
The development of Sun and Nadir sensors for a solar sail CubeSat

by

Hanco Evert Loubser

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Engineering at the

University of Stellenbosch

Supervisors: Prof W.H. Steyn

Faculty of Engineering
Department Electrical and Electronic Engineering

March 2011

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my
own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that
reproduction and publication thereof by Stellenbosch University will not infringe any third party rights
and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

March 2011

Copyright © 2011 Stellenbosch University

All rights reserved

Abstract

This thesis describes the development of attitude sensors required for the Attitude Determination and
Control System (ADCS) for a Cubesat. The aim is to find the most suitable sensors for use on a small pico-
satellite by implementing miniaturised sensors with available commercial-off-the-shelf (COTS) technology.
Specifically, the algorithms, hardware prototypes, software and filters required to create accurate sensors
to determine the 3-axis orientation of a CubeSat are discussed.

iii

Opsomming

Hierdie tesis beskryf die ontwikkeling van oriëntasiesensors wat benodig word vir die oriëntasiebepaling
en -beheerstelsel (Engels: ADCS) van ’n CubeSat. Die doelwit is om sensors te vind wat die geskikste is om
in ’n klein picosatelliet te gebruik, deur miniatuursensors met kommersiële maklik verkrygbare tegnologie
(Engels: COTS technology) te implementeer. Daar word in die bespreking veral aandag geskenk aan die
algoritmes, hardewareprototipes, programmatuur en filters wat benodig word om akkurate sensors te
skep wat op hul beurt 3-as oriëntasie van die CubeSat kan bepaal.

iv

Contents

Abstract iii

Opsomming iv

List of Figures viii

List of Tables x

Nomenclature xi

Acknowledgements xiv

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 2
1.3 Thesis layout . 2

2 Literature 3
2.1 CanX-2 . 3
2.2 SwissCube . 4
2.3 DTUSat-2 . 4
2.4 Nanosatellites . 5

2.4.1 BRITE . 5
2.4.2 MOMENT . 6

2.5 CAPE-1 . 6

3 Hardware choices and designs for sensors 7
3.1 Camera modules . 7

3.1.1 CMOS vs CCD . 8
3.1.2 Lenses and optical filters . 9

3.1.2.1 Fisheye lens . 9
3.1.2.2 Neutral density filter . 10

3.2 Hardware controlling the sensors and processing images from the sensors 11
3.2.1 Memory . 11

3.2.1.1 Power switch and current sensors . 12
3.2.2 Microcontrollers and FPGAs . 12
3.2.3 Other hardware choices . 14

3.3 Layout . 14
3.3.1 Hardware failure . 15
3.3.2 PCB layout . 16

4 Methodology: Algorithms for sun and nadir sensors 17
4.1 Thresholding of images . 18

4.1.1 Fixed vs dynamic threshold . 18
4.1.2 Choosing a fixed threshold . 19

4.2 Edge detection . 20
4.2.1 Searching for edge pixels . 20

4.2.1.1 Searching algorithm for the nadir sensor . 20
4.2.1.2 Searching algorithm for the sun sensor . 21

v

CONTENTS vi

4.2.2 Edge detection for the nadir sensor . 21
4.2.3 Edge detection for the sun sensor . 22

4.3 Distortion . 22
4.3.1 Distortion model . 23

4.4 Centroid calculation . 25
4.4.1 Centroid calculation for the nadir sensor . 25

4.4.1.1 Least squares estimation . 25
4.4.1.2 Equation of a circle from three points . 26
4.4.1.3 Least squares circle . 27

4.4.2 Centroid calculation for the sun sensor . 28

5 Experimental setups and calibrations 29
5.1 Camera calibration . 29

5.1.1 Boresight . 29
5.1.2 Distortion centre point . 30
5.1.3 Focus . 31

5.1.3.1 Nadir sensor: focal length . 31
5.1.3.2 Sun sensor: the Sun’s radius . 32

5.1.4 Exposure time . 33
5.2 Distortion . 33

5.2.1 Distortion model . 33
5.2.2 Distortion correction model . 36

5.3 Resolution . 37
5.4 Testbenches . 38

5.4.1 Nadir sensor testbench . 38
5.4.2 Sun sensor testbench . 39

5.5 Angular relationship . 40
5.6 Rotation point (optic point calculation) . 42
5.7 Threshold determination . 43
5.8 Sampling factor for the nadir sensor search algorithm . 44

6 Software implementation 45
6.1 Overview . 45

6.1.1 Data type definitions and algorithm complexity . 45
6.2 Distortion correction lookup table . 46
6.3 Interpolation . 47
6.4 Controlling the camera module . 48

6.4.1 Microcontroller . 49
6.4.2 FPGAs . 50
6.4.3 I2C protocol for the OBC . 50
6.4.4 Memory allocation . 51

6.5 Nadir sensor . 51
6.5.1 Search algorithm . 52
6.5.2 Edge detection . 53

6.5.2.1 Binary search . 54
6.5.2.2 Partial profile edge detection . 55

6.5.3 Centroid calculation . 56
6.5.3.1 Least squares circle . 56

6.6 Sun sensor . 56
6.6.1 Search algorithm . 57
6.6.2 Area search . 58
6.6.3 Centroid calculation . 58

7 Results 60
7.1 Nadir sensor measurement results . 60
7.2 Sun sensor measurement results . 62
7.3 Power consumption . 64
7.4 Time requirements . 65
7.5 Mass measurements . 66

CONTENTS vii

8 Conclusion 67

9 Summary and Recommendations 69
9.1 Summary . 69
9.2 Recommendations and improvements . 70

9.2.1 I2C on FPGA . 70
9.2.2 Address control from microcontroller . 71
9.2.3 Alternative hardware layout . 72

A Datasheets 73
A.1 C3188A camera module . 73
A.2 OV7620 colour image sensor . 74
A.3 ORIFL190-3 fisheye lens . 77
A.4 AS7C34096A SRAM . 79
A.5 IRF7210PbF power MOSFET . 80
A.6 INA169 high-side measurement shunt monitor . 81
A.7 PIC18F45K20 microcontroller . 82
A.8 IGLOO Nano AGLN030 FPGA . 85

B Hardware Layout 86
B.1 Schematics . 86

C Source code for microcontroller 89
C.1 Software I2C . 89
C.2 Interpolation . 90
C.3 Edge detection for Nadir sensor . 90
C.4 Binary search . 93
C.5 Centroid calculation for Nadir sensor . 93
C.6 Centroid calculation for Sun sensor . 94

D Source code for FPGA 96
D.1 Gray code . 96
D.2 Memory read and write . 98

D.2.1 Write . 98
D.2.2 Read . 98

D.3 Search algorithm for nadir sensor . 99
D.4 First Sun pixel and area search for sun sensor . 100

E Python source code 102
E.1 Source code to download image from microcontroller . 102

Bibliography 103

List of Figures

2.1 CanX-2 satellite [6] . 3
2.2 SwissCube satellite [8] . 4
2.3 DTUSat-2 satellite [10] . 4
2.4 BRITE satellite [12] . 5
2.5 MOMENT satellite [13] . 6

3.1 Hardware part of the project . 7
3.2 Difference between CMOS and CCD image sensors [16] . 8
3.3 A lens that converges light [17] . 9
3.4 Camera module with fisheye lens . 9
3.5 Light intensity chart . 10
3.6 Placement of neutral density filter (Appendix A.3) . 10
3.7 Layout of the SRAM’s power management . 12
3.8 Pin count for one FPGA, one SRAM device and a microcontroller 13
3.9 Pseudo layout of the hardware . 14
3.10 Hardware failure: memory failure . 15
3.11 Hardware failure: memory and camera module failure . 15
3.12 Sun and nadir sensor prototype . 16
3.13 PCB layout . 16

4.1 Algorithm development for the sun and nadir sensors . 17
4.2 Image processing for the sun and nadir sensor . 17
4.3 Errors occurring with dynamic thresholding . 18
4.4 Errors occurring with fixed thresholding. 19
4.5 Calculating a fixed threshold [30] . 19
4.6 The pixel coordinate axes . 20
4.7 The "grid search" algorithm for the nadir sensor . 20
4.8 Difference between background, edge and object pixels . 21
4.9 The edge pixels of the Earth’s profile . 22
4.10 The area searched for Sun pixels . 22
4.11 Radial distortions. The dashed rectangle indicates the original image. (a) Barrel distortion and

(b) Pincushion distortion . 23
4.12 Fisheye lens distortion . 23
4.13 FOV distortion model [32] . 24
4.14 Distortion correction . 25
4.15 Equation of a circle with three points [35] . 26

5.1 Determining the boresight of the nadir and sun sensor . 29
5.2 Test for the distortion centre point . 30
5.3 Distortion centre point at different points on an image . 30
5.4 Calculating the focal length . 31
5.5 Calculating the focal length at 103 cm and 150 cm respectively 31
5.6 Change in the Sun’s radius between the boresight and the FOV edge 32
5.7 Maximum and minimum exposure time . 33
5.8 Metric rotary stage used in tests . 33
5.9 Images of horizontal distortion measurements . 34
5.10 Radial distortion of fisheye lens . 34
5.11 Error between simulated and measured Distortion Models . 35

viii

LIST OF FIGURES ix

5.12 PFET distortion model . 35
5.13 Images of vertical distortion measurements . 36
5.14 Distortion correction . 37
5.15 Resolution over FOV . 37
5.16 Images of testbenches for the sun and nadir sensors . 38
5.17 Nadir Sensor testbench . 38
5.18 Images of the ball during rotation measurements . 39
5.19 Sun sensor testbench . 39
5.20 Images of the Sun during rotation measurements . 39
5.21 Angular relationship between the satellite, target and Earth [40] 40
5.22 The ball at 3.52cm . 41
5.23 Error in body frame measurements . 42
5.24 Images captured during rotation measurements . 42
5.25 Optic point (Appendix A.3) . 43
5.26 Grayscale . 43
5.27 Edge profile of Earth . 44
5.28 Lines searched for edge pixels . 44

6.1 Data used for the distortion correction lookup table . 46
6.2 Using interpolation for sub-pixel accuracy . 47
6.3 Microcontroller control actions to the FPGAs and camera modules 49
6.4 I2C time diagram . 49
6.5 Layout of FPGA modules . 50
6.6 Different arrangements of images in memory . 51
6.7 Search algorithm state machine . 52
6.8 Edge detection for nadir sensor . 53
6.9 Flow diagram of edge detection for the nadir sensor . 53
6.10 Pixels between two sample pixels . 54
6.11 False edge . 55
6.12 Calculating the Earth’s centroid . 56
6.13 Inverse of a 3 x 3 matrix . 56
6.14 Extra module in the FPGA of the sun sensor . 57
6.15 Flow diagram for searching the first Sun pixel . 57
6.16 Area search flow diagram for sun sensor . 58
6.17 Calculating the Sun’s centroid . 58

7.1 Nadir sensor body frame angles . 60
7.2 Nadir sensor RMS error . 61
7.3 Sun sensor body frame angles . 62
7.4 Sun sensor RMS error . 63
7.5 Power measurement . 64
7.6 Time required for the current to stabilise after an image is produced 64
7.7 Processing time measurements for sun and nadir sensors . 65

8.1 Accuracy for nadir sensor . 67
8.2 Accuracy for sun sensor . 68

9.1 I2C module for FPGA . 70
9.2 Edge detection for nadir sensor with address control on microcontroller 71
9.3 Difference in edge detection procedures . 71
9.4 Alternative harware layout . 72

List of Tables

1.1 Satellite classifications . 1

3.1 CMOS vs CCD . 8
3.2 Characteristics of suitable memory types . 11
3.3 Total pins connected to the microcontroller . 13
3.4 Total pins connected to one FPGA . 13

5.1 Results from the boresight test . 30
5.2 Results from the focal length test . 32
5.3 Sun’s radius at different positions . 32
5.4 Angular diameter of sun and nadir sensor at an altitude of 750 km 41
5.5 The radius of the ball at 3.52 cm . 41
5.6 Average luminance values for sensor images . 43

6.1 Data types for the C18 compiler . 45
6.2 Computational complexity of mathematical operations . 45
6.3 Definitions of the control pins . 48
6.4 Truth table of commands . 48

7.1 Power consumption measured . 64
7.2 Total mass of sun and nadir sensor . 66

x

Nomenclature

Abbreviations and Acronyms

ADC Analog-to-digital converter

ADCS Attitude determination and control system

AMR Anisotropic magnetoresistive

AOI Area of interest

BRITE BRIght Target Explorer

CAD Computer-aided design

Cal Poly California Polytechnic State University

CanX Canadian Advanced Nanospace Experiment

CAPE Cajun Advanced Picosatellite Experiment

CCD Charge-coupled device

CMOS Complementary metal oxide semiconductor

COTS Commercial off-the-shelf

DRAM Dynamic random access memory

DMA Direct memory access

DTUSat Danish Technical University Satellite

EEPROM Electrically erasable programmable read-only memory

EPFL École Polytechnique Fédérale de Lausanne

EUSART Enhanced universal synchronous asynchronous receiver transmitter

FET Fish-eye transform

FOV Field of view

FPGA Field programmable gate array

GPIO General purpose input/output

GPPL Ground primary payload

GPS Global positioning system

IDE Integrated development environment

I2C Inter-intergrated circuit

IWA Inertia wheel assembly

LEO Low Earth orbit

LSB Least significant byte

LSC Least squares circle

xi

NOMENCLATURE xii

MCU Microcontroller unit

MIPS Million instructions per second

MOEMS Micro-opto-electro-mechanical systems

MOMENT Magnetic observations of Mars enabled by nanosatellite technology

MOSFET Metal-oxide-semiconductor field-effect transistor

MSB Most significant byte

MSSP Master synchronous serial port

NDF Neutral density filter

OBC Onboard computer

PC Personal computer

PCB Printed circuit board

PFET Polynomial FET

RMS Root mean square

SEB Single event burnout

SEE Single event effects

SEGR Single event gate rupture

SEL Single event latch-up

SEU Single event upset

SFL Space flight laboratory

SNR Signal-to-noise ratio

SNS Sun and Nadir sensor

SRAM Static random access memory

SSTL Surrey satellite technology ltd

UTIAS University of Toronto Institute for Aerospace Studies

VHDL VHSIC hardware description language

VHSIC Very high speed integrated circuits

Greek Letters

λ Distortion factor

∆ Difference between an image’s object and background luminance level

ω FOV of an ideal fisheye lens

σ Standard deviation

NOMENCLATURE xiii

Lowercase Letters

s Scaling factor

r Radius

Subscripts

d Distorted radius

u Undistorted radius

e Distortion error

Syntax and Style

v Algebraic variable (Italic)

j Imaginary number

log Mathematic functions (Normal)

A The matrix A (usually uppercase)

df
dx Derivative of function, f , with respect to x

∂f
∂x The partial derivative of function, f , with respect to x

Acknowledgements

I would like to thank and acknowledge the following people for their contributions during the process of
this project:

• Prof. WH Steyn for his knowledge and guidance

• AM de Jager for his knowledge on cameras and VHDL coding

• Arno Barnard for his knowledge on coding of microcontrollers and FPGA

• Johan Arendse for his excellent soldering work

• My family for their support and knowing when not to bother me

• My friends inside and outside the lab: Those outside the lab for being patient with me when I had
to say no, because I’m busy writing my thesis and those inside the lab for the social gatherings, the
lunch times and a little bit of gaming every now and then.

xiv

Chapter 1

Introduction

1.1 Background

On October 4, 1957, the first artificial satellite, Sputnik 1, was launched [1]. Sputnik had a mass of 83.46
kg and had a diameter of 58 cm. The satellite had four antennas between 2.4 -and 2.9 m long that trans-
mitted radio signals between 20.005 and 40.002 MHz [2]. On October 26, 1957, Sputnik 1’s signal stopped
transmitting, as the transmitter batteries were depleted. The launch of Sputnik 1 began the age of space
science and exploration.

Since Sputnik 1, satellites became smaller (depending on their application), more power efficient and able
to process more information as technology advanced in the past 53 years. Table 1.1 shows how satellites
are classified by their mass, including fuel [3].

Group name Wet Mass
Large satellite >1000 kg

Medium satellite 500-1000 kg
Mini satellite 10-100 kg
Nano satellite 1-10 kg
Pico satellite 0.11-1 kg

Femto satellite <100 g

Table 1.1 – Satellite classifications

In 1999, Prof. Jordi Puig-Suari at California Polytechnic State University (Cal Poly) and Prof. Bob Twiggs
at Stanford University began a project to standardise the design of a picosatellite to reduce the cost and
the development time [4]. This standard is called a CubeSat. A Cubesat is a cube shaped satellite with
measurements 10 cm x 10 cm x 10 cm and has a maximum mass of 1.33 kg. This is the smallest form of a
CubeSat and is called a 1U (1 unit) CubeSat. Bigger CubeSats such as a 3U CubeSat, will have measure-
ments of 10 cm x 10 cm x 30 cm.

The first five CubeSats were launched together in June 2003 [5]:

• AAU CubeSat

• DTUSat

• CUTE-1

• CanX-1

• Quakesat

The CubeSats had different mission objectives, for example Earth observation, earthquake detection from
space and technology validation for future technology demonstrators. Independent of the mission objec-
tives, a common factor was that the CubeSats were all developed by students of different universities.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem formulation

The attitude determination and control system (ADCS) is an important part of any satellite. The ADCS
utilises various sensors and actuators to determine and control the attitude of the satellite. The problem
defined for this thesis is to develop the most suitable minimum set of sensors to determine the attitude of a
CubeSat in 3 axes. The research will focus on available technology to implement these sensors in a minia-
turised form. Practical hardware prototypes must be developed and calibration models must be developed.

The following was found to be the most common ADCS sensors available:

• Sun sensors – determine the Sun’s position relative to a satellite

• Star sensors – use stars to determine a satellite’s attitude

• Horizon/Nadir sensors – determine the Earth’s position relative to a satellite

• Magnetometers – determine the satellite’s position by measuring the Earth’s magnetic field

• Gyroscopes and accelerometers – measure a satellite’s angular velocities and accelerations

The two sensors that were given to be developed for a CubeSat, are a nadir sensor and a sun sensor. Both
will be optical sensors, consisting of CMOS cameras.

1.3 Thesis layout

The development of the sun and nadir sensors for a solar sail CubeSat is discussed in the following chap-
ters:

• Chapter 2 provides an overview of CubeSat projects around the world.

• Chapter 3 shows the hardware designs implemented for the sun and nadir sensors.

• Chapter 4 develops the algorithms implemented to calculate a centroid from the images of the sen-
sors.

• Chapter 5 investigates the experimental setup and calibration procedures applied to the sensors.

• Chapter 6 discusses the software development for the Sun and Nadir sensors.

• Chapter 7 shows the practical results obtained from the Sun and Nadir sensors.

• Chapter 8 summarizes the results obtained from the Sun and Nadir sensors.

• Chapter 9 concludes this thesis with a summary, as well as recommendations and suggestions for
improvement for future development.

Chapter 2

Literature

In this chapter a number of recent projects of CubeSats are summarized and the sensors implemented
for the specific projects are discussed. There are ongoing projects with respect to CubeSats at different
universities, which is contributing to the field of space technology research and development. It is the
combination of attitude sensors used that is of importance for this project.

2.1 CanX-2

The CanX-2 is a satellite developed by the Space Flight Laboratory (SFL) at the University of Toronto
Institute for Aerospace Studies (UTIAS) [6] and was launched in April 2008 [7]. It is a 3U CubeSat with
dimensions 10 x 10 x 34 cm and a mass of 3.5 kg. Figure 2.1 is an image of the CanX-2 satellite.

Figure 2.1 – CanX-2 satellite [6]

The main objectives for this satellite are to demonstrate the technology that will be implemented on
the CanX-4/-5 formation flight mission and to provide cost-effective access to space for the research and
development community in Canada [6]. The payloads on the CanX-2 are the following:

• a miniature atmospheric spectrometer

• a GPS atmospheric occultation experiment

• a surface material experiment

• a dynamic spacecraft networking protocol experiment

The sensors implemented for the ADCS of this satellite are high precision sun sensors and a magnetometer.
Both fine and coarse sun sensors are used. The six fine sun sensors are CMOS detectors with an accuracy
of 1◦ and measure the Sun’s body frame vector. The coarse sun sensors with an accuracy of between
5◦ and 10◦ determine which of the fine sun sensors are required to be sampled. When both sun sensors
and a magnetometer are being sampled, it is estimated that the accuracy of the attitude determination
is between 1◦ and 2◦ in sunlight. The accuracy decreases during Sun sensor drop-out, because only the
magnetometer is being sampled.

3

CHAPTER 2. LITERATURE 4

2.2 SwissCube

SwissCube is the first satellite entirely built in Switzerland and was mainly built by students from different
universities under the supervision of the Space Center EPFL [8]. It is a 1U CubeSat with dimensions
10 x 10 x 10 cm and a mass of less than 1 kg. SwissCube was launched in October 2009 [7]. Figure 2.2 is
an image of the SwissCube CubeSat.

Figure 2.2 – SwissCube satellite [8]

The aim of the SwissCube project was to develop an Inertia Wheel Assembly (IWA) with minimum mass
and power consumption [9]. The mission for the SwissCube is to measure the nightglow, which is a lumi-
nescence phenomenon of the atomic oxygen at high altitudes of the atmosphere. The nightglow will be
measured by taking images of the atmosphere with a custom camera.

The ADCS of SwissCube determines its velocity, orientation and position of the CubeSat. It is important
for the payload, as the payload is required to be pointed and oriented precisely to take images of the
nightglow. The ADCS implements the following sensors [8]:

• a 3-axis magnetometer to measure the intensity and direction of the Earth’s magnetic field

• six sun sensors. The sun sensors do not function in eclipse

• a 3-axis gyroscope to measure the angular velocity of the satellite

2.3 DTUSat-2

DTUSat-2 is a project of the National Space Institute at the Technical University of Denmark [10] and was
developed by students of DTU [11]. This CubeSat has dimensions of 10 x 10 x 11.35 cm with a mass of 1
kg. Figure 2.3 is a CAD drawing of DTUSat-2 fully deployed.

Figure 2.3 – DTUSat-2 satellite [10]

CHAPTER 2. LITERATURE 5

In November 2005, a conference was held to select a payload for the DTUSat-2. The mission for this Cube-
Sat is to track the migration patterns of smaller birds over different continents. The CubeSat implements
a Ground Primary Payload (GPPL), which tracks the small radio transmitters placed on small birds [11].

The ADCS implements the following sensors:

• a custom built four axis AMR magnetometer

• a 2-axis sun sensor

• an infrared coarse attitude sensor (horizon sensor)

• a PICOCAM for offline stellar reference sensing (star sensor)

The primary attitude sensor is the magnetometer. The magnetometer delivers 3-axis attitude measure-
ments with an accuracy of 0.5◦. The PICOCAM is optimized for applications with limited power capabili-
ties [11]. The CCD camera is implemented as a deployment monitor and a star sensor. The MOEMS sun
sensor is the smallest dual axis sun sensor developed for attitude determination and has an accuracy of
less than 1◦.

2.4 Nanosatellites

Two significant nanosatellite that have been developed are the BRITE and MOMENT. Although they do
not comply with the CubeSat standards, the technologies implemented on these satellites were initially
developed and implemented on CubeSats.

2.4.1 BRITE

The BRIght Target Explorer (BRITE) is a project consisting of a constellation of four nanosatellites. This
is a project of UTIAS/SFL [12]. Each of the four nanosatellites has dimensions of 20 x 20 x 20 cm, has
a mass of about 5 kg and implements technologies from the CanX-2 and CanX-4/-5 CubeSats. Figure 2.4
illustrates one of the nanosatellites in the constellation.

Figure 2.4 – BRITE satellite [12]

The aim of the BRITE-Constellation is to observe the luminous oscillations of stars that have the most
affect on the ecology of the Universe [12]. This is done by implementing a small-lens telescope with a FOV
of 25◦ on the nanosatellites and observing the brightest stars in the sky.

CHAPTER 2. LITERATURE 6

Attitude determination is provided by the following sensors:

• a magnetometer

• six sun sensors (coarse and fine) developed by SFL

• a nanosatellite star tracker

The sensors enable attitude determination to 10 arcseconds (0.003◦) [12].

2.4.2 MOMENT

The Magnetic Observations of Mars Enabled by Nanosatellite Technology (MOMENT) was developed by
SFL to measure the magnetic field of Mars [13]. Figure 2.5 illustrates the 16 kg MOMENT nanosatellite.

Figure 2.5 – MOMENT satellite [13]

The design of the MOMENT satellite is based on the generic nanosatellite bus developed during the BRITE
and CanX-4 and -5 missions [13]. To measure the magnetic field of Mars, a 3-axis magnetometer is used
as payload, with a range of ±4000 nT and a resolution of 0.5 nT.

The sensors used for attitude determination are:

• a star tracker (This is the primary attitude sensor, as it provides the best accuracy)

• six sun sensors

• rate sensors

The star tracker implemented in the MOMENT nanosatellite is based on the star tracker from the BRITE
mission [13]. The attitude of the magnetometer is required to be accurate to ± 1 arcminute (0.02◦).
Because MOMENT has its heritage from BRITE, the attitude determination is well equiped to follow this
accuracy.

2.5 CAPE-1

The above mentioned satellites all use attitude sensors to implement an active attitude control, but it
is also worth mentioning that CubeSats can be controlled passively. The CAPE-1 CubeSat is passively
controlled by magnetic stabilisation through permanent magnets on the CubeSat. The satellite spin is
controlled by hysteresis rods. In October 2005 the University of Louisiana started plans to develop this
CubeSat [14] and it was launched in April 2007 [15]. The payload of the CAPE-1 CubeSat are the sensors
that measure temperatures, battery life and solar power collection on the satellite. CAPE-1 transmits and
receives data from sensors in the Gulf of Mexico that measure the saltwater erosion on the wetlands.

Chapter 3

Hardware choices and designs for sensors

The sun and nadir sensors consist of two camera modules. The hardware required to store and retrieve
images produced by these camera modules, as well as the hardware containing the image processing
software, are discussed in this chapter. The choices of hardware is determined by a few criteria set by the
goal of this project:

• The hardware components’ power consumption should be taken into consideration when a choice is
made, as the only source of power is solar power, which is limited.

• The space environment should also be taken into consideration when choosing hardware compo-
nents. Extreme temperatures and radiation are expected in space. These conditions can damage
hardware components and prevent them from performing nominally.

• The size of a PCB that slots into a CubeSat has maximum dimensions of 100 x 100 mm. The size of
the components have to be considered as well, because the space for hardware placement is limited.

• The sensors are required to be able to communicate with the rest of the satellite, or at least with the
OBC, to receive commands, or to report errors observed through sensors. The hardware therefore
requires the necessary peripherals to communicate with the rest of the satellite.

The goal of the hardware is to control the two camera modules, store and retrieve images, contain the
software required to process the information to be extracted from the stored images and connect to the
other parts of the satellite to transmit and receive data and commands.

OBCSOFTWAREHARDWARE

Image from Nadir
Sensor

Image from Sun
Sensor

Image Processing

Image Processing

3-Axis PositionPost Processing

Figure 3.1 – Hardware part of the project

3.1 Camera modules

Each of the sun and nadir sensors contains a camera module that enables it to capture images. Aspects
considered when choosing the sun and nadir sensors include the type of image sensor and the lenses and
filters required for the specific implementations.

7

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 8

3.1.1 CMOS vs CCD

CMOS and CCD are the most commonly used image sensor technologies for still imagery applications.
Choosing between these two technologies are depended mainly on the application it will be used for.
Figure 3.2 shows a simple way of distinguishing between CCD and CMOS image sensors.

(a) CCD image sensor (b) CMOS image sensor

Figure 3.2 – Difference between CMOS and CCD image sensors [16]

Litwiller [16] explains that both image sensor types are pixelated metal oxide semiconductors that accumu-
late signal charge in each pixel proportional to the local illumination intensity. The CCD sensor transfers
the pixel charges sequentially to a common ADC that converts the electrical charges to voltages. The
CMOS sensor converts each electrical charge to a voltage on the specific pixel. Litwiller also lists eight
attributes for characterizing an image sensor. Table 3.1 lists these attributes compares CCD and CMOS
image sensors.

