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Abstract

Suppose a lottery draw consists of forming a winning ticket by randomly choosing t < m distinct
numbers from a universal set U,, = {1,...,m}. Each lottery participant forms a set of tickets
prior to the draw, each ticket consisting of n < m distinct numbers from U,,, and is awarded a
prize if k£ < min{n,t} or more numbers in at least one of his/her tickets matches those of the
winning ticket. A lottery of this form is denoted by the quadruple (m,n,t, k), and the prize is
known as a k-prize. The participant’s set of tickets is also known as a playing set.

The participant may wish to form a playing set in such a way that the probability of winning
a k-prize is at least 0 < ¥ < 1. Naturally, the participant will want to minimise the cost
of forming such a playing set, which means that the cardinality of the playing set should be
as small as possible. This combinatorial minimisation problem is known as the incomplete
lottery problem and was introduced by Griindlingh [16], who also formulated a related problem
called the resource utilisation problem. In this problem one attempts to select a playing set of
pre-specified cardinality £ in such a way that the probability of winning a k-prize is maximised.

Griindlingh [16] studied the incomplete lottery problem and the resource utilisation problem in
the special case where n = ¢t. In this thesis both problems are considered in the general case
where n # t. Exact and approximate solution methods are presented and compared to each other
in terms of solution quality achieved, execution time and practical feasibility. The first solution
method involves a mathematical programming formulation of both problems. Using this solution
method, both problems are solved for small lottery instances. An exhaustive enumeration
solution method, which uses the concept of overlapping playing set structures [5, 16], is reviewed
and used to solve both combinatorial optimisation problems for the same small lottery instances.
The concept of an overlapping playing set structure is further explored and incorporated in an
attempt to solve both combinatorial optimisation problems approximately by means of various
metaheuristic solution approaches, including a simulated annealing algorithm, a tabu search
and a genetic algorithm.

The focus of the thesis finally shifts to a different problem involving lotteries. An investigation
is conducted into the probability, P(N, \), of A participants sharing a k-prize if a total of N
tickets are purchased by participants of the lottery (m,n,t, k). Special attention is afforded in
this problem to the jackpot prize of the South African national lottery, Lotto, represented by
the quadruple (49, 6,6,6) and how the value of P(N, \) is affected by the way that participants
select their playing sets.
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Uittreksel

Gestel 'n lotery-trekking bestaan uit die ewekansige seleksie van 'n wenkaartjie bestaande uit
t < m verskillende getalle uit 'n universele versameling U,,, = {1,...,m}. Elke lotery-deelnemer
vorm 'n versameling kaartjies voor die trekking, wat elk uit n < m verskillende getalle in U,
bestaan, en wen 'n prys indien £ < min{n,t} of meer getalle in minstens een van sy/haar
kaartjies ooreenstem met dié¢ in die wenkaartjie. 'n Lotery van hierdie vorm word deur die
viertal (m,n,t, k) aangedui, en die prys staan as 'n k-prys bekend. 'n Deelnemer se kaartjies
staan ook as a spelversameling bekend.

'n Lotery-deelnemer mag poog om sy spelversameling s6 te selekteer dat die waarskynlikheid
om 'n k-prys te wen, minstens 0 < ¥ < 1 is. Die deelnemer sal natuurlik die koste wat met
so 'n spelversameling gepaard gaan, wil minimeer, wat beteken dat die kardinaliteit van sy
spelversameling so klein as moontlik moet wees. Hierdie kombinatoriese minimeringsprobleem
staan as die onvolledige lottery-probleem bekend en is vir die eerste keer deur Griindlingh [16]
bestudeer, wat ook die verwante hulpbronbenuttingsprobleem geformuleer het. In laasgenoemde
probleem word daar gesoek na 'n spelversameling van vooraf-gespesifiseerde kardinaliteit wat
die waarskynlikheid om ’n k-prys te wen, maksimeer.

Griindlingh [16] het die onvolledige lottery-probleem en die hulpbronbenuttingsprobleem in die
spesiale geval oorweeg waar n = t. In hierdie tesis word beide probleme in die algemeen oor-
weeg waar n # t. Eksakte en heuristiese oplossingstegnieke word vir beide probleme daarge-
stel en met mekaar in terme van oplossingskwaliteit, oplossingstyd en praktiese haalbaarheid
vergelyk. Die eerste oplossingstegniek behels 'n wiskundige programmeringsformulering van
beide probleme. Die probleme word deur middel van hierdie benadering vir klein loterye opge-
los. 'n Uitputtende enumerasietegniek, wat gebruik maak van die konsep van spelversameling
oorvleuelingstrukture [5, 16], word daarna in oénskou geneem en beide kombinatoriese optime-
ringsprobleme word vir dieselfde klein loterye met behulp van hierdie tegniek opgelos. Die
konsep van 'n spelversameling oorvleuelingstruktuur word verder ondersoek en in 'n benaderde
oplossingstegniek vir beide kombinatoriese optimeringsprobleme geinkorporeer deur gebruik te
maak van  verskeie metaheuristiese  oplossingsbenaderings, insluitende 'n  ge-
simuleerde afkoelingsalgoritme, 'n tabu-soektog en 'n genetiese algoritme.

Die fokus in die tesis verskuif laastens na 'n ander probleem oor loterye. 'n Ondersoek word
geloots na die waarskynlikheid, P(N, \), dat A lottery-deelnemers 'n k-prys sal deel indien 'n
totaal van N kaartjies in die lotery (m,n,t, k) gekoop word. Spesiale aandag word aan hierdie
probleem geskenk in die geval van die boerpot-prys in die Suid-Afrikaanse nasionale lotery, Lotto,
wat deur die viertal (49, 6,6, 6) voorgestel word, en hoe die waarde van P(N, \) beinvloed word
deur die manier waarop deelnmers hul spelversamelings selekteer.
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A set comprising overlapping playing set structures which pass a so-called
domination test.

A type of lottery ticket in which the difference between any two consecutive
numbers is no less than k, and exactly ¢ of the numbers are calendar numbers.
The expected number of government tickets covered A times by N participant
tickets.

The cardinality of a minimum dominating set of graph G.

A regular graph of order (ZL) This graph may represent a lottery of the form
(m,n,n,k). The vertices in this graph represent lottery tickets of cardinality
n, and two vertices are adjacent if the tickets which they represent share a
common k-subset.

A bipartite lottery graph of order (') + ('}). There are (') vertices in this
graph representing the possible participant tickets in a lottery, and the re-
maining (T) vertices in this graph represent the possible government tickets.
A vertex representing a participant ticket is adjacent to a vertex representing
a government ticket if those two tickets share a common k-subset.

The minimum number of lottery ticket numbers that a participant ticket is
required to have in common with the winning government ticket in order to
win a k-prize in a lottery.

The cardinality of a participant’s playing set.

The number of concurrent winners of a k-prize in a lottery draw.

A participant’s playing set of cardinality ¢ in the lottery (m,n,t, k).

xxi
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Ly(m,n,t, k) The incomplete lottery number, representing the smallest possible playing set
cardinality which guarantees a participant a probability, 1, of winning a k-
prize in the lottery (m,n,t,k).

m The cardinality of the universal set U, in the lottery (m,n,t, k) from which
n numbers may be chosen to be included in a participant’s ticket, and from
which ¢ numbers are chosen in order to form the winning government ticket.

= (0
M (X( )) The multiplicity of an overlapping playing set structure represented by the
= (0
vector X( ).
n The cardinality of a participant ticket in the lottery (m,n,t, k).

ny(m,n,t, k) The lottery characterisation number of the lottery (m,n,t, k) denoting the
number of different overlapping playing set structures associated with the op-
timal answer to the incomplete lottery problem and the resource utilisation
problem.

N The number of tickets purchased in total by the participants in a lottery draw.

Nv] The set of government (or participant) tickets which have k£ or more numbers
in common with participant (or government) ticket v. This set is known as
the neighbourhood of ticket v.

O(g(n)) A function f(n) grows no faster than g(n) as n — oo (denoted by f(n) =
O(g(n))), if there exists constants ¢ > 0 and ng € N such that 0 < f(n) <
cg(n) for all n > ng.

0 The proportion of the total participant tickets purchased in a lottery that are
special tickets (i.e. of type A, B(k),C(k) or D(k,c)).
P(N,\) The probability that A of the tickets selected by the participants in a lottery

draw are winning tickets, under the assumption that N tickets are selected in
total by the participants.

P(x) The objective function in an ILP formulation of either the incomplete lottery
problem or the resource utilisation problem.

O (U, n) The set of participant tickets consisting of n numbers chosen from U,,.

O (U, t) The set of government tickets consisting of ¢ numbers chosen from U, .

P The desired probability-of-win value in the incomplete lottery problem.

Wy(m,n,t, k) The maximum resource utilisation value associated with a playing set of car-
dinality ¢ in the lottery (m,n,t, k).

R, Given the partite sets V; and Vs of the bipartite lottery graph G(m,n,t,k),
R; is the number of vertices remaining in G(m,n,t, k) after the 4% iteration
of the greedy covering algorithm (Algorithm 3.1).

t The number of lottery numbers chosen from U, in a government ticket in the
lottery (m,n,t, k).

T(m,n,t) The Turdn number, denoting the smallest number of n-subsets of U, such
that any ¢-subset of U,,, contains at least one of these n-subsets.

T; The i*" ticket in a participant’s playing set.

U, The universal set of numbers {1,...,m} in the lottery (m,n,t, k).

U The number of special participant tickets u € {uy,us,...,u,} covering a win-
ning government ticket.

V1 The vertices representing participant tickets in the bipartite lottery graph
G(m,n,t, k).

Vi A bipartite covering of minimum cardinality in the bipartite minimum covering
problem.

%4 The bipartite covering set obtained via the greedy covering algorithm (Algo-

rithm 3.1).
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The vertices representing government tickets in the bipartite lottery graph
G{m,n,t, k).

The number of government tickets covered by u; special tickets (1 < j < 2).
A binary variable indicating the presence or absence of participant ticket ¢ in
the participant’s playing set.

A vector representing an overlapping playing set structure of cardinality £.

The number of elements in a given compartment in a overlapping playing set
structure.

=
An ancestor vector of a vector X in the exhaustive enumeration lottery tree.
A binary variable indicating whether government ticket j is covered by the
participant’s playing set.
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1.1 Background

A lottery is defined in the Oxford English Dictionary [40] as “An arrangement for the distribution
of prizes by chance among persons purchasing tickets. Slips or lots, numbered in correspondence
with the tickets, and representing either prizes or blanks, are drawn from a wheel. Usually
intended as a means of raising money for the benefit of the promoters, of the State, or of some
charitable institution.”

The history of lotteries dates back to biblical times where in the book of Numbers, Moses
is instructed by God to divide land amongst different families by drawing lots. Many other
references to drawing lots appear in the Bible. One of the oldest non-biblical records of lotteries
taking place dates back to 200 BC—it is documented that Emperor Cheung Leung invented
the Chinese Lottery, presently known as Keno [35]. The original purpose of the Chinese lottery
was to raise funds for taxes. Funds were also used to support the building of the Great Wall of
China. In Europe, one of the oldest records of a lottery was a raffle held by the painter Jan van
Eyck, in 1446. As from the year of 1465, lotteries gained popularity in Belgium to such an extent
that they were held on a regular basis with the purpose of raising money for the building of
houses, caring for the underprivileged, construction of religious buildings, and the construction
of much needed water canal systems. This method of raising funds, and awarding of prizes to
participants by chance was possibly given its name in Italy. Results from an Italian election
were considered highly controversial, and therefore, in a re-election all the candidates names
were replaced my numbers. This caused the election of a winning candidate to be completely
up to chance. In the Italian language, the word lottery means “unchangeable fate.” In 1539
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King Francis I of France found his kingdom to be in financial debt, and resorted to running
a lottery in order to raise funds. In the year 1567, Queen Elizabeth I established the English
lottery in which 400 000 tickets were for sale to the public. Prizes did not only include cash, but
also included china and tapestries. Originally, the aim of the English lottery was to raise money
for the repairing of harbours. Following the success of the English lottery, the first London
lottery was started by King James I in 1612. The funds raised from this lottery were used for
the building of the colony of Jamestown, the first English colony in America [12]. Lotteries
were also used in many countries to fund cultural activities. In the year 1753, a special lottery
was held to raise funds used to build the British Museum. At the same time, it is documented
that Casanova, a venetian adventurer and author, urged Louis XV to found the Loterie Royale
later to be known as the Loterie National. This lottery was based on the game Keno, where
players could choose one to five numbers between 1 and 90. Lotteries started to gain popularity
in America in the 1700s. Benjamin Franklin was able to finance the construction of cannons
for the Revolutionary War by using some of the money earned from running various lotteries.
It is also documented that George Washington founded a lottery in Virginia in order to finance
the construction of roads to the west of that state. The popularity of lotteries grew even more
in the United States after the constitution was adopted. The funds raised in those lotteries
were used to fund over 300 schools and 200 churches. Universities such as Columbia, Harvard,
Princeton and Yale were also built using funds from popular lotteries in America. The game
was also used to improve civilian life and this included the building of orphanages, libraries,
hospitals, jails and courthouses.

Unfortunately, corruption began to plague lotteries, and big jackpots were often advertised,
but no prizes were awarded to participants [35]. This caused the civilians of North American
regions to start campaigning for the closure and banning of lotteries. Religious organizations
played a significant role in these fights. Together with the prohibition of alcohol, the abolition
of slavery and workers’ rights, the running of lotteries was one of the most controversial topics
of those times. Throughout the remainder of the 19th century and early 20th century, many
groups and organisations fought to ban lotteries which had become associated with criminals
and moral decay in society. In the year 1819, the Province of Quebec in Canada made lotteries
illegal, starting a drastic trend throughout North America and the world. The state of New
York quickly followed suit in 1820. By the year 1856 any form of a lottery was a banned practice
in Canada. The US Supreme Court eventually prohibited all forms of gambling in 1905.

It took many years for lotteries to be reinstated. The Queensland state lottery of Australia was
among the first to be reinstated in 1917. During the next nine decades, lotteries would grow ever
more popular throughout the world. During the 1960s, and 1970s, the United States of America
and Canada reinstated lotteries, respectively. In 1973, the Olympic Lottery Corporation of
Canada was formed with the aim of raising funds for the hosting of the 1976 Olympic Games
which were to be held in Montreal. From those years to the present day, strict laws have been
put in to place throughout the world in order to make lotteries more reliable and trustworthy
to the general public.

Currently, lotteries are present in most major countries throughout the Americas, Europe, Asia,
and Australasia. In Africa, only South Africa and Kenya run legal lotteries. In many countries,
lotteries are controlled by the governments themselves. The existence of on-line lotteries makes
the purchase of tickets more convenient for participants [17]. Some on-line lotteries are operated
privately, while some are linked with major well-known lotteries. In the United States, each
state has it’s own lottery which is operated according to the specific laws of that state. It
is common for the funds raised by lotteries in the United States to be donated to the public
education system. In Canada, there are two nationwide lotteries in operation. In New Zealand,
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the national lottery is controlled by the government and prizes are often small in comparison
with other countries’ national lotteries. In the United States, participants can choose between
an annuity payment or a much smaller than advertised lump sum. In many countries, lottery
winnings are not taxed. Many lottery draws are overseen by independent auditors in order to
assure participants that no fraudulent activities are involved in the draw. It has been widely
reported that people (even non-participants) are tricked into believing they have won a lottery
jackpot after receiving a hoax e-mail.

In the South African National Lottery, Lotto, a participant forms a playing set of tickets, in
which each ticket consists of 6 numbers chosen from a universal set containing 49 numbers. The
lottery board then forms the winning ticket by also choosing 6 numbers from the same universal
set. A bonus ball is also drawn, which gives participants and additional chance of winning a
prize. The more numbers that a participant’s ticket has in common with the winning ticket,
the higher the financial reward for the participant. A draw takes place every Wednesday and
Saturday. The South African National Lottery is a major source of charity to many beneficiaries,
such as women in technology, rural women, women entrepreneurs, the youth, non-governmental
organizations, and community based organizations [13]. The structure of this lottery implies
that there are (469) = 13983816 possible lottery tickets from which the participant may choose.
It may therefore be deduced that if a participant purchases one ticket, he/she will stand a
WE&G = 0.000007 15% chance of winning the jackpot. In the South African National Lottery,
the largest prize from a single winning ticket was R30 352 465 [31], while the largest amount won
from a single winning ticket, worldwide, was $365 000000 in the United States [43]. In South
Africa, a record 33 participants won the jackpot on the 15" of March 2003 [31], and on the
7t of February 2009, 18 players won the jackpot. This led some people to believe that, due to
the extremely small probability of such occurences, there were fraudulent activities taking place
during or after the lottery draw and some called for an independant investigation to be carried
out regarding this issue [14]. Despite criticism from certain sectors of the South African public,
the South African National Lottery remains popular according to 2006 research, in which it was
found that 82 percent of the population played the lottery once a week [44].

1.2 Problem descriptions

Suppose a lottery consists of forming a winning ticket by randomly choosing ¢ distinct numbers
from the universal set U,,, = {1,...,m}. A participant also forms a set of tickets, each consisting
of n distinct numbers from U,,, and is awarded a prize if k or more numbers in at least one of
his/her tickets matches those of the winning ticket. A lottery of this form is denoted by the
quadruple (m,n,t, k), and the prize is known as a k-prize. The participant’s set of tickets is
also known as a playing set.

The participant may wish to form a playing set which yields a probability of at least 0 < ¢ <1
of winning a k-prize. Naturally, the participant will want to minimise the cost of forming such
a playing set, which means that the cardinality of the playing set should be as small as possible.
This combinatorial minimisation problem is known as the incomplete lottery problem, introduced
in [16]. A related problem is the so-called resource utilisation problem, also introduced in [16].
In this problem one attempts to select a (fixed) playing set of cardinality ¢ in such a way that
the probability of winning a k-prize is maximised.

These problems may be defined more formally. To this end, suppose A is a finite set of integers
and let ®(A, a) denote the set of all (unordered) subsets of cardinality a < |.A| from the set A.
Each ticket v € ® (U, n) in a playing set has a neighbourhood N[v] C ®(U,,,t) associated with
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it. This neighbourhood is the set of all tickets from ®(U,,,t) which have at least k numbers in
common with the ticket v, that is N'[v] = {u € ®(Up,t) : P(v,k) N P(u, k) # 0}.

Definition 1.1 (Incomplete lottery problem) A (1 — )-incomplete lottery set for
(m,n,t, k) is a subset Ly(Um,n,t, k) C ®(Uyp,n) with the property that

U Nv]

VELy (Um,n,t,k)

has cardinality at least W (Tﬂ . The incomplete lottery problem is: What is the smallest possible
cardinality of a (1 —)-incomplete lottery set Ly(Um,n,t,k)? Denote the answer to this prob-
lem by the incomplete lottery number Ly (m,n,t, k). An incomplete lottery set Ly(Up,n,t, k)
of minimum cardinality, Ly(m,n,t, k), is referred to as an Ly(m,n,t, k)-set for the lottery
(m,n,t, k). O

Let ®(Up,,n) be known as the set of participant tickets, and let (U, t) be known as the set of
government tickets. A small instance of the incomplete lottery problem is illustrated in following
simple example.

Example 1.1 Consider the lottery (7,5,4,3). The set of all unordered sets from which the
winning lottery ticket may be chosen is

dUr,4) = {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},{1,2,4,5},{1,2,4,6},{1,2,4, 7},
{1,2,5,6},{1,2,5,7},{1,2,6,7},{1,3,4,5},{1,3,4,6},{1,3,4,7}, {1, 3,5, 6},
{1,3,5,7},{1,3,6,7},{1,4,5,6},{1,4,5,7},{1,4,6,7},{1,5,6,7},{2, 3,4, 5},
{2,3,4,6},{2,3,4,7},{2,3,5,6},{2,3,5,7},{2,3,6,7},{2,4,5,6},{2,4,5, 7},
{2,4,6,7},{2,5,6,7},{3,4,5,6},{3,4,5,7},{3,4,6,7},{3,5,6,7},{4,5,6, 7} },

while the set of all unordered sets from which the participant can chose tickets is

®(U7,5) = {{1,2,3,4,5},{1,2,3,4,6},{1,2,3,4,7},{1,2,3,5,6},{1,2,3,5,7},
{1,2,3,6,7},{1,2,4,5,6},{1,2,4,5,7},{1,2,4,6,7},{1,2,5,6,7}
{1,3,4,5,6},{1,3,4,5,7},{1,3,4,6,7},{1,3,5,6,7},{1,4,5,6,7}
{2,3,4,5,6},{2,3,4,5,7},{2,3,4,6,7},{2,3,5,6,7},{2,4,5,6,7}
(3,4,5,6,7}}.

The different participant tickets and the government tickets which have at least 3 numbers in
common with them are shown graphically in Figure 1.1. For different values of v, the car-
dinality of an optimal playing set changes. For this lottery, the incomplete lottery numbers
Ly(7,5,4,3) =1 for all0 <1 < 22, Ly(7,5,4,3) =2 for all 2 < ¢ < 32 and Ly(7,5,4,3) = 3
for all % < <1 may be deduced via a brute force approach. |

The resource utilisation problem, mentioned above, is defined formally below.

Definition 1.2 (Resource utilisation problem) The resource utilisation of a playing set
Ly =A{v1,...,v0} TP (Up,n) in the lottery (m,n,t, k) is defined as the proportion

BUECI
(I

0



1.2. Problem descriptions

Q %////// \ ‘0‘
°

/¢%a\
\
\

;
i

{1,2,3,4,5}
e //f///}m\

. /ﬂ\\
!
\

e

] 227
S
ese;

FIGURE 1.1: Lottery graph representing the lottery (7,5,4,3). All the black vertices represent par-
ticipant tickets, and all the white vertices represent government tickets. A vertex which represents a
government ticket is joined to a vertex which represents a participant ticket if the two tickets have at
least three numbers in common. It can be seen that if the participant were to select the playing set
{{1,2,3,4,5},{3,4,5,6,7}}, 34 out of the 35 government tickets are joined by an edge to at least one
of the playing set tickets. The only government ticket which is not joined by an edge to any of the two
tickets in the participant’s playing set is ticket {1,2,6,7}. If this playing set is chosen by the participant,
he/she will have a % ~ 0.9714 probability of winning a 3-prize. Note that in this lottery instance,
5 = n # t = 4, which implies that the vertices which represent participant tickets have a higher de-
gree than the vertices which represent government tickets, and that explains why the graph seems more

populated with edges nearer to the area where the participant tickets are.

and therefore the resource utilisation problem is: Given a fized playing set cardinality of 1 < £ <

Ly (m,n,t, k), what is the maximum resource utilisation that may be achieved by some playing

set Ly of fixed cardinality €2 Denote the answer to this problem by the resource utilisation

number,
14

Ui A o]

W, (m,n,t, k)= max e
¢ ( ) V1,00 €EP (U ,n) (T)

A playing set of cardinality ¢ that realises this maximum resource utilisation of Wy (m,n,t, k) is
referred to as a Wy (m,n,t, k)-set for (m,n,t, k). O

The notion of the resource utilisation problem is illustrated next.

Example 1.2 Suppose a participant in the lottery (7,5,4,3) wants to buy two tickets and
would like to maximise the associated resource utilisation. If all the playing sets of cardi-
nality 2 are eramined, various resource utilisation values are obtained from which a play-
ing set must be chosen that achieves the mazimum value, ¥o(7,5,4,3). For example, the
playing set {{1,2,3,4,5},{1,2,3,4,6}} yields a resource utilisation of ngu but the playing set
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{{1,2,3,4,5},{3,4,5,6,7}} yields a resource utilisation of %. By analysing all the possible
playing sets it is found that no playing set of cardinality 2 yields a resource utilisation larger

than %, and hence Wo(7,5,4,3) = %' -

TABLE 1.1: Solution to the incomplete lottery problem for the lottery (7,5,4,3) presented in Example
1.2. The first column contains all the possible values of 1. The second column contains a playing set
meeting the desired probability-of-win value in the first column. The third column contains all the
government tickets which have k = 3 or more numbers in commmon with at least one ticket in the
playing set in the second column.

Y Smallest playing set | Matching government tickets

0<yp <2 [{{1,2,3,4,5}} {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},
{1,2,4,5},{1,2,4,6},{1,2,4,7},{1,2,5,6},
{1,2,5,7},{1,3,4,5},{1,3,4,6},{1,3,4,7},
{1,3,5,6},{1,3,5,7},{1,4,5,6},{1,4,5,7},
{2,3,4,5},{2,3,4,6},{2,3,4,7},{2,3,5,6},
{2,3,5,7},{2,4,5,6},{2,4,5,7},{3,4,5,6},

{3,4,5,7}}
2 <v <5 | {{1,2,3,4,5}, {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},
{3’ 47 57 67 7}} {17 27 47 5}7 {17 27 4? 6}7 {17 27 47 7}7 {17 27 57 6}?

