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Abstract

Numerical Modelling of Ti6Al4V machining:

A Combined FEA and Unified Mechanics Approach

D.C Bowes

Department of Mechanical Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc.Eng (Mech)

March 2013

In this study, Ti6Al4V machining is modelled using finite element analysis of orthogo-
nal machining. Orthogonal turning tests are conducted for the verification of FE mod-
els in terms of machining forces, temperatures, and chip geometry. Milling force pre-
dictions are made using the "unified" mechanics of cutting model which is applied to
ball nose milling for this study. The model makes use of orthogonal cutting data, col-
lected from the turning tests, to model milling forces. Model predictions are compared
with test data from slot milling tests for verification. Finally a hybrid form of the "‘uni-
fied"’ model is presented in which orthogonal data, obtained from the FE simulations,
is used to model ball nose milling operations.
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Uittreksel

Modellering van titaanmasjinering

(“Numerical Modelling of Ti6Al4V machining:
A Combined FEA and Unified Mechanics Approach”)

D.C Bowes

Departement Meganiese Ingenieurswese
Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MSc.Ing (Meg)

Maart 2013

In hierdie studie word titaanmasjinering (Ti6Al4V) gemodelleer deur gebruik te maak
van eindige element analise van ortogonale masjinering. Ortogonale draai toetse word
uitgevoer om eindige element (FE) modelle te verifieer in terme van masjinerings-
kragte, temperatuur en spaandergeometrie. Freeskragte word voorspel deur gebruik
te maak van die "Unified Mechanics of Cutting"model wat toegepas word op ’n bal-
neusfrees operasie in hierdie studie. Die model maak gebruik van ortogonale snydata,
versamel gedurende snytoetse, om die freeskragte te modelleer. Die model word ver-
volgens vergelyk met die toetsdata afkomstig van die freestoetse vir verifikasie. Ten
slotte word ’n hibriede weergawe van die model aangebied waarin ortogonale data
verkry word van die FE simulasie om balneus freesoperasies te simuleer.
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Chapter 1

Introduction

Titanium, is an important material in several industries due to its favourable mechan-
ical and chemical properties. A combination of good strength to weight ratio, high
hot hardness, corrosion resistance and good fatigue properties lends itself well to these
challenging environments. Its most important application is in the aerospace, biomed-
ical and automotive industries.

Titanium is known as a material which is difficult to machine for a variety of reasons.
The main consequence of its poor machinability is that practical cutting speeds must
be kept low (approxof 60 m/min), to achieve reasonable tool life. This is in contrast
to materials such as aluminium alloys, which are routinely machined at speeds in the
order of 1000 m/min in high speed machining applications.

Its poor machinability can be attributed to a variety of factors, the first being its low
thermal conductivity. This results in a concentrated build up of heat at the cutting
edge with high temperatures (750◦C at 300 m/min under dry cutting conditions was
measured in this study). The low heat dissipation by chips and workpiece, due to
low conductivity coupled with high heat capacity, sets up high temperature gradients
in the tool, resulting in high thermal stresses of the cutting edge. The high tempera-
tures associated with titanium machining is also strongly related to the chip formation
mode seen in titanium where segemented chips are formed. High temperatures also
lead to increased chemical reactivity, resulting in diffusion wear. Adhesion between
the material and tool is also elevated with increasing temperature, resulting in tool fail-
ure. Another consideration is the hazard of exoergic reaction of chips in atmospheric
air, which causes them to combust energetically and has been the cause of numerous
industrial incidents.

Furthermore, high pressure loads are encountered at the cutting edge as result of the
small contact surface area, due to short contact length. This exacerbated by the pul-
satory nature of the cutting forces due to segmental chip formation. Tool failure may
also occur through chipping due to high cutting forces and self induced chatter. In
titanium machining, there is a strong tendency to vibration as a result of titanium’s
high strength coupled with low Young’s modulus, which may cause large workpiece
deflections inducing chatter and geometrical inaccuracies.

In aerospace, titanium is commonly used in critical structural components and also has
application in turbine components such as turbine blades and jet nozzles [1]. In re-
cent years there has been a shift from the widespread use of aluminium alloys alone to
the use of titanium alloys and composite materials. With a strong growth of civil air

1
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CHAPTER 1 — INTRODUCTION 2

traffic predicted and an increase in titanium content in aircraft there is a strong drive
to develop titanium machining competence in terms of understanding the underlying
phenomena that govern the fundamental cutting process. This is of particular impor-
tance in process planning and tool design. The most common titanium alloy in the
aerospace industry is Ti6Al4V and is thus the focus of this study.

The objective of this study is to develop and implement numerical models that allow
investigation of machining Ti6Al4V. The focus is on implementing practical models or
tools which can give insight into the underlying mechanisms when titanium is ma-
chined orthogonally as well as the ability predict cutting forces in more complex ma-
chining operations such as milling. The study is not aimed at investigating the mech-
anism governing machining but rather at establishing competency and analysis tools
for further studies.

A finite element machining model is implemented to model the orthogonal or 2D cut-
ting case and a mechanistic model is implemented for force prediction of milling op-
erations. The FE model is used here to predict cutting forces and temperatures during
machining and is used to establish an orthogonal cutting database which is used as an
input for the unified mechanic of cutting model which is implemented in this study to
model ball nose milling. The FE model is useful in understanding the relative sensitivi-
ties of machining parameters and the influence of the constitutive material model used.
It allows allows for in depth analysis of the load distribution on a cutting edge, heat
generation in the cutting system, chip morphology and workpiece residual stresses.The
model may be extended to model cutting of a variety of other materials but is imple-
mented here only for Ti6Al4V

The unified mechanics of cutting is implemented, in this study, to predict cutting forces
in ball nose milling. The model however, can be used to model any machining oper-
ation and requires only that the tool geometry be defined in the model. The model is
implemented using as an input orthogonal cutting databases assembled from cutting
test data obtained in literature [69], orthogonal turning test performed in this study
and from the predictions of the finite element orthogonal cutting model. The model
is implemented with two milling tool geometries, a constant lead ball-nose mill and
a modern ball nose mill whose geometry is initially unknown and determined from
geometric touch probe measurements. The models are validated against experimental
data obtained in literature and machining tests performed in this study.
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Chapter 2

Background

This chapter provides a broad background for the study in terms of basic machining
theory and more specifically the machining of Ti6Al4V. It also introduces the relavent
modelling work conducted by researchers on the subject and the modelling approaches
used in this study. As stated in the problem definition, the modelling approach is
two-fold and the literature and theory of the FE and Unified mechanstic models are
described in more detail in the relevant chapters (Chapters 4 and 6).

2.1 Titanium alloys

Titanium alloys are known as light alloys due to their low density and can be divided
into two groups: corrosion resistant alloys and structural alloys. The distinction arises
through differences in crystallography, in terms of the constituent α and β phases,
through the uses of various alloying elements.

• Corrosion resistant alloys are usually based on a plain α stage with stabilizing
elements such as oxygen, palladium or aluminium. These materials are generally
used in the chemical, energy, paper processing and food industries in the forms
of corrosion resistant pipes, valves and heat exchangers.

• Structural alloys are in turn sub-divided into three categories: close α alloys, β
alloys, and α-β alloys [3].

Close α alloys are characterized by their resistance to fatigue at high tempera-
tures, and are used mainly in internal combustion turbines at more than 600◦C.

High strength β alloys such Ti10V2Fe3Al are used in applications which demand
a high strength at relatively low temperatures.

The α-β alloys are generally structural alloys and are widely used in structures
and engine components in aerospace industries. The alloy, Ti6A14V, falls within
this group and is the most widely known of the titanium alloys. It has a good
combination of mechanical properties at temperatures over 315◦C when in an
aged state. Ti6Al4V is thus the most popular alloy for aircraft components under
low thermal stresses and thus forms the basis of this study.

3
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2.2 Ti6Al4V properties

In the aerospace industry highly corrosion resistant alloys account for 25% of cases
where titanium is used. Ti6Al4V is used about 60% of the time and the other structural
alloys account for the remaining 15%. Titanium is available in two states of hardness
preparation, precipitation hardened or aged condition.

Table 2.1 compares some of the physical properties of Ti6Al4V with those of inconel and
steel. It can be seen that titanium has relatively low thermal conductivity, low density
and high strength. It also has a high melting point, hardness and a high ratio of yield
stress to tensile strength Rp0.2/Rm = 0.9. It has a low Young’s modulus and will deflect
more than steel under load. Titanium also has a high thermal capacity C = 520 J/kgK
and is highly reactive with small elements such as oxygen, nitrogen and hydrogen,
resulting in embrittlement. Due to its high reactivity, titanium reacts with all known
cutting materials including polycrystalline diamond, ceramics (PCD), tungsten carbide
(WC) and polycrystalline boron nitride (PCBN) [1].

Table 2.1: Properties of three common aerospace materials

Melting Thermal con- Density Modulus Hard-
point ductivity E ness
(◦C) (W/mK) (g/cm3) (GPa) (HB)

Tiś6Alś4V 1670 7.1 4.43 115 350
Inconel 718 1453 11.4 8.22 200 300
Steel CK 45 1535 51.2 7.84 210 180

2.3 Machining theory and basics

Orthogonal cutting or machining represents the simplest expression of machining in
that it is a two-dimensional cutting configuration in which the cutting edge is perpen-
dicular to the direction of cutting velocity. Orthogonal cutting is illustrated in Fig-
ure2.1. In orthogonal machining the cutting and feed forces are in the direction of the
cutting velocity Vc, and perpendicular to it, respectively. In a turning operation the
forces are thus in the tangential and radial directions. The rake angle, α, is the angle
between the tool rake face and a perpendicular from the surface being machined. The
relief or clearance angle γ is the angle between the flank face of the tool and the ma-
chined surface. The feed, t, is the uncut chip thickness and tc is the cut chip thickness.
φ is the shear angle, and is the angle at which the workpiece material shears during
machining. Shear angle is of significance as it affects the machining forces in that a
decreasing shear angle increases the shear area and results in an increase in cutting
forces and the direction of the resultant force is altered. The cut chip thickness is also
increased, as well as the contact length, which is denoted by Lc and is the length of
contact between the chip and tool rake face.

According to Merchant the shear stress, τ, in orthogonal machining can be found by
calculating the shear angle from equation2.1(b), where r is the ratio of cut to uncut chip
thickness, and substituting into 2.1(a) along with cutting and feed forces FPc and FQc,
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Figure 2.1: Orthogonal cutting geometry

cut width, b and thickness, t. The friction angle, β can be calculated from equation
2.1(c) [2].

τ =
(FPc cos φ− FQc sin φ) sin φ

bt
(a)

tan φ =
r cos α

1− r sin α
(c)

tan β =
FQc + FPc tan α

FPc + FQc tan α
(c)

(2.1)

Oblique cutting, on the other hand, represents the cutting case in which the cutting
edge is inclined to the velocity vector. In practical machining operations, cutting is
usually performed using oblique cutting, as this aids chip evacuation through the gen-
eration of a spiral chip due to the angle of the cutting edge. The oblique configuration
thus produces a third force component which is not present in orthogonal machining.

2.4 Segmental chip formation

In aluminium cutting, the chip formed in the machining operation is of a continuous
nature at all but the highest cutting speeds, where it may become segmented depend-
ing on the cutting conditions. Titanium, on the other hand, exhibits segmented chip
formation at all but the lowest speeds and this has been cited as the cause of much
confusion and inconsistency in interpreting cutting data pre-1980s [3]. Merchant’s two-
dimensional cutting model was used from the 50s through to the 80s when modelling
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Figure 2.2: Chip segmentation process in titanium machining [3]

and analyzing Titanium cutting, but in 1981 Komanduri and Von Turkovich proposed
the new shear-localised chip formation using experimental evidence from low speed
SEM (1.2mm/min) and high speed (240m/min) high resolution video experiments for
orthogonal cutting [4].

Segmented or adiabatic shear-localised chip formation occurs in two stages. In the first
stage the wedge shaped un-deformed chip (Figures 2.2a and 2.2b) is flattened by the
advancing tool. This occurs with little deformation of the chip and almost no relative
motion between chip and tool. The chip bulges and in the second stage (Figure 2.2c)
plastic instability leads to strain localization along the shear surface and the new chip
segment is formed through catastrophic shear along a localized shear plane. This event
occurs rapidly and the low thermal conductivity of titanium prevents heat from mov-
ing out of this band, resulting in high local temperatures in this region. The origin of
the shear plane formed is parallel to the cutting vector and curves upwards until it
reaches the surface of the material as in Figure 2.3 [4], while others have proposed a
flat shear plane as represented in Figure 2.2. The chip is pushed along this trajectory,
advancing the previous segement along the tool face.

In this process the cutter is continuously exposed to the freshly formed shear surface
which is characterised by high temperatures which results increased chemical reactiv-
ity between the workpiece and tool material. As the chip is deformed in the first stage,
there is little shear between the chip and tool as the chip rolls onto the surface of the
tool. There is thus little secondary deformation along the tool rake face, as is evident
in continuous chip formation. Chip formation thus occurs on a narrow region of the
tool and causes high local temperatures at the tool edge, resulting in accelerated wear.
This is unlike the continuous chip formation process where a primary shear band exist,
across which some of the plastic deformation occurs as well as a secondary deforma-
tion zone, further from the tool tip, where secondary plastic deformation occurs [3].

The surfaces defined in Figure 2.3 1.3 are referred to as, (1) undeformed surfaces, (2)
catastrophic shear failed surface, (3) shear band formed during upsetting stage of seg-
ment formation, (4) intensely sheared surface slid onto tool surface, (5) intense localized
deformation in localized shear zone and (6) the machined surface [8].

In the achievement of high machining efficiency in commercial machining, tool life
and Material Removal Rate (MMR) are two of the most important factors. There are
generally two approaches to achieving high MRR. The first is known as high speed
machining and the second is as high performance machining.

In high speed machining, high MRR is achieved by machining at a combination of high
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Figure 2.3: Definition of surfaces in segmented chip formation [3]

speed cutting with low feeds or thickness of cut and depths of cut. In general, when
machining with increasing cutting speed, cutting forces and temperatures are initially
observed to increase to a local maximum and then decrease, followed by a steady in-
crease. This was first observed by the inventor of high speed machining, C. Salomon
[5]. From Figure 2.4 it can be seen that there is a transition range of cutting speed where
machining is not advisable, as cutting forces and temperatures are too high for the tool
and work piece. HSM is generally in the order of 5 to 10 times the conventional cutting
speed and, besides the obvious productivity benefits, it is capable of producing high
quality surface finishes, low stress components and burr-free edges. Temperature ef-
fects on the workpiece and tool are reduced in some cases, with an increase in tool life
[5]. In titanium machining, however, temperatures continue to increase with cutting
speed and, therefore much research is currently being conducted in tool materials ca-
pable of withstanding these temperatures so that practical high speed machining may
be realized.

High performance machining, on the other hand, achieves high MRR by machining
at lower cutting speeds, but employing high feed rates and depths of cut. Tradition-
ally, when cutting titanium, specifically in roughing operations, HPM machining is re-
garded as the most practical approach which, however, poses its own difficulties in that
machining forces are high due to the high chip loads and material strength. In general,
machining forces are approximately proportional to cut width and thickness and so a
combination of large feeds and depth of cut, or high chip load, results in high cutting
forces. HPM machining thus necessitates the use of sturdy, high powered machining
centres.
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Figure 2.4: High speed machining ranges for various materials [3]

2.5 Modelling metal cutting

According to Ng et al, analytical metal cutting models define the relations between
cutting force components based on the cutting geometry [6]. These models are easy to
use if prior knowledge of the cutting angles (shear, friction, and chip flow) is available.
However, the chip formation mechanism in HSM is dependent on the machining pa-
rameters and workpiece material. Variations in the chip flow angle induced by cutting
speed could reduce the accuracy and repeatability of the results obtained. Moreover,
when including all the necessary boundary conditions describing the HSM process,
the mathematical equations could become so complicated that a solution is no longer
possible. In general, the theory of plasticity leads to an analytically non-solvable set
of equations when work hardening is taken into consideration or when the workpiece
geometry is non-trivial [7]. The approach to modelling metal cutting thus is often by
the use of finite element models, as well as empirical and mechanistic models.

2.5.1 FEA modelling of metal cutting

A large deal of work has been produced on the FE modelling of metal cutting, but with
relatively little emphasis placed on modelling segmental chip formation. Many of these
FE models have shown that cutting force predictions can be made with reasonable
accuracy and have shown the ability to simulate the localized-shear chip formation
present in titanium cutting. With the possibility of a fully coupled thermo-mechanical
model of the workpiece and tool, FE models have the ability to model dynamic and
residual stresses, as well as temperatures in the tool and workpiece [8][9].

FE simulation of the metal cutting process is no trivial matter though, and is depen-
dent on accurate modelling of material, friction and thermal conditions of the tool-
workpiece system. The strain rates and associated temperatures present in metal cut-
ting exceed those of most other common industrial processes. The accurate determi-
nation of material properties at these conditions is therefore of importance and some
researchers have even proposed machining tests to develop more accurate material
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Figure 2.5: Literature survey of fem cutting models [6]

models under high strain rates [10].

There are many approaches to modelling the cutting process. Successful models have
been implemented for 2D orthogonal machining, 3D oblique and full 3D cutting simu-
lations for milling, gear hobbing, drilling and a variety of other cutting processes. The
titanium cutting process has been modelled using both implicit and explicit formula-
tions, though some authors have insisted on the use of full dynamic explicit, thermo-
coupled simulations with efficient remeshing [11].

In FE modelling there are two fundamental approaches to modelling chip formation,
the Lagrangian or displacement formulation, in which the mesh is embedded in the
material and is constrained to move with it and the Eulerian or flow formulation which
assumes a fixed mesh in space [11]. The main advantages of the Lagrangian formu-
lation are that the chip geometry is the result of simulations and presents a simpler
scheme to simulate transient processes and segmented chip formation. Due to the large
deformations at the shear zone, adaptive remeshing may be implemented to prevent
largely distorted elements when using the Lagrangian formulation. This is done at
discrete steps in the simulation or when convergence problems are experienced [12].

Eulerian approaches, on the other hand, do not require remeshing to prevent element
distortions. Furthermore this approach allows steady state machining to be simulated
with no element or nodal separation scheme. The main disadvantage of this method
is that the chip geometry needs to be known in advance, although iterative procedures
have been developed to adjust chip geometry and tool-chip contact length [12]. Some
models have attempted to mitigate the shortcomings of the two formulations by em-
ploying an Eulerian formulation for the moving chip and a Lagrangian formulation for
the stationary material and moving tool (the distortions on the tool and workpiece are
relatively small compared with those of the chip formation) [13].

In FEM simulations of metal cutting, material models which describe the material prop-
erties, such as flow stress and strength, as a function of the temperature, strain and
strain rate are generally employed. Several models exist, such as the Johnson-Cook,
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Oxley and Maekawa but they all fail in some respect to accurately describe the mate-
rial properties, though the models may be calibrated using test data [14].

Friction modelling is generally through the coulomb or modified coulomb friction model
and the effect of friction on the cutting process has been demonstrated to be increased
tool and chip temperatures and an increase in cutting forces. This effect on cutting
force is great and simulations have indicated a 20% increase in forces when a frictional
coefficient of 0.1 is introduced. Friction has an effect on chip shape and formation, as
well as an effect on machining force [15].

Full 3D simulation of the milling operation is computationally expensive for practical
cutting scheme optimisation, as every cutter geometry and cutting condition needs to
be modelled and simulated. On the other hand, 2D orthogonal simulations are much
cheaper to perform computationally and have been shown to predict cutting forces
with good accuracy.

2.5.2 Mechanistic modelling of machining

Traditionally, cutting force prediction by empirical modelling relates the average cut-
ting forces obtained experimentally to process variables such as cutting speed, depth of
cut and other process variables through empirical curve fitting techniques [16]. These
methods have been applied to turning, drilling and milling, but are more suited to con-
tinuous operations such as turning and drilling, where cutting forces are not expected
to vary cyclically, as is the case with milling.

Semi-empirical or mechanistic approaches have been implemented for milling opera-
tions where tool forces vary as a function of instantaneous chip thickness [17]. In these
approaches, milling force component coefficients are obtained through a series of cut-
ting tests performed for each material and tool geometry combination to be modelled
and related to the chip load using empirical techniques. The model identifies six edge
coefficients Ktc, Krc and Kac which are the tangential, radial and axial cutting force co-
efficients and Kte, Kre and Kae are the tangential, radial and axial edge force coefficients,
respectively. The first three coefficients represent those forces due to cutting in the
Cartesian coordinates, while the second group represents the forces due to friction and
ploughing. Together they describe the forces acting on a specific cutter and can be used
in a mechanistic model to predict the varying cutting forces and power requirements
during a revolution of the cutter [18]. Despite the usefulness and accuracy that these
models have demonstrated, the cutting tests must be repeated for each workpiece ma-
terial and tool geometry combination. This can be a costly and time consuming process
when one considers the cost of titanium and cutter inserts.

The unified mechanics of cutting approach differs from the mechanistic approach in
that the cutting force coefficients are determined from oblique or orthogonal cutting
tests. The cutting tests are performed by varying cutting parameters such as feed rate,
rake angle and cutting speed and measuring the cutting forces and chip thickness. This
data is incorporated into a database and used to predict the elemental cutting coeffi-
cients at a given cutting condition. The cutting forces can then be predicted at any
point along an arbitrary cutting flute for a given cutting condition, so that cutting forces
may be predicted from orthogonal data for an arbitrary cutter geometry. The machin-
ing forces are separated into edge or ploughing forces and shearing forces. The helical
flutes are divided into small differential oblique cutting edge segments. The orthogonal
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Figure 2.6: Unified mechanistic model applied to an inserted end mill for cutting force predic-
tions [22]

cutting parameters are converted to oblique milling edge geometry using the classical
oblique transformation method.

Several important studies in formulating the mechanistic and dynamic models, utilis-
ing the "unified cutting model", have been performed. These include the mechanistic
description and experimental verification of various milling cutters such as helical end
mills [19], ball end mills [20], generalized end mills [21] and general inserted cutters
[22], with good results. The accuracy has also been experimentally verified for the pre-
diction of cutting forces when machining Ti6Al4V for a range of chatter, eccentricity
and run-out free conditions [22]. Figure 2.6 is taken from [22] where an inserted cutter
of any geometry may be defined in a mechanistic model which simulates cutting forces
from an orthogonal database. The model predicts the measured forces well and the
method is implemented in this study to model ball nose milling.

