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ii Abstract 

ABSTRACT 

Distillation is the most widely used separation technique in the chemical process industry and typically accounts 

for approximately one-third of the total capital cost and more than half of the total energy consumption of a 

typical petrochemical-chemical plant.  Therefore, the design and optimization of the distillation sequence are of 

critical importance to the economics of the entire process.  Azeotropic mixtures cannot be separated into their 

pure components via normal distillation.  Enhanced distillation techniques such as heterogeneous azeotropic 

distillation should be considered for these mixtures.  Isobaric vapour-liquid-liquid equilibrium (VLLE) data are 

highly important for the design and analysis of heterogeneous distillation columns.  However, limited VLLE 

data are available in literature due to the difficulties involved with measuring such data.   

The objective of this work was to systematically evaluate and compare the performance of selected entrainers 

(including benzene, DIPE and cyclohexane) for the dehydration of C2 and C3 alcohols.  To meet this objective, 

phase equilibrium data had to be measured.  Isobaric VLLE at standard atmospheric conditions were measured 

with a dynamic Guillespie unit equipped with an ultrasonic homogenizer, which prevented liquid-liquid 

separation.   

Vapour-liquid equilibrium (VLE) and VLLE data were measured for ethanol/water/di-isopropyl ether (DIPE), 

n-propanol/water/DIPE and n-propanol/water/isooctane. The VLE data were found to be thermodynamically 

consistent according to the L-W (Wisniak 1993) and McDermott-Ellis consistency tests.  No thermodynamic 

consistency test, specifically for VLLE data, could be found in literature, but the LLE part of the data followed a 

regular profile according to the Othmer-Tobias correlation. The binary DIPE/water and isooctane/water 

azeotropes, as well as ternary ethanol/DIPE/water and n-propanol/isooctane/water azeotropes, as measured in 

this work, agree well with those found in literature.   

Regressed parameters for the NRTL, UNIQUAC, and UNIFAC models, generally improved the model 

predictions compared with built-in Aspen parameters. This confirmed the importance of having actual measured 

VLLE data available for evaluation and improvement of estimations by thermodynamic models.  NRTL 

predicted the ethanol/DIPE/water and n-propanol/DIPE/water VLLE most accurately.  Despite the improved 

regressed parameters for n-propanol/isooctane/water predictions, the models are still considered unsuitable for 

accurate prediction of the VLLE behaviour of this system.  Separation sequences were simulated in Aspen with 

built-in and regressed parameters, respectively, to illustrate the significant effect such inaccurate parameters 

have on these simulations.   

Phase diagram (VLLE data) evaluation of ethanol and isopropanol (IPA) with various entrainers, as found in 

literature, indicated that DIPE might be a good entrainer for the dehydration of these alcohols.  Benzene and 

cyclohexane are generally used as entrainers in industry for these processes.  Benzene is however carcinogenic 

and therefore an alternative has to be found (United States Department of Labour - Occupational Safety & 

Health Administration 2011).  Separation sequences were simulated for ethanol dehydration with benzene and 

DIPE as entrainers, respectively.  Taking cost and safety into account, DIPE can be considered an acceptable 

replacement for benzene as entrainer for ethanol dehydration.   

A separation sequence was also simulated for the dehydration of IPA with DIPE as entrainer and compared to a 

simulation with cyclohexane (Arifin, Chien 2007) as entrainer.  DIPE was found to be a reasonable alternative 

to cyclohexane as entrainer for IPA dehydration.  Two other separation sequences were simulated as practical 
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iii Abstract 

examples where DIPE could be used as entrainer for the recovery of ethanol or n-propanol from aqueous Fischer 

Tropsch waste streams.   

DIPE is therefore found to be a feasible alternative entrainer to benzene and cyclohexane for the 

dehydration of ethanol and IPA via heterogeneous azeotropic distillation, based on pre-liminary cost 

considerations, separation ability and safety. Better entrainers than DIPE may exist, but from the data 

available in literature and the measurements made in this work DIPE appears to be superior to benzene, 

cyclohexane and isooctane.    
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OPSOMMING 

Distillasie is die mees algemeen-gebruikte skeidingstegniek in die chemiese proses-industrie. Dit is tipies 

verantwoordelik vir ŉ derde van die totale kapitaalkoste en meer as die helfte van die totale energie verbruik op 

ŉ tipiese petrochemiese chemiese aanleg.  Daarom is die ontwerp en optimering van ŉ distillasie trein van 

kardinale belang vir die winsgewendheid van die proses. Azeotropiese mengsels kan nie slegs deur normale 

distillasie in suiwer komponente geskei word nie.   Gevorderde distillasie tegnieke soos heterogene azeotropiese 

distillasie moet dus oorweeg word vir sulke mengsels.  Isobariese damp-vloeistof-vloeistof ewewigsdata is een 

van die belangrikste fisiese eienskappe vir die ontwerp van heterogene distillasie kolomme. Die hoeveelheid 

damp-vloeistof-vloeistof ewewigsdata wat beskikbaar is in die literatuur is egter baie beperk omdat dit moeilik 

is om die data te meet. 

In hierdie werk is isobariese damp-vloeistof-vloeistof ewewigsdata met ŉ dinamiese Guillespie eenheid, by 

standaard atmosferiese druk gemeet.  Die eenheid is toegerus met ŉ ultrasoniese homogeniseerder om 

vloeistof-vloeistof skeiding te voorkom.  Temperatuur is gemeet met ŉ akkuraatheid van 0.03
o
C by 0

o
C.  Die 

sisteem se druk is konstant gehou op 101.3 kPa met ŉ akkuraatheid van 0.35 % VSU (Vol Skaal Uitset). Die 

ewewigsamestellings is met ŉ relatiewe akkuraatheid van 2 % gemeet.   

Daar is damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata van etanol/water/di-isopropiel eter (DIPE), n-

propanol/water/ DIPE en n-propanol/water/iso-oktaan gemeet.  Die damp-vloeistof ewewigsdata is deur die L-

W (Wisniak 1993) en McDermott-Ellis termodinamiese konsistensie toetse getoets en konsistent bevind.  Geen 

termodinamiese konsistensie toets spesifiek vir damp-vloeistof-vloeistof ewewigsdata kon gevind word nie.  Die 

Othmer-Tobias korrelasie dui egter aan dat die vloeistof-vloeistof ewewig gedeelte van die data ŉ reëlmatige 

gang volg.   Die binêre DIPE/water en iso-oktaan/water azeotrope en ternêre etanol/DIPE/water en 

n-propanol/iso-oktaan/water fase-ewewigte wat in hierdie werk gemeet is, stem ooreen met die wat in die 

literatuur te vind is.   

Die parameters vir die modelle (NRTL, UNIQUAC en UNIFAC) wat in hierdie werk bestudeer is, is in die 

algemeen verbeter deur regressie van die eksperimentele data.  Dit dui daarop dat dit belangrik is om 

eksperimentele damp-vloeistof-vloeistof ewewigsdata te hê om die voorspellings van termodinamiese modelle 

mee te evalueer en te verbeter.  Die etanol/water/ DIPE en n-propanol/water/DIPE damp-vloeistof-vloeistof 

ewewigsdata is die akkuraatste deur NRTL voorspel.  Ten spyte van die verbeteringe wat deur regressie behaal 

is met die NRTL en UNIQUAC parameters vir n-propanol/water/isooktaan, word hierdie modelle steeds nie as 

gepas vir die voorspelling van hierdie datastel beskou nie.  

Skeidingsreekse is gesimuleer met die ingeboude Aspen parameters en regressie parameters, onderskeidelik, om 

te illustreer dat onakkurate parameters ŉ beduidende effek op sulke simulasies het.   

Die evaluasie van fase diagramme van etanol en IPA met verskeie skeidingsagente, wat in die literatuur te vind 

is, dui aan dat DIPE ŉ goeie skeidingsagent kan wees vir die dehidrasie van hierdie alkohole.  Skeidingsreekse 

vir die dehidrasie van etanol met benseen en DIPE, onderskeidelik, is gesimuleer.  Met koste en veiligheid in ag 

geneem, is daar gevind dat DIPE ŉ aanvaarbare plaasvervanger vir benseen as skeidingsagent vir etanol 

dehidrasie kan wees.   

Daar is ook ŉ skeidingsreeks vir die dehidrasie van IPA met DIPE as skeidingsagent gesimuleer en met ŉ 

simulasie (Arifin, Chien 2007) wat sikloheksaan as skeidingsagent gebruik, vergelyk. Daar is bevind dat DIPE ŉ 

redelike alternatief vir sikloheksaan kan wees as skeidingsagent vir IPA dehidrasie.  Nog twee skeidingsreekse 
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is gesimuleer om as praktiese voorbeelde te dien van die gebruik van DIPE as skeidingsagent om etanol of 

n-propanol vanaf waterige Fischer-Tropsch afvalstrome te herwin.   

Daarom is daar bevind dat DIPE ŉ geldige alternatiewe skeidingsagent vir benseen en sikloheksaan is, 

gebaseer op koste, skeidingsvermoë en veiligheid.  Daar kan beter skeidingsagente as DIPE bestaan, maar 

vanuit die data beskikbaar in literatuur en die metings geneem in hierdie werk, is DIPE die beste.   
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GLOSSARY 

A 

activity 

a measure of the effective concentration of a species in a real solution............................................................................... 34 

antipyretic 

agent that reduces fever ....................................................................................................................................................... 10 

azeotropes 

a mixture of two or more components in such a ratio that when it is boilied, the vapour and liquid phases have the same 

composition ....................................................................................................................................................................... 1 

B 

bubble-point temperatures 

the temperature at which bubbles first appear when a liquid mixture is heated ................................................................... 29 

C 

chemical potential 

the potential a substance has to produce change in a system ............................................................................................... 34 

Cottrell pump 

a narrow tube where the force of the boiling liquid pumps the two- phase vapour liquid mixture upwards ........................ 54 

D 

distillation boundary 

a residue curve that cannot be crossed via distillation alone................................................................................................ 27 

E 

ebullition 

The state or process of boiling ............................................................................................................................................. 54 

entrainer 

an additive that forms an azeotrope with one or more components of a liquid mixture to aid in otherwise difficult 

separations by distillation, such as azeotropic distillation ................................................................................................. 4 

F 

Fischer Tropsch process 

a set of chemical reactions that convert a mixture of carbon monoxide and hydrogen to liquid hydrocarbons ................... 10 

the synthesis of hydrocarbons and, to a lesser extent, of aliphatic oxygenated compounds by the catalytic hydrogenation of 

carbon monoxide. ............................................................................................................................................................ 10 

fouling 

refers to the accumulation of unwanted material on solid surfaces ..................................................................................... 21 
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fugacity 

the effective pressure of a real gas that replaces the true mechanical pressure in accurate chemical equilibrium calculations

 ........................................................................................................................................................................................ 34 

G 

Gibbs-Duhem equation 

describes the relationship between changes in chemical potential for components in a thermodynamic system ................ 34 

H 

heterogeneous mixture 

a mixture that lacks uniformity in character and/or composition ........................................................................................... 1 

homogeneous 

a mixture that is uniform in composition or character ........................................................................................................... 6 

homogenizer mixture 

equipment used to blend (diverse elements) into a uniform mixture ................................................................................... 54 

hybrid 

to use of different methods together or in series, to obtain a certain product ...................................................................... 21 

hydrophilic substance 

a substance that is attracted to, and tends to be dissolved by water ..................................................................................... 29 

hydrophobic substance 

a substance that is repelled by water .................................................................................................................................... 29 

L 

lipophilic 

refers to the ability of a compound to dissolve in fats and oils ............................................................................................ 10 

O 

oxygenates 

refers to compounds containing oxygen .............................................................................................................................. 10 

P 

permeability 

a measure of the ability of a membrane to allow certain molecules pass through it by diffusion ........................................ 21 

permeate 

a substance permeating through a solid or membrane ......................................................................................................... 21 

pervaporation 

a method using a membrane for the separation of mixtures of liquid via partial vaporization through a non-porous or 

porous membrane .............................................................................................................................................................. 6 

phase envelope 

the region enclosed by the bubble point curve and dew point curve or the region on a ternary phase diagram enclosed by 

the LLE curve ................................................................................................................................................................. 15 
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plait point 

composition conditions at which the three coexisting phases of partially soluble components of a three-phase liquid 

system, approach each other in composition ................................................................................................................... 15 

R 

raffinate 

a liquid stream that is left after the extraction with the immiscible liquid to remove solutes from the original liquid ........ 26 

retentate 

the substance unable to permeate through the membrane .................................................................................................... 21 

rubefacient 

a substance for topical application that increase blood circulation in area of application .................................................... 10 

S 

semiconductor 

a material with electrical conductivity due to electron flow intermediate in magnitude of that of a conductor and an 

insulator .......................................................................................................................................................................... 10 

solvent 

a substance in which another substance is dissolved ........................................................................................................... 10 

T 

thermodynamic consistency 

wether a set of data conforms to the constraints posed by the Gibbs-Duhem equation ....................................................... 34 

tie-lines 

a line on a phase diagram joining the two point which represents the composition of the phases in equilibrium ............... 15 

U 

ultrasonic 

af or relating to acoustic frequencies above the range audible to the human ear ................................................................. 54 
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NOMENCLATURE 

Symbol/Abbreviation Description 

A Helmholtz energy 

a activity 

AAD average absolute deviation 

AARD % average absolute relative deviation percentage 

Bi bottoms of column i 

Bij pure component Viral coefficient 

C2-alcohol ethanol 

C3-alcohols n-propanol and isopropanol 

D deviation in the McDermott-Ellis consistency test 

Di distillate of column i 

DIPE diisopropyl ether 

Dmax maximum allowable deviation in the McDermott-Ellis consistency test 

DNPE di-n-propyl ether 

DRS data regression system 

EtOH ethanol 

f fugacity 

Fi feed to column i 

FID flame ionization detector 

FSO full scale output 

G Gibbs energy 

GC gas chromatography 

Δh change in heat of vaporization 

H enthalpy 

H2O water 

IPA isopropanol 

KF Karl Fischer 

kOT, cOT Othmer-Tobias constants 

LLE liquid-liquid equilibrium 

MSDS material safety data sheet 

n number of moles 

Pi pressure at state i or of component i 

R ideal gas constant 

ΔS change in vaporization entropy 

S entropy 

SG specific gravity 

Temp equilibrium temperature 

Ti temperature at state i or ofcomponent i 

U internal energy 

UNIFAC LLE UNIFAC with calculations based on LLE 

UNIFAC VLE UNIFAC with calculations based on VLE 

V volume 

Vi
L
 liquid molar volume of component i 

VLE vapour-liquid equilibrium 

VLLE vapour-liquid-liquid equilibrium 
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Symbol/Abbreviation Description 

wt % weight percentage 

xi liquid phase composition of component i 

yi vapour phase composition of component i 

µi chemical potential 

φ fugacity coefficient 

γ activity coefficient 

Ф ratio of fugacity coefficients with the Poynting correction factor 

δ term relating second Viral coefficient 

τij parameter in NRTL model 

Фi UNIQUAC segment fraction 

θ UNIQUAC area fraction 

Гk UNIFAC residual activity coefficient 

Ψ UNIFAC group interaction parameter 
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1 Introduction 

1  INTRODUCTION  

When deciding on a separation method for a certain mixture, the most important factor to consider is the nature 

of this mixture.  A mixture rarely behaves ideally and the complexities that occur are usually obstacles for its 

separation.  One such an obstacle is the formation of azeotropes.  This phenomena can however be used to 

enhance separation as well.  In this thesis the dehydration of C2- and C3-alcohols are studied.  Various 

separation techniques are briefly discussed whereafter the focus is directed to heterogeneous azeotropic 

distillation.    

1.1 MOTIVATION AND INDUSTRIAL RELEVANCE 

Purification and recovery of products, by-products and unreacted raw materials are vital steps in the industrial 

production of chemicals.  Distillation is the most widely used separation technique in the chemical process 

industry.  Practically every chemical plant has a separation unit to recover products, by-products and excess raw 

materials. Separation is commonly accomplished in multistage processes of which distillation is the most 

significant.  Typically, distillation accounts for approximately one-third of the total capital cost and more than 

half of the total energy consumption of a petro-chemical plant (Julka, Chiplunkar & O'Young 2009).   

Liquid mixtures are in the liquid phase, rather than the gaseous phase, due to forces of intermolecular attraction.  

When two or more components are mixed, these interactions may lead to the formation of an inseparable 

mixture.  Such a mixture, characterized by equal vapour and liquid compositions at equilibrium at certain 

temperature and pressures is called an azeotrope.  Azeotropy is similar to eutectics and peritectics in liquid-solid 

systems. And it plays an important role in vapour-liquid equilibrium separation processes such as distillation.  

Insight into the fundamental features of azeotropic phase behaviour at equilibrium is imperative to the 

development of separation processes for azeotropic mixtures.  The feasible operating region, in which any real 

distillation process must operate, is defined by the vapour-liquid envelope at the equilibrium temperature 

surface.  When azeotropes occur in the mixture, it complicates the layout of this operating region and the 

consequential distillation behaviour of multi-component azeotropic mixtures may be very complex.  Azeotropic 

phase equilibrium diagrams unveil the physical and chemical restrictions on the separation process resulting 

from the nature of the mixture.  Diagram analysis serves as the first step toward determining which separation 

method to use and designing the separation sequence.  It is therefore of utmost importance to have accurate 

azeotropic phase equilibrium diagrams constructed with accurate phase equilibrium data. 

This work is focussed on the separation of alcohol/water azeotropes, specifically the ethanol/water, 

n-propanol/water and isopropanol/water azeotropes.  These azeotropes frequently occur in the chemical process 

industry (Nel, de Klerk 2007, Lin, Wang 2004). More information on the azeotropes is provided in Section 2.2.  

Common industrial entrainers for the separation of these azeotropes through heterogeneous azeotropic 

distillation are benzene and cyclohexane (Lin, Wang 2004, Gomis et al. 2007). These and other entrainers are 

discussed in more detail in Chapter 5.  
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1.2 RESEARCH OBJECTIVES  

The aim of the project was to systematically evaluate and compare the performance of selected entrainers 

(including benzene, DIPE and cyclohexane) for the dehydration of C2 and C3 alcohols.  As such, the research 

was performed while targeting the following objectives: 

� To become familiarized with literature pertaining to heterogeneous azeotropic distillation of 

alcohol/water azeotropes and entrainer selection for such operations. 

� To commission and verify equipment that can measure VLE and VLLE data. 

� To measure VLE and VLLE data of three ternary systems (ethanol/water/DIPE, 

n-propanol/water/DIPE, n-propanol/water/isooctane). 

� To compare entrainers for the dehydration of ethanol, n-propanol and IPA via heterogeneous 

azeotropic distillation. 

� To compare the data experimentally obtained with thermodynamic model predictions (NRTL, 

UNIFAC, UNIQUAC) with built-in Aspen parameters. 

� To regress thermodynamic model parameters for the measured data. 

� To construct and simulate separation sequences for the dehydration of ethanol, IPA and n-propanol. 

It is anticipated that DIPE will be a more effective entrainer than cyclohexane (or any other alkanes considered 

in this study) for the dehydration of C2 and C3 alcohol.  This hypothesis is based on the performance of these 

entrainers with the dehydration of IPA (Verhoeye 1968, Font et al. 2004, Lladosa et al. 2008).  For ethanol 

dehydration specifically, DIPE is anticipated to enable similar separation as benzene.  This hypothesis is 

founded on the comparison of VLLE data of ethanol/benzene/water found in literature, with VLLE data of 

ethanol/DIPE/water predicted thermodynamically (Figure 1-1).  Based on separation, benzene is currently the 

best entrainer for ethanol dehydration (Webb 1937, Guinot, Clark 1938, Rovaglio et al. 1992).     

It is expected that, of the models available in Aspen, the NRTL thermodynamic model will predict the VLLE 

measured data most accurately.  This prediction is made based on the results previously obtained by Lee and 

Shen (2003) and Gomis et al. (2005).  Although the NRTL model is expected to yield the most accurate 

prediction of equilibrium data, it is also anticipated that it will still portray a larger heterogeneous region than 

what is found from experimental data.  This may prove the importance of obtaining accurate experimental data 

to effectively design and simulate separation sequences.   
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Figure 1-1: Preliminary comparison of benzene and DIPE as entrainers for the dehydration of ethanol via heterogeneous azeotropic distillation. 
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1.3 THESIS OVERVIEW 

This report entails the study of vapour-liquid equilibrium and vapour-liquid-liquid equilibrium of three 

alcohol-water-entrainer systems.  Figure 1-2 provides an illustrative layout of this thesis. 

Chapter 2 of this thesis is focused on what azeotropy is, common alcohol/water azeotropes are discussed and 

the methods by which it can be separated.  It also entails the classification of different phase equilibrium 

diagrams and the azeotropic form of those diagrams.  The chapter concludes with a motivation for the use of 

heterogeneous azeotropic distillation as method of choice in this work. In Chapter 3 an account is given of the 

thermodynamic basis of both vapour-liquid and vapour-liquid-liquid equilibrium.  The criteria for equilibrium 

are specified and the Gibbs-Duhem Equation, chemical potential, fugacity, fugacity coefficient, activity and 

activity coefficient are defined.  The thermodynamic models NRTL, UNIQUAC and UNIFAC are also 

discussed.  The chapter concludes with a discussion of thermodynamic consistency testing methods.  Chapter 4 

highlights the purpose of and problems with measuring VLLE data.  The equipment used to measure VLLE data 

is also discussed.  In Chapter 5 the available alcohol/entrainer/water VLLE data is discussed and possible 

entrainers are identified.  This chapter also reports which alcohol/entrainer/water systems are to be measured in 

this work. Chapter 6 deals with the experimental stage of this project.  The materials, apparatus and procedures, 

as well as the experimental challenges, are discussed.  Chapter 7 reports on the method used for data regression 

and the simulation of separation sequences.  Chapter 8 contains the equipment verification results, new phase 

equilibrium data measured in this work, a comparison of entrainers, thermodynamic modelling and separation 

sequence simulations.  All of the results are also discussed in this chapter.  The essential findings of the work 

are concluded in Chapter 9.  
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Figure 1-2: Illustration of this thesis layout. 
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I LITERATURE  

2 SEPARATION OF AZEOTROPIC MIXTURES  

 

Separation of homogeneous liquid mixtures commonly requires the formation of another phase within the 

system.  Distillation is the most frequently used method for this purpose.  It entails repeated vapourization and 

condensation in order to enrich the vapour phase with the more volatile component.  Therefore, the successful 

execution of distillation depends on the fact that equilibrium compositions of the vapour and liquid phases 

differ.  The desired degree of separation is then achieved by segregating the phases and repeating partial 

vapourization.  Ordinary distillation cannot separate azeotropes since no enrichment of the vapour phase can 

occur beyond this point.  Special methods utilizing a separating agent other than energy need to be employed to 

separate these azeotrope-forming components.  This agent may be a membrane for pervaporation or an entrainer 

for extractive or azeotropic distillation.  This chapter introduces azeotropy, distinguishes between various 

methods to separate homogeneous azeotropic mixtures and takes a closer look at extractive and heterogeneous 

azeotropic distillation.   

2.1 AZEOTROPY 

2.1.1 What is azeotropy? 

The word azeotrope means “constant boiling” derived from the Greek words a- (non), zeo- (boil) and 

tropos- (change).  This indicates that the vapour and liquid phase compositions of a mixture of two or more 

components are equal at equilibrium at a given temperature and pressure.  Azeotropes have even been mistaken 

for pure components since they boil at a constant temperature, other than the pure components’ boiling 

temperature.  Azeotropes can however easily be distinguished from a pure component due to a change in 

composition with a change in pressure.  Azeotropy was first identified by Wade and Merriman in 1911 as the 

phenomenon when mixtures exhibit a maximum or minimum in the boiling temperature under isobaric 

conditions, or with an extreme point in the vapour pressure under isothermal conditions (Malesinski 1965). The 

composition in a mixture that corresponds to such an extreme point is called an azeotrope.  If the liquid mixture 

is homogeneous at the equilibrium temperature, the azeotrope is called a homogeneous azeotrope.  If the vapour 

phase coexists with two liquid phases, it is called a heterogeneous azeotrope.  Mixtures that do not display any 

azeotropes are called zeotropic (Swietoslawski 1963).  In the next sections the conditions of an azeotropic 

mixture and the physical traits leading to non-ideality and azeotropy are addressed in more detail. 
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2.1.2 Vapour-liquid equilibrium, non-ideality and azeotropy 

Vapour-liquid-phase non-ideality is quantified as: 

 ����� = 	����	�
,																										� = 1, 2, … , �    2-1 

Where,  �� = ������	�����������	�		���������	� 
 �� = ������	�����������	�		���������	� 
 � = ������	�������� 

  �� = 	�������	���		������	�		���������	�	��	�ℎ�	������	�ℎ��� 

 �� = ��������	���		������	�		���������	�	��	�ℎ�	������	�ℎ��� 

 	�
 = 	�������	�		���������	�	��	�ℎ�	������	�ℎ��� 

  

The vapour-liquid phase equilibrium at low to moderate pressures and temperatures far from the critical point 

are expressed as: 

 ��� = 	������!"# ,																	� = 1, 2, … , �     2-2 

Where,   ��!"# = ���������	������	��������	�		���������	� 
 

The non-ideality of a mixture is measured by the activity coefficient and changes with both temperature and 

composition.  The mixture is considered ideal when the activity coefficient is equal to one.  Equation 2-2 then 

simplifies to Raoult’s law. 

 ��� = 	����!"#$%&,																	� = 1, 2, … , �    2-3 

For non-ideal mixtures the activity coefficient will exhibit positive (greater than one) or negative (less than one) 

deviations from Raoult’s law.  A mixture is azeotropic when these deviations become large enough for the 

boiling temperature to exhibit an extreme point at constant pressure, or the vapour pressure to exhibit an 

extreme point at constant temperature.  At this point the vapour and liquid equilibrium phases have the same 

composition.  This azeotropic behaviour is illustrated in Figure 2-1a by the tangential condensation and boiling 

temperature curves with zero slopes.  Sufficiently large positive deviations (typically larger than 4) result in the 

occurrence of phase splitting and the formation of a heterogeneous azeotrope (Figure 2-1b).  At the 

heterogeneous azeotropic point (ya) the overall liquid composition is equal to the equilibrium vapour 

composition, but the three individual coexisting phases have different compositions.  This phenomenon will be 

discussed in more detail in Section 2.3.  
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Figure 2-1: a) Phase diagram exhibiting both partial miscibility and an azeotrope, b) phase diagram exhibiting 

VLLE. According to Koretsky (2004). 

 

2.1.3 Non-ideality and separation by distillation 

Ease of separation or degree of enrichment is measured by the relative volatility between two components 

(Equation 2-4).  Relative volatility ('�() generally changes with temperature, pressure and composition.  When 

'�(  deviates significantly from unity, it is easy to separate the one component from the other.  The relative 

volatility of azeotropic components is equal to one at the azeotropic point and therefore the vapour cannot be 

enriched any further.  This is why it is impossible to separate azeotropes into pure components by conventional 

distillation.   

'�( =	 )* +*,)- +-, =	 .*/*012.-/-012      2-4 

Ordinary distillation typically becomes uneconomical when 0.95 < 	'�( < 1.05, due to the large number of 

theoretical stages and high reflux ratio required (Hilmen 2000, Van Winkle 1967).  Close-boiling zeotropic 

mixtures may also be separated by the special methods applied to azeotropic mixtures. 
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2.2 ALCOHOL/WATER AZEOTROPES 

Aqueous alcohol azeotropes are some of the most common azeotropes.  This project focuses specifically on the 

ethanol/water, IPA/water and n-propanol/water azeotropes at standard atmospheric conditions.  Ethanol and 

water forms an azeotrope with a composition of 89.5 mole % ethanol and 10.5 mole % water at 78.12
o
C.  The 

IPA/water azeotrope boils at 80.18
o
C with a composition of 67.28 mole % IPA and 32.72 mole % water.  n-

Propanol and water forms an azeotrope with a composition of 43.17 mole % ethanol and 56.83 mole % water at 

78.12
o
C (Gmehling et al. 1994).  

Ethanol (ethyl alcohol) is a straight-chain alcohol with a molecular formula of C2H5OH.  It is commonly 

abbreviated as EtOH.  Ethanol has long been used as fuel for heat and light.  Lately it is also used as motor fuel 

and fuel additive, which has become the largest single use of ethanol.  Ethanol is the prime psychoactive 

ingredient of alcoholic beverages, in which its concentration may vary (Hanson, Venturelli & Fleckenstein 

2011).  It is also an essential solvent and feedstock for the synthesis of other products in chemistry.  Ethanol has 

a widespread medicinal use due to its antibacterial properties.  It has extensive use as a solvent in substances 

intended for human consumption or contact, such as flavourings, colourings and perfumes.  It is mainly 

produced via two processes, the hydration of ethylene and the fermentation of sugars.  The raw material for 

dehydration of ethylene is derived from natural gas or petroleum.  The fermentation raw materials are 

agricultural products.  Ethylene hydration can be performed via two routes, directly and indirectly.  There has 

been a shift away from the indirect route due to better yields, less by-products, and reduced quantities of 

pollutants produced by the direct route.  In the primary chemical reaction for the direct hydration process, water 

vapour and ethylene are mixed at an elevated pressure and temperature and passed over a catalyst impregnated 

with phosphoric acid.  The reaction produces a dilute crude alcohol.   Ethanol produced via fermentation refers 

to the conversion of sugars (glucose, fructose and sucrose) to ethanol by yeast.  The conversion is performed in 

the absence of oxygen and is therefore classified as anaerobic.  One of the by-products in this process is water 

and therefore it yields an aqueous ethanol product (Nexant Chem Systems 2006).  

n-Propanol is a colourless liquid with an average volatility and characteristic alcoholic odour.  It is less inclined 

to absorb water than lower alcohols and has a significantly milder and more pleasant odour than higher alcohols.  

n-Propanol is mainly used as a solvent in flexographic and other printing inks.  It is also used in the coatings 

industry to improve the drying characteristics of alkyd resins, electro-deposition paints, baking finishes, etc.  

n-propanol is present in floor polishes, metal degreasing fluids and de-icing fluids.  It is also used in the 

manufacturing of adhesives and is a feedstock in the manufacturing of insecticides, herbicides and 

pharmaceuticals (BASF 2011). n-Propanol is manufactured by the hydrogenation of propionaldehyde.  

Depending on the catalyst, the product stream may contain a substantial amount of water in order to prevent the 

formation of other impurities (Unruh, Ryan & Dugan 1999).  n-Propanol can also be recovered as a by-product 

of the high pressure synthesis of methanol from carbon monoxide and hydrogen.  Water is also a product of this 

reaction and the n-propanol recovered could therefore be aqueous (Frolich, Lewis 1928).  During the amination 

of n-propanol a mixture of mono-, di- and tri-n-propylamines, n-propanol and water is formed.  The 

mono-n-propylamines can be removed via distillation and the di- and tri-n-propylamines via fractional 

distillation.  The aqueous n-propanol subsequently needs to be purified past the n-propanol/water azeotrope 

(Challis 1954).   
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Isopropanol (2-propanol) is an organic compound with the molecular formula C3H8O.  This compound is also 

known as propan-2-ol, 2-propanol or abbreviated as IPA. It is a flammable, colourless chemical compound with 

a strong odor.  IPA is structural isomer of propanol.  It is a low-cost solvent with various consumer and 

industrial applications.  It is mainly used for this purpose, especially for dissolving lipophilic contaminants such 

as oil.  Apart from solvent properties, IPA also possesses cooling, antipyretic, rubefacient, cleansing and 

antiseptic properties.  IPA is also a major ingredient in “gas dryer” fuel additives.  A significant quantity of 

water in fuel tanks poses a problem as it separates from the gasoline.  This can cause freezing in the supply lines 

at cold temperatures.  Since water is soluble in IPA, the addition of IPA to fuel can prevent water from 

accumulating and freezing in the supply lines (International Programme on Chemical Safety 1990).  Large 

amounts of IPA are also used as cleaning and dehydrating agent in the electronic and precision machinery 

industries.  IPA is used extensively in various stages of water surface washing and cleaning in the 

semiconductor manufacturing process.  Thousands of tons of high-purity IPA is consumed each year by this 

process and after washing and cleaning, ends up as waste solvent.  Incineration might be used to dispose of this 

waste solvent due to its sufficient organic content.  However, incineration would lead to loss of recoverable IPA 

(Lin, Wang 2004).  The above to show that there exists due motivation to study the recovery or dehydration of 

ethanol, n-propanol and IPA from waste streams.   

 The Fischer Tropsch process is an example of an industrial process that produces a waste stream containing all 

of the abovementioned alcohols in aqueous form.  It produces hydrocarbons from synthesis gas which is 

accompanied by the production of water and oxygenates, such as alcohols (Table 2-1). Most of the polar 

oxygenates, formed during the stepwise condensation of the Fischer Tropsch product, dissolves in the water to 

form an aqueous solution commonly referred to as reaction water.  Since a significant amount of Fischer 

Tropsch product often ends up in the reaction water, there exists an economic incentive to recover these 

components (Nel, de Klerk 2007).    

Table 2-1: A typical Fischer Tropsch waste water stream (Carlson 1949). 

Component Composition (wt %) 

Aldehydes 2-6 

Esters 0.2-3 

Water 28-29 

Alcohols (EtOH, n-propanol, IPA, sec. BuOH, i-BuOH) 62-69.8 

Ketones Trace 
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2.3 AZEOTROPIC PHASE EQUILIBRIUM DIAGRAMS 

To gain a fundamental understanding of the highly non-ideal thermodynamic behaviour of azeotropic mixtures, 

one has to analyse the structural properties of VL(L)E diagrams.  This analysis is also imperative for the 

conceptual design of an azeotropic distillation process.   

2.3.1 Vapour-liquid Equilibrium 

When chemical engineers encounter phase equilibrium problems, it most frequently involves vapour-liquid 

equilibrium (VLE).  At vapour-liquid equilibrium there exist two phases, one vapour and the other liquid, in 

equilibrium with each other.  Phase equilibrium diagrams are useful tools for solving problems involving phase 

equilibrium.  They can be used for identifying the thermodynamic state of a mixture, indicate what phase/phases 

are present and the composition of the liquid and vapour phases as well as their relative amounts.  These 

diagrams are typically constructed for either a constant pressure (T – x diagram) or constant temperature (P – x 

diagram).  Figure 2-2 illustrates the vapour-liquid phase equilibrium of a binary mixture (component a and b) at 

constant pressure. By convention, the component that boils more easily (lighter component) is labelled a.  At 

high temperatures the mixture will exist in the form of a superheated vapour, as indicated in the top of Figure 

2-2.  At very low temperatures the mixture will exist in the form of a sub-cooled liquid, as indicated in the 

bottom of Figure 2-2.  Between these extremes the mixture exists in a two-phase region where it is in 

vapour-liquid equilibrium.  The symbol za designates the feed composition.  The equilibrium vapour and liquid 

compositions at the system temperature (Tsys) are labelled ya
eq

 and xa
eq

 respectively.   

 

Figure 2-2: Vapour-liquid equilibrium T-x-y phase diagram for an ideal binary mixture of a and b.  According 

to Koretsky (2004). 
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Alternatively, binary VLE data can be represented on a x-y diagram (Figure 2-3).  On such a diagram, the curve 

of an azeotropic system crosses the 45
o
 line (Figure 2-4).   

 

Figure 2-3: Vapour-liquid equilibrium x-y phase diagram for an ideal binary mixture. 

 

Figure 2-4: Vapour-liquid equilibrium x-y phase diagram for a binary mixture that forms an azeotrope. 

According to Seader and Henley (2006). 
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On a T-x-y diagram, an azeotrope is illustrated as follow:  

 

 

Figure 2-5: Vapour-liquid equilibrium T-x-y phase diagram for a binary mixture that forms an azeotrope. 

According to Seader and Henley (2006). 

One can plot ternary VLE data on an equilateral triangular phase diagram, as in Figure 2-6. The diagram shows 

that a liquid phase containing 30% A, 30% B and 40% C is in equilibrium with a vapour of yA = 0.4 and yB = 

0.08.  If at some point the composition of the liquid and vapour phases are exactly the same, a ternary 

homogeneous azeotrope occurs.   
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Figure 2-6: Vapour-liquid equilibrium compositions of ternary mixtures of A-B-C at 1atm. The dashed lines yA 

and the solid lines are labeled yB. According to Walas (1985). 

2.3.2 Liquid-liquid Equilibrium 

When the like (a-a and b-b) interactions in a mixture are significantly stronger than the unlike (a-b) interactions, 

a liquid can split into two different partially miscible or immiscible phases.  See labelled α and β.  Separate 

phases are formed to lower the total Gibbs energy (see Section 3.2) of the system and this leads to liquid-liquid 

equilibrium.  A typical liquid-liquid equilibrium phase diagram for a binary mixture is shown in Figure 2-7.  

The curve separating the single phase region from the two phase region is called the binodal curve.  A tie-line 

drawn within this curve can be used to determine the compositions of the co-existing phases at any temperature 

(see Figure 2-7).  The temperature above which the liquid mixture no longer separates into two phases at any 

composition is termed the upper consulate temperature (Tu).  A lower consulate temperature will exist if the 

binodal curve exhibits a minimum temperature point rather than a maximum as in Figure 2-7.  Phase diagrams 

of binary systems consisting of only liquid phases can exhibit either a convex, concave or closed form as a 

function of temperature.  System a-b in Figure 2-7 exhibits a convex shape.   
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Figure 2-7: Binary liquid-liquid phase equilibrium diagram. According to Koretsky (2004). 

Pressure changes only affect liquid phase equilibrium significantly at high pressures or near the critical point.  

The directional effect is predictable by Le Chatelier’s principle.   

A ternary liquid-liquid system can be plotted on a equilateral triangular phase diagram such as Figure 2-8.  

Components B and C are partially soluble in each other and component A distributes between the phases.  The 

miscibility boundary between the 2 liquid phase and 1 liquid phase areas is known as the phase envelope.  The 

dashed line represents the tie-lines that connect and indicate the two liquid phases in equilibrium with each 

other.  At the plait point the two liquid phases have the exact same compositions.  Consequently the tie lines 

converge to this point and the two liquid phases become one (Seader, Henley 2006). The ternary phase diagram 

can be constructed at constant temperature (from isothermal data), constant pressure (from isobaric data) or at 

both constant temperature and constant pressure.   
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Figure 2-8: Ternary liquid-liquid phase equilibrium diagram. According to Seader and Henley (2006). 

2.3.3 Vapour-liquid-liquid Equilibrium 

Vapour-liquid-liquid equilibrium behaviour typically occurs once the pressure is decreased in a system with 

both liquid-liquid-equilibrium and an azeotrope in vapour-liquid equilibrium (Figure 2-9a).  As the system 

pressure decreases, the constituents can become volatile before the upper consulate temperature is reached 

(Figure 2-9b).  When this happens, the VLE and LLE curves intersect and it is possible for three phases (one 

vapour and two liquid) to exist at equilibrium (Koretsky 2004).  At TLLE, the lowest temperature, three different 

possibilities for phase behaviour exists.  At low concentrations of component a only liquid phase β is present, 

while at high concentrations of component a only liquid phase α is present.  At the intermediate composition of 

component a, the systems exhibits two liquid phases.  The compositions of these phases are indicated by the 

position where tie-line in Figure 2-9b intersects with the phase envelope.   Again at temperature TVLE only liquid 

phase β is present at low concentrations of component a, while at high concentrations of component a only 

liquid phase α is present.  As the concentration of xa increases at TVLE, a vapour phase in equilibrium with liquid 

β appears.  This vapour-liquid phase is followed by a solitary vapour phase and then a vapour phase in 

equilibrium with liquid α.  The compositions in the two phase regions are again given by the tie-lines indicated 

in Figure 2-9b.  Yet again, at the intermediate temperature, TVLLE, only liquid phase β is present at low 

concentrations of component a, while at high concentrations of component a only liquid phase α is present.  

However, at concentrations of xa between the two single-phase regions, both liquid α and β can exists along 

with a vapour phase.  The compositions of these phases are given by the points on the tie-line at TVLLE, which 
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intersects with the dashed lines.   Therefore, in the intermediate composition section at temperature TVLLE, this 

binary system exhibits VLLE.   

 

Figure 2-9: a) Phase diagram exhibiting both partial miscibility and an azeotrope, b) phase diagram exhibiting 

VLLE.  According to Koretsky (2004). 

A ternary vapour-liquid-liquid system can be plotted on an equilateral triangular phase diagram as shown in 

Figure 2-10. This diagram has properties similar to that of the ternary liquid-liquid equilibrium phase diagram, 

such as the phase envelope, tie-lines and plait point.  In addition to these properties, the vapour-liquid-liquid 

equilibrium phase diagram consists of a vapour phase indicated by a dashed line in Figure 2-10. A ternary 

heterogeneous azeotrope exists when the composition of the vapour phase lies on the tie line connecting the two 

liquid phases in equilibrium with the particular vapour phase.  According to the mass balance rules of a ternary 

phase diagram, in such a case the vapour phase composition is the same as the overall liquid phase composition 

and therefore a ternary heterogeneous azeotrope exists at that point.  In Figure 2-10 vapour point 4 exhibits such 

behaviour.   
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Figure 2-10: Ternary vapour-liquid-liquid phase equilibrium diagram. 

2.3.4 Residue curves 

Special techniques, such as azeotropic distillation must be applied to separate azeotropic mixtures.  Generally, 

two types of azeotropic distillation are found.  The first involves the separation of an azeotropic mixture without 

introducing any additional azeotropes.  The second deals with the separation of an azeotropic mixture by 

deliberately adding an azeotrope-forming component (entrainer).  In the first case, a separation sequence 

delivering the desired product specifications and recovery needs to be found.  The second case additionally 

requires the selection of an entrainer that facilitates the desired separation and is easily recovered downstream.  

For both cases possible separation sequences need to be established before they are analyzed in detail.  In order 

to do that, a tool to qualitatively predict the feasible separation of multi-component azeotropic mixtures is 

required.  The analysis of RCMs is such a tool.  It offers efficient preliminary analysis of non-ideal distillation 

problems and allows for the pre-synthesis of separation sequences (conceptual process design).   

Conceptual process design is the fundamental process is to envisage, produce, compare and assess different 

design alternatives at an early stage of design when detailed information is not yet available.  This process 

enables the systematic elimination of less favourable process alternatives and the subsequent detailed analysis of 

a reduced set of preferred alternatives.  Residue curve maps (RCMs) are one of the most widely used conceptual 

design tools and are used for the conceptual design of non-ideal distillation separation sequences.  It is the most 

mature conceptual design tool and forms part of almost every available design package (Aslam, Sunol 2006).  

The RCM methodology is extensively covered by Doherty and Malone (2001).   The reliability of the 
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thermodynamic model representing the phase equilibrium and the algorithm used for prediction of 

thermodynamic markers such as azeotropes, determine the reliability of RCMs as a conceptual design tool.   

When considering a wide variety of mixture types, it can be seen that there is a relatively simple and unique 

correspondence between the VLE characteristics of a mixture and the path of its equilibrium phase 

transformations (i.e. residue curves and distillation lines).  The feasible separation sequences of a certain VLE 

diagram can be obtained from groups or classes of residue curve maps.  Foucher et al. (1991) and Fien and Liu 

(1994) investigated and compiled such groups.  The analysis of VLE diagrams therefore initializes the 

prediction of feasible separations by distillation.  It can be used to determine the thermodynamic limitations and 

possibilities of the separation, caused by the nature of the mixture.    Alternative separation sequences for further 

investigation and comparison can be constructed once a feasible separation is found.  This method then allows 

for the consequent selection of the optimal separation sequence.  Residue curve map analysis is particularly 

useful for the screening of entrainers for heterogeneous azeotropic and extractive distillation.   

A RCM is a geometric representation of the VLE phase behaviour of multi-component mixtures.  In particular, 

it highlights the properties that directly impact distillation and represent a collection of trajectories or residue 

curves of the liquid phase.  A residue curve is a plot of the liquid-residue composition in the distillation still over 

a period of time.  These curves can be determined either experimentally or by mathematical simulation of the 

experiment.  To construct these diagrams, rules based on thermodynamic principles, material balances and 

distillation operation can be followed (Lee, Shen 2003).  Procedures for calculating these curves are given by 

Doherty and Perkins (1978) and Bossen et al. (1993).  Vapor-liquid-liquid equilibrium points can also be 

projected onto this graph and yield the liquid-liquid equilibrium curve and the composition line of the vapour 

phase (Figure 2-11).  The thick solid lines in Figure 2-11 indicate distillation boundaries.  These boundaries 

cannot be crossed by normal distillation.  By projecting VLLE data onto the RCM, a distillation path can be 

found to obtain certain products by crossing the distillation boundaries through liquid-liquid spilt. This method 

is referred to as heterogeneous azeotropic distillation and is discussed in Section 2.5.2. 

Literature indicates that RCM technology is one of the most common methodologies for determining entrainer 

feasibility with heterogeneous azeotropic distillation (Julka, Chiplunkar & O'Young 2009, Doherty, Malone 

2001, de Villiers, French & Koplos 2002, Fien, Liu 1994, Ivonne, Vincent & Xavier 2001, Pham, Doherty 

1990). 
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Figure 2-11: Typical residue curve map with projected VLLE data. Simulated in Aspen with NRTL. 

2.3.5 Discussion 

This chapter presents the classification of a few types of equilibrium.  This is done through various phase 

diagrams, each a record of the effects of temperature, pressure and composition on the kinds and numbers of 

phases that can exist in equilibrium with each other within a certain system.  The kinds of phases that can exist 

at any given condition are characteristic of the chemical nature of the components.  As opposed to numerical 

tabulation, graphical representation of phase equilibrium data clearly shows the interrelationships between all 

the variables and allows for easier inter- and extrapolation.   

The choice of which diagram to use for a certain system is primarily based on the number of components, then 

the kinds and numbers of phases.  The variables that could be represented on a phase diagram of a system of n 

substances are T, P and n-1 mol fractions.  Ordinarily binary systems are represented on planar diagrams, which 

mean either a T – x or P – x diagram.  To represent three variables (ternary systems), a spatial diagram would be 

required.  The mole fractions of a ternary system can however also be represented on a planar triangular diagram 

(Walas 1985).   
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2.4 GENERAL SEPARATION PROCESSES 

Homogenous azeotropes in liquid mixtures can be separated through various methods of which enhanced 

distillation is the oldest and most frequently used.  Azeotropic distillation is performed either via pressure 

variation or the addition of a separating agent called an entrainer.  The entrainer facilitates separation by altering 

the phase equilibrium of the mixture.  Distillation is often complemented with other separation techniques, such 

as membrane separation.  These separation sequences are referred to as hybrid distillation systems.  Distillation 

systems employing a mass separating agent are categorized as enhanced distillation (Hilmen 2000, Seader, 

Henley 2006).  In the following sections only the separation of homogeneous azeotropic mixtures will be 

considered, but heterogeneous azeotropes or multiple phases may be induced by the separation technique 

applied.  Membrane-distillation hybrids, pressure-swing distillation and entrainer-addition methods are 

considered below in a collective discussion of the advantages and disadvantages of each method.  

2.4.1 Membrane-distillation hybrids 

The use of a membrane to separate liquid and vapour mixtures is an up-and-coming separation technique.  Its 

industrial application increased greatly during the 1980’s.  The feed mixture is selectively separated by means of 

a membrane acting as a semi-permeable barrier.  The part of the feed that does not pass through the membrane is 

called the retentate , and the part that does pass through is known as the permeate.  The membrane preferentially 

absorbs and diffuses one of the components responsible for azeotrope formation (Seader, Henley 2006).   

Pervaporation is the most commonly used membrane technology for the separation of azeotropic mixtures.  

With this membrane separation technique the phase state on the one side of the membrane is different from that 

on the other side, i.e. a liquid retentate side and a vapour permeate side.  A composite membrane is used that is 

selective for one of the azeotrope-forming components (species A, Figure 2-12).   

A membrane separation process can only be economic and efficient when the membrane has: 

� Good permeability 

� High selectivity 

� Stability 

� Low/no fouling 

� Long lifetime (Seader, Henley 2006). 

The “Membrane Handbook” (Fleming, Slater 1992) provides information on pervaporation membranes suitable 

for various mixtures.  The phase change performed with pervaporation requires significantly more energy than 

for other pressure driven membrane processes such as reverse osmosis (Hilmen 2000).  Major industrial 

applications of pervaporation include the dehydration of ethanol, dehydration of other organic alcohols, ketones 

and esters, removal of organics from water and the separation of organic mixtures.  This process is applicable to 

separations over the entire composition range, but is best applied to feed mixtures dilute in the main permeate.  

With a permeate-rich feed, a number of membranes may be needed and only a small amount of permeate could 

be produced per stage.  Re-heating of the retentate between stages may also be necessary (Seader, Henley 2006). 
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Figure 2-12: Schematic illustration of the mechanism upon which membrane distillation functions  

According to Knauf et al. (1998), pervaporation accounts for 3.6% of all membrane applications in the chemical 

and pharmaceutical industries.  The process is deemed expensive in both processing costs and investment.  

However, due to its high selectivity, pervaporation is considered in cases where conventional separation 

techniques perform inadequately.  In this case, pervaporation is generally used in combination with normal 

distillation.  The distillation column will then act as a pre-concentrator for the membrane.  For ethanol 

dehydration the distillation column would have to produce the ethanol/water azeotrope as distillate and feed it to 

the pervaporation unit.  Although such hybrid systems can have lower operating costs than azeotropic columns, 

the higher capital cost and lower maximal capacity are serious disadvantages (Szitkai et al. 2002).   

