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The global climate is rapidly changing and the evidence is increasingly manifesting

across various biological systems. For arthropods, several studies have demonstrated

how changing climates affect their distribution through phenological and physiological

responses, largely focusing on various organismal fitness parameters. However, the

net-effect of the changing climate among ecological communities may be mediated

by the feedback pathways among interacting trophic groups under environmental

change. For agroecosystems, the maintenance of the integrity of trophic interactions

even under climate variability is a high priority. This is even more important in this

era where there is advocacy for sustainable agriculture, with higher emphasis on

environmentally benign methods. For this reason, pest management in food production

systems using biological control (especially use of parasitoid antagonists) has come

to the forefront. In this review, we give an overview of the diversity of physiological

responses among host insect and parasitoid populations and how this may influence

their interactions. We highlight how climate changemaymodify bottom-up and top-down

factors among agroecosystems with a particular focus on plant-insect host-parasitoid

tritrophic interactions. We also outline how habitat management may influence arthropod

population dynamics and how it can be manipulated to improve on-farm climate

resilience and parasitoid conservation. We wrap-up by highlighting how the application of

knowledge of conservation biodiversity, designing of multifunctional resilient landscapes,

and evolutionary physiology of arthropods under thermal stress may be used to improve

the fitness of mass-reared parasitoids (in or ex situ) for the improvement in efficacy of

parasitoids ecosystem services under thermally stressful environments
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INTRODUCTION

The spatiotemporal modification of global biophysical
landscapes due to climate change exerts novel challenges to
various levels of biological organization. For both managed
and natural ecosystems, changes in organismal phenology, and
distribution due to altered mean and temperature variability,
and precipitation patterns have been widely investigated in
recent years (Parmesan, 2006; Lee et al., 2009; Calosi et al.,
2010; IPCC, 2014). This is in addition to studies investigating
changes in feeding and oviposition preferences of both
herbivores (Chidawanyika et al., 2014; Mbande et al., 2019a,b)
and natural enemies (Dong et al., 2018) as microcosms of
various ecosystems undergoing environmental change. Another
important consequence of changing climates is how it influences
trophic cascades among food webs with sensitivity varying
among different trophic groups (Voigt et al., 2003; Rosenblatt
and Schmitz, 2016). Decoupling multitrophic interactions
under environmental change is daunting due to the high
complexities characteristic of mega biodiverse ecosystems, high
resource demands and outright uncertainty in the feasibility of
undertaking such studies (Schuldt et al., 2017). Hence, much
focus has been placed on feeding preferences, organismal
physiology and biogeography (Lee et al., 2009; Calosi et al.,
2010; Burrows et al., 2014), and phenological synchronization
(Singer and Parmesan, 2010). Significant strides have also been
made in investigating thermal energetics underlying consumer-
resource trophic interactions where an assumption is made
that thermal variability alters resource abundance (Rosenblatt
and Schmitz, 2016). The contribution of all these various study
approaches to present day understanding of global change
ecology is enormous. However, there have been increasing calls
for integration of investigative approaches to increase predictive
power among higher levels of biological organization under
environmental change (Rosenblatt and Schmitz, 2016).

Focal to these integrative approaches is the investigation of
how biomass patterns in different food webs (biomass pyramids)
will respond to climate drivers (Leroux and Loreau, 2015). Two
competing hypotheses have been brought forward to explain the
potential outcomes. First is the bottom-up approach or resource-
based hypothesis which suggests that resources such as nutrients
and primary producers will be key in shaping the biomass
pyramids up to higher trophic levels (Leroux and Loreau, 2015).
This explanation also accounts for climate factors such as rainfall
and solar radiation and their subsequent influence on energy
flow among trophic levels. Furthermore, due to the alterations of
plant defensive capacity by these climate factors, this standpoint
also accounts for changes in trophic dynamics due to alterations
in herbivory because of either enhanced or compromised plant
defense (Raffa et al., 2013) or poor nutritional value (Leroux
and Loreau, 2015). On the other hand, a consumer-based
hypothesis has also been brought forward, which posits that the
structure of such biomass pyramids will rather be determined
by consumers at higher trophic levels (Madrigal et al., 2011;
Leroux and Schmitz, 2015). In nature, more so under dynamic
systems undergoing environmental change, such bottom-up and
top-down factors are likely to interact and also vary along

climate/environmental gradients. Nonetheless, climate change
will directly influence both bottom-up and top-down factors to
varying degrees among different ecosystems and across different
trophic levels.

Here we present a synthesis of the impacts of climate change
on both bottom-up and top-down factors with a particular focus
on herbivorous insect pest host-parasitoid population dynamics
and their efficacy in agroecosystems. Current literature is replete
with several studies documenting similar effects on herbivorous
insects, but little is reported on their antagonists e.g., parasitoids
(Vidal and Murphy, 2018). First, we begin by describing how
climate change may influence host-parasitoid phenology and
subsequent interactions. Second, we address how temperature
extremes can act as top-down factors leading to changes in
host-parasitoid interactions. Third, we describe the implications
of the parasitoid thermal responses to biological control of
pests in agriculture. Fourth, due to the persistent exposure
to ever transforming environments under climate change,
arthropods, like many other organisms, are bound to respond
through both transient plastic and long term evolutionary
mechanisms (Chidawanyika and Terblanche, 2011; Sih et al.,
2011), albeit to varying degrees thereby creating “winners”
and “losers” under selection pressure from various climate
stressors (Oostra et al., 2018). We therefore explore the potential
role of evolutionary adaptive responses to mitigate impacts of
climate change on parasitoid populations and provision of their
ecological services. Lastly, since agroecosystems typify some of
the most highly disturbed ecosystems, almost always succeeded
by habitat and biodiversity loss, we outline how such disturbances
may also influence both bottom-up and top-down factors for
parasitoids. We also discuss how landscape management may
be used to mitigate the impact of climate change to ensure
stable agroecosystems.

