8 9.255× 10−71 5.374× 10−18 4.446× 10−36 1.601× 10−9

10 4.380× 10−2 5.171× 10−51 8.610× 10−8 1.203× 10−21 9.011× 10−3

20 3.997× 10−2 4.500× 10−37 2.149× 10−3 5.072× 10−13 9.069× 10−2

30 5.404× 10−5 5.802× 10−26 7.947× 10−2 3.168× 10−7 1.616× 10−3

40 4.922× 10−10 5.040× 10−17 1.980× 10−2 1.333× 10−3 2.458× 10−7

50 5.040× 10−17 4.922× 10−10 5.545× 10−5 6.306× 10−2 5.864× 10−13

60 5.802× 10−26 5.404× 10−5 1.746× 10−9 3.354× 10−2 2.597× 10−20

70 4.500× 10−37 3.997× 10−2 3.704× 10−16 1.202× 10−4 1.804× 10−29

80 5.171× 10−51 4.380× 10−2 1.164× 10−25 6.378× 10−10 1.070× 10−40

90 9.255× 10−71 7.476× 10−8 5.699× 10−41 5.274× 10−21 1.123× 10−54

100 − − − − 2.109× 10−74

N = 100×m
0 5.456× 10−72 0 2.009× 10−173 0 1.109× 10−88

10 5.106× 10−56 0 5.142× 10−153 0 9.494× 10−72

100 6.490× 10−7 0 5.600× 10−64 0 9.325× 10−14

200 3.099× 10−6 0 6.265× 10−19 3.360× 10−115 1.273× 10−2

300 1.938× 10−34 0 9.176× 10−3 9.298× 10−57 1.376× 10−19

400 0 0 1.351× 10−8 2.587× 10−20 1.657× 10−57

500 0 0 4.013× 10−34 1.452× 10−3 0
600 0 1.938× 10−34 2.404× 10−79 1.643× 10−6 0
700 0 3.099× 10−6 0 1.870× 10−31 0
800 0 6.490× 10−7 0 2.786× 10−85 0
900 0 5.456× 10−72 0 1.666× 10−203 0
1000 − − − − 0



181

Table E.5: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈10, 3, 4, 2〉,
〈10, 3, 5, 2〉, 〈10, 3, 6, 2〉, 〈10, 3, 6, 7, 2〉 or 〈10, 4, 3, 2〉 for N = m, 10×m, or 100×m.

