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ABSTRACT

An Analogue of the Andre-Oort Conjecture for a product of Drinfeld Modular

Surfaces

by

Archiebold Karumbidza

Doctoral Promoter: Prof F. Breuer

Doctoral CoPromoter: Dr. A.P. Keet

This thesis deals with a function field analog of the André-Oort conjecture. The (clas-

sical) André-Oort conjecture concerns the distribution of special points on Shimura

varieties. In our case we consider the André-Oort conjecture for special points in the

product of Drinfeld modular varieties. We in particular manage to prove the André-

Oort conjecture for subvarieties in a product of two Drinfeld modular surfaces under

a characteristic assumption.
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Uittreksel

’n Analoog van die André-Oort Vermoeding vir ’n produkt van twee Drinfeldse

modulvalakke

deur

Archiebold Karumbidza

Doktorale Promotor: Professor F. Breuer

Doktorale MedePromotor: Dr. A.P. Keet

Hierdie tesis handel van ’n funksieliggaam analoog van die André-Oort Vermoed-

ing. Die (Klassieke) André-Oort Vermoeding het betrekking tot die verspreiding van

spesiale punte op Shimura varietiete. Ons geval beskou ons die André-Oort Vermoed-

ing vir spesiale punte op die produk Drinfeldse modulvarietiete. In die besonders,

bewys ons die André-Oort Vermoeding vir ondervarieteite van ’n produk van twee

Drinfeldse modulvarietiete, onderhewig aan ’n karakteristiek-aanname.
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CHAPTER I

Introduction

This thesis deals with a function field analogue of the André-Oort conjecture. In

our particular case we consider the André-Oort conjecture for subvarieties in the

product of Drinfeld modular varieties. In this direction we prove some instances of

this characteristic p analog of the André-Oort conjecture. The classical André-Oort

conjecture concerns subvarieties of Shimura varieties and we will first review this.

We however do not attempt to give all the definitions involved in formulating the

classical André-Oort conjecture, referring the reader instead to the ample body of

literature that deals with this. We particularly recommend Noot’s Bourbaki talk as

a starting point (see [37]).

1.1 Classical André-Oort conjecture

Motivated by the Manin-Mumford conjecture (see [46],[47],[51], [16],[32]) Frans

Oort and Yves André (for curves) independently observed that:

If V is a Hodge subvariety in the moduli space of principally polarized g-dimensional

abelian varieties Ag ⊗ C, then V contains a Zariski dense set of special points, i.e.,

points corresponding to abelian varieties with large endomorphism rings. It is then

natural to wonder if the converse might be true. This motivates the following con-

jecture.

1
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Conjecture 1.1.1 (André-Oort). (With the same notation as above). Let V ⊂

Ag ⊗ C be a subvariety of Ag ⊗ C which contains a Zariski dense set of CM points,

then V is of Hodge type.

To be precise, Yves André first stated this conjecture for curves containing in-

finitely many special points in a general Shimura variety as a question in his book

(see [2]). Furthermore in [1] he mentions the similarity of this conjecture with the

Manin-Mumford conjecture. He in fact proposes (see [1]) a version generalising both

the André-Oort and the Manin-Mumford conjecture. Independently, Oort (see [38])

raised the question for general subvarieties in the moduli space of principally polar-

ized abelian varieties. From this it is natural to leap to the following generalisation.

Conjecture 1.1.2 (André-Oort). Let V be a subvariety of the Shimura variety

ShK(G,X)(C) such that V contains a Zariski dense set of special points. Then

V is a Hodge subvariety.

That one direction of this statement is true follows from the well known fact that

starting with a special point in a Shimura variety then the Hecke orbit of this point

is Zariski dense (even analytically dense in the complex topology) in an irreducible

component of the Shimura variety (see for instance [22]). Thus it is the converse

that has ellicited more than a decade of work.

Remark 1.1.3. The André-Oort conjecture has been vastly generalised by Pink (see

[44]) to mixed Shimura varieties to give a conjecture combining the Mordell-Lang

conjecture with an important special case of the André-Oort conjecture.

In the absence of technical definitions, the following might clarify the meaning of

the conjecture. The irreducible Shimura subvarieties of Hodge type are irreducible

components of sub-Shimura varieties or translates of such by a Hecke correspondence.
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To be precise let (G,X) be a Shimura datum and let K be a compact open subgroup

of G(Af ). Then V ⊂ ShK(G,X)(C) is a Hodge subvariety if there exists a Shimura

subdatum (G′, X ′), a morphism of Shimura data f : (G′, X ′) → (G,X) and g ∈

G(Af ), such that V is an irreducible component of the image of the map

Sh(G′, X ′)(C)
f→ Sh(G,X)(C)

·g→ Sh(G,X)(C)→ ShK(G,X)(C)

The special points then are the Hodge subvarieties of zero dimension.

In the simplest case A1 ⊗ C ∼= C is the coarse moduli space of elliptic curves and

Hodge subvarieties here correspond to elliptic curves with complex multiplication.

The André-Oort conjecture is trivial in this case, but already nontrivial for then

next simplest moduli. Indeed let K be a compact open subgroup of GL2(Af ) and let

V be an irreducible subvariety of the Shimura variety ShK(GL2×GL2, X)(C). The

Shimura variety ShK(GL2×GL2, X)(C) is none other than (A1 ⊗ C) × (A1 ⊗ C) ∼=

C× C and the Hodge subvarieties in this case are simply

• C× {CM point} or {CM point} × C and

• graphs of Hecke correpondences in C×C i.e. images of C in C×C via the map

x→ (g1 · x, g2 · x) with (g1, g2) ∈ GL2(Af )×GL2(Af ).

These varieties are also alternatively called the modular varieties. We have the

following theorem independently due to Bas Edixhoven (see [21]) and Yves André

(see [3]). Yves André proof is unconditional and does not assume the Generalized

Riemann Hypothesis (GRH).

Theorem 1.1.4. Let V ⊂ C×C be an irreducible algebraic variety. Then V contains

a Zariski-dense set of CM points if and only if V is a modular variety .

In general if one assumes the Generalized Riemann Hypothesis (GRH) for CM

fields then the André-Oort conjecture i.e. conjecture 1.1.2 above, is now a theorem
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thanks to the work of Klingler, Ullmo and Yafaev (see [4],[56]), building on the efforts

and collaboration of many people. The chronological progress being as follows:

In his thesis [35], Ben Moonen proved that the conjecture is true for subvarieties

V ⊂ Ag ⊗C for which there exists a prime number p at which a Zariski dense set of

CM points of V have an ordinary reduction of which they are the canonical lift.

Edixhoven [21] and André [3], then proved that the conjecture holds for the moduli

space of pairs of elliptic curves. Edixhoven has also generalised this result to arbitrary

products of modular curves [23]. Yves Andre’s proof is unconditional and uses the

Galois action on the CM-points, and a Diophantine approximation result of Masser

on the j-function. Edixhoven’s proof on the other hand depends on the validity of

the Generalised Riemann Hypothesis (GRH) for imaginary quadratic fields.

Yafaev then proved (generalising the result of Edixhoven [21]) the conjecture for

curves in the products of two Shimura curves associated to quaternion algebras over

Q (see [57]).

Edixhoven and Yafaev [24] proved the conjecture for curves in Shimura varieties as-

suming that all the Hodge structures of a Zariski dense set of CM points on the

curves belong to the same isomorphism class.

Clozel and Ullmo [14], prove that the conjecture is true for subvarieties of ShK(G,X)(C)

withG among GSp2n and GLn, such that sets of the form Tpx, with x inG(Q)\G(A)/K

where Tp are certain Hecke operators with p tending to infinity are equidistributed.

Edixhoven proves the conjecture for Hilbert modular surfaces assuming GRH, (see

[22]). Assuming the Generalised Riemann Hypothesis (GRH) for CM fields in [58]

Yafaev extends the result of Moonen to Shimura varieties. Yafaev [59] then also

proves the conjecture for C an irreducible closed algebraic curve contained in the

Shimura variety ShK(G,X) such that C contains an infinite set of special points,
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this is the original conjecture of André.

Clozel and Ullmo [15] proved the conjecture for strongly special subvarieties of a

Shimura variety using ergodic theoretic methods. This was extended to T -special

subvarietes by Yafaev and Ullmo (see [56]). Combining the ergodic results of Ullmo

with the Edixhoven-Yafaev strategy Klingler and Yafaev [4] finally settled the André-

Oort conjecture, though assuming the Generalised Riemann Hypothesis (GRH) for

CM fields. As we alluded to before, the André-Oort conjecture bears remarkable

structural similarities with the Manin-Mumford conjecture, which was proved by

Raynaud (see [46],[47]).

Conjecture 1.1.5 (Manin, Mumford). Let A be an abelian variety and let V be

an irreducible closed subvariety of A. Then V ⊂ A contains a Zariski dense set

of torsion points if and only if V = a + B, with a ∈ Ator and B ⊂ A an abelian

subvariety.

More recently there has been spectacular progress on André-Oort type conjectures

using methods from logic, more precisely model theory. Pila [39] using methods from

his joint work with Wilkie [40] has managed to prove the André-Oort conjecture for

arbitrary products of the complex plane without assuming the Generalised Riemann

Hypothesis (GRH) for CM fields. His further work with Tsimmerman proves the

André-Oort conjecture unconditionally for Shimura varieties of dimension up to six.

These results have put model theory square in the field of Arithmetic. Here the main

input from model theory is a counting theorem for the the number of rational points

on non semialgebraic sets. For a recent exposition of these ideas we refer the reader

to [50] .

We can make the following analogy between the André-Oort and the Manin-

Mumford conjectures:
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The Shimura varieties correspond to abelian varieties, while the special points corre-

spond to torsion points and the subvarieties of Hodge type correspond to translates

of abelian subvarieties by a torsion point. These structural similarities have in fact

been some of the inspiring intuition leading to the final solution of the André-Oort

conjecture by Klingler and Yafaev and in fact a uniform proof strategy can now be

implemented for both conjectures in view of the aforementioned analogy (see [55]).

1.2 Drinfeld Analog of the André-Oort conjecture

In his seminal paper [20], Drinfeld introduced the notion of Drinfeld (elliptic) mod-

ules for the purpose of realising the Langlands correspondence over function fields.

More precisely, to l-adic representations of Gal(Q̄/Q) arising from elliptic curves

Deligne [19] attached automorphic representations of the adele group GLr(AQ). Drin-

feld modules of rank two were then introduced to serve as the characteristic p ana-

logue of elliptic curves to transport Deligne’s theory over to the function field setting.

The above mentioned theory of Deligne crucially depends on the moduli of elliptic

curves. Drinfeld therefore also constructs the moduli of Drinfeld modules with level

structure. These moduli and their subvarieties are the subject of this thesis. Drinfeld

moduli spaces are affine varieties over function fields and serve as the analogues of

Shimura varietes. Drinfeld modules have turned out to be a powerful tool in the

study of the arithmetic of function fields, indeed many of the concepts that arise in

the theory of abelian varieties have analogues in the setting of Drinfeld modules.

In particular we have a notion of complex multiplication (CM) for Drinfeld modules.

Having the notion of complex multiplication in hand we can consider Hodge subvari-

eties which are the locus in the moduli of Drinfeld modules of Drinfeld modules which

have prescribed extra endomorphisms or Hecke translates of such. The irreducible
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components of zero dimensional Hodge subvarieties are precisely the CM points in

the Drinfeld sense.

It is then natural to consider analogues of the André-Oort conjecture in the setting

of function fields.

Conjecture 1.2.1 (André-Oort for Drinfeld Modules). Let M r
A(K)C∞ denote the

moduli scheme of rank r Drinfeld A-modules over C∞ with K-level structure. Let X be

an algebraic subvariety contained in an arbitrary product M r1
A (K)C∞×· · ·×M rn

A (K)C∞

of Drinfeld moduli schemes. Denote by Σ a set of special points contained in X. Then

Σ is Zariski-dense in X if and only if X is a Hodge (Modular) subvariety.

The results in the function field case are mostly due to the efforts of Florian

Breuer. In his thesis (see [7]) he proves the conjecture for subvarieties contained in

the product of rank two Drinfeld moduli varieties over a rational function field of odd

characteristic. This is a characteristic p analogue of the result of Edixhoven [23] (see

theorem 1.1.4 above). Moreover he obtains an effective characterisation of modular

subvarieties based of the height of the CM points.

The precise results of Breuer are as follows:

Theorem 1.2.2. Assume that q is odd. Let d and m be given positive integers, and

g a given non-negative integer. Then there exists an effectively computable constant

B = B(d,m, g) such that the following holds. Let X be an irreducible algebraic curve

in M2
A(K)C∞ × M2

A(K)C∞ = A1(C∞) × A1(C∞) of degree d, defined over a finite

extension F of K of degree [F : K] = m and genus g.

Then X is a modular curve Y0(N) for some N ∈ A or

X = {CM point} × A1(C∞) or
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X = A1(C∞)× {CM point}

if and only if X(C∞) contains a CM point of arithmetic height at least B.

Suppose that q is odd. Let X ⊂ M2
A(K)C∞ × · · · ×M2

A(K)C∞ be an irreducible

algebraic variety. Then X(C∞) contains a Zariski-dense subset of CM points if and

only if X is a modular variety.

Subsequently Breuer [11] has managed to extend the above result to the case

where A the ring of integers of ”K” is non-rational but still of odd characteristic. In

his paper [11] and in [9], he applies the above result to the study of Heegner points

on elliptic curves over function fields, obtaining characteristic p analogues of results

of Cornut (see [17]).

When the rank of the Drinfeld modules is arbitrary, Breuer in [8] has proved

the conjecture for a curve lying in M r
A(K)C∞ , thus completely for M3

A(K)C∞ . For

an arbitrary subvariety X of M r
A(K)C∞ such that X has a Zariski dense set of CM

points that have canonical behaviour above a prime p, Breuer has proved the follow-

ing result, which is an analog of Ben Moonen’s theorem in the setting of Shimura

varieties.

Theorem 1.2.3. [Breuer [8]] Let X ⊂ M r
A(K)C∞ be an irreducible algebraic subva-

riety. Let p ⊂ A be a non-zero prime and let m ∈ N. Suppose that X contains a

Zariski-dense set Σ of CM points x for which p is residual (see definition 3.3.3) in

the quotient field of End(ϕx) and pm does not divide the conductor of End(ϕx) for

all x. Then X is special. In particular, if Σ lies in one Hecke orbit then X is special.

While this thesis was underway, Patrik Hubschmid in his recent thesis has proven

the André-Oort conjecture for arbitrary subvarieites of M r
A(K)C∞ , under a mild as-

sumption on the field of definition of the CM points. The recent result of Hubschmid
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essentially completes the André-Oort conjecture for subvarieties of M r
A(K)C∞ . His

precise result is,

Theorem 1.2.4. Let Σ be a set of special points in M r
A(K)F . Suppose that the reflex

fields of all special points in Σ are separable over F . Then each irreducible component

over C∞ of the Zariski closure of Σ is a special subvariety of M r
A(K)C∞.

We make the following remark about the André-Oort conjecture for Drinfeld mod-

ular varieties. The first thing to note is that the Riemann hypothesis is true for

function fields. Hence results over functions fields tend to be unconditional except

maybe on the characteristic. The function field setting is also relatively easier to

understand that the number field case since the geometry is easier and we have to

only deal with the group GLr.

1.3 Results

In this thesis we prove the André-Oort conjecture for subvarieties in the product

of two Drinfeld modular surfaces. The precise result states the following

Theorem 1.3.1. Let X be an irreducible subvariety of M3
A(1)C∞×M3

A(1)C∞. Suppose

that X is defined over F and that the characteristic of F is not 3. Then X(C∞)

contains a Zariski dense set of CM points if and only if X is a Hodge subvariety of

M3
A(1)C∞ ×M3

A(1)C∞.