ATTRIBUTE CCD CMOS
Responsivity Uses more power Uses less power

Dynamic range Lower noise levels Higher noise levels
Uniformity Better Good
Shuttering Better Good

Speed Slow High
Windowing Limited Unique to CMOS

Anti blooming Limited Generally immune
Biasing and clocking Multiple levels Single level

Table 3.1 – CMOS vs CCD

By comparing the attributes in table 3.1, it is evident that CCD is better in dynamic range, uniformity and
shuttering. These three attributes ensure that CCD image sensors have a better SNR and contrast ratio
than that of CMOS image sensors. Dynamic range shows that CCD image sensors have lower noise levels
and the uniformity attribute confirms this, as uniformity entails the consistent performance of pixels under
constant illumination and especially in near-dark illumination. Shuttering allows CCD image sensors to
start and stop exposure at any time, giving them the ability to prevent saturation of pixels and give the
best contrast between shades of light.

However, the advantages that CCD image sensors have over CMOS image sensors, are not primary attri-
butes considered when choosing an image sensor for this project. This is because the difference between
light and dark is large due to the nature of the objects being tracked and the darkness of the background
behind them. The SNR advantage of CCD image sensors will give a better accuracy than CMOS image
sensors, but the accuracy can be improved with software. CMOS image sensors use less power, has single
voltage level clocking and are faster than CCD image sensors. Most of the post processing components,
for example ADC, are implemented on-chip and therefore the implementation of CMOS image sensors into
hardware is more compact than that of CCD image sensors.

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 9

The camera module given for both the nadir and sun sensors is the OMNIVISION C3188A camera module,
which uses the OMNIVISION OV7620 CMOS colour image sensor, as shown in Appendix A.1 and A.2
respectively. The OV7620 is a low power image sensor. The power requirements for the image sensor is
less than 120 mW when active and less than 10 µW when in standby mode.

3.1.2 Lenses and optical filters

Besides the image sensor required to capture an image, lenses and optic filters are also necessary to
complete the camera module.

3.1.2.1 Fisheye lens

A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light,
which converges or diverges the beam [17]. The lenses used in this project converge the light that falls
onto the lens to a proportional point on the pixel array of the image sensor. Figure 3.3 illustrates how a
lens converges light to a focal point.

Figure 3.3 – A lens that converges light [17]

For the sun and nadir sensors in this project, fisheye lenses are used. A fisheye lens is a wide-angle lens
that takes in an extremely wide, hemispherical image [18]. When a hemisperical lens is used to capture
images of spherical objects, such as the Sun and the Earth, the image will display a perfect circle at the
boresight of the lens. This is useful when calculating the centroid of a spherical object. The wide-angle
FOV of fisheye lenses enables the sensors to track an object over a larger FOV. It is especially useful in
the application of a nadir sensor. The Earth can be tracked over a larger distance with the larger FOV,
while still having the full profile of the Earth in view. Fisheye lenses, however, have a signficant amount of
distortion that will affect the shape of the object when the object is moving away from the boresight.

The fisheye lens given is the OMNIVISION ORIFL190-3, a 1/3" lens with a field of view of 190◦ and
F-number of 2.8, as shown in Appendix A.3. Figure 3.4 is an image of the C3188A camera module with
the ORIFL190-3 fisheye lens.

Figure 3.4 – Camera module with fisheye lens

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 10

3.1.2.2 Neutral density filter

Figure 3.5 shows the lux value of the Sun. The minimum lux value for a lens with F-number 1.4, detected
by the OV7620 image sensor, is 2.5 lux. Lux is a unit used to measure the amount of visible light. The
fisheye lens has F-number 2.8, which means that the aperture size is 25% of a lens with F-number 1.4
[19]. Therefore, the light gathering area of the lens is smaller. If the same ADC gain and exposure time
are implemented for the lens with F-number 2.8 as for the lens with F-number 1.4, the minimum lux that
is required to be detected by the image sensor, is 10 lux.

The Sun has an illumination of about 100 000 lux on the surface of the Earth. Because the light from the
Sun is so intense, the image sensor will be saturated without using a filter. The Sun’s light is therefore
filtered through a neutral density filter. Neutral density filters are filters that reduce the intensity of light
that passes through it without disturbing the relative spectral content [20].

Figure 3.5 – Light intensity chart

The neutral density filter selected is the Kodak Wratten 2 ND 4.00 that has a transmission precentage
of 0.01% [21]. This means that 99.99% of the Sun’s light will be absorbed by, and only 0.01% will pass
through the filter. The Sun’s light will be filtered to 10 lux, which is more than or equal to the minimum
lux value specified for the image sensor. This enables the Sun to be viewed as a small dot on an image
from the sun sensor.

Figure 3.6 – Placement of neutral density filter (Appendix A.3)

Figure 3.6 illustrates the placement of the neutral density filter on the camera module. The filter is position
between the image sensor and the fisheye lens.

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 11

3.2 Hardware controlling the sensors and processing images from the sensors

After selecting the hardware for the sensors, the hardware that supports these sensors is selected. Hard-
ware is required for the following purposes:

• Data storage: the hardware design should contain memory to store and retrieve images.

• Data processing: the design requires hardware that store the image processing software.

• Power: the hardware must be powered efficiently, as well as support standby and shutdown modes
to save power.

When choosing the specific components, especially for space applications, radiation tolerance must be
considered. The effects of radiation on components are single event effects (SEEs)[22][23]. The SEEs
commonly encountered are:

• Single Event Upsets (SEUs) - transient pulses in logic or bit flips in memory units. SEUs may cause
permanent damage, such as stuck bits in memory.

• Single Event Latchups (SELs) - induced high current operation. SELs may cause permanent damage

• Single Event Gate Ruptures (SEGRs) - form a conducting path in the gate oxide

• Single Event Burnouts (SEBs) - induce high current state in power transistors. SEBs can cause device
destruction of power transistors

If these SEEs are detected early enough, the damage can be minimized with a power cycle of the affected
component.

3.2.1 Memory

The camera modules are driven by a pixel clock at a rate equal to 13.5 MHz [24]. The storage space
required per image is 300 KB. The microcontrollers that are able to process this amount of data at this
clock rate are expensive and their power requirements are high. Memory is used instead to store the
images in order for them to be retrieved by the microcontroller, at a speed more suitable for the require-
ments of this project. The memory types considered for this specific application are listed in table 3.2 [25].

ATTRIBUTE SRAM DRAM EEPROM FLASH
Volatile Yes Yes No No
Writable Yes Yes Yes Yes

Erase Size Byte Byte Byte Sector
Power consumption Moderate High Low Low
Read/write speed Fast Moderate Fast read, slow erase/write Fast read, slow erase/write
Storage density Low High Low High

SEE Sensitive Sensitive Less sensitive Less sensitive

Table 3.2 – Characteristics of suitable memory types

EEPROM and FLASH memories seem to be good candidates. Both are non-volatile, retain their data when
power is removed and are less power consuming. Both memory types are less sensitive to SEEs [26]. Ho-
wever, the slow write speeds of EEPROM and FLASH are to their disadvantage make them unsuitable for
this application. FLASH also has the disadvantage of having to be erased before new data can be written
to it.

The memory selected has to be able to write with an access time of at least 74 ns per pixel, because of the
pixel data rate of the camera module. SRAM and DRAM have fast read and write speeds. SRAM is selected
above DRAM, because DRAM must be refreshed every few milliseconds [25]. This means extra hardware
will be required to refresh the DRAM and consequently more power is required. SRAM is therefore the

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 12

best choice to store the images from the camera modules.

The SRAM selected is the AS7C34096A from ALLIANCE SEMICONDUCTOR, which has 512 kB memory,
8-bit data words, and a maximum access time of 12 ns, as shown in Appendix A.4. This access time is six
times faster than the access time that is required, giving the data from the camera module enough time
to be stored in the memory. The 512 kB is enough memory to store one 300 kB image. Two memory chips
are used, one for the nadir sensor and one for the sun sensor. If one memory should fail, the two sensors
will be able to share the other memory unit by storing one sensor’s image, processing the image and then
storing the other sensor’s image in order for it to be processed as well.

3.2.1.1 Power switch and current sensors

SRAM is susceptible to SEUs and SELs, where SELs are the more destructive of the two. As mentioned
in section 3.2, a power cycle is required to attempt to correct these errors. The SRAMs’ power inputs
are controlled by two power MOSFETs and a microcontroller. By switching off the MOSFETs via the
microcontroller, the SRAMs are switched off as well. The current flow to each SRAM is monitored by a
current sensor. The current flow is monitored for possible latch-ups that may occur. Figure 3.7 illustrates
the SRAMs’ power management layout.

Microcontroller MOSFET SRAM

Current
Sensor

(a) Layout (b) SRAM power switching

Figure 3.7 – Layout of the SRAM’s power management

The power MOSFETs used are the IRF7210PbF P-Channel MOSFET from INTERNATIONAL RECTIFIER
and the current sensors are the INA169 high-side measurement shunt monitors from TEXAS INSTRU-
MENTS.

3.2.2 Microcontrollers and FPGAs

A microcontroller is required to control the sensors, process the images into the necessary data and com-
municate with the ADCS OBC. The choice of microcontroller will, as with the choice of memory, depend
on the data output rate of 13.5 MHz of the image sensor.

The image sensor’s data output is in 8-bit format. A good choice for a microcontroller would therefore
be an 8-bit microcontroller, as it will be able to process 8-bit data per clock cycle. Another advantage is
that the power consumption of an 8-bit microcontroller is very low. A problem arises when using only a
microcontroller with an image sensor with a data rate of 13.5 MHz. The microcontroller will be required to
process data faster than 13.5 Mhz just to download an image from the image sensor and to store the image
in the memory. At least 30 GPIO pins are necessary, because the memory unit has 19 address, three control
and eight data pins. In such a case where many pins are required and data is processed at a high speed,
the microcontroller will require more space on the PCB and will require more power. As an alternative,
an FPGA is used in this project to download an image from the image sensor to the memory. An FPGA can
work at higher frequencies, while using less power than microcontrollers working at the same frequencies.

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 13

Using an FPGA will allow the microcontroller to process at a lower frequency and therefore use less power.
A microcontroller is still necessary, because of its dedicated arithmetic and communication units used for
calculations and communication between itself and the OBC, respectively.

SRAM

Microcontroller

Communication

Data

Control

8 pins

CAMERA

3 bits to SRAM
2 bits from CAMERA

1 pin to Microcontroller
5 pins to FPGA

FPGA

Communication

Data

Control

3 bits to CAMERA
1 bit to SRAM

DATA
8 pins from CAMERA

8 pins to and from SRAM

ADDRESS
19 pins to SRAM

ADCS
OBC

4 pins to OBC

Current
Sensors

3 pins from
current sensors

Figure 3.8 – Pin count for one FPGA, one SRAM device and a microcontroller

Figure 3.8 illustrates the flow of data and control between the main components of the sun and nadir sen-
sors. Note that the OBC is an off-board component. Figure 3.8 only shows one memory unit and one FPGA
connected to the microcontroller, because the other memory unit and FPGA have the identical flow of data
and control to and from the microcontroller. The choice of implementing two FPGAs will be discussed in
section 3.3.

MCU FPGAs SRAMs CAMERAs Sensors OBC
Data Inputs 8 - - 3 -

Control Inputs 2 - - - -
Control Outputs 6 2 6 - -
Communication - - - - 4

Table 3.3 – Total pins connected to the microcontroller

Tabel 3.3 indicates the assignment and total pins required to implement the data and control flow illus-
trated in figure 3.8. The assignments consist of 27 GPIOs, I2C and EUSART pins. The I2C and EUSART
pins are the communication busses used to communicate with the OBC and the I2C is the primary and the
EUSART the secondary bus. These busses receive commands from and send data to the OBC.

FPGA SRAM CAMERA MCU FPGA #2
Data Inputs - 8 - -

Data Outputs - - 8 -
Data Bidirectionals 8 - - 8

Control Inputs - 2 5 -
Control Outputs 22 - 1 -

Control Bidirectionals - - - 2

Table 3.4 – Total pins connected to one FPGA

Table 3.4 indicates the pin assignments for the FPGA to control the data flow between the memory, the
microcontroller and the second FPGA. A total of 64 GPIOs are required.

The selected microcontroller and FPGAs are the PIC18F45K20 from MICROCHIP and the IGLOO NANO
AGLN030 from ACTEL, respectively. The IGLOO NANO is the industry’s lowest power FPGA (see Appendix
A.8) and the microcontroller uses MICROCHIP’s nanoWatt Technoloy (see Appendix A.7). With ACTEL’s

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 14

Flash Freeze technology and MICROCHIP’s nanoWatt technology, the FPGAs and microcontroller only use
a few microWatts when in idle mode.

The AGLN030 and PIC18F45K20 are selected specifically, because they have 77 and 36 GPIOs respectively,
which is more than the 64 and 31 required for the hardware layout. The AGLN030 and PIC18F45K20 are
both flash-based components. This makes them less sensitive to SEEs as well.

3.2.3 Other hardware choices

After the main components have been selected, the supporting hardware, such as voltage regulators, buf-
fers, etc., are selected to incorporate the main components into the layout.

The CubeSat standard has a 5V supply to power the rest of the satellite. The main components need the
following three voltage busses:

• The main voltage bus is 3.3 V voltage bus that powers most of the components (such as the micro-
controller) in the hardware design.

• The camera module needs a 5 V and a 3.3 V voltage bus to power its analog components (such as the
pixel array) and to make the camera module outputs compatible with the rest of the hardware.

• The FPGAs uses a 1.5 V and a 3.3 V voltage bus to power its internal transistors and IO banks to
make them compatible with the rest of the hardware.

The hardware design incorporates the 5 V from the CubeSat’s power supply and uses a 3.3 V and 1.5 V
linear voltage regulator to power the hardware.

The on-chip ADC of the microcontroller is used to measure the currents from the 3.3 V voltage bus and the
two memory units. An LM2902 operational amplifier is used to buffer between analog measurements from
the current sensors and the microcontroller. This ensures that there are no compatibility issues between
the current sensors and the microcontroller.

3.3 Layout

It was decided to use a dual FPGA layout. Figure 3.9 illustrates how the different components are connec-
ted to one another to form the layout of the sun and nadir sensor. One FPGA, one SRAM and one camera
module forms one sensor. The two FPGAs are also connected to each other to minimize the effect of hard-
ware failures.

Camera Module Camera Module

FPGA FPGASRAM SRAM

MCU

Nadir sensor Sun sensor

Figure 3.9 – Pseudo layout of the hardware

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 15

3.3.1 Hardware failure

There are four types of hardware failure that may occur and will have an effect on the sun and nadir
sensors’ functionality:

• FPGA failure

• memory failure

• camera failure

• simultaneous camera and memory failure

When a FPGA or camera module fails, a sensor fails, however figures 3.10 and 3.11 illustrate the two
hardware failures’ effects that can be minimized.

Camera Module Camera Module

FPGA FPGASRAM SRAM

MCU

Nadir sensor Sun sensor

Figure 3.10 – Hardware failure: memory failure

Figure 3.10 illustrates the hardware failure if one of the two SRAMs should fail. A latch up, for example,
occured and power cycling of the memory did not correct the latch up. It is possible for both camera
modules to use the same memory, however, the ability for both sun and nadir images to be stored at once,
will be lost. Memory space of 600 kB is required to store both images, but only 512 kB is available with
one memory unit. One sensor’s image should occupy the memory, the calculations should be completed
and then the second sensor will be able to occupy the memory with its image.

Camera Module Camera Module

FPGA FPGASRAM SRAM

MCU

Nadir sensor Sun sensor

Figure 3.11 – Hardware failure: memory and camera module failure

Figure 3.11 illustrates a hardware failure if a camera module from one sensor and a memory chip from
the other sensor should fail. This means that the sensor with the failed camera module can no longer
function. The sensor with the functioning camera module and failed memory unit can however use the
non-functioning sensor’s memory unit. This will ensure that there will be at least one working sensor
when only one camera module is still functioning.

CHAPTER 3. HARDWARE CHOICES AND DESIGNS FOR SENSORS 16

3.3.2 PCB layout

Figure 3.12 shows the first prototype PCB layout for the sun and nadir sensor.

Figure 3.12 – Sun and nadir sensor prototype

Figure 3.13 shows the final PCB layout with the PC104 connector. The PC104 standard is used in CubeSats
to connect the separate modules of the CubeSats to one another. The 5 V and I2C bus are connected to
the other components of the CubeSat through the PC104 connector.

Figure 3.13 – PCB layout

Chapter 4

Methodology: Algorithms for sun and nadir
sensors

With the hardware design completed, the algorithms for the sun and nadir sensors are examined next.

OBCSOFTWAREHARDWARE

Image from Nadir
Sensor

Image from Sun
Sensor

Image Processing

Image Processing

Post Processing 3-Axis Position

Figure 4.1 – Algorithm development for the sun and nadir sensors

The algorithms that were examined for the sun and nadir sensors are image processing algorithms. The
goal is to determine the centroid of the Earth and the Sun from the images taken by the nadir and sun
sensors, respectively, with algorithms that are not too complex, do not require too much time to complete
and can be implemented on the 8-bit microcontroller discussed in section 3.2.2.

Edge
Detection

Distortion
Correction

Centroid
Calculation

Search and
Thresholding

Centroid
Calculation

Distortion
Correction

Nadir
Image

Sun
Image

Nadir body
frame

coordinates

Sun body
frame

coordinates

Figure 4.2 – Image processing for the sun and nadir sensor

The main processes of determining the Earth and Sun’s centroid are shown in figure 4.2. The image
processing of both sensors consist of the following:

• Thresholding - to determine whether the image pixels are part of the background or foreground.

• Edge detection - to determine where the Earth and the Sun is.

• Distortion correction - to correct the effect of the fisheye lens on the image.

• Centroid calculation - to calculate the body frame coordinates of the nadir and Sun directions.

17

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 18

4.1 Thresholding of images

From the images of their respective sensors, a distinction between the object or foreground (the Earth and
the Sun) and the background (space) is required to be identified. The method selected is called threshol-
ding. Thresholding is the simplest method of image segmentation, because the process of thresholding is
to label the pixels of an image as "object" or "background" pixels, depending on whether they are above
or below a set threshold [27].

4.1.1 Fixed vs dynamic threshold

There are two types of thresholds namely a fixed threshold and a dynamic threshold. A dynamic threshold
is a threshold that varies between segments of an image [28] or, in the case of the sun and nadir sensors,
varies over sample images. The threshold is in this case a function of the average luminance of the image.
Luminance is an indicator of how intense light is reflected [29]. The average luminance is calculated by:

average luminance =

∑N−1
i=0 pixellum(i)

N
(4.1.1)

where N is total amount of pixels and i is the current pixel being compared to the threshold.

Two problems occur with this method of thresholding:

• Dynamic thresholding requires more time to complete.

• The average luminance of an image may be too low to be able to distinguish accurately between
object and background pixels.

The average luminance requires more time to calculate, because the entire image’s pixels are used. The
average luminance has a direct link to the balance between object and background pixels. Figure 4.3
shows how errors may occur with dynamic thresholding. Figure 4.3(a) and 4.3(b) show the difference in
object determination for a full profile and a partial profile of the Earth, while figure 4.3(c) shows the object
determination for the Sun when using dynamic thresholding.

(a) Full Earth (b) Partial Earth (c) Sun

Figure 4.3 – Errors occurring with dynamic thresholding

In the case of the nadir sensor, when the full profile of the Earth is in view, the average luminance will be
higher, because the Earth will represent a large percentage of the image. The average luminance will be
a good estimate for the threshold. However, as the Earth moves toward the edge of the FOV, the average
luminance will decrease, because the space pixels will represent more of the image and therefore play a
bigger role in the average luminance. This will in turn decrease the threshold and increase the chance for
"space" pixels being mistaken as "Earth" pixels. The same errors will occur with the sun sensor, as the

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 19

Sun will always represent a very small percentage of the whole image.

Using a fixed threshold will not increase the time required for differenciating the object from the back-
ground. The only error that may occur will be when the threshold is set too low or too high, creating an
error where background pixels are mistaken for object pixels or vice versa. Figure 4.4 shows the error
that occurs when the threshold is set too low.

(a) Correct threshold (b) Threshold to low

Figure 4.4 – Errors occurring with fixed thresholding.

However, this error can be corrected easily with software on the microcontroller and does not require any
extra time to compute. The only time required will be to rewrite a register in the microcontroller that
holds the threshold value. Fixed thresholding is selected above dynamic thresholding to distinguish the
object from the background. Therefore fixed thresholding is implemented in this project.

4.1.2 Choosing a fixed threshold

Figure 4.5 shows how the fixed threshold is calculated, [30]. The threshold is calculated by the difference
in luminance between the object (the Earth or the Sun) and the background (space). The difference bet-
ween the object and the background is ∆. By calculating ∆ between the luminance level of the object
and of the background and adding 30% of that ∆ to the luminance level of the background, a threshold is
calculated that can distinguish between the object and the background of an image.

Figure 4.5 – Calculating a fixed threshold [30]

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 20

4.2 Edge detection

Thresholding is the first step of edge detection. As discussed in 4.1, thresholding only determines whether
pixels are part of the object or part of the background. Edge detection finds the first pixels to distinguish
the object from the background. These pixels are referred to as the edge profile of the object (either the
Earth or the Sun).

The edge detection of the sun and nadir sensors consist of two processes:

• a search algorithm to search for edge pixels

• the actual edge detection method

4.2.1 Searching for edge pixels

Search algorithms are implemented on the sun and nadir sensors to shorten the time required to find
the necessary edge pixels required for the centroid calculations. Before a search algorithm can be imple-
mented, a coordinate system must be defined on which search algorithms are implemented. Figure 4.6
illustrates how the pixel coordinate system has its origin in the top left corner with the x-axis from left to
right and the y-axis from top to bottom.

Figure 4.6 – The pixel coordinate axes

4.2.1.1 Searching algorithm for the nadir sensor

To search through the entire image for the Earth is a time consuming and unnecessary process. A sequen-
tial search is used to "sample" the image at distinctive points to form a "grid search", as shown in figure
4.7.

Figure 4.7 – The "grid search" algorithm for the nadir sensor

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 21

The "grid search" consist of two sequential searches. One search is performed on the horizontal axis of the
image and the other on the vertical axis. The horizontal search finds edge pixels specifically determined
to calculate the x-coordinate of the Earth’s centroid. The vertical search has the same purpose, but for the
y-coordinate of the Earth’s centroid. The difference is that the horizontal search keeps the image’s rows
constant when searching pixels in specific columns and vice versa for the vertical search.

Both searches follow the algorithm:

Edge searching =

N
K−1∑
i=0

M
K −1∑
j=0

pixel(i×K, j ×K) (4.2.1)

where N and M are the width and height of the image, K is the sampling factor and i×K and j×K are the
row and column coordinates of the pixel that will be tested for an edge. K is the factor used to determine
the speed at which the algorithm is completed. For example: if K is 10, it will mean that the search will be
100 times faster than searching the entire image. Each K’th pixel will be referred to as a sample pixel.

4.2.1.2 Searching algorithm for the sun sensor

When in the FOV, the Sun will always occupy a very small percentage of the image. The search algorithm
for the Sun consists of finding the first pixel that is above a threshold set for the sun sensor. The time to
complete this process depends on where on the image the Sun is located. The search starts at the top left
corner of the image. If the Sun is close to this point, the search will take less time than when the Sun is
further away. A solution to this problem is discussed in section 6.6.1.

4.2.2 Edge detection for the nadir sensor

The sampled pixels consist of background, object and edge pixels as shown in figure 4.8. The edge detec-
tion is used to distinguish and extract the edge pixels from the background and object pixels by using the
background and object pixels.

Figure 4.8 – Difference between background, edge and object pixels

Edge detection uses two rules to determine if a pixel is a background, object or edge pixel:

• If the current sample pixel is above the threshold set for the nadir sensor (an Earth object pixel) and
the previous sample pixel is below the same threshold (a space background pixel), then the edge
pixel that lies between these two sample pixels is an edge pixel on the left hand side of the Earth’s
profile.

• If the current sample pixel is below the threshold set for the nadir sensor and the previous sample
pixel is above the same threshold, then the edge pixel that lies between these two sample pixels is
an edge pixel on the right hand side of the Earth’s profile.

The same rules apply for the vertical search to find edge pixels at the top and at the bottom of the Earth’s
profile. The actual edge pixels are then searched for between the points that follow the two rules. An
extra smaller sequential search is done between sampled pixels that comply to one of these rules, to find
the specific edge pixel. Figure 4.9 shows the final edge detection.

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 22

(a) "Earth" (b) Edge profile of "Earth"

Figure 4.9 – The edge pixels of the Earth’s profile

The edge pixels more or less form pairs of two. One pixel will give accuracy in the horizontal direction and
the other in the vertical direction. It is also clear that the selected edge pixels form a good profile of the
Earth.

4.2.3 Edge detection for the sun sensor

As mentioned in section 4.2.1.2 the first Sun pixel is searched for to determine where the Sun is located
on the image.

(a) Located Sun (b) Image focused on Sun

Figure 4.10 – The area searched for Sun pixels

Figure 4.10 shows the small area that is selected to search for Sun pixels (pixels above the sun sensor’s
threshold). The edge detection consists of finding all the pixels above the threshold within that small area.
Where the area is located, is determined by the first Sun pixel. It is a small area with respect to the whole
image to search and is therefore completed faster.

4.3 Distortion

All optical lenses have distortion, either because of imperfections in the material, or the shape of the lens.
Telephoto lenses have distortion near the edge of the field of view. Wide angle lenses, such as the fisheye
lens, have a distortion that is more visible throughout the entire field of view. Most distortions are radial,
which means that the distortion increases with distance from the distortion centre point. The distortion
centre point is where the distortion is at a minimum. The two most common radial distortions are barrel

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 23

and pincushion distortion, where pincushion is the opposite of barrel distortion.

To understand the mechanism of distortion, the effect of a lens on the radii in the original image is exami-
ned. Barrel distortion shortens radii of the image closer to the edge of the field of view. The opposite is
true for pincushion distortion. Figure 4.11 shows the two distortions.

Figure 4.11 – Radial distortions. The dashed rectangle indicates the original image. (a) Barrel distortion and (b)
Pincushion distortion

Figure 4.12 shows the barrel distortion of the fisheye lens used.

Figure 4.12 – Fisheye lens distortion

The image taken in figure 4.12 is of a sheet of paper with horizontal and vertical lines printed on it. The
fisheye lens used for the sensors is convex and therefore barrel distortion is expected. It is clear that the
distortion of the fisheye lens is barrel distortion, because the lines get shorter as they move closer to the
edge of the fisheye lens. To correct the distortion of the lens, a distortion model is made. This model is
then used to create a distortion correction model to correct optical errors.

4.3.1 Distortion model

From [31] barrel distortion can be modelled by using a polynomial distortion model:

rd = ru + k1r
3
u + k2r

5
u + ... (4.3.1)

For smaller FOV lenses, the model can be simplified to its first and third terms. The model only uses odd
order terms that might not model the distortion correctly. However, in this application, fisheye lenses are
used for the sun and nadir sensors. The same polynomial distortion model can be used, but then a fifth or
seventh order polynomial is required. Devernay and Faugeras [32] propose a different model.

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 24

Basu and Licardie [33] propose the following Fish-eye transform or FET:

rd = s · log(1 + λru) (4.3.2)

where rd and ru are the distorted and undistorted radii respectively, s is a simple scaling factor and λ

is a value that corresponds to the amount of distortion. Basu and Licardie [33] mentions that the the
FET is based on a simplification of the complex logarithmic mapping. The foveal region is projected at
very high resolution, while resolution decreases continuously in the periphery source. The FET takes into
consideration that the distortion can be nonlinear and increases dramatically towards the edge of the
field of view. Basu and Licardie [33] also propose a polynomial FET, or PFET, that will better model the
distortions of a fisheye lens:

rd = a0 + a1ru + a2r
2
u + ...+ anr

n
u =

n∑
i=0

air
i
u (4.3.3)

Devernay and Faugeras [32] propose another distortion model, the FOV distortion model, which is based
on the design of fisheye lenses. They propose that there is a relationship between the distorted radius and
the angle between the optical axis and the distance between the optical point and the undistorted point.