TEMPERATURE EFFECTS ON PARASITOID

PHYSIOLOGY AND IMPLICATIONS FOR

THE EFFICACY OF BIOCONTROL

Thermal effects on insect performance traits within certain
temperature tolerance ranges can be summarized using a
thermal performance curve (TPC) (Angilletta, 2009; Furlong
and Zalucki, 2017). TPCs tend to take a general generic
shape, with performance typically increasing proportionally
with temperature, reaching maximum at optimum temperature
(Topt), beyond which any increase in temperature causes
performance decline. In consequence, TPCs exhibit the effects
of temperature on organismal fitness (Schulte et al., 2011).
This often varies across taxa, ontogeny, metrics tested and
with magnitude of climate variability (Deutsch et al., 2008;
Kingsolver et al., 2013; Thompson et al., 2013; Clavijo-Baquet
et al., 2014; Vasseur et al., 2014). For interacting species,
e.g., herbivorous host-parasitoid interactions, this is highly
critical as differential responses in TPCs may lead to decoupled
phenological cycles (e.g., Hance et al., 2007; Furlong and Zalucki,
2017; Machekano et al., 2018), with resultant loss of parasitoid
essential ecosystem services. Recent studies have documented
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that the estimated optimum temperatures for various parasitoids
were consistently lower compared to their hosts (Furlong
and Zalucki, 2017), suggesting that parasitoids maybe more
vulnerable to climate warming compared to their hosts. In
agro-ecosystems, this may mean an asymmetrical host-parasitoid
interaction and reduced efficacy of parasitoids biological control
with warming temperatures.

Parasitoids are ectotherms and thus their development,
activity and survival is intimately correlated with ambient
temperature (Hance et al., 2007). They can be classified as
endoparasitoids and ectoparasitoids in reference to their
development within or outside a host, respectively (Godfray,
1994). They are further classified as either koinobiont or
idiobiont parasitoids. For koinobiont parasitoids, host
development continues following parasitisation and host is
only killed following completion of parasitoids development.
However, idiobiont parasitoids kill their hosts immediately or
shortly thereafter following parasite host entry (Hance et al.,
2007). Temperature changes at this stage may differentially
affect each trophic level, leading to a system decoupling (Van
der Putten et al., 2004). Moreover, temperature variability is
likely more significant for higher than lower trophic levels
since the former depends on the latter to adapt to changing
ambient temperatures. As such, parasitoids and hyperparasitoids
(third and fourth trophic levels, respectively) may be the most
vulnerable (Hance et al., 2007). Indeed, efficacy of biological
control using parasitoids depends largely on (1) habitat location,
(2) host location, (3) parasitoids’ potential to effectively evade or
manipulate host immune system, and (4) ability to constantly
track changing host environment. All these attributes are highly
temperature dependent, and thus unraveling temperature
effects on parasitoids is critical for modeling pest management
programmes using parasitoids (Harrington et al., 2001).

The consequences of subjection of parasitoids to temperature
extremes are well-documented (Hance et al., 2007). Effects can
manifest as lethal or sublethal but both contribute significantly to
shaping parasitoid life history traits and efficacy of parasitisation
in agricultural landscapes. Parasitoid exposure to extreme high
and low temperature for example can result in mortality (Chown
and Nicolson, 2004). This may be due to the irreversible
damage to the cells, or in the case of extreme low temperatures,
change in physical structures due to extra- or intracellular ice
formation. Freezing may also be associated with disruption
of metabolism and may manifest as osmotic or oxygen stress
(Turnock and Fields, 2005). Depending on their cold hardiness,
some parasitoids may also suffer lethal effects at temperatures
above freezing points (Bale andWalters, 2001), and this mortality
may decouple host-parasitoid interactions and the ecological
services provided by the later.

Stressful temperature extremes can also have sub-lethal effects
on parasitoids that may manifest as failed biological control
efficacy. For example, low temperatures are associated with
constrained degree day accumulation and longer generation
times. For other species, the damage caused by exposure to
stressful low temperatures has often been followed by an increase
in the degree days needed to complete development (Lysyk,
2004). Moreover, low temperature extremes also change the

number of larval developmental instars (see Denlinger and Lee,
1998), which may offset synchrony with host phenology and
efficacy of parasitoids in biological control. Parasitoids that
developed from lower temperatures generally develop bigger
body size, following the temperature-size rule (see Angiletta
and Dunham, 2003). Nevertheless, Trichogramma carverae
reared at low temperatures developed smaller body size, while
Sarcophaga bullata prematurely pupated at low temperatures.
Such anomalies represent negative fitness consequences for
parasitoids as biocontrol agents and suggests that parasitoids
reared at low temperature may allocate resources to metabolism
(for the maintenance of temperature), at the expense of body size
(Rundle et al., 2004).