The strategy we adopt to prove the above results is that of Klingler, Ullmo and

Yafaev. This strategy originates in Edixhoven’s work on the André-Oort conjecture.

In the Klingler-Ullmo-Yafaev strategy, there is a dichotomy between subvarieties with

bounded Galois orbits and those with unbounded Galois orbits. Ergodic theorems

apply to the former while Galois theoretic methods apply to the latter. The function
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field setting is not well suited for the ergodic approach. However Patrik Hubschmid

has informed us that in the function field case, one realises that by using the degree

of a Galois orbit of a Hodge subvariety instead of the naive cardinality one always

has unbounded Galois orbits. Much of the background that goes into this thesis owes

its existence to Florian Breuer’s work on the subject (see [11],[7]), a collaboration

with Richard Pink [12] and his paper [8] and some deep results of Pink on openness

of compact subgroups of algebraic groups over local fields [42].

1.4 Organisation

The plan of the thesis is as follows:

In Chapter One we gather background material on Drinfeld modules and their mod-

uli, this material mainly eminates from Drinfeld’s seminal paper [20].

In Chapter Two we introduce the theory of complex multiplication for Drinfeld mod-

ules a la Hayes [31].

In Chapter Three we introduce the notion of a Hecke correpondence and prove the

finiteness of a family of Hecke correspendences with bounded degree. We further

more expose the theory of complex multiplication and Drifeld modular varieties.

In Chapter Four we state various useful results. To start, we give lower bounds for

Galois orbits of Hodge subvarieties. We then determine the monodromy groups of

a non-isotrivial family of Drinfeld modules on the product of two Drinfeld modular

varieties. We also give results on irreducibility of Hecke correspondences and finally

we state results on the degrees of Hecke correspondences. In most cases these results

are adaptations of results due to Breuer [8], so that they apply to the case of a

product of Drinfeld modular varieties

In chapter five we gather all the material from the previous chapters to prove in-
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stances of the André-Oort conjecture. In particular in our main result we prove the

André-Oort conjecture for subvarieties in the product of two Modular surfaces under

a mild characteristic assumption.
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CHAPTER II

Drinfeld Modules
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CHAPTER III

Hodge Subvarieties

3.1 Hecke Correspondences

Recall that for a general admissible level structure K the functor

M r
A(K) : Sch /A→ Set : S 7−→



isomorphism classes of rank-r

Drinfeld A-modules over S

endowed with a K-level structure


.

is representable by the affine moduli scheme M r
A(K) over Spec(A). Drinfeld (see

[20]) proved this only for K = K(n) with n an admissible ideal of A. The exten-

sion to general admissible level structures can be found in Boeckle [5, thm 1.15].

An inclusion K ⊂ K′ of general level structures induces a functorial and canonical

morphism M r
A(K) → M r

A(K′) corresponding to the restriction of level structures.

Taking the projective limit over these level structures we obtain a normal affine pro-

scheme M r
A := lim←−KM

r
A(K) which is faithfully flat over Spec(A). GLr(Af ) naturally

acts on M r
A via multiplication by g ∈ GLr(Af ) (see [34], [28]) and this induces a

correspondence Tg on M r
A(K). We call this the Hecke correspondence attached to g.

The graph of the correspondence Tg is the image of M r
A in M r

A(K) ×M r
A(K) via

13
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the map x→ (π(x), π ◦ g(x)). The diagram below summarises this situation.

M r
A

π

��

g //M r
A

π

��
M r

A(K) Tgoo //M r
A(K)

Here the map π : M r
A → M r

A(K) is the canonical projection. Let Kg := K ∩ g−1Kg,

then the correspondence Tg factors through M r
A(Kg), hence we can diagramatically

represent the correspondence Tg as

M r
A(K) M r

A(Kg)πoo π◦g //M r
A(K).

From the diagram above we can see that the action of Tg on a subset X ⊂M r
A(K) is

given by

Tg(X) := π ◦ g(π−1(X)).

Moreover Tg is a finite algebraic correspondence of degree deg(Tg) = [K · Z : Kg · Z]

where Z is the center of GLr(Â). Let M r
A(K) = GLr(K)\GLr(Af )×Ωr/K, we note

for future use that Tg may also be defined as

Tg : [ω, s] ∈M r
A(K) 7−→ {[ω, skg−1] ∈M r

A(K) | for representatives k ∈ K/Kg}

Thus Tg depends on g only up to K · Z(GLr(Af )).

The Drinfeld modules corresponding to the points of Tg(x) are linked to the Drinfeld

module corresponding to x by isogenies specified by the choice of g.

Definition 3.1.1. Let Tg be a Hecke correspondence on M r
A(K)(C∞). We say Tg is

irreducible if det(Kg) = det(K)

The projection M r
A(Kg) −→ M r

A(K) induces via the determinant morphism a

morphism K×\A×f / det(Kg) −→ K×\A×f / det(K) between the connected components

of M r
A(Kg)C∞ and M r

A(K)C∞. Thus if Tg is irreducible this morphism is a bijection.
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This definition is not vacuous, for example if K ⊂ GL(Â) is an open subgroup which

contains diag(det(K), 1, . . . , 1), then Tg is irreducible on M r
A(K) for every diagonal

element g ∈ GLr(Af ) and when K = GLr(Â) and g = diag(n, 1, . . . , 1) ∈ GLr(Af )

for n a generator of an ideal of Â. Then

Kg = {(aij) ∈ GLr(Â) | a2,1, a3,1, . . . , ar,1 ∈ nÂ},

and det(Kg) = det(GLr(Â)) = Â×, thus Tg is irreducible on M r
A(1). Similarly, if

g̃ = diag(1, n, . . . , n) ∈ GLr(Af ), then Tg̃ is also irreducible on M r
A(1).

We are particularly interested in correspondences that encode cyclic isogenies, i.e.

isogenies with kernel (A/n) for some ideal n ⊂ A. Thus we will often make the

following specific choice of g: Denote by n ∈ Â a chosen generator of the principal

ideal nÂ, set g = diag(n, 1, . . . , 1) ∈ GLr(Af ) and set g̃ = diag(1, n, . . . , n). Then the

Hecke correspondence Tg encodes cyclic isogenies of degree n on M r
A(1)(C∞) while

the the Hecke correspondence Tg̃ encodes dual isogenies (each of kernel (A/n)r−1).

In this special case we will denote the Hecke correspondences Tg and Tg̃ respectively

by Tn and Tñ.

3.2 Finiteness of Hecke Correspondences

In this section we show that there are finitely many Hecke correspondences of

bounded degree. We first set some notation. Let Up be an open subgroup of GLr(Kp)

such that Up = GLr(Ap) for almost all p with finitely many exceptions. Define

U :=
∏
p

Up ⊂ GLr(Af ).

Given K a compact open subgroup of GLr(Â) then we assume that K has the form

given by U . If not then there exists U defined as above such that U has finite index

in K. To see this we note that since K is compact open there is a finite set of primes
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S such that K := GS ×
∏

p/∈S GLr(Ap) where GS is a compact open subgroup of∏
p∈S GLr(Kp). Thus shrinking K we obtain U =

∏
p/∈S GLr(Ap) which is of finite

index in K. Let g = (gp) ∈ GLr(Af ), then for such K we obtain

K\KgK =
∏
p

Up\UpgpUp.

Define the local degree of g at p to be

degUp
(g) := |Up\UpgpUp|

Since we have a bijection of sets between g−1Kg ∩ K\K and K\KgK, we therefore

have a local decomposition of the degree

degK(g) =
∏
p

degUp
(g).

We note that we in fact have an equality deg(Tg) = degK(g). We define the support

of g to be

supp(g) = {p | degUp
(g) > 1}

We note that degUp
(g) = 1 if and only if gpUp = Upgp, hence if Up = GLr(Ap) then

degGLr(Ap)(g) = 1 if and only if gp ∈ GLr(Ap).

Proposition 3.2.1. Let {gn} be a infinite sequence of elements in GLr(Af ). Let B

be a fixed constant and suppose that deg(gn) < B for all n. Then the sequence {gn}

belongs to finitely many cosets of K · Z(GLr(Af ))

Proof. Since there exist a compact open U of finite index in K which can be written

as a product we may assume K is of this product form. By assumption deg(gn) < B

for all n. Hence degUp
(gn) < B for all n and for all p. Denote by Sn the support

of gn. We clearly have |Sn| < B. Thus |Sn| is uniformly bounded independent of n

and degUp
(gn) = 1 except for the finite set for primes Sn. In particular the sequence
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{gn} has representatives in
∏

p∈Sn GLr(Kp)×
∏

p/∈Sn GLr(Ap).

We now show that Sn is contained in a finite subset that is independent of n and that

we can bound the exponents of each local component gn,p of gn. We have a bijection

g−1
p Upgp ∩ Up\Up = Up\UpgpUp

and since GLr(Ap) ⊆ Up

|GLr(Ap)\GLr(Ap)gp GLr(Ap)| ≤ |Up\UpgpUp|

Therefore |GLr(Ap)\GLr(Ap)gp GLr(Ap)| < B for all p. The space GLr(Ap)\GLr(Ap)gp GLr(Ap)

is related to the Bruhat-Tits building for GLr(Kp). More precisely GLr(Ap) acts on

the space of rank r Ap-lattices in Kp. Let L be the standard lattice, this has stabiliser

GLr(Ap) which implies the stabiliser of gpL in GLr(Ap) is g−1
p GLr(Ap)gp ∩GLr(Ap).

Thus

g−1
p GLr(Ap)gp ∩GLr(Ap)\GLr(Ap) = GLr(Ap)\GLr(Ap)gp GLr(Ap)

is the orbit of gpL under GLr(Ap). By the Cartan decomposition

GLr(Kp) = GLr(Ap) diag(pω1 , · · · , pωr) GLr(Ap),

where ω1 ≤ ω2 ≤ · · · ≤ ωr. If gp is of the form diag(pω1 , · · · , pωr) then the orbit of gpL

consists of lattices M such that L/M ∼= ⊕riA/pωiA. However by Cartan decomposi-

tion above the general element of GLr(Kp) has the form gp = g1 ·diag(pω1 , · · · , pωr)·g2

which implies the orbit of gpL lies in the orbit of diag(pω1 , · · · , pωr)L. Therefore we

still have that the general orbit consists of lattices M such that L/M ∼= ⊕riA/pωiA.

Let ω = max{ωi} and let p : (K)r → (K)r−1 be the projection that forgets the

component of the lattice L with pω. Denote by L′ and M ′ the projection of L and

M respectively. We have a split exact sequence

0→ A/pωA→ L/M → L′/M ′ → 0
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Thus by induction to determine |{M ⊂ L|L/M ∼= ⊕riA/pωiA}| we are reduced

to gp = diag(pω, · · · , 1). In this case |GLr(Ap)\GLr(Ap)gp GLr(Ap)| counts cyclic

isogenies of degree |A/pωA|. By lemma 3.2.3 the number of cyclic isogenies of degree

|A/pωA| is polynomial in pω. Since |GLr(Ap)\GLr(Ap)gp GLr(Ap)| < B this implies

(i). The primes p are bounded independent of n,

(ii). As p and n vary, there are only finitely many exponents (ω1, · · · , ωr) appearing

in the sequence {gn,p}.

The primes p therefore belong to a finite set which we call S and the sequence {gn}

has representatives in
∏

p∈S GLr(Kp)×
∏

p/∈S GLr(Ap). Thus modulo K·Z(GLr(Af ))

the sequence {gn} has representatives in
∏

p∈S GLr(Kp) and these representatives

furthermore have bounded exponents (ω1, · · · , ωr). This proves our claim.

Corollary 3.2.2. Let {gn} be a infinite sequence of elements in GLr(Af ). Let B

be a fixed constant and suppose that deg(gn) < B for all n. Then the set of Hecke

correspondences {Tgn} is finite.

Proof. By proposition 3.2.1 above the sequence {gn} belong to finitely many cosets of

U ·Z(GLr(Af )). Since Hecke correspondences are well defined up to K ·Z(GLr(Af ))

and U/K is finite we obtain our claim.

Lemma 3.2.3. Let ϕ be a rank r Drinfeld A-module over C∞ and let N be an ideal

in A. Then the number of rank r Drinfeld A-module over C∞ which are linked to ϕ

by a cyclic isogeny with kernel A/NA are bounded by a polynomial in |N |.

Proof. We note that it suffices to consider the case where N = pω, with p a prime.

Let Λϕ be a the rank r A-lattice corresponding to ϕ. Choosing a basis for Λϕ, define

the following lattices Λϕ,i := {(x1, · · · , xr) ∈ Λϕ | [x1 : x2 : · · · : xr] = imod pω} for
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i ∈ A/pωA, with respect this basis. Each Λϕ,i is of index A/pωA in Λϕ. Moreover

each Λϕ,i identifies with a point in projective space Pr(A/pωA). Thus it might seem

that there are at least |Pr(A/pωA)| such cyclic isogenies. But it is possible that

two of the above lattices give rise to equivalent Drinfeld modules. Suppose this is

the case, i.e. Λϕ,i = Λ′ = Λϕ,j, then for i = 1, 2 let fi : Λϕ −→ Λ′ be these two

isogenies. Then we consider the two isogenies fi
′ : Λϕ/ ker(f1) ∩ ker(f2) −→ Λ′ for

i = 1, 2. Let M be their degree, then f2
′ · f̂1

′ is an endomorphism of the Drinfeld

module corresponding to Λϕ/ ker(f1)∩ker(f2) of degree (A/MA)r. There are at most

rπ(M) such endomorphisms, where π(M) is the number of prime divisors of the ideal

M . Thus our claims follows from the fact that |Pr(A/pωA)|/rπ(M) is polynomial in

|A/pωA|.

3.3 Complex Multiplication

Let ϕ be a rank r Drinfeld A-module with endomorphism ring R. Then R is

a commutative A-algebra with rank dividing r as a projective A-module (see for

example [29]) and R is an order in its quotient field K ′, with K ′ a totally imaginary

extension of K i.e. there is only one prime in K ′ lying above ∞ .

Definition 3.3.1. Let ϕ be a rank r Drinfeld A-module. We say that ϕ has complex

multiplication (CM) by R if [K ′ : K] = [R : A] = r.

We can extend this definition to pairs of DrinfeldA-modules in a productM r
A(K)(C∞)×

M r
A(K)(C∞) of Drinfeld moduli spaces. A point x = (x1, x2) in M r

A(K)(C∞) ×

M r
A(K)(C∞) has complex multiplication (is a CM point) if each of the corresponding

Drinfeld modules ϕxi has complex multiplication.

If ϕ is a Drinfeld A-module over L with CM by R, then by definition R is the

centraliser of the image of A in L{τ} (see for example [29]). We thus have an em-
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bedding ϕR : R −→ L{τ}. It is tempting and fortunately correct to think that ϕR is

a Drinfeld R-module over L. There are however some technicalities to overcome, for

instance R might not integrally closed, hence not a Dedekind domain. In any case

Hayes (see [31]) has given a satisfactory theory of rank 1 Drinfeld modules over R

even when R is not integrally closed. Since ϕ has complex multiplication by R, by

looking at the n torsion of ϕR, we easily see that ϕR is a rank 1 Drinfeld R-module.

