
The Design and Testing of a Superconducting
Programmable Gate Array

by

Hein van Heerden

Thesis presented at the University of Stellenbosch in
partial fulfilment of the requirements for the degree of

Master of Science in Electronic Engineering

Department of Electrical and Electronic Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leader: Dr. C.J. Fourie

December 2005



Copyright © 2005 University of Stellenbosch
All rights reserved.



Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original
work and that I have not previously in its entirety or in part submitted it at any university
for a degree.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H. van Heerden

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii



Abstract

This thesis investigates to the design, analysis and testing of a Superconducting Programmable
Gate Array (SPGA). The objective was to apply existing programmable logic concepts to
RSFQ circuits and in the process develop a working prototype of a superconducting pro-
grammable logic device. Various programmable logic technologies and architectures were
examined and compared to find the best solution. Using Rapid Single Flux Quantum (RSFQ)
circuits as building blocks, a complete functional design was assembled incorporating a rout-
ing architecture and logic blocks. The Large-Scale Integrated circuit (LSI) layout of the final
chip is presented and discussed followed by a discussion on testing. This thesis demon-
strates the successful implementation of a fully functional reprogrammable logic device us-
ing RSFQ circuitry.

iii



Opsomming

Hierdie tesis handel oor die ontwerp, analise en toets van ’n SPGA (Superconducting Pro-
grammable Gate Array). Die doel is om huidige programeerbare logika konsepte aan te pas
en in die proses ’n werkende prototipe te ontwikkel wat beskryf kan word as ’n supergeleier
programeerbare logiese toestel wat se werking soortgelyk is aan dié van FPGAs. ’n Verskei-
denheid van programeerbare logika tegnologieë en argitekture is ondersoek en met mekaar
vergelyk om die beste oplossing te vind. Met RSFQ (Rapid Single Flux Quantum) stroom-
bane as boublokke is ’n hele funksionele ontwerp aanmekaar gesit wat beide ’n verspreid-
ingsargitektuur en logieseblokke inkorporeer. Die grootskaalse geïntegreerde stroombaan
uitleg van die finale vlokkie word bespreek en voorgelê. Daarna volg ’n bespeking oor
toetsing van die ontwerp. Hierdie tesis demonstreer die suksesvolle implementering van
’n werkende herprogrameerbare logika toestel bestaande uit RSFQ stroombane.

iv



Acknowledgements

I would like to express my sincere gratitude to the following people and organisations who
have contributed to making this work possible:

• Steve R. Whiteley for his invaluable simulation tools, which made this project feasible.

• Hypres Inc. for providing the fabrication platform on which the physical implementa-
tion of this project is based. Especially Dr. S. Tolpygo, head of fabrication, for his help
and direction.

• The National Research Foundation of South Africa (and Prof. D.B. Davidson as
grantholder) for providing some financial assistance during my research.

• My fellow students and good friends, Hennie de Villiers and Wynand van Staden for
providing inspiration and support during difficult times.

• Prof. Willem J. Perold for giving me the inspiration and opportunity to pursue my
quest for further enrichment in the field of engineering. Also, for his eternal optimism
and enthusiasm.

• Lastly, but most of all, Dr. Coenrad J. Fourie as my study leader for the countless hours
of advice and guidance and also for providing me with a good background and basis
on which to build this project.

v



Dedications

This thesis is dedicated to my mother
for her support, encouragement and eternal love.

Sadly, she passed away before the completion of this project.
She will be missed.

vi



Contents

Declaration ii

Abstract iii

Opsomming iv

Acknowledgements v

Dedications vi

Contents vii

List of Figures xi

List of Tables xiv

Nomenclature xv

1 Introduction 1
1.1 Semiconductor programmable logic . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Superconducting logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 SPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 SPGA background and RSFQ basics 3
2.1 SPGA background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 RSFQ basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Programmable logic 7
3.1 Field-programmable gate array . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Programming technologies . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



CONTENTS viii

3.2 Technology mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Lookup table mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Multiplexer mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Area vs Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Logic block area and routing model . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Area vs. functionality experiment . . . . . . . . . . . . . . . . . . . . . 25

3.4 SPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 SPGA design 30
4.1 Basic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 DCRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 HUFFLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 I-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 I2-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.5 MSL Driver and Receiver pair . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.6 RSFQ-to-COSL Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Monte Carlo analysis and simulations . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Inductance restrictions between gates . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Composite blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Inline Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Junction Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Crossbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.4 Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.5 Programming Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 SPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Functional Verilog simulation of the SPGA . . . . . . . . . . . . . . . . . . . . 51

4.6.1 Functional models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.2 Programming and simulation . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Physical layout 63
5.1 Hierarchical layout design approach . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Basic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 DCRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 I2-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS ix

5.3 Microstrip transmission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Composite blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Programming Logic Column driver . . . . . . . . . . . . . . . . . . . . 73
5.4.3 Programming Logic Row driver . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Full chip layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Error checking and verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Gate verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Signal route checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Connection checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.4 Design rule checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.5 Full-chip scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Parameter extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.1 SLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 FastHenry and InductEx . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.3 Example: I2-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Input and output impedance matching . . . . . . . . . . . . . . . . . . . . . . . 85
5.8 Signal-to-Pad assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9 Moats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.10 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Testing 91
6.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Cryocooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.2 Room temperature electronics . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.1 Example 1: Direct input to output . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Example 2: One logic block . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3 Example 3: Comprehensive logic function . . . . . . . . . . . . . . . . 100

6.3 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions and recommendations 105

List of References 107

Appendices 112

A Verilog modules 113
A.1 SM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 SM_STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



CONTENTS x

A.3 LUT_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.4 LUT_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.5 LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.6 SPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Spice code 119
B.1 I2-switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C Circuit schematics 122
C.1 Basic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1.1 AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.1.2 DC-to-SFQ Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.1.3 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.1.4 DRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.1.5 JTL (250µA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.1.6 Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D Layouts 129
D.1 Basic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.1.1 DC-to-SFQ converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.1.2 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.1.3 DRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.1.4 HUFFLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.1.5 I-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.1.6 JTL250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.1.7 Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.1.8 MSL driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.1.9 MSL receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.1.10 RSFQ-to-COSL converter . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.2 Composite blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.1 Inline Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.2 Crossbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

E Design Rule Checker listing 138



List of Figures

2.1 a) Equivalent circuit of a resistively shunted junction; b) I-V curve of overdamped
junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Resulting output of an excited junction: Pulse voltage shape and phase . . . . . . 5
2.3 Circuit schematic of a junction array . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Illustration of pulse-based logic definitions . . . . . . . . . . . . . . . . . . . . . . 6

3.1 FPGA architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Programming technology in conjunction with SRAM . . . . . . . . . . . . . . . . 10
3.3 General architecture of Xilinx FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Logic block in XC2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 XC2000 routing architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Logic Module in Act-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Interconnect architecture of the Act-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Logic block used by Plessey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Model for logic block study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Routing area model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Number of blocks and Area (incl. routing) per block . . . . . . . . . . . . . . . . . 27
3.12 Number of blocks and Area (incl. routing) per block . . . . . . . . . . . . . . . . . 27
3.13 Average normalised area for the circuits in Table 3.3 . . . . . . . . . . . . . . . . . 28

4.1 Circuit diagram: DCRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Circuit diagram: HUFFLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Circuit diagram: Current-Set switch . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Circuit diagram: Two-line current-set switch . . . . . . . . . . . . . . . . . . . . . 35
4.5 Circuit diagram: Microstrip Transmission Line Driver . . . . . . . . . . . . . . . . 36
4.6 Circuit diagram: Microstrip Transmission Line Receiver . . . . . . . . . . . . . . . 37
4.7 Circuit diagram: RSFQ-to-COSL converter . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Inline switch: a) Symbol; b) Schematic block diagram . . . . . . . . . . . . . . . . 41
4.9 Junction switch: a) Symbol; b) Schematic block diagram . . . . . . . . . . . . . . . 41
4.10 Crossbar switch: a) Symbol; b) Schematic block diagram . . . . . . . . . . . . . . 42

xi



LIST OF FIGURES xii

4.11 Schematic diagram: Logic block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.12 Schematic diagram of the Logic block: a) Decoder; b) Programming and memory

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.13 Simulation: Logic block decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.14 Simulation: Logic block programming sequence . . . . . . . . . . . . . . . . . . . 46
4.15 Diagram illustrating the matrix-cell assignment of the programming frames . . . 48
4.16 Schematic diagram: Simplified 2x2 Programming Frame . . . . . . . . . . . . . . 49
4.17 Programming frame bit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.18 Symbolic diagram used as framework for Verilog simulations . . . . . . . . . . . 52
4.19 Symbolic diagram: Switch Matrix 1 (Crossbar matrix) (SM1) . . . . . . . . . . . . 53
4.20 Symbolic diagram: Switch Matrix 2 (SM2) . . . . . . . . . . . . . . . . . . . . . . . 54
4.21 Symbolic diagram: Stop Switch matrix (SM_STOP) . . . . . . . . . . . . . . . . . . 55
4.22 Symbolic diagram of the LUT_IN switch matrix . . . . . . . . . . . . . . . . . . . 55
4.23 Symbolic diagram of the LUT_OUT switch matrix . . . . . . . . . . . . . . . . . . 56
4.24 Symbolic diagram illustrating Verilog programming matrix . . . . . . . . . . . . 57
4.25 Verilog simulation: Partial program loading sequence . . . . . . . . . . . . . . . . 60
4.26 Verilog simulation: Operational input and output results . . . . . . . . . . . . . . 61

5.1 Side-on representation of Hypres’ process flow [1] . . . . . . . . . . . . . . . . . . 64
5.2 Layouts of a) 250µA Josephson junction and b) 250µA Josephson junction with

grounded resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Layout of the AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Layout of the DC-resetable latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Some variations on the layout of the DC-resetable latch . . . . . . . . . . . . . . . 68
5.6 Layout of the 2-Line Current-Set Switch: bare essential layout showing control lines 69
5.7 Layout of the 2-Line Current-Set Switch gate . . . . . . . . . . . . . . . . . . . . . 69
5.8 Layout: MSL via . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9 Layout: MSL structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.10 Layout of the Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.11 Layout of the Programming Logic Column driver . . . . . . . . . . . . . . . . . . 73
5.12 Layout of the Programming Logic Row driver . . . . . . . . . . . . . . . . . . . . 74
5.13 Layout: Full chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Diagram for data route checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.15 Diagram for checking programming routes to switches . . . . . . . . . . . . . . . 79
5.16 Diagram for checking DC reset routes . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.17 Diagram for checking HUFFLE prebias routes . . . . . . . . . . . . . . . . . . . . 81
5.18 Layout of the 2-Line Current-Set Switch: bare essential layout showing control lines 84
5.19 Area of nominal working values for DC-bias resistor vs. Bias control current, also

showing the optimal value indicated by the black dot . . . . . . . . . . . . . . . . 86



LIST OF FIGURES xiii

5.20 Diagram: Signal-to-Pad assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.21 Typical use of moats in a layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Elementary diagram of a Grifford-McMahon cryocooler . . . . . . . . . . . . . . . 93
6.2 Phases of Grifford-McMahon cryocooler . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Diagram of SPGA architecture indicating inputs, outputs and switch assignments 97
6.4 Wiring of data- and clock lines for the logic block programming frame . . . . . . 100
6.5 Simulation showing programming of logic block . . . . . . . . . . . . . . . . . . . 101
6.6 Wiring diagram showing data flow for Example 3 . . . . . . . . . . . . . . . . . . 103

C.1 Circuit diagram: AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.2 Circuit diagram: DC-to-SFQ converter . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.3 Circuit diagram: Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.4 Circuit diagram: DRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.5 Circuit diagram: 250µA Josephson Transmission Line . . . . . . . . . . . . . . . . 127
C.6 Circuit diagram: Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.1 Layout: DC-to-SFQ converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.2 Layout: Divider gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.3 Layout: DRO gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.4 Layout: HUFFLE gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.5 Layout: Current-Select switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.6 Layout: 250µA Josephson transmission line gate . . . . . . . . . . . . . . . . . . . 132
D.7 Layout: Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.8 Layout: Microstrip transmission line driver gate . . . . . . . . . . . . . . . . . . . 133
D.9 Layout: Microstrip transmission line receiver gate . . . . . . . . . . . . . . . . . . 134
D.10 Layout: RSFQ-to-COSL converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.11 Layout: Inline Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.12 Layout: Crossbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables

3.1 Truth table for adding two 2-bit numbers . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Lookup tables: Human approach to adding two 2-bit numbers . . . . . . . . . . . 22
3.3 Amount of LUTs required for each circuit vs. number of LUT inputs . . . . . . . 26

4.1 Intergate IO inductance ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Mapping: Logic block inputs to memory cells . . . . . . . . . . . . . . . . . . . . . 44
4.3 Partial truth table for (4.6.1)-(4.6.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Programming sequence to implement functions (4.6.1)-(4.6.2) . . . . . . . . . . . 59

5.1 Physical layer specifications of the Hypres process . . . . . . . . . . . . . . . . . . 64
5.2 Gaussian distribution parameters for inductances and coupling factors of the I2-

switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Table: Signal-to-pad assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Switch programming data words for Example 1 . . . . . . . . . . . . . . . . . . . 98
6.2 Expected results for Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Switch programming data words for Example 2 . . . . . . . . . . . . . . . . . . . 99
6.4 Logic block programming data word for Example 2 . . . . . . . . . . . . . . . . . 100
6.5 Logic block programming data words for Example 3 . . . . . . . . . . . . . . . . . 102
6.6 Switch programming data words for Example 3 . . . . . . . . . . . . . . . . . . . 104
6.7 Truth table for functions 6.2.1-6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



Nomenclature

2D Two-Dimensional

3D Three-Dimensional

AC Alternating Current

ADC Analogue to Digital Converter

CAD Computer-Aided Design

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

COSL Complementary Output Switching Logic

DAC Digital to Analogue Converter

dc/DC Direct Current

DCRL DC-Resetable Latch

Dff D-type Flip-Flop

DIV Divider

DRC Design Rule Checker

DRO Destructive Read-Out register

DUT Device Under Test

EEPROM Electrically Erasable Programmable Read-Only Memory

EM Electromagnetic

EPROM Erasable Programmable Read-Only Memory

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

HEMT High-Electron-Mobility Transistors

HUFFLE Hybrid Unlatching Flip-Flop Logic Element

GHz Gigahertz = 109 [Hz]

IC Intergrated Circuit

IO Input-Output

xv



NOMENCLATURE xvi

JJ Josephson Junction

JTL Josephson Transmission Line

K Kelvin

LAB Logic Array Block

LASI LAyout System for Individuals

LM Logic Module

LUT Lookup Table

MSL Microstrip Line

MOS Metal-Oxide Semiconductor

MUX Multiplexer

µ micro = 10−6

n nano = 10−9

Ω Ohm

p pico = 10−12

PGA Programmable Gate Array

PLD Programmable Logic Device

RAM Random Access Memory

RSFQ Rapid Single Flux Quantum

SFQ Single Flux Quantum

SPICE Simulation Program with Integrated Circuit Emphasis

SPGA Superconducting Programmable Gate Array

SRAM Static Random Access Memory

VLSI Very Large Scale Integration



Chapter 1

Introduction

‘ “Begin at the beginning,” the King said, very gravely, “and go on till you come to the
end: then stop.” ’

[Lewis Carrol - Alice’s Adventures in Wonderland (1865)]

1.1 Semiconductor programmable logic

Semiconductor ‘full-custom’ chips (such as microprocessors) are realized using specific tai-
loring of each part of a Very Large Scale Integration (VLSI) circuit to meet its requirements.
This technique demands extensive manufacturing effort and may take several months to
complete. Furthermore, the process has high initial setup costs and requires large produc-
tion volumes to avoid unrealistic end-user prices.

The intense rivalry in the electronics industry has sparked the need for rapid prototyping
and the shortest possible time-to-market solutions. Therefore, reduced development and
production time is essential.

Programmable logic has become increasingly popular due to its low cost and prototyp-
ing time. More specifically, Field-Programmable Gate Arrays (FPGAs) have emerged as the
ultimate solution to these time-to-market and financial risk problems because they provide
a means where the end-user can directly configure any logic structure without the need for
specialized Integrated Circuit (IC) fabrication.

1.2 Superconducting logic

Superconducting electronics, but more specifically Single Flux Quantum (SFQ) logic have
demonstrated speeds up to 770GHz [2]. Furthermore, Rapid Single Flux Quantum (RSFQ)
circuits consume very little operational power due to their low bias voltage (a mere 2.6mV).
Additionally, superconducting microstrip lines allow ballistic transfer of pulses over arbi-
trary distances with negilible attenuation and dispersion. This means that integration and

1



CHAPTER 1. INTRODUCTION 2

chip packaging can be dense and the total performance of a system using superconducting
Large Scale Integration (LSI) can rival (and even surpass) that of a system using semicon-
ductor LSI [3].

1.3 SPGA

With the recent evolution of superconducting electronics to medium- and large scale levels,
it has become feasible to implement superconducting reprogrammable logic in the same
manner as its semiconductor counterpart. The same cost and time related advantages can be
gained in the superconducting industry, as was for the semiconductor industry, with added
speed and power benefits related to superconducting logic.

The goal of this thesis is to design and test a prototype of the first superconducting pro-
grammable logic device (similar to semiconductor programmable gate arrays), namely the
Superconducting Field-Programmable Gate Array (SPGA).

1.4 Summary of thesis

Chapter 2 gives a more detailed background and history of the SPGA and followed by a
short description of RSFQ logic and its basic operation. In Chapter 3 a study is undertaken
to compare existing types of programmable logic in an effort to find the best solution to a
possible superconducting counterpart. Various topics relating to programmable logic are
also discussed. Next, in Chapter 4, the RSFQ circuit design is discussed by describing most
of the RSFQ circuits and blocks that constitute the SPGA. The simulations included in this
chapter develop and illustrate concepts used during the design of this project. In Chapter 5
the concept of IC layout is discussed. The chapter includes a brief discussion on a few of the
RSFQ circuit layouts and blocks, and also elaborates on the task of error checking and other
tasks relating to the layout of the final chip. Finally, issues regarding the physical testing of
the SPGA are mentioned and possible solutions proposed, followed by a thorough testing
procedure including examples.

‘Don’t panic.’

[Douglas Adams - The Hitch Hiker’s Guide to the Galaxy (1979)]



Chapter 2

SPGA background and RSFQ basics

‘Crafty men contemn studies; simple men admire them; and wise men use them.’

[Francis Bacon - Of Studies (1625)]

THIS chapter gives some background information on the SPGA project and also provides
a short primer on RSFQ electronics.

The section on the SPGA provides some history and precedings leading up to the original
concept of superconducting programmable logic.

The section relating to RSFQ provides a short description on how basic RSFQ circuits
work. It is not meant as a complete tutorial on all aspects of RSFQ but rather a short orien-
tation in pulse-based logic. More detailed explanations can be found in the references given
throughout this section.

2.1 SPGA background

The original SPGA concept was introduced by Fourie [4] and provided a platform from
which a fully working prototype could be designed and built. The basic idea is to construct
a superconducting electronic circuit that can be reused for multiple purposes, which in effect
means that the circuit has to be reprogrammable. The semiconductor industry paved the
way for reprogrammable circuits some time ago, and the technology is fairly common these
days and is generally known as programmable logic. Superconducting programmable logic
can be made by borrowing some concepts used in semiconductor programmble logic and
adapting the circuitry.

Components needed to add reprogrammable functionality to RSFQ circuits such as, a
DC-Resetable latch, a Current-Set switch and the HUFFLE were discussed by Fourie [4].
Further information is given on developing routing structures and switch blocks as well as
conceptually developing a lookup table and address decoder.

3



CHAPTER 2. SPGA BACKGROUND AND RSFQ BASICS 4

The name Superconducting Programmable Gate Array (SPGA) derives from the fact that
many of its concepts were taken from Field-Programmable Gate Arrays (FPGAs).

2.2 RSFQ basics

Much of the information given here originates from the seminal paper by Likharev and Se-
menov on RSFQ [5].

In RSFQ logic circuits, binary information is presented not by discrete voltage levels (as
in all semiconductor transistor logic), but by very short (picosecond) voltage pulses V(t) of a
quantitized area: ∫

V(t) dt = Φ0 ≡ h
2e

' 2.07 mV × ps (2.2.1)

An essence of this idea is that these single flux quantum (SFQ) pulses can be quite naturally
generated, reproduced, amplified, stored, and processed by elementary circuits comprising
of overdamped Josephson junctions (brought about by the Josephson effect) [6] [7] [8] [9].

Figure 2.1a shows the simplest logic gate which can be used to demonstrate the elemen-
tary circuit operation of a Josephson junction. The junction is biased with a constant current
Ib which is slightly less that the junction’s critical current Ic. The junction is damped with a
resistor Rd so that the overdamped characteristics of the junction dominate. The I-V curve
of an overdamped junction is presented in Figure 2.1b. The junction drives a load R load and
produces an output current I0 and output voltage V0.

Iin

Rd J

Ib

Io Vo

Rload

Ic

Vc [V]

[I]

a) b)

L=Φ /I0 c

Figure 2.1: a) Equivalent circuit of a resistively shunted junction; b) I-V curve of overdamped junction



CHAPTER 2. SPGA BACKGROUND AND RSFQ BASICS 5

Initially the junction is in its superconducting state (V = 0). An arriving signal current
Iin drives the total junction current beyond Ic, and induces switching to the resistive state ‘1’
with V 6= 0, so that a considerable part, I0, of the current is steered into the load, Rload. This
is the ‘0’ → ‘1’ switching process, which can be very fast (in the order of a few picoseconds).
For the overdamped case, the junction is reset to its superconducting state very quickly. The
resulting output is presented in Figure 2.2, which shows the shape of the pulse.

2π

Figure 2.2: Resulting output of an excited junction: Pulse voltage shape and phase

Calculations [10] show that if the dc bias current Ib is close enough to the junction’s crit-
ical current Ic, an SFQ pulse can be triggered by a similar pulse, with either the nominal
or somewhat smaller amplitude. This means that the circuit in Figure 2.1a can reproduce
SFQ pulses, bringing their areas to the nominal value specified by (2.2.1) and, if necessary,
provide voltage gain. On the other hand, if the input signal is too weak (for instance, it repre-
sents ‘noise’ due to parasitic crosstalk between the signal transfer lines) it is not reproduced
by the circuit, so that it also serves as a noise discriminator.

Two important remarks should be made here. Firstly, the load need not necessarily be an
ohmic resistor; more typically, a similar junction serves as a load in RSFQ circuits. Secondly,
these junctions need not be close to each other; they can be connected by an appropriate
superconducting microstrip line.

Figure 2.3 shows another key circuit comprising several junctions connected in parallel
with relatively low inductance L ∼ Φ0/Ic between them. Let J1 be triggered by an incoming
pulse from the left. Calculations show that the resulting SFQ pulse developed across J1 will
trigger J2 to produce a pulse, and this process will continue until the pulse is reproduced at
the right edge of the array. While the pulse propagates, a small time delay is introduced by
each junction.



CHAPTER 2. SPGA BACKGROUND AND RSFQ BASICS 6

I
in

I
out

J1

L2L1 L3 L4

J2 J3

I
b1

I
b2

I
b3

Figure 2.3: Circuit schematic of a junction array

One important concept of pulse-based logic is the definition of logic states. Logic states
are represented by the presence or absence of a pulse during a given time period. If a pulse
appears at a measurement point in a circuit during a defined time frame, it is regarded as a
logical ‘1’. Whereas, if no pulse appears it is regarded as a logical ‘0’. Figure 2.4 illustrates
the concept more clearly, showing a pulse between times t0 and t1 which represents a logical
‘1’. In contrast, between times t1 and t2 there is no pulse and represents a logical ‘0’. A
pulse does not to be centered in the time period, as long as the area underneath the pulse
(coinciding with one time frame) equates to one fluxon (as defined in (2.2.1)).

t0 t1 t2 t3 t4

1 0 1 1
time

Figure 2.4: Illustration of pulse-based logic definitions



Chapter 3

Programmable logic

‘Logic is a systematic method of coming to the wrong conclusion with confidence.’

[Anonymous]

PROGRAMMABLE logic generally pertains to any type of circuit that can be configured
or changed by the user to implement a logic design [11]. Of special interest are pro-

grammable logic devices that refer to integrated circuits that can be programmed in the field
and are so called, field-programmable logic devices.

This chapter covers the various types of programmable logic devices and architectures
as well as the programming technology used. The aim is to compare the advantages and
disadvantages of all the types and find a suitable candidate (or combination) that can be
employed to best realize our Superconducting Programmable Gate Array.

3.1 Field-programmable gate array

A Field-programmable gate array (FPGA) consists of an array of uncommitted elements that
can be interconnected in a general way where the interconnections between elements are
user-programmable [12].

3.1.1 Architectures

Several companies have introduced a number of different types of FPGAs. Four basic cate-
gories can be identified [12] [11]:

1. symmetrical array

2. row-based

3. hierarchical PLD

4. sea-of-gates (or fine-grain)

7



CHAPTER 3. PROGRAMMABLE LOGIC 8

Figure 3.1 shows a diagram of each architecture.

Interconnect

PLD
block

c) Hierarchical PLD

Interconnect

Logic
block

a) Symmetrical array b) Row-based

InterconnectLogic block

d) Sea-of-gates

Logic
block

Interconnect
overlay

Figure 3.1: FPGA architectures

3.1.1.1 Symmetrical array

Symmetrical arrays contain memory cells that control the logic. These memory cells are more
often than not SRAM-based. In most common architectures the RAM cells are used in the
logic cells, and to control data flow in the routing channels. A logic cell usually contains a set



CHAPTER 3. PROGRAMMABLE LOGIC 9

of RAM cells in a look-up table (LUT) configuration has the advantage of high functionality.
The draw-backs of using RAM cells are its size and volatility.

