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Abstract

Over the course of the past decade, South African national energy utility Eskom has
increased its average electricity rate more than fourfold as it finds itself in financial diffi-
culty, brought about by a myriad causes. During the same time period, the cost of solar
photovoltaic arrays and battery energy storage has fallen by more than two thirds.

In this thesis, a residential energy management system which incorporates small-scale
solar photovoltaic power generation and battery energy storage is developed. The primary
goal of the system is to increase self-sufficiency of a given household through management
of the battery energy storage unit and two controllable loads: an air-handling unit and an
electric water heater. Such a system would be able to shield residences, at least in part,
from the energy utility’s ongoing challenges.

A grid-connected household, featuring each of the controllable electrical entities men-
tioned, as well as a photovoltaic array, and a generic non-controllable load is described.
Due to the intermittent nature of solar radiation, potential solar power generation is in-
evitably lost because of power supply-demand misalignment. Model predictive control,
a popular process-control technique, is exerted over the residential system in pursuit of
resolving this misalignment.

At a sampling time of ten minutes, a predictive controller capable of an hour (or six
steps) of model-based foresight is formulated and tested in simulation. A rules-based hi-
erarchical controller is used as baseline against which the predictive control scheme is
evaluated. The controller’s ability to reduce solar power curtailment is confirmed by eval-
uating its performance with relevant data from each of the four seasons (from September
2017 to August 2018), for prediction horizons one through six.
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Opsomming

Deur die loop van die afgelope tien jaar het die nasionale kragverskaffer, Eskom, sy gemid-
delde elektrisiteitstarief vervierdubbel, terwyl dié staatsinstansie onder verskeie uitdagings
gebuk gaan. Gedurende dieselfde tydperk het die kosprys van fotovoltaïese sonpanele en
battery energiestoor met meer as twee derdes verminder.

In hierdie tesis word ’n huishoudelike energiebestuurstelsel, wat van beide ’n foto-
voltaïese skikking en battery energiestooreenheid gebruik maak, beskryf. Die hoofdoelwit
van die stelsel behels die verbetering van die huishouding se selfversorgendheid sover sy
energiebehoeftes aangaan. Die stelsel manipuleer ’n energiestooreenheid, tesame met twee
beheerbare laste, naamlik, ’n lugreëlingseenheid en elektriese waterverwarmer (algemeen
bekend as ’n geiser), in die nastreef van sy doelwit. ’n Stelsel van dié aard sal daarin
kan slaag om huishoudings, minstens gedeeltelik, van die kragverskaffer se uitdagings te
beskerm.

’n Huishouding, aan die nasionale kragstelsel gekoppel, wat van al die beheerbare laste
hierbo genoem gebruik maak, te same met ’n fotovoltaïese skikking en ’n generiese ver-
teenwoordiging van die oorblywende huislas, word beskryf. As gevolg van die wisselende
aard van sonbestraling gaan daar gereeld waardevolle potensiële energie verlore, toegeskryf
aan die swak belyning tussen drywingsbron en -las. Modelgebaseerde voorspellende be-
heer, ’n gewilde prosesbeheertegniek, word op die huishouding toegepas in die strewe na
’n oplossing vir hierdie belyningsprobleem.

Teen ’n monstertyd van tien minute word ’n voorspellende beheerder, daartoe in-
staat om ’n uur (of, altans, ses stappe) vooruitskattings te maak (met die hulp van
wiskundige modelle), geformuleer en in ’n simulasie-omgewing beproef. ’n Hiërargiese
beheerder, gebaseer op ’n stel voorwaardelike stellings, word as maatstaf waarteen die
voorspellende beheerskema geëvalueer kan word gebruik. Die beheerder se vermoë om
fotovoltaïese inkorting te verminder word bevestig deur die prestasie van die betrokke
beheerder in omstandighede eie aan elke seisoen van die jaar (wat strek van September
2017 tot Augustus 2018) in ’n simulasie-omgewing te toets, met ’n voorspellingshorison
van een tot ses stappe.
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Nomenclature

Notation

Scalar variables are written in italics (e.g. x). Matrices and vectors are written in bold
italics (e.g. A and x).

Index variables are denoted by i, j, k and l. Subscripts are written in Roman type
(e.g. pgen).

Dimensions for states and disturbances are described through use of n with accompa-
nying subscripts, whereas control input dimensions are specified withm and accompanying
subscripts.

The identity matrix of dimension n×n is written as In . The zero matrix of dimension
n×m is written as 0n×m . The set of real numbers of dimension n is written to Rn .

Acronyms

AHU air-handling unit

BES battery energy storage

COP coefficient of performance

EER energy efficiency ratio
EWH electric water heater

MPC model predictive control

NOCT nominal operating cell temperature

PV photovoltaic

SoC state of charge
SQP sequential quadratic programming
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Symbols

α convection coefficient, unless stated otherwise
C thermal capacity
c specific heat, unless stated otherwise
cBES maximum theoretical battery charge rate
cC cooling coefficient
cH heating coefficient
cṁ mass flow coefficient
cr recovery factor
cw charge-well factor
d thickness
dBES maximum theoretical battery discharge rate
E energy storage capacity
f̄ average switching frequency
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ηBES battery energy storage efficiency
ηBES,ch battery energy storage charging efficiency
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ξ extra-nodal power requirement
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R thermal resistance
Tamb ambient temperature
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Tin incoming water temperature
Ts sampling period
ub upper bound
VEWH volume of electric water heater tank
Vused volume of water used in a given sampling period
wf forcibly wasted power
ws standing power losses
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Chapter 1

Introduction

Traditionally, household electrical infrastructure has been viewed as a connector between
the electrical grid and energy-consuming devices on the premises. This one-way view of
residential power flow is being challenged as the impact of fossil-fuel intensive methods of
power generation are facing increased scrutiny [1].

Altering the role of households, towards enabling increased local as opposed to cen-
tralised generation, can have a sizeable positive impact on the nature of the modern
electrical grid. For illustration, consider that the residential share of energy consumption
amounts to roughly 24 % in the Netherlands [2], 28 % in South Africa [3] and 37 % in the
United States of America [1].

Home energy management, defined as any means of providing consumers with feedback
and/or control over their energy use, has generally been concerned with technologies that
reduce consumption [4]. There exists, however, many opportunities to shift local electrical
demand so as to lessen the overall strain on the electrical grid. Taking this idea one
step further, if local generation and storage are available, the household could be able
to meet a majority of its energy needs [5]. If applied broadly, this measure would result
in decentralising power generation capacity and thereby yielding a more robust electrical
grid.

1.1 The South African Context

In South Africa, higher-end and heavy-use domestic consumers of utility energy subsidise
lower-income households. Consider Stellenbosch Municipality rates, as is shown in Figure
1.1. Residential properties valued at R200 000 or less pay a reduced Life Line Tariff. Prop-
erties above this threshold pay higher rates, mostly based on their energy consumption
history. Residences that, on average, consumed 600 kWh or less prepaid electricity per
month, in the previous financial year, pay higher per-unit costs than those that averaged
above 600 kWh per month. The former, however, is exempt from a monthly base charge,
while the latter is not. Regular residential consumers, not equipped with the prepaid fa-
cility, are subject to the same per-unit cost as prepaid residences with above-600 kWh

1
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CHAPTER 1. INTRODUCTION 2

average monthly consumption, but are subject to a higher base rate still. Domestic prop-
erties equipped with solar photovoltaic (PV) arrays exclusively for own use fall under
the same cost structure as regular residences, while those equipped to export power are
charged an additional monthly reading cost. Appendix A lists the various Stellenbosch
Municipality tariffs and charges, effective from 1 July 2018.

0 100 200 300 400 500 600 700 800
0

250

500

750

1,000

1,250

1,500

Monthly consumption [kWh]

C
os

t
[R

]

Life Line
Prepaid (≤ 600 kwh)
Prepaid (> 600 kwh)
Regular
Regular/Prepaid
with PV for export

Figure 1.1: Stellenbosch Municipality domestic electrical tariff tiers compared. Residential
properties equipped with solar PV arrays for own use and export fall under the most
expensive scheme.

Additionally, export rates into the grid are all lower than the lowest-cost import rate
from the grid (refer to Table A.2), with the exception of the high-season (winter) peak-
time rate. Both the morning and evening peak periods, however, fall outside the time of
day when the bulk of energy generation takes place. Similar rates apply in other metro
areas, e.g. those of the City of Cape Town [6]. It can be concluded that there is little
municipal incentive for residential PV installations to be biased towards exporting their
generated power.

1.1.1 Eskom Rates Rise While Solar and Storage Costs Fall

A 2017 report [7], prepared by Deliotte for national power utility Eskom, anticipates
materially higher energy rates in coming years. Calculated as expenditure per unit energy
generated for a given year, the utility’s cost of energy has steadily shot upward since 2007
(in real terms, using 2016 rands) [7, p. 40] . Due to a myriad reasons, Eskom is unable to
provide electricity at pre-2007 levels. This is also evident from the Department of Energy’s
price report of 2017, which estimates that the cost per kilowatt-hour (averaged across all
categories) jumped more than fourfold from the 2007/8 to the 2016/17 financial year.
In the 2010–2017 period, an increase of 207 % is estimated [8, p. 34]. Additionally, the
practice of rolling blackouts (commonly referred to as “load shedding”) has been used in
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CHAPTER 1. INTRODUCTION 3

recent years to lessen strain on the electrical grid.
Contrasted with the above, the falling prices of both PV panels and battery energy

storage (BES) have made the prospect of decentralised power generation more attractive in
recent years. The International Renewable Energy Agency provides recent figures on solar
PV system costs, estimating a 68 % reduction worldwide, from $4394/kW to $1388/kW,
during the 2010–2017 period [9, p. 42]. Bloomberg New Energy Finance estimates that
the cost price of lithium-ion batteries fell 84 % in the same period, from $1000/kWh in
2010 to $162/kWh in 2017 [10, p. 7].

The cost of decentralised generation and storage remains sizeable and perhaps beyond
the reach of many South African households. It does seems posed, however, to play a
significant role in counteracting the uncertainties brought about by the national utility’s
challenges.

1.1.2 Decentralised Generation and Storage Coupled with Demand-
Side Management

Many modern commercial buildings have building automation systems installed. Control-
ling blinds, lighting, and heating, ventilation and cooling often leads to material reductions
in energy consumption within commercial contexts. Such systems are inexpensive to in-
stall in large buildings, but require many invasive sensors and actuators, the fixed costs
of which dissuade residential use [11].

A system more limited in scope than what is conventionally understood by a building
automation system could find widespread residential adoption. Within a household, the
largest electrical load results from temperature regulation of air and water [12]. It is there-
fore reasonable to devise a demand-side management system which chiefly manipulates
these temperature-regulation appliances to increase household self-sufficiency.

Shifting electrical load requires some knowledge of future conditions that will affect
the load curve. When controlling temperature-regulating loads, this implies utilising esti-
mated future temperatures (of air and water) to pro-actively take the best possible route
in managing electrical load. When making use of highly-variable power sources, as solar
radiation is, forecasts can lend much-needed stability to the power supply-demand balanc-
ing act. In this way, when solar energy generation is available the system can apply it to
maximal benefit of the household and otherwise minimise the amount of energy required
from the grid.

One school of control techniques ideally positioned to address the above aims is pre-
dictive control. A heterogeneous system, as the one described above, would necessarily be
multivariate in nature, something predictive control is especially well-suited to address.
The controller is defined in the time domain and can accommodate widely-varying, even
contrasting, operational goals [13]. By making use of an objective function, these goals
can be prioritised in order of importance. The controller acts accordingly, satisfying as
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CHAPTER 1. INTRODUCTION 4

many of the specified goals as possible, while adhering to the system’s limitations.
A predictive-control approach could thus make decentralised demand-side manage-

ment of the sort described above feasible. Combined with models that accurately capture
physical phenomena, a route to increased self-sufficiency for residences can be obtained.

1.2 Study Objectives

Within the context set out in the prior section, the study objectives are to:

• Describe a household power system comprised of regular loads and manipulable
temperature-regulation appliances, in addition to a solar PV array and BES unit.

• Exert predictive control over the described system to reduce the amount of curtailed
PV energy and thereby grid dependency, demonstrating that predictions farther
ahead yield better results.

• Minimise the loss of thermal comfort (i.e. water and air temperatures outside of
preferred ranges) in the pursuit of the second objective.

1.3 Thesis Summary

This thesis consists of five chapters, the content each is summarised below.

Chapter 1: Introduction provides the context within which the thesis is developed.
Additionally, the general idea of the proposed solution is described. The chapter con-
cludes by defining the thesis objectives, with the main focus placed on increasing the
self-sufficiency of households through reduced PV curtailment, while minimising loss of
comfort.

Chapter 2: Background motivates the model-based approach taken, and describes
model predictive control (MPC) in terms of the two main approaches to its use in prac-
tice, the latter of which is used in this thesis. The chapter concludes by briefly discussing
convexity, as this concept is foundational to the solution of optimisation problems (of
which predictive control is but one application).

Chapter 3: System Description introduces the power node framework and defines
a household power system, consisting of controllable and non-controllable power nodes.
A suitable solar PV array is defined, and the diverse non-controllable load is described.
Three controllable power nodes are defined and simulated, namely: a BES unit, an air-
handling unit (AHU), and an electric water heater (EWH). The chapter concludes by
combining all three controllable power nodes into a single state-space representation that
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serves as the plant over which control is exerted.

Chapter 4: Predictive Control makes use of the system described in Chapter 3, along
with the theoretical background provided in Chapter 2 to formulate a predictive con-
trol strategy. This includes the derivation of an objective function in the quadratic form,
control-input reference generation focused on maximally allocating control inputs to re-
duce PV curtailment and the conversion of the formulated strategy into an implementable
algorithm. The predictive controller is successfully tested in simulations across conditions
typical of all four seasons, for prediction horizons one through six. The controller is shown
to capable of reducing curtailed PV energy substantially.

Chapter 5: Conclusions and Recommendations draws the thesis to a close, review-
ing the main contributions made and ends with select suggestions for follow-on research.
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Chapter 2

Background

The theoretical background required for the thesis is provided here. The chosen modelling
approach is described, the general MPC idea is explained, and convexity, an important
aspect of the solution of optimisation problems is discussed.

2.1 Modelling Approach

Various approaches can be taken to model the various subsystems present in a household.
Physics-based state-space representations are preferred in the present instance, as they
can be combined into larger systems in a largely intuitive manner. Widely varying sub-
systems, each accurately modelling relevant phenomena in state-space representations,
can be used in concert. Such models are easily used in tandem with predictive control
schemes. Additionally, preference is given to models of low computational complexity
(i.e. few parameters), while remaining reasonably accurate.

The work of Woon and Negnevitsky [14] provides reasonably accurate results, with
relatively few parameters, and could be used within a state-space framework. More recent
work [15], based in part on [14], is used as the basis of a suitable model of the EWH.