Let M1
R(C∞) be the pro-affine scheme over C∞ whose closed points are in bijection

with rank 1 Drinfeld R-modules over C∞ with full level structure. GL1(Af,K′) acts

on M1
R(C∞) as follows. Let α ∈ Â× then α acts on K ′/R by multiplication with

kernel H. If E = (Ga,C∞ , ϕ) is a rank 1 Drinfeld R-module over C∞ with full level

structure then E/H = (Ga,C∞/H, ϕ) is also a rank 1 Drinfeld R-module over C∞

with full level structure [27] which is furthermore isogenous to E. We encapsulate

this in the following commutative diagram.

K ′/R

α

��

// E = (Ga,C∞ , ϕ)

α

��
K ′/R // E/H = (Ga,C∞/H, ϕ)

If α ∈ (R − 0) then the action on K ′/R is trivial hence Â×/(R − 0) ∼= A×f,K′/K ′
×

acts on M1
R.

Let Pic(R) be the ideal class group of R. The group Pic(R) acts on the isomorphism

classes of Drinfeld R-modules over C∞ as follows. Let a be an ideal of R. We denote

by Iϕ,a the left ideal in C∞{τ} generated by the image of a in C∞{τ}. C∞{τ} is a left

principal ideal domain, so that we can find some ϕa ∈ Iϕ,a such that Iϕ,a = C∞{τ}ϕa.

For any a ∈ R, there is an element ψa ∈ C∞{τ} such that ϕaϕa = ψaϕa. Then a→ ψa

defines a Drinfeld R-module ψ : R→ C∞{τ}.

We write ψ = a ∗ ϕ. It satisfies the next conditions ([31]):
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(i). If [a] = [b] in Pic(R), then a ∗ ϕ = b ∗ ϕ;

(ii). R ∗ ϕ = ϕ;

(iii). a ∗ (b ∗ ϕ) = ab ∗ ϕ.

Hence we have the action of Pic(R). Hayes shows that if we put R1 = End(a), there

is a unique Drinfeld R1-module over C∞ whose restriction to R is a ∗ϕ. For ϕΛ, the

Drinfeld R-module associated to an R-lattice Λ, we have a ∗ ϕΛ = ϕa−1Λ.

Let σ ∈ Aut(C∞/K ′) and let ϕ : A −→ C∞{τ} be a Drinfeld A-module over C∞.

if ϕa =
∑m

i=0 aiτ
i then we define the action of σ on ϕ by

ϕσa :=
∑m

i=0 a
σ
i τ

i for all a ∈ A.

We now have two actions, the next theorem shows that these actions (i.e. of Af,K′ and

σ) are compatible. Let HR be the ring class field of R i.e. the class field associated

to K×\A×f,K′/R̂×, then Gal(HR/K
′) = Pic(R). The maximal abelian extension of

K ′ in which ∞ splits completely is then the union K ′ab =
⋃
R⊂K′ HR where R runs

through all the orders of K.

Let ϕΛ be a rank 1 Drinfeld R-module over C∞ with associated lattice Λ. The lattice

Λ has the representation Λ = c−1a where c ∈ C×∞ and a ⊂ A an ideal of R. Via the

exponential function attached to Λ we have an isomorphism eΛ : K/Λ ∼= tor(ϕ). Let

[∗, K ′ab/K ′] : K×\A×f,K′ −→ Gal(K ′ab/K ′)

be the Artin map.

Theorem 3.3.2. (Main Theorem of Complex Multiplication) Let A = Fq[T ] and

σ ∈ Aut(C∞/K ′) and let s ∈ Af,K′ such that σ|K′ab = [s,K ′ab/K ′], then there

exists a unique isomorphism d : ϕs
−1Λ −→ ϕσ such that the following diagram is
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commutative

K/Λ

s−1

��

eΛ // tor(ϕ)

σ

��
K/Λ //ds−1eΛ // tor(ϕσ)

Proof. (see Gekeler [27]).

Via the Artin map we have an isomorphism K ′×\A×f,K′/K ∼= Gal(HK/K
′) where

HK/K
′ is the class field associated to the idèle class group K ′×\A×f,K′/K. In the

particular case that K = GL1(R̂), then K ′×\A×f,K′/K ∼= Pic(R) ∼= Gal(HR/K
′)

and since M1
R(K) = K\M1

R, we see that A×f,K′ acts on M1
R(K) via its quotient

K ′×\A×f,K′/K ∼= Pic(R). Thus the A×f,K′ action is consistent with the action of

Pic(R). Therefore M1
R(K)C∞ consists of Pic(R) points, each defined over HK, and

Gal(HK/K
′) acts on these points via isogenies determined by the Artin symbol. If

g ∈ GL1(R̂) and σg ∈ Gal(K ′ab/K ′) is the corresponding Frobenius element, then

for x ∈M1
R(K)(C∞) our discussion shows that σg(x) ∈ Tg(x).

Let p be a prime of K and let P be an unramified prime above it in R. If P has

residue degree one, then R/P ∼= A/p. Thus if a rank 1 Drinfeld R-module over C∞,

ϕ has an isogeny with kernel R/P then this remains a cyclic isogeny of ϕ as a rank

r Drinfeld A-module over C∞ with kernel A/p. This becomes a definition.

Definition 3.3.3. Let M/L be an algebraic field extension. A prime p of L is called

residual in M if there exists a prime P of M above p with residual degree f(P|p) = 1.

If R is an order in M , then p is residual in R if it is residual in M and p does not

divide the conductor of R.

Let K ′/K be a finite extension, let R be an order in K ′ containing A, and let

n ⊂ A be an ideal such every prime factor of n is residual in R. We call n a residual

ideal of R. The preceding discussion can be summed up in:
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Proposition 3.3.4. Let x ∈M r
A(1)(C∞) be a CM point with R = End(ϕx) an order

in the purely imaginary extension K ′/K, and let n ⊂ A be a residual ideal in R. Let

N ⊂ R be an ideal such that R/N ∼= A/n, let σ = (N, HR/K
′) ∈ Gal(HR/K

′) denote

the Frobenius element corresponding to g = diag(n, 1, . . . , 1) ∈ GLr(Af ). Then there

exists a cyclic isogeny ϕ→ σ(ϕ) of degree n and furthermore σ(x) ∈ Tg(x).

3.4 Drinfeld modular subvarieties

Let C and C ′ be two smooth, projective and geometrically irreducible curves over

Fq. Let π : C ′ −→ C be a fixed finite morphism of degree n. Let ∞ ∈ C be a closed

point which does not split in C and {∞′} = π−1(∞). We set A := Γ(C r∞,OC)

and A′ := Γ(C ′r∞′,OC′), these are the rings of regular functions away from∞ and

∞′ respectively. A′ is a flat A-algebra via the map π# : A→ A
′
.

Following Hendler and Hartl [54], we say that the morphism π defines a restric-

tion of coefficients functor from Drinfeld A
′
-modules over S to Drinfeld A-modules

over S. We rigidify the above functor by adding level structure data, indeed let

(Ga,L′/S, ϕ
′
, α
′
) be a triple, where (Ga,L′/S, ϕ

′
) is a rank r

′
Drinfeld A

′
-module over

S and α
′

is a level-n′ structure. Via the composition

ϕ : A
π#

−→ A
′ ϕ

′

−→End(Ga,L′/S)

we obtain a rank r Drinfeld A-module (Ga,L′/S, ϕ · π#). Choosing an isomorphism

(n−1/A)r ∼−−→ (n′−1/A′)r
′

and letting α be the restriction of α
′

to A, we obtain a

level-n structure on ϕ i.e.

α : (n−1/A)r ∼−−→ (n′−1/A′)r
′ α′−−→ L(S).

The following proposition can be found in ([54, section 2]).
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Proposition 3.4.1. The morphism π : C
′ −→ C defines a restriction of coefficients

functor Fπ# : (Ga,L′/S, ϕ
′
, α
′
) −→ (Ga,L′/S, ϕ = ϕ

′ · π#, α) from rank r
′

Drinfeld

A
′
-modules over S with level-n′ structure α

′
to rank r

′
n Drinfeld A-modules over S

with level-n structure α.

Proof. The statement of the proposition is clear from the discussion above. The only

thing left to check is the claim about the rank of the drinfeld module (Ga,L′/S, ϕ =

ϕ
′ · π#, α). The claim follows from the fact that π−1(∞) = {∞′} . Therefore

rankϕa = rankϕ
′
a · π# = ord∞′ (a) · deg(∞′) = n · ord∞(a) · deg(∞) for all a ∈ A.

The restriction of coefficients functor above induces a functorial (with respect to

the choice of an isomorphism above) morphism between the moduli schemes classi-

fying Drinfeld A
′
-modules respectively Drinfeld A-modules with level structure, i.e.

we have a morphism f : M r′

A′(n
′)→M r

′
n

A (n).

Indeed sinceMr′

A′(n
′) is representable, let (Ga,L′/S, ϕ

′∗, α
′∗) be the universal Drin-

feld module on M r′

A′(n
′). Since every Drinfeld A-module over S comes via pullback

from the universal Drinfeld module on M r
A(n) there exist a morphism fA′/A : S → S

such that (Ga,L′/S, ϕ = ϕ
′∗ · π#∗, α) is the pullback of the universal Drinfeld module

on M r
A(n) via fA′/A.

The morphism fA′/A is separated and of finite type since M r′

A′(n
′) and M r

′
n

A (n)

are spectra of A-algebras of finite type. Furthermore this morphism is proper as the

following theorem due to Breuer [8] shows.

Theorem 3.4.2. Let r′, (r = r′ · n), K ′, A′, n and n′ be as above. Suppose that n is

admissible, so that n′ is admissible and M r
A(n) and M r′

A′(n
′) are fine moduli schemes.

Then the canonical morphism M r′

A′(n
′)K′ →M r

A(n)K′ is proper.
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The above proposition allows us to view fA′/A(M r′

A′(n
′)K′) the image of the affine

scheme M r′

A′(n
′)K′ as a closed subvariety of M r

A(n)K′ . M
r′

A′(n
′)K′ is the locus of those

Drinfeld modules with endomorphism ring containing A′.

3.4.1 Subvarieties of Hodge Type

Following Breuer [8] we define the Hodge or special subvarieties of a Drinfeld

modular variety as follows.

Definition 3.4.3. Let X ⊂ M r
A(n)C∞ be an irreducible subvariety. Then X is a

Hodge subvariety if X is an irreducible component of Tg(M
r′

A′(n)C∞) for some g ∈

GLr(Af ) and r′|r and A′|A .

Using this we can define Hodge subvarieties of M r
A(1)C∞ as the irreducible com-

ponents of images of Hodge subvarieties in M r
A(n)C∞ via the natural projection

M r
A(n)C∞ −→M r

A(1)C∞ .

Finally for an irreducible subvariety X ⊂M r
A(K)C∞ , we say X is a Hodge subvariety

if its image under the canonical projection M r
A(K)C∞ →M r

A(1)C∞ is a Hodge subva-

riety.

We want to describe the Hodge subvarieties in the product of two Drinfeld modular

varietes M r
A(K)C∞×M r

A(K)C∞ . Taking a cue from the case of Shimura Varieties [21]

and rank 2 Drinfeld moduli [10], we give the following ad hoc definition of Hodge

subvarieties.

Definition 3.4.4. Let X ⊂M r
A(1)C∞×M r

A(1)C∞ be an irreducible subvariety. Then

X is a Hodge subvariety if X is an irreducible component of

(i). the image of Tg1M
r1
A1

(1)C∞ × Tg2M
r2
A2

(1)C∞ in M r
A(1)C∞ × M r

A(1)C∞ for some

g1 ∈ GLr1(Af ), g2 ∈ GLr2(Af ), ri|r and Ai|A for i ∈ {1, 2} or
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(ii). the image of Tg(M
r′

A′(1)C∞) in M r
A(1)C∞ ×M r

A(1)C∞ for some g ∈ GLr(Af ) and

r′|r and A′|A, embedded under the map

x −→ (g1 · x , g2 · x) for some g1 , g2 ∈ GLr(Af ).

For an irreducible subvariety X ⊂M r
A(K)C∞×M r

A(K)C∞, we say X is a Hodge subva-

riety if its image in M r
A(1)C∞×M r

A(1)C∞ under the canonical projection M r
A(K)C∞×

M r
A(K)C∞ →M r

A(1)C∞ ×M r
A(1)C∞ is a Hodge subvariety.

Let g1 , g2 ∈ GLr(Af ) and let N = g−1
1 g2 then we denote the image of the map

M r
A(1)C∞ −→M r

A(1)C∞ ×M r
A(1)C∞ ;x −→ (x , g−1

1 g2 ·x) for some g1 , g2 ∈ GLr(Af ),

by Y2
r(N). The variety Y2

r(N) is analogous to the rank 2 Drinfeld Modular varieties

defined by Breuer [10]. By abuse of notation we will use the same notation for its

irreducible components as well.

Definition 3.4.5. We say X ⊂ M r
A(K)C∞ is Hodge generic if X is not contained

in a proper Hodge subvariety of positive codimension of M r
A(K)C∞. When X ⊂

M r
A(K)C∞ ×M r

A(K)C∞ we say that X is Hodge generic if X is not contained in a

proper Hodge subvariety of positive codimension of M r
A(K)C∞ ×M r

A(K)C∞.

This definition means that X ⊂M r
A(K)C∞ ×M r

A(K)C∞ has an underlying pair of

non-isogenous Drinfeld modules such that the endomorphism rings are A.

From the definitions we see that a Hodge subvariety of X ⊂M r
A(K)C∞ is the locus of

those points corresponding to Drinfeld modules with endomorphism rings containing

certain orders A′ which are integral extensions of A. In particular, the Hodge subva-

rieties of dimension zero are precisely the CM points with exact endomorphism rings

A′.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER IV

Monodromy and Irreducibility of Hecke Correspondences

In this chapter we give a description of the monodromy group associated to a fam-

ily of Drinfeld modules. These results follow from some very deep results, namely the

Tate-conjecture for Drinfeld modules due to Tamagawa [53] and a characterisation

of compact subgroups of linear algebraic groups due to Pink [42]. The result of Pink

allows us to easily conclude in suitable circumstances that the monodromy group is

an open subgroup. We use this openness result to show the irreducibility of Hecke

correspondences.

4.1 Fundamental Groups

Let k ⊂ C∞ be a subfield which is finitely generated over K and let X ⊂M r
A(K)k

be an irreducible and closed subvariety of the moduli space of rank r Drinfeld A-

modules over k with sufficiently high level structure K. Suppose also that X has

positive dimension. Write F sep for a separable closure of F , where F is the function

field of X. Let η : Spec(F ) → X be a generic point of X and η̄ : Spec(F sep) → X

the geometric point above η via the inclusion F ↪→ F sep. Let ksep be the separable

closure of k in F sep. Write Xksep = X ×k ksep. We denote the étale fundamental

group and the geometric fundamental group of X with base point η̄ by πet
1 (X, η̄) and

27
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πet
1 (Xksep , η̄) respectively. There is a short exact sequence,

1 −→ πet
1 (Xksep , η̄) −→ πet

1 (X, η̄) −→ Gal(ksep/k) −→ 1.

This is the analog of the fibration exact sequence in topology. The assumption

on K ensures that M r
A(K) is a fine moduli scheme, hence the embedding XC∞ ⊂

M r
A(K)(C∞) determines a non-isotrivial family ϕ of Drinfeld modules. Let ϕη be the

Drinfeld module corresponding to η. Let T̂ (ϕη) denote the adelic Tate module of ϕη

i.e.

T̂ (ϕη) :=
∏
p

Tp(ϕη),

where Tp(ϕη) is the p-adic Tate module. It is well known that T (ϕη) is a free Â-

module of rank r i.e. T (ϕη) ∼= Âr.