For parasitoids to be effective in regulating pest numbers,
they should be highly fecund, have good host searching and
finding abilities and have high longevity. However, extremes
of temperature may offset these attributes, with negative
consequences on biological control. Exposure of parasitoids
to extremes of temperature e.g., low temperature has been
reported to decrease adult longevity (Pandey and Johnson, 2005;
Foerster and Doetzer, 2006) and fecundity (Levie et al., 2005;
Pandey and Johnson, 2005) and hence their ecological services.
Moreover, temperature stress during development also interferes
with sex allocation, causing an adult sex bias toward males
(Denlinger and Lee, 1998). It also decreases the mobility of
either sex and therefore decreases their efficacy in mate and
host finding (Denlinger and Lee, 1998). Parasitoids also possess
endosymbiont bacteria, necessary for their function, for example
Wolbachia and Buchnera species. These endosymbiont bacteria
may be negatively affected, or in worst cases killed by extreme
temperatures (Ohtaka and Ishikawa, 1991; Thomas and Blanford,
2003), affecting parasitoids fitness and thus activity. It is also
increasingly becoming apparent that temperature stress may
increase abnormal morphological deformations in insects. Low
temperature impacts directly on insect differentiating tissues,
affects hormonal balance and may cause deformities (Sibly and
Atkinson, 1994). Indeed, a positive correlation has been reported
between duration of temperature stress, and the magnitude of
birth deformities (Tezze and Botto, 2004).

Climate change has also brought increased incidence of
heat waves and cold snaps that have negative consequences on
parasitoids behavior and activity. Insects exposed to sub-lethal
low and high temperature may enter cold and heat stupor,
respectively. During this period, activity, which may be anything
from flying, mating, feeding, or host finding is decreased
(Boivin et al., 2006). Moreover, these extreme temperatures
also interfere with habitat, host finding, and evaluation (Herard
et al., 1988). The failure to locate a host and parasitise it
may be result from (1) failed parasitoids recruitment by host
plant secondary metabolites, or (2) directly through temperature
effects on the natural enemy. Most plants produce synomones
in response to herbivore attack (Micha et al., 2000), which
in turn attracts natural enemies of the herbivores. Increased
temperatures associated with climate change have been reported
to negatively affect the synomone blends, and thus failed
parasitoid recruitment. Furthermore, most parasitoids optimally
perceive synomones at narrow temperature ranges, e.g., Cotesia
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plutellae responds optimally between 30 – 35◦C (Reddy et al.,
2002). Thus, temperature extremes, and increased variability may
limit parasitoids’ potential to perceive habitat and host cues and
consequently offset their ecological services. Similarly, it has
also been shown in many studies that for insects, the cost of
living is extremely high at stressful high temperatures (>35◦C).
For example, the efficiency of the mitrochondria in converting
carbohydrate substrates into energy has been shown to drop
significantly at stressful high temperatures in Manduca sexta
(Martinez et al., 2017). This reduction in mitochondrial capacity
is linked with reduction in juvenile stages e.g., larval growth
rates, whereby in the case of parasitoids, this may affect their
phenology, abundance, and efficacy of host parasitisation.

EVOLUTIONARY IMPACT AND

DECOUPLING OF PARASITOID-HOST

THERMAL PREFERENCE

Prediction of parasitoid-host responses to climate change is
highly complex (Harrington et al., 1999; Thomas and Blanford,
2003), but association between the two, and any probable
climate induced deviations may be unraveled by comparing
thermal windows between the two systems (Brooks and Hoberg,
2007; Agosta et al., 2018). Generally, if parasitoids and hosts
exhibit similar thermal tolerance, then, temperature variability
associated with climate change may not decouple the long
evolved relationships and hence efficacy of parasitoids ecological
services. However, if parasitoids and hosts differ in their
thermal preference, this may mean decoupled long co-evolved
relationships with climate change and impacts on parasitoids-
host population phenologies and abundance (Hance et al., 2007;
Machekano et al., 2018; Mutamiswa et al., 2018). Furthermore,
thermal preference is also highly subtle and varies with species,
age and ontogeny (Bowler and Terblanche, 2008), thus adding
complexity into predicting the effects of climate change on
parasitoids-host population dynamics. Hance et al. (2007)
documented the negative impacts of temperature differential
effects on parasitoids and their herbivorous hosts. If TPCs do
not directly superimpose, this may imply a negative effect on
parasitism in the face of thermal variability. What worsens
the situation is that parasitoids are generally reported to have
lower temperature tolerance relative to their hosts, as such,
they may likely be more affected critically by changes in their
ambient environment (Karban, 1998). Moreover, for parasitoids
to be efficient in host parasitisation, they should overcome, or
take control of their host immune system. However, higher
temperature and variability have been reported to improve host
immune resistance, while the capacity of the host to overcome
parasitism also increases at higher temperatures (Thomas and
Blanford, 2003). For example, host Spodoptera litolaris has
been reported to be more resistant to its parasitoids Microplitis
rufiventris at higher temperatures (reviewed in Hance et al.,
2007). This means that temperature increases associated with
climate change decrease probability of parasitoid immatures
to survive in herbivorous hosts and thus decreases efficacy
of parasitoids.