The OptiControl project at ETH Zurich provides thorough modelling of the thermal
behaviour of buildings and the appliances acting in on the air within. A series of published
research stems from the project [16] [17] [18], and is used as the foundation of the AHU
model used in this work, as they describe physics-based state-space representations of low
computational complexity.

A suitable BES model, meeting the desired requirements stated above, is required to
represent the presence of energy storage within the household. Dualfoil [19] has for some
time been the premier battery simulator, modelling a wide array of internal dynamics.
While being the most accurate representation of physical phenomena within batteries, the
model is computationally complex. Instead, a simplified model, presented in [20] and de-
veloped to closely approximate Dualfoil model’s behaviour, is selected. The chosen model
is of low computational complexity, while remaining reasonably accurate. Furthermore, it
is described through means of a state-space representation.

6
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CHAPTER 2. BACKGROUND 7

2.1.1 Discretisation of Continuous-Time Models

With the exception of the EWH model, subsystems have to be discretised in order to be
used within a discrete-time context. This is preferred over the continuous domain as it is
easily used in practical environments (e.g. controlling a real-world system through means
of a micro-controller), or when, as is the case here, simulating such environments.

The exact discretisation method [21, p. 106] is a standard technique within control
engineering and is used in the present instance. Suppose the continuous-time state-space
representation of a particular model is defined as

ẋ(t) = Acx(t) +Bcu(t), (2.1)

where x is the state vector and u the control-input vector. Furthermore,Ac andBc repre-
sent the continuous-time state and control-input matrix, respectively. The continuous-time
representation can be discretised to yield its discrete-time equivalent, defined as

x(k + 1) = Ax(k) +Bu(k). (2.2a)

The following definitions apply1:
A = eAcTs (2.2b)

and

B =

∫ Ts

0

eAcτdτBc. (2.2c)

If Ac is invertible (i.e. non-singular), the following can be used in place of (2.2c):

B = −A−1
c (I−A)Bc, (2.2d)

with I taken as the identity matrix of appropriate dimensions.

2.2 Model Predictive Control

MPC is a specific kind of receding-horizon control, itself a popular process-control tech-
nique which concerns the solution of a finite-control problem at each time step of a system
[13]. In this way, an infinite-horizon control problem is approximated through means of
successive finite-horizon calculations. The solution is obtained by repeatedly solving an
open-loop problem in short succession and applying the signal as input to a given system.
This input signal is referred to as the control law. Where the control law is derived on-line
(i.e. in real-time), making use of a receding-horizon policy, the technique is referred to as
MPC. While initially developed to address control challenges in the process industry, the
technique has since found widespread application elsewhere [22].

1Note that ‘e’ (as used in (2.2b) and elsewhere) represents the matrix exponent, as opposed to the
element-wise exponent.
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MPC is formulated entirely within the time domain, as opposed to the frequency
domain. This allows for greater accommodation of systems that are non-linear, multiple-
input multiple-output, and/or constrained in nature. The controller operates on the basis
of manipulating a dynamic model, which non-linearities easily form part of. Furthermore,
multiple cascading single-input single-output control loops are not required, since MPC
is a multivariate control method. Constraints, even if in conflict, can be imposed on the
controller and prioritised through means of an objective function. Viewed this way, the
controller is an amalgamation of multiple control modes [23].

2.2.1 Dynamic Model

Define the discrete-time state-space representation of a generic system as

x(k + 1) = g(x(k),u(k)), (2.3)

where x(k) is the state vector at time step k and u(k) its control-input vector. The state
at the next time step is a function g of the present state, as shown.

2.2.2 Constraints

Limitations on the allowable range of both x and u above can be imposed by simply
specifying the desired range. This constraint set is then used within the optimisation
procedure. There are two kinds of constraints acting in on a given system: hard and soft
constraints. The former is normally a consequence of the physical characteristics of the
system (e.g. the maximum possible discharge power of a battery), while the latter can be
disregarded when adherence to them result in an infeasible solution (e.g. desired water
temperature level that the system is physically unable to be reach).

Constraints on x(k + 1) are in fact a function of x(k) and u(k), and can be defined
as2

g(xk,uk) ∈ X , (2.4)

which states that x(k + 1) has to belong to allowable-state set X . Constraints can also
be applied to the entries of u in sets of one or more inequalities, that is,

Cuk ≤ 0, (2.5)

where C contains coefficients applicable to the entries of u and 0 is the zero vector of
appropriate size.

2A note on notation: in (2.6) and elsewhere, the use of subscripts k and l (e.g. xl) imply predicted
values, whereas standard notation (e.g. x(k)) implies measured or set (and thus known) values.
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2.2.3 Objective Function

The general form of the objective function J at time step k is

Jk→N(x(k),U(k)) =
N+k−1∑

l=k

q(xl,ul). (2.6)

Scalar q(xl,ul) represents the stage cost at step l and N the prediction horizon (as
measured in number of steps ahead), where q consists of one or more weighting functions.
Vector U(k) groups together the sequence of control-input vectors over prediction horizon
N , i.e.

U(k) =
[
uT
k uT

k+1 · · · uT
k+N−1

]T

. (2.7)

2.2.4 Optimisation Procedure

The objective function is minimised at every time step, subject to specified constraints.
There are two main methods of solving this minimisation problem: the recursive and batch
approach. Both are discussed here, with the latter used as part of a control scheme in
Chapter 4.

Recursive Approach

Often, a specific final state is desired. In these instances, the recursive approach to MPC
is used, which makes use of Bellman’s principle of optimality: for a given optimal-state
trajectory, an intermediate trajectory must also be optimal [13, p. 150]. This is used to
break up an optimisation problem into smaller, successive sub-problems. The recursive
approach is also referred to as dynamic programming.

Starting from the final-state cost p(xk+N) and state constraint XF , that is,

J∗k+N→k+N(xk+N) = p(xk+N) (2.8a)

and
Xk+N→k+N = XF , (2.8b)
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the optimal path is obtained by working backwards, i.e.

J∗k+N−1→k+N(xk+N−1) = min
uN−1

q(xk+N−1) + J∗k+N→k+N(xk+N)

subject to Cuk+N−1 ≤ 0,

g(xk+N−1,uk+N−1) ∈ Xk+N→k+N

...

J∗k→k+N(xk) = min
uk

q(xk) + J∗k→k+N(xk)

subject to Cuk ≤ 0,

g(xk,uk) ∈ Xk→k+N ,

xk = x(k).

(2.9)

As used above, J∗ represents the optimal value of J .

Batch Approach

When no particular final state is desired, the batch approach is used: calculate the least-
cost path so long as the solution adheres to specified constraints, regardless of what the
end state may be. Often times a reference state is known, but there exists a trade-off that
prohibits excessive control-input effort (a finite amount of power, for example). If the
entirety of the future is known, an optimal path could be obtained that would adhere to
specific constraints and yield the lowest-cost path possible. In practice, at least two hurdles
arise: First, the system model can approximate actual dynamics sufficiently accurate in
the near term, but deviation from actual behaviour compounds over a longer time frame,
causing the input sequence calculated to cease bearing relevance to the system. Secondly,
the computational burden of calculating the optimal input sequence tends to grow quickly
as the horizon over which the optimisation takes place is increased.

Instead, a finite N -step (“batch”) solution is applied to the system with the aim that,
with sufficient foresight, a noticeable improvement in control performance can be observed.
An analogy used to describe the appeal of this approach is that of driving a car along
a winding road: while the driver may not know the route to be driven in its entirety,
knowledge of the short-term future allows for control actions to be taken that allow for a
more efficient use of fuel (fewer stops and starts, smoother turning, etc.).

The batch-approach optimisation problem can be stated as

J∗k→k+N(x(k),U(k)) = min
U(k)

J(x(k),U(k))

subject to Cuk ≤ 0,

g(xk,uk) ∈ Xk→k+N .

(2.10)

In subsequent chapters the relaxed notation J(k) is used, instead of the strict Jk→k+N(x(k),U(k))
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notation.

2.2.5 Receding-Horizon Policy

Figure 2.1 depicts the working of the batch approach for a single-input, single-output
system with state x and control input u, as an illustration of the receding-horizon concept.
At time step k a control-input sequence is calculated, of which only the first entry, u(k), is
applied. At the next time step, the process is repeated. A more efficient route, requiring less
input effort, is found by looking ahead and taking proactive steps to guide the trajectory
toward the lower-cost route. This procedure constitutes a receding-horizon policy.

u(k)

k k + 1 k +N

Reference

Past Future

State trajectory

Control-input sequence

(a) The system state and control input at time k.

u(k + 1)

k k + 1 k +N + 1

State trajectory

Control-input sequence

(b) The system state and control input at time k + 1.

Figure 2.1: An example batch-approach state trajectory and control-input sequence, based
on [13, p. 244].

2.3 Quadratic Programme Convexity

Equations in the quadratic form are often used as objective functions in optimisation
procedures (because it is mathematically convenient), generally defined as [13, p. 39]

J =
1

2
zTHz + qTz, (2.11)
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where z is the vector to be optimised, H is referred to as the Hessian matrix [24, p. 626],
and q is the linear cost vector. A global optimizer (the single most-suitable z across its
entire range) is preferred over a local optimizer (the most-suitable z in a small range).
Optimisation problems for which any local optimizer is also considered to be a global
optimizer are said to be ‘convex’. The globally optimal z, z∗, for an unconstrained problem
is defined as

z∗ = −H−1q. (2.12)

In these cases, the Hessian H is said to be positive definite and the global optimizer is
unique. There exist cases where H is singular (i.e. non-invertible), the implication being
that there are multiple global optimizers, for which the unconstrained optimizer(s) can
be found from

Hz∗ = −q. (2.13)

Here, the Hessian allows for a convex optimisation problem, but, since it is singular, the
Hessian is said to be positive semi-definite. This is the minimum condition necessary in
order for the problem to be reliably optimised.

2.4 Summary

Chapter 2 discusses underlying theory applicable to later chapters of the thesis. The
preferred modelling approach is expanded upon, a specific predictive control method is
described, and the definition of convex quadratic programmes, applicable to the imple-
mentation of predictive control, is provided.
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Chapter 3

System Description

This chapter describes a framework to reconcile heterogeneous electrical entities within
a power system. Descriptions of a number of such entities are supplied. Lastly, a sample
system, featuring each of the described entities, is proposed for use within a control
framework.

3.1 Electrical Entities as Power Nodes

Electrical entities within a power system can be divided into three groups: generators,
loads, or storage devices. These entities interact through electrical energy transfer, where
a conversion to other types (e.g. chemical, kinetic, light, or thermal) of energy can take
place. Electrical entities can differ a great deal from one another. By focusing, instead,
on commonalities between them, a framework can be formed within which each entity is
sufficiently described. In this way, a heterogeneous set of generators, loads, and storage
devices can be characterised by a homogeneous set of properties.

A framework of this sort can be used to gain an understanding of the present state
of the power system. This includes the ability to identify opportunities where generators’
excess can be assigned to candidate loads in an optimal manner. (More is said on this
subject in Chapter 4.)

One such approach views electrical entities as power nodes [25], whereby each entity
can be described by a number of properties. Generation and load power pgen and pload,
respectively, describe the node’s activity at a given point in time. Energy storage capacity
E describes the node’s ability to store energy in absolute terms, e.g. charge (as opposed
to relative terms, e.g. water temperature relative to ambient temperature), if the node
is indeed capable of doing so. If a node can store electrical charge, level x describes
the percentage of total capacity filled at a given point in time. External requirement
ξ describes rigid demand power the node requires (with a permitted range of ξ ≤ 0) or
supply power it produces (with a permitted range of ξ ≥ 0) at a given point in time. Nodes
with ξ = 0 are controllable, and nodes with non-zero ξ are non-controllable. Forced waste
wf (applicable to nodes with non-zero ξ) describes the degree to which ξ for a given node

13
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CHAPTER 3. SYSTEM DESCRIPTION 14

is unfulfilled at a given point in time. Standing loss ws (applicable to storage devices)
describes losses incurred due to the internal operations of a storage device. A summary
of all power node properties, adapted for the present use-case from [25], can be found in
Table 3.1.

Table 3.1: Properties of a Generic Power Node

Property State Implication

pgen [W] pgen ≥ 0 Generator
pload [W] pload ≥ 0 Load

pgen ≥ 0 & pload ≥ 0 Storage device

E [Wh] E = 0 No energy storage capacity
E > 0 Energy storage present

x [p.u.] 0 ≤ x ≤ 1 Storage capacity filled

ξ [W] ξ ≤ 0 Uncontrollable demand
ξ = 0 Controllable
ξ ≥ 0 Uncontrollable supply

wf [W] wf < 0 Unmet load
wf > 0 Curtailed generated energy

ws [W] ws = 0 Lossless storage
ws > 0 Standing losses present

A graphical depiction of a generic power node, including all described properties, is
shown in Figure 3.1.

capacity E
level x,

0 ≤ x ≤ 1

pgen

ploadηload pload

pgen
ηgen

External requirement ξ

Forced waste wf

Standing losses ws

Figure 3.1: A generic power node.

A sample system is simulated using the power-nodes framework. Figure 3.2 depicts
the electrical bus of said system. The nodes highlighted in blue are of particular interest.
Under a control regime, each of these subsystems can be manipulated so that the PV
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array’s productivity, defined as the percentage of potential generation utilised, can be
maximised.

ξ = 0

Grid

ξ = 0

Air-handling unit

ξ ≥ 0

PV array

ξ = 0

Electric water heater

ξ = 0

Battery energy storage

ξ ≤ 0

Diverse load

House electrical bus

Figure 3.2: The sample system.

Incoming grid power, pictured above, is also considered controllable. Its power con-
tribution at any given time step is calculated to be the amount of supply power which
cannot be provided by some combination of the BES and PV array.

Optimising the scheduling of blue power nodes (in Figure 3.2), so that the household
is supplied by the PV array and BES unit as far as possible, is considered to be the
most valuable contribution the proposed energy management system can make. Further
sections in this chapter describe parts of the system, as a precursor to exercising control
over the system as a whole (the subject of Chapter 4).

3.2 Uncontrollable Nodes

In this section, entities with either ξ ≤ 0 or ξ ≥ 0, that is, over which no meaningful
control can be exerted, are described. Two entities are of interest in the present case: a
PV array, and a number of household appliances (referred to collectively as the diverse
load). Load-power data from a real-world system gathered from 1 September 2017 to 31
August 2018 are used as the diverse load. Gathered data points are 10 min apart, where
power measurements represent average power.

3.2.1 Photovoltaic Array

Optimal sizing of the solar PV array is not the subject of the present study, but an
installation of reasonable size is to be used. This section describes the process by which
such an installation is obtained.

Suppose the PV array is to yield 6500 kWh of energy annually, an arbitrary choice.
The Stellenbosch region has an estimated 1826 h of full-sun conditions, annually [26].
Represent reticulation-wiring losses, dirt, and module mismatch with a derate factor of
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0.88 [27]. When combined, this results in a required array size [27, p. 336] of

Pdc =
6500 kWh/yr

(0.88)(1826 h/yr)
= 4.05 kW. (3.1)

Canadian Solar 290MS-SD (290 W) PV modules [28] are used for the simulated array.
A total of 4.05/0.29 = 13.97 ≈ 14 panels would be required. Suppose an SMA Sunny Boy
4000TL-21 [29] is selected as solar inverter of choice. A single 14-panel string would fall in
the inverter’s maximum-power point range. The validity of this arrangement is confirmed
below.