λ 〈10, 3, 4, 2〉 〈10, 3, 5, 2〉 〈10, 3, 6, 2〉 〈10, 3, 7, 2〉 〈10, 4, 3, 2〉
N = m

0 1.734× 10−2 9.766× 10−4 1.694× 10−5 4.290× 10−8 1.703× 10−2

1 8.671× 10−2 9.766× 10−3 3.387× 10−4 1.911× 10−6 8.563× 10−2

2 1.951× 10−1 4.395× 10−2 3.048× 10−3 3.830× 10−5 1.937× 10−1

3 2.601× 10−1 1.172× 10−1 1.626× 10−2 4.550× 10−4 2.597× 10−1

4 2.276× 10−1 2.051× 10−1 5.690× 10−2 3.547× 10−3 2.284× 10−1

5 1.366× 10−1 2.461× 10−1 1.366× 10−1 1.896× 10−2 1.378× 10−1

6 5.690× 10−2 2.051× 10−1 2.276× 10−1 7.038× 10−2 5.772× 10−2

7 1.626× 10−2 1.172× 10−1 2.601× 10−1 1.792× 10−1 1.658× 10−2

8 3.048× 10−3 4.395× 10−2 1.951× 10−1 2.993× 10−1 3.125× 10−3

9 3.387× 10−4 9.766× 10−3 8.671× 10−2 2.962× 10−1 3.491× 10−4

10 1.694× 10−5 9.766× 10−4 1.734× 10−2 1.320× 10−1 1.755× 10−5

N = 10×m
0 2.460× 10−18 7.889× 10−31 1.940× 10−48 2.109× 10−74 2.057× 10−18

10 4.158× 10−8 1.366× 10−17 3.439× 10−32 1.123× 10−54 3.669× 10−8

20 1.257× 10−3 4.228× 10−10 1.091× 10−21 1.070× 10−40 1.170× 10−3

30 6.728× 10−2 2.317× 10−5 6.119× 10−14 1.804× 10−29 6.607× 10−2

40 3.075× 10−2 1.084× 10−2 2.933× 10−8 2.597× 10−20 3.186× 10−2

50 2.204× 10−4 7.959× 10−2 2.204× 10−4 5.864× 10−13 2.409× 10−4

60 2.933× 10−8 1.084× 10−2 3.075× 10−2 2.458× 10−7 3.381× 10−8

70 6.119× 10−14 2.317× 10−5 6.728× 10−2 1.616× 10−3 7.444× 10−14

80 1.091× 10−21 4.228× 10−10 1.257× 10−3 9.069× 10−2 1.399× 10−21

90 3.439× 10−32 1.366× 10−17 4.158× 10−8 9.011× 10−3 4.657× 10−32

100 1.940× 10−48 7.889× 10−31 2.460× 10−18 1.601× 10−9 2.771× 10−48

N = 100×m
0 8.105× 10−177 9.333× 10−302 0 0 1.357× 10−177

10 2.085× 10−156 2.458× 10−278 0 0 3.682× 10−157

100 4.082× 10−67 5.959× 10−162 0 0 1.167× 10−67

200 3.337× 10−21 6.176× 10−86 0 0 1.630× 10−21

300 2.160× 10−3 5.066× 10−38 0 0 1.801× 10−3

400 1.558× 10−6 4.634× 10−11 9.698× 10−67 0 2.220× 10−6

500 6.692× 10−28 2.523× 10−2 6.692× 10−28 0 1.628× 10−27

600 9.698× 10−67 4.634× 10−11 1.558× 10−6 1.657× 10−57 4.029× 10−66

700 0 5.066× 10−38 2.160× 10−3 1.376× 10−19 0
800 0 6.176× 10−86 3.337× 10−21 1.273× 10−2 0
900 0 5.959× 10−162 4.082× 10−67 9.325× 10−14 0
1000 0 9.333× 10−302 8.105× 10−177 1.109× 10−88 0



182 Appendix E: Values of P (N,λ) for small lotteries

Table E.6: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈10, 4, 4, 2〉,
〈10, 4, 4, 3〉, 〈10, 4, 5, 2〉, 〈10, 4, 5, 3〉 or 〈10, 4, 6, 2〉 for N = m, 10×m, or 100×m.