2.4.2 Pressure-swing distillation 

Azeotropes that disappear at some pressure, or changes composition by 5 mol% or more over a moderate 

pressure range, are good candidates for separation by pressure-swing distillation.  The process is performed by 

operating two distillation columns in series, at different pressures.  Figure 2-13 illustrates how a minimum-

boiling azeotrope in mixture A-B can be separated via pressure-swing distillation.  A binary homogeneous 

azeotropic mixture is introduced to the first column at a low pressure (P1).  The bottom product (B1) from this 

column is nearly pure A while the overhead (D1) is an azeotrope.  The azeotrope (D1) is fed to the second 

column, operating at a higher pressure.  The high-pressure column produces nearly pure B in the bottoms (B2) 

and another azeotrope in the overhead (D2).  D2 is recycled as feed to the first column.   
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Figure 2-13: (a) Illustration of the function of pressure-swing distillation on a phase diagram; (b) Typical 

separation sequence for pressure-swing distillation. According to Seader and Henley (2006). 

Unfortunately the ethanol-water azeotrope is not considered to be sufficiently pressure sensitive for the 

successful application of pressure-swing distillation (Hilmen 2000).  The alteration of VLE properties of 

azeotropic mixtures by merely physical means may seem attractive, but it is usually not an option and often very 

uneconomical (Van Winkle 1967). 

 

2.4.3 Entrainer-addition distillation methods 

The modification of VLE behaviour of azeotropic mixtures, physically and chemically, via the addition of 

another liquid, offers various possibilities.  The additional liquid introduced to the azeotropic mixture is called 

an entrainer.  Entrainer-addition distillation methods are divided into three main groups based on the properties 

and role of the entrainer and the format of the process (Seader, Henley 2006): 

� Homogeneous azeotropic distillation deals with an entrainer that is completely miscible with the 

components of the original mixture.  The entrainer may form homogeneous azeotropes with the 

original mixture and distillation is carried out in a conventional single-feed column.   

� Heterogeneous azeotropic distillation is carried out in a distillation column combined with a 

decanter.  It involves the formation of a heterogeneous azeotrope between the entrainer and one or 

more of the components in the original mixture. 

� Extractive distillation utilizes an entrainer with a boiling-point that is significantly higher than that of 

the original mixture components and it is selective to one of the components.  This process is carried 

out in a two-feed column, the entrainer is introduced above the original mixture feed point and is 

largely removed as bottom product.   
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Other entrainer-addition distillation techniques also exist, such as: 

� Reactive distillation in which the entrainer reacts selectively and reversibly with one or more of the 

components in the feed.  The reaction product is distilled from the non-reacting components and the 

reaction is subsequently reversed to recover the entrainer and other reacting components.   

� Salt distillation, a variation of extractive distillation, in which the relative volatility of the key 

components is altered by dissolving a salt (entrainer) in the top reflux.  The dissolved salt stays in the 

liquid phase and passes down the column due to its non-volatility (Seader, Henley 2006).  

All these methods mentioned may be combined to achieve desirable separation, depending on the nature of the 

components to be separated.  The three main entrainer-addition distillation methods; homogeneous azeotropic 

distillation, heterogeneous azeotropic distillation and extractive distillation, are discussed in more detail in 

Section 2.5.   

 

2.4.4 Discussion 

According to Smith (1995) the basic advantages of distillation are the potential for high throughput, any feed 

concentration and high purity.  These advantages, compared to other thermal separation techniques, are the 

grounds for the popularity of distillation as a separation process and this is why distillation is used in 90% of 

cases for the separation of binary and multi-component liquid mixtures (Hilmen 2000).  Distillation is a mature 

technology. Its design, operation and control is well-developed, unlike other promising technologies such as 

membranes.  Distillation does however have drawbacks such as a low thermodynamic efficiency and the 

introduction of an entrainer may result in complexities.   

Hybrid-distillation systems, such as a combination of distillation and pervaporation, can simplify the overall 

process structure, reduce energy requirements and avoid the use of entrainers (Hömmerich, Rautenbach 1998).  

Membrane distillation methods exhibit a great advantage in that its selectivity is not dependant on the vapour-

liquid equilibria.  Augmenting distillation with pervaporation can allow a more flexible distillation column 

design, since the pervaporation unit can subsequently be used to separate the azeotrope only.  Pervaporation and 

vapour permeation are however very expensive, due to relatively low permeate fluxes and low condensation 

temperatures (Hilmen 2000).  The processing costs of pervaporation are even further increased by the required 

re-heating and integration of heat exchangers into the process.  The high price of large capacitiy membrane 

modules also limits the industrial application of pervaporation to moderate volumes.  The capital investment for 

distillation increases according to the “six-tenths power rule” as a function of capacity, while for membranes it 

increases linearly with capacity (Kunesh et al. 1995).  Therefore, distillation has a great economic advantage at 

large throughput.  This does not render other separation technologies, with lower throughput specifications, 

useless.  Such technologies are best applied in the pharmaceutical and speciality chemical industries.   

Membrane systems are not very flexible to feed composition variations.  Distillation equipment, on the other 

hand, is robust and flexible in order to handle a wide range of compositions and frequent changes in feed 

mixture constituents.  Another advantage of distillation, as previously mentioned, is the high degree of purity 

often achieved in the separation products.  Many alternative separation techniques can only achieve partial 
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separation instead of pure end-products.  Consequently, these methods have to be combined with distillation to 

achieve the desired product, whereas distillation can be used as a stand-alone operation.   

It is essential to consider a separation process as a whole, including the restoration or recycle of the separating 

agent.  Membrane materials often have to be regenerated with chemical solvents, which add similar 

complexities to the operation as for entrainer-addition distillation techniques.  Utilizing pressure-sensitivity 

should generally be considered before the addition of an entrainer.  When selecting an entrainer, one that forms 

a heterogeneous azeotrope is preferred above one that forms a homogeneous azeotrope.  The former can be 

separated easily by decantation in combination with distillation.  Sometimes a component that already exists in 

the process (or on the plant) can be used as an entrainer.  This option should then be considered first.   

Pharmaceutical products are commonly required to be absolutely entrainer-free.  This may be impossible in 

entrainer-addition methods and therefore alternatives to conventional entrainer-addition distillation would have 

to be considered.  Gmehling et al. (1994) compared extractive and heterogeneous azeotropic distillation and 

found the latter to be more favourable due to the high amount of energy required to vapourize the entrainer in 

extractive distillation.  According to Tassios (1972), methods such as extractive and heterogeneous azeotropic 

distillation are under-utilized in industry.  The reasons often used in defence of this trend are high investment 

and high operating costs, but in actual fact in the past the explanation were found in the time and money 

required to obtain a satisfactory process design.  Nowadays, rapid methods are available for evaluating the 

techniques to separate a azeotropic mixtures, select a suitable separation method and predict the achievable 

product compositions.  These methods are mostly based on the graphical analysis of vapour-liquid equilibrium 

diagrams.  In combination with more advanced distillation synthesis tools and simulation software, the way 

distillation processes for non-ideal mixtures can be analyzed has been improved radically.   

2.5 ENTRAINER-ADDITION DISTILLATION METHODS 

2.5.1 Homogeneous azeotropic distillation 

This separation method entails the ordinary distillation of ternary mixtures which contain at least one binary 

homogeneous azeotrope in the original mixture.  The entrainer may form a new homogeneous azeotrope, but it 

is not a requirement for this separation technique.  The only criterion is that the resulting ternary system should 

form a VLE diagram that shows the potential for separation.  The thicker line on the triangular diagram (Figure 

2-14) is known as a distillation boundary.  It is important to note that with homogeneous azeotropic distillation 

alone, it is impossible to cross distillation boundaries.  These lines are usually curvaceous in shape since they 

are related to the reflux ratio and stage number of the distillation column.  Fien and Liu (1994) point out that a 

straight distillation boundary instead of curved one simplifies the conceptual design process and does not affect 

the accuracy to which the desired product specification is attained.  Due to distillation boundaries it is often 

difficult to find a suitable entrainer for a separation sequence involving homogeneous azeotropic distillation.  

This method can however be incorporated into a hybrid sequence involving other separation operations.  One 

such an example is the separation of the close-boiling system of benzene (normal boiling point 80.13
o
C) and 

cyclohexane (normal boiling point 80.64
o
C) which forms a minimum-boiling azeotrope at 1 atm and 77.4

o
C 

with a composition of 54.2 mol% benzene.  Acetone can be used as entrainer for the azeotropic distillation 

section of this hybrid process.   
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Figure 2-14: Residue curve map of the benzene-acetone-cyclohexane system. Simulated in Aspen with NRTL. 

The separation sequence (Figure 2-15) involves three operations: 

1. Homogeneous azeotropic distillation of the benzene-cyclohexane mixture using acetone as an 

entrainer.  This operation produces nearly pure benzene (B) as bottom product and a distillate close in 

composition to the binary azeotrope of cyclohexane and acetone (D). 

2. Liquid-liquid extraction of the distillate with water as separating agent.  This operation produces a 

raffinate of nearly pure cyclohexane and an extract of acetone and water. 

3. Ordinary distillation of the extract, producing a distillate of acetone and bottoms of water.  The acetone 

can be recycled to the first operation and the water to the second.  

Figure 2-14 shows the residue-curve map of the benzene/cyclohexane/acetone system at 1 atm. This diagram 

can be used to illustrate the distillation path in the first operation of the abovementioned hybrid separation 

sequence. The residue curves and azeotropes were calculated in Aspen using the NRTL thermodynamic model. 

A minimum-boiling azeotrope is formed between acetone and cyclohexane at 53.4
o
C and 1 atm with an acetone 

composition of 74.6 mol%.  A distillation boundary connects the two azeotropes in the system and consequently 

divides the diagram into two distillation regions.  The composition of a mixture of the fresh feed (F) and pure 

acetone entrainer (A) must lie somewhere in region 1, on the straight line connecting F and A.  To obtain the 

acetone/cyclohexane azeotrope and pure benzene as the overhead and bottom products in the distillation of 

mixture M, these three points must also lie on a straight line.  Therefore, a straight line can be drawn from the 
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azeotrope to pure benzene and the point at which it intersects with the F-A line denotes the composition of 

mixture M.  

 

Figure 2-15: Hybrid separation sequence involving homogeneous azeotropic distillation. 

2.5.2 Heterogeneous azeotropic distillation 

This process refers to the formation of a heterogeneous azeotrope or the use of an existing one, to effect the 

desired separation.  The main difference between the methods used for homogeneous and heterogeneous 

azeotropic distillation is that a heterogeneous azeotrope can be simply separated with a decanter.     

The entrainer may be introduced to the column as a separate feed or it can be mixed with the original feed.  It is 

usually added above the feed stage, if its volatility is below that of the feed.  When the entrainer volatility is near 

that of the feed, it is typically mixed with the feed to form a single stream (Schweitzer 1997).  A typical 

heterogeneous azeotropic separation process, the dehydration of ethanol with benzene as entrainer, is illustrated 

on a ternary phase diagram in Figure 2-16.   

As in Figure 2-14, the thicker lines in Figure 2-16 also represent distillation boundaries.  Liquid-liquid solubility 

is represented by a dashed, curved line (binodal curve).  On the distillation boundary that separates distillation 

regions 2 and 3; thick dashes are superimposed to show the vapour composition in equilibrium with the two 

liquid phases.   
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Figure 2-16: Ternary phase diagram with liquid-liquid equilibrium phase envelope, vapour line and distillation 

boundaries of the ethanol-water-benzene system. Simulated in Aspen with NRTL. 

Consider the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer as 

illustration of this entrainer-addition method.  The thermodynamic model NRTL, in Aspen, was used to 

calculate the residue curves and azeotropes in Figure 2-16.  The normal boiling points of ethanol, water and 

benzene are 78.4, 100 and 80.1 
o
C respectively.  Ethanol and water forms a homogeneous minimum-boiling 

azeotrope at 78.2 
o
C and 10.5 mole % water.  Ethanol and benzene also forms a homogeneous minimum-boiling 

azeotrope, but at 67.7 
o
C and 44.5 mole % ethanol.  A heterogeneous minimum-boiling azeotrope is predicted to 

form between water and benzene at 69.4
o
C and 29.9

 
mole % water.  A ternary heterogeneous minimum-boiling 

azeotrope is predicted to occur at 64
o
C and 19.1 mole % water, 28.2 mole % ethanol and 52.7 mole % benzene.  

This azeotrope enables the crossing of a distillation boundary.  The overall composition of the two liquid phases 

is the same as that of the vapour phase.  The thin dashed line (equilibrium tie-line) through azeotrope 4 in Figure 

2-6, indicates the corresponding composition of each liquid phase on the phase envelope.  The water-rich phase 

has a composition of 43.9 mole % ethanol, 6.3 mole % benzene and 49.8 mole % water.  The benzene-rich 

phase has a composition of 18.4 mole % ethanol, 79.0 mole % benzene and 2.6 mole % water.  This property 

allows for separation beyond the azeotropic point via decantation. 

A typical separation sequence (Figure 2-17) can consist of two distillation columns (an azeotropic column and a 

recovery column) and a decanter.  The first column is fed with an aqueous ethanol stream, organic reflux from 
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the decanter as well as the distillate of the recovery column.  This column produces nearly pure ethanol as 

bottoms and a distillate close to the composition of azeotrope 4. The azeotropic distillate is subsequently 

separated into a water-rich and benzene-rich phase in the decanter.  The benzene-rich phase is recycled to the 

first column and the water-rich phase is fed to the second column.  Nearly pure water is produced as bottoms in 

this column and a distillate of ethanol, benzene and water.  The distillate from the second column, supplemented 

with an entrainer make-up stream, is fed to the first column. Material balance lines of this separation sequence 

are also shown in grey on Figure 2-16.  

 

Figure 2-17: Typical separation sequence for heterogeneous azeotropic distillation of ethanol/benzene/water. 

According to Seader and Henley (2006). 

To construct diagrams such as Figure 2-16, full knowledge of the VLLE data under isobaric conditions is 

required.  This entails the determination of the boiling point temperature, the composition of both liquid phases 

and of the equilibrium vapour phase of numerous samples in the region at which the liquid mixtures are 

heterogeneous at their corresponding bubble-point temperatures (Julka, Chiplunkar & O'Young 2009, Gomis, 

Pequenín & Asensi 2010).    

More information on heterogeneous azeotropic distillation in general can be found in the works of Pham and 

Doherty (1990a, 1990b, 1990c) and Widagdo and Seider (1992, 1996).  The number of possible entrainers for 

heterogeneous azeotropic distillation is somewhat restricted, but heterogeneous azeotropic distillation is usually 

preferred compared to extractive distillation.  When the original mixture consists of hydrophilic components and 

hydrophobic organic components (eg. water and ethanol), it is generally possible to find a heterogeneous 

azeotropic entrainer.  When the mixture consists of only hydrophilic or hydrophobic components (eg. benzene 

and cyclohexane), it is much harder to find an entrainer (Hilmen 2000). 
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2.5.3 Extractive distillation 

The name, extractive distillation, was coined by Dunn et al. (1945) in reference to the commercial separation of 

toluene from a paraffin-hydrocarbon mixture, using phenol as solvent.  The basic principle of extractive 

distillation is that the entrainer interacts differently with each component in the original mixture and therefore 

alters their relative volatility.  These interactions predominantly occur in the liquid phase and causes separation 

to become feasible and economical.  The solvent should not form an azeotrope with any of the components in 

the feed.  If a minimum-boiling azeotrope is fed to the column, the solvent (with a lower volatility than the key 

components of the feed mixture) is added to the tray above the feed stage and a few trays below the top of the 

column.  This ensures that the solvent is present in the down-flowing liquid phase to the bottom of the column 

and minimal solvent is stripped and lost to the vapour overhead.  If a maximum-boiling azeotrope is fed to the 

column, the solvent enters the column with the original mixture.  Usually, a molar solvent-to-feed ratio of 1 is 

required to achieve the desirable separation.  The bottoms from the extractive distillation column are treated to 

recover the solvent and recycle it to the feed (Seader, Henley 2006).   

As illustration of this method, consider the acetone-methanol system.  At 1 atm, acetone and methanol form a 

minimum-boiling azeotrope at a temperature of 55.7
o
C and composition of 77.75 mole % acetone.  The NRTL 

thermodynamic model was used to predict the vapour-liquid equilibrium data for this system at 1 atm.   

 

Figure 2-18: Residue curve map of the water-acetone-methanol system.  The residue curves were calculated in 

Aspen using the NRTL thermodynamic model. 
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The model predicts a binary azeotrope at 55.2
o
C with 77.8 mole % acetone.  When attempting to separate 

(Figure 2-19) a mixture (F1) of acetone and methanol, only one component can be obtained in the pure form 

(B1).  The other product obtained would be the azeotrope (D1). Water is a good candidate as solvent for 

extractive distillation for this system, because at 1 atm it does not form a binary or ternary azeotrope with 

acetone and/or methanol.  It also has a boiling temperature of 100 
o
C, significantly higher than acetone and 

methanol.  The subsequent residue curve map (Figure 2-18) was computed with Aspen Plus, also using the 

NRTL model.  The arrows on the residue curves are directed away from the acetone-methanol azeotrope, 

towards pure water.  No distillation boundaries exist within the system at these conditions.  The presence of a 

substantial amount of water increases the liquid-phase activity coefficient of acetone and decreases that of 

methanol.  Therefore, over the entire range of acetone and methanol, the relative volatility of acetone is 

increased.  This allows the mixture to be separated by extractive distillation, resulting in a distillate of acetone 

(D2) and bottoms of methanol and water (B2).  This mixture (B2/F3) can subsequently be separated by ordinary 

distillation into pure methanol and water (D3 and B3 respectively), since no azeotrope exists between these two 

components.  

 

Figure 2-19: Typical separation sequence for extractive distillation. According to Seader and Henley (2006). 

2.5.4 Entrainer selection 

A variety of studies have been performed on entrainer selection for heterogeneous azeotropic distillation and 

valuable insight on this topic can be gained from literature.  The task of entrainer selection should be based on a 

physical (knowledge of the intermolecular forces and VL(L)E diagram structure) and thermodynamic 

understanding of the component system in question.  Entrainer effectiveness is evaluated based on its ability to 

alter the relative volatility of the original mixture.   

Ewell et al. (1944) studied the relationship between azeotrope formation and hydrogen bonding.  They 

determined that entrainers can be classified into 5 groups based on their hydrogen-bonding tendencies.  From 

this a strategy was developed to identify chemical classes suitable as entrainers for heterogeneous azeotropic 

and extractive distillation.   Berg (1969) discussed these guidelines and further developed a classification of 
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organic and inorganic mixtures.  He used information on the molecular structure to identify promising entrainers 

for extractive and heterogeneous azeotropic distillation.  According to Berg (1969), feasible entrainers for 

extractive distillation have high hydrogen-bonding tendencies (eg. water, amino alcohols, amides, phenol 

alcohols and organic acids). 

Van Winkle (1967) calls attention to the fact that the whole process system must be considered in the selection 

of a feasible entrainer and that the recovery of the entrainer must be included in the evaluation.  A candidate 

entrainer might have a high selectivity, but its recovery in the second column may be difficult.  Consequently, 

the final selection must include an economic evaluation as well.   

Brignole et al. (1986) developed and tested a strategy for computer-aided molecular design of entrainers.  This 

strategy can be used to comment on the feasibility of an entrainer and analyze the effect of solvent mixtures as 

entrainers.  Pham and Doherty (1990a) presented general principles for distinguishing between feasible and 

infeasible entrainers for the synthesis of continuous heterogeneous azeotropic distillation.  If the resulting 

residue curve map provides a feasible column sequence, the entrainer is considered feasible.  Furzer (1994) 

screened for entrainers using a UNIFAC group contribution method.  Simple rules were developed to use in a 

knowledge database to limit the amount of molecules that could be used as entrainers.  Rodriguez-Donis et al. 

(2001) developed entrainer selection rules specifically for batch colums, since heterogeneous azeotropic batch 

distillation is more flexible than its continuous counterpart and therefore more possible cases had to be included.  

They adopted Matsuyama and Nishimura’s (1977) 113 classes of classification, which Foucher et al. (1991) 

later extended to 125.  The complete set of rules for feasible entrainers was tabulated in their paper.   Modla et 

al. (2003) also published results for heterogeneous azeotropic distillation in a batch rectifier and heterogeneous 

azeotropic distillation. The authors investigated the separation of a close-boiling mixture by using a heavy 

entrainer.  Moussa and Jiménez (2006) presented a state task network to determine the separation sequence of 

heterogeneous azeotropic distillations.  They used the residue curve maps reported by Kiva et al. (2003) for their 

investigation.  In 2009 Julka et al. also presented a systematic methodology to identify and evaluate entrainers 

via residue curve map technology.   

Typical entrainers for the dehydration of aqueous C2 and C3 alcohols through azeotropic distillation are 

discussed in Chapter 5. 
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2.6 SUMMARY 

The separation of azeotropic mixtures is a topic of great practical and industrial interest.  It is impossible to 

separate azeotropes, which are not pressure sensitive, with ordinary distillation. Separation of these components 

may however be achieved via membrane-distillation hybrids or entrainer-addition distillation methods.  The use 

of membrane-distillation hybrids is limited due to its low maximal capacity and is therefore eliminated for this 

work.  

Ternary VL(L)E diagrams are useful tools to efficiently predict feasible separation sequences for such 

distillation methods.  One can distinguish between three different entrainer-addition methods depending on the 

entrainers properties and column sequence: 

� Homogeneous azeotropic distillation is the ordinary distillation of homogeneous azeotropic mixtures 

with an entrainer.  Separation can be achieved only for a limited number of VLE diagram structures.  

These separation schemes may be very complex, energy intensive or have multiplicities. 

� Heterogeneous azeotropic distillation involves the use of decanter-distillation hybrids to separate 

heterogeneous azeotropic mixtures.  Separation can be achieved for several VLLE diagram structures 

involving one or more heterogeneous azeotrope.  The separation schemes are rather simple, but the 

range of feasible entrainers may be limited. 

� Extractive distillation uses an entrainer which does not form another azeotrope with the original 

mixture, but rather alters the relative volatilities of its components.  A wider range of feasible 

entrainers are available, but the process may be more energy intensive than heterogeneous azeotropic 

distillation. 

Consequently this work focusses on heterogeneous azeotropic distillation as a method for the separation of 

selected alcohol/water azeotropes. Specific attention is given to the evaluation of possible entrainers (benzene, 

cyclohexane, hexane, heptane, isooctane, DIPE and DNPE) for alcohol/water azeotropic mixtures. 
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3 THERMODYNAMIC BASIS 

Graphical representation of VL(L)E data and the use of this data in simulation software packages are vital to the 

prediction of a feasible operating space in which any real distillation process can take place.  Experimental data 

are not always readily available and therefore it is of utmost importance to follow sound thermodynamic 

principles to predict VL(L)E data.  The following section gives an account of the thermodynamic basis of both 

vapour-liquid and vapour-liquid-liquid equilibrium.  In order to gain an understanding of the thermodynamic 

basic, the texts of Prausnitz (1999), Sandler (1999) and Smith and van Ness (2005) were studied and used 

throughout this chapter. The criteria for equilibrium are stipulated and the Gibbs-Duhem Equation, chemical 

potential, fugacity, fugacity coefficient, activity and activity coefficient are defined.  The thermodynamic 

models applicable to VLE and VLLE data (in this work) are discussed.  The selected models are all activity 

coefficient models i.e. NRTL, UNIQUAC and UNIFAC.  Equations of state were also considered, but it is said 

that highly non-ideal liquid mixtures such as VLLE is best predicted by activity coefficient models (Aspen 

Technology 2009). Guidelines in Aspen suggest NRTL, UNIQUAC and UNIFAC for polar, non-electrolyte 

solutions at moderate pressures (P < 10 bar).  Literature also indicates that NRTL, UNIQUAC and UNIFAC are 

generally used to predict alcohol/entrainer/water VLLE systems (Gomis et al. 2007, Lladosa et al. 2008, Lee, 

Shen 2003, Font et al. 2003, Gomis, Font & Saquete 2006, Gomis et al. 2005).  The chapter concludes with a 

discussion of thermodynamic consistency testing methods.  The interested reader is referred to the texts of Raal 

and Muhlbauer (1998), Walas (1985), Smith et al. (2001), Malanowski and Anderko (1992) and Prausnitz et al. 

(1986) for further reading.   

3.1 CRITERION FOR PHASE EQUILIBRIUM IN A HETEROGENEOUS CLOSED SYSTEM 

A heterogeneous, closed system consists of two or more phases with each phase considered as an open system 

within the overall closed system.  The conditions under which this system is in a state of internal equilibrium 

regarding the three processes of heat transfer, boundary displacement and mass transfer are considered here.  In 

terms of extensive thermodynamic potential, the following four criteria exist for equilibrium in a closed system 

(Prausnitz, Lichtenthaler & de Azevedo 1999): 

     �89,: = 0       3-1 

     �;9,/ = 0       3-2 

�<=,: = 0       3-3 

     �>=,/ = 0       3-4 

Where U, H, A and G are internal energy, enthalpy, Helmholtz free energy and Gibbs free energy respectively.  

These variables cannot be measured directly and it is therefore more useful to define equilibrium in terms of 

intensive quantities T, P, and µi (temperature, pressure and chemical potential respectively).  To attain thermal 

and mechanical equilibrium, the temperature and pressure must be uniform throughout the entire heterogeneous 

system.  With µi as the intensive chemical potential governing mass transfer, it is also expected to have a 

uniform value throughout the system at equilibrium.   
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For a heterogeneous system consisting of π phases and m components, the following must be true at 

equilibrium: 

 %$?& = %$@& = ⋯ = %$B&      3-5 

 �$?& = �$@& = ⋯ = �$B&      3-6 

 C?$?& = C?$@& = ⋯ = C?$B&      3-7 

 C@$?& = C@$@& = ⋯ = C@$B&      3-8 

 	⋮												⋮																						⋮ 
 CE$?& = CE$@& = ⋯ = CE$B&      3-9 

The superscript denotes the phase and the subscript denotes the component.   

3.2 THE GIBBS-DUHEM EQUATION 

The intensive state of each phase in a heterogeneous system at internal equilibrium can be characterized by its 

temperature and pressure, and the chemical potential for each component.  These variables are however not all 

independently variable.  The Gibbs-Duhem Equation illustrates how these variables are related and is a 

fundamental equation in the thermodynamics of solutions (Prausnitz, Lichtenthaler & de Azevedo 1999).   

     �> = ∑ ���C�� = G�� − I�%     3-10 

where S, V and n are entropy, volume and number of moles respectively.  The subscript i denotes the 

components in the system. 

3.3 THE CHEMICAL POTENTIAL 

The function of phase-equilibrium thermodynamics is to quantitatively describe the distribution of each 

component in a system, among all the phases present, at equilibrium.  The chemical potential of a component in 

a particular phase in a certain system is used as a tool to evaluate phase equilibrium (Prausnitz, Lichtenthaler & 

de Azevedo 1999).   

 C� ≡	KLMLN*O=,/,N-P*         3-11 

Chemical potential is an abstract concept and must be related to physically measurable quantities such as 

temperature, pressure and composition in order to be used.   

�C� = ���� − ���%       3-12 

where si is the molar entropy and vi the molar volume.  
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One cannot compute an absolute value for chemical potential.  Only a change in chemical potential due to any 

arbitrary change in the independent variables temperature, pressure and composition, can be calculated.  

Integrating Equation 3-12 and solving for µ i at a certain temperature T and pressure P, gives: 

C�$%, �& = C�$%Q , �Q& − R ���%==S + R ����//S     3-13 

where subscript r refers to an arbitrary reference state.  

In Equation 3-13 the two integrals on the right side can be determined from thermal and volumetric data over 

the temperature range of T-T
r
 and the pressure range P-P

r
.  The chemical potential µi(T

r
,P

r
) is however 

unknown.  Therefore, µi(T,P) can only be expressed relative to µi(T
r
,P

r
). 

3.4 FUGACITY AND FUGACITY COEFFICIENT 

Fugacity, f, is an auxiliary concept used to express an equivalent for chemical potential in the physical world.  

For an ideal gas, the change in chemical potential, under isothermal conditions from P
0
 to P, is given by 

(Prausnitz, Lichtenthaler & de Azevedo 1999): 

C� − C�U = V%�� /
/W      3-14 

Equation 3-14 is of value since it relates an abstract mathematical concept to a common, intensive property in 

the natural world.  This equation is however only valid for pure, ideal gases.  It can be generalized for an 

isothermal change for any component in any system (solid, liquid, or gas, pure or mixed, ideal or not) by 

defining a function f, called fugacity:   

     C� − C�U = V%�� X*X*W      3-15 

The superscript 0, denotes the standard or reference state.  Although µ i
0
 and fi

0
 are arbitrary, both may not be 

chosen independently.  When one is chosen, the other is fixed.   

For a pure, ideal gas, the fugacity is equal to the pressure.  For component i in a mixture of ideal gases, the 

fugacity is equal to its partial pressure yiP.   Since all systems (pure or mixed) approach ideal-gas behaviour at 

very low pressures, the definition of fugacity is completed by the limit: 

     
X*)*/ → 1    as    � → 0      3-16 

where yi is the mole fraction of i.  The dimensionless ratio fi/yiP is called the fugacity coefficient, designated by 

symbol φi.  Therefore, for a mixture of ideal gases, φi = 1.  For a liquid phase the fugacity coefficient would be 

fi/xiP.  

Since Equation 3-15 was formulated for an isothermal change, the temperature of the standard state must be the 

same as that of the state of interest.  The pressure and compositions of the two states may, however, be different 

and usually are.  Fugacity provides a convenient transformation of the fundamental equation of phase 

equilibrium, Equation 3-9.   
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From Equations 3-10 and 3-15, for phases α and β, the following needs to be true: 

      	�Z = 	�[      3-17 

Equation 3-17 is very useful, because it conveys that the equilibrium condition in terms of chemical potentials 

can be replaced by an equation in terms of fugacities, without loss of generality.   

3.5 ACTIVITY AND ACTIVITY COEFFICIENT 

The activity (ai) of component i at a temperature, pressure and composition of interest, is defined as the ratio of 

fi at these conditions to the fugacity of i at the standard state (fi
0
).  It provides a measure of how “active” the 

substance is relative to its standard state since it indicates the difference between the chemical potential of the 

substance at the state of interest and its standard state (Prausnitz, Lichtenthaler & de Azevedo 1999).   

��$%, �, �& ≡ X*$=,/,+&X*$=,/W,+W&      3-18 

where P
0
 and x

0
 are, respectively, an arbitrary but specified pressure and composition.  For an ideal mixture the 

activity equals the mole fraction (ai = xi).   

Departure from this ideal behaviour is accounted for by the activity coefficient (γi).  It is the ratio of the activity 

of i to the concentration of i (xi), usually in mole fraction:  

�� ≡ "*+* = X*+*X*W       3-19 

Consequently for an ideal solution the activity coefficient is equal to one.  Ideal solution behaviour can also be 

characterized by the Lewis/Randall rule: 

 	��\]"^ = ��	�_       3-20 

This relation illustrates that the fugacity of component i in an ideal solution is proportional to its mole fraction.  

As xi approaches unity, the fugacity of the ideal solution approaches the fugacity of the pure liquid at the 

solution temperature and pressure.   

3.6 EVALUATION OF FUGACITIES  

When determining the fugacity of a pure liquid at a pressure above the saturation pressure, the fugacity at 

saturation has to be considered first.  At this point the liquid phase fugacity is equal to the vapour phase fugacity 

(Prausnitz, Lichtenthaler & de Azevedo 1999): 

	�_ = 	�!"# = ��!"#��!"#      3-21 
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Increasing the pressure above saturation at constant temperature, yields the following change in fugacity from 

Equations 3-11 and 3-15: 

    �>� = G��� − I��% = V%� ln 	�      3-22 

or written as: 

     � ln 	� = :*bc= ��       3-23 

Integration from Pi
sat

 to P gives: 

	�_ = 	�!"# exp g ?c= R G�_//*012 ��h      3-24 

The exponential term in Equation 3-23 is called the Poynting Correction.  It is small at low pressures, but 

increases with increasing pressure.  The liquid molar volume (Vi
L
) in Equation 3-23 is at a temperature well 

below the critical point and is a weak function of pressure.  Therefore its dependence on pressure is negligible 

and one may directly integrate Equation 3-23.  The saturation fugacity of component i (fi
sat

) in Equation 3-23 is 

eliminated in Equation 3-24 by incorporating the fugacity coefficient (φi
sat

).   

	�_ = ��!"#��!"# exp i:*b$/j/*012&c= k      3-25 

According to Equation 3-17 the equilibrium requirement between a liquid (L) and a vapour (V), at the same 

temperature and pressure is: 

	�_ = 	�:       3-26 

By incorporating the definition of the fugacity coefficient and the definition of the activity coefficient, Equation 

3-26 transforms to: 

����� = ����	�_       3-27 

fi
0
 in the definition of the activity coefficient has been replaced by fi

L
 following the convention used in the 

Lewis/Randall relation.  This technique whereby the fugacity and activity coefficients are respectively used to 

describe non-idealities in the vapour and liquid phases is called the combined method of VLE.   

Substituting fi
L
 in Equation 3-27 with Equation 3-25 yields: 

��Φ�� = ������!"#       3-28 

where,  

 Φ� = m*m*012 exp i− :*b$/j/*012&c= k      3-29 

Equation 3-27 is the fundamental relationship relating liquid and vapour phase in equilibrium. 
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3.7 NRTL (NON-RANDOM TWO LIQUID) EQUATION 

The NRTL Equation, developed by Renon and Prausnitz (1968), represents an extension of the Wilson 

Equation.  The NRTL Equation is valid for multi-component VLE, LLE and VLLE.  For multi-component VLE 

only binary pair-constants from the corresponding binary-pair experimental data are required.  The NRTL 

Equation for a multi-component mixture is as follows: 

 
no
c= = ∑ ��� ∑ +*p-*M-*-∑ +qMq*q        3-30 

Where: 

>�( = exp	$−'(�r(�&       3-31 

 r�( =	��( + s*-= + ��( ln % + 	�(%     3-32 

The parameter αji characterizes the tendency of species j and species i to be distributed in a nonrandom manner.   

Generally αji is independent of temperature and depends on molecular properties. 

    '�( = ��( + ��(%       3-33 

>��  is equal to 1 and r��  to 0.  ��( , t�( , ��(  and 	�(  are unsymmetrical.  Therefore ��(  may for example not be 

equal to �(� .  
Equation 3-1 combined with the equation of activity coefficients from Gibbs free energy, yields Equation 3-38.  

Therefore the activity coefficient for any component i is given by: 

 ln �� = ∑ +*p-*M-*-∑ +qMq*q + ∑ +-M-*∑ +qMq-q ur�( − ∑ +vpv-Mv-v∑ +qMq-q w(       3-34 

3.8 UNIQUAC (UNIVERSAL QUASI CHEMICAL THEORY) EQUATION 

In attempt to base the calculations of liquid-phase activity coefficients on simple, but more theoretical grounds, 

Abrams and Prausnitz (1975) used statistical mechanics to derive an expression for excess free energy.  Their 

model, the UNIQUAC Equation, generalizes a previous analysis by Guggenheim and extends it to mixtures of 

molecules that differ significantly in shape and size.  Similar to Wilson and NRTL, UNIQUAC also uses local 

concentrations.  UNIQUAC however uses the local area fraction θij as the primary concentration variable, rather 

than local volume fractions or local mole fractions. The local area fraction is determined by representing a 

molecule by a set of bonded segments.  Each molecule is characterized by two structural parameters.  These 

parameters are the relative number of segments per molecule, r (volume parameter), and the relative surface 

area of the molecule, q (surface parameter).   
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Excess free energy for a multi-component mixture, according to the UNIQUAC model is: 

no
c= = Knoc=Ox
Es�N"#
Q�"^ + Knoc=OQ]!�\y"^       3-35 

 Knoc=Ox
Es�N"#
Q�"^ = ∑ ��� lnz*+* + {
@∑ ���� ln |*z*�      3-36 

 Knoc=OQ]!�\y"^ = −∑ ��}�� ln~∑ �(}r(�( ��        3-37 

The combinatorial term accounts for effects due to differences in molecule size and shape.  The residual term 

accounts for effects to due differences in intermolecular forces, where segment fraction Φ� and area fractions θ� 
and ��} are given by 

 Φ� = +*Q*∑ +-Q--        3-38 

θ� = +*�*∑ +-�--        3-39 

��} = +*�*�∑ +-�-�-        3-40 

 

and  

r�( = exp g��( + s*-= + ��( ln % + ��(% + ��(%@h     3-41 

Binary parameters ��( , t�( , ��( , ��( , ��( and 	�( are the only adjustable parameters.   

Equation 4-6 combined with the equation of activity coefficients from Gibbs free energy, yields the following: 

 ln �� = lnz*+* + {
@ �� ln �*z* + �� − z*+* ∑ �(�(( − ��} ln�∑ �(}r(�( � + ��} − ��}∑ |-�p*-∑ |q�pq-q(    3-42 

where, 

�� = {
@ $�� − ��& − $�� − 1&       3-43 

where Z is the lattice coordination number and is set to 10 (Prausnitz, Lichtenthaler & de Azevedo 1999).  

3.9 UNIFAC (UNIVERSAL FUNCTIONAL ACTIVITY COEFFICIENT) EQUATION 

Liquid-phase activity coefficients have to be estimated for non-ideal mixtures, even when experimental phase 

equilibrium data is not available and when the assumption of regular solutions is not valid due to the presence of 

polar compounds.  Wilson and Deal (1962) presented methods for treating a solution as a combination of 

functional groups rather than molecules, for such predictions.  To estimate the partial molar excess free energies 

and subsequently the activity coefficients, the size parameters for each functional group as well as the binary 
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interaction parameters for each pair of functional groups are required.  Size parameters can be calculated from 

theory while the interaction parameters need to be back-calculated from existing phase equilibrium data.  These 

parameters are then used to predict phase equilibrium properties of mixtures for which no experimental data are 

available. The UNIFAC group-contribution method has several advantages over other group-contribution 

methods: 

a) It is theoretically based on the UNIQUAC method. 

b) The parameters are in essence independent of temperature. 

c) The size and interaction parameters are available for a wide range of functional groups. 

d) Predictions can be made for temperatures ranging between 275 and 425 K and for pressures up to a few 

atmospheres. 

e) Widespread comparisons with experimental data are available. 

For the UNIFAC Equation, based on the UNIQUAC Equation, the volume and surface parameters in the 

combinatorial terms are replaced by: 

�� = ∑ ��$�&V��          3-44 

�� = ∑ ��$�&���         3-45 

Where vk
(i)

 is the number of functional groups of type k in molecule i, and Rk and Qk are the volume and area 

parameters, respectively, for the type-k functional group.  

The residual term is replaced by Equation 3-46: 

ln γ�$residual& = ∑ ��$�&~ln Γ� − ln Γ�$�&��      3-46 

Where Гk is the residual activity coefficient in the actual mixture and Гk
(i)

 is the same quantity, but in a reference 

mixture that contains only molecules of type i.   

ln Γ� = �� g1 − ln$∑ ΘEΨE�E & − ∑ �v�qv����vE h    3-47 

Where Θm is the area fraction of group m, given by: 

ΘE = �surface	areafraction	ofgroup	m � =  v¡v∑  �¡��       3-48 

XE = mole	fraction	of	group	m	in	mixture  
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And Ψmn is a group interaction parameter given by: 

ΨEN = exp gj$yv�jy��&�= h = exp gj"v�= h     3-49 

where umn is a measure of interaction energy between groups m and n, and �EN is an adjustable group binary 

interaction parameter. 

3.10 THERMODYNAMIC CONSISTENCY TESTING 

Consistency tests are methods through which VLE data are analyzed and assessed. Wisniak et al. (1997) defined 

their significance as follows: 

If the data satisfy the criteria of well-formulated consistency tests, then they are considered appropriate for 

design and modeling purposes and their reproducibility and matching with any thermodynamical relation is 

assumed. 

It is therefore vital to critically analyze experimental phase equilibrium data.  Numerous consistency tests 

(Wisniak, Apelblat & Segura 1997) exist (Wisniak, Apelblat & Segura 1997), but only those pertinent to this 

work are discussed below.  Literature also indicates that these tests have generally been used to evaluate phase 

equilibrium data measured for alcohol/entrainer/water systems (Font et al. 2004, Lladosa et al. 2008, Font et al. 

2003, Font et al. 2003, Gomis et al. 2007). 

3.10.1 VLE Consistency Testing 

One of the most basic thermodynamic consistency tests is the Area test, also referred to as the Herington test 

(Herington, 1951).  The Herington test indicates compliance with Gibbs-Duhem relation (Equation 3-10) over 

the entire composition range.  It is a simple method for testing binary VLE data for thermodynamic consistency. 

Over composition x1, at constant pressure: 

 <∗ = 100 KR ln .¤.¥ �� + R ¦��?U?U O      3-50 

Where 

 ¦ = −K §o
c=¥O K L=

L+¤O¨      3-51 

For the data to pass the Herington test, |<∗| < 3. However, the lack of reliability and availability of excess 

enthalpy data, H
E
, causes these calculations to be difficult for isobaric systems.  Therefore Wisniak (1994) 

proposed the following modification to the Herington test: 

 « = 100 ¬­j®­¯®¬       3-52 

 ° = 150 ¬∆=v1²=v*� ¬       3-53 
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Where A is the area above the zero line on the plot of ln .¤.¥ against x, and B is the area below the zero line on 

this plot.  If D-J < 10, the data pass the consistency test. This test is used in Aspen Plus for thermodynamic 

verificaton of internal data sets and experimental data sets imported into Aspen. 

Wisniak and co-workers (Elly, Landa & Wisniak 2003) developed software (PRO-VLE 2.0) for binary and 

ternary VLE consistency testing.  After personal communication with Wisniak, well-known for his work in this 

field, the software was acquired.  The program performs two thermodynamic consistency tests on the VLE data 

it receives, only one of which is derived from the Gibbs-Duhem relation (Equation 3-10).   

L/W consistency test 

The L/W test (Wisniak 1993) is not derived from the Gibbs-Duhem relation and therefore a set of data proved 

consistent by this test, will not necessarily obey the Gibbs-Duhem Equation.  The L/W test is beneficial in that 

no heat and/or volume of mixing information are required for the liquid phase, it is simultaneously a 

point-to-point and area test, and can be used for systems containing any number of components.  It is however 

advised that the L/W test must be used in addition to a test derived from the Gibbs-Duhem relation, to more 

accurately qualify the data.   

The L/W test consists of Equations 3-54 to 3-61: 

     ³ = 	R ³�?U ���        3-54 

     ´ =	R �́?U ���        3-55 

 ³� =	∑=µW+µ∆9µW∆9 − % = 	 Mo∆9 − c=¶
∆9 = ´     3-56 

     ∆I	 ≡ 	∑ �·∆I·U       3-57 

     ∆I·U =	 c= ¸¹º
»
»µW ¼=µWj= =	 ∆½µW=µW       3-58 

 >¾ = V%∑�� ln ��      3-59 
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Where %·U , ∆I·U  and ∆ℎ·U  are the boiling temperature, vaporization entropy and heat of vaporization of 

component k at pressure P, respectively.  

 ´	 ≡ 	∑ �· ln K)µ+µO      3-60 

     «	 ≡ 100 ∙ 	 |_j¶|
_¯¶        3-61 

For values of D smaller than 3 to 5, the L/W test proves that the VLE data are thermodynamically consistent.  

When the boiling temperatures of the various components differ significantly, Wisniak et al. (1997) recommend 

that the variation in heat of vaporization with temperature be taken into account.  

McDermott-Ellis consistency test 

The McDermott-Ellis consistency test (McDermott, Ellis 1965) is derived from the Gibbs-Duhem relation and is 

therefore used for a more reliable qualification of data.  This test verifies the thermodynamic consistency of 

every two consecutive experimental points, taken in pairs.  

The McDermott-Ellis test is given by Equations 3-62: 

    « = 	∑ $��" − ��s&$ln ��s − ln ��"&À�Á?     3-62

     

McDermott and Ellis (1965) recommend that a maximum deviation of 0.01 be allowed if the accuracy of the 

measurement of vapour and liquid fractions is within ± 0.001.  Wisniak and Tamir (1977) propose that the local 

maximum deviation (Dmax) due to experimental errors, should not be a constant value and that is should rather 

be calculated by Equation 3-63.  

«E"+ =	∑ $��" + ��s& K ?
+*1 + ?

+*Â + ?
)*1 + ?

)*ÂO∆�À�Á? + 2∑ |ln ��s − ln ��"|∆�À�Á? + ∑ $��" + ��s& ∆//À�Á? +
∑ $��" + ��s&Ã� K ?

|#1¯Ä*|¥ + ?
|#Â¯Ä*|¥O∆�À�Á?          3-63 

Where ∆�, ∆� and ∆� are errors in measurement of concentrations, pressure and temperature, respectively.  Ã� 
and Å� are the Bi and Ci Antoine constants of the particular component.  

3.10.2 LLE Consistency Testing 

As far as could be ascertained no consistency tests derived from the Gibb-Duhem relation, for the qualification 

of experimental LLE data exists.  Empirical correlations have however been proposed by Hand (1930) and by 

Othmer and Tobias (1942) for the evaluation of such data.   Treybal (1963) considers these correlations as 

excellent tools for the evaluation of experimental LLE data. In a critical analysis of the Hand and 

Othmer-Tobias correlations, Carniti et al. (1978) concluded that these correlations are too insensitive to various 

types of errors to be adequate criticism of experimental data.  It was however stated that the Othmer-Tobias 

correlation is slightly more sensitive than Hand’s correlation and can be useful to check whether experimental 

data follows a steady course. Therefore it can be used to identify tie lines with high random errors.  

  

Stellenbosch University http://scholar.sun.ac.za



 
45 Thermodynamic basis 

The Othmer-Tobias correlation is given by Equation 3-64: 

 log ?j+¥¥+¥¥ =	ÆÇÈ log ?j+¤¤+¤¤ + �ÇÈ      3-64 

Where ��(  is the weight fraction of component i in the j-rich phase and ÆÇÈ  and �ÇÈ  are constants.  When 

employed into Equation 3-63, the experimental LLE data has to be tested for linearity by plotting log ?j+¥¥+¥¥  

versus log ?j+¤¤+¤¤  and applying a least-squares regression.  Carniti et al. (1978) set r = 0.990 as the lowest limit for 

a good linear fit.   

3.10.3 VLLE Consistency Testing 

No consistency test, explicitly for VLLE, could be found in literature.  Personal communication with Prof. 

Jaime Wisniak (2011) and Prof. Hugo Segura (2010), both knowledgeable in the field of thermodynamic 

consistency testing, confirmed that they do not know of the existence of such a test.  VLE consistency tests have 

been applied to VLLE, but these are not necessarily valid.  Therefore the reliability of the VLLE data measured 

in this work relies on the thorough verification of the phase equilibrium equipment (Section 8.1) and the mass 

balances performed on the samples (Section 7.4). 
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4 METHODS OF LOW-PRESSURE VLE/VLLE MEASUREMENT 

Equilibrium data, VLE, LLE and VLLE, are of great importance in the design and simulation of heterogeneous 

azeotropic distillation.  When no equilibrium data are available, it is usually substituted by predictions using 

activity coefficient models calculated with group contribution methods such as UNIFAC, or by the UNIQUAC 

or NRTL model with parameters based on the correlation of binary VLE and LLE data (Gomis et al. 2007).  The 

proper simulation of an azeotropic distillation column for the dehydration of alcohol with an entrainer, requires 

knowledge of the exact size and shape of the heterogeneous region and the gradient of the liquid-liquid tie lines.  

These features greatly influence the compositions obtained of the two liquids produced in the decanter from the 

condensed vapour that exit the top of the distillation column and can only be obtained accurately from accurate 

VLLE data.  

There, however, exists an enormous lack of published VLLE data.  See Table 4-1 for a list of all the published 

isobaric VLLE data measured at ambient pressure up to date.   Many authors have already pointed out this 

scarcity of VLLE data, starting with Norman in 1945 up until Pham and Doherty (1990) and Younis et al. in 

2007.  The main reason why this data is hard to come by is due to the difficulty with which it is measured 

experimentally using commercially available equipment.  Commercially available equipment is only designed to 

measure VLE data involving homogeneous liquids.  For this reason some researchers have attempted to measure 

VLLE data with VLE equipment while others have modified VLE equipment to measure VLLE data more 

accurately (see Table 4-1).   
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Table 4-1: Isobaric VLLE data at 101.3 kPa published to date (updated from Gomis et al. (2010). 

