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Abstract

Variance Estimation for Markov Processes
W Blomerus

Department of Mathematical Sciences,
Stellenbosch University,

Stellenbosch, South Africa.

Thesis: MSc (Applied Mathematics)
February 2021

We study the asymptotic variance of additive functionals of Markov processes, used in
statistics and stochastic modelling as estimators of model parameters. The observations
generated by these processes are correlated, which complicates the estimation of the
asymptotic variance. In practice, methods for estimating the asymptotic variance are
based on either estimating the correlation function or the segmentation of the additive
observable (batch mean method). In this thesis, we propose and study three new esti-
mators, based on a link between the asymptotic variance, large deviation theory, and an
equation of probability theory called the Poisson equation. The first two estimators rely
on the fact that the solution of the Poisson equation can be represented as a conditional
expectation. The third estimator is based on a stochastic approximation of the solution of
the Poisson equation, suggested by recent works in large deviation theory, which describe
the solution as an eigenfunction that can be iteratively estimated in an ‘online’ way as
a simulation unfolds. We illustrate these three estimators for simple Markov processes,
including Markov chains and diffusion processes, for which the asymptotic variance is
exactly known.
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Uittreksel

Variansieberaming van Markov-Prosesse
(“Variance Estimation for Markov Processes”)

W Blomerus
Departement Wiskundige Wetenskappe,

Universiteit van Stellenbosch,
Stellenbosch, Suid-Afrika.

Tesis: MSc (Toegepaste Wiskunde)
Februarie 2021

Ons bestudeer die asimptotiese variansie van additiewe funksionale vir Markov-prosesse
wat gebruik word in statistiek en stogastiese modellering as beramers van model pa-
rameters. Dié prosesse genereer gekorreleerde waarnemings wat die beraming van die
asimptotiese variansie kompliseer. In die praktyk word metodes om die asimptotiese vari-
ansie te beraam gebaseer op óf die beraming van die korrelasiefunksie óf die segmentasie
van die additiewe waarneming (lot gemiddeldes metode). In hierdie tesis stel ons drie
nuwe beramers voor wat gebaseer is op die verwantskap tussen die asimptotiese varian-
sie, teorie van groot afwykings en ’n vergelyking van waarskynlikheidsteorie, genaamd die
Poisson-vergelyking. Die eerste twee beramers is gebaseer op die feit dat the oplossing van
die Poisson-vergelyking in terme van ’n voorwaardelike verwagting uitgebeeld kan word.
Die derde beramer is gebaseer op ’n stogastiese benadering van die Poisson-vergelyking
se oplossing. Hierdie benadering word voorgestel in onlangse werk in die teorie van groot
afwykings, waarin die oplossing beskryf word as ’n eiefunksie wat iteratief benader kan
word in ’n “aanlyn”-manier soos die simulasie ontvou. Ons gebruik hierdie drie beramers
op eenvoudige Markov-prosesse, naamlik Markov-kettings en diffusieprosesse, waar die
asimptotiese varianse bekend is.
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Chapter 1

Introduction

In this thesis we study the asymptotic variance of time-integrated functionals of Markov
processes. We provide a review of existing estimation techniques used to estimate the
asymptotic variance and propose as our main result new estimators that can be used in
an online way, that is, estimators that update the asymptotic variance according to newly
observed data as the process unfolds. In this chapter we provide background regarding our
thesis topic which serves as a motivation for the study. Thereafter we state the objective
of our research as well as give an outline of the structure of the thesis.

1.1 Statistical estimators
In statistics and stochastic modelling, we are often faced with the task of estimating
parameters of a model using noisy data obtained from an experiment or a simulation.
Mathematically, we can formulate this task in a general way as that of estimating the
expectation E[g(X)] of some function g of a random variable X representing the state of
the system in some steady state. The data obtained from an experiment or simulation is
then represented as a sequence X1, X2, . . . , Xn of n observations or measurements, from
which E[g(X)] is to be estimated [1, 2, 3].

In the simplest case, the sequence of observations can be assumed to be (or is as a
matter of design) a sequence of independent and identically distributed (i.i.d.) random
variables, from which it is natural to estimate E[g(X)] using the sample mean

µ̂n =
1

n

n∑
i=1

g(Xi), (1.1)

The hat notation of µ̂n refers to the empirical estimator of µ = E[g(X)]. Under the i.i.d.
model, this estimator has the desired property of being consistent, that is, it converges to
the expectation as the number of observations or data n increases. In probability theory,
this convergence is expressed by the law of large numbers, which states that the sample
mean converges (in probability) to the expected value as n→∞ [4].

In practice, we are limited to a finite number of observations and therefore we want to
ascertain how close the sample mean is to the true value of the parameter to be estimated,

1
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Figure 1.1: Sample means (1.1) and variance (orange) of Bernoulli processes representing
the fraction of heads in a sequence of coin flips. We use p = 0.5 in the numerical exper-
iment as the coin probability and see, indeed, that the sample mean convergences to 0.5
with the variance decreasing to 0 as n is increased.

as represented by E[g(X)]. Since the estimator is a random variable, this translates to
finding the probability that the estimator is a certain distance away from the exact value.
As the number of observations increases, the estimated value falls within some range or
spread around the true value of the parameter.

If we assume that the estimator is normally distributed around the true value, then
the width of the spread is directly related to the width of the normal distribution. This
assumption is confirmed by the central limit theorem [4] when the variance of the obser-
vations in the i.i.d. model is finite. Then the distribution of the sample mean is approx-
imately Gaussian for large n and centered around the expected value of the distribution
sampled from. The variance of the Gaussian decreases with n, the number of observations,
as σ2

A/n, where σ2
A is a constant known as the asymptotic variance. This constant, which

is the focus of this thesis, can also be estimated in the i.i.d. model using the unbiased
estimator

σ̂2
n =

1

n− 1

n−1∑
i=1

(g(Xi)− µ̂n)2 (1.2)

or the more common estimator

σ̂2
n =

1

n

n∑
i=1

(g(Xi)− µ̂n)2 , (1.3)

whose bias decreases to 0 as n → ∞. Thus, from the same sequence of observations or
data, we obtain an estimate of the parameter that we are interested in together with an
estimate of its variance, which serves as an error bar for the estimated parameter.

To illustrate these results, let us consider the simple task of determining whether a
coin is fair or biased. Suppose we describe consecutive coin flips as a binary sequence,
where a 1 or 0 represents a coin landing on heads or tails, respectively. This can also be
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Figure 1.2: Random estimation of π. (Left) Random points are generated uniformly in
the square and counted as 4 if they fall in the disk (blue). (Right) Convergence of π̂n
(blue) to the known constant π (dashed red) with confidence intervals (orange) as the
number of iterations increases.

seen as a Bernoulli process where p is the probability that the coin lands on heads. Such
a sequence is i.i.d. and, by construction, its sample mean (1.1) determines the fraction of
heads observed. Therefore, a sequence generated by a fair coin must have a sample mean
converging to 0.5 as the number of heads must show up, on average, half of the time.

As an example, we calculate the sample mean as a function of the number of iterations
n for 20 coin flip sequences with p = 0.5. From the results shown in Fig. 1.1, we see that
the sample mean of each sequence does in fact converge to the expected value of a fair
coin (dashed red). Despite the random nature of each sequence, the law of large numbers
guarantees the overall convergence to the expected value. To quantify the convergence we
calculate the variance of the sample means as the number of iterations increases (orange)
using (1.3) and see that quickly it converges to 0.

As a second example, let us consider another classical problem, namely, that of esti-
mating the constant π using the experiment shown in Fig. 1.2 (left), which consists of a
disk of radius r = 1 inscribed in a square within which random uniform points (Xi, Yi)
are generated. From basic geometry, it is easy to see that a consistent estimator of π is
given by

π̂n =
4

n

n∑
j=1

11((Xj, Yj) in circle), (1.4)

where n is the number of observed points and 11(·) is the indicator function (equal to 1 if
the point falls in the disk and 0 otherwise). The results shown in Fig. 1.2 (right) illustrate
that π̂n (blue) converges to π (dashed red) as the number of points generated increases.
In order to determine the confidence intervals (orange), we calculate the variance using
(1.3). Confidence intervals are important estimators as they represent an estimated range
of possible values that could contain the true expected value, in this case, π.
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CHAPTER 1. INTRODUCTION 4

1.2 Correlated samples
In practice, the i.i.d. assumption rarely holds when modeling problems that arise from
real life or practical situations, as the state of a system at a given time usually depends on
its state at some previous time, resulting in correlations in the observations of this state.

To model these correlations, we need to describe the sequence X1, X2, . . . , Xn as a
stochastic process, which in the simplest case (and in this thesis) is taken to be a Markov
process. Instances where this type of process has been used include:

• In finance and economics, to model the growth of asset prices and stock values [5].
Stock values, in particular, are often modelled with a Markov process in continuous
time called the geometric Brownian motion [6].

• In meteorology, where weather generators are used to simulate the daily air temper-
ature and amount of precipitation [7, 8]. An example of this is where the current
amount of precipitation is used to assign the day to a state in a Markov chain to
estimate the precipitation of the next day.

• In renewable energy for forecasting wind power generated by turbines or predicting
the power generation of solar cells [9]. For instance, the type and amount of cloud
cover present is classified and assigned to states of a Markov chain in order to
estimate the batteries’ charge at a future instance [10].

These models present various parameters of interest that can be estimated, as in the i.i.d.
case, from a sequence of observations or states X1, X2, . . . , Xn using the same sample
mean given in (1.1), even if the states are related in a Markov way. The consistency of
this estimator is ensured in the Markov case by an extension of the law of large numbers
called the ergodic theorem, which states, under some conditions on the process considered,
that the sample mean converges in probability to a stationary expectation [2]. Moreover,
there is a generalisation of the central limit theorem for Markov processes that guarantees
that the distribution of the sample mean converges to a Gaussian distribution for large n
[11, 12, 13]. A crucial difference, however, between the i.i.d. and Markov cases is that the
asymptotic variance σ2

A is not determined by the estimator (1.3), due to the correlation
between observations.

Estimating the asymptotic variance for correlated random variables is a non-trivial
task. In practice, there are two conventional approaches for estimating σ2

A. The first
is based on estimating the correlation between observations as the asymptotic variance
is defined by the autocorrelation function [14]. The second is based on decorrelating
the observations by partitioning the sequence containing all the observations into smaller
subsequences or batches and then calculating the mean of the batches [15, 16, 17]. It
can be shown that the sequence containing the batch means is i.i.d., which simplifies the
estimation of σ2

A to a block version of the ‘naïve’ variance estimator in (1.3) [18].
These methods are used in many applications, but do come with some challenges,

which we will discuss in some detail in the next chapters. In fact, discussing some of these
methods, Bratley [19, p. 101] notes that
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CHAPTER 1. INTRODUCTION 5

No completely satisfactory method for analyzing the output of steady-state
simulations has yet been devised. Certainly, no consensus has been reached
regarding the relative merits of existing methods. The above recommendations
are lukewarm, but we have nothing better to suggest – other than perhaps to
reassess whether a steady-state simulation should be carried out.

One problem, as we will see, is that these methods contain parameters, such as batch
size and truncation length, whose accuracy are dependent on the process considered. A
second problem is that these methods might struggle to produce accurate estimates for
cases where the amount of data is finite or limited.

1.3 Objectives and contributions
The main objective of this thesis is to present and test new methods for estimating the
asymptotic variance of sample means arising in the context of Markov processes. We are
particularly interested in ‘online’ methods or algorithms that estimate the asymptotic
variance in ‘real time’ as the process considered unfolds or as observations are gathered.
To this end, we use a connection between the asymptotic variance and a probabilistic
version of the Poisson equation, first considered by Neveu in 1972 [20], to present three
new estimators of the asymptotic variance.

The first two estimators are based on representing the solution of the Poisson equation
as a conditional expectation, following results from Dynkin, Pardoux and Veretennikov
[21, 22], which can be computed numerically using different realisations of the data or one
long stream of data. The third estimator is based on a stochastic approximation of the
solution of the Poisson equation, which can be used in an online way on a stream of data
to iteratively calculate the asymptotic variance. Each of these methods are implemented
on Markov processes and their accuracy evaluated.

1.4 Outline
The thesis is structured as follows. In Chapter 2 we give a general introduction of Markov
processes as well as discuss the asymptotic variance associated with their observables.
We also introduce and implement the large deviation theory required to theoretically
determine the asymptotic variance. In Chapter 3 we review conventional estimation
techniques currently used in practice to estimate the asymptotic variance and illustrate
them by means of examples. Chapter 4 contains the theory regarding the Poisson equation
associated with a Markov process and its observable and presents the link between the
Poisson solution and the asymptotic variance. In Chapter 5 we propose and evaluate
numerical estimators based on the theory covered in Chapter 4. We conclude the thesis in
Chapter 6 with a summary of our findings and list open questions regarding the proposed
online estimator.
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Chapter 2

Asymptotic variance of Markov
additive functionals

We present in this chapter the Markov models used in this thesis, focusing on two partic-
ular classes: Markov chains evolving in discrete time and Markov diffusions evolving in
continuous time defined by stochastic differential equations. We explain for both classes
how the asymptotic variance of additive functionals is determined from the covariance
function, and illustrate the results on various examples that will be studied again in the
rest of the thesis. The material of this part is taken from [23, 12, 24]. We also introduce
another method, based on large deviation theory, to obtain the asymptotic variance, which
we illustrate with examples and validate with known results. We base our introduction
for this part on the material found in [25, 26, 27].

2.1 Markov chains
Let X1, X2, . . . , Xn be a sequence of n random variables (RVs) taking values in a set X ,
called the state space. This sequence forms a Markov chain if its joint probability

P (x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn) (2.1)

is given by

P (x1, x2, . . . , xn) = P (X1 = x1)P (X2 = x2|X1 = x1) . . . P (Xn = xn|Xn−1 = xn−1), (2.2)

where P (X1 = x1) is the initial distribution of the first state and P (Xn = xn|Xn−1 = xn−1)
is the conditional probability associated with transitioning from state Xn−1 to state Xn

at the n-th transition [2]. This factorization of the joint probability defines the Markov or
‘memoryless’ property, where the probability of transitioning from one state to another
only depends on the current state. This is usually emphasized by writing the sequence of
RVs as

X1 → X2 → · · · → Xn (2.3)

to show that Xn only depends on Xn−1 and that the sequence, as a whole, can be seen as
a trajectory of states evolving in discrete time i = 1, 2, . . . , n.

6
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For simplicity, we assume that the state space X is discrete, and write P (Xn = xn) as

P (Xn = i) = π
(n)
i , i ∈ X , (2.4)

which can be seen as components of a vector π(n). Similarly, the conditional probability
P (Xn = xn|Xn−1 = xn−1) can be written in matrix form with

p(i, j)(n) = P (Xn = j|Xn−1 = i), i ∈ X and j ∈ X , (2.5)

representing the (i, j)th entry of a matrix P(n). The resulting matrix is called the tran-
sition matrix and has the obvious property that∑

j∈X

p(i, j)(n) = 1 ∀i ∈ X . (2.6)

Throughout the thesis, we consider Markov chains that are time-homogeneous, mean-
ing that the transition matrix P(n) does not depend on n. More specifically, the matrix
remains constant with respect to time and, as a result, we can write

P (X1 = x1, X2 = x2, . . . , Xn = xn) = π(1)x1p(x1, x2) . . . p(xn−1, xn). (2.7)

By summing over states, one can verify that the probability of transitioning from i to j
in m time steps is written as

P (Xn+m = j|Xn = i) = P (Xm+1 = j|X1 = i) = (Pm)ij, (2.8)

where Pm is P to the power m.
From (2.7) we can also infer that the distribution P (Xn = i) = π

(n)
i can be expressed

as

π
(n)
i =

∑
k

P (Xn−1 = k)P (Xn = i|Xn−1 = k)

=
∑
k

π
(n−1)
k p(k, i)

= (π(n−1)P)i. (2.9)

By recursively applying this equation, we obtain an expression that describes the evolution
of a Markov chain

π(n) = π(1)Pn, (2.10)
where the row vector π(1) represents the initial distribution over all states.