Figure 4.13 – FOV distortion model [32]

Figure 4.13 shows the relationship between the distorted radius rd or line cm and the proposed angle
between line CM and the optical axis. The equation that represents this relationship is:

rd =
1

ω
arctan

(
2rutan

ω

2

)
(4.3.4)

where ω represents the field of view that corresponds with an ideal fisheye lens. If ω does not correspond
to the real fisheye lens’ field of view, the real fisheye lens may not be able to follow the model accurately.

Amongst all the models available, the PFET was selected, because of the following reasons:

• The FOV distortion model may not be able to follow the correct model with only one variable to
determine the form of the model and singularities that may occur with the tan and arctan terms.

• The polynomial distortion model is more accurate for smaller angle lenses, as the amount of terms in
the equation is limited to a minimum, but it may not model the distortion correctly for wider angled
lenses.

• The FET is a suitable model to use, but the PFET model performs better than the FET.

The tests in the next chapter will confirm that PFET was the most suitable choice for modelling the distor-
tion.

After the distortion model has been calculated, the distortion correction model is derived by using the
inverse form of the distortion model.

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 25

For example: in the case of barrel distortion, pincushion distortion is implemented to correct the errors
introduced by the barrel distortion.

(a) Original (b) Barrel distortion (c) Distortion correction

Figure 4.14 – Distortion correction

Figure 4.14 shows an example of barrel distortion that is applied to a checkerboard pattern and then
corrected with pincushion distortion. The FET distortion model is used for this example.

4.4 Centroid calculation

4.4.1 Centroid calculation for the nadir sensor

After the Earth’s edge pixels have been corrected through the distortion correction model, the corrected
pixels will be used to calculate the centroid of the Earth. Three algorithms were investigated to calculate
the centroid of the Earth:

• a least squares estimation procedure that is used for a moon sensor application

• a geometry method of calculating a circle’s centroid

• a circle least squares method

4.4.1.1 Least squares estimation

Belezan, Mortari and Perfetti [34] used a least squares estimation on the moon to determine the attitude
of a satellite. This method is suitable for a nadir sensor, as this method uses the circular profile of the
moon to calculate the centroid. For the nadir sensor, the Earth will have a circular profile when in full
view of the sensor. The method starts with calculating the error of each circle radius from the edge pixels:

ei =
√

(xi − xc)2 + (yi − yc)2 −R (4.4.1)

where R is the radius of the moon and (xc, yc) and (xi, yi) are the unknown coordinates of the centre of the
moon and the i’th edge pixel respectively. Since the moon is far away from the sensor, it is assumed that
the moon’s radius is constant. If not, the equation would have to take into consideration the flux in the
moon’s radius as the satellite moves towards and away from the moon.

The mean value of the error is defined as:

ē(xc, yc) =
1

N

N∑
i

ei (4.4.2)

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 26

where N is number of edge pixels. The standard deviation of the error is:

σ(xc, yc) =

√√√√ 1

N

N∑
i

(ei − ē)2 (4.4.3)

The centroid is calculated by minimizing the standard deviation. The method used is the Nelder-Mead
simplex method which approximates a local optimum of a problem with N variables when the objective
function varies smoothly and is unimodal.

The least square estimation procedure is a heuristic method, which means that it is an iterative method
and it can converge to non-stationary points. The computational power required for this method will be
too much to comply with the selected microcontroller.

4.4.1.2 Equation of a circle from three points

Bourke [35] proposes a method where the centroid of a circle can be calculated by using only three points
on the edge of the circle.

Figure 4.15 – Equation of a circle with three points [35]

Figure 4.15 shows how, using only three edge pixels, its possible to calculated a circle’s centroid, where
a and b are the two chords and P1, P2 and P3 are the three edge pixels. This method uses the rule that
when taking any chord of a circle and drawing a line from the center of the chord that is perpendicular to
that chord, it will go through the center of the circle. Using a second chord and applying the same rule,
the effect will be that the point where the two perpendicular lines cross, will be the circle’s centroid.

The line equations for lines a and b are:

ya = ma(x− x1) + y1 (4.4.4)

yb = mb(x− x2) + y2 (4.4.5)

where ma and mb, the gradients of there respective lines, are:

ma =
y2 − y1
x2 − x1

(4.4.6)

mb =
y3 − y2
x3 − x2

(4.4.7)

For a perpendicular line, the gradient is the inverse and negative of the original line. The two perpendicu-
lar lines are then:

y
′

a = − 1

ma

(
x− x1 + x2

2

)
+
y1 + y2

2
(4.4.8)

y
′

b = − 1

mb

(
x− x2 + x3

2

)
+
y2 + y3

2
(4.4.9)

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 27

The centroid will be where these two lines cross; therefore where y
′

a is equal to y
′

b. Combining equation
4.4.8 with equation 4.4.9 to calculate the x coordinate of the circle’s centroid:

x =
mamb(y1 − y3) +mb(x1 + x2)−ma(x2 + x3)

2(mb −ma)
(4.4.10)

The y coordinate can then be calculated by substituting the x coordinate in either equation 4.4.8 or 4.4.9.
The result from the centroid calculation can be made more accurate when using multiple edge pixels,
repeating the process a few times and then averaging them to obtain an averaged centroid for the circle.

This is a better method to use than the least squares estimation in the previous section. This method’s
computing speed is much faster, because it is not an iterative method. There are however flaws in this
method. If the wrong three edge pixels are selected to calculate a centroid, singularities can form in
equations 4.4.6 through to 4.4.10. These errors can however be corrected with simple search algorithms
to find three matching edge pixels.

For example, if x1 and x2 were equal, ma will be∞. This will make x in equation 4.4.10 strive to∞ as well,
but y

′

a will become the average between y1 and y2 and x can then be calculated out of equation 4.4.9. A
search algorithm can be implemented to take these singularities into consideration when choosing three
edge pixels, but this will require extra time to compute.

Although this method will work in calculating the Earth’s centroid, it is better used for a horizon sensor,
where only a horizon of the Earth is visible in the field of view. This is because this method will work better
with longer chords. This method does not use any optimization, unlike the least square estimation. If the
edge pixels used in this method were determined incorrectly, the error will not be minimized in some way.

4.4.1.3 Least squares circle

The third method which can be used for centroid calculation is the least squares circle (LSC) [36]. This
method is almost a combination of the previous two methods mentioned. The LSC starts with the standard
equation for a circle:

(x+A)2 + (y +B)2 = r2 (4.4.11)

where (-A,-B) is the circle’s centroid and r is the radius. Equation 4.4.11 is expanded to the following:

x2 + 2Ax+A2 + y2 + 2By +B2 = r2

x2 + y2 + 2Ax+ 2By + C = 0 (4.4.12)

the radius can be described as
√
A2 +B2 − C. According to the LSC, the total error for N points is:

φ =

N∑
i=1

(x2i + y2i + 2Axi + 2Byi + C) (4.4.13)

where xi and yi are the assumed edge pixels. To find the centroid (-A,-B), the partial derivatives of the
total error φ is minimized:

∂φ

∂A
= 2

∑
x2iA+ 2

∑
xiyiB +

∑
xiC +

∑
(x2i + y2i)xi = 0 (4.4.14)

∂φ

∂B
= 2

∑
xiyiA+ 2

∑
y2iB +

∑
yiC +

∑
(x2i + y2i)yi = 0 (4.4.15)

∂φ

∂C
= 2

∑
xiA+ 2

∑
yiB +NC +

∑
(x2i + y2i) = 0 (4.4.16)

CHAPTER 4. METHODOLOGY: ALGORITHMS FOR SUN AND NADIR SENSORS 28

The minimized partial derivatives of the total error is written in matrix form to obtain A,B and C as the
object of the equation: 2

∑
x2i 2

∑
xiyi

∑
xi

2
∑
xiyi 2

∑
y2i

∑
yi

2
∑
xi 2

∑
yi N

︸ ︷︷ ︸

M

AB
C

 = −

∑(x2i + y2i)xi∑
(x2i + y2i)yi∑
(x2i + y2i)

︸ ︷︷ ︸

K

(4.4.17)

AB
C

 = M−1K (4.4.18)

This method is more suited to a nadir sensor, where the Earth’s full profile is visible in the field of view.
Because this method uses error minimization, it is more suited to determine the Earth’s centroid when
only a partial profile is visible in the field of view.

4.4.2 Centroid calculation for the sun sensor

The Sun’s centroid is easier to calculate than the Earth’s centroid. Since the Sun occupies a small part of
the image, as previously mentioned, and its position was located by the search algorithms, the centroid
can be calculated by taking the average of all the Sun’s pixels within the closed area of the edge detection.

Sunx =

∑N
i=1 pixelvalue(i)× Sun pixelx(i)∑N

i=1 pixelvalue(i)
(4.4.19)

Suny =

∑N
i=1 pixelvalue(i)× Sun pixely(i)∑N

i=1 pixelvalue(i)
(4.4.20)

where Sunx and Suny are the x and y coordinates of the Sun’s distorted centroid, Sun pixelx(i) and Sun
pixely(i) are the x and y coordinates of a Sun pixel and pixelvalue(i) is the value of each Sun pixel. All the
Sun pixels are weighed against each other to calculated a more accurate centroid.

This centroid is the distorted centroid of the Sun. Distortion correction is done on this centroid to correct
the error caused by the distortion of the fisheye lens.

Chapter 5

Experimental setups and calibrations

5.1 Camera calibration

The cameras used for this project must be calibrated before they can be used as sun and nadir sensors.
Significant points in the image, such as the boresight of the lens and the distortion centre point, must be
identified, as well as the distortion and distortion correction models. Setup parameters such as the focus
and exposure time must also be determined.

The dominant colours for these sensors are black and white and the greyscale between them, where
space is represented by black and all other celestial bodies are shades of grey and white. Therefore,
the camera modules are implemented as monochrome cameras. The monochrome mode of the camera
modules improve the resolution of the images. Only the luminance of each pixel is of importance for these
sensors and therefore only the luminance from the YUV output from the cameras are used.

5.1.1 Boresight

The first point of interest is where the boresight of the fisheye lens is situated on the image. The boresight
is the optical centre of the lens. This point is important for centroid calculations and distortion corrections.

(a) Nadir boresight (b) Sun boresight

Figure 5.1 – Determining the boresight of the nadir and sun sensor

The tests for determining the boresight of the nadir and sun sensors consist of shining a light directly onto
the the fisheye lens, making the pixels saturate. A halo effect occurs when the light is reflected from the
edge of the fisheye lens, as shown in figure 5.1. Using MATLAB, a circle with a specific radius, is placed
on the images as shown in figure 5.1. The centre of the correctly positioned circle determines the position
of the boresight of the lens.

29

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 30

The centre of the sensor image could not be assumed to be the position of the boresight, because the lens
holder on the camera modules were positioned in such a way that a portion of the field of view did not fall
on the pixel array of the image sensor. An example of this can been seen in figure 5.7(a). The lens holders
were moved to the correct position. Epoxy is used to keep the lens holders in the correct position.

The results of the boresight tests are shown in Table 5.1.

X centre pixel coordinate Y centre pixel coordinate Radius
Nadir sensor 371 236 226 pixels
Sun sensor 369 250 226 pixels

Table 5.1 – Results from the boresight test

5.1.2 Distortion centre point

The distortion centre point is not only important for the calculation of the distortion model, but also for the
centroid calculation. If the wrong distortion centre point is selected, the distortion correction will intro-
duce an error in the calculation of the centroid. Figure 5.2 shows the test performed to find the distortion
centre point.

(a) Vertical distortion (b) Horizontal distortion

Figure 5.2 – Test for the distortion centre point

The tests consist of capturing images of horizontal and vertical lines printed on sheets of paper. The lines
will bend as a result of the distortion from the fisheye lens, as seen in figure 5.2. The distortion centre
point test seeks the horizontal and vertical lines closest to the distortion centre point, as these lines will
be presented as straight, or nearly straight, lines.

(a) Distortion centre point to left (b) Centred distortion centre point (c) Distortion centre point to right

Figure 5.3 – Distortion centre point at different points on an image

Figure 5.3 shows how an image would distort at different distortion centre points. The checkered box is
centred in the image for all three images. If the distortion centre point is at a different point than the

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 31

boresight of the lens and this difference is not taken into consideration, an error will be introduced in the
centroid calculation, as the distortion correction will not be implemented correctly.

The result of the distortion centre point test indicates that the distortion centre point and boresight of the
fisheye lens are situated at the same point. The test is only performed on the nadir sensor, but since a
similar camera and lens are utilised for both nadir and sun sensor, it is assumed that the same result for
the distortion centre point test would be observed for the sun sensor.

5.1.3 Focus

5.1.3.1 Nadir sensor: focal length

To see if the camera is in focus, the focal length of the lens is calculated. The focal length is a measurement
of the distance where light rays will be converged or focussed between the lens and the image plane [37].
Appendix A.3 shows that the fisheye lens has a focal length of 1.24 mm. Figure 5.4 shows the setup for
calculating the focal length.

Figure 5.4 – Calculating the focal length

The three points in figure 5.4 represent three points on a white board. There is a distance of 10 cm between
each point. X represents the total distance of 20 cm, Y is the distance between the white board and the ca-
mera lens, f is the focal length, and R is the distance between the three points displayed on the image. R is
calculated by counting the pixels between the points and then multiplied with the length of a pixel, 7.6 µm.

(a) 103cm (b) 150cm

Figure 5.5 – Calculating the focal length at 103 cm and 150 cm respectively

The test is performed near the distortion centre point of the lens and at various distances from the white-
board, as shown in figure 5.5, to prevent distortion of affecting test results and to see if the focal length
would stay constant over longer distances.

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 32

The relationship between the distance between the points on the board and the distance between the
board and the camera, should be equal to the relationship between the distance between the points on the
image plane and the focal length. The focal length is therefore calculated by the following ratio:

X

Y
=
R

f
(5.1.1)

Table 5.2 shows the results of the focal length tests at different distances between the camera and the
whiteboard. The focal length stays constant over all the distances that were measured. The focal length is
found not to be 1.24 mm, but 1.25 mm. This difference is minimal and the camera is therefore considered
infocus.

Distance from centre point Undistorted distance between points Focal length
44.5 cm 0.2812 mm 1.25 mm
103 cm 0.1216 mm 1.25 mm
150 cm 0.0836 mm 1.25 mm

206.5 cm 0.0608 mm 1.25 mm

Table 5.2 – Results from the focal length test

5.1.3.2 Sun sensor: the Sun’s radius

A different test is performed to see if the sun sensor is in focus. The sun sensor is pointed towards the
Sun and images are produced. The test is performed to measure the diameter of the Sun. In section 5.5
a method is described to determine the Earth’s radius seen from a specific distance in space. The same
method can be implemented to determine the Sun’s radius. The Sun’s diameter is approximately 0.53◦ as
seen from Earth. Table 5.3 shows the Sun’s diameter from the images in figure 5.6. The decrease in the
diameter due to the distortion of the fisheye lens, can be expected.

Position Radius of Sun
Boresight 8 pixels

Near FOV edge 6 pixels

Table 5.3 – Sun’s radius at different positions

However, 0.53◦ should be about 2 to 4 pixels, depending on the distortion. This indicates that the sun
sensor is not focused.

(a) Boresight (b) Edge of FOV

Figure 5.6 – Change in the Sun’s radius between the boresight and the FOV edge

But since both sun and nadir sensors have the same FOV radius of 226 pixels, an assumption is made
that the sun sensor has the same focal length as the nadir sensor. The error in the increased diameter
of the Sun relative to the camera, may have to do with the pixels saturating and creating an overflow to
neighbouring pixels, which results in the Sun being enlarged on the image.

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 33

5.1.4 Exposure time

Exposure time is the time allowed for the photons to be accumulated on the photographic medium [38],
in this case the pixel array of the image sensor. The longer the exposure time, the better contrast will be
visible on the image, but unwanted effects, for example blurring, may be visible if an object is moving at a
high speed relative to the camera. The shorter the exposure time, the less contrast is visible and the less
blurring will be visible as well.

Figure 5.7(a) shows an image captured with the sun sensor (and therefore through the neutral density
filter) with the exposure time set to automatic. The sensor is pointed towards the Sun. The neutral density
filter filters out the light intensity of the Sun enough to display different objects on the image. There is
however, still too much light falling on the pixel array of the image sensor. Only the Sun must be visible
on the image. Experimenting with the exposure time, images were "filtered" down to the image in figure
5.7(b), where only the Sun is visible. The exposure time for figure 5.7(b) is 127 µs.

(a) Maximum exposure (b) Minimum exposure

Figure 5.7 – Maximum and minimum exposure time

5.2 Distortion

5.2.1 Distortion model

To determine the distortion model of the fisheye lens accurately, a metric rotary stage is utilised. The
metric rotary stage provides accurate 1◦ rotations. The tests performed for the distortion model use these
rotations to measure the rotation relative to the image, and compare them to the rotation of the metric
rotary stage. The camera is mounted on the metric rotary stage. Figure 5.8(a) shows the metric rotary
stage utilised and figure 5.8(b) the setup with the camera.

(a) Metric rotary stage (b) Setup

Figure 5.8 – Metric rotary stage used in tests

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 34

During the test the camera follows a black dot on a wall far away from it. The reason for placing the camera
far away from the black dot is to ensure the same approximate distance to the dot when the camera rotates.
The camera is positioned initially to ensure the black dot to be centred on the boresight/distortion centre
point of the lens. The metric rotary stage is then rotated with increments of 5◦ and the pixel coordinate
of the black dot is documented. The increments have a range from -95◦ to 95◦ (a 190◦ FOV). Figure 5.9
shows images captured at -25◦ and 25◦.

(a) Measurement at -25◦ (b) Measurement at 25◦

Figure 5.9 – Images of horizontal distortion measurements

The results of the distortion model test is shown in figure 5.10. The dashed line represents the relationship
between the radial distance and field angle if no distortion is visible. The points represents the measured
radial distance at the specific 5◦ field angle intervals. The ideal undistorted result would be when the
points follow the dashed line. It is evident from figure 5.10 that there is distortion and the distortion
increases when closer to the edge of the field of view.

Figure 5.10 – Radial distortion of fisheye lens

The dashed line is a straight line and is therefore represented by the straight line equation:

y = mx+ c

c = 0

m =
[radius at 5◦] - 0

5◦ − 0◦

y = 2.9x (5.2.1)

with m the gradient and c the intercept. Since the line begins at the origin, c is zero. The gradient is
calculated by using the distorted radius measured at 5◦, as it is assumed that the distortion at this point

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 35

is negligible and represents the linear relationship between the radius from the boresight and the field
angle.

MATLAB’s polyfit() function is implemented to determine the PFET model for the distortion model. The
function has a parameter that determines the order of the polynomial.

Figure 5.11 – Error between simulated and measured Distortion Models

Figure 5.11 indicates the error between the measured distortion model and the 2nd and 3rd order po-
lynomial. A 3rd order polynomial was selected since the error between it and the measured distortion
is significantly smaller than that of a 2nd order polynomial. Taking the values given by MATLAB, the
distortion model is selected as:

rd = ar3u + br2u + cru + d (5.2.2)

rd = (−2.5572× 10−6)r3u + (7.6076× 10−5)r2u + 0.9953ru + 0.1036 (5.2.3)

Figure 5.12 shows the PFET distortion model. The distortion model follows the measured distortion accu-
rately.

Figure 5.12 – PFET distortion model

Figure 5.12 shows the result for the horizontal radial distortion. For the vertical radial distortion, the
same test was done, with the same equipment and setup, but the camera is rotated by 90◦. This results in
the effect that the black dot is moving in a vertical direction, shown in figure 5.13. The results, however,

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 36

are identical to that of the horizontal radial distortion.

(a) Measurement at -25◦ (b) Measurement at 25◦

Figure 5.13 – Images of vertical distortion measurements

5.2.2 Distortion correction model

With the distortion modeled, the distortion correction model can be calculated. The distortion correc-
tion model is calculated from the roots of the distortion model. The distortion model is rewritten in the
following form from which the roots can be calculated:

rd = ar3u + br2u + cru + d

e = d− rd
0 = ar3u + br2u + cru + e (5.2.4)

where e has now become the 4th element of the 3rd order polynomial. To find ru, the roots of the 3rd order
polynomial must be determined. Since the distortion model is a 3rd order polynomial, there must be three
roots. The general form of these three roots are [39]:

ru1 = − b

3a
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2e+

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2e−

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
(5.2.5)

ru2 = − b

3a
+

1 + j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2e+

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
+

1− j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2e−

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
(5.2.6)

ru3 = − b

3a
+

1− j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2e+

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
+

1 + j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2e−

√
(2b3 − 9abc+ 27a2e)2 − 4(b2 − 3ac)3

]
(5.2.7)

The nature of the roots are described by the discriminant of a 3rd order polynomial:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 (5.2.8)

= 1.01× 10−5

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 37

The discriminant of the distortion model is positive, which means that the distortion model has three dis-
tinct roots.

By simulating each root in MATLAB, it was found that only one of the three roots gave a result where
distortion is being corrected. The distortion correction model is therefore:

ru = − b

3a
+

1 + j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2(d− rd) +

√
(2b3 − 9abc+ 27a2(d− rd))2 − 4(b2 − 3ac)3

]
+

1− j
√

3

6a
3

√
1

2

[
2b3 − 9abc+ 27a2(d− rd)−

√
(2b3 − 9abc+ 27a2(d− rd))2 − 4(b2 − 3ac)3

]
(5.2.9)

The imaginary part of the equation is not a problem, as the discriminant shows that it is cancelled out.
The results from MATLAB also show that the results from the distortion correction model is always real.

Figure 5.14 shows the distortion correction. The distortion model and measurements are sent through the
distortion correction model and the result for both instances is the same. The correct distortion correction
model has been calculated.

Figure 5.14 – Distortion correction

5.3 Resolution

The resolution for the sun and nadir sensors is defined as the amount of pixels required to represent a
degree in body frame angles. The radius of the fisheye lens’ FOV is 226 pixels, table 5.1, with the FOV
being 190◦. This gives a linear effective resolution of 0.42◦ per pixel. This, however, is not the true
resolution. Figure 5.15 shows the change in resolution.

Figure 5.15 – Resolution over FOV

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 38

The resolution is calculated from the measurements taken to model the distortion. Since the distortion
was measured every 5◦, the resolution is represented in 5◦ steps. As expected, the resolution is worse at
the edge of the FOV, as the radius that represents 5◦ at the edge of the FOV is shorter due to the distortion
from the lens.

5.4 Testbenches

It will be difficult to calibrate and evaluate the sun and nadir sensors in their orbit environment. It is ex-
pensive to launch satellites and once the sensors are in space, it will be impossible to retrieve the sensors
for adjustments. Testbenches are used to simulate the environment the sensors will be used in. Test-
benches are much less expensive and it is easier to make adjustments and repeat tests. Figure 5.16 shows
images of the sun and nadir sensors’ testbenches.

(a) Nadir sensor testbench (b) Sun sensor testbench

Figure 5.16 – Images of testbenches for the sun and nadir sensors

5.4.1 Nadir sensor testbench

The nadir sensor’s testbench is the most difficult to implement, because calibration errors can easily oc-
cur. The error occurrence will be explained in sections 5.5 and 5.6. Figure 5.17 shows the testbench
implemented for the calibration of the nadir sensor.

Enclosed Box

Light Source
(Desk Lamp)

PC
Camera

&
Metric Rotary Stage

Ball

Figure 5.17 – Nadir Sensor testbench

The purpose of this testbench is to simulate an illuminated Earth and a dark space background. The
simulation is implemented by using a clear aerobics ball, enclosed in a box lined with black cloth, and
shining light from a desk lamp through it. The ball is illuminated from behind. Illuminating the ball from
the front will reflect the light from the ball’s surface onto the background, making the brackground more
visible in the images. A hole is cut in the back of the box where a partial area of the ball fits through. The
light is focused on this partial area of the ball. A metric rotary stage is rotated in the horizontal plane in

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 39

increments of 1◦ and measurements are then taken at each degree. The vertical axis is measured in the
same way as the horizontal axis, but the nadir sensor is first rotated by 90◦.

(a) -20◦ (b) 0◦ (c) 20◦

Figure 5.18 – Images of the ball during rotation measurements

5.4.2 Sun sensor testbench

The testbench for the sun sensor is easier to set up than that of the nadir sensor, because there are less
potential calibration errors, as shown in section 5.6, to take into consideration. Figure 5.19 illustrates the
testbench implemented for the sun sensor.

Sun

Camera
&

Metric Rotary Stage
&

Telescope
(Sun Tracker)

PC

Figure 5.19 – Sun sensor testbench

Because the neutral density filter filters out most of the light, only displaying the Sun, the measurements
made by the sun sensor will be very close to that observed by the sensor in space. The sun sensor is
mounted on the metric rotary stage (for accurate degree rotations required for the measurements). The
sensor and metric rotary stage is in turn mounted on a MEADE LX200 EMC telescope. The telescope is
then used to track the Sun accurately.

(a) 0◦ (b) 20◦ (c) 40◦

Figure 5.20 – Images of the Sun during rotation measurements

With the nadir sensor, the test object is fixed relative to the Earth. The Sun, however, is moving relative to
the Earth. Therefore, the Sun moves in the images captured by the sensor and creates unwanted errors in

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 40

the calibration of the sun sensor. The telescope has the ability to track the Sun and will therefore cancel
out the movement of the Sun, making the Sun stationary relative to the telescope and the sun sensor.

The sensor is positioned with the Sun at the boresight of the fisheye lens. The metric rotary stage is
incremented by 5◦ in both directions and measurements are taken at each increment. The vertical axis is
measured in the same way as the horizontal axis, but the sun sensor is rotated by 90◦.

5.5 Angular relationship

The Earth and Sun each has a certain angular diameter as viewed from the satellite at a given altitude.
For example, if the orbital height of the satellite is assumed to be 750 km, where the aerodynamical force
is low enough to use a solar sail, using the angular relationship between the satellite and the Earth or the
satellite and the Sun, the angular diameter of the Earth and the Sun can be calulated. Figure 5.21 shows
the angular relationship between the satellite and the Earth [40].

Figure 5.21 – Angular relationship between the satellite, target and Earth [40]

The best case scenario is when the Earth is centred in the boresight of the nadir sensor. The angle of
interest in figure 5.21 is ρ, the angular radius of the Earth as seen from the satellite, and therefore also
the angular radius of the Earth in the nadir sensor’s FOV. The angular radius can be calculted by:

sin(ρ) =
RE

RE +H
(5.5.1)

where RE is the Earth’s radius, 6378.136 km, and H is the altitude of the satellite. The result for ρ is
63.48◦ and therefore the Earth’s angular diameter from the satellite’s perspective, is 127.0◦ at 750 km.

With the same equation, the Sun’s angular diameter from the satellite’s perspective, can be calculated.
Equation (5.5.1) will change to:

sin(ρ) =
RS

RS +HS
(5.5.2)

where RS is the radius of the Sun, 695 500 km [41], and HS the altitude of the satellite with respect to
the Sun. The mean distance between the Sun and the Earth is 149.6×106 km. Assuming that the mean
distance between the Sun and the Earth is estimated from the centre points, HS can be calculated as:

RS +HS = D −RE −H (5.5.3)

where D is the distance between the Earth and the Sun. By substituting (5.5.3) into (5.5.2), ρ is calculated
as 0.27◦ and consequently the Sun’s angular diameter from the satellite’s perspective is 0.53◦.

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 41

The results are shown in table 5.4.

Sensor Angular diameter of the object
Nadir 127.0◦

Sun 0.53◦

Table 5.4 – Angular diameter of sun and nadir sensor at an altitude of 750 km

To see if the nadir sensor’s testbench follows the angular relationship, the relationship between the aero-
bics ball and the Earth is required to be calculated. The relationship will follow (5.1.1), where the ratio
between the radius of the ball and the distance from the camera to the ball, should be equal to the ratio
between the radius of the Earth and the distance from the satellite to the Earth:

H

RE
=
Dball

Rball
(5.5.4)

750km

6378.136km
=

Dball

3× 10−4km

where Rball is the radius of the ball and Dball is the distance the sensor must be placed from the ball. Dball

is calculated as 3.52 cm.