 

System Reference Date Method
Pressure 

(kPa)

No. of 

lines

(Water + ethanol + benzene) Barbaudy 1927 Distillation 101.3 6

(Water + allylic alcohol + trichloroethylene) Hands and Norman 1945 Distillation 101.3 6

(Water + allylic alcohol + carbon tetrachloride) Hands and Norman 1945 Distillation 101.3 6

(Water + acetone + chloroform) Reinders and De Minjer 1947 Distillation 101.3 22

(Water + acetonitrile + acrylonitrile) Blackford and York 1965 Distillation 101.3 6

(Water + cyclohexanone oxime + nitrocyclohexane) Lutugina and Soboleva 1967 Dynamic Othmer 101.3 11

(Water + acetonitrile + acrylonitrile) Volpicelli 1968 Distillation 101.3 5

(Water + 2-propanol + cyclohexane) Verhoeye 1968 Distillation 101.3 6

(Water + acetic acid + p-xylene) Murogova et al. 1971 Dynamic Othmer Atmospheric 13

(Water + methanol + ethyl acetate) Van Zandijcke and Verhoeye 1974 Dynamic Othmer 101.3 6

(Water + ethanol + ethyl acetate) Van Zandijcke and Verhoeye 1974 Dynamic Gullespie 101.3 4

Lee et al. 1996 Dynamic Othmer Atmospheric 11

Gomis et al. 2000 Dynamic Gullespie 101.3 5

(Water + methanol + n-butanol) Newsman and Vahdat 1977 Flow 99.2 10

(Water + ethanol + n-butanol) Newsman and Vahdat 1977 Flow 102.2 7

(Water + n-propanol + n-butanol) Newsman and Vahdat 1977 Flow 99.7 13

(Hexane + benzene + tetramethylene sulfone) Rawat et al. 1980 Dynamic Othmer 101.3 5

(Water + 2-propanol + 1-butanol) Aicher et al. 1995 Dynamic Gullespie Atmospheric 16

(Water + ethanol + 1-butanol)  Gomis et al. 2000 Dynamic Gullespie 101.3 4

Iwakabe and Kosogue 2001 Dynamic Gullespie 101.3 4

(Water + 2-propanone + 2-butanone) Gomis et al. 2000 Dynamic Gullespie 101.3 6

(Water + ethanol + diethyl ether) Gomis et al. 2000 Dynamic Gullespie 101.3 7

(Water + 1-butanol + n-butyl acetate) Gomis et al. 2000 Dynamic Gullespie 101.3 8

(Ethanol + 2-butanol + water) Iwakabe and Kosogue 2001 Dynamic Gullespie 101.3 12

(Water + 1-propanol + 1-pentanol) Asensi et al. 2002 Dynamic Gullespie 101.3 7

(Water + n-propanol + cyclohexane) Lee and Shen 2003 Dynamic Othmer 101.3 23

(Water + ethanol + isooctane) Font et al. 2003 Dynamic Gullespie 101.3 10

(Water + isopropanol + isooctane) Font et al. 2004 Dynamic Gullespie 101.3 8

(Water + ethanol + cyclohexane) Gomis et al. 2005 Dynamic Gullespie 101.3 11

(Water + ethanol + heptane) Gomis et al. 2006 Dynamic Gullespie 101.3 14

(Water + ethanol + hexane) Gomis et al. 2007 Dynamic Gullespie 101.3 21

(Water + ethanol + n-butyl acetate) Younis et al. 2007 Dynamic Othmer 101.3 9

Younis et al. 2007 Dynamic Othmer 80 7

Younis et al. 2007 Dynamic Othmer 48 7

(Water + ethanol + methyl ethyl ketone) Younis et al. 2007 Dynamic Othmer 101.3 6

(Water + acetone + methyl ethyl ketone) Younis et al. 2007 Dynamic Othmer 101.3 8

(Water + acetone + n-butyl acetate) Younis et al. 2007 Dynamic Othmer 101.3 11

Younis et al. 2007 Dynamic Othmer 80 6

Younis et al. 2007 Dynamic Othmer 48 6

(Water + ethanol + acetone + n-butyl acetate) Younis et al. 2007 Dynamic Othmer 101.3 35

Younis et al. 2007 Dynamic Othmer 80 30

Younis et al. 2007 Dynamic Othmer 48 29

(Water + ethanol + acetone + methyl ethyl ketone) Younis et al. 2007 Dynamic Othmer 101.3 25

(Water + ethanol + toluene) Gomis et al. 2008 Dynamic Gullespie 101.3 8

(Diisopropyl ether + isopropyl alcohol + water) Lladosa et al. 2008 Dynamic Gullespie 100 12

(Di-n-propyl ether + n-propyl alcohol + water) Lladosa et al. 2008 Dynamic Gullespie 100 11

(Water + acetic acid + methyl acetate + p-xylene) Lee and Lin 2008 Dynamic Othmer 101.3 25

(Water + ethanol + p-xylene) Gomis et al. 2009 Dynamic Gullespie 101.3 11

(Water + cyclohexane + isooctane) Pequenín et al. 2010 Dynamic Gullespie 101.3 4

(Water + ethanol + cyclohexane + isooctane) Pequenín et al. 2010 Dynamic Gullespie 101.3 51

(Water + 2-butanone + 2-butanol) Lladosa et al. 2011 Dynamic Gullespie 101.3 12

(Water + 4-methyl-2-pentanone + 2-butanol) Lladosa et al. 2011 Dynamic Gullespie 101.3 14

(Water + hexane + toluene) Pequenín et al. 2011 Dynamic Gullespie 101.3 4

(Water + ethanol + hexane + toluene) Pequenín et al. 2011 Dynamic Gullespie 101.3 21
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4.1 PURPOSE OF MEASURING VLLE 

The VLE and VLLE of ternary systems are used to describe and solve problems regarding the design, analysis 

and control of separation sequences involving heterogeneous azeotropic distillation columns through RCMs and 

distillation lines (de Villiers, French & Koplos 2002). 

Knowledge of the size and shape of the heterogeneous region and the slope of the liquid-liquid tie lines of a 

ternary system is of vital importance to properly simulate an azeotropic distillation column for the dehydration 

of alcohol.  The compositions of the two liquids obtained in the decanter after condensation of the vapour from 

the top of the column, are greatly influenced by these characteristics.  Gomis et al. (2005; 2007) found that the 

size of the heterogeneous region calculated by thermodynamic models is larger than the region determined 

experimentally.  They found that the region with the highest concentrations of ethanol (in an 

ethanol-water-cyclohexane or ethanol-water-hexane system) reveals the greatest difference between 

experimental and calculated data. Some homogeneous points are even portrayed as heterogeneous by these 

thermodynamic models.  The tie lines in these regions are those required for the calculations involving the 

decanter and consequently are very important to the simulation of the column.  Therefore, is it imperative to 

evaluate the predictions of thermodynamic models by comparing it to experimental data.  Otherwise, the 

simulations performed with these models may not at all portray the phase equilibrium that will exist in practice.    

Experimental equilibrium data can also be used for comparison with other hydrocarbon systems commonly used 

as entrainers.  When using an azeotropic distillation column to dehydrate ethanol with such a hydrocarbon 

system, the process efficiency is raised if the amount of water removed in the condenser-decanter section of the 

column is increased.   In Figure 4-1 Gomis et al. (2007) compare the entrainers benzene, cyclohexane and 

n-hexane for the dehydration of ethanol.  The composition of the vapour leaving the top of the column is close 

to that of the ternary heterogeneous azeotrope and therefore the composition of the aqueous phase from the 

tie-line (tie-line indicated on Figure 4-1) containing the azeotropic point reflects the amount of water that can be 

eliminated after condensation and decantation.  Figure 4-1 illustrates that the aqueous phase has a larger water 

composition when using benzene than with cyclohexane or hexane.  For the latter two systems, a larger stream 

will need to be re-circulated in order to remove the same amount of water.  This will consequently increase 

equipment and production cost.   
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Figure 4-1: Comparison of entrainers for the dehydration of ethanol via heterogeneous azeotropic distillation 

according to Gomis et al. (2007) 

4.2 PROBLEMS WITH MEASURING VLLE 

When determining VLLE data for a heterogeneous liquid, the liquid mixture in the boiling flask divides into 

cleanly separated phases with a visible interface between them.  Due to the clean separation, a small interfacial 

surface exists between the phases and only a limited mass transfer rate between the phases is possible.  This 

phenomenon prevents the system from attaining stability and can be explained by means of the following 

example of a binary system containing a heterogeneous azeotrope (Figure 4-2).  The system consists of two 

components, water (W) and an organic component (O). At equilibrium the heterogeneous binary mixture will 

consist of two liquid phases of compositions XE and XF, and a vapour phase of composition XZ, at temperature 

TZ.  According to equilibrium conditions, neither the temperatures nor the compositions of the liquid phases will 

change as long as the overall composition of the liquid mixture stays between XE and XF. However, if the liquid 

phases are not sufficiently mixed, it might be near impossible to attain this equilibrium.  When insufficient 

mixing occurs, the liquid phases may separate in the boiling chamber and two phases with different boiling 

points will then exist.  Say for instance the aqueous phase (XE) settles out below the organic phase (XF) and has 

a higher boiling temperature.  The organic phase might then start to boil and evaporate, while the aqueous phase 

cannot reach its boiling point. The vapour phase that is formed in that instance would lie somewhere between 

XZ and XF and would only be in equilibrium with the organic phase.  The vapour phase is continuously 

condensed and recycled to the mixing chamber where it is supposed to be mixed with the recycled liquid phases.  

Cyclohexane (Gomis et al., 2005)
Hexane (Gomis et al., 2007)
Benzene (Norman., 1945)

EtOH

Water Entrainer
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However, if the organic phase is floating on top of the aqueous phase and is the only liquid phase that is boiling, 

only the organic liquid component would be recycled back to the mixing chamber. Therefore the mixing 

chamber would then contain a liquid with a very high organic content.  If the content of the mixing chamber is 

fed to the bottom of the boiling chamber, instantaneous vaporization might occur, disrupting the mixture in the 

boiling chamber and rendering the system extremely unstable for a while until most of the organics have either 

evaporated or settled on top of the aqueous phase.  Then the cycle would be repeated. If the content of the 

mixing chamber was fed to the top of the boiling chamber, it would just combine with the organic phase already 

floating on top of the aqueous phase and no mixing of the two phases would ever occur.  

It is therefore clear that sufficient mixing of all the phases is of vital importance for accurate measurement of 

VLLE data.  Adequate mixing, or even emulsification of the liquid phases, would create the appearance of a 

single liquid phase with a new boiling (equilibrium) temperature at which the system could attain stability.  

 

Figure 4-2: Temperature-composition diagram in a binary partially miscible system: L, liquid; V, vapour. 

According to Gomis et al. (2010) 
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4.3 METHODS 

In Table 4-2 the methods for the direct measurement of VLE data are classified into five groups (Hala et al. 

1967).  Only the first three of these methods have in the past been used to determine isobaric VLLE data.   

Table 4-2: Classification of methods to determine VLE data by Hala et al. (1967). 

Method Type of Equilibrium Data 

Distillation 

Isobaric Dynamic/ Circulation 

Flow 

Static 
Isothermal 

Dew- and bubble-point 

 

A method is chosen based upon the type of equilibrium data that needs to be obtained (isobaric or isothermal), 

the operating temperature and pressure and the nature of the system from which the data is to be obtained.  The 

equipment used to measure isobaric data all operate in similar temperature ranges, but the flow equipment can 

operate over a wider range of pressures.  The operating pressure of the equipment used to measure isothermal 

data is similar, but dew- and bubble-point method has a wider temperature range.   

The design of the equipment previously used in literature to measure VLLE data is based on one of the 

following methods: distillation, dynamic or flow.  These three methods will be briefly discussed below. More 

information on the static and dew- and bubble-point method is supplied by Weir and de Loos (2005) and 

Malanowski (1982) respectively for the reader interested in further details on the subject.   

4.3.1 Distillation Method 

Distillation was the first method used to obtain VLLE data, most probably since it was also the first method 

used to obtain VLE data with homogeneous liquid phases.  This method is characterized by distilling a relatively 

small amount of liquid off in a boiling flask which contains a large liquid charge.   

Distillation has the advantage of simplicity and played an important role in laying the foundation for the 

development and improvement of experimental techniques for measuring phase equilibrium data.  This method 

does however have several shortcomings of which the inability to attain true thermodynamic equilibrium is one.  

Rectification due to the condensation of vapour against the cold sides of the flask during operation is another 

major drawback.  Therefore, this method is rarely used even more (Hala et al. 1967).   

Figure 4-3 is a schematic representation of one of the stills used by Hands and Norman in 1945.  This equipment 

employed the distillation method and was used to measure phase equilibrium data of systems in which the 

liquids presented partial miscibility.  These authors were of the first to propose equipment using the distillation 

principle to measure phase equilibrium data of systems with limited miscibility.  Other authors incorporated 

stirrers in distilling flasks to facilitate the necessary mixing of the two liquid phases formed (Barbaudy 1926, 

Barbaudy 1926).  Some authors also combined distillation and dynamic methods in order to take samples 

without affecting the conditions for equilibrium (Verhoeye 1968, Blackford, York 1965).  These alterations to 

the distillation method reflect the great difficulty with which VLLE data is obtained. 
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Figure 4-3: Experimental apparatus of Hands and Norman (1945). 

4.3.2 Dynamic Method 

The dynamic method is, up to now, the most frequently used frequently method for determining isobaric VLE 

data.  Figure 4-4 schematically illustrates how circulation-based vapour-liquid equilibrium apparatus functions.  

 

Figure 4-4: Schematic illustration of the mechanism upon which the dynamic method functions. According to 

Gomis et al. (2010) 

The vapour formed from the mixture in distilling flask A is passed to flask B by means of channel where it 

collects after having been condensed.  As flask B is filled, the condensate returns to distilling flask A through 

another channel.  This process continuously repeats itself until equilibrium is reached, upon which the 
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compositions of the liquids in flasks A and B no longer change with time.  The mass flow rate of vapour out of 

flask A then equals the mass flow rate of condensate into flask A.  Laboratory equipment based on the 

circulation method usually either circulates only the vapour phase (Othmer’s principle) or both the vapour and 

liquid phases simultaneously (Guillespie’s principle).   

Noteworthy modifications have been made to conventional equipment based on this method. Van Zandijcke and 

Verhoeye (1974) modified equipment that is based on the Guillespie principle.  The equipment was modified by 

dividing the distilling flask into two sections to separate the liquid phases and heat each independently.  Iwakabe 

and Kosuge (2001) found large temperature fluctuations inside the equilibrium chamber of the equipment used 

by Van Zandijcke and Verhoeye (1974).  Poor thermodynamic consistency was also found for the VLLE data 

measured with this equipment.  Therefore Iwakabe and Kosuge (2001) made another modification to the system 

by allowing both liquid phases to reach the Cottrell pump separately, unlike previously.   

Gomis et al. (2000) made a completely different modification to the apparatus based on the Guillespie principle.  

An ultrasonic homogenizer was incorporated in the distilling flask in order to emulsify the two liquid phases.  

The emulsification allows rapid transfer between the two phases and brings about sufficient circulation of all 

phases through the apparatus.  No collection of the liquid and vapour phases occurs unless sampling is initiated.  

Therefore de-mixing is not a concern in any intermediate stages of the apparatus.  Other authors (Lladosa et al. 

2008) have subsequently also employed this method and VLLE data from this procedure are still being 

published.   

Another dynamic method of obtaining VLLE data is the modified Othmer principle with vapour condensation 

recirculation.  This method was used by authors Lee and Shen (2003) and Younis et al. (2007). Lee and Lin 

(2008) also published data for which the Othmer principle was applied.  Many difficulties, however, seem to 

arise when employing this principle.   A rectification effect can occur in this type of equipment and difficulty 

with the keeping the liquid phases mixed may be experienced.  The vapour phase obtained, splits into two 

phases upon condensation and difficulty is experienced with returning both phases correctly to the boiling flask. 

By directly re-circulating the condensed vapour phase to the boiling flask, without first undergoing separation, a 

sample of the vapour phase will have to be extracted before it could be allowed to be condensed (Gomis, 

Pequenín & Asensi 2010).  

4.3.3 Flow method 

The flow method (Figure 4-5) continuously feeds the equilibrium chamber a steady-state feed stream, as 

opposed to the dynamic method.  This method was developed in the search for a method that will allow the 

system to reach equilibrium as soon as possible and to overcome the difficulties encountered with the dynamic 

flow method.  One of the first flow stills was proposed by Colburn (1943).  This still was fed by a stream 

consisting of vapour of a given composition.  This method was also employed by Newsham and Vahdat (1977) 

and is discussed in more detail in their work.  The still used by Newsham and Vahdat differs from the one used 

by Colburn in that it is fed with a liquid mixture instead of a vapour mixture.  Equipment employing this method 

is however not widely used, mainly due to its complexity and the larger amount of material required (Gomis, 

Pequenín & Asensi 2010).  The flow method is also said to be applicable only to systems in which the time 

needed to attain phase equilibrium is sufficiently short (Dohrn et al., 2010).  Therefore in a highly non-ideal 
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system such as for VLLE determination, where extensive time may be required to obtain sufficient mixing, as 

well as chemical and thermal equilibrium, the flow method is deemed unsuitable.  

 

Figure 4-5: Experimental apparatus of Newsham and Vahdat (1977). 

4.4 PREFERRED METHOD AND EQUIPMENT 

Presently the dynamic method is most widely used to determine isobaric vapour-liquid equilibrium (VLE) for 

both homogeneous and heterogeneous mixtures and is therefore also chosen for this work.  Commercially 

available equipment allows steady state to be reached relatively easily for homogeneous liquids, but this is not 

the case when the liquid is heterogeneous.   

An issue that specifically arises when attempting to measure VLLE with the dynamic method, especially with 

equipment based on the Guillespie principle is a poor recirculation effect.  This effect is caused by the 

well-defined separation of liquid phases formed in the boiling flask.  The lower density phase floats on top of 

the higher density phase and is more likely to accumulate in the recirculation conduit.  This could result in a 

situation where only the heavy liquid phase exists in the boiling flask, nowhere near equilibrium. When this 

phenomenon occurs, the phases only mix periodically.  The lighter phase accumulates in the recirculation 

conduit, but occasionally flows back into the boiling flask, evaporates rapidly and causes a sudden temperature 

drop which is not sustainable.  Again referring to Figure 4-2, the light and heavy phase can be represented by H 

and G respectively.  If the two phases were to be mixed and the global composition of the mixture remains 

between XE and XF, the system would attempt to attain equilibrium, represented by point E, F and Z.  Given that 
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equilibrium occurs at a much lower temperature than at which points G and H are, only sudden distillation 

(rapid evaporation) will allow the system to reach equilibrium, but steady mixing will sustain that equilibrium 

temperature and compositional state.  Since this mixing process only occurs periodically, temperature will 

continuously oscillate and steady state will hardly ever be reached.   

For equipment based on the Guillespie principle, which is the most widely used, two types of solutions for the 

aforementioned stability problems have been proposed.  Firstly, to increase the extent to which the two phases in 

the boiling flask are mixed.  This can be achieved either by mechanical stirring or by means of an ultrasonic 

homogenizer (Gomis, Ruiz & Asensi 2000).  An ultrasonic homogenizer produces an ideal emulsion from the 

heterogeneous mixture which propogates throughout the system.  Subsequently, the contact surface between 

phases and ultimately mass transfer is improved.  This modification to equipment based on the Guillespie 

principle allows proper recirculation of the heterogeneous mixture since its sufficiently emulsified state cannot 

separate into two well-defined layers. Secondly, the equipment can be modified to keep the two liquid phases of 

the heterogeneous mixture completely separated between the outlet of the Cottrell pump and the boiling flask 

(through which it enters the Cottrell pump). This ensures that the two liquid phases only mix inside the Cottrell 

pump.  The separation is accomplished by inserting a dividing element into the boiling flask and effectively 

partitioning it into two separate compartments.  The mixed liquid phases exiting the Cottrell pump, passes 

through a separation unit and is circulated through separate conduits to their respective compartments in the 

boiling flask.  The vapour phase leaving the Cottrell pump also pass through this separation unit after it is 

condensed and returns to the boiling flask along with the liquid phases. Consequently, the phases are 

re-circulated correctly, preventing the formation of an inconsistent mixture in the boiling flask which results in 

sudden distillation. 

4.4.1 Motivation for Ultrasound 

The application of ultrasonic sound is an efficient technique to emulsify partially miscible liquid phases.  

Therefore, it is a superb method for avoiding the problems arising from the use of VLE circulation instruments 

for liquids with limited miscibility.  The sonic power applies extremely high acoustic pressures to the fluid in 

the two liquid phases, producing a sudden increase and decrease of shear pressure within the fluid as well as 

local shock heating.  These effects cause cavitation to occur which results in the emulsification of the two liquid 

phases (Gomis, Ruiz & Asensi 2000). This method was successfully employed by Asensi et al. (2002), Gomis et 

al. (2005; 2006; 2007) and Lladosa (2008).  It is also preferred above other methods since a dynamic Guillespie 

unit can be obtained commercially and modified to accommodate an ultrasonic homogenizer, upon special 

request.  Therefore, the timely design and in-house manufacture of phase equilibrium measuring equipment is 

averted.  

4.4.2 Positioning of Ultrasonic Homogenizer 

Gomis et al. (2000) investigated and found the optimum position to place an ultrasonic homogenizer in an 

existing dynamic Gullespie still.  Placement in the mixing chamber of the circulation instrument was considered, 

but was discarded due to the ebullition produced by the energy contribution of the homogenizer to a liquid at the 

bubble temperature.  When this occurs, an unfavourable situation can arise in which the bubble produced by 

evaporation in the mixing chamber can obstruct the circulation of liquid phases.  The homogenizer is optimally 

placed in the boiling flask, preferably vertically in the bottom of the boiling flask.  This position is traditionally 
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occupied by the immersion heater which takes preference above the homogenizer.  Alternatively the ultrasound 

can be applied as vertically as possible, next to the heater (see Figure 4-6).  This optimally improves the mass 

transfer rate by immediately dispersing the incoming liquid and shifting it upwards.  Gomis et al. (2000) 

validated and verified this modification to VLE equipment, based on the Guillespie principle to be as accurate 

and reliable by investigating 5 heterogeneous binary systems as well as 5 previously studied heterogeneous 

ternary systems. 

 

Figure 4-6: Optimum positioning of the ultrasonic homogenizer as suggested by Gomis et al. (2000). 
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II EXPERIMENTAL STUDIES ON TERNARY HETEROGENEOUS AZEOTROPIC 

SYSTEMS 

5 EVALUATION AND SELECTION OF ALCOHOL-WATER-ENTRAINER SYSTEMS 

5.1 LITERATURE DATA OF MOST PROMINENT ENTRAINERS 

The phase equilibrium data available in literature of selected potential entrainers for the dehydration of ethanol, 

isopropanol and n-propanol via heterogeneous azeotropic distillation are extracted from Table 4-1 and listed in 

Table 5-1 below.  These might not be the only entrainers for alcohocol dehydration, but are the only ones for 

which isobaric VLLE data at atmospheric pressure could be found.  These data served as basis for the 

identification of systems for measurent of new ternary VLLE data in this work.  It is also used in Section 8.3 to 

compare the degree of separation that can be achieved with different entrainers, thus eliminating certain 

inefficient entrainers upfront and thereby reducing the number of entrianers studied in the separation sequence 

simulations in order to save time.    

Table 5-1: Literature phase equilibrium data of possible entrainers for the dehydration of C2 and C3 alcohols 

via heterogeneous azeotropic distillation. 

Entrainer Aqueous Alcohol Measurement Method Quantity 
Pressure 

(kPa) 
Source 

Benzene Ethanol Distillation 6 VLLE   101.3 Barbaudy (1927) 

Cyclohexane 

Ethanol Dynamic Gullespie 11 VLLE,  27 VLE 101.3 Gomis et al. (2005) 

n-Propanol Dynamic Othmer 23 VLLE   101.3 Lee and Shen (2003) 

IPA Distillation 6 VLLE,  40 VLE 101.3 Verhoeye (1968) 

Hexane Ethanol Dynamic Gullespie 21 VLLE, 49 VLE 101.3 Gomis et al. (2007) 

Heptane Ethanol Dynamic Gullespie 14 VLLE,  30 VLE 101.3 Gomis et al. (2006) 

Isooctane 
Ethanol Dynamic Gullespie 10 VLLE,  17 VLE 101.3 Font et al. (2003) 

IPA Dynamic Gullespie 8 VLLE,  22 VLE 101.3 Font et al. (2004) 

DIPE IPA Dynamic Gullespie 12 VLLE   100 Lladosa et al. (2008) 

DNPE n-Propanol Dynamic Gullespie 11 VLLE   100 Lladosa et al. (2008) 

 

5.2 EVALUATION OF ENTRAINERS AND LITERATURE DATA  

In this section the data available in literature for each entrainer, are discussed in detail.  The characteristics and 

cost of each entrainer are also examined.  Ternary diagrams in which these entrainers are compared for ethanol, 

IPA and n-propanol respectively in Section 8.3 in Figures 8-19 to 8-21. Detailed MSDS forms of the entrainers 

are available in Appendix A. Some of the literature discussed below, refer to thermodynamic consistency testing 

of VLLE.  As explained in Section 3.10.3., it is evident that no such tests exist and that the application of VLE 

consistency tests to VLLE data is not necessarily valid.  
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5.2.1 Benzene 

Benzene is an aromatic hydrocarbon and a constituent of products derived from coal and petroleum.  It is used 

to produce detergents, plastics, pesticides, and other chemicals.  Benzene is proven to be carcinogenic to 

humans.  Individuals have likely developed and died from leukemia caused by exposures to benzene from 5-30 

years.  Short-term exposure to high levels of benzene may result in drowsiness, dizziness, unconsciousness, and 

death.  Long-term exposure can adversely affect bone marrow and blood production (United States Department 

of Labour - Occupational Safety & Health Administration 2011).  

The azeotropic distillation process was first established at the beginning of the 20
th

 century, by Dr. Young 

(Norman 1945) using benzene as an entrainer to dehydrate ethanol.  Various accounts of the commercial use of 

this process can be found in literature (Webb 1937, Guinot, Clark 1938, Rovaglio et al. 1992).  Benzene has also 

been suggested for n-propanol dehydration (Challis 1954).  However, due to the carcinogenic nature of benzene, 

the need for alternative entrainers have arisen (Gomis et al. 2007).  

Norman (1945) reported 6 isobaric VLLE data points measured by Barbaudy (1926) at 101.3 kPa for the 

ethanol/benzene/water system.  Mixtures of known composition were made up in a large copper still fitted with 

a stirrer, a jacketed line for vapour off take and a condenser.  The mixture was distilled and numerous samples 

of the distillate were taken, weighed and analyzed.  The composition of the remaining liquid in the still was 

determined from a mass balance.  The composition of the liquid phase for a certain vapour phase sample was 

taken as the average of the compositions before and after each vapour phase sample was gathered.  According to 

Norman, Barbaudy’s results appear accurate and consistent.   

5.2.2 Cyclohexane 

Cyclohexane is a colourless, volatile liquid with a somewhat pungent smell similar to that of chloroform or 

benzene.  It can be produced by the catalytic hydrogenation of benzene or from fractional distillation of 

petroleum.  More than 90% of cyclohexane is used in the production of nylon fibre and nylon molding resin.  

The remainder used as solvents for paint, resins, oils, varnish, plasticisers or as an intermediate to produce other 

industrial chemicals (Harrison 2000).   

Cyclohexane is known to be used extensively as entrainer for the dehydration of ethanol and IPA via 

heterogeneous azeotropic distillation (Lin, Wang 2004, Gomis et al. 2007, Gomis et al. 2007, Wang et al. 1998). 

Cyclohexane has also been suggested for n-propanol dehydration (Challis 1954). 

Gomis et al. (2005) measured 11 isobaric VLLE and 27 isobaric VLE data points at 101.3 kPa for the 

ethanol/cyclohexane/water system.  It is said in this work that cyclohexane is currently one of the most used 

entrainers for the dehydration of ethanol via heterogeneous azeotropic distillation and that numerous plants 

around the world are employing this chemical.  The measurements were performed with a dynamic Gullespie 

unit with an ultrasonic homogenizer fitted to the boiling chamber of the unit (as described in Section 4.4).  The 

uncertainty in the temperature measurements were reported to be 0.006
o
C.  The pressure in the still is reported 

to be measured and controlled with an accuracy of 0.1 kPa.  According to Gomis et al. (2005), the accuracy of 

the mole fraction measurements is estimated at ± 0.002 for all compounds except for the cyclohexane in the 

aqueous liquid phase and the water in the organic liquid phase, for which the accuracy is reported to be ± 0.005.  
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The VLE and VLLE data is said to be tested by the point-to-point L/W Wisniak consistency test and found 

thermodynamically consistent.  All the values of L/W are reportedly between 0.98 and 1.00.  Gomis et al. (2005) 

compared the measured VLLE data to predictions from UNIFAC and NRTL using binary parameters from 

literature.  It was found that the tie lines and vapour phase is predicted well by the models, but the shape of the 

phase envelope differs significantly.  

Lee and Shen (2003) measured 23 isobaric VLLE data points at 101.3 kPa for the n-propanol/cyclohexane/water 

system.  Lee and Shen (2003) also stated that benzene and cyclohexane are typically used as entrainers for the 

purification of azeotropic mixtures of aqueous alcohols.  A dynamic Othmer unit with condensed vapour 

recircurlation was used for this work.  Premature condensation in the cell was prevented by the insulation of a 

vacuum jacket on the vapour path as well as another jacket with silicon oil.  A liquid pump was added to the 

condensed vapour return line to ensure that both liquid phases return to the boiling chamber if phase separation 

occurs.  The temperature measurements are reported to have an accuracy of 0.1 K.  The accuracy of the pressure 

control at 760 mmHg is reported to be ± 1 mmHg.  The authors determined UNIQUAC and NRTL binary 

interaction parameters for the n-propanol/cyclohexane/water mixture and found that NRTL correlated the data 

fairly well, whereas the UNIQUAC predictions were unsatisfactory.   

Verhoeye (1968) measured 6 isobaric VLLE data points and 40 isobaric VLE data points at 101.3 kPa for the 

IPA/cyclohexane/water system.  Measurements were actually conducted with a dynamic Othmer still in which 

the condensate receiver was replaced by a 3-way stopcock and therefore it referred to as a distillation method. 

VLE measurements were done and in the heterogeneous liquid region only the overall liquid composition was 

measured. The compostion of each liquid phase is then determined by a LLE experiment at boiling point.  The 

accuracy in composition of the VLE measurements is reported to be ± 0.1 mole % and 0.05 mole % for LLE 

measurements.  The uncertainty of the temperature measurements is reported to be ± 0.1
o
C for both the VLE 

and LLE data.  The accuracy of the pressure control at 760 mmHg is reported to be ± 0.5 mmHg.  Binary and 

ternary constants were determined for the Redlich-Kister Equations for the IPA/cyclohexane/water system.   

5.2.3 Hexane 

Hexane is a clear, colourless, highly flammable liquid with a distinctive petroleum-like smell.  It is used as an 

alcohol denaturant, paint dilutant, component in petroleum and gasoline products, and as a cleaning agent in the 

textile, furniture and leather industries.  It is also used in the extraction of vegetable oil from seeds such as 

soybean, flax, safflower and cotton (California Office of Environmental Health Hazard Assessment 2011).   

Gomis et al. (2007) measured 21 isobaric VLLE and 49 isobaric VLE data points at 101.3 kPa for the 

ethanol/hexane/water system.  The same equipment used by Gomis et al. (2005) for ethanol/cyclohexane/water 

measurements, was used for the work by Gomis et al. (2007).  Although the uncertainty of the temperature 

measurements is stipulated to be 0.006
o
C according to the calibration certificates, the authors estimated the 

accuracy to be ± 0.05
o
C instead.  The VLE and VLLE data were tested by the point-to-point L/W Wisniak 

consistency test and found to be thermodynamically consistent.  All the values of L/W are reportedly between 

0.97 and 1.00.  Binary parameters were determined for the NRTL and UNIQUAC models from the experimental 

data of the ethanol/hexane/water system.  It is said in this work that hexane is a common component of gasoline 

and therefore a suitable entrainer for the azeotropic distillation of ethanol, since any traces of hexane in the 
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anhydrous ethanol product will not be problematic for subsequent fuel use.  n-Hexane however has an octane 

number of ± 25 (Refining online 2011) and does therefore not have very good anti-knocking properties. If 

n-hexane undergoes structural isomerisation in the presence of a catalyst, it can form cyclohexane or benzene.  

Both of these compounds have excellent anti-knocking properties and are therefore suitable fuel additives (The 

Physical Sciences Initiative 2011). 

5.2.4 Heptane 

Heptane is a clear, colourless, straight-chain alkane with a gasoline-like odour.  It is widely used in laboratories 

as a non-polar solvent.  It is also used in paints and coatings, rubber cement solvent and as an outdoor stove fuel.  

Heptane is the zero point of the octane rating scale. Fuel-air mixtures in internal combustion engines have the 

tendency to ignite prematurely rather than burning smoothly.  This phenomenon is referred to as engine 

knocking and causes a rattling sound in one or more of the cylinders.   Octane rating of   fuel is a measure of its 

resistance to knock.  The octane rating is obtained by comparing the characteristics of the fuel to isooctane and 

heptanes.  Pure isooctane is allocated an octane rating of 100, and pure heptane zero. Isooctane is a highly 

branched isomer and burns smoothly, with minimal knock.  Heptane burns explosively, causing engine 

knocking and is therefore undesirable in fuel (Helmenstine 2011).   

Gomis et al. (2006) measured 14 isobaric VLLE and 30 isobaric VLE data points at 101.3 kPa for the 

ethanol/heptane/water system.  The same equipment used by Gomis et al. (2005) for ethanol/cyclohexane/water 

measurements, was again used for this work.  According to Gomis et al. (2006) the point-to-point L/W Wisniak 

consistency test revealed that the VLE and VLLE data are thermodynamically consistent.  All the values of L/W 

are reportedly between 0.97 and 0.98.  Binary parameters were determined for the NRTL and UNIQUAC 

models from the experimental data of the ethanol/heptane/water system.  The authors reported that systems of 

hydrocarbons, water and ethanol play a significant role in the fuel industry where ethanol-gasoline blends are 

used.     

5.2.5 Isooctane 

Isooctane (or 2,2,4-trimethylpentane) is a clear, colourless liquid with a mild hydrocarbon odour.  It is 

manufactured on a large scale in the petroleum industry, generally as a mixture of related hydrocarbons.  It can 

also be manufactured from isobutylene by dimerization using a catalyst.  Isooctane defines the 100% point on 

the octane rating scale, as noted in Section 5.2.4 above.    

Font et al. (2003) measured 10 isobaric VLLE and 17 isobaric VLE data points at 101.3 kPa for the 

ethanol/isooctane/water system.  Font et al. (2004) also measured 8 isobaric VLLE and 22 isobaric VLE data 

points at 101.3 kPa for the IPA/isooctane/water system.   These authors belong to the same research group as 

Gomis et al. (2005, 2006 and 2007) and therefore the same dynamic Gullespie unit equipped with an ultrasonic 

homogenizer was used for the phase equilibrium measurements.  The VLE and VLLE data are said to be tested 

by the point-to-point L/W Wisniak consistency test and found to be thermodynamically consistent.  All the 

values of L/W for the ethanol/isooctane/water system are reportedly between 0.97 and 1.00, and for the 

IPA/isooctane/water system between 0.94 and 1.00.  The McDermott-Ellis consistency test was also performed 

on the IPA/isooctane/water data and reportedly found to be thermodynamically consistent with every calculated 

D lower than Dmax.  Binary parameters were determined for the UNIQUAC models from the experimental data 
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of the ethanol/isooctane/water system.  Font et al. (2003) reported several other works (Furzer 1985, Cairns, 

Furzer 1990a, Cairns, Furzer 1990b) in which isooctane is considered as entrainer for ethanol dehydration and 

found viable.  In Font el al. (2004) it is said that isopropyl ether is generally used as entrainer for IPA 

dehydration. 

5.2.6 DIPE 

DIPE (diisopropyl ether) is a colourless liquid with an ethereal odour.  It is only slightly soluble in water, but 

miscible with most organic solvents.  DIPE is employed as oxygenate gasoline additive.  It tends to form 

explosive peroxides upon prolonged periods of storage in air.  This reaction occurs with even more ease for 

ethyl ether.  Such a stored solvent should regularly be tested for the presence of peroxides.   

Carlson (1949) proposed a method, based on azeotropic distillation, for recovering the alcohols from a crude 

aqueous n-propanol cut also containg ethanol and IPA.  The proposed method employs DIPE as entrainer.  

Marples (1939) also suggested using DIPE as an entrainer for the dehydration of ethanol. 

Lladosa et al. (2008) measured 12 isobaric VLLE data points at 100 kPa for the IPA/DIPE/water system.  These 

measurements were also made with a dynamic Gullespie unit fitted with an ultrasonic homogenizer, similar to 

that of Gomis et al. (2005, 2006 and 2007) and Font et al. (2003 and 2004).  The accuracy of the temperature 

measurements is estimated to be ± 0.01 K.  The pressure in the still is reported to be measured and controlled 

with an accuracy of ± 0.1 kPa. According to Lladosa et al. (2008), the accuracy of the mole fraction 

measurements is estimated to be ± 0.001.  The point-to-point L/W Wisniak test was conducted on the 

experimental data and it was found that the data is thermodynamically consistent.  The McDermott-Ellis 

consistency test was also performed and indicated thermodynamic consistency as well (all D values smaller than 

Dmax).  This work also states that tertiary ethers (such as DIPE and DNPE) can be used as octane-enhancing 

compounds in fuel, improving combustion and reducing emissions.   

5.2.7 DNPE 

DNPE is also a colourless liquid, like DIPE, with an ethereal smell. In high concentrations, its vapour may be 

narcotic.  It tends to form explosive peroxides as well, especially when anhydrous.  

Along with the IPA/DIPE/water VLLE measurements, Lladosa et al. (2008) also measured 11 isobaric VLLE 

data points at 100 kPa for the n-propanol/DNPE/water system using the same equipment.  All the data was 

reportedly also found thermodynamically consistent via the point-to-point L/W Wisniak and the 

McDermott-Ellis tests.   

5.3 SELECTION OF ENTRAINERS FOR EXPERIMENTAL WORK 

Table 5-2 contains a simplified list of the VLLE data available in literature, of possible alcohol/entrainer/water 

systems.  Three alcohols/entrainer/water systems have been selected for experimental measurements.  If one 

were to fill in the gaps on the list, n-propanol/benzene/water, IPA/benzene/water, n-propanol/hexane/water, 

IPA/hexane/water, n-propanol/heptane/water, IPA/heptane/water, n-propanol/isooctane/water, 

ethanol/DIPE/water, n-propanol/DIPE/water, ethanol/DNPE/water and IPA/DNPE/water are all options of data 

to be measured.  Any benzene options are eliminated due to the carcinogenic nature of benzene.  When 
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comparing the Aspen prediction of the ethanol/DIPE/water VLLE (Figure 1-1) to that of the 

ethanol/benzene/water VLLE found in literature, it seems as if DIPE might be a feasible alternative as entrainer 

to benzene.  The basis upon which such a statement can be made, is discussed in Section 8.3.  Therefore, 

ethanol/DIPE/water VLLE and VLE data measurements have been selected for this study.  Since literature 

(Carlson 1949) suggests that DIPE can also be used to recover n-propanol from an aqueous n-propanol cut, it 

was decided to measure n-propanol/DIPE/water data as well.    

Table 5-2: Simplified list of literature phase equilibrium data of possible entrainers for the dehydration of C2 

and C3 alcohols via heterogeneous azeotropic distillation. 

Entrainer 
Aqueous Alcohol 

Ethanol n-Propanol IPA 

Benzene √     

Cyclohexane √ √ √ 

Hexane √     

Heptane √     

Isooctane √   √ 

DIPE     √ 

DNPE   √   

 

Table 5-3 contains a list of static price indications of the possible entrainers for C2 and C3 alcohol dehydrations.  

The bulk chemical prices was obtained from ICIS.com and cost escalation to June 2011 was done with Equation 

5-1 (Sinnott, Towler 2009).  The Marshal and Swift index for chemicals was used from the Chemical 

Engineering magazine (Marshall 2006-2011).    

  É���	��	����	< = ����	����	Ê	 ×	 Ì
!#	�N\]+	�N	)]"Q	­Ì
!#	�N\]+	�N	)]"Q	®     5-1 

Table 5-3 shows the bulk chemical price of DIPE is similar to that of benzene.  For the third system n-

propanol/isooctane/water was selected.  Firstly since there is already data available for this entrainer with 

ethanol and IPA, and therefore this work will complete another set as for cyclohexane and DIPE.  Secondly, 

Table 6-3 indicates that isooctane is the most economic choice of entrainer.    
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Table 5-3: Bulk chemical prices of possible entrainers for the dehydration of C2 and C3 alcohols via 

heterogeneous azeotropic distillation. 

Chemical Cost  Unit 

Benzene 11,691.00 ZAR/tonne 

Cyclohexane 6,141.95 ZAR/tonne 

Hexane 3,807.62 ZAR/tonne 

Heptane 4,476.08 ZAR/tonne 

Isooctane * 2,745.78 ZAR/tonne 

DIPE 11,278.74 ZAR/tonne 

DNPE 11,278.74 ZAR/tonne 

* Bulk cost estimated from laboratory scale 

 

To summarize ethanol/DIPE/water n-propanol/DIPE/water and n-propanol/isooctane/water were selected for 

phase equilibrium measurements in this work. DIPE is selected since Aspen predicts phase equilibrium similar 

to that of benzene. Isooctane is selected for its low bulk chemical cost.  The phase equilibrium of these 

entrianers with ethanol/water, IPA/water and n-propanol/water are compared and discussed in Section 8.3.   

6 EXPERIMENTAL WORK 

6.1 MATERIALS 

All chemicals used, their purities and suppliers are listed in Table 6-1.  Distilled water with a conductivity of 

2 µS/cm was used.  Before using them for experimental work, all chemicals were injected on a GC with FID.  

No impurities were identified on the resultant chromatograms.  The chemicals were also tested with Karl Fischer 

titration and it was confirmed that the most prominent impurity listed by the suppliers was mainly water. The 

relevant vapour pressure data for the pure compents used in this work are given in Appendix C, Figures C-1 to 

C-5.  The parameters used to predict this data in Aspen Plus are provided in Appendix F, Table F-1.  

Table 6-1: List of chemicals with purities and suppliers 

Component Purity Supplier 

Ethanol ≥ 99.8 % Sigma Aldrich 

n-Propanol ≥ 99.5 % Sigma Aldrich 

Isopropanol ≥ 99.5 % Sigma Aldrich 

n-Butanol ≥ 99.9 % Sigma Aldrich 

Isooctane  ≥ 99 % Sigma Aldrich 

Diisopropyl ether ≥ 99 % Merck 

Acetone ≥ 99.8 % Sigma Aldrich 

Acetonitrile ≥ 99.9 % Sigma Aldrich 

2-Pentanol ≥ 98 % Sigma Aldrich 
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Technical grade nitrogen was used for pressure control in the phase equilibrium equipment.  Ultra high purity 

helium and technical grade air was used for gas chromatography. All gas cylinders were supplied by Afrox. 

6.2 APPARATUS 

The all glass dynamic recirculating still used to experimentally determine VLE and VLLE data is shown in 

Figure 6-1.  It is a commercial unit (VLE 100 D) manufactured in Germany by Pilodist and widely used to 

determine VLE data (Marrufo, Loras & Sanchotello 2009, Orchillés et al. 2009, Zhang, Bai & Zhang 2011, 

Torcal et al. 2010).  The manufacturers modified the still and coupled an ultrasonic homogenizer (Braun 

Labsonic P) to its boiling flask (1.3) to enable VLLE data measurement. The still allows good mixing of the 

vapour and liquid phases and good separation of the phases once equilibrium is reached.  The ultrasonic 

homogenizer ensures that the liquid phases are sufficiently emulsified when heterogeneous mixtures occur.  An 

electrical immersion heater (10), which is concentrically installed into a flow heater (1.3), evaporates the liquid 

mixture.  The vapour-liquid mixture passes through an extended contact line before entering the separation 

chamber (1.2).  This facilitates intense phase exchange.   Together, all the phases are sent forth onto the 

thermometer (7) which is used to measure the temperature of the bubble point.  The gas and liquid phases are 

separated, condensed and returned to the mixing chamber (1.1).  In the mixing chamber the phases are mixed 

with a magnetic stirrer and returned to the immersion heater (10).  The separation chamber (1.2) is constructed 

in such a way that entrainment of liquid drops and partial condensation of the vapour phase is prevented.  

Equilibrium will be obtained swiftly due to regular circulation of vapour and liquid phases, simultaneous mixing 

of re-circulated streams in the mixing chamber (1.1) and emulsification by the ultrasonic homogenizer (17).  

The unit was installed within an extraction cabinet for safety reasons, as DIPE can form explosive peroxides and 

its vapour is volatile and flammable.  

 

The unit can be operated in a pressure range of 2.5 mbar – 3 bar and up to a temperature of 250 
o
C.  The 

equilibrium temperatures are measured with a Pt-100 probe connected to a digital Hart Scientific thermometer 

with an accuracy of 0.03
o
C at 0

o
C according to the certificate of calibration (Appendix B).  The pressure and 

heating power are measured and controlled with a Pilodist M101 pressure control system.  The pressure in the 

still is to be kept at 101.3 kPa, measured and controlled with an accuracy of 0.35% FSO (Full Scale Output).     
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Figure 6-1: Schematic representation of experimental set-up. Apparatus redrawn and edited from the Pilodist 

VLE 100 D user manual. 

1. Glass body of the phase equilibrium apparatus  

1.1 Mixing chamber  

1.2 Cottrell pump with silvered vacuum jacket  

1.3 Flow heater (glass tube)  

1.4 Discharge valve  

1.5 Sampling nozzle (vapour phase)  

1.6 Temperature probe nozzle  

1.7 Cooler for liquid phase  

1.8 Stop valve for receiver change under vacuum and positive pressure (liquid phase)  

1.9 Sampling nozzle (liquid phase)  
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1.10 Stop valve  

1.11 Condenser  

1.12 Condenser 

1.13 Filler nozzle (liquid phase)  

1.14 Sampling nozzle (liquid phase)  

1.15 Sampling nozzle (vapour phase)  

1.16 Stop valve for receiver change under vacuum and positive pressure (vapour phase)  

1.17 Sampling nozzle (vapour phase)  

1.18 Aeration valves  

1.19 Temperature probe nozzle  

 

2. Compensation heating jacket  

 

3. Magnetic stirrer  

 

4. Stirring magnet  

 

5. Glass receiver tube - liquid phase  

5.1  Glass receiver tube - vapour phase  

 

6. Hose connection olive with screw cap GL14 - inlet  

6.1 Hose connection olive with screw cap GL14 - outlet  

 

7. Temperature sensor  

 

8. Valve caps  

8.1 Solenoid coils - liquid phase  

8.2 Spacer  

 

9. Valve caps  

9.1 Solenoid coils - vapour phase  

9.2 Spacer  

 

10. Immersion heater rod  

 

11. Valve rod (liquid phase)  

 

12. Valve rod (vapour phase)  

 

13. Feed burette  
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13.1 Funnel 

13.2 Filler nozzle for feed burette  

13.3 Stop valve for feed burette  

13.4 Aeration valve for feed burette  

 

14. Inlet line  

14.1 Spherical ground joint  

 

15. Temperature sensor  

 

16. Glass connecting olive for vacuum or positive pressure 

 

17. Ultrasonic homogenizer probe 

     

6.3 PROCEDURE 

The apparatus (Figure 6-1) is operated as follows: 

1) Switch on apparatus 

2) Open the stop valves (1.10) and aeration valves (1.19). The apparatus must be open to the outside.  

3) Fill the feed burette via the filler nozzle (13.1) fitted with the screw cap and fill the substances to be 

measured (± 110 ml).  

4) Open the precision control valve (13.5) on the feed burette. Close the valve as soon as the liquid just 

covers the immersion heater (1.3).  

5) Switch on the control device.  

6) Adjust the speed of the magnetic stirrer (3) in such a way that constant mixing of the substance is 

ensured.  

7) Open the cooling water valve to allow for flow through the condensers (1.7, 1.11 and 1.12).  

8) If the apparatus is operated at high temperatures (above 100 °C), the column must be heated by means 

of a heating jacket. This prevents partial condensation of the rising vapour. The heating jacket 

temperature is set on the set point controller of the control device and should be approx. 3 - 5 °C below 

the respective boiling temperature of the mixture.  

9) In the case of substances with solidification points in the region of room temperature, the strip heater 

should be wrapped around the return lines from the coolers to the mixing chamber. The heating 

capacity can be adjusted via the power controller on the control device.  

10) Select pressure conditions at which to operate (atmospheric, vacuum or over-pressure) on the control 

device.  Due to lower pressure at atmospheric conditions, over-pressure is selected for this work to 

allow for operation at standard atmospheric pressure (101.325 kPa).  Set at which pressure the set-up 

should be controlled on the control device.  Set the pressure switch on the apparatus to “pressure” as 

well. Open the valve to the pressure compensation cylinder.   

11) Set the heating capacity of the immersion heater (1.3) via the power controller on the control device.  
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When the heating capacity is correctly set, a continuous flow of condensate exists on the liquid side. 

The number of droplets at the droplet point on the vapour condensation side should still be readily 

observable. An optimum load can be achieved at a rate of ± 30 droplets per minute.  

12) Select “start” on the control device.  Once the mixture starts boiling, switch on the ultrasonic 

homogenizer (only for VLLE measurements).  The actual measurement of equilibrium can be started as 

soon as the boiling point of the pure substance is reached. The vapour temperature must remain 

constant, this indicates equilibrium is reached and occurs after ± 1h of operation.  The vapour 

temperature is displayed on the digital display of the control device.  

13) Take samples of each phase once the boiling temperature has been recorded.  

14) To perform another experiment, click “stop” on the control device. Switch off the ultrasonic 

homogenizer and magnetic stirrer.  Add more feed to the mixing chamber, through the feed burette, to 

compensate for the volume lost through sampling.  Repeat steps 12 and 13.   

Cleaning procedure: 

1) Click “stop” on the control device and switch off the ultrasonic homogenizer and magnetic stirrer. 

2) Allow the mixture and immersion heater to cool down. 

3) Drain all liquid from the mixing, equilibrium and boiling chamber through the valve at the base of the 

boiling chamber. 

4) Remove the ultrasonic homogenizer probe. 

5) Rinse the system with acetone. 

6) Dry with high pressure air or allow to dry by itself. 

6.4 SAMPLING AND ANALYSIS 

Samples can be taken in three ways:  

A. If the sample is to be taken by means of the receivers (5 and 5.1), the stop valves (1.8 and 

1.16) have to be opened first. Then briefly press the keys on the remote control device, until 

the sample quantity required for determining the concentration has flowed through the 

solenoid valve into the receivers. Then unscrew the receivers and replace them.  

B. Sampling can also be performed with a gas-tight syringe. Insert the syringe needle through the 

silicone seal of the screw caps on the sampling nozzles (1.14 and 1.15) and draw off the 

necessary quantity of sample substance from the dropping tips.  

C. In the case of mixtures which display a miscibility gap, a gaseous sample of the vapour phase 

must be taken at the sampling nozzle (1.5) using a gas-tight syringe. The sample is taken from 

the gaseous phase and condensed upon entering the syringe. It is assumed that no demixing 

occurs before condensation and that a representative vapour phase sample is captured.  This is 

confirmed during the verification of the performance of the equipment (Section 8.1). 

