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Abstract

Development of a portable ECG and electronic
stethoscope device for screening cardiovascular disease in

rural locations
G.H. Smith

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mechatronic)
March 2018

Cardiovascular disease (CVD) is currently the number one cause of death
worldwide, resulting in 17.7 million deaths in 2015 (World Health Organi-
sation, 2017). In South Africa, five people suffer a heart attack every hour,
placing CVD as the second deadliest disease in the country, after HIV/AIDS
(Pillay-van Wyk et al., 2013). Studies predict that by 2030, CVD will be re-
sponsible for more deaths in developing countries than the total combined fa-
talities of HIV/AIDS, malaria and tuberculosis (Beaglehole and Bonita, 2008).
Medical equipment required by cardiologists to diagnose cardiovascular disease
is expensive and only available at larger hospitals in major cities within South
Africa. This presents a significant challenge for the 35% of South Africans
residing in rural areas who require medical attention (The World Bank, 2017).
Subsequently, many patients in rural areas live with lingering cardiovascular
problems.

This thesis entails the design and development of a point-of-care device capable
of screening for cardiovascular disease in rural locations in Africa. The device
consists of an electrocardiogram (ECG) and electronic stethoscope capable of
recording electrical bio-signals and heart sounds, respectively. The ECG con-
sists of a reduced lead set that includes limb leads avL, avR, avF, I, II, III and
precordial leads V2 and V4. The data recorded using the ECG can be used
to autonomously identify patients with potential cardiovascular disease using
machine learning techniques. Furthermore, the potential for reconstructing a
full 12 lead ECG recording from a reduced lead set using machine learning is
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also investigated.

Data acquired from the Physikalisch-Technische Bundesanstalt (PTB) online
database was used to train the machine learning models. A deep pattern recog-
nition neural network (DPRNN) was used to diagnose patients with normal
or abnormal cardiac function. Additionally, a focus time-delay neural net-
work (FTDNN) was used to reconstruct precordial leads V1, V3, V5 and V6
from the reduced lead set. The machine learning models were tested on 70
subjects recorded using the device in a clinical study conducted at Tygerberg
Hospital. The classification method utilised first order features consisting of
ECG amplitudes, intervals and segments, second order features derived from
wavelet entropy and Shannon’s energy, as well as unsupervised features gener-
ated using stacked denoising autoencoders. The classification model, tested in
the clinical trial, produced an accuracy, sensitivity, specificity and area under
the curve (AUC) of 85%, 83%, 87% and 0.85, respectively. The ECG lead
reconstruction produced acceptable root-mean-square error (RMSE) values of
181 to 266 µV, and excellent Pearson r correlation values of 0.91 - 0.95, for
the reconstructed precordial leads. All correlation values were statistically sig-
nificant at p « 0.01. The results obtained in this study compare favourably
with an initial retrospective study as well as prior studies done in the research
field. This evidence supports the possibility of deploying a low-cost portable
device capable of referring patients with potential cardiac abnormalities, in
rural locations, to hospitals for further examination.
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Ontwikkeling van ’n draagbare EKG en elektroniese
stetoskoop toestel vir die ondersoek van kardiovaskulêre

siekte vir afgeleë liggings
(“Development of a portable ECG and electronic stethoscope device for screening

cardiovascular disease in rural locations")

G.H. Smith
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Megatronies)
Maart 2018

Kardiovaskulêre siekte (KVS) is huidiglik die voorstaande oorsaak van lewens-
verlies wêreldwyd, en het 17.7 miljoen lewens geëis in 2015 (World Health
Organisation, 2017). In Suid-Afrika lei vyf mense aan ’n hartaanval elke uur,
wat beteken dat KVS die tweende mees dodelike siekte in die land is, naas
HIV/VIGS (Pillay-van Wyk et al., 2013). Studies voorspel dat KVS teen 2030
vir meer afsterwings verantwoordelik sal wees in ontwikkelende lande as die
totale afsterwings van HIV/VIGS, malaria en tuberkulose saam (Beaglehole
en Bonita, 2008). Die mediese toerusting wat benodig word deur kardioloë om
kardiovaskulêre siektes te diagnoseer is duur en slegs beskikbaar by groter hos-
pitale in hoof stede binne Suid-Afrika. Dit lei tot ’n beduidende uitdaging vir
die 35% van die Suid-Afrikaanse bevolking wat in afgeleë areas bly en mediese
hulp moet bekom (The World Bank, 2017). Gevolglik is daar menige pasiënte
in afgeleë nedersettings wat lei aan voortdurende kardiovaskulêre kwale.

Hierdie tesis onderneem die ontwerp van ’n punt-van-behandeling toestel wat
in staat is om ondersoek in te stel vir kardiovaskulêre siektes in afgeleë liggings
oor Afrika. Die toestel bestaan uit ’n elektrokardiogram (EKG) en elektroniese
stetoskoop wat in staat is om elektriese bio-seine en hart klanke afsonderlik
op te neem. Die EKG bestaan uit ’n verminderde probe terminaal stel wat
die ledemaat probe terminale avL, avR, avF, I, II, III en voorhartversterkings-
probe terminale V2 en V4 bevat. Die data wat deur die EKG opgeneem word,
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kan gebruik word vir outomatiese identifisering van pasiënte wat potensieel
lei aan kardiovaskulêre kwale deur middel van masjienleer tegnieke. Verder,
word die potensiaal om ’n vol 12 terminaal EKG opname te herbou vanuit ’n
verminderde terminaal stel deur middel van masjienleer ook ondersoek.

Data wat verkry is vanaf die Physikalisch-Technische Bundesanstalt (PTB)
aanlyn databasis was gebruik vir opleiding van die masjienleer modelle. ’n
Diep patroon herkenning neurale netwerk (DPHNN) was gebruik om pasi-
ënte te diagnoseer met normale of abnormale hart funksie. Daar is ook ’n
bykomende fokus tyd vertraagde neurale netwerk (FTVNN) gebruik vir die
herkonstruksie van die voorhartversterkingsprobe terminale V1, V3, V5 en V6
vanuit die verminderde stel probe terminale. Die masjienleer modelle was ge-
toets op 70 opnames wat deur die ontwerpte toestel opgeneem is gedurende ’n
kliniese studie by Tygerberg hospitaal. Die klassifikasie metode maak gebruik
van eerste orde kenmerke, bestaande uit EKG amplitudes, intervalle en seg-
mente, wat afgelei is vanaf golfvorm (wavelet) entropie en Shannon energie,
asook sonder toesig gegenereerde kenmerke wat deur middel van gestapelde
geraas kansellasie outokodeerders gegenereer word. Dis klassifikasie model wat
getoets is in die kliniese toets het ’n akkuraatheid, sensitiwiteit, spesifisiteit
en area onder kurwe van 85%, 83%, 87% en 0.85 afsonderlik gehad. Die EKG
probe terminaal herkonstruksie het gelei tot aanvaarbare wortel van die ge-
middelde kwadraat foute met waardes vanaf 181 tot 266 µV, en uitstekende
Pearson r korrelasie waardes van 0.91 - 0.95, vir die geherkostruksieerde voor-
hartversterkingsprobe terminale. Alle korrelasie waardes was statisties van
belang met p « 0.01. Die resultate wat verkry was in hierdie studie vergelyk
gunstig met die oorspronklike retrospektiewe studie asook voorafgaande stu-
dies wat in die navorsingsveld onderneem is. Hierdie bewyse ondersteun die
moontlikheid van ’n draagbare, lae koste toestel wat in staat is om pasiënte
vanuit afgeleë nedersettings met potensiële hart abnormaliteite te verwys na
’n hospitaal vir verdere ondersoek.
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Chapter 1

Introduction

The World Health Organisation (WHO) identified non-communicable diseases
(NCDs), collectively, as the most significant challenge to modern healthcare
in the 21st century. This is due to the potential for NCDs to inflict long-term
human suffering as well as crippling socio-economic development. Of all the
NCDs, none is more deadly than cardiovascular disease (CVD), resulting in
17.7 million deaths in 2015, the highest cause of death worldwide. Statistics
revealed that 75% of all deaths caused by CVDs in 2015 occurred in devel-
oping countries (World Health Organisation, 2017). The WHO initiated the
development of a Global NCDs Action Plan which alludes to the importance
of addressing the increase in CVDs by ensuring the widespread availability
of affordable medical technology, in both private and public medical facilities.
This project aims to address this challenge by developing a point of care device
capable of screening cardiovascular disease in rural areas.

1.1 Background
Cardiovascular disease is an umbrella term used to reference diseases that affect
the heart or surrounding blood vessels. Examples of some of the many CVDs
include myocardial infarction (MI), heart failure, branch bundle block (BBB),
valvular heart disease (VHD), cardiomyopathy (CM), arrhythmia, myocarditis
(MC), dysrhythmia (DR) and stroke. The underlying cause and symptoms of
CVDs differ across the various individual diseases. Traditionally, cardiologists
diagnose CVD in a clinical environment using recordings obtained from the
gold standard 12 lead ECG and may include supporting results gathered from
stethoscope auscultation. Additional advanced methods include the echocar-
diogram and cardiac MRI. The patient’s medical history, current symptoms,
blood pressure, age and lifestyle habits also contribute to providing a complete
diagnosis.

1
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In 2007, research into screening for abnormal heart sounds and murmurs
was initiated by Visagie (2007), within the Stellenbosch Biomedical Research
Group (BERG). This resulted in the creation of an "auscultation jacket" pro-
totype seen in Figure 1.1, which is capable of recording heart sounds and ECG
data from patients. An artificial neural network (ANN) was trained using heart
sounds acquired using the "auscultation jacket" from 17 healthy patients and
14 patients suffering from valve-related heart disease. The output of the ANN
indicated the diagnosis of the patient.

Figure 1.1: Auscultation jacket prototype (Visagie, 2007).

In 2010, an additional project was initiated by Botha (2010), which led to
the development of the Precordialcardiogram (PCG) device seen in Figure 1.2.
This device aimed at addressing the major pitfalls in the "auscultation jacket’s"
design. The number of electronic stethoscopes and built-in ECG electrodes
used by the PCG device was significantly reduced in comparison with that
of the previous generation "auscultation jacket", with the overall design sim-
plified. This would allow for the operation of the device by a nurse rather
than a doctor or specialist practitioner. In this study, 62 patients were ex-
amined using the PCG device. The study population included 28 patients
suffering from cardiovascular disease and 34 healthy patients. The recorded
heart sounds were used to autonomously classify patients as either healthy
or unhealthy using an ANN classification system, similar to research done by
Visagie (2007).

Figure 1.2: Precordialcardiogram prototype device (Botha, 2010).
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The present study entails the design and development of a portable electrocar-
diogram (ECG) and electronic stethoscope system. The device will be com-
pletely portable and is intended to be operated by trained nurses in rural
locations, at the point of care, to identify and patients with potential cardio-
vascular disease. These identified patients will be referred to local hospitals for
further examinations. The device will record both the heart’s electrical bio-
signals and auscultation, with more research effort focused on the ECG data
as a means for diagnosis. A reduced ECG lead set will be recorded and input
into a classification neural network to make a diagnosis. The possibility of re-
constructing absent leads is also investigated. This would allow the generation
of the standard 12 lead ECG printout familiar to general practitioners and
cardiologists, from a reduced lead set. The electronic stethoscope allows the
recording, playback and visualisation of heart sounds. The device is capable
of transmitting ECG and electronic stethoscope recordings, as well as patient
information to specialists, wirelessly, using Bluetooth or Wi-Fi technology.

1.2 Motivation
In South Africa, five people suffer from heart attacks every hour with 215
daily fatalities due to heart disease and strokes. This places CVD as the second
deadliest disease in South Africa (after HIV/AIDS) and more fatal than cancer
(Pillay-van Wyk et al., 2013). Prior studies indicate that by 2030, CVD will be
responsible for more deaths in developing countries than the total combined fa-
talities of HIV/AIDS, malaria and tuberculosis (Beaglehole and Bonita, 2008).

Medical equipment and devices (such as the 12 lead ECG, echocardiograms
and cardiac MRI) required by cardiologists to diagnose cardiovascular disease
are expensive and only available at larger hospitals in major cities within South
Africa. This presents a significant challenge for the 35% of South Africans re-
siding in rural areas who require medical attention (The World Bank, 2017).
It is not always possible for rural patients to travel vast distances to visit a
doctor, or specialist, such as a cardiologist, as the average rural household
survives on less than R630 per month (Daniels et al., 2013). This results in
many patients in rural areas living with lingering cardiovascular problems and
not receiving proper medical attention, which may ultimately lead to death.

Currently, ECG lead placements are performed by trained medical technicians
in hospitals, who specialise in these placements. The desired outcome would be
to empower nurses, or trained individuals, in rural communities with a point-
of-care medical device capable of automated CVD screening. This relies on
the ability to simplify the current ECG procedure by minimising complicated
lead positions or stethoscope placements. Research into automated diagnosis
using both ECG and electronic stethoscopes recordings has increased in recent
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years with many specialists searching for elementary methods to accurately
screen for cardiovascular disease. Lead reconstruction is of particular interest
as it simplifies the lead placements procedure while still generating the full 12
lead ECG recording. The successful implementations of such technology could
extend further than rural applications and ultimately revolutionising the way
cardiovascular screening is performed in hospitals and clinical environments,
as well as significantly simplify outpatient care.

1.3 Aims
The aims that underpin the purpose of the project are listed as the following:

1. The research and development of a low-cost portable device to evaluate
and screen patients with potential cardiovascular diseases in rural loca-
tions. The patients identified as having potential cardiovascular disease
would ideally be referred to major hospitals for further evaluation by
specialists.

2. Test the feasibility of the system by taking recordings of healthy and
unhealthy subjects identified by trained cardiologists and comparing the
results with previous studies.

1.4 Objectives
The development of a portable ECG and electronic stethoscope system can be
divided into the following project objectives:

1. Develop a fully functional prototype that can record the heart’s electrical
signals and heart sounds.

2. The device should be portable and able to be used in rural locations.

3. The cost of the device should be cheaper than currently existing tech-
nology.

4. Recorded signals should be plotted graphically and stored locally on the
device.

5. The device should contain wireless data sharing capabilities so that
records may be sent to healthcare specialists for analysis.

6. The development of machine learning algorithms to diagnose a patient
as either healthy or potentially having cardiac disease, as well as an
investigation into the potential for 12 lead ECG reconstruction from a
reduced lead set.
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1.5 Thesis Outline
This thesis document will consist of the following chapters and topics:

Chapter Two: A literature review will begin by presenting information per-
taining to the functioning of the heart, the human circulatory system, the
production of heart signals (electric and auscultation) as well as the methods
used to process these signals. Currently available technology, prior research
done on the subject matter as well as current approaches such as ECG lead
reduction techniques and patient classification are also discussed.

Chapter Three: This chapter discusses the hardware and software design
of the complete ECG and electronic stethoscope system. All the individual
components required to build the prototype device are explained in detail as
well as the manner in which these components interact. The function and
design of the graphical user interface, as well as its integration with the pro-
totype device, is also discussed.

Chapter Four: This chapter describes the research methodology of the
project. The database retrospective study is introduced followed by the clini-
cal study, which includes details on population size, the research protocol and
the materials used in the study. Statistical analysis methods used to quantify
the results are also described.

Chapter Five: This chapter provides a background to machine learning and
artificial neural networks. The relevant algorithms and models used in ECG
classification and lead reconstruction are explained in detail.

Chapter Six: The results from both the retrospective and clinical study
are analysed using statistical methods found in literature and presented in
this chapter.

Chapter Seven: A discussion of the results obtained in both the retrospec-
tive and clinical study is provided. The key findings are compared with prior
studies completed in the research field.

Chapter Eight: The conclusion summarises the work completed with ref-
erence to the project’s objectives. Noteworthy limitations, as well as future
recommendations, are discussed.
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Chapter 2

Literature Review

2.1 The Cardiovascular System
The cardiovascular system is an organ system consisting of the heart, blood
and blood vessels. The system is responsible for the circulation of blood con-
taining nutrients, oxygen, carbon dioxide, hormones and blood cells to and
from the cells of the body. This enables the body to sustain life by supply-
ing nourishment, fighting disease and foreign particles, regulating temperature
and pH levels as well as ensuring that homoeostasis is maintained (Marieb,
2015).

2.1.1 The Heart

The heart is situated within the thoracic cavity (Figure 2.1 (Marieb, 2015)),
between the lungs and is protected by the sternum and rib-cage.

Figure 2.1: Position of the heart in relation to the ribcage (Marieb, 2015).

The wall of the heart consists of three layers, namely the outer epicardium,
the middle myocardium and the inner endocardium. The myocardium is com-
posed of cardiac tissue and is the layer responsible for contractions due to
stimulation. The heart is divided into four chambers: two superior atria and

6
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two inferior ventricles (Figure 2.2). Blood is received initially in the atria un-
der low pressure via the veins and is not involved in the pumping process. The
walls of the ventricles are much thicker and are responsible for discharging the
blood from the heart into circulation. Contraction of the ventricles results in
blood being propelled into circulation (Marieb, 2015).

Figure 2.2: Anatomy of the human heart (Marieb, 2015).

The heart contains four valves, namely two atrioventricular (AV) valves and
two semilunar valves, which respond to pressure changes in the heart and
ensures the flow of blood in only one direction. The AV valves are situated
between the atrial and ventricular chambers on either side of the heart. The
left AV valve is referred to as the bicuspid, or mitral valve, as it consists of two
flaps of endocardium. The right AV valve is referred to as the tricuspid valve
and has three flaps of endocardium. The AV valves are anchored to the walls
of the ventricles by white tendonous cords known as the chordae tendinae.
The semilunar valves are situated between the ventricles and the two large
arteries that transport blood away from the heart known as the aorta and the
pulmonary artery. The individual semilunar valves are identified as either the
pulmonary or the aortic semilunar valve (Marieb, 2015).

2.1.2 The Circulatory System

The heart is separated into a left side and right side, along the septum and
operates as a double pump. The right side supplies blood to the pulmonary cir-
cuit and the left half services the systemic circuit (Figure 2.3) (Marieb, 2015).
The pulmonary circuit receives oxygen-deficient blood from veins via the supe-
rior and inferior venae cavae and pumps it out through the pulmonary artery
towards the lungs. Once in the lungs, carbon dioxide is released and exchanged
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for oxygen. The oxygen-enriched blood travels from the lungs to the left side
of the heart via the pulmonary veins, where it is pumped out through the
aorta and forms part of the systemic circuit (Marieb, 2015).

Figure 2.3: Circulatory system divided into the pulmonary and systemic circuits
(Marieb, 2015).

2.1.3 The Cardiac Cycle

A cardiac cycle is divided into two phases experienced by any chamber of the
heart, namely the systole (contraction) and the diastole (dilation). During
systole, blood is pumped into the adjacent heart chamber or artery; whereas
during diastole the heart chamber relaxes and fills with blood (Marieb, 2015).
The cardiac cycle is initiated by atrial systole where blood flows from the atria
into the ventricles. The endocardium flaps of the AV valve hang limply in the
ventricles under diastole. The intra-ventricular pressure rises as the ventricles
fill with blood, forcing the valve flaps upward where the chordae tendineae
keep the flaps in position, sealing the chamber and preventing blood returning
to the atria. The atrial systole, with a duration of approximately 100 ms, is
followed by ventricular systole and atrial diastole, with a duration of 275 ms
and 700 ms, respectively (Visagie, 2007; Marieb, 2015).
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During ventricular systole, and corresponding atrial diastole, a build-up of
inter-ventricular pressure results in blood being pumped out of the heart which
forces the leaflets of the semilunar valve open and flat against the walls of
the arteries. Blood leaving the heart through the arteries causes the inter-
ventricular pressure to decrease below the pressure in the arteries. Blood
attempts to flow back towards the heart, shutting the semilunar valves, pre-
venting blood returning to the ventricular chambers which are now under di-
astole. This concludes one cardiac cycle with an approximate time of 800 ms,
and the next cardiac cycle will begin upon the next atrial systole (Visagie,
2007; Marieb, 2015).

2.2 Electrocardiography
Electrocardiography is a branch of medical technology found in the offices
of general practitioners, local clinics as well as hospitals. Investigations into
the phenomena of electrical impulses within living organisms, conducted in
the early 18th century led to the discovery that nerve and muscle tissue are
triggered by electrical stimuli. Thereafter, it was discovered that the heart
produces low voltage signals that may be measured using electrodes. These
findings initiated the development of the initial technology that would serve
as the cornerstone of electrocardiography. With the turn of the 20th-century,
medical experts and scientists stressed the medical relevance and importance
of ECGs and worked to produce a protocol for the procedure of taking ECG
recordings. Decades of research and technological innovation culminated in
the creation of a device of paramount importance to the field of cardiology
(Geselowitz, 2015).

2.2.1 The ECG Biosignal

Since the heart consists of cardiac muscle, it beats completely involuntarily and
is not consciously controlled by the brain. Stimuli sent from the cardiac centre
in the brain, via the spinal cord and along the vagal nerve, arrive at a local
nerve centre known as the sinus node or sinoatrial (SA) node (Figure 2.4). The
rhythmic beating of the heart is controlled by special cells known as pacemaker
cells that reside in the SA node (Zinke-Allmang, 2008). Impulses sent from the
SA node travel to the AV node Figure (2.5), which is located at the bottom of
the right atrium, near the tricuspid valve. The AV-node operates in a similar
manner to the SA-node, with the difference being the AV-node’s slower rate
of depolarisation. The slower depolarisation rate results in a 0.1-0.2 second
delay in the nerve impulse reaching the cells of the ventricular muscle. This
delay provides enough time for the atria to empty into the ventricles before
the blood is pumped from the heart into circulation. Once the AV-node is
triggered, the electric impulse leaves through the AV-bundle and splits into
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two major branches, the right bundle branch along the right side of the heart
and the left bundle branch along the left side of the heart after crossing over
the inter-ventricular septum. The impulses reach the Purkinje fibres, which are
the muscle cells of the heart responsible for the contraction, and are the final
destination of the nerve impulse (Zinke-Allmang, 2008). Once the ventricles
have repolarised, the cardiac cycle is repeated.