At 750 km, the Earth’s angular diameter from the satellite’s perspective is 127◦, as shown in table 5.2,
and the fisheye lens has a FOV of 190◦. This means when the sensor is placed 3.52 cm from the ball and
the ball is centred at the fisheye lens’ boresight, it should span 66.8% of the undistorted image diameter.

Figure 5.22 shows how the ball is represented when the camera is at a distance of 3.52 cm from the ball.

Figure 5.22 – The ball at 3.52cm

The distorted radius of the ball at 3.52 cm is 168 pixels (see table 5.5). The undistorted radius of the
fisheye lens is 275.5 pixels. Therefore, the ball, spans 66.06% of the image diameter.

Distorted Undistorted
Rball 168 pixels 182 pixels

Table 5.5 – The radius of the ball at 3.52 cm

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 42

5.6 Rotation point (optic point calculation)

When the body frame angles are measured with the nadir sensor, the distance from the ball, when rotating
the metric rotary stage, is required to stay constant to make the measurement valid. The nadir sensor’s
optic point is therefore required to be positioned at the centre of the metric rotary stage. Figure 5.23
shows the error that occurs when the optic point of the fisheye lens is not centred on the metric rotary
stage.

Figure 5.23 – Error in body frame measurements

The angles of interest in figure 5.23 are:

• θ - the correct body frame angle

• α - the incorrect body frame angle

• φ - the error between θ and α

As an example, if the optic point has an 1 mm offset from the metric rotary stage’s centre and the body
frame angle expected is 30 ◦, the error angle can be calculated from the law of sines and cosines [42]:

R′2ball = R2
error +R2

ball − 2R′errorRballcos(θ) (5.6.1)

sin(φ)

Rerror
=
sin(θ)

R′ball
(5.6.2)

The error in the body frame angle, φ, will be 0.8343◦. If the optic point had a 1 mm offset from the rotation
centre of the satellite in space, the error will be insignificant, because Rball will be the altitude of 750 km.
The equivalent error in space, for an error of 1 mm on the testbench, is an error distance of 21.84 km. The-
refore rotations of the nadir sensor around the centre of mass of the satellite will cause insignificant errors.

(a) -30◦ (b) 0◦ (c) 30◦

Figure 5.24 – Images captured during rotation measurements

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 43

The test setup to find the optic point is placing paper with vertical lines printed onto them in a circular
pattern around the metric rotary stage. Figure 5.24 shows images of the test for the optic point. The
lines on the paper have a constant distance of 1 cm between each of them. The aim of the test is to see
if the distance between the lines, near the distortion centre point, will stay constant. If the distances stay
constant, the optic point is found.

It was found that the distances between the lines stayed constant at 16 pixels when the point shown in
figure 5.25 is used as the optic rotation point.

Figure 5.25 – Optic point (Appendix A.3)

5.7 Threshold determination

The threshold for the sensors are determined as described in section 4.1.2. As already mentioned, the
pixels from the camera are sampled as 8-bit values. The values of the pixel will range from 0 to 255, the
range of an unsigned 8-bit value. Figure 5.26 shows the grayscale from black to white. The value 0 is
black and 255 is white for a pixel.

Figure 5.26 – Grayscale

Table 5.6 shows the threshold level calculated in section 4.1.2:

Sensor Background average Object average Threshold
Nadir 34 153 70
Sun 34 248 99

Table 5.6 – Average luminance values for sensor images

The threshold level for the nadir sensor is a good estimate and works well for the nadir sensor, as shown
in figure 4.9(b). Note that this value is a good estimate for the nadir testbench and not necessarily for the
true space environment.

Although the threshold calculated for the sun sensor is a good estimate, it is too low to prevent a reflection
from an object closer to the satellite than the Sun, for example the moon, to show a false Sun on the image.
The threshold for the sun sensor is taken at 90% of the Sun’s average luminance, a value rounded off to
225.

CHAPTER 5. EXPERIMENTAL SETUPS AND CALIBRATIONS 44

5.8 Sampling factor for the nadir sensor search algorithm

Figure 5.27 shows that 16 edge pixels give a good profile of the ball utilised in the nadir sensor’s test-
bench. By choosing the correct sampling factor K from equation 4.2.1, the 16 pixels required for the edge
detection can be identified.

Figure 5.27 – Edge profile of Earth

The amount of edge pixels that will be identified, can be calculated as follows:

edge pixels = 4× total intersected lines

= 4× diameter of the Earth

K
(5.8.1)

where K is the sampling factor from equation 4.2.1. Figure 5.28 shows the specific lines used by the ho-
rizontal and vertical search algorithms to search for edge pixels. For each line that intersects the Earth,
two edge pixels can be determined. Since there are two search algorithms, the amount of edge pixels that
can be determined are doubled. The total lines that intersect the Earth are dependant on the diameter of
the Earth and the sampling factor.

(a) Horizontal search (b) Vertical search

Figure 5.28 – Lines searched for edge pixels

If the radius of the Earth is 161 pixels at an altitude of 750 km, the sampling factor is calculated as 80.5
from equation 5.8.1 if 16 edge pixels are required. However, the binary search in section 6.5.2.1, requires
the log2(K) to be an integer to compute correctly. Therefore, the sampling factor is set to 64, as this is the
closest number to 80.5 to comply with the specification for the binary search. With the sampling factor
set to 64, the total edge pixels that will be identified at an altitude of 750 km, is 20 for a full profile of the
earth. This is verified in figure 4.9(b).

Chapter 6

Software implementation

6.1 Overview

This chapter describes the software coding implemented for the sun and nadir sensors. The microcontrol-
ler and FPGAs use different programming languages: the microcontroller is programmed in C code and
the FPGAs in VHDL code. The aim of the software is to process the data from the camera modules in the
minimum time as required.

6.1.1 Data type definitions and algorithm complexity

The microcontroller uses MICROCHIP’s C18 compiler, with its MPLAB IDE, to convert the source code to
object code that can be programmed onto the microcontroller. Because the microcontroller is a PIC18F4520,
the C18 compiler for the PIC18 family of microcontrollers from MICROCHIP is used. In the C18 compiler’s
user guide, a list of data types are given [43] (see table 6.1).

DATA TYPE BITS SIGNED RANGE UNSIGNED RANGE
char 8 -128 to 127 0 to 255
short 16 -32 768 to 32 767 0 to 65 535

int 16 -32 768 to 32 767 0 to 65 535
short long 24 -8 388 608 to -8 388 607 0 to 16 777 215

long 32 -2 147 483 648 to 2 147 483 647 0 to 4 294 967 295

Table 6.1 – Data types for the C18 compiler

The compiler also defines the floating point data types, double and float, with 32 bits of storage each. It is
important to use the correct data type, because if a value is too large for the selected data type, overflow
errors will occur. However, if larger than necessary data types are used, the microcontroller will require
more time to process the data. The microcontroller is only a 8-bit processor. If, for example, an int is
required, the microcontroller will take double the time to process the data.

To explain the complexity of algorithms, the big O notation is applied. The big O notation is implemented
to described the behaviour and complexity of a function [44]. Table 6.2 shows the most common big O

Operation Description Complexity
Addition Adding two n-bit integers O(n)

Subtraction Subtracting two n-bit integers O(n)
Multiplication Multiplying two n-bit integers (long multiplycation) O(n2)

Division Dividing two n-bit integers (long division) O(n2)
Lookup Table Selecting an element of a lookup table O(1)
Binary Search Binary search algorithm O(log n)

Table 6.2 – Computational complexity of mathematical operations

45

CHAPTER 6. SOFTWARE IMPLEMENTATION 46

operations that are found in this project [45]. The less complex an algorithm is, the less time it will take
to complete. For the big O notation this means the lower the order of n is, the less complex an algorithm
will be and therefore the less time an algorithm will require to complete.

6.2 Distortion correction lookup table

The distortion correction model in section 5.2.2 is a complex equation. There are mutiple square and 3rd
power roots (where a square root already has a complexity of O(n2)), divisions and multiplications. Instead
of wasting valuable time and computation power, a distortion correction lookup table is implemented:

Lookup[distorted radius] = undistorted radius (6.2.1)

The difficulty when using a lookup table, is to select the values required to be stored. From the centre
to the edge of the FOV, 226 undistorted radii are required to be stored in the lookup table, with the last
few radii values being more than 255. This means that the data type int or short are required instead
of the smallest data type char. For the compiler and microprocessor implemented, this is not possible,
because the memory would have been required to store the lookup table into 452 bytes, which is larger
than the maximum value of 256 bytes in which the memory pages of the microcontroller are divided into.
Therefore, the lookup table must use the data type char to ensure that there is enough memory space for
the entire lookup table.

(a) Difference between distorted and undistorted radii (b) Error between distorted and undistorted radii

Figure 6.1 – Data used for the distortion correction lookup table

The problem is solved by, instead of storing the value of the undistorted radius at each element of the look-
up table, the error between the distorted and undistorted radius is stored. The error at the last element of
the lookup table is 49 and is well within the range of the data type char.

The advantages of using a lookup table are the following:

• The computation complexity of a lookup table is O(1), because if the distorted radius is known, it can
be used as an index to find the undistorted radius.

• Since the distortion radius is fixed in both x and y directions, the same lookup table can be used to
determine the undistorted radius in the x and y positions.

CHAPTER 6. SOFTWARE IMPLEMENTATION 47

6.3 Interpolation

As mentioned, the distortion lookup table is used to correct the error made by the distortion of the fisheye
lens on the measurements of the nadir and sun sensors.

Figure 6.2 – Using interpolation for sub-pixel accuracy

To minimise storage on the microprocessor, the values in the distortion lookup table are stored as 8-bit
correction values. To keep sub-pixel accuracy, linear interpolation [46] is used to undistort the sub-pixel
resolution of the measurement. The interpolation is done as shown in figure 6.2:

ru − ru0

rd − rd0

=
ru1 − ru0

rd1
− rd0

(6.3.1)

where the interpolation is used to calculate ru, the undistorted radius. In this form, the interpolation
uses a large quantity of computational speed, since it uses multiplication and division. The equation is
simplified with the following assumptions

• rd is given, as it is the measured value.

• rd0
and rd1

are always the floor and ceiling values of rd respectively. For example, if rd is 5.5, then
rd0

and rd1
will be 5 and 6 respectively. This also means that the rd1

− rd0
part of the equation will

always be equal to 1.

• Furthermore, because of the distortion lookup table, the following definitions are made:

ru = rd + re (6.3.2)

ru0 = rd0 + re0 (6.3.3)

ru1 = rd1 + re1 (6.3.4)

where the undistorted radius is defined as the distorted radius plus the distortion error. However,
because rd0

− rd1
is always 1, (6.3.4) can be rewritten as

ru1 = rd0 + 1 + re1 (6.3.5)

Therefore (6.3.1) can be simplified to:

rd + re − rd0 − re0
rd − rd0

=
rd0 + 1 + re1 − rd0 − re0

1
rd − rd0

rd − rd0

+
re − re0
rd − rd0

= 1 + re1 − re0

re = re0 + (re1 − re0)(rd − rd0) (6.3.6)

In this form, the interpolation calculates only the error required to correct the distortion. This form
ensures faster interpolation, because there is only one multiplication required.

CHAPTER 6. SOFTWARE IMPLEMENTATION 48

The correction errors as well as rd0 is derived from rd only. Therefore, the distortion correction with
interpolation is calculated as follows:

ru = rd0 + re0 + (re1 − re0)(rd − rd0) (6.3.7)

The undistorted x and y coordinates can then be calculated as follows:

xu =
ru
rd
xd (6.3.8)

yu =
ru
rd
yd (6.3.9)

The code for the linear interpolation is shown in Appendix C.2.

6.4 Controlling the camera module

Before the measurement algorithms for the sun and nadir sensors are implemented, the control of the two
camera modules need to be implemented in software. In section 3.2.2, several control pins were identified
as necessary for the layout of the sun and nadir sensors. These control pins are used to send commands
from the microcontroller to the FGPAs when specific data is required. The control pins are defined in table
6.3.

Control pin Definition Discription
SUNEN/NADEN Enable Controls the specific FPGA or put it in sleep mode.

RNW Read/Write Controls whether reading from or writing to memory.
CLK Clock Controls speed of data from memory to microcontroller.

EDGE Edge Reconfigures FPGA to edge mode.
SHIFT Shift Extra functions.

SUNACK/NADACK Acknowledge Acknowledge sent to microcontroller when image is in
memory.

HREF Horizontal Reference Indicates when a line of pixels are being transmitted to
memory.

PCLK Pixel Clock Controls speed of data from camera to memory.

Table 6.3 – Definitions of the control pins

All control pins are GPIO from the microcontroller, except for pins HREF and PCLK. These two control pins
are from the camera modules and are used by the FPGAs to detect when an image is ready to be written
to memory (see Appendix A.2). The commands to the FPGAs through the other control pins are defined in
the truth table (table 6.4).

Commands
SHIFT EDGE RNW SUNEN NADEN Sun sensor Nadir sensor

X X X 1 1 Active Standby Active Standby
0 0 0 0 1 Write image to memory Active Standby
0 0 0 1 0 Active Standby Write image to memory
0 0 1 0 1 Send image to MCU Active Standby
0 0 1 1 0 Active Standby Send image to MCU
0 1 1 0 1 Send edge data to MCU Active Standby
0 1 1 1 0 Active Standby Send edge data to MCU
1 0 0 0 0 Send image to nadir sen-

sor’s memory
Write image from sun
sensor to memory

1 0 1 0 0 Write image from nadir
sensor to memory

Send image to sun sen-
sor’s memory

1 1 0 0 0 Send edge data to MCU Send image from me-
mory to sun sensor

1 1 1 0 0 Send image from me-
mory to nadir sensor

Send edge data to MCU

Table 6.4 – Truth table of commands

CHAPTER 6. SOFTWARE IMPLEMENTATION 49

6.4.1 Microcontroller

The microcontroller has four control actions that involve the camera modules (see figure 6.3). The micro-
controller uses the control pins, of table 6.3, to implement the commands in the truth table (table 6.4) to
command the FPGAs and camera modules.

Send centroid to OBC

Send an image to OBC

Store an image

Send command to
FPGA to take

image

Wait for
acknowledge that
whole image is in

memory

Wait for command
from OBC to take

image

Initialise camera
Wait for command
from OBC to send

image

Send command to
FPGA to send

image to
microcontroller

Send
acknowledge to
OBC that whole
image was sent

Send
acknowledge to

OBC that image is
in memory

Wait for command
from OBC for

centroid

Send command to
FPGA to start
edge mode

Centroid
calculation

Send centroid to
OBC

Microcontroller
sends image to

OBC

Figure 6.3 – Microcontroller control actions to the FPGAs and camera modules

The microcontroller initializes the default settings for the camera modules. The setup consists of setting
the camera modules’ exposure time, frame size, data format, et cetera, as required. The microcontroller
communicates through an I2C bus with the camera modules. Since the MSSP module of the microcon-
troller is kept for communication with the OBC, software I2C modules are coded to communicate with the
camera modules.

Figure 6.4 – I2C time diagram

The microcontroller only sends commands to the camera modules. Therefore only three conditions are
necessary for implementation of the software I2C. The three conditions are the stop, start and transmit
conditions (figure 6.4). An I2C transmission always follows the same procedure: a start condition, the
required data-transmit conditions and lastly a stop condition. An acknowledge from the camera modules
are read after each byte of transmitted data.

The code for the software I2C [47] stop, start and transmit conditions are shown in appendix C.1.

CHAPTER 6. SOFTWARE IMPLEMENTATION 50

6.4.2 FPGAs

Although the microcontroller sends out the commands when to capture or retrieve an image, it is the
FPGAs that process those commands. Figure 6.5 shows all the modules programmed into the FPGAs that
allow them to store and retrieve images as well as manipulate the data.

FPGA

Dataflow
Control

Memory

Address
Control

Microcontroller
Data Control

Edge
Data Control

Memory Data
Control

Microcontroller
Control bits from Micrcontroller

Acknowledge bit from FPGA

D
at

a
to

 M
ic

ro
co

nt
ro

lle
r

Camera

Figure 6.5 – Layout of FPGA modules

Note that the memory in figure 6.5 is in fact the external memory, but it forms a unit with the FPGA. The
FPGA modules are defined as:

• Dataflow Control - controls the flow of data to and from the memory as well as to the microcontroller.

• Microcontroller Data Control - sends the image stored in the memory to the microcontroller

• Memory Data Control - stores the image from the camera module in the memory

• Edge Data Control - sends the pixels required for edge detection to the microcontroller

• Address Control - generates the addresses for the data to be stored in and read from memory

6.4.3 I2C protocol for the OBC

As previously mentioned, the MSSP on-chip module of the microcontroller’s purpose is for the communi-
cation between the microcontroller and the OBC. The protocol for the OBC to send and receive data from
the microcontroller is the following:

• The OBC sends the correct slave address to the microcontroller. The least significant bit of the
address determines whether the OBC is writing data to or reading data from the microcontroller.

• After sending the slave address, the OBC sends the address of the register it wants to read from or
write to, for example, when the OBC wants to write a new threshold value for the nadir sensor in the
threshold register. The registers each has a size of a byte.

• After the OBC has sent the address of the register it wants to write to, the next byte sent is the
data for that register. If the OBC indicated that it wants to read a centroid coordinate for example,
a 2 byte value is sent from the microcontroller. The register for sending measurements is an 8-bit
register that is a reference to 16-bit registers that store the signed 16-bit measurements. However,
if an image is required to be sent to the OBC, 300 kB of data is sent over the I2C bus.

The same protocol is followed when using the backup UART bus.

CHAPTER 6. SOFTWARE IMPLEMENTATION 51

6.4.4 Memory allocation

As mentioned in section 3.2.1, the pixel clock of the camera module runs at 13.5 MHz and the memory
was selected to comply to this restriction. However, delays may occur in the address control of the FPGA.
Figure 6.6(a) shows how memory can be seen as a sequential list of addresses, which are written to and
read from addresses 0x00000 to 0x7FFFF (the range of the specific memory).

(a) Sequential arranged memory (b) Gray code (c) Matrix arranged memory

Figure 6.6 – Different arrangements of images in memory

One option is to implement gray code. Gray code is a different method of representing binary code, where
only one bit flip occurs when gray code is implemented [48]. Figure 6.6(b) shows the difference between
incrementing with gray and binary code. However, to implement gray code on a FPGA is complex (see
appendix D.1) [49], and requires more tiles from the FPGA to implement. It is also more difficult to jump
an address. Jumping addresses is necessary for the edge detection of the sun and nadir sensors.

The method of memory arrangement rather selected, is a type of matrix arrangement, because it simpli-
fies calculations. The matrix arrangement corresponds with the pixel coordinates of an image. Since the
image size is 640 x 480, the column and row addresses are defined as two different entities. The column
addresses are 10-bit wide and the row addresses are 9-bit wide, as 640 is a 10-bit and 480 is a 9-bit va-
lue. This ensures that the minimum delays may occur and it is easier, if necessary, to jump column and
row addresses when reading from the memory. With the memory size being 512 kB and an image is 300
kB, 41.4% of the memory is available for other uses. However, with the matrix arrangement in memory,
only 6.12% of the memory is easy to access (the last memory address used for the matrix arrangement is
0x78280). The matrix arrangement corresponds to data being stored sequentially in a block of memory
(one row), but these blocks are stored in memory with unused memory between them. The unused me-
mory is accessible, but an algorithm for addressing it is required. Therefore, only the memory after the
last address implemented for the matrix arrangement is easy to access, because no algorithm for addres-
sing is required.

The matrix arrangement is implemented when both reading from or writing to the memory. The matrix
addressing is shown in appendix D.2. The code is a simple counter that increments on the rising edges of
a clock and will send either the addresses to write to or read from the memory, depending on the control
pins that are active.

6.5 Nadir sensor

In this section the coding of the algorithms to determine the centroid of the Earth is described. The coding
of the algorithms are divided between the microcontroller and FPGA. The FPGA can access the data faster
from the memory and the microcontroller has dedicated arithmetic modules to process the data.

CHAPTER 6. SOFTWARE IMPLEMENTATION 52

6.5.1 Search algorithm

The search algorithm for the nadir sensor is implemented on the FPGA, as the FPGA has direct access to
the memory. The algorithm is implemented as a state machine on the FPGA [50]. Figure 6.7 shows the
flow diagram of the state machine implemented on the FPGA for the search algorithm.

A

B

C

Default

NADEN = 0,
RNW = 1,
EDGE = 1,
SHIFT = 0

NADEN = 1

DEFAULT:
Row address = 15
Column address = 0

Row address != 463
Column address != 639

STATE A:
Column address++
If Column address = 639 then

Column address = 0
Row address += 64 STATE B:

Row address = 0
Column address = 63

STATE C:
Row address++
If Row address = 479 then

Row address = 0
Column address += 64

NADEN = 1

Row address = 463
Column address = 639

NADEN = 1

Loop controlled by
microcontroller

NADEN = 1

Figure 6.7 – Search algorithm state machine

The state machine for the search algorithm is implemented as four states. When the state machine is not
in use, it goes into a default state. The default state sets the column and row addresses at the starting
position required by the horizontal line search.

The default column and row addresses are 0 and 15 - the 1st column and the 16th row of the image (see
figure 4.7). As discussed in the previous chapter, the image has 480 rows and the search algorithms have
a sampling factor of 64. To see how many lines will be searched by the horizontal search algorithm, the
image row count is divided by the sampling factor. The result is 7.5 or 7 with a remainder of 32 lines.
When searching the horizontal lines, the row position of the line is not important, but the column position
is. Therefore, the starting position for the horizontal search is set 16 rows lower. This will have the effect
that the first and last 16 rows are not searched. The horizontal search algorithm is however simplified,
because the rows will only have to be incremented by the sampling factor 64 and no provisions have to be
made for the remainder of 32 lines.

State A is where the addresses are generated for the horizontal search. The column addresses are in-
cremented on the rising edge of the clock generated by the microcontroller. When the column addresses
reach the end of a line, the address is reset to the first column address and the row address is incremented
with a factor of 64, the sampling factor. The state machine will stay in this state until the end of the 464th

row is read.

State B resets the column and row addresses to the starting address required to start with the vertical
line search.

State C is identical to state A except that the row addresses are incremented and when the end of a vertical
line is reached, the row address is reset to the beginning of the row addresses and the column addresses

CHAPTER 6. SOFTWARE IMPLEMENTATION 53

are incremented with a factor of 64. The loop of state C is controlled by the microcontroller. The loop will
only end when the FPGA is disabled and the state returns to the default state.

The search algorithm state machine’s code is shown in appendix D.3.

6.5.2 Edge detection

The edge detection for the nadir sensor is executed while the search algorithm is running. Because the
clock that controls the search algorithm is generated on the microcontroller, it is easy to collaborate
between the search algorithm and the edge detection. Therefore, the edge detection is divided into a
horizontal and a vertical edge detection, to execute in sync with the search algorithm.

Horizontal
Edge Detection

Vertical
Edge Detection

Edge pixels

Figure 6.8 – Edge detection for nadir sensor

When searching through the horizontal lines, for example, the pixels of a specific horizontal line is sent to
the microcontroller, but not all pixels are examined for edge pixels. Every 64th pixel in a line is examined
for edge pixels to comply with the sampling factor selected for the search algorithm. These pixels are
referred to as the sample pixels.

Is current sample
pixel Earth?

Is previous sample
pixel Space ?

Yes

Do binary search
between current

and previous pixel

Yes

Store edge pixel x
and y coordinate

Is previous sample
pixel Earth ?

Do binary search
between current

and previous pixel

Yes

Store edge pixel x
and y coordinate

Move to new current
sample pixel

No

No No

Is pixel a true
edge pixel ?

Yes

Is pixel a true
edge pixel ?

Yes

No No

Figure 6.9 – Flow diagram of edge detection for the nadir sensor

The flow diagram in figure 6.9 implement the rules stated in section 4.2.2 for the edge detection algorithm.
The same flow diagram in figure 6.9 is implemented for the horizontal and vertical edge detections. The
flow diagram indicates that the edge detection code implements a number of if-statements to comply

CHAPTER 6. SOFTWARE IMPLEMENTATION 54

with the rules stated for the edge detection. The rules for edge detection can be implemented with one
if-statement:

if (current sample pixel above and previous sample pixel below threshold or vice versa)
search edge pixel between current and previous pixel

However, this form requires more time to compute, because each statement within the if-statement is
required to be compared with the threshold before the if-statement can be computed as true or false.
Instead, this form is used:

if (current sample pixel above threshold)
if (previous sample pixel below threshold)

search edge pixel between current and previous pixel
else

if (previous sample pixel above threshold)
search edge pixel between current and previous pixel

This form of the edge detection is faster, because a pixel is either above or below the threshold. Therefore,
if the current sample pixel is below the threshold, it is not necessary to compare whether the previous
sample pixel is below the threshold. The disadvantage of this form of edge detection is that the it requires
more program memory from the microcontroller.

The same error that occurs in section 6.5.1 with the 480 rows of the image and the sampling factor, oc-
curs when executing the vertical edge detection. However, the remaining 32 pixels in each row cannot be
ignored, as the row position is of importance for the vertical search algorithm. This problem is corrected
by adjusting the vertical edge detection to take into consideration that only 32 pixels are searched at the
end of each row instead of 64 pixels (appendix C.3).

After the edge detection has determined if an edge pixel can be found between the current and previous
sample pixel, a binary search is executed to find the real edge pixel and then this pixel is examined to
determine if it is a true or a false edge pixel.

6.5.2.1 Binary search

Figure 6.10 shows an example of pixel values between two sampled pixels to find an edge pixel. The
sampled pixels are always multiples of 64, except for the last sample in the vertical lines, which is 32. By
searching the pixels between the sampled pixels, the edge pixels can be determined to an accuracy of a
pixel.

Figure 6.10 – Pixels between two sample pixels

The complexity of searching through the in-between-sample pixels is O(n), or in this case O(63), for the
worst case scenario where every pixel between the sample pixels is required to be checked. This is very
time consuming, since the search is required to be repeated between all sample pixels that comply to the
rules for edge detection. A binary search is implemented instead.

A binary search is an algorithm that is used to locate the position of an element in a sorted array. The
problem with a binary search is that a sorted array is required for the algorithm to work correctly. For
example, it is possible for a pixel to have a value of 24, the next pixel a value of 27, but the pixel after that
a value of 26, due to signal noise and analog to digital conversions from the image sensor, as indicated in
figure 6.10.

CHAPTER 6. SOFTWARE IMPLEMENTATION 55

However, this problem is avoided in most cases, since the value of the pixel is only significant to determine
if the pixel is above or below the threshold. An error will occur only if the pixels near the threshold is not
sorted.

The computational complexity of a binary search is O(log(n)). Since the space between two sampled pixels
is a multiple of 2, the complexity changes to O(log2(n)) and in this case O(log2(64)) or O(6), because to
find the actual edge pixel between two sampled pixels, the worst case scenario is that the binary search
algorithm is required to be repeated six times. For the case of the last 32 pixels in the vertical edge
detection, the worst case scenario is a repitition of five times.

6.5.2.2 Partial profile edge detection

When the Earth moves further than the edge of the fisheye lens’ FOV, a false edge is created, as shown in
figure 6.11. If this edge is computed by the edge detection algorithm as is, the false edge will be conside-
red a true edge of the Earth.

Figure 6.11 – False edge

To prevent mistaking a false edge for a true edge, a boundary is set in the edge detection. The radius of
the fisheye lens’ FOV is known and the radius of the edge pixels from the boresight can be calculated by:

redge =
√

(xedge − xboresight)2 + (yedge − yboresight)2 (6.5.1)

If the radius of the edge pixel from the boresight is larger than or equal to the edge of the FOV, the edge
pixel will be considered a false edge and will not be used for centroid calculation. With the optimization
of the least squares circle method and this boundary, the centroid of the Earth can be calculated from the
partial edge profile as well.