3.1.1.2 Row-based

Rows of logic cells are located parallel to the routing channels. This architecture inherits the
advantages of mask programmable gate arrays (i.e. speed and ability to implement large
circuits) and the flexibility of user programmability. The routing channels contain prede-
fined wiring segments of various lengths that are connected using antifuses. The one-time
programmability of antifuses is a major disadvantage. This architecture has to deal with the
problem of estimating the number of tracks in the routing channel as well as the length that
the wiring segments in the tracks should be.

3.1.1.3 Hierarchical PLD

Altera FPGAs use a 2-level hierarchical grouping of logic blocks. The first level of hierarchy
is called a LAB (Logic Array Block). Each LAB contains two blocks, an Array of macrocells
and an Expander product term array. Each macrocell comprises three wide AND gates that
feed an OR gate connected to a XOR gate, and a flip-flop. Each expander product terms
block consists of a number of p-terms that are inverted and fed back into the macrocells,
and to itself. The second level of hierarchy provides connections among the LABs, which is
accomplished through a number of long wire segments that pass adjacent to each LAB. This
design permits the implementation of very wide logic functions but takes up a lot of space.

3.1.1.4 Sea-of-gates

This fine-grain architecture allows direct connections between the neighboring cells, en-
abling users to combine cells to form compact logic functions. The advantages are the short
routing distances which result in high speed, and efficient resource allocation. The disad-
vantage is that the routing switches must be extremely small and it lends itself to antifuse
switches, which are one-time programmable.

3.1.2 Programming technologies

The word ‘switch’ refers to the entities that allow programmable connections between wire
segments. A more precise term for such an entity is programming element. Since there are a
number of different ways of implementing a programming element, it has become custom-
ary to speak about programming technology that is used to implement these elements.

Programming technologies that are used in commercial products include: static RAM
cells, anti-fuses, EPROM transistors and EEPROM transistors [12] [11].



CHAPTER 3. PROGRAMMABLE LOGIC 10

3.1.2.1 Static RAM

Programmable connections used in these devices are multiplexers, transmission gates or pass-
transistors that are controlled by SRAM cells. Figure 3.2 contains diagrams of the different
technologies.

RAM

RAM

a) Multiplexer b) Transmission gate c) Pass-transistor

in

out

RAM MUX

Figure 3.2: Programming technology in conjunction with SRAM

In the case of the pass-transistor, the RAM cell controls whether the pass-gates are on
or off. When off, the pass-gates presents a very high resistance between the two wires,
effectively disconnecting the two terminals. When the gate is on, it forms a relatively low
resistance connection between the two wires.

For the multiplexer approach, the RAM cells control which one of the multiplexer’s in-
puts is connected to its output.

In a FPGA that uses the SRAM programming technology, the logic blocks may be inter-
connected using a combination of pass-gates and multiplexers. Since static RAM is volatile,
these FPGA’s must be configured each time power is applied to the chip.

The RAM cell bits may be loaded into the FPGA either through a serial arrangement or
each RAM cell may be addressed as an element in an array.

One disadvantage is that RAM cells require relatively large chip area while an advantage
of their use is quick in-circuit programming

3.1.2.2 Antifuse

An Antifuse normally resides in a high-impedance state but can be fused (or melted) into
a permanent low-impedance state on application of a high voltage. To program antifuses
requires extra on-chip circuitry to deliver the high voltage. The main advantages of the
antifuse is its extremely small footprint, but the drawback is the permanent nature of the
connection. Antifuse circuits are not reprogrammable but one-time programmable.



CHAPTER 3. PROGRAMMABLE LOGIC 11

3.1.2.3 EPROM and EEPROM

Erasable Programmable Read Only Memory (EPROM) elements are like MOS transistors
but comprise of two gates. The floating gate (not connected to the select gate) governs the
behavior of the transistor by the accumulated charge under the gate. When no charge is
present the transistor operates in the normal fashion, but when a large programming current
flows between the source and drain a charge is deposited under the floating gate, turning off
the transistor. The charge can be removed by exposing the gate to ultraviolet light.

One disadvantage is that the pull-up resistor consumes static power while it has the
advantage is that it is both re-programmable and non-volatile. However, unlike static RAM,
EPROM transistors cannot be re-programmed in-circuit.

Electrically erasable programmable read only memory (EEPROM) transistors can be re-
programmed in-circuit although they take up double the chip space and require multiple
voltage sources for reprogramming.

3.1.3 Implementation

The afore mentioned technologies are used in commercial products. This section presents
basic implementations by several companies.

3.1.3.1 Xilinx

The general architecture is shown in figure 3.3. It consists of a 2-dimensional array of pro-
grammable blocks, called Configurable Logic Blocks (CLB’s), with horizontal routing chan-
nels between rows of blocks and vertical routing channels between columns. Programmable
resources are controlled by static RAM cells.

XC2000 The XC2000 CLB, shown in Figure 3.4, consists of a four-input look-up table and
a D flip-flop. The look-up table can generate any variable of up to four function or any two
functions of three variables. Both of the CLB outputs can be combinatorial, or one output
can be registered.

The routing architecture shown in Figure 3.5 utilizes three types of routing resources,
namely direct interconnect, general purpose interconnect and long lines. SM is a Switch
Matrix while CLB is a Configurable Logic Block.

The direct interconnect connects the output of a CLB to inputs of other CLBs to its right,
top and bottom. For connections that span more than one CLB, the general purpose inter-
connect provides horizontal and vertical wiring segments. Each wiring segment spans only
the length or width of one CLB, but longer wires can be formed because each switch matrix
holds a number of routing switches that can interconnect the wiring segments on its four
sides. Note that a connection routed with a general purpose interconnect will incur



CHAPTER 3. PROGRAMMABLE LOGIC 12

IO block

Logic block

Routing
resources

Figure 3.3: General architecture of Xilinx FPGAs

significant routing delays because it must pass through a routing switch at each switch ma-
trix. Signals that are required to reach several CLBs with low skew can use long lines, which
traverse at most one routing switch to span the entire length of the FPGA chip.

3.1.3.2 Actel

The basic architecture is similar to that of the row-based architecture shown in Figure 3.1
and consists of rows of programmable blocks, called Logic Modules (LMs), with horizontal
routing channels between the rows. Each routing switch in these FPGAs is implemented by
an anti-fuse.

Act-1 The Act-1 LM, shown in Figure 3.6, illustrates a very different approach. While Xilinx
utilizes a large, complex logic block, Actel advocates a small, simple logic module. Research
has shown [13] [14] that both these approaches have their merits, and the best choice for a
programming block depends on the speed performance and area requirements of the routing
architecture.



CHAPTER 3. PROGRAMMABLE LOGIC 13

A

B

C

D

IN

CLK

X

Y

LUT

D S

Q

R

OUT

Figure 3.4: Logic block in XC2000

The Act-1 LM is based on a configuration of multiplexers, which can implement any
function of two variables, most functions of three variables and some of four variable up to
a total of 702 logic functions.

Illustrated in Figure 3.7 is the routing architecture used in the Act-1 1. The Act-1 em-
ploys four distinct types of routing resources, namely nput segments, output segments, clock
tracks and wiring segments. Four input segments connect to the wiring segments above and
below the LM. An output segment connects the LM output to several channels, both above
and below the module. The wiring segmens consist of straight metal lines of various lengths
that can be connected together through anti-fuses to form longer lines. Clock tracks are
special low-delay lines that are used for signals that must reach many LM’s with minimum
skew.

3.1.3.3 Altera

Altera FPGAs utilize hierarchical grouping of programmable logic devices. The architecture
is unnecessarily complex for the purpose of this project. This type of structure may be more
suited in the future when the superconducting IC process can produce smaller elements and
more space is available on a die.

1Only the routing resources of the middle LM are shown



CHAPTER 3. PROGRAMMABLE LOGIC 14

CLB CLB

CLB CLB

CLB CLB

SM

SM

Long lines
General pupose
interconnect

Direct
interconnect

Figure 3.5: XC2000 routing architecture



CHAPTER 3. PROGRAMMABLE LOGIC 15

A0

B0 B1 SB S0

Y

A1 SA S1

Figure 3.6: Logic Module in Act-1

LM LM LM LM LM LM

LM LM LM LM LM LM

LM LM LM LM LM LM

Vertical trackOutput segment

Clock
track

Antifuse

Wiring
segment

Input
segment

Figure 3.7: Interconnect architecture of the Act-1



CHAPTER 3. PROGRAMMABLE LOGIC 16

3.1.3.4 Plessey

The Plessey FGPA architecture resembles the sea-of-gates structure in that a matrix of logic
blocks is overlayed with dense interconnect resources. The logic block is relatively simple
and is presented in Figure 3.8. The multiplexer is controlled by a static RAM block and is
used to connect the logic block to the routing resources, which comprise wiring segments of
varying lengths.

RAM

Latch

Figure 3.8: Logic block used by Plessey

3.2 Technology mapping

The technique of technology mapping transforms the required logic function to operate using
the circuit elements of the programming technology for a given architecture 2. This section
looks at mapping into lookup tables and multiplexers.

3.2.1 Lookup table mapping

A K-input lookup table (LUT) is a digital memory that can implement any boolean function
of K variables. The K inputs are used to address a memory array of 2K 1-bit cells that stores
the truth table of the boolean function. A K-input LUT can implement 2(2K) different boolean
functions.

a number of LUT technology mappers exist, including Chortle [15] [16] [17], mis-pga [18]
[19] [20], Asyl [21], Hydra [22], Xmap [23] and VISMAP [24]. All of these programs map
a boolean network into a circuit of K-input LUTs, attempting to minimize either the total
number of LUTs, or the number of levels of LUTs in the final circuit. Minimizing the total

2The process of logic synthesis actually consists of two separate phases, namely logic optimization and technol-
ogy mapping, but logic optimization is beyond the scope of this project



CHAPTER 3. PROGRAMMABLE LOGIC 17

number of LUTs allows the implementation of larger logic networks whilst minimizing the
levels improves the speed-performance of the circuits.

The details of the algorithms used in the mappers are beyond the scope of this project but
after consulting the comparative study by Brown et al. [12], it may be worth commenting on
the implementation of the Chortle algorithms.

Chortle-crf [16] maps a boolean network into a circuit of K-input LUTs with the objective
of minimizing the number of LUTs. The original network is first partitioned into a forest of
trees and then each tree is separately mapped into a subcircuit of K-input LUTs. The final
circuit is then assembled from the subcircuits implementing the trees. The major innovation
of Chortle-crf is that it simultaneously addresses the decomposition and matching problems
using a bin-packaging approximation algorithm and optimizes further by exploiting recon-
vergent paths.

Chortle-d [17] has the objective of minimizing the number of levels of LUTs in the final
circuit and thereby increasing the circuit performance. The difference from Chortle-crf is
that instead of minimizing the number of LUTs in the decomposition tree, it minimizes its
depth. Results show that compared to Chortle-crf, Chortle-d reduces the number of logic
levels by 38 percent, but increases the number of LUTs by 79 percent [12].

3.2.2 Multiplexer mapping

A multiplexer-based lookup table contains a tree of multiplexers to decode and implement
boolean functions in a variety of different ways. An uncommitted logic block is personalized
to implement different functions by connecting its inputs either to variables or to constants
0 or 1. Examples of mappers include mis-pga [18] [25], Proserpine [26] [27], Amap [28] and
XAmap [28]. They minimize either the number of logic blocks or the delay in the final circuit.

3.2.3 Examples

The purpose of the examples given in this section are to more clearly illustrate the working
of technology mapping and to show that it can be a difficult task, but also some of these
examples can be used later to test the SPGA.



CHAPTER 3. PROGRAMMABLE LOGIC 18

3.2.3.1 Arbitrary boolean functions

LUTs with 3 inputs are used to implement a boolean function with 5 variables (A,B,C,D and
E). The final outputs are given as X# where the following boolean functions are mapped3:

X1 = (A + B + C + D + E) (3.2.1)

X2 = (A + B + C) ∗ (A + D + E) (3.2.2)

X3 = ((A + B + C) ∗ (D + E + A)) +

((A + C + E) ∗ (D ∗ B)) ∗ (A ∗ C) (3.2.3)

Using Chortle-crf, the functions can be mapped as follows, with each line corresponding to
a LUT4:

Xa1
1 = C + D + E

X1 = A + B + Xa1
1

Xa1
2 = A + B + C

Xa2
2 = A + D + E

X2 = Xa1
2 ∗ Xa2

2

Xa1
3 = A + B + C

Xa2
3 = A + D + E

Xa3
3 = A + C + E

Xa4
3 = (B ∗ D) ∗ Xa3

3

Xa5
3 = (A ∗ C) ∗ Xa4

3

X3 = (Xa1
3 ∗ Xa2

3 ) + Xa5
3

3Note: ‘+’ is OR ; ‘∗’ is AND
4Note: superscript a indicates additional LUTs that had to be incorporated



CHAPTER 3. PROGRAMMABLE LOGIC 19

Using Chortle-d, the functions mapped as follows:

Xa1
1 = A + B

Xa2
1 = C + D + E

X1 = Xa1
1 + Xa2

1

Xa1
2 = A + B + C

Xa2
2 = A + D + E

X2 = Xa1
2 ∗ Xa2

2

Xa1
3 = A + B + C

Xa2
3 = A + D + E

Xa3
3 = Xa1

3 ∗ Xa2
3

Xa4
3 = B ∗ D

Xa5
3 = A + C + E

Xa6
3 = C ∗ A

Xa7
3 = (Xa4

3 ∗ Xa5
3 ) ∗ Xa6

3

X3 = Xa3
3 + Xa7

3

Highlights of the algorithm that produce the above stated results are as follows: a) The
results for boolean function 3.2.1 from both Chortle-crf and Chortle-d, show that Chortle-
crf tries to minimize the number of LUTs because Chortle-crf produced two LUTs whilst
Chortle-d produced three LUTs. b) The second boolean function was originally in a forced
form and thus does not produce different output from either algorithm. c) The third function
is a longer, more complex function and once again highlights the fact that the crf algorithm
tries to minimize the number of LUTs (6 vs. 8) but does not minimize the number of levels
(4 vs. 3).

3.2.3.2 Adder

A more common circuit that could be implemented in a FPGA is an adder. An interesting
experiment would be to compare the mapping capabilities of the Chortle algorithm versus
that of a human.

The task is to add two numbers ‘A’ and ‘B’, each consisting of two bits and produce the
answer in ‘S’ (sum) and ‘C’ (carry). Let us first consider the case for the Chortle-crf algorithm.
The first step is to set up the truth table as in Table 3.1. The next step is to find simplified
boolean functions for each output bit. By using QMC software [29], the process is eased and



CHAPTER 3. PROGRAMMABLE LOGIC 20

the resulting output functions are5:

C = (A1 ∗ A0 ∗ B0) + (A0 ∗ B1 ∗ B0) + (A1 ∗ B1) (3.2.4)

S1 = (A1∗!A0∗!B1) + (!A1∗!A0 ∗ B1) +

(A1∗!B1∗!B0) + (!A1 ∗ B1∗!B0) +

(A1 ∗ A0 ∗ B1 ∗ B0) + (!A1 ∗ A0∗!B1 ∗ B0) (3.2.5)

S0 = (A1 ∗ B1 ∗ B0) + (A0∗!B0) + (!A0 ∗ B0) (3.2.6)

Table 3.1: Truth table for adding two 2-bit numbers

input output
A1 A0 B1 B0 C S1 S0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 1

The last step is to use Chortle and map the boolean functions into 3-input LUTs. The

5Note: ‘!’ indicates a NOT operation



CHAPTER 3. PROGRAMMABLE LOGIC 21

results are as follows, with each line representing a LUT:

Ca1 = A1 ∗ A0 ∗ B0

Ca2 = A0 ∗ B1 ∗ B0

Ca3 = Ca2 + (A1 ∗ B1)

C = Ca1 + Ca3

Sa1
1 = B1 ∗ A0 ∗ A1

Sa2
1 = !B1 ∗ A0∗!A1

Sa3
1 = (B0 ∗ Sa1

1 ) + (B0 ∗ Sa2
1 )

Sa4
1 = (A1∗!B1∗!B0) + (!A1 ∗ B1∗!B0)

Sa5
1 = (A1∗!A0∗!B1) + (!A1∗!A0 ∗ B1)

S1 = Sa3
1 + Sa4

1 + Sa5
1

Sa1
0 = A1 ∗ B1 ∗ B0

S0 = (!A0 ∗ B0) + (A0∗!B0) + Sa1
0

Now let us consider the human approach for the same addition task. With a little intu-
ition and clever thinking the LUTs can be setup directly to produce the desired output, as
shown in Table 3.2. In the table, the letter ‘d’ is a don’t care placeholder.

Program LUT1 to add bit 0 of both input numbers and produce bit 0 of the sum. Then
program LUT2 to produce the carry bit of the sum operation. Bit 0 of both input numbers
will never be used again. Program LUT3 to add bit 1 of both input numbers and the carry
bit of bit 0 to produce bit 1 of the sum. Similarly, program LUT4 to produce the carry bit of
the operation.

This process can be expanded to add numbers of arbitrary width by simply using two
LUTs (sum LUT and carry LUT) for each bit of the input number.

Compared to the algorithm which produced 12 LUTs, a human can do the same with 4
LUTs. The conclusion here is that for small circuits a human is far better than any algorithm
but when larger circuits incorporating a large number of LUTs there is no other way but to
use the CAD tools to help.



CHAPTER 3. PROGRAMMABLE LOGIC 22

Table 3.2: Lookup tables: Human approach to adding two 2-bit numbers

LUT1
inputs output

d A0 B0 S0

d 0 0 0
d 0 1 1
d 1 0 1
d 1 1 0
d 0 0 0
d 0 1 1
d 1 0 1
d 1 1 0

LUT2
inputs output

d A0 B0 C0

d 0 0 0
d 0 1 0
d 1 0 0
d 1 1 1
d 0 0 0
d 0 1 0
d 1 0 0
d 1 1 1

LUT3
inputs output

C0 A1 B1 S1
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

LUT4
inputs output

C0 A1 B1 C1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

3.2.3.3 Multiplier

The multiplication operation is another common function that would be amenable to a
FPGA. Let us define a 3-bit multiplication procedure as a human would do it:

A2 A1 A0
× B2 B1 B0

(Ac0
2 A1 A0) AND (B0)

+ (Ac1
2 A1 A0) AND (B1)

+ (Ac2
2 A1 A0) AND (B2)

c3 O4 O3 O2 O1 O0



CHAPTER 3. PROGRAMMABLE LOGIC 23

The output can be defined as follows: (NOTE: henceforth, ‘+’ is an add operation):

O0 = (A0 AND B0)

O1 = [(A1 AND B0) + (A0 AND B1)]

O2 = [c0 + (A2 AND B0) + (A1 AND B1) + (A0 AND B2)]

O3 = [c1 + (A2 AND B1) + (A1 AND B2)]

O4 = [c2 + (A2 AND B2)]

Then, let us define the carry bits:

c0 = [(A1 AND B0) + (A0 AND B1)]

c1 = [c0 + (A2 AND B0) + (A1 AND B1) + (A0 AND B2)]

c2 = [c1 + (A2 AND B1) + (A1 AND B2)]

c3 = [c2 + (A2 AND B2)]

This whole 3-bit multiplication operation can be mapped to 3-input look-up tables as fol-
lows:

L1 = (A0 AND B0)s [O0]
L2 = (A1 AND B0)
L3 = (A0 AND B1)
L4 = (L2 + L3)s [O1]
L5 = (L2 + L3)c [c0]
L6 = (A2 AND B0)
L7 = (A1 AND B1)
L8 = (A0 AND B2)
L9 = (L5 + L6 + L7)s
L10 = (L5 + L6 + L7)c
L11 = (L8 + L9 + L10)s [O2]
L12 = (L8 + L9 + L10)c [c1]
L13 = (A2 AND B1)
L14 = (A1 AND B2)
L15 = (L12 + L13 + L14)s [O3]
L16 = (L12 + L13 + L14)c [c2]
L17 = [L16 + (A2 AND B2)]s [O4]
L18 = [L16 + (A2 AND B2)]c [c3]

The human approach resulted in 18 LUTs with a depth of 5 layers. In comparison, the
Chortle-crf algorithm produced 53 LUTs with a depth of 4 layers. The same process was



CHAPTER 3. PROGRAMMABLE LOGIC 24

used as for the adder. Start with a truth table, followed by boolean minimization and finally
the mapping by Chortle.

3.3 Area vs Functionality

A lookup table can implement a large number of functions and thus has a high degree of
functionality associated with it. As the functionality increases the number of logic blocks
needed to implement a circuit decreases, but the area per block increases. From this state-
ment one can deduce that it may be possible to find a compromise between logic block area
and functionality.

As the functionality of a block increases, it is most likely that the routing requirements
for each block will also increase. With multiple blocks in a FPGA, the total area of the chip
is related to the functionality of the logic block. Since routing typically takes up a large
percentage of the total area, the effect of logic block functionality on the routing can be very
important. This section undertakes to find the optimal solution for this trade-off.

3.3.1 Model

In a comparative study done by Brown et al. [12], where different logic block implementa-
tions were assessed, the conclusion was reached that between lookup tables, NAND gates,
multiplexers and AND-OR gates, the lookup table was found to be superior. Thus our model
for the logic block incorporates a lookup table.

The model6 used for the logic block is presented in Figure 3.9. Therein, Dff is a D flip-
flop. The inclusion of this D flip-flop caused considerable debate. As will be seen in Chapter
4 (Section 4.4.4), the LUT is clocked and thus, the logic block already has synchronous func-
tionality. A memory element (for state machines) can be made by feeding back the output
of the logic block to one of its input. Hence, inclusion of a D flip-flop would not yield extra
functionality to the logic block. It is was decided not to include a D flip-flop in the logic
block. For completeness it is shown in the model although not used during calculations.

3.3.2 Logic block area and routing model

The mathematical model for the logic block area may be defined in such a way that it can
be scaled according to the number of inputs. The logic block has a certain fixed area (FA)
associated with it, which contains components that are necessary for basic functionality but
do not increase with multiple inputs. As more inputs are added to a logic block, more com-
ponents are needed, and thus the area of the logic block increasesr each additional input,
one HUFFLE 7 is needed and its area is defined as HA. The number of memory cells needed

6According to [12], single-output lookup tables are the best choice
7HUFFLE: RSFQ circuit; see chapter 4.1



CHAPTER 3. PROGRAMMABLE LOGIC 25

LUT Dff

state

Vcc

in

clk

enable

out

Figure 3.9: Model for logic block study

for a certain value of inputs is given by 2K, where K is the number of inputs. Supporting
components are needed to access each memory cell and thus the memory area (MA) is de-
fined as the area taken by the memory cell including its supporting components. Now the
area taken by a logic cell is given by:

LBA = FA + ((K × HA) + (MA × 2K)) (3.3.1)

A typical value8 for FA is 45000µm2 while HA is 19500µm2 . MA is typically in the order
of 54000µm2 .

The total area used by each logic block in the architecture of the whole chip can be accu-
rately determined by taking into account the routing area around each logic block. In Figure
3.10 the Routing Area per Block (RApB) is given by:

RApB = 2 ∗ (LBSL ∗ W ∗ RP) + (W ∗ RP)2 (3.3.2)

where LBSL is the length of a side of the block (assuming the logic block is square) and is
calculated from the logic block area: LBSL =

√
LBA. W is the number of routing wires and

is usually equal to K+1. The routing pitch (RP) is determined by the size of the routing
switches which are located inside the switch matrix (SM). The typical value of RP is 250µm.

3.3.3 Area vs. functionality experiment

The goal of this experiment is to determine the optimal number of inputs to a logic block
taking into account the trade-off between area and functionality. The experiment involves
mapping typical circuits into lookup tables and then determine how much area each circuit
requires with the help of our model.

8These typical values are calculated from RSFQ circuit layouts for the Hypres 3µm process [1]



CHAPTER 3. PROGRAMMABLE LOGIC 26

LOGIC

BLOCK

SM

LBSL W x RP

LBSL +

W x RP

Figure 3.10: Routing area model

Table 3.3: Amount of LUTs required for each circuit vs. number of LUT inputs

Number of LUT inputs
Circuits 2 3 4 5 6 7
X1 4 2 2 1 1 1
X2 5 3 2 1 1 1
X3 12 6 5 1 1 1
Adder 30 12 3 3 3 3
Multiplier 117 53 27 16 10 10

The typical circuits considered are those that were discussed in section 3.2.3 and they
include the three arbitrary binary circuits, the adder and multiplier. For each case, the circuit
is mapped into lookup tables with 2 and up to 7 inputs. The number of lookup tables that
each circuit requires for each amount of inputs is shown in Table 3.3.

Figure 3.11 shows two graphs, the average number of blocks of the five circuits for each
number of inputs, and the logic block area (including the routing area) for each number of
inputs.

To better understand how the areas of the circuits compare to each other, the values were
normalised. By normalising the values, the results are more readily comparable to other
circuits that were not discussed in this study. The graph in Figure 3.12 shows the individual
results for the normalised area for each circuit. The results show that for small circuits, it is
better to use logic blocks with fewer inputs. For larger circuits an advantage is gained when
more inputs are used.