The étale fundamental group πet
1 (X, η̄) acts on the adelic Tate module via the mon-

odromy action (see [6]) and a choice of basis for Âr gives us the associated monodromy

representation.

ρ : πet
1 (X, η̄) −→ GLr(Â) ⊂ GLr(Af )

Let Γgeo and Γ denote the images of πet
1 (Xksep , η̄) and πet

1 (X, η̄) in GLr(Â) via ρ re-

spectively. Since πet
1 (Xksep , η̄) is a normal subgroup of πet

1 (X, η̄), we have the normal

subgroup inclusion Γgeo / Γ.

We now assume that XC∞ is a smooth irreducible and locally closed algebraic subva-

riety of M r
A(K)C∞ of positive dimension. Then Xan

C∞ is contained in an irreducible

component of M r
A(K)an

C∞ and since we have a rigid analytic isomorphism (see the-

orem ??)

M r
A(K)an

C∞
∼−−→
∐
s∈S

Γs\Ωr,

XC∞ lies in some connected component Γs\Ωr for some s. Let ∆ := Γs then ∆ is a

congruence subgroup of SLr(K) commensurable with SLr(A).
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Let π : Ωr −→ ∆\Ωr be the universal covering map and let Ξ be an irreducible

component of the inverse image of XC
an
∞ via π. Then the restriction of π to Ξ is

an unramified Galois covering with Galois group ∆Ξ := Stab∆(Ξ). Recall that the

embedding XC∞ ⊂ M r
A(K)(C∞) determines a non-isotrivial family ϕ of Drinfeld

modules. Let ϕηC∞ be the Drinfeld module corresponding to the generic point ηC∞

of XC∞. Let η̄C∞ be the geometric point above ηC∞. Denote by ϕη̄C∞ the pullback

of ϕηC∞ to η̄C∞. Breuer and Pink [12], prove the following statement.

Theorem 4.1.1. With the situation as above, if X is Hodge generic and if

Endη̄C∞(ϕη̄C∞) = A then the closure of ∆Ξ in SLr(Af ) is an open subgroup of

SLr(Af ).

For the application in mind we need a version of the above theorem that applies

to subvarieties in the product of two Drinfeld modular varieties.

Let XC∞ be a smooth irreducible and locally closed algebraic subvariety of positive

dimension in the product of the fine moduli schemes M r
A(K)C∞×M r

A(K)C∞, futher-

more assume that the projection of XC∞ on to its coordinate factors is not constant.

These assumptions will stay in force until the end of this section.

XC∞ determines a non isotrivial family of pairs of Drinfeld modules. Let η := (η1, η2)

denote the generic point of X. Then πet
1 (X, η̄), the étale fundamental group of X

acts on the adelic Tate module T̂ (ϕη2) × T̂ (ϕη2) via the monodromy action and a

choice of basis for Âr gives us the associated monodromy representation.

ρ : πet
1 (X, η̄) −→ GLr(Â)×GLr(Â) ⊂ GLr(Af )×GLr(Af )

As in the previous paragraphs we denote by Γgeo and Γ the images of πet
1 (Xksep , η̄)

and πet
1 (X, η̄) in GLr(Â)×GLr(Â) via ρ respectively.

Since XC
an
∞ is irreducible it is contained in an irreducible component of M r

A(K)an
C∞×
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M r
A(K)an

C∞ of the form ∆\Ωr × ∆′\Ωr where ∆ and ∆′ are congruence subgroups

of SLr(K) that are commensurable with SLr(A).

Let Ξ be an irreducible component of the inverse image of XC
an
∞ via the morphism

π × π : Ωr × Ωr → ∆\Ωr ×∆′\Ωr,

and let ∆Ξ := Stab∆×∆′(Ξ), be the stabilizer of Ξ in ∆×∆′. Then

π × π |Ξ: Ξ→ Xan
C ∞

is an unramified Galois covering with Galois group ∆Ξ.

Let I be the index set {1, 2} denote by ∆Ξi the projection of ∆Ξ to the i-th coordinate

factor. Let Ni denote the kernel of the two projections. By Goursat’s lemma [48,

lemma 5.2.1] we have that the image of ∆Ξ in ∆Ξ1/N2 ×∆Ξ2/N1 is the graph of an

isomorphism ρ : ∆Ξ1/N2
∼= ∆Ξ2/N1. In the ensuing sections we attempt to describe

more precisely ∆Ξ under various assumptions on the family of Drinfeld modules from

which it arises.

For the following proposition, we ask the reader to recall the notation introduced at

the beginning of this section.

Proposition 4.1.2. Γgeo is the closure of g−1 ·∆Ξ ·g in SLr(Af )×SLr(Af ) for some

g := (g1, g2) ∈ GLr(Af )×GLr(Af )

Proof. Let i : Ksep ↪→ C∞ be a choice of an embedding and let (ξ1, ξ2) be a point

above (η1, η2), the generic point of X. We denote by Λ1 and Λ2 the A-lattices

corresponding to ξ1 and ξ2 respectively. The choice of a basis for the Tate module

T̂ (η1) results in a embedding

Âr ∼= Λ⊗A Â ↪→ F ⊗A Â ∼= Af
r
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which is given by multiplication by some g1 ∈ GLr(Af ), this holds for T̂ (η2) as well.

Since the group ∆×∆′ stabilizes Λ1 and Λ2 we have

(g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2) ∈ SLr(Â)× SLr(Â).

We now need to show that πet
1 (Xksep , η̄) and (g−1

1 , g−1
2 ) · ∆Ξ · (g1, g2) have the same

images in GLr(A/aA) × GLr(A/a
′A) for all nonzero ideals a, a′ ⊂ A. For this we

consider the étale Galois cover

πa : M r
A(a)C∞ ×M r

A(a′)C∞ −→M r
A(1)C∞ ×M r

A(1)C∞.

This has Galois group G contained in GLr(A/aA)×GLr(A/a
′A). Let

∆(a) = {h ∈ GL(Â) | g1
−1hg1 ≡ id mod aÂ}

⋂
GLr(K)

and

∆′(a′) = {h ∈ GL(Â) | g2
−1hg2 ≡ id mod a′Â}

⋂
GLr(K).

Then ∆(a)\Ωr×∆′(a′)\Ωr is a connected component of M r
A(a)C∞×M r

A(a′)C∞ lying

above ∆\Ωr ×∆′\Ωr. By abuse of notation we denote again by πa the restriction

πa : ∆(a)\Ωr ×∆′(a′)\Ωr −→ ∆\Ωr ×∆′\Ωr,

of πa to ∆(a)\Ωr × ∆′(a′)\Ωr. Finally let Xan
a be any connected component of

πa
−1(Xan), one of these is ∆Ξ ∩ (∆(a)×∆′(a′))\Ξ. This has Galois group

∆Ξ/∆Ξ ∩ (∆(a)×∆′(a′)),

over XC
an
∞ := ∆Ξ\Ξ. Since ∆Ξ is a quotient of πet

1 (Xksep , η̄) the composite morphism

∆Ξ ↪→ ∆×∆ −→ ∆×∆/(∆(a)×∆′(a′)) ↪→ G ↪→ GLr(A/aA)×GLr(A/a
′A),
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shows that the image of πet
1 (Xksep , η̄) in GLr(A/aA)×GLr(A/a

′A) is ∆Ξ/∆Ξ∩(∆(a)×

∆′(a′)). Now the reduction homomorphism

∆Ξ ↪→ (g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2) ↪→ SLr(Â)× SLr(Â) −→ SLr(A/aA)× SLr(A/a
′A)

has kernel ∆Ξ ∩ (∆(a) × ∆′(a′)) while the image of (g−1
1 , g−1

2 ) · ∆Ξ · (g1, g2) via the

reduction homomorphism is

(g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2)/((g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2)) ∩ Γ(a)

The isomorphism

∆Ξ/∆Ξ ∩ (∆(a)×∆′(a′)) ∼= (g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2)/((g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2)) ∩ Γ(a)

then show that the image of (g−1
1 , g−1

2 ) ·∆Ξ · (g1, g2) in SLr(A/aA)× SLr(A/a
′A) is

∆Ξ∩ (∆(a)×∆′(a′)). In particular πet
1 (Xksep , η̄) and (g−1

1 , g−1
2 ) ·∆Ξ · (g1, g2) have the

same image in SLr(A/aA)× SLr(A/a
′A) for all nonzero ideals a, a′ ⊂ A. Taking the

direct limit over all nonzero pairs of ideals a, a′ proves our claim.

We quote the following particular case of a very deep theorem of Pink (see [42,

Thm 0.2],[41, Thm 2.8]). It gives us an easy criterion to decide openess of images of

Galois representations.

Theorem 4.1.3. Let L1 and L2 be local fields. Let L := L1 ⊕ L2 and let Γ be a

compact subgroup of GLn(L) = GLn(L1) × GLn(L2). Let i ∈ {1, 2}, denote by ρi
ad

the adjoint representation of Γi and set ρad = ρ1
ad ⊕ ρ2

ad. Furthermore let Oρad ⊂ L

be the closure of the subring generated by 1 and by tr(ρad(Γ)).

Let Eρad = {x
y
| x, y ∈ Oρad , y ∈ L×} ⊂ L.

Suppose that Γi, the image of Γ in PGLn(Li) is Zariski dense. Then if Eρad = L, the

closure of the commutator subgroup of Γ is open in SLn(L) = SLn(L1)× SLn(L2).
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Proposition 4.1.4. Let ϕ1 and ϕ2 be a pair of Drinfeld modules defined over a

common field of definition L and such that End(ϕ1) = A = End(ϕ2). Let K be a

finitely generated extension of L. Let ρ1
p and ρ2

p be the Galois representations attached

to the rational p-adic Tate modules of ϕ1 and ϕ2 respectively. Let

ρp := (ρ1
p, ρ

2
p) : Gal(Ksep/K) −→ GLr(Lp)×GLr(Lp)

be the joint p-adic representation. Denote by Γp the image of ρp in GLr(Lp)×GLr(Lp)

and for brevity set GK := Gal(Ksep/K).

(i). If ϕ1 and ϕ2 are isogenous then ρ1
p(GK) = ρ2

p(GK) and the image of GK is open

in each factor GLr(Lp). Furthermore Γp is the graph of an inner automorphism

of ρ1
p(GK) in GLr(Lp)×GLr(Lp).

(ii). Suppose (r, p) 6= (2, 2). If ϕ1 and ϕ2 are non-isogenous of rank greater than two

then the Zariski closure of the derived group of Γp is open in SLr(Lp)×SLr(Lp).

Proof. (i). If ϕ1 and ϕ2 are isogenous then by the Tate conjecture [53] the Galois

representations ρ1
p and ρ2

p are equivalent. Thus there exists h ∈ GLr(Lp) such

that ρ2
p = h−1ρ1

ph. Hence the image of ρ in GLr(Lp)×GLr(Lp) is

Γp = {(ρ1
p(g), h−1ρ1

p(g)h) | g ∈ Gal(Ksep/K)},

i.e. Γp is the graph in GLr(Lp)×GLr(Lp) of an inner automorphism of ρ1
p(GK).

The second claim follows directly from a theorem of Pink (see [41, Thm 0.1])

on the openness of the image of Galois representations attached to Drinfeld

modules without complex multiplication in generic characteristic.

(ii). Let G be the Zariski closure of Γp in GLr,Lp ×GLr,Lp . Denote by Gi the projec-

tion of Γp in GLr,Lp ×GLr,Lp to the i-th factor. Also set L = Lp⊕Lp. Denote by
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Γp,i the projection of Γp to the i-th coordinate factor of GLr(Lp)×GLr(Lp). Since

each Γp,i is the image of a representation coming from a non CM Drinfeld mod-

ule it is open in GLr(Lp) by theorem [41, Thm 0.1]. Furthermore (p, r) 6= (2, 2)

hence by proposition [42, Prop 7.1] and [42, Prop 0.6] respectively the projec-

tions to each summand (Lp, Gi,Γp,i) are minimal and Eρiad = Lp respectively.

Hence by theorem 4.1.3 above to prove our theorem it suffices to show that

Eρad = L (see theorem 4.1.3 for notation). By theorem [42, Thm 2.3 9(a)], Eρad

is semisimple, therefore if Eρad 6= Lp⊕Lp we have that Eρad is a subfield of L. By

theorem [42, Thm 0.2 (a)] there is a quasi model (Eρad , H, ϕ) of (L,G,Γp where

ϕ : H ×E
ρad

L −→ G is an isogeny and H is a absolutely simple adjoint group

over Eρad with ϕ(H(Eρad)) ⊂ G(L). Since the projections to each summand

(Lp, Gi,Γp,i) are minimal we have by proposition [42, Prop 3.13 (b)], that there

exists ρ0 such that ρad := ρad
1 ⊕ ρad

2 = ρ0 · ϕ where ρ0 is a representation of H

and ϕ is an isomorphism. This implies that the adjoint representations ρad
i are

isomorphic after applying the automorphism x → (xt)−1 of Lp. Hence the im-

age of the Galois representation in PGLn,Lp ×PGLn,Lp is in either the diagonal

or is a graph of the automorphism of PGLn,Lp induced by the automorphism

x → (xt)−1 of Lp. If the image lies (up to conjugation) in the graph of the

automorphism x → (xt)−1 then the tensor product of the two representations

has weight 0 < 2/r < 1 but possesses a quotient representation of dimension

one, which is a contradiction. Thus the image is in the diagonal. Then the

image(lifts) of the Galois representations in GLn,Lp differ by a character. Hence

the tensor product of the first representation and the dual of the second rep-

resentation is pure of weight zero and possesses a quotient representation of

dimension one. Let ψ be the character associated with this representation.

Stellenbosch University  http://scholar.sun.ac.za



35

ψ factors through Gab
K and by compactness lands in O∗Lp. By class field the-

ory, ψ and the Artin map induces a character ψ : K∗\A∗fK → O∗Lp. This has

component only at p and factors through an open subgroup hence is a finite

character. Therefore the original ψ itself is finite. Hence after extending the

base field the two representions are isomorphic. This contradicts the following

fact: if ϕ1 and ϕ2 are non-isogenous then by the analog of the Tate conjecture

for Drinfeld modules we have that ρ1 and ρ2 are not equivalent. Therefore we

have Eρ = Lp ⊕ Lp and consequently that Γp is open in GLr(Lp)×GLr(Lp) by

theorem 4.1.3. Hence Γp is also open in SLr(Lp)× SLr(Lp).

The second part of the following proposition will allow us to deduce an irre-

ducibility statement for Hecke correspondences (Theorem 4.2.2) in the next sec-

tion. We remark that the proof presented here is modeled on that of [12, Thm 1.1]

and we sometimes quote from this reference. Although some of the statements we

quote from there are stated only for SLr and X ⊂ M r
A(K)C∞, many arguments go

through vertabim for SLr × SLr or indeed for any general semisimple linear group

and XC∞ ⊂ M r
A(K)C∞ ×M r

A(K)C∞. When this is the case we will just refer to the

above mentioned reference.

Let ϕ be the non-isotrivial family of ordered pairs of Drinfeld modules over C∞ de-

termined by the embedding XC∞ ⊂ M r
A(K)C∞ ×M r

A(K)C∞. Let ηC∞ = (η1
C∞, η

2
C∞)

be the generic point of XC∞ and η̄C∞ the geometric point above it. Let ϕη̄C∞ denote

the pullback of ϕ to η̄C∞. Let k ⊂ C∞ be a finitely generated extension of K such

that XC∞ = X ×k C∞ for some X ⊂M r
A(K)k×M r

A(K)k. Let F be the function field

of X, then η corresponds to the morphism Spec(F ) −→ X.