The behaviour of π(n) as n → ∞ depends on the transition matrix. For the thesis,
we assume that the Markov chain is ergodic. This means technically that the chain is
aperiodic and positive recurrent [28] and ensures that the distribution π(n) of Xn ‘evolves’
to a unique distribution π, called the ergodic or stationary distribution. Thus,

π = lim
n→∞

π(1)Pn (2.11)

starting from any distribution π(1) for X1 [2]. The unique stationary distribution is thus
a fixed point of P, which means that it can be calculated as

π = πP. (2.12)

Thus π is the right eigenvector of P with eigenvalue of 1.
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2.2 Additive functionals of Markov chains
The problem considered in this thesis is to study the convergence of estimators having
the general form

Sn(g) =
1

n

n∑
i=1

g(Xi), (2.13)

where g : X → R is a real-valued function of the Xi’s. We also call Sn(g) an additive
functional of the Markov chain, an observable, or simply a sample mean.

Assuming that the Markov chain is ergodic, we have that Sn(g) converges in probability
to the value

π(g) = Eπ[g(X)] =
∑
i∈X

πig(i), (2.14)

where Eπ[·] denotes the expectation with respect to the stationary distribution π. This
convergence is known as the ergodic theorem [12], which can be expressed mathematically
as

lim
n→∞

P (|Sn(g)− π(g)| > ε) = 0 (2.15)

for all ε > 0. As a shorthand, we also write Sn(g)→ π(g) in probability. This generalizes
the law of large numbers, which applies to independent and identically distributed (i.i.d.)
RVs, to Markov chains.

As for sequences of i.i.d. RVs, there is also a central limit theorem associated with
Sn(g), which basically states that

Sn(g)
dist−−→ N

(
π(g),

σ2
A

n

)
(2.16)

as n→∞, where dist−−→ means convergence in distribution and N (µ, σ2) denotes a normal
distribution with mean µ and variance σ2. To be more precise,

lim
n→∞

P

(
nSn(g)− nπ(g)√

nσA

)
= N (0, 1). (2.17)

This means, in essence, that the distribution of Sn(g) is approximately Gaussian close to
π(g) and has a variance that decreases with n, in agreement with (2.16). The constant
σ2
A is called the asymptotic variance and is the main focus of the thesis. Note that if we

re-center g with respect to the stationary distribution, by introducing

ḡ = g − π(g),

we can rewrite these results as Sn(ḡ)→ 0 in probability and

Sn(ḡ)
dist−−→ N

(
0,
σ2
A

n

)
, (2.18)

respectively. This re-centering will be important in the remainder of the thesis. Note that
σ2
A is the same for Sn(g) and Sn(ḡ).
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Figure 2.1: (Left) Empirical distributions of a Gaussian sum nSn with n = [50, 150, 300]
RVs having µ = 1 and σ2 = 2. (Right) Visualization of the law of large numbers for a
normalized Gaussian sum Sn for n = [50, 150, 300], µ = 1 and σ2 = 2.

To substantiate the concepts described above, we illustrate (2.15) and (2.16) by means
of a simple example. We calculate the sum nSn with g(X) = X for n = [50, 150, 300] RVs
sampled from N (1, 2). From the results shown in Fig. 2.1 (left), we see that the sum is
distributed according to a normal distribution with mean nµ and variance nσ2. The law
of large numbers states that the sample mean converges almost surely to the expected
value of the sampled distribution as n→∞, which is clearly shown in Fig. 2.1 (right).

For a general Markov chain, we can express the asymptotic variance as

σ2
A = lim

n→∞

1

n
Var

(
n∑
i=1

g(Xi)

)

= lim
n→∞

1

n

[
n∑
i=1

Var(g(Xi)) +
n∑
j=1

n∑
k=1

Cov(g(Xj), g(Xk))

]
, (2.19)

where j 6= k in the double sum,

Var(X) = E[(X − E[X])2] (2.20)

is the variance and
Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (2.21)

is the covariance function. Since the double sum reproduces terms twice, we can write

σ2
A = lim

n→∞

1

n

[
n∑
i=1

Var(g(Xi)) + 2
∑

1≤j<k≤n

Cov(g(Xj), g(Xk))

]
. (2.22)

Moreover, if we assume that the Markov chain is stationary, the two sums converge, by
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the Cesàro mean property, to

σ2
A = Varπ(g(Xi)) + 2

∞∑
k=1

Covπ(g(Xi), g(Xi+k)) (2.23)

= Eπ[(g(Xi)− π(g))2] + 2
∞∑
k=1

Eπ[(g(Xi)− π(g))(g(Xi+k)− π(g))], (2.24)

where the choice of i is arbitrary and Varπ(·) and Covπ(·) denotes the variance and
covariance calculated with the stationary distribution, respectively. In terms of ḡ we have
equivalently

σ2
A = Eπ[ḡ(X1)2] + 2

∞∑
k=2

Eπ[ḡ(X1)ḡ(Xk)]. (2.25)

See Theorem 17.5.3 of [28] for a proof.

2.3 Examples
We illustrate the concepts introduced up to this point by means of three examples. We
are interested in the sample mean Sn with g(Xi) = Xi of a Markov chain (Xi)

n
i=1 and

show how to obtain the ergodic average π(X) and its asymptotic variance.

2.3.1 Two-state Markov chain

The first example that we consider is a two-state Markov chain with states Xi ∈ [0, 1] = X
and transition matrix

P =

(
1− α α
β 1− β

)
, (2.26)

where 0 < α, β ≤ 1. It can be shown from (2.12) that, if α 6∈ {0, 1} and β 6∈ {0, 1},
then the Markov chain X1, X2, . . . , Xn is ergodic and has a unique stationary distribution
given as

π =
(

β
α+β

α
α+β

)
. (2.27)

Therefore, we find
Eπ[X] =

α

α + β
. (2.28)

To calculate the asymptotic variance we firstly determine the covariance given by
(2.23) and (2.24) as

Covπ(Xi, Xi+k) = Eπ
[(
Xi −

α

α + β

)(
Xi+k −

α

α + β

)]
= Eπ

[
XiXi+k −

α2

(α + β)2

]
. (2.29)

Next, we explicitly evaluate Eπ[XiXi+k] and note that the only nonzero contribution is
when both Xi and Xi+k occupy state 1 at each respective time. For the case where k = 1,
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staying at state 1 for one iteration is the only valid transition and gives Eπ[XiXi+1] =
α

α+β
(1− β), leading to

Covπ(Xi, Xi+1) =
α

α + β
(1− β)− α2

(α + β)2
=
αβ(1− α− β)

(α + β)2
. (2.30)

Repeating the process of evaluating Eπ[XiXi+k] for all possible realizations, where k =
2, 3, . . . leads to a general formula of the form

Covπ(Xi, Xi+k) =
αβ(1− α− β)k

(α + β)2
(2.31)

for k ≥ 0. Lastly, we need the variance of the stationary distribution. We obtain it by
either setting k = 0 in (2.31) or realising that the stationary distribution resembles a
Bernoulli distribution, yielding

Varπ(X) =
αβ

(α + β)2
. (2.32)

Following (2.24), we then obtain the asymptotic variance as

σ2
A =

αβ

(α + β)2
+ 2

∞∑
k=1

[
αβ(1− α− β)k

(α + β)2

]
=
αβ(2− α− β)

(α + β)3
. (2.33)

From the central limit theorem, we therefore have that, for n large but finite,

Sn =
1

n

n∑
i=1

Xi (2.34)

is approximately normally distributed with mean α
α+β

and variance 1
n
αβ(2−α−β)

(α−β)3
.

2.3.2 Autoregressive model

An autoregressive (AR) process is a higher-order Markov model in which the state Xn ∈ R
depends linearly on the previous states Xn−1, Xn−2, . . .. In the simplest case, called the
autoregressive process of order 1 or AR(1), we have

Xn = c+ ρXn−1 + Yn, (2.35)

where c is a constant and Yn is independent and identically distributed according to
N (0, ϕ2). The stochastic contribution of Yn allows the model to represent stochastic
differential equations. Writing the recursion (2.35) from X0, leads to

Xn+1 = c
n∑
i=0

ρi + ρn+1X0 +
n∑
i=0

ρn−iYi+1. (2.36)

By evaluating the limit of (2.36) as n → ∞, it is evident that we should have |ρ| < 1
to ensure convergence to a stationary distribution. In such a case, the first term on the
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right-hand side is a convergent geometric series in ρ and the contribution of the second
term is negligible as n→∞. In the limit, the resulting form of the process is thus given
by

Xn+1 =
c

1− ρ
+

n∑
i=0

ρn−iYi+1. (2.37)

The linear combination of independent normal variables Yn results in a normal distri-
bution with a mean of zero. Therefore, as n → ∞ the AR(1) is described by a normal
distribution with mean

lim
n→∞

E[Xn+1] =
c

1− ρ
(2.38)

and variance

lim
n→∞

Var(Xn+1) = lim
n→∞

n∑
i=0

ρ2(n−i)Var(Yi+1) = lim
n→∞

ϕ2

n∑
i=0

ρ2(n−i) =
ϕ2

1− ρ2
. (2.39)

Following [23], we use known properties of the covariance and (2.35) to determine the
covariance between two AR(1) RVs k iterations apart as

Cov(Xn+k, Xn) = Cov(c+ ρXn+k−1 + Yn+k, Xn) = ρCov(Xn+k−1, Xn). (2.40)

By continuing with this recursion, we are able to expand the covariance with respect to
k as

Cov(Xn+k, Xn) = ρCov(Xn+k−1, Xn) = · · · = ρk Cov(Xn, Xn), (2.41)
leading to the asymptotic variance

σ2
A =

ϕ2

1− ρ2

(
1 + 2

∞∑
k=1

ρk

)
=

ϕ2

1− ρ2

1 + ρ

1− ρ
=

ϕ2

(ρ− 1)2
. (2.42)

From (2.16), we thus have that

Sn =
1

n

n∑
i=1

Xi (2.43)

is approximated by a normal distribution with mean c
1−ρ and variance 1

n
ϕ2

(ρ−1)2
, when n is

large but finite.

2.3.3 Metropolis algorithm

The third example that we discuss is a general Markov chain, called the Metropolis algo-
rithm, used in simulations to sample a given distribution π, called the target distribution
[29]. The algorithm starts with an initial (random) value for X0 and proceeds to generate
the subsequent states as follows:

1. For the n-th iteration, a new state X ′n is proposed as

X ′n = Xn−1 + δX, (2.44)

where δX is sampled from a proposal distribution q which is symmetric. The vari-
ance of the proposal distribution governs the size of the proposed move and influ-
ences the efficiency of the algorithm (for a detailed discussion, see [30]).
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2. The proposed move is accepted or rejected according to the acceptance probability,
defined as

P (Xn−1 → X ′n) = P (X ′n|Xn−1) = min

(
1 ,

π(X ′n)

π(Xn−1)

)
. (2.45)

3. If the move is accepted, then Xn−1 is updated to Xn = X ′n; otherwise the value is
left unchanged that is, Xn = Xn−1.

It can be checked that the transition probability (2.45) defines an ergodic Markov
chain, whose stationary distribution is the target distribution π.

The Metropolis algorithm is widely used to estimate the ergodic expectation Eπ[g(X)]
of a function g of X by computing the sample mean estimator Sn(g) for n large enough.
The asymptotic variance can also be obtained in principle from the covariance, following
(2.23); however, this depends in general on the target distribution π(·) and choice of
distribution q for δX. As a result, we are unable to theoretically determine the asymptotic
variance. Other methods can be used in practice, which will be discussed in Chap. 3.

2.4 Markov diffusions
The second class of Markov processes that we consider are continuous-state and continuous-
time processes defined by a stochastic differential equation (SDE) of the form

dXt = F (Xt)dt+ σdWt, (2.46)

where

• Xt ∈ Rn is the state of the process a time t;

• t ∈ [0, T ] is the continuous time index;

• F : Rn → Rn is the force or drift of the process, describing the deterministic
evolution of Xt in the absence of noise (σ = 0);

• Wt ∈ Rm is a vector of independent Brownian motions, whose increments dWt are
distributed according to N (0, dt). This term is responsible for the stochastic nature
of the evolution of Xt. In general, the dimensions of Xt and Wt may differ;

• σ : Rn → Rn × Rm is the noise matrix that controls the variability or amplitude of
the noise present in the process. This matrix causes the dimensions of Xt and σWt

to agree, resulting in valid vector addition.

For simplicity, we consider the case where Xt and Wt have the same dimensions, i.e.
n = m. Additionally, we assume that σ depends on neither time nor Xt. The process
satisfies the Markov property as the evolution of Xt only depends on the transformation
F of the current state Xt to which noise is added. This is evident if we write the SDE
(2.46) as an evolution equation for a discrete time step ∆t as

Xn+1 = Xn + F (Xn)∆t+ σ
√

∆tZ, (2.47)
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where Xn = X∆t n, with a slight abuse of notation, and Z ∼ N (0, 1). This recursive
equation is called the Euler-Maruyama scheme and is used to numerically approximate
the solution of a SDE. From (2.47), it is clear that a diffusion process discretized in time
can be seen as a discrete-time Markov chain with a continuous state space.

The analog of π(n) for a diffusion Xt is the probability density p(Xt = x) = p(x, t),
which is known to evolve in time according to the Fokker-Planck equation given by

∂

∂t
p(x, t) = −∇ · (F (x)p(x, t)) +

1

2
∇ ·D∇p(x, t), (2.48)

starting from an initial probability density p(x, 0) [31]. This is the diffusion analog of the
evolution equation (2.10) for π(n). Here the matrix D = σσT is symmetric and is called
the covariance matrix.

Since the Fokker-Planck equation is linear, we can express it as

∂

∂t
p(x, t) = L†p(x, t) (2.49)

in terms of a Fokker-Planck operator L† given by

L† = −∇ · F +
1

2
∇ ·D∇. (2.50)

The dual L of L†, with respect to the inner product

〈f, p〉 =

∫
Rn

f(x)p(x)dnx, (2.51)

is called the generator of the process Xt and is expressed as

L = F · ∇+
1

2
∇ ·D∇. (2.52)

The generator is similar to the transition matrix of a Markov chain as it determines the
evolution of expectations according to

∂

∂t
E[g(Xt)] = E[(Lg)(Xt)]. (2.53)

The continuous-time analog of the transition matrix is in fact the conditional probability
density

Pt(x, y) = p(Xs+t = y,Xs = x) (2.54)

which specifies the probability of transitioning from state x to y in t time. This conditional
probability density is also called the propagator and can be expressed in operator form as

Pt(x, y) =
(
eLt
)

(x, y). (2.55)

For more information on the properties of L and L†, see [32].
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As for a Markov chain, a diffusion process can be ergodic and thus have a unique
stationary probability density π such that

lim
t→∞

p(x, t) = π(x) (2.56)

is satisfied from any initial probability density p(x, 0) for X0. Since π is time independent,
it must satisfy

L†π(x) = 0, (2.57)

which is the continuous-time analog of (2.12).
An SDE in Rn has a stationary distribution in the particular case where the drift F (x)

can be written as the gradient of a potential function, that is

F (x) = −∇U(x) (2.58)

and σ is proportional to the identity matrix, i.e., σ = εI. These processes are called
gradient SDEs and have a stationary distribution known to be the Gibbs distribution,
given by

π(x) = c exp

[
−2U(x)

ε2

]
, (2.59)

where c is a normalization constant. This can be verified by solving (2.57) using the
gradient drift in (2.58). The equation given in (2.57), which is often called the station-
ary Fokker-Planck equation, has the form of an eigenvalue problem where π(x) is the
eigenfunction with eigenvalue 0.