Figure 2.4: Anatomy responsible for the stimulation and propagation of electrical
activity within the heart (Barret et al., 2012).

Figure 2.5: Sequence of the electrical activity within the heart (Barret et al., 2012).
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2.2.2 The 12 Lead Electrocardiogram

The electrocardiogram (ECG) is a medical diagnosis and observation tool for
time-resolved measurements of the electric activity of the cardiac muscle and is
the current clinical gold standard. The method was first developed by Willem
Einthoven in 1906, in which he developed a method to monitor a human’s heart
beating within the chest cavity (Zinke-Allmang, 2008). The current 12-lead
ECG is recorded by attaching the lead-wires to the ten adhesive electrodes
placed across the chest and limbs (Figure 2.6). The right leg (RL) electrode
is not used in diagnosis but acts as the reference electrode and is used in the
"right leg drive" (RLD) circuit. A RLD circuit is often used with biopotential
differential amplifiers to reduce common mode voltage and improve stability
(Winter and Webster, 1983).

Figure 2.6: Placement of a the standard 12 lead ECG electrodes.

The first ECG leads were introduced by Einthoven who derived leads I, II and
III using the left arm (LA), right arm (RA) and left leg (LL) limb electrodes,
represented as:

I = LA−RA (2.1)

II = LL−RA (2.2)

III = LL− LA (2.3)

His work was followed by Goldberger, who successfully derived the augmented
leads aVR, aVL and aVF from the limb leads, using the following equations:
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avR = RA− 0.5× (LA+ LL)

= −0.5× (I + II)
(2.4)

avL = RA− 0.5× (LA+ LL)

= 0.5× (I − III)
(2.5)

avF = RA− 0.5× (LA+ LL)

= 0.5× (II + III)
(2.6)

A graphical illustration of the limb leads (I-III) and the augmented leads (avR,
avL and avF) is depicted in Figure 2.7.

Figure 2.7: Illustration of the Einthoven triangle (Cables and Sensors, 2011) which
requires the use of 4 limb electrodes, where the right leg is the reference. Each of
the limb leads (I-III) are recorded at the positive pole location with respect to the
negative pole location, specific to that particular limb lead. The augmented leads
(avR, avL and avF) are recorded in the direction from the theoretical WCT to the
positive pole. The pole locations correspond to the various limb electrodes, whereas
the WCT is a derived theoretical location without a corresponding electrode.

Wilson et al. (1934) derived the precordial leads V1-V6, by the introduction of
the "Wilson central terminal" (WCT), which is the average of the limb leads
electrode potentials and is calculated as:

WCT =
1

3
× (LL+RA+ LF ) (2.7)
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The precordial leads (V1-V6) are recorded in the direction from the central
terminal to either one of the six precordial electrode positions, represented as:

Vn = V ′n −WCT (2.8)

where Vn is the precordial lead voltage (n = 1, ..., 6) and V ′n is the voltage
recorded at the nth precordial electrode position (Figure 2.6) with reference to
RL. The directions of the 12 lead ECG are represented as vectors in Figure 2.8.
The limb leads and the augmented leads record the heart’s electrical activity
in the frontal plane, whereas leads V1 to V6 record electrical activity in the
transverse plane emanating outward from the central terminal.

Figure 2.8: Hexaxial illustration of all 12 ECG leads. The leads in the frontal plane
are represented as black vectors and the leads in the transversal plane represented
in black.

The different lead vectors provide information pertaining to the direction and
magnitude of the heart’s electrical activity focusing on different regions of the
heart (Table 2.1). This provides a coherent snapshot of the heart’s current
condition, as viewed from different angles and regions.

Table 2.1: The views of the heart provided by the 12 lead ECG.

Leads Regions of the heart
II, III, avF Inferior
I, avL, V5, V6 Lateral
V1, V2 Septal
V3, V4 Anterior
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2.3 Heart Auscultation and Heart Sounds
Auscultation is the medical procedure in which a doctor uses a stethoscope
to listen to sounds within the body. Heart auscultation refers specifically to
the analysis of sounds produced by the heart and blood circulation through
the valves and the circulatory system (Reed et al., 2004). To this day, heart
auscultation remains a fundamental tool and primary method for identify-
ing potential underlying pathology related to cardiovascular disease (Visagie,
2007). When performing heart auscultation on a patient, there are specific
positions on the thorax that a physician places the stethoscope. Figure 2.9
illustrates the various heart auscultation positions relative to the heart valves.

Figure 2.9: The heart auscultation positions that correspond to the various heart
valves (Stethographics, 2007).

The aortic valve, located between the left ventricle and aorta, is audible at
the second intercostal space, situated to the right of the sternum between the
second and third rib. The pulmonary valve, located between the right ven-
tricle and the pulmonary artery, is audible in the second intercostal space, to
the left of the sternum. The tricuspid valve, located between the right atrium
and right ventricle, is audible at the fifth intercostal space to the left of the
sternum, between the fifth and sixth ribs. The mitral valve that divides the
left atrium and ventricle is audible left of the sternum in the fifth intercostal
space (Visagie, 2007).

Phonocardiograms are used to illustrate recorded heart signals graphically
(Figure 2.10). The heart signals are divided into four characteristic sounds
(Rangayyan and Reddy, 2002) referred to as S1 to S4. The most well-known
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sounds, S1 and S2, are most commonly referred to as the "lubb-dupp" sound,
in which "lubb" and "dupp" refers to S1 and S2, respectively. Originally it was
believed that S1 was solely the result of the closure of the mitral and tricuspid
valves, and S2 solely the result of the aortic and pulmonary valves. However,
additional theories indicate that the vibration of the entire cardiovascular sys-
tem, initiated by pressure gradients, as well as turbulent blood-flow, could
contribute to generation of heart sounds S1 and S2 (Rangayyan and Reddy,
2002; Visagie, 2007).

Figure 2.10: Phonocardiogram recording (Sa-ngasoongsong et al., 2012): (a) The
standard heart sounds S1 and S2, followed by the additional S3 heart sound. (b) A
recording indicating the presence of the additional heart sound S4 with respect to
the standard heart sounds S1 and S2.

A third heart sound, S3, is occasionally heard due to the abrupt termination
of the phase in the cardiac cycle responsible for blood rapidly filling the ven-
tricles from the atria. The sound is characterised by a low-pitch sound audible
at the heart’s apex (Munro and Edwards, 1990) and is common in healthy
young adults and athletes. The S3 heart sound may disappear before middle
age, with its presence in older patients indicating impaired ventricular function.

The fourth heart sound S4 is an additional heart sound that occurs during a
late diastole, before S1. It is a low-pitch sound audible at the apex of the heart.
The S4 occurs in normal patients but tends to become prominent during the
atrial systole of patients with ischaemic heart disease and hypertension (Munro
and Edwards, 1990). The S3 and S4 heart sounds may be detected in healthy
patients with a sufficiently slow heart rate, however, as the heart rate increases
the two heart sounds tend to overlap (Visagie, 2007).
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2.4 Existing Technology

2.4.1 Electrocardiograms

Since the creation of the first instance of the ECG by Einthoven in the late 18th
century the device has evolved and improved with contributions by various sci-
entists until it was introduced into healthcare facilities in the 1960’s (Barill and
Inc, 2012). The first three lead ECG was introduced over a 100 years ago and
continues to be used today. A three lead ECG may contain either three or four
ECG electrodes, providing leads I, II and III (from electrodes at RA, LL and
LL), with a possible fourth reference electrode RL. A three lead ECG is still
commonplace in various applications such as emergency departments, medical
procedures, long duration monitoring and telemetry (Barill and Inc, 2012).

However, in the 1990’s, additional research revealed that the three lead ECG
was not sensitive enough to identify various ischemic cardiovascular diseases.
This led to the expansion of the three lead ECG to the five lead ECG, with
the addition of lead V1 resulting in four extremity leads and one precordial
lead. While the three lead systems were still in use, most of the new ECG
devices allowed for an optional five lead system. The use of the five lead
system increased the accuracy of identifying ischemic cardiovascular disease
and was also beneficial in dysrhythmia monitoring (Barill and Inc, 2012). The
reason for this increased sensitivity was due to lead V1 providing additional
views of the heart, correlating to the sternum as well as a partial right side
view. Finally, the addition of precordial ECG leads V2 to V6 culminated with
the 12 lead ECG (Figure 2.11), which is the current non-invasive clinical gold
standard.

Figure 2.11: An example of a 12 lead ECG with precordial leads V1-V6 visible on
the subjects chest (Sunway, 2017).

The 12 lead’s additional precordial leads allow for the detection of a wider
range of CVD and abnormalities. This is achieved by including the additional
leads that focus on the anterior sections of the heart as well as the already
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included lateral, septal and inferior regions already available in the five lead
ECG. However, due to the manner in which the limb leads are derived as well
as the close positional proximity of the precordial leads, many of the ECG leads
reproduce similar information (Dawson et al., 2009). This has led healthcare
specialists and researchers to question the necessity for all 12 leads, resulting
in a renewed focus into simpler ECG lead placement systems and methods.

A normal ECG recording, regardless of the number of leads, only provides a
short duration snapshot of the heart’s current condition. Some pathologies
may not appear during a routine ECG test and require longer recording times.
In the event of long duration ECG monitoring, a patient is given a portable
device known as a Holter monitor (Figure 2.12) which is used to record ECG
data from 24 hours, up to two weeks, while the individual partakes in their
daily routine. The number of leads ranges between three and eight, varying
between Holter models and manufacturers. After the recording period, the
data is uploaded to a computer which automatically analyses the signals using
specialised software. The software identifies rhythmic information as well as
sections of interest within the recordings that should be studied by a techni-
cian who prepares a report for a specialist. The Holter monitor may be used
on patients who have experienced a heart attack, patients on new medica-
tion or patients with rhythmic problems such as atrial fibrillation, multi-focal
atrial tachycardia, paroxysmal suprevaentrical tachycardia, bradycardia and
ventricular tachycardia (Chen, 2016).

Figure 2.12: An example of a seven lead wire Holter monitor.

2.4.2 Electronic Stethoscopes

Since the inception of the first acoustic stethoscope, the technology used in aus-
cultation has remained relatively unchanged. Years later, the introduction of
the electronic stethoscope (Figure 2.13) provides physicians with greater con-
trol and flexibility over the volume and frequency bandwidth of stethoscope
recordings. The use of the electronic stethoscope ensures that recordings may
be stored, plotted graphically as well as shared with professionals which re-
sulted in the emergence of a new field of computer-aided auscultation. This
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has generated an increased interest in the use of recorded heart sounds in the
automatic diagnosis of cardiovascular diseases (Leng et al., 2015).

Figure 2.13: Electronic stethoscopes (Thinklabs, 2003; Littmann, 2017): Examples
of state of the art electronic stethoscopes by Littmann (a) and Thinklabs (b) .

The procedure of acquiring electronic auscultations occur in three main stages,
namely the data acquisition, pre-processing and signal processing stages. In
the data acquisition stage, the electronic stethoscope records the heart signals
which are converted to electronic signals. Popular transducers used in elec-
tronic stethoscopes consist of small electret microphones, piezoelectric crystals
or capacitive-based microphones. Electret microphones are the simpler solu-
tion but are more prone to environmental noise. The microphone is placed
inside the chestpiece of a standard stethoscope and records the fluctuations in
sound pressure created by the stethoscope diaphragm, converting the sound
waves into electrical signals. Piezo-electric transducers operate using a differ-
ent principle to that of the electret microphone. The stethoscope diaphragm
deforms the piezo-electric crystal that generates an electric charge resulting in
the conversion of a heart sound into an electric signal. A challenge with using
this type of sensor is the presence of signal distortion due to the operation of
the transducer with central frequencies close to the piezoelectric element’s res-
onant frequency (Assous et al., 2007). This may alter the tone of the recorded
heart sound. An additional transducer used in electronic stethoscopes is the
capacitive sensor modelled on the micro-electro-mechanical system (MEMS)
technology. Sound is recorded when the change in acoustic pressure displaces
the diaphragm in phase with the source, altering the nominal capacitance value
of the MEMS sensor (Leng et al., 2015).

Acquired signals are pre-processed by filtering to remove noise. The heart
sounds may be corrupted by various sources of noise which include internal
noise such as respiratory and digestive noise, external ambient noise which
may be picked up by the microphone, as well as 50 Hz electrical mains noise.
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In many cases the heart sound bandwidth overlaps the frequency range of
these sources of noise, making filtering extremely challenging. This resulted
in the development of advanced filtering techniques which operate in the time
domain as well as the transform domain. Once the heart sounds are filtered,
the beats are segmented by dividing the data into S1 (systole) and S2 (dias-
tole) segments. The segmented data may be used to extract features which are
used to classify heart sounds used in assisted diagnosis in the signal processing
stage (Leng et al., 2015).

2.4.3 Hybrid Electronic Stethoscope and ECG Devices

2.4.3.1 Rijuven CardioSleeve

The CardioSleeve is a stethoscope add-on device capable of recording heart
sounds as well as three lead ECG signals. In order to record heart sounds the
device is attached to any standard stethoscope by detaching the chestpiece of
the standard stethoscope from its tubing and inserting the CardioSleeve be-
tween the chestpiece and the tubing (Figure 2.14a). The device contains two
dry electrodes which can be aligned in various orientations on the chest in order
to measure three ECG leads. The heart sounds and ECG signals are trans-
mitted using Bluetooth to any mobile, or desktop device, where the signals
may be viewed, recorded and analysed (Figure 2.14b). The acquired signals
are analysed using cloud-based computing and provides diagnosis support to
the user by predicting the patient’s current condition (Rijuven, 2016).

Figure 2.14: CardioSleeve (Rijuven, 2016): (a) The hybrid stethoscope ECG device
with the mobile application (b) indicating a simultaneous ECG and heart ausculta-
tion recording.
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2.4.3.2 Eko Duo

The Echo Duo (Figure 2.15a) is a compact, hand-held device consisting of
a single lead ECG and digital stethoscope. The Duo provides simultaneous
recordings of the single lead ECG and heart sound which is streamed to a
mobile device or PC using Bluetooth 4.0, for viewing purposes (Figure 2.15b).
The ECG data is recorded at 500 Hz and contains a 0.01 high-pass and 50Hz
mains filter. The heart sounds are recorded at 4000Hz and contains ambient
noise reduction. The device contains a 3.5 mm audio jack that allows the user
to listen to the heart sounds in real-time using headphones. The device has
a built-in rechargeable battery which allows for nine hours of continuous use
(Eko, 2017).

Figure 2.15: Eko Duo (Eko, 2017): The hybrid stethoscope ECG device (a) with
corresponding sensors and mobile application (b).

2.5 Previous Research
A summary of previous research within the department as well as in related
fields associated with the subject matter is presented in this section. Finally,
a comparison between previous research and this study is drawn.

2.5.1 Screening for Abnormal Heart Sounds and
Murmurs

Research into screening for abnormal heart sounds and murmurs was initi-
ated by Visagie (2007) within the Stellenbosch Biomedical Research Group
(BERG). This led to the creation of the "auscultation jacket" device which
consisted of a neck piece, front piece and back piece. The device was embed-
ded with 21 electronic stethoscopes, responsible for recording both the heart
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and lung sounds, and included a standard 12-lead ECG. The electronic stetho-
scopes were implemented using Panasonic WM-61B black electret condenser
microphones which converted sound waves into electrical signals. Each stetho-
scope was connected to the computer via USB and recorded using software
on the computer. The microphones had a frequency range of 20 - 20000Hz
and the recorded signals were sampled at 2000 Hz with 16-bit resolution. In
locations in which ECG electrodes overlapped with auscultation points, stetho-
scope and electrode combinations were used to record both heart sounds and
electrical activity simultaneously. The various ECG electrodes and electronic
stethoscope placements are illustrated in Figure 2.16.

Figure 2.16: Final positions of the electrodes and stethoscopes in the front, neck
and back piece of the ausculation jacket (Visagie, 2007).

During the testing procedure, patients fitted with the jacket were asked to
lay on their backs on an examination bed and were recorded while breathing
normally, holding their breath at the end of expiration as well as holding their
breath at the end of inspiration. This allowed for the splitting of the differ-
ent heart sounds (S1 and S2) resulting in improved data analysis. Through-
out the study, 31 patients were examined of which 14 patients suffering from
cardiovascular disease and 17 healthy patients were recorded using the "aus-
cultation jacket". Once the raw data was obtained it was filtered to remove
any noise and artefacts. The heart sounds were filtered by a bandpass filter
with a bandwidth of 25 - 700 Hz and then further filtered using the wavelet
threshold method. The ECG signals were low-pass filtered using a 4th order
Butterworth filter with a selected cut-off frequency corresponding to 40 Hz
in order to remove any 50 Hz electrical noise. Once the signals were filtered,
four cardiac cycles of heart sounds were extracted by using a beat detection
algorithm that identifies the QRS peaks in the ECG signals. This allowed for
the proper synchronisation of the beginning of the four cardiac cycles. The
four cycles were divided into features that would be potentially used to train
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the neural network’s classification system to distinguish between normal and
abnormal heart sounds and murmurs. These features were later reduced dur-
ing the feature selection process with the help of the dimensionality reduction
technique known as "statistical overlap factor". This reduced the total fea-
tures that would be used to train, validate and test the neural network, from
70 features down to three. The neural network consisted of two hidden layers
with 10 neurons and five neurons respectively. The sigmoid function was se-
lected as the activation function. The input layer consisted of three neurons
and the output layer contained one neuron. The network was trained using
the backpropagation algorithm that made use of an adaptive learning rate.
Regularisation was utilised to ensure that over-fitting does not occur. The
results of the classification system produced a sensitivity of 76.2%, specificity
of 90.3% and an overall accuracy of 84.6% when classifying between normal
and abnormal heart sounds and murmurs. Over and above the full 12-lead
ECG, an additional external three lead ECG was later required to identify
the beginning of heart sound S1, which resulted in an inefficient design as two
ECG recordings were required. Additionally, the study did not explore the use
of the ECG recordings in the patient classification process.

The physical size and dimensions of the "auscultation jacket" was not ad-
justable. The device was designed for the male South African population and
was modelled on anthropometric data obtained from the RSA Military Stan-
dards Steering Committee (RMSS), which made use of data acquired from
the 50th percentile. This can be seen as a limiting factor in the design as
the stethoscope and ECG electrodes require precision placement for woman
and men of all body types. The most notable pitfall in the design of the
"auscultation jacket" was experienced during respiration. When the patient’s
chest expanded and contracted, the stethoscopes and ECG electrodes shifted
relative to the surface of the body. This led to unreliable recording as well
as artefacts and noise entering the signals. The large number of stethoscopes
and ECG electrodes resulted in numerous wires and increased the weight of
the jacket significantly. Patients suffering from valvular heart disease (VHD)
were extremely weak which presented an additional challenge in fitting these
patients with the auscultation jacket.

2.5.2 Autonomous Auscultation of the Human Heart

A study involving the autonomous auscultation of the human heart was con-
ducted by Botha (2010) and expanded on the previous work done by Visagie
(2007). The objective of the study was to use a new prototype, the Precor-
dialcardiogram (PCG) device (Figure 2.17), to record the patient data within
a clinical environment.
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Figure 2.17: Layout of the ECG electrodes and electronic stethoscopes (mitral,
tricuspid, pulmonic and aortic) used in the Precordialcardiogram device.

The PCG device was used in combination with auscultation software capable
of autonomously screening patients for various cardiovascular disease. The
new device attempted to address some of the major pitfalls of the previous
generation "auscultation jacket". Similar to Visagie (2007), the PCG utilised
multiple sensors to record patients heart sounds and electrical activity, simul-
taneously. However, the PCG distinguishes itself from its predecessor by the
reduced total number of electronic stethoscopes (from twenty-one to four) and
ECG electrodes as well as its compact, simplistic design. The improved design
was aimed at allowing the device to be operated by a trained nurse rather
than a doctor or specialist practitioner. In this study, 62 patients were exam-
ined with the PCG device, of which 28 patients suffering from cardiovascular
disease and 34 healthy patients were recorded. The PCG device contains four
USB sound-card stethoscopes embedded inside the plastic housing as well as
a full 12-lead ECG and is connected to a personal computer (PC) via a USB
hub. The PC powers the PCG device and saves the patient’s data on the
hard drive which is analysed by the auscultation software. The stethoscopes
were sampled at a frequency of 8 kHz with a 16-bit resolution (Koekemoer and
Scheffer, 2008). In order to allow for some variation in adult chest dimensions,
the lateral section of the PCG could hinge separately to the body of the device
(Koekemoer and Scheffer, 2008).