Lemma 4.1.5. Let XC∞ ⊂ M r
A(K)C∞ × M r

A(K)C∞ as above. Then the analytic
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fundamental group is ∆Ξ is infinite.

Proof. Suppose to the contrary that ∆Ξ is finite. Then after increasing the level

structure we may assume that ∆Ξ = 1. This implies that the Geometric fundamental

group Γgeo = 1. Thus the monodromy representation factors through

π1(X, η̄)→ Gal(ksep/k)→ GLr(Fp)×GLr(Fp)

After a suitable finite extension of the constant field k we may assume that X

possesses a k-rational point x. Denote by ϕx the pair of Drinfeld modules over k

corresponding to x. Via the embedding k −→ K we may consider the pair of Drinfeld

modules as defined over K and compare it with the pair ϕη̄. The factorization above

implies that the Galois representations on the component p-adic Tate modules of ϕx

and ϕη̄ are isomorphic. By the Tate conjecture [53] this implies that there exists

an isogeny between the components of ϕη̄ and ϕx over K. The kernels of each of

these isogenies is finite and therefore defined over some finite extension k′ of k. The

quotients by these kernels are isomorphic to a Drinfeld modules defined over k′. But

by assumption dimX > 1 hence η̄ is not a closed point ofM r
A(K)k×M r

A(K)k; hence ϕη̄

cannot be defined over a finite extension of k. We therefore have a contradiction.

Lemma 4.1.6. Let H denote the Zariski closure of ∆Ξ in GLr,F ×GLr,F . Then H

is a normal subgroup of GLr,F ×GLr,F .

Proof. Let p 6=∞ be a prime of F and denote by Γp the projection of Γ to GLr(Fp)×

GLr(Fp). The base change Hp is the Zariski closure of ∆Ξ in GLr,Fp ×GLr,Fp . Lemma

4.1.2 implies that g−1Hpg is the Zariski closure of Γp
geo in GLr,Fp ×GLr,Fp . Since Γp

normalises Γp
geo it normalises g−1Hpg. But by proposition 4.1.4(ii) Γp is open in

GLr(Fp) × GLr(Fp) hence it is Zariski dense in GLr,F ×GLr,F . Therefore Γp also
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normalises g−1Hpg. This implies that GLr,F ×GLr,F normalises g−1Hpg and hence

also Hp. Therefore H is a normal subgroup of GLr,Fp ×GLr,Fp .

Proposition 4.1.7. Let X be a subvariety of M r
A(K)C∞ × M r

A(K)C∞ such that

End(η̄1C∞) = A = End(η̄2C∞).

(i). Suppose that the pair of Drinfeld modules underlying ϕη̄C∞ the generic point of

X are isogenous. Then

∆Ξ = {(g̃, ρ(g̃)) | g̃ ∈ G},

where G is a subgroup of SLr(F ) and ρ is an automorphism of G.

(ii). Suppose that the pair of Drinfeld modules underlying the point ϕη̄C∞ are non-

isogenous. Then ∆̂Ξ is an open subgroup of SLr(Af )× SLr(Af ).

Proof. (i). Suppose the pair of Drinfeld modules underlying the point ϕη̄C∞ are

isogenous. We consider the representation attached to the pair of Drinfeld

modules corresponding to η1 and η2. Now F is a common field of definition of

η1 and η2. By lemma 4.1.4[ (1)] the image of the p-adic representation ρp is of

the form

ρp(GL) = {(g, hp−1ghp) | g ∈ Hp},

where Hp is an open subgroup of GLr(Fp) and h ∈ GLr(Fp). Since Hp is open

in GLr(Fp), the kernel of GLr(Fp) acting on the Hp cosets is open and normal

in GLr(Fp) and contained in Hp. Now every open normal subgroup of GLr(Fp)

contains SLr(Fp) therefore Hp contains SLr(Fp). We obtain

ρ(GL) =
∏
p

ρp =
∏
p

{(gp, (hp)−1gphp) | gp ∈ Hp}.

Now the rational adelic Galois representation ρ is the composite homomorphism

Gal(F sep/F ) ∼= π1(η, η̄)→ π1(X, η̄)→ GLr(Af )×GLr(Af )
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therefore Γ, the image of π1(X, η̄) coincides with the image of the rational adelic

Galois representation ρ(GL). Furthermore Γp, the projections of Γ to GLr(Fp)

contains SLr(Fp). By lemma 4.1.2

g−1 ·∆Ξ · g = Γgeo ⊂ Γ ⊂ GLr(Af )×GLr(Af ).

Since Γgeo is the Zariski closure of g−1 · ∆Ξ · g ⊂ SLr(Â) × SLr(Â) and Γgeo is

a subgroup of Γ this implies that ∆Ξ is a proper subgroup of SLr(F )× SLr(F )

hence ∆Ξ = {(g̃, ρ(g)) | g̃ ∈ G ⊂ SLr(F )}, where G is a subgroup of SLr(F )

and ρ is an automorphism of G.

(ii). If the pair of Drinfeld modules underlying the point ϕη̄C∞ are non-isogenous,

then as in the previous argument the image of Galois coincides with Γ. By

proposition 4.1.4(ii) it follows that Γp, the projection of Γ to GLr(Fp)×GLr(Fp)

is open. Let H denote the Zariski closure of ∆Ξ in GLr,F ×GLr,F . By con-

struction H ⊂ SLr,F × SLr,F and by lemma 4.1.6 H is a normal subgroup of

GLr,F ×GLr,F . Furthermore ∆Ξ is infinite by lemma 4.1.5, hence H is not con-

tained in the center of SLr,F×SLr,F and has surjective projections to each factor

of SLr,F × SLr,F . Let N1 and N2 denote the kernels of these projections. Then

H/N1 ×N2
∼= SLr,F /N1

∼= SLr,F /N2.

Since H has surjective projections to each factor of SLr,F × SLr,F we must

have that N1 and N2 are not central i.e. N1 = SLr,F = N2. Therefore H =

SLr,F × SLr,F . Therefore ∆Ξ is Zariski dense in SLr,F × SLr,F . Now ∆Ξ is

contained in a congruence subgroup commensurable with SLr(A) × SLr(A),

hence it is integral at all places except infinity. We note that our proof of

4.1.4(ii) also shows that the triple (F ⊕F, SLr,F × SLr,F ,∆Ξ) is minimal, in the
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sense of [42]. Thus in summary ∆Ξ is a Zariski dense subgroup of the connected,

semisimple group SLr(F )×SLr(F ) that is minimal, integral at all places except

infinity. Therefore theorem [43, Thm 0.2] of Pink applies and we conclude that

∆̂Ξ is an open subgroup of SLr(Af )× SLr(Af )

4.2 Irreducibility of Hecke Correspondences

Let S in GLr(Af ) be a set of representatives of the finite set GLr(K)\GLr(Af )/K.

For each s ∈ S we define the arithmetic group Γs := sKs−1 ∩ GLr(K). We have a

bijection

GLr(K)\GLr(Af )× Ωr/K ∼−−→
∐

s∈S Γs\Ωr

Hence

M3
A(K)an

C∞
∼−−→
∐
s∈S

Γs\Ω3.

For g = diag(p, 1, . . . , 1) ∈ GLr(Af ) and x = (x1, x2) ∈ M r
A(K)C∞ ×M r

A(K)C∞ we

define the Hecke orbit (Tg × Tg)∞(x) inductively as follows

(Tg × Tg)(x) = (Tg × Tg)(x1, x2) ∪ (Tg−1 × Tg−1)(x1, x2)

(Tg × Tg)n+1(x) = (Tg × Tg)n(x) ∪ (Tg × Tg)(x)

(Tg × Tg)∞(x) =
⋃
n>0

(Tg × Tg)n−1(x)

Theorem 4.2.1. Let x ∈M r
A(K)C∞ ×M r

A(K)C∞ where Kp is a principal congruence

subgroup of GLr(Ap), gp = diag(p, 1, . . . , 1) ∈ GLr(Af ) and g = g1 · gp · g2 where

g1, g2 ∈ GLr(Af ), then for any integer k, the Hecke orbit (Tgk × Tgk)∞(x) is Zariski

dense in an irreducible component of M r
A(K)C∞ ×M r

A(K)C∞.
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Proof. Assume x1 ∈ Γs0\Ωr, then by [33][Theorem 5.1.2]

(Tgk)
∞(x1) ∩ Γs\Ωr = {[Tω] ∈ Γs\Ωr : T ∈ s < KgkK > s0

−1 ∩GLr(K)},

where < KgkK > denotes the subgroup of GLr(Af ) generated by the double coset

KgkK. Thus again by the content of [33][Theorem 5.2.2] to prove our theorem it

suffices to show that the image of subgroup of GLr(Fp) generated by the p-component

of gk in PGLr(Fp) is unbounded. Let

f(λ) = λr + ar−1λ
r−1 + · · ·+ a1λ+ a0

be the characteristic polynomial of (g1pgpg1p)
k. Since Det((g1p),Det((g1p) ∈ Fp

∗, the

p-valuation

vp(a0) = vp(Det(g1pgpg1p)
k) = k · vp(Det gp) = −k

Now

ar−1 = −tr((g1pgpg1p)
k) = −

∑
i,j

((g1pgpg1p)
k)i,j,

and since g1p and g2p are in the principal congruence subgroup of GLr(Ap) by as-

sumption, we have vp((g1p)i,j), vp((g1p)i,j) ≥ 0, with equality if i = j. This implies

(g1pgpg1p)
k)i,j has p-valuation k. Therefore

vp(ar−1) = −k,

in particular the newton polygon of f(λ) has at least two lines. This implies the

image of subgroup of GLr(Fp) generated by the p-component of gk in PGLr(Fp)

is unbounded. Then same as in [33][5.2.2] the Hecke orbits (Tg × Tg)
∞(x1) and

(Tg × Tg)∞(x2) are dense in an irreducible component of M r
A(K)C∞ , since these two

coordinates are independent, the Hecke orbit (Tg×Tg)∞(x) in M r
A(K)C∞×M r

A(K)C∞

is Zariski dense as well in an irreducible component of M r
A(K)C∞ ×M r

A(K)C∞ .
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Let X be a Hodge generic and F -irreducible subvariety of M3
A(1)C∞ ×M3

A(1)C∞

defined over F and assume that the underlying pair of Drinfeld modules of the generic

point of X are non-isogenous, and have both endomorphism rings A.

Let X ′ be an irreducible component of the preimage of X in M r
A(K)C∞ ×M r

A(K)C∞

via the canonical projection. X ′ is defined over a a finite extension L of F . After

replacing X ′ with its non singular locus we may assume X ′ is smooth and still Hodge

generic with the generic point of X ′ consisting of non-isogenous underlying Drinfeld

modules which have both endomorphism rings A. Assume that K =
∏

pKp = Kp×Kp

where Kp is contained in GLr(Kp), the first component Kp is a principal congruence

subgroup of GLr(Ap) and that

X ′ ⊂ σ · (Tg × Tg)(X ′)

for any g as in 4.2.1 and σ, a Galois automorphim of K. Let

π × π : M3
A(Kp)×M3

A(Kp)→M3
A(K)×M3

A(K),

then π×π is a Kp×Kp-cover and by proposition 4.1.7 the monodromy representation

associated with π × π has open image K′p ×K′p in Kp ×Kp. Now

π′ × π′ : M3
A(K′p ×Kp)×M3

A(K′p ×Kp)→M3
A(K)×M3

A(K)

is a K′p × K′p-cover of M3
A(K) × M3

A(K) thus Z ′ := (π′ × π′)−1(X ′) is irreducible.

Therefore (Tg × Tg)(Z ′) is irreducible as well.

Since (Tg × Tg)(Z ′) is irreducible and Z ′ ⊂ σ · (Tg × Tg)(Z ′) we have

Z ′ = σ · (Tg × Tg)(Z ′).

Iterating we see that

Z ′ = σ · (Tg × Tg)(Z ′) = σ2 · (Tg × Tg)((Tg × Tg)(Z ′)) ⊃ σ2 · (Tg2 × Tg2)(Z ′),
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e.t.c. Since Z ′ is irreducible and both sides have the same dimension we have

Z ′ = σk · (Tgk × Tgk)(Z ′),

for all k ≥ 0. Therefore for large enough integers k,

Z ′ = (Tgk × Tgk)(Z ′)

By theorem 4.2.1, the (Tgk × Tgk)-orbit of any point in Z ′ is Zariski-dense in an

irreducible component of M3
A(K)C∞×M3

A(K)C∞ , but this orbit lies completely inside

Z ′. Therefore Z ′ is an irreducible components of M3
A(K)C∞ ×M3

A(K)C∞ . Thus its

projection X is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞ . We have thus proved

the following.

Theorem 4.2.2. Let X ⊂ M3
A(1)C∞ ×M3

A(1)C∞ be an F -irreducible Hodge generic

subvariety and assume that the underlying pair of Drinfeld modules of the generic

point of X are non-isogenous, have both endomorphism rings A and the characristic

of F is not 3. Let K be an admissible level structure of the form K =
∏

pKp where Kp

is contained in GLr(Kp), and large enough so that M3
A(K)C∞ is a fine moduli scheme.

Let X ′ be the smooth locus of a Hodge generic, irreducible component of the preimage

of X in M r
A(K)C∞×M r

A(K)C∞ such that for g = diag(p, 1, . . . , 1) ∈ GLr(Af ) we have

X ′ ⊂ σ · (Tg × Tg)(X ′). Then X is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞.

We remark that it is in this theorem that we need the condition that the charac-

teristic is not 3.

4.3 Modular Polynomials

For most of this section we assume that A = Fq[T ] until we signal to drop this

restriction. Let ϕ and ϕ′ be two A-Drinfeld modules of rank r with

ϕT = Tτ 0 + g1τ + · · ·+ gr−1τ
r−1 + grτ

r, ∆ = gr 6= 0.
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Then ϕ and ϕ′ are isomorphic if and only if there exists λ 6= 0 such that g′i = λq
i−1gi

for i = 1, . . . , r. It follows that the tuple (g1, . . . , gr) representing ϕ is equivalent

to (λq
1−1g′1, . . . , λ

qr−1gr), hence the coarse moduli scheme parameterizing Drinfeld

A-modules of rank ≤ r is the weighted projective space

PA(q − 1, q2 − 1, . . . , qr − 1) := ProjA[g1, . . . , gr−1,∆],

where each gi has weight qi− 1 and ∆ has weight qr− 1. The moduli scheme of rank

r Drinfeld A-modules M r
A(1), is then the quasiprojective subvariety of PA(q− 1, q2−

1, . . . , qr − 1) given by the open condition that ∆ 6= 0. When A = Fq[T ], Potemine

[45] has given an explicit description of the affine scheme M r
A(1) by giving expicitly

the generators of its coordinate ring.

Consider a multi-index (k1, . . . , kl) with 1 ≤ k1 < · · · < kl ≤ r − 1 . Set

d(k1, . . . , kl) := gcd(k1, . . . , kl) and let δ1, . . . , δl, δr be non-negative integers such

that

(i). δ1(qk1 − 1) + · · ·+ δl(q
kl − 1) = δr(q

r − 1),

(ii). 0 ≤ δi ≤ (qr − 1)/(qgcd(i,r) − 1) for ≤ i ≤ l and d(δ1, . . . , δl, δr) = 1.

Definition 4.3.1. With the above notation the basic J-invariants of ϕ are defined

by

Jδ1,...,δlk1,...,kl
(ϕ) :=

gδ1k1
· · · gδlkl
∆δr

= uδ1k1
· · ·uδlkl ,

where uki = gi

∆(qki−1)/(qk−1)
.