From Table 3.3, the average number of LUTs over the five circuits can be used as a yard-
stick to judge the total area that a typical circuit would require. Figure 3.13 shows the average



CHAPTER 3. PROGRAMMABLE LOGIC 27

2 3 4 5 6 7
0

5

10

15

20

25

30

35

Number of inputs, K

N
um

be
r 

of
 b

lo
ck

s
Blocks

2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

A
re

a 
[µ

m
2  ×

 1
07 ]

Area

Figure 3.11: Number of blocks and Area (incl. routing) per block

2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Number of inputs, K

N
or

m
al

is
ed

 a
re

a

X1

X2

X3

Adder

Multiplier

Figure 3.12: Number of blocks and Area (incl. routing) per block



CHAPTER 3. PROGRAMMABLE LOGIC 28

normalised area that this ‘average’ circuit would require against the number of inputs. The
total area9 is calculated as: TA = (LBA + RApB) × [number of blocks]. The result shows that
by using existing RSFQ technology a lookup table with 5 inputs is the best choice for the
SPGA (although a lookup table with 3 inputs is a very good second choice).

2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of inputs, K

A
ve

ra
ge

 n
or

m
al

is
ed

 a
re

a

Figure 3.13: Average normalised area for the circuits in Table 3.3

3.4 SPGA

Information gathered and work done in this chapter culminated in the determination of the
best solution or architecture for the Superconducting Programmable Gate Array (SPGA).
The conclusion is that by using a symmetrical array of logic blocks containing RAM-based
lookup tables the best results were achieved. The lookup table provides great flexibility and
functionality while the symmetrical array architecture provides a natural routing structure to
feed the logic blocks. Each logic block contains a lookup table with 5 inputs and one output
without a D flip-flop. The symmetrical array routing architecture lends itself to the use of
switch matrices. The same memory cells used in the lookup tables can be used to control the
switches. Another advantage is that a wealth of information is available regarding mapping
into lookup tables along with algorithms and programs to aid in the process.

9The total area is also represented by multiplying the two graphs in Figure 3.11



CHAPTER 3. PROGRAMMABLE LOGIC 29

Unfortunately during the layout phase10, it became clear that there is not enough space
on the die to implement a 5-input lookup table. After some layout trials with 4- and 3-input
LUTs, results showed that even 4-input LUTs are to big too use and 3-input LUTs do not
leave enough space for the routing architecture and the on-chip programming circuits. The
eventual decision was to use four 2-input LUTs and a 2-line routing architecture. Although
this is not optimal it is sufficient to demonstrate the concept of an SPGA.

Now that the structure and architecture of the SPGA has been proposed, the next step
is to discuss placement of logic blocks and routing. A circuit can be mapped into LUTs with
relative ease, but to implement a boolean circuit, the LUTs must be connected with limited
routing resources. This is the problem associated with placement and routing. Following the
discussion in the previous paragraph, and the realization that only four 2-input LUTs will
be availiable on-chip, it is not worth going into much detail about placement and routing
algorithms because it has become a trivial task.

3.5 Chapter summary

During this chapter, research was presented on various types of programmable logic and
different architectures that are employed in existing semiconductor programmable logic. A
comparison was done to ascertain which combination will best suit our superconducting
programmable logic. The resulting solution will now be used as a framework from which
RSFQ circuits can be designed and implemented to realize an SPGA.

10Refer to Chapter 5



Chapter 4

SPGA design

‘Any sufficiently advanced technology is indistinguishable from magic.’

[Arthur C. Clark - Technology and the Future]

FROM the research in Chapter 3 flows the ideal structure for a reprogrammable logic de-
vice. In this chapter those ideas and concepts are used as a framework to design and con-

struct a superconducting reprogrammable device called the SPGA. Following in this chapter
are discussions on RSFQ circuits and blocks that constitute the final design, including some
simulations that provide insight into the operation of certain key circuit constructs.

Some existing RSFQ circuits are used and some newer circuits were developed specifi-
cally for this project. These gates are discussed and shown how they can be assembled to
create larger circuit blocks that have functional properties that to in constructing the final
SPGA.

4.1 Basic gates

This section discusses most of the basic gates used in this project. Basic gates may be defined
as circuits that cannot be broken up into smaller functional circuits.

Circuits diagrams are presented and a short discussion follows on the overall working of
the gates. In all gates a DC bias of 2.6mV is assumed unless stated otherwise. Only the most
important gates, gates that need explanation or gates that have changed under investigation
in this project are discussed in this chapter. All other gates are presented in Appendix C.

4.1.1 DCRL

DC-Resetable Latch (DCRL) [30] in Figure 4.1 is one of the more important gates in this
project because it is the basis on which the reprogrammability concept will be built. It is the
main memory element in the design with the added bonus that it is electrically resetable.
More detail on the design of this gate was given previously by Fourie [4].

30



CHAPTER 4. SPGA DESIGN 31

L
0

R
1

R
0

L
1

B
0

L
p

5

L
3

L
4

L
5

B
1

R
2

L
6

B
2

R
4

R
3

L
p

6
R

5
L

p
1

4

B
3

R
6

R
7

L
p

7

R
8

L
p
2
3

L
p

1
5

L
1

4
L

1
8

L
1

2
L

1
3

L
1

5
B

4
L

p
9

L
1

7
L

1
9

L
p
2
0

L
p

2
1

B
5

R
9

L
p

1
8

L
p

2

R
11

B
7

R
1

2
B

8
B

6

R
1

0

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

1
5

.5
1

9
8

.4
3

1
p

K
1

=
0

.5
8

1
.0

7
9

2
.0

6
7

p
0
.2

p
6
.1

5
8
0
p

1
.2

8
2

p
2
.3

0
5
7
p

1
.2

8

1
.0

1
5

9
p

0
.8

1
7

4
.6

8
9

3

0
.2

p

1
.8

3
3

6
0

.2
0

5
p

6
.6

5
6

4

0
.2

p
8

.1
3

6
8

0
.1

3
2

p
0

.1
3

3
p

1
.7

3
5

9

1
.9

3
9

1
p

1
.6

4
3
8
p

1
.3

8
7
3
p

3
.7

8
7

p

0
.2

p

2
.3

1
3
5
p

0
.9

0
8
1
p

1
.3

1
6

3
p

0
.1

3
2

p
2

.1
0

3
3

0
.1

3
2

p

0
.1

3
2

p

0
.2

p

0
.9

8
5

0
.7

7
4

5
1

.1
8

2
3

a
re

a
=

0
.2

6
5
8

a
re

a
=

0
.2

2
4

1
a

re
a

=
0

.3
5

1
3

a
re

a
=

0
.0

9
8
7

a
re

a
=

0
.1

6
5

2

a
re

a
=

0
.1

3
6

4

a
re

a
=

0
.2

9
1

2
a
re

a
=

0
.3

7
0
3

a
re

a
=

0
.2

4
2
6

S
E

T

R
E

A
D

D
C

_
B

IA
S

R
E

S
E

T
_

IN
R

E
S

E
T

_
O

U
T

O
U

T

Figure 4.1: Circuit diagram: DCRL



CHAPTER 4. SPGA DESIGN 32

The output is dependent on the state of the gate (set or unset), which can be changed by
means of the SET or RESET ports. The latch is set by applying a pulse to the SET input, or
reset (to the unset state) by applying a current through the RESET port. When the gate is in
the set state, a pulse is produced at the OUT port, when a pulse is received at the READ port.

4.1.2 HUFFLE

The Hybrid Unlatching Flip-Flop Logic Element (HUFFLE) in Figure 4.2 is a versatile circuit.
It was originally developed as a memory element but its primary task in this project is as a
bipolar current driver. It is mainly used as a selection tool during the programming of the
memory elements and as a decoder in the lookup table.

The HUFFLE’s output is a current flowing between I_OUT+ and I_OUT-. The direction
of the current flow is determined by the state of the gate. By application of a pulse to the
SET port the current will flow from + to -. The opposite flow is achieved by application of
a pulse to the RESET port. The state can be predetermined with the aid of the prebias (PB)
port. The HUFFLE is capable of driving large inductance values but the trade-off is slower
response times.

The HUFFLE is a rather large circuit to simulate and it is used extensively in the design.
For that reason it was decided to substitute a current source to simulate the output of the
HUFFLE. Under ideal conditions the amplitude of output current should be around 340µA,
but slight deviations can occur due to varying load conditions and changes in circuit param-
eters (manufacturing process variations). With the aid of a Monte Carlo simulation, where
circuit parameters and loads were varied, a statistical model for the output of the HUFFLE
was developed. The results are Gaussian distributions with a nominal amplitude and stan-
dard deviation for both positive and negative flowing currents. The positive mean is 339µA
with a standard deviation of 12.27µA. The negative mean is 333µA with a standard deviation
of 12.11µA.

This statistical model for a current source can now be used instead of the large HUFFLE
circuit in simulations. The advantage is shorter simulation times and more control over
timing. The only drawback is the absence of the transient response during state changes
which should always be kept in mind. Obviously, this model is not a true replacement and
a final simulation should always incorporate the whole HUFFLE circuit to ensure accurate
results.



CHAPTER 4. SPGA DESIGN 33

R
0

R
1

L
0

B
0

L
1

L
2

L
3

L
4

L
5

R
2

L
8

L
9

L
7

L
6

L
1
2

L
1
3

L
1
4

L
1
5

R
3

L1
1

L1
0

R
5

B
1

R
4

L
1
6

L
1
7

R
6

L
1

9
B

2
B

3
L
1
8

L
2
0

R
7

R
8

B
4

L
2
1

L
2
3

L
2
4

B
5

R
9

L
2
2

L
2
5

R
1

0

L
2
6

L
2
7

R
11

L
2
9

L
3
0

L
2
8

L
3
2

L
3
3

L
3
5

L
3
4

L
3
6

L
3
1

R
1

2
B

6

R
1

3

L
3
7

L
3
8

L
3
9

R
1

4
L
4
0

R
1

5
B

9
B

7

B
8

L
4
1

B
1
0

R
1

6

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

1
0

5
p

5
.5

5
p

5
p

5
p

1.
14

0
.0

5
3

p
3

p

K
4

=
0

.2
2

K
3

=
0

.2
2

3
.5

p
3
.5

p

1
.6

4
p

K
6

=
0

.4
7

K
5

=
0

.4
7

3
p

2
2
.5

p
2
.5

p
1
.1

6
p

0
.0

5
3

p
1
.6

4
p

5
p

0
.8

1

0
.1

3
2

p
0

.0
5

3
p

1
.6

1
p

1.
14

0
.8

2
p

0
.0

5
3

p
4
.3

5

1
0

1
p

0
.8

1
5

p
0
.3

p

0
.3

p

1
p

2
.0

8
11

2
5
p

1
p

6
.1

3

2
.1

2
p

0
.1

3
2

p

K
2

=
0

.3
5

2
.0

2
p

K
1

=
0

.3
5

3
.5

p
K

8
=

0
.4

2
K

7
=

0
.4

2

3
.5

p

3
p

K
11

=
0

.5
8

K
1
2
=

0
.5

8

1
.9

8
p

1
.1

6
p

0
.8

2
p

0
.8

2

1.
14

0
.1

3
2

p
2
.5

p
2
.5

p

1
.6

1
.9

8
p

0
.1

3
2

p
5

1.
14

a
re

a
=

0
.2

5
1

a
re

a
=

0
.3

5
5

a
re

a
=

0
.2

a
re

a
=

0
.2

a
re

a
=

0
.2

5
1

a
re

a
=

0
.3

5
5

a
re

a
=

0
.2

5

a
re

a
=

0
.2

2
a
re

a
=

0
.2

2

a
re

a
=

0
.3

5
5

a
re

a
=

0
.2

5

S
E

T

R
E

S
E

T

D
C

_
B

IA
S

I_
O

U
T

+

I_
O

U
T

-

P
B

_
IN

P
B

_
O

U
T

Figure 4.2: Circuit diagram: HUFFLE



CHAPTER 4. SPGA DESIGN 34

4.1.3 I-Switch

A large number of uniquely accessable memory cells (as is the case in this project) would
require some sort of access scheme. A matrix-type scheme has been proposed [4] where
each memory element could be represented as a cell in a matrix (i.e. as intersections of row
and column lines). The Current-Set Switch (I-Switch) has been purposefully designed for
this task [4].

The DC_SET port in Figure 4.3 requires a dc current of the type that can be supplied by
the HUFFLE. When a pulse arrives at the READ port while a positive (IN to OUT) dc current
is applied to the DC_SET port, an output pulse is generated. Any other combination does
not produce output.

L0 L1

R0

L3L2

R1
L4 R2

B1B0

B2

R3

B3 L5

L6

R4

R5 B4

jj1
jj1

jj1

jj1

jj1

8
5p 5p

K2=0.5 K1=0.5

2p 2p

1
1p 1

1.2

1.98p

0.132p

1.14

1.14

area=0.2
area=0.2

area=0.245

area=0.27

area=0.27

READ OUT

DC_BIASDC_SET_IN

DC_SET_OUT

Figure 4.3: Circuit diagram: Current-Set switch



CHAPTER 4. SPGA DESIGN 35

4.1.4 I2-Switch

The Two-line Current-Set Switch in Figure 4.4 works on the same principle as the Current-
Set Switch but has been extended to two DC_SET lines. Now, a positive current (IN to OUT)
must be injected on both DC_SET lines while an input pulse arrives at the READ port for an
output pulse to be generated.

I0L0

L1 L2

L3

L5

L6 R0

L4

L7
B1R1

L8

R2

B2

R3

B3 L9

L10

R4

R5 B4

jj1 jj1

jj1

jj1

jj1

dc 90u

3p

K4=0.1253

6.1p 6.1p

K3=0.1253

K5=0.4196 K6=0.4196
3p K9=0.2561 K10=0.2561K8=0.0982

K2=0.1259

3p

1.7p 1.7p
9K1=0.1259

K12=0.2573
K7=0.0982

3p
K11=0.2573

1
1

1.2p

1.2

1.98p

0.132p

1.14

1.14

area=0.2

area=0.2

area=0.27
area=0.245

area=0.27

READ

DC_SET_1

DC_SET_1 DC_SET_2

IN

OUT OUT

IN
DC_SET_2

DC_BIAS

OUT

Figure 4.4: Circuit diagram: Two-line current-set switch

This gate is the basis for the decoder in the lookup table. The logic block circuit (including
the lookup table) will be discussed in greater detail in section 4.4.4.

The SPICE model in Figure 4.4 is the nominal circuit, but an extended Monte Carlo model
was derived (see Chapter 5.6.3) that also takes into account the variations in the coupling
factors between the inductors of the select lines, bias control line and SQUID. Using this
extended model in combination a HUFFLE1, a yield of 100% was achieved.

1Note: the HUFFLE usually drives the select lines



CHAPTER 4. SPGA DESIGN 36

4.1.5 MSL Driver and Receiver pair

The Microstrip transmission line (MSL) Driver and Receiver pair from [31] was used as a
means to transmit SFQ pulses over relatively long distances. A small series resistor (not
shown), which provides decoupling between the two gates, should be included in the lay-
out when connecting the two gates together. The circuits for the driver and receiver are
presented in Figure 4.5 and Figure 4.6 respectively.

R0

L0

L3L1

L2

L4

R1
L5 L6

R3 B1
B0

R2

L7

jj1

jj1

7.5

0.132p

1.98p

1.58p 1.64p

1.58p

0.132p0.132p
3.6

1.14 2.31

1p

area=0.25 area=0.25

IN
RSFQ

DC_BIAS

OUT
MSL

Z =2.3
0

Ω

Figure 4.5: Circuit diagram: Microstrip Transmission Line Driver



CHAPTER 4. SPGA DESIGN 37

R
0

R
1

L
0

L
1

L
4

L
2

L
3

L
5

L
6

L
7

L
8

L
9

R
3

B
1

R
4

B
2

B
0

R
2

L
1
0

jj
1

jj
1

jj
1

1
3
.5

1
1

4
.8

6

1
0
0
p

1
0
0
p

2
.5

1
p

4
.6

5
p

2
.7

2
p

4
.7

8
p

1
.9

8
p

0
.1

3
2

p
0

.1
3

2
p

0
.1

3
2

p

3
.4

1
1

.9
8

1.
14

1
p

a
re

a
=

0
.1

2
a

re
a

=
0

.1
4

a
re

a
=

0
.2

5

IN
M

S
L

D
C

_
B

IA
S

O
U

T
R

S
F

Q

Z
=

2
.3

0
Ω

Figure 4.6: Circuit diagram: Microstrip Transmission Line Receiver



CHAPTER 4. SPGA DESIGN 38

4.1.6 RSFQ-to-COSL Converter

An RSFQ-to-COSL converter in Figure 4.7 was implemented as discussed by Fourie et al.
[32]. This gate is mainly used as a reliable interface between RSFQ and room-temperature
circuits. The gate accepts RSFQ signals at the IN port which are stored in a modified DRO.
The only limitation is that an input signal may not arrive during most of the positive cycle
of the sinusoidal clock (CLK) signal. The sinusoidal clock signal should have a amplitude
of 10mV. The output signal shape is similar (but slightly longer) than RSFQ pulses and can
reach an amplitude of around 1mV. The output port has been optimized for a 5Ω load.

R
0

R
1

R
2

B
0

R
3

R
4

R
5

B
1

R
6

R
7

B
2

R
9

R
8

L
0

B
3

L
1

L
2

L
3

L
4

R
1

0

R
11

B
4

B
5

B
6

B
7

R
1

2

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
11
0

1
0

1
5
.5

6

17
.1

8
6

5

1
.2

4

1
5
.6

5
.5

p
5
.5

p

K
1

=
0

.4
6

1
K

2
=

0
.4

6
1

2
.7

7
p

2
.2

p
2
.2

p

1
.6

1.
13

1
.2

4

a
re

a
=

0
.3

5
a

re
a

=
0

.3
6

a
re

a
=

0
.3

4

a
re

a
=

0
.2

4
5

a
re

a
=

0
.2

a
re

a
=

0
.2

a
re

a
=

0
.2

7
a
re

a
=

0
.2

4
5

IN
R

S
F

Q

O
U

T
C

O
S

L

C
L

K
D

C
_

B
IA

S

Figure 4.7: Circuit diagram: RSFQ-to-COSL converter



CHAPTER 4. SPGA DESIGN 39

4.2 Monte Carlo analysis and simulations

Monte Carlo simulations have proved to be a useful tool in predicting circuit yield of RSFQ
circuits [33] and have evolved from margin analysis [34] to encompass all circuit elements
and take into account integrated circuit (IC) process parameter variations as well as bias
trimming. A complete Monte Carlo model [35] encompasses tolerances expected for a stan-
dard layout, and is derived from process specifications such as uncertainties in etch widths
and layer thickness.

Monte Carlo analysis in itself can be used to optimize circuits [36] but in combination
with a genetic algorithm [4] [37] provided a very powerful technique which was used to
optimize nearly all of our basic gates.

4.3 Inductance restrictions between gates

SPICE models of our RSFQ gates have been optimized with a specific value of input- and
output inductance values. These inductances (IO inductances) represent the physical inter-
connections between gates. During the layout phase, it was not always possible to keep the
IO inductances to the exact value specified by the SPICE circuits. Due to the tight space
restrictions on the die, some gate- and block configurations result in either too short or too
long distances between gates to restrict the inductance values.

Therefore, a study was undertaken to find the range of IO inductances that would be al-
lowed between gates and still produce a working circuit with good yield. The investigation
involves setting up a SPICE simulation with two gates connected together. The IO induc-
tances of the separate gates are combined into a single inductance. A Monte Carlo simulation
is used to calculate the yields of the combined circuit while the new IO inductance is varied
with greater range until undesirable results (yield less than 98%) are produced. The outcome
of this process is a minimum- and maximum value of tolerable IO inductances. The process
is laborious because the IO inductance has to be varied by hand in each run. The ideal sit-
uation would be to test all possible combinations of available gates and compose a matrix
so that any layout engineer can see what his/her range of freedom is in terms of intergate
inductances. Unfortunately due to time restrictions, only the gates that caused considerable
trouble during layout were tested. The results are given in Table 4.1 where the ‘?’ indicates
an intractable value.

More work has to be done in this regard and it may be worth while investing time to
find an automated process to acquire intergate IO inductance ranges. This information is
invaluable to a layout engineer (or CAD package). Also, a more reliable method to acquire
the maximum inductance value needs to be found. Considerable difficulty was encountered
because pulses get trapped in large inductances or get shifted in time. The technique in-



CHAPTER 4. SPGA DESIGN 40

Table 4.1: Intergate IO inductance ranges

gate -> gate range [pH]
DCRL → DCRL(reset) 1.5 - 7.2
DCRL → JTL 0.5 - ?
DIV → JTL 0.5 - 7
DRO → DIV 2.3 - ?
DRO → JTL 1.5 - 7.8
I-switch → JTL 3.5 - ?
I2-switch → JTL 2 - ?
JTL → DIV 0.5 - 5.2
JTL → DRO(set) 0.5 - 7
JTL → I2-switch 0.5 - 4.7
most gates 0.5 - 5

volves three consecutive SFQ pulses, but testing for missing- or shifted pulses is difficult to
implement in Monte Carlo simulations and yields inconsistent results.

4.4 Composite blocks

Composite blocks are combinations of basic gates and/or other blocks. These blocks have
been composed to serve a specified purpose in the operation of the SPGA. A description of
the basic working (including diagrams) of all the blocks is presented in this section.

4.4.1 Inline Switch

The inline switch in Figure 4.8 can be used to stop pulses from propagating along a line.
When the inline switch is active, the DCRL has been engaged to the set state (with the aid of
the I-Switch). Hereafter, when a pulse arrives at the IN port, it triggers the DCRL to produce
a pulse at the OUT port. When the switch is inactive, the DCRL has not been engaged, and
acts as a barricade.

4.4.2 Junction Switch

The junction switch in Figure 4.9 can be used to connect two lines. It is mainly constructed
from a divider, DCRL and a merger. The divider duplicates the signal in the original line
(which in Figure 4.9 is the vertical line), while the DCRL arbitrates propagation and finally
the merger combines the two lines. When active, it allows pulses to propagate from the
original to the second line. When inactive, pulses cannot propagate from the original line to
the second line. It does not hinder pulses already travelling on either line.



CHAPTER 4. SPGA DESIGN 41

ISWITCH
WR

SEL+ SEL-

OUT

DCRL

RESET+

RESET-

SET

READ
OUTIN OUT

a)

b)

Figure 4.8: Inline switch: a) Symbol; b) Schematic block diagram

DIV

M
E

R
G

E
R

ISWITCH
R O

S+ S- DCRL
R-

R+

O

S

R

HORZ IN HORZ OUT

VERT IN

VERT OUT

a)

b)

Figure 4.9: Junction switch: a) Symbol; b) Schematic block diagram



CHAPTER 4. SPGA DESIGN 42

4.4.3 Crossbar Switch

The crossbar switch [4] in Figure 4.10 is an extension of the junction switch idea. In Figure
4.10, it connects the horizontal- and vertical lines and allow pulses to flow from one to the
other. It is constructed of two DCRLs, but both are programmed with the same data. The
result is that signals from both lines can either cross-flow or not. There is no case where one
side is connected and the other not. It does not hinder pulses already travelling on either
lines.

D
IV

D
IV

DIV

M
E

R
G

E
R

MERGER

ISWITCH
R O

S+ S- DCRL
R-

R+

O

S

R

D
C

R
L

R
+

R
-

O

SR

HORZ IN

HORZ OUT

VERT IN

VERT OUT

a)

b)

Figure 4.10: Crossbar switch: a) Symbol; b) Schematic block diagram



CHAPTER 4. SPGA DESIGN 43

4.4.4 Logic Block

A diagram of the logic block is presented in Figure 4.11. The logic block is based on a lookup
table and is composed of a decoder, memory cells (including support for data loading) and
merging sections.

HUFFLE

S

R

+

-

HUFFLE

S

R

+

-

DRO
S O

R

DRO
S O

R

DRO
S O

R

DRO
S O

R

JT
L

I
O

ISWITCH

+

-
I O

ISWITCH2
+

-
I O

DIV
IN

OUT

ISWITCH2
+

-
I O

ISWITCH2
+

-
I O

ISWITCH2
+

-
I O

DIV
IN

OUT

DIV
IN

OUT

DIV
IN

OUT

DIV
IN

OUT

DCRL
S

O

R

M
E

R
G

E
R

O

I
I

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

M
E

R
G

E
R

O

I
I

M
E

R
G

E
R

O

I
I

HUFFLE

S

R

+

-

ISWITCH

+

-
I O

JT
L

I
OJT

L
I

O

DCRL
S

O

R

M
E

R
G

E
R

O

I
I

DCRL
S

O

R

IN 1

IN 2

WR_SEL

PROGLUT_DATA

RD_CLK

PR_CLK LUT_DATA

Merging section

Memory + programming section

Decoder

Memory
cell

Figure 4.11: Schematic diagram: Logic block

The decoder section is composed mainly of the two HUFFLEs to the left and the four
I2SWITCH blocks. The RSFQ inputs (IN 1 and IN 2) are translated to quasi-DC signals by



CHAPTER 4. SPGA DESIGN 44

the HUFFLEs. By connecting the HUFFLE output2 lines to the I2-switches in the manner
shown3 it is possible for only one of the I2-switches (specified by the input) to generate an
output pulse. The two select lines of the I2-switch represent boolean bits: a current flowing
from top (‘+’) to bottom (‘-’) is regarded as positive or a logical ‘1’. Table 4.2 shows how the
memory cells (DCRLs) are mapped to the logic block inputs.

Table 4.2: Mapping: Logic block inputs to memory cells

cell IN 2 IN 1
0 1 1
1 1 0
2 0 0
3 0 1

The rest of the circuitry in the logic block is related to programming, clock distribution
and merging the output.

The memory cells of the logic block are programmed by serial shifting. The bits are
shifted in from the LUT_DATA port, one bit at a time as the pr_clk port is pulsed. Just before
the last clock pulse, both the WR_SEL and PROG are asserted to activate the HUFFLE, which
in turn will allow the program data to set the respective memory cells (DCRLs).