Although these models have proved to be accurate, it can be an expensive and time
consuming exercise to compile the required data and a new set of orthogonal data
is needed for different materials to be modelled. Furthermore, these models provide
no information on the variation of cutting forces due to the segmented chip forma-
tion process or temperatures and stresses in the tool and workpiece during and post
machining. It is thus important to have the ability to predict orthogonal cutting data
by other means, such as finite element analysis. In view of the previous paragraphs,
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the implementation of a hybrid cutting force model is proposed in which the cutting
force coefficients are to be determined through FE simulations of the orthogonal cut-
ting process. In this scheme the orthogonal or FE cutting models are used to predict
the mechanistic cutting force coefficients and are then used in the mechanistic models
to predict cutting forces in any machining operation.

2.6 Summary and document layout

In Chapter 3, the experimental and test work is described with a brief discussion of
the results. The Discussion is limited as the results are discussed in more detail in the
chapters that follow, where the results are compared with the predictions made using
the FE and mechanistic cutting models.

The following Chapter 4, details the orthogonal FE cutting model implemented to sim-
ulate titanium machining and compares predicted machining forces, temperatures and
chip geometry with experimental results from orthogonal turning tests.

Chapter 6 describes the "unified" mechanics of cutting model applied to ball nose end-
mills. It compares the results of predictions made using both experimental and FEA
orthogonal cutting data in the milling model, to those of the milling tests conducted
and results from literature.

Chapter 7 concludes the document and gives results of the study. It also makes rec-
ommendations as to the continuation of the research and improvements that can be
made.

Stellenbosch Univeristy  http://scholar.sun.ac.za



Chapter 3

Test procedure

A number of tests were conducted for the purpose of this study. All tests were per-
formed using the same material, namely test specimens from a Ti6Al4V, ASTM grade 5
bar. The material was obtained from Titanium Fabrication Corporation in the form of a
75 mm bar of length 300 mm. Table 3.1 summarises the mechanical material properties
for this grade at room temperature.

Table 3.1: Physical properties

Property values unit
Tensile Strength 895 MPa (min)
Yield Strength 828 Mpa (min)
Modulus of elasticity 105-120 Gpa
Elongation 10 %

Micro-hardness tests were conducted to determine the hardness profile through the di-
ameter of the bar. Material hardness can also be related to yield strength of the material
and thus provides a way of determining this property without conducting tensile tests.
Optical and SEM microscopy was performed at each indentation site to investigate the
crystal structure associated with each hardness test. EDS analysis was conducted to
determine the chemical composition as a matter of interest.

Turning tests were conducted to measure the cutting forces under various cutting con-
ditions. Other data collected from these tests were chip samples for geometric compar-
ison with FEA models and the chip thickness, which is required for use in the mecha-
nistic milling model. Chip microscopy was performed on all chip samples in a raw (as
machined) state and also in a mounted, sectioned and etched stat, so that micro struc-
ture and geometric features could be examined. Chip underside temperature was also
measured for selected cutting conditions, again for comparison with FEA models.

Slot milling tests were carried out using a ball nose end mill at various cutting condi-
tions to measure milling forces for comparison with mechanistic milling model predic-
tions.

13
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3.1 Material analysis

Micro hardness tests were conducted to determine the hardness profile through the
diameter of the bar. These tests were conducted using a Wilson Wolpert micro hardness
tester with Vickers indenter and a 1 kg load.

To perform the hardness tests a 5 mm radial slice or disc was cut from the bar using an
EDM cutter, ensuring that no work hardening occurred on the surface of the test sam-
ple. A rectangular section of 40x15 mm was then cut from the disc so that it could be
mounted and polished in preparation for hardness testing, as well as optical and SEM
microscopy and EDS analysis. The rectangular section was mounted in thermoplas-
tic and polished on an automated polisher using graded silica carbide papers ranging
from 400 to 1200 grit. Final polishing was conducted using 6 um and 3 um slurries of
silica carbide.

Figure 3.1: Hardness profile across the radius of the titanium bar

Hardness tests were carried out at seven sites through the radius of the bar and the
hardness profile in Figure 3.1was obtained. The hardness is observed to increase expo-
nentially towards the outside of the bar and a maximum hardness of HV 331 is obtained
5mm from the surface of the bar but then decreases to a value of HV 316 at the surface
of the bar. The hardness through the material varies by no more than 10 % through the
radius of the bar and would therefore not affect the results of machining tests signifi-
cantly. This was later verified by conducting a radial plunging operation on the turning
setup, which is described in Section 3.2, whilst measuring cutting and feed forces.

Vickers hardness can be related to yield strength, according to Yavuz and Tekka [23]
with the relation σy = HV/2.9 at an equivalent plastic strain of 0.08. This gives a
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yield strength range of 997.9 to 1119.7 MPa for the measured sites, which is consider-
ably higher than the manufacturer quoted value of 828 MPa. Knowledge of the yield
strength is of use in determining sensible constants for J-C material model described in
Chapter 4.

Following the hardness tests, the specimen was etched so that the microstructure at
each of the test sites could be examined. Etching was achieved using a solution of
Kroll’s reagent. The specimen was submerged in the solution for a period of 2 seconds
which was sufficient to reveal the microstructure of the sample material. Optical mi-
croscopy was conducted, using a Zeiss Axiotech microscope with an Axiocam sensor,
operating on Axiovision software.

The microstructure can be described as having an elongated α phase in a fine dark-
etching β matrix. The microstructure varies considerably through the radius of the bar
with a finer structure near the edges and a higher β phase concentration. Toward the
centre of the bar, the α phase becomes more distinct and the β matrix surrounds these
grains. SEM analysis revealed no further information and is ommitted here for brevity.

Figure 3.2: Micro structure at indentation sites

EDS analysis was conducted to determine the chemical composition of the titanium
sample. A high amount of carbon was found to be present in the alloy while the vana-
dium and titanium concentrations were lower than expected. This may be attributed
to the etching solution, which may be more reactive with certain materials than others.
EDS analysis, however, showed a good correlation with the stated composition of the
material.

Table 3.2: Material composition from EDS analysis

Element Weight% Area%
C 7.12 21.25
N 2.76 7.06
Al 7.42 9.87
Ti 80.36 60.17
V 2.35 1.65
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Figure 3.3: EDS analysis of the titanium bar

3.2 Turning tests

Turning tests were conducted for the purpose of validating the FE models and to as-
semble the orthogonal cutting database for milling force predictions using the "uni-
fied" mechanics model described in Chapter 6. The database requires that orthogonal
turning tests be performed at a variety of feeds, cutting speeds and rake angles corre-
sponding to the milling conditions which are to be simulated. To this end turning tests
were conducted at speeds ranging from 15 m/min to 200 m/min and feeds ranging
from 0.005 mm to 0.3 mm. Figure 3.4 shows the cutting conditions under which tests
were carried out for both zero and five degree rake angles. Cutting was conducted
without cooling to simplify the FE analysis in that cooling of the cutter and chip due to
conduction and convection can be omitted from the model.

3.2.1 Test setup

The turning tests were conducted using an Oerlikon-Boehringer type PNE 480, inclined
bed, CNC Lathe. Some of its pertinent technical specifications are listed in Table 3.3.
This is considered to be a stiff machine and little vibration and no chatter was evident
during testing.

To measure machining forces, the toolholder is mounted on a 3 component Kistler
9265B dynamometer so that forces applied to the tool may be measured. The dy-
namometer measures forces in the three principal directions using piezoelectric quartz
crystals, which generate an electrical charge when subjected to strain through an ap-
plied external loading to the dynamometer.The dynamometer has a total range of ±15
kN in the x and y direction and 0− 30 kN in the vertical or z direction. It has a calibrated
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Table 3.3: Oerlikon Boehringer CNC lathe specifications

CNC control Fanuc type oi-TB
Country of origin Germany
spindle drive 34 kW
max spindle torque 1000 Nm
turning diameter 350 mm
turning length 1000 mm
turning speed range 14 - 3550 U/min
longitudinal feed 0,1 - 6000 mm/min
cross feed 0,1 - 6000 mm/min

Figure 3.4: Test setup on the Oerlikon Boehringer CNC lathe

partial range of 0− 1.5 kN in x and y and 0− 3 kN in the z direction with linearity bet-
ter than 0.5 %. The natural frequency of the dynamometer occurs at 2.5 kHz which is
well suited to measuring the dynamic forces present in machining.

The charge from the dynamometer is amplified through a Kistler type 5019a multi-
channel charge amplifier. At the output of the amplifier the voltage corresponds to the
force, depending on the scaling parameters set in the charge amplifier. The interface
hardware module consists of a National Instruments BNC-2110 connecting plan block,
and a multi-channel A/D interface board. In the A/D board, the analogue signal is
transformed into a digital signal so that the TLC software is able to read and receive
the data. The voltages are converted into forces in x, y and z directions by the TLC
program. The TLC software is a custom made "continuous monitoring and analysis"
package by TLC software and is designed to capture data from the dynamomter, and
temperature measurement systems.
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Figure 3.5: Orthogonal turning test configuration

3.2.2 Tool holder and insert

The turning operation is a radial plunge operation in which the tool is fed radially into
a pre-grooved bar. The grooves on the bar provide clearance for the tool nose radius
so that the insert cuts only along a portion of the straight edge in a typical orthogonal
machining configuration. The bar was grooved using a 2 mm grooving/parting tool
at 5 mm intervals so that a series of 3 mm discs were obtained for turning tests to be
conducted. Figure 3.5 shows a disc being machined.

In order to perform orthogonal cutting, a tool with a zero entry or inclination angle
was selected from the Sandvik range, which ensured that the cutting edge of the tool
was perpendicular to the direction of feed and thus only tangential and radial force
components are generated, with the axial component being negligible. The selected
tool holder is the CoroTurn 107 Screw clamp unit, designated STFCL 2020M 11-AB1.
CoroTurn 107 triangular uncoated carbide inserts were used for all turning tests. The
inserts have a sharp cutting edge, 7◦ clearance angle and a flat rake face with no chip
breaker. The inserts measure 16mm from corner to corner, are 3.97 mm thick and have
a nose radius of 0.8 mm. The carbide grade used is Sandvik’s H13A grade which is
an uncoated sintered carbide with good abrasive wear resistance and toughness and is
recommended for use in machining heat resistant alloys such as titanium under mod-
erate cutting speeds and feeds.

The tool holder and insert had no rake angle but was later modified to incorporate a 5◦
rake so that milling predictions could be performed for mills with both zero and 5◦ rake
angles. This was done by cutting a 5◦ wedge from the bottom of the tool holder shank
with an EDM cutter. The wedge was then glued to the top surface of the shank, using
cyano-acrylate, to produce the desired rake angle. Figure 3.6 shows the arrangement.
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Figure 3.6: Tool modification for 5◦ rake angle

3.2.3 Force measurements

Force measurements were conducted not only to satisfy the requirements of the mech-
anistic model, but also for comparison with FEA models. Very small feeds were con-
sidered so that edge forces could be found by extrapolating cutting and feed forces to
zero cut thickness; this is a requirement of the "unified" mechanics model. High feed
rate tests were conducted so that the HPM region could be investigated. Feeds were
limited to a maximum of 0.3 mm in this study as rapid tool failure occurred at higher
rates in the form of tool chipping and rapid tool wear.

High cutting speeds were also investigated so that the HSM could be characterized to
some degree. Speeds were limited to 200 m/min due to chip combustion under dry
cutting conditions at a cutting speed of 300 m/min; however temperature measure-
ments were conducted at this cutting speed. Tool wear at high speeds was also very
high and this resulted in difficulties in obtaining reliable force data. Wear rates were
prohibitively high at a combination of high cutting speed and high feed rate and this
region of cutting conditions was not considered, as it does not represent practical ma-
chining conditions. Tool wear manifested itself as an increase in feed forces, after an
initial reduction with tool break in. Tool wear does not form part of this study and all
tests were thus conducted with a new insert or one with negligible wear.

The tests were conducted with the standard tool holder described and then repeated
with the tool holder modified for 5◦ rake angle. This allows for validation of FEM
predictions in terms of the effect of rake angle on cutting forces and also allows for the
prediction of milling operations for tools with rake angles within this range.

Cutting and feed forces increase almost linearly with increasing feed, while cutting
speed, on the other hand, has very little effect. At very low speeds (15 m/s), a slight
increase in machining forces is observed which may be attributed to a reduction in ther-
mal softening effect at the low temperatures associated with this cutting speed (375◦C
see section 3.2.4).
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Figure 3.7: Cutting conditions for orthogonal turning tests
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Figure 3.8: Machining forces and temperature for 3 mm cut width at v=40 m/min; feed=0.1
mm/rev
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Figure 3.9: Measured cutting forces [N] in orhtogonal turning
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Figure 3.10: Measured feed forces [N] in orhtogonal turning
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In Figure 3.11 it can be seen that at very low feed rates there remain residual machin-
ing forces referred to as edge forces. These are the forces associated with rubbing and
ploughing in cutting and are generated through friction at the cutting edge and plough-
ing of the workpiece material due to the radius of the cutting edge. These forces are
found by extrapolating machining forces to zero cut thickness or feed. The cutting or
shear forces forces are taken as the machining forces minus the edge forces and rep-
resent those forces in machining which are due to shearing of the material in the chip
formation process. This data is used in the milling models to establish the orthogonal
database and a detailed description can be found in Chapter 6.
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Figure 3.11: Machining forces vs. feed at V=40 m/min in orhtogonal turning

3.2.4 Temperature measurements

Chip temperature measurements were conducted using the Pyro2 infrared tempera-
ture measurement instrument that uses a fibre optic system with two colour infrared
lighting to measure temperatures up to 1600 K with a resolution of 1◦C and an accu-
racy of 2%. Tests were carried out using the turning setup for force measurements, with
modifications to the tool holder and inserts to accommodate the fibre optic system.

The optic fibre is inserted in a hole, laser drilled perpendicular to the top surface, near
the cutting edge and measures the temperature of the chip underside as it passes. This
measurement is also indicative of tool temperatures at this location. The hole has a
0.2 mm diameter and is situated 1 mm from the cutting edge.

Temperatures were measured for a speed range of 5 m/min to 300 m/min and feeds of
0.05 mm and 0.1 mm. In Figure 3.12 a steady increase in temperature with increasing
cutting speed is observed, due to the increased strain rates at higher speeds and a
resultant increase in heat addition into the system. Feed has negligible effect on the
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temperatures observed, as chip load plays only a small role and the temperatures at
the two feeds showed very close correlation. At cutting speeds of 300 m/min, energetic
chip combustion occurred under dry cutting conditions, and cutting speeds could thus
not be increased due to the fire hazard imposed.
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Figure 3.12: Chip temperatures measured in orhtogonal turning

3.2.5 Chip Microscopy

Chip samples were collected for each of the orthogonal turning tests so that microscope
analysis could be performed. Data collected from this exercise is used in the mechanis-
tic models, uncut to cut thickness ratio, and for comparison with FEA models in terms
of geometry such as chip shape, segmentation period, shear angle and shear band size.

In preparation for optical microscopy the chips were mounted in resin so that polish-
ing and etching could be performed. The chips were mounted on their edges with their
machined surface perpendicular to the viewing plane so that the chips could be exam-
ined in section. Polishing and etching was conducted using the same procedure as in
section 3.1.

3.3 Milling tests

Fifty ball nose slot milling tests were conducted to measure milling forces for compar-
ison with predictions from the unified mechanics of cutting model. Tests were con-
ducted on a Johnford VMC-1050 4-axis vertical machining centre with the material
mounted on a three component dynamometer shown in Figure 3.13. The machining
centre has a maximum spindle speed of 8000 rpm with a power rating of 8 hp. CNC
control is achieved with the use of a Fanuc type oi-MC controller.
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Figure 3.13: Johnford milling centre with dynamometer and titanium test pieces mounted

Material for the milling tests was obtained, as in section 3.1, by EDM cutting discs
from the same titanium bar used in turning and hardness tests. The titanium discs
were bolted to the top surface of the dynamometer, which in turn was mounted on the
bed of the machining centre. The arrangement is shown in Figure 3.14. Slot milling
was performed by milling across the tops of the titanium discs with a ball nose cutter
at various axial depths of cut and feed rates. In the case of partial radial immersion
tests, a rectangular slot was first milled into the material to allow for the appropriate
clearance required.

Tooling consisted of a Sandvik carbide ball nose end-mill, CoroTurn R216. The tool has
a 12 mm diameter, a 1◦ rake angle and a 30◦ helix angle. The mill has two cutting flutes,
one of which was ground away so that testing could be conducted with a single cutting
edge. In milling with tools with two or more oblique cutting flutes, each flute is in cut
for more than 180◦ in the case of full immersion slotting. This is due to the helix angle
of the flutes which results in an overlap of cutting forces from the flutes when one is
entering the cut and the other exiting. For sake of simplicity, and to avoid potential
cutter eccentricity problems, tests were thus conducted with a single flute tool.

A feed range of 0.025 − 0.2 mm and axial immersion of 1 mm to 6 mm in 1 mm in-
crements, were used for the slotting tests. All tests were conducted at 240 rpm to re-
duce tool temperature and combat wear under dry cutting conditions. Partial radial
immersion tests were conducted in both up and down milling configurations at 50%
immersion at a variety of axial immersions at a single feed rate.

Figure 3.15 shows a sample force trace for a ball nose slotting operation obtained from
tests. Here X is in the radial direction aligned with the direction of tool advance, Y is
the radial direction perpendicular to X and Z is in the axial direction. This coordinate
system is used in Chapter 6 where the milling model is implemented.
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Figure 3.14: Milling test setup

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11
−800

−600

−400

−200

0

200

400

600

800

1000

1200

time [s]

m
ill

in
g 

fo
rc

es
 [N

]

y
x
z

Figure 3.15: Ball nose milling test: slot milling; feed:0.1 mm/rev; depth=4 mm; 240 rpm
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Chapter 4

Finite element orthogonal cutting
model

Finite element modelling of metal cutting has been achieved to a greater or lesser de-
gree by various methods ranging from implicit to explicit integration schemes and us-
ing Eulerian, Lagrangian and mixed Eulerian-Lagrangian formulations.

Finite element formulations can be classified as either quasi-static implicit or dynamic
explicit time integration schemes. Implicit formulations require convergence at every
time step or load increment while explicit formulation solves an uncoupled equation
system based on information from the previous time step [24]. The use of finite element
modelling to simulate machining processes dates back to the early 70’s with the work of
Okushima and Kakino [25] and Tay et al. [26]. Tay used an Eulerian formulation which
is an implicit scheme in which the the finite element grid is fixed spatially and material
particles are allowed cross grid boundaries. This formulation is thus also commonly
referred to as the flow formulation and is utilized to model the flow of the chip from
the workpiece. The Eulerian formulation can be described by

�Kn+1Δ�̇μn+1 = �Fn+1 (4.1)

�μn+1 = �μn + Δ�μn+1 (4.2)

in which �Kn+1 is the stiffness matrix, Δ�μn+1 is the vector of unknown incremental ve-
locities, �Fn+1 is the load vector and�μn+1 and�μn are the current and previous total nodal
velocities. When applied to machining problems, this method requires knowledge of
the chip thickness and shear angle from experimental work to determine chip geom-
etry. It can also only be used in steady-state simulations and so only continuous type
chips can be modelled using this method [24]. The major benefits of using the Eulerian
formulation is that no chip separation criteria are required (see Lagrangian formula-
tion) and fewer elements are required to specify the chip and workpiece, thereby re-
ducing the computation time. Another advantage is that there is no need to simulate
the lengthy transition from incipient to steady state cutting conditions as in Lagrangian
formulations. In implicit algorithms, the requirement of convergence at every solution
increment provides better accuracy.

The disadvantage of using such an approach is that experimental work must be carried

26

Stellenbosch Univeristy  http://scholar.sun.ac.za



CHAPTER 4 — FINITE ELEMENT ORTHOGONAL CUTTING MODEL 27

out in order to determine the chip geometry in terms of the ratio of cut to uncut chip
thickness or shear angle. Furthermore, only continuous chip formation can be mod-
elled using this approach so the method is not suitable for modelling titanium chip
formation. This formulation is also unable to deal effectively with segmental and dis-
continuous chip formation and its restrictive contact conditions are also drawbacks of
this scheme.

The Lagrangian formulation can be expressed as both quasi-static implicit and dynamic
explicit time integration schemes. In recent years much of the focus has moved to the
use of Lagrangian formulations, due to the ability of this approach to model dynamic
problems as well as segmental and discontinuous chip formation. The finite element
equations for the quasi-static implicit Lagrangian formulations can be written as

�Kn+1Δ�μn+1 = �Fn+1 (4.3)

�μn+1 = �μn + Δ�μn+1 (4.4)

in which �Kn+1 is the stiffness matrix, Δ�μn+1 is the vector of unknown incremental dis-
placements, �Fn+1 is the load vector and �μn+1 and �μn are the current and previous nodal
displacements [24].

Implicit schemes can be used for simulation of continuous chip formation due to simple
requirements of frictional contact. On the other hand, complex geometry and contact
detection/interaction of discontinuous chip formation recommends the use of explicit
schemes. Dynamic explicit time integration schemes have been employed in metal
forming problems which involve high non-linearity, complex friction-contact condi-
tions and fragmentation [27][28][24]. The explicit finite element equations can be ex-
pressed as

�Mn+1�̈μn +
�Cn+1�̇μn +

�P(�μ) = �F(tn) (4.5)

�μn+1 = �μ1 + Δ�μn+1(Δt,�̈μn,�̇μn) (4.6)

where �̈μ, �̇μ and �μ are the nodal acceleration, velocity and displacement at time tn, M
and C are mass and damping matrices and P and F are internal and external forces [24].
Although no iterative procedure is required, the time step size affects the stability of
the solution and is invariably much smaller than that of the implicit formulation. The
time step is a function of the time it takes for a stress wave to pass through the smallest
element and mesh refinement therefore results in an increase in solution increments.

The main advantages of this scheme is that the chip geometry is a result of the simu-
lation, so that no experimental work needs to be conducted as in the Eulerian scheme.
Furthermore, it is possible to model continuous, segmented and discontinuous chip
formation using this method.