Once data was collected, the study followed similar steps to that of Visagie
(2007), in which the data was filtered to remove noise and artefacts, followed by
beat segmentation, feature extraction and classification using neural networks.
During the filtering process, additional active noise cancellation was utilised
to reduce environmental noise in the sound recordings. This was achieved by
using a second microphone which records ambient sounds and then inverts the
signal. The stethoscope signal and the inverted ambient environment record-
ing are summed together resulting in the attenuation of environmental noise.
A wavelet filter method and low pass filter were also implemented to filter the
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heart sounds and ECG signals respectively, followed by segmentation using a
beat detection algorithm similar to that of Visagie (2007).

The results of the classification system produced a sensitivity of 82.1%, speci-
ficity of 88.2% and an overall accuracy of 85.5% when distinguishing between
typical heart diseases and healthy patients. This classification performance is
only a slight improvement on the "auscultation jacket", with more available
training data. The study struggled to record high-quality electronic stetho-
scope and ECG signals for obese patients as well as for women. This is due to
the fixed design not allowing the electronic stethoscope to make proper con-
tact at the correct auscultation positions and the fixed limb leads could not
extend far enough towards the shoulders. This resulted in noisy recordings
as the device was manually pressed against the subject. The ECG records
were also omitted from the patient classification process. Recommendations
included limb lead wires as well as the inclusion of a design feature that would
allow the device to mechanically extend to allow for proper contact is achieved
between the electronic stethoscopes and the skin.

2.5.3 Reconstruction of the 12 Lead ECG

The 12-lead ECG electrode placement has been considered the gold standard
for non-invasive cardiac monitoring, evaluation and diagnosis since its induc-
tion, more than a century ago. Misplacement of ECG electrodes due to human
error is a common issue in electrocardiography. Small displacements in the
precordial electrodes has a more significant influence on the measured ECG
signal due to their close proximity to the heart compared to that of the limb
leads (Van Oosterom et al., 2000; Rajaganeshan et al., 2008). Deviations
in ECG electrode placements from the correct "standard" positions (Kligfield
et al., 2007) can also result from errors made by trained medical staff (Herman
et al., 1991; McCann et al., 2007; Rudiger et al., 2007; Rajaganeshan et al.,
2008). Therefore, a notable drawback is poor reproducibility of the precor-
dial lead placements which results in high variability in the data obtained via
ECG recordings (Kania et al., 2014). Kerwin et al. (1960) reported that lead
placements with an error of less than 1 cm were attained by trained medical
staff in merely 50% of cases pertaining to males and 20% of cases pertaining
to females. It was discovered that these placement errors were frequently in
the range of between 2 cm and 3 cm, with some cases recording errors of up
to 6 cm. Bond et al. (2012) discussed that incorrect electrode placement con-
tributes to incorrectly diagnosing cardiovascular disease in 17 - 24% of cases
completed by either a human or computer-based analysis (Schijvenaars et al.,
1997).

Various studies have attempted to reconstruct absent leads from different con-
figurations of reduced lead sets, with varying success (Sejersten et al., 2003;
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Drew et al., 2004; Nelwan et al., 2008; Schreck and Fishberg, 2013; Ostertag,
2014; Tsouri and Ostertag, 2014). Initial studies (Dower et al., 1980; Feild
et al., 2002; Nelwan et al., 2004) used linear transforms to create a matrix
of basis leads consisting of coefficients, known as a "Dower universal trans-
form", used to reconstruct any absent leads using algebraic calculations. This
method was a "one-size-fits-all" solution with questionable accuracy due to the
derivation of the coefficients relying on biological and environmental factors
within populations that are prone to significant variability (Schijvenaars, 2000;
Feild et al., 2008). The Simplex non-linear optimisation method was used to
construct an additional universal transformation matrix (Schreck et al., 2002;
Schreck and Fishberg, 2013) capable of reconstructing missing leads. The base
leads used in reconstructing the remaining 12 lead ECG, by virtue of the uni-
versal transform matrix, initially included leads I, aVF and V2 (Schreck et al.,
2002), with later work focusing on I, II and V2 (Schreck and Fishberg, 2013).

The universal transforms were followed by "population specific transforms"
which categorised patients under headings based on their gender, age and dis-
ease classification. This strategy resulted in the creation of transforms that
were tailored to specific patient sub-populations in an attempt to increase ac-
curacy. Finally, independent component analysis (ICA) was used to generate
a third transform, known as "patient specific transform", which reconstructs
missing leads from a reduced lead set, tailored to a specific patient (Ostertag,
2014; Tsouri and Ostertag, 2014). This method relies on the availability of all
12 ECG leads which are required to calibrate the transform coefficients, after
which leads are removed at a later stage and subsequently reconstructed.

Nelwan et al. (2008) made use of a reduced lead system known as the "EASI"
ECG whereby five electrodes were placed at simple anatomical locations, found
using landmarks on the thorax, to create a derived 12 lead ECG. These land-
mark positions are based on the Frank lead system in which reconstructs miss-
ing leads by utilising the empirically obtained transform coefficients. This
method is developed from the heart dipole hypothesis that underlines vector-
cardiography. The EASI lead produces three non-orthogonal leads, of which
all other leads are reconstructed using algebraic calculations. This is achieved
by using linear combinations of the three non-orthogonal leads and the trans-
formation coefficients.

Drew et al. (2004) made use of an unconventional five lead wire system. The
optimal electrode positions were determined by optimising the root mean
squared error between the true leads and the reconstructed leads. The process
was repeated for 20 patients using 16 potential locations. This resulted in
the use of Mason-Likar electrode placement positions for electrodes RA, LA
and LL in which these limb electrodes are relocated onto the thorax. The LL
electrode is placed in the 6th intercostal space at the left mid-clavicular line,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 26

which is located just below the standard V4 lead position. A chest electrode
is placed in the 4th intercostal space in the middle of the left mid-clavicular
line and the left sternal border, close to the standard V3 lead position.

2.5.4 Autonomous Patient Classification using ECG
records

The classification of ECG recordings is an integral step in the clinical diagno-
sis of cardiovascular disease. Traditionally performed by a specialist such as a
cardiologist, recent studies have proven that artificial intelligence and machine
learning algorithms can be utilised to accurately classify cardiovascular disease
from ECG recordings. The autonomous patient classification process is illus-
trated in Figure 2.18. Initially, the ECG data is recorded and pre-processed,
which consists of filtering to remove baseline drift and 50 Hz electrical mains
noise. The filtered data progresses to the feature extraction phase in which a
set of features is identified from the ECG leads and used to train a classifica-
tion model in a supervised manner. In supervised classification applications,
the classification model is trained with labelled data, which refers to a feature
set where the current cardiovascular condition (also referred to as the target
classification) for each patient is known. The type, and number, of features
that serve as the input to the classifier is the decision of the designer. The
feature set should sufficiently describe the data needed to be classified. Once
the model is trained it may be used to predict the diagnosis of future patients.

Figure 2.18: A flowchart indicating the steps in the ECG classification process.

First order features can be identified directly from the recorded ECG data such
as time intervals between peaks or between successive heartbeats (R-R inter-
val) as well as peak amplitude voltages (Ouyang et al., 1997; Meghriche et al.,
2008). Additional second order features can be derived from advanced methods
such as spectral entropy (Anuradha and Reddy, 2008), discrete wavelet trans-
forms and Fourier transforms (Dokur and Ölmez, 2001; Sengur and Turkoglu,
2008), to name a few. Prior studies have utilised a wide variety of different
machine learning techniques in ECG classification. Examples machine learning
techniques include support vector machines (SVMs) (Übeyli, 2007; Chengwei
et al., 2007; Asl et al., 2008), fuzzy set theory (Lei et al., 2007) and artificial
neural networks (ANNs) (Prasad and Sahambi, 2003; Güler and Übeylı, 2005;
Yu and Chen, 2007).
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Prior studies by Tripathy et al. (2014), Yan et al. (2010) and Arif et al. (2012),
focused on individual heartbeat classification using multi-lead ECG records
obtained from the Physikalisch-Technische Bundesanstalt (PTB) online ECG
database. Tripathy et al. (2014) developed a unique second order metric, re-
ferred to as principal component multi-variate multi-scale sample entropy, to
classify multi-lead ECGs. The principal component analysis reduces the di-
mension of the features generated using the multi-variate multi-scale sample
entropy approach, which are fed into a least squares support vector machine
(LS-SVM) for classification. The LS-SVM was tasked with classifying between
healthy controls (HC), cardiomyopathy (CM), dysrhythmia (DR), hypertrophy
(HT) and myocardial infarction (MI) classification classes. Yan et al. (2010)
utilised the SVM classification method to distinguish between HC, CM, HT,
bundle branch block (BBB) and valvular heart disease (VHD). The features
included first order location, amplitude and interval features, as well as second
order features derived from the mean shift algorithm method. The dimen-
sion of the features were reduced using generalised discriminant analysis. Arif
et al. (2012) developed an MI classifier using the K-nearest neighbour (KNN)
method. First order time domain features which include the T wave ampli-
tude, as well as Q wave and ST deviation, are inputs to the KNN classifier.

Prior studies performed by Huang and Zhou (2015), Sun et al. (2012) and
Haraldsson et al. (2004), developed models that focused on patient classifica-
tion using multi-lead ECG records obtained from the PTB online database,
or clinical trials. Huang and Zhou (2015) utilised the stepwise discriminant
analysis (S-DA) method to classify patients cardiac function as either normal
or abnormal, using records obtained from the PTB database. The first order
features included the T wave type, time intervals, peak amplitudes and wave-
form gradients which underwent dimensionality reduction using PCA.

Sun et al. (2012) developed the latent topic multiple instance learning (LTMIL)
method for automatic detection of myocardial infarction from ECG records
within the PTB database. The features selected to be used in the classifi-
cation process included both first and second order features. The first order
features included an average ST length to RR interval ratio, as well as the
height to length ratio of each ST segment. The second order features com-
prised of fitting a polynomial relationship for the ST segment and recording
the polynomial coefficients as features, across all 12 leads.

Haraldsson et al. (2004) developed a Bayesian inference ANN classifier to de-
tect MI in 12 lead ECG data recorded from 1119 patients, at the emergency
department of the University Hospital in Lund, Sweden. The features set in-
cluded second order features such as coefficients from Hermite basis functions
as well as first order features such as amplitude and gradient metrics for the
ST-T interval.
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2.5.5 Comparison of the Present Study with Previous
Research

The current study expands on the prior work presented by Visagie (2007) and
Botha (2010). A new portable reduced lead ECG and electronic stethoscope
device will be designed and developed with the aim to deploy the device in
rural hospitals and clinics that lack the equipment required to diagnose CVD.
The device is designed to be operated by personnel without specialist knowl-
edge in cardiology, such as nurses or laymen, to autonomously identify patients
with potential cardiovascular disease and refer these patients to hospitals for
further evaluations. The initial ECG and auscultation recordings can be wire-
lessly sent to specialists for analysis. The past devices (auscultation jacket and
PCG) were bulky, consisting of a network of cables tethered to computers and
power sources and would be restricted to clinical environments. The current
hand-held device is battery powered, compact and completely portable, with
the potential to be used in clinics or in the field as a point of care and first
stage screening tool. The new device was also intended to improve on the
pitfalls of the previous designs, capable of quality ECG and electronic stetho-
scope recordings of both men and woman with all body types.

The use of ECG records during patient classification was not investigated by
the previous authors, with its application limited to the beat segmentation pro-
cess. The current study places more emphasis on the diagnostic capabilities of
the ECG data during classification, with the addition of the electronic stetho-
scope to provide specialists, who may have been absent during the application
of the device, with playback and visualisation options. In comparison to prior
studies done in the field relating to ECG classification, the current study will
leverage the power of deep artificial neural networks as opposed to standard
artificial neural networks (ANNs) or other popular classification methods. A
deep pattern recognition neural network (DPRNN) will be trained to classify
individual beats in a retrospective study and expanded on further to perform
patient classification on records acquired using the prototype device in a clin-
ical study.

Prior studies utilised a single type of feature, or a limited feature set, to be fed
as the required input into a selected classification model. The current study
intends to extract a combination popular first order and second order features
from multiple ECG leads, while exploring the possibility of feature generation
in an unsupervised manner using stacked denoising autoencoders. The current
study also investigates the potential of ECG lead reconstruction using a re-
duced lead set. Lead reconstruction enables the generation of an interpolated
full 12 lead ECG recording when only a reduced lead set is available. Prior
lead reconstruction studies made use of various methods to generate matrix
transforms which could be applied algebraically to available leads in order to
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reconstruct any missing leads. The current study intends to investigate the
possibility of training a deep focused-time delay neural network (FTDNN) to
learn complex functional relationships between a reduced set of input leads
and the absent leads. The trained FTDNN will be fed the reduced lead set
as an input and calculate the absent lead as the network output resulting in a
full 12 lead ECG.
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Chapter 3

Device Design

Chapter three elaborates on the design and development of the portable ECG
and electronic stethoscope device (Figure 3.1). The chapter is divided into
two sections relating to hardware and software design, in which the individual
aspects are discussed in detail.

Figure 3.1: Portable ECG and electronic stethoscope device seen from different
angles. The electronic stethoscope is detachable and the back of the case is removed
to expose the printed circuit board.

3.1 Hardware
The various components utilised within the device are represented in Figure 3.2
and are discussed in greater detail in the subsequent sections.

30
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Figure 3.2: Flowchart indicating the interaction between the various hardware and
signals required to operate the device.

3.1.1 Raspberry Pi

The present study made use of the Raspberry Pi (RPi) 3 model B (Figure 3.3),
which is a powerful, low-cost, single board computer. The RPi is compact in
size, housing all its components within a surface area slightly larger than a
credit card. The device boots from a Micro SD memory card, which contains
the operating system as well as provides file storage capabilities. The RPi is
affordable, compact and has low power requirements which makes it an ideal
candidate for portable devices. There are an abundance of available "gen-
eral purpose input output" (GPIO) pins on the RPi, which are required to
connect to peripheral devices and sensors. The GPIO pins interface the RPi
with the ECG front end, LCD touchscreen and the electronic stethoscope’s
analog-to-digital converter (ADC). The RPi provides a variety of serial com-
munication protocols, in which Serial Peripheral Interface (SPI) and Inter-
Integrated Circuit (I2C) is required to interface with the ECG front-end and
electronic stethoscope, respectively. The RPi has a dedicated display serial
interface (DSI) port which enables communication with the LCD touchscreen.
The powerful quad-core processor ensures that signals may be sampled at a
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sufficient clock speed and displayed in real time with relative ease. Further-
more, the Wi-Fi and Bluetooth 4.1 wireless capabilities enables the potential
application of the device in telemedicine and cloud-based computing. Finally,
the RPi is responsible for compiling the software required to interface with
the ECG front-end and electronic stethoscope, displaying the data graphically
on the LCD touchscreen as well as storing the records locally on the memory
card.

Figure 3.3: Labelled schematic of the Raspberry Pi 3 model B.

3.1.2 LCD Touchscreen

The touchscreen creates a tablet interface, emphasising the portability as-
pect of the project. The 7-inch touchscreen display has a total dimension of
194 x 110 x 20mm and a screen resolution of 800 x 480 pixels. The size is ideal
for viewing the many available ECG leads while still maintaining a compact
design. Only two of the RPi header pins, a 3.3 V voltage supply and ground
(GND), are required by the touchscreen (Figure 3.4a). This is advantageous
as it frees up more available pins to connect to additional sensors. The use
of a touchscreen eliminates the need for additional peripherals such as an ex-
ternal monitor, keyboard and mouse, thereby greatly simplifying the design.
The touchscreen case (Figure 3.4b) also protects the RPi and adapter board
as well as houses the additional ECG and electronic stethoscope circuitry.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. DEVICE DESIGN 33

Figure 3.4: LCD touchscreen: (a) Positioned with screen facing downwards, with-
out the protective case. The touchscreen adapter board and the mounted RPi are
visible (b) Positioned with the screen facing upwards, resting on the base of the
protective case that covers the RPi and adapter board.

3.1.3 Power Consumption

During the design of ECG and electronic stethoscope device, the selection
of low-power components was prioritised in a bid to reduce the load placed
on the battery and maximising the available hours of use. The voltage and
current requirements of the device are broken up into the major components
and represented in Table 3.1.

Table 3.1: Portable ECG and electronic stethoscope voltage and current require-
ments.

Component Voltage Current
Raspberry Pi 5 V 500 mA

LCD Touchscreen 3.3 V 455 mA
ECG 5 V 16 mA

Electronic Stethoscope 3.3 V 0.17 mA

During standard testing conditions, the device is operated solely using the
touch screen without any USB peripherals. The average total current con-
sumption of the device is calculated as:

Itotal = IRPi + ILCD + IECG + ISteth

= 500 mA+ 455 mA+ 16 mA+ 0.17 mA

= 971.17 mA

(3.1)

This project made use of an external 10500 mAh battery pack to power the
device. The battery pack provided approximately 11 hours of continuous use.
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3.1.4 Electrocardiogram

This section elaborates on the various components used in constructing the
ECG section of the device. The printed circuit board (PCB) and major com-
ponents, illustrated in Figure 3.5, will be discussed in greater detail in the
following sections. The corresponding PCB design schematics are illustrated
in Appendix A.

Figure 3.5: ECG printed circuit board with the corresponding circuit components,
mounted ontop of the RPi.

3.1.4.1 Electrocardiogram Lead Wires

The ECG device consists of a six lead wire system, of which four leads are limb
leads (RA, LA, RL and LL) and the remaining two are precordial leads (V2 and
V4). The lead wires have snap connectors that attach to disposable electrodes
(Figure 3.6) which are stuck to the body at their respective positions. Most
disposable adhesive electrodes make use of highly conductive metals such as
silver, or a silver chloride compound, that connects to the ECG lead wires.
The electrodes contain a saline-based conductive gel which is in contact with
the body and reduces the skin’s high resistive properties, resulting in improved
signal quality.

Figure 3.6: ECG lead wires and adhesive electrode.
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3.1.4.2 Defibrillator, Overvoltage and ESD Protection

ECG devices and other medical equipment that attach to patients in hospi-
tals, or emergency settings, may require protection against defibrillation. In
circumstances when defibrillation protection is not required, safety measures
to negate over-voltage, or electrostatic discharge (ESD), is recommended. The
ADAS1000 ECG front-end does not provide any on-board defribillation pro-
tection and therefore requires additional components and circuitry. The rec-
ommendations made by the ADAS1000 datasheet (Analog Devices, 2014) with
regards to providing the necessary defibrillation, over-voltage and ESD protec-
tion are adhered to. The SP720 (Figure 3.7) is a diode array which is applied in
parallel with the ECG channels and provides protection to sensitive circuitry
connected to the ECG electrodes by clamping any input voltages that exceed
the reference value (5 V). The resistors connected to the right leg drive (RLD)
circuit ensure a safe termination voltage for an open ECG electrode. In the
event that defibrillation is required, the SP720 is able to protect the device
against voltage spikes of up to 8 kV when two input pins are connected in par-
allel to each ECG lead (Littelfuse, 2017). This provides sufficient protection
against standard defibrillation voltages between 300 to 1000 V.

Figure 3.7: Recommended defibrillation protection on ECG channels using diode
protection (Analog Devices, 2014).

3.1.4.3 ADAS1000 Analog Front-end

The selected ECG front-end for this study is the ADAS1000 (Analog Devices),
capable of recording 5 lead ECG signals with an additional RLD lead. The
ADAS1000 is a compact, low power device, designed to produce high-quality
readings in portable applications. This significantly simplifies the procedure
of recording ECG biosignals as the ADAS1000 outputs the recorded data to
the RPi for post-processing via the SPI serial communication protocol. The
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ADAS1000 provides inputs for up to six lead wires which include limb leads
(RA, LA, LL) a reference right leg drive (RLD) as well as two precordial leads
of the user’s choice. The two precordial leads used in this project are leads
V2 and V4. The simplified flowchart focusing on the ECG functionality of the
ADAS1000 is illustrated in Figure 3.8.

Figure 3.8: ADAS1000 flowchart (Analog Devices, 2014).

The ADAS1000 receives the recorded signals from the ECG lead wires. The
output of the RLD circuit is attached to the right leg (RL) lead wire to pro-
vide common-mode rejection and improved signal quality. Internal switching
provides the user with options in selecting various leads to contribute to the
calculation of the RLD circuit as well as to the common mode voltage (VCM).
Each of the input ECG channels contains a differential amplifier with a pro-
grammable gain, an anti-aliasing filter, additional buffers as well as an ADC.
Once the leads are calculated and filtered in the digital domain they are sent to
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the RPi using SPI communication which makes use of the chip select (CS), the
clock signal (SCLK), data ready (DRDY), "SDI", "SDO", and "RESET" lines.

In a standard 5 lead ECG configuration, the ADAS1000 supplies data for
Lead I, II, III and V2 and V4 via SPI serial communication to the RPi. The
remaining augmented limb leads (aVR, aVL and avF) are calculated from leads
I, II and III. This is done locally in a post-processing step on the RPi using
Equations 2.4 - 2.6. The digital lead mode was selected in which leads LA, LL
and RA (represented by the closed internal switches in Figure 3.9) contribute
to the VCM, thus creating the Wilson central terminal (WCT) required to
digitally calculate lead V2 and V4.

Figure 3.9: Electrode and lead configuration for digital lead mode (Analog Devices,
2014).