2.5 Additive functionals of Markov diffusions
The principles discussed in Sec. 2.2 regarding additive functionals can be generalised to
continuous-time and continuous-space process, where the summations over n are replaced
by integrals over a time T . Thus an additive functional or observable for Xt can be written
as

ST (g) =
1

T

∫ T

0

g(Xt)dt. (2.60)

Assuming that the process is ergodic, we have that ST (g) converges in probability to the
stationary expectation, denoted as before as

π(g) = Eπ[g(X)] =

∫
Rn

g(x)π(x)dx. (2.61)

As for Markov chains, this convergence is known as the ergodic theorem [2] and is math-
ematically expressed as

lim
T→∞

P (|ST (g)− π(g)| > ε) = 0 (2.62)

for all ε > 0. The central limit theorem associated with additive functionals of a Markov
chain can be similarly restated for ST (g) as

ST (g)
dist−−→ N

(
π(g),

σ2
A

T

)
(2.63)
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as T →∞, assuming that π(g) <∞ [13]. To be more precise,

lim
T→∞

P

(
TST (g)− Tπ(g)√

TσA

)
= N (0, 1). (2.64)

As before, we are interested in the asymptotic variance σ2
A and we can rewrite these

results in terms of ḡ = g − π(g). This re-centers the real-valued function with respect to
the stationary distribution, such that

ST (ḡ)
dist−−→ N

(
0,
σ2
A

T

)
(2.65)

as T →∞ and
lim
T→∞

P

(
TST (ḡ)√
TσA

)
= N (0, 1). (2.66)

Similarly to Sec. 2.2, the asymptotic variance for a general Markov diffusion process
can be written as

σ2
A = lim

T→∞

1

T
Var

(∫ T

0

g(Xs)ds

)
= lim

T→∞

1

T

∫ T

0

∫ T

0

Cov(g(Xu), g(Xv))dudv, (2.67)

where u 6= v and Var(·) and Cov(·) are the continuous expressions of (2.20) and (2.21),
respectively. As before, the double integral can be simplified such that

σ2
A = lim

T→∞

2

T

∫
0≤u<v≤T

Cov(g(Xu), g(Xv))dudv. (2.68)

If the process is stationary, the result simplifies to

σ2
A = 2

∫ ∞
0

Covπ(g(X0), g(Xt))dt (2.69)

and equivalently in terms of ḡ

σ2
A = 2

∫ ∞
0

Eπ[ḡ(X0)ḡ(Xt)]dt. (2.70)

2.6 Asymptotic variance using large deviation theory
We have shown that the asymptotic variance can be obtained from the knowledge of the
covariance function. We now discuss another method for obtaining the asymptotic vari-
ance of additive functionals of Markov processes, based on the theory of large deviations
[25, 26, 27]. The method is described for diffusions, but it is also applicable to Markov
chains. Thus, we consider the observable ST (g) applied to an ergodic diffusion process
Xt, defined by the SDE (2.46) with drift F and noise matrix σ. Note that, for notation
purposes, we simplify the representation of the observable ST (g) given in (2.60) to ST .
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The method is based on the basic observation of large deviation theory, which is that
the probability density of ST , written as p(ST = s), in many cases has the asymptotic
form

p(ST = s) ≈ e−TI(s) (2.71)

as T → ∞ or, in practice, when T � 1. This approximation is referred to as the
large deviation principle (LDP) and means that the dominant contribution to p(ST = s)
is a decaying exponential in T . The function I(s), which governs the rate of decay of
p(ST = s), is called the rate function and is expressed as

I(s) = lim
T→∞

− 1

T
ln p(ST = s). (2.72)

For an ergodic Markov process with unique stationary distribution π, there exists a
unique s∗ such that I(s∗) = 0. In general, I(s) ≥ 0 and this means by normalization of
p(ST = s) that

s∗ = lim
T→∞

E[ST ] =

∫
X
π(x)g(x) dx. (2.73)

Thus the ergodic value of ST is the zero s∗ of the rate function I(s).
The Gärtner-Ellis theorem is typically used to obtain the rate function and is based

on the scaled cumulant generating function (SCGF), defined as

λ(k) = lim
T→∞

1

T
lnE[eTkST ]. (2.74)

The theorem states that, if λ(k) exists for k ∈ R and is differentiable in k, then ST
satisfies a large deviation principle (2.71) with the rate function given as the Legendre-
Fenchel transform of λ(k):

I(s) = sup
k∈R
{ks− λ(k)}. (2.75)

Rate functions obtained via the Gärtner-Ellis theorem are convex. In many cases,
λ(k) is strictly convex, in which case (2.75) reduces to the Legendre transform

I(s) = k(s)s− λ(k(s)), (2.76)

where k(s) is the unique solution of λ′(k) = s [33].
The SCGF has the following properties at k = 0:

• From the definition of the SCGF (2.74) and the fact that probability distributions
are normalized (i.e. E[1] = 1), we have λ(0) = 0.

• The expected value of ST can be expressed as

λ′(0) = lim
T→∞

E[ST e
TkST ]

E[eTkST ]

∣∣∣∣
k=0

= lim
T→∞

E[ST ] = s∗. (2.77)

• The asymptotic variance follows from taking the derivative of λ′(k) by means of the
quotient rule. Here

λ′′(0) = lim
T→∞

T (E[S2
T ]− E[ST ]2) = lim

T→∞

1

T
Var(ST ) = σ2

A. (2.78)
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We are particularly interested in the relation between the rate function and σ2
A when

both λ(k) and I(s) and are strictly convex. Then the Legendre transform (2.76) implies

I ′′(s∗) =
1

λ′′(0)
=

1

σ2
A

. (2.79)

For a detailed discussion of the properties of the SCGF and the rate function, see Sec. 3.5
of [25].

Next, we turn our attention to calculating the SCGF of ergodic Markov processes.
It can be shown, by using the Feynman-Kac formula [26], that λ(k) corresponds to the
dominant eigenvalue of a linear operator Lk, called the tilted generator, given by

Lk = F · ∇+
1

2
∇ ·D∇+ kg, (2.80)

where g is the test function that appears in the additive functional ST (g), as defined in
(2.60). The dual L†k of Lk with respect to the inner product shown in (2.51) is

L†k = −∇ · F +
1

2
∇ ·D∇+ kg. (2.81)

In general, these operators are not Hermitian, due to (∇ · F )† = −F · ∇ being anti-
symmetric. This complicates the spectral problem associated with calculating λ(k). In
fact, to find the dominant eigenvalue, one has to consider both the direct eigenvalue
problem

Lkrk(x) = λ(k)rk(x), (2.82)

where rk(x) is the “right” eigenfunction and the dual eigenvalue problem

L†klk(x) = λ(k)lk(x), (2.83)

where lk(x) is the “left” eigenfunction. These two eigenfunctions must follow

rk(x)lk(x)→ 0 (2.84)

as |x| → 0 and must decay sufficiently fast that lkrk is integrable in Rn. In practice, we
impose ∫

Rn

rk(x)lk(x) dnx = 1 (2.85)

as well as ∫
Rn

lk(x) dnx = 1. (2.86)

The condition (2.84) basically follows from the duality between Lk and L†k, which is
equivalent to performing integration by parts, where rk(x)lk(x) is a boundary term. For
more details see [26].

Observing (2.82) and (2.83) for k = 0, we note that L†k=0 = L†, so that lk=0 = π and
Lk=0 = L, so that rk=0 = 1. This leads to both normalization conditions reducing to the
same expression, namely,

∫
Rn π(x) dnx = 1.
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2.7 Symmetrization
As mentioned in the previous section, finding the SCGF is complicated due to the fact
that the tilted generator Lk is, in general, not Hermitian. However, Lk can be transformed
to a Hermitian operator by performing a unitary transformation in the case where Lk has
a real spectrum, which is the case when an SDE is gradient. This simplification is called
a symmetrization and produces an operator given by

Hk = π1/2Lkπ−1/2, (2.87)

where π(x) is the Gibbs distribution shown in (2.59). If one substitutes Lk with (2.80)
and replace F = −∇U , we see that Hk has the form

Hk =
σ2

2
∆− Vk, (2.88)

where ∆ = ∇2 represents the Laplacian and

Vk(x) =
|∇U(x)|2

2σ2
− ∆U(x)

2
− kg(x) (2.89)

is an effective potential. Since Hk and Lk are unitarily related, the dominant eigenvalue
λ(k) is the same. Therefore, the complicated spectral problem shown in (2.82) reduces to

Hkψk = λ(k)ψk, (2.90)

where the eigenfunction ψk is related to rk and lk by

ψk(x) = π(x)1/2rk(x) and ψk(x) = π(x)−1/2lk(x). (2.91)

This simplifies the boundary condition of the eigenvalue problem shown in (2.85) to∫
Rn

ψk(x)2 dnx = 1. (2.92)

2.8 Examples
We demonstrate the ideas developed in the previous sections by calculating the asymptotic
variance for different examples. Firstly, we revisit the two-state Markov chain to confirm
the calculated asymptotic variance, expressed in (2.33). Thereafter we determine the
asymptotic variance of two dynamical observables for a simple Markov linear diffusion,
called the Ornstein-Uhlenbeck process.

2.8.1 Two-state Markov chain

The first example that we consider is a special case of the two-state Markov chain, de-
scribed in Sec. 2.3.1, obtained for α = β, so that the transition matrix is

P =

(
1− α α
α 1− α

)
, (2.93)
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where 0 ≤ α ≤ 1. It can be shown from (2.12) that, if α 6= 0, 1, then the Markov chain
X1, X2, . . . , Xn is ergodic and has a unique stationary distribution given by

π =
(

1
2

1
2

)
. (2.94)

As before, we are interested in the sample mean

Sn =
1

n

n∑
i=1

Xi (2.95)

of the Markov chain. To calculate the expected value of Sn and the asymptotic variance
associated with the estimate, we turn our attention to the SCGF. For a Markov chain with
discrete time and discrete state space, the SCGF λ(k) translates to the natural logarithm
of the dominant eigenvalue associated with the tilted transition matrix

Pk =

(
1− α α
αek (1− α)ek

)
, (2.96)

as discussed in [25]. The dominant eigenvalue of this matrix can be explicitly calculated
and is given as

λ(k) = ln

[
1

2

(
(1 + ek)(1− α) +

√
(α + αek − ek − 1)2 − 4 (ek − 2αek)

)]
. (2.97)

From this result, we then follow (2.77) and use (2.97) to determine the expected value
as

Eπ[X] = lim
n→∞

E[Sn] = λ′(0) =
1

2
. (2.98)

To calculate the asymptotic variance we determine the second derivative of (2.97) and set
k = 0, as stated in (2.78). This results in

σ2
A =

1− α
4α

. (2.99)

These results agree with the theoretical results obtained in Sec. 2.3.1, when α = β.

2.8.2 Ornstein-Uhlenbeck process with linear observable

The one-dimensional Ornstein-Uhlenbeck process satisfies the SDE

dXt = −γXt dt+ σ dWt, (2.100)

where Xt ∈ R, Wt ∈ R, γ > 0 represents a friction constant and σ > 0 is the noise
amplitude. This is a gradient SDE with force F (x) = −γx derived from the quadratic
potential U(x) = γx2/2, so that its stationary distribution is a Gibbs distribution (2.59)
given by

π(x) =

√
γ

πσ2
exp

[
−γx

2

σ2

]
. (2.101)
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For this process, we are interested in the asymptotic variance of the additive functional
ST defined as

ST =
1

T

∫ T

0

Xt dt, (2.102)

which corresponds to the area per unit time under the trajectory (Xt)
T
t=0. The tilted

generator for the considered gradient process and observable is

Lk = −γx d
dx

+
σ2

2

d2

dx2
+ kx. (2.103)

Although the operator is not Hermitian, it is known that it has a real spectrum [26].
Therefore, we can use the symmetrization to determine the Hermitian operator

Hk =
σ2

2

d2

dx2
− Vk(x), (2.104)

where
Vk(x) =

γ2x2

2σ2
− γ

2
− kx (2.105)

is the effective potential.
The spectral problem (2.90) for the operator Hk shown in (2.104) resembles, up to

a sign, the time-independent Schrödinger equation of the one-dimensional quantum har-
monic oscillator, where the potential is shifted [26]. The shift is determined by finding
the x-value where the minimum occurs and the potential is equivalently expressed as

Vk(x) =
γ2

2σ2
(x− x∗)2 − γ

2
− k2σ2

2γ2
, (2.106)

where the minimum potential x∗ = kσ2/γ2. The harmonic oscillator has known eigen-
values λn(k) and eigenfunctions ψ(n)

k [34]. By identifying γ = ~ω and σ = ~/
√
m and

applying the shift x→ x+ x∗ to the quantum problem we find

λn(k) =
k2σ2

2γ2
− nγ (2.107)

for n = 0, 1, 2, . . . and

ψ
(n)
k =

1√
2nn!

( γ

πσ2

)1/4

exp

[
−γ(x− x∗)2

2σ2

]
Hn

(√
γ

σ
(x− x∗)

)
, (2.108)

where Hn are the Hermite polynomials. The dominant eigenvalue of the oscillator is
analogous to its ground state energy (n = 0). Consequently, the SCGF is given by

λ(k) = λ0(k) =
k2σ2

2γ2
(2.109)

as shown in Fig 2.2 (left). The eigenfunction corresponding to λ(k) is

ψk(x) = ψ(0)
n (x) =

( γ

πσ2

)1/4

exp

[
−γ(x− kσ2/γ2)2

2σ2

]
. (2.110)
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Figure 2.2: (Left) SCGF of a linear observable ST for the Ornstein-Uhlenbeck process
with γ = 1 and σ = 1. (Right) Rate function I(s) of ST .

From this result, we compute the eigenfunctions rk(x) and lk(x) of the SCGF by sub-
stituting (2.110) and (2.101) into the expressions (2.91). After normalizing the expressions
according to (2.85) and (2.86), we then find

rk(x) = exp
[
kx

γ
− 3σ2k2

4γ3

]
(2.111)

and

lk(x) =

√
γ

πσ2
exp

[
−γ (2x− σ2k/γ2)

2

4σ2

]
. (2.112)

We observe that the product between rk(x) and lk(x) decays to zero as |x| → ∞, which
agrees with (2.84). Additionally, r0(x) = 1 and l0(x) = π(x), as mentioned in Sec. 2.6.

