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Abstract 

In order to determine the potential of using optical flow as an instrument for 

quadcopter navigation, a real-time depth estimation system was created. The 

system was programmed in Python and made use of: FAST algorithm to detect 

key points, Lucas-Kanade pyramid algorithm to calculate the optical flow, 

different geometrical relationships to calculate depth from translation and Euler 

angles to negate the effects of rotation. A simulated testing environment created in 

the Unity game engine was used to successfully test the overall performance, 

accuracy and robustness of the system. The positive results from the system and 

component tests proved that there is potential in using optical flow in quadcopter 

navigation.  
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Uittreksel 

Ten einde die potensiaal van optiese vloei as 'n instrument vir hommeltuig 

navigasie te bepaal, is 'n intydse diepte skattingstelsel geskep. Die stelsel is in 

Python geprogrammeer en maak gebruik van: FAST-algoritme om sleutelpunte te 

bepaal, Lucas-Kanade piramide algoritme om optiese vloei op te spoor, 

verskillende geometriese verhoudings om diepte van beweging te bereken en 

Euler-hoeke om die effekte van rotasie te negeer. 'n Gesimuleerde toetsomgewing 

wat in die Unity enjin geskep is, is gebruik om die algehele prestasie, 

akkuraatheid en robuustheid van die stelsel suksesvol te toets. Die positiewe 

resultate van die stelsel- en komponenttoetse het getoon dat daar potensiaal is in 

die gebruik van optiese vloei in hommeltuig navigasie.  
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1. Introduction 

The topic of renewable, green electricity is one of the biggest talking points of the 

twenty-first century and one of the major role players in the industry is solar 

power. Concentrated solar power (CSP) is currently one of the leading sectors in 

the field of solar energy. These power plants use energy, usually carried by hot air 

or steam, which is then converted into electricity via turbines (Guerrero-Lemus, 

2012).  

Solar plants can consist of thousands of solar collectors (mirrors), and inspecting 

these mirrors’ faces for damage, dirt and alignment is a major operation for any 

ground crew to complete. A solution to this time-consuming process is to 

introduce drones, fitted with high resolution cameras, to fly around the plant and 

inspect the mirror faces.  

A quadcopter working on a solar plant faces multiple navigational challenges. 

One of these being that the area they are working in does not have a fixed 

surrounding. The location of all the solar collectors and the central tower may be 

fixed, but the position of construction or maintenance crews can be unpredictable 

and are not mapped on the drone’s pre-planned paths. Further unique challenges 

faced by the quadcopter in these situations include: flying through potentially 

blinding solar beams between the mirrors and the central tower, and the highly 

reflective surfaces of the mirrors. 

Systems for navigation on drones such as LIDAR, ultrasonic range-finders, and 

multiple cameras all have limitations and there is not yet one single system that is 

taken as the industry standard to be the perfect navigation solution. This has left 

room for alternative methods of navigation to be investigated. 

Modern quadcopters fly around with a multitude of sensors, processors, cameras 

and other high-tech equipment. In this thesis it is theorised that a known 

technology (optical flow) could be adapted into a new navigation tool capable of 

working with the hardware already available on quadcopters. For optical flow to 

be seen as a useful technology in this field it would need to provide information 

which could be used in a navigation system. 

 Objectives 

The main goal of this thesis is to prove or disprove the theory that optical flow has 

potential to be used in quadcopter navigation and validates further research. In 

order to answer this question, a number of objectives needed to be reached: 

• Investigate the way different optical flow algorithms work. 

• Explore how optical flow is currently used in quadcopters. 

• Design a depth estimation system using optical flow. 

• Design an environment in which to test the system. 
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• Put the system through a variety of tests to allow different conclusions to 

be drawn with regards to performance, adaptability and accuracy. 

 Paper Layout 

In Chapter 1 the background of the reason for the research is discussed and a main 

objective is given with a list of sub-objectives. In Chapter 2 research is done to 

further understand optical flow and how it relates to the situation. This was 

necessary to make critical design decisions later on in the thesis. 

A simulation environment is created in Chapter 3. The simulator is used 

throughout the project to both develop and test the system. 

An in depth process of designing and testing individual components of the system 

is presented in Chapter 4. The reasoning behind decisions were explained and 

more specific research was done on the theorems and algorithms involved. The 

system was then tested as a whole under a variety of conditions in Chapter 5. 

The main aspects of the paper is revised in Chapter 6. The chapter evaluates some 

of the big decisions that were made based on their outcomes and further ties 

together the overall outcomes by discusses the potential of the system. 

In Chapter 7 the final conclusion is given by looking at what was set out to be 

achieved and the results obtained.   
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2. Literature Review 

This thesis looks into optical flow navigation, we will therefore first define optical 

flow and where it comes from. Secondly, we define a quadcopter and give a brief 

overview of how it works. Thirdly we take a look at previous work done that is 

related to this project. 

 What is Optical Flow? 

Optic flow can also be defined as the change of structured light in an image, due 

to a relative motion between the observer and the scene (Raudies, 2013).  In terms 

of digital data, optical flow is the apparent motion of individual pixels or regions 

in two consecutive images. The x and y positions of pixels are determined in both 

images and the change in values are used to determine a movement vector which 

is optical flow. Considering that optical flow allows for a numerical definition of 

motion in a sequence of two dimensional images, it is firmly seated in the field of 

computer vision.  

Optical flow is the basis of a system which takes the seemingly random valued 

pixels in an image and tries to determine where objects or useful information is 

hidden. The concept was first introduced by American psychologist James Jerome 

Gibson in the 1940’s when describing how animals perceive their environments to 

be able to move around freely without collisions (Gibson, 1950). 

Humans constantly make use of optical flow to help complete tasks, such as: 

• Estimation of self-motion. 

• Breaking down the visually perceived environment into moving and rigid 

parts. 

• Determining the depth of different objects. 

• Calculating an estimate for time-to-impact. 

This type of information is used in various fields, for example car driving 

assistance to detect other cars or pedestrians, airplane guidance systems to avoid 

collisions, video codecs to interpolate between key frames, and in fast high 

resolution displays to create additional frames. 

2.1.1. Assumptions 

To be able to mathematically model an optical flow field, certain fundamental 

assumptions need to be made. The assumptions are based on the small time steps 

between two frames which make gradual changes appear as fixed values. The 

assumptions can be summed up as: object brightness consistency, spatial 

coherence and temporal persistence (Mammarella, et al., 2012). 

The object brightness consistency assumption states that an object’s change in 

intensity in the two images is caused only by a relative motion between the 
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camera and the object. The intensity change due to other light sources or shadows 

is therefore ignored. 

The spatial coherence assumption forces motion to be uniform over a small patch 

of pixels. These small discrepancies would otherwise give a great variety of 

velocity vectors for a single object. In making this assumption, the variety of 

velocity vectors is smoothed and stabalised. 

The temporal persistence assumption states that the movement of a small area of a 

surface will only change gradually as time passes. 

2.1.2. Different Methods Used 

As per the optical flow techniques summation by Beauchemin & Barron (1995), it 

is widely accepted that there are four main, broad classifications of optical flow. 

These different areas are better defined by Mammarella, et al. (2012) as: Gradient, 

Phase-based, Region-matching and Feature-based methods. A short summary of 

the basis of each method was done to better understand the different approaches 

that can be taken. 

Gradient Methods: 

The gradient based methods are possibly the most widely used methods today. 

These methods are formed from the brightness conservation equation and use 

spatiotemporal derivatives of the intensity it defines to estimate flow. To get to the 

equation, we define the intensity of a pixel as ���, �, ��. The pixel is located on the 

x and y axes of the image at u and v respectively. These plane co-ordinates 

represent a feature that moves  � and  � over time period  �. This leads to the 

following: 

���, �, �� = ��� +  �, � +  �, � +  ��                   (2.1) 

When Equation 2.1 is derived with respect to time, we get: 

�#�$ + �%�$ + ��	 = 0           (2.2) 

Equation 2.2 is known as the Brightness Conservation Equation or the Gradient 

Constraint Equation. This is the equation which the gradient methods use to try 

and solve for the optical flow values (�,$ �$�. As Equation 2.2 is defined there are 

two unknown variables and additional assumptions needed to be included in order 

to solve it. The spatial coherence assumption states that all the pixels in a small 

surrounding region will have the same motion. This allows for multiple 

constraints to be placed, as well as the calculation of the region’s flow. The most 

well-known algorithms in this field are: Lucas-Kanade (1981) and Horn and 

Schunck (1981). 
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Phase Methods: 

This method was originally worked on and created by Fleet and Jepson (1990) 

where they proved it possible to estimate flow by using the scale, speed and 

orientation extracted from the image signal by linear shift-invariant filters. As in 

the gradient methods the spatial coherence assumption makes it possible to 

calculate an estimated flow value for a region by using values from a group of 

points. 

Their algorithm determines the optical flow values by following three steps. In the 

first step they use a Gabor filter to obtain the spatial filtering and from there they 

can calculate the temporal phase gradient using the estimation of the velocity 

components. In the second step, if a certain corresponding filter pair’s phase data 

is not in linear form over a given period of time, its component velocity is 

rejected. In the third step, the information gathered by the filters is combined and 

the estimation of optical flow values in the � and � directions is made using the 

partial velocities. 

The phase methods have been found to work well at lower movement speeds, but 

do not give reliable values when being used at higher speeds due to the temporal 

aliasing. 

Region-matching Methods: 

For these methods, the displacement, between two consecutive images, of a 

certain area around a pixel is determined. This is then used for the optical flow 

value of that pixel. There are two different methods that are used, the difference 

method and the correlation method. For the difference method, different areas are 

assessed in a predetermined distance around the selected pixel location in the 

second image. These areas are then compared to the area in the first image 

surrounding the pixel using the sum of absolute differences. The correlation 

method has a similar approach, but calculates the correlation amongst the areas 

instead of the sum of absolute differences. Region matching-based methods have 

better results with faster movement than the gradient based methods, but require a 

large amount of computational power. Increasing the size of the region that is 

searched for the best matches has an exponential impact on the computing power 

required. 