CHAPTER 6. SOFTWARE IMPLEMENTATION 56

6.5.3 Centroid calculation

Figure 6.12 illustrates the process followed after the edge pixels have been identified.

Distortion
Correction

Edge Pixels
Least

Squares
Circle

Centroid

Figure 6.12 – Calculating the Earth’s centroid

The edge pixels are sent through the distortion correction lookup table before they are implemented in
the least squares circle method.

6.5.3.1 Least squares circle

The least squares circle method consists of matrix calculations. The microcontroller has no matrix func-
tions, therefore arrays are implemented as matrices. From equation 4.4.18 it is necessary to calculate the
inverse of the matrix in equation 4.4.17. The matrix in equation 4.4.17 is a 3 x 3 matrix. Figure 6.13 shows
the inverse of a 3 x 3 matrix [51].

Figure 6.13 – Inverse of a 3 x 3 matrix

The determinant of the matrix can become a large number when working with pixel coordinates. There-
fore, the radii of the edge pixels are used instead of the edge pixels’ coordinates to ensure that the
determinant of the matrix does not exceed the range of the data type assigned to it.

From equation 4.4.18, only the first two rows of the inverse matric is required to be calculated, as these
two rows are required to calculate the centroid of the Earth (see Appendix C.5).

The centroid of the Earth is calculated using 32-bit double data types. This is to ensure that there is
at least a two decimal accuracy in the calculation of the centroid. The problem that may occur when
sending the centroid as a double to the OBC, is that the OBC may not handle doubles the same way as the
microcontroller. Therefore, the centroid is multiplied with a factor of 100, to ensure that the two decimal
accuracy is kept, and then the centroid is parsed to a 16-bit signed integer (see appendix C.5). The OBC
will be able to handle this data type correctly.

6.6 Sun sensor

In this section the coding of the algorithms used to determine the centroid of the Sun, is described. Similar
to the nadir sensor, the coding of the algorithms are divided between the microcontroller and FPGA.

CHAPTER 6. SOFTWARE IMPLEMENTATION 57

6.6.1 Search algorithm

The search algorithm for the sun sensor adds another module to the FPGA layout as shown in figure 6.5.
This module is implemented to determine the first Sun pixel. Figure 6.14 shows how this extra module
connects to rest of the FPGA layout.

Camera

Search for 1st

Sun pixel

Dataflow

Memory Data
Control

Figure 6.14 – Extra module in the FPGA of the sun sensor

In section 4.2.1.2 it is stated that the first Sun pixel is determined without using extra time. The first Sun
pixel is determined with parallel processing, an abillity that is available when using a FPGA. The first Sun
pixel is determined in parallel with the image being written to the memory. The coordinates of the first
Sun pixel is stored in a register on the FPGA when reading state C in figure 6.15.

A

Default

SUNEN = 0,
HREF = 1,
RNW = 0

B C
Count = 1 Count = 2 Count = 3

Count = 0

SUNEN = 1

Count = 0
Count = 0

SUNEN = 1

SUNEN = 1

SUNEN = 1

STATE A:
If pixel > 200 then

Store pixel
Count = 1

else
Count = 0

STATE B:
If pixel > 200 then

Count = 2
else

Count = 0

STATE C:
If pixel > 200 then

Count = 3
else

Count = 0

DEFAULT:
Count = 0

Figure 6.15 – Flow diagram for searching the first Sun pixel

Figure 6.15 shows the flow diagram of the implemented state machine for searching the first Sun pixel.
The algorithm is implemented with one rule. If three consecutive pixels are above the threshold, then the
first pixel is the first Sun pixel. Three consecutive pixels are examined to ensure that dead pixels that latch
to a value above the threshold, are not mistaken as the first Sun pixel. Therefore, the state machine has
four states.

The default state resets the counter to 0 and stays in this state until activated. When activated, the state
machine will begin at state A and will only move to state B if the pixel examined at state A, is above the

CHAPTER 6. SOFTWARE IMPLEMENTATION 58

threshold. The same will happen at state B when moving to state C, but if the pixel examined at state B is
below the threshold, the state machine will move back to state A. When the state machine reaches state C,
it will stay in that state until the module is reset through the microcontroller. The state machine compares
pixels and moves to the next state on the rising edge of the pixel clock from the camera module.

6.6.2 Area search

Figure 6.16 is an area search flow diagram of the state machine implemented for the sun sensor.

Default

A B C D E

SUNEN = 1
SUNEN = 1

SUNEN = 1

Loop controlled by
microcontroller

SUNEN = 0,
RNW = 1,
EDGE = 1,
SHIFT = 0

SUNEN = 1 SUNEN = 1

SUNEN = 1

STATE A:
LSB of 1st Sun
pixel x
coordinate to
microcontroller

STATE B:
MSB of 1st Sun
pixel x
coordinate to
microcontroller

STATE C:
LSB of 1st Sun
pixel y
coordinate to
microcontroller

STATE D:
MSB of 1st Sun
pixel y
coordinate to
microcontroller

STATE E:
Column address++
If Column address = (SA x + 15) then

Column address = SA x
Row address ++

DEFAULT:
Origin of Sun Area =
SA x = 1st Sun x – 5
SA y = 1st Sun y – 3
Column Address = SA x
Row Address = SA y

Figure 6.16 – Area search flow diagram for sun sensor

The default state sets the origin of the area. These coordinates correspond to the specific row and column
address in the memory. Before the area search can begin, the first Sun pixel’s coordinates are sent to
the microcontroller, as these coordinates are required for the centroid calculation. These coordinates are
two 16-bit integers. Therefore, the first four states send the coordinates to the microcontroller, eight bits
at a time. The last state is identical to the horizontal and vertical line searches implemented in the nadir
sensor’s FPGA. The loop at state E is controlled by the microcontroller, as the clock that changes the states
is generated by the microcontroller. State E is the state that sends the pixels enclosed in the area search,
to the microcontroller for centroid calculations for the sun sensor. The state changes at the rising of this
clock.

6.6.3 Centroid calculation

Figure 6.17 shows the process followed to calculate the centroid of the Sun. The possible Sun pixels are
the

Thresholding
Possible

Sun Pixels

Centroid
Calculation
(Distorted)

Distortion
Correction

Centroid

Figure 6.17 – Calculating the Sun’s centroid

pixels sent from the FPGA, as the threshold implemented on the FPGA is lower than the actual threshold
implemented to determine the Sun pixels. The threshold on the FPGA is 200. As the average of the Sun

CHAPTER 6. SOFTWARE IMPLEMENTATION 59

pixels’ coordinates are used in the calculation of the Sun’s centroid, the centroid is calculated with the
following:

Sun centroidx = First Sun pixelx +

∑N
i=1 pixelvalue(i)× pixelx(i)∑N

i=1 pixelvalue(i)
(6.6.1)

Sun centroidy = First Sun pixely +

∑N
i=1 pixelvalue(i)× pixely(i)∑N

i=1 pixelvalue(i)
(6.6.2)

where N is the total Sun pixels, pixel(i) is the current pixel x and y coordinates and pixelvalue(i) is the value
representing the luminance of the pixel. The luminance level of the Sun pixels are used to weigh each
pixel against the other pixels to calculate a more accurate centroid. The first Sun pixel’s coordinates are
also used in the calculations, as the weighted pixels calculate the centroid with reference to the search
area’s coordinates. By adding the first Sun pixel’s coordinates, the centroid is then referenced to the
image’s coordinates. The calculated centroid is still distorted. Distortion correction is implemented after
the centroid is calculated, because the Sun pixels are situated close to one another and therefore the
difference in the distortion between these pixels are minimal.

Chapter 7

Results

7.1 Nadir sensor measurement results

In this section the measurement results of the nadir sensor are discussed. The goal given for the nadir
sensor is an accuracy of less than 0.2◦ for a full profile of the Earth.

Figure 7.1 shows the body frame angles measured in all directions with the nadir sensor. These measure-
ments are documented using the testbench described in section 5.4.1 for the nadir sensor. The result of a
100 samples of each angle that was measured, are documented.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 7.1 – Nadir sensor body frame angles

60

CHAPTER 7. RESULTS 61

The dashed line in figure 7.1(a), 7.1(b), 7.1(c) and 7.1(d) represents the expected body frame angle to
be measured at each angle. The measured points are the average from the 100 samples at the specific
measured body frame angles.

For these measurements, 30◦ indicates where the edge of the ball utilised for the testbench starts tou-
ching the edge of the fisheye lens’ FOV. As figure 7.1 shows the measured angles follow the expected
angles very well, with a average offset error between the measured and expected angles of 0.12◦ for fi-
gure 7.1(a), 0.16◦ for figure 7.1(b), 0.13◦ for figure 7.1(c) and 0.15◦ for figure 7.1(d).

When the ball moves outside the edge of the FOV of the fisheye lens, the offset error increases as the
portion of the full profile of the ball becomes smaller. The remainder of the ball profile moves into the area
of the FOV with the most distortion. The less the ball profile is in view, the more distortion errors occur in
the calculation of the ball’s centroid.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 7.2 – Nadir sensor RMS error

Figure 7.2 shows the RMS error of the nadir sensor measurement over the FOV. For better accuracy on
the nadir sensor, the standard deviation [52] of the 100 samples for each angle is calculated to examine
how the RMS error varies over the FOV:

E[Xn] =
1

N

N∑
i=1

xni (7.1.1)

σX =
√
E[X2]− E[X]2 (7.1.2)

CHAPTER 7. RESULTS 62

where σX is the standard deviation. The points in figures 7.2(a) to 7.2(d) represent the calculated standard
deviations over the FOV. The line represents the polynomial model that best fits the standard deviations.
The model is created using MATLAB’s polyfit() function.

Except for minor differences due to practical limitations from the test setup, the model in each figure of
figure 7.2 seems identical. The standard deviation stays below 0.18◦ for angles below 30◦.

For the same reason the offset errors increase, the standard deviation also increases when the ball profile
moves beyond the edge of the FOV. Therefore more of the ball’s visible profile is situated in the image area
with the most distortion.

7.2 Sun sensor measurement results

The measurement results for the sun sensor is discussed in this section. The goal given for the sun sensor
is an accuracy of below 0.2◦ for the FOV ±45◦ and below 2◦ for the FOV between ± 45◦ to ± 90◦.

Figure 7.3 shows the body frame angles measured in all directions with the sun sensor.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 7.3 – Sun sensor body frame angles

Similar to the body frame angles in the nadir sensor, the dashed line in figures 7.3(a) to 7.3(d) represent
the expected body frame angles from the sun sensor. The measured points are the averages from 100
samples documented for each measured angle. For all directions the offset error stays below 0.3◦ for the
FOV below 40◦. Between the 40◦ and 60◦ the error increases to a maximum of 1◦. For the rest of the

CHAPTER 7. RESULTS 63

FOV the offset error increases to a maximum of 1.85◦, but converges back when reaching the edge of the
FOV. It appears as if the distortion correction model over corrects the measurements from the sun sensor,
as the difference between the offset error and the expected measurements are always positive, except for
the measurements at ±90◦.

Figure 7.4 shows the RMS error of the sun sensor in all directions. Equation 7.1.2 is used to calculate the
standard deviation for the 100 samples at each measured angle.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 7.4 – Sun sensor RMS error

Figures 7.4(a) to 7.4(b) show the model created from the standard deviations in each direction. There
is no repeating model in any of the figures, as the standard deviations appear to look like random noise.
However, the maximum standard deviation is only 0.045◦.

CHAPTER 7. RESULTS 64

7.3 Power consumption

Power consumption is determined by measuring the current through a series resistor. Previous current
measurements indicated that the maximum current required will be under 100 mA. The series resistor
is selected as 10 Ω, giving the measurements a resolution of 10 mV per 1 mA. However, a 10 Ω resistor
was not available. Instead two parallel 22 Ω resistors are used. The parallel resistor are measured with a
multimeter and measured as 11.1 Ω.

11.1 Ohm

Voltage Regulator Power Supply

Oscilloscope

MCU

Figure 7.5 – Power measurement

Figure 7.5 shows the setup for measuring the power consumption of the sun and nadir sensors. An
oscilloscope is utilised to measure the voltage over the shunt resistor. Table 7.1 shows the results of
the power consumption measured from the prototype board. The board is powered by a regulated 5 V
voltage rail.

MCU SRAM Cameras FPGA Voltage
measured

Equivalent
Current

Power

Reset Off Off 2xOn 93 mV 8.4 mA 41.9 mW
Active Standby - MCU & FPGA On 138 mV 12.4 mA 62.2 mW

On 1xOn 1xOff Off 2xOn 187 mV 16.8 mA 84.2 mW
On 2xOn Off 2xOn 240 mV 21.6 mA 108.1 mW
On 2xOn 1xOn 1xOff 2xOn 548 mV 49.4 mA 246.8 mW
On 2xOn 2xOn 2xOn 798 mV 71.9 mA 359.5 mW
Active 1xActive 1xOn 1xImaging 1xOn 2xActive 880 mV 79.3 mA 396.4 mW
Active 2xActive 2xImaging 2xActive 960 mV 86.5 mA 432.4 mW

Table 7.1 – Power consumption measured

The power consumption in table 7.1 is the average power measured when the sensors are in different
states. The power consumption when an image is being produced, is shown in Figure 7.6. The power
required to produce an image increases for 48 ms, where the maximum power during imaging is noted in
table 7.1.

Figure 7.6 – Time required for the current to stabilise after an image is produced

CHAPTER 7. RESULTS 65

7.4 Time requirements

The goal for the sun and nadir sensors are to be able to calculate a centroid at least once every second.
Figure 7.7 shows the results of the time measured from the prototype board when calculating the Sun and
the Earth’s centroids.

(a) Nadir sensor: length of imaging process (b) Sun sensor: length of imaging process

(c) Nadir sensor time measurement deviations (d) Sun sensor time measurement deviations

Figure 7.7 – Processing time measurements for sun and nadir sensors

Figures 7.7(a) and 7.7(b) show the processing time required for the nadir and sun sensor respectively to
complete the process from producing an image to calculating the centroid. The time required to calculate
the centroid from the nadir and sun sensor, respectively, is 246 ms and 65 ms, but it is not accurately
measured from the oscilloscope.

To verify the time seen on the oscilloscope, a timer on the microcontroller is utilised to measure a more
accurate time interval. The on-chip timer is set up to calculate the time with the following equation:

Time = [Timer register]× Prescaler

FOSC

= [Timer register]× 256

5× 106
(7.4.1)

Figures 7.7(c) and 7.7(d) show the time measured with the on-chip timer for the nadir and sun sensor,
respectively, over a 100 samples. The average time for the nadir and sun sensors to complete the process
from producing an image to calculating the centroid is 245.0 ms and 70.4 ms, respectively. Both sensors’
time measurements have a standard deviation of 11 ms.

CHAPTER 7. RESULTS 66

7.5 Mass measurements

Since the mass of the satellite is also taken into consideration, because of the limit on the it for CubeSats,
the prototype sensors’ mass are documented as well. Table 7.2 shows the results of the mass measure-
ments.

Component Mass Quantity
Sensor PCB 45 g 1
Fisheye lens 17.4 g 2

Camera 15.1 g 2
Total 110 g

Table 7.2 – Total mass of sun and nadir sensor

If the maximum mass for a 1U (1 unit) CubeSat is 1.33 kg, the sun and nadir sensor will be 8.27% of the
total mass. Note that the mass measured does not include the components required to hold the hardware
in place, for example screws, stand-offs, etc. and the mass was measured using the prototype PCB and not
the final PCB. However, the differences between the prototype and the final pcb is minimal.

Chapter 8

Conclusion

The performance goal given for the nadir sensor is to produce accuracy below 0.2◦. The accuracy is
calculated as follows:

Accuracy = Offset error + RMS error

Figure 8.1 shows the accuracy for the nadir sensor over the measured FOV. The accuracy for the nadir
sensor for a full profile of the Earth varies between 0.1◦ and 0.46◦. The low accuracies are because of
offset and RMS errors that increase as the ball moves towards the edge of the FOV.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 8.1 – Accuracy for nadir sensor

67

CHAPTER 8. CONCLUSION 68

The goal for the sun sensor is to perform with an accuracy of below 0.2◦ for the FOV of ± 45◦ and below 2◦

for the FOV between ± 45◦ and ± 90◦. Figure 8.2 indicates the accuracy for the sun sensor. The accuracy
for the sun sensor is calculated similarly to the accuracy of the nadir Sensor. The accuracy stays below
0.2◦ for a FOV of ± 30◦. However, the accuracy never increases above 2◦ for the rest of the measured
FOV.

(a) Negative Azimuth (b) Positive Azimuth

(c) Negative Elevation (d) Positive Elevation

Figure 8.2 – Accuracy for sun sensor

The power consumption for the sun and nadir sensors appear to be very efficient, as the maximum power
required is below 450 mW and this is only required for 48 ms every second. The active standby power is
also very efficient at 62.2 mW.

It is clear from the time measurements, that both the sun and nadir sensors’ processing times are below
the 1 s sampling time which was set as a goal for the project. The average time to complete the process
from producing an image to calculating the centroid, is 245.0 ms and 70.4 ms for the nadir and sun sensor,
respectively.

Overall the goals set for this project have been met, however recommendations can be made to possibly
improve the performance results (see section 9.2).

Chapter 9

Summary and Recommendations

9.1 Summary

In this thesis the design and calibration of a sun and nadir sensor for a CubeSat are discussed.

CMOS camera modules were given to represent the sun and nadir sensors. Fisheye lenses and a neutral
density filter were selected to enable the nadir sensor to see the entire profile of the Earth and to attenuate
the sunlight for the sun sensor up to the point where the Sun is represented by a small illuminated area
on the image. The hardware surrounding these camera modules were selected to enable the project to
store and retrieve images and process these images to the necessary pixels required for the centroid cal-
culations. The choice of memory resulted in SRAM units, as this type of memory has the necessary write
speeds and low power to store the images. The memory units are powered by power transistors. These
are used for power cycling in the event of a SEE in the memory units. A dual FPGA and microcontroller
layout is implemented to control the two camera modules, to store and retrieve images and to calculate
the centroid of the Earth and the Sun.

The image processing required to find the centroids of the Earth and the Sun is broken down into thres-
holding, pixel search algorithms, edge detection, distortion correction and centroid calculations. The
method for thresholding presented by Van Rensburg [30] was implemented, where a fixed threshold is de-
termined by the luminance of the Earth or Sun and space. The search algorithms are designed to shorten
the time required for edge detection. The edge detection procedure applies the threshold to determine
whether pixels are part of the Earth or the Sun and follows set rules to filter out the edge pixels from
the Earth and the Sun. The distortion model implemented is the PFET proposed by Basu and Licardie
[33]. The least square circle [36] algorithm was selected to calculate the Earth’s centroid, as it minimizes
the error from the edge pixels. Because the Sun is always a small percentage of the image, all pixels’
coordinates above the threshold are averaged to calculate the Sun’s centroid.

The positions of the boresight and distortion centre points are determined, as they are required for the
centroid calulations and the calibration of the nadir and sun sensors. The focal length of the nadir sensor
and the radius of the Sun are determined to find the optimal focus of the sensors. The distortion correc-
tion model is determined by measuring the distortion over the FOV of the fisheye lens. The optic point is
determined to minimise the errors in the calibration testbenches.

Instead of calculating the distortion correction for each distorted edge pixel, a lookup table is implemen-
ted in software to shorten the time required to undistort the edge pixels before calculating the centroids.
The search algorithms are implemented as state machines on the FPGA, as the FPGA has direct memory
access. The first Sun pixel is determined in parallel with the image being written to memory. A binary
search is implemented to search the nadir edge pixels between the sampled pixels for a pixel accuracy.
Interpolation is implemented to achieve sub-pixel accuracy during distortion correction. The radii of the
nadir edge pixels are calculated to determine whether the pixels are indeed a valid edge or a false edge
created by the Earth moving beyond the fisheye lens’ FOV.

69

CHAPTER 9. SUMMARY AND RECOMMENDATIONS 70

The results of the nadir body frame angles show that the accuracy of the nadir sensor does not stay below
the set goal of 0.2◦ over the FOV where a full profile of the Earth is visible. There are offset and RMS
errors when a full profile of the Earth is visible and these errors increase as the partial Earth profile viewed
decreases. The standard deviation of the sun sensor stays below 0.045◦ throughout the entire FOV. There
are, however, large offset errors at the higher end of the FOV. The power and time measurements show
that the sun and nadir sensors work well within the goals set for this project.

9.2 Recommendations and improvements

9.2.1 I2C on FPGA

Between the microcontroller and the two FPGAs there are eight control pins (as shown in table 6.3) and
eight data pins. These pins are necessary to implement all the functions required for the sun and na-
dir sensors. If less pins were required, the space required for the layout of the connections between the
microcontroller and the two FPGAs would be less, and less power will be required from the microcontroller.

It is possible to scale down the eight control pins and eight data pins between the microcontroller and
two FPGAs to just two pins, by implementing an I2C module on the two FPGAs. The I2C bus only requires
a data and clock line and the same I2C bus can be used for both FPGAs. Figure 9.1 shows the I2C bus
implemented on the FPGAs.

MicrocontrollerFPGA

I2C Module

Dataflow

Software I2C

Data
(Optional)

Address Control

Memory

Figure 9.1 – I2C module for FPGA

The advantages of implementing an I2C module are the following:

• Less connections are required between components. Therefore the entire layout will be more com-
pact.

• Less power will be required from the microcontroller.

• Address control of the memory will be possible from the microcontroller, as the specific memory
addresses that are required for calculations can be generated on the microcontroller and sent to the
FPGA and the memory unit via the I2C bus.

The disadvantage of implementing an I2C module are the following:

• The AGLN030 FPGA might not have enough tiles and gates to accompany an I2C module along with
the rest of the modules already implemented on the FPGA.

• More time may be required to compute the function of the sun and nadir sensors, as the I2C bus is a
serial process and the direct control pins are a parallel process.

CHAPTER 9. SUMMARY AND RECOMMENDATIONS 71

9.2.2 Address control from microcontroller

Figure 6.8 shows the flow diagram of the edge detection that is repeated during the execution of both ho-
rizontal and vertical search algorithms of the nadir sensor. However, if the microcontroller could control
the addressing of the memory unit directly, the horizontal and vertical search algorithms can be simplified
to a single search algorithm and therefore the edge detection can be simplified to a single flow diagram
as well. The simplified edge detection is shown in figure 9.2.

Move to new current
sample pixel

Current sample
pixel Earth?

Previous
sample pixel Space?

(Horizontal)

Previous
sample pixel Space?

(Vertical)

Yes

Previous
sample pixel Earth?

(Horizontal)

Previous
sample pixel Earth?

(Vertical)

No

Do binary search
between current

and previous pixel

Do binary search
between current

and previous pixel

Do binary search
between current

and previous pixel

Do binary search
between current

and previous pixel

Yes Yes Yes Yes

Is pixel a true
edge pixel?

Is pixel a true
edge pixel?

Is pixel a true
edge pixel?

Is pixel a true
edge pixel?

NoNo

Store edge pixel
coordinates

Yes

Store edge pixel
coordinates

Yes

Figure 9.2 – Edge detection for nadir sensor with address control on microcontroller

The edge detection of the nadir sensor will still follow the same edge detection rules, as stated in section
4.2.2. However, the current sample pixel will be tested in both vertical and horizontal directions before
moving to the next current sample pixel.

(a) Implemented edge detection. Address
control performed on FPGA

(b) Edge detection with address control perfor-
med on microcontroller

Figure 9.3 – Difference in edge detection procedures

Figure 9.3 shows the difference between the current search algorithms implemented and the single search

CHAPTER 9. SUMMARY AND RECOMMENDATIONS 72

algorithm that could be implemented if the microcontroller had control over the memory unit’s addres-
sing. The lines in figures 9.3(a) and 9.3(b) show the pixels that may possibly be searched for edge pixels.
It is clear that the search algorithm in figure 9.3(b) searches through much less pixels than the search
algorithms in figure 9.3(a) and therefore the search algorithm uses less time to complete.

9.2.3 Alternative hardware layout

Figure 9.4 shows a different layout to the one implement in this project. The difference between this al-
ternative layout and the one implemented is that only one FPGA is required to be active when processing
the images. The second FPGA would be a backup FPGA.

Camera Module

Camera Module

FPGA FPGA

SRAM

SRAM

MCU

Figure 9.4 – Alternative harware layout

The advantages of implementing this layout are the following:

• Fewer control pins are necessary, as the same control pins are implemented for both camera modules
and memory units.

• The images can be processed faster, because only one command from the microcontroller and the
parallel processing ability of the FPGA are required to activate both camera modules and store both
images.

The disadvantages of implementing this layout are the following:

• Although the footprint of most IGLOO Nano FPGAs are constant (therefore requiring no extra space
on the PCB) the current AGLN030 does not have enough gates and tiles to implement both sun and
nadir sensors’ search algorithms.

• With more gates and tiles active in an FPGA, more power is required when using the FPGA.

• The system would become more complex, because buffers would be incorporated to ensure that if
the primary FPGA would fail, it would not prohibit the backup FPGA of taking control of the system.

This option for alternative layout should only be considered when less processing time becomes a higher
priority than a lower power consumption.

Appendix A

Datasheets

A.1 C3188A camera module

C3188A
1/3” Color Camera Module

With Digital Output

General Descr iption

The C3188A is a 1/3” color camera module with digital output. It uses OmniVision’s
CMOS image sensor OV7620. Combining CMOS technology together with an easy
to use digital interface makes C3188A a low cost solution for higher quality video
image application.

The digital video port supplies a continuous 8/16 bit-wide image data stream. All
camera functions, such as exposure, gamma, gain, white balance, color matrix,
windowing, are programmable through I2C interface.

If combined with an OV511+ (USB controller chip) it can easily form a USB camera for PC applications.

Features:

326,688 pixels, VGA / CIF format
Small size : 40 x 28 mm
Lens: f=6mm (Optional)
8/16 bit video data : CCIR601, CCIR656, ZV port
Read out - progressive / interlace
Data format -YCrCb 4:2:2, GRB 4:2:2, RGB
I2C interface
Built in 10bit 2 ch A/D converter
Electronic exposure / Gain / White balance control
Image enhancement - brightness, contrast, gamma,
saturation, sharpness, window, etc
Internal / external synchronization scheme
Frame exposure / line exposure option
Wide dynamic range, anti blooming, zero smearing
Single 5V operation
Low power consumption (<120mW)
Monochrome composite video signal output (60Hz)

Application Example

l Video Conferencing
l PC Multimedia
l Video Phone
l Video Mail
l Still Image
l Machine Vision
l Process control

Note: Evaluation Board is available for C3188A

Specification

Imager OV7620, CMOS image sensor

Array Size 664x492 pixels

Pixel size 7.6 x 7.6 µm

Scanning Progressive / interlace

Effective image area 4.86mm x 3.64mm

Electronic Exposure 500:1

Gamma Correction 128 curve settings

S/N Ratio >48dB

Min Illumination 2.5lux @F1.4

Operation Voltage 5 VDC

Operation Current 120mW Active
10 µW Standby

Lens f6mm, F1.6

Pin Description

1~8 Y0~Y7 Digi tal output Y Bus.
9 PWDN Power down mode
10 RST Reset
11 SDA I2C Serial data
12 FODD Odd Field f lag
13 SCL I2C Serial clock input
14 HREF Horizontal window reference output
15 AGND Analog Ground
16 VSYN Vertical Sync output
17 AGND Analog Ground
18 PCLK Pixel clock output
19 EXCLK External clock input (need to remove
crystal)
20 VCC Power Supply 5VDC
21 AGND Analog Ground
22 VCC Power Supply 5VDC
23~30 UV0-UV7 Digi tal output UV bus.
31 GND Common ground
32 VTO Video Analog Output (75Ω monochrome)

2
1

32
31

PCB Layout (Top view)

OV762

73

APPENDIX A. DATASHEETS 74

A.2 OV7620 colour image sensor

OV7620 Product Specifications -Rev. 1.3 (5/13/00)
Preliminary Company Confidential

OV7620 SINGLE-CHIP CMOS VGA COLOR DIGITAL CAMERA

Features

• 326,688 pixels, 1/3” lens, VGA / QVGA format

• Read out - progressive / Interlace

• Data format - YCrCb 4:2:2, GRB 4:2:2, RGB Raw Data

• 8/16 bit video data: CCIR601, CCIR656, ZV port

• Video Timing - 525 line, 30 fps

• Wide dynamic range, anti-blooming, zero smearing

• SCCB (Serial Camera Control Bus) interface

• Electronic exposure / Gain / white balance control

• Image enhancement - brightness, contrast, gamma, saturation,
sharpness, window, etc.