{1,2,5,7},{1,3,4,5},{1,3,4,6},{1,3,4,7},
{1? 37 57 6}’ {17 37 5? 7}’ {1’ 3’ 67 7}7 {]" 47 57 6}?
{1,4,5,7},{1,4,6,7},{1,5,6,7},{2,3,4,5},
{2> 3, 4, 6}a {27 3, 47 7}a {2? 3,9, 6}’ {2a 3,9, 7}7
{2,3,6,7},{2,4,5,6},{2,4,5,7},{2,4,6,7},
{2,5,6,7},{3,4,5,6},{3,4,5,7},{3,4,6, 7},
{3,5,6,7},{4,5,6,7}}

Ty <1 | {{1,2,3,4,5], {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3, 71,
{1,2,3,4,7}, {1,2,4,5},{1,2,4,6},{1,2,4,7},{1,2,5,6},
{3,4,5,6,7}} {1,2,5,7},{1,2,6,7},{1,3,4,5},{1,3,4,6},

{1,3,4,7},{1,3,5,6},{1,3,5,7},{1,3,6, 7},
{1,4,5,6},{1,4,5,7},{1,4,6,7},{1,5,6,7},
{2,3,4,5},{2,3,4,6},{2,3,4,7},{2,3, 5,6},
{2,3,5,7},{2,3,6,7},{2,4,5,6},{2,4,5,7},
{2,4,6,7},{2,5,6,7},{3,4,5,6},{3,4,5,7},
{3,4,6,7},{3,5,6,7},{4,5,6,7}}

Griindlingh [16] established the following result which shows that the two problems in Definitions
1.1 and 1.2 are essentially inverses of each other. Although this proof in [16] is for the three-
parameter case where n = ¢, the proof easily generalises to the four-parameter case.

Proposition 1.1 Let 0 < ¢ < 1 be a real number and let £ be any natural number. Then
Ly(m,n,t, k) <L if and only if Wo(m,n,t, k) >, for all1 <k < {n,t} <m. O

Both the incomplete lottery problem and the resource utilisation problem have only recently
been introduced into the combinatorial optimisation literature. However, prior to this introduc-
tion, a considerable amount of work had been done on the so-called complete lottery problem
which is the special case of the incomplete lottery problem that arises by taking the win proba-
bility ¢ = 1. See, for example, [27] in this regard. The well-known covering problem, and Turdn
problem are, in turn, special instances of the complete lottery problem.
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Definition 1.3 (The covering problem) A t-(m,n,1) covering set C C ®(Up,,n) has the
property that, for any element ¢y € ®(Up,,t), there exists an element ¢ € C such that {¢:}N{c} #
(). The optimal solution to the covering problem is the smallest possible cardinality of such a
covering set C. The solution to the problem is denoted by the covering number, C(m,n,t). O

Definition 1.4 (The Turdn problem) The Turdn number, T (m,n,t) is defined as the small-
est number of n-subsets of Uy, such that any t-subset of Uy, contains at least one of these
n-subsets. O

The lottery problem, with t = k, coincides with the covering problem, and similarly, if n = k,
the lottery problem coincides with the Turdn problem. Therefore, Li(m,n,t,t) = C(m,n,t)
and Li(m,n,t,n) = T(m,n,t).

Consider the following example of the 2-(5, 3, 1) covering problem, which is analogous to solving

the (5,3, 2, 2)-lottery problem.

Example 1.3 (The 2-(5,3,1) covering problem) Let Us = {1,2,3,4,5}, and consider the
cover C = {{1,2,3},{3,4,5},{1,2,4},{1,2,5}}. The set of all unordered pairs from Us is

A={{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}.

The set C is clearly a 2-(5,3,1) cover, since it contains each element of A as a subset of one of
its elements. It may be verified that C is, in fact, a minimum cover, and hence C(5,3,2) = 4.
[ |

Consider the following example of the (5,2, 3) Turdn problem, which is analogous to solving the
(5,2, 3,2)-lottery problem.

Example 1.4 (The (5,2,3) Turan problem) LetUs = {1,2,3,4,5}. The set of all 2-subsets
of Us is

A= {{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5}, {4, 5} }.
The set of all 3-subsets of Us are
B = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},
{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}.

Let A" € A be the smallest set of 2-subsets of Us such that any 3-subset of Us contained in B
contains at least one of these 2-subsets. Then |A'| = 4 and such a minimal set of 2-subsets of
Us is A" = {{1,2},{4,5},{2,3},{1,3}}, which yields the Turdn number T'(5,2,3) = 4. [ |

Bounds on the complete lottery number are established in the following theorem in terms of
the covering and Turdan numbers.

Theorem 1.1 (Covering and Turdn numbers as bounds [39])
T(m, k,t)
(%)

for allm > {n,t} > k> 1. O

< Ll(ma n,t, k) < C(ma n, t)
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Consider the following small example illustrating Theorem 1.1 for a small instance of the lottery
problem.

Example 1.5 Consider the lottery (9,4,5,3). The covering number for C(9,4,3) = 25 is an
upper bound on L1(9,3,5,3). The Turdn number T(9,3,5) = 12 divided by (g) =4 is a lower
bound on L1(9,3,5,2). Hence 3 < L1(9,3,5,3) < 25 is a lower bound on L1(9,3,5,3). It is
interesting to note how much closer the bound based on the Turdn number is to the complete
lottery number of L1(9,3,5,3) =5 than the bound based on the covering number. |

The following is a list of growth properties for the complete lottery problem [22].

Theorem 1.2 (Growth properties of Li(m,n,t,k))
(a) Ly (mym,t,k) < L(m + 1,m,t, k).

(b) Li(m,n,t, k) > Li(m,n,t + 1,k).

(¢c) Li(m,n,t,k) > Li(m+ 1,n+1,t,k).

(d) Ly(m,n,t,k) > Li(m+1,n+1,t+ 1,k).

(e) Li(m,n,t, k) > Li(m,n+ 1,t,k).

(f) Li(m,n,t,k) < Liy(m,n,t, k+1).

(9) Li(m,n,t,k) < Li(m+1,n+1,t+1,k+1).
(h) Ly(m,n,t,k) < Li(m+ 1,n+1,¢t,k+1).

(i) Li(m,n,t, k) < Liy(m+ 1,n,t,k+1).

(G) Li(m,n,t, k) < Li(m,n+ 1,t,k+ 1).

(k) Ly(m,n,t, k) < Ly(m,n,t + 1,k +1).

(1) Li(m,n,t, k) < Li(m + 1n,t+ 1,k +1).
(m) Ll(man7t7k) > Ll(m+ 17n>t+ 17k)
(n) Ly(m,n,t,k) > Li(m,n+1,t +1,k). O

For the incomplete lottery problem and the resource utilisation problem, the following bounds
were established in [6].

Theorem 1.3 (Growth properties of Ly(m,n,t, k) and Wy(m,n,t,k))
(a) Ly(m/,n,t, k) < Ly(m,n,t, k) for all1 <k <{n,t} <m' <m and 0 < <1.

(b) Ly(m,n',t,k) > Ly(m,n,t, k) for all1 <k <n’ <{n,t} <m and 0 < < 1.
(¢) Ly(m,n,t' k) > Ly(m,n,t,k) for all1 <k <t <{n,t} <m and 0 <y <1.
(d) Ly(m,n,t, k') < Ly(m,n,t, k) for all1 <k <k <{n,t} <m and 0 <3 < 1.
(e) Ly (m,n,t, k) < Ly(m,n,t,k) for all1 <k <{n,t} <m and 0 <9’ <4 <1.
(f) Oo(m/ ,n,t, k) > VUp(m,n,t, k) for all1 <k <{n,t} <m' <m and 0 < <1.
(g) We(m,n' t, k) < Wy(m,n,t, k) for all1 <k <n' <{n,t} <m and 0 < <1.
(h) Wyo(m,n,t' k) < Wp(m,n,t, k) for all1 <k <t <{n,t} <m and 0 <y <1.

(1) Wy(m,n,t, k') > We(m,n,t, k) for all1 <k <k <{n,t} <m and 0 <y <1.
(G) Vo (m,n,t, k) < We(m,n,t, k) for all1 <k <{n,t} <m and 0 < < <1. O

The example which follows illustrates the use of the above-mentioned theorems for the case
where the value of n changes.

Example 1.6 (Incomplete lottery bounds — A change in the value of n) Consider
the lottery (10,n,3,2), for the values of n = 4, and n = 5. If n = 4, an incomplete lot-
tery number is Lo 5(10,4,3,2) = 2, while the complete lottery number is L1(10,4,3,2) = 4. If
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n =5, an incomplete lottery number is Lo 5(10,5,3,2) = 1, while the complete lottery number
is L1(10,5,3,2) = 2. This result complies with Theorem 1.2(e) and Theorem 1.3(b). It may
also be seen that Lo 5(10,5,3,2) < L1(10,5,3,2), which complies with Theorem 1.3(e). [ |

1.3 Two kinds of lottery isomorphisms

In this section, the well-known notions of an isomorphism between lotteries and of an isomor-
phism between playing sets are reviewed. These notions have a significant impact on analyses
of both the incomplete lottery problem and the resource utilisation problem. The notion of
an isomorphism between lotteries implies that there are some lotteries which, although they
have different parameters, are structurally the same. This means that if one of the isomorphic
lotteries has been studied in terms of its combinatorial properties, those properties will also
hold for lotteries which are isomorphic to the lottery concerned. Similarly, the concept of iso-
morphic playing sets implies that it is possible for two solutions to the incomplete lottery and
resource utilisation problems to be distinct, yet structurally equivalent in terms of elements of
the universal set U,,.

1.3.1 Isomorphic lotteries

A lottery ticket may be identified uniquely by either specifying which elements of U, appear
in the ticket, or by specifying which elements of U,, do not appear in the ticket. In the lot-
tery (m,n,t, k) a playing set ticket may therefore be identified uniquely by specifying either n
numbers or by specifying m — n numbers. Similarly the winning ticket is identified uniquely by
specifying either ¢ numbers or by specifying m — ¢ numbers. This dual view of lottery ticket
identification gives rise to a pair of equivalent lotteries, called isomorphic lotteries and denoted
by writing (m,n,t, k) = (m,m —n,m —t;m + k —n — t), as formalised in the following result.

Theorem 1.4 (Isomorphic lotteries [16]) If m+ k > n+t, then
(i) Ly(m,n,t, k) = Ly(m,m —n,m —t,m+k —n—t) forall0 <1 <1, and
(ii) Ue(m,n,t,k) = Ve(m,m—n,m—t,m+k—n—t) forall1 <{ < Li(m,n,t k). O

In the following example it is illustrated how (5, 3,2,2) = (5,2, 3, 2).

Example 1.7 Figure 1.2 is a graphical representation of the lotteries (5,3,2,2) and (5,2,3,2)
i which tickets are represented by wvertices, and in which two vertices are adjacent if the
corresponding tickets have two or more numbers in common. In the lottery (5,3,2,2), the
black vertices represent the participant tickets, while the white vertices represent the govern-
ment tickets and similarly, in the lottery (5,2,3,2), the white vertices in Figure 1.2 represent
the participant tickets, while the black vertices represent the government tickets. It may be
seen that each black vertex has the same degree as each white vertex. This property enables
the black and white vertex sets to swap participant and government roles in the lottery prob-
lem. Hence (5,3,2,2) = (5,2,3,2) from which it follows that Ly(5,3,2,2) = Ly(5,2,3,2) and
U(5,3,2,2) = ¥y(5,2,3,2) forall0 <y <1landalll=1,...,4=11(5,3,2,2) = L1(5,2,3,2).

|
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{2,4,5}
{1,2,5}

{1,4,5}

{124}

{2,3,5}

{345}

ANy

{2,3,4}

{1,3,5} {4,5}

123} (134 {25}

FIGURE 1.2: Graphic representations of the lotteries (5,3,2,2) and (5,2, 3,2). For the lottery (5,3,2,2),
the black vertex set represents the participant tickets, and the white vertex set represents the government
tickets. For the lottery (5,2,3,2), the white vertex set represents the participant tickets, and the black
vertex set represents the government tickets.

1.3.2 Isomorphic playing sets

As mentioned previously, the existence of isomorphic playing sets imply that it is possible for
two solutions to either the incomplete lottery problem or the resource utilisation problem to be
visually distinct, yet structurally similar as a result of the ubiquity of the symbols attached to
members of the universal set U,,,. This raises the question of how many structurally different
optimal solutions to the lottery and resource utilisation problems there might be.

Definition 1.5 (The overlapping structure of a playing set) A playing set of cardinality
¢ partitions the universal set Uy, into 2¢ subsets or compartments, known as the inclusion-
exclusion compartments. All the elements of Uy, that are unique to ticket 1 appear in one
compartment, all elements of U, that are unique to ticket 2 appear in another compartment, all

elements of Uy, that are members of both tickets 1 and 2 appear in a third compartment, and so
on. U

An overlapping playing set structure allows one to identify which tickets share numbers with
each other, and which tickets contain numbers which are unique to those tickets, irrespective of
the symbols attached to elements of these tickets (numbers in the traditional sense). The notion
of an overlapping playing set structure is illustrated in Figure 1.3. The following definition is
taken from [16].

Definition 1.6 (The lottery characterisation number) Let the set L, = {£1) £3) ...
Lot contain all structurally different playing sets for the lottery (m,n,t, k) (where 1 <
E<{n,t} <m,0<¢ <1and1 <l < Li(m,n,t k)). Then, we refer to ny(m,n,t, k) = |Ly|
as the lottery characterisation number for the lottery (m,n,t, k). O
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F1cURE 1.3: An example of an overlapping playing set structure for a lottery in which m = 6 and
n = 3. There is one number in the compartment shared by neither ticket 1 nor ticket 2, two numbers in
the compartment exclusive to ticket 1, two numbers in the compartment exclusive to ticket 2, and one
number in the compartment shared by ticket 1 and ticket 2. Two distinct playing sets conforming to
this structure are {{1,2,3},{3,4,5}} and {{1,3,6},{2,4,6}}.

The following example illustrates the notion of a lottery characterisation number for the lottery
(10,5,4,3).

Example 1.8 (The lottery characterisation number of the lottery (10,5,4,3)) The
only two overlapping playing set structures for the lottery (10,5,4,3) are shown in Figure 1.4.
An example of a playing set conforming to the overlapping playing set structure on the left is
{{1,2,3,4,5},{1,6,7,8,9}}. It may be seen that both tickets share the number 1, that the num-
ber 10 does not appear in either ticket and that the other numbers (2,3,4,5,6,7,8,9) are each
unique to a specific ticket. An example of a playing set conforming to the overlapping playing set
structure on the right is {{1,2,3,4,5},{6,7,8,9,10}}. For either of these overlapping playing
set structures, Wy(10,5,4,3) = %. Consequently, 7]%8(10, 5,4,3) = 2. |

FIGURE 1.4: The two different optimal overlapping playing set structures of the lottery (10,5, 4, 3) where
{ = 2, resulting in 77%(10, 5,4,3) = 2.

1.4 Scope and objectives

The objectives pursued in this thesis are:

I (a) To model lotteries as bipartite graphs in order to graphically represent lottery in-
stances in which n # t.

(b) To establish new bounds on the incomplete lottery number from the bipartite graph
representation of lotteries in Objective I(a) above, where n # t.

(¢) To compare the new bounds to known bounds associated with small and large lottery
problem instances documented in [16].

I (a) To formulate the incomplete lottery problem and the resource utilisation problem as
integer programming problems.

(b) To implement the formulations in II(a) above in a suitable, commercially available
mathematical programming solver and to verify the correctness of these implemen-
tations by comparing results thus obtained with results documented in [16].
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(d)

To investigate the limits of applicability of the implementations in II(a) above, by
exploring the execution time of solving small problem instances in parallel.

To use the implementation in II(b) above to analyse those small lotteries identified
in II(c) above by solving the incomplete lottery problem (for the decimal values ¢ =
0.1,0.2,0.3,...,1) and the resource utilisation problem exactly (taking into account
the lottery isomorphisms described in §1.3.1), and to document these solutions in an
accessible manner.

To re-implement the brute force (backtracking) enumeration method in [16], as de-
scribed in §1.3.

To verify the correctness of the implementation in III(a) above by comparing the
results obtained for small lotteries via the enumeration method with the results
documented in [16].

To wvalidate the results in Objective II(d) above by comparing those results with the
results obtained via the enumeration method in ITI(a)—(b) above.

To use the implementation in III(b) above to find all structurally non-isomorphic
optimal solutions to the largest possible subset of problem instances identified in
Objective II(c)—(d).

To formulate a combinatorial optimisation problem involving the distribution of the
elements of the overlapping playing set structures investigated in Objectives I1I(a)—
(d), amongst the inclusion-exclusion principle compartments into which it is sepa-
rated, as an alternative to the problem of constructing different playing sets from all
the possible tickets in the lottery.

To implement heuristic methods which may be used in an attempt to solve the
problem formulated in Objective IV(a) above and to find good approximate solutions
to the incomplete lottery problem and the resource utilisation problem.

To apply the heuristic methods to the same small lottery instances investigated in
Objectives II(d) and III(c).

To compare the results obtained in Objective IV(c) above to the results obtained via
the method in Objective III(a) in terms of execution time and practical feasibility.

To compute (analytically) the probability of multiple winners in a given lottery, in
which the numbers in the winning government ticket are drawn randomly according
to a uniform distribution and the numbers chosen by participants to be included in
their playing sets are also randomly chosen according to a uniform distribution.

To compute (by means of simulation) the probability of multiple winners in a given
lottery, in which the numbers in the winning government ticket are drawn randomly
according to a uniform distribution and the numbers chosen by participants to be
included in their playing set tickets are randomly chosen according to a uniform
distribution.

To compute (by means of simulation) the probability of multiple winners in a given
lottery, in which the numbers in the winning government ticket are drawn randomly
according to a uniform distribution and the numbers chosen by some proportion of
participants to be in their playing set tickets are not randomly chosen, but conform
to some pre-defined structure of player preference.
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1.5 Thesis organisation

Chapter 2 of this thesis contains a concise literature review on the complete lottery problem,
the incomplete lottery problem, and the resource utilisation problem. Various bounds on the
complete lottery number, the incomplete lottery number, and the resource utilisation number
are presented. Exact formulas of the complete lottery number, the incomplete lottery number,
and the resource utilisation number for certain special lottery instances are also presented. The
chapter also contains a concise summary of solution methods adopted in the literature for the
above-mentioned problems.

Chapter 3 contains the formulation of a new bound on the incomplete lottery number for lotteries
in which n # t. Known bounds from graph domination are presented and computed for graphs
in which n = t; a process analogous to computing bounds on the complete lottery number.
An upper bound on the cardinality of a so-called covering of a bipartite graph is adapted and
used to establish a new bound on the incomplete lottery number. The newly established bound
is then compared to known bounds on the complete lottery number. Finally, the new bound
on the incomplete lottery number is computed for small lottery instances and the results are
analysed.

Mathematical programming approaches towards solving the incomplete lottery problem and
resource utilisation problem are presented in Chapter 4. The results obtained by solving these
mathematical programming problems are analysed in terms of execution time and solutions
obtained as a function of the possible values of the parameter ¢ in the incomplete lottery
problem, and the parameter £ in the resource utilisation problem. An investigation is then
conducted with respect to the boundaries of feasibility of these mathematical programming
approaches when solving the incomplete lottery problem and the resource utilisation problem
in parallel.

In Chapter 5, a previously established exhaustive enumeration lottery tree solution method [5,
16] is reviewed. The working of this solution method is described in detail. An implementation
is presented and applied to the same small problem instances explored in Chapter 4 in order
to compare the mathematical programming solutions to those of the exhaustive enumeration
lottery tree solution method in terms of execution time and practical feasibility.

The overlapping playing set structure of a solution to the incomplete lottery problem and
the resource utilisation problem is further explored in Chapter 6. Methods of distributing the
elements of an overlapping playing set structure amongst its different compartments are explored
in order to find good approximate solutions to the incomplete lottery problem and the resource
utilisation problem in shorter execution time frames than required by the previous methods.

In Chapter 7, the expected number of winners in a lottery draw is investigated. Special focus
is afforded to the probability of 18 or more participants winning concurrently in the lottery
(49,6,6,6) due to occurrences of such extreme events in the recent history of the South African
National lottery, Lotto. This probability is computed under the assumption that participants
select the numbers in their playing set tickets according to a non-uniform random distribu-
tion. The results of the investigation are documented and analysed. A similar investigation is
conducted for the same small lottery instances investigated in Chapters 4 and 5.

Chapter 8 is the conclusion of the thesis. It contains a brief summary of work contained within
as well as a number of ideas with respect to possible future work.
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In this chapter, a concise summary is presented of known work on the complete lottery prob-
lem, the incomplete lottery problem, and the resource utilisation problem. The earliest work,
based only on the complete lottery problem is presented in the first section, and in the section
that follows, more recent work (on the incomplete lottery problem and the resource utilisation
problem) is presented.

2.1 The complete lottery problem

In this section, a summary of past work on the complete lottery problem is presented. In
general, Li(m,n,t, k) is a nondecreasing function under any one of the following conditions: if m
increases, n decreases, t decreases, or k increases (see Theorem 1.2). Furthermore, Li(m,n,t, k)
is a nondecreasing function under any one of the following conditions: if m and n both increase,
m and ¢ both increase, n and k both increase, or ¢t and k both increase, and Li(m,n,t, k) is
also a non-decreasing function if: m, n and t decrease, or m, n and k increase or m, t and k
increase. Finally, Li(m,n,t, k) is a nondecreasing function if m, n, ¢, k all increase [27].

15
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2.1.1 Results from graph theory

A lottery may be modelled as a graph, known as a lottery graph [16]. The vertices of the
graph represent the tickets in the lottery, and two vertices are adjacent if the tickets which they
represent have a subset of cardinality at least k in common. The degree of each vertex in the

graph is
nzl n\ [m-—n

for all 1 < k < n < m. Grindlingh [16] used this lottery graph representation to formulate
and prove a theorem characterising small values of Ly (m,n,n, k) and designed an algorithm for
representing a lottery graph graphically, exposing its symmetric nature. Graphs of small lottery
instances are plotted in [16], and values of Ly(m,n,t, k) are determined through an analysis
of these graphs. By using known properties of lottery graphs, the previously unknown value
L1(10,6,6,5) = 14 was also established by Griindlingh.

2.1.2 Bounds on Li(m,n,t, k)

As mentioned in Chapter 1, the well-known covering problem and Turdn problem are analogous
to the complete lottery problem for the lotteries (m,n,t,t) and (m,n,t, n), respectively. There-
fore, Li(m,n,t,t) = C(m,n,t), the covering number, and Li(m,n,t,n) = T(m,n,t), the Turdn
number. Li & van Rees [24] derived the bound

I’l(WL?n’t’k)Z min(nt()p)n m—n
Yk (D)

from work on covering designs by Nurmela & Ostergard [33]. Also in [24], further lower bounds
are stated which are derived from Turdn numbers. De Caen [7] showed that

(2.2)

() m—t+1

(]i:ll)m—k:—i-l

T(m,t,k) > (2.3)

while it is known [3, 4, 39] that

Li(m,n,t, k) > (2.4)

From (2.3) and (2.4), it follows that

() m—t+1

(o) () m—k+1

Ll (m7 n’ t? k) 2

Schénheim’s [38] lower bound for lottery designs states that
m
Li(m,n,t,t) > [le(m—1,n—1,t—1,t—1)1, (2.5)
n
while Li & van Rees [24] also established the bounds

Li(m,n,k+1,k) > min{Ly(m,n,k —1,k—1),Li(m —k+1,n—k+2,2,2)}, (2.6)
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Li(m,n,k+2,k) > min{Ly(m,n,k,k — 1), Liy(m —k,n—k+2,2,2)}, (2.7)

Li(m,n,6,3) > min{Li(m,n,4,2), L1(m —4,n — 1,2,2)}. (2.8)

They also state that if n > 3, then Li(2n + 1,n,5,3) > 5, L1(2n 4+ 2,n,6,3) > 4, L1(3n +
1,n,7,3) > 6, L1(n+2,n,4,3) >3, L1(3n+2,n,8,3) > 5, and if n > 4, then Ly(2n+3,n,9,4) >
4, L1(3n +2,n,11,4) > 5, L1(3n + 3,n,12,4) > 5, and if n > 5, then L1(2n + 4,n,12,5) > 4
[24].

The bounds presented in Theorem 1.2 were established by Li & van Rees [25] and by Griindlingh
[16].

The bounds
k—1)\k k

are well known [27], while the generalised Schénheim bound,

Ll (m7 n? t? k) 2

" )im—n+k—1,n,tk
(nfk+1) 1( )“’ (210)

(n—Tl::L—&-l) o (n—Z—i—l)

was presented by Li & van Rees [24] as well as in [27].