The sampling speed of the ADAS1000 in low power mode is 1.024 MHz which
can be provided by the internal clock or in this case an external crystal oscil-
lator. The frame rate can be adjusted by tapping off data at a reduced rate,
set by the user, which was selected as 2 kHz. This is the slowest available rate
on the ADAS1000 and is more than sufficient, with 250 Hz believed to be the
minimum acceptable ECG sampling frequency (Abboud and Barnea, 1995).
A DC-coupled approach is used by the ADAS1000 in which the RLD ensures
that each ECG channel is biased to operate within the front end’s dynamic
range. This is achieved by driving the electrical average of the electrodes to
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1.3V, maximising each signal’s range when using the ADC. The RLD circuit
(Figure 3.10) also contributes to improving signal quality by providing com-
mon mode rejection and eliminating interference and noise from external mains
powered sources in the vicinity of the device. The RLD circuit also provides
additional patient safety features in defibrillation and over-voltage protection
circuits. The design of the RLD circuit, as well as the external resistor and
capacitor and values, are recommended by the ADAS1000 datasheet.

Figure 3.10: External components used in the right leg drive circuit (Analog De-
vices, 2014).

3.1.4.4 Electrical Isolation and Insulation Layer

The current device is designed to be battery operated, however, there may
be occasions where the RPi is to be connected to additional peripherals, such
as monitors or printers, which require a mains power supply. Opto-couplers
isolate sections of the PCB that are exposed to a high-voltage power supply
while simultaneously allowing the transfer of signals to, and from, the isolated
region. This allows for electrical separation, or isolation, between the leads
attached to patients and high voltage peripherals that may be attached to the
RPi. The ADUM4400 and ADUM6403 were used in the optocoupler circuit
(Appendix B.1.1 FigureB.1). In addition to the optocoupler circuit, the PCB
was manufactured with an insulated region, without copper, which runs under
the optocouplers to the boundaries of the PCB. This separates the isolated
region from the remainder of the PCB (Appendix B.1.1 Figure B.2) and pre-
vents the flow of potential creepage currents. An in-depth discussion relating
to the applied safety measures and overall adherence to ECG safety standards,
is presented in Appendix B.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. DEVICE DESIGN 39

3.1.5 Electronic Stethoscope

This section will elaborate on the various components used in constructing
the electronic stethoscope (Figure 3.11). The electronic stethoscope is created
using a condenser microphone placed in close proximity to a standard stetho-
scope chest-piece. The microphone converts the sound waves in the stetho-
scope chest-piece to electrical signals. The electrical signals are amplified and
transmitted to the RPi via the ADS1015 ADC.

Figure 3.11: Electronic stethoscope prototype: (a) Exposed wire and microphone.
(b) Flexible PVC tube protecting the microphone and wires.

3.1.5.1 Electret Condensor Microphone

The electronic stethoscope made use of a Panasonic WM-61A (Figure 3.12)
omnidirectional electret condenser microphone which is placed in a plastic tube
connected to a standard Littmann chestpiece. The microphone has a signal-
to-noise ratio (SNR) of 62 dB and a flat frequency response over the range of
20-20000 Hz.

Figure 3.12: Panasonic WM-61A electret condensor microphone.
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3.1.5.2 Microphone Amplifier and Analog to Digital Converter

The signal from the WM-61A is transmitted to an amplifier circuit which
amplifies the signal with a bias voltage in the middle between the 3.3 V supply
voltage (VCC) and ground. The gain of the signal is limited by the rails of the
operational amplifier. Signals close to the supply voltage and ground result
in the operational amplifier being driven into saturation, thereby clipping the
recorded signal. The MCP6002 single supply, rail to rail operational amplifier
allows signals to reach the rail values without clipping, thus increasing the total
available voltage swing and possible signal amplification. The amplifier circuit,
as well as the component values, are seen in Figure 3.13 with the calculation
of the component values explained in Appendix C.

Figure 3.13: The microphone and amplifier circuit with corresponding component
values.

The signal from the amplifier is sent to the ADS1015 (Figure 3.14) which is a
low-power, 12-bit ADC and I2C module. The ADS1015 is interfaced with the
RPi using the clock signal (SCL) and the address signal (SDA) required by
the I2C protocol. The ADS1015 also requires a 3.3 V power and ground lines,
shared by the MCP6002 operational amplifier and WM-61A, that is provided
by the RPi.

Figure 3.14: Amplifier circuit connected to the ADS1015.
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3.2 Software
This section discusses the software development of the portable device. The
Graphical User Interface (GUI) was developed using the open-source software
Qt, which is a cross-platform application framework, built using the C++
programming language. The software is installed and compiled locally on the
memory card of the RPi. The Qt GUI facilitates the input from the user via
the touchscreen, the interfacing of the ECG and electronic stethoscope using
serial communication as well as the display and storage of recorded data.

3.2.1 Hand-held Prototype GUI

Upon starting the GUI, the user is greeted by the "Getting Started" screen
(Figure 3.15), which provides information pertaining to the operation of the
device as well as illustrations depicting the ECG lead and auscultation posi-
tions.

Figure 3.15: Graphical user interface start screen.

In the event that the "Patient Information" button at the bottom of the screen
is selected, a tab window will appear (Figure 3.16). The user is able to use the
touchscreen to select the appropriate text input and complete the information
using a touchscreen keyboard. Once the user has filled in the required infor-
mation and has clicked "Save" the device will save the patient information to
a text file locally on the memory card of the RPi.
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Figure 3.16: Graphical user interface patient information tab.

The user is able to press the "ECG" button at the bottom of the screen, which
will load the "ECG" tab window (Figure 3.17). Initially when the tab window
opens the graphs displaying the ECG lead data will be empty. Once the leads
are placed on the patient and the "Start" button is pressed, the ECG data will
begin to record and display on the various graphs. When the "Stop" button is
pressed the device will stop recording and the data will save to an additional
text file. The same procedure is followed to record, display and save data using
the electronic stethoscope (Figure 3.18).

Figure 3.17: Streaming ECG data for the various leads to the graphical user
interface.
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Figure 3.18: Streaming electronic stethoscope data to the graphical user interface.

3.2.2 Interfacing the ADAS1000

The RPi communicates with the ADAS1000 using the SPI interface bus by
virtue of the BCM2835 C-code library which simplifies the SPI communica-
tion protocol with the help of built-in functions. This is required to configure
the necessary register settings as well as read the recorded ECG data out-
putted, as frames, by the ADAS1000. The SPI protocol bus is explained in
detail in Appendix D.1.

In order to start receiving the frames from the ADAS1000, a sequence of write
commands has to be sent to initiate the device, set the register values and
trigger the streaming of ECG readings. Any write command will consist of
32 bits, in which the first bit is set to 1 to write or 0 to read, the following
7 bits indicates the address of the register in which you wish to communicate
with and the remaining 24 bits are the data bits. When writing to a register,
the data bits are used to configure the register to the relevant settings and are
unused in the event of reading values from a register. Once the registers are
initialised, the "FRAMES" register is written to, triggering the ADAS1000 to
repeatedly send frames containing ECG data to the Raspberry Pi.

Once the configuration of the ADAS1000 is complete, the RPi reads frames
by transmitting a read command to the header register. The RPi receives the
frames in a 32-bit format where the register value consists of the first byte,
with the remaining bytes consisting of data (Table D.1 in AppendixD.1.2).
This allows the user to distinguish between data from the various ECG leads
during sampling. Data is read continuously until an additional read or write
command is issued. The data ready (DRDY) pin indicates when a frame of
data is available to be read. When the pin is low the line is ready and data
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commands may be sent. The different addresses as well as the process flowchart
required to send and receive data, to and from the ADAS1000, are listed in
Table D.2 (AppendixD.1.2) and depicted in and Figure 3.19.

Figure 3.19: Flowchart indicating the process required to interface the RPi and
the ADAS1000, using the SPI protocol.

Sampled data is transferred from the ADAS1000 to the RPi with the most
significant bit (MSB) first. Therefore, the recorded data is bit-shifted before
conversion to the actual voltage (VECG) occurs, using the equation

VECG =
4× VReff × VRaw
VGain × (2RADC − 1)

(3.2)

where the raw voltage (VRaw) is the value sent from the ADAS1000, VReff is the
reference voltage range (1.3 V) of the ADAS1000, VGain is the programmable
amplifier gain (set to 1.3) and RADC is the resolution (24 bit) of the ADC.

3.2.3 Interfacing the ADS1015

The RPi interfaces with the ADS1015 using the I2C serial bus and the BCM2835
library. The function of the I2C bus is explained in greater detail in Ap-
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pendix D.2. The settings of the ADS1015 are initialised by writing to the
"CONFIG" register. The device was programmed to sample at 3600 samples
per second (SPS) with a programmable voltage range of 4.096 V. The values
required to programme the ADS1015 as well as the process flowchart used
to initialise and communicate with the ADS1015 is displayed in Table D.3
(Appendix D.2.2) and Figure 3.20.

Figure 3.20: Flowchart indicating the process required to interface the RPi and
the ADS1015, using the I2C serial protocol.

Sampled data is transferred from the ADS1015 to the RPi with the MSB
first. Therefore, the recorded data is bit-shifted before conversion to the actual
voltage (VSteth) occurs, using Equation 3.3:

VSteth = VRaw ×
VRange

2(RADC−1)
(3.3)

where the raw voltage (VRaw) is the value sent from the ADC, VRange is the
selected programmable voltage range (4.096 V) of the ADS1015 and RADC is
the resolution (12 bit) which is subtracted by 1 due to the signed bit.

3.2.4 Multi-threading

Multi-core processing allows applications to stack their processing requirement
across the central processing unit (CPU). Applications are able to multi-task
by running several different processes simultaneously. Occasions arise in which
parallelism is required within the process itself. This parallelism is achieved
by using threading. With the use of multiple cores, an application can as-
sign a different thread to each core, allowing the application to operate in
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a concurrent manner. With the use of a Qt application, the GUI is run on
the main thread (GUI thread) and a worker thread can be assigned to addi-
tional tasks. A single worker thread is initialised during the sampling of either
the ECG (Figure 3.21) or the electronic stethoscope. Compelling reasons to
use threading includes increased processing speed by using multiple cores, as
well the ability to maintain a responsive GUI thread by assigning long lasting
processing tasks to worker threads.

Figure 3.21: Flowchart indicating the communication between the main thread
(GUI thread) and the worker thread used in sampling ECG and electronic stetho-
scope data.

3.2.5 Saving Data

During a recording process using the portable device, three text (".txt") files
are saved. The first file contains the patient information, the second con-
tains the ECG data and the third file contains the electronic stethoscope data.
The text file contains data for leads I-III, V2 and V4. The augmented leads
(avR, avL and avF) are derived in a post-processing step using leads I-III and
Equations 2.4 - 2.6.
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Methodology

4.1 Retrospective Study
This section covers the database study in which online ECG records were used
to prepare and train the lead reconstruction and classification neural networks,
which are subsequently tested using data obtained from a clinical trial.

This study made use of Physiobank’s Pysikalisch-Technische Bundensanstalt
(PTB) diagnostic ECG database created by the National Metrology Institute
of Germany for research and academic purposes. The ECG data was recorded
from both healthy individuals and patients with cardiovascular disease at the
Department of Cardiology of the University Clinic Benjamin Franklin in Berlin
Germany. An ECG prototype recorder was used to take the recordings, with
a summary of the specifications listed in Table 4.1.

Table 4.1: The specifications of the ECG prototype device.

PTB ECG Prototype
Channels 16 channels (14 ECG, 1 respiration, 1 line voltage)
Input Voltage ± 16 mv with ± 300 mv compensated offset voltage
Input Resistance 100 Ω
Resolution 16 bit, 0.5 µV/LSB with 2000 A/D units per mV
Bandwidth 0 - 1 kHz synchronous sampling
Noise 10 µV (pp) max, 3 µV RMS with input short circuit

The PTB database consists of 549 recordings from 290 individuals between
the ages of 17 and 87 years, with a mean age of 57.2 years. Of the total 290
individuals recorded, 209 were male and 81 females with a mean age of 55.5
years and 61.6 years, respectively. Each recording consists of a standard 12
lead ECG as well as a Frank 3 lead vectorcardiogram (VCG). However, for this
study only the standard 12 lead ECG recordings were analysed (Goldberger
et al., 2000). Of the 290 subjects available in the PTB database, 22 contained
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unconfirmed ground truths and were subsequently excluded from the study.
The resulting population is seen in Table 4.2.

Table 4.2: The diagnostic class of the subjects in the PTB database including the
number of corresponding records.

Diagnostic Class Subjects Records
Myocardial Infarction 148 368
Cardiomyopathy 18 20
Bundle Branch Block 15 17
Dysrhythmia 14 16
Myocardial Hypertrophy 7 7
Valvular Heart Disease 6 6
Myocarditis 4 4
Miscellaneous 4 4
Healthy Controls 54 80
Total 268 522

4.2 Clinical Study
This section involves gathering additional data acquired during a clinical trial
in order to test the trained lead reconstruction and classification methods.

4.2.1 Sample Size Calculation

The sample size calculation is performed in order to determine whether the
population size is statistically significant when classifying patients as either
healthy or unhealthy. This is achieved by determining the population size re-
quired to produce a statistical power goal of 0.9 or greater. After consultation
with Prof. Nel at the Stellenbosch University Centre for Statistical Consul-
tation, the subject population size was determined using the McNemar’s, two
proportion, paired sample, sample size calculation. The null hypothesis and
the alternate hypothesis of the form,

H0 : δ = 0

H1 : δ 6= 0

where

δS = π1 − π2

in which π1 equates to the number of true positives in the first measurements
identified using by the gold standard medical equipment and π2 equates to
the number of true positives recorded in second measurement, identified using
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the prototype. The McNemar’s test requires the prediction of both δS as well
as the probability of discordance, denoted as η, which is often referred to as
the "nuisance parameter". The McNemar’s test was conducted for this study
using the software package "Statistica 13", using the parameters and their
corresponding selected values displayed in Table 4.3. The required sample size
versus the desired power curve is represented in Figure E.1 (Appendix E.1).
The required sample size with a corresponding power goal of 0.9 equates to 51
test subjects.

Table 4.3: McNemar’s test parameters and their corresponding values.

McNemar’s Test
Parameters Values
Delta (δS) 0.2000
Eta (η) 0.2500
Type 1 error rate alpha (α) 0.0500
Power Goal 0.9000
Actual Power for Required N 0.9022
Required Sample Size (N) 51

4.2.2 Precordial Lead Selection

Many possible combinations of the six different precordial leads are available
when performing lead reconstruction. The selected precordial leads are com-
bined with the limb leads to create the reduced lead set recorded by the pro-
totype device in the clinical study. Studies that made use of only a single
precordial lead made use of lead V2 as this resulted in the best performance
(Feild et al., 2002; Schreck and Fishberg, 2013). This was verified using data
from the PTB database by alternating the precordial leads used in the reduced
lead set, as the input to the FTDNN, and calculating the resulting RMSE and
Pearson r values (Appendix G.1, Table G.1 and G.2 ). Classification perfor-
mance supported the use of lead V2, producing the highest overall accuracy
and sensitivity of all the precordial leads (Table G.3 and Figure G.1). An ad-
ditional lead was included to improve the overall reconstruction performance
by ensuring that all the areas of the heart are represented by the input leads
(Table 2.1). Leads V3 and V4 produced the next best reconstruction results.
Although V3 produced better reconstruction overall, in comparison to V4, it
is the neighbouring lead of the already selected V2 lead, providing a similar
performance for leads within its vicinity. Lead V4 produced better lead re-
construction results for leads V5 and V6 due to its proximity. With regards
to practical ECG lead placement, a technician is required to first locate V4
before placing V3, therefore the selection of lead V3 would not take steps to-
wards simplifying the already complex lead placement process. With regards
to classification, V4 produced slightly lower overall performance in comparison
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with the remaining precordial leads. However, lead V4 produced the highest
specificity score, complementing the highest overall accuracy and sensitivity
achieved by V2.

4.2.3 Experimental Setup

During the clinical trial, ECG data was recorded using both the portable device
as well as the gold standard 12 lead ECG. The control device provided a means
for comparison between the reconstructed leads and the actual recorded leads.
The Norav PC-ECG, model 1200HR, was used as the control device during
the clinical study (Figure 4.1a). The PC-ECG is connected to the patient
using a 12 lead cable (Figure 4.1b) as well as to a laptop via a USB cable.
The device is powered through the USB port of the laptop. The ECG data is
sampled at 500 Hz and displayed and stored on the laptop (Figure 4.1c). The
portable device (Figure 4.2a) was connected to the patient using the six lead
wire system (Figure 4.2b). The device was operated using the touchscreen,
allowing the user to record the patient information and display the graphs for
the various ECG leads in real-time (Figure 4.2c). The recorded data was saved
locally on the Micro SD memory card of the RPi as text files. The device was
powered via the RPi micro-USB port using an external battery pack.

Figure 4.1: Gold standard 12 lead ECG control apparatus: (a) The Norav PC-ECG
connected to a laptop computer via USB cable. (b) The 12 lead ECG placement on
a test subject. (c) The laptop software displaying the 12 lead ECG recording.
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Figure 4.2: The developed prototype test apparatus: (a) The portable ECG and
electronic stethoscope prototype. (b) The reduced 6 lead wire placement on a test
subject lead ECG placement on a test subject. (c) The programmed GUI displaying
the recorded ECG leads.

4.2.4 Protocol

The study population included patients, 18 years and older, presenting to
Tygerberg Hospital’s Coronary Care Unit, Cardiac Outpatients Department
and F1 Medical Emergency Unit. These patients regularly undergo 12 lead
ECG tests before, and after, a clinical assessment. Therefore, the study does
not place additional strain on the workforce and patient flow within the hos-
pital. During each test session, ECG signals were recorded by both the gold
standard 12-Lead ECG device, used as the control, as well as the portable
reduced lead prototype device. The subjects were asked to lay down on an as-
sessment bed in a relaxed position until the recording procedure is complete.
This helps to prevent low frequency muscle potentials and motion artefacts
from degrading the quality of the recorded ECG signals. First the full 12 lead
ECG is recorded by the control device. A trained medical technician or medical
doctor placed the 10 disposable electrodes onto the subject in the relevant po-
sitions. The limb electrodes (LA, RA, RL and LL) are placed at the lower end
of the arms and legs, close to bone to avoid muscle potentials. Alternatively,
if access to the patient’s limbs are limited, the LA, RA and LL, RL electrodes
can be relocated to the shoulders and hips, respectively. The more complex
precordial lead placements are summarised in Table 4.4. The portable hand-
held prototype device records the ECG in the same manner as the previously
mentioned gold standard 12 lead ECG, with the exception being the number
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of precordial leads that are required. The device only required precordial leads
V2 and V4 as well as the remaining limb leads to be placed on the subject.
Once the ECG was recorded the adhesive electrodes were removed from the
subject.

Table 4.4: Detailed 12 lead ECG electrode placements.

Electrode Location
V1 Fourth intercostal space to the right of the sternum
V2 Fourth intercostal space to the left of the sternum
V3 Midway between electrode position V2 and V4
V4 Fifth intercostal space on the midclavicular line
V5 Anterior axillary line at the same level as V4
V6 Midaxillary line at the same level as V4 and V5

The ECG recordings were collected and delivered to a cardiologist for inter-
pretation. The cardiologist categorised the ECG recordings into three classes:
normal ECG, abnormal ECG and variations not necessarily indicating pathol-
ogy (VNIP). The normal and abnormal ECG records were included in testing
the classification algorithm, whereas the lead reconstruction included all three
classes. The VNIP subjects are excluded in the classification process as these
subjects fall within a spectrum of normal to abnormal ECGs, with additional
advanced tests required to confidently establish the subject’s ground truths,
which fall outside the scope of this clinical study. Each session with the test
subjects had a duration of approximately 10 minutes. In order to test medical
devices on human subjects, the study was required to adhere to the ethical
codes and practices designated by Health Research Ethics Committee (HREC)
in order to be granted ethical approval. The test procedure was explained to
each subject in which written consent was acquired. The analysis of the data
takes place after the recordings have been completed as part of a separate pro-
cess. All stored data was anonymised to protect the identity of the subjects
involved in the study. The ethics reference number for the study is 0579, with
proof of ethical clearance presented in Appendix E.2.

4.3 Signal Processing
Once the ECG signals were acquired using the database retrospective study as
well as the clinical trial, the signals underwent various processing stages before
lead reconstruction and classification could take place (Figure 4.3). Initially,
the available ECG records from both the PTB database and the clinical study
are filtered. The filtered signals are input directly into the lead reconstruc-
tion model, however, further processing including beat detection and feature
extraction is required to perform patient classification.
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Figure 4.3: Flowchart indicating the data processing procedure from the time the
data is collected until the results are collected.

4.3.1 Bandpass Filter

There are various sources of noise that are capable of corrupting ECG data.
The most common sources include low frequency muscular activity, motion
artefacts, baseline drift and 50 Hz electrical noise. In extreme cases, exposure
to noise may result in data being deemed illegible and ultimately discarded.
However, it is not always possible to record data in an environment without
the presence of noise. Filters are used to remove noise from frequencies outside
the ECG frequency bandwidth. Figure 4.4 indicates a fast Fourier transform
(FFT) of an ECG signal corrupted by various sources of noise represented in
the frequency domain.