Temperature data recorded on the engineering faculty’s roof over the course of the last
decade report a maximum temperature of 41.83 ◦C and a minimum of 0 ◦C [30]. Along
with the specifications listed in Table 3.2, this leads to maximum and minimum panel
and string voltages as follows: Maximum panel voltage is calculated, making use of the
difference between standard testing-conditions and the expected minimum temperature,
as

32.1
(
1− 0.0031(0− 25)

)
= 34.59 V, (3.2)

and therefore a maximum string voltage of 484.26 V is obtained (the panel resides at am-
bient temperature in cold conditions). On hotter days, the panel temperature is estimated
using [27, p. 338]

Tcell = Tamb +

(
NOCT− 20

0.8

)
S, (3.3)

where insolation S is taken as 1 kW/m2/day. This results in a maximum cell temperature
of 73.08 ◦C and a minimum panel voltage of

32.2
(
1− 0.0031(73.08− 25)

)
= 27.32 V. (3.4)

The corresponding string voltage is 382.48 V. Both the minimum and maximum string
voltages fall within the allowable range of the solar inverter’s maximum-power point
tracker. This confirms the validity of the 14-panel string arrangement.
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Table 3.2: Selected specifications

Specification Value Units

Canadian Solar 290MS-SD
Short-circuit current 15 A
Rated voltage 32.1 V
Temperature coefficient -0.31 %/K
Nominal operating cell temperature (NOCT) 45 ◦C

SMA Sunny Boy 3600TL-21
Allowable short-circuit current 20 A
Maximum-power point range 175–500 V

Standard testing-conditions temperature 25 ◦C

Global horizontal irradiation [31] data gathered on the rooftop of Stellenbosch Uni-
versity’s engineering faculty from the start of September 2017 to the end of August 2018,
downloaded from Southern African Universities Radiometric Network (SAURAN) [32],
are used to represent radiation falling in on the simulated flat-panel (0◦ tilt) solar PV
array. A sample of this dataset is shown in Figure 3.3, which depicts the solar inverter’s
output power for 1–7 October 2017. Over the selected sample period, a total of 87.82 kWh

is output by the solar inverter.
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Figure 3.3: PV inverter output power during the 1–7 October 2017 period.

3.2.2 Diverse Load

Household power consumption data, recorded from September 2017 through August 2018,
for a number of appliances (devices plugged into power outlets, stove, etc.) comprise the
system’s uncontrollable load (i.e. ξ ≤ 0) power node. A sample of this dataset is shown
in Figure 3.4, which depicts the diverse load’s power consumption for 1–7 October 2017.
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Figure 3.4: Diverse load power consumption during the 1–7 October 2017 period.

Over the course of the selected period, a total of 30.47 kWh is consumed by the system’s
diverse load.

3.3 Selected Controllable Nodes

Three controllable electrical entities are described in this section: a BES model, which is
continuously controllable (0–100 %), as well as AHU and EWH models, both of which are
controllable on an integer basis (i.e. ‘on/off’) . The discretisation sampling period Ts is
taken to be 10 min.

3.3.1 Battery Energy Storage

In this section, the chosen battery model, based on [20], is described and simulated.

Model Description

A visual depiction of the working of the BES model is provided in Figure 3.5. Charge-well
factor cw [%] models the distribution of energy, which is stored throughout the battery
and not available in its entirety at a moment’s notice. Instead, only the available well,
denoted by xBES,1(k) [p.u.], is immediately available.
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xBES,2(k) xBES,1(k)
xBES,2(k)

1−cw

1
xBES,1(k)

cw
cr

1− cw cw

uBES,gen(k) uBES,load(k)

Figure 3.5: Visual depiction of the battery energy storage model, which models the rate-
capacity effect [20].

Energy flows through from the reserve (denoted as xBES,2(k) [p.u.]) to the available well
at a rate determined by recovery factor cr [s−1]. This phenomenon is referred to as the
rate-capacity effect: at higher operating rates of charge or discharge, the usable battery
capacity is reduced. The rate-capacity effect models these bottlenecks in the flow of charge
by representing the battery as two charge wells.

In the charge state, for example, once the available well reaches capacity, the flow of
current into the battery is limited to the maximum allowable flow of charge between the
charge wells. Leaving the battery inactive, referred to as ‘relaxing’ the battery, after use
allows for energy to redistribute between the wells at a given point in time.

The BES state of charge (SoC) is the sum of its charge two charge wells. The battery
state vector is thus

xBES(k) =

[
xBES,1(k)

xBES,2(k)

]
. (3.5)

The state-space representation describing the battery SoC [20] is

xBES(k + 1) = ABESxBES(k) +BBESuBES(k) [p.u.], (3.6)

where xBES and uBES are the battery’s state and control-input vector, respectively.
The battery control-input vector is defined as

uBES(k) =

[
uBES,gen(k)

uBES,load(k)

]
, (3.7)

where

uBES,gen(k) ∈ [0, 1] and uBES,load(k) ∈ [−1, 0].

(The battery control inputs are assumed to be continuous in nature.)
To incorporate the factors described earlier, state matrix ABES,c can be defined (in
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the continuous-time domain) as [20]

ABES,c =

[
− cr
cw

cr
1−cw

cr
cw

− cr
1−cw

]
. (3.8)

Furthermore, [20, p. 18] shows that a single efficiency, ηBES, can be used for both charge
and discharge states, that is,

ηBES,ch ≈ ηBES,dis = ηBES. (3.9)

Assume that the battery converter has efficiency ηconv. Take ηtotal as the product of ηBES

and ηconv. This yields the input matrix

BBES,c =

[
− 1
ηtotal

−ηtotal

0 0

]
. (3.10)

Both ABES,c and BBES,c are discretised, using the exact-discretisation method described
in Chapter 2, before use within the simulated system, as the simulation is done in discrete
time. Their discete-time representations will be referred to similarly, but without the ‘c’
subscript. The discrete-time state and control-input matrices are calculated as follows:

ABES = eABES,cTs . (3.11a)

The discretised matrix BBES is additionally normalised to its per-unit representation, the
preferred notation when describing electrical systems subject to size variability. Rated
power PBES,r [W] and rated storage capacity EBES,r [Wh] are used to convert the matrix
to its per-unit equivalent, as shown below:

BBES =

(
PBES,r

EBES,r

)∫ Ts

0

eABES,cτdτ BBES,c. (3.11b)

For the sake of generality, dimensions of the BES state-space model are defined as

xBES(k) ∈ RnBES ,uBES(k) ∈ RmBES ,ABES ∈ RnBES×nBES ,BBES ∈ RnBES×mBES ,

where R refers to real space and its superscript denoting the dimensions of the matrix or
vector.

BES Test Simulation

The simulated battery makes use of the Tesla Powerwall 2’s specifications [33]. Energy
capacity EBES is chosen as 13.5 kWh, with a maximum continuous power rating of 5 kW

(for both charge and discharge) at an efficiency ηtotal of 95 %; Charge well xBES,1 stores a
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maximum of 15 % of battery capacity (thus cw = 0.15), with the remaining 85 % stored
in xBES,2; recovery factor cr is taken to be 1×10−3s−1 [20]. No standing losses are taken
into consideration.

Figure 3.6 shows the modelled battery cycled from a fully charged state to depletion
and back again (Figure 3.6a). The rate-capacity effect can be observed in both charge
and discharge states. As the available well (xBES,1) is depleted, the rate at which energy
is redistributed from the reserve well (xBES,2) is lower than rated discharge power (Figure
3.6b).
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(a) Stored energy.
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(b) BES generation and load power during the test simulation.

Figure 3.6: BES test simulation stored energy, and generation and load power.

Although the battery, in its entirety, hypothetically contains the amount of charge
required to discharge at maximum capacity, due to the bottleneck in flow of charge, lower
discharge power is observed. The inverse process can also be observed.

3.3.2 Air-Handling Unit

This section describes the room thermal model and AHU in terms of its states, control
input, and disturbances acting in on the room. The room’s thermal characteristics are
described, as well as those of two heat fluxes. A heat flux is a mechanism through which
heat energy is transferred per unit area per unit time, specifically, to/from the room or
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any of its building elements’ surfaces. Applicable heat fluxes are the passive interaction
with the surrounding ambient air and the active interaction with the AHU itself. The
model used is based on [17] and [18]. Note that it is assumed that only integer control
can be exercised over the AHU, i.e. an ‘on’ or ’off’ command.

Characterisation of the Simulated Room

A single simulated room is considered. It is assumed to be a four-walled room, with no
windows through which solar radiation can enter the room.

The room is made up out of various components, namely: the air within the room
(referred to as the ‘zone’), as well as its four surrounding walls, the ceiling, and floor,
referred to as building elements one to four, five, and six, respectively. The zone and
building temperatures are grouped together in the AHU state vector xAHU(k), i.e.

xAHU(k) =
[
xZ(k) xBE,1(k) · · · xBE,6(k)

]T

∈ RnZ+nBE [◦C]. (3.12)

Both nZ and nBE are defined for the sake of generality. Additionally, nAHU = nZ + nBE.
The simulated room is depicted in Figure 3.7.

b

l

xBE1(k)

xBE2(k)

xBE3(k)

xBE4(k)

(a) Top view.

h

l

room air = xZ(k)

xBE5(k)

xBE6(k)

(b) Side view.

Figure 3.7: Depiction of the simulated room. All monitored states are visible. Heat ex-
change can take place between the room air and walls, as well as each of the walls and
the surrounding ambient air.

The AHU state-space model is summarised as:

xAHU(k + 1) = AAHUxAHU(k) +BAHU,u(k)uAHU(k) +BAHU,vvAHU(k) [◦C], (3.13a)

where AAHU is the AHU state matrix, and BAHU,v its disturbance-input matrix. Its time-
varying control-input matrix BAHU,u(k) is defined as

BAHU,u(k) =
(
BAHU,u +

(
BAHU,xuxAHU(k) +BAHU,vuvAHU(k)

)
1̃

T

AHU,u

)
cAHU(k),

(3.13b)

where BAHU,u is the time-invariant control-input matrix, BAHU,xu its state-control input
matrix, BAHU,vu its disturbance-control input matrix, and cAHU(k) its conversion vector.
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Lastly,

1̃AHU,u =
[
1 0 0

]T

. (3.13c)

The disturbance-input vector vAHU(k) consists of ambient-temperature scalars acting
in on each of the external walls of the room, i.e.

vAHU(k) =
[
0 Tamb(k) · · · Tamb(k) 0 0

]T

∈ RnAHU . (3.14)

Temperature data downloaded from the Southern African Universities Radiometric Net-
work (SAURAN) [32] are represented by ambient temperature Tamb.

A complete description of each component of (3.13) follows.
Each of the building elements is described in terms of its dimensions and the mate-

rials used to construct it. If more than one material is used, the degree to which each
contributes to the building element’s characteristics is defined in its construction. In the
present case, each building element is made from a single material, therefore requiring no
elaborate construction specifications. Refer to Appendix B for construction and material
characteristics.

Analogous to an electrical circuit, a modelling approach that views the simulated
environment as a thermal resistive-capacitive network is used. Within this approach, a
number of nodes make up the network, as depicted in Figure 3.8.
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4 BE: floor

5 Ambient air

Figure 3.8: Simulated room components depicted as thermal nodes. ‘BE’, as used in the
figure, is the acronym for ‘building element.’

Heat exchange between two adjacent thermal nodes in Figure 3.8, i and j, can be
described as follows [17, p. 70]:

dQi

dxi︸︷︷︸
Ci

dxi(t)

dt
= A αij︸ ︷︷ ︸

1
Rij

(
xj (t)− xi(t)

)
, (3.15a)
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which, when rewritten, yields

Ci ẋi(t) =
1

Rij

(
xj (t)− xi(t)

)
,

ẋi(t) = −
( 1

RijCi

)
xi(t) +

( 1

RijCi

)
xj (t). (3.15b)

Here Qi is the enthalpy (stored thermal energy ) of node i, while Ci is its thermal capac-
itance. The cross-sectional area of contact between the nodes is represented by A and αij

the convection coefficient between them, the product of which is equivalent to the inverse
of thermal resistance Rij . Node temperatures are represented by xi and xj .

Algorithm 11 describes the procedure through which all thermal interactions, as stated
in (3.15b), are modelled in matrix form (denoted by subscript ‘t’). Index jZ denotes the
position of xZ in xAHU and, similarly, jBE,i denotes the position of the ith building element
in xAHU.

Algorithm 1 Construction of room thermal model matrices
1: function [At,Bt] = ROOM_THERMAL_MODEL(thermal_model_data)
2: Initialise Ā as 0
3: Zone heat capacity CZ ← cair ρair VZ

4: C ← CZ

5: for i from 1 to nBE do
6: i th building element’s heat capacity CBE,i ← aBE,i dBE,i ρBE,i cBE,i

7: C ← C appended with CBE,i

8: Ā← blkdiag(Ā, 0)
9: Determine indices jZ and jBE,i (positions of zone and i th building element in
xAHU vector)

10: Ā(jZ, jBE,i)← aBE,i/
(dBE,i Rλ,BE

2
+ 1

αBE,i

)

11: Ā(jBE,i , jZ)← aBE,i/
(dBE,i Rλ,BE

2
+ 1

αBE,i

)

12: Ā(jZ, jZ)← −aBE,i/
(dBE,i Rλ,BE

2
+ 1

αBE,i

)

13: Ā(jBE,i , jBE,i)← −aBE,i/
(dBE,i Rλ,BE

2
+ 1

αBE,i

)

14: end for
15: B̄ ← I of same dimensions as Ā
16: At ← C−1Ā
17: Bt ← C−1B̄
18: end function

Heat Flux: Ambient Air

Heat fluxes are denoted by a subscript ‘q’. The procedure for the first of which, ambient
air, follows below.

1Algorithm 1 makes use of the blkdiag(A,B) function, which returns
[
A 0
0 B

]
. This notation is also

used elsewhere in the thesis.
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Heat is lost to the ambient air surrounding the room’s walls. Both the ceiling and floor
temperatures are also state variables, but heat exchanges on their outside adjacent surfaces
are not taken into account, as they are considered to be negligible [18]. Although this model
of heat exchange is greatly simplified, it succeeds in representing the most significant
interactions. Algorithm 2 describes the relevant procedure, where thermal_model_data
is a data structure containing the room and building elements’ relevant characteristics.