It is also mentioned in The handbook of combinatorial designs [27] that if m = m; + ma and
t =ty +ty— 1, then Li(m,n,t,k) < Li(my,n,t1,k) + Li(ma,n,ta, k) [27]. Another bound by
Li & van Rees [25, 27] is

Li(m,n,t, k) < Li(my,k, t —r k) + Li(my,ny, t —r —1,t —r —1), (2.11)
if it is supposed that m, n, t, k, m1, n1 and r are integers satisfying mq; < m, t —r > k,
ni>k—r—1landni=n—-—m-+m;.
In 1999, Li & van Rees [26] derived a recursive upper bound on the complete lottery number

for the lottery (m,n,t, k), namely

Li(m,n,t,k) < Liim—1,n—1,t — 1,k — 1)+ Li(m — 1,n,t, k). (2.12)

2.1.3 Known values of Li(m,n,t, k)

In 1978, Bate [3] presented the formula

(2.13)

—t+1
Ll(m7n7t? 1) = ’Vm i —‘ )
n

which may be used to compute the complete lottery number for any lottery instance in which
k = 1. He also showed that

(2.14)

Ly(m.2,t,2) = [W—(t—ww

2(t — 1)
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and that
( _mszﬂ if m=2,4,6 (mod 12),
[ mi2m 1] if m=0,8,10 (mod 12),
Li(m,3,3,2) = | | (2.15)

mlgﬂ if m=1,3,5,7 (mod 12),
1] i m=9,11 (mod 12).

In addition, Li & van Rees [24] showed that
Liim,n,t,k)=r+1 (2.16)

ifm—-n>t—k+1, where r = Lﬁj

The following theorem was established by Burger, et al. [5, 27].

Theorem 2.1 For all1 < k < {n,t} <m,

(a) Li(m,n,t, k) =1 if and only if n +t > m + k.

(b) Li(m,n,t, k) =2 if and only if 2k — 1 + max{m —2n, 0} <t <m+k—n—1.

(c) Li(m,n,t, k) = 3 if and only if t < min{2k — 2 + max{m —2n, 0},n —k+t— 1} and

£ 3k — 2 4+ max{m — 3n,0}, if m >2n
= %k — 1+ max{m — %n,O}, if m < 2n.

Table 2.1 contains known values of Li(m,n,n,k) where 2 < m < 10 [16]. The values
L1(10,4,4,3), L1(10,5,5,4) and L1(10,6,6,4) were all established by Griindlingh [16]. Many
more known values of Li(m,n,n, k) may be found in [5, 6, 20, 22, 25, 27] and also in the online
lottery repository [23].

2.1.4 An ILP approach to the complete lottery problem

Jans & Degraeve [20] proposed an Interger Linear Programming (ILP) formulation of the com-
plete lottery problem for lotteries of the form (m,n,n, k). They considered lottery instances in
which 5 <m <16, n € {4,5,6}, and k <n < m. Let

1 if participant ticket j is in the playing set
xj = . (2.17)
0 otherwise
be a binary decision variable, and # = [z, ... ,x(m)]. Jans & Degraeve constructed a playing set

Ly(m,n,t, k) from the set ®(Uy,,n) subject to the constraint that at least one participant ticket
j should have at least k¥ numbers in common with the winning ticket drawn randomly from the
set ®(Upm,t). Let the neighbourhood, Ni], of a participant ticket i be the set of government
tickets from ®(Uy,,t) which have at least k& numbers in common with the participant ticket.

Suppose A is a (') x (') matrix whose (i, j)-th entry is

a — 1 if government ticket ¢ is in the neighbourhood of participant ticket j
1 0 otherwise.

In the complete lottery problem, the union of the neighbourhoods of the tickets in an optimal
playing set must equal the entire set of t-subsets of U,,, i.e., Uie%(m’n’t’k) Ni] = ®(Up, t). Jans
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Known values of the complete lottery number Li(m,n,n,k) for small lottery instances,

where 2 < m < 10.

TABLE 2.1:
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& Degraeve found an optimal playing set by adopting a set covering problem ILP formulation
approach in which the objective is to

minimise P(z) = Y (2.18)

1<5<(™)

subject to

Z Qi Tj > 1, 1<4< <Ttn> (2'19)

155 (7)

m

zj (0,1}, 1<j< <m> (2.20)

n
The objective in (2.18) is to minimise the number of tickets in the participant’s playing set.

Constraint set (2.19) ensures that each government ticket is covered by at least one participant
ticket. Constraint set (2.20) enforces the binary nature of the decision variables in (2.17).

Jans & Degraeve noted that (somewhat superfluously) the ILP approach is valuable because it
allows a participant in the a lottery draw to know exactly how many tickets to select and it
provides participants with an indication of the specific numbers to select in their playing set
tickets. They also claimed that their ILP approach may be extended to lotteries of the form
(m,n,t, k).

Li & van Rees [25] noted that although it is easy to formulate the complete lottery problem
into an ILP, their attempt to solve for Lq(m,n,t, k) using an ILP approach was met with little
success, and suggest that a parallel approach may offer an improvement.

2.2 The incomplete lottery and resource utilisation problems

This section contains a summary of known work on the incomplete lottery problem and the
resource utilisation problem. In general, it is known that L,(m,n,t, k) is a non-decreasing
function if m increases, n decreases, t decreases, k increases, or 1 increases, and V,(m,n,t, k)
is a non-decreasing function if m decreases, n increases, t increases, k decreases or ¢ increases
(See theorem 1.3).

2.2.1 Known values of L,(m,n,t, k) and ¥y(m,n,t, k)

The following formulas for L (m,n,t, k) and W,(m,n,t, k) exist [16].

(a) Ly(m,m,m,k) =1,forall1 <k <mandall 0 <y <1

(b) Ly(m,n,n,n) = [¢(7)], foralll1 <n <mandall 0 < < 1.

(c) Ly(m,n,n, k) =1, for all 1 <k <n < m such that 2n >m+k and all 0 < ¢ < 1.
(d) ¥e(m,n,n,n)=1/("), forall 1 <n<mandall1<¢< (™).

(e) Ly(m,n,n, k) =1, forall1<k<n<manda110<1/1<(r+1)/( ).
(f)If1<€§LnJ n<3kandalll§k§n§m then

Uy(m,n,n, k) =

- (ES O ()]G
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where r is given in (2.1).
(g) Forall 1 <n <mand 0 < <1, Ly(m,n,n,1) = £ is the smallest integer solution to the
inequality

n—1

H(m—ﬁn—i)g

1=0

mi(1 - o)

(m—n)!~

(h) ¥y(m,m,m,k) =1, forall 1 <k <m.

(i) ¥1(m,n,n,k) = (r+1)/(7), for all 1 < k < n < m, where r is given in (2.1).
() ¥i(m,n,n, k) =1, for all 1 <k <n < m such that 2n > m + k.

(k) Li(m,n,n,1) = L%J, forall 1 <n <m.

() Forall0 <4 <1,

[Ym], if n=1<m,

’72m—1— 1+4m(m—1)(1—w)-‘ ifn=2<m

Ly(m,n,n,1) = 4

3 ifn=4<m.

{2m3\/5+4\/1+m(m1)(m2)(m3)(1¢)—‘

2.2.2 An ILP approach to the incomplete lottery problem

Griindlingh [16] proposed binary programming formulations for the incomplete lottery problem
and the resource utilisation problem for lottery problem instances of the form (m,n,n,k).
Both formulations contained non-linear elements which led Griindlingh to conclude that the
formulations were practically infeasible. He also deduced that a more efficient solution method
than binary programming is desirable. Griindlingh’s attempt to find the value of Ly (m,n,n, k)
was to adopt an ILP formulation approach in which the objective is to

minimise P(x) = Z xj (2.21)

1<5<(7)

subject to

Yo gz > 1 1§i§[¢<7:>-‘ (2.22)

1<i<(7)

z; € {0,1}, 133’3@). (2.23)

In (2.22), only the lexicographic first W (’g)] sets are considered. Therefore an optimal solution
to the formulation (2.21)-(2.23) only yields an upper bound on Ly(m,n,n,k). An additional
attempt by Griindlingh to find the value of Ly(m,n,n, k) was to adopt an ILP formulation
approach in which the objective was to

minimise P(x) = Z x; (2.24)
1<i(m)
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subject to

z; € {0,1}, 1§7;§<7:). (2.26)

An optimal solution to the formulation (2.24)-(2.26) indeed yields the value Ly (m,n,n,k);
however, the non-linear nature of (2.25) renders the formulation practically infeasible. Finally,
Griindlingh also adopted an ILP formulation approach to find the value of ¥y(m,n,t, k) in
which the objective was to

¢ () (W) »
maximise P(x Z 1Pt Z ZHaiqjxiq (2.27)
j=1g=1

p=1 1<i1 <. <ip =1q=

subject to

()

S age; > 1, 1§¢§{¢(T>1 (2.28)
j=1
z; € {01}, 1<j< 7;’:) (2.29)

An optimal solution to formulation (2.27)—(2.29) yields the value Wy(m,n,n, k); however, the
non-linear nature of (2.27) again renders the formulation practically infeasible.

2.2.3 Approximate methods

Burger et al. [6] and Griindlingh [16] proposed algorithmic approaches to finding approximate
solutions to the incomplete lottery problem and the resource utilisation problem in the case
where n = t. The solutions are in the form of playing sets constructed from ® (U, n). Heuristics
were used to explore different combinations of these sets in search of lower bounds on the
number V,(m, n,n, k) and upper bounds on Ly (m, n,n, k). Random search methods, a minimal
overlapping algorithm (a method involving the construction of interdependent playing sets), a
neighbourhood removal method (in which vertices with the largest neighbourhood are removed),
a tabu search algorithm, and a genetic algorithm were all employed by Griindlingh in the search
for good approximate solutions. The genetic algorithm was found to be the most effective
algorithm; however, it was also found to be the most computationally expensive.

2.2.4 Overlapping playing set structures

Burger, et al. [5] and Griindlingh [16] proposed that a vector representation of an overlapping
playing set structure may be formed by defining the function

x(tetz 1--t2t1)y ‘mz 1{ T if t; =

(2
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where (tgty_; ...tat1), denotes the binary representation of an integer in the range {0,1,. .., 20—
1}, T; denotes ticket 7, and Tl/ denotes the complement U, \T;. This function induces the vector

F(0) _ (.0 ) 0

X = (x(OOO...O)’x(OOO...l)’ e ’x(lll...l))7 (2.30)
which represents all the information required to describe the n-set overlapping structure of a
playing set. The entries in each vector X® add up to m, and imply that

(a) there are xggz)o...oo)

Y4
(b) there are xEO)OO...Ol)

b)
(c) there are 33%)00...10)
(d)

there are wgf))oo...ll)
A graphical example of a playing set structure for a lottery instance in which m = 6 and
n = 3 is presented in Figure 1.3. Various playing sets may belong to this structure, such
as {{1,2,3},{1,4,5}} or {{2,3,4},{1,2,5}}. These two playing sets which exhibit the same
overlapping structure are known as isomorphic playing sets, as mentioned in Chapter 1.

elements in the compartment excluded from all T},
elements in the compartment exclusive to 77,
elements in the compartment exclusive to 75,

elements in the compartment shared by 77 and 75, and so on.

The exhaustive enumeration lottery tree method, presented by Burger, et al. [5] and Griindlingh
[16], involves the iterative construction of a rooted tree data structure with the aim of solving
the incomplete lottery problem and the resource utilisation problem simultaneously. Level ¢ in
the tree contains nodes representing overlapping playing set structures of cardinality ¢. The
nodes on level i of the tree are constructed from the nodes on level ¢ — 1. Each overlapping
ticket structure is represented by a vector X, of size 2¢ such as the vector described in (2.30)
above. In order to compute a probability of win value associated with a node, its children are
constructed. A so-called domination test is conducted on these children: if the newly added
ticket has at least £ numbers in common with at least one of the existing tickets, the domination
test is passed (and the vector is placed into set Dr), otherwise the domination test is failed
(and the vector is placed into set D). The value,

, m!
M(X (’+1)) =
26—1_(i+1))’
Hj_o T jz !
is associated with each child at level ¢ + 1 and used to compute the probability of win value,

ZX“H)eDT M(X(iJrl))
EXUH)GDTUDF M(X(H—l)) ’

‘le(i) =

associated with the parent node.

From the exhaustive enumeration lottery tree associated with the lottery (5,3,3,2) in Figure
2.1, it may be seen that L%(5,3, 3,2) =1, Lpg(5,3,3,2) =2, L1(5,3,3,2) = 2, ¥,(5,3,3,2) = %
and Wy(5,3,3,2) = 1. If a playing set of cardinality 2 conforms to the overlapping playing set
structure (1, 1,1, 2), it will possess a resource utilisation value of 0.9. The node representing the
overlapping playing set structure (0,2,2,1) possesses a resource utilisation value of 1, because
all its children pass the domination test. The node representing the overlapping playing set
structure (1,1,1,2) possesses a resource utilisation value of less than 1, because one of its
children (the node representing the overlapping playing set structure (0,0,0,2,1,1,1,0)) does
not pass the domination test.

This exhaustive enumeration solution method is covered more extensively in Chapter 5.
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FIGURE 2.1: The exhaustive enumeration lottery tree for the lottery (5,3, 3,2). From this tree, it may be
seen that L%(5,3,3,2) =1, Lpy(5,3,3,2) =2, L1(5,3,3,2) = 2, ¥4(5,3,3,2) = % and U4(5,3,3,2) = 1.
If a playing set of cardinality 2 conforms to the overlapping playing set structure (1,1,1,2), it will
possess a resource utilisation value of 0.9. The node representing the overlapping playing set structure
(0,2,2,1) possesses a resource utilisation value of 1, because all its children pass the domination test. The
node representing the overlapping playing set structure (1,1,1,2) possesses a resource utilisation value
of less than 1, because one of its children (the node representing the overlapping playing set structure
(0,0,0,2,1,1,1,0)) does not pass the domination test.
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2.3 The number of winners in lottery draws

The average number of winners per draw in the South African national lottery, Lotto (a lottery
of the form (49, 6,6,6)), is approximately 1.002 [32]. However, on the dates of October 315¢,
2001, March 15, 2003, and February 7t", 2009, there were 19, 33, and 18 winners, respectively.
After the February 7" draw, members of the public raised questions regarding the legitimacy
of the results [14, 42].

Haigh concluded that the numbers drawn for the winning ticket in the UK Lottery are drawn
randomly with a uniform distribution [18]. Haigh also concluded that the choice of numbers by
participants is not random.

It is widely speculated that participants tend to select their numbers in such a way as to include
calendar numbers, an arithmetic sequence, or spread their n selected numbers out amongst the
m numbers [19, 45].

2.4 Chapter summary

In this chapter, known work on the complete lottery problem, incomplete lottery problem and
the resource utilisation problem was reviewed. The purpose of this chapter was to introduce
the reader to the work which served as inspiration for the work done in the remainder of this
thesis.

This chapter opened with a section on work done with regards to the complete lottery problem.
Known bounds on the complete lottery number for special lottery instances were presented,
followed by formulas for the exact values of the complete lottery number for certain special
lottery instances. The section closed with the presentation of an ILP approach, by Jans &
Degraeve [20], towards solving the complete lottery problem.

The chapter continued with a section on known work done on the incomplete lottery problem and
the resource utilisation problem. Formulas for known values of the incomplete lottery number
and the resource utilisation number were presented for special lottery instances. ILP approaches,
by Griindlingh [16], towards solving the incomplete lottery problem and the resource utilisation
problem were reviewed and discussed. The section on the incomplete lottery problem and
resource utilisation problem closed with a discussion of approximate solution methods employed
by Burger, et al. [6] and Grindlingh, and a brief introduction to the exhaustive enumeration
lottery tree solution method, introduced by Griindlingh.

Finally, a mention was made of the public interest in the problem of determining the number
of winners in a draw of the South African national lottery.



26

CHAPTER 2. LITERATURE REVIEW




CHAPTER 3

A new upper bound from graph theory
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In this chapter, the incomplete lottery problem is modelled as a special kind of domination
problem over bipartite graphs in fulfilment of Thesis Objective I(a). Using this model, a new
upper bound is established on the complete lottery number. The newly established bound is then
generalised to be applicable to the incomplete lottery problem according to Thesis Objective
I(b). The upper bounds on the complete lottery number and the incomplete lottery number
are then finally computed for small and large lottery instances, and the results are compared
to known bounds according to Thesis Objective I(c).

3.1 Bounds from graph domination theory: The case n =t

Given a graph G with vertex set V(G), a dominating set is a subset D € V(G) such that every
vertex in G is either an element of D or adjacent to at least one vertex in D, and a dominating
set of minimum cardinality is called a minimum dominating set. Denote the cardinality of a
minimum dominating set of G by v(G). Much work has been done with respect to finding
upper bounds on the cardinality of such a dominating set.

Upper bounds on the cardinality of a minimum dominating set of graph G may be used to
derive upper bounds on the complete lottery number L;(m,n,n, k) — note here that n = ¢ —
since a lottery of the form (m,n,n,k) may be represented by a regular graph G denoted by
G(m,n,n, k) on (ZL) vertices. Each vertex represents a ticket in (m,n,n, k) and two vertices are
joined by means of an edge if the corresponding tickets share at least k¥ numbers. The degrees

of the vertices in this graph are
= /n\ /m—n
r= . 3.1
> ()(-0) o



28 CHAPTER 3. A NEW UPPER BOUND FROM GRAPH THEORY

Playing a dominating set of the graph will guarantee the player a k-prize, since every possible
winning ticket is adjacent to at least one of the tickets in the participant’s playing set. The
lottery graph G(6,3,3,2) of order (g) = 20 and degree

E06L) (0 e

p=2
is shown as an example in Figure 3.1.

In 1974, Arnautov [1] obtained an upper bound on the cardinality of a minimum dominating
set for a graph G with p vertices where each vertex has a degree of d. Arnautov showed that

P 1 1

1
< — -+ =+ .+ — . .
V(G)_d+1<1+2+2+ +d+1> (32)

In the same year, he also established the asymptotic result of a well-known theorem stating
that for any graph containing p non-isolated vertices,

1+In(6(G) +1)
V(G)§p< 5(G) +1 )

where 6(G) denotes the minimum degree of G. Thereafter, Payan [34] (in 1975) and Marcu
[29] (in 1986) both proved independently that

(P =6(G) = D)(p - 0(G) —2)
p—1

(3.3)

1(G) <

+2. (3.4)

In 1985, Caro & Roditty [9] showed that

1+ 55y
1G) <p [1 (@) <5(G)1—|-1)> ( )] . (3.5)

Over ten years later, in 1996, Reed [36] proved a long-standing conjecture that
3
Y(G) < gp (3.6)
for graphs of minimum degree 2. Reed’s result was followed two years later by work of Clark,
et al. [11] in which it was shown that

1 -1
5(Gp+1 | <1+j5(G)> ' 37

As mentioned, the bounds (3.2)—(3.7) may be used to compute upper bounds on the complete
lottery number for lotteries with parameters (m,n,n, k). In 2004, Griindlingh [16] additionally
deduced the upper bound

Y(G)<p|1-

2(r+1) +z++/2(r+1)+x)2—8xp
2x
on the complete lottery number for the lottery (m,n,n, k) without using the theory of graphs,

where
=EE 00T 69

Note that (3.8) yields the bound co if m —2n < OQorn—i—j<0orm—2n<n—1i—j. The
above discussion was for lotteries in which n = t. However, if n # t, an alternative, so-called
bipartite graph representation of the lottery is required.

Y(G) < (3-8)
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FIGURE 3.1: A regular graph with (g) = 20 vertices, and degree r = 9, representing the lottery (6,3, 3,2).
An example of a dominating set for this graph consists for the vertices labelled {1,2,3} and {4,5,6}.

3.2 Bipartite graph representation of the lottery problem

A graph G is bipartite if its vertex set V(G) may be partitioned into two sets V; and Vs,
called partite sets, in such a way that no two vertices from the same partite set are adjacent.
In [2], various properties of bipartite graphs are presented. A lottery may (m,n,t, k) may be
represented by a bipartite graph G, containing partite sets V; = U(Uy,,,n) and Vo = U (U, t). A
bipartite graph representation of the lottery (7,5,4,3) is shown in Figure 1.1. In the figure, the
black vertices represent the partite set Vi = ®(Uz,5), modelling tickets which may be played
by a lottery participant, while the white vertices represent the partite set Vo = ®(Uy,4) in
(7,5,4,3), modelling the tickets from which the government selects the winning ticket of the
lottery (m,n,t, k).

Suppose a connected bipartite graph has partite sets V; and Vs, and that the neighbourhood of
a vertex v € V is denoted by M [v] C Vs. Then the elements in N'[v] are said to be covered by
v. It may easily be shown that (J,¢y), N[v] = Vs. In the bipartite minimum covering problem a
subset V| € V; of minimum cardinality is sought such that

U Nlz]| = Vel

veEV]

In this problem the set V] is called the covering set (or covering for short), and the partite set
Vs is called the covered set. The aim, therefore, is to find a covering consisting of as few elements
as possible, known as a minimum covering of Vo by Vj. If the problem is large there may be
a large number of combinations of vertices from V; from which the set V] may be constructed,
implying that it may be computationally expensive to find a minimum covering. In such cases
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an approximation algorithm may be used instead. One of the most common approximation
algorithms is the Greedy Covering Algorithm, a pseudocode listing of which is presented in
Algorithm 3.1.

Algorithm 3.1: Greedy Covering Algorithm

Data: A bipartite graph G of order p with partite sets V; and Vs
Result: A covering V] C V;
V) 0;
while V, # () do
Choose a vertex v of maximum degree in Vy;
V(G) — V(G)\({v} UN]);
Vv — Vi u{v};
end

The output of Algorithm 3.1 is a covering of vertex set Vo by a subset V{ of V. It may be
possible, through the use of more advanced algorithms, to compute a covering Vj of V, of
minimum cardinality for small graphs. However, the cardinality of the subset V' produced
by Algorithm 3.1 is not necessarily of minimum cardinality, implying that |V{| is an upper
bound on |Vj|. Therefore, an upper bound on the complete lottery number Lq(m,n,t, k) may
be computed by means of the output of Algorithm 3.1 when applied to the bipartite lottery
graph G(m,n,t, k).

In order to compute the degree, s, of each vertex in partite set Vs, all the tickets from ®(U,,n),
or V), are counted which have k or more numbers in common with a given ticket in ®(U,,, ),
or Vs. First, the tickets from V; are counted which have exactly k numbers in common with a
given ticket in V5. From the ¢ numbers in a government ticket, £ numbers may be chosen in

(Z) ways and from the remaining m — ¢ numbers, there are (T__lj) ways in which to choose the

remaining n — k numbers in the participant ticket. Therefore, there are (li) (m_t) tickets from

n—k
V) which have ezactly k numbers in common with a given ticket in ®(U,,,t). If this procedure
is repeated for k+1, ..., min{n,t} instead of k, all the tickets from V; are counted which have

k or more numbers in common with a given ticket in V. Therefore,

=200

p=k

3.3 A greedy bound on the complete lottery number

In this section, an analytic upper bound on the minimum cardinality of a bipartite covering, is
reviewed from [2]. This bound is then used to compute upper bounds on the complete lottery
number for small and large lottery instances. The upper bounds obtained for those lottery
instances are then compared to the upper bounds presented in §3.1 in the special case where
n = t. The following lemma is used to establish the upper bound on the complete lottery
number.

Lemma 3.1 Let G be a bipartite graph with partite sets V1 and Vo, and assume s is the degree
of the vertices in Va. Let R; be the subset of vertices remaining in Vo after the 5 iteration of
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Algorithm 3.1 with the convention that Ry = V. Then
Jj—1 s

R < |V 1——]. 3.11

<Pl (1 ) )

Proof: In order to prove the inequality in (3.11), it may be seen that after j iterations of
Algorithm 3.1, |R;|s edges remain in the bipartite graph, while |Vi| — j vertices remain in V.
If all the edges in the graph are distributed amongst the |V1| — j vertices in Vi, then there is a
vertex in V1 of degree at least

Rjls
- 3.12
Vil —J (3.12)
Therefore,
[R;ls < s >
| J+‘ ’ ]| ‘Vl‘_] ‘ J| ’V1|—j ( )
from which (3.11) follows inductively for any 0 < j < |Vy|. O

In the following theorem, an upper bound on the complete lottery number (obtained from [2])
is established.

Theorem 3.1 Let G be the bipartite graph representation of the lottery (m,n,t, k) with partite
sets Vi = ®(Up,n) and Vo = ®(Up,,t). Then
m
s(t)> , (3.14)

()

Li(m,n,t, k) <1+ (;L) <1+10g

where s in (3.10) is the degree of vertices in Va.