• Internal / external synchronization scheme

• Frame exposure / line exposure option

• 5 Volt operation, low power dissipation.

General Description
OV7620 is a highly integrated high resolution
(640x480) Interlaced / Progressive Scan CMOS digital
color / black&white video camera chip. The digital
video port supports 60Hz YCrCb 4:2:2 16Bit / 8 Bit for-
mat, ZV Port output format, RGB raw data 16Bit/8Bit
output format and CCIR601/CCIR656 format. The built-
in SCCB interface provides an easy way of controlling
the built-in camera functions.

• Video Conferencing

• Video Phone

• Video Mail

• Still Image

• PC Multimedia

OV7001 48-Pin Out Diagram

U
V

7/
B

8
U

V
6/

B
P

C
L

R
U

V
5/

M
IR

U
V

4/
S

L
A

E
N

U
V

3/
E

C
L

K
O

U
V

2/
Q

V
G

A
U

V
1/

C
C

65
6

U
V

0/
G

A
M

D
IS

X
C

L
K

1
X

C
L

K
2

D
V

D
D

D
G

N
D

6 5 4 3 2 1 48 47 46 45 44 43

A
G

N
D

V
R

E
Q

F
R

E
X

A
G

C
E

N
/R

A
M

IN
T

R
E

S
E

T
S

V
D

D
S

G
N

D
M

ID
S

IO
-0

S
IO

-1
A

V
D

D
A

G
N

D

7
8
9
10
11
12
13
14
15
16
17
18

AGND
AVDD
PWDN

VRS
VCCHG

SBB
VTO

AVDD
AGND

VSYNC/CSYS
 FODD/SRAM
HREF/VSRAM 31

32
33
34
35
36
37
38
39
40
41
42

DOGND
DOVDD
PCLK/OUTX2
Y7/CS0
Y6/CS2
Y5/SHARP
Y4/CS1
Y3/RAW
Y2/G2X
Y1/PROG
Y0/CBAR
CHSYNC/BW

19 20 21 22 23 24 25 26 27 28 29 30

OV7620

Array Elements 664 x 492

Pixel Size 7.6 x 7.6 um

Image Area 4.86 x 3.64mm

Electronic
Exposure

500 : 1

Scan Mode
progressive

interlace

Gamma
Correction

128 Curve Settings
See specifics

Minimum
Illumination

2.5 lux @ f1.4
0.5 lux @ f1.4

(3000K)

S/N Ratio > 48dB

Power Supply 5VDC, ±5%

Power
Requirements

<120mW Active
<10uW Standby

Package 48-pin LCC

APPENDIX A. DATASHEETS 75

OV7620 Product Specifications - Rev. 1.2 (5/13/00) OMNIVISION TECHNOLOGIES INC.

9

Preliminary Company Confidential

To decrease data transfer rate while high resolution image unnecessary, OV7620 provide a so-
lution, that is it can output QVGA resolution image. This mode decrease pixel rate one half. The
resolution default value is 320x240 and can be programmable. Every line only output one half
data. For Interlaced Mode, all field line output (320), for Progressive Scan Mode, only one half
line data output.

The digital video port also offer RGB Raw Data 16 Bit/8 Bit format. The output sequence is
matched to OV7620 Color Filter Pattern, that is UV channel output sequence is G R G R ..., Y
Channel output sequence is B G B G,....To 8 Bit RGB Raw data output format, just use Y channel
and disable UV channel, output sequence is B G R G

OV7620 support CCIR656 YCrCb 4:2:2 digital output format. The SAV(Start of Active Video) and
EAV(End of Active Video) is just at the beginning and the end of HREF window. So the position
of SAV and EAV is changing with active pixel window. Also you can get 8 bit RGB raw data with
SAV and EAV information.

OV7620 support some flexible YUV output format. One is standard YUV 4:2:2. Another is U V
sequence swap format, that means UV channel output V U V U ...(16 Bit) and V Y U Y ...(8 Bit).
The 3rd format is Y/UV sequence swap in 8 Bit output, that is Y U Y V

OV7620 can be use as black&white camera. At this mode, it’s vertical resolution will be higher
than color mode. All data will be output from Y port and UV port will be tri-state. Data (Y/RGB)
output rate is same as 16 Bit mode.

OV7620 can be programmable to swap Y/UV or RGB output byte MSB and LSB. Y7 - Y0 default
sequence is Y7 is MSB and Y0 is LSB. When swap, Y7 is LSB and Y0 is MSB, relative middle
bits are swapped.

An important factor about digital camera is how convenient the interface is, OV7620 has made
the frame rate programmable and the A/D synchronous to the actual pixel rate. Essentially, it is
a whole image capture system in a single chip. Since the internal AEC has a range of 1:260, and
AGC have 24dB, for the most of applications, the camera can adjust itself to meet the lighting
condition without user intervention.

OV7620 support hardware/software RESET function: when RESET pin tie to high, whole chip
will be reset including all register. Hardware sleeping mode: when PWDN tie to high, chip clock
will be stop and internal circuit reset except all SCCB register. Also there is a SCCB control soft-
ware reset control register 12 bit 7, which is same as hardware RESET pin function.

OV7620 hardware reset time minimum is 1 ms.

OV7620 support hardware/software power saving mode. When the PWDN pin tie to high, whole
chip will be set to power down status without any current consumption. For software power down
control, all current set to zero except crystal circuit. In power down mode, all SCCB register value
will be kept.

Two control mechanism have been built into OV7620: A. one time read-in of pin states at power
up or RESET status, including hardware and software reset; B. SCCB interface. Two methods
are mutually exclusive, only one is used at a time, selected by pin SBB. Method A has limited
access to full chip features.

The power up reset method is a one time setting, the setting can not be altered later. The pins

APPENDIX A. DATASHEETS 76

OV7620 Product Specifications - Rev. 1.2 (5/13/00) OMNIVISION TECHNOLOGIES INC.

12

Preliminary Company Confidential

FIG 1.2 Pixel Data Bus (YUV Output)

Note: Tclk is pixel clock period. When OV7620 system clock is 27MHz, Tclk=74ns for 16 Bit out-
put; Tclk=37ns for 8 Bit output. Tsu is HREF set-up time, maximum is 15 ns; Thd is HREF hold
time, maximum is 15 ns.

Y<7:0>

PCLK

HREF

UV<7:0>

10 10Y Y

80 80U V

repeat for all data bytes

Pixel Data 16 bit Timing

Y<7:0>

PCLK

HREF

repeat for all data bytes

Pixel Data 8 bit Timing

U Y V Y 801010 80

Use PCLK rising edge latch data bus

Use PCLK rising edge latch data bus

Tsu

Thd

Thd

Tclk

Tclk

10

Tsu

APPENDIX A. DATASHEETS 77

A.3 ORIFL190-3 fisheye lens

Omnitech Robotics International LLC www.omnitech.com Tel: 303 922 7773
1

ORIFL190-3

190 Degree Field Of View Fisheye Lens
For 1/3” Format Cameras

Specifications:

• Field of View: 190 degrees
• Focal Plane Field Diameter: 3.4 mm
• Focal length: 1.24 mm
• F/number: 2.8
• Focus range: 0.5 inches to infinity
• MTF @ 70 cycles/mm (with 640x480 sensors):

• 76% on symmetrical axis
•>72% throughout 190 degree field

• MTF @ 150 cycles/mm (with 1280x1024 sensors):
• 42% on symmetrical axis
•>42% throughout field

• Maximum Image Height Distortion measured from
F-theta condition, at edge of field: 17.3%

• Lens Housing Outer Diameter: 0.943” (23.95mm)
• Lens Length: 1.016”: (25.82mm)
• Lens Mount: Micro 12mm x 0.5mm thread
• Back Focal Length 2.77 mm.
• Lens body to Image Sensor Dimension 2.25 mm.

F1: The ORIFL190-3 Lens

F2: Example Image F3: The ORIFL190-3 is compatible with a range of cameras

Introduction:

The ORIFL190-3 is a high quality fisheye lens that provides a 190 degree field of view. The circular image pro-
duced is 3.4 mm in diameter allowing 1/3 inch format cameras/sensors to capture a symmetrical hemispherical
image. It is also compatible with 1/2” and 1/4” format cameras/sensors although the viewable field will vary.
Designed and built exclusively by and for Omnitech Robotics, the ORIFL190-3 is optimized for small size and high
image quality. The anodized aluminum lens body is only 24 mm in diameter, yet the optics have excellent sharp-
ness, contrast, field compression linearity, and field luminance and color correctness throughout the field of view.
The glass lens construction and coated optics provide a 1.24 mm focal length and F/2.8 speed for good low light
capability. The large primary lens uses an O-ring seal to provide water and humidity resistance. Compatibility with
most web-cam, circuit board and bullet style cameras is provided with the standard “micro mount” 12mm x
0.5mm pitch mounting thread.

APPENDIX A. DATASHEETS 78

Omnitech Robotics International LLC www.omnitech.com Tel: 303 922 7773
3

length. The gap between the final glass lens element and the image plane (Back Focal Length) is
2.77 mm when the lens is properly installed and in focus. The gap between the end of the lens
housing and the image plane is 2.25 mm when the lens is properly installed and in focus. If the
image sensor uses a cover glass or filter, it must be less than this dimension. Figure F5 illustrates
nominal mounting dimensions for reference. If needed, ORI also sells a very thin (0.5 mm) visible
bandpass filter that cuts IR and UV transmission to less than 3%, while passing the visible spec-
trum from 380 nm to 650 nm (94% typical), to provide improved color correctness of CMOS or
CCD image sensors.

A third factor to consider is the electronic shutter capability of the camera, since there is not a
mechanical aperture control or shutter on the lens. A fast electronic shutter (exposure time) may
be necessary to obtain a proper exposure in bright light conditions. This is possible with most
CMOS cameras, but may difficult be with older or high sensitivity CCD cameras and bright light-
ing conditions.

Figures F7 through F12 show sample images for the ORIFL190-3. Figures F13 through F17 illus-
trate design curves for the lens performance.

Potential Applications

• Wide Field Of View Robotic Vehicle Image Sensing
• Wide Field Of View Security Cameras
• Wide Field Of View Astronomy Applications: All sky imaging, cloud cover measurement, light

pollution measurement.

1/4” Format Image Sensor typically measures 3.6mm x 2.7mm

1/3” Format Image Sensor typically measures 5.0mm x 3.7mm

1/2” Format Image Sensor typically measures 6.6mm x 5.3mm

The entire 3.4mm circular focal
plane area can Not be seen. The
top and bottom are cropped.

The entire 3.4mm circular focal
plane area can be seen. Lens align-
ment must be precise.

The entire 3.4 mm circular focal
plane area can be seen. The
large sensor focal plane area
makes lens alignment easier.

F6: Comparison of the ORIFL190-3 focal plane
area to different image sensor sizes

F5: Nominal mounting dimensions for the
ORIFL190-3 fisheye lens with a PCB camera
image sensor

APPENDIX A. DATASHEETS 79

A.4 AS7C34096A SRAM

August 2004

Copyright © Alliance Semiconductor. All rights reserved.

AS7C34096A

3.3V 512K × 8 CMOS SRAM

®

8/17/04, v. 2.1 Alliance Semiconductor P. 1 of 9

Features
• Pin compatible to AS7C34096
• Industrial and commercial temperature
• Organization: 524,288 words × 8 bits
• Center power and ground pins
• High speed

- 10/12/15/20 ns address access time
- 4/5/6/7 ns output enable access time

• Low power consumption: ACTIVE
- 650 mW / max @ 10 ns

• Low power consumption: STANDBY
- 28.8 mW / max CMOS

• Equal access and cycle times
• Easy memory expansion with CE, OE inputs
• TTL-compatible, three-state I/O
• JEDEC standard packages

- 400 mil 36-pin SOJ
- 44-pin TSOP 2

• ESD protection ≥ 2000 volts
• Latch-up current ≥ 200 mA

Logic block diagram

524,288 × 8
Array

(4,194,304) Se
ns

e
am

p

Input buffer

I/O8

I/O1

OE
CE

WEColumn decoder

R
ow

 d
ec

od
er

Control
Circuit

A0
A1
A2
A3
A4
A5
A6
A7

VCC

GND

A8

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A9

Pin ar rangements

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

32
31
30
29
28
27
26
25
24
23
22
21
20
19

A15
OE
I/O8
I/O7
GND
VCC
I/O6
I/O5
A14
A13
A12
A11
A10
NC

A0
A1
A2
A3
A4
CE

I/O1
I/O2
VCC
GND
I/O3
I/O4
WE
A5
A6
A7

17
18

A8
A9

36
35
34
33

NC
A18
A17
A16

GND
VCC
I/O6
I/O5

NC

A14
A13
A12
A11
A10

A4
CE

I/O1
I/O2
VCC
GND
I/O3
I/O4
WE
A5
A6
A7
A8
A9

I/O8
I/O7

A1
A2
A3

A0

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23

43
42
41

44

A16
A15

A175
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

2
3
4

1

NC
NC

NC
NC

NC
NC

NC
NC
NC

OE

A18

36-pin SOJ (400 mil)

44-pin TSOP 2

Selection guide
–10 –12 –15 –20 Unit

Maximum address access time 10 12 15 20 ns

Maximum outputenable access time 4 5 6 7 ns

Maximum operating current
Industrial 180 160 140 110 mA

Commercial 170 150 130 100 mA

Maximum CMOS standby current 8 8 8 8 mA

APPENDIX A. DATASHEETS 80

A.5 IRF7210PbF power MOSFET

Parameter Max. Units
VDS Drain- Source Voltage -12 V

ID @ TA = 25°C Continuous Drain Current, VGS @ -4.5V ±16

ID @ TA= 70°C Continuous Drain Current, VGS @ -4.5V ±12 A

IDM Pulsed Drain Current 0000 ±100

PD @TA = 25°C Power Dissipation 2.5

PD @TA = 70°C Power Dissipation 1.6

Linear Derating Factor 0.02 W/°C

VGS Gate-to-Source Voltage ± 12 V

VGSM Gate-to-Source Voltage Single Pulse tp<10µs 16 V

TJ, TSTG Junction and Storage Temperature Range -55 to + 150 °C

08/19/05

IRF7210PbF
HEXFET® Power MOSFET

Parameter Max. Units
RθJA Maximum Junction-to-Ambient 0000 50 °C/W

Thermal Resistance

These P-Channel MOSFETs from International Rectifier
utilize advanced processing techniques to achieve the
extremely low on-resistance per silicon area. This benefit
provides the designer with an extremely efficient device for
use in battery and load management applications.

The SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of power
applications. With these improvements, multiple devices
can be used in an application with dramatically reduced
board space. The package is designed for vapor phase,
infra red, or wave soldering techniques.

VDSS = -12V

RDS(on) = 0.007Ω

Description

Absolute Maximum Ratings

W

www.irf.com 1

l Ultra Low On-Resistance
l P-Channel MOSFET
l Surface Mount
l Available in Tape & Reel
l Lead-Free

Top View

81

2

3

4 5

6

7 D

D

DG

S

A
DS

S

SO-8

PD - 97040

APPENDIX A. DATASHEETS 81

A.6 INA169 high-side measurement shunt monitor

INA139
INA169

FEATURES
q COMPLETE UNIPOLAR HIGH-SIDE

CURRENT MEASUREMENT CIRCUIT
q WIDE SUPPLY AND COMMON-MODE RANGE
q INA139: 2.7V to 40V
q INA169: 2.7V to 60V
q INDEPENDENT SUPPLY AND INPUT COMMON-

MODE VOLTAGES
q SINGLE RESISTOR GAIN SET
q LOW QUIESCENT CURRENT (60µA typ)
q SOT23-5 PACKAGE

High-Side Measurement
CURRENT SHUNT MONITOR

DESCRIPTION
The INA139 and INA169 are high-side, unipolar, current
shunt monitors. Wide input common-mode voltage range,
high-speed, low quiescent current, and tiny SOT23 packag-
ing enable use in a variety of applications.

Input common-mode and power-supply voltages are inde-
pendent and can range from 2.7V to 40V for the INA139 and
2.7V to 60V for the INA169. Quiescent current is only 60µA,
which permits connecting the power supply to either side of
the current measurement shunt with minimal error.

The device converts a differential input voltage to a current
output. This current is converted back to a voltage with an
external load resistor that sets any gain from 1 to over 100.
Although designed for current shunt measurement, the cir-
cuit invites creative applications in measurement and level
shifting.

Both the INA139 and INA169 are available in SOT23-5
packages and are specified for the –40°C to +85°C industrial
temperature range.

APPLICATIONS
q CURRENT SHUNT MEASUREMENT:

Automotive, Telephone, Computers
q PORTABLE AND BATTERY-BACKUP

SYSTEMS
q BATTERY CHARGERS
q POWER MANAGEMENT
q CELL PHONES
q PRECISION CURRENT SOURCE

RS

2

1

OUT
GND

RL

VO = ISRSRL/1kΩ

Load

1kΩ 1kΩ

VIN+

Up to 60V

VIN+ VIN–

3 4

IS

V+
5

SBOS181D – DECEMBER 2000 – REVISED NOVEMBER 2005

www.ti.com

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Copyright © 2000-2005, Texas Instruments Incorporated

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

APPENDIX A. DATASHEETS 82

A.7 PIC18F45K20 microcontroller

© 2008 Microchip Technology Inc. Preliminary DS41303D-page 1

PIC18F2XK20/4XK20

Power-Managed Modes:

• Run: CPU on, Peripherals on
• Idle: CPU off, Peripherals on
• Sleep: CPU off, Peripherals off
• Idle Mode Currents Down to 1.0 μA, typical
• Sleep Mode Current Down to 0.1 μA, typical
• Timer1 Oscillator: 1.0 μA, 32 kHz, 1.8V, typical
• Watchdog Timer: 2.0 μA, 1.8V, typical
• Two-Speed Oscillator Start-up

Peripheral Highlights:

• High-Current Sink/Source 25 mA/25 mA
• Three Programmable External Interrupts
• Four Independent Input-Change Interrupts
• 8 Independent Weak Pull-ups
• Programmable Slew Rate
• Capture/Compare/PWM (CCP) module
• Enhanced Capture/Compare/PWM (ECCP)

module:
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-Shutdown and Auto-Restart

• Master Synchronous Serial Port (MSSP) module
supporting 3-wire SPI (all 4 modes) and I2C™
Master and Slave modes with address mask

• Enhanced Addressable USART module:
- Supports RS-485, RS-232 and LIN/J2602
- RS-232 operation using internal oscillator

block (no external crystal required)
- Auto-Wake-up on Break
- Auto-Baud Detect

• 10-bit, up to 14-Channel Analog-to-Digital
Converter module (ADC):
- Auto-acquisition capability
- Conversion available during Sleep
- Internal 1.2V Fixed Voltage Reference (FVR)

channel
- Independent input multiplexing

• Dual Analog Comparators:
- Rail-to-rail operation
- Independent input multiplexing

• Programmable On-Chip Voltage Reference
(CVREF) module (% of VDD)

Flexible Oscillator Structure:

• Four Crystal modes, up to 64 MHz
• 4X Phase Lock Loop (available for crystal and

internal oscillators)
• Two External RC modes, up to 4 MHz
• Two External Clock modes, up to 64 MHz
• Internal Oscillator Block:

- 8 user selectable frequencies, from 31 kHz to
16 MHz

- Provides a complete range of clock speeds
from 31 kHz to 64 MHz when used with PLL

- User tunable to compensate for frequency drift
• Secondary Oscillator using Timer1 @ 32 kHz
• Fail-Safe Clock Monitor:

- Allows for safe shutdown if primary or secondary
oscillator stops

Special Microcontroller Features:

• C Compiler Optimized Architecture:
- Optional extended instruction set designed to

optimize re-entrant code
• Self-Programmable under Software Control
• Priority Levels for Interrupts
• 8 x 8 Single-Cycle Hardware Multiplier
• Extended Watchdog Timer (WDT):

- Programmable period from 4 ms to 131s
• Single-Supply 3V In-Circuit Serial

Programming™ (ICSP™) via two pins
• In-Circuit Debug (ICD) via Two Pins
• Operating Voltage Range: 1.8V to 3.6V
• Programmable 16-Level High/Low-Voltage

Detection (HLVD) module:
- Supports interrupt on High/Low-Voltage

Detection
• Programmable Brown-out Reset (BOR):

- With software enable option

28/40/44-Pin Flash Microcontrollers with
10-Bit A/D and nanoWatt Technology

APPENDIX A. DATASHEETS 83

PIC18F2XK20/4XK20

DS41303D-page 2 Preliminary © 2008 Microchip Technology Inc.

-

Note 1: One pin is input only.
2: Channel count includes internal fixed voltage reference channel.

Device

Program Memory Data Memory

I/O(1)
10-bit
A/D

(ch)(2)

CCP/
ECCP
(PWM)

MSSP

E
U

S
A

R
T

Comp.
Timers
8/16-bitFlash

(bytes)
Single-Word
Instructions

 SRAM
(bytes)

EEPROM
(bytes)

SPI
Master
I2C™

PIC18F23K20 8K 4096 512 256 25 11 1/1 Y Y 1 2 1/3

PIC18F24K20 16K 8192 768 256 25 11 1/1 Y Y 1 2 1/3

PIC18F25K20 32K 16384 1536 256 25 11 1/1 Y Y 1 2 1/3

PIC18F26K20 64k 32768 3936 1024 25 11 1/1 Y Y 1 2 1/3

PIC18F43K20 8K 4096 512 256 36 14 1/1 Y Y 1 2 1/3

PIC18F44K20 16K 8192 768 256 36 14 1/1 Y Y 1 2 1/3

PIC18F45K20 32K 16384 1536 256 36 14 1/1 Y Y 1 2 1/3

PIC18F46K20 64k 32768 3936 1024 36 14 1/1 Y Y 1 2 1/3

APPENDIX A. DATASHEETS 84

© 2008 Microchip Technology Inc. Preliminary DS41303D-page 365

PIC18F2XK20/4XK20

26.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias.. .-40°C to +125°C

Storage temperature .. -65°C to +150°C

Voltage on any pin with respect to VSS (except VDD, and MCLR) .. -0.3V to (VDD + 0.3V)

Voltage on VDD with respect to VSS ... -0.3V to +5.0V

Voltage on MCLR with respect to VSS (Note 2) ... 0V to +12.5V

Total power dissipation (Note 1) ...1.0W

Maximum current out of VSS pin ...300 mA

Maximum current into VDD pin ..250 mA

Input clamp current, IIK (VI < 0 or VI > VDD)..±20 mA

Output clamp current, IOK (VO < 0 or VO > VDD) ..±20 mA

Maximum output current sunk by any I/O pin..25 mA

Maximum output current sourced by any I/O pin ..25 mA

Maximum current sunk by all ports ...200 mA

Maximum current sourced by all ports ..200 mA

Note 1: Power dissipation is calculated as follows:
Pdis = VDD x {IDD – ∑ IOH} + ∑ {(VDD – VOH) x IOH} + ∑(VOL x IOL)

2: Voltage spikes below VSS at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause
latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the
MCLR/VPP/RE3 pin, rather than pulling this pin directly to VSS.

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

APPENDIX A. DATASHEETS 85

A.8 IGLOO Nano AGLN030 FPGA

Apr i l 2009 I

© 2009 Actel Corporation

IGLOO nano Low -Pow er Flash FPGAs
w ith Flash* Freeze Technology

Features and Benef its
Low Pow er

• nanoPower Consumption—Industry’s Lowest Power
• 1.2 V to 1.5 V Core Voltage Support for Low Power
• Supports Single-Voltage System Operat ion
• Low-Power Act ive FPGA Operat ion
• Flash* Freeze Technology Enables Ult ra-Low Power

Consumpt ion while Maintaining FPGA Content
• Easy Entry to / Exit f rom Ultra-Low-Power Flash* Freeze

Mode
Small Footprint Packages

• As Small as 3x3 mm in Size
Wide Range of Features

• 10 k to 250 k System Gates
• Up to 36 kbits of True Dual-Port SRAM
• Up to 71 User I/Os

Reprogrammable Flash Technology
• 130-nm, 7-Layer Metal, Flash-Based CMOS Process
• Live-at-Power-Up (LAPU) Level 0 Support
• Single-Chip Solut ion
• Retains Programmed Design When Powered Off

In-System Programming (ISP) and Security
• Secure ISP Using On-Chip 128-Bit Advanced Encrypt ion

Standard (AES) Decrypt ion via JTAG (IEEE 1532–compliant)
• FlashLock® to Secure FPGA Contents

High-Performance Rout ing Hierarchy
• Segmented, Hierarchical Rout ing and Clock Structure

Advanced I/Os
• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operat ion
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip
• Single-Ended I/O Standards: LVTTL, LVCMOS

3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V
• Wide Range Power Supply Voltage Support per JESD8-B,

Allowing I/Os to Operate from 2.7 V to 3.6 V
• Wide Range Power Supply Voltage Support per JESD8-12,

Allowing I/Os to Operate f rom 1.14 V to 1.575 V
• I/O Registers on Input , Output , and Enable Paths
• Selectable Schmit t Trigger Inputs
• Hot-Swappable and Cold-Sparing I/Os
• Programmable Output Slew Rate and Drive Strength
• Weak Pull-Up/-Down
• IEEE 1149.1 (JTAG) Boundary Scan Test
• Pin-Compat ible Packages across the IGLOO Family

Clock Condit ioning Circuit (CCC) and PLL†
• Up to Six CCC Blocks, One with an Integrated PLL
• Conf igurable Phase Shif t , Mult iply/Divide, Delay

Capabilit ies, and External Feedback
• Wide Input Frequency Range (1.5 MHz up to 250 MHz)

Embedded Memory
• 1 kbit of FlashROM User Nonvolat ile Memory
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM

Blocks (×1, ×2, ×4, ×9, and ×18 organizat ions)†

• True Dual-Port SRAM (except × 18 organizat ion)†

Enhanced Commercial Temperature Range
• –20°C to +70°C

®

† AGLN030 and smaller devices do not support this feature.

Table 1 • IGLOO nano Devices

IGLOO nano Devices AGLN010 AGLN015 AGLN020 AGLN030 1 AGLN060 AGLN125 AGLN250

System Gates 10 k 15 k 20 k 30 k 60 k 125 k 250 k

Typical Equivalent Macrocells 86 128 172 256 512 1,024 2,048

VersaTiles (D-f lip-f lops) 260 384 520 768 1,536 3,072 6,144

Flash* Freeze Mode (typical, µW) 2 4 4 5 10 16 24

RAM kbits (1,024 bits) 2 – – – – 18 36 36

4,608-Bit Blocks 2 – – – – 4 8 8

FlashROM Bits 1 k 1 k 1 k 1 k 1 k 1 k 1 k

Secure (AES) ISP2 – – – – Yes Yes Yes

Integrated PLL in CCCs 2,3 – – – – 1 1 1

VersaNet Globals 4 4 4 6 18 18 18

I/O Banks 2 3 3 2 2 2 4

Maximum User I/Os (packaged device) 34 49 52 77 71 71 68

Maximum User I/Os (Know n Good Die) 34 – 52 83 71 71 68

Package Pins
UC/CS
QFN
VQFP

UC36
QN48 QN68

UC81, CS81
QN68

UC81, CS81
QN48, QN68

VQ100

CS81

VQ100

CS81

VQ100

CS81

VQ100

Notes:

1. AGLN030 is available in the Z feature grade only and of fers package compat ibilit y w ith the lower density nano devices. Refer
to " IGLOO nano Ordering Informat ion" on page III.