The Lagrangian formulation has some significant disadvantages, however. The first is
the requirement of chip separation from the parent or workpiece material. This has
been an area of much discussion and several solutions exist, such as nodal separation
or element deletion along a predetermined cutting line as well as adaptive and contin-
uous remeshing schemes. The other major disadvantage of this scheme is that of large
element distortions, which affects the solution accuracy or may result in the simulation
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failing and being dumped.

Usui et al. [29] produced one of the first FE models with the ability to model segmental
chip formation in 1984, using the Lagrangian formulation. The model employed "in-
house" FEM code to simulate orthogonal machining of titanium alloys and makes use
of a fracture criteria for crack nucleation and growth to model segmental chip forma-
tion, through nodal separation. Chip separation is again achieved by node separation
along a parting line. The Fracture criterion used is a function of plastic strain, strain
rate, fracture strain, hydrostatic pressure and cutting speed.

In the mid 1990s, Marusich and Ortiz [28] developed an improved Lagrangian model
with a fracture criterion based on workpiece toughness and critical crack distance. The
criteria were applied not only to the depth of cut but also within the deformed chip for
a given stress magnitude, enabling nucleation and propagation of a crack through the
chip. Continuous and adaptive remeshing was used to reduce element distortion and
achieve chip separation. The FE code was again "in-house" software which was later
developed into the commercial Windows based software package, AdvantEdgeTM for
the simulation of orthogonal machining.

Table 4.1 details the capabilities of the various formulations applied to machining mod-
els. From this it can be seen that the explicit Lagrangian model is the only method
suited to the modelling of segmental chip formation observed in titanium machining.

Table 4.1: Strains and strain rates associated with common processes

Eulerian Updated Lagrangian Arbitrary
Lagrangian Eulerian

Nodal location fixed moving and deforms Fixed and moving
with material

solver implicit implicit or explicit explicit
cutting stage continuous continuous & incipient continuous
chip type continuous continuous, segmented continuous

and discontinuous
nodal separation or no yes & no (remesh) no
element deletion
chip geometry prediction no yes yes
residual stress prediction no yes yes
tool nose radius yes yes & no (remesh) yes

Over 70% of researchers used "in-house" finite element code up until the mid 1990s,
however in recent years there has been a dramatic increase in the number of com-
mercial software packages capable of simulating metal cutting such as NIKE2DTM,
ABAQUS/StandardTM, MARCTM, DEFORM 2DTM, FORGE 2DTM, ALGORTM, FLUENTTM,
ABAQUS/ExplicitTM and LS DYNATM [30]. However the choice of formulation type,
chip separation method, fracture criterion, remeshing ability, material models are de-
pendant on the software package. The choice of software thus determines the capabil-
ities of the FE model to a large degree.

In this study the decision was made to use ABAQUS/explicitTM due to several factors.
The package is a general FE program which may be customized through the use of
’user sub-routines’, and although sub-routines were not used in this study, they allow
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for further development of the model in terms of user defined material models and
the incorporation of remeshing schemes. Furthermore, it is a popular and powerful
platform and its use was a requirement of one of the sponsors of this study (Element
Six), because of their use of the software.

4.1 Updated Lagrangian orthogonal cutting model description

The model developed in this study is a dynamic explicit Lagrangian model with temperature-
displacement coupling so that heat flux and conduction between the tool and work may
be included in the model. Chip separation from the workpiece and segmental chip for-
mation through crack growth and adiabatic shear banding is modelled using elements
which fail according to the Johnson Cook or J-C fracture criteria and flow stress is mod-
elled using the J-C material model. These material models are described in 4.1.1. All
other aspects of the orthogonal cutting model are discussed in the following sections.
Thermal aspects such as heat generation and conduction are discussed in section 4.1.2
while friction and contact issues are dealt with in section 4.1.3.

4.1.1 Material modelling

According to Johnson and Cook [31], materials subjected to dynamic loading condi-
tions such as high velocity impact, explosive detonation and metal forming operations
are subject to a wide range of strains, strain rates, temperatures and pressures. In many
instances there has been a tendency to distinguish between dynamic and static proper-
ties, where the difference is due to strain rate alone. However, large strains, pressures
and temperatures are associated with high strain rates and it is therefore important that
the effects of all these variables are accounted for.

Metal machining represents a combination of the highest strains, strain rates and tem-
peratures found in common metal forming processes. Table 4.2 lists the values of strain,
strain rate and the ratio of process temperature to material melting temperatures asso-
ciated with some common metal forming operations. Titanium exhibits behaviour that
is dependent of all these parameters and, as such, modelling titanium machining re-
quires a material model which accounts for these factors.

Table 4.2: Strains, strain rates and temperatures associated with common processes [32]

Process Strain Strain rate [s−1] Th = (t)/(tmelt)

Extrusion 2− 5 101 − 102 0.16− 0.7
Forging/rolling 0.1− 0.5 100− 103 0.16− 0.7
Sheet-metal forging 0.1− 0.5 100− 102 0.6− 0.7
Machining 1− 10 103 − 106 0.16− 0.9

In FE modelling of metal machining, a wide range of constitutive material models
have been employed to model the workpiece behaviour. In general, these can be
described as rigid-plastic, rigid-viscoplastic, elasto-perfectly-plastic, elasto-plastic and
elasto-viscoplastic. Elasto-plastic and elasto-viscoplastic are the most commonly used
materials and account for elastic as well as plastic deformations. The elasto-viscoplastic
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model accounts for plastic strain rate, while the elasto-plastic model has no rate depen-
dency. Both of the models can, however, model springback effects, thermal strains and
residual stress [24].

The elasto-viscoplastic model has been adopted by Shih [33][34][35][36], while Iwata et
al. [37] adopted a rigid-plastic model. A rigid-viscoplastic model was used by Kim and
Sin [38], Joshi et al. [39], Skhon and Chenot [40], Eldridge et al. [41], Strenkowski and
Moon [42], Carrol and Strenkowski [8] and Wu et al. [43]. The use of rigid-viscoplastic
material models can simplify the analysis as no elastic deformation is allowed, however
thermal strains, residual stresses and spring-back effects cannot be evaluated using
these models.

Xie et al., [44] Vaz Jr. et al., 1998a [45]; Vaz Jr. et al., 1998b [46]; Owen and Vaz Jr. [47]
and Obikawa and Usui [48] made use of specialised material models to model adiabatic
shear-banding and fracture when machining Ti6Al4V titanium alloy. Adiabatic shear
localisation, which can cause material failure, is caused by thermal softening in mate-
rials of low thermal diffusivity or in high-speed processes. Vaz Jr. et al. [46] introduced
the use of a two-parameter model to describe material failure due to shear banding,
with the use of a failure indicator and an energy release factor. The failure indicator
defines the onset of failure and the energy release factor is a damage progression rela-
tion which defines the amount of energy released by the element during the softening
process before the actual element failure [24].

This study makes use of the Johnson-Cook plasticity model which is widely employed
in FE cutting and ballistic models [6]. The J-C material model is typically used in tran-
sient adiabatic FE simulations to model flow stress and was introduced in 1983 by John-
son and Cook [49] for modelling problems such as ballistic impacts and metal machin-
ing. The J-C material model is a phenomenological relation, in that it is not based on
traditional plasticity theory. It reproduces several important material responses at high
deformation rates and is thus a popular model for FE simulations which involve high
strain rate deformation. It is an elastic-plastic, Von Mises stress model with analytical
forms of the hardening law, as well as rate and temperature dependence. The model
was developed in conjunction with the Johnson-Cook fracture model [31], which is in-
tended to show the relative effects of various parameters and attempts to account for
path dependency by accumulating damage as the deformation proceeds, and is pri-
marily dependent on the strain, strain rate, temperature and pressure.

The parameters for the Johnson-Cook material model may be obtained by several meth-
ods: high-speed compression tests, Split Hopkinson Pressure Bar (SHPB) tests, practi-
cal machining tests, integration of conventional tests at low strain rates and machining
tests combined with inverse analysis using FEA techniques [49].

High speed compression tests often employ a punch driven by compressed air to com-
press specimens at high speed, resulting in strain rates in the order of 450s−1 [49]. Spec-
imens may be pre-heated in a furnace to obtain flow stress at elevated temperatures,
however, the heating rate is considerably lower than those obtained in practical ma-
chining and may thus introduce age hardening or anneal softening of the material.

The Split Hopkinson Pressure Bar SHPB technique was introduced in the early 20th
century to study material behaviour at high strain rates. With this technique the speci-
men is placed between two lengthy compression bars one of which is referred to as the
input bar. A striker bar is propelled toward the input bar at high velocity and upon
impact, an elastic stress wave is induced in the input bar. The wave travels along the
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length of the bar and is transferred to the sample resulting in deformation of the speci-
men. The strain histories for the incident and transmitted waves in the elastic pressure
bars are measured and analysed to determine the nominal stress-strain and strain-rate
response of the samples. This may also be accompanied by high speed photographic
analysis and other methods. The SHPB technique is also used to determine material
failure parameters [31].

Flow stress modelling

The formulation for the J-C model is empirically based and represents the flow stress
with an equation of the form

σf low =

strain︷ ︸︸ ︷
(A + B(εpl)

n)

strainrate︷ ︸︸ ︷
(1 + Clog(ε̇pl/ε̇re f ))

temperature︷ ︸︸ ︷
(1− Tm) (4.7)

where

T = (t− ttr)/(tmelt − ttr) (4.8)

where t is the current temperature, tmelt is the melting temperature, and ttr is the tran-
sition temperature defined as the temperature at, or below which, there is no temper-
ature dependence on the expression of the yield stress. The material parameters must
be measured at or below the transition temperature. A, B, n and m are material param-
eters measured at or below the transition temperature. The first part of 4.7 is the strain
dependent component, while the second part is a strain rate modifier which introduces
strain rate hardening. The third part is a temperature dependent component which
accounts for thermal softening of the material at elevated temperatures.

The strength of the material is thus a function of strain, strain rate, and temperature.
The model assumes that the strength is isotropic and independent of mean stress. The
values of A, B, C, n, and m are determined from an empirical fit of flow stress data as a
function of strain, strain rate, and temperature to 4.7.

When t = tmelt, the material will be melted and will behave like a fluid and there
will be no shear resistance. The hardening memory will thus be removed by setting
the equivalent plastic strain to zero. ε̇re f is the reference plastic strain rate, which is
generally normalized to a strain rate of 1s−1.

Table 4.3 gives a sample of J-C flow stress model parameters for Ti6Al4V found in
literature. The data shows a large variation in these coefficients which can be attributed,
in part, to the variations in actual material properties which are due to variations in
post processing of the material, such as heat treatment. Sample preparation and grain
orientation also play a role, while other variations are due to the method, and inherent
variability, of the test procedure used in acquiring the model parameters [57]. In this
study only the J-C material parameters found by Johnson and Holmquist [10] were
considered and are used in all FE model predictions. The material constants reported
by Johnson [58] were fitted based on eight torsion tests, four SPHB tests, and two quasi-
static tensile tests, while the others used the SHPB tests only. Furthermore, the material
used in their study is of HRC30 Ti6Al4V with no heat treatment and is thus similar to
the material used in this study (see section 3.1).
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Table 4.3: A sample of Johnson Cook coefficients from literature

Source A [MPa] B [MPa] n C m
Lee and Lin [50] 782.7 498.4 0.28 0.028 1
Dumitrescu et al [51] 870 990 0.25 0.011 1
Khan [52] 1080 1007 0.5975 0.01304 0.7701
Lesuer [53] 1098 1092 0.93 0.014 1.1
Macdougall and Harding [54] 984.0 520.3 0.5102 0.01500 0.8242
Nemat-Nasser et al.[55] 1119 838.6 0.4734 0.01921 0.6437
Johnson and Holmquist [10] 862 331 0.34 0.012 0.8
Songwon Seo et al. [56] 997.9 653.1 0.45 0.0198 0.7

To investigate and illustrate the workings of the J-C model and its sensitivity to the var-
ious material parameters or coefficients, each component (strain, strain rate and ther-
mal) is now considered in turn. In Figures 4.1-4.4 the sensitivity of the first component
is investigated. With B and n fixed and A varied, it can be shown that A determines the
initial plastic flow stress magnitude at zero plastic strain and is thus similar to the yield
stress of a material when strain rate and thermal effects are ignored. A has no effect on
the gradient or hardening response of the curve and simply scales its magnitude.
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Figure 4.1: Flow stress vs plastic strain for A + B(εpl)
n with B = 600 MPa and n = 0.3

When A and n are held constant (A = 400 MPa and n = 0.1) and B is varied, as
illustrated in figure 4.2, it can be shown that an increase in B elevates the flow stress
magnitude at values of plastic strain which are larger than zero. Furthermore, B has an
influence on the strain hardening gradient in that an increase in B increases the gradient
of the material hardening response.
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Figure 4.2: Flow stress vs plastic strain for A + B(εpl)
n with A = 400 MPa

In Figure 4.3, when the strain index is increased to n = 0.3, the sensitivity to strain
hardening is increased through an increase in the gradient of the flow stress curve.
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Figure 4.3: Flow stress vs plastic strain for A + B(εpl)
n with A = 400 MPa

From Figure 4.4 it is clear that when B is held constant and the strain hardening index,
n, is increased the slope of the stress-strain curve is increased. However, the value of
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stress at a strain of 1 remains unchanged, with the consequence that stress below this
value of strain is reduced, while stresses at strains higher than 1 are increased.
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Figure 4.4: Flow stress vs plastic strain for A + B(εpl)
n with A = 400 MPa

When Clog(ε̇pl/ε̇re f ) is plotted against ε̇pl/ε̇re f as in Figure 4.5, it can be seen that strain
rate sensitivity is greatest when ε̇pl approaches ε̇re f . Increasing the strain hardening
index, C, results in both an increase in the magnitude of the strain rate multiplier and
a higher gradient of the resulting curve so that strain rate sensitivity is increased.

The temperature component is sensitive to both m and tmelt. At higher temperatures,
the temperature coefficient, T, tends to unity, which results in a decrease of the thermal
multiplier, resulting in thermal softening of the material through a reduced flow stress
magnitude. This is illustrated in Figure 4.6. It can also be seen that when m is less than
one, the material shows strong thermal sensitivity, while higher values of of m indicate
that strength is retained at higher operating temperatures.

Material failure modelling: Chip separation and segmental chip formation through
crack growth

Chip separation has always been a matter of controversy among researchers on the
experimental analysis of metal cutting [24]. The discussions are reflected by the nu-
merical simulations where no clear direction is given as to which is the best approach.
In literature, several methods are employed to model the chip separation process in
which the chip is sheared from the parent material. Many models use a predetermined
cutting line along which nodal separation or element failure can occur along a line
which coincides with the path which the cutting tool tip makes as it is advanced [59]
[48] [60] [6]. Nodal separation is achieved through the generation of new nodes or the
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Figure 4.5: Strain rate sensitivity in J-C model
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removal of constraints placed on superimposed nodes when the separation criterion is
met.

Chip separation criteria based on nodal separation which are used in literature are var-
ied and range from nodal distance formulations (geometric) to physical criteria which
make use of various critical indicators to determine failure and which are illustrated in
Figure 4.7. Usui and Shirakashi [59] pioneered the discussion of chip separation by em-
ploying a separation criterion based on the distance between the tool tip and the nearest
node along a pre-defined cutting path, as illustrated in Figure 4.7(a). The criterion is
based on geometrical considerations and does not account for possible chip breakage
outside the cutting line [59] [33] [48] [61] [62] [36]. In simulations using this strategy,
as the tool advances, the distance between the node Fw,c and the tool tip decreases and,
at a critical distance, dcr, either a new node is created or a restriction in superimposed
nodes is removed, which makes it possible for the material to separate. Critical in-
dicators have been based on equivalent plastic strain, total strain energy, maximum
principle stress or ductile and brittle fracture concepts [24].

Figure 4.7: Chip separation along predetermined cutting line [24] (a) nodal distance criterion
(b) critical indicator

Owen and Vaz Jr. [47], used a chip breakage criterion based on damage considerations
in conjunction with an adaptive re-meshing scheme and element erosion. Chip sepa-
ration is accomplished by multiple re-meshing procedures to model the crack growth
around failed elements. This method does not rely on a pre-defined cutting line, and
can thus model the effects of cutting edge radius on the simulation.

In this study chip separation is achieved through element failure and subsequent dele-
tion in a row of elements which represent the cutting line. The elements in the cutting
line are much smaller than the surrounding elements, and have little effect on the sim-
ulation. The method is the same used by Ng and Aspinwall [6]. Failure is determined
according to the J-C shear fracture/failure criteria. The elements have a relatively in-
significant height compared to the surrounding elements so that the effects of element
deletion on the solution is minimised. Chip segmentation is also initiated through
crack propagation by applying the J-C failure criteria to elements along the surface of
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the chip being formed. Although simple, the model is rational and is an improvement
over other fracture models based only on plastic strain or the current condition of other
variables. Furthermore, from a computational viewpoint it is attractive since it requires
little additional computational time and only one additional element array to store the
accumulated damage [31].

The J-C fracture model is intended to show the relative effects of various parameters
and attempts to account for path dependency by accumulating damage as the defor-
mation proceeds. Unlike more complicated Nucleation and Growth (NAG) models [8],
the model uses a limited number of constants and is primarily dependent on the strain,
strain rate, temperature and pressure.

Abaqus/Explicit provides a dynamic failure model specifically for the Johnson-Cook
plasticity model which is suitable for high-strain-rate deformation of metals. Abaqus/-
Explicit also offers a general implementation of the Johnson-Cook failure model as part
of the family of damage initiation criteria, which is the recommended technique for
modelling progressive damage and failure of materials. Fracture in the J-C material
model is derived from a cumulative damage law which is a function of mean stress,
strain rate, and temperature. The damage to an element is defined by

E = ∑
Δε

ε f
(4.9)

where

ε f = (d1 + d2 exp(d3(
p
q
)))(1 + d4 ln(

ε̇pl
ε̇re f

))(1 + d5T) (4.10)

and failure is assumed to occur when

E = 1 (4.11)

Here Δε in 4.9 is defined as the increment of effective plastic strain during an integra-
tion cycle and ε f is the equivalent strain to fracture, under the current conditions of
strain rate, temperature, pressure and equivalent stress. The Johnson-Cook dynamic
failure model is based on the value of the equivalent plastic strain at element integra-
tion points and the summation is performed at each increment of the solution. Fracture
is assumed to occur when D = 1.0. ε f is calculated from 4.10 where p is the mean
stress normalized by the effective stress q and the parameters d1, d2, d3, d4, and d5 are
constants determined from high strain, strain rate fracture tests. ε f is assumed to be de-
pendent on a non-dimensional plastic strain rate, a dimensionless pressure-deviatoric
stress ratio, (where p is the pressure stress and q is the Von Mises stress) and the non-
dimensional temperature, T, defined earlier in the Johnson-Cook hardening model.

Table 4.4: Johnson Cook failure coefficients [63]

d1 d2 d3 d4 d5 ε̇re f
−0.09 0.25 −0.5 0.014 3.87 1

As mentioned, the Johnson-Cook failure model is also used to model crack initiation
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along the chip surface and growth into the chip resulting in segmented chip forma-
tion. The formation of surface cracks in segmental chip formation is well documented
and along with thermal softening, brings about catastrophic adiabatic shearing in the
material [57].

General contact in Abaqus allows the use of element-based surfaces to model surface
erosion for analyses. If an interior surface is included in the general contact definition,
the surface topology will evolve to match the exterior of elements that have not failed.
The general contact algorithm modifies the list of contact faces and contact edges that
are active in the contact domain based on the failure status of the underlying elements.
General contact considers a face only if its underlying element has not failed and it is
not coincident with a face from an adjacent element that has not failed; thus, exterior
faces are initially active, and interior faces are initially inactive. Once an element fails,
its faces are removed from the contact domain, and any interior faces that have been
exposed are activated. A contact edge is removed when all the elements that contain
the edge have failed. Based on this algorithm, the active contact domain evolves during
the analysis as elements fail.

In Abaqus, when the failure criterion is met, the deviatoric stress components are set to
zero and remain zero for the rest of the analysis. Depending on the user’s choice, the
pressure stress may also be set to zero for the rest of calculation, this option specifies
that the element is removed from the analysis and results in element deletion. This
results in an unrealistic, instantaneous degradation of the element stiffness which is not
representative of ductile material failure in reality. This is confirmed in the observation
in which a large crack opened ahead of the cutting tool when the model was run using
published values of J-C failure constants for Ti6Al4V. Furthermore a sudden drop of
the stress at the material point may lead to dynamic instabilities in the solution. It is
therefore necessary to include a progressive damage and failure model in the FE model
so that material response during failure can be more accurately modelled.

Abaqus offers a general capability for modelling damage evolution and failure in duc-
tile metals and can be used in conjunction with the a number of plasticity models,
including the Johnson-Cook type. The capability supports the specification of one or
more damage initiation criteria, including ductile, shear, forming limit diagram and
many others. After damage initiation, which occurs when D = 1 in (4.11), the ma-
terial stiffness is degraded progressively, according to the specified damage evolution
response. The progressive damage models allow for a smooth degradation of the mate-
rial stiffness, which makes them suitable for both quasi-static and dynamic situations,
a great advantage over the dynamic failure models.

To help in understanding of the failure modelling, consider the response of a typical
metal specimen during a simple tensile test. The stress-strain response, such as that
illustrated in Figure 4.8, will show distinct phases. The material response is initially
linear elastic, a− b, followed by plastic yielding with strain hardening, b− c. Beyond
point c there is a marked reduction of load-carrying capacity until rupture, c− d. The
deformation during this last phase is localised in a neck region of the specimen. Point c
identifies the material state at the onset of damage, which is referred to as the damage
initiation criterion. Beyond this point, the stress-strain response c− d is governed by
the evolution of the degradation of the stiffness in the region of strain localisation. In
the context of damage mechanics c− d can be viewed as the degraded response of the
curve c− d′ that the material would have followed in the absence of damage.

Figure 4.9 illustrates the characteristic stress-strain behavior of a ductile material un-
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Figure 4.8: Progressive damage and failure model

Figure 4.9: Stress-strain curve with progressive damage degradation

dergoing damage. In the context of an elastic-plastic material with isotropic hardening,
the damage manifests itself in two forms: softening of the yield stress and degradation
of the elasticity. The solid curve in the figure represents the damaged stress-strain re-
sponse, while the dashed curve is the response in the absence of damage. As discussed
later, the damaged response depends on the element dimensions such that mesh de-
pendency of the results is minimised. σy0 and ε

pl
0 are the yield stress and equivalent

plastic strain at the onset of damage. ε
pl
f is the equivalent plastic strain at failure, which

occurs when the overall damage variable reaches unity, D=1.