Figure 4.4: Fast Fourier transform of an ECG lead corrupted by 50 Hz noise and
low frequency baseline drift, seen by spike at the zero frequency and 50 Hz frequency.
This is attributed to baseline drift and electrical mains noise, respectively.
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Examples of signals in the time domain, corrupted with baseline wander and
50 Hz mains noise, are compared with the equivalent bandpass filtered signals,
in Figure 4.5. When filtering ECG signals, a linear phase filter is recommended
in order to negate phase distortion that can affect temporal relationships in
the cardiac cycle. This is achieved by the use of a finite impulse response
(FIR) filter with coefficients symmetrical around the central coefficient. A
linear phase bandpass FIR filter with a bandwidth of 0.05 - 50 Hz was designed,
which corresponds to the cardiac monitoring ECG machines used at Tygerberg
Hospital. A lower corner frequency of 0.05 Hz is desirable in order to avoid
distortion of the ST region (Buendía-Fuentes et al., 2012). The filtered data
is directly utilised in the lead reconstruction model, whereas additional signal
processing steps is required to identify individual beats and extract features
required by the patient classification procedure.

Figure 4.5: Comparison between two ECG recordings affected by different sources
of noise, with the corresponding bandpass filtered equivalents: (a) ECG lead affected
by baseline drift with the corresponding bandpass filtered ECG signal (b). (c) ECG
lead affected by 50Hz mains noise with the corresponding bandpass filtered ECG
signal (d).

4.3.2 Beat and Peak Detection

A Wavelet based beat and peak detection method proposed by Martínez et al.
(2004), was used to identify successive beats within the ECG leads. These
beats were isolated in order to extract and generate temporal and morpholog-
ical features used in ECG classification.
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Wavelet analysis converts a continuous time signal into a time-scale repre-
sentation and is a popular method used in signal processing due to its multi
resolution approach. A scale can be interpreted as the inverse of frequency
where the signal’s high frequency information is represented by the low scales
and the low frequency information represented by the high scales. Different
frequency ranges can be assigned to each individual scale, which allows the
original signal to be analysed at a resolution that corresponds to a specific
scale. A wavelet transform, Wc s(b), is created by reducing the original signal
s(t) into a wavelet representation consisting of dilations, c, and translations, b,
of the prototype wavelet, ψ. Therefore, the wavelet transform of a continuous
time signal s(t) is:

Wc s(b) =
1√
c

∫ +∞

−∞
s(t)ψ

(t− b
c

)
dt, c > 0 (4.1)

The wavelet prototype used in this paper is the quadratic spline developed by
Mallat and Zhong (1992) and is a popular choice for ECG signals. The Fourier
transform of the quadratic spline is defined as:

Ψ(Ω) = jΩ

(
sin
(Ω

4

)
Ω

4

)4

(4.2)

where j indicates an imaginary number and Ω is the Fourier transform of
the sampling frequency ω. The method makes use of the discrete wavelet
transform (DWT) in which the wavelets are discretely sampled resulting in a
basis function:

ψk,l = 2−
k
2 ψ(2−kt− l); k, l ∈ Z+ (4.3)

The DWT calculates the coefficients of the wavelet transform on a dyadic
scale sequence, in which the coefficients are only calculated for scales of 2n,
where c = 2k and b = 2kl. Mallat and Zhong (1992) proved that an efficient
method to implement a DWT can be achieved by using an octave filter bank
represented by a cascade of identical low-pass and high-pass FIR filters. When
the signal passes through each stage of the filter bank it is separated into
low-frequency approximations and high frequency details. Subsequently, the
bandwidth is divided by a factor of two at every stage of the filter. This study
implementation of Mallat’s algorithm was used without decimation, seen in
Figure 4.6. The filters H(z) and G(z) are the respective low-pass filter and
high-pass filters, calculated as (Li et al., 1995; Akay, 1996):

H(ejω) = ejω/2
(

cos
ω

2

)3
, G(ejω) = 4jejω/2

(
sin

ω

2

)
(4.4)

and correspond to the selection of the quadratic spline wavelet prototype at
the sampling rate ω.
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Figure 4.6: Cascade filter bank representation.

The output of five scales of the Wavelet transform is illustrated in Figure
4.7a. The selection of the quadratic spline wavelet prototype results in the
zero crossing of the wavelet transforms corresponding to the local maxima or
minima of the input signal at various scales (Figure 4.7b). Once the beats
were detected using the wavelet QRS detection algorithm, the individual wave
peaks as well as the onset and offset of the waves were determined using the
same method. The algorithm is capable of identifying any possible normal or
abnormal QRS structure that corresponds to two or three waves (QRS, RSR’,
QS, RS, QR and R complexes). With regards to normal and abnormal P
and T waves, the algorithm is capable of identifying morphologies that include
positive, negative and biphasic waveforms. This process is described in greater
detail in Appendix F.1.

Figure 4.7: ECG wavelet transform (WT): (a) Colour-map of the WT over 5 scales.
(b) Five scale WT indicating maximum moduli lines (Rincón et al., 2011).

4.3.3 Feature Extraction

Diagnosing a patient’s cardiovascular condition using ECG records requires
analysing the waveforms plotted on the 12 lead printout. A normal heart beat
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has a sinus rhythm, with consecutive wave peaks or troughs labelled PQRST
(Figure 4.8). Natural variations of the PQRST waveform exist across the dif-
ferent ECG leads. Some peaks may be inverted or less prominent depending
on which lead is being monitored. During a cardiac cycle the duration of the
intervals indicate the heart’s rhythmic qualities with the amplitudes of the
peaks an indicator of the heart’s pumping strength. Deviations in the normal
pattern, timing and shape of the PQRST waveform, are identified by cardiol-
ogists when diagnosing cardiovascular disease.

Figure 4.8: Intervals, segments and fiducial points related to the PQRST ECG
waveform.

Features are required that accurately describe the heart’s current condition in
order to classify a patient as having normal or abnormal cardiac function. It
was decided to extract features from the ECG leads using both supervised and
unsupervised methods. The extracted features from each heartbeat, across
the 12 ECG leads, were stored in a feature vector. The feature vector was
subsequently fed into the deep pattern recognition neural network (DPRNN)
classifier used to determine if cardiovascular disease was present.

4.3.3.1 Supervised Feature Extraction

Features selected with a known, quantifiable response, are referred to as su-
pervised features. Focus was placed on features which cardiologists examine
manually during clinical examinations as well as features used in prior litera-
ture.
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First Order Features:

Once the beat and peak detection was completed, the various amplitudes,
intervals and segments of the cardiac cycle were recorded. Initial first order
features that were identified are summarised in Table 4.5.

Table 4.5: Extracted amplitude, interval and segment features.

Amplitudes Intervals Segments
P P QS
Q T
R QRS
S RR
T

Second Order Features:

Second order features are derived from the ECG leads using advanced meth-
ods. The information derived from these methods produce metrics that cannot
be directly identified by specialists in a clinical environment. This provides an
increase in available data used to describe ECG recordings, resulting in the
potential for improved diagnosis and treatment (Umar, 2002; Belle et al., 2013).

The second order features used in this study includes total energy, relative
energy and wavelet entropy. These methods are particularly interesting as
they produce features that are robust to noise and signal artefacts (Rosso
et al., 2001). The wavelet coefficients are calculated as:

Cw(k, l) =
N∑
n=1

s(n)ψk,l(n) (4.5)

where N indicates the length of the signal s(n). The wavelet coefficients
Cw(k, l) allow the calculation of the signal’s energy at each scale. The To-
tal Energy of an ECG lead is calculated as:

ETotal =
S∑
k=1

Pk∑
l=1

Cw(k, l)2 (4.6)

which is the summation of the signal’s energy over the selected scales, where S
and Pk are the selected wavelet decomposition scales (S=5) and the length of
the wavelet coefficient Cw(k, l), respectively. The relative energy corresponding
to the energy at scale k in relation to the total energy is calculated as:

Ek =

∑Pk

l=1C(k, l)2

ETotal
(4.7)
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This provides information on which scale contributes the highest proportion
of the previously calculated total energy. This is of particular interest as the
different portions of the PQRST wave are more prominent at different scales.
Using the generalised formula for Shannon’s entropy, the wavelet entropy,WE,
is determined as:

WE = −
N∑
k=1

Ek log(Ek) (4.8)

which provides valuable dynamic, time-frequency information pertaining to
how orderly or chaotic the original signal is. A low WE value close to zero
indicates a periodic, orderly signal, with limited relative energy contributions
made across the scales. In contrast, a chaotic, disorderly signal will have
contributions across the various scales, resulting in a highWE value (Ródenas
et al., 2015).

4.3.3.2 Unsupervised Feature Extraction

Supervised learning requires the user to manually identify input features pre-
sented to the classification method. The performance of supervised learning
techniques hinges on the quality of the features provided by the user. This pro-
cess in some cases is extremely tedious, time-consuming and labour intensive.
Furthermore, these features may not scale well to new problems. It would be
preferable to have algorithms that possess the ability to automatically learn
unique features from raw data in an unsupervised manner. This study utilised
a stacked denoising autoencoder (SDAE), which is one of many available meth-
ods to achieve automatic feature generation.

Stacked Denoiseing Autoencoder

A traditional autoencoder (AE) is a special instance of a generic ANN which
is trained to reproduce the provided input data, at the output of the net-
work. The process of training an AE is unsupervised, as raw unlabelled data
is used as the input. The training process focuses on the optimisation of a
cost function which measures the error between the input x and the recon-
structed output x̂. The AE consists of two parts, namely an encoder stage,
which maps the input to a reduced dimension across the hidden layers, and
a decoder stage, which maps the reduced dimensional representation back to
the original dimension, across the hidden layers. The middle layer, at the
bottleneck of the AE, produces the embedded code. The embedded code is a
lower dimensional feature representation of the input. With reference to the
ECG signal, individual beats are detected and then segmented to include the
PQRST waveforms.
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The segmented beats are down-sampled and then normalised:

xnorm =
x− µ
σ

(4.9)

where µ and σ are the signal mean and standard deviations, respectively. This
process reduces computational effort and decreases training time by reducing
the total number of samples and centring the data around the mean, with a
standard deviation of one.

When using AEs in feature extraction the goal is not to produce perfect re-
construction by learning a trivial mapping function from input to output, but
to rather learn interesting feature representations of the input. A novel ap-
proach implemented by Vincent et al. (2010), led to the creation of denoising
autoencoders designed to remove noise from partially corrupted input. Before
the segmented beat is presented to the autoencoder network, an initial step
injects the input signal with random noise. This study made use of masking
noise in which a percentage of the input values are forced to zero. The par-
tially corrupted signal is fed into the autoencoder network with the objective
of reconstructing the original, uncorrupted signal, at the output. Inital work
done by Vincent et al. (2010) indicates that optimal performance occurs when
20 % - 35 % of the original signal is corrupted, leading to a corruption level of
30% selected for this study. Individual hidden layers are trained in a greedy
layer-wise approach and then stacked together, creating the SDAE (Figure 4.9).

Figure 4.9: Stacked denoising autoencoder.

The use of SDAEs leads to the generation of features with a higher-level repre-
sentation that is robust to corrupted inputs. Additionally, by performing the
denoising task, useful features are extracted that are capable of describing the
input distribution. It is important to reiterate that the objective in this case is
not the action of removing noise from corrupted data but rather the extraction
of useful features that constitute a more robust, higher level representation that
is brought about by the use of a denoising autoencoder. These useful features
are extracted at the lower-level embedding produced by the bottleneck of the
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autoencoder, creating a lower dimensional feature vector representation of the
input. This lower level feature representation is referred to as the embedded
code and is used as unsupervised features in the classification process.

4.3.4 Feature Selection

The quality of the available features directly influences the classifier’s per-
formance. Poor quality, or irrelevant features, are capable of injecting noise
into the system which significantly reduces classification accuracy. Noise in a
dataset can result from errors made in the measurements of features, or due to
natural variation across samples, resulting in misclassification. More features
than samples also leads to the curse of dimensionality. This results in the
classification model overfitting and not able to generalise well to new data.

Initial features acquired using records obtained from the PTB database were
fed into a DPRNN classifier. The classifier using the original feature set
produced poor accuracy, sensitivity and specificity results during the initial
classification of normal and abnormal heartbeats. Further analysis of the fea-
tures followed using the t-distributed stochastic neighbour embedding (t-SNE)
method which is a data visualisation and dimensionality reduction technique.
It was determined that clusters of the lower dimensionality feature represen-
tation between the two classes could not be adequately separated. This led to
further investigation of the various individual features. It was discovered that
the interval onset and offset positions, identified using the wavelet QRS delin-
eation algorithm developed by Martínez et al. (2004), was not robust across all
the cardiovascular disease categories in the PTB database, and contained high
variance. This resulted in many cases in which the two classification classes
were indistinguishable, resulting in a low classification performance. Features
reliant on the accurate determination of the onset and offset positions are the
QRS, P and T interval features. These features were subsequently excluded
from the final feature set.

Additionally, the unsupervised features were optimised using the classifica-
tion performance in a bid to reduce the dimensionality of the embedded code,
while preserving sufficient signal information to provide accurate classifica-
tion. This led to the determination of the dimension of the down-sampled
beat segment used as the input to the autoencoder as well as the number of
hidden layers, and hidden neurons per hidden layer, in the autoencoder. The
initial beat segment consisted of 650 time steps which was down-sampled to
325 time steps, to reduce computational effort while preserving sufficient in-
formation from the original signal. The final autoencoder architecture consists
of 3 hidden layers with 100 neurons in the first, and third hidden layer, and
30 neurons in the second hidden layer. The number of neurons in the second
hidden layer corresponds to the dimension of the generated embedded code,
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which is the autoencoder’s lower dimensional feature representation of the seg-
mented heartbeat. This embedded code is the unsupervised features extracted
and used as classification features. Finally, the classification performance was
tested using only supervised or unsupervised feature sets, separately, where
the first and second order features made up the supervised feature set. The
combined performance using both the combined supervised and unsupervised
features was also tested. It was determined that using both the supervised and
unsupervised feature sets increases classification accuracy (Appendix G.2 Ta-
ble G.4). This resulted in the inclusion of both, supervised, and unsupervised
features in ECG classification throughout this study (Figure 4.10).

Figure 4.10: Diagram depicting the different features extracted from the ECG
leads, where the P, T and QRS interval features (seen in red) are excluded from the
final feature vector. The dimensions of the features are represented in brackets.

4.4 Statistical Analysis
The following performance metrics are used to illustrate the performance of
the lead reconstruction and patient classification methods used in this project.

4.4.1 Lead Reconstruction

The performance of lead reconstruction techniques are used to compare the
interpolated lead with the actual value of the lead. The metrics used to depict
the accuracy of these techniques include the root-mean-square error (RMSE),
calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷ − y)2 (4.10)
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in which N represents the number of samples, ŷ is the reconstructed lead
and y is the actual lead value. Low RMSE values are desirable and indicate
accurate lead reconstructions. An additional metric is the Pearson r correlation
coefficient represented as:

r =
N
∑
yŷ −

∑
y
∑
ŷ√

N
∑
y2 − (

∑
y)2
√
N
∑
ŷ2 − (

∑
ŷ)2

(4.11)

The Pearson r correlation is used to indicate the linear correlation between
two variables, where 1 is a complete linear correlation and 0 is no correlation.

4.4.2 Patient Classification

The classification of two classes is referred to as binary classification, in which
case the classifier outputs a range of [0, 1]. The output of a classifier can be
represented in a confusion matrix, seen in Figure 4.6.

Table 4.6: Confusion matrix for binary classification.

The confusion matrix represents the true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) values, used to calculate accuracy,
sensitivity and specificity:

Accuracy =
#TP + #TN

#TP + #FN + #TN + #FP
(4.12)

Sensitivity =
#TP

#TP + #FN
(4.13)

Specificity =
#TN

#TN + #FP
(4.14)

The classifier accuracy indicates the amount of correctly diagnosed normal
and abnormal patients out of the total population. The sensitivity refers to
the amount of correctly identified abnormal patients with respect to the total
amount of abnormal patients and is also referred to as the true positive rate
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(TPR). The specificity indicates the number of correctly identified normal pa-
tients with respect to the total amount of normal patients, also referred to as
the true negative rate (TNR). An additional metric to gauge the performance
of a classifier is the use of a receiver operating characteristic (ROC) curve and
the corresponding area under the curve (AUC) (Figure 4.11). The ROC curve
indicates the TPR vs False Positive Rate (FPR) relationship of the classi-
fier, and is calculated by varying the discrimination threshold of the classifier
(Mathworks, 2017). The AUC value indicates the area under the ROC curve
and is a measure of accuracy of the classifier with a range of [0, 1]. The perfect
classifier produces an ROC plot with a right angle at the top left corner with
coordinates (0, 1) and an AUC value corresponding to 1. A classifier that pro-
duces a completely random output results in diagonal line with coordinates
(1, 1) and the AUC of 0.50. Most classifiers will produce an ROC curve and
corresponding AUC values between these two possible extremes.

Figure 4.11: ROC curves with corresponding AUC values for three different exam-
ple classifiers.
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Machine Learning

5.1 Background
The current study makes use of artificial neural networks (ANNs), which were
initially introduced in 1943. In recent years there has been a resurgence in
the popularity of ANNs. This can be attributed to steep increases in compu-
tational performance and processing power, that has become readily available
and easily accessible (Jonathan et al., 2010). Artificial neural networks are an
artificial intelligence and machine learning technique that was conceptualised
from the knowledge of how the human biological neural networks function.
This technique is capable of identifying pertinent features from data and es-
tablish relationships which are translated to the output of the network. This
is achieved by instances of prior learning used to train the ANN. It is widely
believed that neural networks can offer a fresh approach to decode complex
problems found within nature (Yegnanarayana, 2009).

5.1.1 Biological Representation

Artificial neural networks were initially developed to model the functionality
of the biological neural network. The role of the biological neural network is
to provide a path of inter-connected neurons that sustains the flow of informa-
tion, in the form of electrochemical impulses, transmitted from the brain to
its target organ. Every biological neuron consists of branches of dendrites re-
sponsible for receiving the electrochemical impulses and a cell body containing
a nucleus that is connected to an axon. The axon contains terminals respon-
sible for transmitting any impulses to other neurons or organs (Figure 5.1).
A neuron is said to "fire" when the collective inputs at the dendrites exceed
the firing threshold, resulting in the transmission of the received signal from
the dendrites along the axon, to the axon terminal. The continuation of the
impulse from the axon terminal of one neuron to the dendrites of a proceed-
ing neuron occurs across junctions known as the synapses (Lewis, 2017). The
brain alone is estimated to consist of between 1010 - 1011 neurons and may
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receive stimuli from as many as 103 - 105 other neurons, resulting in a total
amount of synapses in the order of 1016 (Nunez and Srinivasan, 2006).

Figure 5.1: Labelled illustration of a biological neuron (SEER Training Modules,
2017).

5.1.2 The Model of a Single Neuron

Artificial neurons are a simplified model of the biological neurons found in the
body and are the elementary units used to build neural networks (Figure 5.2).

Figure 5.2: The model of a single artificial neuron (Pan, 2016).

The artificial neuron receives one or more input features (x1, ..., xn) that rep-
resent the dendrites. These input features are multiplied by weighting factors
(θ1, ..., θn) and the summation of these inputs are passed through an activation
function with the result equal to the hypothesis function hθ(x) (Pan, 2016).
The most common activation functions are the sigmoid activation function,

hθ(x) =
1

1 + e−θTX
(5.1)

and the hyperbolic tangent function,
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hθ(x) = tanh(x) =
eθ

TX − e−θTX

eθTX + e−θTX
(5.2)

where the input features are transformed to within the range of the particular
activation function. The only difference between the two mentioned activation
functions is the range of the output. The sigmoid function has a range of [0,1],
whereas the hyperbolic tangent function has a range of [-1,1], illustrated in
Figure 5.3. Input x0 is referred to as a bias unit. With the aid of θ0, the
bias unit is responsible for shifting the activation function either left and right
along the x-axis.

Figure 5.3: A graph representing the sigmoid and hyperbolic tangent activation
functions on the same axis (Sharma, 2017).

5.1.3 Neural Networks

The connection of one or more neurons where the output of the initial neu-
ron acts as the input to the proceeding neuron, across two or more layers,
constitutes a neural network (Figure 5.4).

Figure 5.4: Illustration of a multilayer neural network consisting of a single input
layer, hidden layer and output layer (Pan, 2016).
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The first layer of the neural network, containing the input features, is referred
to as the input layers where the last layer, which calculates the final value
(hypothesis), is referred to as the output layer. The one or more layers between
the input and output layer are referred to as the hidden layers. With reference
to Figure 5.4, the neural network consists of an input layer, a single hidden
layer containing three neurons and a bias unit each, as well as an output layer
with one neuron (Pan, 2016). The activation of the neurons in the hidden
layer are calculated as:

a
(2)
1 = g(Θ

(1)
10 x0 + Θ

(1)
11 x1 + Θ

(1)
12 x2 + Θ

(1)
13 x3) (5.3)

a
(2)
2 = g(Θ

(1)
20 x0 + Θ

(1)
21 x1 + Θ

(1)
22 x2 + Θ

(1)
23 x3) (5.4)

a
(2)
3 = g(Θ

(1)
30 x0 + Θ

(1)
31 x1 + Θ

(1)
32 x2 + Θ

(1)
33 x3) (5.5)

where g is the selected activation function, x0 to x3 is the input to the network
and Θ1 is the vector containing the weights that are multiplied with the indi-
vidual inputs across the various hidden neurons. The output of the network
is represented as:

hθ(x) = g(Θ
(2)
10 a0 + Θ

(2)
11 a1 + Θ

(2)
12 a2 + Θ

(2)
13 a3) (5.6)

in which hθ(x) is the hypotheses function and Θ2 maps the hidden layer ac-
tivations from the hidden layer to the output of the neural network (Pan,
2016).