CLIMATE CHANGE IMPACTS ON

BIOGEOGRAPHY AND PARASITOID-HOST

INTERACTIONS

As climate is key in defining the geographic range of insects,
another important consequence of climate change is the
change in their distribution (Parmesan, 1996, 2007). There
is ample evidence of some insect taxa shifting their range
to higher altitudes and latitudes, in response to particularly
warming, followed by diminishing abundance in the unsuitable
areas (Parmesan and Yohe, 2003; Parmesan, 2006). Such
changes in distribution patterns have been widely reported
in Lepidoptera (Parmesan et al., 1999; Battisti et al., 2005,
2006; Wilson et al., 2005, 2007; Franco et al., 2006). Other
examples include the northward spread of the mountain pine
beetle Dendroctonus ponderosae (Coleoptera: Curculionidae)
(Weed et al., 2015; Burke et al., 2017) and Dendroctronus
frontalis (Coleoptera: Scolytidae) (Ungerer et al., 1999), all in
response to winter warming. Such evidence in parasitoids is
scant. However, Delava et al. (2014) reported a northward
range shift in parasitoids. Hence, in all likelihood, most
parasitoid may have such climate-dependent shifts in geographic
range depending on their physiology and dispersal propensity.
For example, Bale et al. (2002) argued that, under climate
warming, non-diapausing insects with rapid development are
more likely to expand their geographic range compared
to the diapausing and slow developing ones that require
low temperatures for diapause induction. Other factors that
may mediate the range shifts include the availability of
resources, photoperiods, predation by natural enemies, and
intra- and inter-specific competition (Walther et al., 2002;
Gutierrez et al., 2010).

Whatever the mode and cause of changes in distribution

patterns, and indeed for interacting food webs, populations
ought to adjust to biogeographic shifts through a suite of

mechanisms including demographic patterns, physiological and

phenotypic plastic adjustments as well as natural selection
(Webster et al., 2016) with consequences on parasitism (Feldman

et al., 2017). Two hypothetical scenarios may occur among
agroecosystems. First, the reduction in parasitoid diversity due

to the migration of species to more suitable habitats may
result in increased pest pressure in the cases where pests

do not share similar range expansion patterns with their
parasitoids. Similarly, such mismatches may lead to reduced
population growth and ultimately extinction in the case of
specialist parasitoids due to limited hosts. Second, changes
in distribution patterns may be beneficial to agroecosystems
where the introduction of new parasitoid species may increase
parasitisation of pests. Migration of pests from agroecosystems
with unsuitable climates may also lead to increase in yield
due to reduced pressure. However, this is highly unlikely

as some dormant species may become more prevalent due
to reduced competition. Hence, the consequences of climate-

induced biogeography among parasitoids and pests are multi-
faceted and may have differential impacts on crop productivity

and biodiversity conservation.
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CLIMATE CHANGE EFFECTS ON

HOST-PARASITOID PHENOLOGICAL

RESPONSES

The modification of trophic interactions at both a spatial and
temporal scale is another major consequence of climate change.
Due to their higher position in the food web, the fate of
parasitoids under changing climates is also very much dependent
on the bottom-up factors in the form of responses of the
organisms at the lower trophic levels (Jeffs and Lewis, 2013;
Rosenblatt and Schmitz, 2016). Several studies have reported
how abiotic stressors such as warming, elevated CO2 and
drought can mediate the interaction between parasitoids and
their hosts (Buchori et al., 2008; Walther, 2010; Evans et al.,
2013; Jeffs and Lewis, 2013). For example, climate change can
lead to phenological asynchrony between parasitoids and their
hosts in cases where the phenology of the interacting species
respond differently to a climate-related cue or where one of the
species does not rely on a climate-related cue (Walther, 2010;
Jeffs and Lewis, 2013).

Climate warming has been associated with rapid rates of
development and multivoltinism (i.e., the completion of several
(≥3 generations) per year). Indeed, evidence of multivoltinism
has been reported in several agricultural insect pests of economic
importance including the maize stemborer Chilo partellus
(Mwalusepo et al., 2015), bark beetle Ips typographus (Jönsson
et al., 2009), and mealybugs Phenacoccus solenopsis (Fand
et al., 2014). For interacting hosts and parasitoids, temporal
phenological asynchrony may also occur if one of the interacting
species has an obligate seasonal diapause or rapidly develops in
response to warming (Forrest, 2016). Such asynchronies can lead
to the escape from parasitism pressure by insect pests in the
cases where climate change leads to earlier development among
host insect pest populations. Theoretically, temporal synchronies

stabilize the host parasitoid interactions as complete synchrony
may lead to depletion of host populations with subsequent

extinction of the parasitoids (Godfray et al., 1994). Thus, even

though the initial parasitism pressure is a classical top-down
factor, the consequent extinction of the hosts exerts bottom-

up effects that lead to extinction of parasitoid populations
especially in the case of specialists (Jeffs and Lewis, 2013).
Despite scant empirical evidence, some studies focusing on these

interactions have reported such asynchronies following even

minute climate variability. This is the case with the emerald
ash borer Agrilus planipennis and its parasitoid Oobius agrili
where small changes in severity and extreme climate events
phenologically excluded emerging parasitoids from host eggs
(Wetherington et al., 2017). In the Glanville fritillary butterfly

Melitaea cinxia larvae, behavioral plasticity such as movement
for basking in warm sunny spots enables temporal relief from

parasitoids through rapid development to the insusceptible

instar stages during spring. This will cost its parasitoid Cotesia
melitaearum, which will be immobile during that season.