Before any sample is taken, the sample port is firstly rinsed by taking a “dummy” sample.  This is done to 

prevent contamination of samples with any liquid that might have collected in the samples port while 

equilibrium was reached. 
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When measuring VLLE data, two liquid samples are taken.  An over-all liquid sample is taken with a 1 ml gas 

tight syringe through sampling nozzle 1.14. A solvent (acetone or acetonitrile) is added to the over-all liquid 

sample to obtain a homogeneous liquid for analysis. The second liquid sample is taken by means of the liquid-

side receiver (5 ml), through the solenoid valve.  This sample is placed in a heating bath for two hours, at the 

boiling temperature of the sample, for the liquid phases to separate into two liquid layers.  A sample of each 

layer is taken by means of a 1 ml gas tight syringe, through the silicon seal of the screw cap on the receiver and 

placed in a sample vial. 

For VLLE systems displaying liquid-liquid immiscibility the vapour phase is sampled in the gaseous form via 

the sampling nozzle (6) with a 5 ml gas tight syringe fitted with a push-button valve.  Gaseous samples are taken 

rather than condensed vapour samples, because of the heterogeneity of the condensed sample.  When the vapour 

phase condenses, it may not be completely uniform in composition due to liquid-liquid separation and such a 

sample may not be representative of the actual vapour phase.  Only once the condensed vapour phase is recycled 

to the boiling flask, the ultrasonic homogenizer can emulsify the mixture again for recirculation.  Therefore it is 

best to sample the vapour phase in gaseous form.  A solvent is also added to the vapour sample in order to 

obtain a homogeneous sample for analysis. 

For VLE data measurement, both liquid and vapour samples can be taken by means of the receivers (5 and 5.1), 

through the solenoid valves (11 and 12).  However, if the condensed vapour phase is heterogeneous, the 

abovementioned sampling procedure should be followed.  

The analysis of all samples was carried out using a Hewlett Packard 5890 GC with a flame ionization detector 

(FID), coupled with a desktop computer using Delta 55 software.  Separation of the components was achieved 

on a ZB-WAX-Plus capillary column of 30m x 0.53mm x 1.00um. The column was operated at a temperature of 

130
o
C and on a helium flow of 34.47 kPa.  To obtain quantitative results an internal standard (2-pentanol) was 

used.  To quantify the amount of water in each sample, Karl Fischer analysis was performed on a Metrohm 701 

KF Titrino unit.  The relative accuracy of the compositional measurements by the GC and Karl Fischer analysis 

is 2%.  The response factor for each component against 2-propanol were determined via several injections of 

standards prepared with different known concentrations.  The standards and samples were prepared on a weight 

basis and impurities in the 2-propanol (Section 6.1) were also accounted for on this basis. The repeatability of 

results for the GC injections with the experimental samples is shown in Table C-10 in the Appendix. 

Importantly, the results of the over-all liquid samples were used in a mass balance, to verify the results from 

each separate liquid phase. If the over-all liquid sample lies on the tieline connecting the respective organic an 

aqueous liquid points, it verifies the accuracy of liquid phase measurements and indicates that equilibrium was 

reached throughout the glass cell.   
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6.5 EXPERIMENTAL CHALLENGES AND RECTIFICATIONS 

Most of the experimental challenges experienced in this study, occurred during the equipment commissioning 

stage of the project. 

A standard Pilodist unit (VLE 100 D) was modified to measure VLLE in addition to VLE and measure the data 

more accurately.  The standard unit is supplied with temperature sensors with an accuracy of 0.1 
o
C.  These 

were replaced with temperature sensors with an accuracy of 0.03 
o
C.  The controller module and computer 

software also had to be updated to accommodate the improved accuracy of temperature measurement. 

All silicone seals had to be replaced with Viton or Kalrez ones in order to withstand the solvent quality of the 

materials used and the temperature of the ultrasonic probe during operation.  

7 DATA REGRESSION AND SIMULATION 

7.1 REGRESSION METHOD  

The Aspen Plus Data Regression System (DRS) was used to fit the parameters of the activity coefficient models 

(discussed in Section 4), to measured phase equilibrium data and data obtained from literature.  See Appendix G 

for a list of the data used from literature for each regression case. Different weights were allocated to the 

literature sets in each regression case (Appendix G, Table G-2).  The weights were varied to determine 

parameters that would improve the fit of the model predictions on the data.  The weights were also varied to 

obtaine convergence of the regression cases in Aspen Plus DRS.  Due to this variation in weightings, somewhat 

different simulation results could be obtained for NRTL and UNIQUAC on the same ternary mixture.  

As described in Section 4, six binary interaction parameters (��( , t�( , ��( , ��( , ��( and 	�() are specified for NRTL 

and five (��( , t�( , ��( , ��(  and ��() for UNIQUAC.  For UNIFAC, one adjustable group binary parameter (�EN) 

is specified.  No parameters were fixed in any of the regression cases.  In Table G-2 it is stipulated which data 

were used for which regression.  For most of the cases VLE and LLE data were regressed simultaneously.  The 

parameters (UNIFAC groups) of UNIFAC (VLE) in Aspen were determined from VLE data and similarly the 

parameters of UNIFAC (LLE) were determined from LLE data.  For the regression of UNIFAC (VLE) and 

UNIFAC (LLE) parameters, the respective built-in Aspen groups were used as initial guesses.  It should be 

noted that different UNIFAC groups were only modified specifically for the ternary systems in question and for 

the function of performing separation sequence simulations with model parameters that accurately predicted the 

data.  The regressed UNIFAC groups should not be used for simulations in which other components are also 

present.  These groups have been manipulated to fit a specific ternary system and the group numbers might not 

accurately predict other components belonging to that group, anymore.   
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Adjustable binary interaction parameters were determined by DRS using the maximum likelihood objective 

function with the Britt-Luecke algorithm (Aspen Technology 2009).  In this maximum likelihood objective 

function, errors in all measured variables (T, P, x, and y) are considered.  For phase equilibrium data, the 

maximum likelihood objective function is (Aspen Technology 2009): 

 � = 	∑ ÍNÀÎM+Á? ∑ Ïu=Ð,-j=v,-ÑÒ,- w@ + u/Ð,-j/v,*Ñ»,* w@ + ∑ u+Ð,*,-j+v,*,-Ñ²,*,- w@ + ∑ u)Ð,*,-j)v,*,-ÑÓ,*,- w@ÀÌj?(Á?ÀÌj?(Á? ÔÀ/�Á?   7-1 

 Where: 

Q  = Objective function to be minimized by data regression 

NDG  = Number of data groups in the regression case  

ÍN  = Weight of data group n 

NP  = Number of points in data group n 

NC  = Number of components present in the data group 

T, P, x, y = Temperature, pressure, liquid and vapour mole fractions 

e  = Estimated data 

m  =  Measured data 

i  = Data for data point i 

j  = Fraction data for component j 

Õ   = Standard deviation of the indicated data 

The objective function, Q, is minimized by manipulating the physical property parameters selected for the 

regression case and consequently manipulating the estimated value corresponding to each measurement.   

Different phase equilibrium data sets can be assigned different weights in the data regression case in order to 

highlight the importance of certain characteristics of the component system in question.  

To assess the ability of the models to predict experimental data with these regressed parameters, the predicted 

phase equilibrium data needs to be compared to the experimental data.  This can either be done visually by 

means of a ternary phase diagram or mathematically by means of descriptive statistics.  In this work both these 

methods are used.  The accuracy of the models (utilizing the regressed parameters) is quantified statistically by 

the average absolute deviation (AAD) and the average absolute relative deviation (AARD %) from the 

experimental data.  Equations 7-2 and 7-3 present the formulas of AAD and AARD respectively (Lee, Shen 

2003).   

    <<« = 	 ?
ÀÒ∑ |�x"^xy^"#]\ − �E]"!yQ]\|ÀÒ�Á?      7-2 

    <<V«	%	 = 	 ?UUÀÒ ∑ ¬+×1Ø×ÙØ12ÐÚj+vÐ10ÙSÐÚ+vÐ10ÙSÐÚ ¬ÀÒ�Á?      7-3 

Unlike variance and standard deviation, AAD does not square the distance from the mean and is therefore less 

affected by extreme observations.   AARD is similar to AAD, but it also takes the relative size of each data point 

into account.   
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To summarize, the adjustable binary interaction parameters of selected thermodynamic models were determined 

with Aspen DRS using the maximum likelihood objective function.  The predictability of these parameters was 

evaluated with AAD and AARD % from experimental data. 

7.2 SEPARATION SEQUENCE 

This section explains the approach to simulating a heterogeneous azeotropic distillation separation sequence, as 

discussed in Section 2.5.2.  The aforementioned sequence pertained to ethanol dehydration utilizing benzene as 

entrainer.  A more generalized sequence is used as a basis for all the simulations performed in this work.   

The typical ternary phase diagram (Figure 7-1) for heterogeneous azeotropic distillation consists of 

homogeneous minimum-boiling azeotropes between the alcohol and water, and the alcohol and entrainer.  A 

ternary heterogeneous minimum-boiling azeotrope is also formed and enables crossing of the distillation 

boundaries.   

A typical separation sequence is shown in Figure 7-2. This sequence was chosen for its simplicity as the goal is 

only to illustrate how heterogeneous azeotropic distillation can be performed in practice, not to find the 

optimum separation sequence.  The interested reader may be referred to other texts (Luyben, Chien 2010, Wang 

et al. 2008) pertaining to more complex sequences and determining an optimum flow sheet.   

The separation sequence considered in this work consists of two distillation columns (an azeotropic column and 

a recovery column) and a decanter.  The material balance lines of this separation sequence are shown by grey 

dashed lines in Figure 7-1 and the distillation lines by grey solid lines.  These can be used to follow the 

conceptual design of the sequence.  The first column is fed with an aqueous ethanol feed stream, organic reflux 

from the decanter as well as the distillate of the recovery column.  This column produces nearly pure ethanol as 

bottoms and if a mass balance is performed over the system, essentially all alcohol fed in the feed stream needs 

to be removed through the bottoms of the first column.  This can be used as column specification in Aspen Plus. 

The desired purity of the alcohol stream depends on downstream specifications.  For the purpose of this work a 

purity of 98% is assumed.   
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Figure 7-1: Typical ternary phase diagram with liquid-liquid equilibrium phase envelope, vapour line and 

distillation boundaries of an alcohol-water-entrainer system. 

 

Figure 7-2: Typical separation sequence for heterogeneous azeotropic distillation 

Stellenbosch University http://scholar.sun.ac.za



 
74 Data Regression and Simulation 

The composition of the distillate of the first column will be close to that of the ternary heterogeneous azeotrope 

(D1). The azeotropic distillate is subsequently separated into an organic-rich (L1) and water-rich (L2) phase in 

the decanter.  The compositions of these phases can be obtained from the phase equilibrium data of the ternary 

system.  The organic-rich phase is refluxed to the first column, and fed together with fresh feed stream and 

recycled distillate from the second column (L1 + F1 + D2). The composition of the organic reflux stream can be 

used as specification in Aspen when simulating this separation sequence. The water-rich phase is fed to the 

second column.  Considering the recovery column, nearly pure water is produced as bottoms (B2) and a distillate 

of ethanol, benzene and water (D2).  Adhering to mass balance rules, essentially all the water fed to the 

azeotropic column has to be removed as bottoms in the recovery column. This can be used as column 

specification for the second column in Aspen Plus.   

When constructing the flow sheet the following design variables need to be selected: 

- Number of column stages 

- Feed stages of each column 

- Alcohol composition of stream D2 

The number of column stages and feed stage of each column are selected and fixed for the simulation. A mass 

balance, as indicated in grey on Figure 7-1, is performed to initially guess the compostion of D2.  The 

composition of D1, L1 and L2 are known from phase equilibrium. The feed composition (F1) is specified to be 

50% alcohol and 50% water.  Streams B1 and B2 are assumed to be nearly pure alcohol and water respectively.  

With all these variables known or estimated, an initial value for the composition of D2 can be determined. The 

bottoms flow rates of both columns are then manipulated to achieve an alcohol purity of 98 mole % and a water 

purity of 99.99 mole % in B1 and B2 respectively, by manipulating the compositions and flowrates of streams 

L1 and D2.   

The purpose of simulating this separation sequence in Aspen for different alcohols and entrainers is to compare 

the efficiency of entrainers.  By performing two simulations with the same alcohol, entrainer and 

thermodynamic model, but with different binary parameters, it can also be shown how the regression of 

parameters on experimental phase equilibrium data influences the results obtained in the separation sequence.    

These simulations are therefore not performed to find an optimum flow sheet, but merely used as a tool to 

evaluate entrainers and the binary interaction parameters regressed from experimental VLLE data.   
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8 RESULTS AND DISCUSSIONS 

8.1 VERIFICATION 

In order to verify the experimental set-up and method, measured data were compared to published results.  

Verification was done on one binary VLE system (ethanol/isooctane) and three ternary VLLE systems 

(Isopropanol/Isooctane/Water, Isopropanol/DIPE/Water and Ethanol/n-Butanol/Water).  The marker size of 

each data point on the diagrams in this chapter is specifically selected through a sensitivity analysis to account 

for the accuracy of the phase equilibrium equipment.  The vapour pressures of the pure components used were 

also measured in the apparatus.  The results can be seen in Appendix C, Firgures C-1 to C-5.  From these figures 

it is clear that the measured vapour pressures agree with various literature data available in the NIST data bank 

in Aspen Plus and the NIST Wagner 25 Liquid Vapour Pressure Equation.  Parameters fitted to these data 

(Appendix F, Table F-1), predict the vapour pressures well.  

8.1.1 Binary VLE: Ethanol/Isooctane 

The Ethanol/Isooctane system was selected for the verification of binary VLE measurement.  A non-aqueous 

system was selected to simplify the analysis, i.e. only GC analysis was required (not Karl Fischer as well).  Two 

sets of reliable published data (Hiaki et al. 1994, Ku, Tu 2005) are available for Ethanol/Isooctane and the 

activity coefficient model, NRTL adequately predicts the published data.  The data measured in this work 

compares well visually, with published data and the NRTL prediction (Figures 8-1 and 8-2).   

 

Figure 8-1: Binary T-x-y phase diagram of measured Ethanol/Isooctane VLE data at 101.325 kPa, compared to 

data published by Haiki et al. (1994) and Ku and Tu (2005) and to the thermodynamic model NRTL. 
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Figure 8-2: Binary x-y phase diagram of measured Ethanol/Isooctane VLE data at 101.325 kPa, compared to 

data published by Haiki et al. (1994) and Ku and Tu (2005) and to the thermodynamic model NRTL 

Table 8-1 quantitatively indicates that the binary VLE data measured in this work, for equipment verification, 

compares well with the published data and the NRTL prediction. All AAD and AARD % values are similar, if 

not equal, to that of the published data.  Both sets of literature data, as well as the data measured in this work, 

also adhere to the Herington area test for thermodynamic consistency. The Herington area test is passed by 

producing a plot of ln .¤.¥ against x for the measured data, where the area above the zero line and area below the 

zero line are more or less equal in size (see Tables D-1 and D-2, and Figures D-1 and D-2 in Appendix D).   

Table 8-1: AAD and AARD % values for VLE of Ethanol/Isooctane, measured in this work and found in 

literature, compared to activity coefficient model NRTL with built-in Aspen parameters at 101.325 kPa. 

  

 Temp (
o
C) xethanol xisooctane yethanol yisooctane 

  This work 

AAD 0.2951 0.0000 0.0000 0.0098 0.0107 

AARD % 0.09 0.00 0.02 1.35 3.64 

            
  Hiaki et al. (1994) 

AAD 0.2986 0.0000 0.0000 0.0094 0.0094 

AARD % 0.09 0.01 0.00 1.49 2.27 

            
  Ku and Tu (2005) 

AAD 0.6031 0.0000 0.0000 0.0187 0.0187 

AARD % 0.17 0.04 0.01 4.65 3.73 
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8.1.2 Ternary VLLE: IPA/Isooctane/Water 

The IPA/Isooctane/Water system was selected for the verification of ternary VLLE measurements.  

IPA/Isooctane/Water was chosen for its similarity to the systems selected for new data measurements.  The 

published VLLE data (Font et al. 2004) available for this system have been measured with an all-glass dynamic 

recirculating still fitted with an ultrasonic homogenizer.  Font et al. (2004) analysed their vapour samples on an 

online GC with a thermal conductivity detector (TCD) on a column packed with Porapak 80/100.  Their organic 

liquid samples were also analysed with TCD and the water content was determined through Karl Fischer 

analysis.  This was propably done due to the inaccuracy with which TCD determines water content and in the 

organic liquid samples the water content would be very small.  Water analysed with TCD tends to form a peak 

with an undefined base on a chromatogram (Shimadzu 2011).  This makes integration of the peak, to quantify 

the water content, difficult.  It can also prevent sufficient separation of the various components in the sample, on 

the GC column.  The aqueous liquid samples were only analysed on a GC with FID and the water content was 

calculated with a mass balance. As explained in Section 6.4, online vapour sampling was not used in this work.  

Since FID tends to give more accurate results and FID cannot detect water, the samples had to undergo two 

types’ of analyses and would be unsuitable for online sampling. Therefore all the samples in this work were 

analysed on a GC with FID to quantify the non-aqueous components, and with Karl Fischer Titration to 

determine the water content of each sample.   

The organic liquid phase of the measured data is in agreement with the published data (Figure 8-4).  The vapour 

phase of the measured data lies in the same area of the ternary phase diagram as the published data, but is more 

scattered.  The aqueous liquid phase of the measured data does not compare well with the published data, but 

seems to agree with the UNIFAC (parameters based on LLE) prediction.   Other thermodynamic models, such 

as NRTL and UNIQUAC, all predict larger phase envelopes than UNIFAC and were therefore not included in 

Figure 8-4.  The discrepancy might be explained by the fact that Font et al. (2004) determined the water content 

of the aqueous liquid samples through mass balance and not Karl Fischer Titration.  To test this theory, the 

aqueous liquid phase compositions measured in this work was altered by keeping the ratio of isooctane to IPA in 

each sample constant and calculating a different water composition.  The results are given in Figure 8-6.  This 

confirms that the discrepancy can definitely be attributed to the fact that Font et al. (2004) did not perform Karl 

Fischer analyses on their aqueous liquid phase samples. The measured tie lines agree with the published tie lines 

to some extent, but vary increasingly as the plait point is approached (Figure 8-5).  Both the measured and 

published tie lines disagree with those predicted by UNIFAC.  The tie lines predicted by NRTL and UNIQUAC 

disagreed with the measured and published data even more than those predicted by UNIFAC.  Therefore these 

predictions were not included in Figure 8-5.  Due to these uncertainties further verification of ternary VLLE had 

to be performed.   

8.1.3 Ternary VLLE: IPA/DIPE/Water 

IPA/DIPE/water was the second system selected for ternary VLLE measurement verification.  The published 

data (Lladosa et al. 2008) for this system have also been measured with an all glass dynamic re-circulating still 

fitted with an ultrasonic homogenizer, but was not done by the same research group that published the 

IPA/Isooctane/Water VLLE data.  As IPA/DIPE/water is also similar to components set out for measured in this 

work, it was thought suitable for verification.  Lladosa et al. (2008) also analysed their vapour samples on an 
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online GC with a thermal conductivity detector (TCD) on a column packed with Porapak 80/100.  All their 

samples were analysed on a GC with TCD and no Karl Fischer titrations were performed.   

Both the measured organic and aqueous liquid phases compare well with the published data (Figure 8-7) and are 

accurately predicted by UNIFAC (parameters based on LLE).  The measured tie lines agree well with the 

published data and are adequately predicted by UNIFAC (Figure 8-8).  The measured vapour phase however, 

does not agree with the published data (Figure 8-9) and neither the measured nor the published vapour phase 

data are in complete agreement with the prediction from thermodynamic models.  The discrepancies between 

the data measured in this work and that of Lladosa et al. (2008) might also be explained by the fact Karl Fischer 

Titration was additionaly used to determine water content in this work.  This might especially affect the vapour 

phase, since such samples tend to be much smaller than liquid phase samples, even more so when taken in the 

gaseous state.  Due to the inconsistency of the vapour phase data, yet another ternary system had to be tested for 

VLLE verification.   

8.1.4 Ternary VLLE: Ethanol/1-Butanol/Water 

The last system selected for ternary VLLE verification was Ethanol/1-Butanol/Water.  Two sets of published 

data are available for this system.  The first has been measured by Newsham and Vahdat (1977) using the flow 

method.  Newsham and Vahdat (1977) also analysed their samples on a GC with a column packed with Porapak 

80/100.  No additional analyses were performed to determine the water content of the samples. The second 

(Gomis, Ruiz & Asensi 2000) has been measured by the same research group that published the 

IPA/Isooctane/Water VLLE data, using an all glass dynamic recirculating still fitted with an ultrasonic 

homogenizer and the same analysis techniques.  The two sets of published data are in agreement, (although 

different phase equilibrium equipment were used) and were therefore considered a suitable system to test for 

verification. 

Figure 8-3 illustrates the repeatability and accuracy to which the phase equilibria experiments were performed. 

The two organic liquid and aqueous liquid data points cannot be distinguished on the diagram.  As stated in the 

introduction of this section, the marker size of the data points is specifically selected through a sensitivity 

analysis to account for the uncertainties of the equipment used.  These two points were measured in two 

independent experimental runs.  The temperature of the two data points differ by 0.02 
o
C, whitin the 0.03

 o
C 

uncertainty of the Pt-100’s. These two data points are therefore considered repeatable.  The accuracy of the data 

point were tested by taking an overall liquid sample (a mixture if the two liquid phases).  According to mass 

balance rules, this overall sample should therefore lie on the tie line between the organic and aqueous liquid 

phase if the latter are accurate.  This is the case with the two samples in Figure 8-3 and the data is therefore 

considered accurate.  
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Figure 8-3: Illustration of repeatability and accuracy 

The measured vapour, organic liquid and aqueous liquid phases of the ternary system all agree well with both 

sets of published data (Figure 8-10).  The phase envelope description in the legend of Figure 8-10 refers to both 

liquid phases.  The liquid phases are described together in this manner to simplify the diagram, but one can 

easily distinguish between the organic liquid phase and aqueous counterpart by considering the grouping of the 

data points.  None of the thermodynamic models (NRTL, UNIFAC and UNIQUAC) accurately predicted the 

published or measured data and were therefore not included in Figure 8-10.  The satisfactory measured results 

concluded the verification of the experimental set-up and method.  

To recap, the apparatus used in this work was verified for both binary VLE and ternary VLLE. For binary VLE 

verification ethanol/isooctane was measured and the results are in agreement with two sets of published data 

(Hiaki et al. 1994, Ku, Tu 2005).  The apparatus was verified for ternay VLLE by data measurements of the 

ethanol/n-butanol/water system.  The data also compared well with two sets of published data (Gomis, Ruiz & 

Asensi 2000, Newsham, Vahdat 1977).   

 

xwater xn-Butanol xEtOH xwater xn-Butanol xEtOH xwater xn-Butanol xEtOH

a 92.7 0.5812 0.4188 0 0.8839 0.1161 0.0000 0.9808 0.0192 0

b 92.68 0.5814 0.4186 0 0.9023 0.0977 0.0000 0.9778 0.0222 0

Temp (
o
C)

organic liquid overall aqueous liquid

Separated liquid phases
Overall liquid sample    
Tie line

EtOH

Water n-Butanol

a b b a b a
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Figure 8-4: Ternary phase diagram of measured IPA/Isooctane/Water VLLE data at 101.325 kPa, compared with data published by Font et al. (2004) and the 

thermodynamic model UNIFAC (parameters based on LLE). 
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Figure 8-5: Ternary phase diagram of measured IPA/Isooctane/Water tie lines at 101.325 kPa, compared with data published by Font et al. (2004) and the thermodynamic 

model UNIFAC (parameters based on LLE).  
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Figure 8-6: Ternary phase diagram of measured IPA/Isooctane/Water tie lines (with corrected aqueous liquid phase compositions) at 101.325 kPa, compared with data 

published by Font et al. (2004) and the thermodynamic model UNIFAC (parameters based on LLE). 

UNIFAC LLE

Font et al. (2004) 

Experimental 

IPA

Water Isooctane
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Figure 8-7: Ternary phase diagram of measured IPA/DIPE/Water VLLE data at 101.325 kPa, compared with data published by Lladosa et al. (2008) and the liquid phases 

of thermodynamic models NRTL and UNIQUAC. 
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Figure 8-8: Ternary phase diagram of measured IPA/DIPE/Water tie lines at 101.325 kPa, compared with data published by Lladosa et al. (2008) and the thermodynamic 

model UNIFAC (parameters based on LLE). 
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Figure 8-9: Ternary phase diagram of measured IPA/DIPE/Water VLLE data at 101.325 kPa, compared with data published by Lladosa et al. (2008) and the vapour phase 

of thermodynamic models NRTL and UNIQUAC. 

UNIFAC LLE
UNIFAC VLE
NRTL
UNIQUAC
Vapour 
Organic liquid     Lladosa et al. 
Aqueous liquid   (2008)
Vapour
Organic liquid     Experimental
Aqueous liquid

IPA
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Figure 8-10: Ternary phase diagram of measured Ethanol/n-Butanol/Water VLLE data at 101.325 kPa, compared with data published by Newsham and Vahdat (1977) and 

Gomis et al. (2000). 
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8.2 NEW PHASE EQUILIBRIUM DATA 

In this section the results of the new phase equilibrium measurements and the discussion thereof are provided.  

As discussed in Section 5.3, the systems studied are ethanol/DIPE/water, n-propanol/DIPE/water and 

n-propanol/isooctane/water.  The ternary heterogeneous azeotropes, calculated from the measured results, are 

also reported in this section.   

Tables with the experimental measurements are in included in Appendix C.  

8.2.1 Ethanol/DIPE/Water VLLE and VLE 

The measured VLLE and VLE data of the system Ethanol/DIPE/Water are plotted in Figures 8-11 and 8-12, 

respectively.  The phase equilibrium data is tabulated in Appendic C in Tables C-5 and C-6.  The VLE data 

were tested for thermodynamic consistency with L-W consistency test as well as the McDermott-Ellis 

consistency test.  The data were found to be thermodynamically consistent.  All D values for the L-W test were 

smaller or equal to 0.647, thus lower than 3 to 5.  All D values for the McDermott-Ellis test were smaller than 

Dmax and therefore proved thermodynamic consistency.  The liquid phases of the VLLE data were checked for 

regularity with the Othmer-Tobias correlation and were found to have a regular course, with an r value of 0.991.  

Detailed tabulated parameter input and results from the L-W test and McDermott-Ellis test calculations are 

given in Appendix D.  The graphical results from the Othmer-Tobias correlation are shown in Appendix E.  

Figure 8-13 graphically indicates the existence of a ternary heterogeneous azeotrope.  In the upper part of the 

phase envelope, from temperature 62.07
o
C to 61.10

o
C, the organic liquid phase composition lies above that of 

the corresponding vapour phase.  In the lower part of the phase envelope, temperature 61.01
o
C to 62.16

o
C, the 

organic liquid phase composition lies below that of the corresponding vapour phase.  This shows that between 

the points 61.10
o
C and 61.01

o
C there is a point upon which the compositions of the aqueous liquid, vapour and 

organic liquid phases form a straight line. From the lever rule it can be proved that the over-all composition of 

the aqueous and organic liquid phases on this straight line will be equal to the vapour phase composition, hence 

the ternary heterogeneous azeotrope exists at this point.  The composition and temperature of the ternary 

azeotrope is determined via numerical interpolation.  The result is given in Table 8-2 along with the binary 

azeotrope for DIPE/Water, measured in this work, and other relevant azeotropic data from literature.  The 

composition of the ternary heterogeneous azeotrope is similar to that compiled by Horsley and Tamplin (1962). 

Horsley and Tamplin do not supply any information with regard to how the ternary azeotrope they report is 

measured and the source they give is not available in open literature.  It is therefore difficult to explain any 

differences that might exist.   The composition of the binary DIPE/Water azeotrope compares well with the data 

reported by Lladosa et al. (2008) and Verhoeye (1970) and those compiled by Gmehling et al. (1994).   
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Table 8-2: Temperature and composition of ternary and binary azeotropes measured for Ethanol/DIPE/Water 

at 101.325 kPa 

Temp (
o
C) 

Composition 
Reference 

ywater yDIPE yEtOH 

61.00 0.1791 0.7070 0.1139 Horsley and Tamplin (1962) 

61.04 0.1964 0.6659 0.1377 This work 

61.90 0.2480 0.7520 - Lladosa et al. (2008) 

62.16 0.2186 0.7814 - This work 

62.50 0.2200 0.7800 - Verhoeye (1970) 

62.20 0.2147 0.7853 - 
Gmehling et al. (1994) 

63.00 0.2100 0.7900 - 

78.17 0.0963 - 0.9037 Horsley and Tamplin (1952) 

78.00 0.1000 - 0.9000 

Gmehling et al. (1994) 

78.10 0.1100 - 0.8900 

78.10 0.1090 - 0.8910 

78.10 0.1053 - 0.8947 

78.10 0.1000 - 0.9000 

78.10 0.1030 - 0.8970 

78.12 0.1050 - 0.8950 

78.13 0.1055 - 0.8945 

78.15 0.1060 - 0.8940 

78.15 0.1057 - 0.8943 

78.15 0.1020 - 0.8980 

78.15 0.1000 - 0.9000 

78.16 0.1047 - 0.8953 

78.16 0.0970 - 0.9030 

78.17 0.1067 - 0.8933 

78.17 0.0990 - 0.9010 

78.17 0.0963 - 0.9037 

78.18 0.1100 - 0.8900 

78.18 0.1070 - 0.8930 

78.19 0.1060 - 0.8940 

78.20 0.1100 - 0.8900 

78.20 0.1060 - 0.8940 

78.20 0.0950 - 0.9050 

78.30 0.1060 - 0.8940 

64.00 - 0.6820 0.3180 Benito and Lopez (1992) 
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Figure 8-11: Ternary phase diagram of measured Ethanol/DIPE/Water VLLE data at 101.325 kPa 
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Figure 8-12: Ternary phase diagram of measured Ethanol/DIPE/Water VLE data at 101.325 kPa 
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Figure 8-13: Ternary phase diagram for the calculation of the heterogeneous ternary azeotrope from measured Ethanol/DIPE/Water VLLE data at 101.325 kPa
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8.2.2 n-Propanol/DIPE/Water VLLE and VLE 

VLLE and VLE measurements of the system n-Propanol/DIPE/Water are plotted in Figures 8-14 and 8-15, 

respectively.  The VLLE and VLE data are tabulated in Appendic C in Tables C-7 and C-8 respectively. The 

VLE data passed the L-W consistency test as well as the McDermott-Ellis consistency test and were proven to 

be thermodynamically consistent.  All D values for the L-W test were smaller or equal to 0.350, thus lower than 

3 to 5.  All D values for the McDermott-Ellis test were smaller than Dmax and the data are therefore proved 

thermodynamic consistent.  The liquid phases of the VLLE data were checked for regularity with the 

Othmer-Tobias correlation and were found to have a regular course, with an r-value of 0.992.  Detailed 

tabulated parameter input and results from the L-W test and McDermott-Ellis test calculations are given in 

Appendix D.  The graphical results from the Othmer-Tobias correlation are given in Appendix E.  

Figure 8-16 reveals that no ternary heterogeneous azeotrope exists for the n-Propanol/DIPE/Water system.  All 

the vapour phase compositions lie below the tie-line of the two corresponding liquid phases.  Consequently no 

straight line exists in the phase envelope, upon which corresponding aqueous liquid, organic liquid and vapour 

phase compositions are found. This indicates that no ternary heterogeneous azeotrope exists.  The dehydration 

of aqueous n-propanol via heterogeneous azeotropic distillation, using DIPE as an entrainer, is therefore 

seemingly not possible. Table 8-2 presents the binary azeotrope for DIPE/Water measured in this work, along 

with other relevant azeotropic data from literature.  As stated previously, the composition of the binary 

DIPE/Water azeotrope compares well with the data reported by Lladosa et al. (2008) and Verhoeye (1970) as 

well as those compiled by Gmehling et al. (1994).  From the compilations of Gmehling et al. (1994) it also clear 

that no binary azeotrope exists between n-Propanol and DIPE.   
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Table 8-3: Temperature and composition of ternary and binary azeotropes measured for 

n-propanol/DIPE/water at 101.325 kPa 

Temp (
o
C) 

Composition 
Reference 

ywater yDIPE yn-Propanol 

61.90 0.2480 0.7520 - Lladosa et al. (2008) 

62.16 0.2186 0.7814 - This work 

62.50 0.2200 0.7800 - Verhoeye (1970) 

87.00 0.5683 - 0.4317 Horsley and Tamplin (1952) 

87.55 0.5650 - 0.4350 

Gmehling et al. (1994) 

87.59 0.5686 - 0.4314 

87.65 0.5680 - 0.4320 

87.66 0.5680 - 0.4320 

87.70 0.5680 - 0.4320 

87.71 0.5670 - 0.4330 

87.71 0.5683 - 0.4317 

87.72 0.5683 - 0.4317 

87.75 0.5684 - 0.4316 

87.75 0.5683 - 0.4317 

87.76 0.5779 - 0.4221 

87.79 0.5820 - 0.4180 

87.80 0.5800 - 0.4200 

87.80 0.5700 - 0.4300 

87.70 0.5680 - 0.4320 

87.80 0.5680 - 0.4320 

88.00 0.5684 - 0.4316 

88.10 0.5671 - 0.4329 
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Figure 8-14: Ternary phase diagram of measured n-Propanol/DIPE/Water VLLE data at 101.325 kPa 
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Organic liquid     
Aqueous liquid

n-Propanol

Water DIPE

Stellenbosch University http://scholar.sun.ac.za



 
95 Results and Discussions 

 

Figure 8-15: Ternary phase diagram of measured n-Propanol/DIPE/Water VLE data at 101.325 kPa 
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Figure 8-16: Ternary phase diagram for the calculation of the heterogeneous ternary azeotrope from measured n-Propanol/DIPE/Water VLLE data at 101.325 kPa
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8.2.3 n-Propanol/Isooctane/Water VLLE and VLE 

The experimental VLLE and VLE data measured for n-Propanol/Isooctane/Water are presented graphically in 

Figures 8-17 and 8-18, respectively.  The phase equilibrium data is tabulated in Appendic C in Tables C-9 and 

C-10. The VLE data adhered to the L-W and the McDermott-Ellis consistency tests. Consequently it was 

established that the data are thermodynamically consistent.  All D values for the L-W test were smaller or equal 

to 3.328, thus lower than 5.  All D values for the McDermott-Ellis test were smaller than Dmax and the data are 

therefore proved thermodynamic consistent.  The liquid phases of the VLLE data were checked for regularity 

with the Othmer-Tobias correlation and were found to have a regular course, with an r-value of 0.991.  Detailed 

tabulated parameter input and results from the L-W test and McDermott-Ellis test calculations are given in 

Appendix D.  The graphical results from the Othmer-Tobias correlation are given in Appendix E. The vapour 

phase compositions in Figure 8-17 seem slightly scattered, but this is also noted in the vapour phase data of Font 

et al. (2004) in Figure 8-4 for the system IPA/isooctane/water.  This might be explained by the nature of the 

alcohol/isooctane/water systems.   

Figure 8-18 illustrates that a ternary heterogeneous azeotrope exists for the n-Propanol/Isooctane/Water system.  

In the upper part of the phase envelope, from temperature 74.79
o
C to 74.60

o
C, the vapour phase compositions 

lie below the tie-line of the two corresponding liquid phases.  Conversely, in the lower part of the phase 

envelope, temperatures 74.59
o
C to 79.16

o
C, the vapour phase compositions lie above the tie-line of the two 

corresponding liquid phases.  This shows that between the points 74.60
o
C and 74.59

o
C there is a point upon 

which the compositions of the aqueous liquid, vapour and organic liquid phases form a straight line. From the 

lever rule it can be proved that the over-all composition of the aqueous and organic liquid phases on this straight 

line will be equal to the vapour phase composition, hence the ternary heterogeneous azeotrope exists at this 

point.  The composition and temperature of the ternary azeotrope is determined via numerical interpolation.  The 

result is provided in Table 8-3, along with the binary azeotrope for Isooctane/Water, measured in this work, and 

other relevant azeotropic data from literature.  The composition of the ternary heterogeneous azeotrope is 

similar to the experimentally determined data compiled by Gmehling et al. (1994).  The composition of the 

binary Isooctane/Water azeotrope compares well with the data reported by Font et al. (2003) and those compiled 

by Gmehling et al. (1994). 

To summarize, VLE and VLLE data were measured for ethanol/DIPE/water, n-propanol/DIPE/water and 

n-propanol/isooctane/water.  All the VLE data were proved to be thermodynamically consistent and LLE section 

of the VLLE data follows a regular course. The binary DIPE/water and isooctane/water azeotropes were also 

measured and agreed well with published azeotropic data.  The ternary heterogeneous ethanol/DIPE/water and 

n-propanol/isooctane/water azeotropes were calculated from the measured VLLE data and also agreed fairly 

well with published azeotropic data. 

  

Stellenbosch University http://scholar.sun.ac.za



 
98 Results and Discussions 

Table 8-4: Temperature and composition of ternary and binary azeotropes measured for 

n-propanol/isooctane/water at 101.325 kPa 

Temp (
o
C) 

Composition 
Reference 

ywater yIsooctane yn-Propanol 

73.89 0.3520 0.4400 0.2080 Gmehling et al. (1994) 

74.59 0.3899 0.4246 0.1855 This work 

79.03 0.4730 0.5270 - Font et al. (2003) 

79.13 0.4710 0.5290 - This work 

78.80 0.4420 0.5580 - Gmehling et al. (1994) 

87.00 0.5683 - 0.4317 Horsley and Tamplin (1952) 

87.55 0.5650 - 0.4350 

Gmehling et al. (1994) 

87.59 0.5686 - 0.4314 

87.65 0.5680 - 0.4320 

87.66 0.5680 - 0.4320 

87.70 0.5680 - 0.4320 

87.71 0.5670 - 0.4330 

87.71 0.5683 - 0.4317 

87.72 0.5683 - 0.4317 

87.75 0.5684 - 0.4316 

87.75 0.5683 - 0.4317 

87.76 0.5779 - 0.4221 

87.79 0.5820 - 0.4180 

87.80 0.5800 - 0.4200 

87.80 0.5700 - 0.4300 

87.70 0.5680 - 0.4320 

87.80 0.5680 - 0.4320 

88.00 0.5684 - 0.4316 

88.10 0.5671 - 0.4329 

76.80 - 0.3095 0.6905 Horsley and Tamplin (1952) 

84.78 - 0.5412 0.4533 Hiaki et al. (1994) 
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Figure 8-17: Ternary phase diagram of measured n-Propanol/Isooctane/Water VLLE data at 101.325 kPa 
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Figure 8-18: Ternary phase diagram of measured n-Propanol/Isooctane/Water VLE data at 101.325 kPa 

Stellenbosch University http://scholar.sun.ac.za



 
101 Results and Discussions 

 

Figure 8-19: Ternary phase diagram for the calculation of the heterogeneous ternary azeotrope from measured n-Propanol/Isooctane/Water VLLE data at 101.325 kPa 
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8.3 ENTRAINER COMPARISON  

Considering the data available in literature and the data measured in this work, six entrainers are studied for the 

dehydration of ethanol via heterogeneous azeotropic distillation, three for isopropanol and three for n-propanol.  

For comparative purposes and the process of initial elimination, the data for these systems are plotted in Figures 

8-20 to 8-22.  According to Gomis et al. (2007), the azeotropic distillation process is improved when the amount 

of water removed from the condenser-decanter (see Section 4.1) of the azeotropic column is increased.  Since 

the distillate from this column has a composition close to that of the ternary heterogeneous azeotrope, the 

composition of the aqueous phase of the tie line containing the azeotropic point is related to the amount of water 

removed after condensation and decantation.  When the water content of the aqueous phase is lower, a larger 

quantity of all the components need to be recirculated to separate the same amount of water.  Consequently, the 

production cost will increase.  Therefore, a superior entrainer will have the greatest “water carrying capacity”, 

i.e. the distillate from the azeotropic column will have the largest water composition and the difference in water 

composition between the two liquid phases formed in the decanter would have to be the largest.  The boiling 

temperature of the ternary heterogeneous azeotrope is also an important factor to consider, since this will 

influence the amount of energy required.  

Figure 8-20 shows that using DIPE as entrainer results in an aqueous liquid phase with the largest water 

composition.  This is also evident from Table 8-5. Benzene results in an aqueous liquid phase with the second 

largest water composition.  Cyclohexane, hexane, heptane and isooctane all yield aqueous liquid phases 

significantly lower in water content.  Therefore, DIPE is used in the separation sequence simulation of ethanol 

dehydration in Section 9.5.  Benzene has commonly been used in the chemical process industry (Norman 1945) 

and another simulation of ethanol dehydration is therefore performed using Benzene to compare its performance 

with DIPE.   

Table 8-5: Ternary heterogeneous azeotropic compositions of the ethanol/entrainer/water systems at 101.3 kPa 

Entrainer 
Temp 

(oC) 

Composition 

organic liquid aqeous liquid vapour 

alcohol entrainer water alcohol entrainer water alcohol entrainer water 

Cyclohexanea 62.39 0.133 0.849 0.018 0.521 0.046 0.433 0.292 0.52 0.188 

Hexaneb 56.06 0.138 0.847 0.016 0.561 0.038 0.401 0.236 0.658 0.105 

Heptanec 68.68 0.195 0.775 0.03 0.614 0.045 0.341 0.432 0.363 0.205 

Isooctaned 68.72 0.215 0.758 0.027 0.596 0.082 0.321 0.436 0.366 0.198 

Benzenee  64.90 0.232 0.664 0.104 0.225 0.021 0.754 0.23 0.55 0.22 

DIPEf 61.04 0.1475 0.7746 0.0779 0.0777 0.0032 0.9192 0.1377 0.6659 0.1964 

a Gomis et al. (2005)                   

b Gomis et al. (2007)                   

c Gomis et al. (2006)                   

d Font et al. (2003)                   

e Norman (1945)                   

f This work                     
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Figure 8-21 indicates that using DIPE as entrainer also results in the aqueous liquid phase with the highest water 

content for the dehydration of IPA, followed by cyclohexane and then isooctane.  The exact azeotropic 

compositions are given in Table 8-6.  DIPE is used for the simulation of IPA dehydration separation sequence in 

Section 8.5 and compared to the cyclohexane commonly used in industry.  

 

Table 8-6: Ternary heterogeneous azeotropic compositions of the IPA/entrainer/water systems at 101.3 kPa 

Entrainer 
Temp 

(oC) 

Composition 

organic liquid aqeous liquid vapour 

alcohol entrainer water alcohol entrainer water alcohol entrainer water 

Cyclohexane
a 64.3 0.246 0.684 0.07 0.103 0.02 0.877 0.222 0.566 0.212 

Isooctaneb 70.9 0.36 0.51 0.13 0.23 0.03 0.74 0.31 0.38 0.31 

DIPEc 61.6 0.055 0.888 0.057 0.013 0.001 0.986 0.062 0.683 0.255 

a Verhoeye  (1968)          

b Font et al. (2004)                   

c Lladosa et al. (2008)                   

                      

In Figure 8-22 DNPE as entrainer results in the aqueous liquid phase with the highest water content for 

n-propanol dehydration, again followed by cyclohexane and then isooctane.  Table 8-7 also confirms this. In this 

case the azeotropic tie lines for DNPE and cyclohexane are very similar.  As stated in Section 8.2.2, the 

n-propanol-DIPE-water system does not exhibit a ternary azeotrope and therefore DIPE is not a suitable 

entrainer for the dehydration of n-propanol via azeotopic distillation.  Carlson (1949) however suggested a 

method for dehydrating aqueous n-propanol which also contains small quantities of ethanol and IPA. In order to 

investigate DIPE as an entrainer for dehydrating all three alcohols in question, a simulation of the method 

suggested by Carlson is also performed in Section 8.5. A brief explanation of this method is also provided in 

Section 8.5. 

Table 8-7: Ternary heterogeneous azeotropic compositions of the n-propanol/entrainer/water systems at 101.3 

kPa 

Entrainer 
Temp 

(oC) 

Composition 

organic liquid aqeous liquid vapour 

alcohol entrainer water alcohol entrainer water alcohol entrainer water 

Cyclohexane
a 66.47 0.1558 0.8149 0.0293 0.0441 0 0.9559 0.1324 0.6114 0.2562 

Isooctaneb 74.59 0.2367 0.679 0.0843 0.1003 0.0003 0.8994 0.1855 0.4246 0.3899 

DNPEc 73.7 0.159 0.783 0.058 0.022 0 0.978 0.203 0.514 0.393 

a Lee and Shen (2003)          

b This work                   

c Lladosa et al. (2008)                   

                      

To reiterate, benzene and DIPE were selected as entrainers for the simulation of ethanol dehydration in Aspen. 

Cyclohexane and DIPE were selected for the simulation IPA dehydration.  DIPE was also selected for the 
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simulation of n-propanol dehydration, but only when n-propanol forms part of a Fischer Tropsch waste stream 

consisting of ethanol and IPA as well. The latter refers to a method proposed by Carlson (1949) to specifically 

use the fact that n-propanol does not form a ternary heterogeneous azeotrope with DIPE and water. 
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Figure 8-20: Entrainer comparison for ethanol dehydration via heterogeneous azeotropic distillation at 101.325 kPa. Each phase envelope is plotted with its azeotropic tie-

line.  
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Figure 8-21: Entrainer comparison for IPA dehydration via heterogeneous azeotropic distillation at 101.325 kPa. Each phase envelope is plotted with its azeotropic tie-line.  
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Figure 8-22: Entrainer comparison for n-Propanol dehydration via heterogeneous azeotropic distillation at 101.325 kPa. Each phase envelope is plotted with its azeotropic 

tie-line.  
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8.4 THERMODYNAMIC MODELLING 

8.4.1 Comparison of data with selected thermodynamic models 

As stated in Chapter 1, one of the objectives of this work is to compare the experimental data to thermodynamic 

models (NRTL, UNIQUAC and UNIFAC).  The VLLE data predictions are obtained from the simulation 

program Aspen.  All thermodynamic model parameters used in this section are built-in parameters from Aspen.  

The built-in Aspen parameters used in this work are provided in Appendix F. The estimated data are plotted 

against the experimental data in Figures 8-23 to 8-25. The azeotropes determined in this work and those 

obtained from literature (listed in Section 8.2) are indicated on these diagrams by a solid black dot.  The model 

predictions of these azeotropes are also indicated on the diagrams by open dots in a different colour for each 

model, as indicated in the legend.  The model predictions of the phase envelope are plotted against the 

experimental organic and aqueous liquid phase data.  The same is done for the predicted and measured vapour 

phase values.  The three tie-lines of each model and the experimental data are indicated on the diagrams – one in 

the lower alcohol region, one near the ternary heterogeneous azeotropic region and one in the higher alcohol 

region, approaching the plait point.  The AADs and AARDs between experimental and predicted values for the 

three systems evaluated in this work are shown in Tables 8-4 to 8-6.   

First consider the azeotropes of the ethanol/DIPE/water system in Figure 8-23 and Table 8-8.  NRTL and 

UNIFAC (VLE) accurately predict the ethanol/water azeotrope.  UNIQUAC predicts a slightly higher ethanol 

composition, while UNIFAC (LLE) does not predict any ethanol/water azeotrope.  For the ethanol/DIPE 

azeotrope the UNIFAC (LLE) prediction is the closest to the composition found in literature.  The predictions 

from all the other models are also close, but with a somewhat higher ethanol composition.  The DIPE/water 

azeotrope is most accurately predicted by NRTL and UNIQUAC.  UNIFAC (VLE) and UNIFAC (LLE) are also 

close, but with a slightly lower and higher DIPE composition, respectively.  With respect to composition the 

ternary heterogeneous azeotrope is most accurately predicted by UNIFAC (VLE) and UNIFAC (LLE). The 

ternary azeotropic temperature is most accurately predicted by UNIQUAC and NRTL.  

Regarding the phase envelope, NRTL and UNIFAC (LLE) yield the least accurate predictions.  Both these 

models predict a much larger phase envelope and therefore incorrectly include homogeneous phase equilibrium 

points in the heterogeneous region.   The UNIQUAC prediction is a minor improvement, but still overestimates 

the size of the heterogeneous region around the top of the phase envelope.  UNIFAC (VLE) more accurately 

predicts the phase envelope around the plait point area and the top of the heterogeneous region, but fails to 

predict the organic liquid phase correctly.  The lower two tie-lines are sufficiently predicted by all the models, 

but only UNIFAC (VLE) accurately predicts the tie-line near the plait point.  All the model predictions of the 

vapour phase are relatively accurate.  The UNIFAC (VLE) and UNIFAC (LLE) predictions follow the exact 

same trend as the experimental data.  The NRTL and UNIQUAC predictions however deviate from this trend to 

some extent in the area of the vapour phase with high ethanol compositions.   
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Table 8-8: Azeotropes of the ethanol/DIPE/water system measured at 101.3 kPa, with those predicted by Aspen 

with built-in parameters. 

Source Temp (
o
C) 

Composition 

ethanol DIPE water 

UNIFAC (LLE) 60.61 0.1395 0.6727 0.1878 

NRTL 60.96 0.1816 0.6336 0.1848 

This work 61.04 0.1377 0.6659 0.1964 

UNIQUAC 61.14 0.1673 0.6432 0.1895 

UNIFAC (VLE) 61.68 0.1430 0.6551 0.2018 

UNIFAC (LLE) 61.61 - 0.7879 0.2121 

This work 62.16 - 0.7814 0.2186 

UNIQUAC 62.45 - 0.7801 0.2199 

NRTL 62.46 - 0.7799 0.2201 

UNIFAC (VLE) 63.13 - 0.7727 0.2273 

UNIFAC (VLE) 78.04 0.8933 - 0.1067 

Gmehling et al. (1994) 78.12 0.895 - 0.105 

NRTL 78.15 0.8952 - 0.1048 

UNIQUAC 78.16 0.8999 - 0.1001 

UNIFAC (VLE) 61.53 0.3357 0.6643 - 

NRTL 63.86 0.3373 0.6627 - 

UNIQUAC 63.87 0.3382 0.6618 - 

Benito and Lopez (1992) 64.00 0.318 0.682 - 

UNIFAC (LLE) 64.36 0.3290 0.6710 - 

 

According to the AAD and AARD % values for ethanol/DIPE/water in Table 8-4, UNIQUAC and UNIFAC 

(VLE) most accurately predict the experimental data.  The AARD % of temperature predictions for UNIQUAC 

and UNIFAC (VLE) is 0.01 % and 0.02 % respectively, but the difference is not considered significant since 

both values are very small.  Overall, the AAD and AARD % values from UNIFAC (VLE) are better than those 

from UNIQUAC, with the only significant exception being the water composition of the organic liquid phase.  