Feature-based Methods: 

These methods consist of two main operations that take place in order to calculate 

the optical flow values. In the first operation, each of the two images is searched 

for unique features. The features are determined by scanning through the image, 

looking for areas that match a set of predetermined parameters. In the second 

operation, these features are put through a matching algorithm to find which 

features appear on both images. The matching features’ data is then analysed to 

find the movement of those features between the two frames. 
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 Origins of Optical Flow 

In order to realise the vision the original inventors had, it was important to 

establish the origins of the theories used. Optical flow was first theorised by an 

American psychologist James J. Gibson in the 1940s to describe how animals 

perceive their environment in three dimensions from only the information carried 

by the light. The first experiments done to prove his theories were done on insects. 

Most systems found in nature are far more complex, compact, efficient and 

accurate than any technology humans have managed to create. We therefore look 

to nature for inspiration when trying to find the best possible steps forward. 

An earlier theory that locusts make use of the motion parallax to obtain depth 

information was later proven to be true (Sobel, 1990). The locusts perform a 

movement called “peering” before they take a leap to an intended target. This 

action involves the locust moving its head from side to side, and using the visual 

data collected to determine how far the object is and therefore how far it has to 

jump.  

 

 

Figure 1: How locusts perceive distance by peering (Sobel, 1990). 

 

The theory of peering is shown in Figure 1. It indicates how an object can be 

perceived as moving closer by taking its phase and size of motion into account. 

The Peering is proven to be an effective gauge of depth, but it is only applicable 

for stationary insects. A variety of different usages for optical flow has been found 

in flying insects, including stabilising themselves during flight and interpreting 

the three dimensional world around them (Srinivasan, 1998). 
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Srinivasan breaks down the features for which flying insects use optical flow, into 

the following categories: 

• Stabilising their flight. 

• Hovering. 

• Flying through narrow gaps. 

• Controlling their flight speed. 

• Estimating their distance flown. 

• Making smooth landings. 

• Distinguishing objects at different distances. 

• Detecting the differences between objects and background. 

To better understand how such feats can be achieved using optical flow, it is 

further described how hovering and flying through narrow spaces is made 

possible. 

When insects are hovering, they are essentially going through the same process as 

the system of a mechanical flying object. Srinivasan explains that when 

interference caused by wind or other sources impacts the position of an insect, it is 

measured by the movement of the image on the frontal retina. The amount of 

movement is taken into consideration and an opposite force is exerted to correct 

for the movement. This idea has been implemented in quadcopters using a 

downward facing optical flow camera to predict how much correction is required 

to keep the machine stable (Romero, 2009). It is the most commonly used 

application of optical flow in quadcopters, and preconfigured attachments to 

achieve this are commercially available. 

Optical flow is used in a different manner when an insect navigates through small 

or narrow gaps. Tests were carried out on bees to determine how they use optical 

flow to navigate through a passageway (Kirchner & Srinivasan, 1989). It was 

found that bees don’t measure distance when determining the middle of the 

passageway; instead, they balance out the flow field values on the left and right 

side of their vision. 

 

Figure 2: Bees flying through narrow passage experiment (Kirchner & 

Srinivasan, 1989). 
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In Figure 2 the thick horizontal grey bar represents the path the bees took and the 

arrows in b and c represent the direction in which the wall was moved. These 

three experiments were carried out to prove bees use optical flow to find the 

centre of a narrow passage.  

In a, the walls are kept still and the bee flies down the middle of the passage. In b, 

the wall on the left of the bee is moved in the same direction as its flight. The 

vertical lines painted on the wall of b combined with the movement of the wall 

creates low optical flow values on that side, tricking the bee to think that the wall 

is far away and causing it to fly against it.  

The opposite happens in c, when the wall is moved in the opposite direction to 

flight, the optical flow values are high and the bee thinks that the wall is closer 

than it actually is, and flies further away from it. This theory was implemented on 

a quadcopter by Zingg, et al. (2010) where they used it to navigate through indoor 

corridors. 

Similarly to the previous two descriptions, the rest of the actions performed by the 

flying insects for using optical flow, are proved by performing carefully 

constructed tests. Many of the categories mentioned have been used as a 

foundation for research in the field of mechanical flying machines, specifically 

quadcopters. 

 Definition of a Quadcopter 

A quadcopter is a mechanical flying machine with four rotors, each mounted on 

individual arms as shown in Figure 3. Two rotors spin clockwise and two spin 

anticlockwise, this balances out the torque from the motors and keeps the 

quadcopter stable around the z-axis (as shown in Figure 3). 

 

 

        Figure 3: Rotor layout of a quadcopter. 
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The quadcopter is aerodynamically unstable and relies on a controller to vary the 

speeds of the four rotors for stability. The operator of the quadcopter sends a 

signal for a certain motion to the control module and the required speed 

adjustments are made to the rotors to perform the action. The force model in 

Figure 4 shows the axes and directions of motors in a quadcopter. 

 

 Figure 4: Force model of a quadcopter. 

 

If the quadcopter is required to hover in position, then all motors would be 

rotating at roughly the same speed, creating a similar torque all around and 

keeping the quadcopter stationary.  If any movement is required in the six degrees 

of freedom, then the speeds of the motors need to be adjusted as shown in the 

three different cases in Figure 5. To rotate counter clockwise around the x-axis 

and alter the pitch, motors two (M2) and three (M3) need to be sped up and 

motors one (M1) and four (M4) need to be kept at the same speed or slowed down 

(Hurd, 2013). To rotate the quadcopter clockwise about the x-axis the opposite 

needs to be done, where motors one (M1) and four (M4) will be sped up and the 

others kept the same or slowed down. Similarly, the rest of the rotations can be 

performed by speeding up or slowing down certain motor pairs. 

 

 

Figure 5: Rotation of a quadcopter around three axes. 
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 Research on Optical Flow for Navigation 

In this section multiple different approaches for using optical flow, to determine 

useful navigational information, are summarised and analysed. 

2.4.1. Real Time Depth Estimation and Obstacle Detection 

A front mounted car camera was used to develop and test an algorithm that detects 

static objects and determines their distance from the car while driving in a straight 

line (Wedel, et al., 2006). The depth was estimated by determining regions that 

represent certain obstacles and looking how those regions changed in size over 

time (as the car moves forward). 

Wedel et al. defined the equation for depth calculation as show in Equation 2.3. 

This equation assumes that the speed of the vehicle is known along with the 

optical flow values of image points and given a large enough time scale between 

images. �(��, �� Represents the change in translation in the Z direction from time �  to time � + � , and similarly, ���, ��  represents the scale factor of the region 

representing the object over the same time period. Because the relative distance 

between the different levels of the surface of an object is small in comparison to 

the distance between the observer and the object, the surface is assumed to be a 

set distance � away. Using this assumption allows for multiple image points to be 

used, thereby more accurately determining the distance of a single object.  

� ≡ *��� = +��,,�-.+��,,��(��, ��          (2.3) 

In Figure 6 the results obtained by Wedel et al. are plotted against a radar 

measurement. The results in this case were positive when the distance of the 

object was less than 70 meters away. Although this experiment is not directly 

applicable to quadcopters, it does show that it is possible to accurately determine 

depth of objects in a static field when traveling in a straight line. 

 

 

Figure 6: Distance estimation (Wedel, et al., 2006). 
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Their work showed that the relationship between the change in the size of the 

object on the image plane and the camera movement can be used to accurately 

determine the distance of the object. The experiment was done in a one 

dimensional movement scenario and only proves the theory to be possible for a 

single case of movement of the quadcopter’s six movement dimensions.  

2.4.2. Using TTC to Detect Objects with Optical Flow 

The idea of using the time to contact theory in the field of obstacle avoidance with 

optical flow was introduced by Low and Wyeth (2005). In their experiments a 

ground robot with wheels was used with a single front facing camera.  

 

 

Figure 7: Test layouts (Low & Wyeth, 2005). 

 

If the distance to an object and the velocity at which the robot is traveling are 

known, then the time to contact can be calculated. This describes the scenario 

which is found in Figure 7-a, the TTC is calculated as shown in Equation 2.4. 

��/ = 0%            (2.4) 

In Figure 7-b the robot is moving towards an object, but will not come into 

contact with it. Using the angle between the robot and object and the angular 

velocity at which this angle changes, it is possible to calculate the time it will take 

for them to pass each other. This time can be used to calculate the distance of the 

object. Equation 2.5 shows how the TTC is calculated for situation b. 

��/ = 12+3	×+5633$            (2.5) 

Equation 2.5 has the advantage that it only requires optical flow values to be 

calculated. If it is assumed that the robot travels in a straight line, then the TTC 

can be calculated for each point for which the optical flow was calculated in the 

image.  
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Figure 8: TTC obstacle detection results (Low & Wyeth, 2005). 

 

Their results shown in Figure 8 indicate that the depth of the obstacles were 

vaguely correctly determined. The points in the graph on the left representing the 

optical flow estimation give a similar result to the laser map on the right for the 

placement of the obstacles. 

Again, the results indicate to us that there is a definite link between the optical 

flow and the forward motion of the robot. In this case the results are not as 

accurate as in the previous paper, but to a human eye looking at the results it is 

clear that there are two distinct objects. If the accuracy could be improved to get a 

more definite picture of where the objects reside there is potential in this method.  

2.4.3. On-Board Obstacle Avoidance in Quadcopters 

The problem of running an on-board obstacle avoidance system based on optical 

flow was approached by Orozco (2014) in six different stages: 

1. Tracking the features found in two consecutive images using both 

matching (SIFT, SURF and ORB) and motion (Kanade-Lucas-Tomasi 

(KLT)) tracking methods. 

2. Removing incorrectly tracked features and outliers with RANSAC. 

3. Estimate the depth of matching 2D points over multiple images using 

epipolar geometry. 
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4. Negating the accumulating errors of the 3D reconstruction using Extended 

Kalman Filters (EKF). 

5. Generating a 3D point cloud. 

6. Transforming the points into a 3D surface via Delaunay Triangulation. 

In order for Orozco to achieve his goal of running his computations on-board a 

drone, he needed to make certain accommodations during his testing. The testing 

was done for only 30 tracking points, using an image stream of 320 x 180 pixels. 