5.1.4 Cost Function

The process of training an ANN can occur in either a supervised or unsuper-
vised manner. In the case of supervised learning, the target value is known
for each input. The ANN attempts to minimise the error between the cal-
culated output of the network and the known target value which is achieved
by minimising a selected cost function. The term cost function refers to any
function that derives a relationship between output of the network and the
target values. The cost function can be defined as

J =
N∑
i=1

Er(i) (5.7)

where N is defined as the number of samples and Er(i) is the selected error
function which receives the input and output value pair, x(i) and y(i), for each
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sample. Popular examples of the Er(i) error functions include the mean-square
error (MSE) function defined as,

Er(i) =
1

N

K∑
m=1

(hLθ (x(i))− y(i))2 (5.8)

and the cross-entropy function described as ,

Er(i) =
K∑
m=1

(y(i) ln(hLθ (x(i)) + (1− y(i)) ln(1− hLθ (x(i)))) (5.9)

where hLθ (x(i)) is the hypothesis function (or estimated output of the network)
for the final layer L of the network for a given true output and input pair, y(i)
and x(i), for the sample size, m (Theodoridis and Koutroumbas, 1999). In
the case of unsupervised learning no target values are available for training
purposes, therefore the weights and biases are updated with reference to the
inputs.

5.1.5 Backpropogation

The error between the true output and the output calculated by the neural
network is minimised by iteratively adjusting the weights and biases of each
neuron in each layer of the neural network. This process of refining the neuron
weights and bias values from the last output layer back to the first input layer
is referred to as the backpropogation algorithm. The process is repeated until
a specified tolerance, or convergence of the cost function, is achieved. The
backpropogation algorithm is explained in greater detail in Appendix F.2.

5.2 Patient Classification
Patient classification refers to the automated diagnosis of a patient’s current
cardiac condition using machine learning techniques. The study makes use
of a pattern recognition ANN architecture. Pattern recognition refers to the
process of training an ANN to correctly map a set of input patterns to target
classes. The network is trained to respond to an input feature vector that
closely resembles prior training data and ultimately predict the target class to
which the input corresponds. Once the network is successfully trained it may
be utilised to classify new, unseen patterns. This study makes use of a deep
pattern recognition network (DPRNN) (Figure 5.5), where a deep network
refers to any ANN with an architecture consisting of multiple hidden layers.

The extracted features (x1, .., xn) are the input to the network where the num-
ber of neurons in the input layer is dependant on the dimension of the feature
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vector. The number of neurons of the output layer is dependant on the num-
ber of classification classes. The classifier is tasked with determining if the
input feature vector contains information from a subject with either normal or
abnormal cardiac function. This is a traditional binary classification problem
with two output neurons.

Figure 5.5: Illustration of a deep classification neural network.

The hidden neurons make use of the sigmoid activation function (Equation 5.1),
whereas the output layer comprises of a softmax layer. The softmax layer maps
the net activation of the final output layer to probabilistic values in the range
[0 1], for each output neuron. These probabilistic values indicate the likelihood
of the input features representing either classification class, with the sum of
both values equal to 1.

The network neuron weights and bias values are updated during training using
the scaled conjugate gradient backpropagation algorithm (Møller, 1993). The
neuron weights and bias values are updated in proportion to the cost function
value calculated using the cross-entropy function (Equation 5.9). Training
terminates in the event that the validation performance converges, triggering
the early stop condition in order to avoid over-fitting.

5.3 Lead Reconstruction
Lead reconstruction focuses on the interpolation of absent ECG leads, from a
reduced lead set. This study focuses on using machine learning techniques such
as an ANN to perform lead reconstruction. Pertinent features and relation-
ships amongst the reduced ECG leads are translated to the network output.
This is achieved by instances of prior learning used to train the network.
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The selected ANN architecture used to perform the ECG lead reconstruction
is the focused time-delay neural network (FTDNN). The FTDNN forms part
of a general class of dynamic neural network’s known as focused networks
which are well suited for time series prediction. The FTDNN is a feed-forward
network containing tapped delay lines at the input, which results in the output
depending on the network’s current and past inputs. The task of reconstruction
is to formulate a non-linear function, f , that is capable of calculating values
for ŷ(t) from a reduced lead set of x(t). The model can be characterised as:

ŷ(t) = f(x(t), x(t− 1), ..., x(t− d)) (5.10)

where d is the system’s input tap delay (Beale et al., 2016). The layout of the
neural network can be seen in Figure 5.6.

Figure 5.6: Reconstruction of leads V1,V3,V4 and V6 using an ANN.

The network can be described as a feedforward network consisting of 3 hidden
layers. The number of neurons used in each of the three hidden layers is 30,
20 and 15. The tapped delay line d is utilised to store prior values of up
to two time steps for the input x(t) sequences. The activation function used
for the hidden layers is the tan-sigmoid transfer function. The output layer
activation function is the linear transfer function. The Levenberg-Marquardt
backprorogation algorithm was used to update the neuron weights and bias
values during training. Training concluded in the event that the validation
performance converged (Beale et al., 2016), thus preventing the model from
over-fitting to the training set. The reduced leads input consists of leads I-III,
avR, avL, avF and precordial leads V2 and V4. The reconstructed output
consists of the remaining precordial leads V1, V3, V5 and V6.
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Results

6.1 Retrospective Study
The retrospective study utilised the PTB online database which consisted of
522 records from 268 patients. The 268 subjects followed an exclusion pro-
cess whereby individuals with multiple recordings taken on the same day, or
following any medical procedure, for example catheterisation, were excluded.
This resulted in a total of 247 subjects with 358 records included in the study.

6.1.1 Beat Classification

Each ECG record was segmented into different beats across the multiple ECG
leads from which the relevant features were extracted. The selected features
from multiple beats were grouped according to patients to ensure no data
leaked across the training, validation and test sets. A stratified k-fold cross-
validation method was implemented in which the features extracted from the
patients were divided across the selected "k" number of folds. Stratification
ensured that each fold resembled the total available data by dividing the total
data proportionally between the normal and abnormal classification classes,
across all the folds. The current study made use of 7 folds consisting of 5
training folds, 1 validation and 1 test fold. The model was trained until the
validation performance converged without further improvement at which point
the results were recorded for that specific test fold. This process was repeated
7 times, whereby all the folds were rotated to ensure the test fold contained
different patients every repetition. Cross-validation prevents over optimistic
classification performance and ensures that the resulting classifier accurately
represents a population and would potentially generalise well to new data.

The feature set was fed into the deep pattern recognition classification model
which was tested using different combinations of leads, resulting in different
input neurons, and hidden layer sizes depending on the number of leads se-
lected (Table H.1 in Appendix H.1). Table 6.1 summarises the performance
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of the classification models with different lead combinations ranging from the
best single lead, to the maximum 12 lead ECG classifier. The performance is
measured by taking the mean results of the classifier for accuracy, sensitivity,
specificity and AUC, across all 7 folds. The classifier model corresponding to
the 12 lead ECG produced the highest accuracy, sensitivity, specificity and
AUC values corresponding to 0.90, 0.91, 0.87 and 0.94, respectively. The box-
and-whisker diagram and a ROC plot for the full 12 lead ECG classifier are
illustrated in Figure 6.1a and Figure 6.1b, respectively.

Table 6.1: Retrospective study mean classification performance across the 7 folds
for various ECG lead combinations.

Performance Metrics

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC

Single Lead II 85 87 79 0.90
All Limb Leads 86 86 86 0.92
All Limb Leads + V2 87 88 85 0.93
All Limb Leads + V2,V4 87 88 88 0.93
Full 12 Lead ECG 90 91 87 0.94

Figure 6.1: Classification performance for the full 12 lead ECG model in the retro-
spective study: (a) A box-and-whisker diagram illustrating the accuracy, sensitivity
and specificity distribution of the classifier across the 7 folds. (b) The ROC curve
for the classifier across the 7 folds as well as the resulting mean ROC curve with
corresponding AUC values.
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The results of all individual single lead classifiers (of which lead II produced
the highest performance) is represented in Appendix H, Table H.3, with the
corresponding box-and-whisker distribution and ROC curve plotted in Figure
H.3 and H.4, respectively. The results of the all limb lead classifier as well
as the limb lead classifier with various combinations of precordial leads are
represented in Figures H.5 and H.6 as well as Table G.3 and Figure G.1, in
AppendixG.1.

6.1.2 Lead Reconstruction

The 12 lead ECG records were used to train, validate and test the FTDNN
lead reconstruction model, using a 3-Fold cross validation method. The limb
leads (I, II and III), augmented leads (avR, avL and avF) as well as two pre-
cordial leads V2 and V4 were input into the network, which reconstructed
the remaining precordial leads (V1, V3, V5 and V6). The mean and stan-
dard deviations of the RMSE values of the different disease subgroups across
the various derived ECG leads are displayed in Table 6.2. The mean RMSE
values and corresponding 95% confidence interval (CI) for the reconstructed
leads are illustrated in Figure 6.2. The distribution of the lead reconstruction
RMSE results is represented as a box-and-whisker diagram in Appendix H.1,
Figure H.1.

Table 6.2: Retrospective study mean RMSE (µV) for the reconstructed precordial
leads.

Reconstructed Leads (µV)

Classification V1 V3 V5 V6

Normal 85 ± 27 97 ± 82 100 ± 51 101 ± 48
Abnormal 123 ± 81 102 ± 71 134 ± 106 117 ± 97

Bundle Branch Block 168 ± 70 120 ± 55 170 ± 66 149 ± 58
Cardiomyopathy 185 ± 99 174 ± 133 349 ± 277 182 ± 93
Dysrhythmia 69 ± 6 87 ± 65 196 ± 98 174 ± 69
Myocarditis 47 ± 1 88 ± 9 160 ± 1 67 ± 3
Myocardial Hypertrophy 63 ± 5 75 ± 7 127 ± 48 106 ± 49
Myocardial Infarction 120 ± 79 97 ± 64 114 ±64 111 ± 98
Valvular Heart Disease 57 ± 8 48 ± 11 144 ± 27 98 ± 10

All Cases 118 ± 78 101 ± 72 128 ± 101 115 ± 92
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Figure 6.2: Retrospective study lead reconstruction RMSE mean values and cor-
responding 95% CI.

The average Pearson r correlation values are summarised in Table 6.3. The
leads used as inputs to the FTDNN were omitted as they are used to derive
the remaining leads and therefore exhibit a RMSE value of zero and perfect
correlation (r = 1.00). The results across the reconstructed leads for all classes
indicate RMSE values of between 101 and 128 µV and correlation values rang-
ing from 0.87 to 0.98. All correlation values were statistically significant at
p « 0.01, calculated using a 95% CI.

Table 6.3: Retrospective study mean Pearson r correlation values for the recon-
structed precordial leads.

Reconstructed Leads (r)

Classification V1 V3 V5 V6

Normal 0.90 0.97 0.94 0.96
Abnormal 0.91 0.98 0.90 0.85

Bundle Branch Block 0.80 0.98 0.94 0.92
Cardiomyopathy 0.94 0.98 0.81 0.85
Dysrhythmia 0.96 0.95 0.78 0.96
Myocarditis 0.98 0.99 0.96 0.98
Myocardial Hypertrophy 0.97 0.99 0.97 0.95
Myocardial Infarction 0.91 0.98 0.90 0.84
Valvular Heart Disease 0.97 0.99 0.86 0.94

All Cases 0.91 0.98 0.90 0.87
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6.2 Clinical Study
The clinical study recorded 70 patients at Tygerberg Hospital. After exam-
ination of the recordings it was discovered that 3 records contained missing
information and one recording was corrupted by motion artefacts, and were
ultimately excluded. The remaining 66 subjects included 23 normal, 35 ab-
normal and 8 VNIP recordings, of which 29 were male and 37 female, with a
mean age of 54 years old.

6.2.1 Patient Classification

The patient classification for the clinical study consists of features extracted
from 58 patients, corresponding to the normal and abnormal classification
classes recorded using the prototype device. Each record consisted of 10
seconds of data, segmented into different beats whereby the extracted fea-
tures were fed into the classification models previously trained using the PTB
database records. In order to classify the patient as having abnormal or nor-
mal cardiac function, the classifier probability values produced by the last two
neurons in the output layer are averaged across each patient’s segmented heart-
beats. An example of this procedure is illustrated in Appendix H.1, Table H.2.
The perfect classification of abnormal cardiac function produces a probabil-
ity of [1, 0] with a probability of [0, 1] indicating a perfect classification of a
subject with normal cardiac function. The classification results for the best
performing lead combinations using data obtained from the clinical study is
summarised in Table 6.4.

Table 6.4: Clinical study classification performance for various ECG lead combi-
nations.

Classification Performance

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC

Single Lead I 81 77 87 0.82
All Limb Leads 81 83 78 0.82
All Limb Leads + V2 81 83 78 0.82
All Limb Leads + V4 85 83 87 0.85
All Limb Leads + V2,V4 85 83 87 0.85

The classification performance of the models using precordial lead V4 and the
model using both precordial leads V2 and V4 produced the highest scores for
accuracy, sensitivity, specificity and AUC corresponding to 0.85, 0.83, 0.87
and 0.85, respectively. The confusion matrix and ROC plot are illustrated
in Table 6.5 and Figure 6.3, respectively. From the confusion matrix it is
possible to see that the classifier misdiagnosed 6 abnormal patients, from a
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total of 35, as having normal cardiac function leading to a sensitivity of 83%.
Additionally, 3 abnormal patients were misdiagnosed as having normal cardiac
function, leading to a specificity of 87%. The classifier correctly diagnosed 29
abnormal patients and 20 normal patients, resulting in a total classification
accuracy of 85%.

Table 6.5: Clinical study classifier confusion matrix using the full lead set of the
prototype device.

Figure 6.3: Clinical study ROC curve using the full lead set of the prototype device.

6.2.2 Lead Reconstruction

Initially, the FTDNN was trained using records solely obtained from the PTB
database and subsequently tested using the 68 subjects from the normal, ab-
normal and VNIP classes, acquired during the clinical trial using the control
device. However, the lead reconstruction model produced weak performance
with high RMSE values and low Pearson r correlation values. The FTDNN was
retrained using a 3-Fold cross validation approach, where data from the clinical
study was rotated between the training, validation and test folds and data from
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the PTB database was appended to the training fold. The mean and standard
deviations of the RMSE values of the different disease subgroups across the
various derived ECG leads are displayed in Table 6.6. The mean RMSE values
and corresponding 95% CI is illustrated in Figure 6.4. The distribution of the
lead reconstruction RMSE results is represented as a box-and-whisker diagram
in Appendix H.2, Figure H.2.

Table 6.6: Clinical study mean RMSE (µV) for the reconstructed precordial leads.

Reconstructed Leads (µV)

Classification V1 V3 V5 V6

Normal 158 ± 94 196 ± 108 161 ± 58 149 ± 45
Abnormal 207 ± 186 321 ± 263 233 ± 250 200 ± 141
VNIP 120 ± 64 197 ± 91 115 ± 18 108 ± 21
All Cases 181 ± 152 266 ± 215 197 ± 216 192 ± 112

Figure 6.4: Clinical study lead reconstruction RMSE mean values and correspond-
ing 95% CI.

The average Pearson r correlation values are summarised in Table 6.7. The
leads used as inputs to the FTDNN were omitted as they are used to derive
the remaining leads and therefore exhibit a RMSE value of zero and perfect
correlation (r = 1.00). The results across the reconstructed leads for all classes
indicate RMSE values of between 181 and 266 µV, and correlation values
ranging from 0.91 to 0.95. All correlation values were statistically significant
at p « 0.01, calculated using a 95% CI.
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Table 6.7: Clinical study mean Pearson r correlation values for the reconstructed
precordial leads.

Reconstructed Leads (r)

Classification V1 V3 V5 V6

Normal 0.95 0.93 0.95 0.94
Abnormal 0.94 0.90 0.94 0.92
VNIP 0.93 0.88 0.97 0.96
All Cases 0.94 0.91 0.95 0.93

6.2.3 Electronic Stethoscope

In addition to the reduced lead ECG, the electronic stethoscope was tested
to provide additional information not required in the automatic diagnostic
process. An example of a recording from a healthy test subject taken using
the electronic stethoscope is illustrated in Figure 6.5, with the S1 and S2 heart
sounds seen clearly. The recorded data was post-processed using a digital
bandpass filter with corner frequencies at 25 Hz and 700 Hz.

Figure 6.5: Recorded phonocardiogram using the electronic stethoscope prototype
with labelled heart sounds S1 and S2.
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Discussion

7.1 Cost Analysis
The available hardware was researched and selected such as to reduce the total
production cost of the device. Table B.2 (Appendix B.2) lists all the hardware
required to develop the device with the corresponding purchase prices. The
total price of the current device came to R6059 and is compared with similar
devices in Table 7.1 using the dollar denomination.

Table 7.1: Cost comparison of various CVD diagnostic devices (Botha, 2010).

Device Description Price†

Littmann 3200 Electronic Stethoscope $400
Contec CMS9000 3/5 Lead ECG $700
GE MAC 1200 12 Lead ECG $1190
Philips Zymed Holter Monitor $400
Eko Duo* Hybrid: 1 lead ECG and Electronic Stethoscope $349
CardioSleeve* Hybrid: 3 lead ECG and Electronic Stethscope $600
Current Device 8 Lead ECG and Electronic Stethoscope $446
† $1 = R13.59 at the current exchange rate (05-10-2017)
* Requires a smart phone for operation

The current device costs significantly less than both a gold standard 12 lead
ECG and a reduced 3/5 lead ECG, but is slightly more expensive than an
electronic stethoscope. The price is comparable with similar hybrid ECG and
electronic stethoscope devices such as the Eko Duo and CardioSleeve. How-
ever, it should be noted that these devices require a smartphone to operate
and the CardioSleeve does not come with a stethoscope attachment which
would ultimately increase the total cost in excess of the current device. This
option of implementing the device using a smartphone was not a possibility for
the current project as it cannot be expected for primary care givers in rural
locations to have access to the latest smartphones. This lead to the imple-
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mentation of the LCD touchscreen. Bulk purchases of components and parts
as well as a possible in-house design of a stethoscope chestpiece, rather than
purchasing an already existing stethoscope, are potential methods to reduce
the total price of the device. Additional factors that would raise the selling
price of the developed device would include labour and shipping costs as well
as a selected profit margin.

7.2 Safety Analysis
Various methods have been used to ensure the device is developed safely with-
out compromising on recording accuracy, device performance and total cost.
The device makes use of ESD protection by virtue of a diode array provided
by the SP720 component. This ensures that voltage spikes across the ECG
lead wires due to misuse of the device or in the case of defibrillation purposes,
will not damage the electronics of the device. Electrical isolation is provided
by the ADUM6403 and ADUM4400 in the event that the RPi is connected to
peripheral devices powered through the electrical mains. An insulation barrier
provides the clearance required for protection against creepage current that
may occur across the PCB. The safety standards adhered to by the current
device, as well as the components responsible for ensuring those standards
were met, are summarised in Table B.1 (Appendix B.1.2).

7.3 Patient Classification

7.3.1 Retrospective Study

The performance of the retrospective study is compared to prior studies con-
ducted in the field (Table 7.2) that focuses on multi-lead beat classification
methods that utilised the PTB database. The current study produced a clas-
sifier performance similar to that of Tripathy et al. (2014) and comparable
with that of Yan et al. (2010) and Arif et al. (2012). The prior studies exhibit
strengths in that they are able to classify abnormal subjects into specific car-
diovascular disease categories, with high accuracies. However, all three prior
studies discard various disease classes and only include a small percentage of
the total available beats of the included diseases. This could potentially lead
to falsely high classification performances, with classifcation models untested
against the full database. Tripathy et al. (2014) and Yan et al. (2010) make
use of hold-out validation methods in which beats are randomly assigned to
the training and test data sets. This leads to the potential for the overlap of
patient data expressed in both the training and testing validation set resulting
in a classification model that produces a classification performance that is over
optimistic. The use of k-fold cross-validation perfomed in the current study as
well as by Tripathy et al. (2014), ensures decreased bias and variance.
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Table 7.2: Comparison of beat classification performance for studies done using
the PTB database.

Authors Features Validation
Method

Classifier
Type

Performance
Measures

Tripathy
et al. (2014)a

Unsupervised
Second Order

5-fold
cross-validation

LS-SVM Acc. = 90

Yan et al.
(2010)b

Second Order Hold-out:
75% training
25% test

SVM Sens. = 96%
Spec. = 99%

Arif et al.
(2012)c

First Order Hold-out:
50% training
50% test

KNN Acc. = 99.9%
Sens. = 99.9%
Spec. = 99.9%

Present
Workd

First Order
Second Order
Unsupervised

7-fold stratified
cross-validation

ANN Acc. = 90%
Sens. = 91%
Spec. = 87%
AUC = 0.94

a Classification classes: HC, CM, MI, HT, DR.
b Classification classes: HC, CM, MI, HT, BBB, VHD
c Classification classes: HC, MI
d Classification classes: Normal (HC), Abnormal (CM, MI, HT, DR, BBB, VHD,
HF, MC)

7.3.2 Clinical Study

Analysis of the results represented in Table 6.4 indicates the clinical study per-
formance, for the different lead subsets, gradually increases as leads are added
as inputs to the classifier. This trend was also observed in the retrospective
study and is to be expected, as more available information should yield an
equal or improved classification performance. Using the maximum available
ECG leads of the prototype for classification produced high accuracy, sensi-
tivity and specificity percentages. The 0.85 AUC indicates a great classifier
capable of distinguishing between normal and abnormal patients.