The evolution of the damage variable with the relative plastic displacement can be
specified in tabular, linear, or exponential form. In this study, a simple linear law is
used. This predicts a linear evolution of the damage variable with effective plastic
displacement, as shown in Figure 4.10. The value of the damage variable then increases
linearly with upl according to

D =
Lε̇pl

upl =
˙upl

upl
f

(4.12)
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Figure 4.10: Progressive damage: linear progression

This definition ensures that when the effective plastic displacement reaches the value
upl = upl

f , the material stiffness will be fully degraded. The linear damage evolution
law defines a truly linear stress-strain softening response only if the effective response
of the material is perfectly plastic (ie there is a constant yield stress) after damage initi-
ation. The value of the equivalent plastic strain at failure depends on the characteristic
length, L, of the element and cannot be used as a material parameter for the specifi-
cation of the damage evolution law. Instead, the damage evolution law is specified
in terms of equivalent plastic displacement, upl . These concepts are explained in the
following paragraphs.

In continuum mechanics the constitutive model is normally expressed in terms of stress-
strain relations. When the material exhibits strain-softening behaviour, leading to strain
localisation, this formulation results in a strong mesh dependency of the finite element
results, in that the energy dissipated decreases upon mesh refinement. In Abaqus, dam-
age evolution models use a formulation intended to alleviate this mesh dependency.
This is accomplished by introducing a characteristic length into the formulation, which
in Abaqus is related to the element size, and by expressing the softening part of the
constitutive law as a stress-displacement relation. In this case the energy dissipated
during the damage process is specified per unit area, not per unit volume. This energy
is treated as an additional material parameter, which is used to compute the displace-
ment at which full material damage occurs. This is consistent with the concept of criti-
cal energy release rate as a material parameter for fracture mechanics. This formulation
ensures that the correct amount of energy is dissipated and greatly alleviates the mesh
dependency.

A different approach is required to follow the strain-softening branch of the stress-
strain response curve. Hillerborg’s fracture energy proposal is used to reduce mesh
dependency by creating a stress-displacement response after damage is initiated [64].
Using brittle fracture concepts, Hillerborg defines the energy required to open a unit
area of crack as a material parameter. With this approach, the softening response af-
ter damage initiation is characterised by a stress-displacement response rather than a
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stress-strain response.

The implementation of this stress-displacement concept in a finite element model re-
quires the definition of a characteristic length associated with an integration point. The
definition of the characteristic length depends on the element geometry and formu-
lation, for the elements used in this study, it is half the length of a line across an ele-
ment for a second-order element. Therefore, elements with large aspect ratios will have
rather different behaviour, depending on the direction in which they crack. Some mesh
sensitivity thus remains due to this effect, and elements that have aspect ratios of unity
are thus employed. The value of the critical length was determined by an iterative pro-
cedure with the criterion that no crack should open ahead of the cutting tool along the
cutting line.

4.1.2 Thermal modelling

In a fully coupled thermo-mechanical analysis, a coupled temperature-displacement
procedure is used to solve simultaneously for the stress/displacement and the tem-
perature fields. In Abaqus/Explicit the heat transfer equations are integrated using
an explicit forward-difference time integration rule given in 4.13, and the mechanical
solution response is obtained using an explicit central-difference integration rule.

θN
(i+1) = θN

(i) + Δt(i+1)
˙θN
(i) (4.13)

where θN
(i) is the temperature at node N and the subscript i refers to the increment num-

ber in an explicit dynamic step. The forward-difference integration is explicit in the
sense that no equations need to be solved when a lumped capacitance matrix is used.
The current temperatures are obtained using known values of ˙θN

(i) from the previous

increment. The values of ˙θN
(i) are computed at the beginning of the increment by

˙θN
(i) = (CNJ)−1(PJ

(i) − FJ
(i)) (4.14)

where CNJ is the lumped capacitance matrix, PJ
(i) is the applied nodal source vector, and

FJ
(i) is the internal flux vector. Since both the forward-difference and central-difference

integrations are explicit, the heat transfer and mechanical solutions are obtained simul-
taneously by an explicit coupling. Therefore, no iterations or tangent stiffness matrices
are required.

For high rate deformation problems, it can be assumed that an arbitrary percentage of
the plastic work done during deformation produces heat in the deforming material.
This is referred to as the inelastic heat fraction which is typically used in the simula-
tion of high-speed manufacturing processes involving large amounts of inelastic strain,
where the heating of the material caused by its deformation significantly influences
temperature-dependent material properties. The heat generated is treated as a volu-
metric heat flux source term in the heat balance equation. For many materials, 90-100
percent of the plastic work is dissipated as heat in the material. Thus, the tempera-
ture used in (4.13) can be derived from the increase in temperature according to the
following expression
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Δt =
α

ρc

∫
σ(ε)dε (4.15)

where Δt is the temperature increase, α is the percentage of plastic work transformed
to heat, c is the heat capacity and ρ is the density. In Abaqus, the default value of
the inelastic heat fraction is 0.9, which is also the value used by many researchers
[7][6][65][9].

The conductive heat transfer between the contact surfaces is assumed to be defined by

q = k(θA − θB) (4.16)

where q is the heat flux per unit area crossing the interface from point A on one surface
to point B on the other, and θA and θB are the temperatures of the points on the surfaces,
and k is the gap conductance. Point A is a node on the slave surface; and point B is the
location on the master surface contacting the slave node or, if the surfaces are not in
contact, the location on the master surface with a surface normal that intersects the
slave node.

In Abaqus, k may be defined as a function of temperature, distance, pressure etc.

k = k(θ̄, d, p, f̄γ, m) (4.17)

Figure 4.11: Gap conductance model

A table of data can be created, defining the dependence of k on the variables listed
in 4.17. The default in Abaqus is to make k a function of the clearance d which is
the method used in this study. When k is a function of gap clearance, d, the tabular
data must start at zero clearance and define k as d increases. At least two pairs of
points must be given to define k as a function of the clearance. The value of k drops
to zero immediately after the last data point, so there is no heat conductance when
the clearance is greater than the value corresponding to the last data point. If gap
conductance is not also defined as a function of contact pressure, k will remain constant
at the zero clearance value for all pressures, as shown in Figure 4.11.
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Table 4.5: Thermal properties for Ti6Al4V and WC used in simulations [66]

Heat capacity (x106 J/(m3K)) Conductivity (W/(mK))
Ti6Al4V
2.35(0◦C) 7(0.C)
2.52(200◦C) 8.6(200◦C)
2.76(400◦C) 11.5(400◦C)
3.5(600◦C) 14.4(600◦C)
3.9(800◦C) 17.2(800◦C)
WC ISO P20
2.10(0◦C) 24(0.C)
2.21(350◦C) 26.7(350◦C)
2.48(750◦C) 27.2(750◦C)

4.1.3 Contact modelling and friction model

The Coulomb friction model relates the maximum allowable frictional or shear stress
across an interface to the contact pressure between the contacting bodies. In the basic
form of the Coulomb friction model, two contacting surfaces can carry shear stresses
up to a certain magnitude across their interface before they start sliding relative to one
another; this state is known as sticking. The Coulomb friction model defines this critical
shear stress, τ, at which sliding of the surfaces starts, as a fraction of the contact pres-
sure, p, between the surfaces [65][9][6]. The stick/slip calculations determine when a
point transitions from sticking to slipping or from slipping to sticking and the fraction,
μ, is known as the coefficient of friction.

τ = μp when τ < τ̄max (4.18)

τ = τ̄max when τ > τ̄max (4.19)

where τ̄max can be defined as

τ̄max = σy/
√

3 (4.20)

Here σy is defined as the uni-axial yield stress of the work material [65]. The formu-
lation indicates that the friction is sliding when the friction stress is below τ̄max, and it
becomes sticking when the friction stress is equal to or larger than the τ̄max regardless of
the contact normal stress. Sticking and sliding friction conditions along the tool/chip
interface are dependent on the direct stress magnitude. Sticking will occur at high con-
tact pressure and when the contact pressure is low, as is the case away from the tool
cutting edge, sliding friction will dominate [9].

There are many variations on the value of friction coefficient which are used in litera-
ture. Köenig et al. suggest a constant friction coefficient of μ = 0.3 [67], while others
use a variable friction coefficient calculated from orthogonal cutting tests according to
4.21 [65].
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Figure 4.12: Stick-slip region for Coulomb friction [7]

μ =
Fx + Fy tan α

Fy − Fx tan α
(4.21)

In a study of FE modelling of titanium machining, Chen et. al. formulated an expres-
sion for μ from orthogonal cutting data, although the method used was not stated. The
workpiece material in question was Ti6Al4V at 35ś2 HRC and regression analysis was
used to determine the relation between the coefficient of friction with cutting speed U,
feed f , and depth of cut d [9].

μ = e−2.04077 × 3.3U−0.474 × 0.04 f−0.043 × 0.04d−0.4034 (4.22)

The values of μ obtained in this study correspond well with values used by other re-
searchers which generally range from 0.1 to 0.5 [7]. In this study, the friction coefficient
was calculated according to Merchant’s machining theory from 4.21, using the data
from the orthogonal cutting tests, and is found to be primarily dependent on the feed,
with cutting speed having little effect. This is due to the lack of influence of cutting
speed on the cutting forces. Figure 4.13 shows the values of μ obtained for a cutting
speed of 75 m/min as a function of feed and these values were used in all FE simu-
lations unless otherwise stated. For comparison, the results of 4.22 are plotted for the
same conditions.

In Abaqus, when employing a fully coupled temperature-displacement analysis, all
dissipated frictional energy is converted into heat and distributed equally between the
two surfaces by default. This behaviour can be modified in terms of the fraction of
frictional energy, η, which is converted into heat, as well as the distribution of heat
between the contacting surfaces, which is controlled by the variable f . f = 1.0 indicates
that all of the generated heat flows into the slave surface of the contact pair while a
value of f = 0 indicates that all of the generated heat flows into the master surface.
The Abaqus manual and Ng et al. [7] suggest that it is reasonable to assume the default
value of f = 0.5 because this value evenly distributes the generated heat between the
two surfaces.

Stellenbosch Univeristy  http://scholar.sun.ac.za



CHAPTER 4 — FINITE ELEMENT ORTHOGONAL CUTTING MODEL 45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.5

0.6

0.7

0.8

0.9

1

Feed [mm]

Fr
ic

tio
n 

co
ef

fic
ie

nt

Bowes
Chen et. al.

Figure 4.13: Friction coefficient vs. feed for cutting speed 75m/min calculated from orthogonal
turning data
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Chapter 5

Finite element model
implementation and results

The dynamic explicit cutting model was implemented as described in the previous sec-
tions and a custom MatlabTM pre-processor was developed for this study to generate
the input file for the ABAQUS/ExplicitTM solver. The pre-processor is designed to
provide a simple means of controlling all the parameters of the model including work-
piece and tool geometry and mesh densities, as well as all material parameters such as
flow stress properties, fracture criteria, thermal properties and friction properties. The
pre-processor includes a visual interface for viewing the model geometry and the mesh
that is generated. The source code is included in the appendix C. Figure 5.1 illustrates
a simple mesh generated using the pre-processor. The tool is shown with red elements,
the uncut chip in light blue and the parent material in dark blue. The chip is meshed
with pre-distorted elements in anticipation of high shear deformations.

The tool is modelled so that it resembles the insert used in turning tests. The tool
model has a flat rake face and a 7◦ rake angle. As is typical with FE models utilising
a predefined cutting line, the tool is modelled with an infinitely sharp edge and is
meshed as an elastic part with ABAQUS’ C3D8RT elements, as is the workpiece. These
are 8-node thermally coupled brick elements with reduced integration and hourglass
control. The model employs 3D elements due to the ease with which contact on eroding
surfaces can be handled. This is explained in further detail in section 4.1.1 and a plane
strain boundary condition is enforced on the front and back surfaces of the workpiece
and cutting tool.

The model makes use of mass scaling to increase the explicit time step so that simula-
tion time is reduced, however, due to the pitfalls associated with this technique only
moderate values of mass scaling are used. For a 2mm cut length at a cutting speed of
40m/min the simulation time on a 2Ghz machine is about 8 hours when one processor
is employed. When conduction between the chip and tool is included the computa-
tional time becomes high and is implemented only in selected cases.

The model is not able to predict ploughing forces associated with machining when
there is a finite radius on the cutting edge, thus, as described in section 3.2.3, the cutting
forces can be separated into forces due to shearing the material, FPcand FQc and those
due to plouging and rubbing. These forces are known as the cutting edge, FPe, and feed
edge, FQe, forces. The edge forces do not vary significantly with increasing cut thickness
and can thus be found by extrapolating edge force data to zero cut thickness. This is

46
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Figure 5.1: Sample plot of geometry and generated by matlab input file builder

consistent with the method used in the milling model in Chapter 6, which is described
in greater detail in section 6.2. Experimentally obtained edge forces are thus added to
the finite element force prediction to account for the model’s inability to predict these
forces.

FPt = FPe + FPc

FQt = FQe + FQc

(5.1)

5.2 shows the process by which segmental chips are formed. In 5.2a, the surface of
the material begins to bulge and the beginnings of the shear zone is observed. In 5.2b,
the shear band is well defined and the bulge of the surface becomes greater and the
geometry of the segment being formed is now fairly well defined. In image c, the
surface of the material fractures as elements in the region fail according to the J-C failure
criterion. Local plastic deformation results in high temperatures in the shearing zone
and the material softens according to the J-C material model. Due to the low thermal
conductivity of the material, heat is confined in the narrow shear band and large scale
adiabatic shearing is observed in 5.2d-f as the chip segment is advanced to the point
where the next segment begins to form (5.2f). High temperatures are observed, both in
the shear zone and along the chip underside, due to high plastic strains in these regions

Figure 5.3 compares the chip shapes of the FE prediction (5.3a) and an experiment chip
(5.3b). The chips show a striking resemblance and the model predicts the general shape
well. The model, however, does not capture the inconsistent segment size which is
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Figure 5.2: FE prediction of adiabatically sheared chip formation in titanium machining
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observed in the experimental work. This may be attributed to vibrations and machine
deflection during machining and even changes in microstructure.

Figure 5.3: Comparison of chip geometries from turning tests and FE prediction v = 75 m/min
f eed = 0.3 mm

5.0.4 Mesh dependency

In order to investigate the mesh dependency of the model, results were generated for
increasing mesh densities. Energy checks were conducted and the cutting forces ex-
tracted to determine when a sufficiently converged solution was reached. Cubic ele-
ments were used, with an element count of 4, 8, 12, 16 and 20 elements in the vertical
direction of the uncut chip. The underlying material is meshed with the same density.
Figure 5.4 shows the results of the mesh dependency in terms of cutting forces. It can
be seen from the force plots that segmented chip formation, and the associated fluctu-
ating forces are only well predicted when 16 or 20 elements are used. Some noise is
observed in the force plots, which is due to acoustic waves traveling in the machined
material and vibrations which are set up in the elastic cutting tool. This is also due to
element failure and deletion along the cutting line, but this contribution is small, due to
the use of damage progression criteria detailed in section 4.1.1, which enables smooth
degradation of element stiffness.
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Figure 5.4: Cutting and feed forces with mesh refinement

In figure 5.5, the average of each of the forces is plotted and for the purpose of this study
it is assumed that the solution is sufficiently well converged when 20 elements are used
in the vertical direction of the chip. Feed forces, Fy, are not highly dependent on the
mesh density. However cutting forces, Fx, are more strongly influenced by the mesh
size and number of elements. For the remainder of this study the model is meshed with
20 elements in the vertical direction, the cutting length is fixed at 2mm and meshed with
brick elements of equal aspect ratio. The underlying or parent material is meshed with
15 elements with decreasing element size from the bottom of the material toward the
uncut chip.
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Figure 5.5: Comparison of average cutting and feed forces with mesh refinement

5.0.5 Cutting force prediction

In this section finite element predictions of cutting forces are compared with experi-
mentally determined cutting forces for orthogonal machining as described in section
3.2.

Figure 5.7 shows the plastic strain for cut thicknesses of 0.025; 0.05; 0.1; 0.2 and 0.3 mm.
Lower feeds result in a shorter, thicker chips. The magnitude of the plastic strain in
the chip increases with increasing depth of cut and the shear angle increases. This is
inconsistent with experimental findings where the, rt, the chip thickness ratio(the ratio
of uncut to cut chip thickness ratio) does not vary significantly. Table 5.1 compares the
FE predictions of rt with experimental findings. Contour plots of the FE predictions for
temperature, Von Mises and Tresca stress are included in appendix B.

Table 5.1: Chip thickness ratio

Feed 0.025 0.05 0.1 0.2 0.3
rt Experiment 0.59686 0.67344 0.56829 0.55556 0.52692
rt FEM 0.571 0.613 0.625 0.645 0.653

Figure 5.9 shows the cutting force prediction compared with the average force data
determined experimentally. In this case the friction coefficient is set at 0.3 and then
later the experimentally determined coefficients are employed. Forces are predicted
with good accuracy, especially at lower depths of cut. At high feeds the error for both
the cutting and feed forces becomes large. The model over-predicts the machining
forces under these conditions.
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Figure 5.6: Comparison of cutting and feed forces for f eed = 0.1 mm v = 125 m/min, experi-
mental values are averaged

Figure 5.10 shows the results when experimentally determined friction coefficients are
used. The feed forces at greater depths of cut are better predicted but the error at
lower feeds is increased. Experimentally determined friction coefficients are used in
the remainder of the study.

In figure 5.12, the cutting forces are plotted as a function of cutting speed and com-
pared with experimental data for a feed of 0.1mm. The forces are again predicted with
reasonable accuracy. Results are plotted for zero and five degree rake in figures 5.12,
5.13 and 5.14, . Cutting forces are not highly dependent on cutting speed, as the effects
of strain rate hardening at increasing cutting speed is offset by the thermal softening
behaviour of the material

The FE model differs in that the increasing rake angles result in lower cutting and
feed forces. Figure 5.17 shows the FE prediction, while Figure 5.16 plots the test data.
Experimental data shows little sensitivity to rake angle. This may be due to the tool
edge radius and material spring back on the insert rack face.
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Figure 5.7: Max plastic strain prediction with v = 75 m/min and
f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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Figure 5.8: Comparison of cutting and feed forces with test data for f eed = 0.1 : 0.3 mm, v = 75
m/min and μ = 0.3
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Figure 5.9: Error in cutting and feed forces in comparison test data for f eed = 0.1 : 0.3 mm,
v = 75 m/min and μ = 0.3
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Figure 5.10: Comparison of cutting and feed forces with test data for f eed = 0.1 : 0.3 mm,
v = 75 m/min with μ calculated from test data
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Figure 5.11: Error in cutting and feed forces when compared to test data for f eed = 0.1 : 0.3
mm, v = 75 m/min with μ calculated from test data
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Figure 5.12: Cutting forces with increasing cutting speed f eed = 1, rake = 0
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Figure 5.13: Error in cutting forces with increasing cutting speed f eed = 1, rake = 0
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Figure 5.14: Cutting forces with increasing cutting speed: FE versus test ( f eed = 1 rake = 5)
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Figure 5.15: Error in cutting forces with increasing cutting speed: FE versus test ( f eed = 1
rake = 5)
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Figure 5.16: Cutting forces for different rake angles experimentally determined (velocity = 75
m/min f eed = 0.1 mm)
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Figure 5.17: Cutting forces for different rake angles finite element prediction (velocity = 75
m/min f eed = 0.1 mm)
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5.0.6 Machining temperature

In this section the FE temperature prediction is compared with the experimental data.
The sequence of images in Figure 5.18a-d shows the generation of heat through plastic
deformation and frictional effects during machining. It can be seen that the highest
temperatures occur on the chip back, near the cutting edge. This is due to shearing and
flattening of the chip in this region, combined with the frictional heat generation. High
temperatures in this region contribute greatly to tool wear and failure.

Figure 5.18: Temperature distribution in the chip and cutting tool v = 75m/min f eed = 0.1mm

Figures 5.19 and 5.20 show the temperature contour plot for increasing cutting speed
(15, 40, 75, 125, 200 and 300 m/min). Figure 5.19 plots the temperatures on the same
scale, while in Figure 5.20, the temperatures are plotted to a scale that ranges from 25◦C
to the maximum temperature observed in each model. Contour plots of the maximum
principle, Von Mises and Tresca stress are included in appendix B for reference.

Increased cutting speeds results in increased chip temperatures. At low speeds heat
conduction in the titanium plays a greater role and a more homogeneous temperature
distribution is observed as heat flows from areas of high plastic strain to cooler re-
gions. Lower temperatures are also generated because the shear zone becomes broader
at lower cutting speeds as can be seen in figure 5.21 which plots the plastic strain distri-
bution in the chip. This occurs as the shear banding becomes a more adiabatic process
as machining speed is increased and thermal softening occurs over a narrower region.

Figure 5.22 shows the measured chip underside temperatures, 0.8 mm from the cutting
edge. The finite element prediction is plotted for comparison, calculated at the same
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Figure 5.19: FE prediction of temperature distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)(equal legend scaling)
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Figure 5.20: FE prediction of temperature distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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Figure 5.21: FE prediction of plastic strain distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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distance along the chip underside. The model predicts cutting temperatures with good
accuracy, except at low cutting speeds. The maximum chip underside temperature is
also plotted for comparison and is approximately 200◦C higher than at the measured
location. When steady state conditions are reached in machining, tool temperatures
can be expected to approach these levels.
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Figure 5.22: FE prediction vs experimentally determined chip temperatures 1mm from the cut-
ting edge

5.1 Summary

A fully coupled temperature-displacement, explicit finite element model is implemented
in this chapter to model the orthogonal cutting of Ti6Al4V alloys. The model employs
the Johnson-Cook material model to describe the material flow and fracture behaviour
so that chip separation and segmentation through element deletion is achieved. The
model is thus able to predict the formation of segmental or saw-toothed chips, as ob-
served in actual machining of titanium alloys.