4.4.4.1 Logic block decoder simulation

SPICE is the preferred choice to investigate the behaviour of RSFQ circuits and gates. In this
project, WRspice [38] was used extensively to explore the working of various gates, blocks
and configurations of gates.

For reference, Figure 4.12a shows a diagram of the decoder section found in the logic
block. The simulation tests all the possible input combinations and verifies that the correct
I2-switch produces an output pulse. Refer to Table 4.2 for the mapping of input to I2-switch.

The simulation results are presented in Figure 4.13, where a clock with 300ps period is
applied to the RD_CLK port. The clock serves as read input for the I2-switches and as reset
for the HUFFLEs. The two select lines are the HUFFLE output currents, which is a direct
translation of the IN 1 and IN 2 ports, but shows more clearly the timing of the various
signals. The IN 1 and IN 2 pulses precede the clock pulses by 100ps.

The simulation shows that for all the possible inputs, the correct I2-switch produces a
pulse 4.

2The HUFFLE produces a current flowing either from ‘+’ to ‘-’ or the other way depending on its state
3The sequence is known as a Gray code, which minimizes the simultaneous bit changes, and in our config-

uration minimizes the number of wire-crossings from one I2-switch block to the next [4]
4NOTE: The Gray code wiring implementation of the I2-switches changes the natural order that one would

expect the I2-switches would produce output



CHAPTER 4. SPGA DESIGN 45

HUFFLE

S

R

+

-

HUFFLE

S

R

+

-

I2SWITCH

+

-
I O

DIV
IN

OUT

I2SWITCH

+

-
I O

I2SWITCH

+

-
I O

I2SWITCH

+

-
I O

DIV
IN

OUT

DIV
IN

OUT

DIV
IN

OUT

DIV
IN

OUT

IN 1

IN 2

RD_CLK

To DCRL 0

DCRL 1

DCRL 2

DCRL 3

DRO
S O

R

DRO
S O

R

DRO
S O

R

DRO
S O

R

J
T

L
I

O

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

ISWITCH

+

-
I O

DCRL
S

O

R

D
IV

IN

O
U

T

DIV
IN

OUT

HUFFLE

S

R

+

-

ISWITCH

+

-
I O

J
T

L
I

O

J
T

L
I

O

DCRL
S

O

R

DCRL
S

O

R

WR_SELPROGLUT_DATA

PR_CLK LUT_DATA

0

1

2

3

(READ)

(READ)

(READ)

(READ)

a) b)

Figure 4.12: Schematic diagram of the Logic block: a) Decoder; b) Programming and memory cells



CHAPTER 4. SPGA DESIGN 46

0

0

1

0

0

1

1

1

RD_CLK
[mV]

Select
line 1
[uA]

Select
line 2
[uA]

DCRL 0
[mV]

DCRL 1
[mV]

DCRL 2
[mV]

DCRL 3
[mV]

1

0

400

400

-400

-400

1

1

1

1

0

0

0

0

Figure 4.13: Simulation: Logic block decoder

LUT_DATA
[mV]

PR_CLK
[mV]

WR_SEL
[uA]

PROG
[mV]

DCRL 0
[mV]

DCRL 1
[mV]

DCRL 2
[mV]

DCRL 3
[mV]

1

0

1

0

400

-400

1

0

1

0

1

0

1

0

1

0

1 0 1 1

1

1

0

1

Figure 4.14: Simulation: Logic block programming sequence



CHAPTER 4. SPGA DESIGN 47

4.4.4.2 Logic block program sequence simulation

For reference, Figure 4.12b shows a diagram of the programming- and memory cells sec-
tions found in the logic block. The simulation aims to to show that the logic block can be
programmed correctly also indicating the signals (including timing) that are required.

The data for the memory cells (DCRLs) are shifted in serially by means of the LUT_DATA
port, and shifting takes place with the aid of clock pulses at the PR_CLK port. During the
last clock period (i.e. between the third and fourth clock pulses), the PROG port needs to
be pulsed to activate the HUFFLE, which in turn allows the data that has been shifted in,
to propagate to the DCRLs’ set inputs. The WR_SEL signal has to be activated even before
the PROG signal, but the timing between theses two signals is handled by the Programming
Frame5.

At 1.3ns (READ) signals were manually injected to trigger the DCRLs. The DCRL signals
show that the output is produced correctly, with the data bits inversely corresponding to the
order of the memory cells (i.e. first data bit to DCRL 3 and last data bit to DCRL 0).

4.4.5 Programming Frame

A matrix-type access scheme has been employed to gain access (and program) all the mem-
ory cells of the SPGA [?]. Each memory cell (DCRL) has been assigned to a cell in the matrix.

The on-chip circuitry used to implement this matrix-type access scheme is collectively
known as a Programming Frame. The frame has two main sections, namely the column-
and row driver sections. The column driver section is located at the top, while the row
driver section is located to the left. A corner section connects the two sections in the top-left
corner.

All the switches in the routing architecture can be programmed with the Switch Pro-
gramming Frame, while the lookup tables have their own LUT Programming Frame. The
reason is that the data in the lookup tables are loaded in with serial shifting and requires a
slightly different timing procedure that can be used with the normal switch memory cells.

The columns in the matrix are labelled with letters, while the rows are labelled with
numbers. The LUT programming frame (located in the top-right corner) continues the same
labelling scheme.

During the cell assignment the amount of rows were minimized because the row access
lines are implemented with RSFQ lines (which are wide and difficult to route).

The diagram of the setup is shown in Figure 4.15. The shaded triangles represent row
drivers, while the shaded rectangles represent the column drivers of the programming frame.
Each matrix cell is indicated by a small shaded circle, and its access combination written
nearby.

5Refer to Chapter 4.4.5 for more detail



CHAPTER 4. SPGA DESIGN 48

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

A B C D E F G H I

K

J

L

1

2

3

4

5

6

7

8

1A

2A

2B

3A

4A

5A

5B

5C

5D

6A

6B

6E

6F

6H
6G

5F

5E 5G

4H4G

4E

4F

3H

3F

2H

2E

2F

2G

3E

3G

5H

4B 4C

4D

8K

3B

2C 7K

2D

1B 1C

1D 1E

1F

1I

1J

2I 2J

3J

3I

4I 4J

5I 5J

6J

6I

6D

6C

8L

7L

Figure 4.15: Diagram illustrating the matrix-cell assignment of the programming frames



CHAPTER 4. SPGA DESIGN 49

The diagram in Figure 4.16 shows a more detailed but smaller implementation to illus-
trate how the programming frame works. In the diagram, the upper dotted frame encapsu-
lates the circuitry that implements a single column driver, while the lower dotted frame that
of a single row driver. These drivers can respectively be duplicated side by side to increase
the capacity of the programming frame.

D
IV

D
IV

DIV

D
R

O
S

O
R

DRO
S OR

D
R

O
S

O
R

DIV
DIV

DIV

DIV

D
R

O
S

O
R

AND O

1

2

C

21 4 3

2341

D
IV

D
IV

D
IV

D
IV

D
IV

DRO
SO R

AND

O

1 2C

1

1

4

5

2

3

4

5

2

3 H
U

F
F

LE
SR

P
B

+

P
B

-
+-

DIV
DIV

DIV

DIV

DIV

D
R

O
S

O
R

DRO
S OR

AND O

1

2

C

RSFQ TO
SWITCHES

RSFQ TO
SWITCHES

1:CLK

JT
L

JT
L

2:PR
DATA3,5:WR

5 3

D
IV

D
IV

D
IV

DRO
SO R

AND

O

1 2C

H
U

F
F

LE
SR

P
B

+

P
B

-
+-

JT
L

JTL

JTL

2: PR DATA

quasi-DC
TO/FROM

SWITCHES

quasi-DC
TO/FROM

SWITCHES

SW SW

SW SW

ROW 1

ROW 2

COLUMN BCOLUMN A

column driver

row
driver

Figure 4.16: Schematic diagram: Simplified 2x2 Programming Frame



CHAPTER 4. SPGA DESIGN 50

The smaller implementation can be used as an example to illustrate how the program-
ming process works. The matrix is programmed one column at a time. The size of the
programming data word is the sum of columns and rows (in this case, four). The data bits
are entered in at PR_DATA port; row data first followed by column data. Both in order from
highest to lowest (2 to 1). By asserting a respective bit in the column data, a specific column
is selected. All the rows in that column are then programmed with the data in the row data
bits. The programming data are shifted through a shift register with the aid of the CLK pin.
In our case the first four clock pulses correspond to the shifting of data through the registers
and will be named accordingly, shift clock pulses (SCPs). WR must be pulsed in the same
clock cycle as the last data bit 6. The last SCP shifts the last data bit in, and also moves the
column bits into AND-gates that have one input set by WR. After a short internal delay, this
clock reads the column driver AND-gates into the set inputs of HUFFLEs. The last SCP also
releases an internally delayed WR pulse to propagate to the inputs of the row driver AND-
gates. After the last SPC, the next clock pulse ensures that the row bits and the delayed WR
signal gets processed by the AND-gates. This in turn releases the row SFQ pulses into the
switch matrix. The next clock pulse resets any HUFFLEs.

Figure 4.17 shows a diagram of how the bits should be ordered. Row bits first (R2 and
R1) followed by column bits (CA and CB). One has to remember that only one column can be
programmed at a time, so the process has to be repeated as many times as there are columns.

WR

PR_DATA

CLK

R2 R1 CA CB

1 2 3 4 ...

Figure 4.17: Programming frame bit sequence

This serial loading of data has the added advantage that it minimizes the amount of pins
needed on the die.

4.5 SPGA

By combining the circuits as illustrated in Figure 5.14, the SPGA is finally realized. The
structure in the figure represents the architecture of the final design. The reasons for certain
design choices have been discussed previously and the others will become apparent later.

6The last SCP corresponds to the last data bit



CHAPTER 4. SPGA DESIGN 51

One may identify some familiar blocks (that were discussed in this chapter) in the figure
and some new blocks (such as the switch matrices at the input and output of the logic blocks)
which are obvious extensions of previous ideas.

In the final design there is a total of 4253 junctions and the total bias current is 560.48 mA.
These numbers were computed after consideration for added blocks during the physical
layout phase (such as JTL- and MSL gates).

4.6 Functional Verilog simulation of the SPGA

SPICE simulations of large circuits are slow and memory intensive leading to problems with
functional simulation of medium- to large scale circuits. The Verilog Hardware Description
Language (Verilog HDL) can be employed to simulate large and complex RSFQ circuits [39].
By using Verilog to describe the functional (and/or timing) behaviour of RSFQ gates or RSFQ
blocks, a high-level functional abstraction is achieved.

Most of the research has been done with regard to timing and delays [39]. Although
timing and delays are very important in large scale circuits, especially with regard to clock
skew and asymmetrical delays, the emphasis of the Verilog models in this project was on
functional behaviour only. The reasons being that we were only interested in the behavioural
logic operation of the circuit as a whole, and did not have enough time to go through the
exhaustive process of extracting the timing parameters from the RSFQ gates and blocks.

4.6.1 Functional models

The diagram in Figure 4.18 provides the framework from which the functional models of the
blocks can be extracted. In total, 6 functional blocks can be identified and are indicated by
dotted frames named above the right-hand corner. The whole circuit is composed of rotated
and/or mirrored copies of these blocks.

4.6.1.1 Switch Matrix 1 (SM1)

The switch matrix in the upper-left corner of the design is also known as a crossbar matrix.
Looking at the block more closely in Figure 4.19, the left-hand side denotes the horizontal
input (h_in), and the right-hand side the horizontal output (h_out). The same holds for the
top- and bottom sides, v_in and v_out which represent the vertical flow. The four small
circles indicate switch elements that control the flow of data. There are two clusters, one to
the left and one to the right, each with two elements. Each cluster (encircled) is controlled by
one memory element. When a memory cell is active and contains a boolean ‘1’, the switches
are closed, connecting the vertical and horizontal lines in the manner shown in the diagram7.

7Note: lines crossing perpendicularly are not connected



CHAPTER 4. SPGA DESIGN 52

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

SM1 SM_STOP
SM2

LUT_IN

LUT_OUT

LB

i0 i1 o0 o1 i2 i3

i4

i5

o7

o2

o3

o4

o5

o6i7 i6o9 8

i9

i8

o10

o11

i10

i11

i12

i13

Figure 4.18: Symbolic diagram used as framework for Verilog simulations



CHAPTER 4. SPGA DESIGN 53

SM1

h_in h_out

v_in

v_out

0

1

Figure 4.19: Symbolic diagram: Switch Matrix 1 (Crossbar matrix) (SM1)

Using this description, it is possible to compose a Verilog module that emulates this
behaviour:

module sm1 ( pr_h_set, pr_v_set, pr_d, reset, h_in, v_in, h_out, v_out);

input pr_h_set, pr_v_set;

input [1:0] pr_d;

input reset;

input [1:0] h_in, v_in;

output [1:0] h_out, v_out;

reg [1:0] h_out, v_out;

reg [1:0] SRAM;

wire pr_clk;

assign pr_clk = pr_h_set && pr_v_set;

always @(posedge reset or posedge pr_clk)

begin

if (reset)

SRAM = 2’b00;

else

SRAM = pr_d;

end

always @(h_in or v_in)

begin

h_out[0] = h_in[0] || (v_in[1] && SRAM[1]);

h_out[1] = h_in[1] || (v_in[0] && SRAM[0]);

v_out[0] = v_in[0] || (h_in[1] && SRAM[0]);

v_out[1] = v_in[1] || (h_in[0] && SRAM[1]);

end

endmodule



CHAPTER 4. SPGA DESIGN 54

The input parameters pr_h_set and pr_v_set are used during the programming stage8 to
allow indivudual access to each block. The pr_d parameter is used to inject the memory cell
data into the SRAM register (or variable). The SRAM register represents the memory cells in
each block. The reset signal is used as an asynchonous reset to all the blocks.

4.6.1.2 Switch Matrix 2 (SM2)

The switch matrix in the upper-middle part of the design basically works on the same prin-
cipal as the crossbar matrix, but not all the lines are connected. Figure 4.20 gives a closer
view and more detail. The Verilog code is given in Appendix A.

SM2

h_in h_out

v_in

v_out

0

1

Figure 4.20: Symbolic diagram: Switch Matrix 2 (SM2)

4.6.1.3 Stop Switch Matrix (SM_STOP)

The switches in the Stop Switch Matrix can prevent throughput. If the switch is active the
lines are connected. Figure 4.21 give more detail and the code is in Appendix A.

4.6.1.4 LUT_IN

The switch matrix to the left of any logic block provides access from routing lines to the logic
block inputs. The matrix contains 4 switches to allow any input combination of the available
data lines9. Figure 4.22 provides more detail while the code is in Appendix A.

8Refer to Chapter 4.6.2 for more infomation
9This routing configuration allows the implementation of a virtual OR function in the routing architecure

itself. By enabling switches 0 and 1, the resulting output signal from the top h_out port is then the OR of both
v_in signals



CHAPTER 4. SPGA DESIGN 55

SM_STOP

in out

0

1

Figure 4.21: Symbolic diagram: Stop Switch matrix (SM_STOP)

LUT_IN

0 1

2 3

v_in

v_out

h_out

Figure 4.22: Symbolic diagram of the LUT_IN switch matrix

4.6.1.5 LUT_OUT

The logic block output is re-integrated into the routing architecture by means of the LUT_OUT
switch matrix. See Figure 4.23 and Appendix A for more detail about the implementation.

4.6.1.6 Logic Block (LB)

The logic block architecture has been described in Chapter 3, and in essence contains a
clocked lookup table. The logic block contains four memory cells. The contents of the mem-
ory cells correspond to the output of the truth table that describes the behaviour of the logic
block. For example, if both inputs are ‘0’, the content of the first memory cell is output. If
input 1 is ‘1’ and input 2 is ‘0’ then the second memory cell’s contents is output, and so forth.
Output is produced when the data clock (d_clk) is asserted. The Verilog code is given in
Appendix A.



CHAPTER 4. SPGA DESIGN 56

LUT_OUTv_out

v_in

h_in 0 1

Figure 4.23: Symbolic diagram of the LUT_OUT switch matrix

4.6.1.7 Verilog SPGA model

By structuring the blocks of Verilog code (modules) so that it implements the architecture
shown in Figure 4.18, a functional abstraction of the SPGA10 was created. This model can
now be used to demonstrate the overall working of the circuit.

4.6.2 Programming and simulation

A matrix-type access scheme has been employed to program all the memory cells (both in
the switch matrices and logic blocks). Two vectors pr_h_set and pr_v_set have 9 and 5 bits
respectively. Each bit represents a row or column in the horizontal- or vertical direction
respectively. Vertical columns are marked v1 to v4 while horizontal rows are marked h0
to h8 in Figure 4.24. When one bit in each vector is asserted to access a defined module, the
data in the pr_d vector is read into that specific module’s memory cells. The logic block is the
only exception, where pr_clk must also be asserted to load the data into the memory. Parallel
(vs. serial) data loading from the pr_d vector is used to avoid unnecessarily long simulation
setup and programming times. The relation of the bits in the pr_d vector to memory cells in
each block is indicated by the small numbers in each block in Figure 4.24.

As an example, the boolean logic functions in (4.6.1)-(4.6.2) were mapped into the SPGA
Verilog model and simulated.

O1 = (A XOR B) OR (C AND D) (4.6.1)

O2 = (C AND D) NAND E (4.6.2)

10Refer to Appendix A for the Verilog code



CHAPTER 4. SPGA DESIGN 57

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

SM1 SM_STOP
SM2

LUT_IN

LUT_OUT

LB

i0 i1 o0 o1 i2 i3

i4

i5

o7

o2

o3

o4

o5

o6i7 i6o9 8

i9

i8

o10

o11

i10

i11

i12

i13

0

1 0

1 0

1 0

1

0 1

0

1

0 1

2 3
2 3

0 1

0 1

0 1

0 1

0

1 0

1 0

1

0 12

0 1

3

0 1

0 1

0
1

1

0

0

10

1

0 1

2 3

0 1

v0 v1 v2 v3 v4

h0

h1

h2

h3

h4

h5

h6

h7

h8

Figure 4.24: Symbolic diagram illustrating Verilog programming matrix



CHAPTER 4. SPGA DESIGN 58

The lookup tables are as follows11:

L1 = A XOR B

L2 = L1 OR L3

L3 = C AND D

L4 = L3 NAND E

The truth table for three test cases is given in Table 4.3.

Table 4.3: Partial truth table for (4.6.1)-(4.6.2)

input O1 O2

A B C D E A XOR B C AND D L1 OR L3 L3 NAND E
a 0 1 0 1 0 1 0 1 1
b 1 0 0 1 1 1 0 1 1
c 1 1 1 0 0 0 0 0 0

An easy way to program the memory cells is to step from the h0 to h8 rows while stepping
from v0 to v5 for each row. It this way all the possible cases are covered. Thus, Table 4.4
shows how to set up all the switches and lookup tables for the example. Input A is mapped
to i0, input B to i1, input C to i11 input D to i10, output O1 to o6 and output O2 to o7.

Figure 4.25 shows part of the program loading sequence as done in QuartusII [40]. The
figure contains 5 signals used during the loading sequence, namely reset, pr_clk, pr_h_set,
pr_v_set and pr_d. The reset is pulsed at the beginning to initialize all the blocks in a known
state. The programming clock (pr_clk) is used to load the data from the programming data
bus (pr_d) into the memory of the logic blocks. The block-selection variables (pr_h_set and
pr_v_set) are used to allow access to all the blocks in the virtual matrix configuration.

Figure 4.26 shows the results of the simulations for the three input cases discussed pre-
viously. The figure contains one clock signal (d_clk) and two data buses (d_in and d_out).
The Verilog model was designed to process only at positive-edge clock changes. The data
buses have been broken into bit-pairs for clarity and correspond to port assignments illus-
trated in Figure 4.24. In the simulation figure (Figure 4.26) the input data bits, d_in[0] and
d_in[1], correspond to the afore mentioned example inputs, A and B. The rest of the example
input and output assignments are shown just to the right of the respective data bit-pairs. The
simulation shows the resulting operational output bits (O1 and O2) for three cases of input
stimulation and correspond the truth table (Table 4.3) of the function that was programmed
into the Verilog SPGA model.

11L1-L4 refers to logic blocks LB1 - LB4



CHAPTER 4. SPGA DESIGN 59

Table 4.4: Programming sequence to implement functions (4.6.1)-(4.6.2)

pr_h_set pr_v_set pr_d comment
000000001 (h0) 00001 (v0) 0000 SM1

00010 (v1) 0000 SM_STOP
00100 (v2) 0000 SM2
01000 (v3) 0000
10000 (v4) 0000 SM2

000000010 (h1) 00001 (v0) 1001 LUT_IN
00010 (v1) 0110 LB1
00100 (v2) 0110 LUT_IN
01000 (v3) 1110 LB2
10000 (v4) 0000

000000100 (h2) 00001 (v0) 0000 SM_STOP
00010 (v1) 0000
00100 (v2) 0001 LUT_OUT
01000 (v3) 0000
10000 (v4) 0010 LUT_OUT

000001000 (h3) 00001 (v0) 0000
00010 (v1) 0000
00100 (v2) 0010 SM_STOP
01000 (v3) 0000
10000 (v4) 0000

000010000 (h4) 00001 (v0) 0000 SM2
00010 (v1) 0000 SM_STOP
00100 (v2) 0000 SM1
01000 (v3) 0000
10000 (v4) 0000 SM2

000100000 (h5) 00001 (v0) 0000
00010 (v1) 0000
00100 (v2) 0010 SM_STOP
01000 (v3) 0000
10000 (v4) 0000

001000000 (h6) 00001 (v0) 1001 LUT_IN
00010 (v1) 1000 LB3
00100 (v2) 0110 LUT_IN
01000 (v3) 0111 LB4
10000 (v4) 0010 SM_STOP

010000000 (h7) 00001 (v0) 0000
00010 (v1) 0000
00100 (v2) 0010 LUT_OUT
01000 (v3) 0000
10000 (v4) 0001 LUT_OUT

100000000 (h8) 00001 (v0) 0000 SM2
00010 (v1) 0000
00100 (v2) 0000 SM2
01000 (v3) 0000 SM_STOP
10000 (v4) 0000 SM1



CHAPTER 4. SPGA DESIGN 60

Figure 4.25: Verilog simulation: Partial program loading sequence



CHAPTER 4. SPGA DESIGN 61

Figure 4.26: Verilog simulation: Operational input and output results



CHAPTER 4. SPGA DESIGN 62

4.7 Chapter summary

This chapter encapsulates the schematic circuit design of the SPGA, which includes descrip-
tions of gates used to compose larger functional blocks and ultimately construct the first
prototype. SPICE simulation results were included in this chapter to substantiate the opera-
tion of gates and smaller blocks. Ultimately, a functional Verilog simulation was introduced
to showcase the overall operation of the SPGA.



Chapter 5

Physical layout

‘The six stages of production:
- Wild enthusiasm
- Total confusion
- Utter despair
- The search for the guilty
- The persecution of the innocent
- The promotion of the incompetent.

No project was ever completed on time and within budget.’

[Anonymous - Cheops law]

LAYOUT design may be defined as the process of drawing an accurate physical represen-
tation of an engineering circuit schematic (netlist) that conforms to constraints imposed

by the manufacturing process, the design flow, and the performance requirements shown to
be feasible by simulation [41].

ICs are made using an extremely complicated process that results in tiny elements and
wires constructed and connected on a substrate. Layout design is the art of drawing these
elements and wires and can be thought of as a depiction of the physical circuit.

The layout CAD tool used during this project is LASI (LAyout System for Individuals)
[42] and is a ‘general purpose’ IC layout and design system.

The fabrication process from Hypres Inc. [1] was used.
Niobium is used as the superconducting material due to its high critical temperature, elec-
trical and thermal stability, and ability to be thermally cycled many times without degra-
dation. Josephson junctions are trilayer Niobium/Aluminum-Oxide/Niobium tunnel junc-
tions which are defined with a photolithography and etching process. This method yields
good uniformity and reproducibility of junction parameters. One resistive layer of molyb-
denum has a resistivity of 1 Ohm per square at 4.2K and the other layer of palladium gold
alloy is used for contact pad metallization and can be used to provide low value resistors of

63



CHAPTER 5. PHYSICAL LAYOUT 64

0.02 Ohm per square. Silicon dioxide is deposited between junctions, resistors, ground plane
and different wiring layers to provide isolation.

The physical process specifications are provided in Table 5.1 and is listed in process flow
sequence (M0 deposited first and R3 last).

Table 5.1: Physical layer specifications of the Hypres process

Layer Bias Comments Thickness Deviation
[µ] [nm] [nm]

M0 0.2 ± 0.25 Nb. Penetration depth λL = 100nm ±5 % 100 ±10
I0 0.2 ± 0.25 SiO2. Contact (via) between M1 and gnd plane 150 ±15
M1 -0.3 ± 0.25 Trilayer base electrode. λL ∼ 100nm 135 ±10
I1A -0.27 ± 0.05 Counter electrode (junction area) definition 45 ±5
SiO2 SiO2, insulator 100 ±10
R2 0.0 ± 0.25 Mo Resistor - 1.0Ω/sqr ±20% 100 ±20
SiO2 SiO2, insulator 100 ±10
I1B -0.1 ± 0.05 Contact hole (M2 to I1A/R2/M1)
M2 -0.2 ± 0.25 Nb. λL = 90nm ±5 % 300 ±20
SiO2 SiO2, insulator 500 ±40
I2 0.1 ± 0.25 Contact (via) between M2 and M3
M3 -0.3 ± 0.25 Nb. λL = 90nm ±5 % 600 ±50
R3 0.0 ± 1.00 Ti/PdAu Resistor - 0.02Ω/sqr 350 ±60

The layout representations in this thesis are given in top-view format (as typically used
in layout programs). A side-on-view diagram is shown in Figure 5.1 which illustrates how
layers fit onto each other.