λ 〈10, 4, 4, 2〉 〈10, 4, 4, 3〉 〈10, 4, 5, 2〉 〈10, 4, 5, 3〉 〈10, 4, 6, 2〉
N = m

0 3.590× 10−4 2.815× 10−1 1.519× 10−6 4.799× 10−2 5.718× 10−10

1 4.345× 10−3 3.804× 10−1 4.280× 10−5 1.703× 10−1 4.231× 10−8

2 2.367× 10−2 2.314× 10−1 5.427× 10−4 2.719× 10−1 1.409× 10−6

3 7.641× 10−2 8.337× 10−2 4.079× 10−3 2.573× 10−1 2.780× 10−5

4 1.619× 10−1 1.972× 10−2 2.012× 10−2 1.598× 10−1 3.600× 10−4

5 2.351× 10−1 3.197× 10−3 6.803× 10−2 6.803× 10−2 3.197× 10−3

6 2.372× 10−1 3.600× 10−4 1.598× 10−1 2.012× 10−2 1.972× 10−2

7 1.641× 10−1 2.780× 10−5 2.573× 10−1 4.079× 10−3 8.337× 10−2

8 7.448× 10−2 1.409× 10−6 2.719× 10−1 5.427× 10−4 2.314× 10−1

9 2.004× 10−2 4.231× 10−8 1.703× 10−1 4.280× 10−5 3.804× 10−1

10 2.425× 10−3 5.718× 10−10 4.799× 10−2 1.519× 10−6 2.815× 10−1

N = 10×m
0 3.552× 10−35 3.128× 10−6 6.521× 10−59 6.475× 10−14 3.733× 10−93

10 4.154× 10−21 1.100× 10−1 3.567× 10−41 3.547× 10−5 3.182× 10−71

20 8.691× 10−13 6.914× 10−3 3.490× 10−29 3.475× 10−2 4.851× 10−55

30 3.218× 10−7 7.695× 10−7 6.044× 10−20 6.027× 10−2 1.309× 10−41

40 1.018× 10−3 7.314× 10−13 8.939× 10−13 8.926× 10−4 3.017× 10−30

50 5.047× 10−2 1.090× 10−20 2.073× 10−7 2.073× 10−7 1.090× 10−20

60 4.646× 10−2 3.017× 10−30 8.926× 10−4 8.939× 10−13 7.314× 10−13

70 6.708× 10−4 1.309× 10−41 6.027× 10−2 6.044× 10−20 7.695× 10−7

80 8.270× 10−8 4.851× 10−55 3.475× 10−2 3.490× 10−29 6.914× 10−3

90 1.805× 10−14 3.182× 10−71 3.547× 10−5 3.567× 10−41 1.100× 10−1

100 7.045× 10−27 3.733× 10−93 6.475× 10−14 6.521× 10−59 3.128× 10−6

N = 100×m
0 0 8.963× 10−56 0 1.295× 10−132 0
100 0 6.830× 10−3 0 8.330× 10−38 0
200 8.314× 10−113 8.448× 10−14 0 8.695× 10−7 0
300 1.353× 10−56 8.271× 10−53 0 7.184× 10−4 0
400 2.454× 10−21 0 0 6.618× 10−22 0
500 2.650× 10−4 0 3.628× 10−58 3.628× 10−58 0
600 9.656× 10−5 0 6.618× 10−22 0 0
700 2.094× 10−23 0 7.184× 10−4 0 8.271× 10−53

800 5.063× 10−63 0 8.695× 10−7 0 8.448× 10−14

900 9.689× 10−131 0 8.330× 10−38 0 6.830× 10−3

1000 3.010× 10−262 0 1.295× 10−132 0 8.963× 10−56



183

Table E.7: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈10, 4, 6, 3〉,
〈10, 4, 7, 2〉, 〈10, 5, 3, 2〉, 〈10, 5, 4, 2〉 or 〈10, 5, 4, 3〉 for N = m, 10×m, or 100×m.