We furthermore let

jk(ϕ) = Jδkk (ϕ) =
g

(qr−1)/(qd(k,r)−1
k )

g
(qk−1)/(qd(k,r)−1)
r

; 1 ≤ k ≤ r − 1
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We call jk(ϕ) the jk-invariant of ϕ and we call the tuple j(ϕ) = (j1(ϕ), . . . , jr−1(ϕ))

the j-invariant of ϕ. When r = 2

j(ϕ) = jδ11 (ϕ) =
gq+1

1

∆
,

which is the usual j-invariant of rank 2 Drinfeld modules. We have the following

theorem due to Potemine (see [45]).

Theorem 4.3.2. (i). If two Drinfeld modules ϕ and ϕ′ of rank r over an A-scheme

S are isomorphic then all Jδ1,...,δlk1,...,kl
(ϕ)-invariants coincide.,

(ii). Let ϕ and ϕ′ be Drinfeld modules of rank r over a separably closed A-field L

having the same j-invariant j(ϕ) = j(ϕ′). Then there exists a Drinfeld module

ϕ
′′

isomorphic to ϕ such that

gk(ϕ
′) = µk · gk(ϕ

′′
); µk

(qk−1)/(qd(k,r)−1) = 1; 1 ≤ k ≤ r − 1

(iii). Let ϕ and ϕ′ be Drinfeld modules of rank r over a separably closed A-field L. If

their basic J-invariants coincide:

Jδ1,...,δlk1,...,kl
(ϕ) = Jδ1,...,δlk1,...,kl

(ϕ′)

for all integers δ1, . . . , δl, δr satisfying (1) and (2) then these modules are iso-

morphic.

As a consequence of this he also proves in the same paper

Theorem 4.3.3. The affine toric A-variety of relative dimension r − 1

M r
A(1) ∼= Spec(A[{Jδ1,...,δlk1,...,kl

}])

is the coarse moduli scheme of Drinfeld A-modules of rank r.
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Recall that analytically the moduli space M r
A(1)C∞ = GLr(A)\Ωr . Two points

τ, τ ′ ∈ Ωr correspond to isomorphic (respectively isogenous) Drinfeld modules ϕτ and

ϕτ
′

if and only if there exist σ ∈ GLr(A) (respectively GLr(K)) such that στ = τ ′.

If f is a cyclic isogeny (see section 3.1) from ϕτ to ϕτ
′

and then σfτ = τ ′ where

σf ∈Mn = GLr(A)\GLr(A)



n 0 . . . 0

0 1 . . . 0

...
. . .

...

0 . . . 0 1


GLr(A)

is a suitable representative of the above coset and n is a nonzero ideal of A. Let

{Jδ1,...,δlk1,...,kl
} = {J1, J2 . . . , JN} be the list of all basic J-invariants. We consider as in

the classic case the expression

PJi,n :=
∏
ϕ
n→ϕ′

(Ji(ϕ)− Ji(ϕ′))

where the product runs over all ϕ′ linked to ϕ by a cyclic n isogeny. Let {σi} be a

finite set of distinct representatives of the double coset Mn then this polynomial can

be written as

PJi,n :=
∏
σi

(Ji(ϕ)− Ji(σi · ϕ))

From this we can define the modular polynomials

(4.0) PJi,n(X) :=
∏
σi

(X − Ji · σi(ϕ))

By [13, Theorem 1.1] the degree of X in PJi,n(X) is

∏
p|n

|p|r − 1

|p|r − |p|r−1
.

It is clear that PJi,n(X) = 0 if and only if X = Ji(ϕ
′) with ϕ′ ∈ Tn(ϕ). Let

Ig = deg(Tg) be the degree of Tg as a correspondence then expanding expression 4.0
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we obtain a polynomial
∑Ig

n=0 aj,nX
n in X with coefficients aj,n. These coefficients

are symmetric functions in Jj · σi of degree Ig − n and permuted by Γ. Hence

aj,n ∈ O(Γgi\Ωr) i.e. the aj,n are holomorphic functions on Γ\Ωr.

Definition 4.3.4. Let I ∈ A[J1, · · · , JN ], we denote by w(I) the weighted degree of

I, where each monomial is assigned the weight

w(Jδ1,...,δlk1,...,kl
) := δr.

Let K be the quotient field of A, i.e. K = Fq(T ). For a polynomial n ∈ A we

denote |n| = qdegn. The following theorem is due to Breuer and Rück[13].

Theorem 4.3.5. Let I ∈ A[J1, · · · , JN ] be an invariant of weighted degree w(I), and

n ∈ A monic. Then

(i). We have PI,n(X) ∈ A[J1, · · · , JN ][X], which has degree

#J(n) = |n|r−1
∏
p|n

|p|r − 1

|p|r − |p|r−1

in X, and is irreducible in C∞[J1, · · · , JN ][X].

(ii). The weighted degree of the coefficient ai ∈ A[J1, · · · , JN ] of X i in PI,n(X) is

bounded by:

w(ai) ≤

|n|2(r−1)
∏
p|n

|p|r − 1

|p|r − |p|r−1
− i

w(I).

4.4 Degrees of Hecke Correpondences

To compute the degrees of Hecke correspondences on M r
A(1)×M r

A(1) we construct

explicit polynomials (following Breuer and Rück [13]) that define the correspondence

Tg for g ∈ GLr(Af ) then compute the degrees of these polynomials. We want to

compute the degrees (as a variety) of Hecke correspondences on M r
A(1)×M r

A(1). We
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still assume that A = Fq[T ]. Then in this case the moduli of rank r Drinfeld A-

modules without level structure is M r
A(1) = Spec(A[J1, · · · , JN ]), where the Ji are a

list of all the basic J-invariants. The morphism θ : A[J1, · · · , JN ]→ A[X1, · · · , XN ]

given by sending a basic J-invariant Ji to the indeterminate Xi, realizes M r
A(1) as a

subvariety of the affine space AN hence of the projective space PN .

Definition 4.4.1. Let X ⊂ M r
A(1) ⊂ AN and let θ(X) be the Zariski closure of X

in PN . If Yi are the irreducible components of this Zariski closure then θ(X) =
⋃
Yi.

We define the intersection degree of X to be the sum of the degrees of the irreducible

components Yi

It follows from the definition that the graph of the Hecke correspondence Tg is a

subvariety of M r
A(1) ×M r

A(1). The locus of this graph is equal to the subvariety of

corresponding to the ideal of modular polynomials

〈PJ1,n(Y1;X1, . . . , XN), . . . , PJN ,n(YN ;X1, . . . , XN)〉 ⊂ C∞[X1, . . . , XN , Y1, . . . , YN ]

The degree Deg(Tg) of Tg ⊂ M r
A(1) ×M r

A(1) ⊂ A2N as a projective variety is given

by

Deg(Tg) = Deg
(
Tg∩(M r

A(1)C∞×M r
A(1)C∞)

)
In particular if we let g = diag(n, 1, · · · , 1)

then by a variant of Bezout’s Theorem for AN [26, example 8.4.6], and by theorem

4.3.5

Deg(Tn) = Deg
(
Tn∩(M r

A(1)C∞×M r
A(1)C∞))

)
≤ Deg

(
M r

A(1)C∞
)2

N∏
j=1

(
|n|r−1ψr(n)2w(Ji)

)
,

We now drop the restriction on A, so A is once again a general base ring (as defined

in the introduction). For every transcendental element T ∈ A we have Fq[T ] ⊂ A

and K/Fq(T ) is an imaginary extension. Let dT be the degree of this extension.

We have a canonical morphism ρT : M r
A(1)K −→ M rdT

Fq [T ](1)K . For any subvariety
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X ⊂M r
A(1)K we define the T -degree degT (X) to be the degree of ρT (X) ⊂ AN

K as in

definition 4.4.1. The following result is due to Breuer [8] and will be important to

us later.

Proposition 4.4.2. Let T ∈ A be a transcendental element, then there exist com-

putable positive constants c = c(T ) and n = n(T ) such that the following holds. Let

X ⊂M r
A(1)K be an irreducible algebraic subvariety, and let P ⊂ A be a prime which

has residual degree one over p := P ∩ Fq[T ]. Then

degT (TP(X)) ≤ c degT (X)|P|n.

In particular, if X ∩ TP(X) is finite, then

|X ∩ TP(X)| ≤ c degT (X)2|P|n.

Corollary 4.4.3. Let T ∈ A be a transcendental element, then there exist computable

positive constants c = c(T ) and n = n(T ) such that the following holds. Let X ⊂

M r
A(1)K ×M r

A(1)K be an irreducible algebraic subvariety, and let P ⊂ A be a prime

which has residual degree one over p := P ∩ Fq[T ]. Then

degT ((TP × TP)(X)) ≤ c2 degT (X)2|P|2n.

In particular, if (X ∩ TP × TP)(X) is finite, then

|X ∩ (TP × TP)(X)| ≤ c2 degT (X)3|P|2n.

Proof. Since M r
A(1) ⊂ AN we can consider X as a subvariety of PN ×PN . The Chow

group of PN has the particular simple formK[ε1, · · · , εN ] with ε2
i = 0. Hence the class

of the graph of the Hecke correspondence TP in (PN×PN) := K[ε1, · · · , εN , η1, · · · , ηN ]

is [TP] = (deg(TP)ε, deg(TP)η), where ε = (ε1, · · · , εN) and η = (η1, · · · , ηN).

Therefore the class of (TP × TP)(X) in (PN × PN × PN × PN) is

[TP]× [TP] = deg(TP)2[H] · [X],
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where [H] is the class of the generator of (PN × PN × PN × PN) and [X] is the class

of X. By proposition 4.4.2 it is now easy to see that

degT ((TP × TP)(X)) ≤ c2 degT (X)2|P|2n.

The second claim is rather evident.

Let X be a irreducible subvariety of M r
A(1)K ×M r

A(1)K and let

pri : M r
A(1)K ×M r

A(1)K −→M r
A(1)K

denote the projection to the i-th factor of M r
A(1)K ×M r

A(1)K . Let Y be the image

of X in M r
A(1)K under this projection.

By abuse of notation we denote still by pri : X −→ Y the restriction of pri to X.

Assume that pri is quasi finite hence that its degree by deg(pri) := [C∞(X) : C∞(Y )]

is well defined. Let X̄ denote the Zariski closure of the image of X in PN × PN

induced by ρT and let Ȳ denote the Zariski closure of the image of Y in PN under

the embedding into projective space afforded by ρT . Let

pri,T : X̄ −→ Ȳ

denote the projection morphism and denote its degree by degT (pri). Since X and

X̄ are birational, similarly Y and Ȳ , we have degT (pri) = deg(pri). In computing

the T -degree of a subvariety X in the product M r
A(1)K ×M r

A(1)K one is faced with

the following question. On one hand one can compute the degree of the class of X

in the Chow group of PN × PN , on the other hand PN × PN is not projective. Thus

PN×PN can be further embedded in a projective space PM using the very ample line

bundle L = O(1, 1). With this embedding one has a different degree degL(X) at his

disposal. The following simple lemma gives a relation between degT (pri), degT (X)

and degL(X).
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Lemma 4.4.4. With the situation as above we have

degL(X) = (dim(X))!(degT (pr1) + degT (pr2)) = (dim(X))! · degT (X)

Proof. The class of X in the Chow group CH(PM) = Z[ε]/(εM+1) (see [30]) under

the embedding injuced by L is [X] · [L]d (see [18]). Hence

degL(X) = (dim(X))!(degT (pr1(X)) + degT (pr2(X))),

which gives the first equality. Since CH(PN ×PN) = Z[ε]/(εN+1)⊕Z[ε]/(εN+1), the

class of X in CH(PN × PN) is d1 · ε1
k1 + d2 · ε2

k2 where di is the degree of the i-th

projection and ki is the codimension of the i-th projection. Therefore

degT (X) = degT (pr1) + degT (pr2),

hence the second equality.
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CHAPTER V

André-Oort Conjecture

In this chapter we prove the André-Oort conjecture for a product of two Drin-

feld modular surfaces when the characteristic is not 3. We follow the approach

successfully employed by Edixhoven, Klingler-Yafaev and Breuer (see for instance

[21],[10],[4] , [8]).

We first recall the statement of the André-Oort Conjecture for products of Drinfeld

modular varieties.

Conjecture 5.0.5 (André-Oort for Products of Drinfeld Modular Varieties). Let X

be an irreducible subvariety of M r1
A (K)C∞ × · · · ×M rn

A (K)C∞. Suppose Σ is a non

empty set of Hodge subvarieties in X such that Σ is dense in X. Then X is a Hodge

subvariety of M r1
A (K)C∞ × · · · ×M rn

A (K)C∞.

In the case that Σ is a set of CM points in X, the conjecture has the more familiar

expression.

Conjecture 5.0.6 (André-Oort for products of Drinfeld Modular Varieties). Let

X be an irreducible subvariety of M r1
A (K)C∞ × · · · × M rn

A (K)C∞. Then X con-

tains a Zariski dense set of CM points Σ if and only if X is a Hodge subvariety

of M r1
A (K)C∞ × · · · ×M rn

A (K)C∞.

To be precise: What constitutes the André-Oort conjecture has classically been

51
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the forward statement. In one direction the conjecture is much easier. Indeed if X is

a Hodge subvariety of M r1
A (K)C∞ × · · · ×M rn

A (K)C∞ then given a CM point in X we

can consider the Zariski closure of a Hecke orbit (see Breuer [8, 4.2]). This is Zariski

dense in an irreducible component of X.

The André-Oort conjecture is insensitive to the level structures. The inclusion

K ↪→ GLr(Â) induces a morphism

f : M r1
A (K)C∞ × · · · ×M rn

A (K)C∞ −→M r1
A (1)C∞ × · · · ×M rn

A (1)C∞

and X ⊂M r1
A (K)C∞ × · · · ×M rn

A (K)C∞ is a Hodge subvariety if and only if its image

f(X) ⊂ M r1
A (1)C∞ × · · · × M rn

A (1)C∞ is a Hodge subvariety. Therefore it suffices

to state and prove the André-Oort conjecture for subvarieties of M r1
A (1)C∞ × · · · ×

M rn
A (1)C∞ . This is the form of the conjecture we shall use for the rest of this chapter.

We now state the main result of this thesis.

5.1 Main Theorem

Theorem 5.1.1 (André-Oort for a product of Drinfeld Modular Surfaces). Let X

be an irreducible subvariety of M3
A(1)C∞ ×M3

A(1)C∞. Suppose that X is defined over

F and that the characteristic of F is not 3. Then X(C∞) contains a Zariski dense

set of CM points if and only if X is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞.

5.2 Existence of small primes

We first state a utility proposition: It concerns the existence of small primes with

respect to the Picard groups of CM endomorphism rings. This will be needed to

define suitable Hecke correspondences. That such primes exist is an application of

an effective form of the Čebotarev Theorem. This is possible in the function field

case since the Riemann hypothesis has been settled in this case. In the characteristic
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zero situation, this is precisely where the Generalized Riemann Hypothesis is used.

We first recall some notation from the section on Complex Multiplication. Let ϕ be

a rank r Drinfeld A-module with endomorphism ring R. Then R is a commutative

A-algebra with rank dividing r as a projective A-module (see for example [29]) and

R is an order in its quotient field K ′, with K ′ a totally imaginary extension of K i.e.

there is only one prime in K ′ lying above ∞ .

Definition 5.2.1. Let ϕ be a rank r Drinfeld A-module. We say that ϕ has complex

multiplication (CM) by R if [K ′ : K] = [R : A] = r.