2. AGLN030 and smaller devices do not support this feature.
3. AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs.

4. For higher densit ies and support of addit ional features, refer to the IGLOO and IGLOOe handbooks.

Advance v0.7

Appendix B

Hardware Layout

B.1 Schematics

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

Nu
m

be
r

Re
vi

sio
n

Si
ze A4 Da
te:

20
11

/0
1/

14
Sh

ee
t

of
Fi

le:
D:

\D
oc

um
en

ts
an

d
Se

tti
ng

s\.
.\P

IC
.S

ch
Do

c
Dr

aw
n

By
:

RX 1

RD4 2

RD5 3

RD6 4

RD7 5

Vss 6

Vdd 7

RB0 8

RB1 9

RB2 10

RB3 11

NC33

RC032

RA631

RA730

Vss29

Vdd28

RE227

RE126

RE025

RA524

RA423
TX

44
RC

5
43

SD
A

42
RD

3
41

RD
2

40
RD

1
39

RD
0

38
SC

L
37

RC
2

36
RC

1
35

NC
34

RA
3

22

RA
2

21

RA
1

20

RA
0

19

M
CL

R/
Vp

p/
RE

3
18

RB
7/

PG
D

17

RB
6/

PG
C

16

RB
5

15

RB
4

14

NC
13

NC
12U1 PI
C1

8F
45

K2
0

Vp
p

Vd
d

GN
D

PG
D

PG
C

AU
X

JP
3

IC
SP

PG
D

PG
C

1
1

2
2

D1 Ze
ne

r 8
.2

V

PG
D

PG
C

0.
1u

F
C2

5

0.
1u

F
C3

1

AD
C2

AD
C1

AD
C3

TXRX

12
Y1 20

M
Hz

27
pF

C2
6

27
pF

C2
8

0.
1u

F

C4
1

1.
5V

3K
3

R1
4

8

4

1

Q1 IR
F7

21
0

0.
1u

F
C2

7

3k
3

R1
1

3k
3

R1
2

PS
W

1

PS
W

1

8

4

1

Q2 IR
F7

21
0

0.
1u

F
C3

2

3k
3

R2
1

3k
3

R2
4

PS
W

2

PS
W

2
3K

3

R1
3

82
0R

R1
7

1.
5VVi

n
1

EN
3

Vo
ut

5

NC
4

GN
D

2

U6 LP
59

51

Vin+3 V+
5

GN
D

2

Vin-4

OU
T

1

U3 IN
A1

69

0.
33

R
R1

5

42
K

R1
8

Vin+3 V+
5

GN
D

2

Vin-4

OU
T

1

U7 IN
A1

69
42

k
R2

7

0.
33

R
R2

5

0.
1u

F
C3

9

0.
1u

F
C2

9

C3
0

AD
C1 AD

C2

BU
F1

BU
F2

Vin+3

V+
5

GN
D

2

Vin-4 OU
T

1

U8 IN
A1

69
0.

1u
F

C4
0

BU
F

AD
C3

0.
05

R
R2

6

1 2 3 4

JP
4

UA
RT

56
k

R2
8

42
0k

R2
9

3.
3V

VP
P

VP
P

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1.
5V

3.
3V

5V

3.
3V

3.
3V

10
K

R1
6

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
7

PD
6

CLK
SUNACK
NADACK

SUNEN
NADEN

SH
IF

T

RN
W

NA
DS

DA
NA

DS
CL

SU
NS

CL
SU

NS
DA

SU
NP

W
DN

NA
DP

W
DN

RA
M

1

RA
M

2

ED
GE

3K
3

R2
0

3K
3

R1
9

3K
3

R2
3

3K
3

R2
2

3.
3V

0.
1u

F

C3
3

0.
1u

F

C3
7

GN
D

1
EN

2

IN
3

IN
4

RE
SE

T
8

FB
/N

C
7

OU
T

6

OU
T

5

3.
3V

U5 TP
S7

67
33

QD
GN

D

5V

1213
14

114

U2
D

LM
32

4A
M

6 5
7

114

U2
B

LM
32

4A
M

9 10
8

114

U2
C

LM
32

4A
M

GN
D

GN
D

GN
D

3.
3V

3.
3V

GN
D

SC
L

SD
A

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

C3
4

22
uF

 1
6V

C4
2

22
uF

 1
6V

C3
8

22
uF

 1
6V

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

41
41

42
42

43
43

44
44

45
45

46
46

47
47

48
48

49
49

50
50

51
51

52
52

H2

PW
R

GN
D

5V
5V GN

D

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

41
41

42
42

43
43

44
44

45
45

46
46

47
47

48
48

49
49

50
50

51
51

52
52

H1 I2
C

86

APPENDIX B. HARDWARE LAYOUT 87

11

22

33

44

D
D

C
C

B
B

A
A

T
it
le

N
um

be
r

R
ev

is
io

n
S
iz

e

A
4

D
at

e:
20

10
/1

1/
22

S
h
ee

t

of
F
il
e:

D
:\
D

oc
um

en
ts
 a
nd

 S
et

ti
ng

s\
..\

F
P
G

A
_2

.S
C
H

D
O

C
D

ra
w

n
B
y:

G
N

D
1

IO
82

2

IO
81

3

IO
80

4

IO
79

5

IO
78

6

IO
77

7

IO
76

8

G
N

D
9

IO
75

10

IO
74

11

IO
73

/G
E
C
0

12

IO
72

/G
E
A

0
13

IO
71

/G
E
B
0

14

IO
70

15

IO
69

16

V
cc

17

V
cc

i
18

IO
68

19

IO
67

20

IO
66

21

IO
65

22

IO
64

23

IO
63

24

IO
62

25

IO61
26

IO60/FF
27

IO59
28

IO58
29

IO57
30

IO56
31

IO55
32

IO54
33

IO53
34

IO52
35

IO51
36

Vcc
37

GND
38

Vcci
39

IO49
40

IO47
41

IO46
42

IO45
43

IO44
44

IO43
45

IO42
46

TCK
47

TDI
48

TMS
49

NC
50

G
N

D
51

V
pu

m
p

52
N

C
53

T
D

O
54

T
R
S
T

55
V

jt
ag

56
IO

41
57

IO
40

58
IO

39
59

IO
38

60
IO

37
61

IO
36

62
IO

34
/G

D
B
0

63
IO

33
/G

D
A
0

64
IO

32
/G

D
C
0

65
V

cc
i

66
G

N
D

67
V

cc
68

IO
31

69
IO

30
70

IO
29

71
IO

28
72

IO
27

73
IO

26
74

IO
25

75

IO24
76

IO23
77

IO22
78

IO21
79

IO20
80

IO19
81

IO18
82

IO17
83

IO16
84

IO15
85

IO14
86

Vcci
87

GND
88

Vcc
89

IO12
90

IO10
91

IO08
92

IO07
93

IO06
94

IO05
95

IO04
96

IO03
97

IO02
98

IO01
99

IO00
100

U
11

A
G

L
N

03
0-

V
Q

10
0

NC
1

NC
2

A0
3

A1
4

A2
5

A3
6

A4
7

C
E

8

I/
O

1
9

I/
O

2
10

V
cc

11

GND
12

I/
O

3
13

I/
O

4
14

W
E

15

A5
16

A
13

29

A
14

30
I/
O

5
31

I/
O

6
32

Vcc
33

G
N

D
34

I/
O

7
35

I/
O

8
36

O
E

37

A
15

38

A
16

39

A
17

40

A
18

41

NC
42

NC
43

NC
44

A6
17

A7
18

A8
19

A9
20

NC
21

NC
22

NC
23

NC
24

NC
25

A
10

26

A
11

27

A
12

28

U
12

A
S
7C

34
09

6A

F
P
G

A
,
C
A
M

E
R
A

, S
R
A
M

 #
1

T
C
K

1

G
N

D
2

T
D

O
3

N
C

4

T
M

S
5

V
jt
ag

6

V
pu

m
p

7

T
R
S
T

8

T
D

I
9

G
N

D
10

JP
2

F
L
A

S
H

P
ro

3

0.
01

uF

C
22

0.
33

uF

C
21

F
2_

V
p
um

p

F
2_

V
pu

m
p

F
2
_T

C
K

F
2
_T

D
O

F
2
_T

M
S

F
2
_V

JT
A

G

F
2
_T

R
S
T

F
2
_T

D
I

F2_TMS
F2_TDI

F2_TCK

F
2_

T
D

O
F
2_

T
R
S
T

F
2_

V
JT

A
G

0.
1u

F
C
16

0.
1u

F

C
1
3

F2_A0
F2_A1
F2_A2
F2_A3

F2_A5
F2_A6
F2_A7
F2_A8
F2_A9

F2_A4

F2_A0
F2_A1
F2_A2
F2_A3
F2_A4

F2_A5

F
2
_A

6
F
2
_A

7
F
2
_A

8
F
2
_A

9

F
2
_A

1
0

F
2
_A

1
0

F
2
_A

1
1

F
2
_A

1
2

F
2
_A

1
3

F
2
_A

1
4

F
2
_A

1
5

F
2
_A

1
6

F
2
_A

1
7

F
2
_A

1
8

F
2
_A

1
1

F
2
_A

1
2

F
2
_A

1
3

F
2
_A

1
4

F
2
_A

1
5

F
2
_A

1
6

F
2
_A

1
7

F
2
_A

1
8

F2_CE

F2_WE

F
2
_O

E

F
2_

O
E

F
2_

C
E

F
2_

W
E

F
2
_Y

0
F
2
_Y

2
F
2
_Y

4
F
2
_Y

6

F
2_

Y
1

F
2_

Y
3

F
2_

Y
5

F
2_

Y
7

F
2_

P
C
L
K

F
2_

H
R
E
FF
2_

M
D

0
F
2_

M
D

1
F
2_

M
D

2
F
2_

M
D

3
F
2_

M
D

4
F
2_

M
D

5
F
2_

M
D

6
F
2_

M
D

7

F2_MD0
F2_MD1
F2_MD2
F2_MD3

F
2
_M

D
4

F
2
_M

D
5

F
2
_M

D
6

F
2
_M

D
7

F2_Y6
F2_Y5
F2_Y4
F2_Y3
F2_Y2
F2_Y1
F2_Y0

F2_Y7

F
2_

P
C
L
K

F
2_

H
R
E
F

0.
1u

F

C
23

0.
1u

F

C
2
4

0.
1u

F

C
1
9

0.
1u

F

C
20

0.
1u

F

C
18

0.
1u

F

C
1
7

0.
1u

F

C
14

0.
1u

F

C
1
5

RAM2

R
A

M
2

G
N

D

5V

3.
3V

1.
5V

3.
3V

3.
3V

1.
5V

3.
3V

1.
5V

1.
5V

3.
3V

1KR
10

1KR
8

3.
3V

R
6

L
IN

K

R
7

L
IN

K

3.
3V

10
K

R
9

PD0

P
D

1
P
D

2
P
D

3
P
D

4
P
D

5
P
D

6
P
D

7

C
L
K

NADACK
NADEN

R
N

W

SHIFT
EDGE

E
N

F
F
2

E
N

F
F
2

N
A

D
S
C
L

N
A

D
S
D

A

B12_Y1

B12_Y2
B12_Y3
B12_Y4
B12_Y5
B12_Y6
B12_Y7

B
12

_P
C
L
K

B
12

_H
R
E
F

RAM2

B12_Y0

Y
0

1

Y
2

3

Y
4

5

Y
6

7

P
W

D
N

9

S
D

A
11

S
C
L

13

G
N

D
15

G
N

D
17

E
X

C
L
K

19

G
N

D
21

U
V

0
23

U
V

2
25

U
V

4
27

U
V

6
29

G
N

D
31

Y
1

2

Y
3

4

Y
5

6

Y
7

8

R
S
T

10

F
O

D
D

12

H
R
E
F

14

V
S
Y

N
16

P
C
L
K

18

V
cc

20

V
cc

22

U
V

1
24

U
V

3
26

U
V

5
28

U
V

7
30

V
T
O

32

3.
3V

33

N
A

D
C
A

M
1

ca
m

er
a

N
A

D
P
W

D
N

APPENDIX B. HARDWARE LAYOUT 88

11

22

33

44

D
D

C
C

B
B

A
A

T
it
le

N
um

be
r

R
ev

is
io

n
S
iz

e

A
4

D
at

e:
20

11
/0

1/
03

S
h
ee

t

of
F
il
e:

D
:\
D

oc
um

en
ts
 a
nd

 S
et

ti
ng

s\
..\

F
P
G

A
_2

.S
C
H

D
O

C
D

ra
w

n
B
y:

G
N

D
1

IO
82

2

IO
81

3

IO
80

4

IO
79

5

IO
78

6

IO
77

7

IO
76

8

G
N

D
9

IO
75

10

IO
74

11

IO
73

/G
E
C
0

12

IO
72

/G
E
A

0
13

IO
71

/G
E
B
0

14

IO
70

15

IO
69

16

V
cc

17

V
cc

i
18

IO
68

19

IO
67

20

IO
66

21

IO
65

22

IO
64

23

IO
63

24

IO
62

25

IO61
26

IO60/FF
27

IO59
28

IO58
29

IO57
30

IO56
31

IO55
32

IO54
33

IO53
34

IO52
35

IO51
36

Vcc
37

GND
38

Vcci
39

IO49
40

IO47
41

IO46
42

IO45
43

IO44
44

IO43
45

IO42
46

TCK
47

TDI
48

TMS
49

NC
50

G
N

D
51

V
pu

m
p

52
N

C
53

T
D

O
54

T
R
S
T

55
V

jt
ag

56
IO

41
57

IO
40

58
IO

39
59

IO
38

60
IO

37
61

IO
36

62
IO

34
/G

D
B
0

63
IO

33
/G

D
A
0

64
IO

32
/G

D
C
0

65
V

cc
i

66
G

N
D

67
V

cc
68

IO
31

69
IO

30
70

IO
29

71
IO

28
72

IO
27

73
IO

26
74

IO
25

75

IO24
76

IO23
77

IO22
78

IO21
79

IO20
80

IO19
81

IO18
82

IO17
83

IO16
84

IO15
85

IO14
86

Vcci
87

GND
88

Vcc
89

IO12
90

IO10
91

IO08
92

IO07
93

IO06
94

IO05
95

IO04
96

IO03
97

IO02
98

IO01
99

IO00
100

U
11

A
G

L
N

03
0-

V
Q

10
0

NC
1

NC
2

A0
3

A1
4

A2
5

A3
6

A4
7

C
E

8

I/
O

1
9

I/
O

2
10

V
cc

11

GND
12

I/
O

3
13

I/
O

4
14

W
E

15

A5
16

A
13

29

A
14

30
I/
O

5
31

I/
O

6
32

Vcc
33

G
N

D
34

I/
O

7
35

I/
O

8
36

O
E

37

A
15

38

A
16

39

A
17

40

A
18

41

NC
42

NC
43

NC
44

A6
17

A7
18

A8
19

A9
20

NC
21

NC
22

NC
23

NC
24

NC
25

A
10

26

A
11

27

A
12

28

U
12

A
S
7C

34
09

6A

F
P
G

A
,
C
A
M

E
R
A

, S
R
A
M

 #
1

T
C
K

1

G
N

D
2

T
D

O
3

N
C

4

T
M

S
5

V
jt
ag

6

V
pu

m
p

7

T
R
S
T

8

T
D

I
9

G
N

D
10

JP
2

F
L
A

S
H

P
ro

3

0.
01

uF

C
22

0.
33

uF

C
21

F
2_

V
p
um

p

F
2_

V
pu

m
p

F
2
_T

C
K

F
2
_T

D
O

F
2
_T

M
S

F
2
_V

JT
A

G

F
2
_T

R
S
T

F
2
_T

D
I

F2_TMS
F2_TDI

F2_TCK

F
2_

T
D

O
F
2_

T
R
S
T

F
2_

V
JT

A
G

0.
1u

F
C
16

0.
1u

F

C
1
3

F2_A0
F2_A1
F2_A2
F2_A3

F2_A5
F2_A6
F2_A7
F2_A8
F2_A9

F2_A4

F2_A0
F2_A1
F2_A2
F2_A3
F2_A4

F2_A5

F
2
_A

6
F
2
_A

7
F
2
_A

8
F
2
_A

9

F
2
_A

1
0

F
2
_A

1
0

F
2
_A

1
1

F
2
_A

1
2

F
2
_A

1
3

F
2
_A

1
4

F
2
_A

1
5

F
2
_A

1
6

F
2
_A

1
7

F
2
_A

1
8

F
2
_A

1
1

F
2
_A

1
2

F
2
_A

1
3

F
2
_A

1
4

F
2
_A

1
5

F
2
_A

1
6

F
2
_A

1
7

F
2
_A

1
8

F2_CE

F2_WE

F
2
_O

E

F
2_

O
E

F
2_

C
E

F
2_

W
E

F
2
_Y

0
F
2
_Y

2
F
2
_Y

4
F
2
_Y

6

F
2_

Y
1

F
2_

Y
3

F
2_

Y
5

F
2_

Y
7

F
2_

P
C
L
K

F
2_

H
R
E
FF
2_

M
D

0
F
2_

M
D

1
F
2_

M
D

2
F
2_

M
D

3
F
2_

M
D

4
F
2_

M
D

5
F
2_

M
D

6
F
2_

M
D

7

F2_MD0
F2_MD1
F2_MD2
F2_MD3

F
2
_M

D
4

F
2
_M

D
5

F
2
_M

D
6

F
2
_M

D
7

F2_Y6
F2_Y5
F2_Y4
F2_Y3
F2_Y2
F2_Y1
F2_Y0

F2_Y7

F
2_

P
C
L
K

F
2_

H
R
E
F

0.
1u

F

C
23

0.
1u

F

C
2
4

0.
1u

F

C
1
9

0.
1u

F

C
20

0.
1u

F

C
18

0.
1u

F

C
1
7

0.
1u

F

C
14

0.
1u

F

C
1
5

RAM2

R
A

M
2

G
N

D

5V

3.
3V

1.
5V

3.
3V

3.
3V

1.
5V

3.
3V

1.
5V

1.
5V

3.
3V

1KR
10

1KR
8

3.
3V

R
6

L
IN

K

R
7

L
IN

K

3.
3V

10
K

R
9

PD0

P
D

1
P
D

2
P
D

3
P
D

4
P
D

5
P
D

6
P
D

7

C
L
K

NADACK
NADEN

R
N

W

SHIFT
EDGE

E
N

F
F
2

E
N

F
F
2

N
A

D
S
C
L

N
A

D
S
D

A

B12_Y1

B12_Y2
B12_Y3
B12_Y4
B12_Y5
B12_Y6
B12_Y7

B
12

_P
C
L
K

B
12

_H
R
E
F

RAM2

B12_Y0

Y
0

1

Y
2

3

Y
4

5

Y
6

7

P
W

D
N

9

S
D

A
11

S
C
L

13

G
N

D
15

G
N

D
17

E
X

C
L
K

19

G
N

D
21

U
V

0
23

U
V

2
25

U
V

4
27

U
V

6
29

G
N

D
31

Y
1

2

Y
3

4

Y
5

6

Y
7

8

R
S
T

10

F
O

D
D

12

H
R
E
F

14

V
S
Y

N
16

P
C
L
K

18

V
cc

20

V
cc

22

U
V

1
24

U
V

3
26

U
V

5
28

U
V

7
30

V
T
O

32

3.
3V

33

N
A

D
C
A

M
1

ca
m

er
a

N
A

D
P
W

D
N

Appendix C

Source code for microcontroller

C.1 Software I2C� �
1 // NSDA_D - I2C data pin

// NSCL_D - I2C clock pin
// NSDA - GPIO tristate for data pin
// NSCL - GPIO tristate for clock pin
void i2c_dly() {} // delay

6

void i2c_start_Nadir() { // Start condition
NSDA_D = 1; i2c_dly();
NSCL_D = 1; i2c_dly();
NSDA_D = 0; i2c_dly();

11 NSCL_D = 0; i2c_dly();
}

void i2c_stop_Nadir() { // Stop condition
NSCL_D = 0; i2c_dly();

16 NSDA_D = 0; i2c_dly();
NSCL_D = 1; i2c_dly();
NSDA_D = 1; i2c_dly();

}

21 // Parameters: d - Data to be transmitted over I2C bus
// Returns: b - Acknowledge
char i2c_tx_Nadir(unsigned char d) {

char x;
static char b;

26 for (x=0;x<8;x++) {
if(d&0x80)

NSDA =1;
else

NSDA = 0;
31 i2c_dly();

NSCL = 1;
i2c_dly();
d <<= 1;
NSCL = 0;

36 }
NSDA = 1; NSCL = 1; i2c_dly();
b = NSDA_D; // Acknowledge
NSCL = 0; NSDA = 0;
return b;

41 }� �
89

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 90

C.2 Interpolation� �
1 // Linear Interpolation

// Parameters: xd - Distorted x coordinate
// yd - Distorted y coordinate

4 // dcc[] - Distortion Corrected Coordinates
void interpolation(double xd, double yd, int dcc[]) {

double rd = 0; // distorted radius
double ru = 0; // undistorted radius
int rd0 = 0; // floor(rd)

9

rd = sqrt(xd*xd + yd*yd);
rd0 = (int)(rd);
ru = (double)(rd0) // ru = ru0 + (re1 - re0)(rd - rd0)

+ (double)(distortCorrectLookup[rd0])
14 + ((double)(distortCorrectLookup[rd0+1])

- (double)(distortCorrectLookup[rd0]))

* (rd - (double)(rd0));

dcc[0] = (int)(ru*xd/rd*100); // Undistorted x coordinate
19 dcc[1] = (int)(ru*yd/rd*100); // Undistorted y coordinate

}� �
C.3 Edge detection for Nadir sensor� �

1 // Edge detection for Nadir sensor
// Parameters: edgeXPos[] - x coordinates of all edge pixels
// edgeYPos[] - y coordinates of all edge pixels
// Returns: edgePixels - Total edge pixels

5 unsigned char edgeDetect (int edgeXPos[], int edgeYPos[]) {
unsigned char search[64] = {0}; // Sample pixels
unsigned char prev_test = 0; // previous searched pixels value
char edgePixels = 0; // Total edge pixels
int y = 0; // y coordinate

10 int x = 0; // x coordinate
int k = 0;
double radius = 0; // distorted radius

// Edge mode
15 RNW = 1;

SHIFT = 0;
EDGE = 1;
NADEN = 0;

20 // DEFAULT STATE
CLK = 1;
CLK = 0;

// STATE A: Horizontal search
25 for (y = 1; y <= 8; y ++) {

for (x = 1; x <= 10; x++) {
for (k = 0; k < 64; k++) {

CLK = 1;
search[k] = DATA;

30 CLK = 0;
}

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 91

if (search[63] >= threshold) {
if (prev_test < threshold) {

35 edgeXPos[edgePixels] = (x<<6) - 63 + binary_search(search,63,0,6);
edgeYPos[edgePixels] = (y<<6) + 15 - 64;
radius = sqrt(((double)(edgeXPos[edgePixels]-367)

* (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

40 * (double)(edgeYPos[edgePixels]-237)));
if (radius < 226) {

edgePixels++;
}

}
45 }

else {
if (prev_test >= threshold) {

edgeXPos[edgePixels] = (x<<6) - 63 + binary_search(search,0,63,6);
edgeYPos[edgePixels] = (y<<6) + 15 - 64;

50 radius = sqrt(((double)(edgeXPos[edgePixels]-367)

* (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

* (double)(edgeYPos[edgePixels]-237)));
if (radius < 226) {

55 edgePixels++;
}

}
}
prev_test = search[63];

60 }
prev_test = 0;

}

// STATE B
65 CLK = 1;

CLK = 0;

// STATE C: Vertical search
for (x = 1; x <= 10; x++) {

70 for (y = 1; y <= 7; y++) {
for (k = 0; k < 64; k++) {

CLK = 1;
search[k] = DATA;
CLK = 0;

75 }

if (search[63] >= threshold) {
if (prev_test < threshold) {

edgeXPos[edgePixels] = (x<<6) - 1;
80 edgeYPos[edgePixels] = (y<<6) - 63 + (binary_search(search,63,0,6));

radius = sqrt(((double)(edgeXPos[edgePixels]-367)

* (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

* (double)(edgeYPos[edgePixels]-237)));
85 if (radius < 226) {

edgePixels++;
}

}
}

90 else {
if (prev_test >= threshold) {

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 92

edgeXPos[edgePixels] = (x<<6) - 1;
edgeYPos[edgePixels] = (y<<6) - 63 + binary_search(search,0,63,6);
radius = sqrt(((double)(edgeXPos[edgePixels]-367)

95 * (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

* (double)(edgeYPos[edgePixels]-237)));
if (radius < 226) {

edgePixels++;
100 }

}
}
prev_test = search[63];

}
105

// Still STATE C
for (k = 0; k < 32; k++) {

CLK = 1;
search[k] = DATA;

110 CLK = 0;
}

if (search[31] >= threshold) {
if (prev_test < threshold) {

115 edgeXPos[edgePixels] = (x<<6) - 1;
edgeYPos[edgePixels] = (y<<5) - 31 + binary_search(search,31,0,5);
radius = sqrt(((double)(edgeXPos[edgePixels]-367)

* (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

120 * (double)(edgeYPos[edgePixels]-237)));
if (radius < 226) {

edgePixels++;
}

}
125 }

else {
if (prev_test >= threshold) {

edgeXPos[edgePixels] = (x<<6) - 1;
edgeYPos[edgePixels] = (y<<5) - 31 + binary_search(search,0,31,5);

130 radius = sqrt(((double)(edgeXPos[edgePixels]-367)

* (double)(edgeXPos[edgePixels]-367))
+ ((double)(edgeYPos[edgePixels]-237)

* (double)(edgeYPos[edgePixels]-237)));
if (radius < 226) {

135 edgePixels++;
}

}
}
prev_test = 0;

140 }

// Active Standby
NADEN = 1;
SHIFT = 0;

145 EDGE = 0;

return edgePixels;
}� �

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 93

C.4 Binary search� �
1 // Binary search
2 // Parameters: search[] - Pixels for binary search

// light - Position of pixel above threshold
// dark - Position of pixel below threshold
// runtime - how many times loop is repeated
// Returns: light_pixel - The true edge pixel

7 int binary_search (unsigned char search[],
unsigned char light,
unsigned char dark,
unsigned char runtime) {

char i = 0;
12 unsigned char temp = 0;

unsigned char light_pixel = light;
unsigned char dark_pixel = dark;

for (i = 0; i < runtime; i++) {
17 temp = ((light_pixel+dark_pixel)>>1);

if(search[temp] >= threshold)
light_pixel = temp;

else
dark_pixel = temp;

22 }

return light_pixel;
}� �
C.5 Centroid calculation for Nadir sensor� �

1 // Centroid calculation for Nadir sensor
// Parameters: edgePixels - Total edge pixels
// edgeXPos[] - x coordinates of edge pixels
// edgeYPos[] - y coordinates of edge pixels

5 // centerPositionNadir[] - centroid coordinates
void calc_Nadir (unsigned char edgePixels,

int edgeXPos[],
int edgeYPos[],
int centerPositionNadir[]) {

10 unsigned char cur_edge = 0; // Current edge pixel
int ru[2] = {0}; // Distortion corrected coordinates
double dx = 0; // Distorted x coordinate
double dy = 0; // Distorted y coordinate
double xp = 0; // Distortion corrected x pixel coordinate

15 double yp = 0; // Distortion corrected y pixel coordinate
double term = 0;
double A[3][3] = {0}; // Matrix A
double invA[2][3] = {0}; // Inverse of Matrix A
double B[3] = {0}; // Matrix B

20 double detA = 0; // Determinant of Matrix A

// Filling matrices
for (cur_edge = 0; cur_edge < edgePixels; cur_edge++) {

dx = ((edgeXPos[cur_edge]) - 371);
25 dy = ((edgeYPos[cur_edge]) - 236);

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 94

// Distortion Correction
interpolation(dx,dy,ru);

30 xp = ((double)(ru[0]))/100;
yp = ((double)(ru[1]))/100;

term = xp*xp + yp*yp;