The results successfully proved that optical flow can be used as a feature tracker 

in real time for a drone with only on-board processing power.  

 

 

Figure 9: Point selection (Orozco, 2014). 

 

 

Figure 10: 3D surface reconstruction (Orozco, 2014). 

 

The results of a successful point selection process are shown in Figure 9. Using 

these points, a 3D reconstruction (Figure 10) of the environment was done. 

Without including multiple images from different angles or the ability to rotate the 

3D scene in Figure 10 it is difficult to see how well it represents the real world. 

The system was however able to successfully draw a fairly accurate depth model 

for the amount of points it was using. The main problem encountered here is that 
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not enough points could be plotted with the available processing power to make 

the 3D model useful to a navigational system. 

It is possible to learn from these results by taking into account that processing 

speed should be prioritised in the decision making process when designing for a 

real time quadcopter system. It is clear that accuracy or in-depth calculations 

would need to be swapped for basic, efficient relationships in order to create a 

system that can realistically operate using readily available technology.   

  

Stellenbosch University  https://scholar.sun.ac.za



15 

 

3. Simulator 

Initially it was unclear where to start with the basic implementation of optical 

flow and attempts were made to use a quadcopter with a mounted GoPro to record 

data during different test flights. It was quickly established that using real world 

tests for initial data was not ideal because of all the variables involved. It was 

impossible to determine if the positional readings correctly correlated with the 

video stream and whether or not any of the values could be trusted. 

It was concluded that in order to thoroughly develop and evaluate the performance 

of any optical flow algorithm a reliable testing environment needed to be created. 

The environment would need to produce a video stream input to calculate the 

optical flow as well as the 6 dimensional movement vector of the drone to enable 

the calculation of the positions of the surrounding obstacles.  

It was therefore decided to create a virtual world with obstacles in which a virtual 

camera could fly around as a drone would. All the movement vectors would be 

known and a ground truth of the distance from camera to obstacles would be 

obtainable.  

 Software 

The idea of using a game engine to simulate the quadcopter came from the 

freecam mode found in many computer games, most notably in Counter Strike’s 

death-cam. In this mode you can control your view with your mouse and four 

keyboard buttons to move in four out of a possible six dimensions to “fly” freely 

around the game’s environment much like a quadcopter would. 

The Unity game engine was chosen as the platform on which to create the 

simulator. Unity is a free cross platform game engine which can be used to create 

2D or 3D games or simulators on 27 different platforms. The creation process is 

carried out using the Unity editor and a C# scripting Unity API. 

 Environment Design 

The real world environment in which the worker drones operate is shown in 

Figure 11. The ideal surroundings consist mostly of blue skies and green grass 

with other objects in the distance. As an initial design, the virtual world was 

created in reference to the real world. The floor made of grass like material and 

the background set to a blue sky as shown in the image.  
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Figure 11: Helio 100 Test Facility. 

 

The obstacles placed in the simulation are shown in Figure 12, these capsules had 

a height of 20 units and a radius of 5 units. Random preconfigured textures 

ranging from wood, to metal, to stone were used for each capsule. These simple 

objects would create a good starting point for determining if the concept had 

potential without any excessive designing in the unity editor. The unit value was 

not directly tied to any real world value because no physics engines were used, 

but setting 10 units = 1m gave the most relatable measurements. 

 

Figure 12: Simulation obstacles. 

By keeping the structures simple, some important challenges that would otherwise 

be faced in the real world, such as reflective mirrors and solar beams, are not 

accounted for. The thesis is focused on determining if optical flow could provide 

useful depth information and the extra challenges were therefore deemed to lie 

outside the scope of the work being done. It is however important to note that 

there are other real world aspects not yet introduced to the system that would have 

an impact when moving forward from the simulated environment. 
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 Freecam Script 

To implement this action in the simulator, a script was created and attached 

directly to the main camera object. This same script was used throughout to do all 

the required programming. Unity’s base class allows for a start function which is 

called once at the beginning of the program to initialize everything and an update 

function which gets called every frame. By adding a check in the update function 

for the presence of six different keyboard buttons it was possible to update a 

translation movement vector accordingly. This vector was used to translate the 

camera in all three directions (x, y and z). The mouse input was used to determine 

the rotation about the z- and x-axis and another keyboard button for the y-axis. 

The sensitivity of the rotational angles and translation distances were adjusted via 

trial and error to a value that was easy to control and appeared to represent the 

movement speed of a quadcopter.     

 Test Record Mode 

One of the advantages of using a simulator is the ability to isolate different 

variables during a test run. In order to compare these variables to each other it was 

important to be able to repeat a test exactly with only one variable changing. To 

make this possible the simulator process was split into two separate modes: record 

and playback. The mode could be selected via one of the custom input arguments 

when running the program.  

In the first mode the user would record a path for the camera to take during a 

particular test. This was done by giving the user control over the freecam and 

recording the camera position for every active frame. A button was assigned for 

the user to start, pause and stop the recording process. At the end of the recording 

process the camera position values were stored to an excel spreadsheet. 

 Test Playback Mode 

In the second mode the user could use the input arguments to specify which 

dataset to read in and what test parameters to apply. These parameters adjusted 

the: brightness level, velocity (units/frame), rotational/translation vibration and 

rotation/translation input errors. The program would then automatically run 

through the list of camera locations given, recording the translation and angular 

rotation between frames as well as the distance from the camera to the visible 

objects. In addition to the movement data, the program recorded a screenshot of 

every frame and saved it to the specific test file. At the end of the run the data was 

again saved to an excel spreadsheet. 

The different variables were implemented as follows: 

Brightness: A lighting source was added into the unity environment. This 

object’s intensity value was set according to the input variable during the start 

function. 
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Velocity: The path of the camera was essentially plotted out by a line of points in 

a 3-dimensional space, therefore it was possible to travel larger or smaller 

distances per frame by interpolating the path. This was done by adding an 

additional 100 points between every point and choosing the points on the path 

which would give the newly required distance value between frames. 

Vibration: The vibration was implemented by using two 3-dimensional vector 

variables to store the previous vibration point’s position (initialized to zero). 

Every frame the camera position was taken from the given data and adjusted by a 

value between –x and x where x represents the different variable input values for 

each of the six directions. The movement between the newly vibrated point and 

the two 3-dimensional vector variables was stored. Finally the new point’s 

position was stored in the variables and then the process was repeated for all 

frames. 

Inaccuracies: After the test was performed the resulting translation or rotation 

values were adjusted by a specified percentage to simulate a sensor with limited 

accuracy.   

 Automation 

The compiled unity program could be executed from the command line with input 

variables. It was therefore possible to create two separate batch files to boot the 

program into either the recording or playback modes. To maximise the efficiency 

of creating test packages the file space in the two batch scripts were syncronised 

and a whole list of different tests scenarios were added to the playback script. The 

result of this being that the user could create a test run by executing the ‘record’ 

script and then automatically generate numerous data sets for different variables 

by simply executing the ‘playback’ script.  
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4. Designing an Optical Flow Navigation System 

This section describes how the Optical Flow Navigation System was designed and 

the reason behind the different decisions taken during the design process. The 

main focus of the system was placed on how the optical flow data could be turned 

into useful information to help navigation in quadcopters. The methods used to 

obtain the optical flow values as well as the methods used to manipulate their 

outputs are further discussed. 

 System Parameters 

As with the design of any system, the first step is to define its boundaries and 

goals. These two categories will paint a clearer picture of where the system fits in 

and how its success can be measured. 

4.1.1. Boundaries 

Because this thesis looks at the potential of using optical flow with quadcopters, it 

was decided that the system would initially operate under ideal conditions in a 

simulated environment. The environment was deemed to be static, perceiving all 

slow moving objects to not be moving at all and ignoring fast moving objects. All 

variables that would usually limit a drone in real world flight are controlled and 

would not directly impact the design of the system. The variables can later be 

introduced one by one to investigate their impacts. 

The data stream coming in from the camera is pre-recorded and therefore no time 

restrictions are placed on the calculations done for every frame. The calculation 

time would however have an impact on the overall potential of using the system 

as it would need to be implemented in real time on a quadcopter at some point if 

the technology were to be used in the field. 

The system input is limited to a single camera feed in the form of a series of 

images and a 6-dimensional movement vector of the drone between frame 

intervals. This is the only data that the system can make use of to do the 

navigation, no further information on the drone’s surroundings is given.  

The system is required to directly or indirectly make use of optical flow methods 

to do its navigation. 

4.1.2. Goals 

Navigation in the case of this thesis is limited to moving around a virtual open 

grass field with “2m” tall and “1m” wide capsule shaped obstacles with different 

textures. The ultimate goal of the system is to accurately determine the drone’s 

environment and obstacles while moving in any combination of its 6 degrees of 

freedom. 
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The performance of the drone’s navigation capabilities is measured by the 

reliability, accuracy, range and robustness. Because of the nature of the field, no 

exact figures were chosen to determine the level of potential of optical flow as a 

navigation system. The final potential rating given at the end of the thesis is based 

on how well the system performed individual tasks, the pros and cons of the 

system, how the system would perform on its own vs how it could perform as a 

subsystem of a bigger system, and what future work could be done with this 

approach. 

 System Design 

In this subsection the main components of the system and its design process is 

discussed. An extensive breakdown is done on each component’s theoretical 

background and why it was chosen. The section is in chronological order and each 

component was impacted by what had been done and what was still left to do. 

4.2.1. Inspiration 

As with most optical flow theories, the system was driven by the natural process 

of peering, explained earlier. The idea being that in a stationary environment it 

should be possible to estimate depth of any chosen pixel or pixel group by 

knowing the movement of the camera between images. Therefore the movement 

of the insect’s head is similar to the movement of the drone, just at a much higher 

speed. 

4.2.2. Software 

OpenCV was chosen as the foundation of this system. OpenCV is a large open 

source computer vision library (including optical flow libraries) widely used in 

industry and at universities around the world. The library has been highly 

optimised and is designed specifically for real time processing. The library was 

originally written in C and has since moved to being developed in C++. Wrappers 

have been written for Python and Java allowing these languages to be used 

without sacrificing performance. 