Algorithm 2 Heat exchange between room walls and ambient air
1: function [Aq,amb, Bq,v,amb] = AMB_MATS(thermal_model_data)
2: Initialise Aq,amb and Bq,v,amb as 0(nZ+nBE)×(nZ+nBE)

3: for i from 1 to nBE − 2 do
4: Determine index jBE,i (position of i th building element in xAHU vector)
5: Aq,amb(jBE,i , jBE,i) = −aBE,i/

(
1

αAdjB,i
+Rλ,i

di

2

)

6: Bq,v,amb(jBE,i , jBE,i) = aBE,i/
(

1
αAdjB,i

+Rλ,i
di

2

)

7: end for
8: end function

Heat Flux: Dual Split-Inverter AHU

The room temperature is regulated by an AHU of the dual split-inverter variant, described
in Appendix B. The device can only be toggled between ‘on’ and ‘off’ states. Its on-state
power consumption is time-varying and dependent on the difference between present state
and reference temperatures.

Time-varying AHU power consumption is calculated through use of the AHU conver-
sion vector cAHU(k), defined as

cAHU(k) =
[
cṁ(k) cH(k) cC(k)

]T

, (3.16)

where cṁ(k), cH(k) and cC(k) are the estimated mass flow rate, heating, and cooling
coefficients, respectively. Note that cH(k) and cC(k) cannot have non-zero values simulta-
neously; the AHU is either heating or cooling at any given point in time, based on which
action will reduce the discrepancy between actual and reference room temperatures to
the greatest extent. For this functionality, a simple quadratic cost function JAHU,ctrl(k) is
used:

JAHU,ctrl(k) =
(
xZ

(
cAHU(k), Tamb(k)

)
− xZ,ref(k)

)2

. (3.17)

The internal controller compares J∗H(k), defined as

J∗H(k) = min
cAHU

JAHU,ctrl(k)

subject to constraints on cṁ(k) and cH(k),

and cC(k) = 0,

(3.18)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. SYSTEM DESCRIPTION 26

with J∗C(k), defined as

J∗C(k) = min
cAHU

JAHU,ctrl(k)

subject to constraints on cṁ(k) and cC(k),

and cH(k) = 0,

(3.19)

where the applicable constraints are dependent on the product chosen to simulate (in this
instance an Alliance Arctic Midwall unit [34]).
The lowest-cost option between the optimal cooling and heating costs is selected and the
applicable cAHU(k) returned.

In [18], it is reported that most heating, ventilation, and cooling models employ
straight-line relations between the temperature regulation effort exerted by the AHU
and its energy usage. Under the assumption that the fan extracting or injecting air ap-
proximates ideal behaviour, an estimate of the fan’s power consumption can be made,
based on the volumetric air flow rates supplied. Figure 3.9 depicts this relation for the
AHU used in this instance.
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Figure 3.9: AHU fan power consumption curve.

The straight-line approximation, combined with the coefficient of performance (COP)
and energy efficiency ratio (EER) specifications provided [34] (refer to Appendix B for an
extract from the datasheet), can be used to convert the AHU coefficients to representative
power consumption values, as shown:

pAHU(k) =
(
γ1cṁ(k) + γ2

)
+
cH(k)

COP
+
cC(k)

EER
, (3.20)

where c{ṁ,H,C}(k) are the elements of cAHU(k), while constants γ1 and γ2 are the gradient
and vertical-axis intersection of Figure 3.9, respectively.

Within the state-space representation, coefficient vector cAHU(k) is separated from an
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integer control input uAHU(k), defined as

uAHU(k) ∈ {0, 1}. (3.21)

Heat-flux control-input matrix Bq,u ∈ R(nZ+nBE)×(nZ+nBE) is sparse, containing only the
following non-zero entries:

Bq,u(iZ, icH) = 1 (3.22a)

and
Bq,u(iZ, icC) = −1, (3.22b)

which correspond with the AHU coefficient values cH(k) and cC(k).
Similarly, state control-input matrixBq,xu and disturbance-input control-input matrix

Bq,vu consist mostly of zeroes, save for the following entries:

Bq,xu(jZ, jZ) = −cair, (3.23)

and
Bq,vu(jZ, jTamb

) = cair. (3.24)

Constant cair represents the specific heat capacity of air and converts the air mass removed
or added to the room into its equivalent in terms of energy extracted or injected into said
room. Index jTamb

refers to the offset of the first instance of Tamb in vAHU.

AHU State-Space Matrices

Matrices describing the room’s own characteristics, as well as those relating to heat fluxes,
are developed in prior sections. Here, they are discretised (with a sampling period of Ts)
and combined to yield the AHU state-space model.

The product of Bt and the various thermal resistance matrices represent temperature
transfer rates between modelled elements per unit time. The discretised matrices represent
transfer rates per sampling interval. When used in concert with xAHU, uAHU, and vAHU,
temperature changes can be modelled across the system as a whole.

The continuous-time state matrix AAHU,c is calculated as

AAHU,c = At +Aq,amb. (3.25)

Each of the continuous-time matrices are discretised, using the exact discretisation method,
as shown below:

AAHU = eAAHU,cTs , (3.26a)

BAHU,u =

∫ Ts

0

eAAHU,cτdτ Bt Bq,u , (3.26b)
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BAHU,v =

∫ Ts

0

eAAHU,cτdτ Bt Bq,v , (3.26c)

BAHU,xu =

∫ Ts

0

eAAHU,cτdτ Bt Bq,xu , (3.26d)

and, lastly,

BAHU,vu =

∫ Ts

0

eAAHU,cτdτ Bt Bq,vu . (3.26e)

Matrix and vector dimensions are given below:

nAHU = nZ + nBE,

xAHU(k),vAHU(k) ∈ RnAHU ,uAHU(k) ∈ RmAHU ,

AAHU,BAHU,v ,BAHU,xu ,BAHU,vu ∈ RnAHU×nAHU ,

BAHU,u ∈ RnAHU×mAHU .

AHU Test Simulation

The dual split-inverter AHU used is an Alliance Arctic Midwall FOUSI12 (12 000 Btu)
[34], the specifications of which are given in Table B.9.

A 24 h simulation is done using ambient temperature data from 11 September 2017
(selected arbitrarily). The AHU injects heat into the room from 08:00 to 17:00, following a
reference temperature of 26 ◦C. The resulting temperature progression is shown in Figure
3.10a.

The room volume is within the AHU’s operating range (48 m3; refer to Table B.1
for complete dimensions description), and therefore room temperature can be regulated
successfully. A temperature drop can be observed at 08:00. Room temperature at the
previous time step is at ambient temperature, therefore no heat is lost to surrounding
building elements (also still at ambient temperature). Losses are incurred at the next
time step, however, and as a result the AHU briefly operates at maximum capacity to
mitigate the difference between room and reference temperature.

The room walls act as a buffer between zone temperature xZ and the surrounding
ambient air. Once the AHU is switched off, room-temperature decline is buoyed by the
enthalpy of surrounding building elements.

AHU power consumption during the simulation is shown in Figure 3.10b. As ambient
temperature rises, the inverter-type AHU requires less power to regulate the room air to
its reference temperature.
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Figure 3.10: AHU test simulation results, using ambient-air temperature data from 11
September 2017.

The model successfully captures the exponential decay of heat in air, as can be seen
in the temperature decline in both the room and wall temperatures from 18:00 onwards.
Additionally, the reduced power required to maintain room temperature at reference, as
ambient air temperature rises, is characteristic of inverter-type AHUs. The focus of both
[17] and [18] is multi-room building management, and detailed power consumption graphs
are not available to compare present model operation against. As the thermal behaviour
compares well, operating from the same modelling approach, power consumption is as-
sumed to be reasonably estimated, as well.

3.3.3 Electric Water Heater

In this section the EWH model is described, followed by a test simulation.

Model Description

A suitable model, converted into its equivalent state-space representation from [15], is
used. In [15], one- and two-node models are compared, with the latter’s gains in accuracy
over the former minuscule. The one-node model is reworked for the present application,
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as it can be applied to either a horizontally- or vertically-installed water heater. It is an
approximation, as it assumes uniform temperature distribution within the tank. Water
temperature within the EWH is defined as state xEWH [◦C], and the one-node model can
be summarised as

xEWH(k + 1) = aEWHxEWH(k) + bEWH,uuEWH(k) +BEWH,v(k)vEWH(k) [◦C], (3.27a)

where uEWH(k) is the EWH control input, defined as an integer (i.e. ‘on/off’) input, that
is,

uEWH(k) ∈ {0, 1}, (3.27b)

and vEWH(k) its disturbance-input vector. Additionally, aEWH is its state coefficient and
bEWH,u its control-input coefficient. The disturbance input vector BEWH,v(k) is defined as

BEWH,v(k) = bT
EWH,v + bEWH,xvxEWH(k)1̃

T

EWH,xv + bEWH,vvv
T
EWH(k)1̃EWH,vv , (3.27c)

where
bEWH,v =

[
bEWH,v 0 0

]T

, (3.27d)

with bEWH,v being the EWH disturbance coefficient. Additionally, bEWH,xv is its state-
disturbance coefficient and bEWH,vv its disturbance-disturbance coefficient. Lastly, the
EWH’s auxiliary vector and matrix are defined as

1̃EWH,xv =
[
0 1 0

]T

(3.27e)

and

1̃EWH,vv =




0 0 0

0 0 0

0 1 0


 , (3.27f)

which are used to convert products between variables to their state-space equivalent.
A description of each coefficient used in (3.27) follows.
Energy contained within an EWH is lost through two mechanisms: heat loss due to

an ambient temperature lower than that of the water within, and the loss of heated water
during a usage event (when water is drawn off, the lost volume is replenished with water
at a significantly lower temperature). Figure 3.11 depicts these interactions.
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Figure 3.11: A graphical depiction of the water-heating variables’ representations.

In state-space parlance, the methods of energy loss can be modelled through the use of
disturbances. Specifically, the following disturbances are considered: ambient temperature
Tamb, volume of heated water drawn-off Vused, and the temperature of incoming water Tin.
These factors comprise the disturbance vector

vEWH(k) =
[
Tamb(k) Vused(k) Tin(k)

]T

∈ RnEWH,v . (3.28)

Lost heat can be replenished through means of the heating element within the tank in
question, at rated power PEWH,r. The heating-element state is referred to as control input
uEWH.

State coefficient aEWH is defined as

aEWH = eβ, (3.29)

and represents the dissipation of stored heat into the surrounding environment. Constant
β is defined as

β =
−Ts

cwater ρwater VEWH REWH

, (3.30)

where Ts is the simulation sample period, cwater is the specific thermal capacitance of
water, ρwater is the density of water, VEWH is the volume of the EWH tank, and REWH is
the thermal resistance of the tank itself.

Input coefficient bEWH,u can be defined as

bEWH,u =
PEWH,r Ts

cwater mEWH

, (3.31)

where PEWH,r is the rated EWH input power and EWH mass mEWH is the product of
ρwater and VEWH.
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Disturbance coefficient bEWH,v is defined as

bEWH,v = (1− eβ). (3.32)

State-disturbance coefficient bEWH,xv is defined as

bEWH,xv =
−eβ
VEWH

. (3.33)

Finally, disturbance-disturbance coefficient bEWH,vv is defined as

bEWH,vv =
1

VEWH

. (3.34)

For completeness’ sake:

xEWH, aEWH, bEWH,u , bEWH,v , bEWH,vv , bEWH,xv ∈ R.

In the interest of generality, refer to the dimensions of the EWH state as residing in nEWH-
dimensional real space and its control input within mEWH-dimensional binary space.

EWH Test Simulation

A 24 h simulation is done to illustrate the working of the EWH model. Table 3.3 lists the
parameter values used in the test simulation [15]. Inflowing water is assumed to be at
ambient temperature.

Table 3.3: Electric water heater parameter values

Parameter Value Units

cwater 4.185 kJ
kg·K

ρwater 1000 kg/m3

REWH 0.43 K/W
PEWH,r 3 kW
VEWH 0.15 m3

Hot water-usage data are taken from [35], which provides data for a number of anony-
mous households, one instance of which is used for Vused(k). This dataset is assumed to
be representative of typical household hot water-consumption behaviour. Ambient tem-
perature data for 11 September 2017 are used. The demonstration date is arbitrarily
selected.

Water temperature inside the EWH tank can be seen in Figure 3.12a. The EWH
reference temperature is 65 ◦C. Corresponding hot-water volume consumed, batched in
5-minute increments, can be seen in Figure 3.12b. The input power required to replenish
lost heat can be seen in Figure 3.12c.
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(b) Hot-water volume consumed during usage events.
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(c) Load power. Short bursts of power consumption are observed outside of usage periods, when
the tank water temperature drops below 65 ◦C (its reference temperature).

Figure 3.12: EWH test simulation temperatures, volume consumed and power consump-
tion on 11 September 2017.

Heat loss as a result of usage events follows the behaviour of the one-node model in
[15], which confirms the validity of the state-space representation of the model.

3.3.4 Combined State-Space Model of Selected Subsystems

As the overarching goal requires a single model, it is beneficial to combine the various
subsystems into a combined state-space representation, written as

x(k + 1) = Ax(k) +Bu(k)u(k) +Bv(k)v(k), (3.35)
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where the combined state vector is

x(k) =
[
xT

BES(k) xT
AHU(k) xEWH(k)

]T

∈ Rnx , (3.36)

with
nx = nBES + nAHU + nEWH. (3.37)

Control inputs can be divided into those of a continuous nature and those of an integer
nature. The latter are only capable of existing in either an ‘on’ or ‘off’ binary state. Denote
the vector of continuous-control inputs as uc and its binary counterpart as ub. These are,
respectively,

uc(k) = ubatt(k) ∈ Rmc , (3.38)

and

ub(k) =

[
uAHU(k)

uEWH(k)

]
∈ {0, 1}mb . (3.39)

Note that mc = mBES and mb = mAHU + mEWH. Written together, the control-input
vector is

u(k) =

[
uc(k)

ub(k)

]
∈ Rmc × {0, 1}mb . (3.40)

Collectively, the control-input vector is of dimension m = mc + mb.
Disturbance vector v(k) can be defined as

v(k) =
[
0nBES vT

AHU(k) vT
EWH(k)

]T

∈ Rnv , (3.41)

where
nv = nBES + nAHU + nEWH,v . (3.42)

The state matrix A ∈ Rnx×nx of the system is described as

A =




ABES 0nBES×nAHU 0nBES×nEWH

0nAHU×nBES AAHU 0nAHU×nEWH

0nEWH×nBES 0nEWH×nAHU aEWH


 , (3.43)

the combined control input matrix Bu(k) ∈ Rnx×m is defined as

Bu(k) =




BBES 0nBES×mAHU 0nBES×mEWH

0nAHU×mBES BAHU,u(k) 0nAHU×mEWH

0nEWH×mBES 0nEWH×mAHU bEWH,u


 , (3.44)
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and the combined disturbance input matrix Bv(k) ∈ Rnx×nv is defined as

Bv(k) =




0nBES×nBES 0nBES×nAHU 0nBES×nEWH,v

0nAHU×nBES BAHU,v 0nAHU×nEWH,v

0nEWH×nBES 0nEWH×nAHU BEWH,v(k)


 . (3.45)

3.4 Summary

Chapter 3 describes a framework that provides a unified view of diverse electrical entities
by focusing on shared properties. A sample system, using said framework, is proposed.
Descriptions of selected controllable and uncontrollable subsystems (referred to as ‘nodes’)
follow. Simulation results for controllable nodes agree with those of referenced models.
Lastly, controllable nodes are combined into a single state-space representation suitable
for use within a control system.
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Chapter 4

Predictive Control

This chapter describes a predictive-control strategy aimed at maximising the utilisation
of a given PV array, defined as the percentage of generated energy usefully employed
within the local power system, while adhering to specified temperature constraints. The
general structure of the strategy is described, followed by relevant mathematical and
algorithmic formulations. An evaluation of controller performance follows thereafter. The
chapter concludes with a summary.