The accurate prediction of the ternary heterogeneous azeotrope is very important when simulating a 

heterogeneous azeotropic distillation column.  As UNIFAC (VLE) also predicts this azeotrope more accurately 

than UNIQUAC, it is considered the best model of those studied in this work, to predict ethanol/DIPE/water 

when using built-in parameters in Aspen.  UNIFAC (VLE) predicts an organic liquid phase with a higher water 

composition than the experimental data indicates.  This will lead to a conservative design of the azeotropic 

column, because in actual fact less water will be refluxed to the column in the organic liquid phase.  Therefore 

the actual energy requirements will be less than that predicted with the built-in Aspen parameters.   

The predictions plotted in Figure 8-23 and the high AAD and AARD % values listed in Table 8-4 however 

indicates that improvements can still be made to these model predictions via parameter regression.   

All the models, except for UNIFAC (LLE), predict the composition of the n-propanol/water azeotrope relatively 

accurately (with a somewhat lower n-propanol composition) in the n-propanol/DIPE/water system (Figure 
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8-24).  The azeotropes of this system are also listed in Table 8-9. UNIFAC (LLE) predicts a much higher 

temperature for the n-propanol/water azeotrope.    UNIFAC (VLE) predicts a binary azeotrope between 

n-propanol and DIPE (89.82 mole % DIPE and 10.18 mole % n-propanol) which does not exist. The 

DIPE/water azeotrope is most accurately predicted by NRTL and UNIQUAC.  UNIFAC (VLE) and UNIFAC 

(LLE) are also close, but with a slightly lower and higher DIPE composition, respectively.  The n-

propanol/DIPE/water system exhibits no ternary heterogeneous azeotrope and none of the models predicts one 

either.   

Table 8-9: Azeotropes of the n-propanol/DIPE/water system measured at 101.3 kPa, with those predicted by 

Aspen with built-in parameters. 

Source Temp (
o
C) 

Composition 

n-propanol DIPE water 

UNIFAC (LLE) 61.61 - 0.7879 0.2121 

This work 62.16 - 0.7814 0.2186 

NRTL 62.46 - 0.7799 0.2201 

UNIQUAC 62.75 - 0.7774 0.2226 

UNIFAC (VLE) 63.13 - 0.7727 0.2273 

UNIQUAC 87.55 0.4229 - 0.5771 

NRTL 87.65 0.4249 - 0.5751 

Gmehling et al. (1994) 87.66 0.4320 - 0.5680 

UNIFAC (VLE) 88.16 0.4226 - 0.5774 

UNIFAC (LLE) 92.16 0.3751 - 0.6249 

UNIFAC (VLE) 67.69 0.1018 0.8982 - 

 

Regarding the phase envelope, NRTL predicts a much larger heterogeneous region and therefore incorrectly 

include homogeneous phase equilibrium points in this region.   The UNIQUAC prediction is a minor 

improvement by more accurately predicting the organic liquid phase, but still overestimates the size of the 

heterogeneous region around the top of the phase envelope.  UNIFAC (VLE) predicts the phase envelope 

around the plait point area and the top of the heterogeneous region slightly more accurate, but fails to predict the 

organic liquid phase correctly.  UNIFAC (LLE) predicts a smaller phase envelope and therefore incorrectly 

excludes heterogeneous phase equilibrium points from the heterogeneous region.   Directionally, all the models 

predict the tie-lines relatively accurately. NRTL and UNIQUAC most accurately predict the vapour phase, 

followed by UNIFAC (VLE).  The UNIFAC (LLE) vapour phase prediction on the other hand does not compare 

well with the experimental data at all.   

When considering the AAD and AARD % values in Table 8-5, it seems as if UNIFAC (VLE) and UNIFAC 

(LLE) should, overall, most accurately predict the experimental data.  However since UNIFAC (LLE) predicts 

an n-propanol/DIPE azeotrope that does not exist and UNIFAC (VLE) poorly predicts the n-propanol/water 

azeotrope, these two can be eliminated as options in this evaluation.  The AARD % of temperature predictions 

by NRTL and UNIQUAC is 0.01 % and 0.02 % respectively, but the difference is not considered significant 

since both values are very small.  Overall the AAD and AARD % values from UNIQUAC are better than those 

from NRTL, with the only significant exception being the DIPE composition of the aqueous liquid phase.  This 
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AARD % value is very high since the UNIQUAC prediction of the aqueous liquid phase is so close to the 

n-propanol axis on the diagram, that is almost looks like the model predicts liquid-liquid separation between 

n-propanol and water.  There is however no liquid-liquid separation between these two components.  Although 

this AARD % value is very high, when taking all the phases into account UNIQUAC is considered the best 

model, of those studied in this work, to predict n-propanol/DIPE/water when using built-in parameters in Aspen.  

As heterogeneous azeotropic distillation cannot be performed on this system, the only aspects to take into 

consideration are the prediction of the binary azeotropes, tie lines and phase envelope.  UNIQUAC performs 

best for all of these features.  

However, the predictions plotted in Figure 8-24 and the high AAD and AARD % values listed in Table 8-5 

indicates that improvements can still be made to these model predictions via parameter regression.  

All the models, except UNIFAC (LLE), predict the n-propanol/water azeotrope relatively accurately (with a 

somewhat lower n-propanol composition) in the n-propanol/isooctane/water system (Figure 8-25).  The 

azeotropes of this system are also given in Table 8-10.  UNIFAC (LLE) predicts a much higher temperature for 

the n-propanol/water azeotrope. For the n-propanol/isooctane azeotrope the NRTL prediction is the closest to 

the composition found in literature.  The predictions from UNIFAC (VLE) are also close, but with a somewhat 

lower n-propanol composition. UNIFAC (LLE) predicts a much higher temperature for this azeotrope.  The 

UNIQUAC prediction has a higher n-propanol composition that found in literature.  The isooctane/water 

azeotrope is most accurately predicted by NRTL and UNIQUAC.  UNIFAC (VLE) and UNIFAC (LLE) are also 

close, but with a slightly higher DIPE composition.  The ternary heterogeneous azeotrope is most accurately 

predicted by UNIFAC (VLE), followed by NRTL and then UNIQUAC. Each predicts a somewhat higher 

n-propanol composition.  UNIFAC (LLE) predicts a ternary azeotrope with a much lower n-propanol 

composition.   

NRTL, UNIQUAC and UNIFAC (VLE) predict a much larger phase envelope and therefore incorrectly include 

homogeneous phase equilibrium point in the heterogeneous region.   UNIFAC (LLE) provides the most accurate 

prediction of the phase envelope by only slightly over-estimating the size of the heterogeneous region around 

the plait point.  As with the phase envelope, the tie-lines predicted by NRTL, UNIQUAC and UNIFAC (VLE) 

do not agree well with the experimental data.  Even the tie-lines predicted by UNIFAC (LLE) are not in 

agreement with the experimental data.  The lower tie-lines predicted by all the models are still comparable, but 

the ones close to the ternary azeotrope and plait point exhibit opposite directionalities.   The vapour phase is 

most accurately predicted by UNIFAC (LLE).  The vapour phase prediction by UNIQUAC seems to follow the 

same trend as the experimental data, but extends much farther into the heterogeneous region.  The NRTL and 

UNIFAC (VLE) predictions however deviate from this trend in the area of the vapour phase with high 

n-propanol compositions. 
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Table 8-10: Azeotropes of the n-propanol/isooctane/water system measured at 101.3 kPa, with those predicted 

by Aspen with built-in parameters. 

Source Temp (
o
C) 

Composition 

n-propanol isooctane water 

UNIFAC (VLE) 74.16 0.2058 0.4449 0.3493 

NRTL 74.25 0.2170 0.4280 0.3550 

UNIQUAC 74.55 0.2327 0.4135 0.3538 

This work 74.59 0.1855 0.4246 0.3899 

UNIFAC (LLE) 77.26 0.1394 0.4647 0.3959 

UNIFAC (LLE) 78.92 - 0.5528 0.4472 

UNIFAC (VLE) 78.92 - 0.5528 0.4472 

This work 79.13 - 0.5290 0.4710 

UNIQUAC 79.22 - 0.5471 0.4529 

NRTL 79.25 - 0.5464 0.4536 

UNIQUAC 87.55 0.4229 - 0.5771 

NRTL 87.65 0.4249 - 0.5751 

Gmehling et al. (1994) 87.75 0.4316 - 0.5684 

UNIFAC (VLE) 88.16 0.4226 - 0.5774 

UNIFAC (LLE) 92.16 0.3751 - 0.6249 

UNIFAC (VLE) 83.64 0.4484 0.5516 - 

NRTL 84.65 0.4506 0.5494 - 

UNIQUAC 84.67 0.4729 0.5271 - 

Hiaki et al. (1994) 84.78 0.4533 0.5412 - 

UNIFAC (LLE) 88.88 0.4563 0.5437 - 

 

As seen in the Figure 8-25, the AARD % values (Table 8-6) also indicate that the experimental data are not 

accurately predicted by any of the thermodynamic models under investigation, with built-in Aspen parameters. 

It seems as if overall UNIFAC (LLE) can predict the experimental data better than the rest, with exception of 

the isooctane composition in the aqueous liquid phase.  UNIFAC (LLE), however, poorly predicts the binary 

n-propanol/water and ternary azeotropes.  The isooctane and n-propanol compositions in the aqueous liquid 

phase are overall poorly predicted by the models with its built-in parameters.  The best temperature prediction is 

by UNIQUAC with an AARD % of 0.03 %, followed by NRTL and UNIFAC (VLE) with 0.05 % each.  The 

difference is again not considered significant since both values are still very small.  Although the AAD and 

AARD % values indicate that UNIFAC (VLE) should be considered after UNIFAC (LLE), its estimation of the 

phase envelope and tie-lines are so poor that it cannot be used to accurately predict the data.  

The predictions plotted in Figure 8-25 and the high AAD and AARD % values listed in Table 8-6 indicates that 

improvements definitely need to be made to these model predictions via parameter regression. Clearly none of 

the models considered, with its built-in parameters, accurately predict the VLLE data.  As it is, none of the 

models are deemed suitable for simulating a separation sequence of the n-propanol/isooctane/water system.   
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Figure 8-23: Ternary phase diagram of measured Ethanol/DIPE/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with built-in 

Aspen parameters. 
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Table 8-11: AAD and AARD % values for VLLE of Ethanol/DIPE/Water by the NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) models with built-in Aspen 

parameters at 101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xDIPE xethanol xwater xDIPE xethanol xwater yDIPE yethanol ywater 

  NRTL   

AAD 0.0826 0.0779 0.0652 0.0510 0.0081 0.0716 0.0792 0.0142 0.0192 0.0087 0.4778 

AARD % 0.02 24.66 25.34 26.25 120.78 49.60 9.67 2.27 13.58 4.51 276.68 

  UNIQUAC   

AAD 0.0483 0.0734 0.0529 0.0304 0.0051 0.0413 0.0461 0.0108 0.0142 0.0057 0.3282 

AARD % 0.01 18.29 20.93 18.84 99.52 29.54 5.60 1.71 11.19 2.97 208.62 

  UNIFAC (VLE)   

AAD 0.0585 0.0397 0.0286 0.0439 0.0018 0.0188 0.0197 0.0130 0.0142 0.0100 0.2483 

AARD % 0.02 11.43 11.83 36.34 24.57 14.75 2.43 2.12 11.19 5.32 120.01 

  UNIFAC (LLE)   

AAD 0.1578 0.0819 0.0439 0.0573 0.0063 0.0802 0.0863 0.0236 0.0183 0.0099 0.5655 

AARD % 0.05 30.97 16.61 36.06 119.18 67.30 10.16 3.87 12.48 5.06 301.75 
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Figure 8-24: Ternary phase diagram of measured n-Propanol/DIPE/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with built-

in Aspen parameters. 
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Table 8-12: AAD and AARD % values for VLLE of n-Propanol/DIPE/Water by the NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) models with built-in Aspen 

parameters at 101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xDIPE xethanol xwater xDIPE xethanol xwater yDIPE yethanol ywater 

  NRTL   

AAD 0.0265 0.0366 0.1116 0.1370 0.0012 0.0257 0.0254 0.0355 0.0324 0.0075 0.4393 

AARD % 0.01 9.79 42.19 41.04 46.92 64.39 2.70 5.84 83.63 2.88 299.38 

                        

  UNIQUAC   

AAD 0.0842 0.0495 0.0523 0.0688 0.0039 0.0215 0.0249 0.0290 0.0174 0.0132 0.36 

AARD % 0.02 25.82 26.74 20.84 179.81 40.01 2.77 4.92 55.96 4.91 361.81 

                        

  UNIFAC (VLE)   

AAD 0.0652 0.0451 0.0424 0.0721 0.0011 0.0132 0.0133 0.0205 0.0124 0.0138 0.2991 

AARD % 0.02 26.16 22.17 29.15 46.35 25.91 1.49 3.38 65.67 5.17 225.45 

                        

  UNIFAC (LLE)   

AAD 0.0596 0.0866 0.0424 0.0469 0.0010 0.0079 0.0087 0.0418 0.0476 0.0097 0.35 

AARD % 0.02 42.01 28.82 18.33 30.85 20.32 0.96 6.88 72.19 3.90 224.28 
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Figure 8-25: Ternary phase diagram of measured n-Propanol/Isooctane/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with 

built-in Aspen parameters. 
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Table 8-13: AAD and AARD % values for VLLE of n-Propanol/Isooctane/Water by the NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) models with built-in Aspen 

parameters at 101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xIsooctane xn-Propanol xwater xIsooctane xn-Propanol xwater yIsooctane yn-Propanol ywater 

  NRTL   

AAD 0.1625 0.1611 0.1624 0.0331 0.0022 0.0889 0.0870 0.0274 0.0485 0.0525 0.8258 

AARD % 0.05 26.88 86.13 49.60 73.41 127.08 10.11 6.48 58.07 13.45 451.23 

                        

  UNIQUAC   

AAD 0.1200 0.1311 0.1496 0.0317 0.0025 0.0946 0.0922 0.0274 0.0485 0.0525 0.7500 

AARD % 0.03 22.06 74.00 44.06 46.72 117.93 10.81 6.48 58.07 13.45 393.61 

                        

  UNIFAC (VLE)   

AAD 0.1838 0.1406 0.1237 0.0352 0.0024 0.0696 0.0677 0.0340 0.0365 0.0551 0.7485 

AARD % 0.05 23.20 57.57 52.74 131.04 113.43 7.59 8.11 37.75 14.12 445.61 

                        

  UNIFAC (LLE)   

AAD 0.2898 0.1688 0.1424 0.0396 0.0045 0.0595 0.0634 0.0414 0.0399 0.0081 0.8576 

AARD % 0.08 30.86 64.80 38.64 172.39 79.43 7.41 9.81 29.22 2.05 434.68 
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8.4.2 Regression of data  

As set out in Chapter 1, the regression of thermodynamic model parameters on the data measured was 

performed in this work. The ability of NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) to accurately 

predict the experimental data with built-in Aspen parameters has been investigated in the previous section and 

room for improvement has been identified.  Areas where these models fall short to correctly predict the VLLE 

data have been high-lighted and some reasons for these shortcomings were given. This section reports on the 

effort made to improve these model predictions by regressing new parameters for each.  The Aspen Plus Data 

Regression System (DRS) was used to the fit parameters of each model to the phase equilibrium data measured 

in this work and data obtained from literature.  The literature data used for regressions are listed in Appendix G.  

The regressed parameters for each system measured in this work are tabulated in Appendix H.  It is important to 

note that these parameters are not necessarily the optimum parameters that can be obtained for the measured 

data.  The goal was only to improve upon the built-in parameters in Aspen. The NIST Wagner 25 Liquid Vapour 

Pressure Equation (Appendix F, Table F-1) was used to predict vapour pressure for the regression.  In 

Appendix C, Figures C-1 to C-5, it is shown that the Wagner predictions fit the vapour pressures, as measured in 

this work, accurately. The regression method followed in this section is explained in Chapter 7. The 

experimental data together with estimated data with regressed parameters are plotted in Figures 8-26 to 8-29. 

The ternary phase diagrams are constructed in the same manner as in the previous section.  The measured 

azeotropes as well as those obtained from literature (listed in Section 8-2) are indicated on these diagrams by a 

solid black dot.  The model predictions of the azeotropes are indicated on the diagrams by open dots in a 

different colour for each model, indicated in the legend.  The model predictions of the phase envelope are 

plotted against the experimental organic and aqueous liquid phase data.  The same is done for the estimated and 

measured vapour phase values.  Three tie-lines of each model and the experimental data are indicated on the 

diagrams – one in the lower alcohol region, one near the ternary heterogeneous azeotropic region and one in the 

higher alcohol region, approaching the plait point.  The AADs and AARDs between experimental and predicted 

values for the three systems measured in this work are shown in Tables 8-7 to 8-9.   

First consider the azeotropes of the ethanol/DIPE/water system in Figure 8-26 and Table 8-14.  UNIFAC 

(LLE) most accurately predicts the composition of the ethanol/water azeotrope, followed by UNIFAC (VLE), 

NRTL and then UNIQUAC all with lower ethanol compositions.  The UNIFAC (LLE) prediction of the boiling 

temperature of this azeotrope is however much lower than that found in literature.  With the built-in Aspen 

parameters UNIFAC (LLE) did not predict any ethanol/water azeotrope and this is of a great improvement.  For 

the NRTL, UNIQUAC and UNIFAC (VLE) of the models the ethanol/water azeotrope is predicted with less 

accuracy by the regressed parameters.  For the ethanol/DIPE azeotrope the UNIFAC (VLE) prediction is the 

closest to the composition found in literature.  NRTL and UNIQUAC predict an ethanol/DIPE azeotrope with a 

higher ethanol composition.  UNIFAC (LLE) predicts an ethanol/DIPE azeotrope with a lower ethanol 

composition than that found in literature.  Only the UNIFAC (VLE) prediction of this azeotrope was improved 

upon while NRTL, UNIQUAC and UNIFAC (LLE) all predict the azeotrope less accurately with the regressed 

parameters.  The DIPE/water azeotrope is most accurately predicted by NRTL and UNIQUAC.  UNIFAC 

(VLE) and UNIFAC (LLE) are also close, but with a slightly lower and higher DIPE composition, respectively.  

This indicates there are no significant changes in the prediction of this azeotrope by the regressed parameters.  

The DIPE/water azeotrope is still accurately predicted.  The composition of the ternary heterogeneous azeotrope 
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is most accurately predicted by NRTL, followed by UNIFAC (VLE), UNIQUAC and UNIFAC (LLE). There is 

a significant improvement of the ternary azeotrope prediction by NRTL.  The boiling temperature of this 

azeotrope is least accurately predicted by NRTL, but only differs from the measured temperature with 0.63 
o
C. 

The prediction by UNIQUAC remained more or less the same, while the predictions by UNIFAC (VLE) and 

UNIFAC (LLE) are now less accurate.  

Table 8-14: Azeotropes of the ethanol/DIPE/water system measured at 101.3 kPa, with those predicted by 

Aspen with regressed parameters. 

Source Temp (
o
C) 

Composition 

ethanol DIPE water 

UNIFAC (VLE) 60.88 0.1180 0.6850 0.1969 

This work 61.04 0.1377 0.6659 0.1964 

UNIFAC (LLE) 61.27 0.1007 0.6985 0.2008 

UNIQUAC 61.30 0.1669 0.6399 0.1932 

NRTL 61.67 0.1351 0.6612 0.2036 

UNIFAC (VLE) 61.66 - 0.7875 0.2125 

UNIFAC (LLE) 61.85 - 0.7856 0.2144 

This work 62.16 - 0.7814 0.2186 

UNIQUAC 62.42 - 0.7803 0.2197 

NRTL 62.64 - 0.7792 0.2208 

UNIFAC (LLE) 76.36 0.8903 - 0.1097 

UNIQUAC 77.30 0.8100 - 0.1900 

NRTL 77.68 0.8573 - 0.1427 

UNIFAC (VLE) 77.97 0.8725 - 0.1275 

Gmehling et al. (1994) 78.12 0.8950 - 0.1050 

Benito and Lopez (1992) 64.00 0.3180 0.6820 - 

NRTL 64.21 0.3556 0.6444 - 

UNIFAC (VLE) 64.24 0.3310 0.6690 - 

UNIQUAC 64.79 0.3544 0.6456 - 

UNIFAC (LLE) 64.90 0.2902 0.7098 - 

 

Regarding the phase envelope, UNIQUAC yields the least accurate prediction.  It predicts a much larger phase 

envelope and therefore incorrectly includes homogeneous phase equilibrium points in the heterogeneous region.   

The regressed parameters for UNIQUAC estimate an even larger heterogeneous region than the built-in Aspen 

parameters. The NRTL prediction is marginally better than UNIQUAC, but still overestimates the size of the 

heterogeneous region around the top on the phase envelope.  The NRTL phase envelope prediction is however 

improved by the regressed parameters.  The UNIFAC (LLE) phase envelope prediction is also greatly improved 

by the regressed parameters and it predicts the phase envelope more accurately around the plait point area and 

the top of the heterogeneous region, but fails to predict the organic liquid phase completely.  With the built-in 

Aspen parameters UNIFAC (VLE) also did not predict the organic liquid phase correctly, but with the regressed 

parameters it now predicts it more accurately.  UNIFAC (VLE) also still predicts the phase envelope most 

accurately.  The lower two tie-lines are sufficiently predicted by all the models, but only UNIFAC (VLE) and 
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NRTL accurately predict the tie-line near the plait point. The plait point tie-line predictions by UNIQUAC and 

UNIFAC (LLE) are however greatly improved by the regressed parameters. All the model predictions of the 

vapour phase are sufficiently accurate.   

According to the AAD and AARD values for ethanol/DIPE/water in Table 8-7, UNIFAC (VLE) most accurately 

predicts the experimental data.  The regressed parameters also improved the overall AAD of UNIFAC (VLE) 

from ca 0.25 to 0.16 and the overall AARD % from ca 120. % to 82 % (compare Tables 8-4 and 8-7).  The 

overall AAD values of NRTL and UNIFAC (LLE) are also improved by the regressed parameters from ca 0.48 

to 0.27 and ca 0.57 to 0.24, respectively.  The overall AAD value of UNIQUAC was increased by the regressed 

parameters from ca 0.33 to 0.41 and therefore indicates a decrease in the accuracy of the prediction.  This can 

also be observed when comparing the shapes of the phase envelope in Figures 8-23 and 8-26.  Overall the AAD 

and AARD % values for UNIFAC (VLE) are better than those for NRTL, but NRTL predicts the ternary 

azeotrope more accurately.   

Since the accurate prediction of the ternary heterogeneous azeotrope is very important when simulating a 

heterogeneous azeotropic distillation column, NRTL with regressed parameters is chosen as thermodynamic 

model for simulating this separation sequence in Aspen.     

The n-propanol/DIPE/water system (Figure 8-27) only exhibits two azeotropes namely n-propanol/water and 

DIPE/water.  Also see Table 8-15. NRTL most accurately predicts the n-propanol/water azeotrope, followed by 

UNIFAC (VLE), UNIFAC (LLE) and then UNIQUAC all with lower ethanol compositions.  The UNIFAC 

(LLE) prediction of the n-propanol/water azeotrope is improved by the regressed parameters and the UNIQUAC 

prediction with regressed parameters is slightly less accurate than with built-in Aspen parameters.  UNIFAC 

(VLE) still predicts a binary azeotrope between n-propanol and DIPE, which does not exist in reality.  As with 

the built-in Aspen parameters, the DIPE/water azeotrope is most accurately predicted by NRTL and UNIQUAC 

with the regressed parameters.  The UNIFAC (VLE) and UNIFAC (LLE) are improved and also very close to 

the azeotropic point found in literature.  The n-propanol/DIPE/water system exhibits no ternary heterogeneous 

azeotrope and none of the models predicts one either.   
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Table 8-15:Azeotropes of the n-propanol/DIPE/water system measured at 101.3 kPa, with those predicted by 

Aspen with regressed parameters. 

Source Temp (
o
C) 

Composition 

n-propanol DIPE water 

UNIFAC (LLE) 61.86 - 0.7856 0.2144 

UNIFAC (VLE) 61.95 - 0.7846 0.2154 

This work 62.16 - 0.7814 0.2186 

UNIQUAC 62.45 - 0.7801 0.2199 

NRTL 62.54 - 0.7792 0.2208 

NRTL 87.30 0.4294 - 0.5706 

UNIQUAC 87.49 0.4032 - 0.5968 

Gmehling et al. (1994) 87.66 0.4320 - 0.5680 

UNIFAC (LLE) 87.86 0.4162 - 0.5838 

UNIFAC (VLE) 88.33 0.4192 - 0.5808 

UNIFAC (VLE) 68.45 0.0113 0.9887 - 

 

The regressed parameters for UNIQUAC yield the least accurate prediction of the phase envelope by incorrectly 

estimating LLE behaviour between n-propanol and water.  The NRTL prediction is improved by the regressed 

parameters since it now estimates a smaller heterogeneous region, but it still includes some of the homogeneous 

area around the plait point.  The regressed parameters for UNIFAC (LLE) also improved its prediction of the 

phase envelope by enlarging the heterogeneous region it predicts.  It does however now overestimate the 

heterogeneous region around the plait point.  With the built-in Aspen parameters UNIFAC (VLE) did not 

predict the organic liquid phase correctly, but with the regressed parameters it now does.  UNIFAC (VLE) most 

accurately predicts the phase envelope of all the models in question.  All the models accurately predict all the 

tie-lines.  All the models also accurately predict of the vapour phase, an improvement made by the regressed 

parameters.  The built-in Aspen parameters predict a vapour phase with a much lower n-propanol composition 

when using UNIFAC (LLE) than the regressed parameters for UNIFAC (LLE). This is especially an 

improvement made by the regressed parameters. 

The AAD and AARD % values for n-propanol/DIPE/water in Table 8-8 indicate that UNIFAC (VLE) most 

accurately predicts the experimental data.  UNIFAC (VLE) however incorrectly predicts the existence of an 

n-propanol/DIPE azeotrope.  The regressed parameters improved the overall AAD of UNIFAC (VLE) from ca 

0.3 to 0.2 and the overall AARD % from ca 225 % to 162 % (compare Tables 8-5 and 8-8).  The overall AAD 

values of NRTL are improved by the regressed parameters from ca 0.44 to 0.39. The overall AAD values of 

UNIFAC (LLE) increased from 0.35 to 0.48 with the regressed parameters, but the overall AARD % were 

improved from ca 224 % to 223 %.   The overall AAD value of UNIQUAC was increased by the regressed 

parameters from ca 0.36 to 0.4, but the overall AARD % was improved from ca 362 % to 223 % and therefore 

suggests an increase in the accuracy of its prediction.  This can also be confirmed by the LLE behaviour 

predicted by the regressed parameters between n-propanol and water in Figure 8-27.  Overall the AAD and 

AARD % values for UNIFAC (VLE) are better than those for NRTL and UNIFAC (LLE), but since UNIFAC 
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(VLE) incorrectly predicts an n-propanol/DIPE azeotrope it is suggested that NRTL or UNIFAC (LLE) be used 

for simulations in Aspen.   

Only NRTL and UNIQUAC parameters could be determined for the n-propanol/isooctane/water system 

(Figure 8-28).  No improvement could be obtained in the UNIFAC (VLE) and (LLE) parameters with the 

measured data and literature available.  Both NRTL and UNIQUAC predict the n-propanol/water azeotrope less 

accurately with the regressed parameters (Table 8-16 and Figure 8-28).  NRTL predicts an n-propanol/water 

azeotrope with a significantly higher n-propanol composition than that found in literature for the azeotrope and 

UNIQUAC predicts a significantly lower n-propanol composition.  For the n-propanol/isooctane azeotrope the 

NRTL prediction is the closest to the composition found in literature, but UNIQUAC closest to the boiling 

temperature.  Both the NRTL and UNIQUAC predictions of the n-propanol/isooctane azeotrope remained the 

same as with the built-in parameters.  UNIQUAC predicts an n-propanol/isooctane azeotrope with a higher 

n-propanol composition than that found in literature.  The isooctane/water azeotrope is most accurately 

predicted by UNIQUAC.  Both the NRTL and UNIQUAC predictions of the isooctane/water azeotrope also 

remained more or less the same as with the built-in parameters. The ternary heterogeneous azeotrope is most 

accurately predicted by UNIQUAC, as opposed to NRTL with the built-in parameters. There is a small 

improvement in the ternary azeotrope prediction by UNIQUAC.  There is a significant change in the prediction 

of the ternary azeotrope by NRTL and its accuracy has decreased considerably.  

Table 8-16: Azeotropes of the n-propanol/isooctane/water system measured at 101.3 kPa, with those predicted 

by Aspen with regressed parameters. 

Source Temp (
o
C) 

Composition 

n-propanol isooctane water 

This work 74.59 0.1855 0.4246 0.3899 

UNIQUAC 75.79 0.2177 0.4058 0.3765 

NRTL 76.74 0.1229 0.4985 0.3785 

This work 79.13 - 0.5290 0.4710 

NRTL 79.23 - 0.5468 0.4532 

UNIQUAC 79.64 - 0.5394 0.4606 

NRTL 86.68 0.4751 - 0.5249 

UNIQUAC 87.60 0.4247 - 0.5753 

Gmehling et al. (1994) 87.75 0.4316 - 0.5684 

Hiaki et al. (1994) 84.78 0.4533 0.5412 - 

UNIQUAC 85.40 0.4743 0.5257 - 

NRTL 87.13 0.4496 0.5504 - 

 

Regarding the phase envelope, both the NRTL and UNIQUAC predictions have been improved by the regressed 

parameters.  Both however still predict a much larger phase envelope and therefore incorrectly include 

homogeneous phase equilibrium points in the heterogeneous region.   UNIQUAC predicts a smaller 

heterogeneous region and is therefore more accurate than NRTL.  The directionality of the upper two tie-lines is 

changed by the regressed parameters from those predicted by the built-in parameters.  However, the tie-line still 

does not agree well with the experimental data.  The vapour phase prediction by UNIQUAC with regressed 
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parameters did not differ from that predicted by the built-in parameters.  It still seems to follow the same trend 

as the experimental data, but extends much farther into the heterogeneous region.  The NRTL prediction also 

now seems to follow the same trend, but deviates from the experimental data around its predicted ternary 

azeotropic point.  

According to the AAD and AARD values for n-propanol/isooctane/water in Table 8-9, UNIQUAC most 

accurately predicts the experimental data.  Overall the AAD and AARD % values from UNIQUAC with 

regressed parameters are better than with built-in parameters, with the only significant exception being the 

isooctane composition of the aqueous liquid phase.   The overall AAD value of NRTL was increased by the 

regressed parameters from ca 0.83 to 0.9, but the overall AARD % was improved from ca 451 % to 423 % and 

therefore suggests an increase in the accuracy of its prediction.   Although the regressed parameters slightly 

improved the VLLE data prediction of these models, the AAD and AARD % values are still unacceptably high.  

Other, more advanced thermodynamic models might predict the experimental data more accurately.  It does not 

fall into the scope of this project to investigate these more advanced models.  When such inaccurate predictions 

are to be used in a simulation of a heterogeneous azeotropic distillation, the results obtained may differ greatly 

from what will happen in practice.  Therefore it was decided not to simulate a separation sequence for the 

dehydration of n-propanol with isooctane as entrainer.  

To summarize, ethanol/DIPE/water phase equilibrium is best predicted by UNIFAC (VLE) when using built-in 

Aspen parameters.  When new parameters were regressed for the experimental data, the UNIFAC (VLE) 

parameters were improved even further, but NRTL predicts the composition of the ternary azeotrope more 

accurately and was therefore selected for simulation.  UNIQUAC is considered to predict the 

n-propanol/DIPE/water phase equilibrium most accurately when using built-in Aspen parameters.  With 

regressed parameters the NRTL and UNIFAC (LLE) predictions are improved and are considered to be most 

accurate.  None of the models predict n-propanol/isooctane/water phase equilibrium accurately with built-in 

Aspen parameters.  The NRTL and UNIQUAC predictions were improved by the regressed parameters, but 

were still not sufficient of simulation use.   

It was found that there is a trade-off between the accurate prediction of the phase envelope with tie lines and 

ternary heterogeneous and the accurate prediction of the binary azeotropes.  If the phase envelope, tie lines and 

ternary heterogeneous azeotrope predictions are improved, the binary azeotrope predictions are compromised.  

One has to decide which is more important for the application of the model.  In the case of heterogeneous 

azeotropic distillation, it is more important to predict the phase envelope, tie lines and ternary azeotrope 

correctly.  

The UNIFAC models generally have the lowest AARD % values, which indicate more accurate prediction of 

the compositions of the vapour and liquid phases.  The temperature AAD and AARD % values are similar for 

all the models, for built-in and regressed parameters.  NRTL and UNIQUAC generally predict the azeotropes 

more accurately.  This might be due to the fact that NRTL and UNIQUAC are based on molecular contributions 

as opposed to UNIFAC that is based on group contributions (Section 3.7 to 3.9).   
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Figure 8-26: Ternary phase diagram of measured Ethanol/DIPE/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with regressed 

parameters. 
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Table 8-17: AAD and AARD % values for VLLE of Ethanol/DIPE/Water by the NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) models with regressed parameters at 

101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xDIPE xethanol xwater xDIPE xethanol xwater yDIPE yethanol ywater 

  NRTL   

AAD 0.0598 0.0502 0.0345 0.0376 0.0033 0.0248 0.0226 0.0136 0.0144 0.0124 0.2731 

AARD % 0.02 14.14 15.97 18.35 145.93 23.10 2.71 2.20 12.23 6.64 241.28 

                        

  UNIQUAC   

AAD 0.0724 0.0914 0.0601 0.0460 0.0039 0.0357 0.0388 0.0238 0.0282 0.0070 0.4073 

AARD % 0.02 27.11 21.64 25.96 75.25 24.54 4.79 3.85 17.61 3.63 204.40 

                        

  UNIFAC (VLE)   

AAD 0.0275 0.0296 0.0202 0.0214 0.0011 0.0151 0.0155 0.0095 0.0091 0.0080 0.1572 

AARD % 0.01 8.13 10.04 11.63 21.46 13.94 1.89 1.52 8.62 4.27 81.51 

                        

  UNIFAC (LLE)   

AAD 0.0313 0.0572 0.0294 0.0375 0.0026 0.0194 0.0214 0.0148 0.0181 0.0078 0.2394 

AARD % 0.01 15.75 13.36 18.62 32.70 14.77 2.66 2.35 13.49 4.19 117.90 
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Figure 8-27: Ternary phase diagram of measured n-Propanol/DIPE/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with 

regressed parameters. 
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Table 8-18: AAD and AARD % values for VLLE of n-Propanol/DIPE/Water by the NRTL, UNIQUAC, UNIFAC (VLE) and UNIFAC (LLE) models with regressed 

parameters at 101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xDIPE xn-Propanol xwater xDIPE xn-Propanol xwater yDIPE yn-Propanol ywater 

  NRTL   

AAD 0.0853 0.0690 0.0463 0.1000 0.0009 0.0104 0.0109 0.0310 0.0169 0.0155 0.3861 

AARD % 0.02 38.87 22.87 25.97 38.39 21.66 1.22 5.19 67.79 5.75 227.72 

                        

  UNIQUAC   

AAD 0.0866 0.0625 0.0659 0.1119 0.0009 0.0089 0.0095 0.0262 0.0153 0.0157 0.4033 

AARD % 0.03 38.74 29.35 27.38 37.20 18.38 1.07 4.39 60.56 5.77 222.87 

                        

  UNIFAC (VLE)   

AAD 0.0370 0.0195 0.0346 0.0415 0.0007 0.0129 0.0134 0.0179 0.0105 0.0116 0.1998 

AARD % 0.01 10.88 19.81 12.36 20.78 28.19 1.48 2.95 61.16 4.35 161.96 

                        

  UNIFAC (LLE)   

AAD 0.1206 0.0553 0.0858 0.1223 0.0010 0.0134 0.0142 0.0309 0.0165 0.0163 0.4764 

AARD % 0.04 33.18 28.00 28.53 24.11 27.21 1.58 5.20 68.96 6.01 222.82 
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Figure 8-28: Ternary phase diagram of measured n-Propanol/Isooctane/Water VLLE data at 101.325 kPa and thermodynamic models (with tie lines and azeotropes) with 

regressed parameters. 
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Table 8-19: AAD and AARD % values for VLLE of n-Propanol/Isooctane/Water by the NRTL and UNIQUAC models with regressed parameters at 101.325 kPa. 

  
Temp (

o
C) 

organic liquid aqueous liquid vapour 
∑ 

  xIsooctane xn-Propanol xwater xIsooctane xn-Propanol xwater yIsooctane yn-Propanol ywater 

  NRTL   

AAD 0.2802 0.1655 0.1507 0.0195 0.0066 0.0855 0.0908 0.0437 0.0359 0.0218 0.9002 

AARD % 0.08  30.53  61.63  25.40  133.93  105.47  11.01  10.16  38.93  5.56  422.69 

                        

  UNIQUAC   

AAD 0.1474 0.1358 0.1012 0.0526 0.0054 0.0920 0.1459 0.0126 0.0131 0.0097 0.7157 

AARD % 0.04 23.51 43.20 62.20 169.71 71.00 17.29 2.92 17.63 2.47 409.96 
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8.5 SEPARATION SEQUENCE SIMULATIONS 

As stipulated in Chapter 1, one of the goals of this work was to construct and simulate separation sequences for 

the dehydration of ethanol, isopropanol and n-propanol.  The layout and functioning of the separation sequences 

used in this section is explained in chapter 8.  The purpose of simulating these separation sequences in Aspen is 

firstly to illustrate the influence improved regressed parameters have on the simulation results.  Secondly, these 

simulations are performed to provide practical examples of how the chosen entrainer can be used to dehydrate 

each alcohol in question. And lastly it enables a comparison of this entrainer with those generally used in 

industry for each specific alcohol dehydration.  In this section the comparison of entrainers will be focussed on 

the purity to which the products can be produced and the flow rates of the streams, i.e. the size of distillation 

columns required. Sinnot and Towler (2009) provide the following correlation for the diameter of a distillation 

column: 

      «x =	Û Ü:ÝÞBßàyáà       8-1 

where 

 Gâã = maximum vapour rate, kg/s 

 äå = vapour density, kg/m
3
 

 �æå = maximum allowable vapour velocity, based on the total column cross sectional area, m/s 

Equation 8-1 shows that a larger maximum vapour rate will require a larger column diameter and subsequently a 

larger distillation column. The average vapour flow rate in a column is can therefore serve as indication of the 

column size. 

The simulation results are shown in the form of detailed flow sheets in Figures 8-27 to 8-35.  Some important 

flow sheet information is also provided in Tables 8-20 to 8-29. The alcohol and water purities provided in these 

sheets are separation specifications, as used in the simulation of the sequences for the respective columns. The 

reboiler duties, as provided in these sheets, were also used as simulation specifications. Detailed simulation 

results are provided in Appendix I.  It is important to note the flow sheets provided are not necessarily the most 

optimum flow sheet possible since determining the optimum flow sheet for each simulation falls outside the 

scope of this work.  These simulations serve as illustration of the importance of accurate model predictions and 

the comparison that can be drawn between different entrainers for alcohol dehydration.  The pupose was not 

optimization of these flow sheets.  

The simulation of ethanol dehydration via heterogeneous azeotropic distillation with DIPE as entrainer is used 

to illustrate the influence improved regressed parameters have on simulation results (Figures 8-29 and 8-30, 

and Tables 8-20 and 8-21).  As discovered in the previous two sections, the built-in Aspen parameters predict 

an aqueous liquid phase with a higher ethanol composition around the ternary azeotropic point than the 

experimental data shows.  Therefore the built-in parameters predict that more than 4 times the amount of 

distillate (D2) from column 2 is recycled than with the regressed parameters (0.178 and 0.039 for built-in and 

regressed parameters respectively, in Table 8-20).  This is also reflected in the larger vapour flow rate in column 

1 with built-in parameters (15.04 kg/sec), than with regressed parameters (12.14 kg/sec).  The respective 
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condenser duties of the second column for the two flow sheets does not differ that much (ca -1920 kW and -

1930 kW) although the flows of D2 differ significantly, since the compositions of the two D2 streams differ 

greatly.  The significant difference in average vapour flow rates in the recovery column, between built-in and 

regressed parameters, indicates that this column might be under-designed when using built-in parameters and 

will in all likelihood flood.  The significantly higher reflux ratio in the second column, with regressed 

parameters, indicate that more stages might be required than the built-in parameters predicted. The large 

difference in flow between the D2 streams will however result in over-design of column 1 when using built-in 

Aspen parameters, to accommodate the large flow to the column and the larger vapour flow rate in the column 

(refer to Equation 8-1).  The organic liquid phase around the ternary azeotropic point is also predicted with a 

higher ethanol composition and with a lower DIPE composition by the built-in parameters and a greater amount 

of organic liquid phase is refluxed to column 1 (5.551 and 4.059 for built-in and regressed parameters 

respectively, in Table 8-20).  With the larger recycle of D2 and organic reflux in Figure 8-29, a larger distillate 

(D1) is produced from column 1 and therefore the condenser duty is larger (ca -6400 kW) as opposed to that in 

Figure 8-30 (ca -5270 kW).  The reboiler duty (ca 6540 kW) predicted by the built-in parameters for column 1 is 

also significantly higher than that predicted by the regressed parameters (ca 5410 kW).   

Table 8-20: Flow sheet information for the azeotropic column (C1) of ethanol dehydration with DIPE as 

entrainer, comparing built-in Aspen parameters with regressed parameters. 

Flows and ratios 

  Built-in Regressed   

D2/F ratio 0.178 0.039   

Organic reflux/F ratio 5.551 4.059   

Average vapour flow rate 15.04 12.14 kg/sec 

Condenser 

Temperature 334.41 335.31 K 

Duty -6407.26 -5273.49 kW 

Distillate rate* 0.1727 0.1409 kmol/sec 

Reflux rate** 0.1745 0.1423 kmol/sec 

Reflux ratio 1.01 1.01   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature 349.51 349.84 K 

Duty 6544.24 5412.52 kW 

Bottoms rate* 0.0142 0.0136 kmol/sec 

Boilup rate** 0.1694 0.1364 kmol/sec 

Boilup ratio 11.94 10.03   

*Liquid flow at top of column       

**Vapour flow at top of column       

 

The overall energy balance of the flow sheet simulated with built-in Aspen parameters is ca -1220 kW as 

opposed to ca 204 kW from the regressed parameters provided full energy integration can be achieved.  This all 
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indicates that when built-in Aspen parameters do not accurately predict experimental phase equilibrium data, it 

is of great importance to firstle regress more reliable parameters before simulations can be performed.   

Table 8-21: Flow sheet information for the recovery column (C2) of ethanol dehydration with DIPE as 

entrainer, comparing built-in Aspen parameters with regressed parameters. 

Flow 

  Built-in Regressed   

Average vapour flow rate 0.93 1.46 kg/sec 

Condenser 

Temperature 342.83 348.72 K 

Duty -1917.47 -1933.83 kW 

Distillate rate* 0.0049 0.0011 kmol/sec 

Reflux rate** 0.0421 0.0478 kmol/sec 

Reflux ratio 8.53 44.55   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature 373.17 373.15 K 

Duty 2000.00 2000.00 kW 

Bottoms rate* 0.0139 0.0135 kmol/sec 

Boilup rate** 0.0490 0.0490 kmol/sec 

Boilup ratio 3.53 3.63   

*Liquid flow at top of column       

**Vapour flow at top of column       

 

The simulation performed for ethanol dehydration with DIPE as entrainer, using the regressed parameters 

(Figure 8-30) can be compared to a simulation of ethanol dehydration with benzene as entrainer (Figure 8-31), 

as a way of quantitatively assessing the separation capabilities of the two entrainers. Important flow sheet 

information of these two sequences is also provided in Tables 8-22 and 8-23. The benzene simulation was 

performed with parameters supplied by Christo Crause (2011).  These parameters can be found in Appendix H, 

Table H-11. As stated in chapter 6, benzene has originally been used for ethanol dehydration to first establish 

the method of heterogeneous azeotropic distillation.  Since then it has commonly been used as entrainer for 

ethanol dehydration.  From Figure 8-20 in Section 8.3 it is clear that the aqueous liquid phase around the 

azeotropic point of the ethanol/benzene/water system has a larger ethanol and lower water composition than that 

of the ethanol/DIPE/water system.  Therefore in the ethanol/DIPE/water system more water is removed from the 

azeotropic column (C1) through the aqueous liquid phase and less ethanol is carried to the recovery column 

(C2).  Subsequently less distillate from column 2 need to be recycled since less ethanol is lost to the aqueous 

liquid phase when using DIPE as entrainer.  This can be seen in Figures 8-30 and 8-31.  It is also evident from 

the D2/F ratios of 1.055 and 0.039 for benzene and DIPE respectively.  The recycled D2 stream for 

ethanol/benzene/water is two orders of magnitude larger than for ethanol/DIPE/water.  The vapour flow rate in 

the benzene column is also larger than the DIPE column (13.76 compared to 12.14 in Table 8-22).  A larger 

azeotropic column will therefore be required when benzene is used as entrainer, due to a larger flow to the 
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column and a larger vapour flow in the column (Equation 8-1).  The condenser and reboiler duties of the 

azeotropic column are also significantly higher when using benzene (ca -8720 kW and 8770 kW respectively) as 

opposed to using DIPE (ca -5270 kW and 5410 kW respectively) as entrainer.  This indicates that the azeotropic 

column and energy requirements for ethanol dehydration with benzene as entrainer could be much larger than 

for DIPE.  The difference in average vapour flow and significant difference in reflux ratio in the second column, 

indicates that a larger (more stages) recovery column might be required when using DIPE as entrainer.  

Table 8-22: Flow sheet information for the azeotropic columns, C1, of ethanol dehydration with benzene and 

DIPE as entrainers respectively. 

Flows and ratios 

  Benzene DIPE   

D2/F ratio 1.055 0.039   

Organic reflux/F ratio 4.281 4.059   

Average vapour flow rate 13.76 12.14 kg/sec 

Condenser 

Temperature 337.59 335.31 K 

Duty -8702.19 -5273.49 kW 

Distillate rate* 0.2229 0.1409 kmol/sec 

Reflux rate** 0.1935 0.1423 kmol/sec 

Reflux ratio 0.87 1.01   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature 351.08 349.84 K 

Duty 8768.90 5412.52 kW 

Bottoms rate* 0.0098 0.0136 kmol/sec 

Boilup rate** 0.2248 0.1364 kmol/sec 

Boilup ratio 22.97 10.03   

*Liquid flow at top of column       

**Vapour flow at top of column       
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Table 8-23: Flow sheet information for the recovery columns, C2, of ethanol dehydration with benzene and 

DIPE as entrainers respectively. 

Flow 

  Benzene DIPE   

Average vapour flow rate 1.05 1.46 kg/sec 

Condenser 

Temperature 342.27 348.72 K 

Duty -1831.28 -1933.83 kW 

Distillate rate* 0.0293 0.0011 kmol/sec 

Reflux rate** 0.0148 0.0478 kmol/sec 

Reflux ratio 0.50 44.55   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature 373.16 373.15 K 

Duty 2000.00 2000.00 kW 

Bottoms rate* 0.0135 0.0135 kmol/sec 

Boilup rate** 0.0490 0.0490 kmol/sec 

Boilup ratio 3.63 3.63   

*Liquid flow at top of column       

**Vapour flow at top of column       

 

As previously said (Chapter 5), aqueous IPA originating from the semiconductor manufacturing industry is 

traditionally dehydrated using cyclohexane as an entrainer.  From Figure 8-21 it is evident that DIPE is also a 

potential entrainer for IPA dehydration.  Figures 8-32 and 8-33 contain detailed flow sheets for IPA 

dehydration using cyclohexane and DIPE as entrainers, respectively. Tables 8-24 and 8-25 contain important 

flow sheet information of these sequences. The IPA/cyclohexane simulation has been performed by Arifin and 

Chien (2007).  Only the information provided by Arifin and Chien (2007) could be listed in Tables 8-24 and 

8-25.  In this work, the IPA/DIPE/water simulation was performed in Aspen with its built-in parameters.  These 

parameters adequately predict the IPA/DIPE/water phase equilibrium data measured by Lladosa et al. (2008).  

The flow sheets can be used to compare the separation capacity of cyclohexane and DIPE as entrainers.  Figure 

8-21 in Section 8.3 shows that the aqueous liquid phase around the azeotropic point of the 

IPA/cyclohexane/water system has a larger IPA and lower water composition than that of the IPA/DIPE/water 

system.  Consequently, in the IPA/DIPE/water system more water is removed from the azeotropic column (C1) 

through the aqueous liquid phase and less distillate from column 2 need to be recycled since less IPA is lost to 

the aqueous liquid phase.  This can be seen in Figures 8-32 to 8-33 and Table 8-24.  The recycled D2 stream for 

IPA/cyclohexane/water is an order of magnitude larger than for IPA/DIPE/water.  Compare the D2/F ratios of 

1.092 and 0.183 (Table 8-24) for cyclohexane and DIPE respectively. The recycle flow to the azeotropic column 

is therefore much larger and a larger column will be required when cyclohexane is used as entrainer.  The 

condenser and reboiler duties of the azeotropic column are lower when using cyclohexane (ca -3990 kW and 

4450 kW respectively) as opposed to using DIPE (ca -4810 kW and 5010 kW respectively) as entrainer.  
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However, the condenser and reboiler duties of the recovery column (C2) are higher when using cyclohexane 

(ca -1940 kW and 2140 kW respectively) as opposed to using DIPE (ca -920 kW and 1000 kW respectively) as 

entrainer.  The overall energy balance of the flow sheet simulated with cyclohexane as entrainer is ca 650 kW as 

opposed to 280 kW when using DIPE as entrainer providing full energy integration can be implemented.  This 

indicates that the simulation results, using DIPE as an entrainer, is definitely comparable with that of 

cyclohexane, if not better.   