However, such rapid development in insects may lead to small

body size at maturity and reduced fecundity (Kingsolver and
Huey, 2008) thereby impeding the positive demographic effects

of shorter generations (Forrest, 2016). On the other hand, such
behavioral plasticity in the warm season may not be beneficial
to the hosts as there may be more synchronization with the
parasitoids (Van Nouhuys and Lei, 2004). In this case, climate
warming will, in all likelihood, result in increased parasitisation
ofM. cinxia. Interestingly, warming can also result inmismatches
due to parasitoid advanced development relative to the host
as is the case with cereal leaf beetles Oulema melanopus and
its parasitoid Tetrastichus julis where warmer years result in
phenological asynchrony and reduced parasitism (Evans et al.,
2013). Hence, predicting the consequences of parasitoid-host
relationships is complex partly due to non-climatic factors that
may act as cues for phenological change and the potential
disproportionate adaptive evolutionary responses that may occur
among interacting species.

IMPACT OF PLANT NUTRITIONAL

QUALITY AND FOOD WEB DYNAMICS

Apart from plant diversity and abundance, nutritional quality
is also highly responsive to climate variability with cascading
effects among higher trophic groups. Greenhouse-based studies
have shown how elevated CO2 and temperature are closely
linked with a simultaneous increase in foliar non-structural
carbohydrates and a decline in protein concentration among
various plant functional groups (Rothman et al., 2015). This is
also in addition to changes in plant chemistry owing to alterations
in biogeochemical cycles due to land-use change. Other studies of
tropical trees along a rainfall and temperature gradient attributed
the decrease in foliar nitrogen content and nitrogen-to-fiber
ratios to increased precipitation and temperature (Schuur and
Matson, 2001; Weih and Karlsson, 2001; Santiago et al., 2004;
Craine et al., 2010). Whilst the impact of nutritional variability
on insect herbivores is widely documented (e.g., Mody et al.,
2009; Gutbrodt et al., 2012; Mbande et al., 2019a,b), information
of its impact on parasitoids remains scant (Safraz et al., 2009).
Much of the current knowledge on the impact of nutritional
gradients on food webs has been generated from phytoplankton-
based model systems. Even though stark contrasts exist between
the ecology of terrestrial and phytoplankton systems, what is
apparent from these studies is that the ecological efficiency
and energy transfer to higher trophic levels depends on food
quality. For herbivores, stoichiometric constraints exist through
the proportion of carbon and nutrients relative to respiratory
demands, in addition to assimilation efficiency with potential
carryover effects to carnivores (Dickman et al., 2008).

Prey (herbivore) diversity is another aspect that has been
previously linked with plant nutritional quality (Marzetz et al.,
2017). In the study, Martinez et al. (2017) postulated three
hypothetical scenarios of herbivore response to nutritional
quality. First, the growth of the herbivore populations is
promoted in diverse communities by co-occurrence of species
with complementary nutritional traits. Hence, a positive
correlation between herbivore performance and food diversity
would exist. Second, a single or a few speciesmay possess superior
nutritional attributes that enable herbivore growth which in turn
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may transform the relationship between producer diversity and
consumer growth. In such a scenario, a positive correlation
between consumer performance and food diversity would be
promoted in a more diverse community due to increased
likelihood of having the high quality species. Third, high diversity
may alsomask the relative contribution of the high quality species
if they are not competitive. The net interactive effect of the above
processes could result in both null and negative correlations
(Marzetz et al., 2017). How such plankton-based herbivore
responses are transferrable to terrestrial systems and higher
trophic groups is debatable. However, Nitschke et al. (2017)
reported contrasting responses in the abundance of parasitoids
and herbivores in response to plant diversity. Assemblage of the
herbivorous Chaetorellia jaceae decreased with increasing plant
species and functional diversity whilst parasitism of the chalcid
wasps Eurytoma compressa and Pteromalus albipennis increased
with increased plant functional diversity. In another study, Safraz
et al. (2009) reported improved performance in several fitness
correlates in koinobiont parasitoids in response to increased
nitrogen, phosphorous and potassium among host plants. These
examples demonstrate how nutritional quality mediates the
performance of parasitoids through both herbivore population
abundance or nutritional value of the host as mediated by the
host plants. Therefore, a plant’s nutritive status may not only
affect its suitability for herbivorous insects, but fitness parameters
of organisms at higher trophic levels such as parasitoids (Olson
et al., 2009; Chen et al., 2010; Han, 2014).