4.1 Control System Structure

Figure 4.1 depicts the described control system. To maximise the productivity of a given
solar PV array, the control system is structured as follows: The sum total generated power
of uncontrollable generation-only (i.e. ξ ≥ 0) nodes, minus the sum total load power
of uncontrollable load-only (i.e. ξ ≤ 0) nodes, is fed into a controller as target power
ptarget(k). State-reference vector Xref(k), consisting of selected state-reference values, and
a number of penalty matrices act as inputs to the controller. Deviations from the state and
control-input references, change in control input, and constraint parameters are regulated
through means of penalty matrices. State x(k) and the previous discrete-time instant’s
control input u(k−1), along with disturbance vector v(k), are also fed into the controller.
Each of these variable vectors and matrices are discussed in follow-on sections. State-space
representation (3.35) acts as the plant upon which control is exerted, repeated here for
convenience:

x(k + 1) = Ax(k) +Bu(k)u(k) +Bv(k)v(k). (4.1)

Note that the plant is bilinear in nature, because of the products between state, input
and disturbance variables. The implication for control purposes is that the plant is mildly
non-linear, seeing as the disturbance and state variables change slowly. This impacts the
choice of numerical solver, as it has to capable of accommodating non-linearities.

36
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∑
ξ≥0

pgen(k) +

−

∑
ξ≤0

pload(k)

ptarget(k)
Controller

Xref(k)

Penalty
matrices at
instant k

u(k)

z−1

Plant
x(k + 1)

z−1

v(k)

Figure 4.1: The control-system diagram.

4.2 Problem Formulation

The optimal control-input sequence U ∗(k) is determined by minimising an objective func-
tion J(k) over a prediction horizon N . Where after, only the first vector in the sequence,
u(k), is applied to the plant at time k. The procedure is repeated at each time step there-
after, constituting a receding-horizon policy. This makes the system more robust against
noise and unanticipated changes in references, states, and disturbances. The objective
function, defined in (4.2a), consists of three terms for each step over horizon N , at each
time step:

• The first penalises deviations from a specified state reference, weighted by state
penalty matrix Q.

• The second performs a similar role for control inputs, weighted by control-input
penalty matrix R.

• Lastly, the third term discourages continuous commutation (i.e. interchange between
integer inputs’ states), weighted by control-input change penalty matrix R∆u.

In this section, the parts of J(k), as well as constraints acting in on the control system,
are described in detail.

4.2.1 Objective Function Definition

Objective function J(k) is defined as

J(k) =
k+N−1∑

l=k

( ‖xl+1 − xref(l + 1)‖2
Q + ‖ul − uref,l‖2

R + ‖∆ul‖2
R∆u

) , (4.2a)
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where
‖ζ‖2

M = ζTMζ (4.2b)

is referred to as the weighted 2-norm (or Euclidean norm) relative to matrix M .
MatrixM has to be at least positive semi-definite for a solution to consistently exist. The
objective function is quadratic in both the states and inputs, as this is a mathematically-
convenient form. The sum in (4.2a) depicts all three parts of the objective function,
as described above, but does not make for efficient use within an optimisation context.
Calculating J(k) via the brute-force approach, i.e. evaluating each of the possible sum
sequences over an N -step horizon, quickly becomes computationally intractable as N
increases. Instead, rewriting (4.2a) as a quadratic programme allows for longer horizons to
be feasible by evaluating routes based on their respective cost, as opposed to exhaustively
evaluating all possible options.

First, as an intermediate step, J(k) is written in vector form, that is,

J(k) = ‖X(k)−Xref(k)‖2
Q̃ + ‖U (k)−U ref(k)‖2

R̃ (4.3a)

+
∥∥∥Ĩ∆uU(k)− Ĩ∆u,initu(k − 1)

∥∥∥
2

R̃∆u

,

making use of the vector form of the state-space representation:

X(k) = Sxx(k) + Su(k)U (k) + Sv(k)V (k), (4.3b)

where

X(k) =




xk+1

xk+2

...
xk+N



, U(k) =




uk

uk+1

...
uk+N−1




and V (k) =




v(k)

vk+1

...
vk+N−1




(4.3c)

are the evolution of the state vector, the control-input vector and the disturbance-input
vector over the prediction horizon, respectively.

The state- and input-reference vectors over the prediction horizon are defined as

Xref(k) =




xref(k + 1)

xref(k + 2)
...

xref(k +N)



∈ RN ·nx and U ref(k) =




uref(k)

uref,k+1

...
uref,k+N−1



∈ RN (mc+mb), (4.3d)

respectively. AllXref(k) values are set, and thus known. Control-input reference uref(k) is
known, but all other instances (uref,k+1, . . . ,uref,k+N−1) are likely to change. Control-input
reference generation is the subject of Section 4.3.
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Furthermore, Sx ∈ RN ·nx×nx is defined as

Sx =




A

A2

...
AN



, (4.3e)

Su(k) ∈ RN ·nx×N ·m is defined as

Su(k) =




Bu(k) 0 0 · · · 0

ABu(k) Bu,k+1 0 · · · 0

A2Bu(k) ABu,k+1 Bu,k+2 · · · 0
...

...
... . . . ...

AN−1Bu(k) AN−2Bu,k+1 AN−3Bu,k+2 · · · Bu,k+N−1




(4.3f)

and, similarly, Sv(k) ∈ RN ·nx×N ·nv is defined as

Sv(k) =




Bv(k) 0 0 · · · 0

ABv(k) Bv ,k+1 0 · · · 0

A2Bv(k) ABv ,k+1 Bv ,k+2 · · · 0
...

...
... . . . ...

AN−1Bv(k) AN−2Bv ,k+1 AN−3Bv ,k+2 · · · Bv ,k+N−1




(4.3g)

with 0 taken as the zero matrix of appropriate dimensions.
Note the time-varying nature of each of the non-zero elements of both Su(k) and Sv(k)

above. This is because, while A stays constant, both Bu(k) and Bv(k) are time-varying.
This implies that, at time instant k, for every step over the prediction horizon N these
matrices are updated with new element values, based on the state vector’s trajectory.

Penalty matrices Q, R, and R∆u are diagonal matrices tuned experimentally. Their
equivalents over the entirety of the prediction horizon, i.e. Q̃, R̃, and R̃∆u , are defined
as:

Q̃ = blkdiag(Q, . . . ,Q),R̃ = blkdiag(R, . . . ,R), and

R̃∆u = blkdiag(R∆u , . . . ,R∆u).
(4.3h)

(The full vector-form derivation can be found in Appendix C.1.)
The quadratic form of J(k) follows directly from its vector representation, and is

defined as:
J(k) = UT(k)Γ(k)U(k) + 2ΥT(k)U (k) + Θ(k), (4.4a)

where
Γ(k) = ST

u (k)Q̃Su(k) + R̃+ Ĩ
T

∆uR̃∆u Ĩ∆u , (4.4b)
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ΥT(k) = xT(k)ST
x Q̃Su(k) + V T(k)ST

v (k)Q̃Su(k)−XT
ref(k)Q̃Su(k)

−UT
ref(k)R̃− uT(k − 1)Ĩ

T

∆u,initR̃∆u Ĩ∆u ,
(4.4c)

and

Θ(k) = 2
(
V T(k)ST

v (k)Q̃Sxx(k)−XT
ref(k)Q̃Sxx(k)−XT

ref(k)Q̃Sv(k)V (k)
)

+ ‖Sxx(k)‖2
Q̃ + ‖Sv(k)V (k)‖2

Q̃ + ‖Xref(k)‖2
Q̃ + ‖U ref(k)‖2

R̃

+
∥∥∥Ĩ∆u,initu(k − 1)

∥∥∥
2

R̃∆u

.

(4.4d)

The full quadratic-form derivation can be found in Appendix C.2. Note that Γ(k) is a
multiple (specifically, half) of the Hessian matrix, and is positive semi-definite. Further-
more, Θ(k) does not depend on the control-input vector and, therefore, stays constant
during the optimisation.

4.2.2 Constraints

The control system is to adhere to certain constraints, namely: Bounds are placed on
the allowable temperature of both xZ and xEWH. Furthermore, total load power cannot
exceed total generated power. The converse is not necessarily true, as the solar PV array
is capable of generating more power than can be usefully applied. These constraints can
be represented by inequalities, which are formulated here.

To ensure load power does not exceed total generated power, the product of p(k) and
u(k) cannot exceed ptarget(k), i.e.

pT(k)u(k) ≤ ptarget(k), (4.5a)

where control-input power vector p(k) is defined as

p(k) =
[
−PBES,r −PBES,r pAHU(k) PEWH,r

]T

. (4.5b)

Note that the two negative BES coefficients in p(k) pertain to uBES,gen(k) and uBES,load(k),
respectively. The first ensures power generated by the BES counteracts load power, while
the second compensates for uBES,load(k) ∈ [−1, 0] [p.u.], ensuring that BES load power
contributes to overall load power in the inequality.

Bounds on the AHU and EWH temperatures (where lb refers to lower and ub to upper
bounds) can be stated as

lb,AHU(k + 1) ≤ xZ(k + 1) ≤ ub,AHU(k + 1), (4.5c)

and
lb,EWH(k + 1) ≤ xEWH(k + 1) ≤ ub,EWH(k + 1). (4.5d)
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Inequalities (4.5a)–(4.5d) are hard constraints that can, at times, be impossible to adhere
to. Constraint parameters are introduced to convert them into soft constraints. To address
the scenario in which total local generation power falls short of total demand power,
constraint parameter fgrid(k) is introduced to draw power from the grid, that is,

pT(k)u(k) ≤ ptarget(k) + fgrid(k)

pT(k)u(k)− fgrid(k) ≤ ptarget(k), (4.6a)

where fgrid(k) ∈ [0, P1φ] [W], with P1φ representing single-phase rated power. Energy
can also be drawn from the grid to mitigate differences between reference and actual
temperatures during the times of day when no solar PV and/or BES supply power are
available. This is regulated by the penalty placed on fgrid as described in (4.8).

Similarly, to soften temperature bounds, fAHU(k) and fEWH(k) are introduced, as
follows:

lb,AHU(k + 1) ≤ xZ(k + 1)− fAHU(k) ≤ ub,AHU(k + 1), (4.6b)

and
lb,EWH(k + 1) ≤ xEWH(k + 1)− fEWH(k) ≤ ub,EWH(k + 1). (4.6c)

There are no limits imposed on the allowable range of fAHU and fEWH, as environmental
changes can cause temperature variations that exceed the AHU and EWH’s ability to
counteract within a single sampling period or longer. It is therefore not advisable to impose
limits on these constraint parameters. Instead, these deviations are penalised heavily
within an adjusted form of the objective function, as described in (4.8).

Taken together, constraint-parameter vector f(k) is defined as

f(k) =



fgrid(k)

fAHU(k)

fEWH(k)


 ∈ Rmf . (4.7a)

Additionally, define constraint-parameter sequence vector F (k) as the evolution of f over
the prediction horizon N , that is,

F (k) =




f(k)

fk+1
...

fk+N−1



∈ RN ·mf . (4.7b)

As constraint parameters are employed to soften hard constraints, their use necessarily
entails deviation from one or more constraints. To penalise such deviations, and thereby
keep them to a minimum, the parameters are included in J(k), described in (4.4a), as
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follows:

J(k) = UT(k)Γ(k)U (k) + F T(k)R̃fF (k) + 2ΥT(k)U (k) + Θ(k), (4.8a)

where Rf ∈ Rmf×mf is a sparse matrix with penalty weightings for each element of f(k)

on its diagonal, and R̃f ∈ RN ·mf×N ·mf is defined as

R̃f = blkdiag(Rf , . . . ,Rf ). (4.8b)

The optimisation problem, including constraint parameters, can be formulated as

U ∗(k) = arg min
U ,F

J(k), (4.9a)

subject to a number of constraints, namely:

• BES constraint
(

0 ≤ uBES,gen(k) ≤ min(cBES(k), 1) and uBES,load(k) = 0
)

or (4.9b)
(
uBES,gen(k) = 0 and −min(dBES(k), 1) ≤ uBES,load(k) ≤ 0

)
,

where cBES(k) and dBES(k) are the maximum theoretical charge and discharge power
possible, respectively, based on the BES’s present SoC, and maximum rated power
is represented by unity per-unit power (the ‘min(a, b)’ function returns the smaller
of the two input values).

• Integer control-input constraint

ub(k) ∈ {0, 1}mb . (4.9c)

• Power constraint
pT(k)u(k)− fgrid(k) ≤ ptarget(k), (4.9d)

where
fgrid(k) ∈ [0, P1φ]. (4.9e)

• AHU temperature bounds

−1̃
T

b,AHUBAHU,u(k)uAHU(k) + fAHU(k) ≤ 1̃
T

b,AHU

(
AAHUxAHU(k)+

BAHU,vvAHU(k)
)
− lb,AHU(k + 1),

(4.9f)
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and

1̃
T

b,AHUBAHU,u(k)uAHU(k)− fAHU(k) ≤ ub,AHU(k + 1)−
1̃

T

b,AHU

(
AAHUxAHU(k) +BAHU,vvAHU(k)

)
,

(4.9g)

where
1̃b,AHU =

[
1 0 · · · 0

]T

∈ RnAHU .

• EWH temperature bounds

−bEWH,uuEWH(k) + fEWH(k) ≤ aEWHxEWH(k) +BEWH,v(k)vEWH(k)−
lb,EWH(k + 1),

(4.9h)

and

bEWH,uuEWH(k)− fEWH(k) ≤ ub,EWH(k + 1)−
(
aEWHxEWH(k)+

BEWH,v(k)vEWH(k)
)
.

(4.9i)

Auxiliary vector 1̃b,AHU above serves only as a means to obtain xZ from xAHU.

4.2.3 Apply Optimal Control Input to Power Nodes

At each time step k the first entry in optimal control-input sequence U ∗(k) is applied to
the system plant. This can be translated to the power-nodes framework as follows. Recall
that

u(k) =
[
uBES,gen(k) uBES,load(k) uAHU(k) uEWH(k)

]T

=
[
uT

c (k) uT
b (k)

]T

. (4.10)

No standing losses are considered with respect to the BES, and so wBES,s(k) = 0 is
always true. Optimal continuous-valued control-input vector u∗c(k) determines pBES,gen(k)

and pBES,load(k).
Load power pAHU,load(k) and pEWH,load(k) are determined by u∗b(k).
The grid is also considered to be a controllable power node, covering shortfalls in

generation from the BES and solar PV array. Grid generation power pgrid,gen(k) is equal
to constraint parameter fgrid(k).