35 A[0][0] = A[0][0] + 2*xp*xp;
A[0][1] = A[0][1] + 2*xp*yp;
A[0][2] = A[0][2] + xp;

A[1][0] = A[1][0] + 2*yp*xp;
40 A[1][1] = A[1][1] + 2*yp*yp;

A[1][2] = A[1][2] + yp;

A[2][0] = A[2][0] + 2*xp;
A[2][1] = A[2][1] + 2*yp;

45 A[2][2] = A[2][2] + 1;

B[0] = B[0] - term*xp;
B[1] = B[1] - term*yp;
B[2] = B[2] - term;

50 }

// Calculating determinant of Matrix A
detA = A[0][0]*(A[1][1]*A[2][2]-A[1][2]*A[2][1])

-A[0][1]*(A[1][0]*A[2][2]-A[1][2]*A[2][0])
55 +A[0][2]*(A[1][0]*A[2][1]-A[1][1]*A[2][0]);

// Calculating the invers of Matrix A
invA[0][0] = (A[1][1]*A[2][2]-A[1][2]*A[2][1]);
invA[0][1] = -(A[0][1]*A[2][2]-A[0][2]*A[2][1]);

60 invA[0][2] = (A[0][1]*A[1][2]-A[0][2]*A[1][1]);

invA[1][0] = -(A[1][0]*A[2][2]-A[1][2]*A[2][0]);
invA[1][1] = (A[0][0]*A[2][2]-A[0][2]*A[2][0]);
invA[1][2] = -(A[0][0]*A[1][2]-A[0][2]*A[1][0]);

65

// Centroid coordinates calculations
centerPositionNadir[0] = ((int)((-(invA[0][0]*B[0]

+ invA[0][1]*B[1]
+ invA[0][2]*B[2])/detA*100)));

70

centerPositionNadir[1] = ((int)((-(invA[1][0]*B[0]
+ invA[1][1]*B[1]
+ invA[1][2]*B[2])/detA*100)));

}� �
C.6 Centroid calculation for Sun sensor� �

1 // Centroid calculation for Sun sensor
// Parameters: centerPositionSun[] - Centroid coordinates for Sun sensor
void calc_Sun (int centerPositionSun[]) {

unsigned int total_pixel_values = 0;
unsigned int x = 0;

6 unsigned int y = 0;
unsigned char pixelData = ’ ’;

APPENDIX C. SOURCE CODE FOR MICROCONTROLLER 95

double xd = 0;
double yd = 0;
int start_x = 0;

11 int start_y = 0;

// Edge mode
EDGE = 1;
SHIFT = 0;

16 RNW = 1;
SUNEN = 0;

// STATE A
CLK = 1;

21 start_x = (int)(DATA);
CLK = 0;

// STATE B
CLK = 1;

26 start_x = start_x + (((int)DATA)<<8);
CLK = 0;

// STATE C
CLK = 1;

31 start_y = (int)(DATA);
CLK = 0;

// STATE D
CLK = 1;

36 start_y = start_y + (((int)DATA)<<8);
CLK = 0;

// STATE E
for (y = 0; y < 15; y++) {

41 for (x = 0; x < 15; x++) {
CLK = 1;
pixelData = DATA;
CLK = 0;
if (pixelData >= thresholdSun) {

46 xd = xd + (double)(x)*(double)(pixelData);
yd = yd + (double)(y)*(double)(pixelData);
total_pixel_values = total_pixel_values + (int)(pixelData);

}
}

51 }

// Active Standby
SUNEN = 1;
EDGE = 0;

56 SHIFT = 0;
RNW = 0;

//Distorted centroid calculation
xd = (double)(start_x - 369 + (xd)/(double)(total_pixel_values) - 5);

61 yd = (double)(start_y - 250 + (yd)/(double)(total_pixel_values) - 3);

// Distortion correction
interpolation(xd,yd,centerPositionSun);

}� �

Appendix D

Source code for FPGA

D.1 Gray code� �
1 -- File: gray_1.vhd

-- One bit block for the Gray counter gray_n.vhd
-- 2/2000 IVOVI
-- qout: One bit output of the counter

5 -- zout: 1, if all the less significant bits are zero

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

10 PACKAGE pkggray_1 IS
COMPONENT gray_1

PORT(arst, clk, qin, zin : IN STD_LOGIC;
qout : INOUT STD_LOGIC;
zout : OUT STD_LOGIC);

15 END COMPONENT;
END pkggray_1;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

20

ENTITY gray_1 IS
PORT(arst, clk, qin, zin : IN STD_LOGIC;

qout : INOUT STD_LOGIC;
zout : OUT STD_LOGIC);

25 END gray_1;

ARCHITECTURE archgray_1 OF gray_1 IS
BEGIN

PROCESS(arst, clk)
30 BEGIN

IF arst=’1’ THEN
qout <= ’0’;

ELSIF clk’EVENT AND clk=’1’ THEN
qout <= qout XOR (qin AND zin);

35 END IF;
END PROCESS;

zout <= zin AND NOT qin;
END archgray_1;� �

96

APPENDIX D. SOURCE CODE FOR FPGA 97

� �
1 -- File: gray_n.vhd
2 -- Gray counter with variable width (generic width)

-- 2/2000 IVOVI

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

7

ENTITY gray_n IS GENERIC(width: INTEGER:=3);
PORT(async_rst, clock : IN STD_LOGIC;

q : INOUT STD_LOGIC_VECTOR(width DOWNTO 0));
END gray_n;

12

ARCHITECTURE archgray_n OF gray_n IS
COMPONENT gray_1 PORT(arst, clk, qin, zin : IN STD_LOGIC;

qout : INOUT STD_LOGIC;
zout : OUT STD_LOGIC);

17 END COMPONENT;
-- inner interconnection of 1-bit sections
SIGNAL z : STD_LOGIC_VECTOR(width DOWNTO 0);
-- auxiliary signal for MSB
SIGNAL qx : STD_LOGIC;

22 BEGIN
-- less significant bits
create_lsb: FOR i IN 1 TO width-1 GENERATE

createbit: gray_1 PORT MAP(async_rst, clock,
q(i-1), z(i-1),

27 q(i), z(i));
END GENERATE;
-- most significant bit
create_msb: gray_1 PORT MAP(async_rst, clock,

qx, z(width-1),
32 q(width), z(width));

-- auxiliary signal for MSB
qx <= q(width-1) OR q(width);
-- parity bit generation
PROCESS(async_rst, clock)

37 BEGIN
IF async_rst=’1’ THEN

q(0) <= ’1’;
ELSIF clock’EVENT AND clock=’1’ THEN

q(0) <= NOT q(0);
42 END IF;

END PROCESS;
z(0) <= ’1’;

END archgray_n;� �

APPENDIX D. SOURCE CODE FOR FPGA 98

D.2 Memory read and write

D.2.1 Write� �
1 architecture behavior of image2ram is

signal adr_row_pix : std_logic_vector (8 downto 0) := "000000000";
signal adr_col_pix : std_logic_vector (9 downto 0) := "0000000000";

begin
5 process (href,rnw,enable,clk_pix)

begin
-- Default starting point in memory
if enable = ’1’ then

adr_row_pix <= "000000000";
10 adr_col_pix <= "0000000000";

elsif rising_edge(clk_pix) and href = ’1’ and enable = ’0’ and rnw = ’0’ then
adr_col_pix <= adr_col_pix + 1; -- Address change for column adresses
if adr_col_pix = 639 then -- One horizontal line is done

adr_col_pix <= "0000000000"; -- Column adress reset
15 adr_row_pix <= adr_row_pix + 1; -- Increment row address

-- for new horizontal line
end if;

end if;
-- Send address to memory

20 image_col <= adr_col_pix;
image_row <= adr_row_pix;

end process;
end behavior;� �
D.2.2 Read� �

1 -- Procedure same as for writing to memory, except for the control lines that are set
2 -- for reading from the memory

architecture behavior of image2pic is
signal adr_row_pic : std_logic_vector (8 downto 0) := "000000000";
signal adr_col_pic : std_logic_vector (9 downto 0) := "0000000000";

begin
7 process (rnw,enable,clk_pic,edge)

begin
if enable = ’1’ then

adr_row_pic <= "000000000";
adr_col_pic <= "0000000000";

12 elsif rising_edge(clk_pic) and enable = ’0’ and rnw = ’1’ and edge = ’0’ then
adr_col_pic <= adr_col_pic + 1;
if adr_col_pic = 639 then

adr_col_pic <= "0000000000";
adr_row_pic <= adr_row_pic + 1;

17 end if;
end if;
pic_col <= adr_col_pic;
pic_row <= adr_row_pic;

end process;
22 end behavior;� �

APPENDIX D. SOURCE CODE FOR FPGA 99

D.3 Search algorithm for nadir sensor� �
1 architecture behavior of edge2pic is

signal adr_edge_row : std_logic_vector (8 downto 0) := "000001111";
3 signal adr_edge_col : std_logic_vector (9 downto 0) := "0000000001";

type state_type is (A,B,C,D,E);
signal current_state : state_type := A;

8 begin
process (rnw,enable,clk_pic,edge,shift)
begin

-- default state
if enable = ’1’ then

13 adr_edge_row <= "000001111";
adr_edge_col <= "0000000001";
current_state <= A;

elsif (enable = ’0’) and (rnw = ’1’) and (edge = ’1’) and (shift = ’0’) then
case current_state is

18 -- STATE A: Read image horizontally
when A =>

if (rising_edge(clk_pic)) then
adr_edge_col <= adr_edge_col + 1;
if (adr_edge_col = 639) then

23 adr_edge_col <= "0000000000";
adr_edge_row <= adr_edge_row + 64;

end if;
pic_col <= adr_edge_col;
pic_row <= adr_edge_row;

28 if (adr_edge_row = 463) and (adr_edge_col = 639) then
current_state <= B;

end if;
end if;

-- STATE B: Reset memory address for vertical read
33 when B =>

if (rising_edge(clk_pic)) then
current_state <= C;

end if;
adr_edge_row <= "000000000";

38 adr_edge_col <= "0000111111";
-- STATE C: Read image vertically
when C =>

if (rising_edge(clk_pic)) then
adr_edge_row <= adr_edge_row + 1;

43 if (adr_edge_row = 479) then
adr_edge_row <= "000000000";
adr_edge_col <= adr_edge_col + 64;

end if;
pic_col <= adr_edge_col;

48 pic_row <= adr_edge_row;
end if;

when others =>
end case;

end if;
53 end process;

end behavior;� �

APPENDIX D. SOURCE CODE FOR FPGA 100

D.4 First Sun pixel and area search for sun sensor� �
1 architecture behavior of memory_edge is

signal adr_row_pix : std_logic_vector (8 downto 0) := "000000000";
signal adr_col_pix : std_logic_vector (9 downto 0) := "0000000000";

6 signal first_pix_y : std_logic_vector (8 downto 0) := "000000000";
signal first_pix_x : std_logic_vector (9 downto 0) := "0000000000";

type state_type is (A,B,C,D,E,F,G);
11 signal current_state : state_type := A;

begin
read :process (clk_pix,enable,rnw,edge,shift)

16 variable count : std_logic_vector (1 downto 0) := "00";
begin

if (enable = ’1’) then
adr_col_pix <= "0000000000";
adr_row_pix <= "000000000";

21 count := "00";
-- Stores image in memory
elsif rising_edge(clk_pix) and href = ’1’ and enable = ’0’ and rnw = ’0’ then

adr_col_pix <= adr_col_pix + 1;
if adr_col_pix = 639 then

26 adr_col_pix <= "0000000000";
adr_row_pix <= adr_row_pix + 1;

end if;

-- Find First Sun Pixel
31 if (pix_data >= 200) and count = 0 then

first_pix_x <= adr_col_pix;
first_pix_y <= adr_row_pix;
count := count + 1;

elsif (pix_data >= 200) and count = 1 then
36 count := count + 1;

elsif (pix_data >= 200) and count = 2 then
count := count + 1;

elsif (pix_data < 200) and count < 3 then
count := "00";

41 end if;
end if;

end process read;

-- Area search
46 write: process (clk_pic,enable,rnw,edge,shift)

variable out_row_adr : std_logic_vector (8 downto 0) := "000000000";
variable out_col_adr : std_logic_vector (9 downto 0) := "0000000000";
begin

if enable = ’1’ then
51 current_state <= G;

out_col_adr := first_pix_x -5 ;
out_row_adr := first_pix_y -3 ;

elsif enable = ’0’ and edge = ’1’ and shift = ’0’ and rnw = ’1’ then
case current_state is

56 -- STATE A: LSB first Sun pixel x coordinate

APPENDIX D. SOURCE CODE FOR FPGA 101

when A =>
if rising_edge(clk_pic) then

current_state <= B;
end if;

61 edge_data <= first_pix_x(7 downto 0);
-- STATE B: MSB first Sun pixel x coordinate
when B =>

if rising_edge(clk_pic) then
current_state <= C;

66 end if;
edge_data <= "000000"&first_pix_x(9 downto 8);

-- STATE C: LSB first Sun pixel y coordinate
when C =>

if rising_edge(clk_pic) then
71 current_state <= D;

end if;
edge_data <= first_pix_y(7 downto 0);

-- STATE D: MSB first Sun pixel y coordinate
when D =>

76 if rising_edge(clk_pic) then
current_state <= E;

end if;
edge_data <= "0000000"&first_pix_y(8);

-- STATE E: Area search
81 when E =>

if rising_edge(clk_pic) then
out_col_adr := out_col_adr + 1;
if out_col_adr = (first_pix_x+10) then

out_col_adr := first_pix_x-5;
86 out_row_adr := out_row_adr + 1;

end if;
image_col <= out_col_adr;
image_row <= out_row_adr;

end if;
91 edge_data <= mem_dat;

when others =>
edge_data <= first_pix_x(7 downto 0);
if rising_edge(clk_pic) then

current_state <= B;
96 end if;

end case;
end if;

end process write;
end behavior;� �

Appendix E

Python source code

E.1 Source code to download image from microcontroller� �
1 import serial

import Image
import ImageFile
import ImageFilter

5

try:
ser = serial.Serial(# Open COM port

port=3, # number of device, numbering starts at
zero. if everything fails, the user

10 # can specify a device string, note
that this isn’t portable anymore
if no port is specified an unconfigured
an closed serial port object is created

baudrate=115200, # baud rate
15 bytesize=8, # number of databits

parity=’N’, # enable parity checking
stopbits=serial.STOPBITS_ONE, # number of stopbits
timeout=None, # set a timeout value, None for waiting forever
xonxoff=0, # enable software flow control

20 rtscts=0, # enable RTS/CTS flow control
interCharTimeout=None # Inter-character timeout, None to disable

)
value = 1;

except Exception:
25 value = 0;

print ’Error’

if value == 1:
x = ’ ’;

30 ser.write(’a’); # Control to take image with Nadir sensor. ’q’ for Sun sensor
while x != ’Y’: # Wait for acknowledge
x = ser.read();

if x == ’Y’:
35 ser.write(’s’) # Contro to download image from Nadir sensor. ’w’ for Sun sensor

im = Image.fromstring("L",(640,480),ser.read(640*480)); # Downloading image
im.save("NadirImage.bmp","BMP"); # Save image on computer
im.show(); # Display image

ser.close(); # Close COM Port� �

102

Bibliography

[1] T. Irvine. (2010, December 15). Sputnik [Online].
Available: http://www.vibrationdata.com/Sputnik.htm

[2] NASA. (2010, December 15). Sputnik 1 - NSSDC ID: 1957-001B [Online].
Available: http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1957-001B

[3] Wikipedia. (2010, December 15). Satellite Classification [Online].
Available: http://centaur.sstl.co.uk/SSHP/sshp_classify.html

[4] S. Lee and A. Hutputanasin and A. Toorian and W. Lan and R. Munakata. (2010, December 16).
CubeSat Design Specification [pdf].
Available: http://www.cubesat.org/images/developers/cds_rev12.pdf

[5] Wikipedia. (2010, April). CubeSat [Online].
Available: http://en.wikipedia.org/wiki/CubeSat

[6] K. Sarda and S. Eagleson and E. Caillibot and C. Grant and D. Kekez and F. Pranajaya and R.E. Zee.
(2006, April). Canadian advanced nanospace experiment 2: Scientific and technological innovation
on a three-kilogram satellite [pdf].
Available: http://www.utias-sfl.net/docs/canx2-acta-2006.pdf

[7] Wikipedia. (2010, December 16). List of CubeSats [Online].
Available: http://en.wikipedia.org/wiki/List_of_CubeSats

[8] EPFL. (2010, December 16). SwissCube [Online].
Available: http://swisscube.epfl.ch/

[9] G. Bozovic and O. Scaglione and C. Koechile and M. Noca and Y. Perriard. SwissCube: development
of an ultra-light and efficient Inertia Wheel for the attitude control and stabilization of CubeSat
class satellites [pdf].

[10] H.J. Kramer. (2010, December 17). DTUSat-2 (Danish Technical University Satellite-2) [Online].
Available: http://events.eoportal.org/presentations/10001991/10001992.html

[11] J.B. Bjarnø and R.W. Fléron. (2008, August). DTUSAT-2: THE NEXT GENERATION ANIMAL MIGRA-
TION RESEARCH PLATFORM [pdf]

[12] A.F.J. Moffat and W.W. Weiss and S.M. Rucinski and R.E. Zee and M.H. Kerkwijk and S.W. Mochnacki
and J.M. Matthews and J.R. Percy and P. Ceravolo and C.C. Grant. (2010, December 17). The Cana-
dian BRITE NanoSatellite Mission [pdf].
Available: http://www.utias-sfl.net/docs/brite-astro-2006.pdf

[13] S. Eagleson and S. Mauthe and K. Sarda and H. Spencer and R.E. Zee. (2010, December 17). The
MOMENT Magnetic Mapping Mission Martian Science on a Nanosatellite Platform [pdf].
Available: http://www.utias-sfl.net/docs/moment-ssc-2007.pdf

[14] University of Louisiana. (2010, December 17). Cajun Advanced Picosatellite Experiment [Online].
Available: http://cape.louisiana.edu/about/mission.html

[15] Wikipedia. (2010, December 17). CAPE-1 [Online].
Available: http://en.wikipedia.org/wiki/CAPE-1

[16] D. Litwiller. (2010, Novmeber 1). CCD vs. CMOS: Facts and Fiction [pdf].
Available: http://www.dalsa.com/public/corp/Photonics_Spectra_CCDvsCMOS_Litwiller.pdf

103

BIBLIOGRAPHY 104

[17] Wikipedia. (2010, November 2). Lens (optics) [Online].
Available: http://en.wikipedia.org/wiki/Lens_(optics)

[18] Wikipedia. (2010, September 25). Fisheye lens [Online].
Available: http://en.wikipedia.org/wiki/Fisheye_lens

[19] Wikipedia. (2010, December 14). F-number [Online].
Available: http://en.wikipedia.org/wiki/F-number

[20] Wikipedia. (2010, October 19). Neutral density filter [Online].
Available: http://en.wikipedia.org/wiki/Neutral_density_filter

[21] Edmund Optics. (2010, October 19). Kodak Wratten Neutral Density (ND) Filters [Online].
Available: http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=2928

[22] M. O’Bryan. (2010, November 30). Radiation Effects & Analysis [Online].
Available: http://radhome.gsfc.nasa.gov/radhome/see.htm

[23] Single Event Effects Symposium. (2010, Novmeber 30). Summary of Single Event Effects [Online].
Available: http://radhome.gsfc.nasa.gov/radhome/see.htm

[24] Omnivision. (2000, May). OV7620 SINGLE-CHIP CMOS VGA COLOR DIGITAL CAMERA [pdf].
Available: http://mxhaard.free.fr/spca50x/Doc/Omnivision/OV7620.pdf

[25] M. Barr. (2001, May). Embedded Systems Memory Types [Online].
Available: http://www.netrino.com/Embedded-Systems/How-To/Memory-Types-RAM-ROM-Flash

[26] R. Koga. (2010, November 15). EEPROMs for Space Applications [pdf].
Available: http://klabs.org/richcontent/MAPLDCon00/Abstracts/koga_a.pdf

[27] Wikipedia. (2010, October 14). Thresholding (image processing) [Online].
Available: http://en.wikipedia.org/wiki/Thresholding_(image_processing)

[28] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Pearson Education, 2008

[29] Wikipedia. (2010, August). http://en.wikipedia.org/wiki/Luminance [Online].
Available: http://en.wikipedia.org/wiki/Luminance

[30] H.M. van Rensburg, "An Infrared Earth Horizon Sensor for a LEO Satellite," M.S. thesis, Dept. E&E.
Eng., Stellenbosch University, Stellenbosch, Western Cape, 2008.

[31] K.J. Friedrich, Nadir Sensor for a CubeSat, 2009.

[32] F. Devernay and O. Faugeras. (2010, October). Straight lines have to be straight [pdf].
Available: http://www.springerlink.com/content/m9cx2b2au3eyj8gp/fulltext.pdf

[33] A. Basu and S. Licardie. (2010, October). Modeling Fish-Eye Lenses [pdf].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=583883&tag=1

[34] M. Belezan and D. Mortari and R. Perfetti, "Moon Image Processing for Spacecraft Attitude Estima-
tion", 1997.

[35] P. Bourke. (2010, October). Equation of a circle from 3 points (2 dimensions) [Online].
Available: http://local.wasp.uwa.edu.au/ pbourke/geometry/circlefrom3/

[36] (2010, October). Least Squares Circle [Online].
Available: http://www.infogoaround.org/JBook/LSQ_Circle.html

[37] Wikipedia. (2010, October). Focal length [Online].
Available: http://en.wikipedia.org/wiki/Focal_length

[38] Wikipedia. (2010, November). Exposure (photography) [Online].
Available: http://en.wikipedia.org/wiki/Exposure_(photography)

[39] Wikipedia. (2010, December 27). Cubic function [Online].
Available: http://en.wikipedia.org/wiki/Cubic_function

BIBLIOGRAPHY 105

[40] J.R. Wertz and W.J. Larson, Space Mission Analysis and Design, Space Technology Library, Micro-
cosm Press & Kluwer Academic Publishers, 1999.

[41] B. Dunbar. (2007, November). Sun [Online].
Available: http://www.nasa.gov/worldbook/sun_worldbook.html

[42] Calculus,5th ed.,Brooks/Cole,2003

[43] MICROCHIP. (2007, August). MPLAB® C18 C COMPILER USER’S GUIDE [pdf].
Available: http://ww1.microchip.com/downloads/en/DeviceDoc/C18_User_Guide_51288j.pdf

[44] Wikipedia. (2010, November). Big O notation [Online].
Available: http://en.wikipedia.org/wiki/Big_O_notation#Family_of_Bachmann.E2.80.93Landau_notations

[45] Wikipedia. (2010, August). Computational complexity of mathematical operations [Online].
Available: http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

[46] Wikipedia. (2010, December). Linear interpolation [Online].
Available: http://en.wikipedia.org/wiki/Linear_interpolation

[47] ROBOT ELECTRONICS. (2010, November). Using the I2C Bus [Online].
Available: http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html

[48] Encoder Products Company. (2010, November). Gray Codes, Natural Binary Codes, and Conversions
[pdf].
Available: http://www.encoder.com/techbulletins/TB-120.pdf

[49] I. Viščor. (2010, November). Gray counter in VHDL [pdf].
Available: http://www.isibrno.cz/̃ivovi/gray_counter.pdf

[50] Digital System Design with VHDL, 2nd ed., Pearson Education Limited, 2004.

[51] Advanced Engineering Mathematics, 2nd ed., Jones and Bartlett Publishers, 2000.

[52] Probility, Random Variables, and Random Signal Principles, McGraw-Hill, 2001.

	Abstract
	Opsomming
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Problem formulation
	1.3 Thesis layout

	2 Literature
	2.1 CanX-2
	2.2 SwissCube
	2.3 DTUSat-2
	2.4 Nanosatellites
	2.4.1 BRITE
	2.4.2 MOMENT

	2.5 CAPE-1

	3 Hardware choices and designs for sensors
	3.1 Camera modules
	3.1.1 CMOS vs CCD
	3.1.2 Lenses and optical filters
	3.1.2.1 Fisheye lens
	3.1.2.2 Neutral density filter

	3.2 Hardware controlling the sensors and processing images from the sensors
	3.2.1 Memory
	3.2.1.1 Power switch and current sensors

	3.2.2 Microcontrollers and FPGAs
	3.2.3 Other hardware choices

	3.3 Layout
	3.3.1 Hardware failure
	3.3.2 PCB layout

	4 Methodology: Algorithms for sun and nadir sensors
	4.1 Thresholding of images
	4.1.1 Fixed vs dynamic threshold
	4.1.2 Choosing a fixed threshold

	4.2 Edge detection
	4.2.1 Searching for edge pixels
	4.2.1.1 Searching algorithm for the nadir sensor
	4.2.1.2 Searching algorithm for the sun sensor

	4.2.2 Edge detection for the nadir sensor
	4.2.3 Edge detection for the sun sensor

	4.3 Distortion
	4.3.1 Distortion model

	4.4 Centroid calculation
	4.4.1 Centroid calculation for the nadir sensor
	4.4.1.1 Least squares estimation
	4.4.1.2 Equation of a circle from three points
	4.4.1.3 Least squares circle

	4.4.2 Centroid calculation for the sun sensor

	5 Experimental setups and calibrations
	5.1 Camera calibration
	5.1.1 Boresight
	5.1.2 Distortion centre point
	5.1.3 Focus
	5.1.3.1 Nadir sensor: focal length
	5.1.3.2 Sun sensor: the Sun's radius

	5.1.4 Exposure time

	5.2 Distortion
	5.2.1 Distortion model
	5.2.2 Distortion correction model

	5.3 Resolution
	5.4 Testbenches
	5.4.1 Nadir sensor testbench
	5.4.2 Sun sensor testbench

	5.5 Angular relationship
	5.6 Rotation point (optic point calculation)
	5.7 Threshold determination
	5.8 Sampling factor for the nadir sensor search algorithm

	6 Software implementation
	6.1 Overview
	6.1.1 Data type definitions and algorithm complexity

	6.2 Distortion correction lookup table
	6.3 Interpolation
	6.4 Controlling the camera module
	6.4.1 Microcontroller
	6.4.2 FPGAs
	6.4.3 I2C protocol for the OBC
	6.4.4 Memory allocation

	6.5 Nadir sensor
	6.5.1 Search algorithm
	6.5.2 Edge detection
	6.5.2.1 Binary search
	6.5.2.2 Partial profile edge detection

	6.5.3 Centroid calculation
	6.5.3.1 Least squares circle

	6.6 Sun sensor
	6.6.1 Search algorithm
	6.6.2 Area search
	6.6.3 Centroid calculation

	7 Results
	7.1 Nadir sensor measurement results
	7.2 Sun sensor measurement results
	7.3 Power consumption
	7.4 Time requirements
	7.5 Mass measurements

	8 Conclusion
	9 Summary and Recommendations
	9.1 Summary
	9.2 Recommendations and improvements
	9.2.1 I2C on FPGA
	9.2.2 Address control from microcontroller
	9.2.3 Alternative hardware layout

	A Datasheets
	A.1 C3188A camera module
	A.2 OV7620 colour image sensor
	A.3 ORIFL190-3 fisheye lens
	A.4 AS7C34096A SRAM
	A.5 IRF7210PbF power MOSFET
	A.6 INA169 high-side measurement shunt monitor
	A.7 PIC18F45K20 microcontroller
	A.8 IGLOO Nano AGLN030 FPGA

	B Hardware Layout
	B.1 Schematics

	C Source code for microcontroller
	C.1 Software I2C
	C.2 Interpolation
	C.3 Edge detection for Nadir sensor
	C.4 Binary search
	C.5 Centroid calculation for Nadir sensor
	C.6 Centroid calculation for Sun sensor

	D Source code for FPGA
	D.1 Gray code
	D.2 Memory read and write
	D.2.1 Write
	D.2.2 Read

	D.3 Search algorithm for nadir sensor
	D.4 First Sun pixel and area search for sun sensor

	E Python source code
	E.1 Source code to download image from microcontroller

	Bibliography