Overall, density dependent interactions in response to
nutritional gradients caused by global change will play a central
role in food webs. Factors that reduce parasitism efficiency
weaken the top-down forces (Power, 1992). For example,
intraguild predation among parasitoids and hyperparasitism,
which may increase when herbivore populations are low, may
result in reduced parasitoid abundance and diversity (Rosenheim
et al., 1993) thereby counteracting conservation efforts (Snyder
and Wise, 2001; Symondson et al., 2002). Host plant quality
may also mediate the interaction between parasitoids and hosts
through its influence on herbivore body size. For example
Chen et al. (2010) reported that development time of immature
parasitoids is positively related to host sizes due to the close link
between host body size and nutritive value leading a compromise
of size dependent individual and population level parameters,
as earlier stated (Thompson, 1999). This further highlights the
critical role of plant nutritive value on parasitoid population
dynamics, demographics and efficacy of their ecological services
(Han, 2014). Hence, climate variability induced nutritional
gradients may, in all likelihood, affect both the herbivorous hosts
and their antagonists e.g., parasitoids through both bottom-up
and top-down effects.

LANDSCAPE MANAGEMENT AND

PARASITOID RESPONSES TO HABITAT

COMPLEXITY AND CONNECTIVITY

Agricultural intensification is typically characterized by a
high rate of disturbances resulting in fragmented habitats,

significant biodiversity loss and poor ecosystem function due to
modification of bottom-up and top-down processes (Crowder
and Jabbour, 2014). Perhaps the most direct impact of
disturbances is the loss of habitats, which leads to a reduction
in their population carrying capacity of various species thereby
limiting the provision of ecosystem services (Cronin and Reeve,
2005; Holzschuch et al., 2010; Crowder and Jabbour, 2014).
The consequent existence of smaller populations on small
but fewer suitable patches makes them highly vulnerable to
genetic, demographic and environmental perturbations such
as climate change (Baguette et al., 2013). Indeed, several
studies have reported a high extinction risk among small
parasitoid populations occupying small patches (Bennett and
Gratton, 2012). Parasitism and inbreeding depression are some
of the demographic factors that limit population persistence,
the extent, effect, and manifestation/expression of which are
magnified in small populations on small fragmented patches
(Coudrain et al., 2014; Start and Gilbert, 2016). Apart from this,
adaptive evolutionary responses to environmental stressors in
such smaller populations are known to be highly limited (Bay
et al., 2017). Hence, climate change will further increase the
pressure exerted by demographic parameters leading to potential
extinction. Moreover, climate warming among interacting
trophic levels has already been reported as a catalyst for
extinction in species at higher trophic levels like parasitoids
(Jones, 2008; Northfield and Ives, 2013; Mellard et al., 2015) with
population sizes mediating the evolutionary dynamics (Oostra
et al., 2018).

Habitat complexity is widely reported as a conduit for
parasitoid assemblages together with other pest natural enemies
(Langellotto and Denno, 2004; Buchori et al., 2008; Holzschuch
et al., 2010; Pierre and Kovalenko, 2014) thereby maximizing the
provision of their ecosystem services (Fiedler et al., 2008). Indeed,
emperical evidence has shown how landscape complexity can
aid conservation biological control through improved provision
of resources to pest natural enemies (Jonsson et al., 2012).
This is because, for many species, highly complex habitats give
more resources which form broad niches that reduce niche-
overlap thereby promoting species coexistence (Smith et al.,
2014). However, such diversity has occasionally been cited as
a disadvantage for parasitoids. For example, some studies have
reported a decrease in their foraging efficiency under complex
habitats (Gols et al., 2005; Kruidhof et al., 2015), even though this
may be ameliorated by their high associative learning capacity of
the emitted herbivore induced plant volatiles (HIPVs) (Meiners
et al., 2003; Kruidhof et al., 2015). Such capacity for associative
learning is of high ecological importance and contributes
immensely to the evolutionary fitness of parasitoids in cases
where conditions allow for rapid learning (Dukas and Duan,
2000). Kruidhof et al. (2015) attributed a 28% increase in foraging
efficiency in Cotesia glomerata (Hymenoptera: Braconidae) to
associative learning under controlled outdoor experiments.
Furthermore, another study reported differential responses to
polycultures (regarded here as complex habitats) in the foraging
capacity of generalists and specialist parasitoids. Naïve generalist
parasitoids had poor foraging efficiency under complex habitats
compared to specialists (Perfecto and Vet, 2003). However,
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this poor performance among generalists was nullified when
they had an opportunity for associative learning (Perfecto and
Vet, 2003), thus underlying the ecological importance of such
behavioral plasticity. Therefore, poor capacity for associative
learning of odors may result in fitness costs including longer
foraging durations and increased exposure to predation (Dukas
and Duan, 2000). It is however likely that where odor cues
may not be sufficient during associative learning, other cues
such as visual may be employed (e.g., Desouhant et al., 2010).
Likewise, push-pull strategies, a stimulo-deterrent cropping tactic
consisting of intercropping cereals with legumes and surrounded
by grasses, can also be incorporated for repulsion and attraction
of stem borer pests and parasitoids, respectively (Cook et al.,
2007; Kebede et al., 2018).