Proof: For any value of j > 0, the number of remaining iterations of the while-loop spanning
lines 2-6 in Algorithm 3.1 required to complete the algorithm is bounded from above by |R;|. It
follows by Lemma 3.1 that

Li(m,n,t,k) < j+|R;| < j+ (T) (1 _ (i)>J <+ (T)Jfﬁx)j (3.15)

n

at termination of the algorithm. In order to simplify inequality (3.15), a substitute value for j
is selected which is less than ("), and a function of (™), ('}) and s. It is known that elog(2) —

¢
so by substituting

Li(m,n,t, k) <1+ @ (1 + IOgS((%)

i | Sl

into (3.15), it follows that

) 0

The following two examples illustrate how Theorem 3.1 may be applied to the lottery (8,4,3,2)
and to the well-known lottery (49, 6,6, 3).
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Example 3.1 (Greedy bound on L;(8,4,3,2) and L;(49,6,6,3))
For the lottery (8,4,3,2),

The greedy bound (3.14) yields

35 x 56

70
Li(8,4,3.2) <1+ o (1 + log ) ~ 5.894.

It is, in fact, known that L1(8,4,3,2) = 2. For the lottery (49,6,6,3),

=306 =0 E) QG G )+ () o

p=3

The greedy bound (3.14) yields

L1(49,6,6,3) <1+

13983 816 < 1 260624 x 13983816

260 624 13983 816 ) ~ 345.252.

It is, in fact, known that L1(49,6,6,3) < 163. ]

Tables 3.1 and 3.2 contain comparisons of the bounds presented in this chapter. The bounds
(3.4) and (3.6) are weak upper bounds and they are therefore omitted from the tables. In Table
3.1 the bounds in §3.1, together with the bound in (2.12) and best known bounds available in
the online lottery repository [22], are compared to the new greedy bound in (3.14) for small
lottery instances (where 6 < m < 10, m > {n,t} > k > 2 and Li(m,n,t,k) > 1). In Table
3.2, a similar comparison is presented for larger lotteries which are of the form (m,6,6,3), for
6 < m < 50. Table 3.1 also contains |V{|, the cardinality of the covering set obtained via
Algorithm 3.1. The value [V{| is omitted from Table 3.2 due to the computational complexity
involved in applying Algorithm 3.1 to the larger lottery instances.

The values of s, (') and (}') affect the value of the greedy bound (3.14) — as the values of (™)
and (T) increase, so does the value of the greedy bound. However, as the value of s increases,
the value of the greedy bound (3.14) decreases. This makes sense in the context of the greedy
algorithm, because if a participant ticket x is removed from the corresponding graph model, the
neighbourhood set N (z) is also removed from the graph. If the degree of the government tickets
is large, removal of the set N (z) from the graph results in the degrees of a large number of
the remaining participant tickets being decreased, leaving a small number of participant tickets,

each with a relatively larger degree to choose from during the next iteration of Algorithm 3.1.

3.4 A greedy bound on the incomplete lottery number

The bounds presented in §3.1-3.3 are only applicable to the complete lottery problem. However,
the result of Theorem 3.1 may be generalised to hold for the incomplete lottery problem. In
the incomplete lottery problem, it is required that at least a proportion @ of the government
tickets be covered. If x tickets are removed from the (Tt”) government tickets, a proportion
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TABLE 3.1: The greedy bound (3.14), compared to previously known upper bounds (2.12), (3.2), (3.3),
(3.5), (3.7), (3.8) and (3.14), on the complete lottery number for small lottery instances where 6 <
m < 10, m > {n,t} > k > 2 and Li(m,n,t, k) > 1. The entries in the column labelled |V}| represent
the cardinality of the resulting playing set after applying Algorithm 3.1. “” indicates that it is not
possible to compute that bound for the specific lottery.

Lottery (D s|Lu][V]]](2.12) [ (3.14) [ (3.7) [ (3.2) | (3.5) | (3.3) | (3.8)
(6,3,3,2) || 20| 20| 10] 2f 2 4 5 5 6 6 7 o
(7,3,3,2) || 35| 35| 13| 4| 4 5 718 9 9| 10| oo
(7,3,4,2) || 35| 35| 22| 2| 2 4 501 - —-| —-| -

(8,3,3,2) || 56| 56| 16| 5| 5 7 9| 11| 12| 12| 13| oo
(8,3,4,2) || 56| 70| 28| 3| 3 4 - =] = = -
(8,3,5,2) || 56| 56| 40| 2| 2 3 501 —| —-| —| —-| -
(8,4,3,2) || 70| 56| 35| 2| 2 5 6| —| —-| —-| —| -
(8,4,4,2) || 70| 70| 53| 2| 2 4 5 6 6 71 7] 3
(8,4,4,3) || 70| 70| 17| 6| 8 8 11| 13| 14| 15| 16| oo
(9,3,3,2) || 84| 84| 19| 7| 9 9 12| 14| 16| 16| 17| oo
(9,3,4,2) || 84|126| 34| 3| 3 5 8 —| —| - - -
(9,3,5,2) || 84|126| 50| 3| 3 4 6| —-| —-| —-| -—-| -
(9,3,6,2) || 84| 84| 65| 2| 2 3 50 —| —-| —| —-| -
(9,4,3,2) |/ 126] 84| 51| 4| 4 6 8 - -
(9,4,4,2) |/126]126| 81| 2| 4 4 6 8 8 9 9| 4
(9,4,4,3) |/126]126| 21| 9| 11 11 15| 20| 22| 23| 24| o
(9,4,5,2) |126]126/105| 2| 2 4 501 —| —-| —| —-| -
(9,4,5,3) ||126]126| 45| 5| 5 5 9] —-| -] | -

(9,4,6,3) || 126| 84| 75| 2| 2 4 6| —| —-| —| -—-| -
(10,3,3,2) || 120 120| 22| 8| 10 11 14| 19| 20| 21| 22| o
(10,3,4,2)| 120|210 40| 5| 5 6 0 - - - -

(10,3,5,2) || 120 252| 60| 3| 3 5 8| —| —-| —-| —-| -
(10,3,6,2) || 120| 210| 80| 3| 3 3 6] —-| —-| —-| —-| -
(10,3,7,2) || 120 120| 98| 2| 2 3 501 —| -] —| —| -
(10,4,3,2)|/ 210 120| 70| 4| 4 8 9| —| —-| | - -
(10,4,4,2)| 210|210 |115| 3| 3 5 7| 10| 10| 11| 11 6
(10,4,4,3) | 210|210 | 25| 14| 17 16| 22| 30| 32| 33| 35| oo
(10,4,5,2) | 210|252 |155| 2| 2 4 6| —| —-| —| -—-| -
(10,4,5,3) |1 210| 252| 55| 7| 7 8 120 —| —| - —| -
(10,4,6,2) (210|210 |185| 2| 2 3 5 —| -] —-| —-| -
(10,4,6,3) |/ 210(210| 95| 4| 4 5 8| —-| -] —-| -

(10,4,7,3)| 210|120 | 140| 2| 2 4 6| —| —-| —-| -—-| -
(10,5,3,2) || 252 120|126| 2| 2 6 7 - - = = -
(10,5,4,2) || 252|210 |186| 2| 2 5 6| —| —-| —-| -—-| -
(10,5,4,3) || 252 210| 66| 7| 8 9 12 - - -] - =
(10,5,5,2) || 252|252 |226| 2| 2 4 5 717 8 8 3
(10,5,5,3) || 252|252 |126| 2| 2 4 8| 11| 11| 12| 12| oo
(10,5,5,4) || 252|252 | 26| 14| 21 18| 25| 35| 37| 39| 41| oo
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TABLE 3.2: The greedy bound in (3.14), compared to previously known bounds (2.12), (3.2), (3.3),
(3.5), (3.7), (3.8) and (3.14) on the complete lottery number for instances of the lottery (m,6,6,3),
where 6 < m < 50. A question mark indicates that the lottery number does not appear in any online
lottery tables, and is hence not known. The column labelled ‘[22]’ contains best known upper bounds
available in the online lottery repository [22].

Lottery Ly [ 22 [212) [B14) [ 37 [ (32) [ (35) [ 3.3) | (3-8)
(6,6,6,3) 1] 1 - 2 1 1 1 1] o~
(7,6,6,3) 1] 1 2 2 3 3 3 3]
(8,6,6,3) 1] 1 2 4 4 4 5 50 o
(9,6,6,3) 1] 1 2 4 5 5 6 6| oo
(10,6,6,3) || 2| 2 3 5 7 7 7 7|
(11,6,6,3) || 2| 2 4 6 8 8 9 9| o
(12,6,6,3) || 2| 2 4 7| 10| 10| 11| 11 3
(13,6,6,3) || 2| 2 4 8| 13| 13| 13| 13 5
(14,6,6,3) || 4| 4 5 9 15| 16| 16| 16 7
(15,6,6,3) || 4| 4 7 1| 19| 19| 20| 20| 10
(16,6,6,3) || 5| 5 7 13| 23| 23| 24| 24| 14
(17,6,6,3) || 6| 6 8 15| 27| 27| 28| 28| 19
(18,6,6,3) || 7| 7 10 18| 32| 32| 33| 33| 25
(19,6,6,3) || 7| 9 11 20| 37| 37| 39| 39| 32
(20,6,6,3) || 7| 10 13 23| 43| 43| 45| 45| 40
(21,6,6,3) || 7| 13 14 27| 50| 50| 52| 52| 50
(22,6,6,3) || 7| 15 19 31| 58| 58| 60| 60| 61
(23,6,6,3) || 7| 17 21 35| 66| 66| 69| 69| 73
(24,6,6,3) || 7| 20 24 39| 75| 75| 78| 78| 87
(25,6,6,3) || 7| 22 28 44| 85| 8| 89| 89| 103
(26,6,6,3) || 7| 25 31 50| 96| 96| 100| 100 | 121
(27,6,6,3) || 7| 27 35 56 | 108 | 108 | 112 | 113 | 140
(28,6,6,3) | 7| 31 38 62| 121 | 121 | 126 | 126 | 162
(29,6,6,3) || 7| 35 43 69 | 135| 135 | 140 | 140 | 185
(30,6,6,3) || 7| 39 48 76 | 150 | 150 | 156 | 156 | 211
(31,6,6,3) | 7| 45 53 84| 166 | 166 | 172 | 173 | 239
(32,6,6,3) || 7| 50 60 93 | 184 | 184 | 190 | 190 | 270
(33,6,6,3) || ?| 55 66 | 102 | 202 | 202| 210 | 210 | 303
(34,6,6,3) || 7| 60 72| 112 222| 222| 230 | 230 | 338
(35,6,6,3) || 7| 66 78 | 122 | 243 | 243 | 252 | 252 | 377
(36,6,6,3) || 7| 72 85 | 133 | 266 | 266 | 275 | 275 | 418
(37,6,6,3) || 7| 78 92 | 145 | 289 | 289 | 299 | 299 | 462
(38,6,6,3) || 7| 83 99 | 157 | 315 | 315| 326 | 326 | 508
(39,6,6,3) || 7| 89| 105| 170 | 341 | 341| 353 | 353 | 558
(40,6,6,3) || ?| 96| 112| 184 | 370 | 370 | 382 | 382 | 612
(41,6,6,3) || 7102 | 120 | 199 | 399 | 400 | 413 | 413 | 668
(42,6,6,3) || 7| 109 | 127 | 214 | 431 | 431 | 446 | 446 | 728
(43,6,6,3) || 7| 117 | 135| 230 | 464 | 464 | 480 | 480 | 791
(44,6,6,3) || 7| 124 | 144 | 247 | 499 | 499 | 516 | 516 | 858
(45,6,6,3) || 7| 131 | 151 | 265| 536 | 536 | 553 | 553 | 928
(46,6,6,3) || 7| 138 | 160 | 284 | 574 | 574 | 593 | 593 | 1002
(47,6,6,3) || 7| 146 | 168 | 304 | 614 | 614 | 634 | 634 | 1081
(48,6,6,3) || 7| 153 | 178 | 324 | 656 | 656 | 678 | 678 | 1163
(49,6,6,3) || 7| 163 | 186 | 346 | 701 | 701 | 723 | 723 | 1249
(50,6,6,3) || 7| 175 | 198 | 368 | 747 | 747 | 771 | 771 | 1339
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of the remaining R; government tickets together with the z tickets already covered will be at
least as large as a proportion ¥ of the (T) government tickets, which implies that

sroiR) = ()= Rl+ vl (3.16)
= o7+ () -mila-w-o(7)
= o(7)+ (T a-w-mila-w)
i) ((5)-m)
> w(T)

because () > |R;| and 1 > 1.

This, in turn, implies that if |R;| government tickets remain after iteration j of Algorithm 3.1,
at least a proportion ¥ of all the government tickets may be covered by covering a proportion
1 of the |R;| remaining government tickets, together with the remaining (T) — |R;| tickets.

Therefore, from (3.15),
() (55) (%)
= 1+ (z) <log (S(%)) +w> . (3.17)

The following example illustrates how the greedy bound in (3.17) performs.

VA
—
=~ 3
~—~—

IN

Example 3.2 (Greedy bound on L¢(8,4,3,2) and Lyg(49,6,6,3)) Consider the lottery (8,4,3,2)
and let b = 0.6. It is known from Example 3.1 that s = 35 in this case. The greedy bound in
(3.17) yields

35 x 56

70
Lo6(8,4,3,2) < 1+ oo <O.6 + log ) ~ 5.094.

Now consider the lottery (49,6, 6, 3), still assuming that 1» = 0.6. It is known from Example 3.1
that s = 260624 in this case. The greedy bound in (3.17) therefore yields

13983 816
260624

260624 x 13983 816
13983816

Ly6(49,6,6,3) <1+

(0.6 + log ) ~ 323.790,

as an upper bound for the incomplete lottery number Lo (49,6,6,3). |

Tables 3.3-3.5 contain the greedy bound in (3.17) for small instances of the incomplete lottery
problem where 6 < m < 10, m > {n,t} > k > 2 and Li(m,n,t,k) > 1, along with known
incomplete lottery numbers for break point values' of 1 as computed in Chapter 4.

! A break point value is the maximum resource utilisation achieved by constructing a playing set of cardinality
Ly(m,n,t k).
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TABLE 3.3: The upper bound (3.17) for small instances of the incomplete lottery problem in which
6 < m < 8 at break-point values of 1).

Lottery | Ly | (3.17) || Lottery Y| Ly | (3.17) || Lottery Y| Ly | (3.17)
6,3,3,2)| 05| 1 41/(8,3,3,2)(0.786| 3 81(8,4,4,2) |0.757| 1 5)
6,3,3,2)| 1| 2| 5(/(8,3,3,2)|0.803] 4|  9|/(8,4,4,2)| 1| 2| 5
(7,3,3,2)]0.371] 1 51(8,3,3,2)| 1| 5 9|[(8,4,4,3)[0243| 1 8
(7,3,3,2)10.743| 2 6 (8,3,4,2)| 05| 1 61 (8,4,4,3)0.486| 2 9
(7,3,3,2)0.914] 3 711(8,3,4,2) |0.871| 2 6[(8,4,4,3)0.671| 3 9
(7,3,3,2)| 1| 4|  7([(8,3,4,2)| 1| 3|  7|/(8,4,4,3)|0857| 4| 10
(7,3,4,2)10.629| 1 51(/(8,3,5,2)0.714] 1 51(/(8,4,4,3)0.914| 5 10
(7,3,4,2) 1] 2 5(/(8,3,5,2) 1] 2 5((8,4,4,3) 1] 6| 11
(8,3,3,2)]0.286] 1 711(8,4,3,2)| 05| 1 5

(8,3,3,2)0.571| 2 811(8,4,3,2)| 1| 2 6

TABLE 3.4: The upper bound (3.17) for small instances of the incomplete lottery problem in which
m =9 at break-point values of .

Lottery | Ly | (3.17) || Lottery | Ly | (3.17) || Lottery Y| Ly | (3.17)
19,3,3,2)]0.226] 1 81109,3,6,2)0.774] 1|  5||(9,4,4,3)|0.833| 6| 14
<9,3,3 2)10.452] 2 91(9,3,6,2) 1| 2 51(1(9,4,4,3)|0913| 7 15
(9,3,3,2)[0.679| 3| 10(19,4,3,2)[0.405] 1| 6] (9,4,4,3)| 0.96| 8| 15
(9,3,3,2)10.774| 4 11/(9,4,3,2)| 0.81| 2 71(1(9,4,4,3) 11 9 15
(9,3,3,2)10.893| 5 111/(9,4,3,2)]0.952| 3 81/(9,4,5,2)0.833] 1 )
(9,3,3,2)(0.952| 6| 11]/(9,4,3,2)| 1| 4|  8][(9,4,52)| 1| 2| 5
9,3,3,2)| 1| 7| 12[19,4,4,2)[0.643] 1 5109,4,5,3)10.357| 1 7
(9,3,4,2)0.397| 1 71(9,4,4,2) 1| 2 61(9,4,5,3)0.706| 2 8
(9,3,4,2)]0.738| 2 811(9,4,4,3)0.167| 1 101/ (9,4,5,3)0.857| 3 9
9,3,4,2)| 1| 3| 8[[(9.4,4,3)[0.333] 2| 11]/(9,4,5,3)|0.976| 4| 9
(9,3,5,2)]0.603| 1 61(9,4,4,3)| 05 3 121/(9,4,5,3) 1| 5 9
(9,3,5,2)10.929| 2 61 (9,4,4,3)0.627| 4 131/(9,4,6,3)0.595| 1 5)
<9,3,5 2) 1| 3 61/(9,4,4,3)|0.738| 5 141/ (9,4,6,3) 1| 2 6
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TABLE 3.5: The upper bound (3.17) for small instances of the incomplete lottery problem in which
m = 10 at break-point values of .

Lottery Y| Ly | (3.17) || Lottery Y| Ly | (3.17) || Lottery Y| Ly | (3.17)
(10,3,3,2)]0.183| 1 101/ (10,4,4,3)0.362| 3 161 (10,5, 3,2) 1| 2 7
(10,3,3,2)0.367| 2|  11][(10,4,4,3)[0.481| 4| 17|[{10,5,4,2)[0.738] 1 5
(10,3,3,2)| 0.55| 3 121/ (10,4,4,3)| 0.6| 5 181/ (10,5,4,2) 1| 2 6
(10,3,3,2)0.667| 4| 12/(10,4,4,3)]0.662| 6| 19|[(10,5,4,3)]0.262| 1 9
(10,3,3,2)|0.767| 5 131/ (10,4,4,3)0.738| 7 191/ (10,5,4,3)|0.519| 2 10
(10,3,3,2)| 0.85| 6| 13(10,4,4,3)| 0.81| 8| 20/[(10,5,4,3)| 07| 3| 11
(10,3,3,2)|0.917| 7 141 (10,4,4,3)(0.862| 9 201 (10,5,4,3)10.881| 4 12
(10,3,3,2)| 1| 8| 14/(10,4,4,3)]0.919| 10|  21|[(10,5,4,3)|0.919| 5| 12
(10,3,4,2)]0.329| 1 811(10,4,4,3)[0.952| 11|  21/(10,5,4,3)| 0.99| 6| 12
(10,3,4,2)]0.619| 2 9(/(10,4,4,3)|0.971| 12| 21| (10,5,4,3) 1 7] 12
(10,3,4,2)|0.871| 3| 10|[(10,4,4,3)| 0.99| 13|  22|[{10,5,5,2)[0.901| 1 5
(10,3,4,2)|0.962| 4| 10/ (10,4,4,3)| 1| 14| 22||(10,5,5,2)| 1| 2 5
(10,3,4,2)| 1| 5| 10|[(10,4,5,2)[0.738| 1 6([(10,5,5,3)| 05| 1 7
(10,3,5,2)| 0.5 1 71/(10,4,5,2) 1| 2 61 (10,5,5,3) 1| 2 8
(10,3,5,2) |0.829| 2 7|[(10,4,5,3)[0.262| 1 9([(10,5,5,4)[0.099| 1| 16
(10,3,5,2) 1] 3 81((10,4,5,3)| 0.52| 2 10|/ (10,5,5,4)| 0.21] 2 17
(10,3,6,2) [0.671| 1 61 (10,4,5,3)| 0.71| 3 11/(10,5,5,4)| 0.31| 3 18
(10,3,6,2) |0.962| 2 6|[(10,4,5,3)[0.820| 4| 12]/(10,5,5,4)|0.409| 4| 19
(10,3,6,2) 1] 3 61 (10,4,5,3)|0.948| 5 12/ (10,5,5,4)| 0.52| 5 20
(10,3,7,2)|0.817| 1 51(10,4,5,3)| 098] 6| 12]/(10,5,5,4)|0.619| 6| 21
(10,3,7,2)| 1| 2 5(10,4,5,3)| 1| 7| 12//(10,5,5,4)[0.671| 7| 22
(10,4,3,2)]0.333| 1 71[(10,4,6,2) [0.881| 1 511(10,5,5,4)[0.762| 8| 23
(10,4,3,2) |0.667| 2 81[(10,4,6,2)| 1| 2 5/((10,5,5,4)| 0.81| 9| 23
(10,4,3,2)|0.867| 3 9|[(10,4,6,3)[0.452| 1 711(10,5,5,4) [0.869| 10| 24
(10,4,3,2)| 1| 4 9/[(10,4,6,3)0.829| 2 8(/(10,5,5,4) [0.901| 11| 24
(10,4,4,2)]0.552| 1 6 (10,4,6,3)|0.971| 3 81/(10,5,5,4)|0.921| 12| 24
(10,4,4,2)0.919| 2 711(10,4,6,3)| 1| 4 8(/(10,5,5,4)| 0.94| 13| 24
(10,4,4,2)| 1| 3 7|[(10,4,7,3)[0.667| 1 5(/(10,5,5,4)| 1| 14| 25
(10,4,4,3)10.119| 1 141(10,4,7,3) 1] 2 6

(10,4,4,3)[0.238| 2| 15/(10,5,3,2)] 05| 1 6
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3.5 Chapter overview

In this chapter, analytic upper bounds were established on the incomplete lottery number
Ly(m,n,t, k), where 0 < 1) <1 (see (3.14) and (3.17)). In Tables 3.1 and 3.2, it may be seen
that the greedy bound (3.14) performs well compared to bounds (3.2)—(3.8) for the complete
lottery problem, but it is worse than the bound (2.12). However, it must be noted that the
greedy bound may be computed for any Li(m,n,t, k), while the bound (2.12) by Li & Van Rees
[27] can only be computed if the values of the complete lottery numbers Ly (m—1,n—1,t—1,k—1)
and Ly(m — 1,n,t, k) are known or if good bounds on these numbers are known. It may also
be seen from Tables 3.1 and 3.2 that the bound (3.8) by Griindlingh [16] is very good for small
lottery instances, but it is comparatively weaker for larger lottery instances.

TABLE 3.6: An analysis of the goodness of a bound for different lottery problem instances. The second
column contains the degree, s, of each government ticket, while the third column contains the known
complete lottery number, denoted by Lq. Finally, the last two columns contain the value of the greedy
bound (3.14) and the difference between the greedy bound (3.14) and the known complete lottery number,
respectively.

Lottery s| Li | (3.14) | (3.14)—Ly
(10,4,6,3) | 95 | 4 8 4
(10,4,4,3) | 25 | 14 22 8
(10,5,4,3) | 66 | 7 12 5

As the degree of government tickets in the bipartite lottery graph model increases, the bound
(3.14) appears to improve. This is illustrated in Table 3.6 in which it may be seen that as
s increases, the difference between the bound and the known value of the complete lottery
number decreases. In Tables 3.3, 3.4 and 3.5 it may be seen that as the value of v increases,
the difference between the value of the greedy bound (3.17) and the value of Ly(m,n,t, k) is
non-increasing, which implies an improvement in the greedy bound as the value of ¢ increases.
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The aim in this chapter is to present, implement and analyse integer programming formulations
of the complete lottery problem, the incomplete lottery problem, and the resource utilisation
problem, in fulfilment of Thesis Objectives II(a) and II(b) in §1.4.

The chapter is organised as follows. After casting the complete lottery problem in an Integer
Linear Programming (ILP) problem setting in §4.1, small lotteries are analysed by solving the
relevant ILP formulation instances. The incomplete lottery problem is similarly considered in
§4.2, analysing the same small lottery instances. Finally the resource utilisation problem is
considered for these same lottery instances in §4.3.

Apart from documenting solutions to the incomplete lottery and resource utilisation problems
for small lottery instances in §4.4, another aim of this chapter is to investigate the boundaries
of feasibility of an ILP approach towards solving these problems in terms of execution times in
§4.5, in fulfilment of Thesis Objective II(c) in §1.4.

ILP formulations are constructed for both the incomplete lottery and resource utilisation prob-
lems associated with small lottery instances, where 6 < m < 10, m > {n,t} > k > 2 and
Li(m,n,t, k) > 1, the problems are solved, and the results are documented in fulfilment of
Thesis Objective II(d). The complete lottery number for each lottery considered is presented in
Table 4.5 and the lotteries implicitly considered through isomorphism, are listed in Table 4.6.