No new information applicable to uncontrollable generator nodes’ pgen(k), or uncon-
trollable load nodes’ pload(k) is gained from the optimisation output. The diverse load’s de-
mand must always be met, and can, therefore, not have any unmet load (wdiverse,f(k) = 0).

The amount of potential energy to be curtailed, due to there being no useful application
thereof and the inability of the electrical grid to absorb energy from the household, can
be determined from the optimisation procedure’s output. This is assigned to forced waste
wPV,f(k).
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At the next discrete-time instant, the optimisation process is repeated with ptarget(k+

1), the difference between solar PV supply and diverse load demand at k + 1.

4.3 Control-Input Reference Generation

While Xref(k) consists of desired reference values fed into the controller, the procedure
for determining U ref(k) concerns the solution of an optimal allocation problem at every
step of the prediction horizon. In this manner, a sequence of control-input references are
generated.

The aim is to closely match ptarget(k), which is defined as

ptarget(k) =
∑

ξ≥0

pgen(k)−
∑

ξ≤0

pload(k) = pPV,gen(k)− pdiverse,load(k), (4.11)

through means of a combination of the available control inputs. Continuous control of
the BES allows for flexibility in the allocation, since both the AHU (although it has
time-varying power consumption) and EWH only permit integer control.

An illustration of the goal in mind when generating U ref(k) is shown in Figure 4.2.
Suppose that, at time step k, ptarget(k) is insufficient for both the AHU and EWH to be
utilised in the power allocation. Suppose also that the BES has a high SoC at time step k.
Given the described scenario, the optimisation procedure concludes that BES discharge is
preferred over allowing one of the controllable loads to remain inactive and let the surplus
solar-inverter output power go to waste.

ptarget

k k + 1
0

1

2

3

4

5

PEWH,r

pAHU(k)

ptarget(k) + pBES,gen(k)

P
ow

er
[k
W

]

Figure 4.2: An example maximal allocation. The area hatched in orange represents
pBES,gen(k).

The controllable-node arrangement at a given time step depends on the outcome of
the optimal-allocation problem formulated below. Note that in the BES model, input and
output power are not viewed as opposing sides of one input variable’s allowable range,
but instead as two separate variables altogether. That distinction need not apply here,
as the BES model does not form part of the optimal control-input allocation procedure,
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and a single BES control input can be used. This is preferred, as it allows for an easier
problem formulation. Therefore, define u′BES(k) as a combination of both uBES,gen(k) and
uBES,load(k), that is,

−min(dBES(k), 1) ≤ u′BES(k) ≤ min(cBES(k), 1) [p.u.]. (4.12)

Grouping u′BES(k) with ub(k) yields augmented control vector u′(k), i.e.

u′(k) =
[
u′BES(k) uAHU(k) uEWH(k)

]T

. (4.13)

Vector p′(k) converts u′(k) into the power domain, and is defined as

p′(k) =
[
PBES,r pAHU(k) PEWH,r

]T

, (4.14)

where pAHU(k) is defined by (3.20).
Control-input allocation objective function Jref,u(k) can subsequently be defined as

Jref,u(k) =
(
ptarget(k)− p′T(k)u′(k)

)2

= u′
T

(k)H(k)u′(k)− 2 ptarget(k)p′
T

(k)u′(k) + p2
target(k), (4.15a)

where H(k) is positive semi-definite1, and defined as

H(k) =




P 2
BES,r PBES,r pAHU(k) PBES,r PEWH,r

PBES,r pAHU(k) p2
AHU(k) pAHU(k) PEWH,r

PBES,r PEWH,r pAHU(k) PEWH,r P 2
EWH,r


 . (4.15b)

Equation (4.15a) is in the quadratic form, under the assumption that pAHU(k) stays con-
stant for the duration of a sampling interval. This form can be used to formulate an
optimisation problem, i.e.

u′∗ref(k) = arg min
u′(k)

Jref,u(k)

subject to −min(db(k), 1) ≤ u′BES(k) ≤ min(cb(k), 1)

and uAHU(k), uEWH(k) ∈ {0, 1}.

(4.16)

Since (4.15a) is convex, an optimal augmented control-input vector u′∗ref(k) can be found.
A conversion to uref(k) from u′ref(k) follows, based on the value of u′∗BES,ref(k). As the BES
can only be in a charge, discharge or inactive state at any given point in time, only one of
uBES,gen,ref(k) and uBES,load,ref(k) can be non-zero. If u′∗BES,ref(k) is negative, uBES,gen,ref(k) is
assigned its absolute value, and vice versa. Otherwise, both the BES reference generation

1This is done intentionally. This way, scalar u′T(k)H(k)u′(k) is non-negative for every (non-zero)
vector u′(k), a necessary condition for convexity (i.e. that the local minimum is also a global minimum).
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and load power are set to zero. The problem is solved using the Gurobi optimisation suite
[36] (in concert with Matlab).

4.4 Algorithmic Cost Calculation

Optimisation problem (4.9a) is a mixed-integer programme as it contains both continuous-
and integer-input variables to be optimised.

While an optimal value, within a given range, can be found for continuous-valued
input variables, the same cannot be said of their binary counterparts. Instead, the cost
associated with each integer-input enumeration is calculated and the least-cost option
among them is chosen as the optimal input. The set containing all integer-control input
enumerations U is defined as

U =

{[
0

0

]
,

[
0

1

]
,

[
1

0

]
,

[
1

1

]}
. (4.17)

At each time step k a mixed-integer problem is solved via the “branch and bound” method,
as described in [13], to obtain the optimal control-input sequence.

Making use of the depth-first search with backtracking [37], the method evaluates
nodes in a decision tree consisting of possible integer-input sequences. At each of the
nodes, successive versions of J(k) are solved up to prediction step n = 1, 2, . . . , N . These
steps are also used as depth levels of the tree. The branch sequence being traversed is
commonly referred to as the ‘candidate solution’.

Figure 4.3 depicts the search algorithm in progress, with an example path highlighted
in blue. Starting from an initial optimal cost J∗(k) =∞, the method heuristically moves
down the branch containing the first entry in set U described above. From there, the
method moves down the branch representing the first entry in U once more. This procedure
is repeated until the N th level of the tree is reached. Initially, there exists no incumbent
optimal control-input sequence with which to compare the present candidate sequence,
and thus the first ‘leaf’ (i.e. N th level) node of the tree assumes the role of U ∗(k). This
node sequence is coloured orange in Figure 4.3a.

The tree is recursively traversed from this node, backtracking up the tree and moving
down to other potential candidate solutions as far as their cumulative cost remains less
than the incumbent optimal. If, once a new leaf node is reached, the candidate cost is
less than that of the incumbent optimal, it assumes the role of U ∗(k) until a lower-cost
solution is found. This procedure repeats itself until the tree has been ‘pruned’, that is, all
branches have been explored. At this point, the incumbent optimal control-input sequence
is returned as the solution to optimisation problem (4.9a).

Algorithm 3 describes the recursive traversal of the search tree, where cost_vars is a
data structure containing the following vectors:
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• State and disturbance-input sequences X(k) and V (k);

• Incumbent optimal sequences U ∗(k) and F ∗(k), and J∗(k);

• Candidate sequences U cand(k) and F cand(k), and Jcand(k);

• State- and control-input reference sequences Xref(k) and U ref(k);

• As well as stacked state, control-input and disturbance-input matrices Sx , Su(k),
and Sv(k), respectively.

Algorithm 3 Branch & Bound: Depth-First Search with Backtracking
1: Initialise J∗(k)←∞
2: function [U ∗(k), F ∗(k), J∗(k)] = BB_DFS_BT (cost_vars, i)
3: Obtain pAHU,k+i−1 using (3.20)
4: Obtain uref,k+i−1 using (4.16)
5: Update iith row of Su(k) with Bu,k+i−1

6: Update iith row of Sv(k) with Bv ,k+i−1

7: for each ub ∈ U do
8: Jcand(k)← min

U ,F
J(k)

∣∣∣
i
subject to constraints (4.9b)–(4.9i)

9:
[
U cand(k)

∣∣∣
i
,F cand(k)

∣∣∣
i

]
← arg min

U ,F
J(k)

∣∣∣
i
subject to constraints (4.9b)–(4.9i)

10: if Jcand(k) < J∗(k) then
11: xk+i(k)← Axk+i−1 +Bu,k+i−1uk+i−1 +Bv ,k+i−1vk+i−1

12: if i < N then
13: Update cost_vars with newly-computed values, vectors and matrices
14:

[
U ∗(k)

∣∣∣
i+1

, J∗(k)
∣∣∣
i+1

]
← BB_DFS_BT(cost_vars, i+ 1)

15: else
16: J∗(k) = Jcand(k)
17: U ∗(k) = U cand(k)
18: F ∗(k) = F cand(k)
19: end if
20: end if
21: end for
22: end function

From the continuous-continuous and binary-continuous bilinear products in (4.1), it
can be seen that the system is “mildly” nonlinear. Sequential quadratic programming
(SQP) has been shown to be effective in dealing with nonlinear constraints [24], and is
used within the Matlab programming environment to perform the minimisation of J(k).
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4.5 Initial-Bound Guess

The exponential computational-burden growth inherent in decision trees, as horizon N is
lengthened, can be remedied in part by recycling the control-input sequence generated at
time instant k − 1 to yield a “best-guess” initial cost Jinit at time instant k. The control-
input sequence is calculated as part of the receding-horizon policy, but, since only the
first entry is applied to the plant, would otherwise be discarded.

Cost bound Jinit shortens the search for the optimal control-input sequence by im-
mediately excluding all alternatives more costly than repeating the previously-calculated
control sequence, compensating for the now-obsolete control-input vector u(k − 1) by
making use of u(k +N − 2) twice, as Algorithm 4 shows.

Algorithm 4 Initial-Bound Guess
1: function [Jinit(k)] = BOUND_GUESS (cost_vars)
2: Ub,guess(k)←

[
ub(k − 1) ub,k . . . ub,k+N−2 ub,k+N−2

]T
3: for i from 1 to N − 1 do
4: Obtain pAHU,k+i−1 using (3.20)
5: Obtain uref(k + i− 1) using (4.16)
6: Update Su(k) with Bu,k+i−1 and Sv(k) with Bv ,k+i−1

7:
[
U guess(k)

∣∣∣
i
,F guess(k)

∣∣∣
i

]
← arg min

U ,F
J(k)

∣∣∣
i

8: xk+i(k)← Axk+i−1 +Bu,k+i−1uk+i−1 +Bv ,k+i−1vk+i−1

9: end for
10: Jinit(k)← min

U ,F
J(k)

∣∣∣
N

11: end function

4.6 Simulation Setup

For the predictive controller to be evaluated, allowable temperature bounds on both the
AHU and EWH are to be defined. Additionally, controller performance at a given horizon
length is to be compared against the performance of a controller without estimations of
future states. To serve as baseline, a rules-based controller is described for this purpose.

4.6.1 Choice of Temperature Bounds and References

Air-Handling Unit

Temperature bounds for the AHU are chosen to be active between 07:00 and 19:00, every
day of the week, under the assumption that the room to be air-conditioned is in frequent
use. Furthermore, the allowable room temperature during use is limited to between 22 ◦C

and 30 ◦C, with a reference temperature of 26 ◦C, similar to the values used in [18]. The
AHU state reference weight in the objective function is tuned experimentally and enjoys
priority.
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Electric Water Heater

The EWH bounds are less subjective than those of the AHU due to the discovery of
Legionnaires’ disease2, a severe form of pneumonia caused by a type of bacteria called
legionella, that spreads through water systems [39]. A temperature spectrum is reproduced
from [40] in Figure 4.4, showing the behaviour of legionella at various temperatures.

20◦

30◦

40◦

50◦

60◦

70◦

80◦

Legionella can survive, but are dormant (20 ◦C)

Legionella can survive, but cannot multiply (50 ◦C)

Legionella die within 5–6 h (55 ◦C)

Legionella die within 2min (66 ◦C)

Water heaters need to be able to heat water to 70 ◦C for disinfection

Ideal growth range
(35–46 ◦C)

Legionella growth range
(20–50 ◦C)

Disinfection range
(70–80 ◦C)

Figure 4.4: Legionella behaviour at various temperatures.

From Figure 4.4, it can be seen that, ideally, water residing within the EWH tank
should not fall below 50 ◦C. To reduce the likelihood of scalding, a reference temperature
of 60 ◦C is chosen [39], and is increased to 65 ◦C between 07:00 and 19:00 as a heuristic
to prioritise storing energy in the EWH during hours of the day when the PV is likely
to produce power. Lastly, an upper bound of 70 ◦C is selected, which skirts the region of
disinfection (≥ 70 ◦C).

4.6.2 Baseline Controller

In order to demonstrate improvements the predictive controller might bring about, a base-
line is established using a rules-based hierarchical control scheme. Loads are prioritised in
the following order: diverse load, EWH, AHU, and BES charge state. The power source
hierarchy is as follows: solar PV array, BES discharge state, and electrical grid.

2The disease takes its name from the incident in which it was discovered, involving a gathering of the
American Legion in Philadelphia in 1976 [38].
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Figure 4.5 depicts the baseline controller. At a given time step k, the controller steps
through a series of conditional statements in order to meet power requirements in the
order listed above. Figure 4.5 makes use of the power-nodes notation described in Section
3.1. All values are initialised to zero, unless otherwise specified.

F

Start

wPV,f(k) = pPV,gen(k)

pdiverse,load(k) ≤ wPV,f(k)

wPV,f(k)−= pdiverse,load(k)

xEWH(k) ≤ xEWH,ref(k)

pEWH,load(k) = PEWH,r

pEWH,load(k) ≤ wPV,f(k)

wPV,f(k)−= pEWH,load(k)

Calculate pAHU,load(k)

pAHU,load(k) ≤ wPV,f(k)

wPV,f(k)−= pAHU,load(k)

wPV,f(k) > 0

Calculate pBES,load(max)(k)

pBES,load(max)(k) ≥ wPV,f(k)

pBES,load(k) = wPV(k)

wPV,f(k) = 0

Calculate pBES,load(max)(k)

pBES,gen(max)(k) ≥
pdiverse,load(k)− wPV,f(k)

pBES,gen(k) =

pdiverse,load(k) − wPV(k)

wPV,f(k) = 0

xEWH(k) ≤ xEWH,ref(k)

pEWH,load(k) = PEWH,r

pEWH,load(k) ≤
pBES,gen(max)(k)− pBES,gen(k)

pBES,gen(k) + = pEWH,load(k)

Calculate pAHU,load(k)

pAHU,load(k) ≤
pBES,gen(max)(k)− pBES,gen(k)

pBES,gen(k) + = pAHU,load(k)

pgrid,gen(k) = pdiverse,load(k)−
wPV,f(k) − pBES,gen(max)(k)

wPV,f(k) = 0

pBES,gen(k) = pBES,gen(max)(k)

xEWH(k) ≤ xEWH,ref(k)

pEWH,load(k) = PEWH,r

pgrid,gen(k) + = pEWH,load(k)

Calculate pAHU,load(k)

pgrid,gen(k) + = pAHU,load(k)

pBES,load(k) =

pBES,load(max)(k)

wPV,f(k)−= pBES,load(k)

End

T

T
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T
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Figure 4.5: The hierarchical rules-based controller used as baseline for performance com-
parisons.
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4.7 Simulation Results

A number of results are presented here. First, a comparison of the controller’s performance
at different horizon lengths is done, using data from each of the four seasons. A detailed
examination of the summertime simulation, which depicts the controller operation most
clearly, follows. Thereafter, the impact of variation in the penalty weighting of integer
control inputs’ commutation is investigated. Lastly, computational load reduction due to
the addition of the initial-bound guess algorithm is validated.