The SCGF (2.109) is differentiable and strictly convex for all k ∈ R, as illustrated in
Fig. 2.2 (left). Therefore, the calculation of the rate function I(s) reduces to a Legendre
transform according to (2.76), leading to

I(s) =
γ2s2

2σ2
. (2.113)

The rate function is parabolic, as shown in Fig. 2.2 (right), which indicates that ST has
Gaussian fluctuations around s∗ = 0. The obtained value for s∗ is consistent with the
property (2.77), where

lim
T→∞

E[ST ] = Eπ[X] = 0 (2.114)

with π given in (2.101). Following (2.78), we determine the asymptotic variance of the
observable as

σ2
A = λ′′(0) =

1

I ′′(0)
=
σ2

γ2
, (2.115)

which determines the width of the probability distribution of ST according to the relation
displayed in (2.63).
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This result is consistent with the fact that the covariance function of the Ornstein-
Uhlenbeck process can be described as

R(t) = Covπ(X0, X0+t) =
σ2

2γ
e−γt (2.116)

for t ≥ 0 [35]. Following (2.69), we are able to theoretically calculate the asymptotic
variance as

σ2
A = 2

∫ ∞
0

σ2

2γ
e−γt =

σ2

γ2
, (2.117)

which agrees with (2.115).

2.8.3 Ornstein-Uhlenbeck process with quadratic observable

For our third example, we consider the same Ornstein-Uhlenbeck process Xt as before,
but now we shift our interest to the quadratic observable

ST =
1

T

∫ T

0

X2
t dt. (2.118)

The stationary distribution π of the process remains the same, given by (2.101). The
process, with a quadratic observable, now has a tilted generator of the form

Lk = −γx d
dx

+
σ2

2

d2

dx2
+ kx2, (2.119)

with Hermitian counterpart

Hk =
σ2

2

d2

dx2
− Vk(x), (2.120)

where the effective potential is given by

Vk(x) = x2

(
γ2

2σ2
− k
)
− γ

2
. (2.121)

This potential is equivalent again to the time-independent Schrödinger equation of a
quantum harmonic oscillator. To ensure that the spectral problem (2.90) has a well
defined spectrum, we must have γ2/2σ2 ≥ k. The eigenvalues λn(k) and eigenfunctions
ψ

(n)
k of the quantum harmonic oscillator translated to our problem are now given by

λn(k) = −
(
n+

1

2

)√
γ2 − 2kσ2 +

γ

2
(2.122)

for n = 0, 1, 2, . . . and

ψ
(n)
k (x) =

1√
2nn!

(√
γ2 − 2kσ2

πσ2

)1/4

exp

[
−
√
γ2 − 2kσ2

2σ2
x2

]
Hn

(
4
√
γ2/σ2 − 2k√

σ
x

)
,

(2.123)
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Figure 2.3: (Left) SCGF of a quadratic observable ST for the Ornstein-Uhlenbeck process
with γ = 1 and σ = 1. (Right) Rate function I(s) of ST .

respectively. The dominant eigenvalue, shown in Fig 2.3 (left), is thus

λ(k) = −1

2

√
γ2 − 2kσ2 +

γ

2
(2.124)

with the corresponding normalized eigenfunction

ψk(x) =

(√
γ2 − 2kσ2

πσ2

)1/4

exp

[
−
√
γ2 − 2kσ2

2σ2
x2

]
. (2.125)

From this result, we find the expressions for rk(x) and lk(x), as before, by substituting
(2.125) and (2.101) into (2.91) and normalizing according to (2.85) and (2.86). This yields

rk(x) =

(
2
√
γ2 − 2kσ2√

γ2 − 2kσ2 + γ

) 1
2

exp
[
− x2

2σ2

(√
γ2 − 2kσ2 − γ

)]
(2.126)

and

lk(x) =

(√
γ2 − 2kσ2 + γ

2πσ2

) 1
2

exp
[
− x2

2σ2

(√
γ2 − 2kσ2 + γ

)]
. (2.127)

As before, the SCGF satisfies the conditions of the Gärtner-Ellis theorem and is strictly
convex. This allows us to determine the rate function I(s) via the Legendre transform of
(2.124). The resulting rate function is given by

I(s) =
γ2

2sσ2

(
s− σ2

2γ

)2

(2.128)

for s > 0. The rate function is shown in Fig. 2.3 (right) and illustrates that the expected
value of the observable is s∗ = σ2/(2γ), mathematically expressed in (2.77). Observing the
graph, we notice that the rate function is linear with gradient γ2/(2σ2) when s→∞ and
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diverges as 1/s when s→ 0. This causes asymmetrical tails in the probability distribution
of ST ; however, we still expect Gaussian fluctuations around s∗. The asymptotic variance
is determined using (2.78) as

σ2
A = λ′′(0) =

1

I ′′(1/2)
=

σ4

2γ3
(2.129)

and describes the local Gaussian fluctuations around the concentration point s∗ = π(X2) =
σ2/(2γ) of ST as T →∞.

Note that obtaining the asymptotic variance from the covariance using (2.69) is not
possible here, because the covariance function in this case is unknown. This emphasizes
the advantage of using the large deviation method to determine the asymptotic variance,
as we can calculate σ2

A without the use of the covariance function.
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Chapter 3

Asymptotic variance estimation
techniques

This chapter serves as a review of known methods for estimating the asymptotic variance
of additive functionals of Markov processes. We present the most conventional methods
used in practice, which are based on either the estimation of the covariance function
or the segmentation of the additive observable into batch means. These methods will
be used thereafter as benchmarks for the new methods that we present in Chapters 4
and 5. Using specific examples of Markov processes, similar to the examples previously
considered, we give guidelines and address the weaknesses of each method. The methods
that we discuss in this chapter are based on discrete-time Markov processes; however,
continuous-time Markov processes are implicitly included, since the time discretization of
a time-continuous Markov diffusion process is a Markov chain.

3.1 Covariance estimation
In this section we describe a variance estimation technique based on estimating the covari-
ance [23, 36, 14], which appears in the asymptotic variance formula (2.23). The technique
is based on our calculation in Sec. 2.2, which showed that σ2

A can be expressed for a
stationary Markov chain as

σ2
A = γ0 + 2

∞∑
k=1

γk = γ0(1 + 2
∞∑
k=1

c(k)) = γ0τ. (3.1)

Here the k-lag autocovariance of the functionals g(X1), g(X2), . . . is given as

γk = Cov(g(Xt), g(Xt+k)) = E[(g(Xt)− Eπ[g(X)])(g(Xt+k)− Eπ[g(X)])], (3.2)

c(k) = γk/γ0 and τ are called the autocorrelation function and correlation time, respec-
tively. Lastly,

γ0 = E[(g(Xt)− Eπ[g(X)])2] (3.3)
is referred to as the naïve variance, since it does not take into account the correlations in
the state. However, if g(X1), g(X2), . . . are i.i.d., then the naïve variance is the asymptotic
variance.

26
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The natural estimator of the autocovariance function γk is

γ̂k =
1

n− k

n−k∑
i=1

[g(Xi)− µ̂n][g(Xi+k)− µ̂n], (3.4)

where the hat indicates that γ̂ is an empirical estimate of γk. Similarly, µ̂n is the estimated
sample mean given by (1.1), and n is the number of observed values. This leads to an
estimator of the asymptotic variance σ2

A given as

σ̂2
A = γ̂0 + 2

∞∑
k=1

γ̂k. (3.5)

Equivalently, we can rewrite this result in terms of the estimated autocorrelation function
ĉ(k) = γ̂k/γ̂0:

σ̂2
A = γ̂0

(
1 + 2

∞∑
k=1

ĉ(k)

)
. (3.6)

The autocorrelation function is a dimensionless version of the autocovariance function and
takes on values between −1 and 1: a value close 0 is indicative of no correlation, whereas
values close to −1 or 1 represents a strong correlation [2].

For a Markov process with a fixed number of observed values n, the estimators γ̂k and
ĉ(k) are not reliable when k is large. As we consider larger k-lags, the number of sample
values contributing to the estimate decreases. When the number of observed values is
small, the estimator can not converge. This, in turn, leads to inaccurate estimates of the
asymptotic variance.

The first approach to improve the accuracy of σ̂2
A is to improve the convergence of the

estimator γ̂k. This is done by replacing the denominator of n − k in (3.4) with n [36].
Increasing the denominator to n decreases the contribution of γ̂k for large k and results
in more accurate approximations when estimating the asymptotic variance by means of
(3.6). The second approach is to discard the inaccurate estimates of γ̂k when k is large
by truncating the infinite sum up to a finite integer value M . The resulting estimator is
given by

σ̂2
A = γ̂0

(
1 + 2

M∑
k=1

ĉ(k)

)
, (3.7)

where 1 ≤ M ≤ n and is based on the observation that γ̂k, and subsequently ĉ(k), tend
to zero as k →∞ [14]. The value M is a hyperparameter (controlled by the practitioner)
and is used to set a threshold for when γ̂k is either close to zero or too noisy. This increases
the accuracy of σ̂2

A; however, determining the optimal value M is a difficult task as (3.7)
contains estimates of ĉ(k) that randomly fluctuate.

Additionally, to ‘smooth’ the estimator of the asymptotic variance, we can use some
weight function w(k) that further reduces the contribution of γ̂k at large k. This is
expressed as

σ̂2
A = w(0)γ̂0 + 2

M∑
k=1

w(k)γ̂k, (3.8)
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where 0 ≤ w(k) ≤ 1; see [32] for desired properties of w(k).
A variation to the covariance estimation technique is to assume that the autocorrela-

tion function of the observed process decays exponentially as k → ∞ [14]. This can be
expressed mathematically as

cexp(k) = e−υkh, (3.9)

where υ is a constant with units time−1 and h is the sampling interval of the process. The
assumption allows us to estimate the correlation time τ using an exponential function,
which leads to the asymptotic variance being approximated by a rescaled naïve variance:

σ̂2
A = γ̂0

(
1 + 2

∞∑
k=1

ĉexp(k)

)
≈ γ̂0τ̂exp, (3.10)

where τexp is the exponentially approximated correlation time, as in (3.1). The exponential
autocorrelation function (3.9) decreases to 0 for large k. Hence, poor estimates of γk
when k is large does not influence the accuracy of the estimated asymptotic variance,
as is the case in (3.6). We can use auto-regression methods to obtain υ, where a higher
auto-regression method can lead to better σ2

A approximations [14]. Alternatively, we can
estimate τ using

τ̂ = 1 + 2
M∑
k=1

ĉ(k), (3.11)

as done in (3.7).
As suggested in the introduction, we are interested in determining the asymptotic

variance of an additive functional by using steady-state analysis. An ideal estimator for
this type of analysis would estimate the asymptotic variance in parallel with the process
as it unfolds. This allows us to have an estimated value of the asymptotic variance at
each time-step. As the process evolves over time, each new observation is used to update
the estimated asymptotic variance and we refer to such an estimator as being online. The
covariance estimation technique requires all the data to estimate the asymptotic variance
and therefore cannot be classified as an online estimator.

3.2 Examples
We illustrate the general covariance estimation technique based on (3.1) by calculating
the asymptotic variance of the mean area of the Ornstein-Uhlenbeck process and auto-
regressive process.

3.2.1 Ornstein-Uhlenbeck process

We consider the Ornstein-Uhlenbeck process, defined in (2.100), with parameters γ = 0.5
and σ = 2. We are interested in the linear observable ST of the process, such that g(x) = x.
The k-lag autocorrelation function ĉ(k) is determined by calculating γ̂k/γ̂0 according to
(3.4) for k ≥ 0. As shown in Fig. 3.1 (left), this results in an empirical estimate (blue) of
the theoretical autocorrelation function c(k) (green), derived from (2.116). We see that
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Figure 3.1: (Left) Estimate of the autocorrelation function (blue) for the Ornstein-
Uhlenbeck process with γ = 0.5 and σ = 2, compared with the theoretical autocorrelation
function (green). (Right) Relative error of the empirically calculated asymptotic variance
as a function of k-lag.

ĉ(k) accurately estimates the theoretical autocorrelation function when k is small. As
k increases, the number of observed values for each estimate decreases. This leads to
unreliable estimates when k is large, depicted by the fluctuations in the tail of ĉ(k).

Next, we follow (3.6) and sum over all the k-lags of ĉ(k) in order to estimate the known
asymptotic variance (2.115). The relative error (RE) is used to compare the estimated
asymptotic variance σ̂2

A with the theoretical asymptotic variance σ2
A calculated before in

(2.117). The RE gives an indication of the accuracy of the estimator and is determined
by the formula

RE =
|σ̂2
A − σ2

A|
σ2
A

. (3.12)

As previously mentioned by (3.7), in order to improve the accuracy of σ̂2
A we need to

truncate the infinite sum present in (3.6) to the Mth lag. Using ĉ(k) from Fig. 3.1 (left),
one expects that the optimal truncation would occur near k = 50. However, for this
example, the calculated γ̂k is already unreliable before k = 50 and therefore inaccurately
represents the theoretical autocorrelation function. Here the optimal M -value would
incorporate unreliable estimators and achieve an accurate σ̂2

A when k = 150, shown in
Fig. 3.1 (right). As the theoretical autocorrelation function is rarely known, determining
the optimal M -value from the estimated autocorrelation function is a non-trivial task.

We can improve the quality of the estimator by increasing the total number of observed
values for the Ornstein-Uhlenbeck process. However, this solution is not always possible
in practice as the number of available observations may be limited.

3.2.2 Auto-regression model AR(1)

We now calculate the asymptotic variance of a linear additive functional of an AR(1)
process for which the autocorrelation function decays exponentially. We introduced the
process in Sec. 2.3.2 and from the calculations shown in (2.41), we know that the autoco-
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Figure 3.2: (Left) Theoretical autocorrelation function of an auto-regression model AR(1)
with ρ = 0.95 (green) estimated based on τexp (red). (Right) Relative error of estimator
based on τexp (red) and the empirical estimator (yellow) as a function of k-lag.

variance function of an AR(1) process is given by

γk = γ0ρ
k, (3.13)

for c = 0 and |ρ| < 1. Next, we note that the autocorrelation function c(k) is expressed
as an exponential in k and following (3.9) we rewrite γk as

γk ≈ γ0 e
−υkh. (3.14)

Comparing these results shows that

ρ = e−υh (3.15)

and that σ̂2
A converges to a single positive value as k →∞. For the example, we consider

h = 1 and estimate ρ using the k-lag autocovariance function, such that

ρ̂ =
γ̂1

γ̂0

, (3.16)

as shown in (2.40). Once we have ρ̂, the asymptotic variance is estimated following

σ̂2
A ≈ γ̂0τexp = γ̂0

(
1 + 2

∞∑
k=1

ρ̂k

)
= γ̂0

1 + ρ̂

1− ρ̂
. (3.17)

We illustrate these results by estimating the autocorrelation function of an AR(1)
process with ρ = 0.95. Form the estimations of our example (Fig. 3.2 (left)), we see that
the estimator based on an autocorrelation function that decays exponentially (red) is a
more accurate representation of the theoretical autocorrelation function (green), than the
empirical estimator of c(k) (blue) given by the normalized (3.4). Note that the estimator
based on τexp only depends on γ̂0 and γ̂1. Therefore, it does not suffer from unreliable
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n = km

m

Figure 3.3: Total number of observations n divided into k batches of size m.

values when k is large, because (3.14) tends to zero as k →∞. However, any inaccuracy
in either of these two estimates will have a large influence on the final σ2

A estimated.
Figure 3.2 (right) illustrates a comparison between the estimator based on τexp (red) as

shown in (3.10) and the empirical estimator (yellow) as shown in (3.6) for an AR(1) process
with ρ = 0.95. In order to calculate RE (3.12), we require the theoretical asymptotic
variance corresponding to an AR(1) process, which is given by (2.42). From these results,
it is again evident that the empirical estimator fluctuates as k increases. This is due to
the increased fluctuations of γ̂k when k is large. On the other hand, the estimator based
on τexp does not fluctuate owing to the exponential approximation and this results in a
better estimator of σ2

A as k →∞.