39
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4.1 An ILP formulation of the complete lottery problem

As mentioned in §2.1.4, Jans & Degraeve [20] suggested an ILP formulation for the lottery
problem similar to the general set covering problem [8]. According to the authors, the main
advantage of their method is that it provides a specific solution. This means that a participant
in a lottery may use the solution to know exactly which ticket combinations to select.

Assume that a number may be assigned to each participant ticket (for example, by arranging the
numbers of each participant ticket in increasing order, and subsequently ordering all participant
tickets in lexicographically increasing order). Let

(4.1)

- 1 if participant ticket j is in the playing set
77| 0 otherwise

be a binary decision variable. A playing set Ly (m,n,t, k) is constructed from the set ®(Uy,, n)
subject to the constraint that at least one participant ticket j should have at least k¥ numbers in
common with the winning ticket drawn randomly from the set ®(U,,,t). Let the neighbourhood,
Nj], of a participant ticket j be the set of government tickets from ® (U, t) which have at least
k numbers in common with the participant ticket. Suppose A is an (T) X (:’Z) matrix whose
(i,7)-th entry is

1 if government ticket ¢ is in the neighbourhood
a;j = of participant ticket j
0 otherwise.

In the complete lottery problem, the union of the neighbourhoods of the tickets in a desired
playing set must equal the entire set of ¢-subsets of Uy, i.e. UiEC¢(m,n,t,k) Ni] = ®(Up, t). An
optimal playing set may be found by adopting a set covering problem ILP formulation approach
in which the objective is to
minimise P(x) = Z xj (4.2)
1<i<()

subject to

S ayz > 1 1<i<<Tt”> (4.3)

1<i<()

z; € {0,1}, 1§j§<m>. (4.4)

n

The objective in (4.2) is to minimise the number of tickets in the participant’s playing set.
Constraint set (4.3) ensures that each government ticket is covered by at least one participant
ticket. Constraint set (4.4) enforces the binary nature of the decision variables in (4.1).

One computational aspect that may be of interest is the number of decision variables included
in each constraint in (4.3). This number is

mi:iz::t} (}t)) <::;> (4.5)

which may be found by counting the participant tickets that have at least £ numbers in common
with any given government ticket. For each of the small lottery instances investigated in this
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chapter, the numbers of decision variables, non-trivial constraints and terms per non-trivial
constraint for the complete lottery problem formulation are presented in Table 4.1. To some
extent this identifies the size or scope of the respective ILP problems.

The following example contains the instance of the formulation (4.2)—(4.4) for the lottery
(6,4, 3,2), together with a solution.

TABLE 4.1: Dimensions of the ILP formulation of the complete lottery problem. The column labelled
DV represents the number of decision variables as described in (4.1), the column labelled NC represents
the number of nontrivial constraints in (4.3), and the column labelled TC represents the number of terms
per non-trivial constraint in (4.3), calculated from (4.5).

Lottery DV | NC | TC || Lottery DV | NC | TC
6,3,3,2) | 20| 20| 10 || (9,4,7,3) | 126 | 36 | 105
(7,3,3,2) | 35| 35| 13 (10,3,3,2) | 120 | 120 | 22
(7,3,4,2) | 35| 35| 22| (10,3,4,2) | 120 | 210 | 40
(7,3,5,2) | 35| 21| 30| (10,3,5,2) | 120 | 252 | 60
(8,3,3,2) | 56 | 56 | 16 || (10,3,6,2) | 120 | 210 | 80
(8,3,4,2) | 56 | 70 | 28 || (10,3,7,2) | 120 | 120 | 98
(8,3,5,2) | 56 | 56 | 40| (10,3,8,2) | 120 | 45 | 112
(8,3,6,2) | 56 | 28 | 50 || (10,4,3,2) | 210 | 120 | 70
(8,4,3,2) | 70| 56 | 35| (10,4,4,2) | 210 | 210 | 115
(8,4,4,2) | 70 | 70 | 53 || (10,4,4,3) | 210 | 210 | 25
(8,4,4,3) | 70| 70 | 17| (10,4,5,2) | 210 | 252 | 155
(9,3,3,2) | 84| 84| 19| (10,4,5,3) | 210 | 252 | 55
(9,3,4,2) | 84| 126 | 34| (10,4,6,2) | 210 | 210 | 185
(9,3,5,2) | 84| 126 | 50 || (10,4,6,3) | 210 | 210 | 95
(9,3,6,2) | 84| 84| 65 || (10,4,7,2) | 210 | 120 | 203
(9,3,7,2) | 84| 36| 77| (10,4,7,3) | 210 | 120 | 140
(9,4,3,2) | 126 | 84 | 51 || (10,4,8,3) | 210 | 45 | 182
(9,4,4,2) | 126 | 126 | 81 || (10,5,3,2) | 252 | 120 | 126
(9,4,4,3) | 126 | 126 | 21 || (10,5,4,2) | 252 | 210 | 186
<9,4,5 2) | 126 | 126 | 105 || (10,5,4,3) | 252 | 210 | 66
(9,4,5,3) | 126 | 126 | 45 || (10,5,5,2) | 252 | 252 | 226
(9,4,6,2) | 126 | 84 | 120 || (10,5,5,3) | 252 | 252 | 126
(9,4,6,3) | 126 | 84 | 75 || (10,5,5,4) | 252 | 252 | 26

Example 4.1 (The lottery (6,4,3,2)) Consider the lottery (6,4,3,2), in which the set
U, 4) = {1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,3,4,5},
{1,3,4,6),{1,3,5,6},{1,4,5,6}, {2,3,4,5},{2,3,4,6},{2,3,5,6}, {2,4,5,6),
(3,4,5,6).

Let x1 represent ticket {1,2,3,4}, xo represent ticket {1,2,3,5}, ..., and x5 represent ticket
{3,4,5,6}. The objective in the complete lottery problem for the lottery (6,4,3,2) is to

minimise E xj (4.6)
1<j<15
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subject to the constraints

T+ T2+ x3+ x4+ 25 + X6+ T7 + 28 + Tg + T11 + T12 + T13
Ty tx2tx3+T4+2T5+2T6+2T7+28+T10+ 211 + 212 + T14
T1+ X9 + X3+ Ta+Ts5 + Tg+ X7+ X9+ T10 + 11 + 13 + 214
1+ T2+ 23+ 24+ 25 +Te+ 28+ T9+ T1o + T12 + T13 + T14
T1+ T2+ 23+ x4+ x5+ 27+ 28+ T9 + T10 + T11 + XT12 + T15
T1+ X2+ T3+ Ty + T+ T7+ X8+ T9+ T10 + T11 + T13 + T15
1+ T2 + 23+ 25 +Te + T7 + X8 + T9 + T10 + T12 + T13 + T15
L1+ T2+ 24+ X5 +Xg+ X7+ 28+ L9+ T10 + T11 + X14 + T15
L1+ 23+ 24+ X5+ Xg+ L7+ T8+ L9+ T10 + T12 + X14 + T15
To+x3+ T4+ T5+ X6+ T7+ X8+ T9g+ T10 + T13 + T14 + T15
T1+ T2+ x3+ 24+ 25+ 27+ 28+ 211 + 212+ 213 + T4 + T15
1+ T2+ 23+ 24+ T6+ 27+ 29+ 211+ 212+ 13+ T14 + 215
r1+ T2 +2x3+ 5+ Te+ T8+ Tg+ 11 + T12 + 13 + T14 + T15

Ty + 29+ x4+ x5 + 26 + 27+ T10 + 211 + T12 + T13 + T14 + T15
Ty + 23+ T4+ x5 +x6 + 28+ T10 + 11 + T12 + T13 + T14 + T15
T2+ a3+ x4+ x5+ T+ 9+ 210+ 211 + 212+ 213 + 214 + 215
T1+ T2+ 24+ 27+ 28+ 29+ 210 + T11 + T12 + 13 + T14 + T15
T1+ 23+ 25+ 27 +2x8 + X9+ T1g + X11 + T12 + T13 + T14 + T15
T2+ 23+ %6+ 27+ 28+ 9+ 10 + 11 + 212 + 213 + 14 + T15

vV IV IV IV IV IV IV IVIVIVIVIVIVIVIVIVIVIVIVIV
[ T = T e T o T o T S O e e S e G e S T T o T o T = S SO

T4+ T5+x6+T7+ 23+ 29+ T10 +T11 +T12 + 213+ T14 + T15

m

2 {0,1}, 1<i<15.

If this formulation is solved by means of the commercial software suite LINGO 11 [28], the
optimal solution variables which take the value 1 are x1 and x¢. If ticket i is the element
listed in the i'" position in the set ®(Ug,4) above, an optimal playing set for the participant is
{{1,2,3,4},{1,2,5,6}}. |

4.2 An ILP formulation of the incomplete lottery problem

In this section, an ILP formulation of the incomplete lottery problem is presented. The formu-
lation of the incomplete lottery problem is an extension of the ILP formulation of the complete
lottery problem in §4.1. An additional constraint set, and an additional array of decision vari-
ables are introduced into the formulation.

The formulation for the complete lottery problem states the participant’s playing set (which is
a subset of ®(Uy,,n)) must cover all the possible government tickets (which are chosen from
® (U, t)). However, in the incomplete lottery problem, not all of the (T) possible government
tickets need to be covered by the participant’s playing set. The participant merely requires a
certain proportion ¢ of the (T) government tickets to be covered. Define the decision variables

1 if government ticket ¢ is in the neighbourhood
Y = of one of the tickets in the participant’s playing set (4.7)
0 otherwise.
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The objective is to minimise the number of tickets in the participant’s playing set, subject to
the constraint that at least Q/J(T) government tickets must be covered by the playing set, that
is to

minimise P(z) = Y  ; (4.8)
1<5<(™)
subject to
Z aijTi = Yi, 1§i§<?> (4.9)
1<i<(7)

o ow > ¢<T) (4.10)

1<i<(7)
z; € {0,1}, 1§j§<7:> (4.11)
yi € {0,1}, 1g@'§<7;';‘>, (4.12)

where the decision variable z; has the same meaning as in (4.1). Constraint set (4.9) ensures
that at least one of the playing set tickets covering government ticket i is in the playing set.
Constraint set (4.10) ensures that at least w(T) government tickets are covered by the playing
set. Constraint sets (4.11) and (4.12) enforce the binary nature of the decision variables in (4.1)
and (4.7), respectively. Note that if ¢» = 1, then the incomplete lottery problem formulation
(4.8)—(4.12) reduces to the complete lottery problem formulation (4.2)—(4.4).

The following example contains the instance of the formulation (4.8)—(4.12) for the lottery
(6,4, 3,2), together with a solution.

Example 4.2 (The lottery (6,4,3,2)) The objective in the incomplete lottery problem for-
mulation for the lottery (6,4,3,2) is to

minimise Z xj (4.13)
1<5<15

subject to the constraints

Ty +r2ot+x3txst+os+x6+r7+r8+rT9+T11+T12+T13 = W1
T1+To+x3+Ta+T5+x6+T7+T8g+T10+T11 + T2+ T4 > Y2
T1+To+x3+Ta+T5+x6+T7+T9+2x10+T11 +T13+F T4 > Y3
T1+To+ X3+ T4 +T5+ X6+ T8 +Tg+X10+T12+T13+T14 = Ya
r1+xetaztratrstrr+rst+r9+ 20+ T+ r2+215 > Ys
Ty + 22+ 23+ T4+ T+ 7+ 28+ T9+T10+ 211+ 213+ 215 > Ys
Ty + 22+ 23+ 25+ 26+ 27+ 28+ 29+ 210+ 212+ 213+ X5 > Yr
r1+ T2+ x4+ 25+ T6 + 27+ T8+ T9+ 210+ 11 T4+ X5 = Y8
1+ 23+ 24 + 25 + 26 + 27+ 28 + 29+ T10 + 212+ T4+ 215 = Yo
Ta+x3+ x4+ x5+ 26+ 27+ 28+ T9g+T10+T13 +T1a+T15 = Yo
1+ T2+ a3+ a4+ 25 +x7 28+ 711 T2+ T3+ T4+ T15 > Y11
T1+ X2+ 23+ T4 + 26+ 27+ T9 +T11 + T12 + T13 + T4+ T15 > Y12
T1+x9 +x3+ x5 + 26+ T8+ T9g+ 211 +T12 +x13 +T1a +T15 >

Y13
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1+ T2+ 2+ 25+ T+ 27+ 210+ 211 212+ T3+ T4+ T15 = Yua
1+ 23+ 24+ 25+ 26+ 28+ 210+ 211+ 212+ T13+ T4+ 215 = Yis
T2 +x3+ x4+ 25+ T6 + T9g+ T10 + T11 FT12 F X113+ T4+ X5 = Y16
r1+ X2+ x4+ 27+ 28+ T9g+T10 +T11 +T12 + X113+ T4+ X5 = Yir
r1+x3+ x5 + 27+ 28+ T9g+T10 +T11 F T2+ X113+ T4+ X5 = Y18
T2 +x3+x6 + 27 + T8+ T9+ T10 + T11 +T12 F X3+ T4+ X5 = Y19
Ty + T5 + X6 + T7 + X8 + T9 + 10 + T11 + T12 + T13 + T4+ T15 > Yoo

Doy = 200

1<5<20

Ti, Yj S {0,1}, 1§i§15,

1<j<20.

Solving the formulation above using LINGO 11 [28] yields the results in Table 4.2. Ticket 1
covers exactly 0.8 x 20 = 16 government tickets, because it occurs in 16 of the 20 constraints
associated with the binary covering matriz. Hence Ly(6,4,3,2) = 1 for all 0 < 1 < 0.8.
However, Ly(6,4,3,2) =2 for all 0.8 <4 < 1. [ |

TABLE 4.2: Results obtained from solving of the incomplete lottery problem for the lottery (6,4, 3,2)
after being modelled as an ILP formulation.

¥ 1101]0203|04|05]06]0.7]|0.8 0.9 1
Solution variables
with a value of 1

r1 z1 r1 x1 r1 x1 r1 Z1 | Te, 7 | L1, Te

4.3 An ILP formulation of the resource utilisation problem

In this section, an ILP formulation of the resource utilisation problem is presented. This ILP
formulation is an adaptation of the ILP formulation of the incomplete lottery problem in the
previous section.

The objective in the resource utilisation problem is to maximise the proportion of government
tickets which have at least k numbers in common with at least one ticket in a participant’s
playing set of fixed cardinality ¢. Or, more formally, to

Z i<(™) Yi
maximise P(x) = %(t) (4.14)
(V)
subject to
N agr = 1§i§<?> (4.15)
1<5<(7)

>oow o=t (4.16)

1<i<(7)
o€ {01}, 1§j§<’:> (4.17)
yi € {0,1}, 193(?), (4.18)
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TABLE 4.3: Dimensions of the ILP formulations of the incomplete lottery problem, and the resource
utilisation problem. In the columns labelled DV, the number of decision variables in the formulation for
the problem instance shown in the first column are displayed. In the columns labelled NC, the number
of constraints in the formulation is displayed. In the last column labelled TC, the number of terms per
constraint in (4.9) or (4.15) are shown. The value in the final column is calculated via (4.5).

DV NC TC
(m,n,t, k) | in (4.1) | in (4.7) | Total | in (4.9) | Total
(6,3,3,2) 20 20 40 20 21 | 10
(7,3,3,2) 35 35 70 35 36| 13
(7,3,4,2) 35 35 70 35 36 22
(7,3,5,2) 35 21 56 21 22 | 30
(8,3,3,2) 56 56 112 56 57 | 16
(8,3,4,2) 56 70 126 70 71| 28
(8,3,5,2) 56 56 | 112 56 57 | 40
(8,3,6,2) 56 28 84 28 29 | 50
(8,4,3,2) 70 56 126 56 57 | 35
(8,4,4,2) 70 70 140 70 71| 53
(8,4,4,3) 70 70 140 70 71| 17
(9,3,3,2) 84 84| 168 84 85| 19
(9,3,4,2) 84 126 | 210 126 | 127 | 34
(9,3,5,2) 84 126 | 210 126 | 127 | 50
(9,3,6,2) 84 84 168 84 85 | 65
(9,3,7,2) 84 36 120 36 37| 17
(9,4,3,2) 126 84 210 84 85 | 51
(9,4,4,2) 126 126 | 252 126 | 127 | 81
(9,4,4,3) 126 126 | 252 126 | 127 | 21
(9,4,5,2) 126 126 252 126 127 | 105
(9,4,5,3) 126 126 | 252 126 | 127 | 45
(9,4,6,2) 126 84 210 84 85 | 120
(9,4,6,3) 126 84 | 210 84 85| 75
(9,4,7,3) 126 36 | 162 36 37 | 105
(10,3,3,2) 120 120 | 240 120 | 121 | 22
(10,3,4,2) 120 210 330 210 211 40
(10,3,5,2) 120 252 372 252 253 | 60
(10, 3,6,2) 120 210 330 210 211 80
(10,3,7,2) 120 120 240 120 121 98
(10,3,8,2) 120 45 165 45 46 | 112
(10,4,3,2) 210 120 | 330 120 | 121 ] 70
(10,4, 4,2) 210 210 420 210 211 | 115
(10,4, 4, 3) 210 210 420 210 211 25
(10,4,5,2) 210 252 | 462 252 | 253 | 155
(10,4, 5,3) 210 252 | 462 952 | 253 | 55
(10,4,6,2) 210 210 420 210 211 | 185
(10,4,6, 3) 210 210 420 210 211 95
(10,4,7,2) 210 120 330 120 121 | 203
(10,4,7,3) 210 120 330 120 121 | 140
(10,4,8,3) 210 45 | 255 45 46 | 182
(10,5,3,2) 952 120 | 372 120 | 121 | 126
(10,5,4,2) 252 210 462 210 211 | 186
(10,5,4, 3) 252 210 462 210 211 66
(10,5,5,2) 252 252 504 252 253 | 226
(10, 5,5, 3) 952 252 | 504 9252 | 253 | 126
(10, 5,5, 4) 952 9252 | 504 952 | 253 | 26
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where the decision variables z; and y; have the same meanings as in (4.1) and (4.7), respectively.
Constraint set (4.15) is exactly the same as constraint (4.9) in the ILP formulation of the
incomplete lottery problem, while constraint set (4.16) ensures that the playing set has fixed
cardinality ¢. Finally, the constraint sets (4.17) and (4.18) enforce the binary nature of the
decision variables in (4.1) and (4.7), respectively.

The numbers of decision variables, non-trivial constraints and terms per non-trivial constraint
in the resource utilisation problem are exactly the same as those for the incomplete lottery
problem, and may be found in Table 4.3 for small values of m, n, t and k.

The following example contains the instance of the formulation (4.8)—(4.12) for the lottery
(6,4, 3,2), together with a solution to the problem instance.

Example 4.3 (The lottery (6,4,3,2)) The objective in the resource utilisation problem for
the lottery (6,4,3,2) is to

|
mazimise o Z Yj (4.19)
1<5<20

subject to the constraints

1 taxstaxstas+as+xet+axr+rst+rotrnntriz2triz = 1
T1+ X2+ 23+ 24+ 25+ 26+ T7+ T8+ T10+T11 T2+ T4 > Yo
T1+To+x3+Ta+T5+x6+T7+Tg+x10+T11+T13+T14 > Y3
T1+To+ 23+ T4 +T5+ T+ T8 +Tg+T10+T12+T13+ T4 > Ya
1+ T2+ x3+24+T5+x7+28+T9g+ x0T T2+ 215 = Ys
1+ T2+ 23 +24+T6+x7+23+T9g+T10+ T +T13+ 215 = Y
r1+ 22+ 23+ 25+ %6+ 7+ 28+ T9+T10+ T2+ 213+ X5 > Yy
x1+x2+ x4+ x5 + 26+ 27+ T8+ To+Ti0 +T11 T4+ T15 = Y8
r1+ w3+ 24+ x5 + 26 + 27+ 28 + 29 +T10+ 212+ T4+ 215 = Yo
To+ T3+ x4+ 25 +Te+x7+28+T9+x10+T13+T14a+T15 = Y10
r1txetaztrat+ost+art+rstrn T2t T3+ ra+215 = yn
T1+ T2+ 23+ 24 +T6 + 27+ T9 + 211 +T12+T13+ T4+ T15 > Y12
r1+x2+x3+ x5 +26+ 28+ 29+ T11+T12+T13+T1a+T15 = Y13
T1+ a2+ x4+ 25 +26 + 27+ 210+ 211 F 212+ 213+ 14+ 215 > Y14
1+ 23+ x4+ 25+ 26+ 28+ 210+ 211+ X2+ T13+ T4+ T15 = Yis
T+ 23+ 24+ 25+ T6+ 29+ 210+ 211+ X2+ T13+ T4+ 215 = Y16
1+ 22+ 2+ 27 +28+ 29+ 210+ 211 212+ T13+ T4+ T15 = Yir
r1+x3+ x5 + 27+ 28+ T9+T10+T11 F T2+ X113+ T4+ X5 = Y18
T2 +x3+ T + 27+ T8+ T9 + T10 + T11 + T12 F X113+ T4+ X5 = Y19

T4+ x5+ 26+ 27 +28+T9g+T10+T11 +T12+T13 +T1a+T15 = Yoo
Z xj =/

1<j<15
ziy; € 10,1}, 1<i <15,
1< <20.
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TABLE 4.4: Results obtained from solving the resource utilisation problem of the lottery (6,4,3,2)
after being modelled as an ILP formulation. The column labelled P(x) represents the optimal resource
utilisation for each possible playing set cardinality.

¢ | Solution variables with a value of 1 P(x)
1| y2,93, Y4, Y8, Y9, Y10, Y115 Y12, Y135 Y14, Y15, Y165 Y17, Y185 Y19, Y20, T14 0.8
1

2 | Y1, Y2, Y3, Y4, Y, Y6y Y7, Y85 Y95 Y10, Y115 Y12, Y135 Y14, Y15, Y165 Y17, Y185
Y19, Y20, L3, T10

Solving the formulation above using LINGO 11 [28] yields the results in Table 4.4. It may
be seen from these results, that when the cardinality of the participant’s playing set is 1, the
largest proportion of government tickets that may possibly be covered is %—8 = 0.8, while when the
cardinality of the participant’s playing set is 2, the largest proportion of government tickets that
may possibly be covered is % = 1; this may be achieved by selecting the third and tenth ticket

available for the participant to include into his/her playing set, i.e. {{1,2,3,6},{3,4,5,6}}. B

4.4 Analysis of results

As mentioned, the problem instances in the numerical examples of the previous sections were
solved by means of LINGO 11 [28], using LINGO script files. There are many advantages of
using LINGO 11 scripts. At the time of writing, LINGO 11 is a relatively new and extremely
powerful tool which may be used to solve ILP problems. LINGO script files support the use
of arrays, which allow for a large formulation to be expressed in a few, relatively short lines of
code. An example of such a script file for the formulation of the resource utilisation problem
for the lottery (6,4, 3,2) is presented in Code Example 4.1.

Code Example 4.1 (LINGO code example)

! Qutput the solution report generated by LINGO
SET TERSEO 1
I Set a solver time limit of 14400 second=4hrs
SET TIMLIM 14400
! Do not allow dialog screens to appear
SET ERRDLG O
! Force the solver to use an iteration-based stopping limit
I for heuristics used at each node of the branch and bound tree
apiset 369 int 2
I Set heuristics iteration limit to 100
apiset 334 int 100
! Begins input of a new LINGO model
model:
data:
! The adjacency matrix has dimensions 20x15
numrow=20;
numcol=15;
enddata
| Define y variables to be the associated with the rows
I of the input matrix, and the x variables to be
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| associated with the columns of the of the model
sets:

row/1..numrow/:y; !index i;

col/1. .numcol/:x; !index j;

rxc(row,col) :bij;

endsets

I Retieve the adjacency matrix from file
data:

bij=@file(’matrix6432.txt’);

enddata

! Objective function declaration
max=@sum(row(i) :y(i))/numrow;

! The adjacency constraints

Q@for (row(i) :@sum(col(j) :bij (i, j)*x(j))>=y(i));
I The playing set cardinality must be fixed
@sum(col(j):x(j))=1.0;

I A1l variables in the formulation are binary
@for(col(j) :@bin(x(j)));

@for (row(i) :@bin(y(i)));

end

I Solve the model
GO

I Open a file

DIVERT 1.TXT

I Send solution to the file
SOLUTION

I Send total solver time to file
TIME

I Close solution file

RVRT

I The playing set cardinality increases by 1
ALTER ALL ’1.0°2.0°

! Solve the model

GO

! Open a file

DIVERT 2.TXT

! Send solution to the file
SOLUTION

TIME

I Close solution file

RVRT

! Restore parameters

SET TERSEO O

SET ECHOIN O B

In the above code, the resource utilisation problem of the lottery (6,4,3,2) is formulated as an
ILP and is solved for £ = 1, and then for £ = 2. For each value of £ the results are written to a
file, and in each case the execution time is limited to 4 hours (14400 seconds). This time limit
was also adopted for all 38 lottery instances in Table 4.5.
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TABLE 4.5: The small (non-isomorphic) lottery instances which are investigated in this chapter, together
with the known complete lottery number, Ly, for each instance.