λ 〈10, 4, 6, 3〉 〈10, 4, 7, 2〉 〈10, 5, 3, 2〉 〈10, 5, 4, 2〉 〈10, 5, 4, 3〉
N = m

0 2.425× 10−3 1.694× 10−5 8.457× 10−4 1.473× 10−6 4.747× 10−2

1 2.004× 10−2 3.387× 10−4 8.702× 10−3 4.169× 10−5 1.691× 10−1

2 7.448× 10−2 3.048× 10−3 4.029× 10−2 5.309× 10−4 2.712× 10−1

3 1.641× 10−1 1.626× 10−2 1.106× 10−1 4.006× 10−3 2.577× 10−1

4 2.372× 10−1 5.690× 10−2 1.991× 10−1 1.984× 10−2 1.607× 10−1

5 2.351× 10−1 1.366× 10−1 2.458× 10−1 6.736× 10−2 6.869× 10−2

6 1.619× 10−1 2.276× 10−1 2.108× 10−1 1.589× 10−1 2.040× 10−2

7 7.641× 10−2 2.601× 10−1 1.240× 10−1 2.569× 10−1 4.153× 10−3

8 2.367× 10−2 1.951× 10−1 4.783× 10−2 2.726× 10−1 5.548× 10−4

9 4.345× 10−3 8.671× 10−2 1.094× 10−2 1.714× 10−1 4.393× 10−5

10 3.590× 10−4 1.734× 10−2 1.125× 10−3 4.851× 10−2 1.565× 10−6

N = 10×m
0 7.045× 10−27 1.940× 10−48 1.871× 10−31 4.814× 10−59 5.815× 10−14

10 1.805× 10−14 3.439× 10−32 4.310× 10−18 2.744× 10−41 3.319× 10−5

20 8.270× 10−8 1.091× 10−21 1.776× 10−10 2.797× 10−29 3.388× 10−2

30 6.708× 10−4 6.119× 10−14 1.295× 10−5 5.048× 10−20 6.121× 10−2

40 4.646× 10−2 2.933× 10−8 8.066× 10−3 7.778× 10−13 9.445× 10−4

50 5.047× 10−2 2.204× 10−4 7.878× 10−2 1.880× 10−7 2.286× 10−7

60 1.018× 10−3 3.075× 10−2 1.428× 10−2 8.432× 10−4 1.027× 10−12

70 3.218× 10−7 6.728× 10−2 4.062× 10−5 5.933× 10−2 7.233× 10−20

80 8.691× 10−13 1.257× 10−3 9.863× 10−10 3.564× 10−2 4.352× 10−29

90 4.154× 10−21 4.158× 10−8 4.239× 10−17 3.790× 10−5 4.634× 10−41

100 3.552× 10−35 2.460× 10−18 3.259× 10−30 7.210× 10−14 8.826× 10−59

N = 100×m
0 3.010× 10−262 0 5.261× 10−308 0 4.417× 10−133

10 1.173× 10−239 0 1.844× 10−284 0 3.836× 10−114

100 9.689× 10−131 0 5.850× 10−167 0 4.281× 10−38

200 5.063× 10−63 0 1.056× 10−89 0 6.734× 10−7

300 2.094× 10−23 0 1.508× 10−40 0 8.385× 10−4

400 9.656× 10−5 9.698× 10−67 2.403× 10−12 0 1.164× 10−21

500 2.650× 10−4 6.692× 10−28 2.278× 10−2 1.362× 10−58 9.619× 10−58

600 2.454× 10−21 1.558× 10−6 7.287× 10−10 3.746× 10−22 0
700 1.353× 10−56 2.160× 10−3 1.387× 10−35 6.133× 10−4 0
800 8.314× 10−113 3.337× 10−21 2.945× 10−82 1.120× 10−6 0
900 0 4.082× 10−67 4.949× 10−157 1.618× 10−37 0
1000 0 8.105× 10−177 1.350× 10−295 3.794× 10−132 0



184 Appendix E: Values of P (N,λ) for small lotteries

Table E.8: The probability, P (N,λ), of λ participants winning a k-prize in the lottery 〈10, 5, 5, 2〉,
〈10, 5, 5, 3〉 or 〈10, 5, 5, 4〉 for N = m, 10×m, or 100×m.