The segmental chip shape prediction shows a close resemblance to the actual chips ob-
tained and the cutting forces are well predicted, but there some discrepancies due to
limitations of the model and the use of material model parameters obtained from litera-
ture. The temperature prediction compares well with the values obtained in orthogonal
turning tests and the model is useful in the analysis of temperature in the material and
the cutting tool. The model, however, cannot predict the effects of tool edge radius and
the associated forces generated.
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Milling force prediction model

Predictions of the components of cutting forces in machining operations are required
for the determination of power requirements, geometrical errors as well as chatter and
vibration characteristics. Furthermore, predictions may assist in the design of fixtures
and tools in terms of strength requirements in machining setups [68]. The optimisation
of cutting strategies in computer-aided process planning also requires force predic-
tions. Knowledge of machining forces can assist in the selection of cutting conditions
that reduce excessive cutter wear and breakage [69].

Up to the late 1990’s the traditional approach to modelling practical machining opera-
tions had been an empirical approach where process parameters such as cutting speed,
feed and depth of cut are related to experimentally determined, average force com-
ponents through curve fitting techniques [68]. These models provide only an average
value of force components and are, therefore, only applicable to operations where the
forces do not vary cyclically, such as in turning and drilling operations.

For operations where forces fluctuate cyclically, such as in milling, semi-empirical or
mechanistic approaches have been adopted in the past. With these techniques, force
component coefficients are related to chip load through milling tests using curve fit-
ting techniques. The empirically established force coefficients are used in mechanistic
analyses to predict instantaneous force components and fluctuations during cutter ro-
tation. The force component coefficients here, and in other empirical approaches, are
valid only for a given tool-workpiece combination and a range of machining tests has
to be repeated for every combination of tool and workpiece.

In contrast, the "fundamental" or "unified mechanics of cutting" approach is a non-
empirical method which incorporates "edge forces" and relates the developed analyses
of practical operations such as turning, drilling and milling to the "classical" oblique
cutting process, together with the basic cutting quantities found from orthogonal cut-
ting tests. The basic cutting quantities from orthogonal tests form a generic data bank
for a tool-workpiece material combination and may be used to model any machining
operation. The orthogonal data base consists of shear stress, shear and friction angle
data from tests conducted at a range of cutting speeds, feeds and rake angles and Bu-
dak et al. showed accurate transformation between these quantities and oblique cutting
processes applied to cylindrical end mills [68]. The model incorporates all tool and cut
geometrical variables, as well as cutting conditions and can, as result, be used to model
any machining operation and cutter geometry.

64
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6.1 Unified mechanics of cutting

In general, the elemental forces acting on a discrete, oblique cutting edge segment can
be described by 6.1 in the tangential, axial and radial directions. Here the total force in
a particular direction is separated into two components. The first component describes
the edge forces, which are the forces due to rubbing and ploughing at the cutting edge,
due to the radius found on practical cutting edges. The edge forces are represented by
the edge force coefficients, Kte, Kre and Kae, on a unit width of cut basis. The second
part represents the cutting forces, which are due to shearing of the material in the shear
zone and friction along the rake face. The coefficients Ktc, Krc and Kac, on a unit area of
cut basis, make up the cutting force component of 6.1.

Figure 6.1: Ball nose end-mill coordinate system and differential forces acting on an edge seg-
ment [69]

In traditional mechanistic milling models, Kte, Kre, Kae, Ktc, Krc and Kac are referred to as
milling force coefficients and are determined through specific milling tests and mech-
anistic analyses. Tests consist of a series of slot milling tests run at various speeds and
feeds and are valid only for the specific cutter geometry with which the tests are con-
ducted. In contrast, with the unified mechanics of cutting approach, the coefficients are
identified from an orthogonal cutting database, calculated from oblique or orthogonal
cutting analysis, and can thus be predicted for any cutter geometry.
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dFt =

edge︷ ︸︸ ︷
Kte dS+

shear︷ ︸︸ ︷
Ktctn db (a)

dFr = Kre dS + Krctn db (b)

dFa = Kae dS + Kactn db (c)

(6.1)

The method of predicting machining forces in milling, or indeed any other type of
cutting operation, using the "unified mechanics of cutting" approach is based on the
formulation described in 6.1. The general procedure for modelling milling is to divide
the cutter geometry into discrete cutting edge elements and to define the geometry in
terms of rake angle, helix or obliquity angle i in terms of a local coordinate system,
the velocity U of each edge segment and the variation of cut thickness with cutter
rotation angle θ. Once this information is known the cutting and edge force coefficients
for each edge segment can be calculated at each increment of cutter rotation from the
orthogonal cutting data base. The forces acting on each segment can then be calculated
in the local tangential radial and axial directions and transformed to a global coordinate
system and integrated over all the segments to give the total cutting forces in the global
coordinate system as a function of cutter rotation.

6.2 Oblique analysis from orthogonal data

As stated in Chapter 6, the orthogonal data base can be assembled from oblique or
orthogonal cutting tests. In order to achieve this, the cutting and feed force data, as
well as chip thickness data, is collected from a range of cutting tests as detailed in
Chapter 3.2.

For each particular cutting speed investigated, the cutting and feed forces are extrapo-
lated to zero cut thickness through a data fit of the force data at various feeds. This is il-
lustrated in Figure 6.2, where the values for cutting and feed forces at f eed = 0 mm/rev
have been calculated by fitting a cubic spline to the data. These forces are known as
the cutting, FPe, and feed, FQe, edge forces. These forces represent the forces generated
due to rubbing and ploughing of the cutting edge radius. Theoretically, an infinitely
sharp cutting edge would thus have no edge forces while a large radius would generate
higher edge forces.

Once the edge forces have been determined, those power, FPc, and thrust, FQc, force
components that are due to cutting alone can be determined from 6.2 and 6.3, where
FPt and FQt are the total cutting and feed forces as measured from the cutting tests. FPc
and FQc represent the forces generated in the cutting operation due to shearing of the
material and friction along the rake and flank faces of the cutting edge and are thus the
dominant forces present at higher feeds, as the edge forces remain constant, while the
cutting forces increase almost linearly with feed in most materials.

FPt = FPe + FPc (6.2)

FQt = FQe + FQc (6.3)

Stellenbosch Univeristy  http://scholar.sun.ac.za



CHAPTER 6 — MILLING FORCE PREDICTION MODEL 67

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

350

400

450

Feed  [mm]

Fo
rc

e 
[N

/m
m

]

cutting/tangential force
feed/radial force

Figure 6.2: Machining forces vs. feed at V=40 m/min extrapolated to zero feed

The orthogonal database can now be calculated from 6.5-6.6. τ is the shear stress in
the primary shear zone detailed in section 2.4 and φ is the shear angle or the angle the
shear plane makes with the machined surface described in section 2.3. β is the average
friction angle at the rake face of an orthogonal cut, while b, t and r are the cut width,
uncut chip thickness and ratio of cut to uncut chip thickness, or compression ratio,
respectively.

τ =
(FPc cos φ− FQc sin φ) sin φ

bt
(6.4)

tan φ =
r cos α

1− r sin α
(6.5)

tan β =
FQc + FPc tan α

FPc + FQc tan α
(6.6)

Once τ, φ and β have been established, the cutting coefficients can be determined for
oblique cutting conditions within the bounds of the test conditions: the range of cut
thicknesses, rake angles and cutting speeds. The formulation and procedure for de-
termining the cutting coefficients is detailed in the following paragraphs and a more
detailed description can be found by referring to [68].

The oblique cutting geometry for an infinitesimal cutting edge element, AB, on a ball
end mill is detailed in Figure 6.3. The chip velocity , Vc, is inclined to the plane Pn
normal to the cutting edge at an angle i. The resultant cutting forces can be resolved
into three mutually perpendicular components Fp , Fq and Fr using Merchant’s theory
[68][16]. Fp , Fq and Fr are the power, thrust and radial forces acting on the oblique
cutting edge segment, respectively.
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Figure 6.3: Oblique cutting geometry
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Fp =
τbt

sin φn

cos(βn − αn) + tan ηc sin βn tan i
c

(a)

Fq =
τbt

sinφn cos i
sin(βn − αn)

c
(b)

Kr =
τbt

sin φn

cos(βn − αn) tan i− tan ηc sin βn

c
(c)

(6.7)

where

c =
√

cos2(φn + βn − αn) + tan2 ηc sin2 βn (6.8)

The normal friction angle, βn is defined as

tan βn = tan β cos ηc (6.9)

where ηc is known as the chip flow angle or the angle between a perpendicular to the
cutting edge and the direction of chip flow over the rake face in the plane of the tool
rake face. The normal shear angle can be obtained from the cutting ratio

tan φn =
rt cos αn

1− rt sin αn
(6.10)

αn is normally constant and set during cutter grinding, while rt, the chip thickness
ratio in oblique cutting, can be related to the orthogonal parameter r by the following
relation

rt = r
cos ηc

cos i
(6.11)

The model may be further simplified by applying the Stabler rule, which states that the
chip flow angle, ηc is approximately equal to the local inclination or helix angle i. Then
rt is approximately equal to r. The force components, dFt, dFr and dFa, on a small edge
segment in Figure 6.3 are compatible with the power, thrust and axial force components
in oblique cutting. This is true when the elemental thickness t and width of cut b are
given by the instantaneous chip thickness, tn(Ψ, θ, κ) and length dz/ sin κ. The milling
force coefficients due to cutting in 6.1 can be expressed in terms of the transformed
cutting coefficients.

Ktc =
τ

sin φn

cos(βn − αn) + tan ηc sin βn tan i
c

(a)

Krc =
τ

sinφn cos i
sin(βn − αn)

c
(b)

Kac =
τ

sin φn

cos(βn − αn) tan i− tan ηc sin βn

c
(c)

(6.12)
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6.3 Unified mechanics of cutting for ball-end mills

In this section the "unified" mechanics of cutting method is applied to model a constant
lead, ball-end mill geometry which was presented by Altintas and Lee [69]. This model
is used as verification of orthogonal data obtained from cutting tests in this study, and
forms the precursor to a more general milling case where a ball end mill of unknown
geometry is modelled in this study. This is achieved through the use of a coordinate
measuring machine to determine cutter geometry and demonstrates the flexibility of
the method of unified mechanics in predicting machining forces for an arbitrary cutter.
This will be presented in the next section.

6.3.1 Ball mill geometry

Figure 6.4(a)-(d) illustrates the detailed geometry of a ball end milling cutter. The cutter
is ground with constant lead flutes which lie on the surface of a hemispherical plane.
The flutes may be defined as having a helix angle i0 at the intersection of the shank and
the ball of the cutter. The local helix angle, i(ψ), varies toward the tip of the cutter due
to the reduction in the radius of the cutter in the x − y plane with increasing distance
in the z direction. The envelope of a sphere may be described in cartesian coordinates
by

x2 + y2 + (R0 − z)2 = R2
0 (6.13)

where R0 is the radius of the sphere at the centre, z = 0. The cutter radius at a location
along the z axis is

R2(z) = x2 + y2 (6.14)

The z-coordinate of a point located on the cutting edge is

z =
R0ψ

tan i0
(6.15)

Where ψ is the lag angle, due to the cutter helix, between the flute tip at z = 0 and at
an axial location z. This concept is shown in Figure 6.4(b) and is measured clockwise
from the positive y-axis. The centre of the local coordinate system is coincident with
the global X−Y− Z and is located at the tip of the cutter at point 0 in the figure.

The local helix angle, i(ψ), in a constant lead cutter can be found from the following
expression

tan i(ψ) =
R(ψ)

R0
tan i0 (6.16)

The cutter radius at a point in the x− y plane on the cutting flute, at an angle ψ, can be
formulated from the previous equations and is expressed as

R(ψ) =
√

1− (ψ cot i0 − 1)2 (6.17)
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Figure 6.4: Ball nose mill geometry and coordinate system [69]
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Equation 6.18 describes a vector drawn from the cylindrical coordinate centre, C, to a
point on the cutting edge or flute

r(ψ) = R(ψ)(sin ψi + cos ψj) + R0ψ cot i0k (6.18)

The length, dS, of an infintesimal curved cutting edge segment is defined by

dS =
√
(R′(ψ))2 + R2(ψ) + R2

0 cot2 i0dψ (6.19)

where R′(ψ) is the derivative of R(ψ) and can be calculated from equation

R′(ψ) =
−R0(ψ cot i0 − 1) cot i0√

1− (ψ cot i0 − 1)2
(6.20)

A point on flute j, at a height z, is referenced by its angular position, ψ in the global
coordinate system according to

Ψj(z) = θ + (j− 1)φp − z
R0

tan i0 (6.21)

where

φp = 2π/Nf (6.22)

is the the pitch angle of the cutter flutes and Nf is the number of flutes on the cutter.

The instantaneous chip thickness normal to the cutting edge can be expressed by the
following analytical expression and is a function of the radial position angle, θ, and the
axial angle κ. This expression introduces an error which is only significant for small
cut depths, ap or when the ratio of ap to cutter rotational velocity is high. An exact
formulation for cut thickness may be found in references [70][17].

tn(ψ, θ, κ) = st sin(ψ) sin(κ) (6.23)

κ is the angle measured between a line extending from the local origin, C, to a point on
the cutting flute and the z-axis in Figure 6.4. It is described by the following relation

κ = sin−1 R(ψ)
R0

(6.24)

With the ball end-mill geometry completely defined, the resultant elemental cutting
forces, dFt, dFt and dFt, acting on a cutting flute can be calculated from 6.25 in the
tangential, radial and axial directions of the curvilinear local coordinate system. As
mentioned in section 6.1, the cutting forces are separated into edge, (e), and shear, (c),
force components. The edge force coefficients Kte, Ktc and Ktc in N/mm are constant
and lumped at the edges of a cutting edge element and the magnitude of these com-
ponents is found by multiplying them by the respective differential length, dS, (from
6.19) of the edge segment. Kte, Ktc and Ktc, identified from orthogonal cutting tests us-
ing an oblique transformation and detailed in 6.12. They represent the shearing forces
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Figure 6.5: Uncut chip thickness as a function of cutter rotation θ and location on cutting flute
Ψ. Full radial immersion, axial immersion=6 mm f eed = 0.1 mm/rev

per unit area and are thus in the units N/mm2. The force component of this part of 6.25
is found by multiplying the coefficient by the instantaneous chip thickness, tn and the
projected cut length or width of cut, db.

dFt(θ, z) = Kte dS + Ktctn(θ, ψ, κ) db (a)

dFr(θ, z) = Kre dS + Krctn(θ, ψ, κ) db (b)

dFa(θ, z) = Kae dS + Kactn(θ, ψ, κ) db (c)

(6.25)

where

db =
dz

sin κ
(6.26)

The resultant forces in the global cartesion coordinate system may now be found by
introducing a transformation matrix T, in 6.27 and 6.28, which is a function of κ and ψ.
Figures 6.6-6.8 show the forces generated along the length of a cutting flute for a cutter
revolution in the global coordinate system

dFxyz = [T]dFrta (6.27)
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Figure 6.6: Radial machining forces as a function of Ψ and θ. Full radial immersion, axial
immersion=6 mm f eed = 0.1 mm/rev
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Figure 6.7: Tangential machining forces as a function of Ψ and θ. Full radial immersion, axial
immersion=6 mm f eed = 0.1 mm/rev
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Figure 6.8: Axial machining forces as a function of Ψ and θ. Full radial immersion, axial im-
mersion=6 mm f eed = 0.1 mm/rev

⎛
⎝ dFx

dFy
dFz

⎞
⎠ =

⎛
⎝ − sin(κ) sin(Ψ) − cos(Ψ) − cos(κ) sin(Ψ)
− sin(κ) cos(Ψ) sin(Ψ) − cos(κ) cos(Ψ)

sin(κ) sin(Ψ) 0 − sin(κ)

⎞
⎠

⎛
⎝ dFr

dFt
dFa

⎞
⎠ (6.28)

The forces acting on a particular flute, j, at a depth of cut, z, can then be found from

Fxj[θ(z)] =
z2∫

z1
(− dFrj sin(κj) sin(Ψj) − dFtj cos(Ψj) − dFaj cos(κj) sin(Ψj)) dz (a)

Fyj[θ(z)] =
z2∫

z1
(− dFrj sin(κj) cos(Ψj) + dFtj sin(Ψj) − dFaj cos(κj) cos(Ψj)) dz (b)

Fzj[θ(z)] =
z2∫

z1
( dFrj sin(κj) sin(Ψj) − dFaj sin(κj)) dz (c)

(6.29)

where the differential force components area function of the flute segment length, dS,
instantaneous chip load, tn(θzκ), the cutter rotation angle, θ and the lag angle, ψ. Figure
6.12 shows the total forces generated for a cutter revolution.
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Figure 6.9: Machining forces in the global x direction as a function of cutter rotation. Full radial
immersion, axial immersion=6 mm f eed = 0.1 mm/rev
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Figure 6.10: Machining forces in the global y direction as a function of cutter rotation. Full
radial immersion, axial immersion=6 mm f eed = 0.1 mm/rev
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Figure 6.11: Machining forces in the global z direction as a function of cutter rotation. Full
radial immersion, axial immersion=6 mm f eed = 0.1 mm/rev
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Figure 6.12: Total milling forces direction as a function of cutter rotation. Full radial immersion,
axial immersion=6 mm f eed = 0.1 mm/rev
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6.3.2 Comparison with literature test and simulation

The ball nose milling model is implemented as detailed in the preceding sections ac-
cording to the method formulated by Lee and Altintas [69]. In this section a compari-
son is made with the published cutting force predictions and test data. The published
data is compared with the model prediction in this study using the orthogonal data
obtained from the turning tests described in section 3.2.3. Figure 6.13 shows the com-
pared forces for a ball nose mill with radius = 9.525 mm, spindlespeed = 269 rev/min,
helix angle io = 30◦ cut thickness st = 0.0508 mm and an axial immersion a = 6.35 mm.
The prediction is for a full immersion slotting operation. Figure 6.14 shows the model
prediction versus published test and prediction data. In both cases the forces are well
predicted.

Figure 6.13: Measured and predicted slot milling forces for full immersion milling. Black lines
correspond to test and simulation data obtained by [69] while coloured lines are predictions
made in this study

Figure 6.13 shows the compared forces for a ball nose mill with radius = 9.525 mm,
spindlespeed = 269 rev/min, helix angle io = 30◦ cut thickness st = 0.102 mm and an
axial immersion a = 6.35 mm. The prediction is for a half immersion slotting operation

Cutting forces in both cases are well predicted and the models correlate well. This is an
indication that the orthogonal cutting data measured and used in this study are similar
to those obtained in the study conducted by Lee and Altintas.
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Figure 6.14: Measured and predicted slot milling forces for half immersion milling. Black lines
correspond to test and simulation data obtained by [69] while coloured lines are predictions
made in this study

6.4 Modelling arbitrary cutter geometry

Modern cutters are often not of the usual constant lead type designs described in sec-
tion 6.3, but instead have flute geometries designed and optimised to improve cutter
performance. To demonstrate the ability of the unified mechanics of cutting approach
to model any cutter geometry, a 12 mm diameter ball nose cutter, of unknown flute
design, was selected from the Sandvik range of carbide ball-end mills as described in
section 3.3.

6.4.1 Defining geometry

The geometry of a flute on the cutter was scanned into a three dimensional CAD file
(see figure 6.15) using a touch probe coordinate measuring machine. In the CAD en-
vironment, the coordinates of several points along the cutting edge were recorded and
integrated into the Matlab code detailed in section 6.3 for the modelling of constant
lead ball end mills. The same coordinate system was adopted which allowed for sim-
ple integration of the scanned cutter geometry into the program.

To accomplish this, the data was first smoothed and a 3-dimensional spline was fitted
to improve the resolution of the curve by describing the flute as a polynomial function.
Thereafter the x− y coordinates of the fitted curve were transformed from the cartesian
to polar coordinate system while the z-axis data remained unchanged. Figure 6.16
shows the flute plotted in the cartesian space. The edge geometry is then described
as a function of ψ, R and z which is analogous with the geometry definition in section
6.3. Figure 6.17 plots this relationship for the Sandvic cutter. To complete the definition
of the mill, the differential length, dS, and the helix angle, i, are measured from the
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Figure 6.15: CAD model of Sandvik 12 mm ball nose end-mill

CAD model. The cutter has a variable rake angle which ranges from 0◦ − 2◦ and to
simplify the cutter definition, the rake angle is assumed to be zero. This is justified, as
the differences in cutting forces for such a small variation in angle are negligible and
cutting tests did not indicate a significant difference between rake angles 0◦ and 5◦.
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Figure 6.16: Sandvik ball nose flute geometry in the cartesian coordinate system
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Figure 6.17: Sandvik ball nose flute geometry with ψ and z plotted as a function of axial distance
from the cutter tip

6.4.2 Comparison with test data and prediction using FE orthogonal data

In this section force predictions for the Sandvic cutter are compared with the data ob-
tained from slot milling tests described in 3.3. Furthermore milling predictions are
made using the orthogonal machining data predicted in the finite element study of
titanium machining in Chapter 4.

Figure 6.18 shows the milling forces predictions for full immersion up milling with
f eed = 0.15 mm/rev and axial depth of cut, a = 4 mm. Predictions are made using
orthogonal data obtained in both in turning tests and from the finite element predic-
tion.The predictions from the milling model correspond closely to those obtained in
milling tests and the difference in the prediction made using experimental and FE data
do not differ significantly at the cutting conditions modelled.

Figure 6.19 shows the milling forces predictions for half immersion up milling with
f eed = 0.05 mm/rev and axial depth of cut, a = 3 mm. In this case the force prediction
does not match the milling experimental data well. The forces generated in this case
are much smaller than in Figure 6.18 due to the relatively small feed and axial depth of
cut. For small feed rates the contribution of the edge forces to the total force prediction
is relatively large. Differences in predicted milling forces is thus affected more strongly
by the edge condition of the milling cutting edge which is sharper than that of the insert
used in obtaining orthogonal turning tests. The model still predicts the general shape
of the cutting force plots reasonably well and cutting force magnitudes are assumed to
be satisfactory for most applications of the model.

Stellenbosch Univeristy  http://scholar.sun.ac.za



CHAPTER 6 — MILLING FORCE PREDICTION MODEL 82

0 50 100 150 200 250

−800

−600

−400

−200

0

200

400

600

800

1000

1200

cutter rotation angle [deg]

fo
rc

e 
[N

]
Fx exp

Fy exp

Fz exp

Fx FEM

Fy FEM

Fz FEM

test data

Figure 6.18: Ball nose cutting forces predicted from orthogonal data, FE othogonal data and
measured forces for arbitrary cutter geometry
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Figure 6.19: Ball nose cutting forces predicted from orthogonal data, FE othogonal data and
measured forces for half immersion cutting
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6.5 Summary

In this chapter the milling force prediction model based on the "unified mechanics of
cutting" theory is implemented. The model uses both the orthogonal cutting data ob-
tained through machining tests and those from the predictions of the finite element
model. For the case of ball nose milling with a constant lead flute geometry, the force
prediction corresponds well with published data. A ball nose mill of initially unknown
edge geometry is also modelled from a touch probe scan of the cutter geometry and
compared with the machining forces obtained in milling tests with the cutter. Cutting
forces are well predicted when either the orthogonal finite element data or test data are
used in the model.