Table 8-24: Flow sheet information for the azeotropic columns, C1, of IPA dehydration with cyclohexane and 

DIPE as entrainers respectively. 

Feed ratios 

  Cyclohexane DIPE   

D2/F ratio 1.092 0.183   

Organic reflux/F ratio 2.461 3.958   

Average vapour flow rate - 11.30 kg/sec 

Condenser 

Temperature - 334.87 K 

Duty -3988.63 -4806.72 kW 

Distillate rate* 0.1126 0.1258 kmol/sec 

Reflux rate** - 0.9758 kmol/sec 

Reflux ratio - 0.99   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature - 354.93 K 

Duty 4448.38 5007.56 kW 

Bottoms rate* 0.0139 0.0139 kmol/sec 

Boilup rate** - 0.1236 kmol/sec 

Boilup ratio - 8.91   

*Liquid flow at top of column       

**Vapour flow at top of column       
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Table 8-25: Flow sheet information for the recovery columns, C2, of IPA dehydration with cyclohexane and 

DIPE as entrainers respectively. 

Flow 

  Cyclohexane DIPE   

Average vapour flow rate - 0.02 kg/sec 

Condenser 

Temperature - 338.69 K 

Duty -1943.71 -923.22 kW 

Distillate rate* 0.0303 0.0051 kmol/sec 

Reflux rate** - 0.0160 kmol/sec 

Reflux ratio - 3.15   

*Vapour flow at top of column       

**Liquid flow at top of column       

Reboiler 

Temperature - 373.17 K 

Duty 2137.83 1000.00 kW 

Bottoms rate* 0.0139 0.0139 kmol/sec 

Boilup rate** - 0.0245 kmol/sec 

Boilup ratio - 1.76   

*Liquid flow at top of column       

**Vapour flow at top of column       

 

The experimental results given in Section 8.2 shows that n-propanol/DIPE/water does not exhibit any ternary 

heterogeneous azeotrope. Therefore, one would think that heterogeneous azeotropic distillation cannot be used 

to dehydrate aqueous n-propanol.  However, as stated in chapter 5, Carlson (1949) proposed a method for 

recovering the alcohols from a crude aqueous n-propanol cut also containing ethanol and IPA.  The proposed 

method is based on azeotropic distillation and employs DIPE as entrainer.  The crude aqueous n-propanol cut, 

which Carlson (1949) refers to in his patent, is produced in the Fischer Tropsch process.  The separation 

sequence is similar to those previously discussed. The only difference is that the bottoms produced from the 

azeotropic column are n-propanol although no ternary azeotrope exists between n-propanol, DIPE and water.  

The ethanol, IPA and water in the feed are entrained overhead in the azeotropic column due to the low-boiling 

ternary azeotropes it forms with DIPE.  A simulation of the abovementioned method was performed in this work 

with Aspen. A flow sheet with the simulation results obtained is shown in Figure 8-34 and important flow sheet 

information is listed in Tables 8-26 and 8-27.  The results Carlson (1949) obtained along with the comparative 

results from the simulation performed in this work are given in Table 8-28. A similar bottoms product stream 

was obtained.  The composition of the feed stream is taken from Carlson’s patent.  An n-propanol stream with a 

purity of 99 mole % is produced as bottoms of the azeotropic column (C1).  In this stream 94.78 % of the 

n-propanol fed to the column, is recovered.  The second column (C2) produces nearly pure water as bottoms.   

The distillate of the C2 can be used for processing and recovery of valuable by-products.  This simulation serves 

as illustration that DIPE can even be utilized for n-propanol dehydration in certain cases, depending on the 

quality of the feed stream.   
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Table 8-26: Flow sheet information for the azeotropic column, C1, of n-propanol dehydration from a Fischer 

Tropsch waste stream with DIPE as entrainer. 

Flow 

Average vapour flow rate 3.23 kg/sec 

Condenser 

Temperature 344.14 K 

Duty -3068.30 kW 

Distillate rate* 0.0761 kmol/sec 

Reflux rate** 0.0598 kmol/sec 

Reflux ratio 0.78   

*Vapour flow at top of column 

**Liquid flow at top of column 

Reboiler 

Temperature 369.95 K 

Duty 3409.62 kW 

Bottoms rate* 0.0100 kmol/sec 

Boilup rate** 0.0100 kmol/sec 

Boilup ratio 8.18   

*Liquid flow at top of column 

**Vapour flow at top of column 

 

Table 8-27: Flow sheet information for the second column (producing nearly pure water) of n-propanol 

dehydration from a Fischer Tropsch waste stream with DIPE as entrainer. 

Flow 

Average vapour flow rate 0.95 kg/sec 

Condenser 

Temperature 349.80 K 

Duty -1922.14 kW 

Distillate rate* 0.0020 kmol/sec 

Reflux rate** 0.0442 kmol/sec 

Reflux ratio 22.30   

*Vapour flow at top of column 

**Liquid flow at top of column 

Reboiler 

Temperature 373.17 K 

Duty 2000.00 kW 

Bottoms rate* 0.0150 kmol/sec 

Boilup rate** 0.0490 kmol/sec 

Boilup ratio 3.27   

*Liquid flow at top of column 

**Vapour flow at top of column 
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Table 8-28: Bottoms from the azeotropic column of Carlson's (1945) example compared to the simulation in this 

work. 

Component 

Carlson 

(1949) 

This 

work 

wt %  

n-propanol 97.5* 99.7 

acid 0.1 0.0 

ester 0.4 0.0 

aldehyde 0.7 0.0 

ketone 0.0 0.0 

water 1.7 0.3 

*(97.5-99.5 wt %)  
 

DIPE can also be used for the recovery of ethanol when a waste stream from the Fischer Tropsch process has a 

high ethanol composition.  Typical compositions of such ethanol-rich streams can be found in literature (Nel, de 

Klerk 2007).  An example of such a simulation is given in Figure 8-35 and flow sheet information is provided 

on this figure and in Tables 8-29 and 8-30.   

Table 8-29: Flow sheet information for the azeotropic column, C1, of ethanol dehydration from a Fischer 

Tropsch waste stream with DIPE as entrainer. 

Flow 

Average vapour flow rate 10.12 kg/sec 

Condenser 

Temperature 334.30 K 

Duty -4436.19 kW 

Distillate rate* 0.1199 kmol/sec 

Reflux rate** 0.1254 kmol/sec 

Reflux ratio 1.05   

*Vapour flow at top of column 

**Liquid flow at top of column 

Reboiler 

Temperature 353.45 K 

Duty 4907.81 kW 

Bottoms rate* 0.0099 kmol/sec 

Boilup rate** 0.1265 kmol/sec 

Boilup ratio 12.78   

*Liquid flow at top of column 

**Vapour flow at top of column 
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An ethanol-rich stream is fed to an azeotropic column (C1).  Water, IPA and some the ethanol is entrained to the 

distillate of the azeotropic column.  The bottoms (B1) of C1 mainly consist of ethanol and n-propanol.  This 

stream is then fed to a standard distillation column where ethanol is recovered as distillate (D2).  The ethanol 

purity in D2 is only 94.25 mole %, but it is well beyond the ethanol/water and ethanol/MEK azeotropes.  In this 

stream 68.53 % of the ethanol fed to the column, is recovered.  This may not be the optimum flow sheet for 

ethanol recovery from a Fischer Tropsch waste stream, but is used as illustration that DIPE can even be 

employed for ethanol dehydration and recovery in certain cases, depending on the quality of the feed stream. 

Table 8-30: Flow sheet information for the second column (producing nearly pure water) of ethanol 

dehydration from a Fischer Tropsch waste stream with DIPE as entrainer. 

Flow 

Average vapour flow rate 8.06 kg/sec 

Condenser 

Temperature 350.64 K 

Duty -6918.57 kW 

Distillate rate* 0.0070 kmol/sec 

Reflux rate** 0.1713 kmol/sec 

Reflux ratio 24.47   

*Vapour flow at top of column 

**Liquid flow at top of column 

Reboiler 

Temperature 363.29 K 

Duty 7000.00 kW 

Bottoms rate* 0.0029 kmol/sec 

Boilup rate** 0.1808 kmol/sec 

Boilup ratio 62.36   

*Liquid flow at top of column 

**Vapour flow at top of column 

 

To reiterate, DIPE is considered a feasible replacement for benzene as entrainer for ethanol dehydration.  It may 

even deliver better, more cost and energy effective result than benzene.  DIPE is found to be comparable with 

cyclohexane for IPA dehydration and DIPE can also be used for the recovery of ethanol and/or n-propanol from 

aqueous Fischer Tropsch waste streams, depending on the composition of the stream.  Throughout the 

simulations the number of stages in the columns was kept constant to simplify the comparison between flow 

sheets.  Significantly high reflux ratios however indicate that more stages might be necessary in that specific 

column.  There is a trade-off between the reflux ratio and number of stages in a column.  Fewer stages will need 

a higher reflux ratio, but will result in high utility costs.  On the otherhand more stages will require a lower 

reflux ratio, but will increase the capital cost. 
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Figure 8-29: Flow sheet of the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  All compositions are in mole fractions.  The 

simulation was performed with Aspen using NRTL and its built-in parameters. 
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Figure 8-30: Flow sheet of the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  All compositions are in mole fractions.  The 

simulation was performed with Aspen using NRTL with parameters regressed in this work. 
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Figure 8-31: Flow sheet of the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer.  All compositions are in mole fractions.  The 

simulation was performed with Aspen using NRTL with parameters supplied by Christo Crause (2011).  
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Figure 8-32: Flow sheet of the dehydration of IPA via heterogeneous azeotropic distillation with cyclohexane as entrainer.  All compositions are in mole fractions. The 

simulation was performed by Arifin and Chien (2007).   
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Figure 8-33: Flow sheet of the dehydration of IPA via heterogeneous azeotropic distillation with DIPE as entrainer.  All compositions are in mole fractions.  The simulation 

was performed with Aspen using NRTL and its built-in parameters. 
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Figure 8-34: Flow sheet of the recovery of n-propanol from a typical aqueous Fischer Tropsch stream, contaminated with other close-boiling oxygenated components 

(Carlson 1949).  DIPE is used as entrainer.  All compositions are in mole fractions.  The simulation was performed with Aspen using NRTL. 
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Figure 8-35: Flow sheet of the recovery of ethanol from a typical aqueous Fischer Tropsch stream, contaminated with other close-boiling oxygenated components (Nel, de 

Klerk 2007).  DIPE is used as entrainer.  All compositions are in mole fractions.  The simulation was performed with Aspen using NRTL. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

In this work the formation of alcohol/water azeotropes in the process industry was studied, as well as some 

entrainers that can be used to separate these azeotropes via heterogeneous azeotropic distillation.  Through the 

study of literature pertaining to the abovementioned topics, the equipment acquired and the experimental work, 

regressions and simulations performed, the following conclusions were reached: 

� Isobaric VLLE at standard atmospheric conditions can be accurately measured with a dynamic 

Guillespie unit (as acquired for this work) equipped with an ultrasonic homogenizer to prevent 

liquid-liquid separation.  The equipment can be operated in a pressure range of 2.5 mbar to 3 bar and 

up to a temperature of 250 
o
C.  The equilibrium temperatures are measured with an accuracy of 0.03

o
C 

and the pressure can be regulated at 101.3 kPa with an accuracy of 0.35% FSO (Full Scale Output). 

The relative accuracy of the compositional measurements is 2%.  

 

� The equipment was firstly verified by measuring data as also available in literature. It was verified for 

isobaric binary VLE by measuring ethanol/isooctane at 101.3 kPa (Hiaki et al. 1994, Ku, Tu 2005).  

The measured data compared well with the published data and the NRTL prediction in Aspen, of 

ethanol/isooctane. All AAD and AARD % values for the measured data from the NRTL prediction are 

similar, if not equal, to that of the published data. The equipment was verified for ternary VLLE by 

measuring ethanol/n-butanol/water at 101.3 kPa (Gomis, Ruiz & Asensi 2000, Newsham, Vahdat 

1977).  The measured data agreed well with all the phases of both sets of published data.  None of the 

thermodynamic models (NRTL, UNIFAC and UNIQUAC) accurately predicted the published or 

measured data and therefore no AAD or AARD % comparisons could be performed.   

 

� VLE and VLLE data were measured for ethanol/water/DIPE, n-propanol/water/DIPE and 

n-propanol/water/isooctane. The VLE data were found thermodynamically consistent by the L-W and 

McDermott-Ellis consistency tests.  Although no thermodynamic consistency test could be found 

explicitly for VLLE data, the LLE component of the data followed a regular trend according to the 

Othmer-Tobias correlation. The reliability of the measured VLLE data was also confirmed through 

thorough verification of the phase equilibrium equipment and the mass balances performed on the 

samples.  The binary DIPE/water and isooctane/water azeotropes, as well as the ternary 

ethanol/DIPE/water and n-propanol/isooctane/water azeotropes measured in this work, agree well with 

those found in literature.   

 

� With built-in Aspen parameters the ethanol/DIPE/water VLLE behaviour was best predicted by 

UNIFAC (VLE), n-propanol/DIPE/water by UNIQUAC and n-propanol/isooctane/water by UNIFAC 

(LLE).  There is however room for improvement.  The regressed parameters generally improved the 

model predictions and indicated that experimental VLLE data were necessary to evaluate and improve 

the estimations made by thermodynamic models.  With the regressed parameters, NRTL most 

accurately predicted the ethanol/DIPE/water and n-propanol/DIPE/water VLLE.  Although the 

regressed parameters improved the NRTL and UNIQUAC predictions made for 
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n-propanol/isooctane/water, these models are considered unsuitable for accurate prediction of the 

VLLE behaviour of this system.  None of the models studied predict the measured data perfectly, even 

with regressed parameters.  

 

� Indications are that DIPE might be the superior entrainer, of those considered in this work, for ethanol 

and IPA dehydration via heterogeneous azeotropic distillation, potentially outperforming benzene and 

cyclohexane generally used in industry for such dehydration.  This is based on the comparison of 

VLLE data of the various entrianers.   

 

� Separation sequences were simulated for the dehydration of ethanol, isopropanol and n-propanol.  

Firstly, the built-in Aspen parameters for NRTL were compared to the regressed parameters for the 

ethanol/DIPE/water system by simulating a separation sequence using each set of parameters 

respectively.  Significantly larger stream flows and condenser and reboiler duties were predicted by the 

built-in parameters in the azeotropic column. Therefore, when using these parameters to simulate such 

a separation sequences, the azeotropic column might be grossly over-designed.  The average vapour 

flow rate and reflux ratio in the recovery column were however underestimated by the built-in 

parameters and might therefore be underdesigned when using built-in parameters to simulate the 

sequence.  This indicates the importance of regressing more reliable parameters based on accurate 

experimental data. 

 

� The separation sequence simulated with the regressed parameters for ethanol/DIPE/water was also 

compared to a simulation performed for ethanol/benzene/water with the same separation sequence. The 

comparison of these simulations revealed that, when using benzene as entrainer, the flow to the 

azeotropic column from the recycle and reflux streams can be much larger than with DIPE, thus 

requiring a larger column.  Subsequently, the condenser and reboiler requirements would also be 

higher, although the amount of relatively pure ethanol recovered as bottoms would stay the same or 

may even be less.  Since benzene is carcinogenic and DIPE costs more or less the same as benzene, 

DIPE may be a better entrainer for ethanol dehydration.  However, DIPE still poses the risk of forming 

explosive peroxides.  Therefore, the carcinogenic effects of benzene would have to be weighed against 

the possible explosive peroxides of DIPE.   

 

� A separation sequence for the dehydration of IPA with DIPE as entrainer was also simulated and 

compared to simulation in literature for IPA dehydration with cyclohexane as entrainer.  The organic 

reflux stream to the azeotropic column is larger when using DIPE, but the recycle stream from the 

recovery column is smaller than with cyclohexane. The condenser and reboiler duty requirements of 

the azeotropic column is larger when using DIPE, but condenser and reboiler duties for the recovery 

column is smaller than with cyclohexane.  Therefore, the two separation sequences are definitely 

comparable.  The overall energy requirements on the cyclohexane sequence are, however, more than 

twice as large as with DIPE.  Consequently DIPE is considered a reasonable alternative to cyclohexane 

as entrainer for IPA dehydration.  

Stellenbosch University http://scholar.sun.ac.za



 
150 Conclusions and Recommendations 

� Two separation sequences were simulated for the recovery of n-propanol and ethanol, respectively, 

from typical Fischer Tropsch waste streams. It was found that, although n-propanol/DIPE/water does 

not form a ternary azeotrope, n-propanol can still be recovered with DIPE as entrainer via 

heterogeneous azeotropic distillation if the aqueous waste stream also contains ethanol and/or IPA.  

The last two separation sequence simulated in this work, serves as a practical application of DIPE as 

entrainer for the recovery of ethanol from an aqueous Fischer Tropsch waste stream with a high ethanol 

composition. 

As anticipated in Section 1.2, DIPE is found to be a valid alternative entrainer for benzene and cyclohexane 

based on cost, separation ability and safety. There undoubtedly may exist an even better entrainer than DIPE, 

but from the data available in literature and the measurements made in this work DIPE is superior.   NRTL with 

built-in Aspen parameters did not predict the VLLE data most accurately, unlike what was anticipated in Section 

1.2. With regressed parameters, NRTL is overall the best model of those considered in this work, for the 

simulation of heterogeneous azeotropic distillation. The UNIFAC models also predict the phase envelope and 

vapour phase well, but not the azeotropes.  It is suggested that more sophisticated thermodynamic models be 

investigated to predict VLLE data, especially for n-propanol/isooctane/water, since the models studied in this 

work still fall short of completely predicting the phase equilibrium.  

Online GC analysis of the vapour phase samples from the VLE/VLLE measuring unit might be considered.  It is 

however recommended that an FID detector be used. In that case, provision should be made to analyse the water 

content of the samples, as it would be more accurate than merely calculating it by mass balance.   

It is recommended that VLLE data be measured for ethanol/DNPE/water and IPA/DNPE/water in order to fully 

compare DIPE and DNPE as entrainers, since the Aspen azeotrope predictions are not in agreement for the 

different property models.  It is also recommended that higher alcohols should be considered, such as sec-

butanol and isobutanol.   

When simulating a heterogeneous azeotropic distillation sequence one might even consider using differente sets 

of parameters for different units in the sequence.  For the azeotropic column it is important that the azeotropes, 

especially the ternary heterogeneous azeotrope are accurately predicted.  For a pre-concentrator or recovery 

column one might rather use a set of parameters that will predict the phase equilibrium behaviour away from the 

azeotrope, accurately.  
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A. MSDS FORMS 

All MSDS information was obtained from ScienceLab.com (ScienceLab.com 2011).  Additional corrosion data 

was obtained from Ham-let (Ham-let Advanced Control Technology 2011). 

Table A-1: Benzene MSDS 

 

 

Appearance: Colourless to light yellow liquid

Molecular Weight: 78.11

Chemical Formula: C6H6

Odour: Aromatic.  Gasoline-like.

SG (water = 1): 0.7257

Boiling point (
o
C): 80.1

Melting point (
o
C): 5.5

Vapour pressure (kPa): 10

Vapour density (air = 1): 2.8

Excellent for alloy20, monel, flexible graphite and 

teflon-reinforced or NGR

Good for aluminium, brass, carbon steel, ductile 

iron/cast iron, 316 stainless steel, 17-4PH, hastelloy C 

and viton

Poor for delrin

Do not use for buna N (nitrile) and EPDM/EPR

Non-corrosive in presence of glass

Flammability: Flammable

Flash point (closed cup, 
o
C): -11.1

Auto-ignition Temperature (
o
C): 497.78

Upper Flame Limit (volume % in air): 7.8

Lower Flame Limit (volume % in air): 1.2

Very hazardous in case of eye contact or inhalation.  Hazardous in case of skin contact or ingestion.  

Carcinogenic for humans.  Toxic to blood, bone marrow and central nervous system.

Hazards

Physical Data

Fire and Explosion Data

Corrosion resistance:

Benzene

H H

H

HH

H
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Table A-2: Cyclohexane MSDS 

 

Appearance: Clear, colourless liquid

Molecular Weight: 84.16

Chemical Formula: C6H12

Odour: Chloroform-like, solvent mild sweet odour

SG (water = 1): 0.7781

Boiling point (
o
C): 80.7

Melting point (
o
C): 6.47

Vapour pressure (kPa): 12.9

Vapour density (air = 1): 2.98

Excellent for aluminium, braas, carbon steel, ductile 

iron/cast iron, 316 stainless steel, alloy20, delrin, 

viton and teflon-reinforced or NGR

Good for monel and hastelloy C

Poor for buna N (nitrile)

Do not use for EPDM/EPR

Not considered corrosive for glass

Flammability: Flammable

Flash point (closed cup, 
o
C): -18

Auto-ignition Temperature (
o
C): 245

Upper Flame Limit (volume % in air): 8.4

Lower Flame Limit (volume % in air): 1.3

Slightly hazardous in the case of skin contact, eye contact, ingestion or inhalation. 

Hazards

Physical Data

Fire and Explosion Data

Corrosion resistance:

Cyclohexane

H

H

H
H

H

H

H

HH
H

H

H
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Table A-3: Hexane MSDS 

 

Appearance: Colourless liquid

Molecular Weight: 86.18

Chemical Formula: CH3(CH2)4CH3

Odour: Gasoline-like smell

SG (water = 1): 0.66

Boiling point (
o
C): 68

Melting point (
o
C): -95

Vapour pressure (kPa): 17.3

Vapour density (air = 1): 2.97

Excellent for aluminum, 316 stainless steel, alloy20, 

hastelloy C, buna N (nitrile), delrin, viton, teflon 

reinforced or NGR

Good for brass, carbon steel, ductile iron/cast iron 

and monel

Do not use for EPDM/EPR

Flammability: Flammable

Flash point (closed cup, 
o
C): -22.5

Auto-ignition Temperature (
o
C): 225

Upper Flame Limit (volume % in air): 7.5

Lower Flame Limit (volume % in air): 1.15

Hexane

Corrosion resistance:

Physical Data

Fire and Explosion Data

Hazardous in case of skin contact, ingestion or inhalation.  Slightly hazardous in the case of eye contact.  

Mild anesthetic.

Hazards

CH3

CH3H

H

H

H H

H

H

H

H

H
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Table A-4: Heptane MSDS 

 

Appearance: Clear, colourless liquid

Molecular Weight: 100.21

Chemical Formula: CH3(CH2)5CH3

Odour: Hydrocarbon, gasoline-like

SG (water = 1): 0.6838

Boiling point (
o
C): 98.4

Melting point (
o
C): -90.7

Vapour pressure (kPa): 5.3

Vapour density (air = 1): 3.5

Excellent for aluminum, brass, 316 stainless steel, 

alloy20, hastelloy C, buna N (nitrile), delrin, viton, 

teflon reinforced or NGR

Good for carbon steel, ductile iron/cast iron and 

monel

Do not use for EPDM/EPR

Not considered to be corrosive for metals and glass

Flammability: Flammable

Flash point (closed cup, 
o
C): -4

Auto-ignition Temperature (
o
C): 203.89

Upper Flame Limit (volume % in air): 6.7

Lower Flame Limit (volume % in air): 1.05

Slightly hazardous in case of skin contact, eye contact, ingestion or inhalation.  

Physical Data

Fire and Explosion Data

Hazards

Heptane

Corrosion resistance:

CH3

CH3H

H

H

H H

H

H

H

H

H
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Table A-5: Isooctane MSDS 

 

Appearance: Clear, colourless liquid

Molecular Weight: 114.23

Chemical Formula: C8H18

Odour: Mild hydrocarbon odour

SG (water = 1): 0.692

Boiling point (
o
C): 99.24

Melting point (
o
C): -107.36

Vapour pressure (kPa): 5.47

Vapour density (air = 1): 3.9

Excellent for brass, carbon steel, 316 stainless steel, 

monel, delrin, flexible graphite, teflon-reinforced

Good for aluminum, ductile iron/cast iron, alloy 20

Poor for hastelloy C, buna N       

Non-corrosive in the presence of glass

Do not use for EPDM/EPR, viton

Flammability: Flammable

Flash point (closed cup, 
o
C): -12

Auto-ignition Temperature (
o
C): 415

Upper Flame Limit (volume % in air): 6

Lower Flame Limit (volume % in air): 1.1

Isooctane

Corrosion resistance:

Physical Data

Fire and Explosion Data

Hazardous in case of eye contact, ingestion and inhalation.  Slightly hazardous in case of skin contact. 

Hazards

CH3

CH3
CH3

CH3 CH3
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Table A-6: DIPE MSDS 

 

Appearance: Colourless liquid

Molecular Weight: 102.18

Chemical Formula: (CH3)2CHOCH(CH3)2

Odour: Ethereal

SG (water = 1): 0.7257

Boiling point (
o
C): 68.5

Melting point (
o
C): -86

Vapour pressure (kPa): 15.87

Vapour density (air = 1): 3.52

Excellent for aluminum, brass, carbon steel, 316 

stainless steel, hastelloy C, buna N, delrin, viton, 

teflon reinforced

Good for ductile iron/cast iron, alloy 20

Do not use for EPDM/EPR

Non-corrosive in the presence of glass

Flammability: Flammable

Flash point (closed cup, 
o
C): -28

Auto-ignition Temperature (
o
C): 443

Upper Flame Limit (volume % in air): 7.9

Lower Flame Limit (volume % in air): 1.4

Hazards

Forms explosvie peroxides on prolonged storage. Very hazardous in case of eye contact, ingestion and 

inhalation.  Hazardous in case of skin contact. 

Physical Data

Fire and Explosion Data

DIPE

Corrosion resistance:

CH3

CH3 O

CH3

CH3
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Table A-7: DNPE MSDS 

 

 

  

Appearance: Colourless liquid

Molecular Weight: 102.18

Chemical Formula: (C3H7)2O

Odour: Ethereal

SG (water = 1): 0.7257

Boiling point (
o
C): 89-91

Melting point (
o
C): -122

Vapour pressure (kPa): 7.33

Vapour density (air = 1): 3.53

Excellent for aluminum, brass, carbon steel, 316 

stainless steel, hastelloy C, buna N, delrin, viton, 

teflon reinforced

Good for ductile iron/cast iron, alloy 20

Do not use for EPDM/EPR

Non-corrosive in the presence of glass

Flammability: Extremely flammable

Flash point (closed cup, 
o
C): -28

Auto-ignition Temperature (
o
C): 443

Upper Flame Limit (volume % in air): 7.9

Lower Flame Limit (volume % in air): 1.4

May form peroxides during prolonged storage.  Slightly hazardous in case of skin contact, eye contact, 

ingestion or inhalation.  May cause burns in the case of skin or eye contact.

Fire and Explosion Data

Physical Data

Hazards

DNPE

Corrosion resistance:

OCH3

CH3H

H H
H

H H H H
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B. CALIBRATION CERTIFICATES 
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C. EXPERIMENTAL DATA 

 

Figure C-1: Water vapour pressure curve. 

 

Figure C-2: Ethanol vapour pressure curve. 
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Figure C-3: n-Propanol vapour pressure curve. 

 

Figure C-4: DIPE vapour pressure curve. 
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Figure C-5: Isooctane vapour pressure curve. 
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Table C-1: Binary VLE data (mole fraction) of Ethanol/Isooctane at 101.325 kPa 

Temp (
o
C) xethanol xisooctane yethanol yisooctane 

99.20 0.0000 1.0000 0.0000 1.0000 

71.64 0.2962 0.7038 0.6113 0.3887 

71.79 0.2930 0.7070 0.6100 0.3900 

71.80 0.2922 0.7078 0.6112 0.3888 

72.50 0.2058 0.7942 0.6056 0.3944 

72.50 0.2203 0.7797 0.6007 0.3993 

72.50 0.1914 0.8086 0.5986 0.4014 

73.20 0.1698 0.8302 0.5920 0.4080 

73.33 0.1406 0.8594 0.5971 0.4029 

73.33 0.1456 0.8544 0.5813 0.4187 

78.32 1.0000 0.0000 1.0000 0.0000 

78.32 1.0000 0.0000 1.0000 0.0000 

78.30 1.0000 0.0000 1.0000 0.0000 

73.60 0.9377 0.0623 0.7921 0.2079 

73.65 0.9412 0.0588 0.7817 0.2183 

71.45 0.8161 0.1839 0.6740 0.3260 

71.47 0.8078 0.1922 0.6706 0.3294 

71.47 0.7999 0.2001 0.6566 0.3434 

71.42 0.6299 0.3701 0.6454 0.3546 

71.42 0.6337 0.3663 0.6422 0.3578 

71.90 0.2398 0.7602 0.5988 0.4012 

71.85 0.2451 0.7549 0.6087 0.3913 

71.85 0.2659 0.7341 0.6103 0.3897 

74.27 0.9494 0.0506 0.8034 0.1966 

74.40 0.9544 0.0456 0.8053 0.1947 

74.50 0.9575 0.0425 0.8201 0.1799 

  

Table C-2: Ternary VLLE data (mole fraction) of IPA/Isooctane/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xIsooctane xIPA xwater xIsooctane xIPA ywater yIsooctane yIPA 

70.96 0.0488 0.7424 0.2088 0.8790 0.0005 0.1205 0.3436 0.3572 0.2992 

71.08 0.0704 0.6586 0.2710 0.8081 0.0032 0.1887 0.0802 0.5263 0.3935 

71.05 0.0886 0.6429 0.2685 0.8085 0.0033 0.1882 0.3218 0.3638 0.3144 

71.01 0.1181 0.5540 0.3279 0.7447 0.0099 0.2454 0.2773 0.4214 0.3013 

70.98 0.1328 0.5277 0.3395 0.7098 0.0096 0.2806 0.2632 0.4124 0.3244 

70.98 0.1505 0.5022 0.3473 0.6682 0.0161 0.3156 0.3053 0.3833 0.3114 

70.91 0.0748 0.6399 0.2852 0.8082 0.0024 0.1894 0.3214 0.3528 0.3258 

70.98 0.1005 0.5971 0.3024 0.7771 0.0047 0.2182 0.3230 0.3776 0.2994 

71.01 0.1508 0.5033 0.3459 0.6905 0.0201 0.2894 0.2773 0.4068 0.3160 

71.09 0.1496 0.4937 0.3567 0.7164 0.1171 0.1665 0.3313 0.3404 0.3282 

71.15 0.1365 0.4869 0.3766 0.5769 0.0532 0.3699 0.3159 0.3676 0.3165 

71.06 0.1316 0.5159 0.3525 0.6380 0.0258 0.3362 0.3496 0.3342 0.3162 

71.08 0.1594 0.4709 0.3696 0.6637 0.0236 0.3127 0.3245 0.3405 0.3350 

71.02 0.1502 0.4891 0.3607 0.6891 0.0181 0.2928 0.2944 0.3872 0.3183 
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Table C-3: Ternary VLLE data (mole fraction) of IPA/DIPE/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xDIPE xIPA xwater xDIPE xIPA ywater yDIPE yDIPE 

62.55 0.2154 0.5082 0.2764 0.9610 0.0015 0.0376 0.20432 0.69459 0.10109 

63.36 0.3484 0.3169 0.3347 0.9559 0.0018 0.0423 0.19018 0.59232 0.21751 

63.98 0.4088 0.2522 0.3390 0.9463 0.0024 0.0513 0.2373 0.6054 0.1573 

64.47 0.4400 0.2187 0.3413 0.9220 0.0034 0.0746 0.2293 0.5682 0.2024 

65.85 0.6189 0.0910 0.2900 0.8727 0.0090 0.1183 0.2242 0.5258 0.2500 

66.66 0.7417 0.0347 0.2236 0.7052 0.0424 0.2524 0.22346 0.57587 0.20067 

65.17 0.5619 0.1282 0.3099 0.8958 0.0055 0.0986 0.2254 0.6112 0.1634 

61.78 0.0741 0.8073 0.1186 0.9930 0.0004 0.0067 0.2308 0.6858 0.0834 

62.28 0.1564 0.6241 0.2195 0.9849 0.0005 0.0146 0.2214 0.6454 0.1332 

  

Table C-4: Ternary VLLE data (mole fraction) of Ethanol/n-Butanol/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xn-Butanol xEtOH xwater xn-Butanol xEtOH ywater yn-Butanol yEtOH 

92.70 0.5812 0.4188 0.0000 0.9808 0.0192 0.0000 0.7571 0.2429 0.0000 

91.00 0.5953 0.3332 0.0715 0.9590 0.0223 0.0187 0.6868 0.1920 0.1212 

91.11 0.6586 0.2887 0.0527 0.9476 0.0238 0.0286 0.6803 0.1449 0.1748 

92.68 0.5814 0.4186 0.0000 0.9778 0.0222 0.0000 0.7570 0.2430 0.0000 

91.41 0.6397 0.3114 0.0489 0.9688 0.0178 0.0134 0.7027 0.1835 0.1139 

90.16 0.8469 0.0806 0.0725 0.8634 0.0910 0.0456 0.6488 0.1415 0.2098 

91.17 0.6311 0.3096 0.0593 0.9621 0.0176 0.0203 0.6967 0.1872 0.1160 

91.33 0.6474 0.2943 0.0583 0.9678 0.0152 0.0170 0.7098 0.1877 0.1025 

92.74 0.6110 0.3890 0.0000 0.9795 0.0205 0.0000 0.6670 0.3330 0.0000 

92.68 0.6186 0.3749 0.0065 0.9816 0.0170 0.0014 0.7548 0.2248 0.0204 

92.16 0.6518 0.3248 0.0234 0.9771 0.0171 0.0058 0.7296 0.2119 0.0585 

91.63 0.6542 0.3086 0.0372 0.9697 0.0179 0.0124 0.6993 0.1805 0.1202 
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Table C-5: Ternary VLLE data (mole fraction) of Ethanol/DIPE/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xDIPE xEtOH xwater xDIPE xEtOH ywater yDIPE yEtOH 

61.01 0.0877 0.7844 0.1280 0.9231 0.0015 0.0754 0.1974 0.6670 0.1356 

61.04 0.1168 0.6733 0.2099 0.9128 0.0011 0.0860 0.1826 0.6219 0.1956 

61.10 0.0997 0.7194 0.1809 0.9161 0.0024 0.0815 0.1861 0.6631 0.1507 

61.12 0.1051 0.7134 0.1815 0.9221 0.0019 0.0760 0.1888 0.6597 0.1515 

61.23 0.1451 0.6029 0.2520 0.8845 0.0038 0.1116 0.1944 0.6391 0.1665 

61.25 0.0644 0.8498 0.0857 0.9510 0.0016 0.0474 0.2010 0.6945 0.1045 

61.27 0.1232 0.6499 0.2269 0.9004 0.0029 0.0967 0.1879 0.6447 0.1674 

61.32 0.1635 0.5899 0.2466 0.8852 0.0042 0.1105 0.1731 0.6188 0.2081 

61.38 0.0605 0.8805 0.0589 0.9636 0.0012 0.0353 0.2100 0.7049 0.0851 

61.40 0.1738 0.5667 0.2595 0.8798 0.0044 0.1158 0.1881 0.6306 0.1813 

61.41 0.1520 0.5959 0.2521 0.8852 0.0036 0.1112 0.1927 0.6299 0.1775 

61.62 0.1951 0.5081 0.2968 0.8644 0.0043 0.1314 0.1891 0.6196 0.1913 

61.69 0.2599 0.4197 0.3204 0.8530 0.0019 0.1451 0.1866 0.6195 0.1938 

61.77 0.2629 0.4157 0.3214 0.8365 0.0077 0.1557 0.1798 0.6147 0.2055 

61.88 0.3408 0.3132 0.3459 0.8201 0.0108 0.1691 0.1886 0.6081 0.2034 

61.89 0.3473 0.2972 0.3555 0.7858 0.0178 0.1964 0.1889 0.5982 0.2128 

62.07 0.3941 0.2551 0.3508 0.7590 0.0211 0.2199 0.1880 0.6081 0.2039 

62.16 0.0476 0.9524 0.0000 0.9991 0.0009 0.0000 0.2186 0.7814 0.0000 

62.22 0.3813 0.2594 0.3593 0.7761 0.0208 0.2031 0.1821 0.6034 0.2145 

62.24 0.7927 0.0131 0.1942 0.7954 0.0127 0.1919 0.1945 0.5840 0.2215 

63.14 0.7644 0.0160 0.2196 0.7674 0.0141 0.2184 0.2070 0.5770 0.2160 

 

Table C-6: Ternary VLE data (mole fraction) of Ethanol/DIPE/Water at 101.325 kPa 

Temp (
o
C) xwater xDIPE xEtOH ywater yDIPE yEtOH 

65.06 0.5826 0.0590 0.3584 0.2020 0.5313 0.2667 

66.84 0.5542 0.0586 0.3872 0.2141 0.4830 0.3029 

67.49 0.5332 0.0538 0.4130 0.2072 0.5056 0.2872 

68.98 0.5162 0.0464 0.4374 0.2326 0.4195 0.3479 

69.25 0.4917 0.0486 0.4597 0.2226 0.4046 0.3728 

70.65 0.4909 0.0380 0.4711 0.2515 0.3384 0.4100 

71.11 0.4552 0.0388 0.5060 0.2257 0.3342 0.4401 

72.08 0.4636 0.0341 0.5023 0.2390 0.3003 0.4607 

72.28 0.4216 0.0347 0.5437 0.2322 0.2815 0.4863 

73.01 0.4024 0.0362 0.5615 0.2284 0.2628 0.5088 

73.09 0.4427 0.0301 0.5272 0.2396 0.2623 0.4981 

73.68 0.3039 0.0343 0.6618 0.3287 0.1842 0.4871 

73.93 0.3727 0.0288 0.5985 0.2327 0.2215 0.5458 

74.2 0.2853 0.0321 0.6826 0.3429 0.1656 0.4915 

74.92 0.2595 0.0252 0.7154 0.2963 0.1432 0.5605 

75.69 0.2324 0.0221 0.7455 0.4044 0.1049 0.4907 

76.09 0.2075 0.0205 0.7720 0.2828 0.1094 0.6078 

76.35 0.0594 0.0202 0.9204 0.2799 0.0936 0.6265 
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Table C-7: Ternary VLLE data (mole fraction) of n-Propanol/DIPE/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xDIPE xn-Propanol xwater xDIPE xn-Propanol ywater yDIPE yn-Propanol 

62.16 0.0476 0.9524 0.0000 0.9991 0.0009 0.0000 0.2186 0.7814 0.0000 

62.56 0.0665 0.8649 0.0686 0.9900 0.0009 0.0091 0.2042 0.7942 0.0016 

62.74 0.0686 0.8380 0.0934 0.9861 0.0010 0.0129 0.2214 0.7386 0.0401 

63.82 0.1254 0.6704 0.2042 0.9778 0.0011 0.0211 0.2341 0.6929 0.0730 

64.19 0.1584 0.6048 0.2368 0.9794 0.0008 0.0198 0.2339 0.6882 0.0779 

64.45 0.1634 0.5912 0.2454 0.9764 0.0009 0.0227 0.2399 0.6635 0.0965 

64.75 0.1945 0.5083 0.2972 0.9716 0.0014 0.0270 0.2375 0.6713 0.0912 

65.15 0.2179 0.4859 0.2962 0.9716 0.0011 0.0273 0.2362 0.6705 0.0934 

67.48 0.3951 0.2465 0.3584 0.9606 0.0013 0.0381 0.2584 0.6169 0.1247 

67.75 0.3798 0.2603 0.3599 0.9596 0.0015 0.0389 0.2783 0.6004 0.1213 

67.90 0.3774 0.2609 0.3617 0.9611 0.0016 0.0373 0.2583 0.6050 0.1368 

68.50 0.4242 0.1920 0.3839 0.9560 0.0015 0.0425 0.2629 0.6027 0.1344 

69.27 0.4721 0.1640 0.3638 0.9542 0.0021 0.0437 0.2731 0.5980 0.1289 

69.47 0.4802 0.1510 0.3688 0.9500 0.0017 0.0482 0.2860 0.5787 0.1353 

69.88 0.5192 0.1163 0.3644 0.9386 0.0022 0.0592 0.2925 0.5753 0.1322 

70.67 0.5537 0.1009 0.3455 0.9355 0.0026 0.0619 0.2722 0.5861 0.1417 

71.10 0.5746 0.0810 0.3443 0.9306 0.0059 0.0636 0.2958 0.5662 0.1380 

72.61 0.6451 0.0588 0.2961 0.8534 0.0151 0.1316 0.3111 0.4997 0.1892 

 

Table C-8: Ternary VLE data (mole fraction) of n-Propanol/DIPE/Water at 101.325 kPa 

Temp (
o
C) xwater xDIPE xn-Propanol ywater yDIPE yn-Propanol 

73.27 0.5683 0.0585 0.3733 0.3125 0.4514 0.2361 

76.21 0.5189 0.0472 0.4339 0.3651 0.3560 0.2789 

77.91 0.4848 0.0523 0.4629 0.3703 0.3157 0.3140 

78.36 0.4699 0.0422 0.4879 0.3763 0.3015 0.3222 

79.97 0.4505 0.0448 0.5046 0.3952 0.2650 0.3398 

80.15 0.4311 0.0389 0.5301 0.3780 0.2690 0.3530 

81.07 0.4224 0.0287 0.5489 0.4018 0.2209 0.3772 

81.21 0.4037 0.0340 0.5623 0.4020 0.2199 0.3781 

82.02 0.3889 0.0272 0.5839 0.4206 0.2003 0.3791 

82.43 0.3724 0.0317 0.5959 0.4211 0.2440 0.3349 

83.01 0.3480 0.0252 0.6269 0.4122 0.1685 0.4193 

84.28 0.3235 0.0256 0.6509 0.3980 0.1555 0.4466 

84.45 0.2995 0.0222 0.6783 0.3865 0.1417 0.4718 

85.18 0.2843 0.0226 0.6931 0.3898 0.1287 0.4816 

86.32 0.2530 0.0165 0.7306 0.3844 0.1036 0.5120 

87.63 0.2335 0.0130 0.7536 0.3762 0.0841 0.5396 

87.98 0.2216 0.0135 0.7649 0.3719 0.0688 0.5592 

88.36 0.2131 0.0143 0.7727 0.3807 0.0664 0.5528 
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Table C-9: Ternary VLLE data (mole fraction) of n-Propanol/Isooctane/Water at 101.325 kPa 

Temp (
o
C) 

organic liquid aqueous liquid vapour 

xwater xIsooctane 
xn-

Propanol 
xwater xIsooctane 

xn-

Propanol 
ywater yIsooctane yn-Propanol 

74.48 0.1446 0.5617 0.2937 0.8452 0.0049 0.1499 0.3899 0.4246 0.1855 

74.48 0.1417 0.5441 0.3142 0.8415 0.0057 0.1528 0.3793 0.4056 0.2151 

74.57 0.1106 0.6293 0.2601 0.8848 0.0012 0.1139 0.3826 0.4120 0.2053 

74.59 0.0601 0.7361 0.2038 0.9282 0.0003 0.0715 0.3865 0.4195 0.1940 

74.60 0.1133 0.6401 0.2467 0.8990 0.0006 0.1004 0.3885 0.3948 0.2167 

74.61 0.0440 0.7993 0.1567 0.9383 0.0002 0.0615 0.3975 0.4225 0.1801 

74.61 0.1345 0.5736 0.2919 0.8554 0.0033 0.1413 0.3838 0.4083 0.2079 

74.63 0.1661 0.4988 0.3351 0.7988 0.0093 0.1919 0.3654 0.4338 0.2008 

74.76 0.1951 0.4271 0.3778 0.7426 0.0161 0.2412 0.3725 0.4183 0.2092 

74.78 0.0431 0.8256 0.1312 0.9448 0.0002 0.0550 0.3713 0.4403 0.1885 

74.79 0.2771 0.3316 0.3913 0.6647 0.0357 0.2996 0.3868 0.4031 0.2101 

74.88 0.0402 0.8433 0.1165 0.9568 0.0000 0.0432 0.4070 0.4331 0.1598 

75.17 0.0304 0.8998 0.0698 0.9704 0.0000 0.0296 0.3941 0.4315 0.1744 

75.37 0.0357 0.8669 0.0974 0.9645 0.0000 0.0355 0.3912 0.4425 0.1663 

75.56 0.0162 0.9217 0.0621 0.9742 0.0001 0.0257 0.3867 0.4464 0.1669 

75.70 0.0245 0.9266 0.0489 0.9770 0.0000 0.0230 0.4015 0.4484 0.1501 

79.16 0.0114 0.9886 0.0000 0.9988 0.0012 0.0000 0.4710 0.5290 0.0000 
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Table C-10: Ternary VLE data (mole fraction) of n-Propanol/Isooctane/Water at 101.325 kPa 

Temp (
o
C) 

1
st
 GC injection 

xwater xisooctane xn-Propanol ywater yisooctane yn-Propanol 

75.63 0.4865 0.0629 0.4506 0.4060 0.3702 0.2238 

76.55 0.5127 0.0471 0.4403 0.4075 0.3366 0.2559 

76.61 0.4778 0.0750 0.4473 0.4572 0.3359 0.2069 

77.56 0.4765 0.0416 0.4820 0.4345 0.3191 0.2463 

78.95 0.4504 0.0333 0.5163 0.4318 0.2869 0.2813 

79.78 0.4381 0.0285 0.5334 0.4268 0.2728 0.3004 

80.44 0.4096 0.0330 0.5573 0.4138 0.2653 0.3209 

81.08 0.5891 0.3546 0.0564 0.4354 0.2429 0.3217 

81.16 0.3898 0.0298 0.5804 0.4253 0.2551 0.3196 

81.84 0.4142 0.0215 0.5643 0.4434 0.2145 0.3422 

82.51 0.3971 0.0270 0.5758 0.4263 0.2075 0.3662 

82.51 0.3559 0.0205 0.6236 0.4165 0.2095 0.3740 

83.23 0.3384 0.0267 0.6348 0.4176 0.1928 0.3896 

83.24 0.3764 0.0208 0.6028 0.4475 0.1740 0.3785 

84.42 0.3101 0.0185 0.6714 0.4081 0.1624 0.4295 

86.16 0.2803 0.0168 0.7029 0.4120 0.1277 0.4603 

87.12 0.2529 0.0186 0.7285 0.3943 0.1291 0.4766 

Temp (
o
C) 

2
nd

 GC injection 

xwater xisooctane xn-Propanol ywater yDIPE yn-Propanol 

75.63 0.4924 0.0773 0.4303 0.4083 0.3785 0.2132 

76.55 0.5121 0.0457 0.4423 0.4120 0.3525 0.2355 

76.61 0.4722 0.0613 0.4665 0.4544 0.3271 0.2185 

77.56 0.4764 0.0413 0.4823 0.4339 0.3170 0.2491 

78.95 0.4508 0.0344 0.5148 0.4322 0.2881 0.2797 

79.78 0.4385 0.0295 0.5319 0.4274 0.2747 0.2980 

80.44 0.4102 0.0346 0.5552 0.4176 0.2779 0.3045 

81.08 0.4555 0.0224 0.5221 0.4443 0.2705 0.2852 

81.16 0.3899 0.0300 0.5801 0.4238 0.2501 0.3261 

81.84 0.4143 0.0216 0.5641 0.4433 0.2144 0.3423 

82.51 0.3949 0.0206 0.5845 0.4270 0.2097 0.3633 

82.51 0.3558 0.0200 0.6242 0.4165 0.2095 0.3740 

83.23 0.3377 0.0243 0.6380 0.4181 0.1945 0.3874 

83.24 0.3759 0.0191 0.6051 0.4479 0.1752 0.3768 

84.42 0.3104 0.0197 0.6699 0.4070 0.1591 0.4340 

86.16 0.2800 0.0153 0.7047 0.4130 0.1308 0.4561 

87.12 0.2523 0.0160 0.7316 0.3917 0.1207 0.4876 
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D. THERMODYNAMIC CONSISTENCY TESTS 

 

Table D-1: Herington consistency test results for ethanol/isooctane VLE measured by Hiaki et al. (1994). 

Area above the zero line: A  = 0.51513 

Area below the zero line:  B  = 0.54258 

D  =100*ABS(A-B)/(A+B)  = 2.5946 

J  =150*(Tmax-Tmin)/Tmin  = 1.793 

ABS(D-J)  = 0.8016 

Net area multiplied by 100  = A*  = -2.7444 

Criteria to Pass:  ABS(D-J)<10 (for isobaric data set)  

or 

ABS(A*)<3 

 

Table D-2: Herington consistency test results for ethanol/isooctane VLE measured by Ku and Tu (2005). 

Area above the zero line: A  = 0.47473 

Area below the zero line:  B  = 0.53946 

D  =100*ABS(A-B)/(A+B)  = 6.3819 

J  =150*(Tmax-Tmin)/Tmin  = 12.146 

ABS(D-J)  = 5.7641 

Net area multiplied by 100  = A*  = -6.4725 

Criteria to Pass:  ABS(D-J)<10 (for isobaric data set)  

or 

ABS(A*)<3 
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Figure D-1: Graphical Herington consistency test results for ethanol/isooctane VLE measured by Hiaki et al. (1994). 
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Figure D-2: Graphical Herington consistency test results for ethanol/isooctane VLE measured by Ku and Tu (2005). 