3.3 Batch means method
In this section we describe another method for calculating the asymptotic variance, called
the non-overlapping batch means (NBM) method [16, 15, 37, 17]. This method is based
on the simple observation that a sample mean such as

Sn =
1

n

n∑
i=1

g(Xi) (3.18)

can be rewritten as

Sn =
1

k

k∑
i=1

Ȳi, (3.19)

where

Ȳi =
1

m

m∑
j=1

g(X(i−1)m+j) (3.20)

is the ith block or batch sample mean involving m RVs of the Markov chain starting from
X(i−1)m+1. The segmentation of the whole sequence X1, X2, . . . , Xn into these k blocks is
illustrated in Fig. 3.3 and assumes that n = km.

The advantage of writing the sample mean in block form is that the batch means Ȳi
are expected to become i.i.d. in the double limit where n → ∞ and m → ∞. This is
confirmed by the functional limit theorem [16, 18], which shows that the batch means Ȳi
are uncorrelated and normally distributed as m → ∞ while k is constant. Therefore in
this limit, we can express σ2

A as the naïve variance of the batch means, leading to the
estimator

σ̂2
A =

m

k

k∑
i=1

(Ȳi − µ̂n)2. (3.21)
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Note that, if k →∞ for a constantm and correlated observations, then the naïve variance
estimator will converge to an inaccurate estimate.

When the total number of observations n is fixed, bothm and k are finite. Therefore, in
order to gain either accuracy or consistency there is a trade-off between the batch size and
the number of batches, respectively. For highly correlated samples, the estimator requires
a large batch size m to decorrelate the samples and to produce an accurate estimate. An
increase in batch size leads to a decrease in k the numbers of batches, due to the fixed
number of observations n. If there is an insufficient number of batches, then the estimates
will become inconsistent. The batch size for which there is a perfect trade-off between
accuracy and consistency with respect to error is referred to as the optimal batch size.

Unfortunately, no consensus has yet been reached on the optimal batch size or batch
number. Authors have proposed sampling plans where m = nθ for some θ ∈ (0, 1)
[38]. Others suggest that the batch size should be related to the autocorrelation time
as the observations are effectively decorrelated after τ observations, i.e., m > τ [39].
Some authors argue that there is little statistical reason to use more than 30 batches and
suggest using k = 30 as a rule of thumb [36]. In practice, the consequences related to
batch correlation are more serious than the consequences of fewer batches, i.e., a large
batch size should be prioritized over the number of batches to ensure uncorrelated batch
means [23].

Figure 3.4 illustrates the influence of the batch size on the estimated asymptotic
variance for the Ornstein-Uhlenbeck process with γ = σ = 1. We calculate the asymptotic
variance for a fixed number of batches, while increasing the number of observations. This
leads to an increase in the number of observations within each batch. For a reference,
the NBM estimator (blue) is compared with the naïve variance estimator (orange). It
is clear from the results that the NBM estimator achieves more accurate estimates than
the naïve estimation as n is increased. These results are expected as the naïve variance
estimator performs poorly when the observations are correlated. The accuracy of the
NBM estimator improves as we consider more observations. An increase in n leads to
a larger batch size. This in turn reduces the correlation between batches and produces
more accurate estimates.

The accuracy of the NBM method can be improved by determining the optimal batch
number. Calculating the optimal batch number allows us to demonstrate the inaccuracy
caused from the trade-off between the number of batches k and batch size m. For an
Ornstein–Uhlenbeck process with γ = 0.1 and σ = 1, we determine σ̂2

A for ST with
g(x) = x. Following (3.21), we estimate σ̂2

A for an increasing number of batches, while
keeping n fixed. The estimation error is calculated by comparing the estimated asymptotic
variance at each batch size with the theoretical asymptotic variance, derived in Sec. 2.8.2.
Repeating this procedure allows us to calculate the average error that occurs for each
batch number. The error function resulting from the chosen parameters has a convex
shape (Fig. 3.5). The minimum (or turning point) of the error function is k = 34 and
represents the optimal batch number. When k > 34, the batch size is too small to properly
decorrelate the observations and this results in inaccurate NBM estimates. On the other
hand, if k < 34, there are not enough batches to consistently estimate the asymptotic
variance.
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Figure 3.4: Comparison of the naïve variance estimation (orange) and NBM estimator
using 50 batches (blue) to approximate the theoretical asymptotic variance (green) of the
Ornstein–Uhlenbeck process with γ = 1 and σ = 1
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Figure 3.5: The normalized error using the NBM estimator to approximate the asymptotic
variance of a Ornstein–Uhlenbeck process with γ = 0.1 and σ = 1
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Figure 3.6: Total number of observations n divided into (n−m+ 1) overlapping batches
each of size m.

The batch means method is a simple yet effective method of estimating the asymptotic
variance of a sample mean. However, it is not an online estimator as it requires all the
observations of the process during its calculation. Additionally, we need to optimise the
batch number to minimize the estimation error. This is only done by recalculating σ̂2

A for
different batch sizes, which is computationally expensive. In practice, the optimization is
a difficult task as the theoretical variance in usually not known.

3.3.1 Overlapping batch means

Instead of dividing all the observations into adjacent blocks, as considered before and
shown in Fig. 3.3, we can divide the observations into overlapping blocks or batches.
This variation is called the overlapping batch means method (OBM) and is illustrated
in Fig. 3.6, where the total number of observations n is divided into (n − m + 1) over-
lapping batches each of size m. Assuming that the means of the overlapping batches are
uncorrelated, the variance of a sample mean is estimated as

σ̂2
A =

m

n−m+ 1

n−m+1∑
j=1

(Ȳ
(OBM)
j − µ̂n)2, (3.22)

where the mean of the ith overlapping block Ȳi is

Ȳ
(OBM)
i =

1

m

m∑
j=1

g(Xi+j−1). (3.23)

This estimator may seem counter-intuitive as the batches overlap and should therefore be
correlated. However, it can be shown that the OBM estimator is approximately equal to
the w(k)-weighted estimator, shown in (3.8) [37]. Hence, the batch dependence is not a
concern even with a large amount of overlap [40].

We study the influence the number of batches has on (3.22) by considering the case
where n→∞ and m is constant. The increase in n results in more batches contributing
to the estimate of σ2

A, which leads to a more reliable estimator. On the other hand, if we
keep n constant and increase m, the estimator Ȳ (OBM)

i will become more accurate, leading
to a more accurate σ̂2

A. Therefore, when the number of observations is finite the OBM
has the same batch size and batch number trade-off, as discussed before.
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Figure 3.7: Influence of increasing batch sizes on the OBM estimate (blue) of theoretical
asymptotic variance (green) for the Ornstein-Uhlenbeck process with γ = 1 and σ = 1.

When comparing the NBM and OBM, one can show that the distribution of the OBM
estimator has only 2/3 the variance of the NBM estimator, given the batch means are
independent and normally distributed [37]. Furthermore, it appears that the OBM esti-
mator is less sensitive to batch size than the NBM estimator [15]. The OBM estimator
is theoretically more efficient; however the NBM estimator is computationally more ef-
ficient as it requires O(n) computations and O(1) storage, whereas OBM requires O(n)
computations and O(m) storage [39]. Hence, the choice of method depends on the cor-
relation between observations. For a process with highly correlated observations, one is
inclined to use NBM, the reason being that for highly correlated observations, a larger m
is required to decorrelate the batch means and the NBM will be computationally more
efficient. However, if the observations are less correlated, one is inclined to use OBM.
Here a smaller batch size m will sufficiently decorrelate the observations and one will gain
accuracy at the slight expense of computational storage.

We illustrate the influence of batch size on the OBM estimator by estimating the
asymptotic variance of ST with g(x) = x for a fixed number of observations generated by
the Ornstein-Uhlenbeck process with γ = σ = 1 (Fig. 3.7). The estimated asymptotic
variance is repetitively calculated using (3.22) while increasing the batch size (blue) and
these results are compared to the known theoretical variance (green).

When the number of observations is fixed, a small batch size results in a large num-
ber of batches. The large number of batches leads to consistent estimates; however, the
batch size is too small to accurately estimate the asymptotic variance. This is clear from
the results shown in Fig. 3.7 as the OBM estimator consistently produces an inaccurate
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Figure 3.8: Total number of observations n divided into batches of size m spaced s apart.

estimate of the asymptotic variance when the batch sizes are small. As the batch size in-
creases, the number of batches decreases. This causes the estimator’s accuracy to increase
at the cost of consistency. As the batch size increases, the variance of the normally dis-
tributed estimates increases. The increasing variability will ultimately result in inaccurate
estimates.

3.3.2 Spaced batch means

Another variation aims to further decrease the batch correlation present in the batch
means method by inserting fixed spaces between batches. This variation is called the
spaced batch means method (SBM) and is illustrated by Fig. 3.8, where the total number
of observations n is divided into batches of size m− s spaced s apart. For simplicity, we
consider the case where m divides the total number of observations n exactly.

Only the first m− s observations of each batch contributes to the batch mean, while
the remaining s observations are ignored. Therefore the expected value is estimated as

µ̂′n =
1

k

k∑
i=1

Ȳ
(SBM)
j , (3.24)

where the ith spaced batch mean Ȳ (SBM)
j has the form

Ȳ
(SBM)
i =

1

m− s

m−s∑
j=1

g(X(i−1)m+j). (3.25)

Similarly to before, we assume that the spaced batch means are uncorrelated and the
variance is estimated according to the naïve variance estimator:

σ̂2
A =

m− s
k

k∑
j=1

(Ȳ
(SBM)
j − µ̂′n)2. (3.26)

We note that, for s = 0, the SBM estimator reduces to the NBM estimator and we
consequently compare the two methods. When s and m are known, the computational
requirements of the two methods are estimated to be the same [39]. The addition of spaces
to the NBM results in an extra parameter which needs to be specified by the practitioner.
Despite the fact that the spaces between blocks lead to more decorrelated batch means,
it does not significantly improve the accuracy of σ̂2

A [41]. In practice, it is generally better
to use all the observations when estimating the expected value of a process. Therefore,
NBM is usually preferred over the SBM, due to the risk of inaccurate estimation resulting
from ignored observations.
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Chapter 4

Asymptotic variance and the Poisson
equation

It is known that the asymptotic variance σ2
A of an observable Sn(g) or its centered version

Sn(ḡ) can be related to the solution of a differential equation called the Poisson equation
[42, 28, 43]. In this chapter, we present this link, which will serve as the theoretical basis
for the new method that we propose in Chap. 5 for estimating σ2

A.
Considering the cases of Markov chains and diffusions separately, we introduce the

Poisson equation and show how its solution determines σ2
A. We also discuss two repre-

sentations of this solution in terms of conditional expectation and as the rk eigenfunction
discussed before in connection with large deviations. As before, we illustrate all the
results discussed with examples involving the two-state Markov chain and the Ornstein-
Uhlenbeck process.

4.1 Continuous-time Poisson equation
We begin our presentation with the case of ergodic diffusions Xt described by the SDE
introduced in Sec. 2.4, whose generator, we recall, is

L = F · ∇+
1

2
∇ ·D∇, (4.1)

where D = σσT . For this process, we also consider as before the observable

ST (g) =
1

T

∫ T

0

g(Xt)dt, (4.2)

which converges in probability to

π(g) = Eπ[g(X)] =

∫
Rn

g(x)π(x)dx, (4.3)

π being the stationary distribution of Xt.
The Poisson equation associated with Xt and g is the differential equation defined as

Lφ(x) = −[g(x)− π(g)], (4.4)

37
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where L is the generator of Xt, as introduced in Sec. 2.4, and φ(x) : Rn → R is the
solution of (4.4) that we aim to determine. In terms of ḡ = g− π(g), we can simply write
this equation as

Lφ(x) = −ḡ(x). (4.5)

The Poisson equation may have more than one solution, when a solution exists at
all [42]. We consider here solutions that are square integrable with respect to π, i.e.
Eπ[φ2] < ∞, which ensures that φ exists and is almost everywhere bounded or slowly
increasing [22]. This condition is similar to π(|φ|) < ∞, which is used by [42] to show
that a solution to the Poisson equation exists. It can also be shown that if φ1(x) and
φ2(x) are both solutions to the Poisson equation such that π(|φ1| + |φ2|) < ∞, then
φ1(x) + φ2(x) = c that is, the two solutions differ by a constant c. This is proved in
Chap. 17 of [28].

Solving the Poisson equation is a non-trivial task, especially in high dimensional spaces.
In practice, we will attempt to estimate φ(x) using the fact that it can be represented in
terms of conditional expectations as

φ(x) =

∫ ∞
0

Ex[ḡ(Xt)]dt, (4.6)

where
Ex[ḡ(Xt)] = E[ḡ(Xt)|X0 = x] =

∫
dyPt(x, y)ḡ(y). (4.7)

This result was derived by Pardoux and Veretennikov in [22] for the case of unbounded
ergodic diffusions in Rn and generalizes a result previously derived by Dynkin for bounded
diffusions [21]. In the latter case, we have instead

φ(x) =

∫ τ

0

Eπ[ḡ(Xt)]dt, (4.8)

where τ is the first hitting time on the boundary of the bounded process starting from
X0 = x. In this thesis, the general integral representation of the Poisson solution in (4.6)
will be referred to as the Dynkin-Pardoux-Veretennikov (DPV) representation.

With this result, we are now ready to show how φ is related to the asymptotic variance
σ2
A. For this purpose, we recall the expression of the asymptotic variance derived in Sec. 2.5

as
σ2
A = 2

∫ ∞
0

Eπ[ḡ(X0)ḡ(Xt)]dt. (4.9)

The expectation present in the result can be expressed in terms of an integral over the
state space, such that

σ2
A = 2

∫ ∞
0

dt

∫
Rn

dx π(x)Ex[ḡ(x)ḡ(Xt)]. (4.10)

Moreover, if we change the order of the terms and integrals in the result we find

σ2
A = 2

∫
Rn

dx π(x)ḡ(x)φ(x) = 2Eπ[ḡ(X)φ(X)], (4.11)
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where φ(x) replaced the expectation according to the DPV representation given in (4.6).
An important aspect of this result is that σ2

A is calculated in the absence of the covariance
function by using a simple expectation. This is a useful property and its importance will
become clear in the next chapter.

As a side note, we recall that the Poisson solution is unique up to a constant c. To
illustrate the constant’s influence on σ2

A, let us introduce a Poisson solution

φ1(x) = φ(x) + c,

where Eπ[φ1(x)2] <∞. Evaluating the asymptotic variance (4.11) with φ1, we see that

σ2
A = 2Eπ[ḡ(X)(φ(X) + c)] = 2Eπ[ḡ(X)φ(X)] + 2cEπ[ḡ(X)] = 2Eπ[ḡ(X)φ(X)]. (4.12)

Hence, a constant c will have no influence on σ2
A as ḡ is centered with respect to the

stationary distribution.