4.7.1 Performance Comparison Across Horizon Lengths

In order to evaluate the controller’s performance across different horizon lengths, the
following key criteria are used:

• The amount of curtailed solar energy, representing lost solar PV array productivity,

• The amount of energy drawn from the electrical network, representing grid depen-
dency, and

• Temperature-bound violations for both the EWH (any time of day) and AHU (be-
tween 07:00 and 19:00), representing a loss of comfort due to the controller’s actions.
These violations are measured in Kelvin-hours [K h].

A week-long simulation in each of the four seasons is done so as to evaluate the control
scheme across a diverse set of conditions, starting with spring of 2017.

For each of the week-long simulations, the same initial state is used, defined as

x(0) =
[
xT

BES(0) xT
AHU(0) xT

EWH(0)
]T

, (4.18a)

where
xBES(0) =

[
0.05 0.15

]T

p.u., (4.18b)

xAHU(0) =
[
15 · · · 15

]T ◦C, (4.18c)

and
xEWH(0) = 45◦C. (4.18d)

Controller performance evaluation results across different horizon lengths are compared
at the same amount of control effort, defined as the average frequency of integer control-
input switching, i.e. f̄AHU and f̄EWH for the respective integer control inputs3.

The general trend as the prediction horizon increases is of primary interest. Numerical
values of the key criteria are of secondary importance, as these values can vary a great deal,

3Since the AHU is only active for 12 hours a day, its commutation is averaged over 84 hours, as
opposed to the EWH’s 168 hours (the amount of hours in a week).
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depending on the size of system components and the penalty placed on integer control
inputs’ commutation. Instead, for the same amount of control-input effort, all else being
equal, controllers with longer horizons are expected to outperform their short-horizon
counterparts due to their informational advantage.

Spring

Figure 4.6 shows curtailed solar PV energy and grid supply required as a function of
horizon length for the 16–23 October 2017 period. A noticeable improvement from the
rules-based controller is observed.
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Figure 4.6: Curtailed solar energy and grid energy used compared across different horizons
for a week in October 2017 (f̄AHU = 0.71 h−1 and f̄EWH = 0.50 h−1).

As the horizon increases, a trade-off takes place: the controller opts to consume slightly
more grid energy in order to substantially reduce thermal discomfort. This can be seen
from Figure 4.7, which displays a marked decline in cumulative EWH temperature bound
violation as the horizon increases, keeping in mind that the control effort is kept constant
by experimentally tuning the penalty matrices’ diagonal entries.
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Figure 4.7: Temperature bound violations for the AHU and EWH compared across dif-
ferent horizons for a week in October 2017 (f̄AHU = 0.71 h−1 and f̄EWH = 0.50 h−1).

Summer

The summertime simulation makes use of data from the first week of December 2017. The
controller performs well in clear-skied summer conditions, as would be expected. This can
be seen from the improvements longer horizons bring about, as evidenced by Figures 4.8
and 4.9. Significant reductions in curtailed energy and grid dependency can be observed.
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Figure 4.8: Curtailed solar and grid energy used compared across different horizons for a
week in December 2017 (f̄AHU = 0.26 h−1 and f̄EWH = 0.60 h−1).

The trade-off observed in the springtime simulation is also observed here. By allowing
a slight increase in grid dependency, longer prediction horizons orchestrate a significant

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. PREDICTIVE CONTROL 55

reduction in the EWH temperature bound violation. A clear indication that longer hori-
zons yield superior results can be seen from Figure 4.9: A noticeable reduction in both
temperature bound violations is observed between the one- and two-step horizon simu-
lations, but no real change can be reported from the two-step to the four-step horizon.
While keeping control effort constant, only when looking five steps, or more, ahead is a
lower-cost alternative control-input sequence found.
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Figure 4.9: Performance comparison of different horizons for a week in December 2017
(f̄AHU = 0.26 h−1 and f̄EWH = 0.60 h−1).

Autumn

The simulation done in autumn makes use of data from the first week of April 2018. The
most striking difference between the autumn simulations and those of both spring and
summer is the decrease in solar radiation (Figure 4.10, as opposed to Figures 4.6 and 4.8).
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Figure 4.10: Performance comparison of different horizons for a week in December 2017
(f̄AHU = 0.71 h−1 and f̄EWH = 0.45 h−1).

Under these conditions, at longer prediction horizons the controller opts to increase
grid dependency in favour of lowering temperature bound violations, as is clear from the
dramatic reduction in EWH cumulative temperature bound violation depicted in Figure
4.11.
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Figure 4.11: Temperature bound violations for the AHU and EWH compared across dif-
ferent horizons for a week in April 2018 (f̄AHU = 0.71 h−1 and f̄EWH = 0.54 h−1).

Winter

Making use of data from the third week of June 2018, the controller behaves much like
it does in autumn, as can be seen from similarities between Figures 4.10 and 4.12, and
Figures 4.11 and 4.13.
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Figure 4.12: Curtailed solar and grid energy used compared across different horizons for
a week in June 2018 (f̄AHU = 0.36 h−1 and f̄EWH = 0.71 h−1).
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Figure 4.13: Curtailed solar and grid energy used compared across different horizons for
a week in June 2018 (f̄AHU = 0.36 h−1 and f̄EWH = 0.71 h−1).

A Remark on the Increased Grid Energy Consumption in Autumn and Winter

In addition to the lower solar yield characteristic of autumn and winter, a change in
prioritisation also contributes to the pronounced increase in grid dependence, when com-
pared to spring and summer. In the interest of having comparable average commutation
frequencies across seasons, the penalty for making use of grid energy is relaxed for both
autumn and winter. As a result of this adjustment, higher grid dependence is observed.
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4.7.2 Long-Horizon Example Simulation

An example simulation, using data from December 2017, is presented here in its entirety.
The example simulation makes use of a six-step prediction horizon.

Uncontrollable Nodes

Figure 4.14 depicts the total potential solar energy the system could have generated during
th 1–7 December 2017 period, as well as the amount of energy that has to be curtailed
due to the BES unit being unable to absorb any more energy and both controllable
loads already maximally allocated, while remaining within their defined operating bounds.
For the six-step horizon, as shown, 38.62 kWh is curtailed, compared to the baseline
curtailment of 50.21 kWh and 41.10 kWh for a one-step horizon.
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Figure 4.14: Example simulation solar PV potential generation and curtailed power.

The diverse household load, comprised of miscellaneous appliances’ load power (Figure
4.15) draws a total of 35.92 kWh over the period of interest.
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Figure 4.15: Example diverse load power.

Controllable Nodes

As is evident from Figure 4.16, the household operates largely independently during the
period in question. Over the course of the week, a total of 2.13 kWh grid energy is used,
entirely within the first half of the first day. A higher initial BES SoC could mitigate grid
dependence further.
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Figure 4.16: Example grid generation power.

Due to the abundance of solar energy during the simulated period, the BES unit rarely
drops below 25 %, as can be seen from Figure 4.17a.
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(b) Generated power.
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(c) Load power.

Figure 4.17: Example BES stored energy, generation power, and load power.
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This is not to say that the BES unit is idle during the example week-long simulation.
Quite the contrary, as is evident from Figures 4.17b and 4.17c. Furtermore, the rate-
capacity effect, described in Chapter 3, can be observed most days as the battery nears a
fully-charged state around midday.

The AHU remains in an on-state throughout its daily 12-hour shifts, aside from some
initial commutation (Figure 4.18; a cumulative AHU temperature bound violation of
7.4563 Kh is accrued). This is due to low BES SoC coupled with a moderate penalty for
use of grid power. Over the course of the example simulation period, the AHU consumes
a total of 33.79 kWh.
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(a) State (‘zone’), ambient, wall (building element nr. 1), and state reference temperature pro-
gressions. The upper and lower bounds of the AHU state temperature are also shown (active
daily from 07:00 to 19:00).
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(b) Load power.

Figure 4.18: Example AHU temperatures and load power.

As can be seen from Figure 4.19a, the EWH state temperature is kept safely within the
50–70◦C bounds for an overwhelming majority of the simulation period. Despite frequent
use, only 25.5456 Kh are accrued in cumulative temperature bound violations. The EWH’s
element is switched frequently, averaging 0.60 h−1 and consumes a total of 93.5 kWh during
the example simulation period.
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(a) EWH state, ambient, and state reference temperatures. The allowable upper and lower bounds
are shown as well.
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(b) Hot water usage.
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(c) Load power.

Figure 4.19: Example EWH temperatures, hot water usage, and load power.

4.7.3 The Impact of Commutation Penalties

This section investigates the impact of commutation penalties on curtailed PV energy,
using data from December 2017.

Of the three controllable power nodes, two are controlled on an integer basis. Continu-
ous fluctuation between ‘on’ and ‘off’ states is generally undesirable, as it can cause wear
on the equipment involved. As described earlier, this commutation behaviour is penalised
in the objective function (4.2a).

Figure 4.20 shows the influence of discouraging commutation to various degrees has
on the amount of curtailed PV energy for one-, three- and five-step horizons It is some-
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what intuitively assumed that a more lenient penalty on commutation might result in
lower amounts of curtailed energy. Interestingly, the opposite is true for the AHU in sum-
mertime. Due to its time-varying power consumption, it is more beneficial to penalise
repeated ‘on/off’ instructions heavily and leave it in an on-state than to do the opposite.

This can be explained by the comparatively small amount of power required to main-
tain close adherence to a reference temperature, as opposed to a higher power demand
required to regulate air temperature toward a reference if the difference between ambient
and reference temperatures is sizeable. As could be expected, relaxing the penalty on
EWH commutation results in lower amounts of curtailed PV energy.
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(b) N = 3.
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(c) N = 5.

Figure 4.20: The impact of integer commutation penalties on curtailed solar energy for
different prediction horizon lengths.

The more pronounced variation in Figure 4.20a, as opposed to Figure 4.20b and even
more so to Figure 4.20c, can be attributed to the larger influence single terms have in short
horizon objective functions. As the horizon increases, a single term’s relative influence
wanes as more terms are added to J(k).
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4.7.4 Computational-Load Reduction Through Initial-Bound Guess

Here the search procedure with the initial-bound guess function (described in Algorithm
4) included as precursor to the branch-and-bound (with depth-first search) function is
measured against the branch-and-bound function without the guess function as precursor.
Additionally, it is compared with brute-force calculation of the cost at every leaf node of
the decision tree and selecting the lowest-cost option, known as doing an exhaustive search
of the tree.

Table 4.1 lists the average amount of decision-tree nodes visited before the optimal
control-input sequence is found, both with and without the initial-bound guess function.
The alternative of doing an exhaustive search of the tree is provided for reference.

Table 4.1: Performance comparison of search methods

Horizon length (N) 1 2 3 4 5 6

Exhaustive search 4 20 84 340 1364 5460
Branch and bound (no initial guess) 4 15 38 76 151 301
Branch and bound (with initial guess) 4 12 32 65 133 270

Consider Figure 4.3a, for example, which depicts the decision tree for a three-step
prediction horizon. Nodes lower down the tree branches are dependent on nodes above
them, because the control- and disturbance-input matrices are functions of x, as described
by (3.35). This implies that an exhaustive search cannot evaluate a leaf node without
having first calculated the sequence of predicted states leading up to the leaf node in
question. This makes the exhaustive search approach unappealing in the present case,
as is clear from the explosion in the amount of computation required as horizon length
increases (Table 4.1).

It is clear that the branch-and-bound approach is much more effective, compared to
the exhaustive search, when longer horizon lengths are used (N > 1). When the initial-
bound guess is included as well (i.e. starting the decision-tree traversal with incumbent
J∗(k)�∞), further computational reductions, consistently in excess of 10 %, are brought
about.

4.8 Summary

Chapter 4 describes a predictive control strategy aimed at reducing the curtailment of solar
PV energy. An objective function is formulated and reworked into the computationally
convenient quadratic form. A means of maximally allocating excess solar power generation
to available loads is developed in the form of a control-input reference generator. The
control strategy is translated into an algorithm from where it is evaluated in numerous
simulations, primarily depicting reduced solar PV curtailment, in addition to adhering to
thermal constraints as far as possible.
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Chapter 5

Conclusions and Recommendations

This chapter concludes the thesis. The main contributions are briefly revisited, where
after recommendations for future work are made.

5.1 Overview of Main Results

This section reviews the main results of the thesis, namely the description of a uni-
fied system, within which diverse electrical entities are coordinated in unison, and the
implementation of a predictive controller in order to reduce curtailed PV and bolster
self-sufficiency, while adhering to specified constraints.

5.1.1 System Description

Heterogeneous models, each representing different physical systems, are presented as part
a single state-space representation, which is itself embedded within a framework that views
electrical entities as power nodes. This node-based approach serves to organise the various
electrical entities within a given household in preparation for the exertion of control over
them.

5.1.2 Predictive Controller Implementation

With the system described within the power nodes framework in mind, as well as the con-
trollable plant consisting of numerous manipulable electrical entities, a predictive control
scheme is formulated to reduce solar PV curtailment in order to boost self-sufficiency.

An objective function is defined and a number of constraints included. A means of
reducing PV curtailment through maximally allocating control inputs is proposed. An
algorithmic calculation of the optimal control input sequence is developed, complete with
a means of shortening the calculation by recycling old sequences.

The predictive controller is evaluated across a diverse set of conditions, from single-
step up to six-step horizons. The operation of the controller is best showcased in summer
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conditions with a six-step horizon. Clear reductions in solar PV energy curtailment are
demonstrated, both when compared to a rules-based controller and to the same predic-
tive control scheme at shorter horizons. Additionally, thermal comfort bounds are largely
adhered to in the pursuit of higher levels of self sufficiency.

5.2 Recommendations for Future Work

Some suggestions for follow-on research are made below.

5.2.1 Continuous-Valued Control

The commutation penalty investigation in Section 4.7.3 suggests that continuous-valued
control over the AHU and EWH can yield material additional benefits. The added com-
plexity in generating time-varying reference air temperatures, in the case of the AHU, and
the inclusion of an ac-to-ac drive, in the case of the EWH, could be justified by potential
additional productivity gain. Continuous-valued control, as opposed to integer control,
also has the added benefit of exact solutions. In such instances, a decision tree is not
necessary, and, as a direct result, longer prediction horizons become feasible.