4.2.3. Optical Flow  

The OpenCV libraries support the following optical flow algorithms: 

Brox et al (2004): Their energy functional is based off a combination of works to 

enable the usage of coarse-to-fine warping. Large displacements are handled and 

the algorithm responds especially well in the presence of noise. Constant 

brightness and gradient as well as a smoothness constraint is assumed. The library 

implements this as a dense optical flow function. 

Farneback (2003): A dense optical flow function which is implemented over two 

steps. Firstly it uses the polynomial expansion transform to calculate quadratic 

polynomials for each neighbourhood in both of the frames. Secondly it estimates 

the displacement from the polynomial expansion coefficients. 
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Zach et al (2007): The Dual TV-L1 variation based function preserves the 

discontinuities encountered in the flow and has good results when it comes to 

occlusions, noise and illumination changes. It also falls under the category of 

dense optical flow fields. 

Lucas Kanade Pyramid:  Implements the classical Lucas Kanade algorithm with 

an extended pyramidal layer which accommodates larger movements (Bouguet, 

2000). This function is given in both dense and sparse optical flows. 

As the system was to be designed specifically for real time operation, the faster 

sparse optical flow was chosen over the dense ones. The sparse field could be 

fine-tuned to detect only a small group of key points on the images which could 

then be analysed for their optical flow. In comparison the dense flow fields would 

be doing a lot of unnecessary calculations on points with no useful data. Another 

motivation for the sparse field was the reduction in processing required on post 

optical flow operations. The sparse field separates the key points early on in the 

system’s sequence; therefore all calculations after the optical flow calculations 

would only need to be done on the smaller data group. 

The Bouguet implementation was considered to be an adequate starting point to 

test optical flow navigation for drones because of its good reputation in the 

industry. The algorithm was one of five used to produce initial baseline results for 

the Middlebury benchmarking and evaluation platform (Baker, et al., 2011). 

The decision was made with the knowledge that the sparse field might miss out on 

key features in images or misinterpret objects where the dense field would have 

the full picture. It was decided that the increase in calculation speed would 

outweigh this possibility of misinterpretation when it came to evaluating the 

potential of the overall navigation of the drone. 

4.2.4. Finding the Best Points 

In order to make use of the sparse optical flow equations, a list of points need to 

be used as input. The function will then determine the optical flow of each point 

individually. Functions specifically designed to find useful points such as edges or 

corners of different objects are catagorised as Corner Detection Algorithms. In the 

OpenCV library there are three such algorithms which can be executed in real-

time namely: Harris, Shi-Tomasi and FAST. Shi-Tomasi is based on Harris and 

considered to be an improved extension of it. Harris was thus ignored and a 

further investigation was done into the other two functions. 
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Shi-Tomasi: 

The foundation of the Shi-Tomasi corner detection lies in the Harris algorithm 

published by Chris Harris and Mike Stephens (1988). In their work they make use 

of a function closely representing the local auto-correlation to extract the location 

of strong feature points from an image. They analyse a small window in the image 

and shift it in all directions about its origin. The variation of light intensity of the 

window was determined to be: 

���, �� = 	∑ 	�8, 9��,: [��8 + �, 9 + �� − ��8, 9�]>      (4.1) 

where 	�8, 9� represents the window function and the intensity difference for 

each pixel is calculated in the square brackets. In order to improve the speed of 

the function a first order Taylor series expansion was done and after re-writing the 

function into matrix notation they ended up with: 

� = 	�8, 9� ? ∑ ��>��,:� ∑ ���:��,:�∑ ���:��,:� ∑ �:>��,:� @        (4.2) 

where ��  and �:  are the derivatives of the intensity in the x and y directions 

respectively. A formula was determined to use the eigenvalues of matrix M to 

estimate a corner response: 

�1 = �A���� − B × �C���>          (4.3) 

where ��� = 	 D-D> , �C��� = 	D- + D> and B is a constant. If �1  is small a flat 

region is indicated, if it is large it predicts a corner, and if it is negative it predicts 

an edge. 

The difference in the Shi-Tomasi algorithm is that a region of calculated response 

values is taken into account when determining the final points to be used. The 

local maxima of each region are recorded and only the region values meeting a 

certain criteria are considered. It was observed that when the chosen level is 

reached by the smaller of the two eigenvalues, the matrix tends to pass the test as 

well (Shi & Tomasi, 1994). The condition for passing the requirements can 

therefore be given as: 

EFG�D-, D>� > 	D           (4.4) 

where D is the lower limit.  

FAST: 

The FAST corner detection algorithm was introduced by Rosten & Drummond 

(2006) to greatly reduce computation time of the corner detection phase in 

systems. They recognised the lack of processing speed in the corner detection 

field and created an algorithm that fully prioritised time efficiency. In their 
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method the pixel being analysed is compared to the sixteen pixels forming a 

circular boundary around it as shown in Figure 13. This differs to the previous 

methods where every pixel in the region was analysed. 

 

 

 

A corner is detected when the pixel P is found to have a difference of intensity 

greater than a certain threshold for at least twelve contiguous pixels of the sixteen 

that surround it. For this to hold true all the pixels qualifying need to be either 

lighter or darker, not a combination of the two. To speed up the process an extra 

elimination step was added where the pixel would first be compared to 

surrounding pixels 1, 5, 9 and 13. If at least three pixels did not meet the 

requirements then it would be impossible for a corner to exist, therefore saving the 

time it would have taken to calculate the rest of the pixels. 

There are several sacrifices made in order to achieve faster performance:  

1. The algorithm does not perform well when the value of pixels that have to 

qualify is dropped below twelve.  

2. Choosing which pixels to use and their sequence, is based on assumptions 

about the features. 

3. The four pixels calculated in the pre-test need to be recalculated during the 

actual test if the first section passes. 

4. It is not robust to noise as it focuses mainly on speed. 

5. The threshold needs to be given and can lead the algorithm to perform 

differently in various situations. 

 

 

Figure 13: FAST corner detection visualisation 
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Comparison: 

The performance of FAST, Shi-Tomasi and various other methods are compared 

with regards to their repeatability for varying numbers of corners per frame by 

Rosten & Drummond (2006). In these tests the FAST algorithm consistently 

outperforms Shi-Tomasi. There are however adjustable variables in each 

algorithm and the test data was not necessarily similar to that which would be 

found in our test scenario. Further testing on the two different types was done 

using images acquired from the simulator. 

 For the tests a reasonable arbitrary threshold was chosen for the FAST algorithm. 

The Shi-Tomasi parameters (maximum number of corners, quality threshold, 

minimum distance between points and size of the analysed block) were then set to 

generate a similar amount of points as the FAST algorithm did. In doing this it 

was possible to get an evaluation on the different computational speeds and the 

type of points chosen. All images used had a resolution of 640x480 for 

consistency. 

 

 

Figure 14: Point detection virtual world 1. 

  

  

Figure 15: Point detection virtual world 2. 
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Figure 16: Point detection real world 1. 

 

 

Figure 17: Point detection real world 2. 

 

Table 1: Point detection test results. 

 Shi-Tomasi FAST 

Test Time [s] Points Time [s] Points Threshold 

Virtual world 1 0.013 475 0.002 474 20 

Virtual world 2 0.017 5534 0.014 5745 3 

Real world 1 0.012 779 0.003 774 54 

Real world 2 0.012 1722 0.004 1720 39 
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Conclusions: 

The results in Table 1 and Figure 14 to Figure 17 produced useful information 

about each method in practice, and a number of conclusions could be drawn:  

1. The calculation speed is considerably faster when using FAST to find a 

smaller group of points. As the number of points found increases, so does 

the calculation time of FAST. This is due to the pre-calculation phase 

mentioned previously avoiding further calculation on points which don’t 

meet the basic qualifications. As more points pass this pre-calculation 

phase, the processing time gets closer to that of Shi-Tomasi (as seen in the 

Virtual world 2 test). The time taken for Shi-Tomasi was found to be 

based on the minimum distance allowed between points. Indicating that all 

possible points are fully processed and tested. Because processing speed is 

of importance for this system, it was decided that the Shi-Tomasi 

algorithm is not fast enough to use. 

2. The quality of points selected by the two algorithms was near identical 

with the only significant difference being the inherent ability of Shi-

Tomasi to have points which were evenly distributed. An example of this 

can be seen in the virtual world tests where points for FAST are almost 

overlapping each other. This over detection could lead to multiple optical 

flow calculations being done on a single small area representing the same 

thing. 

3. An interesting difference can be found between the real world and virtual 

world tests when considering the threshold value used vs the amount of 

points detected. In the first virtual world test only 474 points were detected 

using a threshold of 20, where in the first real world test 774 points were 

detected using a much higher threshold value of 54. To find the reason 

behind this another test was done where the virtual world threshold was set 

to 54, generating a result of only 4 detected points. This happened because 

the contrast between light and dark is much higher in the real world image, 

producing sharper corners and edges which are easier to detect. Increasing 

the rendering quality in the simulator to generate truer shading is a 

possible solution to this gap. 

 

4.2.5. The Lucas Kanade Pyramid Optical Flow Algorithm 

With the key points selected the next step is to take two consecutive images and 

determine how those key points move from image A to image B. To further 

understand how the data is being processed, the mathematical approach Lucas and 

Kanade (1981) initially took is investigated.  

Lucas Kanade Algorithm: 

The Lucas-Kanade algorithm predicts the movement of pixels from image to 

image by looking at the change in intensity in a neighbourhood of pixels. To do 

this an assumption is made that the two images in question are separated by a 
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small enough time frame, to allow an insignificant displacement of objects. For a 

single pixel there are two unknowns and a single equation: 

0 = ����5� + I���5� ∙ [�	�]           (4.5) 

With ����5�  representing the temporal gradient, ∇���5�  representing the spatial 

gradient and [�	�] representing the unknown flow vector. To get more equations 

for each pixel a neighbourhood of pixels are assumed to have the same flow 

vector as the considered pixel. The mathematical interpretation of this can be 

given as: 

K ����1� �:��1�⋮ ⋮����25� ����25�O P
��Q = − R ����1�⋮����25�S         (4.6) 

If the first matrix is represented by T, the second matrix by � and the third by U, 

the, then the above problem can be solved by means of minimum least squares by 

determining �TVT�� = TVU. The following equation is obtained by solving as 

suggested: 

WX���� X���:X���: X�:�:Y P��Q = − WX����X�:��Y          (4.7) 

Equation 4.7 can then be used to determine the flow values for a specific pixel 

(the pixel in the middle of the region). 