(myn,t, k) | L1 || (m,yn,t,k) | Ly || (m,n,t,k) | Ly || (m,n,t, k) | L1 || (m,n,t, k) | Ly
(6.3,3,2) | 2 (8,4,4,3) | 6 (94,52 | 2] (10,4,3,2) (10,5,3,2) | 2
(7,3,3,2) | 41 (9,3,3,2) | 71 (9,4,53) | 5] (10,4,4,2) | 3 (10,5,4,2) | 2
(7,3,4,2) | 21 (9,3,4,2) | 3 (9,463 | 2| (10,4,4,3) | 14 | (10,5,4,3) | 7
(8,3,3,2) | 51 (9,3,52) | 3] (10,3,3,2) | 8| (10,4,5,2) | 2 (10,5,5,2) | 2
(8,3,4,2) | 31 (9,3,6,2) | 2| (10,3,4,2) | 5| (10,4,5,3) | 7| (10,5,5,3) | 2
(8,3,5,2) | 21 (9,4,3,2) | 4| (10,3,5,2) | 3| (10,4,6,2) | 2 (10,5,5,4) | 14
(8,4,3,2) | 21 (9,4,4,2) | 21 (10,3,6,2) | 3| (10,4,6,3) | 4

(8,4,4,2) | 2 (9,4,4,3) | 9| (10,3,7,2) | 2| (10,4,7,3) | 2

For each lottery instance, the incomplete lottery problem is formulated as an ILP and solved
for each value of ¥ € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. The resource utilisation problem
is also formulated as an ILP and solved for each possible value of / € N until a value of
Uy(m,n,t, k) =1 1is found for each problem instance. The results appear in Tables B.1 and C.1.
From these tables, 51 problem instances reached the time limit of 14400 seconds. It was found
through experimental analysis that if the time limit is not enforced, some problem instances
may take many days or even weeks to solve.

TABLE 4.6: Lottery instances which are isomorphic to the small lottery instances investigated in this
chapter, as listed in Table 4.5. Each entry in this table is of the form {(m,n,t, k) = (m,m—n,m—t,m+
k—mn—t).

(7,4,4,3) = (7,3,3,2) | (9,5,5,3) = (9,4,4,2) | (10,6,6,4) = (10, 4,4, 2)
(7,4,3,2) 2 (7,3,4,2) | (9,5,5,4) = (9,4,4,3) | (10,6,6,5) = (10,4, 4, 3)
(8,5,5,4) = (8,3,3,2) | (9,5,4,2) 2 (9,4,5,2) | (10,6,5,3) = (10,4, 5,2)
(8,5,4,3) = (8,3,4,2) | (9,5,4,3) = (9,4,5,3) | (10,6,5,4) = (10,4, 5,3)
(8,5,3,2) = (8,3,5,2) | (9,5,3,2) =(9,4,6,3) | (10,6,4,2) = (10,4,6,2)
(8,4,5,3) = (8,4,3,2) | (10,7,7,6) = (10,3,3,2) | (10,6,4,3) = (10,4,6,3)
(9,6,6,5) = (9,3,3,2) | (10,7,6,5) = (10,3,4,2) | (10,6,3,2) = (10,4,7,3)
(9,6,5,4) = (9,3,4,2) | (10,7,5,4) = (10,3,5,2) | (10,5,7,4) = (10,5, 3,2)
(9,6,4,3) = (9,3,5,2) | (10,7,4,3) = (10,3,6,2) | (10,5,6,3) = (10,5,4,2)
(9,6,3,2) = (9,3,6,2) | (10,7,3,2) = (10,3,7,2) | (10,5,6,4) = (10,5, 4, 3)
(9,5,6,4) = (9,4,3,2) | (10,6,7,5) = (10,4, 3,2)

For integer programing problems, it is known that as the number of variables in the ILP formu-
lation increases, the execution time may increase (even exponentially) because more branches in
the branch-and-bound tree may need to be evaluated. A pessimistic indication of the number of
branches contained in the branch-and-bound tree, and hence the number of candidate solutions
which may need to be considered when solving the incomplete lottery problem, is

Limntk) m
> (F)wim) w

The reasoning behind the expression in (4.20) is that, in the worst case, all (( )) possible playing
sets may need to be considered, and each time a playing set is conmdered each combination
of MJ( ﬂ government tickets may need to be considered. Similarly, a pessimistic indication
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of the number of branches which may have to be traversed in the branch-and-bound tree, and
hence the number of candidate solutions which may need to be considered when solving for the
resource utilisation problem is

(%)

m m
> (V) @2
i=1
The reasoning behind the expression in (4.21) is that, in the worst case, all possible government
tickets which could possibly have k& numbers in common with at least one ticket in the playing

set may need to be considered, and each time a set of government tickets is considered, all
possible playing sets of cardinality £ may need to be considered.

4.4.1 Analysis of results for the incomplete lottery problem

As an example, the problem instances involving the lotteries (9,4,4,3) and (10,5,4,3) are
formulated as ILP’s and solved. The results are presented in Tables 4.7 and 4.8, respectively.

It may be seen in Figures 4.1 and 4.2 that as the desired win probability of the participant
increases, the number of tickets required in the playing set displays a convex upward trend.
This is an interesting observation for the participant, because it shows a relationship between
the payoff and the participant’s attitude towards risk. If the participant tends to be risk seeking,
he/she participates in a lottery draw without fear of losing and might select a playing set of
low cardinality. If the participant is risk-averse, he/she participates in a lottery draw with a
great fear of losing and therefore would like to increase his/her probability of winning a k-prize.
Therefore, a participant who is risk-averse may select a playing set of larger cardinality. The
convex upward nature of the graph indicates that as the desired probability of winning a k-prize
increases (implying a decrease in risk of losing), the playing set cardinality which achieves this
desired win probability does not decrease.

TABLE 4.7: Results obtained when solving for the value L(9,4,4,3) when the problem is formulated
as an ILP. The first column contains the value of the required probability-of~win, 1. The second column
contains an example of a playing set which at least achieves the required probability-of-win value. The
third column contains the actual probability of win value, 1)', achieved by the playing set in the second
column. The fourth column contains the associated number of branches in the branch-and-bound tree
(bounded above by (4.20)). Finally, the fifth column contains the time in seconds required to find the
solution.

v | Playing set 1)’ | Branches Time

0.1 | {{1,2,3,4}} 0.167 0 1.949

0.3 | {{1,2,5,6},{1,3,4,8}} 0.333 0 1.669

0.5 | {{1,2,3,9},{1,4,6,7}, {4,5,8,9}} 0.5 0 0.429

0.6 | {{1,2,4,9},{1,3,5,9},{2,3,7,8),{3,4,6,8}} | 0.603 61 1.179

0.7 | {{1,2,5,9},{1,3,6,7},{1,6,8,9},{2,3,4,8}, | 0.738 420 2.039
{4,5,6,7}}

0.8 | {{1,2,7,8},{1,4,5,8},{1,4,7,9},{2,3,4,8}, | 0.825 | 781103 14 400
{2,5,6,9},{3,5,6,7}}
0.9 | {{1,2,4,9},{1,3,5,7},{1,6,7,8},{2,3,4,8}, | 0.904 | 886618 14 400
{2,3,6,9},{4,5,6,9},{5,7,8,9}}
1| {{1,2,5,9},{1,3,4,5},{1,3,6,7},{1,3,6,8}, 1 41491 | 4256.259
{2,3,5,9},{2,4,6,9},{2,4,7,8},{4,7,8,9},
(5,6,7,8)}
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TABLE 4.8: Results obtained when solving for the value Ly(10,5,4,3) when the problem is formulated
as an ILP. The first column contains the value of the required probability-of-win value, 1. The second
column contains an example of a playing set which at least achieves the required probability-of-win value.
The third column contains the actual probability of win value, 1)', achieved by the playing set in the
second column. The fourth column contains the associated number of branches in the branch-and-bound
tree. Finally, the fifth column contains the time in seconds required to find the solution.

v | Playing set v’ | Branches | Time

02 | {{1,2,3,4,5}} 0.262 0| 1.040

0.5 | {{1,2,3,4,8},{2,5,6,7,9}} 0.523 2| 1.790

0.7 | {{1,3,4,6,9},{1,5,6,8,10}, {2,4,7,9,10}} | 0.7 1| 2.339

0.8 | {{1,3,7,8,10},{1,4,5,6,9},{2,3,4,5,7}, 0.8 71| 8.979
(2,3,5,8,10}

0.9 | {{1,3,4,5,6},{1,5,8,9,10},{2,3,7,8,9}, | 0.919 51446 | 14400
{2,4,6,7,8},{2,4,6,7,10}}

1 | {{1,2,6,8,9},{1,3,4,5,7},{1,3,5,7, 10}, 1| 117287 | 14400
{2,3,4,5,8},{2,3,4,8,10},{2,6,7,8,9}
{4,5,6,9,10}}

Playing set cardinality
= [\ w = t [« N oo Ne
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&
=

02 03 04 05 06 07 08 09 1
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FIGURE 4.1: Playing set cardinality as a function of win probability for the incomplete lottery problem
associated with the lottery (9,4,4,3).

Another aspect of interest is the execution time required to solve the incomplete lottery problem.
It may be seen in Figures 4.3 and 4.4 that as the participant’s desired win probability increases,
it is often the case that the execution time of solving the problem is longer. One reason for this
is that the number of different ticket combinations comprising the playing set which satisfy the
participant’s desire for a win probability of at least ¢, may become significantly larger (resulting
in a larger number of computations required) as the desired win probability increases. In terms
of solving the problems when modelled as ILPs, the execution time is affected by the number
of branches in the branch-and-bound tree; however, it is also affected by the manner in which
LINGO determines which variables to branch on. Typically, as may be seen in Figures 4.3 and
4.4, as the number of branches in the branch-and-bound tree increases, so does the execution
time. However, this is not always the case. As an example, consider the cases when the optimal
values of Lo 5(10,5,4,3) and Lo 7(10,5,4,3) are sought. It took approximately 1.8 seconds to
solve for Ly 5(10, 5,4, 3) and the branch-and-bound tree consisted of 2 branches; however, it took
approximately 2.3 seconds to solve for Ly 7(10,5,4,3) but the branch-and-bound tree consisted
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FIGURE 4.2: Playing set cardinality as a function of win probability for the incomplete lottery problem
associated with the lottery (10, 5,4, 3).

of only 1 branch. The slight discrepancy in the execution time in those cases may be attributed
to the above-mentioned manner in which LINGO determines which variables to branch on.

In Figure 4.3, the execution time taken to find the value of L1(9,4,4,3) is 4 256.3 seconds, but in
Figure 4.4, the execution time required to find the value of L;(10, 5,4, 3) reaches the time limit
of 14400 seconds (or 4 hours), indicating that the problem was not solved to completion and
an upper bound on L;(10, 5,4, 3) was found. This may be explained by noting that only 41491
branches are required in the branch-and-bound tree in order to find the value of L1(9,4,4,3)
(compared to at least 886 618 branches being required to find the value of L 9(9,4,4,3)) and at
least 117 287 branches are required in the branch-and-bound tree when the value of L1(10, 5,4, 3)
is sought (compared to at least 51 446 branches required to find the value of L;(10,5,4,3)). This
explains the difference in the graphs in Figures 4.3 and 4.4.
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FI1GURE 4.3: Execution time as a function of win probability for the incomplete lottery problem associ-
ated with the lottery (9,4,4, 3).
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FIGURE 4.4: Execution time as a function of win probability for the incomplete lottery problem associ-
ated with the lottery (10,5, 4, 3).

TABLE 4.9: Results obtained when solving for the value ¥;(9,4,4,3) when the problem is formulated
as an ILP. The first column contains the fixed playing set cardinality ¢. The second column contains
an example of a playing set which achieves the probability-of-win value ¥, in the third column. The
fourth column contains the associated number of branches in the branch-and-bound tree. Finally, the
fifth column contains the time in seconds required to find the solution.

¢ | Playing set W, | Branches Time
1] {{5,7,8,9}} 0.167 0 0.319
2| {{1,3,8,9},{3,4,6,7}} 0.333 0 0.368
3| {{1,3,5,7},{2,4,5,6},{6,7,8,9}} 0.5 0 0.449
4 1{{1,2,3,9},{1,2,6,8},{3,4,5,6},{4,7,8,9}} | 0.635 325782 | 9819.239
51 {{1,2,7,9},{1,6,7,8},{2,4,5,8},{3,4,6,9}, | 0.738 277847 14400

{3,5,7,8}}
6 | {{1,2,3,6},{1,4,6,9},{2,4,6,7},{2,5,8,9}, | 0.825 | 353245 14400
{3,4,5,8},{3,7,8,9}}
7| {{1,3,6,7},{1,4,5,7},{1,4,6,8},{1,7,8,9}, | 0.913 | 428601 14400
{2,3,4,9},{2,3,5,8},{2,5,6,9}}
8 | {{1,2,8,9},{1,3,4,9},{1,5,6,7},{2,3,6,7}, | 0.960 | 657794 14400
{2,4,5,6},{2,4,5,7},{3,5,8,9},{4,6,7,8}}

9 | {{1,2,5,7},{1,3,4,7},{1,4,5,6},{1,6,8,9}, 1 156 1.559
{2,3,4,9},{2,3,6,8},{2,4,7,8},{3,5,8,9},
{5,6,7,9}}

4.4.2 Analysis of results for the resource utilisation problem

As an example, the results obtained from solving the two resource utilisation problem instances
for the lotteries (9,4, 4, 3) and (10, 5, 4, 3), adopting an ILP formulation approach, are presented
in Tables 4.9 and 4.10, respectively.

The graphs of resource utilisation as a function of playing set cardinality, shown in Figures 4.5
and 4.6, roughly exhibit a concave downward shape. The reason for this shape is that, as the
playing set cardinality increases, the neighbourhoods of those tickets in the playing set overlap
more with each other, and subsequently the improvement in the resource utilisation tends to
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TABLE 4.10: Results obtained when solving for the value W,(10,5,4,3) when the problem is formulated
as an ILP. The first column contains the fixed playing set cardinality ¢. The second column contains
an example of a playing set which achieves the probability-of-win value W, in the third column. The
fourth column contains the associated number of branches in the branch-and-bound tree. Finally, the
fifth column contains the time in seconds required to find the solution.

{ | Playing set W, | Branches | Time
1] {{1,2,3,4,5}} 0.262 0] 2.359
2 | {{1,2,3,5,6},{1,4,8,9,10}} 0.524 0| 4.689
3 14{{1,2,4,5,10},{3,5,7,8,9},{4,6,8,9,10}} 0.7 56 333 | 14400
4 1{{1,4,7,8,10},{1,5,6,7,9},{2,3,4,6,9}, 0.876 82174 | 14400

{2,3,5,8,10}}
5| {{1,3,4,5,7},{1,3,6,9,10},{2,3,7,8,10}, | 0.924 | 104717 | 14400
{2,4,6,8,9},{2,5,6,8,9}}
6 | {{1,2,5,6,9},{1,3,4,7,8},{1,5,7,9,10}, | 0.986 | 130990 | 14400
{2,3,4,8,10},{2,5,6,7,9},{3,4,6,8,10}}

7 | {{1,2,3,4,8},{1,4,5,9,10},{1,4,7,9, 10}, 1 3| 1.099
{1,5,6,7,10},{2,3,5,7,8},{2,4,6,8,9},
{3,4,6,9,10}}

decrease. The associated execution time graphs are similar to those observed when solving the
incomplete lottery problem; it is often the case that as the playing set cardinality increases, the
time taken to find an optimal (or near optimal) solution increases. One possible reason for this
phenomenon is that as the playing set cardinality increases, it is possible that more combinations
of participant tickets are assessed. This implies that more iterations are required to build the
branch-and-bound tree, and hence more calculations are carried out by the processor, thus
causing the execution time to increase regardless of the speed of the processor. In Figure 4.6
the graph appears to be linear from point 2 to point 4. This may be explained as follows. The
neighbourhoods of the tickets in the playing set of cardinality 2 have no tickets in common
with each other, however, the neighbourhoods of the tickets of the playing set of cardinality 3
have, in total, 18 tickets in common (an increase of 18 tickets). Also, the neighbourhoods of
the tickets of the playing set of cardinality 4 have, in total, 36 tickets in common (an increase
of 18 tickets). Therefore, the increase in the number of tickets shared by the neighbourhoods of
the tickets in the playing set is linear, hence the linear shape of the graph from £ =2 to ¢ = 4.
Also in Figure 4.6, there seems to be a “kink” in the graph where the playing set cardinality is
equal to 5. This may be explained as follows. As mentioned, the neighbourhoods of the tickets
of the playing set of cardinality 4 have, in total, 36 tickets in common. The neighbourhoods of
the tickets in the playing set of cardinality 5 have, in total, 81 tickets in common (an increase of
81 —36 = 45), the neighbourhoods of the tickets in the playing set of cardinality 6 have, in total,
123 tickets in common (an increase of 123 — 81 = 42), and neighbourhoods of the tickets in the
playing set of cardinality 7 have, in total, 81 tickets in common (an increase of 175 — 123 = 52).
Therefore, the increase in the number of tickets shared by the neighbourhoods of the tickets in
the playing set is not linear, hence the non-linear shape of the graph from ¢ =4 to £ = 7.

4.5 Boundaries of feasibility via an ILP approach

In this section, the boundaries of feasibility of an ILP approach towards solving the incomplete
lottery problem and the resource utilisation problem are explored. In Tables 4.7-4.10 in §4.4,
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Resource utilisation
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FIGURE 4.5: ¥4(9,4,4,3) as a function of playing set cardinality. The values of resource utilisation
associated with playing set cardinalities of 1, 2, 3, 4 and 9 represent the optimal value of ¥4(9,4,4,3),
and the resource utilisation values associated playing set cardinalities of 5, 6, 7 and 8 represent lower
bounds on the value of ¥4(9,4,4,3) because execution time reached the predefined time limit of 14 400
seconds.

it may be seen that certain small instances of the incomplete lottery problem and the resource
utilisation problem require more than four hours to solve for an optimal solution. In this
section, a problem instance which reached the four hour time limit is considered, and the ILP
formulation of that problem is altered by fixing variables explicitly in the hope of finding a
globally optimal solution within a relatively small amount of time. The same problem is also
allowed to solve to completion, and the results are documented.

As an example, consider the case where the variables x1 and xo are fixed explicitly in the
formulation. They may possibly be fixed as x1 = 0,20 =0; as z1 = 1,20 = 1;as 1 = 1,29 = 0;
or as 1 = 1,x9 = 1. The branch-and-bound algorithm will not be required to branch on these
two variables. This therefore results in fewer branches in the branch-and-bound tree, which may
result in a decrease in the execution time associated with solving instances of the incomplete
lottery problem and the resource utilisation problem. If r variables are chosen to be fixed
explicitly, 2" different formulations have to be solved in order to find the best objective function
value. If more variables are explicitly fixed, a shorter execution time may be required to find
a solution. However, if more variables are explicitly fixed, an exponentially larger number of
formulations have to be solved, which may require more processing time and memory. Due
to time and resource limitations, only four variables are explicitly fixed in the example which
follows. This requires 2* = 16 problem formulations to be solved.

When selecting the four variables to be fixed explicitly, it may not be desirable to select the
variables x1, xa, x3, x4 (which represent the first four tickets, arranged lexicographically)
because it is highly unlikely that all those variables will be included in an optimal playing set
due to the large overlap of their neighbourhoods. Therefore, a better technique would be a
naive partitioning of ®(U,,,n) into four subsets of equal size, and using a variable from each
subset. For example, in the lottery (10, 5,4, 3), for which (150) = 252, the variables

TL By, Dype e, Ty

i.e. T1, Teq, T127, T190 May be fixed explicitly. It may be more likely that the set of tickets
represented by these variables will cover more government tickets than the set represented by
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FIGURE 4.6: ¥,(10,5,4,3) as a function of playing set cardinality. The values of resource utilisation
associated with playing set cardinalities of 1, 2, and 7 represent the optimal value of ¥,(10,5,4,3), and
the resource utilisation values associated playing set cardinalities of 3, 4, 5 and 6 represent lower bounds
on the value of U,(10,5, 4, 3) because execution time reached the predefined time limit of 14 400 seconds.

the variables x1, x2, x3, 4. The above-mentioned partitioning technique will used in the
discussion below.

Example 4.4 (Explicitly fixing a predetermined set of variables) In Table 4.10, the re-
source utilisation problem corresponding to the value £ = 5 was not solved to completion for the
lottery (10,5,4,3). Therefore, the four variables x1, xes, T127 and w199 are fized. This implies
that 2* = 16 different problem instances are formulated as ILPs and solved to completion. The
results appear in Table 4.11.

It is known that the value of V5(10,5,4,3) is approzimately 0.923810. From Table 4.11 it is
evident that if some variables are fixed explicitly, a solution equal to the known optimal solution
to the problem may be obtained in a very short time. In the case of the lottery (10,5,4,3) for
¢ =5, a solution equal to the optimal solution may be obtained after 0.919 seconds (when the
variables x1, x197 and w199 are fized to 1, and the variable xgy is fized to 0). However, it will
only be known that a solution is optimal once all possible values of x1, x4, T127 and x199 have
been considered. This approach is analogous to solving the problem in parallel. |

If the resource utilisation problem for the lottery (10,5, 4, 3) when ¢ = 5 is formulated as an ILP
and solved to completion, without any variables being explicitly fixed, the results documented
in Table 4.12 are obtained.

From Table 4.12 it may be seen that the problem solved to completion in approximately 15.3
days. When the four variables x1, xg4, x127 and z199 are explicitely fixed, the total time
execution of solving all 2* = 16 problems is approximately 17.3 days. However, if the variables
r1, T197 and x99 are fixed to 1 and zg4 is fixed to 0, a solution equal to the known optimal
solution of approximately 0.923 810 is found in approximately 0.9 seconds. This result either
implies that, should an optimal solution be sought, it is less time consuming to allow the problem
to solve to completion without fixing any variables explicitly, or it may be possible to find an
optimal solution or a near optimal solution, in less time by explicitly fixing a larger number
of variables. In turn, this will require more resources but possibly less total execution time to
find an optimal solution. Regardless, in a worst case scenario, it may yield viable bounds on
Wy(m,n,t, k) in a feasible amount of time.
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TABLE 4.11: Results obtained when explicitly fixing four variables in the ILP formulation of the resource
utilisation problem in which the value U5(10,5, 4, 3) is sought. The first four columns contain the values
to which each of the four variables are fixed. The fifth column contains the associated number of branches
in the branch-and-bound tree. The sixth column contains the time, in seconds, taken to find an optimal
solution. Finally, the seventh column contains the objective function value achieved, i.e. the proportion
of government tickets covered by the corresponding optimal playing set.

T1 | Tesa | T127 | T190 | Branches Seconds | Objective
0 |0 0 0 24378296 | 1178321.000 0.924
0 |0 0 1 561 160 62 920.080 0.924
0 |0 1 0 621 355 80066.300 0.924
0 |0 1 1 113259 3033.000 0.924
0 |1 0 0 551994 62907.770 0.924
0 |1 0 1 252568 12448.449 0.924
0 |1 1 0 92 842 2920.819 0.924
0 |1 1 1 64 1.089 0.919
1 |0 0 0 631 642 82149.550 0.924
1 10 0 1 160452 5554.159 0.924
1 |0 1 0 11233 401.919 0.924
1 |0 1 1 0 0.919 0.924
1 1 0 0 76 542 1786.399 0.924
1 1 0 1 104 1.219 0.919
1 1 1 0 0 1.099 0.9
1 1 1 1 0 0.769 0.89

TABLE 4.12: Results obtained when solving the problem instance for ¥5(10,5,4,3).

Lottery ¢ | Branches Time (s) | Time (days) | Objective value
(10,5,4,3) | 5 | 29665952 | 1318179.27 15.25 0.923 810

4.6 Chapter overview

The mathematical programming approach towards solving the complete lottery problem, the
incomplete lottery problem, and the resource utilisation problem adopted in this chapter is
useful in two situations. Firstly, the mathematical programming approach provides an exact
answer. This means that, by examining the results of this approach, the participant knows
exactly which playing set to construct that meets his/her requirements. Secondly, a feasible
answer may be reached in a short amount of time, and it is often close to the optimal answer.