Let ϕ be a rank r Drinfeld A-module with complex multiplication by an order R

in K ′, as above. Denote by c be the conductor of R in A′ the integral closure of A

in K ′, set |c| = |A′/c|, and finally denote the genus of K ′ by g(K ′).

Definition 5.2.2. The CM-height of ϕ is defined by

HCM(ϕ) = qg(K
′) · |c|1/r.

Proposition 5.2.3. (see Breuer [8])

For every ε > 0 there is a computable constant Cε > 0 such that the following holds.

If ϕ is Drinfeld module with complex multiplication by R, then

|Pic(R)| > CεHCM(ϕ)1−ε.

If x = (x1, x2) is a CM point in M r
A(1)(C∞)×M r

A(1)(C∞) then we define the CM

height of x as

HCM(x) = max{HCM(ϕ1), HCM(ϕ2)}.

Let K1, K2 denote the CM fields of x1 and x2 and let K1(x1), K2(x2) denote choices

of fields of definition for x1 and x2. Hence a field of definition of x is the compositum

L := K1K2(x1, x2) over K1K2. We have the following simple corollary.
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Corollary 5.2.4. Let m ≥ 1 be an integer. For every ε > 0 there is a computable

constant Cε > 0 (which depends on the degree m) such that, for every field F with

m = [F : K] and every CM point x = (x1, x2) ∈M r
A(1)(C∞)×M r

A(1)(C∞) we have

|Gal(F sepL/FK1K2) · x| ≥ CεHCM(x)1−ε,

where K1, K2 and L are as above.

Proof. We have

Gal(F sepL/FK1K2) · x = (Gal(FK1(x1)/FK1) · x1,Gal(FF2(x2)/FK2) · x2)

but size of the Galois orbit of x is a least the size of the Galois orbits of its coordinates

hence

|Gal(F sepL/FK1K2)·x| ≥ max{|Gal(FF1(x1)/FK1)·x1|, |Gal(FF2(x2)/FK2)·x2|}.

Now |Gal(FFi(xi)/FKi) ·xi| ≥ |Pic(Ri)|/[Fi(xi) : F ] where Ri is the endomorphism

ring of the Drinfeld module corresponding to xi and Fi(xi) is its field of definition. By

lemma 5.2.3 if we are given xi, then for every ε > 0 there is a computable constant

Ci,ε > 0, depending on the CM field of xi such that |Pic(Ri)| ≥ Ci,εHCM(xi)
1−ε,

therefore

|Gal(F sepL/FK1K2)·x| ≥ max{C1,ε/[F1(x1) : F ]·HCM(ϕ1)1−ε, C2,ε/[F2(x2) : F ]·HCM(ϕ2)1−ε}

Setting Cε = min{C1,ε/[F1(x1) : F ], C2,ε/[F2(x2) : F ]} we obtain

|Gal(F sepL/FK1K2) · x| ≥ CεHCM(x)1−ε.

Let X be a closed subvariety of M r
A(1)C∞×M r

A(1)C∞ defined over a finite extension

F of K. Let x = (x1, x2) be a CM point of X and denote by R1 and R2 the
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endomorphism rings of the Drinfeld modules corresponding to x1, x2 respectively.

Also denote by c1 and c2 the conductors of R1 and R2 respectively.

Let T ∈ A be a transcendental element such that K is a finite separable geometric

extension of Fq(T ). Let Fs be the separable closure of K in F and let K1 = Quot(R1),

K2 = Quot(R2) and let L = K1K2 and let Ls denote the separable closure of Fq(T )

in L. Let M be the Galois closure of FsLs over Fq(T ).

Let t ∈ N and define

πM(t) := {P ⊂ Fq[T ] | P is a prime, splits in M and |P | = qt }.

Let F be the algebraic closure of Fq in M . Let nc = [F : Fq] be the constant extension

degree of M/Fq(T ) and ng = [M : F(T )] the geometric extension degree.

The Čebotarev Theorem for function fields can be stated as follows

Theorem 5.2.5. [25, 5.16] Let gM denote the genus of M , then

• if nc - t, then πM(t) = ∅

• if nc|t, then ||πM(t)| − 1
ng
qt/t| < 4

(
gM + 2

)
qt/2.

By the Castelnuovo inequality [52, III.10.3], we have bounds for gM in terms of

g′ (the genus of L). Applying these bounds to |πM(t)| above we obtain a bound of

the form

(5.0) |πM(t)| > C1q
t/t−

(
C2(g′) + C3

)
qt/2,

where C1, C2 and C3 are absolutely computable positive constants, independent of t

and depending only on [F : K]

The following lemma is essentially due to Breuer and can be found in [8, section 7].

What we mainly do is provide a version of it suitable for our application.
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Lemma 5.2.6. (with the same notation as above) Let X be a subvariety of M3
A(1)C∞×

M3
A(1)C∞ of dimension d ≥ 1 defined over F . Suppose X contains a Zariski dense

set of CM points. Then there exists x = (x1, x2) ∈ X a CM point, principal primes

p1, p2, · · · , pd−1 ⊂ A and for all ε ≥ 0,

CεHCM(x)1−ε > c2.(3d−1+..+3+1) degT (X)3d−1
d−1∏
k=0

|pk|2n·3
d−k
,

where Cε is the constant from Corollary 5.2.4 which is independent of x, c and n are

some constants and

(1) |pi| ≥ (d)! · degT (X),

(2) each pi is residual in Ri = End(ϕxi ),

(3) each pi has residue degree one over pi ∩ Fp[T ].

(4) |pi+1| ≥ c2.(3i+..+3+1) degT (X)3i
∏i

k=0 |pk|2n·3
i+1−k

(5) |Pic(Ri)/[F : K]| > c2.(3d−1+..+3+1) degT (X)3d−1 ∏d−1
k=0 |pk|2n·3

d−k
.

Proof. Let x = (x1, x2) be an arbitrary CM point of X with conductor (c1, c2) and

choose t > max{log |c1|, log |c2|}, then for every prime P = p ∩ Fq[T ] in πM(t) we

have that p is unramified in K1K2 since p does not divide |c1||c2|. Furthermore P

has residue degree over pi ∩ Fq[T ] since P splits completely in FsLs/Fq(T ) and is

totally ramified in FL/FsLs. If we in addition assume t > log(d)! · degT (X) then

|P | ≥ (d)! · degT (X) for every prime in πM(t). Thus taking

t > max{log |c1|, log |c2|}+ log(d)! · degT (X),

we have that all the primes in πM(t) satisfy condition (1), (2), (3) and (4).

By the Castelnuovo inequality (see equation 5.0 above)

|πM(t)| > C1q
t/t−

(
C2(g′) + C3

)
qt/2,
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thus the cardinality of πM(t) is unbounded as t goes to infinity. We are therefore

guaranteed an infinite supply of primes in πM(t) as t goes to infinity. By taking

logarithms condition (4) may be written as linear inequality

ti+1 > log(c2.(3i+..+3+1) degT (X)3i) + Σi
k=0(2n · 3d−k)tk

Therefore starting with any integer t0, we can by an iterative process, find integers

ti+1, ti, · · · , t0 such that the spacing condition (4) holds. Thus we can ensure that

conditions (1),(2),(3) and (4) are satisfied by the primes pi above Pi ∈ πM(ti). Now

in light of (4), to satisfy condition (5) it suffices to show that

|Pic(Ri)| > c2.(3d−1+..+3+1)[F : K] degT (X)3d−1|pd−1|2n·3
d

Since for all ε ≥ 0, there is a computable constant Cε such that

|Pic(Ri)| > CεHCM(xi)
1−ε,

it follows that condition (5) holds if

CεHCM(xi)
1−ε > c2.(3d−1+..+3+1)[F ′ : K] degT (X)3d−1|pd−1|2n·3

d

Since HCM(xi) = qg(K
′) · |ci|1/3, condition (5) holds if

Cε max{qgi(K′) · |ci|1/3}1−ε > c2.(3d−1+..+3+1)[F : K] degT (X)3d−1|pd−1|2n·3
d

Let

log |c| = max{log |c1|, log |c2|}+ log(d)! · degT (X),

and let γ = c2.(3d−1+..+3+1)[F : K] degT (X)3d−1
. Since |ci| grows much faster than

log |ci| and we have a Zariski dense set of CM points the inverval

[log |c|, Cε max{qgi(K′) · |ci|1/3}]
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is unbounded as we move among the CM points. Since C1q
ti/ti−

(
C2(g′)+C3

)
qti/2 is

dominated by γ ·qt·2n·3d for large t, if we choose a CM point x such that HCM(x) is very

large then there exist integers t0, t1, t2, · · · , td−1 such that the intervals [C1q
ti/ti −(

C2(g′) +C3

)
qti/2, γ · qti·2n·3d ] are contained in [log |c|, Cε max{qgi(K′) · |ci|1/3}]. These

integers t0, t1, t2, · · · , td−1 (by construction) then satisfy

(i). C1q
ti/ti −

(
C2(g′) + C3

)
qti/2 > max{log |c1|, log |c2|}+ log(d)! · degT (X)

(ii). ti+1 > log(c2.(3i+..+3+1) degT (X)3i) + Σi
k=0(2n · 3d−k)tk

(iii). Cε max{qgi(K′) · |ci|1/3}1−ε > γ · qtd−1·2n·3d

Picking primes pi above primes in π(ti) respectively we obtain the primes we seek.

5.3 Characterisation of Hodge varieties

In this section we give a characterisation of Hodge subvarieties in the product of

two Drinfeld modular surfaces. This is analogous to a result of Breuer (see [10, the-

orem 6]), which characterises Hodge subvarieties in the product of Drinfeld modular

curves.

The following auxiliary lemmas are crucial ingredients for our characterisation of

Hodge subvarieties.

Consider the functor F r, from A-Schemes to Set given by

F r : Sch /A→ Set ;S 7−→


isomorphism classes of rank-r

Drinfeld A-modules over S with Γ0(p) level structure.

 .

Then F r is representable by a scheme Z (see [36] chapter 3 for a proof in the elliptic

curve case. The Drinfeld situation works the same way). The modular variety Z

parametrises pairs of rank r Drinfeld A-modules linked by a cyclic isogeny of degree

p. The analytification of Z is a disjoint union of quotient spaces of the Drinfeld upper
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half plane by congruence subgroups. Let Y r
0 (p) = Γ0(p)\Ωr be one such irreducible

component. By [36] corollary 5.3.3 there is a natural finite morphism Z −→M r
A(1).

Let

Y r(1) := GLr(A)\Ωr

be a connected component of M r
A(1) lying below Y r

0 (p), then we have a finite covering

map Y r
0 (p) −→ Y r(1).

For a ring R, let Z(R×) denote the subgroup of scalar matrices in GLn(R). Let

Γ(p) = {γ ∈ GLr(A) | γ ≡ id mod p}/Z(Fq×),

Γ2(p) = {γ ∈ GLr(A) | γmod p ∈ Z((A/pA)×)}/Z(Fq×).

By abuse of notation we shall also denote the projectivisation of Γ0(p) by Γ0(p)

and still define the projective quotient as Y r
0 (p) := Γ0(p)\Ωr. We further define

Y r
2 (p) := Γ2(p)\Ωr and Y r(p) := Γ(p)\Ωr. We can now state the following lemmas,

which are generalisations of [10, Theorem 4].

Lemma 5.3.1. Suppose r ≥ 2 and gcd(|p| − 1, r) = 1. Then Y r
2 (p) is a Galois cover

of Y r(1) with Galois group PSLr(A/pA)

Proof. Since Γ(p) ⊂ Γ2(p) ⊂ PGLr(A), we have a tower of covers

Y r(1) ⊂ Y r
2 (p) ⊂ Y r(p).

The cover Y r(p) is Galois over Y r(1) with Galois group PGLr(A)/Γ(p). Let G(p) be

the image of the reduction map

r1 : PGLr(A) −→ PGLr(A/pA)

and denote by ˜G(p) the preimage ofG(p) in GLr(A/pA). Set Z(G(p)) := Z((A/pA)∗)∩

˜G(p), the scalar matrices in ˜G(p). Then PGLr(A)/Γ(p) is isomorphic to G(p) via
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the reduction map r1. The cover Y r
2 (p) corresponds to the normal subgroup Z(G(p))

hence

Gal(Y r
2 (p)/Y r(1)) = ˜G(p)/Z(G(p)) ⊂ PGLr(A/pA).

By the strong approximation theorem for SLr(A), the reduction map

r1 : SLr(A) −→ SLr(A/p)

is surjective. Hence it is surjective on PSLr(A/pA) as well. We therefore have

PSLr(A/pA) ⊂ G(p) and consequently PSLr(A/pA) ⊂ Gal(Y r
2 (p)/Y r(1)). Let q =

|A/pA| then it is well known that (see [49, page 74])

|PGLr(Fq)| = qr(r−1)/2(qr − 1)(qr−1 − 1) · · · (q2 − 1))

and

|PSLr(Fq)| = qr(r−1)/2(qr − 1)(qr−1 − 1) · · · (q2 − 1))/(q − 1, r)

Therefore if gcd(q − 1, r) = 1 we have PSLr(A/pA) = PGLr(A/pA). Consequently

Gal(Y r
2 (p)/Y r(1)) = PSLr(A/pA). Proving our claim.

Let gp = diag(p, 1, · · · , 1) and denote by S the quotient space (GLr(A)\GLr(A)gGLr(A))2.

Let {ti,j = (ti , tj) | (i, j) ∈ I × I} (for some index set I), be a set of representatives

of S. Recall that M r
A(1)C∞ ×M r

A(1)C∞ is the disjoint union of the quotient spaces

Γs\Ωr × Γs′\Ωr, where Γs and Γs′ are congruence subgroups of GLr(A). Let

π × π′ : Ωr × Ωr −→ Γs\Ωr × Γs′\Ωr,

be the natural projection maps. Since the primes p are prime, the Hecke correspon-

dence is irreducible on Γs\Ωr × Γs′\Ωr and the action of the Hecke correspondence
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(Tp × Tp) on x ∈ Γs\Ωr × Γs′\Ωr is given by

(Tp × Tp)(x) =
⋃

(i,j)∈I×I

(π × π′)(ti,j · z),

where z is a preimage of x via π × π′ .

The Drinfeld modular variety Y 3
0 (p) parametrises pairs of rank three Drinfeld A-

modules linked by a cyclic isogeny of degree p and since the Hecke correspondence

Tp × Tp encodes pairs of cyclic isogenies of degree p we may also describe the Hecke

correspondence Tp×Tp on M3
A(1)C∞×M3

A(1)C∞ in the following fashion. Since every

point on the modular variety Y 3
0 (p) corresponds to a pair of Drinfeld A-modules

linked by a cyclic p isogeny ϕ1
p→ ϕ1

′. The image of

T : Y 3
0 (p)× Y 3

0 (p) −→M3
A(1)C∞ ×M3

A(1)C∞ ×M3
A(1)C∞ ×M3

A(1)C∞

((ϕ1
p→ ϕ1

′), (ϕ2
p→ ϕ2

′)) −→ (ϕ1, ϕ2, ϕ1
′, ϕ2

′)

is then the usual definition of the Hecke correspondence Tp × Tp.

Proposition 5.3.2. Let XF be an F -irreducible, Hodge generic subvariety of M3
A(1)C∞×

M3
A(1)C∞ and suppose that the characteristic of F is not 3. Suppose that both projec-

tions of XF are dominant onto irreducible components of M3
A(1)C∞. Suppose that XF

is the union of a finite number of Gal(F sep/F ) conjugates of an irreducible variety X

. Suppose furthermore that XF ⊂ (Tp × Tp)XF . Then every Gal(F sep/F ) conjugate

of X is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞.