Deviations in predictions from the measured data may be attributed to several factors.
The first being that the edge preparations of the end mill differs significantly from
that of the turning insert from which the orthogonal database is established. The ball
mill has a ground edge and is thus sharper than the turning inserts, which is finely
finished only on the top surface. Variations may also be attributed to cutter run-out or
eccentricity and deflection of the tool and milling machine. Tool deflection affects the
cut geometry, and thus the instantaneous cut thickness, and has a strong influence on
the cutting forces.
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Chapter 7

Summary

The purpose of this study is to develop numerical models for the prediction of cutting
forces and temperatures generated when machining titanium. The approach taken is
twofold and makes use of both a finite element model, which models the orthogonal
machining case, and the "unified mechanics of cutting" approach which is implemented
for the prediction of milling operations.

An extensive range of orthogonal cutting tests was performed and data was collected
in terms of cutting forces, chip analysis and temperature measurements. Micro struc-
tural analysis was also conducted on the working material, as were hardness tests. The
orthogonal data is used to establish an orthogonal cutting database for verification and
comparison with the finite element model and is also used in the "unified mechanics
of cutting" model. Slot milling tests were conducted using a ball nose mill to mea-
sure cutting forces during milling for comparison with the predictions of the "unified
mechanics of cutting" model.

A fully coupled temperature-displacement, explicit finite element model is implemented
in Chapter 4 to model the orthogonal machining case. The model employs the Johnson-
Cook material model to describe the material flow and fracture so that chip separation
and segmentation is modelled. The segmental chip shape shows a close resemblance
to the actual chips obtained and the cutting forces are well predicted, but there some
discrepancies due to limitations of the model and the use of material model parameters
obtained from literature. The temperature prediction compares well with the values ob-
tained in orthogonal turning tests and the model is useful in the analysis of the effects
of temperature in the material and cutting tool. The model, however, cannot predict
the effects of tool edge radius and the associated forces generated.

In Chapter 6 the milling force prediction model, based on the "unified mechanics of
cutting", is implemented. The model was implemented using orthogonal force data
obtained from machining tests and from the predictions of the orthogonal cutting finite
element model. The predicted and measured cutting forces are used independently
to populate the orthogonal cutting database used in the milling model. In this study
a generic ball nose cutter geometry was modelled and compared with results from
literature. The force prediction in this case corresponds well with published data using
either FE or test data. An off the shelf ball nose cutter was also modelled by scanning
the geometry using a touch probe scanner and incorporating it in the milling model.
The model predictions are compared with the machining forces obtained in milling
tests. Cutting forces are reasonably well predicted when either the orthogonal finite

84
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element or test data are used in the model.
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Chapter 8

Conclusion

The finite element model implemented in this study shows good correlation with ex-
perimental data in terms of cutting force and temperature prediction as well as the chip
shape. The model is however unable to predict the cutting edge forces that are due to
rubbing and plowing of the of the cutting tool due to a finite edge radius. The model
is only able to model an infinitely sharp cutting edge and in this study the edge forces
were calculated from experimental work. The experimental work however shows that
the edge forces are independent of the cutting conditions and are only a function of the
edge radius and finish and the material couple.

There are several ways in which a tool with an edge radius may be modelled but they
pose their own specific problems. One such metod would be to use an algorithm to
continuously remesh the area around the tool edge so that no predefined cutting or
parting line has to be employed. Abaqus however has only limited remeshing capa-
bilities. Remeshing is achieved through redistributing the nodes and remapping the
stress field onto the new mesh. It does not have the capability of adding new nodes
to the system and failed when implemented in the model. A second method would be
to use a mixed Lagrangian-Eulerian model where the tool and workpiece are meshed
using a lagrangian mesh and a the area of the workpiece around the tool and the chip
is meshed using Eulerian elements. This method was also implemented but failed to
produce saw tooth chips and was thus deemed unsuitable.

For further studies it is recommended that a custom remeshing algorithm is imple-
mented so that the flow of material around the cutting edge can be realistically mod-
elled. The limitation here would be computational expense as the elements around the
edge would need to be smaller than the edge radius modelled to accurately capture
the behaviour of the material at the tool edge. Because an explicit formulation is em-
ployed, a small time increment would be introduced and the computational time will
be greatly increased.

Another shortcoming of the model is that conduction of heat out of the system is not
considered and the model is thus incapable of modelling steady state machining tem-
peratures. The model is valid in terms of heat generation in the work piece due to
plasticity and friction but the temperature distribution in the tool is not accurately pre-
dicted. The thermal modelling is however useful in gaining insight into the influence
of machining conditions on the temperatures generated in the system.

The milling model has been proven in literature to provide accurate prediction of ma-
chining forces given that the orthogonal cutting database is accurate. It is important

86

Stellenbosch Univeristy  http://scholar.sun.ac.za



CHAPTER 8 — CONCLUSION 87

that the tool preparation in the orthogonal or oblique cutting tests closely matches that
of the tool being modelled. It is thus important that edge radius, surface finish and
tool coatings are well matched. In this study this was not controlled but reasonable
predictions of milling forces were still obtained and deemed adequate for the study.

In the milling tests the results when milling at conditions where small machining forces
were generated were not not useable. This was because the gain on the charge ampli-
fier was not adjusted for different machining parameters and was only noted on data
processing and repeat tests could not be conducted at this stage of the study. Repeat
tests are recommended to remedy this. A shorter and tool is also recommended to
reduce the effects of tool deflection.
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Stellenbosch Univeristy  http://scholar.sun.ac.za



6. LIST OF REFERENCES 92

[54] Macdougall, D. and Harding, J.: A constitutive relation and failure criterion for
ti-6al-4v alloy at impact rates of strain. Mech Phys Solids, vol. 47, pp. 1157Ű–1185,
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Appendix A

Turning test data

Table A.1: Machining forces for: v = 15m/min, rake = 0◦

Feed [mm/rev] Cutting force Feed force
0.005 30.09952911 40.13270548
0.025 74.41272474 62.70735231
0.05 118.7259204 80.26541096
0.1 201.1524086 114.3648775
0.2 334.1725498 154.9197986
0.3 437.9429768 180.3788123

Table A.2: Machining forces for: v = 40m/min, rake = 0◦

Feed [mm/rev] Cutting force Feed force
0.005 26.06483541 37.35959742
0.025 64.29326068 58.21146575
0.05 109.7552083 73.45833333
0.1 184.1915036 98.17754671
0.2 314.7061877 138.6978301
0.3 437.9429768 180.3788123

Table A.3: Machining forces for: v = 75m/min, rake = 0◦

Feed [mm/rev] Cutting force Feed force
0.005 25.19600756 37.09725311
0.025 61.68677714 54.73615436
0.05 99.64412811 69.39501779
0.1 183.9302682 94.85193201
0.2 308.079838 143.016767
0.3 437.7104 193.6027
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Table A.4: Machining forces for: v = 125m/min, rake = 0◦

Feed [mm/rev] Cutting force Feed force
0.005 24.74398226 38.76557221
0.025 65.9839527 56.91115921
0.05 108.692744 72.74052868
0.1 186.2516108 103.2149377
0.2 338.9830508 152.5423729
0.3 437.7104 193.6027

Table A.5: Machining forces for: v = 200m/min, rake = 0◦

Feed [mm/rev] Cutting force Feed force
0.005 25.56878167 36.29117399
0.025 61.87125428 59.36296019
0.05 118.294942 91.44786297
0.1 180.0000 112.6169996
0.2 338.9830508 152.5423729
0.3 437.7104 193.6027

Table A.6: Machining forces for: v = 15m/min, rake = 5◦

Feed [mm/rev] Cutting force Feed force
0.005 36.62109375 58.59375
0.025 76.49739583 69.17317708
0.05 112.3046875 74.05598958
0.1 188.8020833 96.84244792
0.2 330.4036458 146.484375
0.3 409.3424479 173.3398438

Table A.7: Machining forces for: v = 40m/min, rake = 5◦

Feed [mm/rev] Cutting force Feed force
0.005 33.36588542 57.77994792
0.025 69.17317708 68.359375
0.05 107.421875 78.125
0.1 184.7330729 104.9804688
0.2 297.8515625 137.5325521
0.3 409.3424479 173.3398438
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Table A.8: Machining forces for: v = 75m/min, rake = 5◦

Feed [mm/rev] Cutting force Feed force
0.005 29.7934322 48.828125
0.025 65.10416667 61.03515625
0.05 104.9804688 71.61458333
0.1 178.2226563 88.70442708
0.2 291.3411458 130.2083333
0.3 411.7838542 192.8710938

Table A.9: Machining forces for:v = 125m/min, rake = 5◦

Feed [mm/rev] Cutting force Feed force
0.005 27.66927083 49.64192708
0.025 65.10416667 58.59375
0.05 106.6080729 72.42838542
0.1 177.4088542 94.40104167
0.2 289.7135417 138.3463542
0.3 411.7838542 192.8710938

Table A.10: Machining forces for: v = 200m/min, rake = 5◦

Feed [mm/rev] Cutting force Feed force
0.005 25.22786458 43.9453125
0.025 65.91796875 62.66276042
0.05 106.6080729 76.49739583
0.1 166.8294271 96.84244792
0.2 289.7135417 138.3463542
0.3 411.7838542 192.8710938

A.1 Machining temperatures
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Table A.11: Measured machining temperatures

Cutting speed m/min temp [C◦] temp [C◦]
f eed = 0.05mm/rev f eed = 0.1mm/rev

7.5 170 166
15 401 403
40 583 585
75 645 641
125 695 702
200 822 821
300 842 845

A.2 Chip microscopy

Figure A.1: Chip images from optical microscopy. V = 40 m/min,
f eed = 0.025; 0.05; 0.1; 0.2 mm and rake = 5◦
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Figure A.2: Chip images from optical microscopy. V = 75 m/min,
f eed = 0.025; 0.05; 0.1; 0.2 mm and rake = 5◦
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Figure A.3: Chip images from optical microscopy. V = 125 m/min,
f eed = 0.025; 0.05; 0.1; 0.2 mm and rake = 5◦
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Figure A.4: Chip images from optical microscopy (unannotated). V = 40 m/min,
f eed = 0.025; 0.05; 0.1; 0.2; 0.3; 0.4 mm and rake = 0◦
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Figure A.5: Chip images from optical microscopy (unannotated). V = 75 m/min,
f eed = 0.025; 0.05; 0.1; 0.2 mm and rake = 5◦
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Appendix B

Finite element results

B.1 Finite element predictions for varying feed rates

102
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Figure B.1: FE prediction of plastic strain distribution in the chip with v = 75 m/min and
f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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Figure B.2: FE prediction of Mises stress distribution in the chip with v = 75 m/min and
f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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Figure B.3: FE prediction of Tresca stress distribution in the chip with v = 75 m/min and
f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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Figure B.4: FE prediction of max principle stress distribution in the chip with v = 75 m/min
and f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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Figure B.5: FE prediction of plastic strain distribution in the chip with v = 75 m/min and
f eed = 0.025; 0.5; 0.1; 0.2; 0.3 mm (image a-e)
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B.2 Finite element predictions for varying cutting speed

Figure B.6: FE prediction of plastic strain distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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Figure B.7: FE prediction of Mises stress distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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Figure B.8: FE prediction of Tresca stress distribution in the chip with f eed = 0.025 mm/rev
and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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Figure B.9: FE prediction of max principle stress distribution in the chip with
f eed = 0.025 mm/rev and v = 15; 45; 75; 125; 200; 300 m/min (image a-f)
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Appendix C

Matlab FE cutting model builder for
Abaqus Explicit solver

C.1 Input file builder

%c l e a r a l l ; c l o s e a l l
%This program generates the Abaqus input f i l e f o r an orthogonal machining
%model
t i c

��� = fopen ( ' feed1_v75_mesh20_cr20_08 . inp ' , 'w ' ) ;
%def ine c u t t i n g speed feed and f r i c t i o n c o e f f i c i e n t
���� = 0 . 1 �−3; %m
�� = 7 5 ; %m/min
������	
 = 0 . 3

%work piece geometry and number of elements
�����=���� ; %chip height ( y )
���=����� * 1 0 ; %workpiece length ( x )
���=����� * 2 ; %workpiece height ( y )

������
�=0/180* pi %mesh p r e d i s t o r t i o n angle

������ = 2 0 ; %number of e l in y d i r e c t i o n ( chip )

����	�� = 0 . 7 5 * 
������ ; %number of e l in y d i r e c t i o n ( workpiece )

��=
������+
����	��
���=�����/
������

�� = round ( ���/��� )
���=���/
��

������
������� = ��� * 1 . 5 / cos ( ������
� ) * 0 . 8
������
������ = ��� * 2 * 0 . 8
����� = ���/
�� %plane s t r a i n t h i c k n e s s

%t o o l geometry
��� = ����� * 2 . 5 ; %t o o l length
��� = ����� * 5 ; %t o o l height
���
� = 0 ; %rake angle
���
� = 5 ; %c l e a r a n c e angle

����		� = 2 0 ; %number of e l in x d i r e c t i o n

����		� = 3 0 ; %number of e l in y d i r e c t i o n

� = ��/60;
���� = ���/� * 2 / 3 * 1 . 2 ;
�=−� ;
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%element height
���� = ������/50; %y length of shear f a i l u r e element
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% Mater ia l p r o p e r t i e s f o r TiAl4V
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
��	��
� = 4430 ; %kg/m^3
� = 110�+9; %Pa
����	 = 0 . 3 ;

% % JC p l a s t i c flow cons tants
% sigma_flow = (A + B * ( E_pl ) ^n ) * (1 + C* ln ( E_d_pl/E_d_0 ) ) * (1−T ) m̂
% T = ( t−t _ t r /t_melt−t _ t r )
% No. A (MPa) B (MPa) n C m References
% 1 7 8 2 . 7 4 9 8 . 4 0 . 2 8 0 . 0 2 8 1 [ 3 4 ]
% 2 870 990 0 . 2 5 0 . 0 1 1 1 [ 3 5 ]
% 3 724 6 8 3 . 1 0 . 4 7 0 . 0 3 5 1 [ 3 6 ]
% 4 968 380 0 .421 0 .0197 0 .577 [ 1 4 ]
% 5 859 640 0 . 2 2 0 .000022 1 . 1 [ 3 7 ]
% 6 862 331 0 . 3 4 0 . 0 1 2 0 . 8 [ 3 8 ]
� = 862��
� = 331��
� = 0 . 3 4
� = 0 .012
� = 0 . 8
��� =1650
� = 25
% JC shear f a i l u r e c r i t e r i a f o r crack propagation and chip separa t ion
% E_pl = ( d_1 + d_2exp ( d_3 *p/q ) ) (1 + d_4 * ln ( E_d_pl/E_d_0 ) ) * (1+ d_5 *T )
��� = −0.09
��� = 0 . 2 5
��� = 0 . 5
��� = 0 .0 14
��� = 3 . 8 7

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% Mater ia l p r o p e r t i e s f o r WC
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% densi ty = 4430 ; %kg/m^3
% E = 110 e +9; %Pa
% poisson = 0 . 3 ;
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%mesh CHIP
[ 	�������� , ��	
������ ]= ���������������
�
 ( 	�� , 	������� , ��� , ��� , ������ , ���
� 	! ) ;

%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%mesh SHEAR PLANE
[ 	������ , ��	
���� ]= ��� ������������
�
 ( 	�� , 	������� , ��� , ��� , ������ , ���� , ���
� 	!←↩

) ;
� = s i z e ( ��	
������ ) ;
		��� = � ( 1 , 1 ) ;
�� = s i z e ( 	�������� ) ;
	�� = �� ( 1 , 1 ) ;

	����"����� = [ 	������ ( : , 1 ) +	�� , 	������ ( : , 2 : 5 ) +(	��+1) * ( 	������� ) ] ;
	 = [ 	�������� ; 	����"����� ] ;
��	
��"����� = [ ��	
���� ( : , 1 ) +		��� , ��	
���� ( : , 2 : 4 ) ] ;
� = [ ��	
������ ; ��	
��"����� ] ;

% % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%mesh WORKPIECE
[ 	������# , ��	
����# ]= ��#��������!� ��� ( 	�� , 	�����# , ��� , ��� , ������ , ���� ,←↩

���
� 	! ) ;

�� = s i z e ( � ) ;
		��� = �� ( 1 , 1 ) ;
� = s i z e ( 	 ) ;
	�� = � ( 1 , 1 ) ;

	����"�����# = [ 	������# ( : , 1 ) +	�� , 	������# ( : , 2 : 5 ) +(	��+1) * ( 	�������+1) ] ;
	 = [ 	 ; 	����"�����# ] ;
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��������	
���� = [ ���������� ( : , 1 ) +(���+1) * ( �������	+2) , ���������� ( : , 2 : 4 ) ] ;
� = [ � ; ��������	
���� ] ;

� ( ( ���+1) * ( �������	 ) +1 ,3 ) =� ( ( ���+1) * ( �������	 ) +1 ,3 ) ;%+sh_e ;
� ( ( ���+1) * ( �������	+1) +1 ,3) =� ( ( ���+1) * ( �������	+1) +1 ,3)−1*���� ;

������������ ( : , 1 ) = � ( : , 1 ) +length ( � ) ;
������������ ( : , 2 ) = � ( : , 2 ) ;
������������ ( : , 3 ) = � ( : , 3 ) ;
������������ ( : , 4 ) = � ( : , 4 ) +���� ;
� ( length ( � ) + 1 : 2 * length ( � ) , : ) = ������������ ;

� ( : , 6 : 9 ) = � ( : , 2 : 5 ) +length ( � ) /2 ;
	������ (� , � ) ;
hold ��

%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%mesh TOOL
[ ��
������� , ����������� ]= ���������������
�
 ( �������� , �������� , ��� , ��� , ��� , ����� ,←↩

����� , �����	 , ���� , 
������� ) ;
��=����������� ( : , 2 : 4 ) ;

��
� = 0 . 1 ;
����������� ( : , 2 : 4 ) =�� ;
����������� ( : , 4 ) =����������� ( : , 4 )−(���� * ��
� ) ;
	���������
 ( ��
������� , ����������� ) ;
gr id ��

	����������� ( ��
������	 , ����������	 ) ;
������������� ( : , 1 ) = ����������� ( : , 1 ) +length ( ����������� ) ;
������������� ( : , 2 ) = ����������� ( : , 2 ) ;
������������� ( : , 3 ) = ����������� ( : , 3 ) ;
������������� ( : , 4 ) = ����������� ( : , 4 ) +����+2*( ���� * ��
� ) ;
����������� ( length ( ����������� ) + 1 : 2 * length ( ����������� ) , : ) = ������������� ;

��
������� ( : , 6 : 9 ) = ��
������� ( : , 2 : 5 ) +length ( ����������� ) /2 ;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
���
���� = length ( � ) ;
���
���� = length ( ����������� ) ;
���
�� = length ( ����������� ) +length ( � ) ;

%Write ABAQUS input f i l e ( . inp )
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%def ine assembly i n s t a n c e s
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��
 , '%6s\n%6s\n ' , ' * Heading ' , ' * * Job name : UL_my_model Model name : Model−1 ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * * Generated by : Abaqus/CAE Version 6.8−1 ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Preprint , echo=NO, model=NO, h i s t o r y =NO, c o n t a c t =NO' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * * PARTS ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Part , name=Tool ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' *End Part ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Part , name=Workpiece ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' *End Part ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Assembly , name=Assembly ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Instance , name=Tool−1, part=Tool ' ) ;
f p r i n t f ( ��
 , '%−6s\n ' , ' *Node ' ) ;
f p r i n t f ( ��
 , ' %6.0 f , %12.11 f , %12.11 f ,%12.11 f \n ' , ����������� ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Element , type=C3D8RT ' ) ;
f p r i n t f ( ��
 , ' %6.0 f , %6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f , %6.0 f \n ' ,←↩

��
������� ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * E l se t , e l s e t =_PickedSet2 , i n t e r n a l , generate ' ) ;
f p r i n t f ( ��
 , ' %6.0 f ,%6.0 f ,%6. f \n ' , 1 , length ( ��
������� ) , 1 ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * * S e c t i o n : Tool ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * So l id Sect ion , e l s e t =_PickedSet2 , m a t e r i a l =WC' ) ;
f p r i n t f ( ��
 , ' %6.0 f ,\n ' , 1 . 0 ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' *End I n s t a n c e ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Instance , name=Workpiece−1, part=Workpiece ' ) ;
f p r i n t f ( ��
 , '%−6s\n ' , ' *Node ' ) ;
f p r i n t f ( ��
 , ' %6.0 f , %12.11 f , %12.11 f ,%12.11 f \n ' ,� ' ) ;
f p r i n t f ( ��
 , '%6s\n ' , ' * Element , type=C3D8RT ' ) ;
f p r i n t f ( ��
 , ' %6.0 f , %6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f ,%6.0 f , %6.0 f \n ' ,� ' ) ;
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f p r i n t f ( ��� , '%6s\n ' , ' * * Region : ( Workpiece_Body : Picked ) ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =Body , i n t e r n a l ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ������	
����� ( : , 1 ) ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ���������
 ( : , 1 ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =CL, i n t e r n a l ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ������	
���� ( : , 1 ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =chip , i n t e r n a l ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ���������
 ( 1 : ( ��� ) * ( ��� ) ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * S e c t i o n : Workpiece ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * So l id Sect ion , e l s e t =Body , m a t e r i a l =Ti6Al4V ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * So l id Sect ion , e l s e t =CL, m a t e r i a l =Ti6Al4V_CL ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * So l id Sect ion , e l s e t =chip , c o n t r o l s =ec , m a t e r i a l =Ti6Al4V_chip ' )←↩

;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *End I n s t a n c e ' ) ;

%d e f i n i t i o n of element , node and s u r f a c e s e t s
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * nset , nse t=Tool_top_nodes , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ( ��������+1) * ( �������� ) + 1 : 1 : ( ��������+1) * ( �������� ) +1+←↩