The mathematical programming approach does, however, have its shortcomings. It has been
found in this chapter that as the parameters in the problems increase, the execution time tends to
increase as well. The ultimate goal, when solving the lottery problem may be to find an optimal
solution for both the incomplete lottery problem and the resource utilisation problem for the
lottery (49,6, 6, k). Unfortunately, due to hardware limitations, it is not possible to employ the
mathematical programming approach towards achieving this goal because the execution time
will be too long, and the computers used may run out of memory before an optimal solution is
reached. Also, it should be mentioned that the model presented in this chapter requires a file,
which contains an adjacency matrix, to be provided as input. This file contains all the elements
of the adjacency matrix, with spaces between elements in each row. If it is assumed that an
element, and a space each take up one byte of data, the file for the lottery (49,6, 6, k) would
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be ((469) X 2) X (469) bytes large. This is approximately 356 terabytes large, which no single
computer may store in memory. Currently, in a 32-bit Windows system, the maximum amount
of memory which may be used on the computer is 3.5 gigabytes, and on a 64-bit Windows
system, the maximum amount of memory which may be used by the computer is 16 gigabytes.
Therefore, a feasible answer to Ly (m,n,t, k) and Wy(m,n,t, k) may only be found using the
mathematical programming approach if the file containing the adjacency matrix is within the
physical storage limits of the computer on which it is solved. Consequently, that implies that the
incomplete lottery problem and resource utilisation problem may only be solved to completion
for small lottery instances by using the mathematical programming approach.

It may therefore be concluded that the mathematical programming approach is useful for finding
bounds, or optimal solutions to small instances of the incomplete lottery problem or resource
utilisation problem (currently problems for which m < 10). As computers become more pow-
erful, the limitations on the mathematical programming approach will be less, and it may then
be possible to find optimal solutions to larger problem instances. However, finding the value
of L1(49,6,6,k) via a mathematical programming approach seems infeasible for the forseable
future.
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In this chapter, an alternative solution method is presented for the incomplete lottery prob-
lem and the resource utilisation problem. In this method, all possible overlapping playing set
structures are constructed. From these constructions the answers to both the incomplete lottery
problem and the resource utilisation problem may be obtained for a given lottery instance. This
exhaustive enumeration solution method was originally proposed by Griindlingh [16] for lottery
instances where n = t. In §5.1 the method is reviewed and implemented for the more general
case where n # t in fulfilment of Thesis Objective III(a). In §5.2 a few numerical examples are
presented of how the exhaustive enumeration method works and these examples are used to ver-
ify the correctness of the implementation, in fulfilment of Thesis Objective III(b). Thereafter,
in §5.3, pseudocode examples of the implementation of the exhaustive enumeration method are
presented. Following that, the same problem instances which were solved in Chapter 4 via an
integer programming approach are solved in §5.4, this time using the exhaustive enumeration
method instead. The reason for doing this is to verify the results of Chapter 4 in fulfilment of
Thesis Objective III(c). The method is also used to find as many structurally non-isomorphic
optimal solutions as possible to the problem instances originally investigated in Chapter 4, in
fulfilment of Thesis Objective III(d).
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5.1 The lottery tree

The exhaustive enumeration lottery tree method involves the iterative construction of a rooted
tree data structure. The aim in this method is to find all non-isomorphic overlapping playing
set structures for a given lottery instance of the incomplete lottery problem or the resource
utilisation problem. Each node in the tree represents a unique overlapping playing set structure.
A probability-of-win value is ultimately assigned to each playing set structure. The answer to
both the incomplete lottery problem and the resource utilisation problem may be obtained by
examining these probability-of-win values.

Level i (1 < i < /) in the lottery tree contains nodes which represent playing set structures
of cardinality ¢ tickets. The root node of the tree exists at level i = 1, and it represents an
arbitrary playing set of cardinality 1. The next level in the tree, ¢ = 2, contains one or more
nodes containing overlapping playing set structures which represent the different ways in which
a second ticket may be added to the playing set. This process of iteratively constructing the
lottery tree continues until either a probability-of-win value of v is found to be associated with a
node (in which case the incomplete lottery problem is solved) or until the lottery tree reaches a
level corresponding to a fixed number of ¢ tickets (in which case the resource utilisation problem
is solved).

5.1.1 Creating the nodes in the lottery tree

Suppose Ly = {T1,T5,...,Ty} is a playing set of cardinality ¢ in the lottery (m,n,t, k). The
lottery tree for this playing set has £ 4 1 levels, and the nodes on level ¢ of the tree represent
potential Wy(m,n,t, k) playing set structures for the resource utilisation problem, or potential
Ly(m,n,t, k) playing set structures for the incomplete lottery problem.

Each node in the lottery tree is represented by a vector X(Z) = ($E€)00...0 ’fUEQ)o..J)a e 7555?11...1))

which captures the overlapping ticket structure contained in that node. The entries in each
(¢

vector X( ) may be interpreted as mentioned in §2.2.4. Except for the root node (which is

always represented by the vector %W = (xél),azgl)) = (m —n,n)), each vector at level ¢ < ¢ of

the lottery tree is derived from the vector in its parent node at level i according to the following
rules:

.. o (i+1
1. All the entries in the vector X(z ) must add up to m, because there are only m num-
bers available for the participant to include in his/her playing set for any given lottery
(m,n,t, k).

2. The entries

(i+1) (1) (1)
Z(100...0)> ¥(100...1)7 - - T(111...1) (5.1)

in the vector X(Hl) must add up to n. These entries represent all the compartments in
the overlapping playing set structure which include ticket ¢ + 1. Each ticket in the playing
set must contain n numbers, therefore all the compartments including ticket ¢ + 1 must
collectively contain exactly n numbers.

3. The entries

(i+1) (i+1) (i+1)
L(000...0)» T(000...1)> = - » F(011...1)
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)

in the vector X’(ZH must add up to m —n. These entries represent all the compartments

in the overlapping playing set structure other than those compartments denoting ticket

1+ 1. Ticket i+ 1 must contain n numbers, which implies that all the other compartments

must contain m — n numbers collectively.

(i+1) o (i+1) . . .

4. Entry T(111..1) of the vector X must be less than n, for otherwise each ticket in the
playing set would contain exactly the same numbers, in which case the playing set would
have the same probability-of-win as a playing set of cardinality 1.

5. Each entry in (5.1) must be less than or equal to the entry corresponding to it in its parent

vector }Z(i). This implies that

(i+1) (i) (i+1) (i) (i+1) (i)
T100..0) = L(000...0)* L(100...1) = F(000..1)7 * > L11..1) = T(111..1)" (5.2)

Each entry in (5.1) represents an overlap of ticket i + 1 with the compartment in the
corresponding overlapping playing set structure of the parent vector X(Z).

5.1.2 Assigning probability-of-win values to the nodes

Once the exhaustive enumeration lottery tree has been constructed, it is possible to compute and
assign a probability-of-win value to each node in the tree. This value represents the probability
of winning a k-prize if that specific overlapping playing set structure were to be selected by the
participant.

The probability-of-win value at a specific node is computed by analysing the children of that
node, because the overlapping playing set structures represented by the children nodes may also
represent the different ways in which a winning ticket, containing ¢ numbers may overlap with
the playing set structure represented by that node. This, together with the process described in
§5.1.1 represents an additional step involved in the construction of the tree if n # t. The method

presented in §5.1.1 of building children from a parent node X(Z) results in the construction of
vectors which represent the overlapping of a winning ticket of size n only. If the lottery instance
is such that n # t, two sets of children have to be constructed for each node. The first set
is the set of children described in §5.1.1, and these children may spawn new children. The
second set of children represents the potential overlapping of the winning ticket of size ¢ with
the overlapping playing set structure of the parent node, and they are constructed in the same
way as described in §5.1.1 with the value of n replaced by the value of ¢. From the second set of
children, a test of whether or not a winning ticket of size ¢ has at least k£ numbers in common
with at least one ticket in playing set structure of the parent node is conducted. In [16], this
is referred to as a so-called domination test. The second set of children are ultimately used to
compute the probability-of-win value for the parent node, and they do not spawn new children.
Once the probability-of-win value for the parent node has been computed, this second set of
children is no longer required in the lottery tree structure.

Each child in the second set of children are assigned a boolean value of true or false, which
is used to calculate the probability-of-win value of the parent node. A child from the second
set of children is assigned the value true (and assigned to a set Dr) if the overlapping winning
ticket has at least k numbers in common with at least one of the tickets in the parent node’s
playing set, which implies that it passes the above-mentioned domination test. The child node
is assigned a value of false (and assigned to a set Dp) otherwise.
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The number of ways to overlap a winning ticket with the overlapping playing set structure of the
parent node (when interchanging the roles of the elements of U,,) so as to guarantee a k-prize,
divided by the total number of ways to overlap a winning ticket with the overlapping playing
set structure of the parent node (when interchanging the roles of the elements of U,,) is equal
to the value of the probability-of-win if a playing set conforming to the overlapping playing
set structure of the parent node is selected by the participant. Therefore, together with these
boolean values, each child node is assigned a value equal to the multiplicity of its vector. The
formulal,
m!

= (0+1)
MET) = (5.3)
H?:]lxgul)!

for the multiplicity of the vector results, because all the m entries in the overlapping playing
structure may be interchanged (there are m! ways to do this). However, the number of entries
in each compartment remains the same and interchanging the entries within a compartment has
no effect on the playing set represented by the overlapping playing set structure. Therefore, the
multiplicity in (5.3) represents the number of structurally different overlappings that are possible
when interchanging the roles of the elements of U,,. The number of ways of overlapping a
winning ticket with the overlapping playing set structure of the parent node (when interchanging
the roles of the elements of U,,) so as to guarantee a k-prize is

Z M(X(“_l)),
X(ZJrl)E'DT

and the total number of ways of overlapping a winning ticket with the overlapping playing set
structure of the parent node (when interchanging the roles of the elements of U,,) is

S M)

- (0+1
X" eprupp

Using these values, the probability-of-win value for the parent node may then be calculated as

)

M(}—(»(EJrl)) ’

This value is assigned to the parent node, and represents the fraction of government tickets
covered by a playing set represented by that overlapping ticket structure. This means that

’ Uveﬁw (m,n,t,k) N[’U”
(V) ’
()

= (¢
where v is a ticket in the overlapping playing set structure represented by the vector X .

L (0+1)
ZX“*”eDT M(X

Voo =

ZX<Z+1> eDrUDp

Uy =
<®

5.2 Numerical examples

Three numerical examples (involving small problem instances) of the use of the exhaustive
enumeration lottery tree method described above are presented in this section.

n this formula, the convention 0! = 1 is used.
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3,3)

Level L .. W = 20
[ 1 ]
(3.00.3) (2,1,1,2) (12.21) (0,3,3,0)

_ 14 1 _
Veo =350 Ve =59 Ve = 59 Voo =1
T T F F

FIGURE 5.1: The exhaustive enumeration lottery tree for the lottery (6,3,3,2). The letter “T” placed
below a node indicates that the corresponding overlapping playing set structure passes the domination
test in §5.1.2, and the letter “F” indicates otherwise.

5.2.1 The lottery (6,3,3,2)

The first aspect that must be noted regarding this problem instance is that since n =t = 3,
there is no need to construct a second set of children for each node in the exhaustive enumeration
lottery tree. The root of the tree is a playing ticket containing 3 numbers, with m—n =6—-3 =3
numbers remaining. The first two levels of the lottery tree for this problem instance appear in
Figure 5.1. The associated vector and the boolean value appears below each node. That is, the
domination test was performed in Level 2 (by adding a single 3-set, depicting the government
winning ticket, to the playing set structure) and yielded Dy = {(2,1,1,2),(3,0,0,3)}, while
Dr =1{(0,3,3,0),(1,2,2,1)}

It is found that M(X”) = 20, MX?) = 180, MX®) = 180 and M(X"™) = 20. Once

= (2
the value of M (X( )) corresponding to each node’s vector has been computed, it may be used
together with the boolean values associated with each node to compute the probability-of-win

= (1
value for the parent node, which is represented by the vector X( ) = (3,3), as
Zx(%
pPFE)

= (2)
M(X) 20 + 180 200

€Dr = = — =
M(X(Q)) 20+ 180+ 180+20 400

0.5.

Voo =

eDrUDp

In Table 5.1 ticket P; represents a single ticket in the participant’s playing set. The remaining
tickets in the table, labelled G; (1 < i < 20) represent all the tickets from which the government
may choose the single winning lottery ticket. There are 10 tickets (G1,...,G7 and G11,...,G13)
out of the possible 20 government tickets which have k = 2 or more numbers in common with
the participant’s ticket. Therefore, if the participant wishes to form a playing set of only one
ticket, the chance of winning a 2-prize is % = 0.5. This verifies the results emanating from
the exhaustive enumeration lottery tree method in Figure 5.1. Note that if the participant
had instead selected a playing set consisting of two tickets, these tickets may be selected in
such a way that all the government tickets have at least £ = 2 numbers in common with the

participant’s ticket, implying that L;(6,3,3,2) = 2 and ¥5(6,3,3,2) = 1.
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TABLE 5.1: Tabular representation of one participant ticket, P;, together with all government tickets
G; (1 < i < 20) for the lottery (6,3,3,2). The column labelled O contains values which indicate the
number of overlapping elements each ticket GG; has with ticket P;.

| t[2]3]4]5]6]0

P [[x[x[x][ | | |

Gq X | x| x 3
G X | x X 2
G X | X X 2
Gy X | % x || 2
G5 X X || x 2
Gg X X X 2
Gr X X x || 2
Gy X X | X 1
Gy X X x || 1
Gio || % x | x|l 1
G11 X | x || x 2
G2 X | X X 2
G13 X | X x || 2
G14 X X | X 1
Gis X X x || 1
Gig X x | x || 1
Gi7 X || x| x 1
Gis X || x x || 1
Gy X x | x|l 1
Goo X | x| x| 0
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Level 2

FIGURE 5.2: The exhaustive enumeration lottery tree for the lottery (7,3,4,2).

5.2.2 The lottery (7,3,4,2)

Since n = 3 # 4 = t, two sets of children are constructed for each node in the exhaustive
enumeration lottery tree in this problem instance. The first set of children contains nodes
which represent the overlapping of an additional participant ticket of size n = 3 with respect
to the existing playing set. The second set of children contains nodes which represent the
overlapping of a winning government ticket of size t = 4 with the playing set.

The root node, together with its first set of children is presented in Figure 5.2. This set of
children may spawn new children. The root node, together with its second set of children, is
presented in Figure 5.3. This set of children is used to compute the probability-of-win value of
the root node. Recall that the second set of children does not spawn new children.

It is found that M(X(Z)

) = 140, M(X?) = 630, M(X?) = 420 and M(XP) = 35. Once
the M (X(Z)) value for each node’s vector has been calculated, it may be used together with
the boolean values associated with each node to compute the probability-of-win value for the

parent node, which is represented by the vector (4, 3), as

140 + 630 770

= = ~ 0.629.
M(X'(Q)) 140 + 630 +- 420 + 35 1225

Voo =

zi(Q)eDTUDF

In Table 5.2, ticket P; represents a single participant’s ticket of size n = 3. The remaining rows in
the table, labelled G; (1 < i < 35), represent all the tickets from which the government chooses
the winning lottery ticket of size ¢ = 4. There are 22 tickets (G1,...,G16 and Ga1,...,Go)
out of the possible 35 government tickets which have k = 2 or more numbers in common with
the participant’s ticket. Therefore, if the participant wishes to form a playing set of only one
ticket, the chance of winning a 2-prize is % ~ 0.6286. This verifies the results emanating from
the exhaustive enumeration lottery tree in Figure 5.2. Note that if the participant had instead
selected a playing set consisting of two tickets, they may be selected in such a way that all the
government tickets will have at least £ = 2 numbers in common with the participant’s ticket.



66 CHAPTER 5. EXHAUSTIVE ENUMERATION

TABLE 5.2: Tabular representation of one participant ticket Py, together with all government tickets G,
1 < i < 35 for the lottery (7,3,4,2). The column labelled O contains values which indicate the number
of overlapping numbers each ticket G; has with ticket P;.

| t]2[3]4]5]6]7]O

P [ x[x[x]] | | | |

G1 X | x| x || x 3
Gy X | X | x X 3
G X | X | x X 3
Gy X | X | x x | 3
Gs X | % X | % 2
Gsg X | X X X 2
Gr X | X X X || 2
Gy X | X X | X 2
Gy X | X X X || 2
Gio || X | X X | x || 2
G11 || % X || x| x 2
Gio || % X || x X 2
Gz || % X || x x || 2
G || % X X | % 2
G5 || % X X x || 2
Gig || % X X | x| 2
Gi7 || % X | X | X 1
Gig || % X | X x || 1
Gig || X X x | x || 1
Goo || % X | x| x| 1
G X | x || x| x 2
GQQ X X X X 2
Gas X | X || x x || 2
Goy X | x X | X 2
Gas X | X X x || 2
Gag X | X X | x| 2
Gor X X | X | X 1
Gog X X | X x || 1
Gag X X x | x|l 1
G X X | x| x| 1
Gs1 X || x| x| x 1
Gso X || x| x x || 1
Gs3 X || x x | x || 1
Gy X X | x| x| 1
G5 X | x| x| x| 0
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TABLE 5.3: Tabular representation of participant tickets P, and P», together with all government tickets
G;, 1 < i < 35 in the lottery (7,5,4,3). The column labelled O represents the maximum amount of
numbers ticket G; has in common with either ticket Py or P. That is, O; = max{|P. N G;|,|P. N G;|}
for allt=1,...,35.

[ 1[2][3[4][5][6][7]O
P X | X | x| x| X
Py X | X | % X | %
G1 X | X | x| x 4
Go X | X | % X 4
G3 X | X | x X 4
Gy X | X | x x || 4
G5 X | X X | % 4
Gg X | X X X 3
Gr X | X X x || 3
Gy X | X X | X 3
Gy X | X X x || 3
Gio || x| x X | x| 4
G || % X | x| X 4
Gio || % X | X X 3
Gi3 || % X | X x | 3
G || % X X | % 3
G5 || % X X x || 3
Gig || % X X | x || 4
Gi7 || % X | x| X 3
Gig || % X | X x || 3
Gig || X X x | x| 3
Goo || X X | x| x| 3
G X | X | x| x 4
Gao X | X | x X 3
Gas X | X | x x | 3
Goy X | X X | X 3
Gos X | x X x || 3
Gag X | X X | x || 4
Gor X X | X | X 3
Gaog X X | X x| 3
G29 X X X X 3
G X X | x| x| 3
Gs1 X | X | x| x 3
Gso X | X | X x || 3
Gs3 X | X x| x| 3
Gy X X | x| x| 3
G5 X | X | x| x| 2
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Level 1 (4,3)
...............................................L ..............................................
[ ] 1
(3,0,1,3) (2,1,2,2) (1,2,3,1) (0,3,4,0)

T F F
Level 2

FIGURE 5.3: The root node of the exhaustive enumeration lottery tree, together with the second set of
children for the lottery (7,3,4,2). The letter “T” placed below a node indicates that the corresponding
overlapping playing set structure passes the domination test in §5.1.2, and the letter “F” indicates
otherwise.

5.2.3 The lottery (7,5,4,3)

The lottery (7,5,4,3) is not as trivial to analyse as the previous two lotteries. The smallest
playing set yielding a probability-of-win value of 1 has a cardinality of three. Therefore, the
lottery tree possesses three levels, as indicated in Figure 5.4.

The three levels of the exhaustive enumeration lottery tree associated with the lottery (7, 5,4, 3)
is presented in Figure 5.4. This set of children may spawn new children. The second set of
children of the overlapping playing set structure (0,2,2,3) is presented in Figure 5.5. This
set of children is used to compute the probability-of-win value of their parent node (the node
representing the overlapping playing set structure (0,2,2,3)). Recall that the second set of
children does not spawn new children.

It is found that M(}Z(g)) = 420, M(X(S)) =630, M(X (3 ~(3))

) =420, M(X" ") =2520, M(X

1260, M(X(g)) = 630, M(i(s)) = 1260 and M()_i(3)) = 210. Once the M(X(S)) value corre-
sponding to each node’s vector has been calculated, it may be used together with the boolean
values associated with each node to compute the probability-of-win value for the parent node,

the node corresponding to the vector (0,2,2,3), as

)

=(3)
o Yg@ep, M) 420 4 630 4 420 + 2520 + 1260 + 630 + 1260
x® = %® 420 4 630 + 420 + 2520 + 1260 + 630 + 1260 + 210
Zf{(?’)eb uD ( )
T F
7140
— =~ 00971
7350

In Table 5.3 the top two tickets, labelled P; and P», represent the tickets in the participant’s
playing set. The remaining rows in the table, labelled G; (1 < i < 35), represent all the tickets
from which the government may choose the winning lottery ticket. There are 34 tickets out
of the possible 35 government tickets which have at least £ = 3 or more numbers in common
with the any of the participants tickets (government ticket Gz is the only ticket which does



5.3. Implementation 69

Level 1 Ve :.5

Level 2

(1,0,0,1,0,1,1,3) (0,1,1,0,1,0,0,4) (0,1,1,0,0,1,1,3) (0,0,0,2,0,2,2,1)
Vew = 52 Uew =5 VUew =53 Uom =1

A
\/
AA

(0,0,0,2,0,2,2,1)
Level 3 Ve =1

FIGURE 5.4: The exhaustive enumeration lottery tree for the lottery (7,5,4,3).

not have at least three numbers in common with any of the participants tickets). Therefore,
if the participant wishes to select a playing set, which consists of two tickets and conforms to
the overlapping playing set structure represented by the vector (0,2,2,3), the probability of
winning a 3-prize is equal to % ~ 0.971. This verifies the results which may be computed
from the lottery tree shown in Figures 5.4 and 5.5. Note that if the participant had instead
purchased a playing set consisting of three tickets, they may be selected in such a way that
all the government tickets will have at least £ = 3 numbers in common with the participant’s
ticket.

5.3 Implementation

In this section, the implementation of the exhaustive enumeration lottery tree method described
above is presented in the form of pseudocode listings.
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T

(0,0,2,1,0,2,0,2)
T

(0,0,1,2,0,2,1,1)
T

(0,0,0,3,0,2,2,0)
F

FIGURE 5.5: The second set of children for the vector (0,2, 2, 3) in the exhaustive enumeration lottery tree
for the lottery (7,5,4,3). The letter “T” placed below a node indicates that the associated overlapping
playing set structure passes the domination test in §5.1.2, and the letter “F” indicates otherwise.

5.3.1 Pruning of the lottery tree

If the method described in §5.1.1 is used, some nodes in the exhaustive enumeration lottery
tree are duplicates of each other. As the level of the tree increases, the number of duplicates
increases exponentially. Therefore, many more nodes may be considered for insertion into
the exhaustive enumeration lottery tree than is necessary, rendering the computational cost of
the method unnecessarily large. An example of a set of duplicates from the lottery (9,4, 5, 3) is
shown in Figure 5.6. For each overlapping playing set structure containing ¢ tickets, ¢! duplicate
overlapping playing set structures exist, and only one of these duplicate structures needs to be
added to the lottery tree. For each of these duplicate vectors, a unique ancestor vector

Ty T T3 TZ
{{(4) _ @2 2 03 (3) (3) (3) (@) (0) ~ (0) 4
= (:E(l)’x(lo)’x(ll)’x(loo)’ Z101)r T(110y° Ta11y -0 T 0.0 L (10...1)7 - - v$(11...1)) (5.4)

is constructed. The length of this vector is 2671, and it is used to track the addition of new tickets

at each level of the exhaustive enumeration lottery tree. The only duplicate vector inserted into
the exhaustive enumeration lottery tree is the one with the lexicographically smallest ancestor
vector associated with it.

The lottery tree may be pruned further by applying the following pruning rules, established by
Griindlingh [16], at any level i of the lottery tree:

1. If there are more than ¢ entries in the compartment excluding all tickets, any winning

ticket of size ¢, which contains ¢ of the numbers not used in any playing set ticket, X(i)
will not represent an Lq(m,n,t,k)-set for (m,n,t,k). In other words, if xgé)oo...o)Q >
(L1(m,n,t, k) — i+ 1)t, then the overlapping ticket structure corresponding to the vector
i(i) will not yield any Lj(m,n,t,k)-sets in the subtree having X(i) as root and may

therefore be pruned from the lottery tree.

2. If the sum of all the entries in each exclusive ticket compartment is at least ¢, a win-
ning ticket of size ¢ may exist which might not have £ numbers in common with any
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(4’0707171’07073) (4’07170’0717073)

FIGURE 5.6: Duplicate overlapping playing set structures from the exhaustive enumeration lottery

- (3
tree for the lottery (9,4,5,3). For the overlapping structure vector X( - (4,0,0,1,1,0,0,3), the

(3 o
corresponding ancestor vector is Y( ) = (4,0,4,1,0,0,3), and for the overlapping structure vector X(

(4,0,1,0,0,1,0,3), the corresponding ancestor vector is Y’(d) (4,1,3,0,1,0,3). It may be seen that
(4,0,4,1,0,0,3) is lexicographically smaller than (4,1,3,0,1,0,3). Hence the vector (4,0,1,0,0,1,0,3)
is not inserted into the lottery tree, but the vector (4,0,0,1,1,0,0, 3) is inserted into the tree if it passes
further validity tests.

playing set ticket implying that the Structure does not represent an Li(m,n,t, k)-set for
(m,n,t, k). In other words, if mln{a: 100...0), Jk—1} +.. —Hnln{x (000..1), Jk— 1}+x(0)00 o), 2
(Ly(m,n,t, k) — i+ 1)t, then the overlapplng ticket structure correspondmg to the vector

X(Z) will not yield any Lj(m,n,t, k)-sets in the subtree which has X(Z) as root and may
therefore be pruned from the lottery tree.