Proof. Since XF ⊂ (Tp × Tp)XF we have
⋃
σX

σ ⊂
⋃
σi

(Tp × Tp)Xσi . Hence Xσ ⊂

(Tp×Tp)Xσi for some σi. Let K be a large enough admissible level structure, so that

M3
A(K)C∞ is a fine moduli scheme, assume that K =

∏
pKp where Kp is contained in

GLr(Kp) and the first component Kp is a principal congruence subgroup of GLr(Ap)
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Let

π × π : M r
A(K)C∞ ×M r

A(K)C∞ →M r
A(1)C∞ ×M r

A(1)C∞

and let X ′ be an F -irreducible component of the preimage of XF in M r
A(K)C∞ ×

M r
A(K)C∞ via the canonical projection π × π. After replacing X ′ with its non sin-

gular locus we may assume X ′ is smooth and still Hodge generic with the generic

point of X ′ consisting of non-isogenous underlying Drinfeld modules which have both

endomorphism rings A.

Since XF ⊂ (Tp × Tp)XF we have X ′ ⊂ σi · (Tp × Tp) · (π × π)−1(XF ), consequently

that X ′ ⊂ σi ·(Tg×Tg)X ′, where g = g1gpg2 and g1, g2 are representatives of the coset

K\GL3. Then by theorem 4.2.2 XF is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞ .

Definition 5.3.3. Let X be a subvariety of M r
A(1)C∞ × M r

A(1)C∞. We say X is

weakly Hodge generic if for a generic point (x, y) in X, the corresponding pair of

Drinfeld modules ϕx and ϕy have endomorphism ring End(ϕx) = A = End(ϕy).

We remark that a Hodge generic subvariety is weakly Hodge generic, but the def-

inition of weakly Hodge generic allows points to have isogenous coordinates.

Definition 5.3.4. Let X be a subvariety of M r
A(1)C∞ × M r

A(1)C∞. We say X is

degenerate if X is an irreducible component of {x} ×M r
A(1)C∞ or M r

A(1)C∞ × {y}

with x, y ∈M r
A(1)C∞.

Lemma 5.3.5. Let X be an irreducible subvariety of M3
A(1)C∞×M3

A(1)C∞ of positive

dimension. Suppose that X is not degenerate. Then X is a weakly Hodge generic

subvariety of M3
A(1)C∞ ×M3

A(1)C∞.
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Proof. If X is not weakly Hodge generic then X is in particular not Hodge generic.

Thus X is contained in a proper Hodge subvariety of M3
A(1)C∞ × M3

A(1)C∞ . By

definition, the non-degenerate proper Hodge subvarieties of M3
A(1)C∞×M3

A(1)C∞ are

Hecke graphs.

Since X is not weakly Hodge generic X̃, the preimage of X in M r
A(1)C∞ via

f : M3
A(1)C∞ −→M3

A(1)C∞ ×M3
A(1)C∞ ,

is not Hodge generic, here f sends x a point of M3
A(1)C∞ to the point (x, g · x) of

M3
A(1)C∞ −→ M3

A(1)C∞ where g ∈ GL(K). Indeed if X̃ is Hodge generic then the

generic point of X̃ would have endomorphism A, consequently its image via f would

be weakly Hodge generic. The non Hodge generic subvarieties of M3
A(1)C∞ are zero

dimensional. This means that X̃ is of zero dimension in M3
A(1)C∞ , hence also its

image X, contrary to our assumption that X has positive dimension.

Proposition 5.3.6. Let X be an irreducible and weakly Hodge generic but not Hodge

generic subvariety of M3
A(1)C∞ ×M3

A(1)C∞ of dimension greater than one. Then X

is a Hodge subvariety of M3
A(1)C∞ ×M3

A(1)C∞.

Proof. If X is weakly Hodge generic but not Hodge generic, then X is contained

in the graph of a Hecke correspondence. This has dimension two. Since X has

dimension bigger than one it must be of dimension two. X is thus an irreducible

component of this graph of a Hecke correspondence, therefore a Hodge subvariety of

M3
A(1)C∞ ×M3

A(1)C∞ .
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5.4 André-Oort Conjecture

In this section we prove our main theorem. We begin with the following lemma

which settles the Andre-Oort conjecture for curves in M3
A(1)C∞ ×M3

A(1)C∞ .

Proposition 5.4.1. Let X be an curve in M3
A(1)C∞ ×M3

A(1)C∞. If X contains a

Zariski dense set of CM points then X is a Hodge subvariety of M3
A(1)C∞×M3

A(1)C∞.

Proof. The images of the projections of such a curve to the factors of M3
A(1)C∞ ×

M3
A(1)C∞ have a Zariski dense set of CM points, therefore are Hodge subvarieties

of M3
A(1)C∞ by the André-Oort conjecture for M3

A(1)C∞ . Since there are no Hodge

subvarieties of dimension one in M3
A(1)C∞ and X is a curve these images must be

CM points. X therefore is a CM point and our statement is vacuously true.

Proposition 5.4.2. Let X be an irreducible subvariety of M3
A(1)C∞ ×M3

A(1)C∞ of

positive dimension. Suppose that X is defined over F and that the characteristic of F

is not 3. Suppose further that X contains a Zariski dense set of CM points Σ. Then

X contains a Zariski dense set Hodge subvarieties of positive dimension Σ′ such that

almost all CM points in Σ are properly contained in some Hodge subvariety in Σ′.

Proof. Since X contains a Zariski dense of CM points Σ, F is a finite extension of

K. We may also assume (as in the proof of proposition 5.4.1) that both projections

of X are dominant onto some irreducible component of M3
A(1)C∞ . By lemma 5.3.5

and proposition 5.4.1 we may assume that X is weakly Hodge generic. Let d be the

dimension of X, which we may assume is 2 or 3. If X is weakly Hodge generic but

not Hodge generic then by proposition 5.3.6 X is a Hodge subvariety. Thus we may

further assume that X is Hodge generic.

By lemma 5.2.6 there exists x = (x1, x2) a CM point of X and primes p1, p2, · · · , pd−1
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of A such that the pi have properties (1)-(5) of that lemma. In particular

CεHCM(x)1−ε > c2.(3d−1+..+3+1) degT (X)3d−1
d−1∏
k=0

|pk|2n·3
d−k,

for some constants c, n as in theorem 4.4.2.

If X ⊂ (Tp1 × Tp1)X then by theorem 5.3.2 the F -irreducible components of X

are Hodge subvarieties. In particular X is a Hodge subvariety. So suppose that

X ( (Tp1 × Tp1)X. We will show that there exists Yi a proper Hodge subvariety of

X properly containing x.

IfX ⊂ X∩(Tp1×Tp1)X then by theorem 5.3.2X is a Hodge subvariety which properly

contains x. So assume X ( X ∩ (Tp1 × Tp1)X and let Y1 be a closed irreducible

component of X ∩ (Tp1 × Tp1)X which contains x. Let (Y1)F be an F -irreducible

component such that (Y1)F × C∞ = Gal(F sep/F ) · Y1. If (Y1)F ⊂ (Tp2 × Tp2)(Y1)F

then Y1 is a Hodge subvariety otherwise we iterate the procedure getting Yi+1 a closed

irreducible component of Yi ∩ (Tpi+1
× Tpi+1

)Yi which contains x. Let Y0 := X, we

observe that (Yi)F has the following properties.

(i). dim(Yi)F < dimYi−1

(ii). Gal(F sepL/FK1K2) · x ( (Yi)F ⊂ Yi−1 ∩ (Tp1 × Tp1)Yi−1.

Thus (Yi)F has positive dimension. The second property can be explained as follows:

If x = (Yi)F then Gal(F sepL/FK1K2) · x is the union of the irreducible components

of Yi−1 ∩ (Tpi+1
× Tpi+1

)Yi−1, hence

|Gal(F sepL/FK1K2) ·x)| = degT (Yi−1∩(Tpi+1
×Tpi+1

)Yi−1) ≤ c2 ·degT (Yi−1)3|pi+1|2n.

This implies that

CεHCM(x)1−ε ≤ c2 · degT (X)3|pi+1|2n,
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which contradicts our lower bound for CεHCM(x)1−ε. Now

· · · dim(Yi)F < dim(Y2)F < dim(Y1)F < dimX

Therefore in at most d steps either (Yi)F ⊂ (Tpi+1
× Tpi+1

)(Yi)F or (Yi+1)F is finite.

If (Yi+1)F is finite then since

DegT ((X) ∩ (Tp1 × Tp1)(X)) ≤ c2·(3d−1+···+3+1) · degT (X)3d−1 · |p1|2n.(3
d−1+···+3+1),

and on the other hand by proposition 5.2.4 we have

CεHCM(x)1−ε ≤ |Gal(F sepL/FK1K2) · x|.

We obtain the following inequalities

CεHCM(x)1−ε ≤ |Gal(F sepL/FK1K2)·x| ≤ c2·(3d−1+···+3+1)·degT (X)3d−1·|p1|2n.(3
d−1+···+3+1),

which contradict our assumption that

CεHCM(x)1−ε > c2·(3d−1+···+3+1) · degT (X)3d−1 ·
d∏

k=1

|pk|2n·3
d−k,

and we have a contradiction same as above. Therefore by theorem 5.3.2 we then see

that the irreducible components of (Yi)F are Hodge subvarieties. In particular Yi is

a Hodge subvariety of X which properly contains x. Now set Vx = Yi and replace x

by Vx.

We can therefore replace each x that satisfies the lower bound hypothesis with a

higher dimensional Hodge subvariety and since there are only finitely many x below

the bound we see that this new set of Hodge subvarieties is still Zariski dense.

Corollary 5.4.3. With the same notation as above, there is a Zariski dense subset of

Hodge subvarieties V ′ ∈ Σ′ such that each V ′ is the graph of a Hecke correspondence

Tg, for some g.
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Proof. By definition there are no Hodge subvarieties of dimension one and three in

M3
A(1)C∞ ×M3

A(1)C∞ . This implies that the dimension of each Hodge subvariety in

Σ′ must be two. The Hodge subvarieties of M3
A(1)C∞ ×M3

A(1)C∞ of dimension two

are irreducible components of {x} ×M3
A(1)C∞ , M3

A(1)C∞ × {y} where x, y are CM

points and irreducible components of a of Hecke graph attached to g ∈ GL(K). If

V ′ = {x1} ×M for an infinite subset of Σ′, where M is an irreducible component

of M3
A(1)C∞ and x1 is the projection of a CM point x. The Zariski closure of the

CM points x1 is special by the Andre-Oort conjecture for M3
A(1)C∞ hence the Zariski

closure of the union of the V ′s is an irreducible component of M3
A(1)C∞ ×M3

A(1)C∞ .

This contradicts the dimension assumption on X. Therefore V ′ is the graph of some

Hecke correspondence Tg, for almost all V ′ ∈ Σ′. After removing the above set of

degenerate Hodge subvarieties we have a Zariski dense set of Hecke graphs.

We can now prove the André-Oort conjecture for subvarieties in the product of

two Drinfeld modular surfaces.

Theorem 5.4.4. Let X be an irreducible subvariety of M3
A(1)C∞×M3

A(1)C∞. Suppose

that X is defined over F and that the characteristic of F is not 3. Then X contains a

Zariski dense set of CM points Σ if and only if X is a Hodge subvariety of M3
A(1)C∞×

M3
A(1)C∞.

Proof. We proceed by induction on the dimension of X. Assume the theorem holds

for all subvarieties of dimension less than dimX. The theorem holds vacuously

if X is of dimension one. Let pi, with i ∈ {1, 2} denote the two projections of

M3
A(1)C∞ ×M3

A(1)C∞ to each coordinate factor. We may further assume that both

projections are dominant onto an irreducible component of M3
A(1)C∞ : indeed if X

contains a Zariski dense set of CM points Σ, then the projections pi(Σ) are Zariski
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dense sets of CM points in pi(X) ⊂ M3
A(1)C∞ . Since X is irreducible the images of

the projections pi are irreducible. The André-Oort conjecture is true for subvarieties

of M3
A(1)C∞ (see Breuer [8]) therefore pi(X) is a Hodge subvariety of M3

A(1)C∞ .

If the dimension of pi(X) is less than or equal to one then pi(X) is a CM point or

a special curve in M3
A(1)C∞ for one of the projections. However M3

A(1)C∞ does not

contain any special curves. Therefore pi(X) must be a CM point. In this case X is

one of the following

• X = {CM point} × {CM point}

• An irreducible component of {CM point}×M3
A(1)C∞ or M3

A(1)C∞×{CM point}

We may therefore assume that both projections of X to each coordinate factor are

dominant and consequently that the dimension of X is greater than one. By 5.3.5

we may also assume that X is weakly hodge generic. If X is weakly Hodge generic

but not Hodge generic then by theorem 5.3.6 X is a Hodge subvariety. We are thus

reduced to the Hodge generic situation.

By proposition 5.4.2 there exists a Zariski dense set Σ′ of strictly positive dimen-

sional Hodge subvarieties contained in X such that each CM point in Σ is contained

in a Hodge subvariety in Σ′. By lemma 5.4.3 these Hodge subvarieties are graphs of

Hecke correspondences Tg. Therefore we are done if X is of dimension two.

Let p1 be a prime chosen as in theorem 5.2.6. If X ⊂ (Tp1 × Tp1)X then by theorem

5.3.2 the F -irreducible components of X are Hodge subvarieties hence X is a Hodge

subvariety. So suppose X ( (Tp1 × Tp1)X.

Let y be a CM point of M3
A(1)C∞ and set Xy := X ∩ ({y} × M3

A(1)C∞). Let X̄y

denote the Zariski closure of the union
⋃
V ∈Σ′ V ∩Xy.

Now as V = Tg ranges through Σ′ either deg(g) = |Tg(y)| is bounded or unbounded.
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By corrollary 3.2.2 for a fixed bound B, there are only finitely many Hecke corre-

spondences Tg for which deg(g) < B. Since X is irreducible we have in the first case

that X is the graph of some Hecke correspondence Tg and we are done. So assume

that deg(g) is unbounded.

Since each V in Σ′ is the graph of some Hecke correspondence Tg, the intersection

V ∩Xy contains a CM point and consists of a finite set of CM points linked by some

isogeny determined by g. Since deg(g) is unbounded by assumption,
⋃
V ∈Σ′ V ∩Xy

is not finite. Hence its Zariski closure X̄y has positive dimension in addition to con-

taining a Zariski dense set of CM points. Now dim X̄y < dimX otherwise we would

have X̄y = X ⊂ {y} × M3
A(1)C∞ contradicting that X has dominant projections.

By induction we conclude that the geometrically irreducible components of X̄y are

Hodge subvarieties.

Now the geometrically irreducible components of X̄y are of the form {y}× Vy where

Vy is a Hodge subvariety of M3
A(1)C∞ and Vy has positive dimension. By the Andre-

Oort conjecture for M3
A(1)C∞ , Vy is an irreducible component of M3

A(1)C∞ . Since

there are only finitely many irreducible component of M3
A(1)C∞ we may assume that

as y varies Vy is fixed and equals to V .

Let Z be the Zariski closure of
⋃
yX

′
y, where the union runs over the Zariski dense

set of CM points in M3
A(1)C∞ . Then Z = Ṽ ×V , where Ṽ is a subvariety of M3

A(1)C∞

of positive dimension which contains a Zariski dense set of CM points. By the Andre-

Oort conjecture for M3
A(1)C∞ , Ṽ is a Hodge subvariety of M3

A(1)C∞ . Therefore Z is

a Hodge subvariety. Since Z ⊂ X and dimZ ≥ 3 we have X = Z. Therefore X is a

Hodge subvariety.
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