�������� , ( ��������+1) * ( �������� ) +1+�������� / 2 : 1 : ( ��������+1) * ( �������� ) +1+←↩
��������+��������/2) ;

f p r i n t f ( ��� , '%6s\n ' , ' * e l s e t , e l s e t =Tool_top , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ( �������� ) * ( �������� )−�������� + 1 : 1 : ( �������� ) * ( �������� ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * e l s e t , e l s e t = t o o l _ a l l , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : length ( ����������� ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * nset , nse t=Tool_back , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' ,1+�������� : ( ��������+1) : ( ��������+1) * ( ��������+1)+�������� ,1+←↩

��������+�������� / 2 : ( ��������+1) : ( ��������+1) * ( ��������+1)+��������+��������/2) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *SURFACE, NAME= t o o l _ e x c l , TYPE=ELEMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' t o o l _ a l l , ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *SURFACE, NAME= t o o l _ s u r f , TYPE=ELEMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' t o o l _ a l l , ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * nset , nse t= a l l _ t o o l , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : �������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l s e t , e l s e t =Flankface , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : 1 : �������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=FF , i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' F lankface , S3 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =Rakeface , i n t e r n a l , i n s t a n c e =Tool−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : �������� : �������� * �������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=RF , i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Rakeface , S6 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=Top , i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Tool_top , S5 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =Machsurf , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ��� * ( �������
+1) + 1 : 1 : ��� * ( �������
+2) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=MS, i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Machsurf , S3 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , '←↩

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =Chipfront , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : ��� : ( ��� ) * ( �������
 ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=CF , i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Chipfront , S6 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l se t , e l s e t =Chipunder , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , ��� * �������
−��� + 1 : 1 : ��� * �������
 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface , type=ELEMENT, name=CU, i n t e r n a l ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Chipunder , S5 ' ) ;
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f p r i n t f ( ��� , '%6s\n ' , '←↩

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * nset , nse t=all_work , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : �������	 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * nset , nse t=Work_bottom , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , [ ( ��
+1) * ( �������+����	���+1) + 1 : 1 : ( ��
+1) * ( �������+����	���←↩

+2) , ( ��
+1) * ( �������+����	���+1)+1+�������	 / 2 : 1 : ( ��
+1) * ( �������+����	���+2)+ ←↩
�������	/2 , ( ��
+1) * ( �������+2) : ( ��
+1) : ( ��
+1) * ( ���+1) , ( ��
+1) * ( �������+2)+←↩
�������	 / 2 : ( ��
+1) : ( ��
+1) * ( ���+1)+�������	/ 2 ] ) ;

f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * e l s e t , e l s e t =work_ent , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
�
� = ( ( ��
 ) * ( �������+1) +1) : ( ( ��
 ) * ( �������+3) ) ;
f p r i n t f ( ��� , ' %3.0 f \n ' , �
� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *SURFACE, NAME=entry , TYPE=ELEMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' work_ent ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * e l s e t , e l s e t =work , i n t e r n a l , i n s t a n c e =Workpiece−1 ' ) ;
f p r i n t f ( ��� , ' %6.0 f ,\n ' , 1 : length ( � ) ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *SURFACE, NAME=work_inter ior , TYPE=ELEMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' work , INTERIOR ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *SURFACE, NAME=work_exterior , TYPE=ELEMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' work , ' ) ;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' *End Assembly ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * s e c t i o n contro l s , name=ec , element d e l e t i o n =yes ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Amplitude , name=Amp−1, time= t o t a l time , d e f i n i t i o n =smooth step ' ) ;
f p r i n t f ( ��� , '%6f , %6f ,%6e ,%6 f \n ' , 0 , 0 , ����/5 ,1) ;

%def ine m a t e r i a l s
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * * MATERIALS ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Material , name=Ti6Al4V ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Conductivity ' ) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 6 . 6 , 25) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 1 0 , 1050) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Density ' ) ;
f p r i n t f ( ��� , ' %6.1 f \n ' , ������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l a s t i c ' ) ;
f p r i n t f ( ��� , '%6e , %6f \n ' ,� , ������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * I n e l a s t i c Heat F r a c t i o n ' ) ;
f p r i n t f ( ��� , '%3f \n ' , 0 . 9 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * P l a s t i c , hardening=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6e , %6e , %6f , %6f , %6f , %6f \n ' ,� , � , � , � , ��� , � ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Rate Dependent , type=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' ,� , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * S p e c i f i c Heat ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 5 0 0 . 5 2 5 , 2 5 . ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 8 0 0 . 0 , 1 0 5 0 . ) ;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * Material , name=Ti6Al4V_CL ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Conductivity ' ) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 6 . 6 , 25) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 1 0 , 1050) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Density ' ) ;
f p r i n t f ( ��� , ' %6.1 f \n ' , ������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l a s t i c ' ) ;
f p r i n t f ( ��� , '%6e , %6f \n ' ,� , ������� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * I n e l a s t i c Heat F r a c t i o n ' ) ;
f p r i n t f ( ��� , '%3f \n ' , 0 . 9 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * P l a s t i c , hardening=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6e , %6e , %6f , %6f , %6f , %6f \n ' ,� , � , � , � , ��� , � ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Rate Dependent , type=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' ,� , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *DAMAGE INITIATION , CRITERION=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , ' %4.2 f , %4.2 f , %4f , %4f , %6f ,%6 f ,%6 f ,%6 f ,\n ' ,��� , ��� , ��� , ��� , ��� , ��� , �←↩

, 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *DAMAGE EVOLUTION, TYPE=DISPLACEMENT, SOFTENING=LINEAR ' ) ;
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f p r i n t f ( ��� , '%3f \n ' , �������	
���� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * S p e c i f i c Heat ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 5 0 0 . 5 2 5 , 2 5 . ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 8 0 0 . 0 , 1 0 5 0 . ) ;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * Material , name=Ti6Al4V_chip ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Conductivity ' ) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 6 . 6 , 25) ;
f p r i n t f ( ��� , ' %6.4 f , %6.0 f \n ' , 1 0 , 1050) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Density ' ) ;
f p r i n t f ( ��� , ' %6.1 f \n ' , ��	���� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l a s t i c ' ) ;
f p r i n t f ( ��� , '%6e , %6f \n ' ,� , ������	 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * I n e l a s t i c Heat F r a c t i o n ' ) ;
f p r i n t f ( ��� , '%3f \n ' , 0 . 9 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * P l a s t i c , hardening=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6e , %6e , %6f , %6f , %6f , %6f \n ' ,� , � , � , � , ��� , � ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Rate Dependent , type=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' ,� , 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *DAMAGE INITIATION , CRITERION=JOHNSON COOK ' ) ;
f p r i n t f ( ��� , ' %4.2 f , %4.2 f , %4f , %4f , %6f ,%6 f ,%6 f ,%6 f ,\n ' ,��� , ��� , ��� , ��� , ��� , ��� , �←↩

, 1 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *DAMAGE EVOLUTION, TYPE=DISPLACEMENT, SOFTENING=LINEAR ' ) ;
f p r i n t f ( ��� , '%3f \n ' , �������	
������ ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * S p e c i f i c Heat ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 5 0 0 . 5 2 5 , 2 5 . ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 8 0 0 . 0 , 1 0 5 0 . ) ;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * Material , name=WC' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Conductivity ' ) ;
f p r i n t f ( ��� , '%6f ,\n ' , 5 0 . ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Density ' ) ;
f p r i n t f ( ��� , '%6f ,\n ' , 11900 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * E l a s t i c ' ) ;
f p r i n t f ( ��� , '%6e , %6f \n ' ,540�+ 9 , 0 . 2 2 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * S p e c i f i c Heat ' ) ;
f p r i n t f ( ��� , '%6f \n ' , 1 0 0 ) ;

%def ine i n t e r c a t i o n p r o p e r t i e s
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * * INTERACTION PROPERTIES ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface I n t e r a c t i o n , name= F r i c t i o n ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * F r i c t i o n ,TAUMAX=577 e6 ' ) ;
f p r i n t f ( ��� , '%6f ,\n ' , ������	 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *Gap Conductance ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 5 0 0 0 . , 0 . ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 0 . , 1�−05) ;
f p r i n t f ( ��� , '%6s\n ' , ' *Gap Heat Generation ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 0 . 9 , 0 . 6 0 3 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Surface I n t e r a c t i o n , name=No_Frict ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * F r i c t i o n ,TAUMAX=577 e6 ' ) ;
f p r i n t f ( ��� , '%6f \n ' , 0 . 0 5 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *Gap Conductance ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 5 0 0 0 . , 0 . ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 0 . , 1�−05) ;
f p r i n t f ( ��� , '%6s\n ' , ' *Gap Heat Generation ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 0 . 9 , 0 . 6 0 3 ) ;

%def ine i n i t i a l condi t ions
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * i n i t i a l c o n d i t i o n s , type=VELOCITY ' ) ;
f p r i n t f ( ��� , '%6s %f \n ' , ' a l l _ t o o l , 1 , ' , � ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * i n i t i a l c o n d i t i o n s , type=temperature ' ) ;
f p r i n t f ( ��� , '%6s %f \n ' , ' a l l _ t o o l , ' , 25 ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * i n i t i a l c o n d i t i o n s , type=temperature ' ) ;
f p r i n t f ( ��� , '%6s %f \n ' , ' all_work , ' , 25) ;

%def ine step d e f i n i t i o n s
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * * STEP : Step−1 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Step , name=Step−1 ' ) ;
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f p r i n t f ( ��� , '%6s\n ' , ' * Dynamic Temperature−displacement , E x p l i c i t ' ) ;
% f p r i n t f ( f id , '%6 s\n ' , ' * Dynamic , E x p l i c i t , Adiabatic ' ) ;
f p r i n t f ( ��� , ' ,%6 f \n ' , ���� ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Bulk V i s c o s i t y ' ) ;
f p r i n t f ( ��� , '%6f , %6f \n ' , 0 . 0 6 , 1 . 2 ) ;
f p r i n t f ( ��� , '%6s , %6s\n ' , ' *FIXED MASS SCALING ' , 'FACTOR=1000 ' ) ;

%def ine boundary condi t ions
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * * BOUNDARY CONDITIONS ' ) ;

f p r i n t f ( ��� , '%6s\n ' , ' * * Name: p lane_too l Type : Displacement/Rotat ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' a l l _ t o o l , 3 , 3 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: plane_work Type : Displacement/Rotat ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' all_work , 3 , 3 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: Tool_Y Type : Displacement/Rotat ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Tool_top_nodes , 2 , 2 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: Tool_Y Type : Displacement/Rotat ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Tool_back , 2 , 2 ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: Tool_Y Type : Displacement/Rotat ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: U Type : V e l o c i t y /Angular v e l o c i t y ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary , amplitude=Amp−1, type=VELOCITY ' ) ;
f p r i n t f ( ��� , '%6s %f \n ' , ' Tool_back , 1 , 1 , ' , � ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * * Name: Work_XY Type : Symmetry/Antisymmetry/Encastre ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Boundary ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' Work_bottom , ENCASTRE ' ) ;

%def ine c o n t a c t d e f i n i t i o n s
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' *CONTACT ' ) ;

f p r i n t f ( ��� , '%6s\n ' , ' *CONTACT INCLUSIONS ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' , work_inter ior ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' work_inter ior , work_exter ior ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' work_inter ior , work_inter ior ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' t o o l _ s u r f , work_exter ior ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' t o o l _ s u r f , work_inter ior ' ) ;

f p r i n t f ( ��� , '%6s\n ' , ' *CONTACT EXCLUSIONS ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' entry , t o o l _ s u r f ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'RF ,MS ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'CF , FF ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'CU, entry ' ) ;

f p r i n t f ( ��� , '%6s\n ' , ' *CONTACT PROPERTY ASSIGNMENT ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' RF , CU, F r i c t i o n ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'CU, CU, F r i c t i o n ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'RF , CF , No_Frict ion ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'MS, FF , F r i c t i o n ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'MS, RF , F r i c t i o n ' ) ;

%def ine output request
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
f p r i n t f ( ��� , '%6s\n ' , ' * * OUTPUT REQUESTS ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Res tar t , write , number i n t e r v a l =600 , time marks=NO' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Output , f i e l d , number i n t e r v a l s =600 , time marks=Yes ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *Node Output ' ) ;
f p r i n t f ( ��� , '%6s\n ' , 'A, Nt , RF , U, V ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' * Element Output ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' E , LE , NE, PE , PEEQ, PEMAG, S , STATUS, TEMP,SDEG ' ) ;
f p r i n t f ( ��� , '%6s\n ' , ' *END STEP ' ) ;
f p r i n t f ( ��� , '%6s %6e\n ' , ' * * t h i c k n e s s ' , ���	
 ) ;
f c l o s e ( ��� ) ;

�=toc

����
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C.2 Node and mesh generator

funct ion [ ���������	 , 
���������	 ]= ���	������������� ( ��� , ��� , ��� , ��� , ������ , ���� ,←↩
�������� )

%t a b u l a t e corner coords
�� = [ ���+������ * tan ( �������� ) −������ ] ;
�� = [ ������ * tan ( �������� ) −������ ] ;
�� = [ ������ * tan ( �������� ) −������−���� ] ;
�� = [ ���+������ * tan ( �������� ) −������−���� ] ;

���� = 0 ;
����� = ���/��� ;
� = �� ( 1 ) :−���/��� : �� ( 1 ) ;
�=1.4
��=1
f o r norm=0:1/( ��� ) : 1

� ( �� ) =norm
� ( �� ) = norm^�
��=��+1

end

�=−� *���−������−����

% p l o t ( z , y )

��=0


=0
f o r �� = 2 : ���+1;



 = 0 ;

f o r � = �



 = 

+1;
���� = ����+1;

����������	 ( ���� , 1 ) = � ;
����������	 ( ���� , 2 ) = � ( �� ) ;
����������	 ( ���� , 3 ) = 0 ;

end
end

���� = 0 ;
�� = 0 ;
f o r 

 = 1 : ���

���� = ����+1;
f o r �� = 1 : ���

�� = ��+1;
���������	 ( �� , : ) = [ �� ���� ����+1 ���+3+����−1 ���+2+����−1];
�����������=���� ;
���� = ����+1;

end
end

���������	 = [ 1 : length ( ����������	 ) ] ' ;

���������	 ( : , 2 : 4 ) = ����������	 ;

% joints_work ( 1 , 3 ) = jo ints_work ( 1 , 3 )−sh_e

C.3 Mesh visualiser function

%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% OUTPUTS
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% j o i n t s − [ no . nodes , 4 ] array conta in ing [ node no . : : x coord : : y coord : : z coord←↩

]
% nodes − [ no . elements , 5 / 9 ] array conta in ing [ element no . : : <c o n n e c t i v i t y >]
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%
% PLEASE CHECK THAT THE FOLLOWING ARE CORRECT ! ! !
%
% RHSnodes − vector conta in ing nodes along R .H. S . edge
% LHSnodes − vector conta in ing nodes along L .H. S . edge
% BOTnodes − vector conta in ing nodes along Bottom edge
%
% Use the
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
funct ion ������� ( ����	 , 
����	 )

% −−− user inputs s t a r t −−− %
% input f i l e to p l o t
��	������	� = ' yes ' ; % OPTIONS <yes/no>
��	��������	 = ' no ' ; % OPTIONS <yes/no>
��	��������������	 = ' no ' ; % OPTIONS <yes/no>
���=1�−5; % proximity t o l e r a n c e f o r node e x t r a c t i o n

% DEFAULT <1e−5>
% −−− user inputs end −−− %

% check f o r number of nodes per element
������	= s i z e ( ����	 , 2 ) −1;

% display element c o n n e c t i v i t y ( mesh )
f i g u r e ( 1 ) ; hold �� ;

	����� lower ( ��	������	� )
��	� { ' yes ' }

f o r 
=1: s i z e ( ����	 , 1 )
i f ������	==4

�����	=����	 (
 , 2 : 5 ) ; % e x t r a c t element c o n n e c t i v i t y <q4>
e l s e i f ������	==8

�����	=����	 (
 , [ 2 6 3 7 4 8 5 9 ] ) ; % e x t r a c t element c o n n e c t i v i t y <←↩
q8>

end
� = 
����	 ( �����	 , 2 ) ; % e x t r a c t element ' s x coordinates
 = 
����	 ( �����	 , 3 ) ; % e x t r a c t element ' s y coordinates
patch (� ,  , ' b ' ) ; % p l o t element

end
end

% display nodes and node numbers
f o r 
=1: s i z e ( 
����	 , 1 )

	����� lower ( ��	��������	 )
��	� { ' yes ' }

p l o t ( 
����	 (
 , 2 ) , 
����	 (
 , 3 ) , ' r . ' ) ; % p l o t node
end
	����� lower ( ��	��������������	 )

��	� { ' yes ' }
��������=num2str ( 
����	 (
 , 1 ) ) ; % e x t r a c t node number
t e x t ( 
����	 (
 , 2 ) , 
����	 (
 , 3 ) , �������� , ' FontSize ' , 1 2 ) ; % p l o t node number←↩

on f i g u r e
end

end

hold ��� ; a x i s ����� ;

% e x t r a c t nodes of i n t e r e s t
�����=0; % counter
�����=0; % counter
�����=0; % counter
f o r 
=1: s i z e ( 
����	 , 1 )

% e x t r a c t RHS nodes
i f abs ( 
����	 (
 , 2 ) − 40) − ��� <= 0

�����=�����+1;
�������	 ( ����� ) =
����	 (
 , 1 ) ;

end
% e x t r a c t LHS nodes
i f abs ( 
����	 (
 , 2 ) ) − ��� <= 0

�����=�����+1;
�������	 ( ����� ) =
����	 (
 , 1 ) ;
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end
% e x t r a c t nodes along bottom
i f abs ( ������ (� , 3 ) ) − ��� <= 0

��	
�=��	
�+1;
	
������ ( ��	
� ) =������ (� , 1 ) ;

end
end

% % s o r t nodes in assending order
% [ jnk , indxRHS]= s o r t ( j o i n t s ( RHSnodes , 3 ) ) ;
% [ jnk , indxLHS]= s o r t ( j o i n t s ( LHSnodes , 3 ) ) ;
% [ jnk , indxBOT]= s o r t ( j o i n t s ( BOTnodes , 2 ) ) ;
% RHSnodes=RHSnodes ( indxRHS ) ;
% LHSnodes=LHSnodes ( indxLHS ) ;
% BOTnodes=BOTnodes ( indxBOT ) ;

% display nodes on screen
% disp ( ' Nodes along RHS : ' )
% disp ( RHSnodes ' )
% disp ( ' Nodes along LHS : ' )
% disp ( LHSnodes ' )
% disp ( ' Nodes along Bottom edge : ' )
% disp ( BOTnodes ' )
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Appendix D

Matlab milling model

D.1 Program for predicting milling forces

c l e a r ; c l o s e a l l , c l c
%warning ( ' o f f ' , 'MATLAB: divideByZero ' )
t i c

%program f o r p r e d i c t i n g b a l l nose m i l l i n g f o r c e s from orthogonal data
%according to the " u n i f i e d mechanics of c u t t i n g model " . This vers ion of the
%code p r e d i c t s c u t t i n g f o r c e s f o r the Sandvik b a l l nose end m i l l d e t a i l e d
%in the r e l e v a n t s e c t i o n of the d i s s e r t a t i o n

% Nomenclature
% a a x i a l depth of cut [mm]
% b width of cut [mm]
% F_P , F_Q power and t h r u s t f o r c e components in orthogonal c u t t i n g
% F_xj , F_yj , F _ z j m i l l i n g f o r c e s in Cartes ian coordinates on f l u t e j
% dF_t , dF_r , dF_a d i f f e r e n t i a l c u t t i n g f o r c e s in t a n g e n t i a l , r a d i a l and a x i a l ←↩

d i r e c t i o n in m i l l i n g
% i _ 0 h e l i x angle a t f l u t e , shank meeting point
% i ( ps i ) l o c a l h e l i x angle or angle of o b l i q u i t y
% psi lag angle between the t i p ( z =0) and a point on the h e l i c a l ←↩

f l u t e a t height z
% Psi lag angle in g loba l coordinate , measured from+y−a x i s CW
% psi_0 maximum lag angle between the t i p ( z−−−0) and uppermost ←↩

c u t t i n g point ( z−−a )
% K_tc , K_rc , K_ac t a n g e n t i a l , r a d i a l and a x i a l c u t t i n g f o r c e c o e f f i c i e n t s in ←↩

m i l l i n g
% K_tc , K_rc , K_ac t a n g e n t i a l , r a d i a l and a x i a l edge f o r c e c o e f f i c i e n t s in ←↩

m i l l i n g
% N_f number of f l u t e s
% R_0 b a l l radius
% R( ps i ) t o o l radius in x−y plane at a point defined by ps i
% r _ t c u t t i n g chip r a t i o in orthogonal c u t t i n g
% s _ t feed per tooth
% t , t _ c uncut and cut chip t h i c k n e s s in orthogonal c u t t i n g
% t_n uncut chip t h i c k n e s s normal to c u t t i n g edge in m i l l i n g
% alpha_r , alpha_n r a d i a l and normal rake angles
% db d i f f e r e n t i a l c u t t i n g edge length in the d i r e c t i o n ←↩

perpendicular to the c u t t i n g v e l o c i t y
% dz d i f f e r e n t i a l length in a x i a l d i r e c t i o n
% kappa angle in a v e r t i c a l plane between a point on the f l u t e and ←↩

the z−a x i s
% beta f r i c t i o n angle on the rake f a c e
% phi shear angle in orthogonal c u t t i n g
% phi_n , beta_n normal shear and normal f r i c t i o n angles in obl ique c u t t i n g
% n_c chip flow angle on the rake f a c e
% tau shear s t r e s s a t the shear plane
% t h e t a t o o l r o t a t i o n angle , measured from+y−a x i s CW
% psi_1 , ps i_2 i n t e g r a t i o n l i m i t s

122
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% N spindle speed in rpm

%t o o l geometry
��� = 2 4 0 ;
���� = 0 ;
��	 = 30* pi /180;

�	 = 6 ;
� = 5 . 5 ;
��� = 0 . 1 ;
������ = 0* pi /180;
� = 1 ;
��� = 1 ;

% c u t t i n g condi t ions
����	 = ��	 ;
����� = 0* pi /180;
����� = ����	 ;
������� = 5 0 ;
����� = ( �����−����� ) /������� ;