Pyramid: 

The Lucas Kanade algorithm on its own is limited, by only being applicable to 

small optical flow values. This challenge was overcome by introducing a coarse to 

fine approach where a low resolution version of the image was taken and optical 

flow calculated (Baker, et al., 2011). This was then repeated for a larger resolution 

image and the sum of the new optical flow values and a warped version of the old 

optical flow values were combined to form a more accurate estimate. This process 

could then be repeated for multiple levels. 

OpenCV: 

The Lucas Kanade Pyramid function in OpenCV follows the optimised 

implementation by Bouguet (2000). The parameters for the OpenCV function are 

as follows: 

• Previous image: The first 8-bit image. 

• Next image: The second 8-bit image. 

• Previous points: The points in the first image to be mapped onto the 

second image using optical flow calculations (the key points found using 

FAST would be used here). 
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• Next points: The resulting calculation points. 

• Status: Indicates whether each point was calculated. 

• Error: Indicates errors for each point calculated. 

• Window size: The size of each pyramid level’s search window is set here. 

• Max level: The maximum pyramid level to which the algorithm will 

search. 

• Criteria: The parameter indicating when the iterative search is deemed 

successful. 

• Flags: Describes the initial estimation input method and error measure 

method. 

• Minimum Eigen Threshold: This value is compared to the minimum 

Eigen value of the spatial gradient matrix (calculated in the step before 

starting pyramid calculations) to reduce computational requirements by 

filtering out bad points at the earliest possible stage. If the flag for this 

parameter is not set the error value is calculated by dividing the distance 

between the points by the number of pixels in a window. 

By understanding the theory behind the optical flow calculations and what each 

parameter represented, it was possible to change the input values until the 

function produced results with minimal to no clearly miscalculated results. The 

starting points for the variables were taken from the example given in the 

OpenCV documentation. The left and right sides of Figure 18 to Figure 20 shows 

the initial and final outputs respectively. 

 

 

Figure 18: Optical flow correction 1. 

 

In Figure 18 the quadcopter is moving forward and tilting its angle upwards and to 

the left. In Figure 19 the quadcopter is traveling in a straight line and the optical 

flow is moving outward from a central focal point. In Figure 20 the quadcopter is 

flying toward the ground while tilting upwards, causing the focal point to shift up. 
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Figure 19: Optical flow correction 2. 

 

 

Figure 20: Optical flow correction 3. 

 

To achieve the final outputs the max pyramid level was increased from 2 to 3, the 

window size decreased from 15x15 to 10x10, and an extra sifting phase was 

added to exclude points with an error value greater than 5. It was found that the 

rest of the adjustable variables had very little to no impact on the performance of 

the calculation in the case of the given scenario.  

4.2.6. Depth from Optical Flow 

Scene flow can be described as the change in 3-Dimentional location of each 

single point in an environment and optical flow can be interpreted as the 2-

Dimensional projection of this (Vedula, et al., 1999). Because the location of the 

camera is known for both images, it is possible to geometrically predict the 

location of the points of the static scene from the optical flow data.  
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This method was used for navigating a passageway using a quadcopter by Zingg, 

et al. (2010). This subsubsection investigates and adapts their work onto the 

virtual quadcopter in the open simulated environment.  

Depth from One Dimensional Movement: 

In their paper they fist discuss depth estimation when traveling in a straight line. 

They end up with the following equation to predict the depth value (D) of a single 

pixel: 

� = 	 %Z[ ∙ �FG 
           (4.8) 

The velocity of the camera is indicated by � and the angle between the camera’s 

movement and the obstacle is given as 
 . Equation 4.8 depicts an alternate 

method of determining the depth from the geometry of the situation visualized in 

Figure 21.  

 

 

Figure 21: Geometry of time to contact in optical flow (Camus, 1995). 

 

Because the angle between the camera and the obstacle is not directly known we 

make use of the original TTC derivation by Camus (1994) where similar triangles 

gives: 

:\ = 	:- = 	 ](            (4.9) 

The equation is differentiated with respect to time, to get: 

9$ = 	 ]$( − ^� ($(_�                    (4.10) 
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The point P remains constant causing the first term to equal to zero. From the 

similarity ^ can be substituted with 9* leaving us with: 

9$ = 	−9�($(�                     (4.11) 

This resembles a ratio of change in the Z direction compared to the depth of the 

point and the change in the pixel location in the y direction compared to the pixel 

distance from the centre of the image. Rearranging to solve for depth:  

* = 	−*$�::$�                     (4.12) 

Assuming the same behaviour in the x direction, the equation was applied to both 

the x, and y version of Equation 4.12 to test the ability of determining depth when 

traveling in a straight line. For this scenario a single object was placed in-front of 

the drone as shown previously in Figure 14 and the drone moved in a straight line 

past it. The average value of the depth of the points was plotted against the ground 

truth of the distance between the object’s plane and the drone. 

 

 

Figure 22: Depth from y-directional flow.  
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Figure 23: Depth from x-directional flow. 

 

In Figure 22 and Figure 23 the dots represent each individual point with an optical 

flow value that was used to determine a depth at a specific frame. From Figure 23 

it is clear that the points that represent the obstacle give a fairly accurate estimate 

of its depth for the flow in the x direction, with few outliers. The average distance 

is found to be slightly below the actual distance, this is partly due to the surface of 

the object not being exactly the same distance from the camera as the objects 

plane which passes through its centre. The points are spaced out in the early 

frames when the obstacle is far away and get more compact and precise as it 

moves closer.  

In Figure 22 the points also produce an average value of depth that closely 

resembles the actual value, but it contains many outliers and the points remain 

scattered throughout. A reason for the difference in the accuracy of the two flows 

can be due to the object making larger movements in the x direction on the image 

plane. This is backed up by the results shown in Figure 24 where each point is 

evaluated by its largest flow direction. Most of the points representing the object 

are taken directly from the x flow and the points on the grass by the y flow. The 

graph shows an improved version of the two singular flows and therefore 

confirms the theory.   
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Figure 24: Depth from bi-directional flow. 

 

The points plotted at around 25 to 35 units of depth in the first 120 frames and last 

30 frames are points that were detected on the grass. An example of such points 

are the two grey markers near the bottom of Figure 25.  

    

 

Figure 25: Straight movement depth visualisation frame 25 

. 
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Figure 26: Straight movement depth visualisation frame 75. 

 

In Figure 25, Figure 26 and Figure 27 the points detected are indicated by the 

orange dots. The size and colour of the circles surrounding the points increase and 

shifts from white to dark grey as the estimated depth decreases. The black lines 

coming from the orange points represent the magnitude and direction of their 

optical flow. 

 

 

Figure 27: Straight movement depth visualisation frame 125. 
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4.2.7. Compensating for Rotation 

Although the straight line method accurately detects how far away an obstacle at a 

certain pixel is, a new or adapted method needed to be introduced in order to 

accommodate the five other degrees of freedom a quadcopter has. One method of 

allowing for an angular change is to mathematically inverse the effects that each 

of the three rotational directions have on every pixel. This method is applied as an 

optical flow filter, fitting between the steps of optical flow calculation and depth 

estimation.  

 

 

Figure 28: Pinhole camera model (Zingg, 2010). 

 

The problem is solved by Zingg, et al. (2010) by analysing two rays passing 

through the two points on the pinhole camera model shown in Figure 28. These 

two points represent a matching pair of points in the two consecutive images of an 

optical flow calculation. They predict that by applying the Euler angles of the 

drone’s movement to the second ray it is possible to mathematically estimate 

where the ray would have been if there was no rotation. The estimated ray could 

then be traced to the point on the image plane. The initial two rays representing 

the points are given as: 

C-���� = `000a + D- ∙ `8-9-� a         (4.13) 

And 

C>���� = `000a + D> ∙ `8>9>� a         (4.14) 
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Where � represents the focal length as depicted in Figure 28. The Euler angles 

applied to the second ray gives us: 

C′>������ = `1 0 00 �c��∆e� − �FG�∆e�0 �FG�∆e� �c��∆e� a ∙ ` �c��∆f� 0 �FG�∆f�0 1 0− �FG�∆f� 0 �c��∆f�a ∙
																									`�c��∆g� −�FG�∆g� 0�FG�∆g� �c��∆g� 00 0 1a ∙ C>����      (4.15) 

where Φ, Θ and Ψ are the roll, pitch and yaw angles of the drone respectively. To 

test the accuracy of this filter the simulated drone was restrained in the x, y and z 

directions and only allowed to rotate around the three axes. In theory this scenario 

should cause the filter to completely negate the movement of the pixels, meaning 

that the adjusted second rays would be in the exact same position as ray one. 

Before this test could be done the focal length of the camera needed to be 

calculated. The default Unity Field Of View angle was used (60 degrees) and the 

horizontal image width in pixels was set to 640. Using geometry from Figure 28 it 

is possible to calculate the focal length using the following equation: 

� = h_�i6jklm_ n = opq_�i6joq_ n ≈ 554       (4.16) 

In Figure 29 to Figure 31 the purple points represent the original pixel location 

(p1) and the orange points represent the new pixel location (p2) determined via 

optical flow calculations. The slightly smaller cyan points (p2’) are the result of 

mapping the recalculated ray two (C′>) onto the images. The expected result is for 

the cyan points to shift from their original position on the orange points to the 

position of the purple points. 

 

 

Figure 29: Rotation with no angular compensation. 
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Figure 30: Rotation with mathematical angular compensation. 

 

Figure 29 is the result of zero compensation for rotation, and leaves the cyan 

points perfectly covering the orange points. In Figure 30 a rotation of 1.05 degrees 

about the y-axis is compensated for. This compensation moved the cyan points to 

roughly the position of the purple points. Zooming in on specific points in the 

image (marked by the red block) it is clear that there is a slight miscalculation 

somewhere in the process.  