JJ (I1A)

Figure 5.1: Side-on representation of Hypres’ process flow [1]



CHAPTER 5. PHYSICAL LAYOUT 65

The layout of a typical Josephson junction is presented in Figure 5.2. The figure shows
a) the square shape of a 250µA junction and b) a 250µA resistively-shunted junction with a
1.21Ω resistor. The area of the I1A definition specifies the critical current of the junction1.

M0 M1 M2 M3 I0

I1A I1B I2 R2 R3

a) b)

5.3µm

Figure 5.2: Layouts of a) 250µA Josephson junction and b) 250µA Josephson junction with grounded
resistor

5.1 Hierarchical layout design approach

In LASI, a layout is drawn in a cell. A cell may contain the following objects: boxes, paths,
polygons, text and other cells. Associated with each object, is a rank number. Boxes, paths,
polygons and text objects always have the lowest possible rank, namely zero. Cells may only
contain objects of lower rank. An important consequence is that cells may contain cells of
lower rank. This mechanism enables a designer to create large and complex (high ranking)
cells by using less complex (lower ranking) cells and objects as building blocks. It also eases
the process of making repetitive changes. With regards to circuits, basic RSFQ gates are
drawn in low rank cells and then easily used to draw more complex circuits.

5.2 Basic gates

Basic gates usually contain only a few Josephson junctions, resistors and inductors. These
gates cannot be broken into smaller functional circuits. In this section a discussion regarding
the layout of some of these gates follows while the other gates are presented in Appendix D.

1The calculation must take into account the photolithography effect that results in a so called ‘missing area’
specified by the process data sheet [1]



CHAPTER 5. PHYSICAL LAYOUT 66

5.2.1 AND gate

The AND gate is an amalgamation of adapted gates which include two DROs, a divider and
a merger. The DROs and the divider were used with little change, while the merger had to be
extensively adapted from its original form. The optimized circuit in Figure C.1 was used as
the blueprint for the adaptation. All the necessary junctions were changed and the inductor
values of the whole circuit were extensively checked and modified to reflect the behaviour
of the circuit.

IN_A

CLK

IN_B

OUT

M0 M1 M2 M3 I0

I1A I1B I2 R2 R3

20µm

Figure 5.3: Layout of the AND gate

5.2.2 DCRL

Although the DC-Resetable Latch (DCRL) gate was discussed by Fourie [4] it may be worth
noting a few changes and complications regarding the layout. There is a total of 78 DCRLs
in a large variety of locations and configurations throughout the final SPGA layout. Regard
the layout presented in Figure 5.4. In order to achieve a compact layout, the 15.5Ω resistor
was broken up in parts Ra and Rb and connected together with an M2 line (because the set



CHAPTER 5. PHYSICAL LAYOUT 67

input is M1). Resistor Rb had to be swung around the set input to achieve a compact layout.
In some other locations it was not possible to use that configuration and one other variation
was to let Rb lie alongside the READ JJ in a downward facing position, as shown in Figure
5.5b. Also shown in Figure 5.5 are a few other variations.

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

Rb

Ra

M2

Rc

RESET-

RESET+

OUT

READ
(M2)

SET(M1)

20µm

Figure 5.4: Layout of the DC-resetable latch

Other minor problems with the layout of the DCRL were, for instance, that the resistor Rc
had to be flipped so that the dogleg lies to the left and not the right. Various configurations
on how the reset signal was connected also posed a few problems.

5.2.3 I2-Switch

For the 2-Line Current-Set Switch (I2-Switch), basically the same layout shape was kept from
the 4-line current-set switch by Fourie [4] but was adapted to use 2 lines (see Figure 5.6). The
new parameters (inductance and mutual coupling) were extracted2 and were used to re-
optimize the circuit. The full circuit layout is shown in Figure 5.7. Lines a and b are the
primary control lines while bias ctrl is the bias control line.

2Refer to chapter 5.6 for more detail



CHAPTER 5. PHYSICAL LAYOUT 68

a) b)

c) d)

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

20uA

Figure 5.5: Some variations on the layout of the DC-resetable latch



CHAPTER 5. PHYSICAL LAYOUT 69

bias
ctrl

a

b

JJ1

JJ2

DC bias

OUT

M1

M3

M2

Figure 5.6: Layout of the 2-Line Current-Set Switch: bare essential layout showing control lines

IN(M1) M0

I1A I1B I2 R2 R3

M1 M2 M3 I0OUT
(M2)

a

b

bias ctrl

20µm

Figure 5.7: Layout of the 2-Line Current-Set Switch gate



CHAPTER 5. PHYSICAL LAYOUT 70

5.3 Microstrip transmission lines

Josephson transmission lines (JTLs) are usually used for transmitting SFQ pulses (such as
data- and clock signals) between circuits. However, JTLs have some disadvantages and
restrictions in some cases. For example, the propagation delay becomes very large when
connecting distant SFQ circuits. Furthermore, the value of the interconnect inductance is
restricted in JTL circuits, which reduces the flexibility of the circuit layout [43]. One of the key
features of the RSFQ family is the possibility to using superconducting passive microstrip
lines for ballistic transfer of the pulses along the integrated circuits with very low power
dissipation [44].

An RSFQ microstrip transmission line (MSL) driver and receiver from Stony Brook Uni-
versity [31], presented in Figures D.8 and D.9 (in Appendix D) respectively, were used to
facilitate the transfer of RSFQ pulses between gates that are too far apart to feasibly use
JTLs.

In a project of this scale and taking into account the nature of FPGA-type circuits with
many routing lines, it is inevitable that lines will have to cross at some point or another.
For this reason it was crucial to investigate the influence that crossing lines have on one
another. The MSL driver and receiver circuits were designed to work with an M2 line. To
accommodate crossings, it was decided to implement microstrip lines in both M2- and M1-
layers and use a rectangular via to connect the two layers (see Figure 5.8). With the aid of
SLine [45] it was found that a 2.3Ω M2 MSL should be 34µm wide while a 2.3Ω M1 MSL
should be 19µm wide.

M1

M2

I1B

2µm

5µm

34µm19µm

Figure 5.8: Layout: MSL via



CHAPTER 5. PHYSICAL LAYOUT 71

The influence that densely packaged microstrip lines have on one another has been inves-
tigated [46] and found that microstrip lines running parallel to each other, have a negligible
effect on the functioning of the circuit. On the other hand, for lines crossing perpendicularly,
only the driven line’s upper bias current margin was diminished.

Geometric discontinuities, such as steps, bends and T-junctions, in planar transmission
lines influence the performance of a circuit by affecting the effective reactance of the line.
The line can be physically compensated to reduce the effect of these discontinuities. A 90°
bend can be compensated by chamfering the corner [47]. It was found that the percentage of
chamfer required remains constant, independent of dielectric constant, width and the like.
The chamfering involves removing a right-angled triangle corner and the optimal value of
the smaller sides of the triangle equals 0.828 times the width, W, of the line. Figure 5.9 shows
typical MSL structures used in this project, including a bend, two vias and an M1 line going
underneath a M2 line.

M2

M1

Figure 5.9: Layout: MSL structures

5.4 Composite blocks

Composite blocks are composed of a combination of basic gates and other blocks. The struc-
ture of most of the composite blocks can be seen in the diagrams from section 4.4 and the
layout is a direct implementation of those diagrams. A few of the more important or complex
blocks will be discussed in this chapter while the rest are presented in Appendix D.



CHAPTER 5. PHYSICAL LAYOUT 72

5.4.1 Logic Block

The layout of the Logic Block is presented in Figure 5.10 3. The schematic diagram is shown
in Figure 4.11. The Logic Block is the largest structure 4 in the design and was used as a
starting point for the floorplan. In Figure 5.10, RD CLK indicates the input for the read
clock signal while PR CLK indicates the input for the programming clock signal. The LUT
DATA input is used to program the memory cells in the lookup table while WR SEL and
PROG indicate the signals used to individually access one of the four logic blocks during the
programming stage.

IN 1

IN 2

RD CLK

PR CLK

L
U

T
D

A
T
A

P
R

O
G

WR SEL

OUT

100µm

Figure 5.10: Layout of the Logic Block

3The layout is tightly laid out and the various sections intermix between each other and are difficult to clearly
define with frames

4During the preliminary design iterations, 4-bit and 3-bit Logic Blocks were laid out but found to be too
large to fit into the 5mm square wafer without sacrificing routing space and functionality.



CHAPTER 5. PHYSICAL LAYOUT 73

5.4.2 Programming Logic Column driver

The layout of the Programming Logic Column driver block in Figure 5.11 is almost a direct
implementation of the upper dotted box in the diagram of Figure 4.16 except for the fact
that it was optimized to be as narrow as possible to accommodate many drivers next to each
other.

5>

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

5>

<4

<4

1>

1>
<2<2

3>

3>

50µm

Figure 5.11: Layout of the Programming Logic Column driver



CHAPTER 5. PHYSICAL LAYOUT 74

5.4.3 Programming Logic Row driver

The layout of the Programming logic (Row driver) block in Figure 5.12 posed significant
problems, especially the encircled section where three potentially long lines overlap.

M
0

I1
A

I1
B

I2
R

2
R

3

M
1

M
2

M
3

I0

2>

<1

<1

4>

4>

2>

<3

<3

50µm

Figure 5.12: Layout of the Programming Logic Row driver



CHAPTER 5. PHYSICAL LAYOUT 75

5.4.4 Full chip layout

The layout of the SPGA chip is presented in Figure 5.13 and includes connection pads. The
layout is on a 5mm × 5mm die.

D1 D2 D3 D4 SPD LBWR

LBPD

D5

D6

PC

D7D8D9D10DCROCLK

SWWR

LBRC

D12

D11

D14

D13

DBC

PB

Figure 5.13: Layout: Full chip



CHAPTER 5. PHYSICAL LAYOUT 76

5.5 Error checking and verification

„Es irrt der Mensch, solang’er strebt.“ :: ‘Man errs as long as he strives.’

[Goethe - Faust (1808)]

Error checking is crucial to ensure a perfectly working design. Two factors in this design
make it a tremendously difficult task. Firstly, this design is rather large and complex. Sec-
ondly, parameter extraction (for layout vs. schematic verification) is not supported by CAD
tools at our disposal and thus is not an automated process. Parameter extraction by hand is
difficult and time consuming which means that 100% circuit verification from the physical
layout is virtually impossible. Thus an extensive set of tests and checks were used to ensure
that the layout is correct.

5.5.1 Gate verification

The basic gates are the building blocks of the whole design. It is absolutely crucial that the
basic gates are flawless. The basic gates are small and can be thoroughly checked and veri-
fied. The layout must accurately reflect the functionality of the circuit. All the physical sizes
of the junctions and resistors were checked and verified by hand. Critical inductor values
were verified with InductEx5. Overlapping and distances between layers were checked to
ensure that they do not break any design rules.

5.5.2 Signal route checking

A signal route is the specified path that a signal must take to complete the circuit. The
blueprint for signal routing is the SPICE circuit. The idea behind signal route checking is to
ensure that a signal follows the correct route as specified by the SPICE circuit.

Simplified diagrams of the SPICE circuit were used as an aid during signal route check-
ing. The simplified diagrams do not contain any unnecessary SPICE circuits or fine detail.
The diagrams mostly consist of blocks with input and output ports connected together with
lines. SPICE circuits contain detail not needed when checking signal routes, and the dia-
grams strip away all the detail to leave only the relevant information. Paper printouts of
these diagrams with appropriate signal routes highlighted were used to keep track of on-
screen signal paths.

Different diagrams were used to track signal routing:

Data routes contain the digital signals that are used for computation after the chip has
been programmed. Figure 5.14 shows the diagram used to check the data routes. The small
circles indicate switches used for diverting data flows. Lines crossing at 90° angles are not

5Refer to chapter 5.6 for more detail



CHAPTER 5. PHYSICAL LAYOUT 77

connected but lines touching at 45° angles are connected. The abbreviation LB stands for
Logic Block. Places where two or more data routes cross are called switch matrices. The

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

1 2 3 4

5Ω

5Ω

5Ω

5Ω

5Ω

5Ω

5

6

78
910

11

12

13

14

Figure 5.14: Diagram for data route checking

numbers at the edge of the diagram indicate the active input and output (IO) data ports of
the SPGA. Some ports are inactive because of limited pads on the chip. Input ports 1 and 2
can provide input for LB1. Ports 3 and 4 output data from LB1 and/or LB3. Input ports 5



CHAPTER 5. PHYSICAL LAYOUT 78

and 6 will most likely provide data for LB2 while ports 7 and 8 may output data from LB2
and LB4. Ports 9 and 10 can provide input data for LB4. Data from LB3 can be output either
to ports 3, 4, 11 or 12. Finally ports 13 and 14 was inserted as an afterthought to provide easy
access to the input of LB3.

Programming routes contain the signals that program the switches. Figure 5.15 shows
the diagram used to check the routes to all the switches. It is more or less the same as the
data route diagram in Figure 5.14 but with a few additions. The switches are divided into
what may be called a matrix to gain access to all the switches individually. The columns
are labeled using letters of the alphabet and the rows using numerals. In combination the
crossing of a column and a row provides individual access to a determined switch.

Columns A through J in combination with rows 1 through 6 provide access to all the data
route switches. Columns K and L in combination with rows 7 and 8 provide access to the
logic blocks.

The lines that originate from column programming blocks are not RSFQ lines but are DC
lines (HUFFLE outputs). These form current loops and must be traced back to the originating
HUFFLE.

The lines that originate from row programming blocks are RSFQ lines and terminate
easily into a 5 ohm load and are not required to return to the programming block. Microstrip
transmission lines are used to connect switches that are far apart.

The diagram in Figure 5.15 was used to ensure that all the programming lines (RSFQ and
DC) go where they are supposed to, and terminate at the correct location.

DC reset route carries the DC current signal that resets the DCRLs (DC resetable latches).
This line is driven by an off-chip source to produce a predetermined current which resets
the DCRLs. Since it is a DC line, the line may be as long as needed to connect all the latches.
There are 78 latches and all of them need to be connected to the same line. The line may
not split, divert or break at any point along the route. Figure 5.16 indicate the connection
sequence to the latches.

HUFFLE prebias routes contain the signals that initialize the HUFFLE with a predeter-
mined state. This line effectively carries a DC current and is driven by an external source. It
was decided to split the signal into three parallel routes to accomplish the routing. The three
lines terminate to ground through three 3Ω resistors. The three resistors in parallel give 1Ω

and should be taken into account when calculating the external driving signal. The external
signal that is now required to bias the HUFFLES will have to be three times as large as it
would be for a single serial HUFFLE.



CHAPTER 5. PHYSICAL LAYOUT 79

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

A B C D E F G H I

K

J

L

1

2

3

4

5

6

7

8

1A

2A

2B

3A

4A

5A

5B

5C

5D

6A

6B

6E

6F

6H
6G

5F

5E 5G

4H4G

4E

4F

3H

3F

2H

2E

2F

2G

3E

3G

5H

4B 4C

4D

8K

3B

2C 7K

2D

1B 1C

1D 1E

1F

1I

1J

2I 2J

3J

3I

4I 4J

5I 5J

6J

6I

6D

6C

8L

7L

Figure 5.15: Diagram for checking programming routes to switches



CHAPTER 5. PHYSICAL LAYOUT 80

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

1

29

65

63 64

30

68

27

66

28

67

31

32

33

34

2 3

4

18 17

1920

22 21

3635

37

72

38

71

39

70

40

69

5152

54 53

55

57

58

56

7573

74

76 77

78

5

7

9

11

45

41

44

43

42

13

47

23

59

14

48

24

60

15

49

25

61

16

50

26

62

12

46

10
8

6

Figure 5.16: Diagram for checking DC reset routes



CHAPTER 5. PHYSICAL LAYOUT 81

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

PR

COL

PB i

PB o

P
R

C
O

L

P
B

 i

P
B

 o

P
R

C
O

L

P
B

 i

P
B

 o

3Ω

3Ω

3Ω

A B C D E F G H I J

K

L

LB

I

O

HUF

LB

I

O

HUF

LB

I

O

HUF

LB

I

O

HUF

Figure 5.17: Diagram for checking HUFFLE prebias routes

DC bias routes are too many and complex to sketch in a diagram. It was decided not to use
a diagram but to check them on-screen on a per gate basis instead. Each gate was checked
several times to make sure that it has a DC bias connection.

Output clock routes are few and simple and it was decided to them check directly in the
layout. The output clock routes are on the outskirts of the chip and they do not entangle in
many other lines making it very easy to check in the layout.

5.5.3 Connection checking

Signal route checking ensured that the signals are sent where they are supposed to, while
connection checking makes sure that the many connections in a route are solid and fast.



CHAPTER 5. PHYSICAL LAYOUT 82

Connection checking makes sure that an input signal reaches its intented destination without
broken links or serious disruption. Thus, during connection checking, all the routes are
followed with the focus on connections between blocks and interconnects.

5.5.4 Design rule checking

‘That’s not a regular rule: you invented it just now.’

[Lewis Carrol - Alice’s adventures in Wonderland (1865)]

In essence, design rules represent the physical limits of the manufacturing process. Over-
all, design rules are there to help layout designers understand and account for the physical
three-dimensional limitations and manufacturing tolerances within the CAD environment.

After initially checking for design rule violations by hand and finding that too many
errors could be missed in that way it was decided to use a CAD-based design rule checker
(DRC). Up until this point, an automated DRC was not used because the design rules are
broken by grounded Josephson junctions.

It was possible to implement Hypres’ design rules [1] bar one in LASI’s DRC. The result is
that a much more effective method to find design rule violations can be used. The complete
implementation of Hypres’ design rules for LASI is listed in appendix E.

It may be worth noting a few oddities: With regards to spacing from one layer to another,
for instance, rule 1.4 - M0 spacing to M1 >= 1µm. There are two cases allowed by the rule:

1. M0 block and M1 block separate from each other not touching or overlapping in any
way.

2. M0 block totally overlapping M1 block

The first case is the obvious case that the rule allows. But the second is also allowed because
the edge of M0 may not cross or overlap the edge of M1. This second allowable case poses
a slight problem for the implementation of this rule in the DRC. The DRC can check either
for spacing or overlapping but not both at the same time. Thus this specific rule (and a few
others like it) had to be divided into two DRC implementations.

Another oddity worth noting is the issue of the grounded Josephson Junction (JJ) layout,
where I1B overlaps the R2 layer. One could not completely leave out rule 5.3 because it
would then miss other possible critical violations. It was decided to allow I1B to overlap
R2 but only over M1. In this way, the grounded JJ would be exempt from that rule but, for
instance, a via between R2 and M2 would be checked.

Rule 5.4 was not implemented in the DRC because almost all the resistors connected to
M2 break this rule in some way.



CHAPTER 5. PHYSICAL LAYOUT 83

5.5.5 Full-chip scan

During a full-chip scan the whole layout is looked at gate by gate. Each gate is checked to
see if all the connections are made and also checked for any gross errors that may have been
missed during any of the previous checks. The full-chip scan was the last check in an effort
to eliminate all possible errors and was done three times.

5.6 Parameter extraction

Physical layout of RSFQ ICs is a difficult task for a number of reasons, one being that circuit
parameters such as inductance are complicated to estimate and/or extract from the layout.
During the layout phase, a layout engineer has to be certain that what is being done is in
accordance with the circuit requirements. To do so, the engineer has to be able to estimate
or extract values for inductance, resistance and junction sizes, taking into account the man-
ufacturing process variations and tolerances.

With that in mind, a few tools are available to help the engineer accomplish this task.

5.6.1 SLine

SLine [45] uses Chang’s 2D analytical equation to estimate inductance values [48]. It uses
process parameters such as dielectric thickness, line thickness and penetration depth (to
name a few) to produce an analytical estimate of a superconducting microstrip line’s induc-
tance. It is not able to analyze complex structures, such as lines crossing over each other
or mutual inductance or even corners, but it quickly produces results for simple straight
structures.

5.6.2 FastHenry and InductEx

FastHenry [49] with superconductor support [50] is a numerical 3D program that uses a
magnetoquasistatic formulation of Maxwell’s equations, from which a mesh analysis is cre-
ated and solved with a multipole-accelerated algorithm. A drawback of numerical 3D anal-
ysis is that time- and memory resource requirements are substantial. Nevertheless, it is very
powerful and versatile in handling complex structures.

InductEx [51] [52] is a front-end for FastHenry or an intermediary step between CAD
layout tools and FastHenry. It uses segmentation routines developed by Fourie [4] to dis-
cretize complex 3D layout structures and pass the results to FastHenry. FastHenry is then
used to analyze the structures and return results which are interpreted by InductEx to pro-
duce values for inductance and mutual coupling. InductEx has been invaluable during this
project, especially to analyze the highly complex structures in the multi-line current-select
switch.



CHAPTER 5. PHYSICAL LAYOUT 84

5.6.3 Example: I2-Switch

As an example to showcase the power of the tools, the Two-line Current-Set Switch will be
analyzed to extract values for the coupling factors between the inductors in the select lines,
bias control line and SQUID.

Figure 5.18 shows part of the layout, highlighting the various select- and control lines.
The labels JJ1 and JJ2 represent where the two junctions of the SQUID should be6. The lines
a and b are the select lines and are defined in M1, while the bias control line is defined in M3.
The SQUID line is defined in M2, thus sandwiching it between the select and control lines.

bias
ctrl

a

b

JJ1

JJ2

DC bias

OUT

M1

M3

M2

Figure 5.18: Layout of the 2-Line Current-Set Switch: bare essential layout showing control lines

This layout is passed to InductEx7 to extract the inductor and coupling values. An extra
feature of InductEx incorporates random variations by which the program can vary all
geometries according to predefined distributions. These random variations can be repeated
automatically to obtain inductance and coupling spreads. Table 5.2 shows these results,
which can be incorporated in the Monte Carlo model for this gate.

The bias control line is used to bias the SQUID loop with a certain amount of current and
in effect deform the SQUID switching curve. The reason of this is that the SQUID switching
curve demands that the total current must go negative (or close to zero) for the SQUID to
reset [4]. Without the bias current in the I2-switch circuit, the SQUID does not reset. Two
factors determine the behaviour of the SQUID current: the dc-bias current (determined by
the gate’s bias resistor), and the (newly introduced) bias control current. These two factors
can be varied to find an optimal yield solution. A manual process was used where both the

6The junctions have been removed for clarity
7InductEx port definitions are not shown



CHAPTER 5. PHYSICAL LAYOUT 85

Table 5.2: Gaussian distribution parameters for inductances and coupling factors of the I2-switch

Inductance Mean [pH] Std. dev. (σ) [pH]
SQUID 3.4146 0.0433
DC bias ctrl. 12.4339 0.2433
Line A 6.1730 0.2118
Line B 6.1675 0.2329
Coupling factor [dimensionless]
S - dc 0.4184 0.0047
S - A 0.2556 0.0050
S - B 0.2575 0.0060
A - B 0.0991 0.0037
dc - A 0.1244 0.0027
dc - B 0.1254 0.0032

dc-bias current and bias control current were varied in both positive and negative directions
until unsatisfactory results were encountered. The end result can be viewed (in Figure 5.19)
as a 2-dimensional graph (dc-bias resistor vs. bias control current) with the shaded area
defining the region of acceptable values. The optimal is the mid-point of the area, which
was found to be a dc-bias resistor value of 9Ω and a bias control current of 85µA.

The SPICE listing used to finally determine the yield of the I2-switch is given in Ap-
pendix B.

5.7 Input and output impedance matching

Although the emphasis during design was on functionality, performance was not totally
ignored. The simulations show that the chip could be tested to frequencies in the GHz range.
Therefore, those input and output ports on the chip that may contain high frequency signals
must be impedance matched. It is assumed that the external connection line to the chip has
a 50Ω characteristic impedance and that the impedance of the port (pad) is negligible. On-
chip, however, it is not possible to facilitate such a high impedance microstrip transmission
line and thus a resistive matching network was used to match the external line to the on-chip
circuit impedance.

5.8 Signal-to-Pad assignments

Figure 5.20 in combination with Table 5.3 provide information about pad assignments of the
various IO and control signals.

Operational data ports provide computational data (after the whole chip has been pro-
grammed). The programming clock is shared between the two programming frames and
all the logic blocks. The DC bias should be 2.6mV, but for reasons discussed in Chapter



CHAPTER 5. PHYSICAL LAYOUT 86

Figure 5.19: Area of nominal working values for DC-bias resistor vs. Bias control current, also show-
ing the optimal value indicated by the black dot

6.1.2.1, the total bias current (560.48 mA) should be used as reference instead. The gray box
in the upper left-hand corner has been placed there as a visual guide on the physical chip to
indicate where the first pad is located.

The DC bias current creates other problems relating to layout. According to Terai et al.
[53] and Kadin et al. [54], to avoid disturbances caused by currents flowing in the ground
plane, the ground bonding (or ground pad) should be close to the point of current injection
(i.e. DC-bias pad). Bias lines should not be close to critical structures, such as junctions.
Ground currents return immediately under the bias line, which is one of the good qualities
of microstrip lines. Thus to avoid diffusion of bias current in the ground plane, one should
have one ground pad close to each current injection point (preferably only one injection
point).

One should avoid running bias lines parallel with any inductance and preferably use a
‘sky plane’8 [55]. However, this is not practical in the 3 metal layer process available from
Hypres.