%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
������� = 0 ;
������� = 2* pi
��������� = 1 0 0 ;

%increment f o r c u t t e r r o t a t i o n
�� = 0 ;
f o r ����� = ������� : ( �������−������� ) /��������� : �������

�� = ��+1
������ ( �� ) = ����� ;

�� = 0 ;
������ = 0 ;
�����=0;
�����=0;
�����=0;

%increment f o r f l u t e p o s i t i o n
f o r ��� = ����� : ����� : �����

�� = ��+1;

%c a l l funct ion which d e s c r i b e s c u t t e r geometry
[
 , ����� , � , � , � , ��� , ���� , �� , �� , �� , ��� ] = ���������������� ( ����� , ��� , ��	 , 
�	 ,←↩

��� , ��� , � , ����� , ��� , ������ , ����� , ����� , ����� ) ;

� ( �� , �� ) = 
 ;
�� ( �� , �� ) =� ;
���� ( �� , �� ) = ��� ;
���� ( �� , �� ) = ��� ;
���� ( �� , �� ) = ��� ;
�� ( �� , �� ) = � ;
�� ( �� , �� ) = � ;
��� ( �� , �� ) = ����� ;
 !"#$ ( �� , �� ) =���� ;
������=��� ;
�����=�� ;
�����=�� ;
�����=�� ;

%c a l l funct ion which c a l c u l a t e s c u t t i n g c o e f f i c i e n t s and edge f o r c e s from ←↩
c u t t i n g

%t e s t data
i f ���� ==0

[ %� , %� , �� , &�� , &�� , &�� ] = �������� ( �� ( �� , �� ) ) ;
end
i f ���� ==5

[ %� , %� , �� , &�� , &�� , &�� ] = ������' ( �� ( �� , �� ) ) ;
end

%c a l l funct ion which c a l c u l a t e s f r i c t i o n and shear angles as well
%as shear s t r e s s according to Merchant
[ beta , ��� , ��( ] = �������� ( %� , %� , ������ , �� , �� ( �� , �� ) ) ;

Stellenbosch Univeristy  http://scholar.sun.ac.za



Appendix D — Matlab milling model 124

i f �� ( �� , �� ) ==0
��� = 0 ;
���� ( �� , �� ) = ��� ;

end
i f isnan ( ��� )

��� = 0 ;
end
���� ( �� , �� ) = ��� ;

%c a l l funct ion which c a l c u l a t e s c u t t i n g c o e f f i c i e n t from c u t t i n g t e s t data
[ ��� , �	� , ��� , 
�� ] = �������������
�� ( ��� , beta , 	� , ������
 , ����� ) ;


��� ( �� , �� ) = 
�� ;
���� ( �� , �� ) = ��� ;
��	� ( �� , �� ) = �	� ;
���� ( �� , �� ) = ��� ;
���� ( �� , �� ) = ��� ;
��	� ( �� , �� ) = �	� ;
���� ( �� , �� ) = ��� ;

�� ( �� , 1 ) = �� ( 1 , 1 ) ;
i f ��>1

�� ( �� , �� ) = �� ( �� , �� ) − �� ( �� , ��−1) ;
end

�� ( �� , �� ) = �� ( �� , �� ) /s i n ( ����� ) ;
i f ��==2

�� ( �� , 1 ) = �� ( �� , �� ) ;
end

���	 ( �� , �� ) = �	� *��� + ��	� ( �� , �� ) *�� ( �� , �� ) *�� ( �� , �� ) ;
���� ( �� , �� ) = ��� *��� + ���� ( �� , �� ) *�� ( �� , �� ) *�� ( �� , �� ) ;
���� ( �� , �� ) = ��� *��� + ���� ( �� , �� ) *�� ( �� , �� ) *�� ( �� , �� ) ;
��� ( �� , �� ) = �� ( �� , �� ) ;

i f �� ( �� , �� ) ==0 | �� ( �� , �� ) >�
���	 ( �� , �� ) = 0 ;
���� ( �� , �� ) = 0 ;
���� ( �� , �� ) = 0 ;

end

���	�� = [ ���	 ( �� , �� ) ; ���� ( �� , �� ) ; ���� ( �� , �� ) ] ;

%c a l l funct ion def in ing transformat ion f o r f o r c e t ransformat ion from l o c a l
%to g loba l coordinate system
[ ���� , ���� , ���� ] = �	�
���	�����
����	�� ( ��� , ����� , ���	�� ) ;
i f isnan ( ���� )

���� = 0 ;
end
i f isnan ( ���� )

���� = 0 ;
end
i f isnan ( ���� )

���� = 0 ;
end
����� ( �� , �� ) = ���� ;
����� ( �� , �� ) = ���� ;
����� ( �� , �� ) = ���� ;

end
end

f i g u r e ( 1 )
mesh ( ���� *180/ pi , ������ *180/ pi , ���	 )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( ' Radial f o r c e s [N] ' )
t i t l e ( ' Radial f o r c e s as a funct ion of ps i and t h e t a ' )

f i g u r e ( 2 )
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mesh ( ���� *180/ pi , ������ *180/ pi , 	
�� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( ' Tangent ia l f o r c e s [N] ' )
t i t l e ( ' Tangent ia l f o r c e s as a funct ion of ps i and t h e t a ' )

f i g u r e ( 3 )
mesh ( ���� *180/ pi , ������ *180/ pi , 	
�� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( ' Axial f o r c e s [N] ' )
t i t l e ( ' Axial f o r c e s as a funct ion of ps i and t h e t a ' )

f i g u r e ( 4 )
mesh ( ���� *180/ pi , ������ *180/ pi , ��� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( ' Thickness of cut [mm] ' )
t i t l e ( ' Thickness of cut as a funct ion of ps i and t h e t a ' )

f i g u r e ( 5 )
mesh ( ���� *180/ pi , ������ *180/ pi , 	
��� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( 'X f o r c e [N] ' )
t i t l e ( 'X f o r c e s as a funct ion of ps i and t h e t a ' )

f i g u r e ( 6 )
mesh ( ���� *180/ pi , ������ *180/ pi , 	
��� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( 'Y f o r c e [N] ' )
t i t l e ( 'Y f o r c e s as a funct ion of ps i and t h e t a ' )

f i g u r e ( 7 )
mesh ( ���� *180/ pi , ������ *180/ pi , 	
�� )
x l a b e l ( ' Ps i [ deg ] ' )
y l a b e l ( ' Theta−r o t a t i o n angle [ deg ] ' )
z l a b e l ( 'Z f o r c e s [N] ' )
t i t l e ( 'Z f o r c e as a funct ion of ps i and t h e t a ' )

f i g u r e ( 8 )
p l o t ( ������ *180/ pi , 
� , ' r ' )
a x i s ( [ 0 250 −900 1 2 0 0 ] )
hold ��

p l o t ( ������ *180/ pi , 
� , ' b ' )
p l o t ( ������ *180/ pi , 
 , 'm ' )
p l o t ( ������ *180/ pi , 
����� , ' r−. ' )
p l o t ( ������ *180/ pi , 
����� , ' b−. ' )
p l o t ( ������ *180/ pi , 
���� , 'm−. ' )
[ 	��� ] = ���	�	��� ( ��������� )
p l o t ( ������ *180/ pi , 	��� , ' k ' )

legend ( ' F_x exp ' , ' F_y exp ' , ' F_z exp ' , ' F_x FEM ' , ' F_y FEM ' , ' F_z FEM ' , ' t e s t data ' )
gr id ��

x l a b e l ( ' c u t t e r r o t a t i o n angle [ deg ] ' )
y l a b e l ( ' f o r c e [N] ' )

���� = toc

D.2 Function defining geometry of a Sandvic ball nose mill

% % c l e a r a l l ; c l o s e a l l
funct ion [� , ����� , � ,  , � , ��� , ����� , �� , �� ,  , 	� ] = ���	������������ ( ����� , ��� , ��� , ��� ,←↩

��� , ��� , � , 	���� , ��� , ������	 , �����	 , �����	 , ���	 ) ;

����	 = [−190.922 91 .2246 2 2 7 ;
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−190.9 92 .019 2 2 7 . 9 ;
−190.7 92 .493 2 2 8 . 5 ;
−190.5 92 .834 2 2 9 ;
−190.2374 93 .1592 2 2 9 . 5 ;
−189.8768 93 .3665 2 3 0 ;
−189.4466 93 .5628 2 3 0 . 5 ;
−188.9 9 3 . 6 3 2 3 1 ;
−188.2 93 .6181 2 3 1 . 5 ;
−187.4 93 .519 2 3 2 ;
−186.3 93 .221 232 .5
−181.9−3.022 92 .021 2 3 3 ] ;

���� ( : , 1 ) = ����� ( : , 1 ) + 1 9 0 . 9 2 2 ;
���� ( : , 2 ) = ����� ( : , 2 ) − 9 1 . 2 2 4 6 ;
���� ( : , 3 ) = ����� ( : , 3 ) − 2 2 7 ;
% f i g u r e ( 1 )
% plot3 ( edge ( : , 1 ) , edge ( : , 2 ) , edge ( : , 3 ) , ' r *− ' )
%
% x l a b e l ( ' x ' ) ;
% y l a b e l ( ' y ' ) ;
% z l a b e l ( ' z ' ) ;

[ ��	
 , �
 , �
 ] = c a r t 2 p o l ( ���� ( : , 3 ) , ���� ( : , 2 ) , ���� ( : , 1 ) ) ;
��	
 = −(��	
−pi /2) ;
��	
 ( 1 ) = 0 ;
��	
 ( 2 : end ) = ( ��	
 ( 2 : end ) − ��	
 ( 2 ) * 0 . 9 9 9 9 + pi /180) ;

% f i g u r e ( 2 ) ;
% polar ( psi_ , R_ ) ;

[ �� , � ] = ���� ( ��	
 , �
 ) ;
��	���=����� ( �� ) ;

% f n p l t ( pp )
% hold
% p l o t ( psi_ , Z_ )

��	
�=��	��� ( 1 , : ) ;
�
�=��	��� ( 2 , : ) ;

f o r 		=1: length ( �
� )−1

i f �
� ( 		+1)==�
� ( 		 )
�
� ( 		+1)=�
� ( 		+1) * 0 . 9 9 9 9 9 ;
��	
� ( 		+1)=��	
� ( 		+1) * 0 . 9 9 9 9 9 9 ;

end
end
�
� ( 4 ) =�
� ( 4 ) * 0 . 9 9 9 9 9 9 ;
��	
� ( 4 ) =��	
� ( 4 ) * 0 . 9 9 9 9 9 9 ;
� = ������� ( ��	
� , �
� , ��	 ) ;

��	 = ����−��	 ;
� = ������� ( ��	
 , �
 , ��	 ) ;
��� = as in ( �/�
� ) ;
� = �
� * s i n ( ��	 ) * s i n ( ��� ) ;

[ �� , �� , �� ]= p o l 2 c a r t ( ��	 , � , � ) ;
��= s q r t ( ( ��−��
��� ) ^2+(��−��
��� ) ^2+(��−��
��� ) ^2) ;

% h e l i x = atan ( ( psi−psi_old ) /dSs ) ;

���	� = as in ( ( � * ( �
��	 ) ) /�� ) * 0 . 6 ;
% h e l i x = atan ( ( R/R_0 ) * tan (30/180* pi ) ) ;
���� = ���/60*2* pi ;
 = � * ���� *60/1000 ;
 =75;
i f �>=0

� = � ;
e l s e
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� =0;
end

D.3 Orthogonal cutting database

funct ion [ ��� , ��� , �� , ���� , ���� , ���� ] = ���� ( 	�
 , �������� )
% c l e a r a l l

��	���=[13 .0784 3 2 . 1 1 5 8 ;
22 .03389831 3 6 . 2 7 1 1 8 6 4 4 ;
30 .09952911 4 0 . 1 3 2 7 0 5 4 8 ;
74 .41272474 6 2 . 7 0 7 3 5 2 3 1 ;
118 .7259204 8 0 . 2 6 5 4 1 0 9 6 ;
201 .1524086 1 1 4 . 3 6 4 8 7 7 5 ;
334 .1725498 1 5 4 . 9 1 9 7 9 8 6 ;
437 .9429768 1 8 0 . 3 7 8 8 1 2 3 ] * 0 . 9 5 ;

��	��� =[14 .2449 2 5 . 9 9 8 0 ;
20 .338983 3 2 . 2 0 3 3 8 9 8 3 ;
26 .06483541 3 7 . 3 5 9 5 9 7 4 2 ;
64 .29326068 5 8 . 2 1 1 4 6 5 7 5 ;
109 .7552083 7 3 . 4 5 8 3 3 3 3 3 ;
184 .1915036 9 8 . 1 7 7 5 4 6 7 1 ;
314 .7061877 1 3 8 . 6 9 7 8 3 0 1 ;
437 .9429768 1 8 0 . 3 7 8 8 1 2 3 ] * 0 . 9 5 ;

��	���=[7 .7387 2 0 . 2 3 3 5 ;
16 .94915254 2 9 . 4 9 1 5 2 5 4 2 ;
25 .19600756 3 7 . 0 9 7 2 5 3 1 1 ;
61 .68677714 5 4 . 7 3 6 1 5 4 3 6 ;
99 .64412811 6 9 . 3 9 5 0 1 7 7 9 ;
183 .9302682 9 4 . 8 5 1 9 3 2 0 1 ;
308 .079838 1 4 3 . 0 1 6 7 6 7 ;
437 .7104 1 9 3 . 6 0 2 7 ] * 0 . 9 5 ;

��	����=[4 .1201 1 5 . 8 6 0 8 ;
15 .25423729 2 8 . 8 1 3 5 5 9 3 2 ;
24 .74398226 3 8 . 7 6 5 5 7 2 2 1 ;
65 .9839527 5 6 . 9 1 1 1 5 9 2 1 ;
108 .692744 7 2 . 7 4 0 5 2 8 6 8 ;
186 .2516108 1 0 3 . 2 1 4 9 3 7 7 ;
338 .9830508 1 5 2 . 5 4 2 3 7 2 9 ;
437 .7104 1 9 3 . 6 0 2 7 ] * 0 . 9 5 ;

��	����=[3 .2577 2 3 . 4 8 4 3 ;
15 .5932203 3 0 . 5 0 8 4 7 4 5 8 ;
25 .56878167 3 6 . 2 9 1 1 7 3 9 9 ;
61 .87125428 5 9 . 3 6 2 9 6 0 1 9 ;
118 .294942 9 1 . 4 4 7 8 6 2 9 7 ;
180 .0000 1 1 2 . 6 1 6 9 9 9 6 ;
338 .9830508 1 5 2 . 5 4 2 3 7 2 9 ;
437 .7104 1 9 3 . 6 0 2 7 ] * 0 . 9 5 ;

%
% Kte = 2 0 ; %[N/mm]
%
% Kre = 3 0 ;

�� ( 1 : 8 , 2 : 6 ) = [ ��	��� ( : , 1 )−��	��� ( 1 , 1 ) ��	��� ( : , 1 )−��	��� ( 1 , 1 ) ��	��� ( : , 1 )−��	���←↩
( 1 , 1 ) ��	���� ( : , 1 )−��	���� ( 1 , 1 ) ��	���� ( : , 1 )−��	���� ( 1 , 1 ) ] ;

�� ( 1 : 8 , 2 : 6 ) = [ ��	��� ( : , 2 )−��	��� ( 1 , 2 ) ��	��� ( : , 2 )−��	��� ( 1 , 2 ) ��	��� ( : , 2 )−��	���←↩
( 1 , 2 ) ��	���� ( : , 2 )−��	���� ( 1 , 2 ) ��	���� ( : , 2 )−��	���� ( 1 , 2 ) ] ;

�� ( 1 : 8 , 1 ) = �� ( 1 : 8 , 2 ) ;
�� ( 1 : 8 , 1 ) = �� ( 1 : 8 , 2 ) ;
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��� = [ ������ ( 1 , 1 ) ������ ( 1 , 1 ) ����	
 ( 1 , 1 ) ������ ( 1 , 1 ) ������� ( 1 , 1 ) �����

 ( 1 , 1 ) ] ;
�� = [ ������ ( 1 , 2 ) ������ ( 1 , 2 ) ����	
 ( 1 , 2 ) ������ ( 1 , 2 ) ������� ( 1 , 2 ) �����

 ( 1 , 2 ) ] ;

�� = [0 0 .0025 0 . 0 0 5 0 . 0 2 5 0 . 0 5 0 . 1 0 . 2 0 . 3 ] ;
� = [0 15 40 75 125 2 0 0 ] ;

 = [ 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 ;
0 . 5 0 . 5 0 . 5 0 .49686 0 .67344 0 .56829 0 .55556 0 . 5 2 6 9 2 ;
0 . 5 0 . 5 0 . 5 0 .55147 0 .63218 0 .58252 0 .50955 0 . 5 2 9 4 1 ;
0 . 5 0 . 5 0 . 5 0 .52897 0 .64767 0 .61983 0 .49383 0 . 5 5 5 5 6 ;
0 . 5 0 . 5 0 . 5 0 .56122 0 .625 0 .55556 0 .55814 0 . 5 ;
0 . 5 0 . 5 0 . 5 0 .63158 0 . 5 0 . 5 0 . 5 0 . 5 ] ;

%

��� = i n t e r p 2 (� , �� , �� , ��� , ��������� , ' cubic ' ) ;
�� = i n t e r p 2 (� , �� , � , ��� , ��������� , ' cubic ' ) ;
� = i n t e r p 2 ( �� , � ,  , ��������� , ��� , ' cubic ' ) ;

���� =i n t e r p 1 (� , ��� , ��� ) ;
��� =i n t e r p 1 (� , �� , ��� ) ;
���� = 0 ;

% f i g u r e ( 1 )
% mesh (V, fd , f t )
% t i t l e ( ' Cutting f o r c e in turning t e s t s ' )
% x l a b e l ( ' Cutting speed [m/min ] ' )
% y l a b e l ( ' Feed [mm/rev ] ' )
% z l a b e l ( ' Cutting f o r c e [N/mm] ' )
% % view ( 9 0 , 0 )
% f i g u r e ( 2 )
% % hold on
% mesh (V, fd , f r )
% t i t l e ( ' Feed f o r c e in turning t e s t s ' )
% x l a b e l ( ' Cutting speed [m/min ] ' )
% y l a b e l ( ' Feed [mm/rev ] ' )
% z l a b e l ( ' Feed f o r c e [N/mm] ' )
% view ( 9 0 , 0 )

D.4 Function for calculating edge coefficients

funct ion [ ��� , �� , ��� , ��� ] = ����������������� ( ��� , beta , �� , ������� , �� )

�� = 0 ;
f o r ��� = 0 : 1 5 * pi /180/100:15* pi /180

�� = ��+1;
�� ( �� ) = ��� ;

������ ( �� ) = atan ( tan ( beta ) * cos ( ��� ) ) ;

����� ( �� ) = atan ( �� * ( cos ( ��� ) /cos ( �� ) ) * cos ( ������� ) /(1−�� * ( cos ( ��� ) /cos ( �� ) ) *←↩
s i n ( ������� ) ) ) ;

��� ( �� ) = tan ( ����� ( �� ) +������ ( �� ) ) ;
�� ( �� ) = cos ( ������� ) * tan ( �� ) /( tan ( ��� )−s i n ( ������� * tan ( �� ) ) ) ;

���� ( �� ) = abs ( �� ( �� ) )−abs ( ��� ( �� ) ) ;
e r r o r ( �� ) = 1−���� ( �� ) ;

end

[� , ��� ] = min ( abs ( ���� ) ) ;

��� = �� ( ��� ) ;

������ = ������ ( ��� ) ;
����� = ����� ( ��� ) ;
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% beta_n = atan ( tan ( beta ) * cos ( i _ ) ) ;
%
% phi_n = atan ( r _ t * cos ( alpha_n ) /(1− r _ t * s in ( alpha_n ) ) ) ;
���=�� ;

% compute edge c o e f f i c i e n t s

� = s q r t ( cos ( ����� + ��	
�� − 
���
�� ) ^2 + tan ( ��� ) ^2* s i n ( ��	
�� ) ^2) ;

�	� = 	
/s i n ( ����� ) * ( cos ( ��	
�� − 
���
�� ) + tan ( ��� ) * s i n ( ��	
�� ) * tan ( �� ) ) /�/1�� ; ←↩
%[N/mm^2]

��� = 	
/( s i n ( ����� ) * cos ( �� ) ) * s i n ( ��	
�� − 
���
�� ) /�/1�� ; ←↩
%[N/mm^2]

�
� = 	
/s i n ( ����� ) * ( cos ( ��	
�� − 
���
�� ) * tan ( �� ) − tan ( ��� ) * s i n ( ��	
�� ) ) /�/1�� ; ←↩
%[N/mm^2]

D.5 Transformation matrix for local to global coordinate

transformation

funct ion [ ���� , ���� , ���� ] = 	�
������
	�����
	��� ( ��� , �
��
 , ����	
 )

������ = [− s i n ( �
��
 ) * s i n ( ��� ) −cos ( ��� ) −cos ( �
��
 ) * s i n ( ��� ) ;
−s i n ( �
��
 ) * cos ( ��� ) s i n ( ��� ) −cos ( �
��
 ) * cos ( ��� ) ;
cos ( �
��
 ) 0 −s i n ( �
��
 ) ] * ����	
 ;

���� = ������ ( 1 ) ;
���� = ������ ( 2 ) ;
���� = ������ ( 3 ) ;

D.6 Function to calculate chip thickness

funct ion [� , �
��
 , 	 , ��� , � , �� , ����� ] = 	�������� ( 	��	
 , ����� , ���� , ��! , ��! , ��	 )
�=0;
�
��
 = 0 ;
	 = 0 ;
� = 1 ;
"�� = 1 ;
�� = 0 ;
f o r ��� = ����� : ���� /20: ���� 

�� = ��+1;
��� ( �� ) = ��� ;
��� = 	��	
−��� ;
� ( �� ) = ��! * s q r t (1−(��� * cot ( ��! )−1)^2) ;
�
��
 ( �� ) = as in ( � ( �� ) /��! ) ;
	 ( �� ) = ��	 * s i n ( ��� ) * s i n ( �
��
 ( �� ) ) ;
� ( �� ) = −(��� − 	��	
 − (�−1) * 2 * pi/"�� ) *��!/tan ( ��! ) ;
����� ( �� ) = atan ( ( � ( �� ) /��! ) * tan ( ��! ) ) ;

end
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