 

 

Figure 31: Rotation with adjusted angular compensation. 
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Table 2: Rotation compensation test results. 

Test Average Dist. 

(Incl. and excl. 

outliers) 

Number of Points 

(incl. outliers, excl. 

outliers) 

Rotation around Axes 

 Incl. Excl. Incl. Excl. x[°] y [°] z [°] 

1 0.778 0.329 321 316 0 0 -8.02 

2 0.565 0.277 328 322 0 0 8.02 

3 0.057 0.057 376 376 1.4 0 0 

4 0.065 0.065 440 440 -1.72 0 0 

5 0.428 0.428 410 410 0 1.05 0 

6 3.207 1.518 283 274 0 5.6 0 

7 2.730 2.656 66 65 -0.7 0 -8.02 

8 3.757 3.090 222 169 -1.4 3.84 0 

9 12.07 - 408 0 -1.4 -4.9 0 

  

By iteratively adjusting the focal length to compensate for a possible inaccurate 

Field of View rendering by the simulator, the results in Figure 31 were achieved 

with a value of � = 417. The zoomed-in side image shows a near perfect match 

for this situation. To further analyse the accuracy of the compensation for rotation, 

the average distance between the newly calculated point (p2’) and the original 

point (p1) was taken for a variety of scenarios showed in Appendix A, the results 

are shown in Table 2. 

In the nine tests in Table 2 any point where the distance from p1 to p2’ was 

greater than 5 was considered to be an outlier. In the first five tests the results are 

consistently accurate with the exception of blatant outlying points. Upon closer 

inspection the outliers were detected as incorrect matchings from the optical flow 

calculation process. 

The difference between tests 4 and 5 indicates how the magnitude of rotation 

affects the accuracy. In test 5 the larger rotation angle causes the optical flow 

calculation to have lower accuracy and produce more mistakes (in the form of 

outliers). It makes sense that with lower point position confidence from optical 

flow, the distance between the mathematical prediction and the intended target 

point would increase. This is confirmed in the increased Average Distance value 

in test 5.    

Tests 7, 8 and 9 have rotation in more than one direction. From the results it is 

clear that the error size is a lot greater than the sum of the two errors in similar 

single angle tests. It is difficult to give an exact reason for these unexpectedly 

large error values from the data in the table. An interesting observation can be 

made in test number 9 where all the points appear to be wrong by a similar 

Stellenbosch University  https://scholar.sun.ac.za



39 

 

amount, meaning that more accurate results could probably be obtained by 

adjusting the formulae with some value. 

As the goal of the thesis is to test the general potential of optical flow in this 

system, it was decided that the overall results for compensating for rotation was 

sufficient to give a fair result in later full system tests. 

4.2.8. X and Y Translation 

Quadcopters are able to move in any combination of their 6 dimensions of 

freedom therefore the X and Y translations were also analysed. Translating solely 

in one of these directions makes it possible for the quadcopter to predict the 

distance of the different pixels that are being tracked similarly to the Z axis 

translation described earlier. These translations are however simpler because of 

their straightforward flow and translation size to depth ratio. 

 

Figure 32: Geometry for x-y translation depth calculation. 

   

In Figure 32 points B and C are the focal centres of the image planes containing 

points P1 and P2 respectively. Both P1 and P2 are projections of the same real 

world point A at different times and locations. In this situation the camera only 

moves on the X axis (from B to C) and the change in location between the two 

images is given as �� . When the camera translates on the X axis in a static 

environment, optical flow is only observed in the X direction opposite to that of 

the camera motion. The distance between the two points P1 and P2 can therefore 

be given as �� − ∆8. In Figure 32 f indicates the focal length from the image 

planes to the focal centres and X indicates the distance from the focal centres to 
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the real world point’s plane. Using similar triangles it is possible to extract the 

following ratio: 

uv = ∆�Vh            (4.17) 

Reorganising to find a value for X gives: 

w = Vhu∆�           (4.18) 

To test the performance of this equation a single object was placed in a simulated 

environment and a virtual quadcopter was flown first left and right (on the X axis) 

and then up and down (on the Y axis). The results are shown in Figure 33 and 

frames 15 and 290 are shown in Figure 34 respectively. In the first 200 frames the 

movement was only on the X axis and in the rest of the frames the movement was 

only on the Y axis. The points show great consistency and clearly depict a stable 

distance for the object. It is not clear from the results exactly how far off the 

precision of the distance estimates are because of the difference between the 

distance to the object plane (ground truth value) and the surface of the object 

(measured by optical flow). These questions could be more concerning at a later 

stage of implementing this technology, but at the early stages the high consistency 

and moderate accuracy are good enough to move onto further testing. 

 

 

Figure 33: Depth translation test 1 in x and y directions. 
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Figure 34: Depth translation test 1 visualisation. 

 

The next test environment contained four different obstacles at varying depths and 

with varying textures. A similar flight path to the previous test was taken and the 

results are shown in Figure 35 and the visualisation of frames 97 and 430 in the 

left and right of Figure 36 respectively. The overall results were the same as with 

the single obstacle test for each individual obstacle, with each obstacle’s depth 

estimation consistent and slightly inaccurate. It was found that estimation of the 

obstacles’ depth could be improved by increasing the focal length value, but due 

to the difference between ground truth and expected optical flow results 

mentioned earlier, the focal length was left at 417. 

 

 

Figure 35: Depth translation test 2 in x and y directions. 
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Figure 36: Depth translation test 2 visualisation. 
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5. Testing the System 

In this section the system designed in Chapter 4 would be tested in a range of 

aspects. All tests were done in two stages. In the first stage they were created in 

the simulated environment and all test data was stored to a folder. In the second 

stage the data in the folder was used as input to the system. The system recorded 

all its calculations and plotted it on a graph against the predicted results from the 

data file. The main goals of the tests were: 

• To determine if the system could function in a simple environment. 

• To establish a baseline of the system’s performance capabilities. 

• To determine how different variables would affect the system and what 

limitations they could potentially place on it. 

 Performance Test 

In order to later apply this technology in a real environment the system would 

need to reach a certain level of processing speed, accuracy and robustness. The 

tests were performed on a laptop with an Intel Core i7-4702MQ CPU (2.2 GHz) 

processor. 

In the first test, the simulated quadcopter flew in a random path in front of a single 

object. The goal was to determine what processing speed could be achieved at 

different stringency settings while visually analysing the accuracy. This would 

allow us to determine a solid baseline which could be used in further testing to 

draw comparisons. 

  

Figure 37: Random motion test orientation per frame. 
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 The movement vector input of the random motion was recorded and is shown in 

Figure 37. The random movements were created in the simulator by a human 

operator, trying to imitate manoeuvres typical of a quadcopter in normal 

operation. The movements were kept fairly conservative, with no rotation going 

past 50 degrees and no abrupt turns. 

In Figure 38 the resulting depth points are plotted for every frame, on the same 

graph as the real distance to the object. By analysing this graph one can clearly 

see an object being tracked at roughly the same distance as the target. The points 

around the target line all fall within a small band, this could again be due to the 

surface having a different distance to the object’s measured plane.   Similar to 

before, the lower points represent locations on the grass. Arguably the only major 

discrepancy could be found at frames 875 to 900 where the distance is 

overestimated. It is uncertain from the results whether the mistake is because of an 

incorrectly tracked group of points or a certain combination of movements.  

 

 Figure 38: Random motion test results. 

 

The rest of the results can be found in Appendix B. Although the results became 

more densely populated as more points are allowed through the filters, the depth 

estimation of the object remained consistent and true. It was decided that the 

accuracy of this first overall system test was good enough to use its data as a 

baseline.         

In Table 3 a detailed breakdown of the performance over the variations of the test 

is given. In each variation either the threshold or maximum allowable error values 

were adjusted. This in turn allowed the FAST algorithm to find more points for 

the Optical Flow calculations to pair up. A large variety of tests were done to 
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determine how fast the system could perform with a small number of good points 

on the one end, while also establishing the trade-off on performance to calculate 

an increased number of points on the other. 

In the first two tests only the best points are selected and in turn the calculations 

reach speeds of over 140 FPS. In this ideal case where there was only one object 

and a neutral, bland environment, the limited number of points was enough to 

predict the depth of the obstacle. This information is useful because it showed that 

if the object could be isolated and only a limited amount of points placed on it, 

there would be great potential for fast cycle times. 

 

Table 3: Performance test results. 

Test Thresh. 

and Max 

Error 

Val. 

Time (average per frame) (s) Points 

found 

per 

frame 

Points 

used 

per 

frame 

Avg. 

FPS 

 Th

r 

Er

r 

FAST O.F. Depth Total    

1 53 4 0.0032 0.0027 0.0005 0.006 8.1 4.5 153 

2 45 4 0.0033 0.0033 0.0007 0.007 17.1 10.5 140 

3 40 3 0.0034 0.0035 0.0010 0.007 29.8 14.8 123 

4 40 4 0.0034 0.0035 0.0013 0.008 29.8 20.0 122 

5 40 5 0.0034 0.0035 0.0016 0.008 29.8 23.4 120 

6 35 4 0.0034 0.0040 0.0031 0.010 54.2 38.9 95.4 

7 30 4 0.0037 0.0048 0.0049 0.013

4 

98.0 75.6 74.5 

8 25 4 0.0039 0.0057 0.0064 0.016 144 119 62.4 

9 20 4 0.0040 0.0056 0.0069 0.016 151 128 60.7 

10 15 4 0.0050 0.0067 0.0093 0.021 204 177 47.5 

11 10 4 0.0071 0.0111 0.0198 0.038 436 388 26.3 

12 5 4 0.0110 0.0183 0.0385 0.067 830 746 14.8 

13 4 4 0.0148 0.0202 0.0456 0.080 921 842 12.4 

14 3 4 0.0140 0.0228 0.0520 0.088 1008 923 11.3 

15 2 4 0.0146 0.0240 0.0557 0.094 1092 997 10.6 

16 1 4 0.0158 0.0247 0.0575 0.097

9 

1169 1056 10.2 

 

In tests 3, 4 and 5 the threshold was held constant and the maximum allowed error 

value adjusted. There was a slight difference in calculation time due to less/more 

time being spent doing depth calculations, depending on the allowed error level. 