Another important challenge posed by disturbances and
climate change in agricultural landscapes is poor habitat
connectivity, at both spatial and temporal scales. Indeed,
climate stressors among fragmented landscapes exacerbate the
pressure on biodiversity due to the limitations they exert
on metapopulation and biogeographical responses (Opdam
and Wascher, 2004). Ecological landscape processes such as
herbivory, dispersal, and gene flow are highly dependent on
the connectivity of habitats with both geographic isolation and
seasonal quality or availability of resources all being important
for species persistence (Cronin and Reeve, 2005; Baguette
et al., 2013; Smith et al., 2014; Maguire et al., 2015). For
parasitoids, the functional connectivity of natural and semi-
natural habitats with cropping systems ensures a continuum
of suitable habitats where acquisition of critical resources such
as nectar, pollen and sap is made possible with short-term
improvement in crop yield through increased parasitism of
pests (Gurr et al., 2003; Wilkinson and Landis, 2005; Cook
et al., 2007). Such connectivity minimizes foraging time thereby
reducing risk of predation (Weisser et al., 1994) or environmental
stress, which becomes more frequent under changing climates
(Mutamiswa et al., 2018).

By promoting the conservation and activity of natural
enemies of insect pests, habitat connectivity is availed thereby
contributing positively to agricultural landscapes (Jonsson et al.,
2014). This includes the assemblage of outbreak herbivorous
insect species, which contribute toward ecosystem services such
as nutrient cycling, soil formation, and carbon sequestration
(Isaacs et al., 2009; Maguire et al., 2015). However, it can
also be detrimental in cases where connectivity aids the
spread of crop pests and diseases (Margosian et al., 2009;
Maguire et al., 2015). For example, increased connectivity is
beneficial for the establishment and spread of the mountain pine
beetle Dendroctonous ponderosae (Coleoptera: Curculionidae),
an insect pest of the boreal forests of North America (Maguire
et al., 2015). This connectivity has been reported as interactive
with climate warming resulting in major pest outbreaks (Aukema
et al., 2008; Raffa et al., 2008; Safranyik et al., 2010; James
et al., 2011; Bone et al., 2013). Conversely, connectivity in other
parts of that region results in the suppression of the forest tent
caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae)

due to increased predation pressure by parasitoids (Cooke
and Roland, 2000; Maguire et al., 2015). Factors such as
habitat fragmentation were cited as key for disrupting parasitoid
assemblages in such cases (Cooke and Roland, 2000). Apart
from affecting intra-population dynamics like abundance, low
connectivity resulted in poor diversity of tachinid parasitoids in
18 different grasslands in agricultural landscapes (Inclán et al.,
2014). This underlies the profound role that habitat complexity
and connectivity plays in the community assembly of parasitoids.
Other arguments against maintaining connectivity in agricultural
landscapes is their potential for providing pathways for dispersal
of invasive species and noxious weeds (Pringle, 2003). However,
this is highly debatable considering invasive plants can be
more successful in highly disturbed areas where succession
easily occurs in the absence of competition from native plants
(Theoharides and Dukes, 2007).

From the foregoing, it is apparent and widely documented
that habitat complexity and connectivity provide both ecosystem
services and “disservices” in agricultural landscapes (Zhang
et al., 2007). These dissensions however need to be evaluated
in a landscape context taking into consideration the ecological
attributes and the desired ecosystem services (Maguire et al.,
2015; Landis, 2017). Several conceptual frameworks for
incorporating the provision of various ecosystem services in
landscape planning and design of agroecosystems have been
posed (e.g., Buchori et al., 2008; Maguire et al., 2015). Landis
(2017) points out the need to merge fundamental and applied
ecological principals with agroecosystem concepts. These calls
are not new and have resulted in the birth of what is now
described as “agroecology” with emphasis on biodiversity
conservation and sustainable agricultural production systems
(Jonsson et al., 2014; Altieri et al., 2015; Gliessman, 2017).
When meticulously planned, incorporation of agroecology
principles that maintain plant diversity and connectivity will
also ensure the resilience of agroecosystems under changing
climates through buffering of biodiversity against climate shocks
(Altieri et al., 2015). This is in addition to other pro-climate
resilient ecosystem services such as carbon sequestration, soil
formation, and moisture conservation (Altieri et al., 2015),
albeit the possibility of trade-offs due to competition in water
usage between crops and non-crop plants (Zhang et al., 2007).
This is common for agroecosystems with high tree abundance
that can reduce the replenishment of aquifers important for
irrigation (Zhang et al., 2007) and also increase water loss
through evapotranspiration from streams and dams within
agroecosystems (Zavaleta, 2000). Hence, landscape planning and
design based on an in depth understanding of the ecological
processes at both on-farm and area-wide level is required
to enhance ecosystem services whilst minimizing trade-offs
(Maguire et al., 2015). For parasitoids, landscape design should
enhance the drivers for parasitoid assemblage and movement
or dispersal at both farm and the entire landscape level (Mazzi
and Dorn, 2011; Macfadyen and Muller, 2013). All these
interventions can account for the metapopulation theory with
improved resilience against climate change.
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PROSPECTS FOR IMPROVING THE

EFFICACY OF BIOCONTROL EFFICACY

It is increasingly documented that temperature fluctuations
associated with climate change are shifting parasitoid-host
phenologies and population dynamics (Agosta et al., 2018). As
such, there is increasing interest on experiments elucidating
effects of different trophic interactions (Machekano et al.,
2018; Mutamiswa et al., 2018), and the most convenient
indices to be employed (Agosta et al., 2018). A variety of
simple matrices have been proposed, including warming
tolerance (Hoffmann et al., 2013) and thermal safety
margins (Kingsolver et al., 2013). Though diverse indices
point to a potential asynchrony of interacting trophic
levels with climate change (Hance et al., 2007), few studies
have looked at the second to fourth trophic levels (but see
Agosta et al., 2018).