4.2 Discrete-time Poisson equation
For completeness, we reproduce the results discussed above for a discrete ergodic Markov
chain Xn with transition matrix P and stationary distribution π. Similarly as before, the
observable has the form

Sn =
1

n

n∑
i=1

g(Xi). (4.13)

For the process and observable, the Poisson equation is now defined as

(I −P)φ = (I − 1π)g, (4.14)

where I denotes the identity matrix, 1 represents a column vector consisting of ones and
φ is the Poisson solution. Note that now g and φ are column vectors with components gi
and φi, respectively. Equivalently in terms of ḡ = g − π(g), we have

(P− I)φ = −ḡ. (4.15)

Similarly to the continuous case, the Poisson solution φ is not unique and in general
may not exist. We consider solutions such that Eπ[φ2] < ∞, which ensures that φ exists
and is unique up until a constant [42]. Moreover, as before, it is possible to express φ in
terms of the conditional expectation as

φ(x) =
∞∑
i=1

Ex[ḡ(Xi)] (4.16)

if Xi evolves in an unbounded state space or as

φ(x) =

τ(x)∑
i=1

Ex[ḡ(Xi)] (4.17)
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if Xi evolves in a bounded space [43]. In the latter case, τ(x) is as before the first hitting
time of the boundary when X0 = x.

From these results, we can prove in a similar manner to the diffusion case that the
asymptotic variance can be expressed in terms of the Poisson solution as

σ2
A = 2π(ḡφ)− π(ḡ2) = 2

∑
x

π(x)ḡ(x)φ(x)−
∑
x

π(x)ḡ(x)2. (4.18)

This expression is slightly more complicated than (4.11) because of the discrete-time
nature of the process, see [20].

4.3 Poisson solution using large deviation theory
We describe in this section an alternative method to obtain the Poisson solution φ based
on large deviation theory [44, 45, 46]. For simplicity, we discuss this representation for an
ergodic diffusion Xt in R with stationary distribution π.

We recall that the rate function I(s) of an additive observable ST of Xt is obtained
from the SCGF λ(k) associated with the spectral problem described in Sec. 2.6 based on
the tilted generator Lk. For additive functionals with a (centered) test function ḡ, we
specifically have

Lk = L+ kḡ, (4.19)

where L is the generator of Xt given in (4.1).
In terms of the eigenfunction rk associated with this operator, we can prove that

φ(x) =
∂krk(x)

rk(x)

∣∣∣∣
k=0

= ∂krk(x)|k=0 = lim
k→0

rk(x)− 1

k
, (4.20)

where the second equation follows since r0(x) = 1 and ∂k denotes the partial derivative
with respect to k. This result comes from applying the chain rule to the right eigenfunction
given in (2.82) and follows as

∂k[(L+ kḡ)rk] = L∂krk(x) + ḡrk(x) + kḡ∂krk(x) = ∂kλ(k)rk(x) + λ(k)∂krk(x). (4.21)

Next, we consider the limit k → 0 and note that ∂kλ(k) = λ′(k) and λ(0) = 0. The
resulting expression simplifies to

L∂krk(x)|k=0 + ḡ = λ′(0). (4.22)

Since ḡ is centered, (2.77) shows that λ′(0) = 0. Thus,

L∂krk(x)|k=0 = −ḡ(x), (4.23)

which is the Poisson equation (4.5) for φ = ∂krk|k=0.
This proof can be repeated for a discrete process using (4.15) as a starting point. The

spectral problem in this case is the same and leads with (4.21) to

(P− I)∂krk|k=0 = −ḡ. (4.24)
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4.4 Examples
We confirm the asymptotic variance of previously introduced examples using the different
representations of the Poisson solution discussed in the previous sections.

4.4.1 Independent RVs

The first example that we consider is a sequence X1, X2, . . . , Xn of RVs sampled indepen-
dently and identically from a normalised distribution π(x). The distribution π(x) stays
constant over time, and therefore serves as the stationary distribution. This can also be
seen as a Markov chain in which the transitions of the process are independent so that

P (Xn+1 = y|Xn = x) = p(x, y) = π(y). (4.25)

This allows us to rewrite the left-hand side of the Poisson equation, given by (4.15), as

(P− I)φ(x) =
∑
y

p(x, y)φ(y)− φ(x) =
∑
y

π(y)φ(y)− φ(x) = Eπ[φ(x)]− φ(x). (4.26)

As discussed previously, the Poisson solution is unique up until a constant. Therefore,
we can recenter the solution by choosing the constant equal to −π(φ), which leads to
Eπ[φ(x)] = 0. Then the resulting Poisson equation is

(P− I)φ(x) = −φ(x) = −ḡ(x) (4.27)

and so φ(x) = ḡ(x). Applying these results to the asymptotic variance (4.18) yields

σ2
A = 2π(ḡ2)− π(ḡ2) = π(ḡ2), (4.28)

which is the naïve variance of a centered observable.

4.4.2 Two-state Markov chain

The Poisson equation of the two-state Markov chain introduced in Sec. 2.3.1 is(
−α α
β −β

)(
φ1

φ2

)
=

(
−α/(α + β)

1− α/(α + β)

)
, (4.29)

where the right-hand side of the matrix equation represents the centered function ḡ as-
sociated with g(x) = x. The Poisson solution is determined by solving the system of
equations above and is given as

φ =

(
1

1 + 1/(α + β)

)
. (4.30)
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Next, we use (4.18) to calculate the asymptotic variance associated with the sample mean:

σ2
A = 2

∑
x

π(x)ḡ(x)φ(x)−
∑
x

π(x)ḡ(x)2

= 2

(
− αβ

(α + β)2
+
αβ(α + β + 1)

(α + β)3

)
−
(

α2β

(α + β)3
+

αβ2

(α + β)3

)
=
αβ(2− α− β)

(α + β)3
. (4.31)

This result is consistent with the asymptotic variance obtained in Sec. 2.3.1.

4.4.3 Ornstein-Uhlenbeck process with linear observable

For our third example we revisit the Ornstein-Uhlenbeck processXt, introduced in Sec. 2.8.2.
The Poisson equation associated with the process and linear observable is given by

−γx d
dx
φ(x) +

σ2

2

d2

dx2
φ(x) = −x. (4.32)

Note that Eπ[x] = 0 and therefore no re-centering is required. The solution to this second
order differential equation has the general form

φ(x) =
x

γ
+ c1 + c2

√
πσErfi(x

√
γ/σ)

2
√
γ

, (4.33)

where c1 and c2 are constants and Erfi(·) is the error function. One can graphically confirm
that c2 needs to be equal to zero for φ(x)2 to be integrable with respect to the stationary
distribution π. Once the integrability condition is satisfied, it is known that the Poisson
solution is unique up until a constant [43], so we can set c1 = 0. Hence, the solution of
the Poisson equation is φ(x) = x/γ and the asymptotic variance related to the observable
is

σ2
A = 2Eπ[Xφ(X)] =

2

γ
Eπ[X2] =

σ2

γ2
. (4.34)

The result is consistent with the asymptotic variance calculated in Sec. 2.8.2 using large
deviation theory.

At this point we can also confirm the DPV representation of the Poisson solution by
using the propagator of the Ornstein-Uhlenbeck process, given by [31] as

Pt(x, y) =

√
γ

πσ2(1− e−2γt)
exp

(
−γ(y − xe−γt)2

σ2(1− e−2γt)

)
. (4.35)

From this result, we calculate the conditional expectation as

Ex[Xt] = E[Xt|X0 = x] =

∫ ∞
−∞

Pt(x, y)ydy = xe−γt (4.36)
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and integrate this result over time to obtain the Poisson solution as

φ(x) =

∫ ∞
0

xe−γtdt =
x

γ
. (4.37)

This solution is consistent with the Poisson solution obtained in (4.33).
Finally, let us use large deviation theory to determine the Poisson solution in order

to verify the results obtained above. In (2.111), we showed that the right eigenfunction
associated with a linear observable for the Ornstein-Uhlenbeck process is

rk(x) = exp
[
kx

γ
− 3σ2k2

4γ3

]
. (4.38)

Following (4.20), we calculate the derivative with respect to k and set k = 0:

∂krk(x)|k=0 =

(
x

γ
− 3σ2k

2γ3

)
exp

[
kx

γ
− 3σ2k2

4γ3

]∣∣∣∣
k=0

=
x

γ
. (4.39)

This is consistent with the previously determined expressions for φ(x).

4.4.4 Ornstein-Uhlenbeck process with quadratic observable

For our last example, we consider the Ornstein-Uhlenbeck process Xt with quadratic ob-
servable, as discussed introduced in Sec. 2.8.3. We note that Eπ[x2] = σ2/(2γ). Therefore,
the Poisson equation associated with the process and observable needs to be re-centered:

−γx d
dx
φ(x) +

σ2

2

d2

dx2
φ(x) = −

(
x2 − σ2

2γ

)
. (4.40)

The Poisson solution φ is calculated by solving the second order differential equation
above and is given by

φ(x) =
x2

2γ
+ c1 + c2

√
πσErfi(x

√
γ/σ)

2
√
γ

, (4.41)

where c1 and c2 are constants. Similar to the discussion in Sec. 4.4.3, we need both
constants to be equal to zero. Thus, the result reduces to φ(x) = x2/(2γ) and one can
calculate the asymptotic variance as

σ2
A = 2Eπ

[(
X2 − σ2

2γ

)
φ(X)

]
=

1

2γ
Eπ
[
X4 − σ2

2γ
X2

]
=

σ4

2γ3
. (4.42)

This result is consistent with the asymptotic variance calculated in Sec. 2.8.3.
As before, we also confirm the DPV representation of the Poisson solution by us-

ing the propagator of the Ornstein-Uhlenbeck process, given in (4.35). The conditional
expectation is determined as

Ex[Xt] = E[Xt|X0 = x] =

∫ ∞
−∞

Pt(x, y)

(
y2 − σ2

2γ

)
dy =

2x2γ − σ2

2γ
e−2γt. (4.43)
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Next, we integrate the conditional expectation over time to obtain

φ(x) =

∫ ∞
0

2x2γ − σ2

2γ
e−2γtdt =

x2

2γ
− σ2

4γ2
. (4.44)

This solution is the same as the previously determined Poisson solution up to a constant
and follows the integrability condition, i.e. φ(x) follows (4.41) with c1 = −σ2/(4γ2) and
c2 = 0. As found in (4.12), the constant c1 has no influence on the outcome of the
asymptotic variance. This can be confirmed by calculating σ2

A as

σ2
A = 2

∫ ∞
−∞

φ(x)(x2 − σ2

2γ
)π(x)dx = 2

∫ ∞
−∞

(
x2

2γ
− σ2

4γ2

)(
x2 − σ2

2γ

)
π(x)dx =

σ4

2γ3
,

(4.45)
which is consistent with the known asymptotic variance for this example.

Finally, we verify the results using large deviation theory. In (2.126) we calculated
the right eigenfunction associated with a quadratic observable for the Ornstein-Uhlenbeck
process as

rk(x) = c exp
[
− x2

2σ2

(√
γ2 − 2kσ2 − γ

)]
, (4.46)

where c represents a normalization constant. As the normalization constant does not
contribute to φ(x), we omit it and calculate ∂krk(x) as

∂krk(x) =
x2

2
√
γ2 − 2kσ

exp
[
− x2

2σ2

(√
γ2 − 2kσ2 − γ

)]
. (4.47)

Lastly, we follow (4.20) to determine the Poisson solution as

φ(x) =
∂krk(x)

rk(x)

∣∣∣∣
k=0

=
x2

2γ
, (4.48)

which is consistent with the Poisson solution obtained throughout the example.
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Chapter 5

Online asymptotic variance estimators

In this chapter we propose and evaluate three methods for numerically estimating the
asymptotic variance based on the Poisson equation, discussed in Chap. 4. The first two
methods are based on the DVP representation, discussed in Sec. 4.1, and deals with
estimating the conditional expectation using either multiple trajectories or one long tra-
jectory. The third method is based on a stochastic approximation of the Poisson solution,
as determined from (4.20), which relates that solution to the dominant eigenvector of the
tilted generator. A similar stochastic representation was considered in [47] and allows us
here to iteratively estimate the Poisson solution and, in turn, the asymptotic variance
in an ‘online’ way using a single trajectory of a Markov process. The accuracy of these
methods is evaluated with the two-state process and the Ornstein-Uhlenbeck process, for
which we have calculated the exact asymptotic variance in the previous chapters.

5.1 Dynkin-Pardoux-Veretennikov representation of
the Poisson solution

We consider an ergodic Markov process Xt that converges to a stationary distribution
π, as introduced in Sec. 2.4. The observable of the process is the same as introduced in
Sec. 2.5, namely,

ST (g) =
1

T

∫ T

0

g(Xt)dt, (5.1)

where g is assumed to be centered with respect to the stationary distribution.
The first estimator of the asymptotic variance that we consider is based on the DPV

representation of the Poisson solution φ, given by

φ(x) =

∫ ∞
0

Ex[g(Xt)]dt, (5.2)

presented in Sec. 4.1 [22, 21]. From this result, it is natural to define an estimator of φ
by generating L independent trajectories {X(j)

t }Lj=1 of the process started at x, that is,
X

(j)
0 = x, and to estimate the conditional expectation in (5.2) by summing these copies

45
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T

x

t

x

s+ ts
T

Figure 5.1: Illustration of the two approaches for estimating the conditional expectation
(5.2). (Left) Simulation of many copies or replications of trajectories of length t starting at
x. (Right) Simulation of one, long trajectory of length T , from which we extract segments
of length t starting at x.

or replications of the process at different times, as illustrated in Fig. 5.1 (left). This leads
us to define our first estimator of φ as

φ̂L,T (x) =

∫ T

0

dt
1

L

L∑
j=1

g(X
(j)
t ), (5.3)

where X(j)
t denotes the j-th replication of the process. This estimator depends on L, the

number of replications, and T , the time used to truncate the infinite sum in (5.2). In the
double limit where L→∞ and T →∞, we should have

lim
L→∞
T→∞

φ̂L,T (x) = φ(x) (5.4)

in probability, pointwise for all x. This follows from the law of large numbers, since the
replications are independent.

In practice, we use fixed values of L and T , and increase these values until φ̂L,T seems
to stabilize. We also simulateXt by discretizing the process with respect to time for a fixed
step-size ∆t. Thus for one point x, the estimation of φ̂L,T (x) requires that we simulate L
trajectories containing T/∆t points. This can become computationally expensive when
we consider a wide range of x, while increasing L and T for convergence.

Since we assume the process is ergodic, the conditional expectation can be estimated
using a single trajectory to locate the times at which Xt hits the value x and then record
the state of the process after a period or duration t, as illustrated in Fig. 5.1 (right). This
defines a number of segments such that Xs = x and Xs+t = y, which can be used to
approximate the conditional expectation as

φ̂(x, t)T =
1

Nseg

Nseg∑
i=1

g(X
(i)
s+t), (5.5)
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where Nseg is the number of segments and X
(i)
s+t is the last value of the i-th segment.

Alternatively, we can write

φ̂(x, t)T =
1

Nseg

∫ T−t

1

ds g(Xs+t)δXs,x. (5.6)

From this estimator, we then define our second estimator of φ as

φ̂(x)T =

∫ T

0

dt φ̂(x, t)T , (5.7)

This estimator now only depends on T , the truncation time, which is also the length of
the simulated trajectory, discretised as before in steps of ∆t. In practice, we must also
ease the constraint Xs = x, appearing in (5.6) as δXs,x, by accepting observations Xs that
fall within a small range around x. Provided that this range is small enough, we then
have

lim
T→∞

φ̂T (x) = φ(x) (5.8)

in probability by the ergodic theorem.
Once we have an estimator of the Poisson solution, we estimate the asymptotic variance

using (4.11) as

σ̂2
A = 2

∫
dx π̂(x)g(x)φ̂(x), (5.9)

where, for simplicity, we write φ̂ as either the estimator in (5.3), which depends on L
and T , or the estimator in (5.7), which depends on T . In this formula, π̂ is also the
estimator of the invariant density π, calculated either with L replications or as an ergodic
expectation, that is, as the histogram of the values visited by Xt as t→∞.