 Herington test results

Mole fraction of ETOH

ln
(G

a
m

m
a
1
/G

a
m

m
a
2
)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Stellenbosch University http://scholar.sun.ac.za



 
186 Thermodynamic Consistency Tests 

Table D-3: Parameter input for PRO-VLE 2.0 software 

Parameter Symbol Water Ethanol n-Propanol Isooctane DIPE 

Antoine constants: logP = A-B/(t+C); (mmHg; deg C) 

A 8.108 
a
 8.112 

a
 7.744 

a
 6.888 

a
 6.852 

b
 

B 1750.286 
a
 1592.864 

a
 1437.686 

a
 1319.529 

a
 1143.07 

b
 

C 235 
a
 226.184 

a
 198.463 

a
 211.625 

a
 219.34 

b
 

Critical temperature Tc (K) 647.13 
c
 513.92 

c
 536.78 

c
 543.96 

c
 500.05 

c
 

Critical pressure Pc (atm) 217.683 
c
 60.681 

c
 51.077 

c
 25.342 

c
 28.426 

c
 

Critical volume Vc (cm
3
/mol) 55.948 

c
 167 

c
 219 

c
 468 

c
 386 

c
 

Boiling temperature Tb (K) 373.15 
c
 351.44 

c
 370.35 

c
 372.388 

c
 341.45 

c
 

Acentric factor ω 0.345 
c
 0.645 

c
 0.622 

c
 0.303 

c
 0.339 

c
 

Liquid molar volume V
L 

(cm
3
/mol) 18.506 

c
 62.694 

c
 82.075 

c
 182.949 

c
 151.659 

c
 

Heat of vaporization ∆Hv (cal/mol) 9751.243 
c
 9237.165 

c
 9954.063 

c
 7414.054 

c
 6962.811 

c
 

Moment dipole µ (debye) 1.845 
c
 1.687 

c
 1.675 

c
 0 

c
 1.128 

c
 

a
 Felder and Rousseau (2000)             

b
 Reddick et al. (1986)             

c
 Aspen Plus v7.1             
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Table D-4: L-W consistency test results for Ethanol/DIPE/Water VLE 

Wisniak L-W test 

T (K) xwater xDIPE Li Wi Li/Wi D 

338.21 0.583 0.059 25.552 25.743 0.99 0.372 

339.99 0.554 0.059 23.149 23.308 0.99 0.342 

340.64 0.533 0.054 22.062 22.209 0.99 0.332 

342.13 0.516 0.046 20.239 20.363 0.99 0.305 

342.4 0.492 0.049 19.419 19.542 0.99 0.316 

343.8 0.491 0.038 18.06 18.158 0.99 0.271 

344.26 0.455 0.039 16.814 16.907 0.99 0.276 

345.23 0.464 0.034 16.054 16.129 1 0.233 

345.43 0.422 0.035 14.932 15.009 0.99 0.257 

346.16 0.402 0.036 13.774 13.84 1 0.239 

346.24 0.443 0.03 14.61 14.669 1 0.202 

346.83 0.304 0.034 10.964 11.032 0.99 0.309 

347.08 0.373 0.029 12.249 12.302 1 0.216 

347.35 0.285 0.032 10.052 10.113 0.99 0.303 

348.07 0.259 0.025 8.815 8.864 0.99 0.277 

348.84 0.232 0.022 7.476 7.514 0.99 0.254 

349.24 0.207 0.021 6.545 6.578 1 0.251 

349.5 0.059 0.02 3.071 3.111 0.99 0.647 

 

Table D-5: McDermott-Ellis consistency test results for Ethanol/DIPE/Water VLE 

McDermott-Ellis test  

T (K) xwater xDIPE Di Dmaxi 

338.21 0.583 0.059 0 0.291 

339.99 0.554 0.059 -0.127 0.289 

340.64 0.533 0.054 0.143 0.28 

342.13 0.516 0.046 -0.008 0.266 

342.4 0.492 0.049 0.079 0.259 

343.8 0.491 0.038 -0.072 0.253 

344.26 0.455 0.039 0.012 0.25 

345.23 0.464 0.034 0.01 0.249 

345.43 0.422 0.035 -0.027 0.245 

346.16 0.402 0.036 0.011 0.247 

346.24 0.443 0.03 0.142 0.26 

346.83 0.304 0.034 -0.099 0.249 

347.08 0.373 0.029 0.083 0.251 

347.35 0.285 0.032 0.039 0.221 

348.07 0.259 0.025 -0.116 0.229 

348.84 0.232 0.022 0.138 0.222 

349.24 0.207 0.021 0.059 0.251 

349.5 0.059 0.02 0 0.197 
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Table D-6: L-W consistency test results for n-Propanol/DIPE/Water VLE 

Wisniak L-W test 

T (K) xwater xDIPE Li Wi Li/Wi D 

346.42 0.568 0.058 24.203 24.373 0.99 0.350 

349.36 0.519 0.047 21.378 21.507 0.99 0.301 

351.06 0.485 0.052 19.468 19.572 0.99 0.266 

351.51 0.47 0.042 19.202 19.303 0.99 0.262 

353.12 0.451 0.045 17.48 17.553 1 0.208 

353.3 0.431 0.039 17.378 17.453 1 0.215 

354.22 0.422 0.029 16.661 16.72 1 0.177 

354.36 0.404 0.034 16.351 16.413 1 0.189 

355.17 0.389 0.027 15.65 15.7 1 0.159 

355.58 0.372 0.032 15.095 15.141 1 0.152 

356.16 0.348 0.025 14.591 14.632 1 0.140 

357.43 0.324 0.026 13.244 13.269 1 0.094 

357.6 0.299 0.022 13.083 13.109 1 0.099 

358.33 0.284 0.023 12.302 12.319 1 0.069 

359.47 0.253 0.016 11.211 11.214 1 0.013 

360.78 0.234 0.013 9.924 9.911 1 0.066 

361.13 0.222 0.014 9.53 9.514 1 0.084 

361.51 0.213 0.014 9.109 9.09 1 0.104 

 

Table D-7: McDermott-Ellis consistency test results for n-Propanol/DIPE/Water VLE 

McDermott-Ellis test  

T (K) xwater xDIPE Di Dmaxi 

346.42 0.568 0.058 0.036 0.261 

349.36 0.519 0.047 -0.03 0.248 

351.06 0.485 0.052 -0.001 0.243 

351.51 0.47 0.042 -0.043 0.241 

353.12 0.451 0.045 -0.013 0.236 

353.3 0.431 0.039 0.037 0.233 

354.22 0.422 0.029 -0.009 0.232 

354.36 0.404 0.034 -0.031 0.231 

355.17 0.389 0.027 -0.166 0.233 

355.58 0.372 0.032 0.192 0.234 

356.16 0.348 0.025 -0.048 0.223 

357.43 0.324 0.026 0.037 0.219 

357.6 0.299 0.022 -0.029 0.219 

358.33 0.284 0.023 -0.017 0.217 

359.47 0.253 0.016 -0.04 0.211 

360.78 0.234 0.013 0.017 0.213 

361.13 0.222 0.014 -0.038 0.211 

361.51 0.213 0.014 0 0.208 
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Table D-8: L-W consistency test results for n-Propanol/Isooctane/Water VLE 

Wisniak L-W test 

T (K) xwater xIsooctane Li Wi Li/Wi D 

348.78 0.492 0.077 23.078 24.667 0.94 3.328 

349.7 0.512 0.046 22.152 23.188 0.96 2.285 

349.76 0.472 0.061 22.009 23.306 0.94 2.862 

350.71 0.476 0.041 21.033 21.974 0.96 2.188 

352.1 0.451 0.034 19.557 20.353 0.96 1.994 

352.93 0.438 0.03 18.683 19.381 0.96 1.834 

353.59 0.41 0.035 17.953 18.72 0.96 2.091 

354.23 0.456 0.022 17.418 17.965 0.97 1.546 

354.31 0.39 0.03 17.168 17.845 0.96 1.934 

354.99 0.414 0.022 16.541 17.064 0.97 1.556 

355.66 0.395 0.021 15.814 16.309 0.97 1.541 

355.66 0.356 0.02 15.704 16.195 0.97 1.539 

356.38 0.338 0.024 14.941 15.485 0.96 1.788 

356.39 0.376 0.019 15.029 15.486 0.97 1.498 

357.57 0.31 0.02 13.667 14.113 0.97 1.605 

359.31 0.28 0.015 11.835 12.181 0.97 1.441 

360.27 0.252 0.016 10.799 11.138 0.97 1.545 
 

Table D-9: McDermott-Ellis consistency test results for n-Propanol/Isooctane/Water VLE 

McDermott-Ellis test  

T (K) xwater xIsooctane Di Dmaxi 

348.78 0.492 0.077 0.012 0.268 

349.7 0.512 0.046 0.015 0.267 

349.76 0.472 0.061 0 0.263 

350.71 0.476 0.041 -0.009 0.246 

352.1 0.451 0.034 -0.015 0.241 

352.93 0.438 0.03 -0.049 0.243 

353.59 0.41 0.035 -0.07 0.25 

354.23 0.456 0.022 0.097 0.247 

354.31 0.39 0.03 0.029 0.237 

354.99 0.414 0.022 -0.017 0.228 

355.66 0.395 0.021 0.016 0.229 

355.66 0.356 0.02 -0.014 0.232 

356.38 0.338 0.024 0.01 0.228 

356.39 0.376 0.019 0.016 0.226 

357.57 0.31 0.02 -0.066 0.219 

359.31 0.28 0.015 -0.01 0.217 

360.27 0.252 0.016 0 0.212 
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E. OTHMER-TOBIAS CORRELATIONS 

 

Figure E-1: Othmer-Tobias Correlation for Ethanol/DIPE/Water liquid phases 

 

Figure E-2: Othmer-Tobias Correlation for n-Propanol/DIPE/Water liquid phases 
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Figure E-3: Othmer-Tobias Correlation for n-Propanol/Isooctane/Water liquid phases 
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F. BUILT-IN ASPEN PARAMETERS 

Table F-1: Aspen Plus NIST Wagner 25 Liquid Vapour Pressure Equation Parameters. 

Parameters 
Components 

Ethanol Isooctane n-Propanol DIPE Water 

C1 -8.362345 -7.595284 -8.095994 -7.802337 -7.91302 

C2 0.2131663 1.933648 0.9204644 2.085983 2.103149 

C3 -3.486578 -2.709663 -6.592563 -2.925522 -2.676236 

C4 -0.4440908 -2.746997 1.457953 -3.66026 -1.544579 

lnPci 15.64879 14.7586 15.44415 14.86236 16.91285 

Tci 514.7877 543.9092 536.7353 500.1721 647.3084 

Tlower 127.5 165.786 148.753 187.782 273.16 

Tupper 514.7877 543.9092 536.7353 500.1721 647.3084  ln ��∗,^ [ ÀE¥] = ln �x� + $É?�$1 − %Q�& + É@�$1 − %Q�&?.ê + Éë�$1 − %Q�&@.ê + ÉÜ�$1 − %Q�&ê&/%Q�  
For Tlower ≤ T ≤ Tupper [K] 

Where Tri = T/Tci 

Table F-2: Aspen UNIFAC groups used in this work. 

Group number Description 

1300 Water 

1605 Ether 

1200 Primary alcohol 

1015 CH3 

3000 P1 
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Table F-3: Built-in Aspen parameters for NRTL. 

Component  i Ethanol Ethanol Ethanol Ethanol n-Propanol n-Propanol n-Propanol Water Water 

Component  j n-Propanol Water DIPE Isooctane Water DIPE Isooctane DIPE Isooctane 

Temperature 

units K K K K K K K K K 

Source 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 LLE-

ASPEN 

APV73 LLE-

ASPEN 

Property units: 

aij 8.2606 -0.8009 0 0 -1.7411 0 0 8.0209 13.6508329 

aji -9.721 3.4578 0 0 5.4486 0 0 0.035 -7.35503268 

bij -2846.6829 246.18 285.113 525.4371 576.4458 244.2234 294.2462 -766.4165 -142.098998 

bji 3409.6863 -586.0809 231.8151 745.3775 -861.1792 202.4844 511.3716 422.9778 4167.6657 

cij 0.3 0.3 0.3 0.47 0.3 0.3 0.3 0.2 0.2 

dij 0 0 0 0 0 0 0 0 0 

eij 0 0 0 0 0 0 0 0 0 

eji 0 0 0 0 0 0 0 0 0 

fij 0 0 0 0 0 0 0 0 0 

fji 0 0 0 0 0 0 0 0 0 

Tlower 313.15 298.14 333.65 298.15 298.15 337.85 328.37 293.15 273.15 

Tupper 370.31 373.15 341.75 323.15 373.15 356.15 348.52 333.15 323.15 
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Table F-4: Built-in Aspen parameters for UNIQUAC. 

Component  i Ethanol Ethanol Ethanol Ethanol n-Propanol n-Propanol n-Propanol Water Water 

Component  j n-Propanol Water DIPE Isooctane Water DIPE Isooctane DIPE Isooctane 

Temperature 

units K K K K K K K K K 

Source 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

LIT 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 VLE-

IG 

APV73 LLE-

LIT 

APV73 LLE-

LIT 

Property units:                   

aij -4.082 2.0046 0 0 1.7668 0 0 0 0 

aji 5.092 -2.4936 0 0 -2.333 0 0 0 0 

bij 1433.9607 -728.9705 71.4871 102.4492 -651.2462 55.1426 99.5024 -86.665 -498.64 

bji -1815.7489 756.9477 -346.0856 -649.8078 600.4906 -231.5547 -427.8237 -602.34 -1283.1 

cij 0 0 0 0 0 0 0 0 0 

cji 0 0 0 0 0 0 0 0 0 

dij 0 0 0 0 0 0 0 0 0 

dji 0 0 0 0 0 0 0 0 0 

Tlower 313.15 298.14 333.65 323.15 298.15 337.85 328.37 293.15 293.15 

Tupper 370.31 373.15 341.75 323.15 373.15 356.15 348.52 313.15 313.15 

eij 0 0 0 0 0 0 0 0 0 

eji 0 0 0 0 0 0 0 0 0 
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G. DATA FROM LITERATURE FOR REGRESSIONS 

Table G-1: Isobaric phase equilibrium data at101.3 kPa, used from literature and this work, for parameter 

regressions. 

Components Data type Set No. Source 

ethanol/water VLE 

1 Kojima et al. (1968) 

2 Kojima et al. (1969) 

3 Zemp and Francesconi (1992) 

4 Kurihara et al. (1993) 

5 Arce et al. (1996)  

n-propanol/water VLE 

6 Kojima et al. (1968)  

7 Smirvo (1959)  

8 Dawe and Newsham (1973)  

ethanol/DIPE 

VLE 

9 Benito and Lopez (1992) 

n-propanol/DIPE 10 Benito and Lopez (1992)  

n-propanol/isooctane 11 Hiaki et al. (1994) 

DIPE/water VLE 
12 Yorizane et al. (1967)  

13 Hunsmann and Simmrock (1966)  

DIPE/water LLE 

14 Krupatkin and Bodin (1947)  

15 Hlavaty and Linek  (1973)  

16 Hwang et al.(2008) 

isooctane/water LLE 17 Maczynski et al. (2004) 

ethanol/DIPE/water 

LLE 
18 Arce et al. (2002) 

19 Hwang et al. (2008) 

VLE 20 

This work 

Organic VLE (VLLE) 21 

Aqueous VLE (VLLE) 22 

LLE (VLLE) 23 

Ternary Azeotrope 24 

n-propanol/DIPE/water 

LLE 

25 Ghanadzadeha and Ghanadzadeha (2009)  

26 Hwang et al. (2008) 

27 Wang et al. (2011) 

VLE 28 

This work 
Organic VLE (VLLE) 29 

Aqueous VLE (VLLE) 30 

LLE (VLLE) 31 

n-propanol/isooctane/water 

LLE 32 Wang et al. (2011) 

VLE 33 

This work 

Organic VLE (VLLE) 34 

Aqueous VLE (VLLE) 35 

LLE (VLLE) 36 

Ternary Azeotrope 37 
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Table G-2: Weighting of data from Table G-1, used in parameter regressions. 

Set No. 

Ethanol/DIPE/Water n-Propanol/DIPE/Water n-Propanol/Isooctane/Water 

N
R

T
L

 

U
N

IQ
U

A
C

 

U
N

IF
A

C
 

U
N

IF
A

C
 

L
L

E
 

N
R

T
L

 

U
N

IQ
U

A
C

 

U
N

IF
A

C
 

U
N

IF
A

C
 

L
L

E
 

N
R

T
L

 

U
N

IQ
U

A
C

 

U
N

IF
A

C
 

U
N

IF
A

C
 

L
L

E
 

1 
            

2 1 
 

1 1 
        

3 
            

4 
            

5 
 

1 
 

1 
        

6 
           

1 

7 
     

1 
     

1 

8 
    

1 1 
 

1 5 1 1 1 

9 1 1 2 2 
        

10 
    

5 5 10 11 
    

11 
        

5 
 

0.5 2 

12 
      

0.5 
     

13 
            

14 
 

1 
 

1 1 1 1 1 
    

15 
            

16 0.9 
 

0.5 
         

17 
        

1 1 1 1 

18 
            

19 
            

20 
            

21 1 2 2 3 
        

22 
  

1 
         

23 1.2 5 5 5 
        

24 
 

3 
          

25 
            

26 
            

27 
            

28 
    

1 
 

1 1 
    

29 
      

1 
     

30 
      

1 
     

31 
    

1 3 10 5 
    

32 
            

33 
            

34 
        

3 3 1 10 

35 
         

3 1 1 

36 
        

8 3 10 5 

37 
         

1 
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H. REGRESSED PARAMETERS 

Table H-1: NRTL Model Parameters of the Water (1) + DIPE (2) + Ethanol (3) ternary mixture. 

i, j Aij Aji Bij Bji Cij 

1, 2 5.43 -8.58 3166.61 68.94 0.018 

1, 3 -2.76 -5.14 1549.35 2063.90 0.783 

2, 3 -4.19 -1.70 3058.67 -882.89 -0.037 

 

Table H-2: UNIQUAC Model Parameters of the Water (1) + DIPE (2) + Ethanol (3) ternary mixture. 

i, j Aij Aji Bij Bji 

1, 2 -1.06 -0.47 205.64 -451.87 

1, 3 -0.60 2.87 253.03 -1252.70 

2, 3 28.89 -20.81 -10000.00 7046.36 

 

Table H-3: UNIFAC (vapour-liquid equilibrium calculations) Model Parameters of the Water (1) + DIPE (2) + 

Ethanol (3) ternary mixture. 

Functional 

Group 
G1 G2 G3 

G1 112.05 -540.44 -191.11 

G2 1280.62 8352.31 -87.59 

G3 382.49 308.66 -15.13 

G1: Group number for water 

G2: Group number for >CH-O- (ether) 

G3: Group number for -OH (primary alcohol) 

 

Table H-4: UNIFAC (liquid-liquid equilibrium calculations) Model Parameters of the Water (1) + DIPE (2) + 

Ethanol (3) ternary mixture. 

Functional 

Group 
G1 G2 G3 

G1 74.99 -569.74 -724.03 

G2 14498.00 -252.54 22.16 

G3 14498.00 -396.72 -358.18 

G1: Group number for water 

G2: Group number for >CH-O- (ether) 

G3: Group number for -OH (primary alcohol) 
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Table H-5: NRTL Model Parameters of the Water (1) + DIPE (2) + n-Propanol (3) ternary mixture. 

i, j Aij Aji Bij Bji Cij 

1, 2 12.79 -3.77 -1534.89 817.44 0.078 

1, 3 4.68 -1.36 -726.32 727.43 0.490 

2, 3 10.77 -12.94 -3578.69 4662.83 -0.299 

 

Table H-6: UNIQUAC Model Parameters of the Water (1) + DIPE (2) + n-Propanol (3) ternary mixture. 

i, j Aij Aji Bij Bji 

1, 2 -1.11 -0.29 220.73 -505.39 

1, 3 0.09 -1.13 -297.36 403.12 

2, 3 6.67 -3.95 -2605.41 1475.09 

 

Table H-7: UNIFAC (vapour-liquid equilibrium calculations) Model Parameters of the Water (1) + DIPE (2) + 

n-Propanol (3) ternary mixture. 

Functional 

Group 
G1 G2 G3 

G1 187.84 -562.75 -2165.07 

G2 1317.04 9996.80 -2008.30 

G3 551.61 0.00 -1972.51 

G1: Group number for water 

G2: Group number for >CH-O- (ether) 

G3: Group number for -OH (primary alcohol) 

 

Table H-8: UNIFAC (liquid-liquid equilibrium calculations) Model Parameters of the Water (1) + DIPE (2) + 

n-Propanol (3) ternary mixture. 

Functional 

Group 
G1 G2 G3 

G1 32.05 -570.06 -2047.18 

G2 1271.14 -252.54 1615.56 

G3 200.53 -827.65 -2157.85 

G1: Group number for water 

G2: Group number for >CH-O- (ether) 

G3: Special group number for n-Propanol 
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Table H-9: NRTL Model Parameters of the Water (1) + Isooctane (2) + n-Propanol (3) ternary mixture. 

i, j Aij Aji Bij Bji Cij 

1, 2 -6.40 4.95 1077.59 1197.54 -0.072 

1, 3 12.15 10.22 -5966.13 -1960.98 -0.071 

2, 3 6.74 6.12 -1190.28 -1567.63 0.660 

 

Table H-10: UNIQUAC Model Parameters of the Water (1) + Isooctane (2) + n-Propanol (3) ternary mixture. 

i, j Aij Aji Bij Bji 

1, 2 4.76 7.58 -1853.99 -3454.91 

1, 3 1.57 -0.76 -710.64 182.83 

2, 3 0.49 -0.76 -575.28 370.68 

 

Table H-11: NRTL Model Parameters of the Water + Ethanol + Benzene mixture, regressed by Christo Crause 

(2011). 

Component  i WATER WATER ETHANOL 

Component j ETHANOL BENZENE BENZENE 

Temperature units C C C 

Parameters:       

aij 0.08905 0.49132 -0.11046 

aji 5.68039 -1.00517 0.15438 

bij 102.981 1980.909 408.146 

bji -894.595 1770.413 410.987 

cij 0.3 0.28546 0.501486 

dij 0 0 0 

eij 0 0 0 

eji 0 0 0 

fij 0.0044966 0 0 

fji -0.0094041 0 0 

Tlower 0 0 0 

Tupper 1000 1000 1000 

    

Stellenbosch University http://scholar.sun.ac.za



 
200 Detailed Simulation Results 

I. DETAILED SIMULATION RESULTS 

Table I-1: Stream results for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using 

NRTL with built-in Aspen parameters. 

Streams AQUEOUS B1 B2 D1 D2 FF MAKEUP ORGANIC 

Mole Flow kmol/sec                 

  ETHANOL 0.0025 0.0139 0.0000 0.0273 0.0025 0.0139 0.0000 0.0248 

  DIPE 0.0003 0.0003 0.0000 0.1138 0.0003 0.0000 0.0003 0.1138 

  H2O 0.0161 0.0000 0.0139 0.0317 0.0022 0.0139 0.0000 0.0156 

Mole Frac                 

  ETHANOL 0.1314 0.9800 0.0000 0.1579 0.5007 0.5000 0.0000 0.1608 

  DIPE 0.0138 0.0195 0.0000 0.6587 0.0527 0.0000 1.0000 0.7381 

  H2O 0.8548 0.0005 1.0000 0.1834 0.4466 0.5000 0.0000 0.1010 

Total Flow kmol/sec 0.0188 0.0142 0.0139 0.1727 0.0049 0.0278 0.0003 0.1542 

Total Flow kg/sec 0.4305 0.6689 0.2502 13.4506 0.1803 0.8901 0.0315 13.0516 

Total Flow cum/sec 0.0005 0.0009 0.0003 4.7390 0.0002 0.0010 0.0000 0.0179 

Temperature K 313.57 349.51 373.17 334.41 342.83 298.15 313.00 313.56 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 0 1 0 0 0 0 

Liquid Frac 1 1 1 0 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 

Enthalpy J/kmol -284400277 -271741670 -280077310 -287161830 -279847307 -281769936 -347945343 -329182077 

Enthalpy J/kg -12438768 -5763777.3 -15546529 -3687124.7 -7668058.2 -8793724.8 -3405334.3 -3888750.5 

Enthalpy Watt -5354982.8 -3855408.7 -3889937.7 -49593970 -1382511.5 -7826942.7 -107375.93 -50754435 

Entropy J/kmol-K -189328.44 -331789.23 -146101.87 -451495.84 -265607.38 -251938.12 -735212.94 -608602.26 

Entropy J/kg-K -8280.63 -7037.42 -8109.82 -5797.15 -7277.87 -7862.71 -7195.51 -7189.65 

Density kmol/cum 39.57 15.57 50.97 0.04 21.33 26.46 6.90 8.62 

Density kg/cum 904.64 734.14 918.27 2.84 778.36 847.93 705.07 730.10 

Average MW 22.86 47.15 18.02 77.88 36.50 32.04 102.18 84.65 

Liq Vol 60F cum/sec 0.0005 0.0008 0.0003 0.0183 0.0002 0.0011 0.0000 0.0179 
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Table I-2: Azeotropic column information for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed 

with Aspen using NRTL with built-in Aspen parameters. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O ETHANOL DIPE H2O 

1 334.41 101325 -6407250 0.1579 0.6587 0.1834 0.1699 0.7225 0.1077 0.1699 0.7225 0.1077 

2 334.45 101325 0 0.1663 0.6531 0.1807 0.1852 0.7017 0.1131 0.1852 0.7017 0.1131 

3 334.47 101325 0 0.1801 0.6339 0.1860 0.1743 0.0255 0.8002 0.2343 0.6053 0.1604 

4 334.46 101325 0 0.1792 0.6347 0.1861 0.1720 0.0250 0.8030 0.2317 0.6099 0.1583 

5 334.44 101325 0 0.1763 0.6373 0.1864 0.1642 0.0233 0.8126 0.2229 0.6255 0.1516 

6 334.30 101325 0 0.1650 0.6359 0.1991 0.2199 0.5944 0.1857 0.2199 0.5944 0.1857 

7 334.30 101325 0 0.1651 0.6359 0.1990 0.2200 0.5944 0.1856 0.2200 0.5944 0.1856 

8 334.31 101325 0 0.1652 0.6359 0.1990 0.2201 0.5944 0.1855 0.2201 0.5944 0.1855 

9 334.31 101325 0 0.1653 0.6358 0.1989 0.2203 0.5943 0.1854 0.2203 0.5943 0.1854 

10 334.31 101325 0 0.1655 0.6358 0.1987 0.2206 0.5942 0.1852 0.2206 0.5942 0.1852 

11 334.31 101325 0 0.1658 0.6357 0.1985 0.2210 0.5941 0.1849 0.2210 0.5941 0.1849 

12 334.32 101325 0 0.1662 0.6356 0.1982 0.2215 0.5940 0.1845 0.2215 0.5940 0.1845 

13 334.32 101325 0 0.1668 0.6354 0.1978 0.2223 0.5938 0.1840 0.2223 0.5938 0.1840 

14 334.33 101325 0 0.1676 0.6352 0.1972 0.2234 0.5935 0.1832 0.2234 0.5935 0.1832 

15 334.34 101325 0 0.1688 0.6349 0.1963 0.2249 0.5931 0.1820 0.2249 0.5931 0.1820 

16 334.36 101325 0 0.1704 0.6345 0.1951 0.2272 0.5925 0.1804 0.2272 0.5925 0.1804 

17 334.39 101325 0 0.1728 0.6338 0.1933 0.2303 0.5917 0.1780 0.2303 0.5917 0.1780 

18 334.43 101325 0 0.1762 0.6330 0.1908 0.2348 0.5906 0.1746 0.2348 0.5906 0.1746 

19 334.48 101325 0 0.1810 0.6318 0.1872 0.2410 0.5892 0.1698 0.2410 0.5892 0.1698 

20 334.55 101325 0 0.1877 0.6304 0.1820 0.2495 0.5876 0.1630 0.2495 0.5876 0.1630 

21 334.66 101325 0 0.1968 0.6286 0.1747 0.2608 0.5857 0.1535 0.2608 0.5857 0.1535 

22 334.80 101325 0 0.2089 0.6266 0.1645 0.2753 0.5840 0.1406 0.2753 0.5840 0.1406 

23 334.99 101325 0 0.2246 0.6247 0.1507 0.2930 0.5830 0.1240 0.2930 0.5830 0.1240 

24 335.24 101325 0 0.2435 0.6235 0.1329 0.3128 0.5831 0.1041 0.3128 0.5831 0.1041 

25 335.53 101325 0 0.2649 0.6236 0.1115 0.3331 0.5845 0.0824 0.3331 0.5845 0.0824 

26 335.85 101325 0 0.2868 0.6249 0.0883 0.3518 0.5868 0.0614 0.3518 0.5868 0.0614 

27 336.16 101325 0 0.3069 0.6273 0.0658 0.3673 0.5894 0.0433 0.3673 0.5894 0.0433 

28 336.43 101325 0 0.3237 0.6299 0.0464 0.3791 0.5917 0.0292 0.3791 0.5917 0.0292 

29 336.64 101325 0 0.3364 0.6323 0.0312 0.3875 0.5935 0.0190 0.3875 0.5935 0.0190 
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Table I-3: Azeotropic column information (continued) for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was 

performed with Aspen using NRTL with built-in Aspen parameters. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O ETHANOL DIPE H2O 

30 336.79 101325 0 0.3455 0.6342 0.0203 0.3931 0.5948 0.0121 0.3931 0.5948 0.0121 

31 336.89 101325 0 0.3516 0.6355 0.0129 0.3969 0.5956 0.0076 0.3969 0.5956 0.0076 

32 336.96 101325 0 0.3557 0.6363 0.0081 0.3995 0.5959 0.0047 0.3995 0.5959 0.0047 

33 337.00 101325 0 0.3585 0.6366 0.0050 0.4018 0.5953 0.0029 0.4018 0.5953 0.0029 

34 337.04 101325 0 0.3609 0.6360 0.0030 0.4053 0.5929 0.0018 0.4053 0.5929 0.0018 

35 337.07 101325 0 0.3647 0.6335 0.0018 0.4138 0.5851 0.0011 0.4138 0.5851 0.0011 

36 337.13 101325 0 0.3737 0.6252 0.0011 0.4391 0.5602 0.0007 0.4391 0.5602 0.0007 

37 337.41 101325 0 0.4005 0.5988 0.0007 0.5200 0.4795 0.0005 0.5200 0.4795 0.0005 

38 339.11 101325 0 0.4861 0.5134 0.0005 0.7241 0.2754 0.0005 0.7241 0.2754 0.0005 

39 344.72 101325 0 0.7038 0.2957 0.0005 0.9132 0.0863 0.0006 0.9132 0.0863 0.0006 

40 349.51 101325 6544238.41 0.9076 0.0919 0.0006 0.9800 0.0195 0.0005 0.9800 0.0195 0.0005 

 

  

Stellenbosch University http://scholar.sun.ac.za



 
203 Detailed Simulation Results 

Table I-4: Recovery column information for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with 

Aspen using NRTL with built-in Aspen parameters. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O 

1 342.83 101325 -1917466.3 0.4040 0.3726 0.2235 0.5007 0.0527 0.4466 

2 355.12 101325 0 0.5007 0.0527 0.4466 0.1835 0.0009 0.8156 

3 366.85 101325 0 0.2176 0.0065 0.7759 0.0253 0.0000 0.9746 

4 370.99 101325 0 0.0759 0.0056 0.9185 0.0068 0.0000 0.9932 

5 371.45 101325 0 0.0590 0.0056 0.9355 0.0051 0.0000 0.9949 

6 371.49 101325 0 0.0574 0.0056 0.9370 0.0050 0.0000 0.9950 

7 371.49 101325 0 0.0573 0.0056 0.9371 0.0050 0.0000 0.9950 

8 371.49 101325 0 0.0573 0.0056 0.9371 0.0050 0.0000 0.9950 

9 371.49 101325 0 0.0573 0.0056 0.9371 0.0050 0.0000 0.9950 

10 373.00 101325 0 0.0064 0.0000 0.9936 0.0005 0.0000 0.9995 

11 373.15 101325 0 0.0007 0.0000 0.9993 0.0001 0.0000 0.9999 

12 373.17 101325 2000000 0.0001 0.0000 0.9999 0.0000 0.0000 1.0000 

 

  

Stellenbosch University http://scholar.sun.ac.za



 
204 Detailed Simulation Results 

Table I-5: Stream results for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using 

NRTL with parameters regressed in this work. 

STREAMS AQUEOUS B1 B2 D1 D2 FEED MAKEUP ORGANIC 

Mole Flow kmol/sec 
        

ETHANOL 0.0009 0.0133 0.0000 0.0207 0.0009 0.0139 0.0000 0.0198 

DIPE 0.0000 0.0002 0.0000 0.0935 0.0000 0.0000 0.0012 0.0947 

H2O 0.0136 0.0001 0.0135 0.0266 0.0001 0.0139 0.0000 0.0130 

Mole Frac 
        

ETHANOL 0.0628 0.9800 0.0001 0.1472 0.8525 0.5000 0.0000 0.1554 

DIPE 0.0015 0.0111 0.0000 0.6638 0.0198 0.0000 1.0000 0.7427 

H2O 0.9357 0.0089 0.9999 0.1890 0.1277 0.5000 0.0000 0.1019 

Total Flow kmol/sec 0.0146 0.0136 0.0135 0.1409 0.0011 0.0278 0.0012 0.1275 

Total Flow kg/sec 0.2900 0.6310 0.2432 10.9936 0.0468 0.8901 0.1226 10.8262 

Total Flow cum/sec 0.0003 0.0009 0.0003 3.8772 0.0001 0.0010 0.0002 0.0148 

Temperature K 314.032378 349.836505 373.14517 335.311422 348.718561 298.15 313 314.01011 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 0 1 0 0 0 0 

Liquid Frac 1 1 1 0 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 

Enthalpy J/kmol -284137132 -271374372 -280079558 -287503626 -273511416 -281643461 -347945343 -329812625 

Enthalpy J/kg -14277877 -5843731.1 -15544724 -3685253 -6273240.6 -8789777.6 -3405334.3 -3885554.3 

Enthalpy Watt -4140602.7 -3687513.6 -3781074 -40514231 -293354.76 -7823429.5 -417534.41 -42065865 

Entropy J/kmol-K -170158.66 -327318.25 -146118.42 -452368.07 -308293.31 -251306.33 -735212.94 -610857.82 

Entropy J/kg-K -8550.46 -7048.42 -8109.73 -5798.50 -7071.00 -7842.99 -7195.51 -7196.57 

Density kmol/cum 47.40 15.83 50.96 0.04 17.07 26.46 6.90 8.59 

Density kg/cum 943.23 735.09 918.24 2.84 744.37 847.93 705.07 729.28 

Average MW 19.90 46.44 18.02 78.01 43.60 32.04 102.18 84.88 

Liq Vol 60F cum/sec 0.0003 0.0008 0.0002 0.0149 0.0001 0.0011 0.0002 0.0148 
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Table I-6: Azeotropic column information for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed 

with Aspen using NRTL with parameters regressed in this work. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O ETHANOL DIPE H2O 

1 335.31 101325 -5273490 0.1472 0.6638 0.1890 0.1688 0.7239 0.1073 0.1688 0.7239 0.1073 

2 335.40 101325 0 0.1611 0.6537 0.1852 0.1929 0.6915 0.1156 0.1929 0.6915 0.1156 

3 335.51 101325 0 0.1827 0.6237 0.1935 0.2596 0.5751 0.1653 0.2596 0.5751 0.1653 

4 335.73 101325 0 0.1980 0.6233 0.1787 0.2733 0.5746 0.1521 0.2733 0.5746 0.1521 

5 335.93 101325 0 0.2128 0.6228 0.1644 0.2864 0.5740 0.1396 0.2864 0.5740 0.1396 

6 336.11 101325 0 0.2270 0.6222 0.1508 0.2987 0.5734 0.1278 0.2987 0.5734 0.1278 

7 336.26 101325 0 0.2404 0.6216 0.1380 0.3103 0.5728 0.1169 0.3103 0.5728 0.1169 

8 336.41 101325 0 0.2530 0.6209 0.1261 0.3211 0.5721 0.1068 0.3211 0.5721 0.1068 

9 336.53 101325 0 0.2647 0.6202 0.1152 0.3311 0.5715 0.0975 0.3311 0.5715 0.0975 

10 336.64 101325 0 0.2755 0.6195 0.1050 0.3403 0.5708 0.0889 0.3403 0.5708 0.0889 

11 336.74 101325 0 0.2854 0.6188 0.0958 0.3487 0.5702 0.0811 0.3487 0.5702 0.0811 

12 336.83 101325 0 0.2945 0.6182 0.0873 0.3564 0.5696 0.0739 0.3564 0.5696 0.0739 

13 336.91 101325 0 0.3029 0.6176 0.0795 0.3635 0.5691 0.0674 0.3635 0.5691 0.0674 

14 336.97 101325 0 0.3106 0.6170 0.0724 0.3700 0.5686 0.0614 0.3700 0.5686 0.0614 

15 337.04 101325 0 0.3176 0.6164 0.0659 0.3759 0.5681 0.0560 0.3759 0.5681 0.0560 

16 337.09 101325 0 0.3241 0.6159 0.0600 0.3814 0.5677 0.0510 0.3814 0.5677 0.0510 

17 337.14 101325 0 0.3300 0.6155 0.0546 0.3864 0.5672 0.0464 0.3864 0.5672 0.0464 

18 337.18 101325 0 0.3354 0.6150 0.0496 0.3910 0.5668 0.0422 0.3910 0.5668 0.0422 

19 337.22 101325 0 0.3404 0.6146 0.0450 0.3952 0.5665 0.0383 0.3952 0.5665 0.0383 

20 337.26 101325 0 0.3449 0.6142 0.0408 0.3991 0.5662 0.0348 0.3991 0.5662 0.0348 

21 337.29 101325 0 0.3491 0.6139 0.0370 0.4026 0.5658 0.0315 0.4026 0.5658 0.0315 

22 337.32 101325 0 0.3530 0.6136 0.0335 0.4059 0.5656 0.0285 0.4059 0.5656 0.0285 

23 337.35 101325 0 0.3565 0.6133 0.0302 0.4089 0.5653 0.0258 0.4089 0.5653 0.0258 

24 337.37 101325 0 0.3598 0.6130 0.0272 0.4117 0.5650 0.0232 0.4117 0.5650 0.0232 

25 337.40 101325 0 0.3628 0.6127 0.0245 0.4143 0.5648 0.0209 0.4143 0.5648 0.0209 

26 337.42 101325 0 0.3656 0.6125 0.0219 0.4167 0.5646 0.0187 0.4167 0.5646 0.0187 

27 337.44 101325 0 0.3682 0.6122 0.0196 0.4189 0.5644 0.0167 0.4189 0.5644 0.0167 

28 337.45 101325 0 0.3706 0.6120 0.0174 0.4209 0.5642 0.0149 0.4209 0.5642 0.0149 

29 337.47 101325 0 0.3728 0.6118 0.0154 0.4228 0.5640 0.0131 0.4228 0.5640 0.0131 
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Table I-7: Azeotropic column information (continued) for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was 

performed with Aspen using NRTL with parameters regressed in this work. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O ETHANOL DIPE H2O 

30 337.48 101325 0 0.3749 0.6116 0.0135 0.4246 0.5638 0.0116 0.4246 0.5638 0.0116 

31 337.50 101325 0 0.3768 0.6114 0.0118 0.4264 0.5635 0.0101 0.4264 0.5635 0.0101 

32 337.51 101325 0 0.3787 0.6111 0.0102 0.4283 0.5629 0.0087 0.4283 0.5629 0.0087 

33 337.52 101325 0 0.3808 0.6105 0.0087 0.4309 0.5616 0.0075 0.4309 0.5616 0.0075 

34 337.54 101325 0 0.3835 0.6091 0.0074 0.4353 0.5583 0.0064 0.4353 0.5583 0.0064 

35 337.57 101325 0 0.3882 0.6056 0.0062 0.4450 0.5495 0.0054 0.4450 0.5495 0.0054 

36 337.64 101325 0 0.3987 0.5962 0.0051 0.4702 0.5250 0.0048 0.4702 0.5250 0.0048 

37 337.91 101325 0 0.4256 0.5700 0.0044 0.5425 0.4528 0.0047 0.5425 0.4528 0.0047 

38 339.30 101325 0 0.5030 0.4927 0.0043 0.7342 0.2599 0.0059 0.7342 0.2599 0.0059 

39 344.67 101325 0 0.7104 0.2840 0.0056 0.9247 0.0675 0.0077 0.9247 0.0675 0.0077 

40 349.84 101325 5412518.59 0.9192 0.0732 0.0076 0.9800 0.0111 0.0089 0.9800 0.0111 0.0089 
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Table I-8: Recovery column information for the dehydration of ethanol via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with 

Aspen using NRTL with parameters regressed in this work. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction)  Liquid (mole fraction) 

K N/sqm Watt ETHANOL DIPE H2O ETHANOL DIPE H2O 

1 348.72 101325 -1933826.3 0.7670 0.1346 0.0984 0.8525 0.0198 0.1277 

2 351.51 101325 0 0.8525 0.0198 0.1277 0.8452 0.0023 0.1525 

3 352.01 101325 0 0.8453 0.0027 0.1520 0.8184 0.0003 0.1813 

4 352.23 101325 0 0.8192 0.0007 0.1801 0.7820 0.0001 0.2179 

5 352.49 101325 0 0.7836 0.0005 0.2159 0.7331 0.0000 0.2669 

6 352.89 101325 0 0.7357 0.0005 0.2638 0.6631 0.0000 0.3369 

7 353.66 101325 0 0.6673 0.0005 0.3322 0.5517 0.0000 0.4482 

8 355.66 101325 0 0.5584 0.0005 0.4411 0.3139 0.0000 0.6861 

9 363.68 101325 0 0.3261 0.0005 0.6734 0.0462 0.0000 0.9538 

10 371.63 101325 0 0.0593 0.0000 0.9407 0.0059 0.0000 0.9941 

11 372.98 101325 0 0.0075 0.0000 0.9925 0.0007 0.0000 0.9993 

12 373.15 101325 2000000 0.0009 0.0000 0.9991 0.0001 0.0000 0.9999 
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Table I-9: Stream results for the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer.  The simulation was performed with Aspen using 

NRTL with parameters supplied by Christo Crause (2011). 

STREAMS AQUEOUS B1 B2 D1 D2 FEED MAKE-UP ORGANIC 

Mole Flow kmol/sec 

  BENZENE 0.0008 0.0000 0.0000 0.1198 0.0008 0.0000 0.0095 0.1284 

  ETHANOL 0.0124 0.0096 0.0000 0.0561 0.0124 0.0139 0.0000 0.0438 

  H2O 0.0296 0.0002 0.0135 0.0470 0.0161 0.0139 0.0000 0.0174 

Mole Frac 

  BENZENE 0.0196 0.0030 0.0000 0.5374 0.0287 0.0000 1.0000 0.6775 

  ETHANOL 0.2893 0.9800 0.0000 0.2519 0.4225 0.5000 0.0000 0.2308 

  H2O 0.6911 0.0170 1.0000 0.2107 0.5488 0.5000 0.0000 0.0917 

Total Flow kmol/sec 0.0428 0.0098 0.0135 0.2229 0.0293 0.0278 0.0095 0.1895 

Total Flow kg/sec 1.1691 0.4473 0.2432 12.7866 0.9259 0.8901 0.7421 12.3596 

Total Flow cum/sec 0.0013 0.0006 0.0003 6.1732 0.0011 0.0010 0.0009 0.0143 

Temperature K 311.85531 351.081992 373.15531 337.589396 342.273695 298.15 313 311.72302 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 0 1 0 0 0 0 

Liquid Frac 1 1 1 0 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 

Enthalpy J/kmol -275785623 -269405615 -280077780 -62769386 -268051767 -282016863 51135882.8 -54852409 

Enthalpy J/kg -10098281 -5896335.7 -15545808 -1093970.8 -8485072 -8801431.1 654634.489 -841194.05 

Enthalpy Watt -11806137 -2637224 -3781050 -13988203 -7856358.2 -7833801.8 485790.887 -10396814 

Entropy J/kmol-K -211768.26 -320530.06 -146107.08 -132941.14 -225542.69 -252763.8 -246098.06 -257069.11 

Entropy J/kg-K -7754.19 -7015.27 -8109.72 -2316.95 -7139.46 -7888.48 -3150.51 -3942.31 

Density kmol/cum 31.96 16.10 50.97 0.04 25.68 26.46 10.97 13.22 

Density kg/cum 872.90 735.66 918.26 2.07 811.10 847.93 857.09 862.18 

Average MW 27.31 45.69 18.02 57.38 31.59 32.04 78.11 65.21 

Liq Vol 60F cum/sec 0.0013 0.0006 0.0002 0.0147 0.0011 0.0011 0.0008 0.0142 

 

 

Stellenbosch University http://scholar.sun.ac.za



 
209 Detailed Simulation Results 

Table I-10: Azeotropic column information for the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer.  The simulation was performed 

with Aspen using NRTL with parameters supplied by Christo Crause (2011). 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt BENZENE ETHANOL H2O BENZENE ETHANOL H2O BENZENE ETHANOL H2O 

1 337.59 101325 8702190 0.5374 0.2519 0.2107 0.0142 0.2440 0.7418 0.7382 0.1993 0.0625 

2 337.84 101325 0 0.5531 0.2279 0.2191 0.0058 0.1613 0.8329 0.8414 0.1274 0.0312 

3 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

4 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

5 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

6 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

7 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

8 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

9 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2584 0.5383 0.2034 0.2584 

10 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2583 0.5383 0.2034 0.2583 

11 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2583 0.5383 0.2034 0.2583 

12 336.83 101325 0 0.5597 0.1723 0.2680 0.5383 0.2034 0.2583 0.5383 0.2034 0.2583 

13 336.83 101325 0 0.5597 0.1724 0.2680 0.5382 0.2034 0.2583 0.5382 0.2034 0.2583 

14 336.83 101325 0 0.5596 0.1724 0.2680 0.5382 0.2035 0.2583 0.5382 0.2035 0.2583 

15 336.83 101325 0 0.5596 0.1724 0.2679 0.5382 0.2036 0.2583 0.5382 0.2036 0.2583 

16 336.83 101325 0 0.5596 0.1725 0.2679 0.5381 0.2036 0.2582 0.5381 0.2036 0.2582 

17 336.83 101325 0 0.5596 0.1726 0.2679 0.5381 0.2038 0.2581 0.5381 0.2038 0.2581 

18 336.83 101325 0 0.5595 0.1728 0.2678 0.5380 0.2040 0.2580 0.5380 0.2040 0.2580 

19 336.84 101325 0 0.5594 0.1730 0.2676 0.5378 0.2044 0.2578 0.5378 0.2044 0.2578 

20 336.84 101325 0 0.5592 0.1733 0.2674 0.5376 0.2049 0.2575 0.5376 0.2049 0.2575 

21 336.84 101325 0 0.5590 0.1739 0.2671 0.5372 0.2057 0.2571 0.5372 0.2057 0.2571 

22 336.84 101325 0 0.5586 0.1747 0.2667 0.5367 0.2069 0.2564 0.5367 0.2069 0.2564 

23 336.85 101325 0 0.5580 0.1759 0.2660 0.5359 0.2087 0.2554 0.5359 0.2087 0.2554 

24 336.86 101325 0 0.5572 0.1778 0.2650 0.5347 0.2114 0.2539 0.5347 0.2114 0.2539 

25 336.88 101325 0 0.5560 0.1807 0.2634 0.5329 0.2156 0.2515 0.5329 0.2156 0.2515 

26 336.91 101325 0 0.5541 0.1850 0.2609 0.5303 0.2219 0.2479 0.5303 0.2219 0.2479 

27 336.95 101325 0 0.5514 0.1915 0.2571 0.5265 0.2314 0.2421 0.5265 0.2314 0.2421 

28 337.02 101325 0 0.5474 0.2014 0.2511 0.5212 0.2456 0.2331 0.5212 0.2456 0.2331 

29 337.13 101325 0 0.5419 0.2163 0.2418 0.5143 0.2667 0.2189 0.5143 0.2667 0.2189 

Stellenbosch University http://scholar.sun.ac.za



 
210 Detailed Simulation Results 

Table I-11: Azeotropic column information (continued) for the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer.  The simulation 

was performed with Aspen using NRTL with parameters supplied by Christo Crause (2011). 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt BENZENE ETHANOL H2O BENZENE ETHANOL H2O BENZENE ETHANOL H2O 

30 337.32 101325 0 0.5348 0.2382 0.2270 0.5066 0.2965 0.1968 0.5066 0.2965 0.1968 

31 337.63 101325 0 0.5267 0.2693 0.2040 0.4999 0.3352 0.1648 0.4999 0.3352 0.1648 

32 338.09 101325 0 0.5197 0.3096 0.1707 0.4962 0.3788 0.1249 0.4962 0.3788 0.1249 

33 338.67 101325 0 0.5158 0.3550 0.1292 0.4954 0.4199 0.0847 0.4954 0.4199 0.0847 

34 339.27 101325 0 0.5148 0.3978 0.0873 0.4943 0.4536 0.0522 0.4943 0.4536 0.0522 

35 339.76 101325 0 0.5135 0.4329 0.0536 0.4830 0.4862 0.0308 0.4830 0.4862 0.0308 

36 340.16 101325 0 0.5018 0.4669 0.0314 0.4249 0.5550 0.0201 0.4249 0.5550 0.0201 

37 341.26 101325 0 0.4417 0.5381 0.0202 0.2484 0.7336 0.0180 0.2484 0.7336 0.0180 

38 345.60 101325 0 0.2586 0.7233 0.0181 0.0747 0.9067 0.0186 0.0747 0.9067 0.0186 

39 349.76 101325 0 0.0778 0.9035 0.0187 0.0158 0.9662 0.0181 0.0158 0.9662 0.0181 

40 351.08 101325 8768904.59 0.0163 0.9655 0.0181 0.0030 0.9800 0.0170 0.0030 0.9800 0.0170 
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Table I-12: Recovery column information for the dehydration of ethanol via heterogeneous azeotropic distillation with benzene as entrainer.  The simulation was performed 

with Aspen using NRTL with parameters supplied by Christo Crause (2011). 