λ 〈10, 5, 5, 2〉 〈10, 5, 5, 3〉 〈10, 5, 5, 4〉
N = m

0 1.367× 10−10 9.766× 10−4 3.366× 10−1

1 1.188× 10−8 9.766× 10−3 3.872× 10−1

2 4.647× 10−7 4.395× 10−2 2.005× 10−1

3 1.077× 10−5 1.172× 10−1 6.150× 10−2

4 1.639× 10−4 2.051× 10−1 1.238× 10−2

5 1.709× 10−3 2.461× 10−1 1.709× 10−3

6 1.238× 10−2 2.051× 10−1 1.639× 10−4

7 6.150× 10−2 1.172× 10−1 1.077× 10−5

8 2.005× 10−1 4.395× 10−2 4.647× 10−7

9 3.872× 10−1 9.766× 10−3 1.188× 10−8

10 3.366× 10−1 9.766× 10−4 1.367× 10−10

N = 10×m
0 2.277× 10−99 7.889× 10−31 1.865× 10−5

10 9.704× 10−77 1.366× 10−17 1.311× 10−1

20 7.398× 10−60 4.228× 10−10 1.649× 10−3

30 9.983× 10−46 2.317× 10−5 3.670× 10−8

40 1.150× 10−33 1.084× 10−2 6.975× 10−15

50 2.079× 10−23 7.959× 10−2 2.079× 10−23

60 6.975× 10−15 1.084× 10−2 1.150× 10−33

70 3.670× 10−8 2.317× 10−5 9.983× 10−46

80 1.649× 10−3 4.228× 10−10 7.398× 10−60

90 1.311× 10−1 1.366× 10−17 9.704× 10−77

100 1.865× 10−5 7.889× 10−31 2.277× 10−99

N = 100×m
0 0 9.333× 10−302 5.104× 10−48

10 0 2.458× 10−278 5.460× 10−34

100 0 5.959× 10−162 3.977× 10−2

200 0 6.176× 10−86 5.030× 10−20

300 0 5.066× 10−38 5.035× 10−66

400 0 4.634× 10−11 0
500 0 2.523× 10−2 0
600 0 4.634× 10−11 0
700 5.035× 10−66 5.066× 10−38 0
800 5.030× 10−20 6.176× 10−86 0
900 3.977× 10−2 5.959× 10−162 0
1000 5.104× 10−48 9.333× 10−302 0


	List of Figures
	List of Tables
	List of Algorithms
	List of Reserved Symbols
	Introduction
	Background
	Problem descriptions
	Two kinds of lottery isomorphisms
	Isomorphic lotteries
	Isomorphic playing sets

	Scope and objectives
	Thesis organisation

	Literature Review
	The complete lottery problem
	Results from graph theory
	Bounds on L1(m,n,t,k)
	Known values of L1(m,n,t,k)
	An ILP approach to the complete lottery problem

	The incomplete lottery and resource utilisation problems
	Known values of L(m,n,t,k) and (m,n,t,k)
	An ILP approach to the incomplete lottery problem
	Approximate methods
	Overlapping playing set structures

	The number of winners in lottery draws
	Chapter summary

	A new upper bound from graph theory
	Bounds from graph domination theory: The case n=t
	Bipartite graph representation of the lottery problem
	A greedy bound on the complete lottery number
	A greedy bound on the incomplete lottery number
	Chapter overview

	A mathematical programming approach
	An ILP formulation of the complete lottery problem
	An ILP formulation of the incomplete lottery problem
	An ILP formulation of the resource utilisation problem
	Analysis of results
	Analysis of results for the incomplete lottery problem
	Analysis of results for the resource utilisation problem

	Boundaries of feasibility via an ILP approach
	Chapter overview

	Exhaustive Enumeration
	The lottery tree
	Creating the nodes in the lottery tree
	Assigning probability-of-win values to the nodes

	Numerical examples
	The lottery "426830A 6,3,3,2 "526930B 
	The lottery "426830A 7,3,4,2 "526930B 
	The lottery "426830A 7,5,4,3 "526930B 

	Implementation
	Pruning of the lottery tree
	Pseudocode

	Results
	Chapter overview

	Overlapping playing set structures: An approximation approach
	Problem definition
	A random search algorithm
	Two local search algorithms
	The neighbourhood of a solution
	Simulated annealing
	Tabu search

	A genetic algorithmic approach
	A classical genetic algorithm
	A genetic algorithm combined with a local search

	Results obtained for small lottery instances
	Tabu search applied to larger lotteries
	Chapter overview

	On the expected number of lottery winners
	A naive analysis of the lottery "426830A 49,6,6,6 "526930B 
	An analytical approach
	A simulation approach

	A more realistic analysis of winners in the lottery "426830A 49,6,6,6 "526930B 
	Popular number choices in the lottery "426830A 49,6,6,k "526930B 
	An analysis of winners assuming popular number choices
	Interpretation of simulation results
	Expected waiting time between extreme events

	An analysis of small lottery instances
	Chapter overview

	Conclusion
	Thesis summary
	Novel contributions in this thesis
	Future work

	References
	Some known lottery numbers
	Incomplete lottery problem modelled as an ILP
	Resource utilisation problem modelled as an ILP
	Programming code
	Values of P(N,) for small lotteries