5.2 Application
We illustrate the convergence of the two estimators defined in the previous section by
considering the Ornstein-Uhlenbeck process, introduced in Sec. 2.8.2, and the linear ob-
servable

ST =
1

T

∫ T

0

Xtdt, (5.10)

introduced in Sec. 2.5. The Poisson solution corresponding to the process and observable
is known to be φ(x) = x/γ, as proved in Sec. 4.4.3.

We estimate φ for the Ornstein-Uhlenbeck process for the parameters γ = 1 and
σ = 1 using both the replication and single trajectory methods. In the first method, we
use N = 2000 replications, ∆t = 0.01 and T1 = 50. In the single trajectory method,
we use a longer time T2 = 100000 to make up for the fact that only one trajectory is
considered, and accumulate the conditional expectation of x with values falling in the
range of [x− 0.01, x+ 0.01]. The results are shown in Fig. 5.2 and are compared with the
exact Poisson solution (in blue).

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. ONLINE ASYMPTOTIC VARIANCE ESTIMATORS 48

2 1 0 1 2
x

2

1

0

1

2

(x
)

Theoretical
Replicated trajectories
Single trajectory

Figure 5.2: Estimated Poisson solution of the Ornstein-Uhlenbeck process with linear
observable using replicated trajectories and single trajectory methods. Parameters: γ = 1,
σ = 1, ∆t = 0.01, N = 2000 T1 = 50 and T2 = 100000

The limitation of the single trajectory method is that it estimates the Poisson solution
using only the states visited by the trajectory. Thus, φ̂(x)T is more accurate in the region
where there are more observations (i.e. states visited) contributing to the estimation of
the stationary density and is, conversely, less accurate in the region where there are less
observations. There is no such limitation for the replicated trajectory method since each
simulation is started at x over the entire region. However, the clear advantage of the single
trajectory method is that we only need to simulate one trajectory. Moreover, φ values
far from the expected value of the process are not so important, since for the asymptotic
variance, φ is weighted over π.

This difference between the replicated and single trajectory methods leads to different
estimated variance, namely, σ̂2

A = 1.06 and σ̂2
A = 0.89, respectively, compared to the exact

value which is σ2
A = 1. Hence, for this example a higher accuracy is achieved by estimating

φ(x) using replicated trajectories. However, we stress again that the single trajectory is
more efficient as it does not require the simulation of many different trajectories. As a
result, it can be applied if all we have is a single trajectory either simulated or recorded
experimentally.

5.3 Stochastic approximation of the Poisson solution
The third method that we discuss requires only one trajectory, similarly to the second
method discussed in the previous section, but does not require that we scan that trajectory
with different time windows or lags. Rather, it estimates the Poisson solution φ(x) by
using the successive states forming the trajectories, which means that it can be applied
in an ‘on-the-fly’ or ‘online’ way as a trajectory is simulated or recorded experimentally.
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The method is based on the result (4.20) discussed in Sec. 4.3, which links φ(x) to the
eigenfunction related to the dominant eigenvalue and SCGF λ(k) of the tilted generator
Lk. It also uses a stochastic approximation technique, developed recently in [47], based
on a discretization of the semi-group associated with the operator Lk.

To explain this technique, we need to introduce the semi-group Pt, which is an operator
acting on smooth function h : X → R according to

Pth(x) =

∫
dy Pt(x, y)h(y) = Ex[h(Xt)] = E[h(Xt)|X0 = x], (5.11)

where, as noted before, Ex[h(Xt)] is the conditional expectation of h(Xt) for the process
started at X0 = x. In this expression, Pt(x, y) is the probability density of Xt given
X0 = x, that is, Pt(x, y) = p(Xt = y|X0 = x) or Pt(x, y) = p(Xs+t = y|Xs = x) by
stationarity of the process. From the semi-group, the generator L of Xt is defined as

Lh(x) = lim
t→0

Pth(Xt)− h(x)

t
. (5.12)

From the stationarity property, we can also write

Lh(x) = lim
∆t→0

E[h(Xt+∆t)|Xt = x]− h(x)

∆t
. (5.13)

Taking the expectation of this result for any initial value leads to an expression which
describes the action of the generator as an expectation, given by

d

dt
E[h(Xt)] = E[Lh(Xt)]. (5.14)

Note that L is the same operator as the one given in (2.52): it is a linear differential
operator that acts on a function h to produce a new function that we write as Lh(x), x
being the argument of the new function.

Since we are interested in estimating rk(x), the operator that is of interest to us is not
L but Lk, the tilted generator of Xt and observable ST . Appendix A.2 of [48] shows that
this operator is also associated with a semi-group P k

t , called the Feynman-Kac semi-group,
defined by

Qk
t h(x) = E[h(Xt)e

tkSt |X0 = x]. (5.15)

For k = 0, we recover Q0
t = Pt and, therefore, Lk = L, in accordance with the expression

of Lk given in (2.80).
As mentioned in Sec. 2.6, Lk also describes the direct eigenvalue problem (2.82) in-

volved in the calculation of the SCGF λ(k) of ST . Following [47], we assume that Lk
acts on functions that are square-integrable with respect to π and that it has a dominant
eigenfunction rk such that rk > 0. Since rk is an eigenfunction of Lk, we have

Qk
t rk = etλ(k)rk (5.16)

for all time t > 0. Moreover, it can be proved (see references cited in Sec. 3 of [47]) that,
if we apply Qk

t to an arbitrary smooth function h, then we obtain in the long-time limit

e−tλ(k)(Qk
t h)

t→∞−−−→ rk

∫
X
h(x)lk(x)dx, (5.17)
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where X is the space containing Xt and lk is the eigenfunction dual to rk, defined by the
dual spectral problem (2.90). This limit is a functional version of the power method used
in numerical analysis to find the dominant eigenvalue of matrices. Here, we will use it to
find the dominant eigenvalue and SCGF λ(k).

For this purpose, we must discretize the action of the semi-group Qk
t in time to write

Qk
∆th(x) = E[ekg(Xt)∆th(Xt+∆t)|Xt = x] = ekg(x)∆tE[h(Xt+∆t)|Xt = x]. (5.18)

The advantage of the discretization is that the limit (5.17) can be rewritten in terms of
the iteration number n as

(Qk
∆t)

nh(x) ∼ en∆tλ(k)rk(x)

∫
X
h(y)lk(y)dy (5.19)

for n → ∞, where ∼ denotes asymptotic equivalence in n. This shows that λ(k) and rk
can be computed by recursively applying Qk

∆t to an initial guess h. To be more precise,
let us define

hn+1(xn) = Qk
∆th

n(xn) = ekg(xn)∆tE[hn(Xn+1)|xn], (5.20)

where xn is the state of Xt at the n-th time step (with discretization ∆t) and Xn+1 is the
next state. Then we must have hn → rk as n → ∞ from any initial function h0. Note
that the superscript on h is not a power, but the index of the iteration.

Similarly to the previous section, we could attempt to estimate the conditional expec-
tation in (5.20) by simulating L copies or replicates of the random variable Xn+1 from
Xn = xn and take

hn+1(xn) ≈ ekg(xn)∆t 1

L

L∑
j=1

hn(x
(j)
n+1), (5.21)

as an approximation of the next iterate hn+1, x
(j)
n+1 being the j-th copy of Xn+1. Although

this approach is relatively easy to implement, it requires a recalculated expectation at
each iteration. This could lead to a computationally expensive estimator and does not
allow us to construct an online estimation of the asymptotic variance.

Here, we use instead a common approximation of the conditional expectation, referred
to as a stochastic approximation, which amounts to writing

hn+1(xn) ≈ ekg(xn)∆thn(xn+1), (5.22)

where xn+1 is the simulated or observed value of Xn+1 starting from Xn = xn. We note
that this value is distributed according to P∆t(xn, xn+1). Expanding the exponential to
first order in ∆t, we then have

hn+1(xn) ≈ [1 + kg(xn)∆t]hn(xn+1). (5.23)

The stochastic approximation in (5.22) might appear to be very crude, but is known
to yield the correct expectation for ergodic processes in the limit n→∞ when it is used
in conjunction with an annealing scheme that changes the iteration (5.20) to

hn+1 = hn + an(Qk
∆th

n − hn) = (1− an)hn + anQ
k
∆th

n, (5.24)
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where an is a sequence of decreasing positive numbers. By approximating the expectation
related to Qk

t as in (5.23), we then have

hn+1(xn) = (1− an)hn(xn) + an(1 + kg(xn)∆t)hn(xn+1). (5.25)

The sequence (an)n≥1 is called the annealing or learning sequence and serves as a smooth-
ing parameter that filters noisy updates by controlling the rate at which hn+1 is updated.
The idea, as can be seen from (5.24), is that the iteration “forgets” the current estimate
hn at a rate of (1− an) and updates with Qk

∆th
n at a rate of an.

To ensure convergence, it is known that an must be chosen such that∑
n≥1

an =∞ and
∑
n≥1

a2
n <∞. (5.26)

For example, we can choose an = 1/n or, more generally,

an = n−1/ν (5.27)

with ν chosen so that (5.26) holds.
In simulations or in experiments, we need of course to approximate the continuous

function hn(x) onto a set of points, components, or a function basis, which we take here
to be a mesh of equidistant points on X . In particular, for X = R, we re-write (5.23) as

hn+1(i) = [1 + kg(i)∆t]hn(j), (5.28)

while the annealed version of this iteration (5.25) becomes

hn+1(i) = (1− an)hn(i) + anQ
k
∆th

n(i) = (1− an)hn(i) + an(1 + kg(i)∆t)hn(j). (5.29)

In these expressions, i and j represent the discretized indices of the positions xn and xn+1,
respectively, projected onto the mesh. In this way, hn(x) is approximated spatially as a
discrete vector, so that (5.29) is basically a stochastic version of the power method applied
to vectors. As is common in that method, we can include a normalization step between
iterates, that is, hn → hn/hn(i) for some component i. Hence, hn(i) = 1 and this ensures
that hn is normalized with respect to the expected value of the stationary distribution as
n→∞.

Now that we have defined an estimator for rk in terms of the iterate hn, we can define
our estimator for the Poisson solution. To this end, we replace rk with hn+1 in (4.20) so
as to define the following estimator for φ(x):

qn+1(xn) = lim
k→0

hn+1(xn)− 1

k
= lim

k→0

(1 + kg(xn)∆t)hn(xn+1)− 1

k
, (5.30)

which becomes

qn+1(xn) = lim
k→0

hn(xn+1)− 1

k
+ g(xn)∆thn(xn+1) ≈ qn(xn+1) + g(xn)∆t (5.31)
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after some manipulations and using the fact that hn → 1 for k = 0. As we did for hn, we
can also apply the annealing scheme here to obtain the following iteration scheme for the
Poisson solution:

qn+1(xn) = qn(xn) + an[Qk
∆tq

n(xn)− qn(xn)] (5.32)
= (1− an)qn(xn) + an[qn(xn+1) + g(xn)∆t]. (5.33)

Note that this iteration does not depend on k, although the iteration for hn does. When
discretized on a mesh grid, we thus obtain

qn+1(i) = (1− an)qn(i) + an[qn(j) + g(i)∆t] (5.34)

as our stochastic approximation of φ. This assumes that g is centered; if this is not the
case, we must recenter it using an estimate of the expectation of ST .

With our estimate of φ, we finally turn our attention to the estimation of the asymp-
totic variance using the main result (4.11) presented in Sec. 4.1. Since this result involves
an expectation over the stationary density π, it is natural to first use the time average

σ̂2
A,T = lim

T→∞

2

T

∫ T

0

g(Xt)φ̂(Xt)dt (5.35)

as our estimator of σ2
A. Discretizing the time integral and plugging in our estimator of

the Poisson solution, we then write

σ̂2
A,N =

2

N∆t

N∑
i=1

g(xi)q
i(xi), (5.36)

where N = T/∆t and qi is the i-th iterate approximation of φ. Note that qi is updated
concurrently with the iterate xi of the process, which allows us to estimate the asymptotic
variance using only the information available at each time step of a single run. The
estimator σ̂2

A,N converges to σ2
A from the fact that qn → φ and the ergodic theorem, which

guarantees that the running sum converges to the ergodic expectation with respect to π.
For the derivation of the estimator, we assumed that g is centered with respect to the

stationary distribution, i.e. Eπ[g] = 0. If the validity of this property is unknown or g is
not centered, the adjusted estimator has the form

σ̂2
A,N =

2

N∆t

N∑
i=1

[g(xi)− Ai] qi(xi), (5.37)

where

Ai =
1

i

i∑
j=1

g(xj) (5.38)

is the estimate of the expectation of ST , discretized in time, up to the current time index
i.
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5.4 Applications
In this section we implement our proposed online estimator of the asymptotic variance
(5.36) on three test cases already seen throughout the thesis, namely, the two-state Markov
chain with a linear observable and the Ornstein-Uhlenbeck process with a linear and
quadratic observables, respectively. The accuracy of these estimates is analysed and
compared to the batch means method, introduced in Sec. 3.3.

5.4.1 Two-state Markov Chain

The first example that we consider is the ergodic two-state Markov chain with a linear
observable, as introduced in Sec. 2.3.1. Following (5.36), we repetitively determine σ̂2

A,N

while increasing the number of iterations of a two-state Markov chain with parameters
α = 0.3 and β = 0.8. For this discrete-time model, we obviously have ∆t = 1, and we
use the annealing sequence shown in (5.27) with ν = 0.9. As the theoretical variance
is known from (2.33), we can repeat this procedure to calculate the error between the
estimated and exact asymptotic variance. The relative error given in (3.12) depends on
the simulation and in this case produces varying results as the online estimator only
considers a single trajectory. Therefore, we consider the errors resulting from multiple
simulations by calculating the average relative error (AREN) at respective number of
observations N as

AREN =
1

nARE

nARE∑
i=1

∣∣σ̂2
A,N − σ2

A

∣∣
σ2
A

, (5.39)

where nARE is the number of repeated simulations. The results are shown in Fig. 5.3
(left), for nARE = 40, and show that the estimator (5.36) converges to σ2

A as the number
N of iterations increase.

In order to gain insight into the estimator’s performance for this example, we use (5.36)
to estimate a range of different asymptotic variances. We determine the values of α and β
required to produce the desired range of variances by solving (2.33) with respect to each
predefined variance. We use the calculated set of α = [0.2, 0.1, 0.05, 0.05, 0.05, 0.01, 0.01,
0.01, 0.01, 0.01] and set of β = [0.2000, 0.1205, 0.0915, 0.0656, 0.0450, 0.0411, 0.0368, 0.0334,
0.0305, 0.0280] values to simulate separate two-state Markov chains for N = 106. The re-
sults are shown in Fig. 5.3 (right) and compared to the theoretical asymptotic variance
(dashed blue). We see that the proposed estimator accurately estimates the considered
range of variances.