5.2.2 Battery Degradation in Objective Function

In [20] a convex, piecewise-affine battery capacity degradation map is developed. The aim
of this map is to connect individual control actions to the lifetime of the BES. In the
present instance, the battery, to a large extent, serves as a buffer against the variable
PV power supply. By including the adverse consequences of such intensive use, more
conservative control actions might be decided upon, depending on the priority battery
lifetime is given in the objective function, but the cost to the home owner could be
lowered due to less frequently replacing the BES unit.

5.2.3 Introduce Uncertainty to Improve Robustness

At present, for the entirety of the prediction horizon, perfect knowledge is assumed. This
deterministic approach has proven invaluable in developing the basic system structure,
but further testing would benefit greatly from the introduction of uncertainty in the form
of error in measurements and forecasts to improve the resiliency of the controller.
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Appendix A

Stellenbosch Municipality Tariffs

Note: 1 unit = 1 kWh. All monetary values exclude value-added tax.

Table A.1: Domestic tariffs1

Tariff bracket (units) Cost (c/kWh)

Life Line2

0–60 0
61–110 91.57
110–360 114.59
360–660 171.58
660–1000 197.59

Regular prepaid3

0–50 91.73
51–300 143.25
301–600 174.58
> 600 195.53

Regular prepaid4& regular5
0–50 91.57
51–300 117.45
301–600 165.70
> 600 195.14

1These tariffs also apply to regular and prepaid domestic properties equipped with renewable-energy
generation for own use.

2Applicable to indigent households, defined as those properties valued at R200 000 or less, while
occupying an area of 250m3 or less.

3Applicable to residences with an average monthly consumption of less than 600 kWh in the previous
financial year.

4Applicable to residences with an average monthly consumption of, or more than, 600 kWh in the
previous financial year. A monthly fixed charge of R123.22 also applies.

5A monthly fixed charge of R154.89 also applies.
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Table A.2: Domestic tariffs for properties with renewable-energy generation for own use
and export1

Tariff bracket (units) Price (c/kWh)

Import
0–50 91.57
51–300 117.45
301–600 165.70
> 600 195.14

Export
Low season2

Peak 85.18
Standard 58.61
Off peak 38.15

High season3

Peak 261.08
Standard 79.10
Off peak 42.96

Table A.3: Time-of-use period definitions

Period Time of day

Low season
Monday–Friday
Off peak 22:00–06:00
Standard 06:00–07:00; 10:00–18:00; 20:00–22:00
Peak 07:00–10:00; 18:00–20:00

Saturday
Off peak 20:00–07:00; 12:00–18:00
Standard 07:00–12:00; 18:00–20:00

Sunday
Off peak All day

High season
Monday–Friday
Off peak 22:00–06:00
Standard 10:00–17:00; 19:00–22:00
Peak 06:00–9:00; 17:00–19:00

Saturday
Off peak 20:00–07:00; ; 12:00–18:00
Standard 07:00–12:00; 18:00–20:00

Sunday
Off peak All day

1A reading cost of R75.60 and basic charge of R154.89, both monthly, also apply.
2September to May of the following year.
3June through August.
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Appendix B

Room and Air-Handling Unit
Specifications

A number of aspects define the room and are briefly described below:

B.1 Room Specifications

Table B.1: Zone attributes

Zone
Attribute Value Unit

Floor area 16 [m2]

Wall height 3 [m]

Volume 48 [m3]

Table B.2: Building elements 1–4 attributes

Building element
Attribute Value Unit

Construction type Wooden wall [-]

Adjacent A Zone [-]

Adjacent B Ambient air [-]

Area 4 × 3 [m2]
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Table B.3: Wooden wall construction attributes

Construction
Attribute Value Unit

Material(s) used Birch wood [-]

Thickness 0.05 [m]

Convection coefficient (Adjacent A) 7 [W/m2K]

Convection coefficient (Adjacent B) 7 [W/m2K]

Table B.4: Building element 5 attributes

Building element
Attribute Value Unit

Construction type Wooden floor [-]

Adjacent A Zone [-]

Adjacent B Void [-]

Area 4 × 4 [m2]

Table B.5: Wooden floor construction attributes

Construction
Attribute Value Unit

Material(s) used Birch wood [-]

Thickness 0.05 [m]

Convection coefficient (Adjacent A) 5 [W/m2K]

Convection coefficient (Adjacent B) 0 [W/m2K]

Table B.6: Building element 6 attributes

Building element
Attribute Value Unit

Construction type Wooden ceiling [-]

Adjacent A Zone [-]

Adjacent B Void [-]

Area 4 × 4 [m2]
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Table B.7: Wooden ceiling construction attributes

Construction
Attribute Value Unit

Material(s) used Birch wood [-]

Thickness 0.05 [m]

Convection coefficient (Adjacent A) 5 [W/m2K]

Convection coefficient (Adjacent B) 0 [W/m2K]

Table B.8: Birch wood material attributes

Material
Attribute Value Unit

Specific heat capacity 1600 [J/kg K]

Specific thermal resistance 7.143 [m K/W]

Density 670 [kg/m3]

B.2 Air-Handling Unit Specifications

The dual split-inverter AHU used is an Alliance Arctic Midwall FOUSI12 (12 000 Btu)
[34], the specifications of which are given in Table B.91.

Table B.9: Selected Alliance Arctic Midwall FOUSI12 (12 000 Btu) specifications

Cycle Specification Value Unit

Capacity 3410 [W]

Heating Input 997 [W]

COP 3.42 [W/W]

Capacity 3355 [W]

Cooling Input power 1104 [W]

EER 3.04 [W/W]

Both Air flow rate (maximum) 560 (0.190) [m3/h] ([kg/s])

Air flow rate (minimum) 440 (0.149) [m3/h] ([kg/s])

1The volumetric flow rate has been converted into its representative mass flow rate at a density of
1.225 kg/m3, assuming air pressure of 101.325 kPa.
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Appendix C

Alternative Cost Representations

Alternative representations to the cost in sum form can be used to group variables so
as to be manipulated in a control environment more easily. Two such representations are
given here: the vector and quadratic programming forms.

C.1 Vector Form

Sum form of the cost function:

J(k) =
k+N−1∑

l=k

( ‖xl+1 − xl+1,ref‖2
Q + ‖ul − ul ,ref‖2

R + ‖∆ul‖2
R∆u

) . (C.1)

X(k) = Sxx(k) + Su(k)U (k) + Sv(k)V (k), (C.2a)

with

X(k) =




xk+1

xk+2

...
xk+N



, U(k) =




uk

uk+1

...
uk+N−1




and V (k) =




v(k)

vk+1

...
vk+N−1



.

Furthermore, Sx ∈ RN ·nx×nx is defined as

Sx =




A

A2

...
AN



, (C.2b)

Su ∈ RN ·nx×N ·m is defined as
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Su(k) =




Bu(k) 0 0 · · · 0

ABu(k) Bu,k+1 0 · · · 0

A2Bu(k) ABu,k+1 Bu,k+2 · · · 0
...

...
... . . . ...

AN−1Bu(k) AN−2Bu,k+1 AN−3Bu,k+2 · · · Bu,k+N−1




(C.2c)

and, similarly, Sv ∈ RN ·nx×N ·nv is defined as

Sv(k) =




Bv(k) 0 0 · · · 0

ABv(k) Bv ,k+1 0 · · · 0

A2Bv(k) ABv ,k+1 Bv ,k+2 · · · 0
...

...
... . . . ...

AN−1Bv(k) AN−2Bv ,k+1 AN−3Bv ,k+2 · · · Bv ,k+N−1



. (C.2d)

The cost function can also be written in vector form, as follows:

Jk = ‖X(k)−Xref(k)‖2
Q̃ + ‖U(k)−U ref(k)‖2

R̃

+
∥∥∥Ĩ∆uU (k)− Ĩ∆u,initu(k − 1)

∥∥∥
2

R̃∆u

, (C.3a)

where the stacked penalty matrices are defined as

Q̃ =




Q 0 · · · 0

0 Q · · · 0
...

... . . . ...
0 0 · · · Q



, (C.3b)

R̃ =




R 0 · · · 0

0 R · · · 0
...

... . . . ...
0 0 · · · R




(C.3c)

and

R̃∆u =




R∆u 0 · · · 0

0 R∆u · · · 0
...

... . . . ...
0 0 · · · R∆u



. (C.3d)

Furthermore, the matrices used to order consecutive time steps’ control input vectors

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ALTERNATIVE COST REPRESENTATIONS 77

(in order to penalise change in control inputs) are defined as

Ĩ∆u =




Im 0 0 · · · 0

−Im Im 0 · · · 0

0 −Im Im · · · 0
...

...
... . . . ...

0 0 0 · · · Im




(C.3e)

and

Ĩ∆u,init =




Im

0
...
0



. (C.3f)

The state reference vector can be defined as

Xref(k) =




xref(k + 1)

xref(k + 2)
...

xref(k +N)



∈ RN ·nx . (C.4)

The input reference vector is defined as

U ref(k) =




uref(k)

uref,k+1

...
uref,k+N−1



∈ RN (mc+mb). (C.5)
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C.2 Quadratic Programming Form

The first term of (C.3a) can be expanded as shown below:

‖X(k)−Xref(k)‖2
Q̃ = ‖Sxx(k) + Su(k)U(k) + Sv(k)V (k)−Xref(k)‖2

Q̃

=
(
Sxx(k) + Su(k)U (k) + Sv(k)V (k)−Xref(k)

)T
Q̃

(
Sxx(k) + Su(k)U (k) + Sv(k)V (k)−Xref(k)

)

=
(
xT(k)ST

x Q̃+UT(k)ST
u (k)Q̃+ V T(k)ST

v (k)Q̃−XT
ref(k)Q̃

)
(
Sxx(k) + Su(k)U (k) + Sv(k)V (k)−Xref(k)

)

=xT(k)ST
x Q̃Sxx(k) + xT(k)ST

x Q̃Su(k)U(k)

+ xT(k)ST
x Q̃Sv(k)V (k)− xT(k)ST

x Q̃Xref(k)

+UT(k)ST
u (k)Q̃Sxx(k) +UT(k)ST

u (k)Q̃Su(k)U(k)

+UT(k)ST
u (k)Q̃Sv(k)V (k)−UT(k)ST

u (k)Q̃Xref(k)

+ V T(k)ST
v (k)Q̃Sxx(k) + V T(k)ST

v (k)Q̃Su(k)U(k)

+ V T(k)ST
v (k)Q̃Sv(k)V (k)− V T(k)ST

v (k)Q̃Xref(k)

−XT
ref(k)Q̃Sxx(k)−XT

ref(k)Q̃Su(k)U(k)

−XT
ref(k)Q̃Sv(k)V (k) +XT

ref(k)Q̃Xref(k)

= ‖Sxx(k)‖2
Q̃ + 2xT(k)ST

x Q̃Su(k)U (k) + 2V T(k)ST
v (k)Q̃Sxx(k)

− 2XT
ref(k)Q̃Sxx(k) +UT(k)ST

u (k)Q̃Su(k)U (k)

+ 2V T(k)ST
v (k)Q̃Su(k)U (k)− 2XT

ref(k)Q̃Su(k)U(k)

+ ‖Sv(k)V (k)‖T
Q̃ − 2XT

ref(k)Q̃Sv(k)V (k) + ‖Xref(k)‖2
Q̃

=UT(k)ST
u (k)Q̃Su(k)U (k) + 2

(
xT(k)ST

x Q̃Su(k)

+ V T(k)ST
v (k)Q̃Su(k)−XT

ref(k)Q̃Su(k)
)
U (k)

+ 2
(
V T(k)ST

v (k)Q̃Sxx(k)−XT
ref(k)Q̃Sxx(k)

−XT
ref(k)Q̃Sv(k)V (k)

)
+ ‖Sxx(k)‖2

Q̃

+ ‖Sv(k)V (k)‖T
Q̃ + ‖Xref(k)‖2

Q̃ (C.6)

The second term of (C.3a) can be expanded as shown below:

‖U(k)−U ref(k)‖2
R̃ = (U(k)−U ref(k))T R̃(U (k)−U ref(k))

= (UT (k)R̃−UT
ref(k)R̃)(U(k)−U ref(k))

= UT (k)R̃U (k)−UT (k)R̃U ref(k)−UT
ref(k)R̃U (k) +UT

ref(k)R̃U ref(k)

= UT (k)R̃U (k)− 2UT
ref(k)R̃U (k) + ‖U ref(k)‖2

R̃ (C.7)

The third term of (C.3a) can be expanded as shown below:
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∥∥∥Ĩ∆uU(k)− Ĩ∆u,initu(k − 1)
∥∥∥

2

R̃∆u

=(Ĩ∆uU(k)− Ĩ∆u,initu(k − 1))T R̃∆u

(Ĩ∆uU(k)− Ĩ∆u,initu(k − 1))

=(UT (k)Ĩ
T

∆uR̃∆u − uT (k − 1)Ĩ
T

∆u,initR̃∆u)

(Ĩ∆uU(k)− Ĩ∆u,initu(k − 1))

=UT (k)Ĩ
T

∆uR̃∆u Ĩ∆uU(k)−UT (k)Ĩ
T

∆uR̃∆u Ĩ∆u,initu(k − 1)

− uT (k − 1)Ĩ
T

∆u,initR̃∆u Ĩ∆uU(k) +
∥∥∥Ĩ∆u,initu(k − 1)

∥∥∥

=UT (k)Ĩ
T

∆uR̃∆u Ĩ∆uU(k)− 2uT (k − 1)Ĩ
T

∆u,initR̃∆u Ĩ∆uU(k)

+
∥∥∥Ĩ∆u,initu(k − 1)

∥∥∥
2

R̃∆u

(C.8)

Using (C.6)–(C.8) above, the cost can be rewritten as shown below:

Jk = UT (k)Γ(k)U (k) + 2ΥT(k)U(k) + Θ(k), (C.9a)

where

Γ(k) = ST
u (k)Q̃Su(k) + R̃+ Ĩ

T

∆uR̃∆u Ĩ∆u , (C.9b)

ΥT(k) = xT(k)ST
x Q̃Su(k) + V T(k)ST

v (k)Q̃Su(k)−XT
ref(k)Q̃Su(k)

−UT
ref(k)R̃− uT (k − 1)Ĩ

T

∆u,initR̃∆u Ĩ∆u (C.9c)

and

Θ(k) = 2
(
V T(k)ST

v (k)Q̃Sxx(k)−XT
ref(k)Q̃Sxx(k)−XT

ref(k)Q̃Sv(k)V (k)
)

+ ‖Sxx(k)‖2
Q̃ + ‖Sv(k)V (k)‖2

Q̃ + ‖Xref(k)‖2
Q̃ + ‖U ref(k)‖2

R̃

+
∥∥∥Ĩ∆u,initu(k − 1)

∥∥∥
2

R̃∆u

. (C.9d)
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