8A sky plane is an extra metal layer, which in effect is another ground plane



CHAPTER 5. PHYSICAL LAYOUT 87

1 2 3 4 5 6

7

8

9

10

11

12

13

14

15

161718192021

22

23

24

25

26

27

28

29

30
D1 D2 D3 D4 LBWR

LBPD

D5

D6

PC

D7D8D9D10DCR

SWWR

OCLK

LBRC

D12

D11

D14

D13

DBC

PB

SPD

Figure 5.20: Diagram: Signal-to-Pad assignments



CHAPTER 5. PHYSICAL LAYOUT 88

Table 5.3: Table: Signal-to-pad assignments

Pad # Name Comment
1 D1 Operational data port 1 [in]
2 D2 Operational data port 2 [in]
3 D3 Operational data port 3 [out]
4 D4 Operational data port 4 [out]
5 SPD Switch programming data [in]
6 LBWR Logic block write (WR) [in]
7 LBPD Logic block programming data [in]
8 D5 Operational data port 5 [in]
9 D6 Operational data port 6 [in]

10 - -
11 - -
12 - -
13 - -
14 - -
15 PC Programming clock [in]
16 D7 Operational data port 7 [out]
17 D8 Operational data port 8 [out]
18 D9 Operational data port 9 [in]
19 D10 Operational data port 10 [in]
20 DCR DC-reset [in]
21 OCLK Output clock (for RSFQ-to-DC conv.) [in]
22 SWWR Switch write (WR) signal [in]
23 LBRC Logic block read clock [in]
24 D12 Operational data port 12 [out]
25 D11 Operational data port 11 [out]
26 D14 Operational data port 14 [in]
27 D13 Operational data port 13 [in]
28 - -
29 DCB DC bias (power supply) [in]
30 PB HUFFLE prebias [in]



CHAPTER 5. PHYSICAL LAYOUT 89

5.9 Moats

A moat is a narrow rectangular cavity in the ground plane which provides a low energy
path for magnetic flux [56]. The effect is to divert flux through the moats instead of nearby
sensitive elements. By creating moats near critical structures such as Josephson junctions, it
protects the devices from performance degradation caused by flux trapping during the cool-
ing process. It was prefered to use short narrow rectangular shaped moats around Josephson
junctions in contrast to long moats surrounding an entire circuit block. Figure 5.21 shows
typical use of moats.

M0 moat

Figure 5.21: Typical use of moats in a layout

5.10 Chapter summary and conclusions

In summary this chapter considered the layout process and most related aspects. Various
layouts of gates and blocks were discussed and it was shown how they fit into the bigger
picture of the SPGA framework. Problems relating to layout such as error checking and
verification were minimized or solved where possible. Finally, the input- and output signals
were mapped to chip pads.

The major accomplishment in this chapter was the completion of the full chip layout
considering the size of the project and great manual effort required to render a layout design
without automated CAD tools. Various verification techniques were developed to minimize
human error, including the design rule checker.

Limitations in fabrication technology restrict the scale of the design, which in turn con-
strain the overall functionality of the SPGA. The eventual layout design include four 2-bit
logic blocks and a 2-channel routing architecture that feed the logic blocks.



CHAPTER 5. PHYSICAL LAYOUT 90

The subject of layout automation demands attention, especially if larger projects are to be
undertaken. Automation from circuit schematic to layout and feedback from layout (which
include parameter extraction) will profoundly ease and speed up development of projects
as well as minimize human error during layout. It may be worth investigating the use of
standardized layout block shapes and sizes to ease the placement of gates during the layout
phase.

As fabrication technology improves, future SPGA development can extend the function-
ality and broaden the capabilities of this concept.

‘Information necessitating a change of design will be conveyed to the designer after and
only after the design is complete.’

[Anonymous - ’Now they tell us’ law]



Chapter 6

Testing

‘There are very few problems that cannot be solved through a suitable application of high
explosives.’

[Scott Adams - The Dilbert principle]

TESTING any electrical or electronic equipment is critical and requires proper planning
and preparation. This chapter gives a description of the test equipment and configura-

tion that will most likely be used to test the SPGA.
Some problems relating to the test setup are discussed and possible solutions are pre-

sented.
Further, typical examples of test functions are given and the expected results are dis-

cussed.

6.1 Testbed

The testbed consists of three main parts, namely the excitation stage, the Device Under Test
(DUT) and the measurement stage. The excitation stage encompasses the electronics that
generate the input signals for the DUT. In other words, the signals that drive the DUT. The
DUT, in our case, is the SPGA. The measurement stage comprise of acquisition and measure-
ment equipment.

For superconducting electronics to function correctly, they need to be cooled to cryogenic
temperatures (<60K). For low-temperature electronics (used in Hypres’ 3µm Nb process) to
function correctly, the circuit needs to be cooled to below 4.2K. Two known methods are in
use today to accomplish such low temperatures, namely the use of liquid Helium (with a
boiling point of 4.2K) or with the aid of a cryogenic cooler (or cryocooler). We have had
little success with liquid Helium testing because of the high boil-off rate in an open cryostat.
Other difficulties related to liquid Helium are its cost, availability and transportation prob-
lems. For these reasons and have recently acquired a mechanical cryocooler. The SPGA chip

91



CHAPTER 6. TESTING 92

must be inserted into this complicated cooling system. Aspects of the cooler may aid us in
accomplishing our measurement task and thus a cryocooler’s operation will be discussed
shortly in section 6.1.1.

The room temperature electronics of the excitation stage will be discussed in section 6.1.2.
The measurement equipment will include a high-quality oscilloscope. Although, the

output signals are small, they are visible (or can be amplified if needed).
Lastly, a number of functions to be used to test the operation of the SPGA are discussed.

6.1.1 Cryocooler

Small mechanical cryocooler development has been strongly stimulated over the past years
by the emergence of specific applications requiring low-temperature operation with rela-
tively low cooling power.

Today the main applications of cryocoolers are [57]:

• Cryopumping for high and clean vacuum (semiconductor industry, space simulation
chambers, particle accelerators)

• Cooling of detectors (for example, infrared detectors for Earth observation, night vi-
sion, and missile guidance as well as gamma ray detectors and bolometers for astro-
physics).

• Cooling of electronic components (cold amplifiers) or of devices including supercon-
ducting materials (SQUIDs, Josephson junctions, high-field magnets).

• Cooling of samples for physics.

• Cooling of radiation thermal shields and recondensation of boil-off in cryogenic liq-
uid storage tanks or large superconducting magnet cryostats for magnetic resonance
imaging.

The development of small mechanical cryocoolers has been based mainly on the tech-
nology of regenerative heat exchangers. These regenerators are generally constituted by a
porous matrix (metal wire mesh or spheres) that acts like a thermal sponge by alternately
storing or rejecting heat.

A number of different cryocooler designs exist, of which Grifford-McMahon, Stirling
and Joule-Thomson are the most popular. For the purposes of this project, only the Grifford-
McMahon type will be discussed because the SPGA will be tested in a cryocooler based on
this design.

Figure 6.1 shows a elementary diagram of a Grifford-McMahon cooler and the various
phases are presented in Figure 6.2.

The process can be described as follows:



CHAPTER 6. TESTING 93

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

Drive motor
High pressure

Compressor

Heat
exchanger

Low pressure

Valve

Displacer
regenerator

Expansion
space

Expansion
space

Lead
spheres

FIRST
STAGE

SECOND
STAGE

�����������
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�������������

�����������
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�������������

Figure 6.1: Elementary diagram of a Grifford-McMahon cryocooler

• Phase 1: The displacer is at its lowest position, the outlet valve is closed, and the inlet
valve is opened. The high-pressure gas fills the regenerator and the space above the
displacer is at room temperature.

• Phase 2: The inlet valve is still open, and the displacer moves to its upper position. The
high-pressure gas passes through the regenerator, is cooled down isobarically1 by the
matrix, and fills the space below the displacer at low temperature.

• Phase 3: The displacer is at its upper position, the inlet valve is closed, and the outlet
valve is opened. The gas in the regenerator and in the cold space undergoes expansion;
the cooling effect achieved can be used for refrigeration.

• Phase 4: The outlet valve is still open, and the displacer moves to its lowest position.

1Isobar: at constant pressure



CHAPTER 6. TESTING 94

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� �������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	 	�	�	�	


�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�



�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�


��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

HP

HP

HP

HP

LP

LP

LP

LP

PHASE 1

PHASE 3

PHASE 2

PHASE 4

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

���������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������

Figure 6.2: Phases of Grifford-McMahon cryocooler

The low-pressure gas passes through the regenerator, is warmed up isobarically by the
matrix, and fills the space above the displacer at room temperature.

A heat exchanger at the exhaust of the compressor is used to reject heat at the ambient
temperature and theoretically to achieve an isothermal compression2.

We have recently acquired a ST405 cryocooler from Cryomech. Specifications state that
the second stage can cool down to 2.8K (which was verified through testing) with zero watt
cooling power and 4.5K with half-watt cooling power. The first stage has a typical tempera-
ture of 60K. The cooler takes about one hour to cool from room temperature to our operating
temperature. The vacuum is of the order 10−5 atm.

2Isothermal compression: compression at constant temperature



CHAPTER 6. TESTING 95

6.1.2 Room temperature electronics

Testing RSFQ electronics is complex. Problems such as noise is a major concern to any test
engineer because RSFQ signals are so small (on the order of only a few millivolts). Without
sufficiently suppressing noise, input pins can be falsely triggered and output signals could
get lost in a sea of noise.

6.1.2.1 Power supply

Another problem is that of a clean and constant power supply to the chip. Firstly, the supply
needs to be able to provide about 0.6A of clean constant current without any noise or distur-
bances. After initial trials, it became clear that ordinary electronics-based supplies (such as
AC-DC or DC-DC converters) produce unacceptable levels of noise. A possible solution is
to use a battery supply.

Secondly, complications arise when large currents are transported in copper wires from
an external supply to the chip on the inside of the cryocooler. A copper wire has a small re-
sistivity per length associated with it. Thus, when large currents flow in the wire, a potential
difference develops across the wire, which means that the input voltage is not the same as
the output voltage. The same scenario is evident for the grounding wire which may cause
a discrepancy between the on-chip ground and the outside reference ground. A solution is
to minimize the length of low resistance wire from supply to chip. Also, measure current
instead of voltage, making sure the right amount of bias current is flowing in the supply line
irrespective of input voltage.

6.1.2.2 Input- and output signals

It is standard practice in RSFQ testing laboratories to start with low-frequency tests. This
significantly lowers the requirements on fast driving- and measurement electronics.

Compounding the issue of noise, is the fact that the SPGA has numerous IO ports which
have to be excited and measured. Generating 17 synchronized input signals posed quite a
challenge. We are in the process of experimenting with various configurations for testing.
Two options seem feasible:

1. Signal generation with the aid of a computer

2. Signal generation using microcontrollers

The first option would, for instance, generate signals using numerous digital-to-analogue
converters (DACs) and measure signals with analogue-to-digital converters (ADCs) all with
the help of tailored software that can easily change signals in real time. Unfortunately, the
first prototype yielded poor results [58], the reason being that to address so many DACs took
too long; and the computer generated noisy signals.



CHAPTER 6. TESTING 96

The second option would enlist the help of dedicated microcontrollers to control the
DACs and generate the needed signals. The advantage is faster response but the downside
is that input signals cannot be changed in real time. Once again, the first prototype yielded
unsatisfactory results [58], but this option showed the most potential.

6.1.2.3 Noise

Various noise sources have been determined, some of which could be easily minimized
whilst others pose significant problems.

As mentioned earlier, the power supply is a noise source but a battery solution seems to
have worked.

The vacuum- and compression pumps of the cryocooler were a major source of noise. The
best way to eliminate this was to run the cooler to the required temperature (around 4K) and
momentarily switch off the vacuum pump. The compression pump must remain running
for the cryocooler to function correctly. The cooler kept its temperature for a short time (at
least a few seconds) before it increased above the critical temperature of the superconductor.
This provides us with a short noiseless (from the vacuum pump at least) time-window in
which to test, after which the pump could be switched on again.

One suggestion has been made to move some of the electronics to the first stage of the
cryocooler. The first stage has a temperature of about 60-70 Kelvin and provides a substan-
tially less noisy environment. CMOS chips have been demonstrated to operate at 80K and
we are in the process of testing at lower temperatures [59].

Various options are available3 :

1. The most elaborate setup would have all the DACs and ADCs including a dedicated
microcontroller at the first stage. The electronics would then be controlled by a RS232
or USB data stream from outside the cooler.

2. Another option would be to generate large (5V) input signals outside the cooler and
filter the noise immediately before it goes into the cooler. At the first stage these signals
would then be attenuated to the correct amplitude with low-noise resistive divider
circuits. The output signals also get amplified at the first stage with High-Electron-
Mobility Transistor(HEMT) [60] amplifier circuits which have been shown to operate
at such low temperature.

6.2 Test cases

As is the case when testing all types of logic, one has to verify that all the possible input
variations produce the expected output. Even more so with RSFQ logic because of its pulse-

3These options have not been tested at time of publication



CHAPTER 6. TESTING 97

based nature. A missing pulse can represent a logical ‘0’ or a malfunction.
For reference Figure 6.3 is presented and indicates all the inputs, outputs and switch

assignments. Input and output ports are indicated by numbers in italics.

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

A B C D E F G H I

K

J

L

1

2

3

4

5

6

7

8

1A

2A

2B

3A

4A

5A

5B

5C

5D

6A

6B

6E

6F

6H
6G

5F

5E 5G

4H4G

4E

4F

3H

3F

2H

2E

2F

2G

3E

3G

5H

4B 4C

4D

8K

3B

2C 7K

2D

1B 1C

1D 1E

1F

1I

1J

2I 2J

3J

3I

4I 4J

5I 5J

6J

6I

6D

6C

8L

7L

1 2 3 4

5

6

78910

11

12

13

14

Figure 6.3: Diagram of SPGA architecture indicating inputs, outputs and switch assignments

As a starting point, the most basic operation will be tested first, then progressing to more
comprehensive circuits with the aid of the following three examples:



CHAPTER 6. TESTING 98

1. Direct translation of input to output: allocate the two (input) ports 5 and 6, enable the
switches 4C and 4D and output should be presented at ports 11 and 12.

2. One logic block: allocate (input) ports 1 and 2, use logic block LB1 and assign output
to port 3. Thus, switches 2A, 2D and 3E should be enabled.

3. Implement a more comprehensive logic function to use all four logic blocks and in the
process, route logic block outputs to other logic block inputs and chip output ports.

The examples given in this section serve as guidelines for a simple testing session. A
more thorough session extends these same ideas to individual tests of all the logic blocks
and switches systematically.

6.2.1 Example 1: Direct input to output

This is a typical example to test if the routing architecture is working correctly. The goal is
to see if the inputs at ports 5 and 6 can translate (propagate) to ports 12 and 11 respectively.

For this example only two switches need to be programmed, namely 4C and 4D. The
switch programming data words entered at port SWPD should be as given in Table 6.1.

Table 6.1: Switch programming data words for Example 1

6 5 4 3 2 1 J I H G F E D C B A
i 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

ii 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

The expected results for all the possible input variations are presented in Table 6.2.

Table 6.2: Expected results for Example 1

Input Output
5 6 12 11
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

6.2.2 Example 2: One logic block

By testing a logic block in the way prescribed in this example, one is able to verify if the
logic block itself is working (i.e. decoder, memory cells, etc). The routing architecture should
already have been tested with extensions of the concept in the previous example.



CHAPTER 6. TESTING 99

This example programs logic block LB1 while input is provided from ports 1 and 2 and
the output should present itself at port 3. The programming has two stages, one for switches
and another for the logic block. The switches that are to be activated are 2A, 2D (for input)
and 3E (for output). The switch programming data words are presented in Table 6.3:

Table 6.3: Switch programming data words for Example 2

6 5 4 3 2 1 J I H G F E D C B A
i 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

ii 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
iii 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

The function that is to be implemented in the logic block for this example is an OR oper-
ation4. The programming data word for an OR operation is entered in the sequence: 1011.

The correct logic block still needs to selected (in this case, LB1 assigned to 7K). This is
done with the aid of the logic block programming frame but the setup is a bit complicated.
The logic blocks and the logic block programming frame share the same data line as well as
the same programming clock. The configuration is more clearly illustrated in Figure 6.4.

In Figure 6.4 two lines are visible (LBPD - Logic Block Programming Data; and PR_CLK
- Programming Clock). The data line first enters the programming frame where it cascades
through five DROs and one additional DRO which serves to correctly synchronize the data
clocking5. After exiting the programming frame, it splits into two lines which flow through
LB1 and LB2, and continue on to LB3 and LB4 as well. The clock line splits in various
directions to serve all the DRO’s of the logic block and those of the programming frame.

For instance, for data to arrive at LB3, it must first pass through the programming frame
as well LB1 before it can be processed by LB3. One has to keep in mind that data can only
exit a DRO when it gets clocked. Thus, it would take 6+4=10 clock pulses for the first data
bit to arrive at LB3.

At the same time, one has to keep in mind that the last 4 data bits in the LBPD data
stream signifies the ‘row’ and ‘column’ data bits of the programming frame.

With regards to this section’s example, logic block LB1 has to be programmed with the
data bits (1011) and getting the programming frame to process the correct logic block would
require the data sequence in Table 6.4. The sequence is entered at port LBPD as given in the
table from left to right.

Simulation results are presented in Figure 6.5 to more clearly illustrate the operation and
timing. The inputs PR_CLK, LBPD and WR are the clock, logic block programming data and

4The function could easily be anything else, but the OR operation tends to produce more logical ‘1’s and
thus is more easily verified. Just to be 100% certain, another function such as the AND operation should also be
tested

5Note: the extra DRO is not present in the switch programming frame



CHAPTER 6. TESTING 100

7

8

K

L

LB2LB1

LB4LB3

DRO

DRODRO

DRODRO

DRODRO

DRODRO

DRODRO

DRODRO

DRODRO

DRODRO

DRO

DRO

DRO

DRO

DRO

7L7K

8L8K

LBPD

WR

PR_CLK

prog
frame

0

1

2

3

Figure 6.4: Wiring of data- and clock lines for the logic block programming frame

Table 6.4: Logic block programming data word for Example 2

LB1(3) LB1(2) LB1(1) LB1(0) 7 8 L K
1 0 1 1 1 0 0 1

the programming write signal respectively6. The simulation results also show the signals in
the relevant selection lines (HUF K and ROW 7). Inside the logic block, the programming
HUFFLE’s current is also presented, and finally the data that gets transfered to the DCRLs
are also shown in the LB mem dotted frame7.

6.2.3 Example 3: Comprehensive logic function

An attempt to test the SPGA in its totality would ideally test all four logic blocks and at least
a number of switches scattered throughout the chip. A combination of two logic functions
were been selected to fulfill these criteria, and are listed below8. The single-bit inputs are A,
B, C, D and E while the outputs are O1 and O2.

6Refer to Chapter 4.4.5 for more detail on the programming frame
7Refer to Chapters 4.4.4 and 4.4.4.2 for more detail on the logic block and the programming thereof
8These functions are the same as in Chapter 4.6.2 used during the Verilog simulations



CHAPTER 6. TESTING 101

Logic block data Prog. frame data

PR_CLK
[mV]

LBPD
[mV]

WR
[mV]

HUF K
[uA]

Row 7
[mV]

LB HUF
[uA]

DRO 0
[mV]

DRO 1
[mV]

DRO 2
[mV]

DRO 3
[mV]

LB
mem

1 0 1 1 1 0 0 1

1

1

1

0

1

1

1

400

400

1

1

1

1

1

0

0

0

-400

-400

0

0

0

0

0

Figure 6.5: Simulation showing programming of logic block

O1 = (A XOR B) OR (C AND D) (6.2.1)

O2 = (C AND D) NAND E (6.2.2)

A simplistic mapping of the logic functions into logic blocks was done and the results are
given below, where LB# refers to the output produced by the corresponding logic block:

LB1 = A XOR B

LB2 = LB1 OR LB3

LB3 = C AND D

LB4 = LB3 NAND E

For the above logic functions to find its way into the SPGA logic blocks requires the



CHAPTER 6. TESTING 102

aid of the logic block programming frame. As discussed in the previous example, the data
for the logic blocks must first flow through the programming frame followed by the pro-
gramming data for the frame itself. The last four bits of this programming data sequence
represent logic block selection bits used by the programming frame. As illustrated by Figure
6.4 for programming data to arrive at LB3 and LB4, it must first pass through LB1 or LB2
respectively. For this reason extra ‘spacer’ bits are inserted, but have no other functional sig-
nificance. The resulting data words are presented in Table 6.5 where ‘-’ represent the spacer
bits and LB(#) denote the respective memory bits (DCRLs) inside the logic block. The data
words are processed from left to right, thus the logic block bits would be clocked in first,
followed by the programming frame bits.

Table 6.5: Logic block programming data words for Example 3

- - - - LB1(3) LB1(2) LB1(1) LB1(0) 7 8 L K
0 0 0 0 1 0 1 0 1 0 0 1

- - - - LB2(3) LB2(2) LB2(1) LB2(0) 7 8 L K
0 0 0 0 1 0 1 1 1 0 1 0

LB3(3) LB3(2) LB3(1) LB3(0) - - - - 7 8 L K
0 0 0 1 0 0 0 0 0 1 0 1

LB4(3) LB4(2) LB4(1) LB4(0) - - - - 7 8 L K
1 1 1 0 0 0 0 0 0 1 1 0

With the aid of Figure 6.6 the flow of data through the SPGA can be clearly seen in the
shaded areas. From this diagram one can identify the switches (also gray-shaded) that are
involved and thus setup Table 6.6 which contain the switch programming data used by the
switch programming frame.

For testing purposes, the complete truth table is presented in Table 6.7. The table shows
all the possible input combinations and the expected output results.

6.3 Test results

‘I love deadlines. I especially love the swooshing sound they make as they go flying by.’

[Scott Adams - The Dilbert principle]

Immediately following the manufacture of the SPGA chip (incomplete at the submission
date of this thesis), physical test results should become available. The intention is to present
these at a conference and to publish a paper at the same time.



CHAPTER 6. TESTING 103

IN 1

IN 2

OUT

LB 1

IN 1

IN 2

OUT

LB 3

IN 1

IN 2

OUT

LB 2

IN 1

IN 2

OUT

LB 4

A B C D E F G H I

K

J

L

1

2

3

4

5

6

7

8

1A

2A

2B

3A

4A

5A

5B

5C

5D

6A

6B

6E

6F

6H
6G

5F

5E 5G

4H4G

4E

4F

3H

3F

2H

2E

2F

2G

3E

3G

5H

4B 4C

4D

8K

3B

2C 7K

2D

1B 1C

1D 1E

1F

1I

1J

2I 2J

3J

3I

4I 4J

5I
5J

6J

6I

6D

6C

8L

7L

1(A) 2(B) 3 4

5

6

7(O )18(O )2910(E)

11

12

13(D)

14(C)

Figure 6.6: Wiring diagram showing data flow for Example 3



CHAPTER 6. TESTING 104

Table 6.6: Switch programming data words for Example 3

6 5 4 3 2 1 J I H G F E D C B A
a 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
d 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
e 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0
f 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
h 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0
i 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
j 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

Table 6.7: Truth table for functions 6.2.1-6.2.2

Input O1 O2
A B C D E A XOR B C AND D LB1 OR LB3 LB3 NAND E
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1
0 0 1 1 0 0 1 1 1
0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0
0 1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 0 1 1
1 0 0 0 1 1 0 1 0
1 0 0 1 0 1 0 1 1
1 0 0 1 1 1 0 1 0
1 0 1 0 0 1 0 1 1
1 0 1 0 1 1 0 1 0
1 0 1 1 0 1 1 1 1
1 0 1 1 1 0 1 1 0
1 1 0 0 0 0 0 0 1
1 1 0 0 1 0 0 0 1
1 1 0 1 0 0 0 0 1
1 1 0 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1
1 1 1 0 1 0 0 0 1
1 1 1 1 0 0 1 1 1
1 1 1 1 1 0 1 1 1



Chapter 7

Conclusions and recommendations

THIS thesis considered various aspects of existing programmable logic to find an optimal
solution for designing a Superconducting Programmable Gate Array. Related concepts

such as technology mapping (logic function to lookup table mapping) were investigated and
implemented with specific consideration for the SPGA architecture.

Associated with the design solution are RSFQ circuits that were developed and used to
construct a programmable architecture. This thesis provided a detailed description of the
design process involved to fully assemble the first superconducting reprogrammable logic
device (with similar functionality to semiconductor FPGAs). The thesis included discus-
sions on basic circuit gates and larger circuit structures that provide functionality needed
to implement reprogrammable logic. Strategic diagrams and illustrations provide insight
into the framework that constitute the overall architecture of the SPGA. Consideration for
in-circuit programming lead to the development of a programming frame to allow access to
the numerous switches and logic blocks.

SPICE simulations provided insight into the fundamental operation of gates while Ver-
ilog simulations provided a method to evaluate the overall behaviour of the device.

The design process included a large-scale integrated circuit layout that will be manu-
factured using Hypres’ 3µm Nb fabrication process. The full layout included four 2-bit
logic blocks (using a lookup table implementation which include a decoder, memory cell
array, support for programming and a merging section) and a 2-channel routing architecture
(which include various types of switch matrices). A computer aided design rule checker was
implemented to minimize layout errors.

Lastly, a comprehensive testing procedure was given that should be followed to test all
the functional aspects of the device.

Fabrication limitations in size and layout capacity resulted in a prototype with little func-
tionality but is still sufficient to demonstrate the overall concept of an SPGA. Small-scale
SPICE simulations and larger functional simulations showed positive results.