Lastly, we compare the convergence of the proposed estimator to that of the batch
means method for a two-state Markov chain with parameters α = 0.3 and β = 0.8. Both
techniques have hyperparameters that influence the accuracy of the estimation. Hence,
we firstly determine the annealing constant and batch size that give the smallest average
relative error. This is done by calculating the average relative error, with nARE = 40, over
a range of annealing constants and batch sizes for each considered N and by selecting the
constants corresponding to the smallest error. Secondly, we use these optimal annealing
constants and optimal batch sizes to calculate the average relative error for an increasing
number N of observations. The results are shown in Fig. 5.4 and show that the batch
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Figure 5.3: (Left) Convergence of the proposed online estimator as a function
of N for the two-state Markov process with parameters α = 0.3, β = 0.8,
ν = 0.9 and nARE = 40. (Right) Proposed online estimator approximating a
range of different theoretical σ2

A values of a two-state Markov chain with N =
106. Parameters: α = [0.2, 0.1, 0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01] and β =
[0.2000, 0.1205, 0.0915, 0.0656, 0.0450, 0.0411, 0.0368, 0.0334, 0.0305, 0.0280]
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Figure 5.4: Comparison of the convergence rates of the batch means method and proposed
estimator as a function of N , with optimal batch size and optimal annealing imposed on
the two-state Markov chain with parameters α = 0.3 and β = 0.8.

means method (orange) converges to the theoretical asymptotic variance at a rate of
approximately 0.35, whereas the proposed method (blue) converges at approximately
0.52. Therefore, the proposed method has a faster convergence rate than the batch means
method for this example.
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Figure 5.5: Stochastic approximation of the Poisson solution associated with the Ornstein-
Uhlenbeck process and linear observable. Parameters: γ = 1, σ = 2, T = 100000,
∆t = 0.01, ν = 9 and q0 = 0.

5.4.2 Ornstein-Uhlenbeck process with linear observable

The second test case that we consider involves the Ornstein-Uhlenbeck process with a
linear observable, as introduced in Sec. 2.8.2, with known asymptotic variance given in
(2.117).

The proposed estimator (5.36) depends on the stochastic approximation of the Poisson
solution q, given in (5.34). We calculate q for the process with parameters γ = 1 and
σ = 2. We use one trajectory of length T = 100000, ∆t = 0.01, as well as an annealing
sequence following (5.27) with ν = 9 and q0 = 0. The results are shown in Fig. 5.5 and
compared with the theoretical Poisson solution (blue). The limitation of the stochastic
approximation is similar to that of the single trajectory method, discussed in Sec. 5.2, in
that φ is estimated using only the states visited by the trajectory. Thus, the estimated
Poisson solution (dashed orange) is more accurate in the region that is most visited by
the process and less accurate further away from this region. Fortunately, this inaccuracy
does not influence σ̂2

A,N as qn is weighted again over π. The inaccuracy of qn is expressed
as a horizontal line resulting from the linear initial guess q0 not being updated throughout
the simulation.

Next, we illustrate the importance of the annealing sequence by estimating the asymp-
totic variance using different sequences. Following (5.36), we estimate σ2

A according to an
increasing sequence of possible ν-values, for a fixed T = 100000. We use γ = 1, ∆t = 0.01
and σ = [1, 1.5, 2] to calculate the average relative error with nARE = 100 for each ν-value.
We normalize these results in order to compare the shapes of the obtained error functions
(Fig. 5.6). Firstly, we consider the case where σ = 1.5 (orange) and note that the optimal
annealing value is ν = 9. When ν > 9, an decreases too slowly and the stochastic nature
of the process contributes a too large portion of the estimator leading to an inaccurate
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Figure 5.6: The influence of the annealing scheme on the estimated asymptotic variance of
the Ornstein-Uhlenbeck process with linear observable. Parameters: γ = 1, T = 100000,
∆t = 0.01 and nARE = 100.

result. On the other hand, if ν < 9, an decreases too quickly and the estimator does not
retain enough information from the updates to accurately estimate σ2

A. Therefore it is
important that an decreases at an optimal rate. Secondly, although the shapes between
the results of σ = 1 (blue) and σ = 2 (green) are similar to that of σ = 1.5, none have the
same optimal annealing value. Hence, the optimal annealing value should be calculated
for each individual process.

To study the convergence of the method with respect to the number of observations,
we calculate the average relative error (5.39) of the proposed estimator for the Ornstein-
Uhlenbeck process with γ = 1 and σ = 1 at distinct iterations. We use nARE = 40
replications, ∆t = 0.01 and the annealing scheme (5.27) with ν = 8. The results are
shown in Fig. 5.7 (left) and we see that σ̂2

A,N converges to the theoretical asymptotic
variance (2.117) as the number N of iterations increases. We note that the error does not
converge at a constant rate. This is due to the suboptimal choice of ν at each instance of
the considered iterations.

To evaluate the influence that the variability of a process has on the proposed online es-
timator, we estimate a range of different asymptotic variances for the Ornstein-Uhlenbeck
process. The γ and σ pairs required to generate an Ornstein-Uhlenbeck process which has
a desired σ2

A,N is determined by solving (2.115). We use γ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and
σ = [1.0000, 1.4142, 1.7321, 2.0000, 2.2361, 2.4495, 2.6458, 2.8284, 3.0000, 3.1623] to simu-
late separate trajectories of T = 100000, where ∆t = 0.01 and ν = 8. From Fig. 5.7
(right), we see that the proposed estimator accurately estimates the range of variances.

Finally, we compare the convergence between the proposed estimator (blue) and the
batch means method (orange) for the Ornstein-Uhlenbeck process with γ = 1 and σ = 1.
As before, we calculate the optimal annealing constant and optimal batch size correspond-
ing to the number of iterations. We use the optimal hyperparameters to calculate the av-
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Figure 5.7: (Left) Convergence of σ̂2
A,N as a function of the number N of iterates

for the Ornstein-Uhlenbeck process with linear observable. Parameters: γ = 1,
σ = 1, ∆t = 0.01 and ν = 8. (Right) Range of estimated asymptotic vari-
ances for the Ornstein-Uhlenbeck process with γ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], σ =
[1.0000, 1.4142, 1.7321, 2.0000, 2.2361, 2.4495, 2.6458, 2.8284, 3.0000, 3.1623], T = 100000,
∆t = 0.01 and ν = 8.
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Figure 5.8: Convergence of the batch means method with optimal batch size and the pro-
posed online estimator with optimal annealing as a function of N for Ornstein-Uhlenbeck
process with a linear observable. Parameters: γ = 1, σ = 1 and ∆t = 0.01

erage relative error of both methods for an increasing number N of iterations (Fig. 5.8).
The results in Fig. 5.8 show that both methods converge to σ2

A at a rate of approximately
0.4. However, the proposed estimator is more accurate than the batch means method for
the considered case, as it starts with a lower average relative error.
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Figure 5.9: Stochastic approximation of the Poisson solution associated with the Ornstein-
Uhlenbeck process and quadratic observable. Parameters: γ = 1, σ = 1, T = 100000,
∆t = 0.01, q0 = 0 and ν = 8.

5.4.3 Ornstein-Uhlenbeck process with quadratic observable

As a last example, we revisit the Ornstein-Uhlenbeck process with a quadratic observable,
as introduced in Sec. 2.8.3. Similar to the previous sections, we use the proposed estimator
(5.36) to approximate the known asymptotic variance (2.129).

As mentioned previously, the estimator depends on the stochastic approximation q
of the Poisson solution φ. We calculate this approximation for the Ornstein-Uhlenbeck
process with γ = 1 and σ = 1. We use a trajectory of length T = 100000 and ∆t = 0.01
to estimate φ starting with an initial guess of q0 = 0 and annealing sequence (5.27) ν = 8.
The results are shown in Fig. 5.9 and compared with the exact solution (orange). The
Poisson solution is estimated using the states visited by the trajectory. Hence, from the
results we again see that the estimator accurately represents the known Poisson solution
(4.41) in the region visited by the process. The inaccuracy of the estimation is shown by
the horizontal line resulting from the linear initial guess not being updated. We note that
the horizontal line does not correspond to the initial value q0 = 0. This displacement is
due to the continuous centering of qn with respect to the stationary distribution between
iterations. Fortunately, the inaccurate representation of φ(x) has a negligible contribution
on the final σ̂2

A,N .
We repetitively calculate σ̂2

A,N for a increasing number N of observations of the
Ornstein-Uhlenbeck process with γ = 1 and σ = 1. We use ∆t = 0.01, q0 = 0, nARE = 40
and ν = 8 for the annealing sequence (5.27). From the results shown in Fig. 5.10 (left),
we see that the estimator converges to the theoretical asymptotic variance as the number
of iterations increase. However, the convergence is slow for the initial iterations, but in-
crease as the number of iterations increases. The inconsistent convergence rate is due to
the suboptimal choice of ν for the considered iterations.
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Figure 5.10: (Left) Convergence of the proposed estimator as a function of the num-
ber N of iterates for the Ornstein-Uhlenbeck process with quadratic observable. Pa-
rameters: γ = 1, σ = 1, ∆t = 0.01, nARE = 40 and ν = 8. (Right)
Proposed estimator approximating a range σ2

A values of an Ornstein-Uhlenbeck pro-
cess with quadratic observable. Parameters: γ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], σ =
[1.1892, 1.4142, 1.5651, 1.6818, 1.7783, 1.8612, 1.9343, 2.0000, 2.0598, 2.1147], T = 100000,
∆t = 0.01 and ν = 8

As before, we generalize this simulation and estimate a range of σ2
A values of the

Ornstein-Uhlenbeck process. From (2.129), we determine a combination of γ and σ values
that result in the desired theoretical asymptotic variance of an Ornstein-Uhlenbeck process
and estimate it using our proposed estimator. We use γ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], σ =
[1.1892, 1.4142, 1.5651, 1.6818, 1.7783, 1.8612, 1.9343, 2.0000, 2.0598, 2.1147], T = 100000,
∆t = 0.01, q0 = 0, ν = 8 (Fig. 5.10 (right)). These results show that σ̂2

A,N accurately
approximates the smaller asymptotic variances of the tested range. There are some in-
accuracies for the larger asymptotic variances, from σ2

A = 7 and upwards. However,
increasing the number of observations will increase the accuracy of these estimates.

To conclude the chapter, we compare the convergence of the proposed estimator and
the batch means method. We use γ = 1, σ = 1, ∆t = 0.01 and nARE = 50. As before, we
need to find the optimal annealing constant and batch size for each considered number of
observations. From the results shown in Fig. 5.11, we see that both estimators converge
to the asymptotic variance at the same rate of approximately 0.4. However, here we see
that the batch means method is slightly more accurate than our proposed method for the
considered iteration span.
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Figure 5.11: Convergence as a function of N of the optimal batch means method and
proposed estimator with optimal annealing for the Ornstein-Uhlenbeck process with a
quadratic observable. Parameters: γ = 1, σ = 1, ∆t = 0.01 and nARE = 50.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6

Conclusions and future research

In this thesis we studied the asymptotic variance of time-integrated functionals of Markov
processes. Our primary focus was to propose new estimators of the asymptotic variance
that could be implemented in parallel with the evolution of the process.

In Chapter 2 we presented a general introduction to the two types of Markov processes
used in the thesis, namely, Markov chains evolving in discrete time and Markov diffusions
evolving in continuous time defined by stochastic differential equations. We theoretically
determined the asymptotic variance of additive functionals of these processes using the
covariance function and validated the results using concepts based on large deviation
theory.

In Chapter 3 we introduced and implemented conventional estimation techniques cur-
rently used in practice to estimate the asymptotic variance of additive functionals. In
particular, we introduced the batch means method, which served as the benchmark for
the newly proposed estimators.

Chapter 4 dealt with the theory regarding the Poisson equation associated with a
Markov process and its observable. We presented the link between the asymptotic variance
and the Poisson solution, which allowed us to express the former in terms of the latter.
We also discussed two representations of the Poisson solution that formed the theoretical
basis of our proposed estimators.

In Chapter 5 we proposed and evaluated three methods for numerically estimating the
asymptotic variance. The first two estimators rely on the fact that the solution to the
Poisson equation can be represented as a conditional expectation. For the first of these
estimators we simulated many copies or replications of trajectories in order to estimate
the conditional expectation. The second method only considers one, long trajectory, from
which we extracted the relevant segments to compute the conditional expectation. The
third estimator is based on a stochastic approximation of the Poisson solution, which
describes the solution as an eigenfunction that can be iteratively estimated in an ‘online’
way as a simulation unfolds.

We compared these three estimators with the batch means method for simple Markov
processes, including the two-state Markov chain and the Ornstein–Uhlenbeck process,
for different observables in each case. The results showed that the ‘online’ estimator
produced more accurate estimates of the asymptotic variance for the two-state process
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and Ornstein-Uhlenbeck process each with a linear observable. However, we saw that
the batch means method was slightly more accurate than the ‘online’ estimator for the
Ornstein-Uhlenbeck process with a quadratic observable.

Based on these results, we recommend in the end the use of the online estimator,
based on the stochastic approximation of the Poisson solution, for two reasons. First, it
relies on having only one trajectory or stream of data, which is the common situation in
practice and second, it is online and so does not require that we scan the trajectory or
stream with different time windows or lags.

To conclude this thesis, we suggest possible directions for further research:

• Applications to more realistic and possibly higher-dimensional systems: We tested
our estimators on simple processes as a matter of practicality to focus on the con-
struction of these estimators and their relationship with the Poisson equation. In
future work, it would be interesting to apply them to more realistic applications
involving higher-dimensional processes, as well as processes involving many compo-
nents or particles. A particularly interesting application is Monte Carlo simulations
based on the Metropolis scheme, which is applied in statistical physics to sample
the configuration space of many-particle systems.

• Representation of the Poisson solution: We have represented here the Poisson so-
lution on a simple mesh in R, owing to the simple applications that we have used.
Other function bases can also be used, e.g., using a Fourier basis or a basis of Her-
mite polynomials, as described in [47]. One could also represent the Poisson solution
as a neural network which iteratively learns from the simulated observations accord-
ing to some cost function. The choice of representation is particularly important
for applications involving high-dimensional state spaces and needs to be balanced
in terms of complexity and computational storage.

• Convergence: We have shown with basic examples that the estimators that we have
presented converge as the number of data (or replications) is increased. However,
we have not presented an exhaustive study of that convergence with the number
of observations and of the effect of the initial state on the estimation, that is, the
choice of initial condition for the process. In this thesis, we simply considered a
random initial state. More work on convergence is needed, especially for the online
estimator, as applied to more realistic systems.

• Other types of observables: Most of the literature on asymptotic variance focuses,
as we have done here, on sample means, which are additive functionals (in time) of
Markov processes. Other types of estimators or observables could be considered. In
physics, for example, one often considers physical quantities related not to the state
of a process but its jumps or increments in time. These quantities are related to
particle or energy currents in physics and can be defined mathematically either as

Sn =
1

n

n−1∑
i=1

g(Xi, Xi+1) (6.1)
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if we are dealing with a discrete-time Markov chain or as

ST =
1

T

∫ T

0

g(Xt)dXt (6.2)

if we are dealing with a continuous-time process [26]. In the first case, the observable
depends via the function g on the jumps of the process between states Xi and Xi+1,
whereas in the second case, the observable depends on the increments dXt of the
process Xt. The large deviation techniques used to study these observables are
slightly different from those used for additive functionals (see [26] for details) and
so are the techniques, we expect, for estimating their asymptotic variance.
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