The clinical study classifier incorrectly classified 6 patients with heart abnor-
malities as having normal cardiac function. The diseases belonging to the 6
misclassified abnormal patients are listed in Table I.1 (Appendix I). Of the
6 total misclassified subjects, only 1 subject exhibited pathology included in
the training set from the PTB database. The lack of available training data
could result in the incorrect classification due to the classifier not being sen-
sitive enough with respect to the features exhibited by the specific pathology.
Although the misdiagnosed patients with Bradycardia and Tachycardia did
not form part of the training data, the classifier was robust enough to cor-
rectly classify 7 additional cases of Bradycardia and 3 cases of Tachycardia, as
having abnormal cardiac function. One of the incorrectly diagnosed abnormal
patients was declared to exhibit borderline left atrial enlargement, indicating
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uncertainty in the subject’s ground truth which could also have potentially
lead to the incorrect classification.

The performance of the patient classification model used in the clinical study
is compared with prior studies done in the field. Literature compared in the
study (Table 7.3) focused on multi-lead patient classification methods that
utilised data acquired from a clinical study or PTB database. Huang and
Zhou (2015) classified normal and abnormal cardiac function, whereas Sun
et al. (2012) distinguished between normal cardiac function and MI, using the
PTB database. Haraldsson et al. (2004) classified normal and MI subjects
in a clinical study. The current study used data from the PTB database to
train a classifier that was tested using a clinical study to distinguish between
normal and abnormal patients. Therefore, the hold-out validation method is
used to determine the performance of only the clinical data, as opposed to
the previously used cross-validation method in the retrospective study. This
is acceptable due to the large amount of available data gathered by including
additional records from the clinical trial. The current study produces a clas-
sification performance that is comparable to the prior studies performed by
Huang and Zhou (2015), Sun et al. (2012) and Haraldsson et al. (2004).

Table 7.3: Comparison of patient classification performance for studies done
using the PTB database and clinical studies.

Authors Features Validation
Method

Classifier
Type

Performance
Measures

Huang and
Zhou (2015)a

First Order Hold-out:
50%Training
50%Test

S-DA Acc. = 89%
Sens. = 90%
Spec. = 85%

Sun et al.
(2012)b

First Order 10-fold
cross-validation

LTMIL Sens. = 92%
Spec. = 88%

Haraldsson
et al. (2004)c

First Order
Second Order

Hold-out:
67%Training
33%Test

ANN AUC = 0.83

Present
Workd

First Order
Second Order
Unsupervised

Hold-out:
55%Training
22%Validation

23%Test

ANN Acc. = 85%
Sens. = 83%
Spec. = 87%
AUC = 0.85

a Classification classes: Normal, Abnormal
b Classification classes: HC, MI
c Classification classes: HC, MI
d Classification classes: Normal, Abnormal

A comparison between prior research projects performed within the research
group is presented in Table 7.4, where the "auscultation jacket" (Visagie, 2007)
and the PCG device (Botha, 2010) diagnosed CVD using heartsounds. The
current device compares favourably with the results obtained in previous stud-
ies which performed clinical trails.
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Table 7.4: Classification performance in comparison with past CVD diagnostic
devices (Botha, 2010).

Diagnostic Device Accuracy Sensitivity Specificity
Auscultation Jacket 85% 76% 90%

PCG Device 86% 82% 88%
Current Device 85% 83% 87%

7.4 Lead Reconstruction
The current lead reconstruction retrospective and clinical study is the first
study to make use of an ANN, more specifically a FTDNN, to reconstruct
missing leads. The retrospective study resulted in the reconstruction of the
full 12 lead ECG with mean Pearson r correlations between 0.87 and 0.98, and
a mean RMSE range of between 101 and 128 µV. The clinical study presented
an increase in mean RMSE with values between 181 and 266 µV, although
maintained an excellent Pearson r correlations of between 0.91 and 0.95. All
leads were statistically significant at p « 0.01, with a CI of 95%. The mean
performance of RMSE and Pearson r correlation values of the retrospective
and clinical study are compared to prior literature in Table 7.5.

Table 7.5: Lead reconstruction performance in comparison with prior studies.

Authors Method RMSE (µV) Correlation
Schreck and Fishberg

(2013)
NLO Universal

Transform
40 - 95 0.71 - 0.90†

Nelwan et al. (2008) EASI Lead
Transform

75 - 140 -

Drew et al. (2004) Mason-Likar (ML)
Transform

90 - 169 -

Tsouri and Ostertag
(2014)

ICA Patient
Specific Transform

- 93% - 96%*

Present Work:
Retrospective Study

FTDNN 101 - 128 0.87 - 0.98†

Present Work:
Clinical Study

FTDNN 181 - 266 0.91 - 0.95†

† Pearson r correlation
* Percentage correlation

A comparison of the RMSE for the various studies is seen in Figure 7.1 which
was adapted from Schreck and Fishberg (2013). The distributions of various
ECGs measures are often skewed, multi-modal, or heavy-tailed. It is therefore
preferred to compare the distributions as quartiles, which outperform the sam-
ple mean and standard deviation (Huang and Zhou, 2015). The slight increase
in RMSE with maintained high performance of correlation in the clinical study,
indicates that the results of the clinical study proved to have great morpholog-
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ical shape but was not able to reach the same peak magnitudes as the original
waves, resulting in an increase in RMSE. This decrease in RMSE performance
obtained in the clinical trial could be attributed to various factors. The use of
both data obtained from the PTB online database, as well as data recorded in
the clinical study, to train the reconstruction model introduces the potential
for variability. This could be due to the differences in the 12 lead devices used
to take the recordings, as well as the different professionals who placed the
leads. A potential solution would be to record a larger training population
using a single control device placed by the same professional, to ensure consis-
tency. This would reduce variability of lead placement between professionals
and devices, ultimately improving the trained lead reconstruction model and
RMSE.

Figure 7.1: Illustration of the central tendency of the various lead reconstruc-
tion methods. The NLO and ML methods are represented using the mean RMSE
bounded by standard deviation, whereas the EASI method, FTDNN retrospective
study (FTDNN-RS) and FTDNN clinical study (FTDNN-CS) are represented using
the median and quartile values.

The non-linear optimisation (NLO) method, produced by Schreck and Fish-
berg (2013), made use of the PTB database as well as one additional database.
The current study made use of the same input leads, with the addition of
V4. The NLO correlation values for leads V1, V3-V6 for all cases was 0.71 -
0.90, which exhibits slightly weaker correlation in comparison with the current
study. However, the RMSE values of the NLO method were lower and com-
pared favourably to that of the EASI leads, Mason Likar (ML) and the current
study FTDNN reconstruction methods, on the same set of axes seen in Fig-
ure 7.1.
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The EASI lead study performed by Nelwan et al. (2008) made use of non-
standard lead placements based on the Frank leads to derive all 12 lead ECG.
The FTDNN method performed better with respect to correlation results with
slightly less favourable RMSE values. However, the EASI study consisted of
only 44 male subjects all of which required a percutaneous coronary interven-
tion (PCI) procedure. This limited the range of tested cardiovascular disease
to men with acute coronary syndromes. The clinical value of vectorcardiogra-
phy and the Frank lead system was an alternative lead placement system to
the current traditional 12 lead ECG, however, since its inception 50 years ago,
the method has become obsolete. This is due to the lack of existing education
on the technology, placement and equipment. In contrast, the current study
as well as Schreck and Fishberg (2013) made use of conventional 12-lead ECG
placements.

Drew et al. (2004) performed the ML study which also made use of unconven-
tional lead placements for two leads located in the vicinity of the traditional
lead V3 and V4. The FTDNN retrospective study produced lower RMSE and
higher correlation values with the FTDNN clinical study performing similar to
the ML method with slightly higher central tenancy RMSE values and greater
variance across the leads. The ML validation study reconstructed leads for
pre-hospital ST segment monitoring, limiting the focus of the study to cardiac
rhythm, prior infarction, ST/T wave changes and acute myocardial ischemia.

Tsouri and Ostertag (2014) made use of the same PTB database and exhib-
ited high correlation between the reconstructed leads and the actual leads.
The current FTDNN study displays the Pearson r correlation values which
are closely related to the percentage correlation. In terms of correlation it can
be deduced that the current study compares less favourably to that of Tsouri
and Ostertag (2014). However, it is important to note that the FTDNN does
not require past values of all the 12-leads for each patient, where Tsouri and
Ostertag (2014) requires a calibration period in which data from all the leads
are required, for a specific patient, before missing leads may be reconstructed.
This would not be appropriate in situations in which only reduced lead ECGs
are available. Specialists trained in placing the full 12 lead ECG would also
be required to place the initial leads before they are removed, which is not
desirable.
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Conclusion

8.1 Overview
This project aimed to achieve the research and development of a low-cost
portable device capable of screening patients with potential cardiovascular
disease in rural areas. The prototype device consisted of a six lead wire ECG
and electronic stethoscope, operated using a LCD touchscreen. The ECG
recorded the limb leads, augmented leads, and precordial leads V2 and V4 us-
ing the ADAS1000 ECG front-end. An electronic stethoscope recorded signals
by virtue of the Panasonic WM-61A electret condenser microphone placed in
close proximity to a standard stethoscope chestpiece. The signals were am-
plified using operational amplifier circuit and transmitted to the Raspberry
Pi from the ADS1015. Ethical clearance was acquired to conduct the clinical
study which took place at the Cardiology Department at Tygerberg Hospital.
The test population included 66 subjects, 23 normal, 35 abnormal and 8 VNIP.
The current cardiac condition of subjects was verified by a cardiologist using
a 12 lead ECG recording, before being placed into the respective diagnostic
class. Recordings were taken using both the developed hand-held device, as
well as a full 12 lead control device. The machine learning classification and
lead reconstruction algorithms were trained using ECG records obtained from
the PTB online database and tested using data from the clinical trial. The
recorded ECG signals were filtered and passed through a beat detection algo-
rithm to extract first order, second order as well as unsupervised features from
a SDAE. The feature set was classified using a DPRNN. The retrospective
study produced a 12 lead ECG classification accuracy, sensitivity, specificity
and AUC of 90%, 91%, 87% and 0.94, respectively. The clinical trial made use
of all available six lead wires during the classification process and produced
an accuracy, sensitivity, specificity and AUC of 85%, 83%, 87% and 0.85, re-
spectively. The lead reconstruction was achieved using a FTDNN. Filtered
signals were passed directly into the lead FTDNN in which leads V1,V3,V5
and V6 were reconstructed. The retrospective study produced a mean RMSE
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range of between 101 and 128 µV and mean Pearson r correlation of 0.87 to
0.98. The clinical study produced a slightly higher mean RMSE of between
181 and 266 µV, and a mean Pearson r correlation of between 0.91 and 0.95.
All reconstructed leads for both studies were statistically significant (p « 0.01)
at a CI of 95%.

8.2 Objectives
The project objectives are summarised in Table 8.1. The only objective par-
tially achieved was objective number three, due to the manufacturing cost of
the developed portable device being slightly more expensive than the Echo
Duo. However, it should be noted that the Echo Duo would require the use of
a smartphone in order to operate, which would significantly increase the price
in excess of the developed device. Bulk purchases of components and parts
would further reduce the total price of the device, however, additional costs
would include labour and shipment costs, as well as a selected profit margin.

Table 8.1: Objectives summary.

Objective Status Description
1. Develop a prototype that can
record the heart’s electrical
signals and heart sounds.

Completed The developed device accurately recorded the heart’s
electrical activity using a 6 lead-wire system as well
as heart sounds using a stethoscope embedded with
an electret condensor microphone.

2. The device should be
portable and able to be used in
rural locations.

Completed The developed device is compact, battery powered
and operated using a touch screen without the need
for external peripherals.

3. The cost of the device should
be cheaper than currently
existing technology.

Partially
Completed

The device total cost is significantly cheaper than
ECG machines used at Tygerberg Hospital and the
Cardio-Sleeve, but more expensive than the Echo
Duo, at the current exchange rate.

4. Recorded signals should be
plotted graphically and stored
locally on the device.

Completed Signals were stored locally on a Micro SD card and
plotted in real-time on the LCD touchscreen.

5. The device should contain
wireless data sharing
capabilities.

Completed The device is capable of sharing data using either
Bluetooth or Wifi.

6. Record data and
measurements during the
testing of the prototype on test
subjects.

Completed Ethical clearance was granted in which 66 subjects
consisting of 23 normal, 35 abnormal and 8 VNIP
recordings.

7. The development of machine
learning algorithms in patient
diagnosis and ECG lead
reconstruction.

Completed A DPRNN classification, and FTDNN lead recon-
struction algorithm, was trained using an online
database and tested in the clinical trial.
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8.3 Limitations
Due to the study requiring data from human subjects, ethical clearance was
required in order to run the clinical trail. This placed additional time con-
straints on-top of the standard duration of the MEng degree. This influenced
the amount of time available to gather samples and the overall population
size. In order to accurately gather data both the developed device and the
control device required the electrodes to be placed by a trained ECG techni-
cian or medical doctor. This study relied on electrode placements performed
by trained ECG technicians and Dr. Titus at Tygerberg hospital. By using
different personnel to place the electrodes, variability of electrode placement
between experts is possible. The diagnosis of the patients used to test the clas-
sification algorithm required the experience of Dr. Weich, a trained cardiolo-
gist. However, the cardiologist relied solely on ECG recordings to determine
the patient’s current cardiac condition. In rare cases, cardiac abnormalities
may not be immediately obvious in ECG recordings and may acquire addi-
tional tests such as auscultation, echocardiography and physical examinations.
Albeit extremely rare, this could potentially lead to an incomplete diagnosis
of patients used as the ground truths in the study. Due to the developed pro-
totype being a reduced lead device, the lead reconstruction FTDNN had to be
tested using the data acquired from the 12 lead control in order to generate
RMSE and correlation values between the reconstructed leads and the actual
leads. The use of machine learning algorithms such as neural networks for the
classification and lead reconstruction presents a black-box approach, whereby
functional relationships generated from input to output, within the neural net-
works, do not provide any insights into the structure of the relationship being
approximated.

8.4 Future Recommendations

8.4.1 Prototpye Hardware and Software Design

An additional ADAS1000 module would allow the user to expand the available
lead set to the full 12 lead ECG. This would allow the device to be operated
as a gold standard 12 lead ECG in a clinical setting or a reduced lead portable
device in rural settings. The addition of a DB15 female port would enable
the use of a detachable ECG lead wires as well as a shielded cable which aids
in the improvement of noise rejection. A more elegant, space saving method
to power the prototype would be to use a single 3.7 V lithium iron battery
with a DC boost module to increase the voltage to meet the 5 V requirement.
This approach was explored during the development of the device, however,
the recently released RPi model 3B required more current than previous mod-
els, with no appropriate boost modules available at the time. Recently an
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updated DC boost module ("Powerboost 1000C" by Adafruit) was released
for the latest RPi model. The use of a condenser microphone in the electronic
stethoscope could be improved by active noise cancellation in which an addi-
tional external microphone record the ambient noise and subtracts this from
the actual stethoscope recording. An additional potential design improvement
would be the incorporation of the stethoscope in the base of the device case
similar to the Eko Duo.

An additional software mode can be added to the GUI, allowing the simultane-
ous recording of both ECG and heartsounds. This could facilitate the previous
work done by Botha (2010) and Visagie (2007) in which a combination of ECG
and heart sounds features are used in the automated patient classification pro-
cedure. The use of cloud based computing could be introduced to centralise
the signal processing and machine learning process, negating the reliance on
available computers installed with the correct software being present during
rural applications. The recorded ECG data could be programmed to display
on the standard block grid paper, allowing the leads to be printed and analysed
in the conventional manner most cardiologists are accustomed to.

8.4.2 ECG Classification and Lead Reconstruction

Improved interval classification features that were originally excluded, due to
poor accuracy in the feature extraction process, have the potential to improve
classification performance. Additionally, non-ECG related features, such as
body weight, height, blood pressure, BMI, age and ethnicity could also be in-
cluded as features in the classification process. The trade-off between RMSE
and Pearson r correlation provides only a partial description of ECG lead re-
construction performance. Future studies conducted at Tygerberg Hospital
will include the generation of reconstructed 12 lead ECG printouts using the
FTDNN method, which will be assessed in a blind classification study per-
formed by cardiologists, in order to test the feasibility of lead reconstruction.

8.5 Conclusion
A portable device was developed capable of recording the ECG and heart
sounds. The developed device is cheaper than available products and capable
of operation in a rural environment while maintaining a high quality of ECG
recordings, comparable to that of established ECG devices. The device was
successfully tested using a clinical study where the results obtained compare
favourably with the initial retrospective study as well as prior research done
in the field. The study successfully met the required aims and objectives as
set out in the first chapter. This evidence supports the possibility of deploying
a low-cost portable device in rural locations capable of referring patients with
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potential cardiac abnormalities to hospitals for further examination. The use
of a portable device with simple lead wire placement capable of autonomous
diagnosis has the potential of transforming cardiovascular care for patients in
rural locations.
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ECG Printed Circuit Board
(PCB)

A.1 ADAS1000

Figure A.1: Schematic for the ADAS1000 ECG front-end component (Abtahi et al.,
2014).

93

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. ECG PRINTED CIRCUIT BOARD (PCB) 94

A.2 SP720

Figure A.2: Schematic for component SP720.

A.3 ADUM6400

Figure A.3: Schematic for the ADUM6400 opto-coupler component (Abtahi et al.,
2014).
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A.4 ADUM4400

Figure A.4: Schematic for the ADUM4400 opto-coupler component (Abtahi et al.,
2014).
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A.5 Raspberry Pi 3 Model B Pinout

Figure A.5: Raspberry Pi model 3B pinout indicating the GPIO pins assigned to
the ECG front-end, electronic stethoscope and the LCD touchscreen.
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Design Analysis

B.1 Safety Analysis

B.1.1 Electrical Isolation and Insulation Layer

The current device is designed to be battery operated, however, there may
be occasions where the RPi is to be connected to additional peripherals, such
as monitors or printers, which require a mains power supply. It is therefore
recommended that the device adheres to relevant electrical safety measures.
Electrical safety of medical equipment is regulated by the International Elec-
trotechnical Commission (IEC) 60601-1 and 60950, which defines necessary
conditions to ensure the safety of patients, device operators, as well as the
surrounding environment (Been et al., 2007). This is achieved by means of
proper electrical isolation and the use of opto-couplers.

Opto-couplers isolate sections of the PCB that are exposed to a high-voltage
power supply while simultaneously allowing the transfer of signals to and from
the isolated region. This allows for electrical separation (isolation) between the
leads attached to patients and high voltage peripherals that may be attached
to the RPi. The ADUM4400 and ADUM6403 were used in the optocoupler
circuit (Figure B.1) (Abtahi et al., 2014).

In addition to the optocoupler circuit, the PCB was manufactured with an
insulated region, without copper, which runs under the optocouplers to the
boundary of the PCB (Abtahi et al., 2014). This separates the isolated region
from the remainder of the PCB (Figure B.2) which prevents creepage current
as advised by IEC 60601.
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Figure B.1: Schematic indicating the signals to and from the RPi that cross the
opto-couplers (ADUM4400 and ADUM6403) to the ADAS1000 and SP720.

Figure B.2: Illustration of the PCB layout indicating the isolated region created by
the opto-couplers as well as the manufactured insulated region (Abtahi et al., 2014).
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B.1.2 ECG Medical Devices Safety Standards

Table B.1: ECG medical device safety standards that were successfully adhered to by the
prototype device (Abtahi et al., 2014).

Standard Description Provided by
AAMI EC11 Diagnostic electrocardiographic devices ADAS1000
AAMI EC38 Particular requirements for the safety, in-

cluding essential performance, of ambulatory
electrocardiographic systems

ADAS1000

AAMI EC13 Cardiac monitors, heart rate meters, and
alarms

ADAS1000

IEC60601-1-1 General requirements for safety ADAS1000
ADUM6403/6600

IEC60601-1-2 General requirements for basic safety and es-
sential performance

PCB Design

IEC60601-2-25
IEC60601-2-27

Particular requirements for the basic safety
and essential performance of electrocardio-
graphic monitoring equipment.

ADAS1000

IEC60601-2-51 Particular requirements for safety, includ-
ing essential performance, of recording and
analysing single channel and multichannel
electrocardiographs

ADAS1000

IEC61000 Protection against ESD and over-voltage SP720
Insulation Barrier
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B.2 Cost Analysis

Table B.2: Final cost for the hardware required to develop the prototype device.

Item Price
ECG snap-on leads R289.00
SP720 Diode protection R31.15
ADAS1000 ECG Frontend R547.54
ADUM4400 Optocoupler R128.00
ADUM6400 Optocoupler R282.00
Raspberry Pi 3 Model B R567.00
LCD Touchscreen R883.00
Protective Case R318.00
Stethoscope R2098.00
MCP6002 Operational amplifier R5.32
Panasonic WM-61A Microphone R30.00
ADS11015 A/D converter I2C module R285.00
PCB Manufacturing R118.33
Battery Pack R424.00
Crystal Oscillator R2.70
Resistors and Capacitors R50.00
Total R6059.04
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Appendix C

Electronic Stethoscope
Calculations

The necessary parameters required for the design of the microphone pre-
amplifier circuit are represented in Table C.1. The design procedure follows
steps laid out by Caldwell (2015).