Of the following pruning rules (also established by Griindlingh), rule (1) may be applied to the
nodes at level ¢ of the lottery tree, and rules (2) and (3) may be applied to level £ — 1 of the
lottery tree.

1. If mln{x —1}+...+ min{:r%%)o_“%, kE—1}+ ng) L=t then the overlapping

100...0), ’ 000...0)

= (L
playing set structure represented by the vector X( ) are not complete lottery sets, and
may be pruned from the tree.

2. If x(()e_l) > n + 1, then all possible overlapping playing set structures represented by the

= (-1
vector X( ) may be pruned from the tree.

(e .
3. If mrn{x 100..0),° K = 1}+.. .—&—mln{xgo)ooml) -1} +a2! 000 0), > (n+t), then all possible

-1
overlapping playing set structures represented by the vector X( ) are not lottery sets,
and may hence be pruned from the tree.

5.3.2 Pseudocode

The exhaustive enumeration lottery tree method described above was implemented in the pro-
gramming language C#. The nodes in the exhaustive enumeration lottery tree are represented
by a class called Node. In terms of object orientated programming, a class is a custom-made
data structure which may represent a person, place or entity. In this case, the class named Node
represents a node in the exhaustive enumeration lottery tree. A class contains descriptions
of the attributes (known as member variables) and abilities (methods) of the person, place or
entity which it represents. The class named Node has various member variables (a vector, arrX,
representing the overlapping playing set structure, the binary variable and probability-of-win
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value associated with the overlapping playing set structure, and a list of the children associ-
ated with that node in the exhaustive enumeration lottery tree) and methods (functions which
retrieve and set the values of the vector arrX, the binary variable, the probability-of-win value
associated with the overlapping playing set structure, and the list of children) associated with
it.

Algorithm 5.1: Main

Data: This algorithm drives the entire program
Result: The resource utilisation for each level of the tree (playing set cardinality) is printed
out.

1 Initialize values for m, n, t, k and ¢;

N O ok @

[SL N UR Ve
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11
12

Construct new object of type Node, called rootNode which consists of two elements. This
represents the root of the exhaustive enumeration lottery tree. The first element equals m — n,
and the second element equals n;

Call the function, LevelK;

Print execution time out to screen;

Print out the tree /* An optional command */
?

Print out the best resource utilisation associated with each level of the lottery tree;

Algorithm 5.2: calcv

Data: arrY, arrX, sz
Result: A boolean value which indicates if a valid child vector has been constructed in array
arrY, from the parent vector which is represented by the array arrX.

/* Fill in values of fgig(}.)_.())vxgzlgé.)..1)v-~-a13§ﬁ11.)_1) for arrY. */
for i =0;1i < sz do
a=arrX[sz—i|+1;
arrY[2 x sz — 1] = itermoda;
iter = iter/a;
end
/* All possible child vectors for arrX have been created. x/
if iter > 0 then
return false;
end
/* Fill in the values of 93%833.)..0)7%3&)..1)7---»xggJ{ll.)..l) for arrY. x/

for i =0;¢ < sz do

arrY'i] = arr X|[i] — arrY[sz + i;
end
return true;

The list of children associated with each node is represented by a variable named children
and is stored as a member variable in Node. This variable is an ArrayList data type. An
ArrayList data type stores references to objects which are used in the implementation. In this
case the references refer to the children of a parent node in the exhaustive enumeration lottery

= (£
tree. The vector X( ) in each node is represented by an integer array named arrX. The binary
value (described in §5.1.2) associated with each node in the tree is represented by a boolean
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Algorithm 5.3: LevelK
Data: parentNode, sz, max
Result: Builds the lottery tree and stores it in memory.

1 arrX = array corresponding to parentN ode;
2 if max =0 then
3 return;
4 end
5 iter = 0;
6 Let arrY be a new array of size sz x 2;
7 while calcv(sz, arrY, arrX, iter) do
8 sum = sum of all the elements in the second half of arrY;
9 if sum =n and Last element of arrY < n then
10 isValid=true;
11 for Fach ticket in the parent node do
12 Set kSum = the sum of the elements which the new ticket has in common with the
current ticket from the parent node;
13 if kSum >= k then
14 Set child node’s boolean value to true;
15 end
16 if kSum >=n then
17 isValid=false;
18 end
19 level2Vector = ancestor of arrY at level 2;
20 if kSum < level2Vector[l113] then
21 isValid=false;
22 end
23 end
24 if sum ==t then
25 Call AddTempChild of parentNode;
26 end
27 if toPrune = false and isValid = true then
28 if isDuplicate=false then
29 Call LevelK(n, newChild, sz2, max - 1);
30 end
31 end
32 end
33 if sum =t and Last element of arrY <n AND n # t then
34 for Fach ticket in the parent node do
35 Set kSum = the sum of the elements which the new ticket has in common with the
current ticket from the parent node;
36 if kSum >= k then
37 Set child node’s boolean value to true;
38 end
39 end
40 Call AddTempChild of parentNode;
41 end
42 end

43 iter = iter + 1;
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Algorithm 5.4: isDuplicate

Data: vector, vectorSize
Result: A boolean value, which has the value true if a duplicate of the received vector is
already in the lottery tree, and false otherwise.

Construct a temporary vector representing the same elements as the received vector, vector;
while i < Factorial(numtickets) do
Construct a permuation of length equal to numtickets = log vectorSize/log 2;
Permute all binary strings (which represent the received vector placeholders) according the
the values of the permutation;
Construct a new vector D using the permuted binary strings as placeholders. This will be
a duplicate vector of the received vector;
if GetVectorY (D) lezicograpically less than GetVectorY (receivedvector) then
return true;
end
return false;
end

value named TorF. This value is only assigned to a node if it is part of the second set of children
(also described in §5.1.2) of a parent node.

The method AddChild in Node receives a reference to a child node as input and adds it to the
list represented by the variable, children. The method setarrX receives an array as input,
and copies its values one by one to arrX for the given node. The method setTorF assigns a
value to the variable TorF associated with the node, depending on the value of the boolean value
received. The method getTorF returns the variable TorF associated with the node. The method
getArrX returns a reference to the array arrX of the given node, and the method printarrX
outputs the array arrX to the screen. Finally, the method getPsi returns the probability-of-win
value associated with a given node.

Of the many functions in the program that are responsible for its various actions, the ones
presented below in pseudocode form are the most important functions. The function named
Main drives the entire program. This function is responsible for initialising all the necessary
variables which are used in the program, and for calling the function, LevelK, which constructs
the exhaustive enumeration lottery tree.

The function LevelK is recursive. It is responsible for the construction of both sets of children
for each level of the exhaustive enumeration lottery tree as well as for adding both sets of
children to the tree. All the ways in which a ticket of size n or size ¢ may be overlapped with
an overlapping playing set structure are considered. This is achieved by considering all possible
vectors (which represent overlapping playing set structures) of length szx2 which may emanate
from the vector of length sz. If the sum of the elements in (5.1) equals n, the vector may be
added to the tree, provided that it is not pruned from the tree according to the pruning rules
presented in §5.3.1 and if the sum of those elements equals ¢; it is added to the second set of
children of the parent node. The function LevelK calls a boolean function which returns the
value true for every possible child vector that it produces, and the value false once it has
produced all the possible child vectors of a given parent vector. This boolean function is named
calcv.

The function calcv computes the different permutations of the values of (5.1), according to
(5.2). If a repeating set {0,1,0,1,0,1,0,1...} is constructed, the formula ¢ (mod 2) represents
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Algorithm 5.5: toPrune

Data: vector
Result: A boolean value which has the value true, if the received vector must be omitted
from the lottery tree.
if vector[0] > (¢ — currentlevel + 1) * t then
return true;
end
if min(vector[10...0],k — 1) + ... 4+ min(vector[0...01],k — 1) 4+ vector[00...0] >
(¢ — currentlevel + 1) x t then
return true;
end
if vector.level = { then
if min(vector[10...0],k — 1) + ...+ min(vector|[0...01],k — 1) + vector[00...0] >t then
return true;
end
end
if vector.level = ¢ — 1 then
if vector[0] > n+ 1 then
return true;
end
if min(vector[10...0],k — 1) + ... + min(vector[0...01],k — 1) + vector[00...0] > n+1t
then
return true;
end
end

each element in the repeating set, where i is the zero-based index. Similarly, if the repeating
set {0,0,1,1,0,0,1,1,0,0,1,1,...} is constructed in which two 1’s always follow two 0’s, then
each element in it is represented by the formula [i/2| (mod 2). Consider the vector (1,2,2,1)
from which children vectors, are constructed. The values, (5.2), of those children appear in
Table 5.4 and are computed in the function calcv by means of the use of an iterator i which
is analogous to a zero-based vector of a repeating set in a column of the table. Each column in
the table is a repeating set and each repeating set contains the possible values of each variable

in (5.1). The possible values, according to (5.1), of :L'g’)n)

8)10) are 0, 1 or 2 and they appear in Table
3)

5.4 in twos. The reason for this is that the value of Z(110)

Eﬂl) have appeared. Likewise, in the column with the heading x

eighteen 0’s, followed by eighteen 1’s, appear. The reason for this is that the value of x

(3) (3)
(111)> T(110)

5'382)1) appear (from the vector (1,2,2,1), there are (24 1) x (2+ 1) x (1 + 1) = 18 possible

CIRC)) (3)
(111)> *(110) (101

are 0 or 1, and they appear in Table
5.4 one after the other. The possible values of z

may only be changed once the two
®3)
(100)°
(3)
(100)

and

possible permutations of x

may only change once all possible permutations of the values of the variables x

permutations of the variables x and x

as

)). The values in Table 5.4 are computed

2B =i (mod (m(2) + 1)) , (5.5)
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TABLE 5.4: All the possible permutations of the values (5.1) belonging to the child nodes of the vector
(1,2,2,1) in (6, 3,1, k), according to (5.2) and computed by means of iterator i.

A EAEAENEE EAEEAER
0 0 0 0 0 18 1 0 0 0
1 0 0 0 1 19 1 0 0 1
2 0 0 1 0 20 1 0 1 0
3 0 0 1 1 21 1 0 1 1
4 0 0 2 0 22 1 0 2 0
5 0 0 2 1 23 1 0 2 1
6 0 1 0 0 24 1 1 0 0
7 0 1 0 1 25 1 1 0 1
8 0 1 1 0 26 1 1 1 0
9 0 1 1 1 27 1 1 1 1
10 0 1 2 0 28 1 1 2 0
11 0 1 2 1 29 1 1 2 1
12 0 2 0 0 30 1 2 0 0
13 0 2 0 1 31 1 2 0 1
14 0 2 1 0 32 1 2 1 0
15 0 2 1 1 33 1 2 1 1
16 0 2 2 0 34 1 2 2 0
17 0 2 2 1 35 1 2 2 1
x(g) -1 mod x(z) 1 .

(110) (538)1) ) ( ( (o) T )) ) (5.6)

m(3) = ‘ mod a:(2) 1 and 5.7

(101) (xg)l) N 1)(3:%?2)) ) ( ( on T )) ) (5.7)

1:(3) = ! mod a:(Q) +1 5.8

(100) (358)1) n 1)(3782)) + 1)(3;53)1) i 1) ( ( (00) )) ( )

forall 0 <i < (588)1) + 1)(x82]) + 1)(:158)1) + 1)(3:82)0) + 1) — 1. The expressions (5.5)—(5.8) may
be generalised to

¢ . ¢
x€141-..1.)1) =1 (mOd (5551)1_..1) + 1)) ) (5.9)

J4 14
(a;&)l_.l) F1)x...x (xgo?__m) +1)
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2O ! (mod (ZE(E) + 1)) , (5.12)

10...0) — l 4
(10--0) (a0 )+ 1) % ox (g )+ 1)

for all 0 < i < () +1) x ... x (alghy) +1) = 1.

Due to space constraints, comments are omitted from Algorithm 5.3 and replaced by the follow-
ing description of the algorithm. In line 1, the array named arrX is defined as the array from
the parent node. In lines 2 to 4, the stopping condition for the recursive algorithm LevelK is
specified. In line 6, a new array, named arrY is defined as the array of a child node of the parent
node which contains arrX. In line 8, all the elements in the newly added ticket are counted. In
line 9 it is tested whether n elements occur in the newly added ticket, in which case it represents
a valid ticket in the participant’s playing set (and if n = ¢, it also represents a valid overlapping
of a government ticket with the playing set in the parent node). In line 13, it is tested whether
the newly added ticket has k numbers in common with at least one participant ticket. If the test
is passed, the boolean value for the node corresponding to the newly created vector is assigned
the value true. In line 16, it is tested whether the new ticket contains the same elements as
any of the other tickets. If this is the case, the overlapping playing set structure represented by
arrY is not valid, and may be omitted from the exhaustive enumeration lottery tree. In lines 20
to 22, it is tested whether the overlapping playing structure has not previously been explored in
the exhaustive enumeration lottery tree. In line 24, it is tested whether the child node should
be added to the second set of children. Furthermore, it is tested in lines 27 to 28, whether the
overlapping playing set structure may be added to the lottery tree as a child in the first set
of children. In line 33, it is tested whether the newly added ticket contains ¢ elements which
implies that it represents the overlapping of a government ticket with the participant’s playing
set in the parent node. In line 40, the child node is added to the second set of children of the
parent node.

Another function which is of interest is a boolean function called isDuplicate. This function
returns the value true if a vector is found to be a duplicate vector, and it returns false other-
wise. This function is mentioned in §5.3.1. The isDuplicate function is defined in Algorithm
5.4. An efficient permutation class is used to construct the permutations for the isDuplicate
function. This class was obtained via the Microsoft Developer Network website [30]. The func-

(£)

tion isDuplicate refers to a function GetVectorY which constructs the ancestor vector Y as
= (¢
described in (5.4) for the vector %Y at level 4.

5.4 Results

Solutions (in overlapping structural vector notation) for all non-isomorphic lottery problem in-
stances for m < 10 and using up to ¢ = 6 tickets, as found by the exhaustive enumeration lottery
tree method described in §5.3 are presented in Table 5.5. Due to space constraints, commas are
omitted from the vector representations of the overlapping playing set structures. Therefore,
in the following table, the vector representation of an overlapping playing set structure is of

the form (wgf))oo...o)m%)oo...l) . 'xg)n..&))' A value of 0.000 in the fourth column (which indicates

execution time) implies that the execution time was less than one thousandth of a second.
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TABLE 5.5: Solutions (in overlapping structural vector notation) for all non-isomorphic lottery problem
instances in which m < 10, as found by the exhaustive enumeration lottery tree method described in
85.3. The entries in the first and second columns represent the lottery instance and the fixed playing set
cardinality, respectively, for which a maximum resource utilisation value is sought. The third column,
labelled “V,” contains the associated resource utilisation number obtained via the exhaustive enumera-
tion lottery tree method. The fourth column contains the required execution time and the fifth column
contains all the non-isomorphic overlapping playing set structures for the problem instance.

Lottery L | Uy Time (secs) | Overlapping playing set structure
(6,3,3,2) 1] 0.5 0.000 (33)
2|1 0.000 (0330)
(7,3,3,2) 1 | 0.371 | 0.000 (43)
2 | 0.743 | 0.000 (1330)
3 | 0.914 | 0.000 (01301200)
4 11 0.031 (0030010001001100)
(0020020001101000)
(7,3,4,2) 1 | 0.629 | 0.000 (43)
2|1 0.000 (1330)
(8,3,3,2) 1 | 0.286 | 0.000 (53)
2 | 0.571 | 0.000 (2330)
3 | 0.786 | 0.000 (02302100)
4 | 0.893 | 0.047 (0030110002001000)
511 1.141 (00300100000010000000100002000000)
(8,3,4,2) 1] 0.5 0.000 (53)
2 | 0.871 | 0.000 (2330)
3|1 0.000 (02302100)
(8,3,5,2) 1| 0.714 | 0.000 (53)
2|1 0.000 (2330)
8,4,3,2) | 1] 05 0.000 (a4
2|1 0.000 (0440)
(8,4,4,2) 1 | 0.757 | 0.000 (44)
2|1 0.000 (1331)
(0440)
(8,4,4,3) 1 | 0.243 | 0.000 (44)
2 | 0.486 | 0.000 (1331)
(0440)
3 | 0.671 | 0.000 (01211210)
4 | 0.857 | 0.094 (0001021001201000)
5| 0914 | 4.234 (00010010001001000010010001001000)
(00000010012000000001020000001000)
6 | 1 314.359 (0000000000000100000100000020000000000110010000000000100000000000)
(9,3,3,2) 1 | 0.226 | 0.000 (63)
2 | 0.452 | 0.000 (3330)
3 | 0.679 | 0.000 (03303000)
4 | 0.774 | 0.063 (0130110011001000)
5 | 0.893 | 2.250 (00300100010010000100100010000000)
6 | 0.952 | 159.516 (0000010001100000010020000000000000200000100000000000000000000000)
(0000010001100000011010000000000000101000100000000000000000000000)
9,3,4,2) 1 | 0.405 | 0.000 (63)
2 | 0.738 | 0.000 (3330)
3|1 0.000 (03303000)
(9,3,5,2) 1 | 0.595 | 0.000 (63)
2 | 0.929 | 0.000 (3330)
3|1 0.000 (03303000)
9,3,6,2) 1 | 0.774 | 0.000 (63)
2|1 0.000 (3330)
(9,4,3,2) 1 | 0.405 | 0.000 (54)
2 | 0.81 0.000 (1440)
3 | 0.952 | 0.000 (01401300)
41 0.141 (0030020002001010)
(0020021002101000)
(0040010001001200)
(0030020001101100)
(0020030001201000)
9,4,4,2) | 1| 0.643 | 0.000 (54)
2|1 0.000 (1440)
(9,4,4,3) 1 | 0.167 | 0.000 (54)
2 | 0.333 | 0.000 (2331)
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Table 5.5 — continued from previous page

Lottery L Uy Time (secs) | Overlapping playing set structure
(1440)

3] 05 0.016 (02212110)

4 | 0.635 | 0.203 (0011111002101000)

5| 0.738 | 11.672 (00010110001010000010100002000000)
(00010100011010000010101001000000)
(00000110021000000011100000001000)
(00000110011010000011100001000000)

6 | 0.825 1403.594 (0000000100100000010001000000100000001000011000000010000000000000)
(0000010001100000000100000000100000000010010000000010100000000000)
(0000001002000000000100000000100000000100001000000010100000000000)

(9,4,5,2) 1 | 0.833 | 0.000 (54)

2|1 0.000 (2331)

(1440)
(9,4,5,3) 1 | 0.357 | 0.000 (54)

2 | 0.714 | 0.000 (1440)

3 | 0.857 | 0.016 (02212110)
(02301210)
(01401300)

4 | 0.976 | 0.219 (0020030001201000)

511 12.250 (00010110001010000010100002000000)
(00000110012000000110010000001000)
(00100010021000000010020000001000)
(00000110021000000020010000001000)
(00000210002000000010100002000000)
(00400000000001000000010001001100)
(00300000001001000000020001001000)
(00100300001000000010000001101000)
(00100200002000000010010001001000)
(00000300002000000020000001001000)
(00000200002010000020010001000000)
(00000200003000000010110001000000)

(9,4,6,3) 1 | 0.595 | 0.000 (54)

2|1 0.000 (1440)

(10,3,3,2) | 1 | 0.183 | 0.000 (73)

2 | 0.367 | 0.000 (4330)

3 | 0.55 0.000 (13303000)

4 | 0.667 | 0.063 (0220210020100000)

(0220300011100000)

5 | 0.767 | 2.719 (01103000011000000110000010000000)

6 | 0.85 217.641 (0010010001001000102000000000000001001000100000000000000000000000)
(0010010010100000011010000000000001001000100000000000000000000000)
(0000110010100000011010000000000001100000100000000000000000000000)
(0000300001100000011000000000000001100000000000000000000010000000)
(0000200001100000011010000000000001100000100000000000000000000000)

(10,3,4,2) | 1 | 0.333 | 0.000 (73)

2 | 0.624 | 0.000 (4330)

3 | 0.871 | 0.000 (13303000)

4 | 0.957 | 0.063 (0130300012000000)

511 1.234 (00303000010000000100000011000000)
(00203000020000000110000010000000)

(10,3,5,2) | 1 | 0.5 0.000 (73)
2 | 0.833 | 0.000 (4330)
3|1 0.000 (13303000)
(10,3,6,2) | 1 | 0.667 | 0.000 (73)

2 | 0.957 | 0.000 (4330)

3|11 0.000 (22302100)
(13303000)

(10,3,7,2) | 1 | 0.817 | 0.000 (73)
2|1 0.000 (4330)
(10,3,8,2) | 1 | 0.933 | 0.000 (73)

2|1 0.000 (5221)

(4330)
(10,4,3,2) | 1 | 0.333 | 0.000 (64)

2 | 0.667 | 0.000 (2440)

3 | 0.867 | 0.016 (02402200)

411 0.156 (0040020002002000)

(10,4,4,2) | 1 | 0.548 | 0.000 (64)
2 | 0.924 | 0.000 (2440)
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Table 5.5 — continued from previous page
Lottery L Uy Time (secs) | Overlapping playing set structure
311 0.000 (03303001)
(03302110)
(02402200)
(10,4,4,3) | 1 | 0.119 | 0.000 (64)
2 | 0.238 | 0.000 (3331)
(2440)
3 | 0.357 | 0.000 (12212110)
(03303001)
(03302110)

4 | 0.476 | 0.328 (0111111011101000)

5 | 0.595 | 23.313 (00010110011010000110100010000000)

6 | 0.662 | 3825.359 (0000011000101000001000000100000000010000100000000100100000000000)

(10,4,5,2) | 1 | 0.738 | 0.000 (64)

2|1 0.000 (2440)

(10,4,5,3) | 1 | 0.262 | 0.000 (64)

2 | 0.524 | 0.000 (2440)

3 | 0.714 | 0.000 (03302110)

4 | 0.833 | 0.359 (0111111011101000)

5 | 0.952 | 24.875 (0220011001102000)

6 | 0.976 | 3920.016 (00010110011010000110100010000000)
(0000000100101000001010000100000000101000010000000100000000000000)
(0000000102000000002000000000100000002000001000000100000000000000)

(10,4,6,2) | 1 | 0.881 | 0.000 (64)

2|1 0.000 (3331)
(2440)

(10,4,6,3) | 1 | 0.452 | 0.000 (64)

2 | 0.829 | 0.000 (2440)

3 | 0.971 0.000 (02402200)

4 11 0.313 (0030111003001000)
(0040110002001100)
(0040020002002000)
(0030120002101000)

(10,4,7,3) | 1 | 0.667 | 0.000 (64)

2|1 0.000 (2440)

(10,5,3,2) | 1 | 0.5 0.000 (55)
2|1 0.000 (0550)
(10,5,4,2) | 1 | 0.738 | 0.000 (55)

2|1 0.016 (1441)

(0550)
(10,5,4,3) | 1 | 0.262 | 0.000 (55)

2 | 0.524 | 0.000 (1441)
(0550)

3107 0.000 (02211220)

4 | 0.876 | 0.625 (0001022002201000)

5 | 0.924 | 53.328 (00010010001010100010020002000000)
(00010010002001000010020001001000)

6 | 0.986 | 10658.047 (0000000000000100000100000030000000000210010000000000100000000000)

(10,5,5,2) | 1 | 0.897 | 0.000 (55)

2|1 0.000 (2332)
(1441)
(0550)

(10,5,5,3) | 1 | 0.5 0.000 (55)
2|1 0.000 (0550)
(10,5,5,4) | 1 | 0.103 | 0.000 (55)

2 | 0.206 | 0.000 (2332)
(1441)
(0550)

3] 0.31 0.016 (11121220)
(02212111)
(02211220)

4 | 0.413 | 0.563 (0011110102101010)
(0011021002101010)
(0001022002201000)

5 | 0.516 | 51.125 (00000101011000100011100001001000)

6 | 0.619 | 10498.375 (0000000100000010000100000100100000000100011000000010100000000000)
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5.5 Chapter overview

In this chapter, the exhaustive enumeration lottery tree, first presented by Griindlingh [16] for
the case n = t was reviewed and adapted for the case n # t. The implementation was also
presented in the form of a pseudocode listing. This solution method was implemented in order
to compare its results to those obtained in Chapter 4. The results in Table 5.5 may be compared
to the results in Table C. The resource utilisation numbers in Table C confirm the results in
T