This project could be classified as a medium- to large scale design with more than 4000

105



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 106

junctions. The final stage of design, physical layout, required great manual effort and pre-
sented tremendous challenges regarding space optimization and re-usability of certain blocks.
In this regard, especially in larger designs in the future, a more automated layout process is
needed. By automating the process from circuit schematic to final layout including feedback
from layout to schematic, a much faster turnararound time can be achieved. Not only can
the project be finished faster but human error (during layout) will be minimized.

With regard to functional simulations, better models for the gates and blocks are needed
that include timing parameters so that a more accurate representation can be developed.
This may help identify issues regarding clock- and signal distribution.

The next step would be to complete the manufacturing process and test the prototype.
Future SPGA development can extend the functionality and broaden the capabilities of

this concept as fabrication technology improves. With the proper motivation and develop-
ment drive, the SPGA concept can rival semiconductor programmable logic (especially in
terms of performance and power requirements).

‘I never think of the future. It comes soon enough.’

[Albert Einstein - Interview (1930)]



List of References

[1] Hypres Inc., “Niobium integrated circuit fabrication process 100-1000-2500-1 revision
21c,” [Online] Available: http://www.hypres.com, 2005.

[2] W. Chen, A. V. Rylyakov, J. E. Lukens, and K. K. Likharev, “Rapid Single Flux Quantum
T-Flip Flop Operating up to 770 GHz,” IEEE Transactions on Applied Superconductivity,
vol. 9, no. 2, pp. 3212–3215, 1999.

[3] S. Tahara, S. Yorozu, Y. Kameda, Y. Hashimoto, H. Numata, T. Satoh, W. Hattori, and
M. Hidaka, “Superconducting Digital Electronics,” IEEE Transactions on Applied Super-
conductivity, vol. 11, no. 1, pp. 463–468, 2001.

[4] C. J. Fourie, “A Tool Kit for the Design of Superconducting Programmable Gate Ar-
rays,” Ph.D. dissertation, University of Stellenbosch, 2003.

[5] K. K. Likharev and V. K. Semenov, “RSFQ Logic/Memory Family: A New Josephson-
Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems,” IEEE Trans-
actions on Applied Superconductivity, vol. 1, no. 1, pp. 3–28, 1991.

[6] K. K. Likharev, Dynamics of Josephson Junctions and Circuits. New York: Gordon and
Breach, 1986.

[7] T. van Duzer and C. W. Turner, Superconductive Devices and Circuits. Prentice Hall PTR,
1999.

[8] A. M. Kadin, Introduction to Superconducting Circuits. John Wiley & Sons, 1999.

[9] T. Orlando and K. Delin, Foundations of Applied Superconductivity. New York: Addison-
Wesley, 1991.

[10] K. K. Likharev, O. A. Mukhanov, and V. K. Semenov, “Quantum pulse reproduction in
Josephson junction system,” Mikroelektronika (Soviet Microelectronics), vol. 17, 1988.

[11] A. K. Sharma, Programmable Logic Handbook: PLDs, CPLDs and FPGAs. McGraw-Hill
Handbooks, 1998.

107



LIST OF REFERENCES 108

[12] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-Programmable Gate Arrays.
Kluwer Academic Publishers, 1992.

[13] S. Singh, J. Rose, D. Lewis, K. Chung, and P. Chow, “Optimisation of Field-
Programmable Gate Array Logic Block Architecture for Speed,” Custom Integrated Cir-
cuits Conference, pp. 6.1.1 – 6.1.6, 1991.

[14] S. Singh, “The Effect of Logic Block Architecture on FPGA Performance,” Master’s the-
sis, University of Toronto, 1991.

[15] R. J. Francis, J. Rose, and K. Chung, “Chortle: A Technology Mapping Program for
Lookup Table-based Field-Programmable Gate Array,” Proc. 27th Design Automation
Conference, pp. 613–619, 1990.

[16] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crt: Fast Technology Mapping for
Lookup Table-based FGPAs,” Proc. 28th DAC, pp. 227–223, 1991.

[17] ——, “Technology Mapping of Look-up Table-based FPGAs for Performance,” Proc.
IDCAD-91, 1991.

[18] R. Murgai, Y. Nishizaki, N. Shenay, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Logic Synthesis for Programmable Gate Arrays,” Proc. 27th DAC, pp. 620–625, 1990.

[19] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Improved Logic
Synthesis Algorithms for Table Look Up Architectures,” ICCAD, 1991.

[20] R. Murgai, N. Shenoy, and R. K. Brayton, “Performance Directed Synthesis for Table
Look Up Programmable Gate Arrays,” ICCAD, 1991.

[21] P. Abouzeid, L. Bouchet, K. Sakouti, G. Saucier, and P. Sicard, “Lexigraphical Expression
of Boolean Function for Multilevel Synthesis of High Speed Circuits,” Proc. SASHIMI
90, pp. 31–39, 1990.

[22] D. Filo, J. C. Yang, F. Mailhot, and G. de Micheli, “Technology Mapping for a Two-
Output RAM-based Field Programmable Gate Array,” Proc. EDAC 91, pp. 534–538,
1991.

[23] K. Karplus, “Xmap: a Technology Mapper for Table-lookup Field Programmable Gate
Arrays,” Proc. 28th DAC, pp. 240–243, 1991.

[24] N. Woo, “A Heuristic Method for FPGA Technology Mapping Based on Edge Visibil-
ity,” Proc. 28th DAC, 1991.

[25] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “An Improved Synthesis
Algorithm for Multiplexor-based PGAs,” ACM/SIGDA First International Workshop on
Field-Programmable Gate Arrays, pp. 97–102, 1992.



LIST OF REFERENCES 109

[26] S. Ercolani and G. de Micheli, “Technology mapping for electrically programmable gate
arrays,” Proc. 28th DAC, pp. 234–239, 1991.

[27] A. Bedarida, S. Ercolani, and G. de Micheli, “A New Technology Mapping Algorithm
for the Design and Evaluation of Fuse/Antifuse-based Field-Programmable Gate Ar-
rays,” ACM/SIGDA First International Workshop on Field-Programmable Gate Arrays, pp.
103–108, 1992.

[28] K. Karplus, “Amap: a Technology Mapper for Selector-based Field Programmable Gate
Arrays,” Proc. 28th DAC, pp. 244–247, 1991.

[29] M. Wieser, “Quine Mc Cluskey 3.10,” [Online] Available:
http://www.iapetus.ch/wieser/software, 2002.

[30] C. J. Fourie and W. J. Perold, “An RSFQ DC-Resettable Latch for Building Memory and
Reprogrammable Circuits,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2,
pp. 348–351, 2005.

[31] Stony Brook University, [Online] Available:
http://pavel.physics.sunysb.edu/RSFQ/RSFQ.html.

[32] C. J. Fourie and W. J. Perold, “A Single-Clock Asynchronous Input COSL Set-Reset Flip-
Flop and SFQ to Voltage State Interface,” IEEE Transactions on Applied Superconductivity,
vol. 15, no. 2, pp. 263–266, 2005.

[33] M. W. Johnson, Q. P. Herr, and J. W. Spargo, “Monte-Carlo Yield Analysis,” IEEE Trans-
actions on Applied Superconductivity, vol. 9, no. 2, pp. 3322–3325, 1999.

[34] C. A. Hamilton and K. C. Gilbert, “Margins and Yield in Single Flux Quantum Logic,”
IEEE Transactions on Applied Superconductivity, vol. 1, no. 4, pp. 157–163, 1991.

[35] C. J. Fourie, W. J. Perold, and H. R. Gerber, “Complete Monte Carlo Model Description
of Lumped-Element RSFQ Logic Circuits,” IEEE Transactions on Applied Superconductiv-
ity, vol. 15, no. 2, pp. 384–387, 2005.

[36] M. Jeffery, W. J. Perold, Z. Wang, and T. van Duzer, “Monte Carlo Optimization of
Superconducting Complementary Output Switching Logic Circuits,” IEEE Transactions
on Applied Superconductivity, vol. 8, no. 3, pp. 104–119, 1998.

[37] C. J. Fourie and W. J. Perold, “Comparison of Genetic Algorithims to Other Optimiza-
tion Techniques for Raising Circuit Yield in Superconducting Digital Circuits,” IEEE
Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 551–514, 2003.

[38] Whiteley Research Inc., “WRspice 2.2.54,” [Online] Available:
http://www.srware.com, January 2004.



LIST OF REFERENCES 110

[39] K. Gaj, C. Cheah, E. G. Friedman, and M. J. Feldman, “Functional Modeling of RSFQ
Circuits using Verilog HDL,” IEEE Transactions on Applied Superconductivity, vol. 7, no. 2,
pp. 3151–3154, 1997.

[40] Altera Corporation, “QuartusII 4.2,” [Online] Available: http://www.altera.com/,
2005.

[41] D. Clein, CMOS IC Layout: Concepts, Methodologies and Tools. Newnes, 2000.

[42] D. E. Boyce, “LASI 7,” [Online] Available: http://members.aol.com/lasicad, 2005.

[43] H. Suzuki, S. Nagasawa, K. Miyahara, and Y. Enomoto, “Characteristics of Driver and
Receiver Circuits with a Passive Transmission Line in RSFQ Circuits,” IEEE Transactions
on Applied Superconductivity, vol. 10, no. 3, pp. 1637–1641, 2000.

[44] Q. P. Herr, M. S. Wire, and A. D. Smith, “Ballistic SFQ signal propagation on-chip and
chip-to-chip,” IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 463–466,
2003.

[45] S. R. Whiteley, “Sline version 1.0,” [Online] Available: http://www.srware.com, June
1996.

[46] B. Dimov, T. Ortlepp, H. Toepfer, and H. F. Uhlmann, “Design issues for interconnects
in densely packaged RSFQ structures,” IEEE Transactions on Applied Superconductivity,
vol. 13, no. 2, pp. 498–501, 2003.

[47] R. Chadha and K. C. Gupta, “Compensation of discontinuities in planar transmission
lines,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-30, no. 12, pp.
2151–2156, December 1982.

[48] W. H. Chang, “The inductance of a superconducting strip transmission line,” Journal of
Applied Physics, vol. 50, no. 12, pp. 8129–8134, 1979.

[49] M. Kamon, M. J. Tsuk, and J. K. White, “FastHenry: A multipole-accelerated 3-D induc-
tance extraction program,” IEEE Transactions on Microwave Theory and Techniques, vol. 42,
no. 9, pp. 1750–1758, 1994.

[50] S. R. Whiteley, “FastHenry ver. 3.0wr,” [Online] Available: http://www.srware.com,
February 2001.

[51] C. J. Fourie, “InductEx,” [Online] Available: http://staff.ee.sun.ac.za/cjfourie/rsfq,
2004.

[52] C. J. Fourie and W. J. Perold, “Simulated Inductance Variations in RSFQ Circuit Struc-
tures,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 300–303, 2005.



LIST OF REFERENCES 111

[53] H. Terai, Y. Kameda, S. Yorozu, A. Fijimaki, and Z. Wang, “The Effects of DC Bias
Currents in Large-Scale SFQ Circuits,” IEEE Transactions on Applied Superconductivity,
vol. 13, no. 2, pp. 502–506, 2003.

[54] A. M. Kadin, R. J. Webber, and S. Sarwana, “Effects of Superconducting Return Currents
on RSFQ Circuit Performance,” IEEE Transactions on Applied Superconductivity, vol. 15,
no. 2, pp. 280–283, 2005.

[55] E. Tolkacheva, H. Engseth, I. Kataeva, and A. Kidiyarova-Shevchenko, “Influence of the
Bias Supply Lines on the Performance of RSFQ Circuits,” IEEE Transactions on Applied
Superconductivity, vol. 15, no. 2, pp. 276–279, 2005.

[56] S. Bermon and T. Gheewala, “Moat-guarded Josephson SQUIDS,” IEEE Transactions on
Magnetics, vol. MAG-19, no. 3, pp. 1160–1164, 1983.

[57] J.C. Weisend II, Ed., Handbook of Cryogenic Engineering. Taylor and Francis, 1998.

[58] Private communications with C. van Niekerk.

[59] Private communications with Dr. C.J. Fourie.

[60] K. H. G. Duh, M. W. Pospieszalski, W. F. Kopp, P. Ho, A. A. Jabra, P. Chao, P. M.
Smith, L. F. Lester, J. M. Ballingall, and S. Weinreb, “Ultra-Low-Noise Cryogenic High-
Electron-Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 35, no. 3, 1998.



Appendices

112



Appendix A

Verilog modules

A.1 SM1

module sm2 ( pr_h_set, pr_v_set, pr_d, reset, h_in, v_in, h_out, v_out);

input pr_h_set, pr_v_set;

input [1:0] pr_d;

input reset;

input [1:0] h_in, v_in;

output [1:0] h_out, v_out;

reg [1:0] h_out, v_out;

reg [1:0] SRAM;

wire pr_clk;

assign pr_clk = pr_h_set && pr_v_set;

always @(posedge reset or posedge pr_clk)

begin

if (reset)

SRAM = 2’b00;

else

SRAM = pr_d;

end

always @(h_in or v_in)

begin

h_out[0] = h_in[0] || (v_in[1] && SRAM[1]);

h_out[1] = h_in[1] || (v_in[0] && SRAM[0]);

v_out[0] = v_in[0];

v_out[1] = v_in[1];

end

endmodule

A.2 SM_STOP

module sm_stop ( pr_h_set, pr_v_set, pr_d, reset, d_in, d_out);

113



APPENDIX A. VERILOG MODULES 114

input pr_h_set, pr_v_set;

input [1:0] pr_d;

input reset;

input [1:0] d_in;

output [1:0] d_out;

reg [1:0] d_out;

reg [1:0] SRAM;

wire pr_clk;

assign pr_clk = pr_h_set && pr_v_set;

always @(posedge reset or posedge pr_clk)

begin

if (reset)

SRAM = 2’b00;

else

SRAM = pr_d;

end

always @(d_in)

begin

d_out[0] = d_in[0] && SRAM[0];

d_out[1] = d_in[1] && SRAM[1];

end

endmodule

A.3 LUT_IN

module lut_in ( pr_h_set, pr_v_set, pr_d, reset, v_in, h_out, v_out);

input pr_h_set, pr_v_set;

input [3:0] pr_d;

input reset;

input [1:0] v_in;

output [1:0] h_out, v_out;

reg [1:0] h_out, v_out;

reg [3:0] SRAM;

wire pr_clk;

assign pr_clk = pr_h_set && pr_v_set;

always @(posedge reset or posedge pr_clk)

begin

if (reset)

SRAM = 4’b0000;

else

SRAM = pr_d;

end

always @(v_in)

begin

h_out[0] = (v_in[0] && SRAM[0]) || (v_in[1] && SRAM[1]);



APPENDIX A. VERILOG MODULES 115

h_out[1] = (v_in[0] && SRAM[2]) || (v_in[1] && SRAM[3]);

v_out[0] = v_in[0];

v_out[1] = v_in[1];

end

endmodule

A.4 LUT_OUT

module lut_out ( pr_h_set, pr_v_set, pr_d, reset, h_in, v_in, v_out);

input pr_h_set, pr_v_set;

input [1:0] pr_d;

input reset;

input h_in;

input [1:0] v_in;

output [1:0] v_out;

reg [1:0] v_out;

reg [1:0] SRAM;

wire pr_clk;

assign pr_clk = pr_h_set && pr_v_set;

always @(posedge reset or posedge pr_clk)

begin

if (reset)

SRAM = 2’b00;

else

SRAM = pr_d;

end

always @(v_in or h_in)

begin

v_out[0] = v_in[0] || (h_in && SRAM[0]);

v_out[1] = v_in[1] || (h_in && SRAM[1]);

end

endmodule

A.5 LB

module lut ( pr_clk, pr_h_set, pr_v_set, pr_d, reset, d_clk, d_in, d_out);

parameter size=4;

input [1:0] d_in;

input pr_clk, pr_h_set, pr_v_set;

input [3:0] pr_d;

input reset, d_clk;

output d_out;

reg d_out;

reg [3:0] SRAM;



APPENDIX A. VERILOG MODULES 116

always @(posedge pr_clk or posedge reset)

begin

if (reset)

SRAM = 4’b0000;

else if (pr_clk && pr_h_set && pr_v_set)

SRAM = pr_d;

end

always @(d_clk)

begin

if (d_clk)

case (d_in)

2’b00 : d_out = SRAM[0];

2’b01 : d_out = SRAM[1];

2’b10 : d_out = SRAM[2];

2’b11 : d_out = SRAM[3];

default : d_out = 1’bx;

endcase

else

d_out = 1’b0;

end

endmodule

A.6 SPGA

module spga ( pr_clk, pr_h_set, pr_v_set, pr_d, reset, d_clk, d_in, d_out);

input pr_clk;

input [8:0] pr_h_set;

input [4:0] pr_v_set;

input [3:0] pr_d;

input reset, d_clk;

input [13:0] d_in;

output [11:0] d_out;

reg [11:0] d_out;

wire [1:0] w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w14,w15,w16,w17,w18,w19;

wire [1:0] w20,w21,w22,w23,w24,w25,w26,w27,w28,w29,w32,w33,w34,w35,w36;

wire w12,w13,w30,w31;

sm1 sm1_ul ( pr_h_set[0], pr_v_set[0], pr_d[1:0], reset,

{d_in[12], d_in[13]}, {d_in[1], d_in[0]},

{w1[1], w1[0]}, {w4[1], w4[0]} );

sm_stop sm_stop_ul ( pr_h_set[0], pr_v_set[1], pr_d[1:0], reset,

{w1[1], w1[0]}, {w2[1], w2[0]} );

sm2 sm2_um ( pr_h_set[0], pr_v_set[2], pr_d[1:0], reset,

{w2[1], w2[0]}, {w5[1], w5[0]},

{w3[1], w3[0]}, {d_out[1], d_out[0]} );

sm2 sm2_ur ( pr_h_set[0], pr_v_set[4], pr_d[1:0], reset,



APPENDIX A. VERILOG MODULES 117

{d_in[2], d_in[3]}, {w3[1], w3[0]},

{w6[0], w6[1]}, {d_out[3], d_out[2]} );

lut_in lut_in_ul ( pr_h_set[1], pr_v_set[0], pr_d[3:0], reset,

{w4[1], w4[0]},

{w7[1], w7[0]}, {w9[1], w9[0]} );

lut lut_ul ( pr_clk, pr_h_set[1], pr_v_set[1], pr_d, reset, d_clk,

{w7[1], w7[0]}, {w12} );

lut_in lut_in_ur ( pr_h_set[1], pr_v_set[2], pr_d[3:0], reset,

{w10[1], w10[0]},

{w8[0], w8[1]}, {w5[1], w5[0]} );

lut lut_ur ( pr_clk, pr_h_set[1], pr_v_set[3], pr_d, reset, d_clk,

{w8[1], w8[0]}, {w13} );

sm_stop sm_stop_lum ( pr_h_set[2], pr_v_set[0], pr_d[1:0], reset,

{w9[1], w9[0]}, {w11[1], w11[0]} );

lut_out lut_out_ul ( pr_h_set[2], pr_v_set[2], pr_d[1:0], reset,

{w12}, {w14[1], w14[0]},

{w10[1], w10[0]} );

lut_out lut_out_ur ( pr_h_set[2], pr_v_set[4], pr_d[1:0], reset,

{w13}, {w6[1], w6[0]},

{w15[1], w15[0]} );

sm_stop sm_stop_mum ( pr_h_set[3], pr_v_set[2], pr_d[1:0], reset,

{w17[1], w17[0]}, {w14[1], w14[0]} );

sm2 sm2_ml ( pr_h_set[4], pr_v_set[0], {pr_d[0], pr_d[1]}, reset,

{w16[1], w16[0]}, {w18[1], w18[0]},

{w21[1], w21[0]}, {d_out[10], d_out[11]} );

sm_stop sm_stop_ml ( pr_h_set[4], pr_v_set[1], {pr_d[1], pr_d[0]}, reset,

{w19[1], w19[0]}, {w18[1], w18[0]} );

sm1 sm1_mm ( pr_h_set[4], pr_v_set[2], {pr_d[1], pr_d[0]}, reset,

{w22[0], w22[1]}, {w20[0], w20[1]},

{w17[0], w17[1]}, {w19[0], w19[1]} );

sm2 sm2_mr ( pr_h_set[4], pr_v_set[4], {pr_d[0], pr_d[1]}, reset,

{d_in[4], d_in[5]}, {w15[0], w15[1]},

{w20[0], w20[1]}, {w23[0], w23[1]} );

sm_stop sm_stop_mlm ( pr_h_set[5], pr_v_set[2], {pr_d[1], pr_d[0]}, reset,

{w24[1], w24[0]}, {w22[1], w22[0]} );

lut_in lut_in_ll ( pr_h_set[6], pr_v_set[0], pr_d[3:0], reset,

{w21[1], w21[0]},

{w25[1], w25[0]}, {w27[1], w27[0]} );

lut lut_ll ( pr_clk, pr_h_set[6], pr_v_set[1], pr_d, reset, d_clk,

{w25[1], w25[0]}, {w30} );



APPENDIX A. VERILOG MODULES 118

lut_in lut_in_lr ( pr_h_set[6], pr_v_set[2], pr_d[3:0], reset,

{w28[1], w28[0]},

{w26[0], w26[1]}, {w24[1], w24[0]} );

lut lut_lr ( pr_clk, pr_h_set[6], pr_v_set[3], pr_d, reset, d_clk,

{w26[1], w26[0]}, {w31} );

sm_stop sm_stop_mlr ( pr_h_set[6], pr_v_set[4], {pr_d[1], pr_d[0]}, reset,

{w23[1], w23[0]}, {w29[1], w29[0]} );

lut_out lut_out_ll ( pr_h_set[7], pr_v_set[2], pr_d[1:0], reset,

{w30}, {w32[1], w32[0]},

{w28[1], w28[0]} );

lut_out lut_out_lr ( pr_h_set[7], pr_v_set[4], pr_d[1:0], reset,

{w31}, {w29[1], w29[0]},

{w33[1], w33[0]} );

sm2 sm2_lr ( pr_h_set[8], pr_v_set[0], {pr_d[1], pr_d[0]}, reset,

{d_in[9], d_in[8]}, {w27[1], w27[0]},

{w34[0], w34[1]}, {d_out[8], d_out[9]} );

sm2 sm2_lm ( pr_h_set[8], pr_v_set[2], {pr_d[1], pr_d[0]}, reset,

{d_in[7], d_in[6]}, {w34[0], w34[1]},

{w32[0], w32[1]}, {w35[0], w35[1]} );

sm_stop sm_stop_lr ( pr_h_set[8], pr_v_set[3], {pr_d[1], pr_d[0]}, reset,

{w35[1], w35[0]}, {w36[1], w36[0]} );

sm1 sm1_lr ( pr_h_set[8], pr_v_set[4], {pr_d[1], pr_d[0]}, reset,

{w36[1], w36[0]}, {w33[1], w33[0]},

{d_out[5], d_out[4]}, {d_out[6], d_out[7]} );

assign {w16[1], w16[0]} = {(w11[1] || d_in[10]), (w11[0] || d_in[11])};

endmodule



Appendix B

Spice code

B.1 I2-switch

.monte

.exec

checkSTP1=15

checkSTP2=15

* global variations

let Jtol = gauss(0.1/3,1)

let Ctol = gauss(0.05/3,1)

let Rtol = gauss(0.2/3,1)

let Ltol = gauss(0.1/3,1)

let Cmax = gauss(0.0362,1)

let Cmin = gauss(0.0363,1)

let Kvar1 = gauss(0.019432,1)

let Kvar2 = gauss(0.023397,1)

let Kvar3 = gauss(0.037535,1)

let Kvar4 = gauss(0.011211,1)

let Kvar5 = gauss(0.025501,1)

let Kvar6 = gauss(0.021321,1)

.endc

.control

if (tg1*504e-12) > 0.5f

let checkFAIL=1

end

if (tp1*40e-12) < 1.5f or (tp1*40e-12) > 2.5f

let checkFAIL=1

end

if (tg2*225e-12) > 0.5f

let checkFAIL=1

end

.endc

* local variations

.param Jvar = Jtol*gauss(0.05/3,1)

119



APPENDIX B. SPICE CODE 120

.param Avar = gauss(0.05/3,1)

.param Rvar = Rtol*gauss(0.05/3,1)

.param Lvar = Ltol*gauss(0.15/3,1)

.measure tran tg1 from=20p to=524p avg v(2)

.measure tran tp1 from=529p to=569p avg v(2)

.measure tran tg2 from=574p to=799p avg v(2)

.save v(7)

.save V5#branch

.save V6#branch

.save V(2)

.tran 1p 800p 0 0.5p UIC

B0 13 0 29 jjmc1 area=$&(0.2*Avar)

B1 16 0 28 jjmc2 area=$&(0.2*Avar)

B2 8 4 27 jjmc3 area=$&(0.245*Avar)

B3 4 5 26 jjmc4 area=$&(0.27*Avar)

B4 1 0 25 jjmc5 area=$&(0.27*Avar)

I0 0 18 pwl(0 0 10p $&(-333u*Cmin) 390p $&(-333u*Cmin) 410p $&(339u*Cmax))

I1 0 17 pwl(0 0 10p $&(-333u*Cmin) 190p $&(-333u*Cmin) 210p $&(339u*Cmax) 590p $&(339u*Cmax) 610p $&(-333u*Cmin))

I2 0 24 dc 85u

K1 L4 L6 $&(0.2556*Kvar1)

K2 L7 L5 $&(0.2556*Kvar1)

K3 L0 L6 $&(0.2575*Kvar2)

K4 L3 L5 $&(0.2575*Kvar2)

K5 L0 L4 $&(0.0991*Kvar3)

K6 L3 L7 $&(0.0991*Kvar3)

K7 L2 L6 $&(0.4181*Kvar4)