Stage 
Temperature Pressure Heat duty Vapour Liquid 

K N/sqm Watt BENZENE ETHANOL H2O BENZENE ETHANOL H2O 

1 342.27 101325 -1831275.2 0.3933 0.3666 0.2401 0.0287 0.4225 0.5488 

2 358.95 101325 0 0.0287 0.4225 0.5488 0.0001 0.0887 0.9112 

3 363.31 101325 0 0.0191 0.3111 0.6697 0.0000 0.0435 0.9565 

4 363.83 101325 0 0.0191 0.2957 0.6852 0.0000 0.0397 0.9603 

5 363.88 101325 0 0.0191 0.2944 0.6865 0.0000 0.0394 0.9606 

6 363.88 101325 0 0.0191 0.2943 0.6867 0.0000 0.0393 0.9607 

7 363.88 101325 0 0.0191 0.2943 0.6867 0.0000 0.0393 0.9607 

8 363.88 101325 0 0.0191 0.2943 0.6867 0.0000 0.0393 0.9607 

9 363.88 101325 0 0.0191 0.2943 0.6867 0.0000 0.0393 0.9607 

10 371.84 101325 0 0.0000 0.0504 0.9496 0.0000 0.0040 0.9960 

11 373.03 101325 0 0.0000 0.0051 0.9949 0.0000 0.0004 0.9996 

12 373.16 101325 2000000 0.0000 0.0005 0.9995 0.0000 0.0000 1.0000 
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Table I-13: Stream results for the dehydration of IPA via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using 

NRTL with built-in Aspen parameters. 

Streams AQUEOUS B1 B2 D1 D2 FF MAKEUP ORGANIC 

Mole Flow kmol/sec                 

  DIPE 0.0001 0.0000 0.0000 0.0904 0.0001 0.0000 0.0002 0.0905 

  IPA 0.0007 0.0138 0.0000 0.0119 0.0007 0.0139 0.0000 0.0111 

  H2O 0.0181 0.0000 0.0139 0.0267 0.0042 0.0139 0.0000 0.0085 

Mole Frac                 

  DIPE 0.0059 0.0034 0.0000 0.7012 0.0222 0.0000 1.0000 0.8214 

  IPA 0.0389 0.9950 0.0000 0.0921 0.1455 0.5000 0.0000 0.1011 

  H2O 0.9552 0.0016 1.0000 0.2068 0.8323 0.5000 0.0000 0.0775 

Total Flow kmol/sec 0.0190 0.0139 0.0139 0.1289 0.0051 0.0278 0.0002 0.1102 

Total Flow kg/sec 0.3823 0.8349 0.2504 10.4318 0.1319 1.0849 0.0204 10.0699 

Total Flow cum/sec 0.0004 0.0012 0.0003 3.5432 0.0002 0.0013 0.0000 0.0140 

Temperature K 313.73 354.93 373.17 334.87 338.69 298.15 298.15 313.69 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 0 1 0 0 0 0 

Liquid Frac 1 1 1 0 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 

Enthalpy J/kmol -286396176 -307281811 -280077249 -294051972 -288575480 -302531145 -351285603 -339108902 

Enthalpy J/kg -14212162 -5106812.8 -15546642 -3634732.8 -11096306 -7746165.6 -3438025.3 -3710169 

Enthalpy Watt -5433349.9 -4263667.4 -3893073.8 -37916831 -1463495.3 -8403643 -70257.121 -37361178 

Entropy J/kmol-K -173714.66 -422795.12 -146101.16 -474459.58 -206383.23 -308543.34 -746073.33 -657294.35 

Entropy J/kg-K -8620.44 -7026.56 -8109.84 -5864.72 -7935.85 -7900.11 -7301.81 -7191.42 

Density kmol/cum 46.86 12.00 50.97 0.04 32.82 21.47 7.05 7.89 

Density kg/cum 944.20 722.22 918.27 2.94 853.66 838.41 720.63 721.14 

Average MW 20.15 60.17 18.02 80.90 26.01 39.06 102.18 91.40 

Liq Vol 60F cum/sec 0.0004 0.0011 0.0003 0.0142 0.0001 0.0013 0.0000 0.0138 
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Table I-14: Azeotropic column information for the dehydration of IPA via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with 

Aspen using NRTL with built-in Aspen parameters. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 1

st
 Liquid (mole fraction) 2

nd
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O DIPE IPA H2O DIPE IPA H2O 

1 334.87 101325 -4806720 0.7012 0.0921 0.2068 0.7012 0.0921 0.2068 0.8021 0.1082 0.0898 

2 334.89 101325 0 0.6944 0.0991 0.2065 0.6944 0.0991 0.2065 0.7800 0.1226 0.0974 

3 334.74 101325 0 0.6610 0.1100 0.2290 0.6610 0.1100 0.2290 0.6047 0.1867 0.2086 

4 334.77 101325 0 0.6607 0.1114 0.2279 0.6607 0.1114 0.2279 0.6042 0.1891 0.2067 

5 334.83 101325 0 0.6602 0.1140 0.2258 0.6602 0.1140 0.2258 0.6035 0.1936 0.2030 

6 334.93 101325 0 0.6594 0.1189 0.2218 0.6594 0.1189 0.2218 0.6026 0.2017 0.1956 

7 335.12 101325 0 0.6585 0.1278 0.2137 0.6585 0.1278 0.2137 0.6031 0.2158 0.1810 

8 335.48 101325 0 0.6590 0.1432 0.1978 0.6590 0.1432 0.1978 0.6083 0.2375 0.1542 

9 336.08 101325 0 0.6645 0.1671 0.1684 0.6645 0.1671 0.1684 0.6206 0.2650 0.1144 

10 336.93 101325 0 0.6777 0.1975 0.1248 0.6777 0.1975 0.1248 0.6359 0.2923 0.0718 

11 337.84 101325 0 0.6939 0.2278 0.0783 0.6939 0.2278 0.0783 0.6454 0.3153 0.0393 

12 338.57 101325 0 0.7039 0.2533 0.0428 0.7039 0.2533 0.0428 0.6408 0.3391 0.0201 

13 339.13 101325 0 0.6989 0.2793 0.0218 0.6989 0.2793 0.0218 0.6072 0.3821 0.0107 

14 339.98 101325 0 0.6630 0.3255 0.0115 0.6630 0.3255 0.0115 0.5059 0.4874 0.0067 

15 342.62 101325 0 0.5545 0.4383 0.0072 0.5545 0.4383 0.0072 0.3088 0.6860 0.0053 

16 347.98 101325 0 0.3408 0.6535 0.0056 0.3408 0.6535 0.0056 0.1273 0.8684 0.0043 

17 352.40 101325 0 0.1411 0.8544 0.0046 0.1411 0.8544 0.0046 0.0413 0.9555 0.0032 

18 354.31 101325 0 0.0455 0.9511 0.0034 0.0455 0.9511 0.0034 0.0121 0.9856 0.0023 

19 354.93 101325 5007556.31 0.0131 0.9845 0.0024 0.0131 0.9845 0.0024 0.0034 0.9950 0.0016 
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Table I-15: Recovery column information for the dehydration of IPA via heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with 

Aspen using NRTL with built-in Aspen parameters. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O DIPE IPA H2O 

1 338.69 101325 -923219.74 0.5425 0.2214 0.2361 0.0222 0.1455 0.8323 

2 368.28 101325 0 0.0222 0.1455 0.8323 0.0001 0.0069 0.9930 

3 371.95 101325 0 0.0051 0.0388 0.9561 0.0000 0.0015 0.9985 

4 372.08 101325 0 0.0051 0.0344 0.9605 0.0000 0.0013 0.9987 

5 372.08 101325 0 0.0051 0.0342 0.9607 0.0000 0.0013 0.9987 

6 372.08 101325 0 0.0051 0.0342 0.9607 0.0000 0.0013 0.9987 

7 372.08 101325 0 0.0051 0.0342 0.9607 0.0000 0.0013 0.9987 

8 372.08 101325 0 0.0051 0.0342 0.9607 0.0000 0.0013 0.9987 

9 372.08 101325 0 0.0051 0.0342 0.9607 0.0000 0.0013 0.9987 

10 373.11 101325 0 0.0000 0.0020 0.9980 0.0000 0.0001 0.9999 

11 373.16 101325 0 0.0000 0.0001 0.9999 0.0000 0.0000 1.0000 

12 373.17 101325 1000000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 
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Table I-16: Stream results for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic distillation with DIPE as entrainer.  The 

simulation was performed with Aspen using NRTL. 

Streams AQUEOUS B1 B2 D1 D2 FF MAKEUP ORGANIC 

Mole Flow 

kmol/sec                 

  DIPE 0.0000 0.0000 0.0000 0.0363 0.0000 0.0000 0.0000 0.0363 

  IPA 0.0000 0.0000 0.0000 0.0004 0.0000 0.0001 0.0000 0.0004 

  H2O 0.0161 0.0001 0.0150 0.0222 0.0011 0.0163 0.0000 0.0061 

  ETHANOL 0.0002 0.0000 0.0000 0.0011 0.0002 0.0002 0.0000 0.0010 

  N-PROPAN 0.0006 0.0099 0.0000 0.0126 0.0006 0.0105 0.0000 0.0120 

  ACID 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

  ALDEHYDE 0.0000 0.0000 0.0000 0.0029 0.0000 0.0006 0.0000 0.0029 

  MEK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

  ESTER 0.0000 0.0000 0.0000 0.0007 0.0000 0.0001 0.0000 0.0007 

Mole Frac                 

  DIPE 0.0022 0.0000 0.0000 0.4761 0.0189 0.0000 1.0000 0.6124 

  IPA 0.0019 0.0000 0.0000 0.0050 0.0159 0.0024 0.0000 0.0059 

  H2O 0.9471 0.0098 1.0000 0.2909 0.5466 0.5878 0.0000 0.1025 

  ETHANOL 0.0095 0.0000 0.0000 0.0148 0.0814 0.0070 0.0000 0.0163 

  N-PROPAN 0.0372 0.9900 0.0000 0.1661 0.3185 0.3765 0.0000 0.2030 

  ACID 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 

  ALDEHYDE 0.0019 0.0000 0.0000 0.0379 0.0165 0.0213 0.0000 0.0482 

  MEK 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0000 0.0005 

  ESTER 0.0002 0.0000 0.0000 0.0087 0.0021 0.0049 0.0000 0.0112 

Total Flow 

kmol/sec 0.0170 0.0100 0.0150 0.0761 0.0020 0.0278 0.0000 0.0592 

Total Flow kg/sec 0.3436 0.5976 0.2702 5.2073 0.0734 0.9904 0.0038 4.8675 

Total Flow 

cum/sec 0.0004 0.0008 0.0003 2.1503 0.0001 0.0011 0.0000 0.0066 

Temperature K 315.00 369.95 373.17 344.14 349.80 298.15 298.15 314.98 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 0 1 0 0 0 0 

Liquid Frac 1 1 1 0 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 
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Table I-17: Stream results (continued) for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic distillation with DIPE as 

entrainer.  The simulation was performed with Aspen using NRTL. 

Streams AQUEOUS B1 B2 D1 D2 FF MAKEUP ORGANIC 

Enthalpy J/kmol -285244553 -289389658 -280077252 -276187176 -285067821 -291786260 -351285603 -325481066 

Enthalpy J/kg -14098827 -4848856.8 -15546634 -4038685.3 -7704095.3 -8183377.3 -3438025.3 -3958654.9 

Enthalpy Watt -4844170 -2897741.3 -4201158.8 -21030522 -565151.32 -8105174 -12997.567 -19268605 

Entropy J/kmol-K -172633.2 -406737.79 -146101.18 -369700.77 -262974.03 -275070.15 -746073.33 -579646.54 

Entropy J/kg-K -8532.77 -6815.08 -8109.84 -5406.13 -7107.00 -7714.56 -7301.81 -7049.94 

Density kmol/cum 46.72 12.15 50.97 0.04 21.54 24.38 7.05 8.98 

Density kg/cum 945.33 725.21 918.27 2.42 796.89 869.28 720.63 738.10 

Average MW 20.23 59.68 18.02 68.39 37.00 35.66 102.18 82.22 

Liq Vol 60F cum/sec 0.0004 0.0007 0.0003 0.0069 0.0001 0.0012 0.0000 0.0066 
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Table I-18: Azeotropic column information for the vapour phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic 

distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

1 344.14 101325 -3068300 0.4761 0.0050 0.2909 0.0148 0.1661 0.0000 0.0379 0.0004 0.0087 

2 358.08 101325 0 0.0730 0.0077 0.4938 0.0168 0.3624 0.0000 0.0402 0.0003 0.0059 

3 360.16 101325 0 0.0039 0.0058 0.5562 0.0117 0.3947 0.0000 0.0247 0.0001 0.0029 

4 360.53 101325 0 0.0002 0.0047 0.5655 0.0084 0.4074 0.0000 0.0131 0.0000 0.0007 

5 360.68 101325 0 0.0000 0.0037 0.5697 0.0059 0.4136 0.0000 0.0069 0.0000 0.0002 

6 360.77 101325 0 0.0000 0.0029 0.5722 0.0041 0.4172 0.0000 0.0036 0.0000 0.0000 

7 360.81 101325 0 0.0000 0.0022 0.5737 0.0029 0.4194 0.0000 0.0019 0.0000 0.0000 

8 360.84 101325 0 0.0000 0.0017 0.5746 0.0020 0.4207 0.0000 0.0010 0.0000 0.0000 

9 360.86 101325 0 0.0000 0.0013 0.5753 0.0014 0.4215 0.0000 0.0005 0.0000 0.0000 

10 360.87 101325 0 0.0000 0.0010 0.5757 0.0010 0.4221 0.0000 0.0003 0.0000 0.0000 

11 360.88 101325 0 0.0000 0.0008 0.5760 0.0007 0.4225 0.0000 0.0001 0.0000 0.0000 

12 360.88 101325 0 0.0000 0.0006 0.5762 0.0005 0.4227 0.0000 0.0001 0.0000 0.0000 

13 360.88 101325 0 0.0000 0.0004 0.5763 0.0003 0.4229 0.0000 0.0000 0.0000 0.0000 

14 360.89 101325 0 0.0000 0.0003 0.5764 0.0002 0.4230 0.0000 0.0000 0.0000 0.0000 

15 360.89 101325 0 0.0000 0.0003 0.5765 0.0002 0.4231 0.0000 0.0000 0.0000 0.0000 

16 360.89 101325 0 0.0000 0.0002 0.5765 0.0001 0.4232 0.0000 0.0000 0.0000 0.0000 

17 360.89 101325 0 0.0000 0.0001 0.5766 0.0001 0.4232 0.0000 0.0000 0.0000 0.0000 

18 360.89 101325 0 0.0000 0.0001 0.5766 0.0001 0.4232 0.0000 0.0000 0.0000 0.0000 

19 360.89 101325 0 0.0000 0.0001 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

20 360.89 101325 0 0.0000 0.0001 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

21 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

22 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

23 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

24 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

25 360.89 101325 0 0.0000 0.0000 0.5767 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

26 360.89 101325 0 0.0000 0.0000 0.5767 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

27 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4233 0.0000 0.0000 0.0000 0.0000 

28 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4234 0.0000 0.0000 0.0000 0.0000 

29 360.89 101325 0 0.0000 0.0000 0.5766 0.0000 0.4234 0.0000 0.0000 0.0000 0.0000 
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Table I-19: Azeotropic column information (continued) for the vapour phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

30 360.89 101325 0 0.0000 0.0000 0.5763 0.0000 0.4236 0.0000 0.0000 0.0000 0.0000 

31 360.90 101325 0 0.0000 0.0000 0.5756 0.0000 0.4244 0.0000 0.0000 0.0000 0.0000 

32 360.92 101325 0 0.0000 0.0000 0.5730 0.0000 0.4270 0.0000 0.0000 0.0000 0.0000 

33 360.99 101325 0 0.0000 0.0000 0.5644 0.0000 0.4356 0.0000 0.0000 0.0000 0.0000 

34 361.26 101325 0 0.0000 0.0000 0.5383 0.0000 0.4617 0.0000 0.0000 0.0000 0.0000 

35 362.19 101325 0 0.0000 0.0000 0.4730 0.0000 0.5270 0.0000 0.0000 0.0000 0.0000 

36 364.18 101325 0 0.0000 0.0000 0.3576 0.0000 0.6424 0.0000 0.0000 0.0000 0.0000 

37 366.56 101325 0 0.0000 0.0000 0.2237 0.0000 0.7763 0.0000 0.0000 0.0000 0.0000 

38 368.38 101325 0 0.0000 0.0000 0.1187 0.0000 0.8813 0.0000 0.0000 0.0000 0.0000 

39 369.43 101325 0 0.0000 0.0000 0.0563 0.0000 0.9437 0.0000 0.0000 0.0000 0.0000 

40 369.95 101325 3409618.1 0.0000 0.0000 0.0246 0.0000 0.9753 0.0000 0.0000 0.0000 0.0000 
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Table I-20: Azeotropic column information for the 1
st
 liquid phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 1

st
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

1 344.14 101325 -3068300 0.0947 0.0088 0.3690 0.0186 0.4609 0.0000 0.0423 0.0002 0.0053 

2 358.08 101325 0 0.0051 0.0064 0.4508 0.0119 0.5020 0.0000 0.0222 0.0001 0.0015 

3 360.16 101325 0 0.0002 0.0042 0.5058 0.0075 0.4699 0.0000 0.0117 0.0000 0.0006 

4 360.53 101325 0 0.0000 0.0033 0.5095 0.0053 0.4756 0.0000 0.0061 0.0000 0.0001 

5 360.68 101325 0 0.0000 0.0026 0.5117 0.0037 0.4788 0.0000 0.0032 0.0000 0.0000 

6 360.77 101325 0 0.0000 0.0020 0.5130 0.0026 0.4808 0.0000 0.0017 0.0000 0.0000 

7 360.81 101325 0 0.0000 0.0015 0.5138 0.0018 0.4820 0.0000 0.0009 0.0000 0.0000 

8 360.84 101325 0 0.0000 0.0012 0.5144 0.0012 0.4827 0.0000 0.0004 0.0000 0.0000 

9 360.86 101325 0 0.0000 0.0009 0.5148 0.0009 0.4832 0.0000 0.0002 0.0000 0.0000 

10 360.87 101325 0 0.0000 0.0007 0.5150 0.0006 0.4836 0.0000 0.0001 0.0000 0.0000 

11 360.88 101325 0 0.0000 0.0005 0.5152 0.0004 0.4838 0.0000 0.0001 0.0000 0.0000 

12 360.88 101325 0 0.0000 0.0004 0.5153 0.0003 0.4839 0.0000 0.0000 0.0000 0.0000 

13 360.88 101325 0 0.0000 0.0003 0.5154 0.0002 0.4841 0.0000 0.0000 0.0000 0.0000 

14 360.89 101325 0 0.0000 0.0002 0.5155 0.0001 0.4841 0.0000 0.0000 0.0000 0.0000 

15 360.89 101325 0 0.0000 0.0002 0.5155 0.0001 0.4842 0.0000 0.0000 0.0000 0.0000 

16 360.89 101325 0 0.0000 0.0001 0.5155 0.0001 0.4842 0.0000 0.0000 0.0000 0.0000 

17 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

18 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

19 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

20 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

21 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

22 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

23 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

24 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

25 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

26 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

27 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4844 0.0000 0.0000 0.0000 0.0000 

28 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4844 0.0000 0.0000 0.0000 0.0000 

29 360.89 101325 0 0.0000 0.0000 0.5154 0.0000 0.4846 0.0000 0.0000 0.0000 0.0000 
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220 Detailed Simulation Results 

 

Table I-21: Azeotropic column information (continued) for the 1
st
 liquid phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via 

heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 1

st
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

30 360.89 101325 0 0.0000 0.0000 0.5147 0.0000 0.4853 0.0000 0.0000 0.0000 0.0000 

31 360.90 101325 0 0.0000 0.0000 0.5124 0.0000 0.4876 0.0000 0.0000 0.0000 0.0000 

32 360.92 101325 0 0.0000 0.0000 0.5047 0.0000 0.4953 0.0000 0.0000 0.0000 0.0000 

33 360.99 101325 0 0.0000 0.0000 0.4813 0.0000 0.5186 0.0000 0.0000 0.0000 0.0000 

34 361.26 101325 0 0.0000 0.0000 0.4231 0.0000 0.5769 0.0000 0.0000 0.0000 0.0000 

35 362.19 101325 0 0.0000 0.0000 0.3199 0.0000 0.6801 0.0000 0.0000 0.0000 0.0000 

36 364.18 101325 0 0.0000 0.0000 0.2004 0.0000 0.7995 0.0000 0.0000 0.0000 0.0000 

37 366.56 101325 0 0.0000 0.0000 0.1068 0.0000 0.8931 0.0000 0.0000 0.0000 0.0000 

38 368.38 101325 0 0.0000 0.0000 0.0512 0.0000 0.9487 0.0000 0.0000 0.0000 0.0000 

39 369.43 101325 0 0.0000 0.0000 0.0230 0.0000 0.9769 0.0001 0.0000 0.0000 0.0000 

40 369.95 101325 3409618.1 0.0000 0.0000 0.0098 0.0000 0.9900 0.0002 0.0000 0.0000 0.0000 
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Table I-22: Azeotropic column information for the 2
nd

 liquid phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 2

nd
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

1 344.14 101325 -3068300 0.0947 0.0088 0.3690 0.0186 0.4609 0.0000 0.0423 0.0002 0.0053 

2 358.08 101325 0 0.0051 0.0064 0.4508 0.0119 0.5020 0.0000 0.0222 0.0001 0.0015 

3 360.16 101325 0 0.0002 0.0042 0.5058 0.0075 0.4699 0.0000 0.0117 0.0000 0.0006 

4 360.53 101325 0 0.0000 0.0033 0.5095 0.0053 0.4756 0.0000 0.0061 0.0000 0.0001 

5 360.68 101325 0 0.0000 0.0026 0.5117 0.0037 0.4788 0.0000 0.0032 0.0000 0.0000 

6 360.77 101325 0 0.0000 0.0020 0.5130 0.0026 0.4808 0.0000 0.0017 0.0000 0.0000 

7 360.81 101325 0 0.0000 0.0015 0.5138 0.0018 0.4820 0.0000 0.0009 0.0000 0.0000 

8 360.84 101325 0 0.0000 0.0012 0.5144 0.0012 0.4827 0.0000 0.0004 0.0000 0.0000 

9 360.86 101325 0 0.0000 0.0009 0.5148 0.0009 0.4832 0.0000 0.0002 0.0000 0.0000 

10 360.87 101325 0 0.0000 0.0007 0.5150 0.0006 0.4836 0.0000 0.0001 0.0000 0.0000 

11 360.88 101325 0 0.0000 0.0005 0.5152 0.0004 0.4838 0.0000 0.0001 0.0000 0.0000 

12 360.88 101325 0 0.0000 0.0004 0.5153 0.0003 0.4839 0.0000 0.0000 0.0000 0.0000 

13 360.88 101325 0 0.0000 0.0003 0.5154 0.0002 0.4841 0.0000 0.0000 0.0000 0.0000 

14 360.89 101325 0 0.0000 0.0002 0.5155 0.0001 0.4841 0.0000 0.0000 0.0000 0.0000 

15 360.89 101325 0 0.0000 0.0002 0.5155 0.0001 0.4842 0.0000 0.0000 0.0000 0.0000 

16 360.89 101325 0 0.0000 0.0001 0.5155 0.0001 0.4842 0.0000 0.0000 0.0000 0.0000 

17 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

18 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

19 360.89 101325 0 0.0000 0.0001 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

20 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

21 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

22 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

23 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

24 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

25 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

26 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4843 0.0000 0.0000 0.0000 0.0000 

27 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4844 0.0000 0.0000 0.0000 0.0000 

28 360.89 101325 0 0.0000 0.0000 0.5156 0.0000 0.4844 0.0000 0.0000 0.0000 0.0000 

29 360.89 101325 0 0.0000 0.0000 0.5154 0.0000 0.4846 0.0000 0.0000 0.0000 0.0000 
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Table I-23: Azeotropic column information (continued) for the 2
nd

 liquid phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via 

heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 2

nd
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

30 360.89 101325 0 0.0000 0.0000 0.5147 0.0000 0.4853 0.0000 0.0000 0.0000 0.0000 

31 360.90 101325 0 0.0000 0.0000 0.5124 0.0000 0.4876 0.0000 0.0000 0.0000 0.0000 

32 360.92 101325 0 0.0000 0.0000 0.5047 0.0000 0.4953 0.0000 0.0000 0.0000 0.0000 

33 360.99 101325 0 0.0000 0.0000 0.4813 0.0000 0.5186 0.0000 0.0000 0.0000 0.0000 

34 361.26 101325 0 0.0000 0.0000 0.4231 0.0000 0.5769 0.0000 0.0000 0.0000 0.0000 

35 362.19 101325 0 0.0000 0.0000 0.3199 0.0000 0.6801 0.0000 0.0000 0.0000 0.0000 

36 364.18 101325 0 0.0000 0.0000 0.2004 0.0000 0.7995 0.0000 0.0000 0.0000 0.0000 

37 366.56 101325 0 0.0000 0.0000 0.1068 0.0000 0.8931 0.0000 0.0000 0.0000 0.0000 

38 368.38 101325 0 0.0000 0.0000 0.0512 0.0000 0.9487 0.0000 0.0000 0.0000 0.0000 

39 369.43 101325 0 0.0000 0.0000 0.0230 0.0000 0.9769 0.0001 0.0000 0.0000 0.0000 

40 369.95 101325 3409618.1 0.0000 0.0000 0.0098 0.0000 0.9900 0.0002 0.0000 0.0000 0.0000 
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Table I-24: Recovery column information for the vapour phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

1 349.80 101325 -1922140.1 0.2993 0.0136 0.3725 0.0877 0.1914 0.0000 0.0276 0.0000 0.0079 

2 358.96 101325 0 0.0189 0.0159 0.5466 0.0814 0.3185 0.0000 0.0165 0.0000 0.0021 

3 361.14 101325 0 0.0014 0.0111 0.6128 0.0506 0.3170 0.0000 0.0067 0.0000 0.0004 

4 370.83 101325 0 0.0008 0.0021 0.9148 0.0137 0.0674 0.0000 0.0011 0.0000 0.0001 

5 372.52 101325 0 0.0008 0.0008 0.9759 0.0046 0.0171 0.0000 0.0007 0.0000 0.0001 

6 372.62 101325 0 0.0008 0.0007 0.9796 0.0038 0.0143 0.0000 0.0007 0.0000 0.0001 

7 372.63 101325 0 0.0008 0.0007 0.9799 0.0037 0.0141 0.0000 0.0007 0.0000 0.0001 

8 372.63 101325 0 0.0008 0.0007 0.9799 0.0037 0.0141 0.0000 0.0007 0.0000 0.0001 

9 372.63 101325 0 0.0008 0.0007 0.9799 0.0037 0.0141 0.0000 0.0007 0.0000 0.0001 

10 373.13 101325 0 0.0000 0.0000 0.9986 0.0004 0.0009 0.0000 0.0000 0.0000 0.0000 

11 373.17 101325 0 0.0000 0.0000 0.9999 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

12 373.17 101325 2000000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table I-25: Recovery column information for the liquid phase phase for the recovery of n-propanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic 

distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK ESTER 

1 349.80 101325 -1922140.1 0.0189 0.0159 0.5466 0.0814 0.3185 0.0000 0.0165 0.0000 0.0021 

2 358.96 101325 0 0.0006 0.0109 0.6157 0.0493 0.3170 0.0000 0.0062 0.0000 0.0003 

3 361.14 101325 0 0.0000 0.0015 0.9314 0.0107 0.0560 0.0000 0.0004 0.0000 0.0000 

4 370.83 101325 0 0.0000 0.0001 0.9948 0.0012 0.0038 0.0000 0.0000 0.0000 0.0000 

5 372.52 101325 0 0.0000 0.0000 0.9987 0.0004 0.0009 0.0000 0.0000 0.0000 0.0000 

6 372.62 101325 0 0.0000 0.0000 0.9989 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 

7 372.63 101325 0 0.0000 0.0000 0.9990 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 

8 372.63 101325 0 0.0000 0.0000 0.9990 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 

9 372.63 101325 0 0.0000 0.0000 0.9990 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 

10 373.13 101325 0 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

11 373.17 101325 0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 373.17 101325 2000000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table I-26: Stream results for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic distillation with DIPE as entrainer.  The 

simulation was performed with Aspen using NRTL. 

Streams AQUEOUS B1 D1 FF MAKEUP ORGANIC B2 D2 

Mole Flow kmol/sec                 

  DIPE 0.0001 0.0000 0.0799 0.0000 0.0001 0.0800 0.0000 0.0000 

  IPA 0.0000 0.0004 0.0003 0.0004 0.0000 0.0003 0.0003 0.0001 

  H2O 0.0156 0.0001 0.0231 0.0158 0.0000 0.0075 0.0000 0.0001 

  ETHANOL 0.0022 0.0074 0.0163 0.0096 0.0000 0.0141 0.0008 0.0066 

  N-PROPAN 0.0000 0.0017 0.0002 0.0017 0.0000 0.0002 0.0017 0.0000 

  ACID 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 

  ALDEHYDE 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 

  MEK 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 

Mole Frac                 

  DIPE 0.0050 0.0022 0.6667 0.0000 1.0000 0.7832 0.0000 0.0031 

  IPA 0.0014 0.0376 0.0023 0.0143 0.0000 0.0025 0.1078 0.0086 

  H2O 0.8706 0.0151 0.1929 0.5675 0.0000 0.0737 0.0006 0.0211 

  ETHANOL 0.1223 0.7457 0.1362 0.3467 0.0000 0.1385 0.2707 0.9425 

  N-PROPAN 0.0007 0.1707 0.0016 0.0613 0.0000 0.0017 0.5825 0.0001 

  ACID 0.0000 0.0113 0.0000 0.0040 0.0000 0.0000 0.0384 0.0000 

  ALDEHYDE 0.0000 0.0067 0.0002 0.0024 0.0000 0.0002 0.0000 0.0094 

  MEK 0.0000 0.0107 0.0002 0.0038 0.0000 0.0002 0.0000 0.0151 

Total Flow kmol/sec 0.0179 0.0099 0.1199 0.0278 0.0001 0.1021 0.0029 0.0070 

Total Flow kg/sec 0.3934 0.4881 9.3690 0.8730 0.0102 8.9858 0.1632 0.3249 

Total Flow cum/sec 0.0004 0.0007 3.2895 0.0010 0.0000 0.0124 0.0002 0.0004 

Temperature K 314.58 353.45 334.30 298.15 298.15 314.56 363.29 350.64 

Pressure N/sqm 101325 101325 101325 101325 101325 101325 101325 101325 

Vapor Frac 0 0 1 0 0 0 0 0 

Liquid Frac 1 1 0 1 1 1 1 1 

Solid Frac 0 0 0 0 0 0 0 0 

 

Stellenbosch University http://scholar.sun.ac.za



 
226 Detailed Simulation Results 

Table I-27: Stream results (continued) for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic distillation with DIPE as 

entrainer.  The simulation was performed with Aspen using NRTL. 

Streams AQUEOUS B1 D1 FF MAKEUP ORGANIC B2 D2 

Enthalpy J/kmol -284003873 -276388434 -288007411 -285855658 -351285603 -332200756 -290949804 -270570065 

Enthalpy J/kg -12935531 -5605985.3 -3686277.5 -9095778.7 -3438025.3 -3774506.3 -5170444.3 -5829356.2 

Enthalpy Watt -5088834.3 -2736245.5 -34536811 -7940435 -35128.56 -33917103 -843754.43 -1893990.5 

Entropy J/kmol-K -183314.72 -332479.11 -453510.16 -247669.52 -746073.33 -631330.82 -368313.8 -322045.08 

Entropy J/kg-K -8349.44 -6743.67 -5804.59 -7880.72 -7301.81 -7173.26 -6545.27 -6938.37 

Density kmol/cum 41.60 14.98 0.04 27.38 7.05 8.23 13.08 15.86 

Density kg/cum 913.31 738.36 2.85 860.53 720.63 723.99 736.21 736.06 

Average MW 21.96 49.30 78.13 31.43 102.18 88.01 56.27 46.42 

Liq Vol 60F cum/sec 0.0004 0.0006 0.0127 0.0010 0.0000 0.0123 0.0002 0.0004 
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Table I-28: Azeotropic column information for the vapour phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic 

distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

1 334.30 101325 -4436190 0.6667 0.0023 0.1929 0.1362 0.0016 0.0000 0.0002 0.0002 

2 334.44 101325 0 0.6791 0.0025 0.1963 0.1185 0.0030 0.0000 0.0003 0.0003 

3 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

4 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

5 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

6 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

7 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

8 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

9 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

10 332.80 101325 0 0.6030 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

11 332.80 101325 0 0.6029 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

12 332.80 101325 0 0.6029 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

13 332.80 101325 0 0.6029 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

14 332.80 101325 0 0.6029 0.0023 0.2916 0.0974 0.0049 0.0000 0.0004 0.0004 

15 332.80 101325 0 0.6029 0.0023 0.2916 0.0975 0.0049 0.0000 0.0004 0.0004 

16 332.80 101325 0 0.6029 0.0023 0.2916 0.0975 0.0049 0.0000 0.0004 0.0004 

17 332.80 101325 0 0.6029 0.0023 0.2915 0.0976 0.0049 0.0000 0.0004 0.0004 

18 332.80 101325 0 0.6029 0.0023 0.2914 0.0977 0.0049 0.0000 0.0004 0.0004 

19 332.80 101325 0 0.6029 0.0023 0.2913 0.0978 0.0049 0.0000 0.0004 0.0004 

20 332.80 101325 0 0.6028 0.0023 0.2911 0.0981 0.0049 0.0000 0.0004 0.0004 

21 332.81 101325 0 0.6028 0.0023 0.2908 0.0985 0.0049 0.0000 0.0004 0.0004 

22 332.82 101325 0 0.6026 0.0023 0.2903 0.0991 0.0049 0.0000 0.0004 0.0004 

23 332.83 101325 0 0.6025 0.0023 0.2895 0.1001 0.0049 0.0000 0.0004 0.0004 

24 332.85 101325 0 0.6022 0.0023 0.2882 0.1016 0.0049 0.0000 0.0004 0.0004 

25 332.88 101325 0 0.6018 0.0023 0.2863 0.1040 0.0049 0.0000 0.0004 0.0004 

26 332.93 101325 0 0.6011 0.0023 0.2832 0.1077 0.0048 0.0000 0.0004 0.0004 

27 333.00 101325 0 0.6002 0.0022 0.2783 0.1135 0.0048 0.0000 0.0004 0.0004 

28 333.13 101325 0 0.5988 0.0022 0.2707 0.1225 0.0048 0.0000 0.0004 0.0005 

29 333.33 101325 0 0.5971 0.0023 0.2585 0.1362 0.0048 0.0000 0.0005 0.0006 
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Table I-29: Azeotropic column information (continued) for the vapour phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

30 333.65 101325 0 0.5954 0.0023 0.2395 0.1563 0.0049 0.0000 0.0006 0.0009 

31 334.14 101325 0 0.5953 0.0025 0.2104 0.1842 0.0051 0.0000 0.0008 0.0017 

32 334.82 101325 0 0.5987 0.0027 0.1701 0.2186 0.0054 0.0001 0.0012 0.0032 

33 335.62 101325 0 0.6050 0.0030 0.1232 0.2547 0.0058 0.0001 0.0019 0.0062 

34 336.40 101325 0 0.6079 0.0034 0.0803 0.2879 0.0062 0.0001 0.0032 0.0111 

35 337.15 101325 0 0.5957 0.0040 0.0489 0.3206 0.0066 0.0001 0.0055 0.0187 

36 338.27 101325 0 0.5455 0.0052 0.0304 0.3720 0.0077 0.0001 0.0092 0.0298 

37 341.53 101325 0 0.4077 0.0087 0.0228 0.4909 0.0120 0.0001 0.0145 0.0433 

38 347.32 101325 0 0.1870 0.0156 0.0221 0.6875 0.0245 0.0002 0.0174 0.0456 

39 351.16 101325 0 0.0519 0.0230 0.0215 0.8074 0.0481 0.0005 0.0147 0.0329 

40 353.45 101325 4907814.06 0.0115 0.0298 0.0189 0.8169 0.0907 0.0021 0.0103 0.0198 
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Table I-30: Azeotropic column information for the 1
st
 liquid phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 1

st
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

1 334.30 101325 -4436190 0.0034 0.0011 0.9078 0.0867 0.0009 0.0000 0.0000 0.0000 

2 334.44 101325 0 0.0028 0.0011 0.9247 0.0697 0.0016 0.0000 0.0000 0.0000 

3 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

4 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

5 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

6 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

7 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

8 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

9 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

10 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

11 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

12 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

13 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

14 332.80 101325 0 0.5642 0.0046 0.2738 0.1393 0.0156 0.0008 0.0008 0.0010 

15 332.80 101325 0 0.5642 0.0046 0.2737 0.1393 0.0156 0.0008 0.0008 0.0010 

16 332.80 101325 0 0.5642 0.0046 0.2737 0.1394 0.0156 0.0008 0.0008 0.0010 

17 332.80 101325 0 0.5642 0.0046 0.2736 0.1395 0.0156 0.0008 0.0008 0.0010 

18 332.80 101325 0 0.5641 0.0046 0.2735 0.1396 0.0156 0.0008 0.0008 0.0010 

19 332.80 101325 0 0.5641 0.0046 0.2733 0.1398 0.0156 0.0008 0.0008 0.0010 

20 332.80 101325 0 0.5640 0.0046 0.2730 0.1402 0.0156 0.0008 0.0008 0.0010 

21 332.81 101325 0 0.5639 0.0046 0.2725 0.1408 0.0156 0.0008 0.0008 0.0010 

22 332.82 101325 0 0.5638 0.0046 0.2718 0.1417 0.0156 0.0008 0.0008 0.0010 

23 332.83 101325 0 0.5635 0.0046 0.2706 0.1431 0.0156 0.0008 0.0008 0.0011 

24 332.85 101325 0 0.5631 0.0046 0.2688 0.1454 0.0155 0.0008 0.0008 0.0011 

25 332.88 101325 0 0.5625 0.0045 0.2659 0.1488 0.0155 0.0008 0.0008 0.0011 

26 332.93 101325 0 0.5616 0.0045 0.2614 0.1543 0.0155 0.0008 0.0008 0.0011 

27 333.00 101325 0 0.5604 0.0045 0.2542 0.1627 0.0155 0.0008 0.0008 0.0011 

28 333.13 101325 0 0.5587 0.0045 0.2428 0.1754 0.0155 0.0008 0.0009 0.0013 

29 333.33 101325 0 0.5572 0.0046 0.2250 0.1943 0.0156 0.0008 0.0010 0.0016 
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230 Detailed Simulation Results 

 

Table I-31: Azeotropic column information (continued) for the 1
st
 liquid phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via 

heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 1

st
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

30 333.65 101325 0 0.5571 0.0047 0.1979 0.2203 0.0158 0.0008 0.0012 0.0023 

31 334.14 101325 0 0.5604 0.0050 0.1601 0.2525 0.0161 0.0008 0.0015 0.0037 

32 334.82 101325 0 0.5663 0.0053 0.1163 0.2863 0.0164 0.0008 0.0022 0.0065 

33 335.62 101325 0 0.5688 0.0056 0.0761 0.3174 0.0168 0.0008 0.0034 0.0111 

34 336.40 101325 0 0.5569 0.0062 0.0467 0.3484 0.0173 0.0008 0.0055 0.0182 

35 337.15 101325 0 0.5092 0.0074 0.0294 0.3970 0.0186 0.0008 0.0091 0.0286 

36 338.27 101325 0 0.3796 0.0107 0.0223 0.5085 0.0230 0.0009 0.0140 0.0410 

37 341.53 101325 0 0.1738 0.0172 0.0216 0.6917 0.0350 0.0010 0.0167 0.0431 

38 347.32 101325 0 0.0483 0.0240 0.0210 0.8030 0.0569 0.0013 0.0141 0.0313 

39 351.16 101325 0 0.0108 0.0304 0.0186 0.8118 0.0965 0.0028 0.0100 0.0191 

40 353.45 101325 4907814.06 0.0022 0.0376 0.0151 0.7457 0.1707 0.0113 0.0067 0.0107 
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231 Detailed Simulation Results 

Table I-32: Azeotropic column information for the 2
nd

 liquid phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous 

azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 2

nd
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

1 334.30 101325 -4436190 0.0034 0.0011 0.9078 0.0867 0.0009 0.0000 0.0000 0.0000 

2 334.44 101325 0 0.0028 0.0011 0.9247 0.0697 0.0016 0.0000 0.0000 0.0000 

3 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

4 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

5 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

6 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

7 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

8 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

9 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

10 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

11 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

12 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

13 332.80 101325 0 0.5642 0.0046 0.2738 0.1392 0.0156 0.0008 0.0008 0.0010 

14 332.80 101325 0 0.5642 0.0046 0.2738 0.1393 0.0156 0.0008 0.0008 0.0010 

15 332.80 101325 0 0.5642 0.0046 0.2737 0.1393 0.0156 0.0008 0.0008 0.0010 

16 332.80 101325 0 0.5642 0.0046 0.2737 0.1394 0.0156 0.0008 0.0008 0.0010 

17 332.80 101325 0 0.5642 0.0046 0.2736 0.1395 0.0156 0.0008 0.0008 0.0010 

18 332.80 101325 0 0.5641 0.0046 0.2735 0.1396 0.0156 0.0008 0.0008 0.0010 

19 332.80 101325 0 0.5641 0.0046 0.2733 0.1398 0.0156 0.0008 0.0008 0.0010 

20 332.80 101325 0 0.5640 0.0046 0.2730 0.1402 0.0156 0.0008 0.0008 0.0010 

21 332.81 101325 0 0.5639 0.0046 0.2725 0.1408 0.0156 0.0008 0.0008 0.0010 

22 332.82 101325 0 0.5638 0.0046 0.2718 0.1417 0.0156 0.0008 0.0008 0.0010 

23 332.83 101325 0 0.5635 0.0046 0.2706 0.1431 0.0156 0.0008 0.0008 0.0011 

24 332.85 101325 0 0.5631 0.0046 0.2688 0.1454 0.0155 0.0008 0.0008 0.0011 

25 332.88 101325 0 0.5625 0.0045 0.2659 0.1488 0.0155 0.0008 0.0008 0.0011 

26 332.93 101325 0 0.5616 0.0045 0.2614 0.1543 0.0155 0.0008 0.0008 0.0011 

27 333.00 101325 0 0.5604 0.0045 0.2542 0.1627 0.0155 0.0008 0.0008 0.0011 

28 333.13 101325 0 0.5587 0.0045 0.2428 0.1754 0.0155 0.0008 0.0009 0.0013 

29 333.33 101325 0 0.5572 0.0046 0.2250 0.1943 0.0156 0.0008 0.0010 0.0016 
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232 Detailed Simulation Results 

 

Table I-33: Azeotropic column information (continued) for the 2
nd

 liquid phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via 

heterogeneous azeotropic distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty 2

nd
 Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

30 333.65 101325 0 0.5571 0.0047 0.1979 0.2203 0.0158 0.0008 0.0012 0.0023 

31 334.14 101325 0 0.5604 0.0050 0.1601 0.2525 0.0161 0.0008 0.0015 0.0037 

32 334.82 101325 0 0.5663 0.0053 0.1163 0.2863 0.0164 0.0008 0.0022 0.0065 

33 335.62 101325 0 0.5688 0.0056 0.0761 0.3174 0.0168 0.0008 0.0034 0.0111 

34 336.40 101325 0 0.5569 0.0062 0.0467 0.3484 0.0173 0.0008 0.0055 0.0182 

35 337.15 101325 0 0.5092 0.0074 0.0294 0.3970 0.0186 0.0008 0.0091 0.0286 

36 338.27 101325 0 0.3796 0.0107 0.0223 0.5085 0.0230 0.0009 0.0140 0.0410 

37 341.53 101325 0 0.1738 0.0172 0.0216 0.6917 0.0350 0.0010 0.0167 0.0431 

38 347.32 101325 0 0.0483 0.0240 0.0210 0.8030 0.0569 0.0013 0.0141 0.0313 

39 351.16 101325 0 0.0108 0.0304 0.0186 0.8118 0.0965 0.0028 0.0100 0.0191 

40 353.45 101325 4907814.06 0.0022 0.0376 0.0151 0.7457 0.1707 0.0113 0.0067 0.0107 
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233 Detailed Simulation Results 

Table I-34: Recovery column information for the vapour phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic 

distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Vapour (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

1 350.64 101325 -6918573.2 0.0160 0.0069 0.0229 0.9129 0.0001 0.0000 0.0146 0.0267 

2 351.12 101325 0 0.0031 0.0086 0.0211 0.9425 0.0001 0.0000 0.0094 0.0151 

3 351.29 101325 0 0.0007 0.0103 0.0193 0.9547 0.0003 0.0000 0.0061 0.0086 

4 351.38 101325 0 0.0003 0.0122 0.0177 0.9602 0.0005 0.0000 0.0040 0.0051 

5 351.44 101325 0 0.0002 0.0143 0.0162 0.9623 0.0009 0.0000 0.0028 0.0033 

6 351.49 101325 0 0.0002 0.0168 0.0148 0.9622 0.0017 0.0000 0.0020 0.0023 

7 351.55 101325 0 0.0002 0.0195 0.0136 0.9602 0.0031 0.0000 0.0016 0.0018 

8 351.64 101325 0 0.0002 0.0226 0.0125 0.9561 0.0057 0.0000 0.0013 0.0015 

9 351.78 101325 0 0.0002 0.0262 0.0115 0.9489 0.0104 0.0002 0.0012 0.0014 

10 351.83 101325 0 0.0000 0.0301 0.0103 0.9471 0.0107 0.0002 0.0007 0.0008 

11 351.88 101325 0 0.0000 0.0347 0.0092 0.9436 0.0114 0.0002 0.0005 0.0004 

12 351.94 101325 0 0.0000 0.0403 0.0082 0.9381 0.0128 0.0002 0.0003 0.0002 

13 352.05 101325 0 0.0000 0.0469 0.0073 0.9298 0.0156 0.0002 0.0002 0.0001 

14 352.24 101325 0 0.0000 0.0549 0.0064 0.9171 0.0212 0.0002 0.0001 0.0001 

15 352.58 101325 0 0.0000 0.0645 0.0056 0.8971 0.0325 0.0002 0.0001 0.0000 

16 353.22 101325 0 0.0000 0.0763 0.0047 0.8641 0.0547 0.0002 0.0000 0.0000 

17 354.43 101325 0 0.0000 0.0905 0.0039 0.8081 0.0974 0.0002 0.0000 0.0000 

18 356.51 101325 0 0.0000 0.1064 0.0030 0.7157 0.1745 0.0004 0.0000 0.0000 

19 359.54 101325 0 0.0000 0.1201 0.0020 0.5806 0.2958 0.0015 0.0000 0.0000 

20 363.29 101325 7000000 0.0000 0.1226 0.0012 0.4220 0.4466 0.0076 0.0000 0.0000 
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234 Detailed Simulation Results 

Table I-35: Recovery column information for the liquid phase phase for the recovery of ethanol from a Fischer-Tropsch waste water stream via heterogeneous azeotropic 

distillation with DIPE as entrainer.  The simulation was performed with Aspen using NRTL. 

Stage 
Temperature Pressure Heat duty Liquid (mole fraction) 

K N/sqm Watt DIPE IPA H2O ETHANOL N-PROPAN ACID ALDEHYDE MEK 

1 350.64 101325 -6918573.2 0.0031 0.0086 0.0211 0.9425 0.0001 0.0000 0.0094 0.0151 

2 351.12 101325 0 0.0006 0.0104 0.0192 0.9552 0.0003 0.0000 0.0059 0.0084 

3 351.29 101325 0 0.0001 0.0124 0.0175 0.9610 0.0005 0.0000 0.0038 0.0047 

4 351.38 101325 0 0.0000 0.0146 0.0160 0.9632 0.0010 0.0000 0.0025 0.0028 

5 351.44 101325 0 0.0000 0.0171 0.0146 0.9630 0.0018 0.0000 0.0017 0.0018 

6 351.49 101325 0 0.0000 0.0199 0.0133 0.9610 0.0032 0.0000 0.0012 0.0013 

7 351.55 101325 0 0.0000 0.0232 0.0122 0.9567 0.0059 0.0001 0.0010 0.0010 

8 351.64 101325 0 0.0000 0.0270 0.0111 0.9492 0.0108 0.0002 0.0008 0.0008 

9 351.78 101325 0 0.0000 0.0313 0.0102 0.9364 0.0198 0.0008 0.0007 0.0008 

10 351.83 101325 0 0.0000 0.0359 0.0091 0.9329 0.0205 0.0008 0.0005 0.0004 

11 351.88 101325 0 0.0000 0.0413 0.0081 0.9274 0.0218 0.0008 0.0003 0.0002 

12 351.94 101325 0 0.0000 0.0479 0.0072 0.9193 0.0246 0.0008 0.0002 0.0001 

13 352.05 101325 0 0.0000 0.0557 0.0063 0.9068 0.0302 0.0008 0.0001 0.0001 

14 352.24 101325 0 0.0000 0.0652 0.0055 0.8872 0.0412 0.0008 0.0001 0.0000 

15 352.58 101325 0 0.0000 0.0768 0.0047 0.8546 0.0631 0.0008 0.0000 0.0000 

16 353.22 101325 0 0.0000 0.0907 0.0038 0.7995 0.1051 0.0008 0.0000 0.0000 

17 354.43 101325 0 0.0000 0.1065 0.0029 0.7086 0.1810 0.0010 0.0000 0.0000 

18 356.51 101325 0 0.0000 0.1199 0.0020 0.5757 0.3003 0.0020 0.0000 0.0000 

19 359.54 101325 0 0.0000 0.1223 0.0012 0.4196 0.4487 0.0081 0.0000 0.0000 

20 363.29 101325 7000000 0.0000 0.1078 0.0006 0.2707 0.5825 0.0384 0.0000 0.0000 

 

Stellenbosch University http://scholar.sun.ac.za