In these tests the depth calculation times were much faster than the other 

calculations and therefore not a big difference in performance was seen. This 

would however be different in later tests where the depth calculation time is the 

longest of the three phases. Selecting a single, correct, error value limit would not 
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be optimal as the ideal target changes for different environments and scenarios. 

The best solution would therefore be to determine a dynamic threshold and error 

value limit combination which would give you the desired amount of points and 

thus the desired FPS. 

 

 

Figure 39: Graph of average calculation time per frame. 

 

For the rest of the tests the impact of an increase in points was investigated. In 

Figure 39 and Figure 40 the shapes of the total time and the number of point’s 

lines are similar. Closer inspection of Figure 39 reveals that the total time-shape 

follows the depth calculation line-shape. The values of the other two lines also 

increase as the points increase, but with a much more gradual slope. Considering 

that the FAST and Lucas and Kanade Pyramid functions are part of a highly 

optimised library it makes sense that they efficiently handle larger amounts of 

data. On the other hand the depth calculations were done in Python where each 

point was individually calculated. It is estimated that by fully optimising the depth 

calculations it will be possible to get the duration down to below that of FAST 

and OF. 
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Figure 40: Graph of average number of points per frame. 

 

 Manipulating Test Variables 

In this section a single controlled test was created with three objects at varying 

distances as shown in Figure 41. In the base test the quadcopter moved in straight 

lines on the three movement axes as shown in Figure 42. Slight variations were 

then introduced to simulate problems that could be encountered in the real world. 

These variations included: angular instability, velocity, brightness levels, and 

inaccurate input movement variables. The results of these variations were 

recorded and compared to the results of the base test in Figure 43. The impact of 

each variable was then further discussed.  

 

 

Figure 41: Manipulating variables test visualisation. 
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Figure 42: Manipulating variables test movement. 

 

A few things could already be noted from the results of the base test in Figure 43: 

1. The different textures of the objects had an impact on how many points 

were detected on them. For this reason the middle and furthest object had 

substantially more points than that of the closest object. 

2. The distance of the object was directly related to the accuracy of the depth 

prediction. The furthest object had a wide band of points around the 

predicted distance where the closer objects had noticeably tighter bands. 

3. Another observation was that the forward and backward motion on the z-

axis in the first 150 frames produced less accurate predictions than the 

other directions. This is due to multiple optical flow directions being 

involved in the calculation of z-axis motion, where only one direction is 

involved when moving parallel to the image plane. 

 

 

Figure 43: Manipulating variables test base results. 
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5.2.1. Angular Instability 

In these tests the three angles of the camera were offset by a random number from 

zero to x degrees in every frame. These small angles were recorded and given as 

input to the system. The values for x in tests 1 to 6 (shown in Appendix C) are: 

0.00°(base), 0.5°, 1.0°, 1.5°, 2.0° and 2.5° respectively. To put this into 

perspective, the stability of a quadcopter was analysed by Kuantama, et al. (2018) 

and their results showed a variation in the pitch and roll angles of less than 0.2° 

while hovering, and 0.5° while at 80% throttle.  

In the tests there was a clear pattern of accuracy deterioration as the angular 

instability increased. Even though the real angular movement of the quadcopter 

between frames was known, the optical flow calculations became excessively 

inaccurate with the fast jittering motion from test 4 (1.5°) onwards.  

The overall results of these tests were considered to be extremely positive. It was 

shown that by correcting for the unstable motions, it was possible to generate 

acceptable depth predictions of the objects at instabilities greater than that 

experienced by a quadcopter at 80% throttle. It should also be taken into account 

that these instabilities do not consider any camera stabilisation and could be 

considered worst case scenario. 

5.2.2. Distance between Frames 

In optical flow, distance travelled over time is irrelevant. The optical flow 

between two images will remain the same as long as their camera positions stay 

static, irrespective of the time taken to get from position A to position B. In the 

first set of tests the distance between frames was repeatedly increased, and in the 

second set they were made smaller. 

Increased Distance between Frames: 

The distances per frame in test 1 to 6 (shown in Appendix D) were: 0.5, 1.0, 1.5, 

2.0, 2.5 and 3.0 units respectively. These values can be put into perspective by 

Figure 44 which shows how the distances relate to speeds in km/h for different 

frame rates. 
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Figure 44: Velocity vs FPS for different frame distances. 

 

The results suggest that the accuracy of the optical flow calculations that were 

used remained true, however the amount of successful matches greatly decreased 

as the distance increased. It can be argued that out of the results shown, the more 

accurate depth predictions came from the tests with larger distances. This 

happened as the outliers from tests one became unmatchable, or matched with too 

great an error, leaving only the strong matches behind. 

From these tests we learn that to keep optical flow stable and predictable the 

distance between frames needs to be controlled. In order to do this at varying 

speeds the frames per second need to be adjustable. This could be achieved by 

recording at the highest desired frequency and then skipping frames at lower 

speeds to stabilise the movement per frame. 

Decreased distance between frames: 

The distances per frame in tests 1 to 5 (shown in Appendix E) are: 0.3, 0.25, 0.2, 

0.15 and 0.05 units respectively. Because of how slowly the camera had to move, 

and the limited amount of ram to cache all the images beforehand, a similar but 

shorter test was created for this scenario. The flight path of this test is shown in 

Figure 45. 
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Figure 45: Decreased distance between frames test movement. 

 

The results from these tests show that there are limitations to optical flow with 

very small movements between frames. The motion on the z-axis at the beginning 

and end of the tests gives very little useful data with only the middle object visibly 

being detected and a high amount of points with random depth values. The motion 

on the other axes gave fairly accurate depth estimations up to speeds of 0.2 units 

per frame. After this point the data started to spread out and no longer 

convincingly predicted the distance of the objects. 

Comparing this set of results with the larger inter-frame distance results, it is 

apparent that optical flow operates better at higher distances for these given 

scenarios. The optimal distance is somewhere between 0.5 and 1.5 units per 

frame. 

5.2.3. Different Brightness 

In these tests the level of light was reduced repetitively to determine how strongly 

lower lighting conditions affected the system. To achieve these lighting levels the 

light source in Unity was adjusted to produce the brightness as indicated below 

each of the six sets of results in Appendix F. 

A similar result of increased accuracy due to increased difficulty was achieved in 

the first few tests. In test 4 the limit is reached and the quality of depth predictions 

starts to decrease. 

Given that optical flow is directly calculated from difference in light intensity it 

was predictable that these tests would fail at a certain point. We can however still 

learn from the manner in which they start failing and use it to generate ideas when 

coming up with solutions for handling each variable.  
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5.2.4. Inaccuracy in Rotation 

Using a simulator which can perfectly predict the accuracy of the movements 

made by the camera, between frames, helps us to learn about the capabilities of 

optical flow. It is however not realistic to assume that using this technology in real 

world applications would be that easy. There are currently no devices that can 

measure quadcopter movements with pin-point accuracy and these tests were 

performed to determine how inaccurate measurements would affect the system’s 

ability to estimate the depth of pixels. 

In order to test for rotation the 0.5° angular instability test was used as a base. 

Tests 1 to 6 in Appendix G had random rotational input errors of up to: 0%, 2%, 

4%, 6%, 8% and 10% respectively. There was a clear gradual movement from 

accurate to inaccurate predictions for each point as the error values were 

increased. Once the errors were at 8% the depth estimations were spaced out to 

the point of no longer producing accurate information. These results pose a strong 

threat to the ability of optical flow being useful in the field, as it requires the 

orientation measurements to be very accurate.  

5.2.5. Inaccuracy in Translation 

The reasoning behind the translation tests was the same as the rotation. The only 

difference between the two sets of tests is that the base used in this set was the 

same as the original base test. The error percentages were kept the same as with 

the rotational inaccuracy tests and the results are shown in Appendix H. 

The values again gradually moved from their correct positions to a widening band 

around the initial prediction lines. As expected the results of this test-set closely 

resembled that of the rotational inaccuracy with a slightly greater resemblance of 

a direct 2-10% variation on the base results. These results further highlight a 

possible hurdle for optical flow in the real world, with its stringent requirements 

on accuracy for normal operation.  
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6. Discussion and Estimating Potential 

In this section all the important findings and decisions throughout the system 

design and test phases are reviewed. The different aspects that could lead to 

success or failure are compared and weighted, to develop a case for the overall 

potential of this system to succeed as a navigation tool for a drone. 

Dense vs Sparse: 

Early in the design phase the decision was made to use sparse optical flow 

functions in the system. This decision resulted in sacrificing scope for 

performance. During the testing phase it was determined that this choice was the 

correct one, as the strong points (with high confidence in accurate optical flow 

values) provided the useful data for depth estimation. The weaker points had 

lower accuracy levels and oversaturated the data, drowning out the correct 

estimations. 

FAST: 

The decision to make use of FAST over Shi-Tomasi for detecting points to 

analyse, was again based on calculation speed. The result of the speed tests in 

Table 3 confirms the FAST algorithm is the correct one to use when working with 

a small number of points. Unlike Shi-Tomasi, it scales with points and allows for 

extremely fast calculations with low point numbers. Shi-Tomasi would greatly 

slow down the overall performance when only a low amount of points are 

involved. 

 As more points get selected the optical flow and depth calculations take much 

longer. When the other calculation times begin to increase, there is no longer an 

urgent need for such fast point detection times. 

During the system test process it was found that there is often a case of too many 

points being selected for specific objects and no points being selected on others. 

Although not optimal, the points selected were good enough to produce useful test 

results and allow for conclusions to be drawn based on the optical flow and depth 

equation performances. 