Outside this, parasitoids may also adapt to changes in their
thermal environment in order to conserve those co-evolved
trophic relationships. Evolutionary physiology may potentially
be used to enhance the efficacy of biological control in the
face of climate change (Sgrò et al., 2010; Hoffmann and Sgrò,
2011). Hence, apart from improvement of in situ genetic

diversity or conservation of in situ evolutionary adaptation
focusing on physiological traits may be key (Pörtner and

Farrell, 2008; Chidawanyika et al., 2012). For example, during
extreme temperature stress, and depending on environmental

predictability, parasitoids may undergo dormancy or quiescence

(Tauber et al., 1986), and this may manifest at any stage

of parasitoids development. When environmental thermal
variability is predictability low, and temperature stresses are

short and transient, parasitoids often use behavioral adjustments
to cope with stress, e.g., insects may go into chill coma

(Mutamiswa et al., 2018). Another form of behavioral host
manipulation by parasitoids has been reported for koinobiont

parasitoids (Lagos et al., 2001). Koinobiont parasitoids often
induce behavioral changes in their hosts, so they move to

habitats that ensure maximum survival chances. Induction of

this behavior has been reported for parasitoids Aphidius ervi,

(Lagos et al., 2001) A. nigripes (Brodeur and McNeil, 1989), and

Eucelatoria bryani (Reitz and Nettles, 1994). Such behavioral
adaptations form the first line of stress defense because they

are energetically less costly, and are adaptive in the face of
changing environments.

When faced with freezing low temperatures, parasitoids

have also evolved freeze tolerance as a survival strategy
(Vernon and Vannier, 2002). While freeze tolerance is

rare in parasitoids, it means they will be vulnerable to
freezing temperatures if their host bodily fluids freeze, for

freeze tolerant hosts. However, a few parasitoid genera are
reported to be freeze tolerant e.g., endoparasitoids Ichneutes

(Braconidae) and Syndipnus (Ichneumonidae). These have

evolved freeze tolerance to survive freezing when living within
the freeze tolerant host larvae under freezing Arctic conditions
(Humble and Ring, 1985). For freeze intolerant parasitoids

(see Vernon and Vannier, 2002), parasitoids have often evolved
manipulation of their hosts to avoid freezing. Parasitoids do
this through physiological manipulation of the host following
parasitisation. For example, unparasitised host Diuraphis
noxia has a supercooling point (SCP) of ∼ −25◦C. However,
physiological manipulations of this host by parasitoids Aphelinus
asychis, A. albidopus, and Diaeretiella rapae (Hymenoptera:
Braconidae) have been reported to depress host SCP to
temperatures below −30◦C (Nowierski and Fitzgerald, 2002).
This is also consistent with reports on other insect taxa
(Parish and Bale, 1990; see Hance and Boivin, 1993), and
such physiological host manipulations by parasitoids are
adaptive and may conserve ecological services in the face of
changing climates. Moreover, color also plays a significant
adaptive mechanism for surviving stressful temperatures in
parasitoids and indeed parasitoid color morphs have been
reported (Schlinger and Hall, 1960; Langer and Hance, 2000;
Legrand et al., 2004), which may compensate for thermally
stressful environments.

Investigating the effects of environmental heterogeneity
on parasite-host interactions and predicting consequences on
ecological services is complex, but very significant in biology. We
conclude that basic thermal physiology comparative experiments
across interaction species (e.g., Agosta et al., 2018; Machekano
et al., 2018; Mutamiswa et al., 2018) may be the first step
in elucidating some of the complex drivers. Nevertheless, it is
generally agreed that climate change may decouple long co-
evolutionary relationships across interacting species (Hance et al.,
2007). Such divergence between parasitoid-host phenologies may
disrupt ecological equilibrium and may lead to rapid insect pest
outbreaks consequent of a climate change induced failure in
biological control.

CONCLUDING REMARKS

Climate change presents new challenges and limits in agriculture.
Concerted efforts will be required to ensure that the integrity
of trophic interactions are maintained in situ. Since the factors
associated with poor parasitoid assemblages and performance
are largely attributed to high disturbances in agricultural
landscapes, management practices should take an integral
role in order to maintain resilient farming systems, with
emphasis on those that incorporate evolutionary capacity in
landscape organization in order to maintain parasitoids genetic
heterogeneity. Whilst such disturbances vary across spatial and
temporal scales, improved landscape planning at both local and
area-wide levels will be key in order to improve parasitoid
effectiveness. For example, development of multifunctional
landscapes that promote biodiversity whilst maintaining essential
ecological services must be encouraged. This landscape planning
will require robust ecological indicators for both evaluation
and determination of interventions. Research should therefore
potentially aim at identifying parasitoids that are winners
under changing climates, in particular those using adaptive
evolutionary potential. These adaptive processes should be

Frontiers in Ecology and Evolution | www.frontiersin.org 8 March 2019 | Volume 7 | Article 80

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Chidawanyika et al. Parasitoids in a Changing World

incorporated in biocontrol strategies aimed at maintaining
interacting species and their essential ecological services.
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