Table C.1: Technical specifications of the Panasonic WM-61A microphone.

Parameter Value
Sensitivity 35 ± 4 dBV

Standard Operating Voltage 2V
Maximum Current Consumption 0.5 mA

Maximum Impedance 2.2 kΩ
Minimum Signal to Noise Ratio 62 dB

The microphone sensitivity value is provided as a decibel value relative to a
unit volt (1 V), measured at 1 Pascal, or 94 dB sound pressure level (SPL).
This value is converted to a linear value in volts per Pascal of air pressure

10
−35dB

20 = 17, 78 mV/Pa (C.1)

This value is converted to current per Pascal of air pressure using the maximum
impedance value in Table C.1, as it can be assumed that this value was used
to measure the microphone sensitivity.

17, 78 mv/Pa

2, 2 kΩ
= 8, 08 µA/Pa (C.2)

The calculated microphone gain is influenced by the maximum expected sound
pressure level recorded by the microphone. It is assumed that the maximum
sound pressure level is 100 dB SPL, which is 2 Pa of air pressure, providing an
output current of

101
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8.083µA

Pa
× 2Pa = 16, 17 µA (C.3)

This allows the value of R2 to be calculated as

R2 =
VOut
IOut

=
1, 228 V

16, 17 µA
= 75, 96 kΩ (C.4)

where VOut is selected as 1.228 VRMS which is a typical value for line level
audio levels. The capacitor C2 provides stability against parasitic capacitance
produced by the inverting operational amplifier. The capacitor also creates a
pole with resistor R2 in which the frequency value of the pole is required to be
large enough to avoid interference with the microphone’s audible bandwidth.
A response deviation of -0,1 dB at 20 kHz was selected as an acceptable value
resulting in the calculation of the pole as

fp =
f√

(G0

Gf
)2 − 1

=
20 kHz√
( 1
0,989

)2 − 1
= 133, 73 kHz (C.5)

where G0 and Gf represent the gains at low frequency and at frequency f ,
respectively. Selecting 20 kHz for f , and 0,989 (-0,1 dB) for Gf , results in a
pole at 133,73 kHz. The value for C2 is calculated as

C2 =
1

2πfpR2

=
1

2π(133, 73 kHz)(75 kΩ)
= 15, 87 pF (C.6)

The microphone is biased using resistor R1 which can be calculated using the
supply voltage (VCC), the maximum operating voltage (VOP ) and the maximum
current consumption (Ic), provided by Table C.1

R1 =
VCC − VOP

Ic
=

3, 3 V − 2 V

0, 5 mA
= 14 kΩ (C.7)

The capacitor C1 creates a high pass filter with R1 in which the corner fre-
quency must avoid attenuating low frequency sound waves. A 5 Hz corner
frequency is selected and the value of C1 is calculated as

C1 =
1

2πfcR1

=
1

2π(5 Hz)(14 kΩ)
= 2, 32 µF (C.8)

The resistor pair, R3 and R4, center the output voltage at the midpoint be-
tween VCC and ground to provide the largest possible output signal swing.
Large resistor values of 100 kΩ, where R3 = R4, were selected to limit the
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current resulting in VB = VCC/2 (1,65 V). The capacitor C3 is provided to
eliminate thermal noise created by the resistors as well as noise created from
the power supply. A value of 2.2 µF for capacitor C3 is sufficient to provide a
low pass filter with the corner frequency of

fc =
1

2π(R3 ‖ R4)C3

=
1

2π(100 kΩ ‖ 100 kΩ)2.2µF
= 1, 48 Hz (C.9)

The gain of the pre-amplifier circuit is calculated as

AN = 1 +
R2

R1

= 1 +
75, 96 kΩ

14 kΩ
= 6, 43 (C.10)

The calculated gain was too large for the low supply voltage resulting in the
operational amplifier saturating when the signal approached VCC and ground.
Therefore, a lower value of R2 was selected to reduce the gain. The final values
of the components can be seen in Table C.2.

Table C.2: Final values of the components used in the pre-amplifier circuit.

Components Value
R1 15 kΩ
R2 56 kΩ
R3 100 kΩ
R4 100 kΩ
C1 2.2 µF
C2 15 µF
C3 2.2 µF
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Appendix D

Serial Communication

D.1 Serial Peripheral Communication Protocol

D.1.1 Introduction to SPI

Serial Peripheral Communication (SPI) is a serial interface bus commonly
used to digitally transfer data between microcontrollers and various peripheral
devices, such as sensors (Grusin, 2017). The SPI protocol consists of a master-
slave architecture, in which one master device controls communication with
one or more slave devices, by initiating read and write commands (Bai, 2016).
With regards to the hand-held portable device, the Rapberry Pi is the master
and the ADAS1000 ECG frontend is the slave (Figure D.1).

Figure D.1: SPI communication between the Raspberry Pi (master) and the
ADAS1000 (slave).

The SPI protocol makes use of 4 signal lines, a clock signal (SCLK), "Master
Out - Slave In" (MOSI), "Master In - Slave Out" (MISO) and "Slave Select"
(SS). The SPI protocol is a synchronous data bus where information is trans-
mitted continuously at a constant rate using separate data and clock lines
(Cowley, 2012). The oscillating clock signal ensures that transmission and
reception is kept in-sync, with bits on the data line being sampled at either
the rising or falling clock edge (Grusin, 2017). In the event that a master
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communicates with multiple slaves, the master will identify the specific slave
it wishes to communicate with by setting the SS line low. This disconnects
the slave from the serial bus, ultimately activating the slave which is now ex-
pecting to receive data. The SS line makes use of "active low" logic in which
it is enabled by setting the signal low. To initiate a read or write command,
the master device sets the SS line low, triggering the SCLK line to oscillate,
allowing the transmission of data from the master to the slave on the MOSI
line. In the event that data is read from the slave, the master device sends
the "read command" on the MOSI line, while simultaneously sampling the
received signal from the slave on the MISO line. When communication with
the specific slave is complete, the SS line is set high again (Figure D.2).

Figure D.2: SPI signal and data transmission diagram.

D.1.2 ADAS1000 SPI Registers

Table D.1: Writing to a ADAS1000 register.

Write command R/W Register Address Data
0X85E0000A 1 0000101 111000000000000000001010

Table D.2: ADAS1000 register addresses and header bytes.

Register Header Lead I Lead II Lead III V2 V4
Address 0x40 0x11 0x12 0x13 0x14 0x15

D.2 Inter-Intergrated Circuit Protocol

D.2.1 Introduction to I2C

The I2C protocol consists of a master-slave architecture, similar to that of
SPI, in which the RPI initiates read and write commands with the ADS1015
of the electronic stethoscope. The key difference between SPI and I2C com-
munication, is the latter only requires two signal lines, a serial clock (SCL)
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and a serial data (SDA) line, which are connected to "VCC" through pull-up
resistors (Figure D.3).

Figure D.3: I2C communication between the Raspberry Pi (master) and the
ADS1015 (slave).

Communication between the master and the slave is initiated and completed
by the master, which triggers a start or stop condition. Initially the bus is
in an idle state, characterised by both the SDA and SCL lines floating high.
The start condition is initiated by the master pulling the SDA line low, after
which data is transmitted. Communication is terminated when the master
brings the SDA line high. A single data bit is transmitted on the SDA line
during each clock pulse on the SCL line, where one byte consists of eight bits
in which the Most Significant Bit (MSB) is sent first. A byte may correspond
to a device address, register address, or data that is written to or read from a
slave device. After the transmission of each byte, an acknowledge (ACK) bit,
or not acknowledge (NACK) bit, is transmitted from the slave to the master
to indicate whether the byte was successfully received. This is achieved by the
slave pulling the SDA line low during the 9th clock cycle, which represents a
successful transmission (ACK) of a byte. In the event that the ACK/NACK
bit is high during the 9th clock cycle, this indicates that the byte failed to be
transmitted successfully resulting in a NACK occurring (Figure D.4). A NACK
could be due to many factors such as the slave receiving data or commands
that it does not understand or the slave is unable to receive additional bytes
(Valdez and Becker, 2015).
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Figure D.4: I2C master transmission procedure (Valdez and Becker, 2015).

In order to send or receive data, the master must initiate a read or write
command to, or from, registers in the slave device. The term register refers to
locations in the slave’s memory which contains the required sampled data that
is sent to the master. The master is required to write commands to the slave
register address in order to instruct the slave to perform required tasks. The
master triggers the start condition, followed by the slave’s address and R/W
bit, set to 0, to indicate a write command. The slave sends the acknowledge
bit to indicate the data was sent successfully. The master responds by sending
the data of the register to the slave device that it wishes to communicate with.
This is followed by the ACK bit, sent from the slave device, indicating that
the slave is ready for transmission. The master responds by sending data to
be written to the slave’s register, followed by the ACK bit from the slave.
The stop condition from the master terminates the transmission (Valdez and
Becker, 2015). This process is illustrated in Figure D.5.

Figure D.5: I2C communication procedure with slave registers (Valdez and Becker,
2015).

Reading from the slave occurs in a similar manner to the writing process. The
master informs the slave which register it intends to read from by issuing a

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. SERIAL COMMUNICATION 108

standard write command. Once the master has sent the slave and register
address, the master triggers a repeated start condition followed by the slaves
register, with the R/W bit set to 1, indicating a read command. The slave
sends the ACK bit indicating it is ready to transmit data to the master. The
master responds by releasing the SDA line which the slave uses to transmit
data to the master. The master transmits the ACK bit to the slave after
each byte, indicating it is ready for more data. Once the master has received
all the expected data it issues a NACK, followed by the stop condition, in
order to terminate the transmission (Valdez and Becker, 2015). This process
is illustrated in Figure D.6.

Figure D.6: I2C read procedure from slave registers (Valdez and Becker, 2015).

D.2.2 ADS1015 I2C Registers

Table D.3: The I2C specification for interfacing with the ADS1015.

ADS1015 I2C Specifications
Slave Address 0X48

CONFIG Register 0X01C3C3
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Clinical Study

E.1 Sample Size Calculation

Figure E.1: McNemar’s test indicating the relationship between the required sam-
ple size and the desired power.

E.2 Ethical Clearance Documentation
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Appendix F

Algorithms

F.1 Wavelet Beat and Peak Detection
The wavelet delineation algorithm developed by Martínez et al. (2004) works
in 5 phases:

1. QRS complex detection

2. Identification of the individual Q, R and S waves within the QRS complex

3. Determination of the onset and offset of the QRS complex

4. P wave detection and onset and offset delineation

5. P wave detection and onset and offset delineation

The algorithm pseudo-code implementation can be described using the follow-
ing procedure:

(i) The maximum moduli are identified across the scales when the magni-
tude of the wavelet transform exceeds the thresholds

εiQRS = RMS(W i
2s[n]), i = 1, 2, 3 (F.1)

ε4QRS = 0.5RMS(W 4
2 s[n]), i = 1, 2, 3 (F.2)

for scales 21 to 24.

(ii) All identified maximum moduli are analysed, rejecting any isolated or
redundant moduli.

(iii) The QRS complex is identified as the zero crossing between either a
maximum - minimum, or minimum - maximum pair at scale 21.
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(iv) If a QRS complex has not been successfully identified after an extended
period of time, reduce threshold values and return to step (i).

(v) The algorithm identifies significant slopes within the QRS complex that
exceed the thresholds

γQRS_pre = 0.06max(|W 2
2 s[n]|), n ∈ SWQRS (F.3)

γQRS_post = 0.09max(|W 2
2 s[n]|), n ∈ SWQRS (F.4)

for previous and subsequent waves, where SW refers to a search window.
The significant waves crossing at scale 21 are wave peaks and are labelled
(Q, R or S) according to the sign and sequence of the maximum moduli.

(vi) The QRS wave onset and offset is identified as the first and last significant
slope of the QRS, respectively, located with respect to the positions of
the first (nfirst) and last significant QRS wave (nlast). The onset and
offset positions are identified as either the position in which W 2

2 s[nn] is
below the thresholds ξQRSon or ξQRSend, or the local minimum forW 2

2 s[nn]
before nfirst or after nlast, with closest point to the QRS identified as the
QRS onset and offset respectively.

ξQRSon =

{
0.05W 2

2 s[nfirst], if W 2
2 s[nfirst] > 0

0.07W 2
2 s[nfirst], if W 2

2 s[nfirst] < 0
(F.5)

ξQRSend =

{
0.125W 2

2 s[nlast], if W 2
2 s[nlast] > 0

0.71W 2
2 s[nlast], if W 2

2 s[nlast] < 0
(F.6)

(vii) A search window for the P wave is located before the onset of the QRS
and is calculated using the RR interval. Within the window a local
maximum is identified for W 4

2 s[nn]. If two significant waves exceeds
threshold

εP = 0.02RMS(W 4
2 s[n]) (F.7)

then a P wave is present where the peak is identified as the zero crossing
between the two waves at scale 23. A wave is considered to be significant
if it exceeds the threshold

γP = 0.125max(|W 4
2 s[n]|), n ∈ SWP (F.8)

(viii) In the event that a P wave is not successfully identified in step (vii),
repeat the step at scale 5 (|W 5

2 s[n]|).
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(ix) The onset and offset follows the same procedure with the thresholds
identified as

ξPon = 0.5W 4
2 s[nfirst] (F.9)

ξPend = 0.9W 4
2 s[nlast] (F.10)

which are applied at the scale in which the P wave is detected.

(x) Steps (vii)-(ix) are repeated when identifying the T wave in which the
search window occurs after the QRS offset, and the corresponding thresh-
olds are used

εT = 0.25RMS(W 4
2 s[n]) (F.11)

γT = 0.125max(|W 4
2 s[n]|), n ∈ SWT (F.12)

ξTon = 0.25W 4
2 s[nfirst] (F.13)

ξTend = 0.4W 4
2 s[nlast] (F.14)

F.2 Backpropogation
The conventional backpropagation algorithm is a gradient descent algorithm
where the neuron weights are adjusted with the negative value of the calculated
gradient of the cost function. Initially, all the neuron and bias weights are pre-
initialised to random values. The input values, x(i), are propagated forward
through the layers of the network until the cost function, J , is calculated for
the output layer using the hypothesis function, hθ(x), and the actual output,
y(i). The value of the cost function is then propagated backwards, updating
the values of the individual weights corresponding to each neuron in each layer.

The weight between the corresponding neuron p in the previous layer, h-1, and
neuron j in the layer q is represented as θhq (Theodoridis and Koutroumbas,
1999). The vector containing all the individual weights at neuron q in layer h
are represented as Θh

q = [θhq0, θ
h
q1, θ

h
q2...θ

h
qnh−1

]T where nh−1 is the total number
of neurons in the previous layer h− 1. During each iteration the weight vector
containing the individual neuron weights is updated by

Θh
q = Θh

q −∆Θh
q (F.15)
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where ∆Θh
q is the correction term used to update the values of the weights

calculated as

∆Θq
h =

N∑
i=1

δhq (i)yh−1(i) (F.16)

In order to compute the correction term, the individual correction terms δh−1q

for layers h = L,L− 1, L− 2, ...2 (excluding the input layer h=1) and neurons
q = 1, 2, 3, ...nh are calculated using the equation:

δh−1q = eh−1j (i)h′h−1θ (x(i)) (F.17)

where, h′Lθ (x(i)), is the derivative of the transfer function, hLθ (x(i)), and erh−1j (i)
is calculated as

erh−1q (i) =
nr∑
p=1

δh−1p (i)θh−1p (i) (F.18)
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Appendix G

Additional Methods

G.1 Precordial Lead Selection

Table G.1: Mean RMSE µV using a different single individual precordial leads as
input to the FTDNN lead reconstruction method

Reconstructed leads

V
1

V
2

V
3

V
4

V
5

V
6

V1 - 227 306 292 195 134
V2 137 - 164 215 187 138
V3 185 185 - 159 188 132
V4 234 350 225 - 159 131
V5 315 546 461 257 - 90

In
pu

t
Le

ad

V6 335 592 531 344 129 -

Table G.2: Mean Pearson r correlation using a different single individual precordial
leads as input to the FTDNN lead reconstruction method

Reconstructed leads

V
1

V
2

V
3

V
4

V
5

V
6

V1 - 0.93 0.81 0.76 0.90 0.93
V2 0.97 - 0.95 0.87 0.91 0.92
V3 0.93 0.90 - 0.95 0.91 0.92
V4 0.84 0.78 0.86 - 0.94 0.93
V5 0.70 0.43 0.42 0.79 - 0.96

In
pu

t
Le

ad

V6 0.66 0.36 0.20 0.60 0.93 -
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Table G.3: The average classifier results for all the limbs leads including one pre-
cordial leads across the 7 folds.

K-Fold Mean Results

Single Precordial Lead Accuracy (%) Sensitivity (%) Specificity (%)

V1 86 87 85
V2 87 88 85
V3 86 87 84
V4 85 85 87
V5 87 87 87
V6 86 86 85

Figure G.1: Box and whisker diagram indicating the classification accuracy, sen-
sitivity and specificity of the combined limb leads and single precordial ECG lead
classifier.
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G.2 Classifier feature selection

Table G.4: Initial classifier accuracy, sensitivity and specificity for supervised,
unsupervised and combined feature sets.

Supervised Unsupervised Combined

Leads Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

I 76% 78% 70% 77% 79% 75% 85% 84% 88%
II 72% 75% 63% 76% 79% 67% 85% 87% 79%
III 73% 74% 65% 71% 73% 65% 76% 78% 69%
avR 79% 82% 70% 77% 79% 72% 85% 86% 84%
avL 77% 81% 63% 78% 80% 70% 82% 81% 83%
avF 72% 76% 61% 74% 76% 70% 79% 81% 71%
V1 72% 74% 68% 76% 79% 65% 80% 81% 74%
V2 73% 75% 67% 72% 74% 63% 78% 79% 75%
V3 72% 73% 67% 70% 71% 67% 75% 77% 71%
V4 75% 76% 72% 76% 76% 73% 81% 82% 79%
V5 74% 78% 75% 76% 76% 73% 85% 85% 86%
V6 77% 78% 74% 75% 75% 78% 85% 84% 89%
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Appendix H

Additional Results

H.1 Classification Network Architecture
The various neural network architectures discussed in Section 6.1.1 is repre-
sented in Table H.1. The values in brackets represent the number of neurons
pertaining to the specific layer. The input and output layer are a single layer
each, whereas the hidden layer sizes vary in dimension from between 3 and
5 across the different number of input leads presented to the classifier. The
number of input neurons corresponds to the dimension of the input features
and the output layer corresponds to the number of classification classes.

Table H.1: DPRNN classifier architecture for the various input leads.

Classifier Input
Layer

Hidden Layers Output
Layer

Single Lead [45] [40-20-10] [2]
All Limb Leads [296] [250-100-50-20] [2]
All limb Leads + Single
Precordial Lead

[303] [250-100-50-20] [2]

All limb Leads + Two
Precordial Leads

[346] [280-150-50-20] [2]

Full 12 Lead ECG [518] [500-300-200-100-10] [2]
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Table H.2: The classification outputted probability scores of a single test subject
classified as exhibiting abnormal cardiac function.

Beats Probability
1 [0.95, 0.05]
2 [0.93, 0.07]
3 [0.94, 0.06]
4 [0.93, 0.07]
5 [0.93, 0.07]
6 [0.90, 0.10]
7 [0.93, 0.07]
8 [0.92, 0.08]
9 [0.91, 0.09]
10 [0.90, 0.10]
11 [0.91, 0.09]
12 [0.93, 0.07]

Average [0.92, 0.08]

H.2 Lead Reconstruction

Figure H.1: Retrospective study box and whisker diagram indicating the RMSE
error for the reconstructed leads.
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Figure H.2: Clinical study box and whisker diagram indicating the RMSE error
for the reconstructed leads.

H.3 Classification

H.3.1 Single Leads

Table H.3: The retrospective study average classifier results for the individual ECG
leads across the 7 folds.

K-Fold Mean Results

Leads Accuracy (%) Sensitivity (%) Specificity (%)

I 85 84 88
II 85 87 79
III 76 78 69
avR 85 86 84
avL 82 81 83
avF 79 81 71
V1 80 81 74
V2 78 79 75
V3 75 77 71
V4 81 82 79
V5 85 85 86
V6 85 84 89
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Figure H.3: Box and whisker diagram indicating the classification accuracy, sensi-
tivity and specificity of the individual ECG leads corresponding to the retrospective
study.
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Figure H.4: ROC curve for lead II

H.3.2 All Limb Leads

Figure H.5: The classification performance for the retrospective study correspond-
ing to all the limb leads: (a) The classifier distribution for accuracy, sensitivity and
specificity. (b) The ROC curves and corresponding AUC values across the 7 folds,
as well as the resulting mean ROC and AUC value is plotted.
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H.3.3 All Limb Leads and Precordial Leads V2 and V4

Figure H.6: The classification performance for the retrospective study correspond-
ing to all the limb leads and precordial leads V2 and V4: (a) The classifier distribu-
tion for accuracy, sensitivity and specificity. (b) The ROC curves and corresponding
AUC values across the 7 folds, as well as the resulting mean ROC and AUC value is
plotted.
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Appendix I

Additional Discussion

Table I.1: Clinical trial cardiovascular disease incorrectly classified as normal.

# Incorrectly classified abnormal patients
1 Tachycardia
2 Bradycardia
3 Ventricular and Atrial Extrastimulation
4 Left Ventricular Hypertrophy
5 Borderline Left Atrial Enlargement
6 First-Degree Atrioventricular Block
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