Optical Flow Calculations: 

The optical flow calculations were done using the Lucas Kanade Pyramid 

algorithm. During the design phase it was shown that by carefully selecting the 

parameters of this algorithm it was possible to obtain highly accurate results, as 

reflected in Figure 18 to Figure 20. The processing speed of the algorithm also 

performed adequately during the speed tests presented in Table 3. The calculation 

times matched those of the FAST algorithm for a small amount of points and 

increased gradually as the number of points increased. No real areas for 

improvement or negative impacts were found in this section. 
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Depth Calculations: 

Great success was found during the design phase of the depth calculations. It was 

firstly proven that by using the ratio in Equation 4.12 in both the x and y direction 

it was possible to fairly accurately determine real world depth of individual pixels 

when travelling on the z-axis (Figure 24).  

Secondly it was proven that by applying the Euler angles in the opposite direction 

to the actual rotation experienced between the two frames, it was possible to 

negate the effects of rotation on the optical flow values (Figure 29 to Figure 31). It 

was therefore possible to carry on measuring depth when travelling in the z-axis 

and rotating the view at the same time.  

Thirdly, it was proven that by using the ratio in Equation 4.18 (derived from the 

geometry in Figure 32) it was possible to accurately predict the real world depth 

of pixels when travelling in the direction of the x- or y-axis (Figure 33 and Figure 

35). It was further shown that for a simple situation where a quadcopter is 

randomly flying around in front of a single obstacle the distance of that obstacle is 

constantly known regardless of the combination of movements carried out (Figure 

38). 

Although these tests were carried out under perfectly simulated conditions with 

completely accurate input data it was important for the system to perform well at 

this stage to have any chance of moving forward with the project. The positive 

results gave the system a foundation from which to work and conduct analysis. 

Testing: 

After the system was created it was put through a series of tests to determine 

where it could potentially reach points of failure.  

In the first test-set described above, with the quadcopter flying in a random path 

in front of an obstacle, the run was performed multiple times with different 

threshold settings. This produced results showing how much the frames calculated 

per second dropped for the amount of points calculated. In Table 3 the frame rate 

ranged from 153 to 10, as the amount of points detected increased from 8 to 1169. 

At a later point during the different velocity tests it was shown that the accuracy 

was greatest for 0.5 to 1.5 units per frame. Using the simulator description for a 

ratio of 10 units = 1m, and the middle value of 1 unit per frame, it can be 

predicted that the system would work with maximum speeds of 55 km/h down to 

3.6km/h depending on the number of points being calculated. This set of tests 

proved the system had potential for real time application, without the need for 

optimisation when only calculating small amounts of points. If a large number of 

points need to be calculated, some form of optimisation might be necessary, but 

real time operation should still be possible. 
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The rest of the test-sets involved isolating variables to determine their impact on 

results. In the first set, angular instability was added to the tests, creating a 

wobbling effect. The results of these tests showed that the compensation for 

angular rotation could in theory negate effects greater than that normally 

experienced by quadcopters, provided the exact disturbances were known. This 

means it may be possible to achieve reasonably accurate optical flow depth 

estimations from a camera mounted directly to a quadcopter, without any complex 

camera stabilisation systems. 

In the second test-set, larger and smaller distances between frames were tested. It 

was found that in general the larger distances lead to more accurate points, but 

only a limited amount passed the conditions. When analysing the shorter distances 

there were a lot more points meeting the requirements, but the overall accuracy 

was reduced. The results did not produce a single, perfect distance which had the 

optimal performance; instead it produced multiple different trends which could be 

used to construct a dynamic system. It is clear that the optical flow algorithms 

perform differently at different distances between frames and threshold setting 

combinations. 

In the third test-set, the impact of different brightness levels was investigated. It 

was determined that although the system could function at all different light levels 

tested, the reduction in brightness did have a negative impact. At weaker lighting 

conditions the system struggled to detect a large amount of points, but accuracy 

stayed high. At stronger lighting conditions the accuracy also started reducing. 

The results therefore suggest that a system operating in a real world environment 

would need to accommodate for differing light levels. This could be done by 

adjusting threshold levels or adjusting the brightness of the incoming video feed. 

In the fourth and fifth test-sets the reaction to inaccurate positional inputs was 

found. The results of both sets were moderately accurate for small deviations (0-

4%) and quickly decreased to very inaccurate at 10% deviations. This would 

definitely be one of the main challenges to overcome when applying this system 

to a real world scenario. Because the drone is ideally moving only 1 unit per 

frame, which translates to 0.1m, a 4% error means a required accuracy of 4mm. 

Similarly for the angular measurements, the 4% error margin would leave little 

room for miscalculations. 

Overall Performance: 

The overall standard of performance of the system, was good under ideal 

conditions. When the conditions were altered and individual challenges 

introduced, the system held its own for smaller changes before reaching failure at 

some point in the test-sets. This proved that there was a certain level of robustness 

in the system and that when applied to a real world situation there would be 

potential for success. 
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Future Work: 

Along with analysing its potential, the first steps towards applying optical flow in 

quadcopter navigation has been taken in this thesis. The next logical step would 

be to take the theoretical work done and apply it in a real world scenario. From 

there the different challenges identified in this thesis would need to be addressed. 

Once the system has been optimised for real world operation it can be tested as a 

tool for navigation. 

As the system is not a fully functioning navigational system, a separate process 

would need to be undertaken is converting the depth values of the individual 

pixels into useful navigation information. This could be done directly with the 

depth information calculated or by merging it into a larger system. 

Optical flow is directly related to the pixels in an image and a great example of 

integrating the system with other technology is therefore to use image recognition 

to determine which pixels belong to certain objects. A search algorithm could then 

be applied to the sub-images and an average of the pixel depth results taken to 

determine the distance to the detected object. 

The nature of the data creates potential for a solution to be found using machine 

learning or neural networks. In doing so shifting into the very relative field of 

autonomy. 

There are a range of different research paths which opened up from this project, 

ranging from integrating sensors, to real world application testing, to path 

planning using only the output data of the system, to artificial intelligence. A 

strong sense of future opportunities surrounding the project could be seen as a 

very positive indication of potential for the technology. 
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7. Conclusion 

The objective of this thesis was to measure the potential of using optical flow in 

quadcopter navigation. This potential was measured by designing and testing an 

optical flow-based depth estimation system, using a combination of the latest 

optical flow research. The potential for the technology in this field therefore 

directly depended on the success of the system and the ability for its output data to 

be useful in quadcopter navigation. 

The system proved through multiple simulated tests that it was capable of 

correctly estimating the depth of obstacles by analysing the optical flow and its 

own movement. The system could operate in all three movement directions and 

was able to compensate for rotation in all three directions. The system was able to 

perform its calculations in real time, running on the laptop as described. When 

individual non-ideal variables were introduced the system showed robustness by 

handling smaller deviations and only starting to fail when these variables reached 

certain stages.  

The output of the system provided depth information to specific pixels of an 

image. This could be used in a navigation system to draw a depth map of its 

surroundings or to predict the depth of specific detected obstacles. It was therefore 

concluded that the depth estimation system has potential to be further developed 

in a real world application. 
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Appendix A: Rotation Compensation Tests 

 

Figure 46: Rotation compensation test 1. 

  

 

Figure 47: Rotation compensation test 2. 

 

Figure 48: Rotation compensation test 3. 
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Figure 49: Rotation compensation test 4. 

  

 

 

 

Figure 51: Rotation compensation test 6. 

Figure 50: Rotation compensation test 5. 
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Figure 52: Rotation compensation test 7. 

  

 

Figure 53: Rotation compensation test 8. 

  

 

Figure 54: Rotation compensation test 9. 
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Appendix B: Random Motion Performance Tests 

 

Figure 55: Random motion performance test 1. 

 

 

Figure 56: Random motion performance test 2. 
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Figure 57: Random motion performance test 3. 

 

 

Figure 58: Random motion performance test 4. 
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Figure 59: Random motion performance test 5. 

 

 

Figure 60: Random motion performance test 6. 

Stellenbosch University  https://scholar.sun.ac.za



66 

 

 

Figure 61: Random motion performance test 7. 

 

 

Figure 62: Random motion performance test 8. 
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Figure 63: Random motion performance test 9. 

 

 

Figure 64: Random motion performance test 10. 
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Appendix C: Angular Instability Tests 

 

Figure 65: Angular instability test 1. 

 

 

Figure 66: Angular instability test 2. 
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Figure 67: Angular instability test 3. 

 

 

Figure 68: Angular instability test 4. 
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Figure 69: Angular instability test 5. 

 

 

Figure 70: Angular instability test 6. 
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Appendix D: Increased Distance between Frames Tests 

 

Figure 71: Increased distance between frames test 1.  

 

 

Figure 72: Increased distance between frames test 2. 
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Figure 73: Increased distance between frames test 3. 

 

 

Figure 74: Increased distance between frames test 4. 
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Figure 75: Increased detween frames test 5. 

 

 

Figure 76: Increased distance between frames test 6. 
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Appendix E: Decreased Distance between Frames Test   

 

Figure 77: Decreased distance between frames test 1. 

 

 

Figure 78: Decreased distance between frames test 2. 
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Figure 79: Decreased distance between frames test 3. 

 

 

Figure 80: Decreased distance between frames test 4. 
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Figure 81: Decreased distance between frames test 5. 
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Appendix F: Brightness Tests 

 

Figure 82: Brightness test 1. 

 

    

 

Figure 83: Brightness test 2. 
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Figure 84: Brightness test 3. 

 

 

     

Figure 85: Brightness test 4. 
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Figure 86: Brightness test 5. 

 

 

     

Figure 87: Brightness test 6. 
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Appendix G: Inaccuracy in Rotation Tests 

 

Figure 88: Inaccuracy in rotation test 1. 

 

  

Figure 89: Inaccuracy in rotation test 2. 
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Figure 90: Inaccuracy in rotation test 3. 

 

 

Figure 91: Inaccuracy in rotation test 4. 
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Figure 92: Inaccuracy in rotation test 5. 

 

 

Figure 93: Inaccuracy in rotation test 6. 
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Appendix H: Inaccuracy in Translation Tests 

 

Figure 94: Inaccuracy in translation test 1. 

 

 

 

Figure 95: Inaccuracy in translation test 2. 
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Figure 96: Inaccuracy in translation test 3. 

 

  

Figure 97: Inaccuracy in translation test 4. 
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Figure 98: Inaccuracy in translation test 5. 

 

  

Figure 99: Inaccuracy in translation test 6. 
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