K8 L1 L5 $&(0.4181*Kvar4)

K9 L0 L1 $&(0.1254*Kvar5)

K10 L3 L2 $&(0.1254*Kvar5)

K11 L4 L1 $&(0.1244*Kvar6)

K12 L7 L2 $&(0.1244*Kvar6)

L0 22 18 $&(3p*Lvar)

L1 24 23 $&(6.1p*Lvar)

L2 23 0 $&(6.1p*Lvar)

L3 15 22 $&(3p*Lvar)

L4 21 17 $&(3p*Lvar)

L5 13 12 $&(1.7p*Lvar)

L6 12 11 $&(1.7p*Lvar)

L7 9 21 $&(3p*Lvar)

L8 12 20 $&(1.2p*Lvar)

L9 4 19 $&(1.98p*Lvar)

L10 4 1 $&(0.132p*Lvar)

R0 14 16 $&(9*Rvar)

R1 13 0 $&(1*Rvar)

R2 16 0 $&(1*Rvar)

R3 8 4 $&(1.2*Rvar)

R4 2 0 $&(5*Rvar)



APPENDIX B. SPICE CODE 121

R5 5 4 $&(1.14*Rvar)

R6 1 0 $&(1.14*Rvar)

V0 11 16 dc 0

V1 14 0 $&(2.6m*Rtol*Jtol)

V2 10 0 $&(2.6m*Rtol*Jtol)

V3 20 8 dc 0

V4 7 0 pulse(0 824u 50p 2p 3p 0 150p)

V5 15 0

V6 9 0

X0 10 7 6 jtl_250uA

X1 14 6 5 jtl_250uA

X2 14 19 3 jtl_250uA

X3 14 3 2 jtl_250uA

.subckt jtl_250uA 11 10 9

B0 2 0 8 jj1 area=0.25

B1 1 0 7 jj1 area=0.25

L0 6 5 0.132p

L1 10 4 1.98p

L2 4 5 1.98p

L3 5 3 1.98p

L4 3 9 1.98p

L5 4 2 0.132p

L6 3 1 0.132p

R0 11 6 7.4

R1 2 0 1.14

R2 1 0 1.14

.ends jtl_250uA

.model jj1 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=1m, r0=30, rn=1.64706, cap=3.8065p)

*Nb 1000 A/cm2 area = 100 square microns (generated by JJMODEL)

.model jjmc1 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol))

*Nb 1000 A/cm2 (Hypres 3u-process) area = 100 square microns : variations by MConvert

.model jjmc2 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol))

*Nb 1000 A/cm2 (Hypres 3u-process) area = 100 square microns : variations by MConvert

.model jjmc3 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol))

*Nb 1000 A/cm2 (Hypres 3u-process) area = 100 square microns : variations by MConvert

.model jjmc4 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol))

*Nb 1000 A/cm2 (Hypres 3u-process) area = 100 square microns : variations by MConvert

.model jjmc5 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol))

*Nb 1000 A/cm2 (Hypres 3u-process) area = 100 square microns : variations by MConvert



Appendix C

Circuit schematics

C.1 Basic gates

C.1.1 AND gate

122



APPENDIX C. CIRCUIT SCHEMATICS 123

L
0

L
1

R
0

B
0

R
1

B
1

L
2

L
3

L
4

B
2

R
4

B
3

R
2

R
3

R
5

L
5

R
6

B
4

L
6

L
7

L
8

R
7

B
5

L
9

L
1

0
L1

1
L

1
2

L
1

3

L
1

4

L
1

9
L

2
0

L
1

5
L

1
6

L
1

7
L

1
8

R
8

B
6

B
7

R
9

B
8

R
1

0
R

11
R

1
2

B
9

L
2

1

R
1

4

R
1

5
B

1
0

R
1

3

L
2

2

B
11

L
2

3
R

1
7

R
1

6

B
1
3

B
1
2

L
2

4
L

2
5

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

jj
1

0
.0

2
6

p
0

.0
2

6
p

1
.1

4
7

1
.0

4

8
.5

p
2

.7
7

p
3

.2
p

1
5

.6
1

.0
4

1
.1

4
7

1.
14

9
.3

2
1

.5
8

p
1

.9
8

p

0
.0

5
3

p

1
.6

4
p

1
.6

9
0

.0
2

6
p

0
.8

2
p

1
.1

6
p

0
.0

5
3

p
1

.6
4

p

1
.9

8
p

0
.0

5
3

p
0
.1

3
2
p

0
.0

5
3

p

1
.5

8
p

0
.2

p
2
p

1
.6

9

0
.7

0
.8

1
4

.3
5

1.
14

1
.1

4
7

1
.0

4

2
.7

7
p

1
5

.6

8
.5

p
3

.2
p

1
.1

4
7

1
.0

4

0
.0

2
6

p
0

.0
2

6
p

a
re

a
=

0
.2

7
5

a
re

a
=

0
.2

5
a
re

a
=

0
.2

5

a
re

a
=

0
.2

7
5

a
re

a
=

0
.2

5
1

a
re

a
=

0
.1

7
0

a
re

a
=

0
.4

1
a
re

a
=

0
.1

7
0

a
re

a
=

0
.3

5
5

a
re

a
=

0
.2

5
1

a
re

a
=

0
.2

7
5

a
re

a
=

0
.2

5

a
re

a
=

0
.2

5
a
re

a
=

0
.2

7
5

A C
L

K B

D
C

 B
IA

S

O
U

T

Figure C.1: Circuit diagram: AND gate



APPENDIX C. CIRCUIT SCHEMATICS 124

C.1.2 DC-to-SFQ Converter

R0

L0

L1 L2
B0 L3

L4 L5
L7

L6

B2 L8
B1

R2

B3
R3

R4

L9 L10

L11

jj1

jj1

jj1

jj1

6.4

1.68 0.08p

3.35p 1.29p 1.13p

1.74p 2.11p

1.27p
0.29p

0.69p
1.17

1.68

1.94

3.59p 0.13p

0.18p

area=0.171

area=0.245area=0.148

area=0.171

DC IN

DC BIAS

SFQ OUT

Figure C.2: Circuit diagram: DC-to-SFQ converter



APPENDIX C. CIRCUIT SCHEMATICS 125

C.1.3 Divider

R0

B0 L0 L1

L2

L3 L4

L5

L6 L7

L8

L9 L10

B1

R1 R2 R3 B2

jj1

jj1 jj1

1.14

1.98p0.053p

1.64p

0.82p 1.16p

0.053p 1.64p 1.98p

0.053p
0.132p 0.053p

0.81 4.35 1.14

area=0.251

area=0.355 area=0.251

IN

DC BIAS

OUT1

OUT2

Figure C.3: Circuit diagram: Divider



APPENDIX C. CIRCUIT SCHEMATICS 126

C.1.4 DRO

L0

R2 R0 B0 R1

L1

B1

L2

L3

R3B2 B3 R4

jj1

jj1

jj1 jj1

1.58p

1.17

15.6 1.06

8.474p 3.17p2.77p

1.06
1.17

area=0.245 area=0.27

area=0.27area=0.245

SET

DC BIAS RESET

OUT

Figure C.4: Circuit diagram: DRO



APPENDIX C. CIRCUIT SCHEMATICS 127

C.1.5 JTL (250µA)

R0

L0

L3

L1 L2 L4

L5 L6

R2 B1
B0 R1 jj1

jj1

7.4

0.132p

1.98p 1.98p 1.98p 1.98p

0.132p0.132p

1.14
1.14

area=0.25

area=0.25

DC_BIAS

IN

OUT

Figure C.5: Circuit diagram: 250µA Josephson Transmission Line



APPENDIX C. CIRCUIT SCHEMATICS 128

C.1.6 Merger

L0

L1

B0

R0

L2 R1

B1

R2

L3

L4 L5 L6

B2

R3 R4 B3

L7 L8

L9 R5

B4

L10

jj1

jj1

jj1 jj1

jj1

0.026p

1.14
1.97p

0.66p 5.07

1.27
0.13p

2p

0.21p 2.64p

1.141.27

0.66p

0.026p

1.141.97p

0.026p

area=0.25

area=0.225

area=0.225
area=0.25

area=0.25

IN_A

IN_B

DC BIAS

OUT

Figure C.6: Circuit diagram: Merger



Appendix D

Layouts

D.1 Basic gates

D.1.1 DC-to-SFQ converter

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0 IN

OUT

20µm

Figure D.1: Layout: DC-to-SFQ converter

129



APPENDIX D. LAYOUTS 130

D.1.2 Divider

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

IN

OUT 1

OUT 2

20µm

Figure D.2: Layout: Divider gate

D.1.3 DRO

M0

I1A

M1

I1B

M2

I2

M3

R2

I0

R3

SET
(M1)

RESET
(M1)

OUT
(M2)

20µm

Figure D.3: Layout: DRO gate



APPENDIX D. LAYOUTS 131

D.1.4 HUFFLE

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

20µm

RESET
(M2)

PB in

SET
(M2)

Iout-

PB out

Iout+

Figure D.4: Layout: HUFFLE gate



APPENDIX D. LAYOUTS 132

D.1.5 I-Switch

M0

M1

M2

M3

I0 R3

R2

I2

I1B

I1A

10µm

SET in SET out

READ
(M1)

OUT (M2)

Figure D.5: Layout: Current-Select switch

D.1.6 JTL250

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

IN /
OUT

IN /
OUT

10µm

Figure D.6: Layout: 250µA Josephson transmission line gate



APPENDIX D. LAYOUTS 133

D.1.7 Merger

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

20µm

IN A

IN B OUT

Figure D.7: Layout: Merger

D.1.8 MSL driver

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

SFQ
IN

MSL
OUT
@

2.3Ohm

10 mì

Figure D.8: Layout: Microstrip transmission line driver gate



APPENDIX D. LAYOUTS 134

D.1.9 MSL receiver

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

MSL
IN
@

2.3Ohm
SFQ
OUT

Figure D.9: Layout: Microstrip transmission line receiver gate



APPENDIX D. LAYOUTS 135

D.1.10 RSFQ-to-COSL converter

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

20µm

IN
(M1)

OUT
@

5Ohm
CLK

Figure D.10: Layout: RSFQ-to-COSL converter



APPENDIX D. LAYOUTS 136

D.2 Composite blocks

D.2.1 Inline Switch

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

IN OUT

WR

SEL

50µm

Figure D.11: Layout: Inline Switch



APPENDIX D. LAYOUTS 137

D.2.2 Crossbar Switch

M0

I1A I1B I2 R2 R3

M1 M2 M3 I0

HORZ
IN

HORZ
OUT

VERT
OUT

VERT
IN

WR

SEL

50µm

Figure D.12: Layout: Crossbar Switch



Appendix E

Design Rule Checker listing

title=M0 layer spacing >= 2 um (Rule 1.1)

resolution=0.1

distance=2

operators=

{

map,30 ;map M0 layer

push,30 ;push it

jrc ;nothing to do

expr ;expand M0 layer

jrn ;test results

dsp,30,w,2 ;display M0 layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=M0 layer width >= 2 um (Rule 1.2)

resolution=0.1

distance=2

operators=

{

map,30 ;map M0 layer

push,30 ;push it

jrc ;nothing to do

notr ;invert M0 layer

expr ;expand M0 layer

jrn ;test results

dsp,30,w,2

dspr,Y,1

scpy

}

title=M0 spacing to I0 >= 1.5 um (Rule 1.3a)

resolution=0.2

distance=1.5

operators=

{

map,30 ;map M0

map,31 ;map I0

push,30 ;M0

jrc

138



APPENDIX E. DESIGN RULE CHECKER LISTING 139

push,31 ;I0

jrc

andrs

push,31 ;I0

xorrs

push,30 ;M0

exprs

jrn

dsp,30,g,2 ;M0

dsp,31,w,2 ;I0

dspr,y,1

scpy

}

title=M0 surround I0 >= 1.5 um (Rule 1.3b)

resolution=0.2

distance=1.5

operators=

{

map,30 ;map M0

map,31 ;map I0

push,30 ;M0

jrc

push,31 ;I0

jrc

andrs

push,30 ;M0

notr

exprs

jrn

dsp,30,g,2

dsp,31,w,2

dspr,y,1

scpy

}

title=M0 spacing to M1 >= 1 um (Rule 1.4a)

resolution=0.1

distance=1

operators=

{

map,30 ;map M0

map,1 ;map M1

push,30 ;M0

jrc

push,1 ;M1

jrc

andrs

push,1 ;M1

xorrs

push,30 :M0

exprs

jrn

dsp,30,g,2 ;M0

dsp,01,b,2 ;M1

dspr,y,1

scpy



APPENDIX E. DESIGN RULE CHECKER LISTING 140

}

title=M0 surround M1 >= 1 um (Rule 1.4b)

resolution=0.1

distance=1

operators=

{

map,30 ;map M0

map,1 ;map M1

push,1 ;M0

jrc

push,30 ;M0

jrc

andrs

push,30 ;M0

notr

exprs

jrn

dsp,30,g,2 ;M0

dsp,1,b,2 ;M1

dspr,y,1

scpy

}

title=M0 spacing to R2 >= 1.5 um (Rule 1.5a)

resolution=0.2

distance=1.5

operators=

{

map,30 ;map M0

map,9 ;map R2

push,9 ;R2

jrc

push,30 ;M0

jrc

andrs

push,9 ;R2

xorrs

push,30

exprs

jrn

dsp,30,g,2 ;M0

dsp,09,w,2 ;R2

dspr,y,1

scpy

}

title=M0 surround R2 >= 1.5 um (Rule 1.5b)

resolution=0.2

distance=1.5

operators=

{

map,30 ;map M0

map,9 ;map R2

push,9 ;R2

jrc

push,30 ;M0

jrc



APPENDIX E. DESIGN RULE CHECKER LISTING 141

andrs

push,30 ;M0

notr

exprs

jrn

dsp,30,g,2 ;M0

dsp,9,w,2 ;R2

dspr,y,1

scpy

}

title=I0 width >= 2.5 um (Rule 2.1)

resolution=0.3

distance=2.5

operators=

{

map,31 ;map I0 layer

push,31 ;push it

jrc ;nothing to do

notr ;invert I0 layer

expr ;expand I0 layer

jrn ;test results

dsp,31,w,2

dspr,Y,1

scpy

}

title=I0 spacing to I1A >= 2.0 (Rule 2.2)

resolution=0.2

distance=2

operators=

{

map,31 ;map I0

map,2 ;map I1A

push,31

jrc

push,2

jrc

andrs

push,31

xorrs

push,2

exprs

jrn

dsp,31,g,2

dsp,2,y,2

dspr,y,1

scpy

}

title=I0 surrounded by M1 >= 1.5 (Rule 2.3)

resolution=0.2

distance=1.5

operators=

{

map,31 ;map I0

map,1 ;map M1

push,1



APPENDIX E. DESIGN RULE CHECKER LISTING 142

jrc

push,31

jrc

andrs

push,1

notr

exprs

jrn

dsp,1,b,2

dsp,31,g,2

dspr,y,1

scpy

}

title=I0 spacing to R2 >= 1.5 (Rule 2.4)

resolution=0.2

distance=1.5

operators=

{

map,31 ;map I0

map,9 ;map R2

push,9

jrc

push,31

jrc

andrs

push,9

xorrs

push,31

exprs

jrn

dsp,31,g,2

dsp,9,w,2

dspr,y,1

scpy

}

title=I1A layer spacing >= 2 um (Rule 3.1)

resolution=0.1

distance=2

operators=

{

map,2 ;map I1A layer

push,2 ;push it

jrc ;nothing to do

expr ;expand M0 layer

jrn ;test results

dsp,2,y,2 ;display M0 layer in grey

dspr,Y,1 ;display result in yellow

pause

scpy

}

title=Minimum I1A size >= 3.6 (Rule 3.2)

resolution=0.3

distance=3.6

operators=

{



APPENDIX E. DESIGN RULE CHECKER LISTING 143

map,2 ;map I1A layer

push,2 ;push it

jrc ;nothing to do

notr ;invert I1A layer

expr ;expand I1A layer

jrn ;test results

dsp,2,y,2

dspr,Y,1

pause

scpy

}

title=I1A spacing to M1 >= 2.0 (Rule 3.3a)

resolution=0.2

distance=2.0

operators=

{

map,2 ;map I1A

map,1 ;map M1

push,2

jrc

push,1

jrc

andrs

push,2

xorrs

push,1

exprs

jrn

dsp,1,b,2

dsp,2,y,2

dspr,y,1

scpy

}

title=I1A surrounded by M1 >= 2.0 um (Rule 3.3b)

resolution=0.2

distance=2.0

operators=

{

map,2 ;map I1A

map,1 ;map M1

push,2 ;

jrc

push,1 ;

jrc

andrs

push,1 ;

notr

exprs

jrn

dsp,1,b,2 ;

dsp,2,y,2 ;

dspr,y,1

scpy

}

title=I1A spacing to R2 >= 0.5 (Rule 3.4)



APPENDIX E. DESIGN RULE CHECKER LISTING 144

resolution=0.1

distance=0.5

operators=

{

map,2 ;map I1A

map,9 ;map R2

push,2

jrc

push,9

jrc

andrs

push,2

xorrs

push,9

exprs

jrn

dsp,2,y,2

dsp,9,w,2

dspr,y,1

scpy

}

title=I1A surround I1B >= 0.8 um (Rule 3.5)

resolution=0.1

distance=0.8

operators=

{

map,2 ;map I1A

map,3 ;map I1B

push,2 ;

jrc

push,3 ;

jrc

andrs

push,2 ;

notr

exprs

jrn

dsp,2,y,2 ;

dsp,3,c,1 ;

dspr,y,1

scpy

}

title=M1 layer spacing >= 2.5 um (Rule 4.1)

resolution=0.2

distance=2.5

operators=

{

map,1 ;map M1 layer

push,1 ;push it

jrc ;nothing to do

expr ;expand M1 layer

jrn ;test results

dsp,1,b,2 ;display M1 layer in grey

dspr,Y,1 ;display result in yellow

scpy



APPENDIX E. DESIGN RULE CHECKER LISTING 145

}

title=M1 layer width >= 2.5 um (Rule 4.2)

resolution=0.2

distance=2.5

operators=

{

map,1 ;map M1 layer

push,1 ;push it

jrc ;nothing to do

notr ;invert M1 layer

expr ;expand M1 layer

jrn ;test results

dsp,1,b,2

dspr,Y,1

scpy

}

title=M1 spacing to R2 >= 1 (Rule 4.3a)

resolution=0.2

distance=1

operators=

{

map,1 ;map M1

map,9 ;map R2

push,9

jrc

push,1

jrc

andrs

push,9

xorrs

push,1

exprs

jrn

dsp,1,b,2

dsp,9,w,2

dspr,y,1

scpy

}

title=M1 surround R2 >= 1.0 (Rule 4.3b)

resolution=0.2

distance=1.0

operators=

{

map,9 ;map R2

map,1 ;map M1

push,9 ;

jrc

push,1 ;

jrc

andrs

push,1 ;

notr

exprs

jrn

dsp,1,b,2 ;



APPENDIX E. DESIGN RULE CHECKER LISTING 146

dsp,9,w,2 ;

dspr,y,1

scpy

}

title=M1 surround I1B >= 1.5 (Rule 4.4)

resolution=0.2

distance=1.5

operators=

{

map,1 ;map M1

map,3 ;map I1B

push,1 ;

jrc

push,3 ;

jrc

andrs ;M1 + I1B

push,1 ;

notr ;

exprs

jrn

dsp,1,b,2 ;

dsp,3,c,1 ;

dspr,y,1

scpy

}

title=R2 layer spacing >= 2.0 um (Rule 5.1)

resolution=0.2

distance=2.0

operators=

{

map,9 ;map R2 layer

push,9 ;push it

jrc ;nothing to do

expr ;expand R2 layer

jrn ;test results

dsp,9,w,2 ;display R2 layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=R2 layer width >= 3.0 um (Rule 5.2)

resolution=0.2

distance=3.0

operators=

{

map,9 ;map R2 layer

push,9 ;push it

jrc ;nothing to do

notr ;invert R2 layer

expr ;expand R2 layer

jrn ;test results

dsp,9,w,2

dspr,Y,1

scpy

}

title=R2 surround I1B excp over M1 >= 1.5 (Rule 5.3excp)



APPENDIX E. DESIGN RULE CHECKER LISTING 147

resolution=0.2

distance=1.5

operators=

{

map,9 ;map R2

map,3 ;map I1B

map,1 ;map M1

push,1

push,3

andrs ;M1 + I1B

notr

push,3 ;I1B

xorrs

notr ;I1B except over M1

push,9

andrs

push,9

notr

exprs ;R2 + (I1B except over M1)

jrn

dsp,9,w,2

dsp,3,c,1

dspr,y,1

scpy

}

title=I1B layer spacing >= 2.0 um (Rule 6.1)

resolution=0.2

distance=2.0

operators=

{

map,3 ;map I1B layer

push,3 ;push it

jrc ;nothing to do

expr ;expand I1B layer

jrn ;test results

dsp,3,c,1 ;display I1B layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=I1B layer width >= 2.0 um (Rule 6.2)

resolution=0.1

distance=2.0

operators=

{

map,3 ;map I1B layer

push,3 ;push it

jrc ;nothing to do

notr ;invert I1B layer

expr ;expand I1B layer



APPENDIX E. DESIGN RULE CHECKER LISTING 148

jrn ;test results

dsp,3,c,2

dspr,Y,1

scpy

}

title=I1B surrounded by M2 >= 1.5 (Rule 6.3)

resolution=0.2

distance=1.5

operators=

{

map,3 ;map I1B

map,6 ;map M2

push,6

jrc

push,3

jrc

andrs

push,6

notr

exprs

jrn

dsp,6,m,2

dsp,3,c,1

dspr,y,1

scpy

}

title=M2 layer spacing >= 2.5 um (Rule 7.1)

resolution=0.2

distance=2.5

operators=

{

map,6 ;map M2 layer

push,6 ;push it

jrc ;nothing to do

expr ;expand M2 layer

jrn ;test results

dsp,6,m,2 ;display M2 layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=M2 layer width >= 2.0 um (Rule 7.2)

resolution=0.2

distance=2.0

operators=

{

map,6 ;map M2 layer

push,6 ;push it

jrc ;nothing to do

notr ;invert M2 layer

expr ;expand M2 layer

jrn ;test results

dsp,6,m,2

dspr,Y,1

scpy

}



APPENDIX E. DESIGN RULE CHECKER LISTING 149

title=M2 surround I2 >= 1.5 (Rule 7.3)

resolution=0.2

distance=1.5

operators=

{

map,6 ;map M2

map,8 ;map I2

push,6 ;

jrc

push,8 ;

jrc

andrs

push,6 ;

notr

exprs

jrn

dsp,6,m,2 ;

dsp,8,w,1 ;

dspr,y,1

scpy

}

title=I2 layer width >= 3.0 um (Rule 8.1)

resolution=0.2

distance=3.0

operators=

{

map,8 ;map I2 layer

push,8 ;push it

jrc ;nothing to do

notr ;invert I2 layer

expr ;expand I2 layer

jrn ;test results

dsp,8,w,1

dspr,Y,1

scpy

}

title=I2 surrounded by M3 >= 1.5 (Rule 8.2)

resolution=0.2

distance=1.5

operators=

{

map,8 ;map I2

map,10 ;map M3

push,8

jrc

push,10

jrc

andrs

push,10

notr

exprs

jrn

dsp,10,r,2

dsp,8,w,1

dspr,y,1



APPENDIX E. DESIGN RULE CHECKER LISTING 150

scpy

}

title=M3 layer spacing >= 2.5 um (Rule 9.1)

resolution=0.2

distance=2.5

operators=

{

map,10 ;map M3 layer

push,10 ;push it

jrc ;nothing to do

expr ;expand M3 layer

jrn ;test results

dsp,10,r,2 ;display M3 layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=M3 layer width >= 2.0 um (Rule 9.2)

resolution=0.2

distance=2.0

operators=

{

map,10 ;map M3 layer

push,10 ;push it

jrc ;nothing to do

notr ;invert M3 layer

expr ;expand M3 layer

jrn ;test results

dsp,10,r,2

dspr,Y,1

scpy

}

title=Minimum M3 contact size with R3 >= 3x3 um (Rule 9.3)

resolution=0.2

distance=3.0

operators=

{

map,10 ;map M3 layer

map,11 ;map R3

push,10 ;push it

jrc ;nothing to do

push,11

jrc

andrs

notr

expr

jrn

dsp,10,r,2

dsp,11,w,2

dspr,Y,1

scpy

}

title=R3 layer spacing >= 5 um (Rule 10.1)

resolution=0.2

distance=5

operators=



APPENDIX E. DESIGN RULE CHECKER LISTING 151

{

map,11 ;map R3 layer

push,11 ;push it

jrc ;nothing to do

expr ;expand R3 layer

jrn ;test results

dsp,11,w,2 ;display R3 layer in grey

dspr,Y,1 ;display result in yellow

scpy

}

title=R3 layer width >= 3.0 um (Rule 10.2)

resolution=0.2

distance=3.0

operators=

{

map,11 ;map R3 layer

push,11 ;push it

jrc ;nothing to do

notr ;invert R3 layer

expr ;expand R3 layer

jrn ;test results

dsp,11,w,2

dspr,Y,1

scpy

}


	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1Introduction
	Chapter 2SPGA background and RSFQ basics
	Chapter 3Programmable logic
	Chapter 4SPGA design
	Chapter 5Physical layout
	Chapter 6Testing
	Chapter 7Conclusions and recommendations
	List of References
	Appendix AVerilog modules
	Appendix BSpice code
	Appendix CCircuit schematics
	Appendix DLayouts
	Appendix EDesign Rule Checker listing

